BlitzMax for
Absolute
Beginners

Games Programming for the
Absolute Beginner

NERRGLY

IIIIIIIIii;\\\meuwmmm

Apress’

http://www.allitebooks.org

BlitzMax for Absolute
Beginners

Sloan Kelly

Apress-

[vww allitebooks.cond

http://www.allitebooks.org

BlitzMax for Absolute Beginners: Games Programming for the Absolute Beginner

Sloan Kelly
Niagara Falls, Ontario, Canada

ISBN-13 (pbk): 978-1-4842-2522-6 ISBN-13 (electronic): 978-1-4842-2523-3
DOI110.1007/978-1-4842-2523-3

Library of Congress Control Number: 2016961342
Copyright © 2016 by Sloan Kelly

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the author nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Massimo Nardone

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,
Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers

Copy Editor: Michael G. Laraque

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

[vww allitebooks.cond

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

Contents at a Glance

About the AUthOr ... ————————=——=—=—— Xix
About the Technical REVIEWETccussmmssmsssmssmssmmssssssmssssssmsssssssssssssssssssssssnsssssnns XXi
Chapter 1: Computer System.........cccccunemmmmmnnsssnmmmmsssmmmmssssmmsssssss—————"; 1
Chapter 2: How BlitzZMax WOrKSccuuusssessssssssssssssssssssssssssssssssssssnsssssssssnssssssannnss 13
Chapter 3: The BlitzMax IDE.........ccccccummummmmmsssssssssnsmmsssssssssssssssssssssssssssnssssssssssssnns 17
Chapter 4: Literals, Constants, and Variables..........cccuussmmmmmmnmnmmnmsssssssssssssnsssssnes 25
Chapter 5: The Great ESCAPEc.usccerrrssssnnnssssssnssssssssssssssssssnssssssssssssssssssnsssssssnnnss 51
Chapter 6: Reusing Code with FUNCRIONS.......ccccnmsammmsssnsmsssnsmsssnsssssssssssnnssssnnsssnns 63
Chapter 7: Using the File Systemcccunimmmmnmnnnnnsssssssmmnsssssssssnnnnns 1
Chapter 8: Tank Attack: The Second GAME......cccerrrsssmnnrrssssnnssssssssnssssssssnnssssssnnnnss 77
Chapter 9: Object-Oriented Programmingccsssssssssssssssssssssssnsssssnsssssanssssnnssss 101
Chapter 10: Project File Managementccccccmmmirinssssssssssnmsnnssssssssssssssssssssssnns 115
Chapter 11: GraphiCS......cuuuiuummmmmssssssnmmmmsmssssssssssssss s 117
Chapter 12: User INpul.........ccccciieemmmmmssssnmmmsssssmmmsssssnmssssssnmsssssssessssssssssssssnnnns 135
Chapter 13: Keyboard Input..........cccoinnmmmmmmmsnsmmmmssssnmmmssssnmssssssssmssssssssssssssnsns 143
Chapter 14: JOYSHCKceeriiiiiimmimsssssssnnssnnssssssssssnsnns 149
Chapter 15: Common Input Routingcccccunsemmmnnnsemnmmnssssmmmssssssmmsssssnssssssnsns 155
Chapter 16: Collision Detectionccuccerrrnsssnsnnmssssnssnmssssssnssssssssssssssssssssssssnnnes 161
Chapter 17: OpenGL Special Effectsccuummmmmmmmmmmmmmmmmmmsssssnnsmsmmmmsssssssssssmssnns 171
Chapter 18: Paratrooper: Retro Involved..........ccccusemmmnnssmmnmnssssnnsmsssssssnssssssnnns 179
iii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS AT A GLANCE

Chapter 19: Sound Effects and Audiouursuemmmemmmmmsssssssssssssnssmsssssssssssssssssesssnns 207
Chapter 20: Putting It All Togetherccccunemmmmnnsmmnmmmsssnmmssssn—————— 215
Chapter 21: Game DeSigncccvusssennmmmsssssnmmsssssssmsssssssssssssssssssssssnssssssssnnnsssssnnnnss 217
Chapter 22: Storyboardingcuccemmmmsssnsnmmssssssnmmssssssnssssssssssssssssssssssssnnssssssnnnnss 219
Chapter 23: Project Management..........cccuunseemmmmmnmmmmssssssssssssssmsssssssssssssssssssssssns 251
Appendix A: Web Site AddreSSes......cccusmmmsssmsmsssnsmssssssssssnsssssssssssssssssnssssnnssssans 255
Appendix B: BlitzMax Key COUeScuummmmmmmmmmmmssssssssnnssssssssssssssssssssssssssssssssnnnnnns 257
Appendix C: ASCII Table.....ccccusseeenmmssssnnnmmsssssnnsmsssssssssssssssssssssssnnssssssnnnssssssnnnnsssss 259
Appendix D: Controller Abstraction ClassSes........cccsrumsssmnnsssssssnsssssssssssssssssnnssssss 263
Appendix E: Compiler DIreCtives ..ucuuuusssssssssmmmssnnnns 269
INA@X.ciiieiiiesrnmsssnnsnms s rsm s s s s 273
iv

[vww allitebooks.cond

http://www.allitebooks.org

Contents

About the AUtNOFccccciiiiisemnmmnssssnmmsssssnnrs s as s s n s e s sannnesssnnnnnnsssnnns Xix
About the Technical REVIEWETccuxsssesssssnsssssnsssssnsssssnsssssnsssssnsssssnnssssnsssssnnssssnnssssns Xxi
Chapter 1: Computer System.........cccccunemmmmmnnsssnmmmmsssmmmmssssmmsssssss—————"; 1
| 1011 S 2
o (016 T 2
0 1] SRS 2
The COMPUEETr SYSTEM......cccviririrrr e sa e sa e n e 2
COMPULET MBMOTY....c..ceeeeererresir e e e sa s s s sr s ne e e nn e e nennnens 3
DiSK..vvvuueesseeessseesssessssesssssssssesssseessasesssseessssesssseessases s s s SRR R R 3
RaNdom ACCESS MEMOIYccccueerrcrrrerie e r e s e e s r et s a e e nesn e sr s s n e e ne e nnas 4
REAA-0NIY MEMOIYcoviuieirieirese st a et e s e s e b b e ne bR e b b e e b e e eepe s 4

07 T 1 TSRO 4
The Hardware/Software Stackcccvcvvrrrnrrnsenss s 4
(T 01 T o SRS 5
0T 5
63T -1 SRS 5
LTS 0]) 0] USRS 6
NUMDBEK SYSIEBMS......ciirrirer s r e e sa e e 7
The Decimal SYSTEM.........ccccoieiecrerr e s 7
The Binary SYSTEM ..ot e n s sn s sn s nn e n e n s 8
Binary NUMDBEIING......ccoeeeeeee et e 8
Groups OF BiNAry DigitS......ccoceururercrerrrercrirsesese s e se s e s 9

LCT 0T oL) 5T T 9

v

[vww allitebooks.cond

http://www.allitebooks.org

vi

CONTENTS

HEXAUECIMAL.........coeeeceercre e sn s ne s 9
Larger NUMDEIScoociiriiieisiressssss s s s ss s s 11
Chapter 2: How BlitZMaX WOIKSccceesuirmmmsssssssssssnssssssssssssssssnssssssssssssssnssssssssssssns 13
Computers Can’t Read ENglish.........cccoverininincrcncre s ses s e sassessnes 13
Translating English to Computerese (Machine Code)..........cccverrerrrsersessessesssssessessennnnns 13
COMPIlAION PrOCESS......ceerireereeriereerse e rse s sae s s s ssesse e sassaesaesae s s sas s snesaesassnssnssnssnesnes 14
Application/Game/ProOgramcocueerersereressssmsessesssssssssssssssssesssssssssssssssssssssssssssssssssness 16
Chapter 3: The BlitzMax IDE.........ccccccummmmmmmmsssssnssnnnmmsssssssssssssssssssssssssssnssssssssssssnns 17
Launching the IDEo e e e 17
LT TN 2 18
[0 7 T 18
The Tab Panel ... 18
= 11 T SRS 18
INSEIT ... —————————————— 19
File OPEratioNSc.ccceueeercrrri e n e e 19
L 1 PP 20
10T 20
00 R 20
CHPDOANT ... r e n e s r e n e n e n e nn e n e nnenn e nan 20
CUL cvvvvesseeeeessssseesessssssssssssssessssssssesssss s s s R8RSR R8RSR R 21
o o 22
GEHING HEIP. e 23
Chapter 4: Literals, Constants, and Variables..........cccuumssmmmmmmnmmmmmmsssssssssnnnsmssnnes 25
L L] PP 25
LD L ez 1 0T SRS 26
Variable NAMES.......cccocececrcrcrerercrcsc s ne e e e e e e e e e neenes 26
VaTADIE TYPES...cveuererereerereesersererereserssersesesaesesaesassessssesassessssessessssesessersssessenssssnsssessssensssessssersessssnsnaes 26
VATTADIE VAIUES ... seseseseseenenenes 27
Why D0 We USE VAADIES?ccceererererereererseseresessesesessssessesessesssssssssessssessessssssssssssssessssessssessssssssnssaes 27

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Variable SCOPE ...cvevueecece e a e sa e n e sn e n e n e nn e nnenn 28
0 28

61 o] 7 | 28
FIBIH e ov ettt et s s AR 29
LITEralS ...cceerererrisiccsesi s 29
CONSLANTS ...cviecireici i ————————— 29
Changing Variabl@s..........c.cccvernnmresnssesssssessssssse s sss s sss s sse s ssssnssesssssssssssssssssssnens 30
ArithmetiC OPEratorsScoccvevererere e sa e sa e sa e a e sa e sa e sn e saenenen 30
QLN 2 1807 o (0 30
T 00T = =T 1 - 10 31
THE MINUS OPEIALOLeceeeerereererererersesersesersesesaesessesssessssessssessessssssessessssessesessssesssssssssassessssersenssssnsnaes 31
The MUltiplication OPEIALOrccceeveereerererererere s s rrs e rre e raesesae e s e ras e sae e sae e saesesaesassesassesaesesannenaes 31
QL L3 (=T 0] o =T (0] 31
QL0 To L[0T 0 o =T (o] 31
USING thE COION........cceeereererereeereesereresesas e s e rse e saesesaeras e sae e saesesaesesaesassesae e rae e saesanaesansenseserassnaeransens 32
Boolean Mathematics...........ocvinnnn e ————— 32
Lol A DI 0T = (] S 33
THE OR OPEIALOF ... e e b et R e e Re e e R b e e R e e R e e nenrnnis 33
THE NOT OPEIALOFcoveeereceerire e r e e e e s b e e b e e R e e s Re e s Re b e e e e e R e e ene e nnis 33
The EXCIUSIVE OR OPEIALOFccueceeerceereertr ettt sessesses s s e s e sas e se e s s s e s e e sa s e e e e e s e e e e saesnesansannne s 34
SHNG METNOAS ...t sr s ne s 34
FIN ettt s AR 35
T | T 35
LT 35
3] 0] Lo OSSPSR 36
STAMSWILN ... ———————————————— 36
ENASWIEN. ... 36
0]] 36
] 36
SPIIE ovureeereeress e s e 37
vii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

L0 0 O 37
L0 oo SRS 37
Tolnt, ToLong, TOFI0at, TODOUDIEcceververierircerersen e se st st sa s sa s sa st sn e sa s sa s sn s 37
L0033 15T o 37
L0111 (2T 38
Fromint, FromLong, FromFloat, FromDoubIe,..........ccuvirireninircrrre s ses s e ssssnens 38
L (0111123 TSRS 38
(0 103 £ o 38
0T 0 10 39
L0 1111 S (1o 39
LT 01T (T 39
GOING With the FIOW ... sn e e sn e sn e n e sn e n s 39
SIMPIE DECISIONS....cuereereirieeririee s rreesee e s e srs e s sse s s rae s e e sse s e e s e snesaesnesaesnnesanesnesas 39
IF Conditions Always Equate to One of Two Values: TRUE or FALSEccooevrerriernreneserenerenennens 40
Testing for EQUAality........coceeerreeccrce e 40
USING BOOICAN LOGIC......ceereererrerrerrernessessessessessessessessessessessssnsssssnssssssssssssssssssssssssssssssanns 42
LT T T SR 43
B3 Tc] (T 2 T TP 44
Iteration—Making the Computer Repeat ItSelf ..., 45
B (L= 0T o 45
L0 g T 1 TR 46
WRIIE/WEN ... san s 47
Repeat...UNtil.........oeeeeee e e 48
e e B o] (YT S 49
| S 49
010] 1411 30
A Note on EXit and CONtINUE.........ccueererercreresereseese s s s snsssnens 50

viii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 5: The Great ESCAPEeucveeeersrmssnsssssssssssssns 51
GAME EIBMENIS ... 51
Creating the Graphic EIements..........cceceieeererc s e 51
WINOOWS ..ot e s se s e e st e e ae e e A e Re e e s e e Re e e b e Re s e e npenn e e nnans 51

1 TSRS 52

L1 a0 11T 52
SPIitting Up the TaSKS........ccvverrerrerier e ses s ss s se s e e sassassas s sassn s e s e e snnnes 52
Ty CE= ST (o R 52
L0 T 0 0o 53
Starting the GAME ..o 56
Giving the Player FEEUDACK.........ccceeeeeeere e sn e nnen e 57
The Linear Gradient..........ccoocoeerererenenmrneseressse s ses s s e sesassssssasssnees 57
Debugging YOUr COUEcorirerrercsr et s e 59
StOPPING EXECULION ...ttt n s e e 60
Printing OULPUL......cocererrcr ettt a s sn s e 61
Other Debug MEthods ..o e 62
Chapter 6: Reusing Code with FUNClions..........ccciunssemmmmnssssnssmmsssssssmssssssssssssssssns 63
Where Would | Use @ FUNCLION?Y.........cocriiicncrcrs s 63
Declaring a Simple FUNCHONccoeciienircs e 63
Drawing @ LINEcceeveeeircerir s see e s sn e sn e sne s n e s sne s s nne 63
Specifying Parametersccceeeceiecercs s sn s sn s nnnnn s 64
OPIONAl PArameEters......ccceieririrerere s s a e e a e s a e s e e e e e e e e e e na e e e naennennen 64
Extending EXisting KEYWOIdSc.ccocerververiersersirser s s s s s s nas 65
Returning Values from FUNCHIONScccvvrvrnenirrrrer e e ses e s 66
RECUISION ...ttt 66
Returning MUItIPIE VAIUESccovceeenricrnssesessesissn s s sss s s snssssnssssssns 67
ix

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 7: Using the File Systemcccciinnmmmmmnnsesnmmmssssnmmssssnmmssssssssssssnn 71
Reading @ DIr€CLOrY........cccvevrerrersersersisses s nn s nn s nnenn s 71
CUITENIDIN ... et p e e e s b e e R e e Re e e Re e e e Re R e e e Re e enenenRnnnnnnes 72
CRANGEDIN ... ccvecercice e e e r e se e e e e R R e e R e e R e R e Re R e e R e e e Re e e RenenRennnanes 72
ReadDir, NextFile, and ClOSEDIN.......ccuiiiiiiiriiisirisissisesssssssssessssssssssssssssssssesssss s ssssssssssssssssssessnsssesanasans 72
07 o |] OSSPSR 72
L1 L] oL TSSOSO 73
L (T 1] D SO SYSTPSTRSRRTSTRSN 74
DIBTEDIN ... AR R R e AR e e Re e nRenanaeas 74
File Manipulation with OpenFile..........cocvorirercr e 74
3L o | T OO 75
0) OO 75
ClOSESIIBAMc.cveeece ettt e s e e s e e e e R e e e e e Re e e e s Re e e e s Re e e e nsnnnas 75
L =] T T OO 75
Chapter 8: Tank Attack: The Second GAME......cccurrrsssennsrsssssnnsssssssnssssssssnnssssssnnnnss 77
Information/Splash SCrEeN........c.cc e 79
MaiN GAME LOOP ..overeeririeerirreesesssesesssesssssesssessessessssssessssssssssssssssssssessssssessnsssessnesaesas 79
RESET GAMEc.eiererereri s e e n e p e nn e n e nn e nn e nn e nnnnnnnas 79
Draw ENdgame.......cocoiiiirninersne s 79
Remaining FUNCHIONS........cccvvrnrirerer ettt sn s sa s nn e 79
THE GraPRICScccevererersire s r s r s sr e sr s sn e n e sn e snnnnennennnnnn 79
TRE DALA ... —————————————— 82
THE STUD COURcoveereeerrerre et sa s e a e sn s eae e nn e nnis 83
The SPIasSh SCIEENc.cvcvcrirrrr s n e nrannennn 85
PHINIMESSAQE. ... coveeere e a e s a e e e e s e e R e e Re R Re R e e R e e R e e e Re e nRennnnnas 85
]2 N1 ST 0] T SRS 85
Loading and Drawing the Map ... sn e sns e 86
THE BFCK GFAPRICccevveeeeeresseesesesseesesesssse e e s e se s s ss s s sas s se s s se s s s e s e s ssessssssssssssssnsns 86

MAP POSITIONS ...t p b e e e nr e 87

CONTENTS

Getting the Map Data..........ccceeeverererere s res e s sae e e e e e s sa s sae e sae e saesasaesassesaesesaesenasanaens 87
The Main GAME LOOPveeerrerereererererereressesessesessesessessssesssessssessesssssssssessssessenssssssssssssssssssesassessenssssnssaes 89
Adding COmMDAL.........coeeeeeeeee e e nnenen 89
UPAALiNg the TANKSc.covieeceeeiecccre et et e e nnnn s 92
0] T 10 T DT e (o] OO 94
Drawing the TANKS ... e 94
MaiN GAME LOOP ... ettt e d s s bbb e s e e pe e be e e ae e nanas 95
AddINg TENSIONcceeeeererresrssere e s se e sa s saesn e ne e s e san e snennnnenns 95
Drawing INFOrMALION..........cccereireercrrre e enp e nenr e s 96
ReSELHNG the GAMEccceececrrrrcccri e e e e e p e nnna e ns 96
Decrementing the COUNTEN ..o s 97
THE ENA SCIEEIN ... san s 98
The ENAQAME STALEc.cccveeererere et rre et sae s e se s e sas e sa e saesasaesasaesas e s ae e sae e saesasaesassesassesaenesasnnnans 98
Chapter 9: Object-Oriented Programmingccossssesssssssssssssssssnsssssnsssssnnssssnnssss 101
What IS @n ODJECE? ... 101
What IS @ ClaSS?......ccooereierrireriseress s s s s s sns s 101
What IS an ALHDULE? ... s 101
What IS @ METhOd? ... 101
What Is the Difference Between an Object and a Class?ccccceverercercrcescescenene 102
What IS INNETANCE? ... 102
What IS an INTErface?cocccererennsnerirses e 102
Classes iN BIIZIMAXccccueerernernennsenessssssssssss s s s s ssssssssssssssssssnsesns 102
Defining @ USer-Defined TYPEcccvververrerrersirrerserser s sesses e sesses e s ses e snssnssassasssssnnns 102
A SIMPIE CIASSeeueeeeererierire s a et s n s e nn e s 103
FIBIAS .. vveccc ettt e e 104
MEENOUS ... ——————————————— 104
FUNCLIONS.......ceii e 104
Consts and Globals or Static AtrDULES..........ccceerrrernsererre s 104
Inheritance and POIYMOIPhiSMcoceciienirc e ne s 106

xi

CONTENTS

A SIMPIE ODJECL......coeeerereerrerisse e s e s re e nan e nnas 106
o0 0T 0] 1 R 108
SeIf AN SUPET ... e r e r e r e n e r e n e nnnnan 110
NEW and DEIELE........ccceeeererererere e nn 111
Abstract and FiNal ... —————— 112
Differences Between Abstract and INNErtanCecocoeeceeeereeererenesese s 113
AN FINAILY... oot sr s s rn s 114
SUMMAIY ...ttt e s s sae e e r e e s e a e e ne e s nnnnnnnnas 114
Chapter 10: Project File Managementcccccccmmnrnnssssssmssmnsnnssssssssssssssssssssssnns 115
T 0 L 115
14112 1 116
Chapter 11: GraphiCS.....ccccrrrmmmssssssssnnnnmssnnnnnsssssssssns 117
GraphiCs MOGES.........coereereirerererre e sa e sa e sae e e e sa s e sa e sa e sa e sa e sn e sn e snnnens 118
COUNTGrAPRICSIMOTES. ... ccvrerercreeereerereerereres e rsesersesesaesessesassesae e saesesaesesae e saesassesaesesasesasanaeransesannenes 118
GraphicsModeExists(width, height, depth=0, hertz=0)ccoeerererrerererererererererere e 118
6T 0] 1 119
ENOGIAPNICS. .. .eueeveereerereerereresersesersesersessssesssessssessssesassasssssssessssessssessesesssssssessssesssessesssssessesanserseneres 119
GraphicsWidth and GraphiCSHEIGRL ..o 119
GELGIAPNICS ..eveeerreereererserereresersesersesessesessesassesaeserassesassasaesasaesaesesaesessesesaeasaeassesassesssnesseansesanserseneres 120
SOME AGVICE......ceruereeeserise s a s a s s ae s s ae s a s s se s nnn s 120
FII e —————————————————————— 120
3 122
ST (0]] 0 0] 123
6123 (0]] 0] 0] TR S 123
Drawing Simple ODJECTSccvververrerierrerrererser s se e sn e sa s sn e sn s snesnesnenens 124
PIOE . 124
DIAWRECT ..ot bbb 125
D] 1 125
D] 0T 125

xii

CONTENTS

D2 N1]SSR 126

D U=« 126
IMAQES....eeieeieeererrere e re e sesae s se s e s ae s e s e s s e e aesae s e sRenRenRenrenRenRenRenRenRe R e nnennenrenan 126
IMmages and BIItZIMAX..........ccouvererererererse s sse e ssessesasssssassssssssssssssssssssassassassssssssssnnnns 127

0T o T2 T T 127

LOAAANIMIMAGE........ceeererrereerersssesesesssssssesessssesesssssss e s sssss e e ssssasssessssasessssssssessssssssssssssssessssssssssnsnnns 127

D1 4 T 128

THEIMAGEeveeecerreeere e r e a et E e R e e Re e A e R e e e e s R e e e e s R e e e e nrans 128

SEIVIBWPOIT ...ttt e a e e e R e e e Re e e e R e e e R nnn s 129

GEIVIBWPOIT ...t e s r e ae e s s ae e s ae e e e nn e e e nes 130
FONES .. s 131
LoadImageFoNt..........o e nn 131
SetIMAGEFONT ... ———————— 131
GEtIMAGEFONT ... s 131
Example of Font Use in BIItZMaX.........c.ccccvernninsnsenses s ses e e snssnnnns 132
Chapter 12: User INpuUl.........ccccviiemmmmmssssnmmmssssssmmsssssssssssssssnsssssssssssssssnsssssssnnnnes 135
MOUSEX @NA MOUSEYcoeeerirurrreressrsesesse s s s sn s s sn s snsnsnes 135
Showing and Hiding the System MOUSE..........cceevrrrerrrrnsr e 136
IMIOUSEZ..... oot s s e s n s 136
T TOTEST=] D01 R 137
L0 TUET = o P 139
L T 0T 140
IMOVEIVIOUSEeeeeesseneessesese e s ssesss s s s s e ss s s ss s sse s s sss s sse s s sas s s s ssssssnssssssssnssnes 140
Chapter 13: Keyhoard Input...........ccccciimmnismmmssmmmssssmmsssssmsssssssssssssssssssssssssssnnsss 143
D0 o SR 143
13 PP 144
WAILKEYceereririri s n s nn s n e nn e nn e n s 145
L UL 0] O RSS PSR RN 146
613 (15 1 147

CONTENTS

Chapter 14: JOYSHCKceeuriiiiimmmmmsssssnmnmsssssssssssssssnsssssssssssssssssssssssssssnnsssssssssssnns 149
JOySticK INfOrmation...........ccocvercrsssrsr s s 150
JOYCOUNL......c.eeece e r e e e e A e R e e R e e e Re R e e e R et eRe e eRe e enenenanas 150
JOYNAIMEB......cee e r e e R e e e R e R e e R e e e Re R e Re R e e e Re e eRe R e RenEnanas 150
JOYAXISCAPS. ... eeverrrerrrserreessesesse s e ses s e sse e s e e s aesas e s et e s e e e Re s e e Re e s Re e R e e e R e e e Re e s Re e s ReeR e e eRe e eRe e nRenenanas 150
JOYBULIONCAPS.cecueeieceeresiee e e R e e e R e R 152
GEtting DIr@CLIONcccviererrrcrise s s 152
Chapter 15: Common Input Routingccccvneemmnnsssssnnmmssssnmmssssssssssssssssssssssnsns 155
THE CIASSEScuviueererresrsessst e sssse e s s s s se s s as s s sa s s sn s sa s s saesn s e as e s e nnnnsnnnnnnns 155
L] 010 155
NAIME .. e 156
LT (30 156
AXAFIFE cvvvvroreeeesssseeesssssseesssssseseesssssssssssssssesssssssssssssssssssssssssessessnns 156
| 156
BUHONCOUNL.......coeee e e 156
TStick and TKEYDOAr..........cccveeerierecirerir e ne e 156
TStickFire and TKEYFIre.......c.ccocvvrvrrrsnsesses s sn s se e sns e sns s s 156
Sample Application Using Controller.bmX.........cccvvvvrversernensesssses s ses e sessessens 157
Chapter 16: Collision Detectionccccccmmnnssmnmmnssssnsnmmssssssnmmssssssnsssssssssssssssnnns 161
SIMPIE COIlISIONSeererieerierreriee s s e sa e sae s sa e sse s snesanesn e sanesnenanesnenns 161
The First Rule—Collision Detectionccovvveernscnenssenenssese s 161
A SIMPIE GAME......ceeceercrere e s r e r e sr e a e s a e sn e r e sr s nr e nr e nnenn s 164
Chapter 17: OpenGL Special Effectsccccmmmnsmmmmmmmsmnmmmmmssssnmmsssssssssssssssssssssssnns 171
ROtating IMAQEScoeeveiiiririreire s 171
SEIROTALION ... 171
STz LT[0 I T T TS 173
ColliSiONS REVISITEAcccovreeerereeireseerese s se s 174
BIeNding MOGES........cccverieriererir st sn s e sn s sn e s sn e sn e sn e sn e nnenn 176
BIeNd MOUE EffECES......cooueecreririeeiriseeeses e s e e s s nnns 176

xiv

CONTENTS

Chapter 18: Paratrooper: Retro Involved.........ccccivvnnmnmsssessnnnnnnmmmmssssssssnsssssnns 179
Project Management...........ccocvereerrensessessessesses s s s s ses s s sns e s e s s s s s s snssnssnssnssnssnssnnnnnns 180
GAME DYNAIMICS ...eeeeerieererieeriee e sseessesseesesssessessaessesssessessaesssessessnessesssessesssessssssessnnsaesns 180
010 0 00 180
6T o]]SSPSR 180
QL (LT e T U010 0T S 180
The GuN EMPIACEMENL........ooeeeeccer e r e s s r s r e s r e e 181
JOYSTICK VS. KEYDOArd?........coceecerereririr st sn s 183
SOUN FX ..ttt sse s a s s n s n s srenn s e n e s n e nne e s nnnnnnnnn 183
0N With The GAME.......ccceeere e s 183
ParatroOPS.DMX ..o ———————— 183
TMENUSCIEEN.DIMX ... s es e sn s s sn s srenr e ne e nn s nnnnnnnens 188
(0] 0101 0] 1 PSSR 190
TParatroopGaAME.DMX.......cocrererer e e 190
T OO 191
CHECKCOIISIONSececceeeeecreseeseeesesse s ss s e s s e se e se e e sss s e e s nse s e s sse s e s nse s e nansnnnnsnnes 191
DT 1T OO 191
DT 11T I o o OO RS 191
D 1RSSR 191
0010 TR 191
DOQUIT...vvveeeevesesssseessasesssseessasesssseessaessssssssssesssssss s esss s s s SR s b s bbb s b e R bR nes b s bR nnens 191
DOGAMEBOVETcveeeeerertr ettt et e e e e s b e e b e e s ae e e R e e e A e e R e e e ae e s ae e e aenae e ns 191
DIAWOULIINE ...ttt e e e a e e b e e e s s e e e e ns 191
L7211 LTI o OO 192
TGameBaCKArOP.DMXcevieeeerierre s s e ss e sa e s s sa e s e snesn e sa e sanesaesanenaeen 196
L2 L U010 0T 0]) S 197
QLR T 1010 0T S 197
L0103 199
T OO 199
D 1RSSR 199

XV

CONTENTS

10102 SRS 199
I o o 199
TDOME.DMX .. 201
TBUIIBL .vvvvveeeeeessseeesssssssssssssssesssssssssssssss s ssss s s s s s R R 201
CFBALE ...ttt e e E AR e R R e Re e R A e Re e e R Re e e e eRe e nnas 201
D PSSR 201
14T F LRSS 201
L1011 P 202
Chapter 19: Sound Effects and AUdiocccvusseeenrnssssnnssnssssssnmsssssnssssssssnsssssssnnnnes 207
WAV ...t e e AR e E AR nE R 207
0 TP 207
BIitZIMaX and SOUNQ..........ccoruierirerecrereserereer e ee s 207
0 1o 01 o 208
o T 11 T 208
SEtCRANNEIVOIUME........ceceeeceeeceeeee s s s s s s s s s s s s s ssnsnnesnsasnsanas 208
PAUSECRANNEL........cceeceeeesesesere e e 208
RESUMECRANNEL........coeeeccererereese e 208
BlitzMaX SOUNT EXAMPIEcoveereeerrererrerereressersssersesessssessessssessssessssessesssssssssessssessssesssssssssassesassesseneres 208
INSTAIlING AUAACIEYccveeeeeeeceecece e s sr e sr e resn e snesnesn e snennennenns 210
S {0 o oSSR 210
Argh.0gg and Ugh.0gg.......ccoceerirernereisessnese s s sse s sss e s e s ssessssessssssssssssesnes 210
Altering the Paratrooper GAME..........ccceeeerrerereseseree e sse e sre e sressssnesnesrssnssnsssesnesnesns 212
0] 10 3 212
Playing the MUSIC........cccveerrerrersersessesses s s s e e s e e e sr e s snssrssnssn e nnsnnssnennannns 213
Chapter 20: Putting It All Togethercccccinemmmmnssnnnmmnssssmmmssssnssss———— 215
Chapter 21: Game DeSigNcccuuisssmmmsnmmmmsssssssssssssnsssssssssssssssssssssssssssssnsnnnsssssssssns 217
What's the Big [dea?cccrvrvrvnrnrrrer sttt 217
High CONCEPT ...t esp s a s e s s an s ne e e nannn e e nes 217
LOW CONCEPL.....coerrereeererrrrsseesessssesessssssssessssssssesssssss e sessssssessssssssesessssssssssssssssssssssssssssssssesssssnssssnsnnns 217
SO What IS FIO0A?........coe s 217

xvi

CONTENTS

Chapter 22: Storyboardingccuseemmmssssnssmmssnssssssanss 219

Writing a Specification for @ GAME............ccoceerieresrennrse e 220
Flood Game SPecCifiCation...........cccvvrrrrerrersrsinser s s se s snesne e 220
INEFOTUCTION ... 220
LI TC ST (< T 220
MaiN ACTOr——"JASPEI"ceeererrrreererereerer s e e s ae e e s ne e e e nn e e nns 221
1T 1T 223
L TC L 223
LI TC 0 (10 223
ENEIEIES. .. 224
ey 7 1 225
Object-0riented DeSIONcoceverererere s sa e sr e sr e sae e snesa s sn e saesnenens 225
INTFOAUCTION ..ot ————— 225
LT 0 225
WHAL IS @ USE CASE?ccirirriiiississiissss s 225
SAMPIE USE CASE....ueeereereeerrerersererererersssersesessessssesassessssessessssessssessssessssessessssessssessssessssessenssssssssesasaens 226
What IS the PUIPOSE Of USE CASES?......ccvererererrerrererserersessssersssessesersesessessssessssesssssssessssessssesssnssssnssaes 230
L T T D Vo 230
Class RelationShips ..o e s 233
Aggregation and COMPOSITIONcccoeeeierniernrere e sr e r e s r e nenrenas 233
D [o LT T LT SRS RSEPRSPSRS 234
0100 TO L]0 OSSR 234
0T o] o RSO SPO S PTSRSRS 234
Naming the ALDULE ..o ————— 235
INNEITANCE.ccicciii i ———————————————— 237
SUMMEAY ...ttt r e s e s e s R e R e e e Re R e Re e e s Re s R e e e R e e e R e R eRe R s Reeee e eRe e eRe e nRenensnns 238
Implementing O0P in BIItZMaX..........cccoeeeeeneneneresee e sse s ssesssssssnssnesnssss s sssssnnnns 238
Were Do We Get the Methods FIOM?.........coonnnnrssiesn s 239
PIAYEE ...ttt AR e R R Re e R e Re e e R Re e e e Re e nnes 239
ENBIMY .. R e AR e R R e e Re e Re e e ees 239
g 11 g 240

CONTENTS

OFCRIG ..o vvvessseeeessssessesssssessssssssesss 240

L 2 241
PULtiNg I AL TOGETNEE ... s sr e e r e e s 241
TFIOOAGAME.......ccereererereresesesesesesese s se e e e se e se ne e e e e e nenenenes 242
Converting Class Diagrams 10 UDTS.......ccccceeeererenenessessessessessssssssssssssssssssssssssssssnsnns 242
Stub Code fOr TFIO0AGAMEcoveueecerirccireee e 243
TESHING MOUUIEScoeeercereirerere s n s sn s s re e ns e nn e nnnnrnnens 245
Testing the COUe.......ooevirrrerr e 248
Creating Stub COUEccceeeeeeerecece e sr e sr e sn e snesn e sn e n e sn e snesnennennns 248
Chapter 23: Project Management..........ccceunnmenmmmssssnsnmsssssssnssssssssssssssssssssssssnnnns 251
Using the Include KEYWOId...........ccoeeeeeeerececrerse e sse s sse s sse s s snssnesne e sns s snnnns 251
Advantages of Using the Include KeyWord...........cccoevererrrrnenrssesses s e sessessennes 252
Embedding Binary RESOUICESccecvrerrersessessessessessessessessesssssssssssssssssnssssssssssssssssnsans 252
The INCBIN KEYWOIU.......coceieeieirieir sttt sa sttt sa s ettt e sa s sa e sa e sa e e e nn e nn e e 252
Appendix A: Web Site AddresSSeS...cuuueemmrmssssnmmmsssssnssmssssssnsssssssnssssssssnssssssssnnssssss 255
Appendix B: BlitzMax Key COUeS ...ccuuussummmmmmmmmmsssssssssnsssnssssssssssssssnsnsssssssssssssnnnns 257
Appendix C: ASCI Table......cuuuismenmmmsssnnnmmssssssnsssssssssssssssssssssssssnssssssssnnsssssssnnssssss 259
Appendix D: Controller Abstraction ClasSesuuussemmesmmmssssssssssssssnssssssssssssnnnnns 263
Appendix E: Compiler DIreCtives ..ucuuuumsseeemmmmmmmsssssssssssssnsssssssssssssssssnssssssssssssnnnns 269
SOttt ——————————————————— 269
Operating-System-SpecCific COUEcvurrrrrrrrrrrr e seesae e e e snesaennens 270
Processor-Specific COAEccuurrrrrrierrerersirse s sn s sn s sn s sn e snenn e 270
Endian-Specific COUEcuvrvrrerrirrirsirrir st sn s sa e sn e 270
Debug Mode COUEcccveerrireirerre e s n s 271
INA@X...ciiiisnmnnnssssnnnnnssssnnnnsssssnnnssssssnnnssssssnnnsnsssnnnnnnsssnnnssnsssnnnnsnsssnnnsnnsssnnnnnnsssnnnnnnsss 273

xviii

About the Author

Sloan Kelly has been programming computers since 1982. His first computer was a ZX Spectrum 16K where
he learned Sinclair BASIC and soon moved onto Z80 machine code. At the end of the 8-bit era he progressed
to the Commodore Amiga where he coded some small games in a language called Blitz.

After graduating college and spending nine years in traditional IT working in senior or lead positions,
Sloan went back to school and was awarded a Masters in Informatics (Game Technology) to allow him to
pursue a career in the games industry where he has remained for almost ten years. He is currently working
for PixeINAUTS Games in the beautiful Niagara Region of Canada as senior programmer. Their debut game,
LOST ORBIT, was released in 2015 to critical acclaim.

Xix

About the Technical Reviewer

Massimo Nardone has more than 22 years of experience in security,
web/mobile development, cloud, and IT architecture. His true IT passions
are security and Android.

He has been programming and teaching how to program with Android,
Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years.

He holds a master of science degree in computer science from the
University of Salerno, Italy.

He has worked as a project manager, software engineer, research
engineer, chief security architect, information security manager,
PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect
for many years.

He has technical proficiency in security, Android, cloud, Java,
MySQL, Drupal, Cobol, Perl, web and mobile development, MongoDB,
D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS,
Jekyll, Scratch, among others.

He currently works as chief information security officer for Cargotec Oyj.

He was a visiting lecturer and supervisor for exercises at the Networking Laboratory of Helsinki
University of Technology (Aalto University). He holds four international patents (in PKI, SIP, SAML, and
Proxy areas).

Massimo has reviewed more than 40 IT books for various publishing companies, and he is the coauthor
of Pro Android Games (Apress, 2015).

XXi

CHAPTER 1

Computer System

A “modern” computer system is a bit of a misnomer, as not much has really changed in more than 20 years!

The basics of the system are described in this section.

As far as aesthetics are concerned, the machine in the following diagram (Figure 1-1) may look nothing
like yours! Be assured, however, that the items described in the diagram are contained within your system. At
the heart of any computer is the central processing unit, or CPU. This is sometimes referred to as the brains
of the computer. It is, in actual fact, more like a mill spinning raw data into solutions, as there is no intrinsic
intelligence in the machine. If you provided the computer with garbage, it would process it to garbage

(Garbage In, Garbage Out—GIGO).

Keyboard, This inpul
device allows the
user to issue
commands to the
computer.

Mouse, Input device
The users moves the
mouse and the on
screen pointer
moves.

Figure 1-1. Diagram of a basic computer

Monitor, Output
Device. The
computer displays a
reaction lo the user's
commands.

Base Unit Containe
the mother board,
CPU, hard disk,
floppy (optional) and
CD, DVD drive.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-2523-3_1)
contains supplementary material, which is available to authorized users.

© Sloan Kelly 2016

S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_1

http://dx.doi.org/10.1007/978-1-4842-2523-3_1

CHAPTER 1 © COMPUTER SYSTEM

In its simplest form, a computer takes input from some device, processes it, and generates output. This
is shown in the following block diagram (Figure 1-2):

Input t Process = Output
Input("What is your name?") User's response is stored in memory “Hello there, " message is displayed

User types response

Figure 1-2. A computer takes input from some device, processes it, and generates output

Input

When you think of an input device, you usually think of the keyboard or mouse. These are generally the two
traditional means of accessing a computer. In addition, joysticks and game pads can be used to provide
input and move player characters, such as Mario, around the screen.

Disk drive, CD-ROM, light pen, joystick, game pad, keyboard, mouse, and track ball are all types of
input devices.

Process

Even when a computer screen is staring blankly back at you, it is, in fact, doing something. It is actually
waiting for you to perform some kind of input task. When you press the A key, for example, the computer
takes the key stroke and, through a number of operations, processes this to display the character “A” onscreen.

Processes depend on what application you have running on your machine when you decide, for
instance, to press the A key. If you have a game, it might arm a weapon’s array, or if you are in a word-
processing package, it will just display the character “A” onscreen.

Output

Once the user has issued a command, such as obtaining a listing of the current directory or clicking an on-
screen button, the operating system (OS) processes this information and displays the resulting data to the user.
The most common device is the monitor (cathode ray tube [CRT] or liquid crystal display [LCD]). Although I
will not cover its usage, the printer is the second most common output device attached to a computer.

The Computer System

Independent of what computer system you are using—this book is aimed at anyone who has either a Mac,
PC, or Linux box, after all—they all follow certain rules. This section covers briefly how the computer system
works and how the hardware/software stack is organized.

Inside each and every computer is a large sheet covered in electronics. This is called the motherboard.
All the parts, apart from the fan attached to the CPU, are stationary. A motherboard looks like the following
(Figure 1-3):

CHAPTER 1 © COMPUTER SYSTEM

Floppy Connector
o - BIOS
DMAG6/100 IDE Connector —
IDE Connector LAN/Modem Wake UP
: Connectors
Two 168-pin DIMMs
PC133 SDRAM Supported Extra USB Headers
K7 Socket A Athion/Duron
CPU Supported Two PCI Sots
S5iS 7305 Chipset
4X AGP Slot
ATX Power CNR Slot
Supply Connector
P AMR Slot
LAN Header
AC97 Audio Codec
Front Panel

K/B,P5/2 Ports
USB Ports

MIC/Line-Out Header

Game port
Parallel Port ——

Figure 1-3. A motherboard and its components

The socket for the CPU is the large white square at the middle left on the motherboard. The main
memory fits into the sockets directly above—the long black lines running left to right. The ROM-BIOS is
located at the top right of the motherboard. There are additional connectors to external systems, such as
keyboard, mouse, floppy, and hard disks. The IDE (Integrated Drive Electronics) connectors to the top allow
DVD-ROM, CD-ROM, and hard drives to be connected.

Computer Memory

When a computer is running, it stores its data and programs in memory. There are four types of computer
memory: disk, random access memory (RAM), read-only memory (ROM), and cache.

Disk

The hard disk stores the operating system of all your major applications (such as word processors,
spreadsheets, Internet browsers, and, of course, BlitzMax), even when the computer is turned off. This type
of memory is sometimes referred to as permanent storage, because no matter how many times you power
down/power up, the programs remain on disk.

CD-ROMs and DVDs are becoming more and more popular to store large amounts of data that can be
transported easily from one system to another. For the most part, these types of disks are Write Once, Read
Many, or WORM, for short. If you want to rewrite to them, you will have to purchase a device that has RW in
the title, such as CD-ROM (RW) or DVD-RW.

CHAPTER 1 © COMPUTER SYSTEM

Random Access Memory

Programs and data are not accessed directly from disk. They are, in fact, read into random access memory
(RAM) and manipulated in there. Think of RAM as a dry marker board. You can store lots of ideas on a dry
marker board, but sooner or later, the information can be erased, and new data can be placed on the board.

Read-Only Memory

The basic input/output system (BIOS) is stored in a chip on the motherboard and cannot be overwritten.
This is read-only memory. The programs and data are encoded at a chip fabrication plant and placed on the
motherboard. The chip allows data to be read from it but not written to it. It can, therefore, not be used to
store programs or data.

Cache

There are two types of cache memory: Level 1 (L1) and Level 2 (L2). Both act as scratchpads for the CPU
during computations. They differ in physical location, because the L1 cache is located on the same physical
silicon chip as the CPU, whereas the L2 cache is located beside the CPU on the motherboard.

The Hardware/Software Stack

Modern computer system design has not changed since Gary Kildall created the ROM BIOS chip and
changed computing forever. He created a chip called the Basic Input/Output System, or BIOS, that allowed
his operating system to be ported to many different computers, without him requiring him to do much work.
The problem is that as you move farther up the stack, the more difficult it is to port (copy) applications from
one system to another. The full software stack is shown here (Figure 1-4):

More Abstract

A Application (Game, Spreadsheet...)

Shell (Windows, KDE, Gnome, Mac0s...)

Kernel (Kernel32, Linux Kernel, MACH)

BIOS

~

More Physical Hardware

Figure 1-4. Diagram of the software stack

CHAPTER 1 © COMPUTER SYSTEM

The hardware can read and write single bytes of data at a time to and from external devices. In a
computer system, an external device is anything not attached to the motherboard. This includes the disk
drives, CD-ROM, DVD, monitor, keyboard, and mouse.

The BIOS acts as an interface between the operating system’s kernel and the hardware. The BIOS does
this by exposing a number of functions to the kernel that call hardware functions multiple times. This allows
for more complex actions to be undertaken, such as reading in large files from a disk drive with a single call.

The kernel is the core of the operating system. It handles all input/output requests and memory
management. The kernel code is specific to the operating system that you are using. For example, a Windows
kernel is not compatible with the Linux operating system. The kernel exposes a number of functions to the
application’s layer. These functions are collectively known as the application programming interface, or AP],
for short.

The shell is the interface to the operating system, from a user’s perspective. It allows users to load and
execute applications as well as perform file operations. All this is achieved using the function exposed by the
kernel’s API.

An application is any executable that is invoked by the shell or some call to the kernel. This means that
the shell is also an application! For example, Explorer.exe is the shell for Windows. It is also the file manager
application. The application uses the kernel’s API to create windows, load files, and perform all the other
input/output functions.

It should be noted that in the early days—not so much now—many application developers bypassed the
kernel to call the BIOS, to make their programs run faster. This is because the kernel contains a lot of error
trapping code that can slow down operations. Thankfully, modern kernel designs mean that the code is fully
optimized and is just as fast as a call to the BIOS.

Keyboard

The keyboard is the main input device in a modern computer system. It is basically an alphanumeric
keyboard with special and function keys. To the right are three examples of keyboards through the ages—the
lower model is the one that most systems will have. It is an AT-style keyboard with approximately 102 keys.
There may also be keys marked z, ?, g, or ?. These keys have special functions, depending on the operating
system you are using.

Mouse

The mouse has been used in computers since the early 1980s. It took a while for the IBM PC and compatibles
to get the device adopted, but with the advent of windowed operating systems, the mouse became the
second input device for most PCs.

On a PC system, the mouse has a minimum of two buttons, sometimes more. Mac users are still getting
frustrated because their new machines come with a single button mouse, although multiple mouse buttons
are supported by the OS.

Screen

The screen or monitor is the primary output device for the computer system. As mentioned previously,
there are two different types of screens: cathode ray tube (CRT) and liquid crystal display (LCD). The latter is
becoming cheaper and, therefore, more popular, or is it cheaper because it is popular?

The computer outputs to the monitor at a given resolution. Resolution means “How many pixels along?
How many pixels down?”

CHAPTER 1 © COMPUTER SYSTEM

Physical screen resolution is measured in pixels. The word pixel is a shortened form of “Picture
Elementl.” There are a variety of resolutions available on your PC, from 320x240 pixels (PC only) to
2560x1600 (Mac only).

A graphics card inside the computer works with the CPU to produce images on the monitor. With newer
graphic cards, a graphics processing unit (GPU) is placed on the card to improve the 3D capabilities of the
system, such as make games more realistic, by providing higher resolutions, special effects, and a better
frame rate.

Resolution

Resolution defines how detailed your images will look on screen. The number of columns—the horizontal
axis and the number of rows—the vertical axis define the number of pixels available to the application. In the
following example, a 640x480 resolution screen map is shown (Figure 1-5). No matter what resolution your
monitor is running at, the top-left corner will always have the coordinate (0,0).

(0,0

(639, 479)

Figure 1-5. A 640x480 pixel resolution screen map

Coordinate numbers start from 0 (zero). Resolution works independently of the physical size of your
monitor. So, if you have a large monitor and a low-resolution screen, you will easily see pixels, and the screen
image will appear blocky (Figure 1-6).

CHAPTER 1 © COMPUTER SYSTEM

Figure 1-6. Diminishing resolution, from higher to lower (left to right)

Essentially, the design of a modern computer system has not changed in more than 20 years. The
system still has a keyboard, mouse, and monitor. It still has a CPU and some way to power the monitor, using
either built-in graphics or a second-party graphics card.

Computers operate on a simple premise: input, process, and, finally, output. Information is gathered
from sources such as the disk drive, network, keyboard, and mouse and run through a series of commands—
processed, so to speak—resulting in changes to the visual display.

Number Systems

Computers cannot count in the same way that we can. We use the decimal system to perform calculations.
This involves ten numbers: zero through nine, inclusive. Computers are built using electronics, which

can be either on or off. This is a binary system—a system that can be in one of two states. This means that
computers are, in fact, restricted to two numerical values: zero and one.

The Decimal System

In the decimal system, we count numbers from 0 to 9, then in 10s, 100s, 1000s, and so on. For example, the
number 1,225 could be understood as the following (Table 1-1):

Table 1-1. The Decimal System
1000’s 100’s 10’s 1’s

1 2 2 5

which is (1 * 1000) + (2 * 100) + (2 * 10) + (5 * 1) = 1,225.
The boldface numbers in the preceding table are actually powers of 10. So, we could rewrite the table as
in Table 1-2, that s, (1 * 10%) + (2 * 10%) + (2 *10") + (5 * 10°).
Table 1-2. Powers of Ten
10° 102 10! 10°

1 2 2 5

CHAPTER 1 © COMPUTER SYSTEM

You should note that anything to the power 0 is 1.
The binary system follows a similar pattern, but instead of having ten numbers, binary systems must
make do with only two.

The Binary System

As we have discovered, any numerical system can be represented in powers. The binary system uses two
digits, and so the system uses powers of two to represent numbers (Table 1-3).

Table 1-3. Powers of Two
Powers of Two 2 2 22 ¢ 2 2 20 2

Decimal Value 128 64 32 16 8 4 2 1

Most significant bit Least significant bit

Bits are numbered from the right to the left, from 0 to 7. The “most significant bit” is the leftmost bit. So,
the “most significant bit” is bit 7. The “least significant bit” is the rightmost bit. Bit 0 is the “least significant bit

To represent numbers in this restrictive numbering system, we place a zero or a one in the appropriate
box. Some examples follow:

The decimal 5 in binary can be expressed as in Table 1-4.

”

Table 1-4. Decimal 5 in Binary

Powers of Two 2 26 2° 2 2° 2? 2! 20
Decimal Value 128 64 32 16 8 4 2 1
0 0 0 0 0 1 0 1

Because: 4 + 1 =5, the decimal 26 in binary can be expressed as in Table 1-5.

Table 1-5. Decimal 26 in Binary

Powers of Two 2 28 25 2 2° 2? 2! 2
Decimal Value 128 64 32 16 8 4 2 1
0 0 0 1 1 0 1 0

This is because 16 + 8 + 2 = 26.
Note that for even-numbered values, the least-significant bit is zero.

Binary Numbering

To convert from decimal to binary, find the largest number equal to or below the one you are looking for.
Then, if needed, add lower numbers to get that figure. For example, let’s take the number 23. How would it
be represented in binary?

CHAPTER 1 © COMPUTER SYSTEM

The highest number before 23 is 16, so we remember 16. Now we have to see what number we have
to add to 16 to get 23. The number below 16 is 8, but adding 16 to 8 would give us 24, so we ignore that and
go to the next lowest number, 4. This gives us 20, which is perfect. So far, so good. Adding the next lowest
number (2) gives us 22, and, finally, adding the last number (1) gives us the 23 we are looking for.

So, 23 in binary is 10011. Note that you can ignore the leading zeros in binary.

Groups of Binary Digits

To make things easier for the programmer, computers group binary digits together. The groups of digits are
shown following.

1—Bit: A binary digit. Either a zero or a one. This is the lowest “grouping.” There
are two reasons why it’s called “bit.” The first is that it is a contraction of BInary
and digIT to give you BIT. However, the one I am most fond of is when a dollar
could be split into eight pieces. Each piece was called a “bit” Remember that old
rhyme? Shave and a haircut—two bits? Well, two bits is 2 8ths, which is a quarter.

4—Nybble (also, nibble, nyble): This term is hardly ever used anymore, but it is
included here on behalf of 8-bit programmers. A nybble is half a byte. As we’ll
see, it makes counting in hexedecimal a little easier.

8—Byte: This is the most common grouping of bits in a computer system. It
represents a single memory location in the computer.

16—Word (also, halfword): In older machines, this represented an integer value.
This is the equivalent of two bytes.

32—Long word (also, doubleword): Most modern machines use this as their
current representation of an integer value. This is the equivalent of four bytes.

Groups of Bytes
When bits are too small to count, bytes are used and are represented by the following groupings:

1—Byte (B): This is the most common grouping of bits in a computer system. It
represents a single memory location in the computer.

1,024—Kilobyte (KB) (roughly): One thousand bytes

1,048,576—Megabyte (MB) (roughly): One thousand kilobytes, or (roughly) one
million bytes

1,073,741,824—Gigabyte (GB) (roughly): One thousand megabytes
1 Terabyte = 1,099,511,627,776 Bytes

Hexadecimal

Computer scientists—programmers—can also count in another numeric base: hexadecimal. As the name
might suggest, this system uses 16 digits instead of just 10. So, where do we get the extra digits from? We
use letters, of course! Table 1-6 shows the decimal, binary, hexadecimal, and English equivalents for each
number.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © COMPUTER SYSTEM

Table 1-6. Numerical Equivalents in Decimal, Hexadecimal, and Binary Systems

Decimal Hexadecimal Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

© 0 N OO b~ W NN = O

—_ e e =
BwW N = O

p—
al

Let’s look at some examples of hexadecimal numbers. The number 255 in base 10 in hexadecimal is FE.
The binary numberis 1111 1111.

Look at the binary and hexadecimal numbers closely? Do you see a pattern? In binary, the hexadecimal
number F is written as 1111.

So, each hexadecimal digit from 0 to F can be represented by four bits. Knowing this can make
calculations easier!

In the preceding example, the two 4-bit binary numbers are 1111 and 1111. To convert this to a
hexadecimal number, we look up the preceding hexadecimal table to find the corresponding hex-digit. In
this case, it is E Both numbers are the same, so 255 is represented by FE. But how can we know for sure that
FF16 equals 255107

As we did before with decimal and binary numbers, we can apply powers to our hexadecimal numbers,
this time, in powers of 16.

So, our hexadecimal number is FF (Table 1-7).

Table 1-7. Hexadecimal Number
16° 162 16' 16°

0 0 F F

Fis 15 in decimal, which means (15 * 16') + (15 * 16°) = 240 + 15 = 255.

Now that we can use hexadecimal, binary addition can be so much easier. Let’s try something else.
The number 17 in decimal in hexadecimal is 11.

In binary it is 00010001.

10

CHAPTER 1 © COMPUTER SYSTEM

Again, thismeans: (1*16) +(1*1)=16+1=17.

The number 38 in decimal. In hexadecimal it is 26; in binary it is 0010 0110.

This means that the first 4-bit binary number is 0010, which is 2 in decimal. Because that’s in our 16s
column, we have to multiply it by 16. The second 4-bit binary number is 0110, which is 6, because it’s in our
1s column: (2*16) +(6*1) =32 + 3 =38.

Larger Numbers

You will probably only encounter hexadecimal values with larger numbers, such as memory locations and
colors. Those of you familiar with designing web pages may recognize the color red when you see #FF0000.
Larger numbers are handled in the same way as smaller numbers. Take the number 8,000 in hexadecimal,
for example.

When calculated out, it is as follows: 8 * 4096 + 0 * 256 + 0 * 16 + 0 * 1 = 32768.

For the curious, how would this be represented in binary? Answer: 1000000000000000. If we were to
split that into 4-bit binary numbers, it would be as follows:

1000

0000

0000

0000

In summary, then, computers can only count using base 2 or binary. This consists of two digits, 0 and 1,
to represent all numbers.

Hexadecimal can be used to group binary digits together, to make them easier for humans to read.
Converting between hexadecimal and binary is relatively easy when you break down the hex number into
4-bit nybbles.

11

CHAPTER 2

How BlitzMax Works

When computers first began to be used, the only way to program them was to manually pull switches
and rotate dials on the front. Nothing much improved in 30 years, and in 1975, when the world got its first
personal computer, the MITS Altair, one still had to use switches to program the box.

And that was all it was—a box. There was no keyboard, no monitor, and no mouse. The only thing it had
was a series of switches and small light-emitting diodes (LEDs). All this changed when third parties began
supporting this new machine. Soon, teletypes—a keyboard-like device—were attached, along with displays,
printers, etc. But still there was no actual way to program the machine until two Harvard men, Bill Gates and
Paul Allen, created a version of the popular BASIC programming language for the new machine.

Computers Can’t Read English

Computers can only understand binary data, and as I have previously discussed, this means that, as
electronic devices, each binary digit can have a state of off or on.

The computer’s central processing unit (CPU) is hard-coded with a list of commands. These commands
are fired whenever the correct instruction is sent. This is part of what is called the fetch-execute cycle.

Translating English to Computerese (Machine Code)

The solution is to have some conversion between our language (I'll assume English) and the computer. Two
professors, at Dartmouth College, John Kemeny and Thomas Kurtz, created the BASIC language. BASIC, or
Basic, is an acronym that stands for “Beginner’s All-purpose Symbolic Instruction Code.” The two professors
created Basic to include many English words, to ensure that those new to programming a computer would
pick up the new language quickly. BlitzMax is an updated object-oriented version of this popular language.

The programs we write are called source code. Source code is translated by a program called a compiler.
A compiler works like a translator at the United Nations. It takes source code written in one language
and converts it to another. In this case, our BlitzMax code is converted to machine code. BlitzMax is even
cleverer! If we take our source code from one system (say, Windows) to another (say, Mac OS X), we can
re-compile the source code on that machine to generate Mac machine code. This means that BlitzMax is
portable.

Portability is important in the games industry. In its basic sense, you are increasing your possible
market by 200%, because you can write-once and compile-many on multiple systems. For example, so long
as you have access to a Linux, Windows, and a Mac OS X box, you can write programs for all three systems!
Think of the user base! And fixes to all three versions are simple: write it on one, and re-compile on the
other two.

© Sloan Kelly 2016 13
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_2

CHAPTER 2 © HOW BLITZMAX WORKS

Compilation Process

The following is a very simple program:
Print "This is a small program"

This will display the message “This is a small program” onscreen. When we run it, the output in the
BlitzMax IDE will be:

Building SimpleProg
Compiling:SimpleProg.bmx

flat assembler version 1.51

3 passes, 2285 bytes.
Linking:SimpleProg.debug.exe
Executing:SimpleProg.debug.exe
This is a small program
Process Complete

Notice the size of the file is 2285 bytes. When we look at our source code, it only contains 31 characters.
How did it get so big? The problem is that the operating system needs some code to initialize itself.
Remember portability? Well, on the PC, the source code is compiled to Intel assembly language—the
machine code equivalent of source code—and is then converted to machine code—zeros and ones. The
assembly language is shown. Please note that it has been chopped for brevity:

format MS COFF
extrn __ bb basic_basic
extrn __ bb blitz blitz

public __bb_main

section "code" code
__bb_main:

push ebp

mov ebp,esp

push ebx

cmp dword [_19],0

je _20

mov eax,0

pop ebx

pop ebp

ret

call _ bb blitz blitz
call __ bb appstub_appstub
call __ bb basic_basic
push 12

call brl standardio Print

_12:
dd _bbStringClass
dd 2147483647

dd 23
14

CHAPTER 2 © HOW BLITZMAX WORKS

dw 84,104,105,115,32,105,115,32
dw 97,32,115,109,97,108,108,32
dw 112,114,111,103,114,97,109

You can see why it compiles to more than 2K worth of a program! There are several interesting lines in
all of this, though.

push 12
call brl standardio Print

This pushes the address of Label 12 onto the stack and calls the Print() function. Label 12 points
to the memory location of our text ("This is a small program").So, what this function does is print the
text on the screen, using a standard function created by Blitz Research. Notice that it’s kind of backwards,
because the actual parameter comes first, before the command. This is a standard way of calling something
in machine code. I only mention it to give you a greater understanding of what the compiler does! Now,
when we look at Label _12, it contains the following information:

_12:
dd _bbStringClass
dd 2147483647
dd 23
dw 84,104,105,115,32,105,115,32
dw 97,32,115,109,97,108,108,32
dw 112,114,111,103,114,97,109

What is interesting about this is that it defines the type of data (_bbStringClass), the length of the string
(23), and the actual data. There are 23 characters in the string, and they are shown in Table 2-1.

Table 2-1. The 23 Characters in the String

T H I S

84 104 105 115
I S

32 105 115 32

A S M

97 32 115 109

A L L

97 108 108 32

P R 0 G

112 114 111 103

R A M

114 97 109

15

CHAPTER 2 © HOW BLITZMAX WORKS

The values stored are actually ASCII (American Standard Code for Information Interchange) codes. See
the appendixes of this book for a list of ASCII codes. I've included the ASCII byte values below each of the
letters above them.

Q. What does all this mean?

A. We don’t have to learn complex machine code to program a computer! We can do it all with one line
and let the compiler do the hard work.

Application/Game/Program

These terms are all effectively interchangeable, and as you will see from this book, I interchange them all
the time. The difference, if there is any, is that application is a new word for program, and a game is a type of
application. I hope that clears things up!

But Why BlitzMax?

There are other frameworks out there like MonoGame and Gamemaker Studio to help you create
games. But for someone just starting out coding though, BlitzMax is an excellent choice. BlitzMax is born
from a long line of tools created by Blitz Research. I started using BlitzBASIC on an Amiga about twenty-
odd years ago. There have been other iterations of the language through the years including Blitz3D and
BlitzPlus. The key though is the simplicity of the language. It has that easy-to-get into quality of BASIC, but
the power required for modern games.

The IDE, which was open sourced, is available on Windows, Mac and Linux distributions. So no
matter what machine or OS you are running you re sure to find a version of BlitzMax for it. Not only that but
because the language is hardware and Operating System agnostic, a simple recompile on a target platform
means that your game can be shipped cross-platform. The program; the IDE and the compiler, tools and
examples can be downloaded from http://www.blitzmax.com/.

16

http://www.blitzmax.com/

CHAPTER 3

The BlitzMax IDE

BlitzMax (Figure 3-1) provides an out-of-the-box Integrated Development Environment, or IDE. This
application offers the following components:

The Editor: Edits source code
The Compiler: Translates source code to machine language

The Debugger: Helps to fix your program when things go wrong

[« Bt e
[S——
¥ I A v -
- = Caie Dy
.
- -
- o
P
@ H A
a
.
= Ve fage "o .
P e
g - B B g =
o Mok s . -— “e -
. dadi od Fass > - -
PP
fer s BEMa ol Pe B Rersm B siele @ -
S— e P e
Whatin
o

Figure 3-1. BlitzMax screen

Launching the IDE

Depending on your operating system, locate the BlitzMax program icon and launch it (in Windows, it's a
single click from the start menu, on Mac and Linux, you will have to locate the icon in your Applications
folder and double-click it). The IDE will launch.

© Sloan Kelly 2016 17
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_3

CHAPTER 3 ' THE BLITZMAX IDE

The IDE is split into a number of parts.
Menu bar: File, Edit...Help, as you would expect
Toolbar: Quick access to common functions, such as Open a file, Compile, etc.
Tab panel: For each help window source file open, a new tab is created.

Tree panel: This, too, is tabbed, to allow access to Help/Projects, Debug symbols,
and code files.

Menu Bar

The menu bar contains four items:
File: Access to file operations (open, close, save, etc.)
Edit: Access to clipboard operations (copy, delete, paste, etc.)
Program: Access to compilation operations (build, debug, etc.)

Help: Access to online help

Toolbar

The toolbar allows quick access to common functions. These functions are available within the menu bar,
but Blitz Research (the authors of BlitzMax) thought that these items would be of particular interest to their
users. The diagram above indicates each icon’s use. Note that some icons are grayed out. This is because
those particular actions could not be made in the context in which the screen grab was taken.

The Tab Panel

The main tab panel contains the help pages and any source code windows you have open. To create a new
source file, press Ctrl+N (Mac: Command+N). You will notice that the source code editor has a dark green
color.

Editing
Source code is entered in the dark green area. Using the alphanumeric keyboard, cursor keys, and Insert/
Delete/Home/End/Page Up/Page Down keys, the coder (you) build the program. Basically, this is where the
fun begins!

Create a new source file by pressing Ctrl+N.

Enter the following code in the new source code editor (the dark green editor), exactly as written following:

Graphics 640, 480, 16

While Not KeyHit(KEY_ESCAPE)
Cls

Flip

Wend

Make sure you have checked the code and that it matches exactly that preceding.

18

CHAPTER 3 ' THE BLITZMAX IDE

To run the program, press the F5 key or, on the Mac, Command+R. The output panel will appear and
contain text similar to the following:

Building untitlied1
Compiling:untitlied1.bmx

flat assembler version 1.51

3 passes, 2719 bytes.
Linking:untitlied1.debug.exe
Executing:untitlied1.debug.exe

The screen will then go black and...nothing. Our program doesn’t do anything. Well, it’s actually doing
quite a lot, but we can't see it! To quit the application, press the Escape key.

Insert

We have already inserted text into the source code editor one line at a time, but as with word processing
packages, we can go back and re-edit the code to change its meaning or, perhaps, fix a bug.

With the previous program still in the source code editor, use the cursor keys to position the cursor on
the flashing (|) character after the CLS, as shown following:

While Not KeyHit(KEY ESCAPE)
Cls |

The ... represents the rest of the program. I've used it here for brevity. Press the Return key. (Notice how
the line stays indented? This is a nice feature of the BlitzMax editor.) Enter the following text, again, exactly
as written:

DrawText("BlitzMax!", 284, 240)
Our program now looks like this:
Graphics 640, 480, 16

While Not KeyHit(KEY ESCAPE)
Cls
DrawText("BlitzMax!", 284, 240)
Flip

Wend

Run the program again (F5/Command+R) and see what happens. Did it work? If it did, the screen
should go blank, and the exclamation BlitzMax! appears at the center.

File Operations

As this is a relatively small program, we could stand to lose it. After all, we could type it in again. But to save
us the time and effort required, we can save the file to our disk.

In your operating system of choice (please consult relevant manuals, etc.), create a subfolder in your
Documents folder called BlitzSource. This will be our root folder for all the sample code that will be written
throughout this book. Within this folder, create another subfolder called IDE.

19

CHAPTER 3 ' THE BLITZMAX IDE

Save

To save our source file, we can press the Save toolbar button, press Ctrl/Apple+S, or Choose File » Save from
the menu bar.

Save the source file by pressing Ctrl/Command+S and locate the BlitzSource/IDE folder. Save the file in
this folder, using the name FirstProgram. BlitzMax will add the .bmx extension automatically when you click
the OK/Save button.

Close

When we have finished with a file, we can close the panel associated with its editor. To do this, select the
panel by clicking it, as follows:

Press Ctrl/Command+W to close the window, or press the Close Window tool bar button.

Close the FirstProgram.bmx editor panel.

Open

Now that we have safely stored our next gaming masterpiece, it’s time to bring it back, so that we can do
some more editing. To do this, we use the File » Open menu item or Ctrl/Command+O, or click the Open
File toolbar button.

Open the FirstProgram.bmx file. BlitzMax remembers where you last performed a file open/save and
displays the folder. For the paranoid among us, feel free to run it, to ensure that it still works.

Clipboard

The edit functions allow us to copy one or more lines of source code from one area to another. The lines we
copy do not have to be in the same source file.

We are going to copy the line DrawText. .. in this example. Position the cursor at the start of the
DrawText line.

|DrawText("BlitzMax!", 284, 240)

Hold down the Shift key and click after the) character on the same line. The whole line should be
highlighted, as follows:

DrawText("BlitzMax!", 284, 240)

Press Ctrl/Command+C. This copies the selected text to the clipboard. We can then paste this
information to another location. With the mouse, click just after the) character on the same line and press
Return. This inserts a blank line. The cursor moves to this new line and waits for us to type something. In this
case, we are going to insert text from the clipboard. Press Ctrl/Command+V to insert. The source code will
now look like this:

While Not KeyHit(KEY_ ESCAPE)
Cls
DrawText("BlitzMax!", 284, 240)
DrawText("BlitzMax!", 284, 240)
Flip

Wend

20

CHAPTER 3 ' THE BLITZMAX IDE

On running the program, you will, of course, notice that it does not make any difference to the previous
code. This is because the new text is drawn on top of the other. To rectify this situation, we'll offset the first
line.

Change the first DrawText line to

DrawText("BlitzMax!", 285, 241)

Save and run the program.

It must be noted at this time that BlitzMax draws from the back of the monitor to the front. So, anything
that is drawn first is drawn at the back, and subsequent items are drawn on top. This will become apparent
when we add some color. To add color to our program, we use the SetColor() function.

Change the preceding program to the following:

Graphics 640, 480, 16

While Not KeyHit(KEY ESCAPE)
Cls
SetColor(128, 128, 128)
DrawText("BlitzMax!", 285, 241)
SetColor(255, 255, 255)
DrawText("BlitzMax!", 284, 240)
Flip

Wend

Save and run the program. You will now see a small shadow behind the text. You can make it more
pronounced if you want, by changing the values for SetColor (). The three numbers represent the strength
of the red, green, and blue colors in a pixel. Each number can be between 0 and 255, inclusive.

Change the shadow color to bright red (255, 0, 0) and the text color to blue (0, 0, 192). Save and run the
application. Now try green or yellow (yellow is a mix of green and red) or purple (red/blue).

Cut

Occasionally, we have to completely remove code from one section and put it into another. We can achieve
this goal by using the clipboard Cut operation.
We are going to invert the colors in this code:

Graphics 640, 480, 16

While Not KeyHit(KEY ESCAPE)
Cls
SetColor(192, 0, 0)
DrawText("BlitzMax!", 285, 241)
SetColor(o, 0, 192)
DrawText("BlitzMax!", 284, 240)
Flip

Wend

Highlight the "SetColor(192..." line:

Graphics 640, 480, 16

21

CHAPTER 3 ' THE BLITZMAX IDE

While Not KeyHit(KEY ESCAPE)
Cls
SetColor(192, 0, 0)
DrawText("BlitzMax!", 285, 241)
SetColor(0, 0, 192)
DrawText("BlitzMax!", 284, 240)
Flip

Wend

Press Ctrl/Command+X. This cuts the line from the editor and places it on the clipboard. Now, position
the cursor at the end of the DrawText (... 285, 244) line and press Return. This creates a blank line. Press
Ctrl/Command+V to paste the new line into position. You will now have the following code:

While Not KeyHit(KEY ESCAPE)
Cls

DrawText("BlitzMax!", 285, 241)
SetColor(192, 0, 0)

SetColor(0, 0, 192)
DrawText("BlitzMax!", 284, 240)
Flip

Wend

Cut the SetColor(0, 0, 192) line and paste this into the blank line under the C1s keyword and tidy up
the code, as follows:

While Not KeyHit(KEY_ ESCAPE)
Cls

SetColor(0, 0, 192)
DrawText("BlitzMax!", 285, 241)
SetColor(192, 0, 0)
DrawText("BlitzMax!", 284, 240)
Flip

Wend

Save and run the program. We now have red text on a blue shadow.

Undo

Occasionally, we will make a mistake and have to put back the code we broke. In this case, we used the Undo
function. This allows us to retrace our steps to where we were before everything went wrong. To undo, press
Ctrl/Command+Z. If we make a mistake undoing (!), we can press Shift+Ctrl/Command+Z to redo.

Use the Undo function (Ctrl/Command+Z) to return the red/blue text to blue/red.

Now, perform the reverse, change the blue/red text to the red/blue text, using the Redo function
(Shift+Ctrl/Command+Z).

22

CHAPTER 3 ' THE BLITZMAX IDE

Getting Help

BlitzMax contains an online reference to all its keywords. To access this help, click the Help tab in the editor
panels. This shows a welcome screen and a tree view. Expanding the nodes on the tree view shows more
detail for a particular topic.

Using the tree view, access help on SetColor (). Hint: Expand Help, Modules, and Index. Then scan
down the alphabetic list for SetColor (). Now try the same for DrawText ().

If you are stuck on a problem, head over to the BlitzMax forums. The beginners forum
http://www.blitzbasic.com/Community/topics.php?forum=101 contains lots of tips for people just
starting BlitzMax programming. If you are looking for tutorials, http://www.blitzbasic.com/Community/
topics.php?forum=112 contains advise from seasoned BlitzMax coders.

23

http://www.blitzbasic.com/Community/topics.php?forum=101
http://www.blitzbasic.com/Community/topics.php?forum=112
http://www.blitzbasic.com/Community/topics.php?forum=112

CHAPTER 4

Literals, Constants, and Variables/

There are three different ways to store data in BlitzMax: Literals, Constants and Variables. After a quick visit
to dictionary.com, I came up with the following descriptions:

Literal: Word for word; verbatim
Constant: Unchanging in nature, value, or extent; invariable

Variable: Likely to change or vary; subject to variation; changeable. Inconstant;
fickle

In terms of computer programming

A literal is a string of characters enclosed in quotation marks or a number placed
in the source code.

A constant is declared at the start of the source code and is not changed.
A variable is a temporary storage area used by the program at runtime.

When BlitzMax compiles the source code into an executable, the only values it is sure of are the literals
and constants. The variables will change during the execution of the program, depending on input from the
user or other random events.

Literals and constants are hard-coded values in the source code of your program and cannot be
changed. However, there is a very subtle difference between the two that will be discussed later.

Variables

A variable is like a box inside your computer that holds some item. That item can be a whole number, a
real number, a line of text, pretty much anything. You can define as many variables as you require, because
BlitzMax does not restrict you in any way. But don’t forget that you are restricted by the amount of memory
that you have available to you.

It is good practice to declare your variables before using them. You can enforce this in all your programs
by placing the keyword Strict at the top of the source code, before any other line. When defining a variable,
itis possible to give it an initial value.

There are a number of phrases associated with variables.

Declaration: When you first write about a variable in the source code of your
program

Assignment: When you give a value to a variable

Type: The type of data that can be stored inside the variable

© Sloan Kelly 2016 25
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_4

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

You can declare variables in a number of ways. Here are three examples:

Local x
Local y:Int = 5
Global radius:Float

Variables declared without a type identifier are defaulted to Integer, or Int, for short. Any variable not
assigned an initial value is assigned the value Null at runtime.

Multiple variables can be declared in one statement, using commas to separate each variable
declaration. For example:

Local x:Int, y:Int, score:Int
Local energy:Int=100, lives:Int=5

Data Types

The following data types (Table 4-1) are used in BlitzMax. Your variables should be assigned a data type. This
tells the compiler what information you're going to use your variable to store. If you don’t specify a data type,
Int (integer) will be assumed.

Table 4-1. Data Types Used in BlitzMax

Description Keyword Minimum Value Maximum Value
8-bit unsigned integer Byte 0 255

16-bit unsigned integer Short 0 65535

32-bit signed integer Int =23 +231-1

64-bit signed integer Long -28 -263-1

32-bit floating point Float 2?? 27??

64-bit floating point Double 22? ???

16-bit Unicode string String n/a n/a

Variables have certain attributes associated with them. These are:
Each variable has a name.
Each variable has a type associated with it.

Each variable contains a value.

Variable Names

Each variable must be given a unique name that can be referenced later in the code.

Variable Types

All variables are associated with a type. This data type describes the kind of information that can be assigned
to the variable. By default, variables are declared as type Int—or Integer—if they are not explicitly defined
as any other variable type.

26

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

Variable Values

Variables can be assigned values at declaration or later by assignment. When declaring variables, it is best
to give them a default value. If an initial value is not specified, the variable is assigned a null value. Nullis a
special computer word that means “no value.”

Why Do We Use Variables?

We use variables to keep track or monitor the changes of objects in our program. For example, the location
of the player onscreen, how many lives they have, or how many bullets they have left. Take the following
one-line program as an example:

Print "Total cost for a bundle of apples is " + 8

* 12 + "¢
Create a new blank editor window, then enter the program and run it.

Print "Total cost for a bundle of apples is " + 8

* 12 + "c
You will see the following message in the Output tab of the IDE:
Total cost for a bundle of applies is 96¢

The answer is correct, but the method of achieving this result is incorrect. The problem we have is that
the values 8 and 12 are literal values. A literal is a string of text enclosed in quotation marks or a number
placed within the source code. This method is called hard-coding values. Because the 8 and 12 values don’t
have labels, we don’t know what is what. Is it 8 apples per bundle at 12c?

The next example replaces the literal values with variables.

Local apple:Int = 8 ' eight cents per apple

Local bundle:Int = 12 ' twelve apples in a bundle

Local totalcost:Int = apple * bundle ' total cost for a bundle
Print "Total cost for a bundle of apples is " + totalcost + "c"

Three variables are declared: apple, bundle, and totalcost. Each is assigned a value. Remember that
at declaration, the programmer can add an optional initial value. The first two variables (apple and bundle)
are assigned literal integer values: 8 and 12. The totalcost variable is assigned an initial value of apple *
bundle.

When the program is run, the output is not too dissimilar to the previous one-liner. However, the
underlying code is a better design. Whereas we used literal values in the first example, the second uses
variables that can be changed with program flow. For example:

Local apple:Int = 8 ' eight cents per apple
Local bundle:Int = 12 ' twelve apples in a bundle Local totalcost:Int = apple * bundle '
total cost for a bundle

Print "Total cost for a bundle of apples is

+ totalcost + "c"
apple = 9 ' new cost for an applie is nine cents

totalcost = apple * bundle ' re-calculate cost of bundle
Print "New cost for a bundle of apples is " + totalcost + "c"

27

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

The preceding code builds on the second example. Now, we add an additional three lines that change
the cost of one apple to nine (cents). We then recalculate the cost of a bundle of apples and display the
information to the user.

Variable Scope

There are three kinds of variables: local, global, and field or type level. This is commonly referred to as
variable scope. Think of variable scope as putting your variables (boxes) in different rooms in your house.
Although you may have two identical boxes in separate rooms, they may or may not contain the same items.

Local

Local variables are available only within the current block of code. A block of code is defined as
The body of a function or loop
The body of an if...then...else statement
The body of a case or default statement

The following example shows the difference between local and global variables:

Global x:Int = 5
Function PrintX()
Local x:Int = 10
Print "Local x = " + x
End Function
PrintX()

Print "Global x = " + x

AsThave not yet discussed functions, I will briefly explain that a function is a block of code that allows
you to extend the built-in functions of the BlitzMax language. In the preceding example, we are creating a
command called PrintX. Enter the program exactly as written and run it. The output will be as follows:

"C:/BlitzMax/tmp/localglobal.debug"
Local x = 10

Global x =5

Process complete

Global

Global variables are available to any program block, following its declaration. The caveat to this is thatifa
local variable has been declared, the local variable is used, and not the global, as shown in the preceding
local variable example.

Global variables cannot be declared after they are first used. Take this example:

Print integer

Global integer:Int =5
Print integer

28

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

This will result in an error, specifically “Duplicate Identifier,” because we effectively created the variable
integer on the fly (remember, we can do this) and then tried to re-declare it as a global.
There is also a further complication when global variables are used, as we can see in the next example:

Function PrintInteger()
Print integer
End Function

PrintInteger()
Global integer:Int =5
Print integer

This is where it gets complicated! You might possibly expect that the local variable inside the function
would be used, resulting in 0 (zero) being displayed. This is not the case!

When compiling, BlitzMax does multiple passes to get all the declarations and calls organized. In the
preceding example, the global variables are processed before any functions, resulting in two 5’s being drawn
on screen.

Field

The third type of variable is called field. I will discuss field variables in detail in Chapter 9, on object-oriented
programming.

Literals

When you take something literally, you take it at face value. In BlitzMax terms, anything that is hard-coded in
the source file is a literal value. For example:

Print "Game Over"

The string Game Over is a literal value, because it cannot be changed and cannot be reused. This means,
that if we wanted to print the string Game Over anywhere else in the code, we would have to type in this line
again. This means that at compile time, the game will contain multiple versions of the string Game Over.

Constants

A constant is declared in the same fashion as a variable and cannot be altered, as with a literal. However,
because it is a variable, it can be reused anywhere in the program. This means that unlike a literal value, a
constant is defined once and is referenced throughout the code. Therefore, at compile time, the game only
contains one instance of the value. For example:

Const C_GAMEOVER:String = "Game Over"

Print C_GAMEOVER
Print C_GAMEOVER + " Press Any Key"

29

http://dx.doi.org/10.1007/978-1-4842-2523-3_9

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

Changing Variables

A developer uses operators on the contents of variables to manipulate the outcome of the game. The
following mathematical operators (Table 4-2) are available in BlitzMax.

Table 4-2. Mathematical Operators

Plus Minus Multiply Divide Modulo

Operator + - * / Mod

In addition to mathematic operators, BlitzMax also allows Boolean bitwise operators (Table 4-3).

Table 4-3. Booleaan Bitwise Operators
And Or Xor ShiftLeft Shift Right Arithmetic Shift Right
Operator & | ~ Shl Shr Sar

Arithmetic Operators

The standard arithmetic operators are used in the same way as you would on a calculator. In fact, with
BlitzMax, you can create a very powerful calculator, if you so wish.

I'will use variables in the following example (Table 4-4). Remember: When you are using variables, it is the
contents of the variable that you are using. The name is merely a nice label that the programmer uses. In the
first example (the plus operator), [use three variables: X, y, and total. The contents of these variables is used.

Table 4-4. Provide Table Caption

Source Code Mathematically

X =5 The value 5 is stored in x.

y =25 The value 5 is stored in y.
Total = 0 The value 0 is stored in Total.

Total = x +y The value 5 + 5 is stored in Total; therefore, 10 is stored in Total.

The Plus Operator

The plus operator (+) adds two numbers together. For example:
Local x:Int = 5

Local y:Int = 5

Local total:Int = 0

Total = x +y

Print "Total is " + total

The answer shown will be "Total is 10". Did you notice that the plus symbol is used in the print
statement? The plus symbol is an example of an overridden operator. There is only one in BlitzMax.
The plus symbol can also be used to add two strings together. This is called string concatenation.

30

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

String Concatenation

In the preceding example, the variable Total is converted to a string before the concatenation takes place.
No arithmetic addition can occur after a string concatenation has been performed on the same line of
source code.

The Minus Operator

The minus operator (-) subtracts the second number from the first. For example:

Local x:Int
Local y:Int = 5

Local total:Int =0
Total = x -y

Print "Total is " + total

n
I
(9]

The answer shown will be "Total is 10".

The Multiplication Operator

The multiplication operator (*) multiplies two numbers together. For example:

Local x:Int
Local y:Int
Local total:
Total = x *y

Print "Total is " + total

[B}
~+ v U

nt =0

The answer shown will be "Total is 25".

The Divide Operator

The divide operator (/) divides the first number by the second number. For example:

Local x:Int
Local y:Int
Local total:Int =0
Total =x /vy

Print "Total is " + total

o
v
o

The answer shown will be "Total is 2".

The Modulo Operator

The modulo operator (Mod) returns the remainder of the first number, divided by the second. For example:
Local x:Int = 7

Local y:Int = 5
Local modval:Int = 0

31

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

Total = x Mod y
Print "Mod is " + modval

The answer shown will be "Mod is 2", because 7 /5 =1r 2, that is, five goes into seven once, with a
remainder of two.

Using the Colon

It is possible to shorthand some of the mathematical operators using the colon (:). The following pairs
(Table 4-5) are shown as an example.

Table 4-5. Examples of Some Mathematical Operators Using the Colon

n=n+1 n:+1
y=y/72 y:/2
p=p*5 p:*5
i=1i-1 i:-1

The following program will prompt the user for a weight in pounds and return the value in stones and
pounds. Type in the code exactly as written.

Rem

Pounds -> Stone and Pounds
End Rem
Local pounds:Int = Input("Enter a value in pounds ?:").ToInt()
Local stone:Int = pounds / 14
Local poundout = pounds Mod 14
Print "Answer is " + stone + "st.

+ poundout + "lbs"

Run the program and type in a number. There are 14 pounds in 1 stone. The Input line is a little tricky, in
that there is a . ToInt() at the end. BlitzMax is an object-oriented language, and, as such, strings are handled
as objects. This method converts whatever is in the string that the user gives to an integer value. I cover
object-oriented programming in a later chapter.

Boolean Mathematics

This branch of mathematics derives its name from George Boole, a mathematician from Lincoln, England.
He discovered a branch of mathematics using binary (two) states, on and off, and the ability to combine the
two states using a number of operations, namely, AND, OR, and NOT. There is also a fourth: exclusive OR (XOR).

Boolean logic has had a profound impact on the world, mostly because computers wouldn’t be here
without it. Remember, from the “Computer Memory” section in Chapter 1, that memory is stored in collections
of bits? Because bits have two states, set or not set, they are ideal candidates to use with Boolean logic.

32

http://dx.doi.org/10.1007/978-1-4842-2523-3_1

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

The AND Operator

The AND operator (&) is obtained by pressing Shift+7 on most keyboards. The output from this is 1 only when
both A and B are 1. All other combinations result in an output of 0 (Table 4-6).

Table 4-6. Output of the AND Operator for Hypothetical A and B

A B Output
0 0 0

0 1 0

1 0 0

1 1 1
The OR Operator

The OR operator is a single pipe (|). This symbol is located to the left of the Z key on most keyboards. The
output from this is 1 when either Ais 1, B is 1, or both are 1. Only when A=0 and B=0 does the output equal
zero (Table 4-7).

Table 4-7. Output from the OR Operator for Hypothetical A and B

A B Output
0 0 0

0 1 1

1 0 1

1 1 1
The NOT Operator

The NOT operator (!) is obtained by pressing Shift+1 on most keyboards. This is a unary operator in that it
only requires one input. This is used to reverse the contents of A. For example, if A=0, then the output would
be 1 (Table 4-8).

Table 4-8. Output of the NOT Operator If A Equals 0

A Output
0 1
1 0

33

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

The Exclusive OR Operator

The exclusive OR operator (~, to the left of the Enter key on most keyboards) produces an output of 1 only
when A=1, B=“0" OR when A=0, B=“1" The output is 0 in all other instances (Table 4-9).

Table 4-9. Output of OR Operator for Hypothetical A and B

A B Output
0 0 0
0 1 1
1 0 1
1 1 0

String Methods

Strings in BlitzMax are more complex than characters, integers, and floating point numbers. They are a
collection of printable characters and are actually complex objects. As an object, they can have methods
associated with them. The String object has the following methods:

Find
FindLast
Trim
Replace
StartsWith
EndsWith
Contains
Join
Split
TolLower
ToUpper
Tolnt
Tolong
ToFloat
ToDouble
ToCString
ToWString
FromInt
FromLong

FromFloat

34

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

FromDouble
FromCString
FromWString
FromBytes
FromShorts

These methods operate on the contents of string literals, constants, and variables. They allow
programmers to search through and find the first occurrence of a phrase or convert a string to a different type.

Strings are arrays of characters, and BlitzMax supports both ASCII (8 bits per character) and Unicode
(16 bits per character).

Find

Find returns the index of the first occurrence of the substring. The method will return -1 if no matching
occurrence is found. You can pass in a starting index value as well. The following program displays a list of

index values where the character "i" is located in the string:

blitzMax:String = "This is BlitzMax!"
pos:Int = blitzMax.Find("i")
While(pos > 0)

Print pos

pos = blitzMax.Find("i", pos + 1)
Wend

FindLast

FindLast returns the index of the last occurrence of the substring. The method will return -1 if no matching
occurrence is found. Like Find(), a starting index value can be passed in. The following program displays
the index value of the "Max" word in the string:

blitzMax:String = "This is BlitzMax!"
pos:Int = blitzMax.Find("Max")
Print "Max is located at element " + pos

Trim

Trim removes all nonprintable characters from the string. In the following example, the text is bloated with
space characters that are removed using Trim:

bloatedString:String = " TOO MANY SPACES"

Print "<" + bloatedString + ">

Print "<" + bloatedString.Trim() + ">"

Print "<" + bloatedString + ">

Note that bloatedString is not altered. Trim() returns the altered string but keeps the original intact.

35

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

Replace

Replace replaces all the occurrences in a string. For example, if you wanted to replace all the occurrences of
“ca” with “dog,” you would do the following:

animals:String = "Cats are much smarter pets. Cats are so loving"

Print animals.Replace("Cat", "Dog")
Print animals

Again, the original text is not altered. Replace() returns the altered text.

StartsWith

StartsWith returns true if the string starts with the given value.

author:String = "Wells, Herbert George"
Print author.StartsWith("Wells")
Print author.StartsWith("WELLS")

Note that WELLS is not the same as Wells. Strings are case-sensitive.

EndsWith

EndsWith returns true if the string ends with the given value.

bookTitle:String = "BlitzMax"
Print bookTitle.EndsWith("Max")

Contains

Contains works in a similar way to Find but does not allow for a starting offset and will only return true if
the substring is contained within the larger string.

simplePhrase:String = "Bill Gates is a founder member of Microsoft"
Print simplePhrase.Contains("founder member")

Join

Join concatenates arrays of strings together. If you are coming from another language such as Java or C#,
you will be familiar with this construct, but it has been slightly tipped on its head, as you will see from the
example. This is handy, if you want to output data to a CSV or JSON, for example.

Local listOfNames:String[] = ["Fred", "Barney", "Wilma", "Betty"]
Print ",".Join(1listOfNames)

36

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

Split

Split is the opposite of Join. It takes a list of strings and separates them, using the given character delimiter.
In this example, we will reuse our join from before:

Local listOfNames:String[] = ["Fred", "Barney", "Wilma", "Betty"]
Local joinedNames:String = ",".Join(1listOfNames)

Local namesArray:String[] = joinedNames.Split(",")
For s:String = EachIn namesArray

Print s
Next

ToLower

ToLower converts all the alphabetic characters in the string to lowercase. In this example, we are running the
method on a string constant:

Print "THIS IS SHOUTY TEXT".TolLower()

ToUpper

ToUpper converts all the alphabetic characters in the string to uppercase:

Print "Apples! 6 for $2!".ToUpper()

Tolnt, ToLong, ToFloat, ToDouble

These methods all convert strings to their respective data types:

one:Int = "1".ToInt()
two:Long = "2".Tolong()
three:Float = "3".ToFloat()
four:Double = "4".ToDouble()
Print one

Print two

Print three

Print four

ToCString

The ToCString method converts the string to a zero- (null-) terminated string that can be used by C
programs. This method is outside the scope of this book, because we are not going to be doing any low-level
operating system calls, for example. However, for completeness, here is an example:

Local memLoc:Byte Ptr = "This is a string".ToCString()
Local i:Int = 0
While memLoc[i] <> O
Print Chr$(memLoc[i])
i1
Wend

37

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

ToWString

The ToWString method converts the string to a zero- (null-) terminated Unicode string. This method is
outside the scope of the book, because we are not going to be doing any low-level operating system calls, for
example. However, for completeness, here is an example:

Local memLoc:Byte Ptr = "This is a string".ToWString()
Local i:Int = 0
While memLoc[i] <> O
Print Chr$(memLoc[i])
iz+2
Wend
MemFree (memLoc)

Note that because the Unicode character set is represented by two bytes per character, we must
increment the index value by two.
When using ToCString and ToWString, always free your memory using MemFree().

FromlInt, FromLong, FromFloat, FromDouble,

As with their corresponding ToXXX methods, these convert from a given data type to a string. For example:

one:Int = "1".ToInt()
two:Long = "2".ToLong()
three:Float = "3".ToFloat()
four:Double = "4".ToDouble()

Print String.FromInt(one).Length
Print String.FromLong(two).Length
Print String.FromFloat(three).Length
Print String.FromDouble(four).Length

FromBytes

FromBytes takes a zero- (null-) terminated string and its length and converts it to a BlitzMax-compatible
string. This is the opposite of ToCString() but allows greater control, in that you can specify the number of
bytes to return.

Local stream:Byte Ptr = "The cake is a lie.".ToCString()

Local cake:String = String.FromBytes(stream, 4) Print cake

FromCString

FromCString takes a zero- (null-) terminated string, and its length and converts it to a BlitzMax-compatible
string. This is the opposite of ToCString() and returns the entire string.

Local stream:Byte Ptr = "The cake is a lie.".ToCString()
Local cake:String = String.FromCString(stream) Print cake

38

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

FromShorts

FromShorts takes a zero- (null-) terminated Unicode string and its length and converts it to a BlitzMax-
compatible string. This is the opposite of ToWString() but allows greater control, in that you can specify the
number of bytes to return.

Local stream:Short Ptr = "The cake is a lie.".ToWString()
Local cake:String = String.FromShorts(stream, 4) Print cake

FromWString

FromWString takes a zero- (null-) terminated Unicode string and its length and converts it to a BlitzMax-
compatible string. This is the opposite of ToWString() but allows greater control, in that you can specify the
number of bytes to return.

Local stream:Short Ptr = "The cake is a lie.".ToWString()
Local cake:String = String.FromWString(stream) Print cake

Length of String

You can also get the length of a string, using the read-only Length field.

cat:String = "Cat"

Print cat + " is " + cat.Length +

characters long"

To summarize what we have looked at so far, in addition to standard arithmetic operators such as add,
subtract, multiply, and divide, BlitzMax also offers the F and Boolean operators AND, OR, and NOT. Strings can
be added (concatenated) together using the plus operator (+). The product of arithmetic operations can be
reassigned to the same or other variables. Boolean operators can be used as part of IF and WHILE statements.
You will see more of that in following section, “Going with the Flow.”

Going with the Flow

Computers step through each program line by line until there are no more lines to run. In this chapter, we
discover that we can control what lines the computer reads and, more important, the order in which we want
them read.

Simple Decisions

We can make simple decisions in computing, as we do in life, such as: If it’s raining, I will take my umbrella
to work. In computing terms this can be written as follows:

Local isRaining:Int = True
If isRaining

Print "I will take my umbrella to work today."
End If

Line 1 declares an integer value, isRaining, which we give an initial value of True. Line 3 causes the
program to make a decision based on the contents of the isRaining variable.

39

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

IF Conditions Always Equate to One of Two Values: TRUE or FALSE

The equals character (=) is used to test for equality. Previously, we used the equals character to assign values.
In the preceding example, we are not assigning the value; we are determining if the isRaining variable
contains that value. Line 4 will only execute if isRaining is true. Line 5 ends the IF block.

We can also place more than one line between the IF and END IF lines, as shown in the following
example:

Local isSunny:Int = True
If isSunny
Print "It is sunny outside"
Print "I won't need my umbrella"
End If

Both lines inside the IF...END IF block are executed only if isSunny is True.
What if we wanted to display something if isRaining wasn’t true? Could we do the following?

Local isRaining:Int = True

If isRaining

Print "I will take my umbrella to work today."
End If
Print "It is nice and sunny"

If we ran this code, we would get the following output:

I will take my umbrella to work today.
It is nice and sunny

This is not an ideal situation, because we were only looking for one line to be output. The second line
is always going to be executed, because, as we know, programs run blindly step-by-step through a program
until they get to the end, and there are no more lines to process. What we need to do is the following:

Local isRaining:Int = True
If isRaining
Print "I will take my umbrella to work today."
Else
Print "It is nice and sunny"
End If

Note the extra keyword Else. This allows us to better control what we expect to do if isRaining turns
out to be false. The Else portion is optional.

Testing for Equality

As with previous versions of BASIC, BlitzMax allows the programmer to test for equality. We have seen this
in so far as we were testing that a particular variable is equal to true. We know that IF conditions have to
equate to one of two values: TRUE or Y, so how can we test for equality? We use one of the following operators
(Table 4-10).

40

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

Table 4-10. Operators That Can Test for Equality

Operator Description

= Equals

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to
<> Not equal to

These are mathematical symbols. For those of you unfamiliar with them, especially the less than and
greater than symbols, the small end is the lesser. You cannot use these operators against variables that
contain Boolean True or False. Equality operators can only work against numbers or character strings.

The following program prompts the user to enter two string values and then checks which string is
greater. I'll cover the finer details in just a second, but the program does have some shortcomings. Can you
see what they are?

Print "This program takes in two strings and decides which one is greater”
Local first$ = Input("Enter the first string : ")
Local second$ = Input("Enter the second string : ")

If first$ > second$

Print "The first string was greater than the second string"
Else

Print "The second string was greater than the first string"
End If

The first line displays a message indicating what the program will do. The next two lines prompt the
user to enter two separate string values and place them in first$ and second$ variables. The IF statement
condition is
If first$ > second$

This checks to see if the first string is greater than the second. If it is, the message “The first string was

greater than the second string” is displayed. On ANY OTHER EVENT the ELSE block is executed.
Type in the preceding program and run it. Enter the following values (Table 4-11).

Table 4-11. Values to Enter to Run the Preceding Program

Run # of Program First$ Second$

1 Lowercase “a” Uppercase “A”
2 Aaa 77z

3 9 100

41

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

What do you notice about the results? Were you expecting that?
The problem with our little example is that unless first$ is absolutely greater than second$, the ELSE
block is executed. We can remedy this by changing the program to the following:

Print "This program takes in two strings and decides which one is greater"

Local first$ = Input("Enter the first string : ")
Local second$ = Input("Enter the second string : ")

If first$ > second$

Print "The first string was greater than the second string"
Else If first$ < second$

Print "The second string was greater than the first string"
Else

Print "The two strings were equal”
End If

Change the preceding program to use an equals sign in the second IF. Will you have to change the text
of the PRINT statements? If so, what would you change them to?

More commonly, you will be testing for equality with numbers. Say, for example, we wanted to check
whether the player’s character was within a certain boundary on the screen. We could use this code:

Local playerX:Int = 50
Local playerY:Int = 50

If playerX > 0 And playerX < 250
Print "Player is within the boundary"
End If

Using Boolean Logic

As we saw in Chapter 3, computers use Boolean logic for any question, as long as it warrants a TRUE or FALSE
answer. The following Boolean keywords can be used to make more complex IF conditions:

And

Or

Not
For example:

Local isRaining:Int = True
Local isSunny:Int = True

If isRaining And isSunny
Print "Sun showers"
End If

In the context of a game, you might have a condition to test whether the player has a key, then hits a
door, and opens the door.

42

http://dx.doi.org/10.1007/978-1-4842-2523-3_3

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

If playerHasKey And playerHitDoor
OpenTheDoor ()
RemoveKeyFromInventory()

End If

The two methods OpenTheDoor () and RemoveKeyFromInventory() are programmer-made; they're not
part of BlitzMax. We'll learn about how to make user-defined functions in a later chapter.

Nesting IFs

When we have to make complex decisions based on a number of facts, we can do what is called “nesting.”
This means placing a block of code inside another block of code, for example:

Local isRaining:Int = True
Local isCloudy:Int = True

If isRaining
Print "I will take my umbrella to work today."
Else If isCloudy
Print "It looks like it will rain, I'll take my umbrella incase.”
Else
Print "It is sunny. I will wear jeans and a T-shirt."
End If

The truth table for this (Table 4-12) is shown below to make the above example clearer.

Table 4-12. Truth Table for Our Nesting Example

IsRaining IsCloudy Output

True True I will take my umbrella to work today

True False I will take my umbrella to work today

False True It looks like it will rain, I'll take my umbrella in case
False False It is sunny. I will read jeans and a T-shirt

The format of an IF statement is shown in the following:

IF condition [THEN]
Action
[ELSE
Action]
[ELSE IF condition
Action]
END IF

43

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

Select Case

There are a number of occasions on which the humble and yet powerful IF statement is a little simplistic for
our needs. For example, if we had a menu-driven application, we could write code as shown following:

If menuSelected = 1
Print "Menu 1"

Else If menuSelected = 2
Print "Menu 2"

Else If menuSelected = 3
Print "Menu 3"

Else If menuSelected = 4
Print "Menu 4"

Else
Print "No such option"

End If

This is a perfectly valid code block, but it has two downsides. First of all, it takes longer to write. Second,
it will be difficult to maintain or read later. Don’t forget that one of a programmer’s goals is to be able to
reuse her code. How can we reuse code if we can’t read it? What we need is some kind of in-built menu
command. The SELECT CASE block is a perfect replacement.

Local menuSelected:Int = 3
Select menuSelected

Case 1

Print "Menu 1"
Case 2

Print "Menu 2"
Case 3

Print "Menu 3"
Case 4

Print "Menu 4"
Default

Print "Sorry - I did not understand that menu item"

End Select

Line 1 declares the menuSelected variable that we are using in this example. Line 3 starts the SELECT
block. The select statement starts with the SELECT keyword and the variable we want to test. This is not the
same as the IF statement, in that what follows the SELECT keyword is not conditional. So, the following is not
avalid SELECT line:

Select menuSelected = 5

The last line marks the end of the SELECT block with the keywords END SELECT. The Case keyword is

used to check the value of the control variable.
Print "This program will prompt the user " + ..

"For a letter of the alphabet" + ..

"and then convert that to the number " + ..

"it would appear on a mobile" + .

"phone. It's case-insensitive -- A = a...

" Local letter$ = Input("Enter a letter : ") letter$ = Upper(letter$)

44

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

Select letter$
Case "A", "B", "C"

Print "2"

Case "D", "E", "F"
Print "3"

Case "G", "H", "I"
Print "4"

Case "J", "K", "L"
Print "5"

Case "M", "N", "O"
Print "6"

Case "P", "Q", "R", "S"
Print "7"

Case "T", "U", "V"
Print "8"

Case "W", "X", "Y"
Print "9"

Default
Print "Not a valid letter"

End Select

The .. at the end of the line means “continue this line on the next line.”

Iteration—Making the Computer Repeat Itself

A video game repeats the action until all the player’s lives have gone or the end of the game has been
reached. So far, we have only written programs that run through a sequence of commands and then
terminate. With the use of certain BlitzMax keywords, we can get the computer to repeat a block of code,
when required, either using conditions or for a set number of times.

The for Loop

The for loop is the simplest type of iteration in computing. The computer is told how many times the block
of code is repeated. The format of a For. . .Next loop is shown following:

FOR control variable = start TO end [STEP interval]
{block}
NEXT
For example:
For n:Int = 1 To 5
Print “This message will be displayed five times"
Next
will display

This message will be displayed five times
This message will be displayed five times

45

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

This message will be displayed five times
This message will be displayed five times
This message will be displayed five times

Note two things: first, you can assign the variable type to the control variable, and second, the step
keyword is not used. We could have written the program as

For n:Int = 1 To 5 Step 1
Print "This message will be displayed five times"
Next

This would have had the same effect. What would happen if we changed the line so that it ends in
Step 2?Itis also possible to count down, as follows:

For countdown:Int = 10 to 0 Step -1
Print countdown

Next

Print "Blast-off!"

This produces the following output:

10
9
8
7
6
5
4
3
2
1
Blast-off!
If the Step -1isremoved, the only thing written would be
Blast-off!
Why would this be the only thing written?
For EachlIn...Next

There is an extension to the For. . .Next loop that is used to cycle through a collection of objects. The format
of this form of the For. . .Next loop is

For temp variable = EachIn collection variable

Next

46

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

For example:
list:TList = Createlist()

list.AddLast("New Game")
list.AddLast("Options")
list.AddLast("Controls")
list.AddLast("Help")
list.AddLast("Exit")

For b:String = EachIn list
Print b
Next

This displays the title menu of a game. You can put anything in TList. It’s a system type that is more
powerful than traditional arrays in a lot of ways. For example, it’s easier to iterate (loop) through the values
inTList.

While/Wend

Although For. . .Next loops are powerful and can be used for all sorts of reasons detailed above, they fall
short in a number of ways. Some of which lead to spaghetti code and bad programming—The Dark Side, if
you will. This is where the While. . .Wend block comes into play.

The format of a While. . .Wend block is

While boolean_condition
Wend
For example:
i:Int =0
While i < 5
i=1i+1
Print i

Wend

will display

Ui b W N

i is incremented with each iteration (every time the code within the block is looped) and is displayed.
When I is incremented to 6, the While. . .Wend block exits. This is the loop that the majority of developers
use when looping through a block based on a Boolean condition, for example, to detect if a player has any
lives/energy left. It should be noted that a While. . .Wend block does not guarantee that it will execute. Let’s
look again at the previous example.

47

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

i:Int = 5
While i < 5
i=1i+1
Print i
Wend

This will display nothing, because the value held in I as it enters the loop is not less than 5. This is
a good property of the While. . .Wend loop, because it means that the loop will only be entered when the
Boolean condition is true.

Let’s take a look at another example.

answer:String =

While answer<>"Y" And answer<>"y"
answer = Input("Do you want to exit?")

Wend

The initial value of answer is a blank string. So, answer contains neither "Y" or "y". This means that the
loop will execute. When this program is run, you are presented with a prompt Do you want to exit? A sample
session might be

Compiling:untitled2.bmx
Linking:untitled2.debug
Executing:untitled2.debug
Do you want to exit?no

Do you want to exit?no

Do you want to exit?y
Done.

Repeat...Until

Repeat...Until is very similar to the While. . .Wend block. The format of Repeat. . .Until is as follows:
Repeat
Until-ééolean_condition

Take our earlier example of counting to 5.

i:Int = 0

Repeat
i=1i+1
Print i

Until i »>= 5

The Boolean condition in the preceding Until line is “greater than OR equal to” Running the preceding
code produces the following output:

Ui b WN

48

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

But, what if we changed the initial value of i, as we did in the While. . .Wend example?
i:Int = 5
Repeat
i=1i+1
Print i
Until i >= 5

The following will be displayed when the program is run:

Why? This is because the Repeat. . .Until loop executes the block at least once. This can be necessary
if you know that you will be performing an action at least once. For example, in a game loop you know that
the player will take control of the spaceship, say, at least once...then lose a life and start again. This is a good
situation in which the Repeat. . .Until loop can be used.

Repeat...Forever

Repeat...Forever is a variation on Repeat...Until. The format is
Repeat
Forevé;.

This is the same as the following Repeat. ..Until loop:
Repeat
Until‘éélse

A sample usage of this (in this author’s opinion) useless construct would be the following:

Repeat
Print i+" Ctrl-C to End!"
i=i+1

Forever

I believe that this construct is a little redundant, because, as previously noted, the Repeat...Until False
construct would work just as well!

Exit
The Exit keyword is used to step out of a Repeat, While, or Select block. For example:

Repeat

Print n

n = n+l

If n="5" Exit
Forever

49

CHAPTER 4 ' LITERALS, CONSTANTS, AND VARIABLES

Continue

The Continue keyword is used to step out of a For. . .Next loop. For example,

For i:Int="0" To 50
Ifi> 30
Continue
Else
Print i
End If
Next
Print "Out at 30!"

would display:

1
2

29
30
Out at 30!

A Note on Exit and Continue

Exit and Continue are used to short-circuit your code and perform what’s called an “early out” For example,
say you have a list of 10,000 items. To search for a particular item, you use a for loop. You test each value, in
turn, to see if there is a match. On the 1,000th item, you find your match. At that point, you should exit the
for loop and continue execution. There is little point in checking the other 9,000 entries on the list, if you've
found your match.

50

CHAPTER 5

The Great Escape

For our first project, we are going to build a simple bat-and-ball game. I think that everyone should be
familiar with the concept of this game. Basically, we are going to create a play area with a bat and a ball. The
ball hits off our bat and the sidewalls, until we drop it. At that point, we lose a life. Every time we successfully
defect the bat, we score 1 point.

The game is loosely based upon a scene in The Great Escape with Steve McQueen. He’s sent to the
cooler and passes the time by throwing his baseball at the wall—a kind of one-player catch. This is the game
we are re-creating in our world. Let’s get started then!

Create within BlitzMaxSource a folder called Escape.

Game Elements

Every game has to define the world in which it is played. In our game, we have certain elements that define a
bat-and-ball game:

Abat
Aball

There are some elements that we could do without but that make the screen look nice—not to mention
better define our gaming world to the player:

Scorecard
Lives remaining
Amiga-style gradient

For those of you not in the know, Amiga was a home computer from the 1980s to 1990 that employed a
number of techniques to prettify games. One of these was to create a gradient fill as the background.

Creating the Graphic Elements

You will need a graphics package to create the game elements for The Great Escape. There are a number of
good programs out there.

Windows
Paint.Net (www.getpaint.net/)

Photoshop Elements (www.adobe.com/products/photoshopel/)

© Sloan Kelly 2016 51
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_5

http://www.getpaint.net/
http://www.adobe.com/products/photoshopel/

CHAPTER 5 ' THE GREAT ESCAPE

Mac
iPaint (http://ipaint.sourceforge.net/)
Photoshop Elements (www.adobe.com/products/photoshopel/)
Seashore (http://seashore.sourceforge.net/The_Seashore Project/About.html)
Pixen (http://opensword.org/pixen/)
All Platforms

The GIMP (www.gimp.org/)

Photoshop Elements isn't free; it's about US$100 and probably overkill, if you want to have it just for
sprite work. If you're using Windows, I recommend Paint.Net. For all other OSs, I'd go with GIMP.
Once you choose your art package of choice, you'll have to create the images for the bat and the ball.

[J

The bat image is 128x24 pixels in size. Save the image as bat.png.

The ball image is 24x24 pixels in size. Save the image as ball.png. The images should be saved in the
Escape folder.

Splitting Up the Tasks

Our game will be split into three sections. It’s always a good idea to break down the problem into lots of
smaller, more manageable problems. We'll see this done in greater detail later in the book. For now, though,
we'll split our game into the following:

Initial setup
Main loop

Gradient fill

Initial Setup

The purpose of the initial setup is to
Put the computer into graphics mode
Load the images we will use

Initialize any variables we have to use

52

http://ipaint.sourceforge.net/)
http://www.adobe.com/products/photoshopel/
http://seashore.sourceforge.net/The_Seashore_Project/About.html
http://opensword.org/pixen/
http://www.gimp.org/

CHAPTER 5 ' THE GREAT ESCAPE

Don’t worry if you don’t understand this in detail just now. I will cover these topics in a later section.
Our code to set up The Great Escape is shown following. The sections below all the code sections explain the
steps. Code sections are set in a distinctive font.

Graphics 640, 480

The Graphics keyword puts the computer into graphics mode. In this case, we are asking the computer
to give us a resolution of 640x480. This will show our game in a window. If you want to show the game in
full-screen mode, you will have to add an additional , 16 to the end of that line, to put the display into
full-screen 16-bit color mode.

bat:TImage = LoadImage("bat.png")
ball:TImage = LoadImage("ball.png")

There are two images in our program (see above for how to create them). The images are loaded into
variables called bat and ball, respectively. Variables are temporary locations inside the computer’s memory
that we use to store information that we need during program execution.

px:Int = (640 - 128) / 2
py:Int = 400
lives:Int = 3

These three variables will set the player’s position (px and py) and the number of lives. Notice that
the width of the bat is taken into consideration when we set the x coordinate of the player. The player’s x
coordinate will be determined by the position of the mouse.

bx:Int =
by:Int
sx:Int
sy:Int

o
o O O o

The four variables bx, by, sx, and sy control the ball’s position and speed. These variables will be
updated by code that we write later.

HideMouse

This keyword hides the mouse pointer. After all, we don’t have mouse pointers in our world!
If you haven’t already, enter the code written in this font exactly as written above, and save it to your
BlitzMaxSource\Escape folder as GreatEscape.bmx.

The Main Loop

Every game contains a main loop. Computer programs run through each command until they run out
of commands. When they run out of commands, they return to the operating system. To stop that from
happening, and to keep people in our game, we loop around.
Much like a racing car circuit, a computer program contains a loop. A computer program performs
certain tasks specified by the programmer (you) and then repeats those tasks until some event occurs.
Our loop will follow these steps:

1. Clear the screen
2. Draw the gradient (this will be covered later)
3. Draw the ball
53

CHAPTER 5 ' THE GREAT ESCAPE

Draw the bat

Update the player

o o M

Update the ball
7. Flip the screen

BlitzMax, as you will discover later, uses a technique known as double buffering. Basically, nothing is
drawn to the screen. In effect, what happens is all the images are drawn to an area of memory that the player
is not viewing, and the graphics card then points to this new screen when BlitzMax flips the screen. It's
explained in the Graphics section later.

Our main loop is the following:

While Not KeyHit(KEY ESCAPE)

This line, coupled with the Wend at the end, is the key to the main loop. This says “do everything between
While...Wend, until the user hits the Escape key.

Cls
DrawImage(ball, bx, by)
DrawImage(bat, px, py)

This section draws all the graphics on the screen. Note that we don’t have a gradient yet. The screen is
cleared, and the ball is drawn, then the bat is drawn.

px = MouseX()
The variable px is updated to contain the x coordinate of the mouse. So, when the user moves the

mouse, the information is stored in the px variable. We then have to check that the user’s bat is within the
boundaries of our world—our 640x480 screen.

If px < 0
px = 0
End If

This checks to see if the player’s bat is off the leftmost edge of the screen, and if it is, it sets the position
to the leftmost pixel position: zero.

If px > 640 - 128
px = 640 - 128
End If

This checks to see if the player’s bat is off the rightmost edge of the screen. Note that the width of the bat
(128 pixels) is used again here. We could have allowed the user to move the bat outside our world, but we
want the screen boundary to be our world’s boundary.

bx
by

bx + sx
by + sy

The player’s position is determined by user input, but for the ball’s movement, we code is required. This
is done in the preceding lines. The x coordinate of the ball is incremented by the speed along the x axis, and
the y coordinate of the ball is incremented by the speed along the y axis.

54

CHAPTER 5 ' THE GREAT ESCAPE

If bx < 0 Or bx > 640 - 24
SX = SX * -1

End If
If by < 0 Then
by =0
sy =sy * -1
End If

Again, our world is contained within a 640x480 screen, and this means that when the ball hits the edges
of the screen, it should bounce back. This task is achieved by reversing the speed of either the x or y axis—x
axis if the left or right edges have been hit, the y axis if the top of the world has been hit.

If by > py
lives = lives - 1
bx =
by =
SX =
sy =
End If

o O oo

This section deals with what happens when the player misses the ball and it goes past her. One life is
removed, and the ball’s position and speed are reset to 0.

If ImagesCollide(bat, px, py, 0, ball, bx, by, 0)

by = by - 1

sy = sy ¥ -1

score = score + 1
End If

It's not a bat-and-ball game if the ball can’t collide with the bat. We have to test if the ball image touches
the bat image, and if so, reflect the ball back up the playing field. To do this, we use the built-in ImageCollide
function. When the player successfully hits the ball with his bat, we add one to his score.

Flip

The F1ip keyword tells the graphics card which screen to look at. Remember: We have two areas we can
work with. The graphics card only flicks a switch to show the next scene. It works kind of like a ViewMaster.

Wend

This keyword matches with the While line at the top. This will loop back to the stop and perform all the
lines in between this and the While again, until the condition is met, i.e., when the user presses the Escape
key.
ShowMouse

The final keyword in our program shows the mouse again. Remember that we hid it earlier on using
HideMouse?

Add the previous code, exactly as written, to the GreatEscape.bmx file. Save the file and run the
application. You should have a screenshot similar to that shown in Figure 5-1.

55

CHAPTER 5 " THE GREAT ESCAPE

r - ™

® BhitzMax Application | e = | — v

|

Figure 5-1. Provide a caption

But the ball is not moving. We have to get the ball in motion for this game to be any kind of fun. To do
this, we must add a little bit more code. To add more code, we have to go back to the editor. Press the Escape
key and click the “GreatEscape.bmx” tab.

Starting the Game

To start the game, we’ll get the player to press the spacebar. This has the effect of serving the ball. To achieve
this, we will add the following lines of code after the px = MouseX() line:

If KeyHit(KEY_SPACE) And sx = 0

sX = 4
sy = 4
End If

This code checks to see if the user has pressed the spacebar, but it also checks whether the ball is
stationary. If both conditions are met, the ball’s x axis and y axis speeds are set.

Now our game is starting to take shape, but we have no feedback information for the user. We'll fix that
next.

56

CHAPTER 5 ' THE GREAT ESCAPE

If you haven't already, add to the GreatEscape.bmx file the code after the px = MouseX() line, exactly as
written previously. Save the file and run the application. Hit the spacebar when you want to serve and play.
Don't forget to hit Escape when you're finished. There is still work to be done! Did you miss the ball three
times? If you did, what happened?

Clearly, that’s a bug, and we should fix it. Change the While statement at the top to

While lives > 0

The game ends a bit abruptly now, but at least we won'’t have negative lives left. What could you add to
make the end of the game a little more pleasant for the player?

Giving the Player Feedback

As with every other game, we have to inform the user as to what is happening in the world. We do this by
showing the user graphics representing the player and the objects in the game world, but we can also aid the
users by showing them information (attributes) about their game-world player, such as lives left and score.
To achieve this, we're going to add a few more lines to the game.

m:String = ""

This line is added between the While and Cls lines. It creates a variable called m. This variable will be
used to display all the messages. I've created this variable because we are going to use a function called
TextWidth() to center the text on the screen.

If sx =0
m = "Press SPACE to serve ball"
DrawText(m, (640 - TextWidth(m))/2, 240)
m = "You have " + lives + " lives left!"
DrawText(m, (640 - TextWidth(m))/2, 254)
End If

m:String = "Score <" + score + "> Lives <" + lives

+ ">
DrawText(m, (640 - TextWidth(m))/2, 0)

Add these lines after the DrawImage() lines.

And now our game is done. Congratulations! You have just taken the first step into a larger world!

Add all the lines as shown in the areas described. Save and run the game. You should now have some
feedback!

The Linear Gradient

Add the following function, exactly as written, just below the sy:Int = 0 line. Remember to give yourself a
couple of blank lines, by hitting Enter a couple of times.

Function DrawGradient(increment:Int)
y:Int = 0

While y < 480
blueshade:Float = Float(y) / 480
blue = (192 * blueshade)

57

CHAPTER 5 ' THE GREAT ESCAPE

SetColor(0, 0, blue)
DrawRect(0, y, 640, increment)
y =y + increment
Wend
reset to white for next operation
SetColor(255, 255, 255)
End Function

Next, add the following line in the main loop, just before the image of the ball is drawn:
DrawGradient(24)

Save the program and run. You should now have a lovely Amiga-style gradient (Figure 5-2).

r - 5

® BlitzMax Application SR X
Score Lives <>

Press SPACE to serve ball
You have 3 lives left!

.

Figure 5-2. Provide a caption

Remember that the game ends a bit abruptly when you lose all your lives? When the player dies, it
would be nice to let her have another chance to play. To allow players to play again, add the following line
just before the While line:

#mainloop

58

CHAPTER 5 ' THE GREAT ESCAPE

This is a label that we will use later to “jump” to it. Now, between the Wend and the HideMouse lines add
While Not KeyHit(KEY ESCAPE)

This works the same way as the previous While line. We're going to keep doing what’s between the
While and Wend lines until the condition has been met.

If KeyHit(KEY_P)
lives = 3
bx =
by =
sX =
sy =
score = 0
Goto mainloop

End If

o O o o

This is the interesting bit. If the user presses the P key, the game resets itself and jumps back to our main
loop. Goto can lead to what is called “spaghetti code” and should be used in moderation. At this stage, all we
want is a simple callback to our first loop, so this is a fairly acceptable use.

Cls

m = "Game Over"

DrawText(m, (640 - TextWidth(m))/2, 240)
m = "Press ESCAPE to return to 0S"
DrawText(m, (640 - TextWidth(m))/2, 254)
m = "Press 'P' to play again"
DrawText(m, (640 - TextWidth(m))/2, 272)

The user is informed that his game is over, and he can return to the OS, if he wishes, by pressing the
Escape key, or he can play again by pressing the P key.

Flip
Wend

What things do you think could improve this game? Don’t forget, games programming is not just about
hacking code. It’s about being creative! You can revisit this game later, when more topics have been covered,
to flesh it out and make it better.

As we have discovered, variables are used to store information employed by your game at runtime.
Variables are only used for one thing: to monitor change. And who exacts change on the objects within the
game? The user interacts with the application, some random number generator or pattern decides how an alien
will move, but, really, it comes down to the developer. Write down as many things as you can think of that would
change the contents of a variable. For example, moving a player would require some additional arithmetic.

Debugging Your Code

During the course of writing a program, it may be required to stop the execution, to view the contents of
variables at a particular point. If we have a calculation that is wrong, and we can’t immediately see from

just looking at the code what is wrong, we can step through it line-by-line. This is called debugging. A bug

is a small glitch in a program’s code that is unintentionally put there—usually owing to lack of sleep! The
following built-in commands are available to help us debug our code; DebugStop, DebugLog, RuntimeError,

Assert. For now we will explore DebugStop and DebugLog in detail.
59

CHAPTER 5 THE GREAT ESCAPE

Stopping Execution

To stop the execution of a program in mid-flow, we use the DebugStop keyword. This returns control to the
integrated development environment (IDE), where the developer can step through the code, examine the
contents of variables, and such. DebugStop is ignored when no debugger is present, i.e. when you package
up your game for final distribution.

Enter the following code into a new editor panel:

Local i:Float = 30
Local k:Float = 15
Local b:Float = i - k
Local t:Float =5/ b
DebugStop

Print t

Run the program. The IDE will pop up after execution, and the DebugStop line is highlighted. Click
the Debug panel on the right-hand pane. There is a tree view with the name of your program, for example,
untitled3.bmx (see Figure 5-3). Expand that node, and you will see all your variables.

'3 MaxIDE - C/BlitzMax/tmp/untitied3.bmx
file Edit Progam Help 1
V._‘ ¥ u, s.\fb - r 0\! A ® B 5 =& @ i ,‘> —

HdP Tuntirtled3.brnx IOutput : Home Icode Debug .

Local :Float=30.0000000 !
Local kFloat=15.0000000 |
Local b:Float=15.0000000
Local tFloat=0.333333343

Line: 6 Char: 10

Figure 5-3. Provide a caption

Press Alt » Option+X to stop the program.

Move the DebugStop between the Local b... and the Local t... lines. Run the program. Now what do
you see when you debug? Why do you think this is the case?

You should probably have noticed that the variable t contains 0.00000. This is because it has not been
initialized. BlitzMax knows that it exists, it just has not had a value assigned to it. Remember: Non-initialized
variables are assigned a default value. In the case of numeric types, that value is zero.

60

CHAPTER 5 ' THE GREAT ESCAPE

Now that we have stopped the execution of the program, we can step through line-by-line to see the
path of execution.
You should have the following program in the editor:

Local i:Float = 30
Local k:Float = 15

Local b:Float = i - k
DebugStop

Local t:Float =5/ b
Print t

Run the program, and the control will return to the IDE. At this point, we can step line-by-line through
what each part of the code does. To do this, press the F9 key. Keep looking at the variable t in the Debug
panel. Note when we execute that line that its value changes from 0 to 0.33333343.

Printing Output

Sometimes, all we want to do is display the contents of a variable, but allow the program to keep running.
This is most true in graphic applications such as games, in which we don’t want to keep flicking in and out
of graphics mode. To capture information and display it on the console window and not the screen, we use
Debuglog. As with DebugStop, DebugLog is not executed when there is no debugger present.

Type the following program into a new editor panel. Run the program and observe the dot moving
about the screen. Press the Escape key when you are finished. Look at the output window.

Graphics 640, 480

Local x:Int = 0
Local y:Int = 0
Local xs:Int = 8
Local ys:Int = 8

While Not KeyHit(KEY_ESCAPE)
Cls
Plot x, y

X:+XS
'yi+ys

y:+(ys * Sin(x))

If x <= 0 Or x >= 640

xs:¥-1
Debuglog "Ouch! Hit the sides!"
End If
If y <=0 0r y >= 480
ys:*-1
Debuglog "Ouch! Hit the top / bottom"
End If
Flip
Wend

61

CHAPTER 5 ' THE GREAT ESCAPE

When you run the program, you should get an output similar to the one shown following:

Building 001_Debuglog
Compiling:001_Debuglog.bmx
flat assembler version 1.51

3 passes, 4066 bytes.
Linking:001_DebuglLog.debug.exe
Executing:001_Debuglog.debug.exe
Ouch! Hit the top / bottom
Ouch! Hit the top / bottom
Ouch! Hit the sides!

Ouch! Hit the top / bottom
Ouch! Hit the top / bottom
Ouch! Hit the top / bottom
Ouch! Hit the top / bottom
Ouch! Hit the sides!

Ouch! Hit the sides!

Ouch! Hit the top / bottom
Ouch! Hit the top / bottom

Other Debug Methods

As previously mentioned, if you are working in graphics mode, it is difficult to display debug information
without flicking to the standard output of the console. However, there is an alternative way that I have used
as a temporary measure: DrawText.

Rewrite the preceding program with the bouncing pixel and remove the DebugLog lines. Add the
following lines after P1lot():

DrawText("X = " + x, 0, 0)
DrawText("Y = " + vy, 0, 12)

62

CHAPTER 6

Reusing Code with Functions -

Games programmers are no different than normal computer programmers, in that they strive to reuse code
wherever possible. So far, we have looked at linear programs that cannot be reused in their current state.
The programs perform a specific number of tasks and end. What we have to do is create almost mini-
programs that are independent of the main code. These mini-programs are called functions.

Functions allow you, the programmer, to virtually extend the keywords in BlitzMax with your own routines.
These routines can then be shared with your other programs or, indeed, other programmers. Functions also
allow multiple programmers to work on the same larger project without tripping over each other.

Where Would | Use a Function?

Any task that is repetitive in nature, such as displaying the lives a player has left, his or her score, drawing the
characters onscreen... I think you will agree, pretty much anything can be declared repetitive in a computer
game!

Declaring a Simple Function

The general format for a function declaration is:

Function function_name : ReturnType (Parameters)
{block}
End Function

{block} represents where you will put your code, to perform each time the function name is called.
We use function names in BlitzMax just as we would a registered keyword.

Drawing a Line

To draw a line in BlitzMax, we use the Line keyword. The following function draws a line from the top left of
the window to the bottom right.

Graphics 640, 480
Function Line()

DrawLine(0, 0, 640, 480)
End Function

© Sloan Kelly 2016 63
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_6

CHAPTER 6 © REUSING CODE WITH FUNCTIONS

While Not KeyHit(KEY ESCAPE)
Cls
Line()
Flip

Wend

The is achieved by calling our new function, Line, which draws a line across the top of the screen.

Write another routine, called Oppositeline, that draws a vertical line down the other diagonal.
Hint: The DrawLine keyword requires four parameters: start-x, start-y, end-x, and end-y. To draw a
diagonal line, you must pass 640, 0, 0, 480 to the DrawLine keyword.

But what if we wanted to specify how far along the line is drawn? How could we do that? Much like the
built-in keywords in BlitzMax, you can specify parameters.

Specifying Parameters

To allow people to pass parameters to your functions, you must specify what parameters are required when
you declare that function. The format of a function that requires parameters is

Function function_name(parami:ParamType [,
param2:ParamType ...])

{block}
End Function

You can have as many parameters as you like, but good sense says that anything more than 10 is a little
on the excessive side. For example:

Graphics 640, 480

Function Line(;

While Not KeyHit(KEY ESCAPE)
Cls
Line(640)
Flip

Wend

Change the value passed to the Line function. Choose any value between 0 and 640. Run the program
and see what happens. What happens when you choose a value greater than 640? What did you expect to
happen?

Optional Parameters

Sometimes an optional parameter is required to pass in default information to a function. This can be
achieved by using the following function declaration:

Function function_name(parami:ParamType = value [,
param2:ParamType ...])

{block}
End Function

64

CHAPTER 6 © REUSING CODE WITH FUNCTIONS

ParamType is any valid BlitzMax data type, class, or UDP-based Data Transfer Protocol (UDT). See the
“Object Oriented Programming” section for more details on classes and UDTs.

In the following example, there are two optional parameters, x and c. Only the middle parameter is a
required input to the function.

Function Defaults(x:Int = 24, y:Int, c:Int = 3)
Print x
Print y
Print c

End Function

Print "Specifying X:"
Defaults(o, 4, 10)
Print "Missing out X:
Defaults(, 4, 10)

To omit passing a parameter, enter a single comma in its place, as in the preceding example. If the last
parameter is optional and you want to miss that out, do not add the additional comma. So, for example, to
miss out the c parameter, use the following:

Defaults(1, 2)
It is valid because we have omitted the last comma. However,
Defaults(1, 2,)
is invalid because the last comma is still there. It is not possible to miss out the middle parameter, y,
because it has no default value.
So, the following code is invalid:

Defaults(0, , 5)

Change the preceding line program to default the width parameter to 640, if no width is specified.

Extending Existing Keywords

As I have mentioned before, it is possible to extend existing keywords. For example, although BlitzMax has
a DrawRect keyword to draw a filled-in box, it does not have one to draw an outlined box. We have to write
our own. The following code does just that. It allows us to draw a box anywhere onscreen, based on the
parameters passed to the function.

Rem
Program to demonstrate the DrawBox function
The program draws an outline using DrawBox
and then a filled rectangle using DrawRect
End Rem

Graphics 640, 480

Function DrawBox(x:Int, y:Int, ;

65

CHAPTER 6 © REUSING CODE WITH FUNCTIONS

While Not KeyHit(KEY ESCAPE)
DrawBox (50, 50, 100, 50)
DrawRect(52, 52, 97, 47)
Flip
Cls

Wend

This example employs extended use of the DrawLine keyword to draw an outlined box in the declaration
for the DrawBox function. It takes in parameters similar to the DrawRect function’s start x and y coordinates,
the width and height, and uses these to draw lines on the screen. The lines are drawn, and a box forms.

Place a WaitKey keyword between each of the DrawLine lines, to see the rectangle slowly build up.

Now re-read the code and see what the comments on each line say.

Returning Values from Functions

For the most part, functions are used to return values to the calling routine, which can be the main program
or, indeed, another function. To return an integer value from a function, the programmer need not do
anything; however, it is good practice to specify the return value data type in the function declaration. In the
following example, a function GetSquare is declared. It requires one parameter, x, and returns an integer
based on the product of x multiplied by x.

Function GetSquare:Int(x:Int)
Return x * x

End Function

Print GetSquare(5)

Notice the : Int after the function name? This is the return data type. If none is specified, BlitzMax
assumes that the return type is an Int. The Return keyword is used to send information back to the calling
routine. Without the Return keyword, nothing is sent back—that’s literally nothing. It could be a 0 or an
empty string or a null object, depending on what data type is to be returned.

Recursion

There is a mathematical function called Factorial, and its formula is shown following:
nl =n* (n-1) * (n-2) * ... *1

Basically, any number is multiplied by that number and all integers down to 1. So, for 5, it would be 5 *
4 * 3 %2 %1 =120

This is called recursion, and it is when you have a routine calling itself. Think of it as a snake eating its
tail. The thing with recursion is that you have to be able to have an “out,” or else the program loses control,
gobbles up all the memory/processor, and crashes your machine, thereby causing the loss of hours of work!

The program below contains a function for factorial called Factorial. Pass in any integer value to it.

Rem

Factorial example. This returns n!
End Rem
Function Factorial(x:Int)

66

CHAPTER 6 © REUSING CODE WITH FUNCTIONS

If x>1
X
End If
Return x
End Function
Print Factorial(s)

X * Factorial(x-1)

The “out” in the Factorial function is the If clause, which checks to make sure that x is greater than 1.
It is only when x is greater than 1 that the Factorial function calls itself again.

Change the function call to Factorial to passin 6, 10, 20.

Change the Factorial function to divide by each number instead of multiply. To make this change, you
must change the parameters and output to Float.

Returning Multiple Values

When a value is passed to a function, only a copy of it is passed.
This type of parameter passing is known as by value. The example that follows best illustrates this point.
When you pass in a parameter by value, it is unchanged.

Rem
Passing By Value
End Rem
Function ByValue(x:Int)
X =5
End Function

Local x:Int = 10
ByValue(x)
Print x

The x:Int in the ByValue function is a local variable to the function that represents the variable passed
to it by the calling routine. As soon as a variable goes out of scope, all information about it is lost.
We could change the preceding program to read:

Rem
Passing By Value
End Rem
Function ByValue(x:Int)
X =75
Return x
End Function

Local x:Int = 10
x = ByValue(x)
Print x

This change would allow us to capture the change in x. It is fairly straightforward and is suitable for

returning one value. But what if we want to return more than one value? If we want to return multiple values
from a single function, we must pass the parameters by reference.

67

CHAPTER 6 © REUSING CODE WITH FUNCTIONS

To change a variable passed to a function, we add the keyword Var.

Rem
Passing By Reference
End Rem
Function ByValue(x:Int)
X =5
End Function

Function ByReference(x:Int Var)
X =5
End Function

Local x:Int = 10

Print "x = " + x

ByValue(x)

Print "x after ByValue = " + x
ByReference(x)

Print "x after ByReference = " + x

In this example, the keyword Var has been added to the x: Int parameter of the ByReference function.
This tells BlitzMax to pass the variable in by reference. This means that the variable is altered by the
function. Here is an example of multiple values being returned. The SumProductDiv function takes five
parameters, and x and y are two integers that will be manipulated by the function. The function performs
three calculations: summation, product, and division on the two numbers and returns them to the user into
the specified parameters, as follows:

Rem
Multiple Values returned
End Rem
Function SumProductDiv(x:Int, y:Int, sum:Int Var,

prod:Int Var, div:Int Var)
sum = X +y

prod = x * y
Ify>o
div=x/y
Else
div = -1
End If

End Function

Local x:Int
Local y:Int =
Local sum:Int = 0
Local prod:Int = 0
Local div:Int = 0

n v o

SumProductDiv(x, y, sum, prod, div)
Print "Sum=" + sum

Print "Product=" + prod

Print "Divide=" + div

68

CHAPTER 6 © REUSING CODE WITH FUNCTIONS

In this example, the first two parameters (x and y) are passed by value. This means that they will remain
unaltered, and, indeed, the code within the SumProductDiv function does not alter them.

Write a function called IsGreaterThan that takes in two floats. It returns a third parameter containing
the larger of the two.

Write a function called Pythagoras that takes in one parameter called angle. It has to return three
values for sine, cosine, and tangent. Hint: Use the Sin, Cos, and Tan functions to return these float values.

This activity shows how you can combine functions by getting them to call others. The following
function draws a rectangle and a piece of text on the screen at a given location. Change the code to show a
yellow outline, as follows:

Graphics 640, 480
Function DrawBoxText(x:Int, y:Int, text:String)

SetColor(255, 255, 255)

DrawRect(x, y, TextWidth(text) + 1,
TextHeight(text) + 1)

SetColor(o, 0, 0)

DrawText(text, x + 1, y + 1)
End Function

While Not KeyHit(KEY ESCAPE)
DrawBoxText (50, 50, "Hello BlitzMax!")
Flip
Cls

Wend

Hint: You can use the function we created earlier (DrawBox) to draw an outline. Also, SetColor (255,
255, 0) changes the drawing color to yellow.

69

CHAPTER 7

Using the File System

BlitzMax allows almost unfettered access to the operating system, to read files and folders (directories) and
their contents, as follows:

ChangeDir
CloseDir
CloseFile
CreateDir
CreateFile
CurrentDir
DeleteDir
DeleteFile
Eof
FileType
LoadDir
NextFile
OpenFile
ReadDir
Readline

WritelLine

In any application you will have to manipulate some files on the hard disk or CD-ROM drive. Your
games hi-score table can be stored in a file and manipulated by your program, or you could load a cut-scene.
But let’s start with some basics first.

Reading a Directory

There are nine keywords used to manipulate directories:
CurrentDir

ChangeDir

© Sloan Kelly 2016 71
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_7

CHAPTER 7 = USING THE FILE SYSTEM

ReadDir
NextFile
CloseDir
LoadDir
FileType
CreateDir

DeleteDir

CurrentDir

This keyword returns the current directory:

Print CurrentDir()

ChangeDir

This keyword changes the current directory. It returns a Boolean True, if successful.

If ChangeDir("C:\BlitzMax")

Print "There is a BlitzMax folder"
Else

Print "There is not a BlitzMax folder!"
End If

ReadDir, NextFile, and CloseDir

These three commands allow us to open a directory for reading, to traverse through the files contained
within the directory, and to close it afterwards, as this example shows:

dir = ReadDir("C:\")
If Not dir
Print "Can't open directory"
Else
f:String = NextFile(dir)
While f <> ""
Print f
f = NextFile(dir)
Wend
End If
CloseDir(dir)

LoadDir

This is slightly more elegant than the ReadDir, NextFile, and CloseDir example above. It basically does the same
thing but in one step: it reads all the names of the files and folders in the given directory. You can also pass in an
optional Boolean parameter (true/false) to skip the current and parent directories (. and . .), respectively.

72

CHAPTER 7 ' USING THE FILE SYSTEM

Local files:String[]

files = LoadDir("C:\")

For f:String = EachIn files
Print f

Next

FileType

We can also examine the files that we find, to determine what type they are.
0: File does not exist
1: Standard file
2: Directory

In the following example, the root directory of the C: drive is examined, and any directories are
surrounded in angle brackets.

Local files:String[]
files = LoadDir("C:\")
For f:String = EachIn files
If(FileType("C:\" + f))="2"
Print "<" + f + ">"
Else
Print f
End If
Next

Graphical Representations of Directories

You can represent files and folders easily as graphics. After all, Windows/Finder/Gnome can do it! You will
have to get two 16x16 pixel images to represent files and folders. You can download them from the web site
(www.blitzmaxbook.com). Here is a simple GUI to list the files and folders in BlitzMax:

Graphics 800, 600

imgfile:TImage = LoadImage("file.png")
imgfolder:TImage = LoadImage("folder.png")
Local files:String[]

Local y:Int = 0

files = LoadDir("C:\")

While Not KeyHit(KEY_ESCAPE)
Cls
For f:String = EachIn files
If FileType("C:\" + f) =2
DrawImage(imgfolder, 0, y)

73

http://www.blitzmaxbook.com/

CHAPTER 7 = USING THE FILE SYSTEM

Else
DrawImage(imgfile, 0, y)
End If
DrawText(f, 24, y+1)
y=y+20
Next
y=20
Flip

Wend

Rewrite the preceding code to show only the folders first and then the files second. Hint: Use two for
loops.

CreateDir

CreateDir creates a folder. It returns Boolean True, if folder creation is successful.

If CreateDir("C:\BlitzMax")

Print "Created BlitzMax folder"
Else

Print "Couldn't create the BlitzMax folder!"
End If

CreateDir() will return true even if the folder exists. It only fails when it can’t access a path or drive.

DeleteDir

DeleteDir removes a directory from the file system.

If DeleteDir("C:\BlitzMaxTestFolder")

Print "The BlitzMaxTestFolder folder is
gone!"
Else

Print "Something stopped me from killing the
folder!"
End If

File Manipulation with OpenFile

OpenFile creates a handle to the file stored on the hard disk/CD-ROM/DVD. It is always a good idea to
check to make sure that the file can be opened. After all, you don’t want to start reading from something that
doesn’t exist!

OpenFile has three parameters:

Filename: The path to the file you want to open. This can be any valid URL.
Readable (optional): Whether you want to read from the file; True by default

Writable (optional): Whether you want to write to the file; True by default

74

CHAPTER 7 ' USING THE FILE SYSTEM

The following displays the contents of a file:

file=OpenFile("http: :www.blitzmaxbook.com/")
If Not file

Print "could not open web page"
Else

While Not Eof(file)

Print ReadlLine(file)

Wend

CloseStream file
End If

You will need an open Internet connection for this to work. If you don’t have one, create a simple text
file in the C:\ drive and change the text within OpenFile(). In the preceding example, we are opening a URL
to aweb page (http: :www.blitzmaxbook.com, for example). Note that to do this, you prefix the web address
with http: :. This is the format that BlitzMax uses to reference external files.

Think about the possibilities. You could have online hi-score tables for your games, or check for updates
automatically...The sky is the limit!

ReadLine

ReadLine reads in one line of the chosen file at a time. As in the previous example, a single line is printed
onto the screen. The format of ReadLine is:

s:String = ReadLine(file)

Eof

Eof stands for “end-of-file” and is used in While statements to check that the end of the file has not been
reached. If we were to go over the length of the file, an error would occur, so this is a good check to make!

CloseStream

CloseStream closes the file and allows it to be used by other programs and processes. This is an important
keyword and must be used each time you are finished with a file, especially if writing to it—which brings us
neatly to Writeline.

WriteLine

Writeline is used in conjunction with WriteFile. WriteFile works in much the same way as OpenFile,
but allows us to write to the file, as follows:

file = WriteFile("C:\test.txt")

If Not file
Print "Can't create file!"

75

http://www.blitzmaxbook.com/

CHAPTER 7 = USING THE FILE SYSTEM

Else
WritelLine(file, "Line 1")
WritelLine(file, "Line 2")
CloseStream(file)

End If

file = OpenFile("C:\test.txt")
If Not file

Print "Can't open file!"
Else

While Not Eof(file)

Print ReadlLine(file)

Wend

CloseStream(file)
End If

The preceding program writes two lines of text to a file and then reads the file back in, to display the
lines onscreen.

The file system can be accessed with a few simple keywords. Files and directories and their contents can
be easily examined. A file can be opened and written to in a few lines of code. Similar code can be used to
read back those lines.

Just remember to close the file as soon as you can. It can cause all sorts of problems if you don’t.

This is especially true if you are writing to it. It can cause the file to be locked. This means that to unlock it,
you'll have to reboot your computer.

76

CHAPTER 8

Tank Attack: The Second Game /

Tank Attack is a game for two players that is loosely based on the Combat game found on the Atari 2600
console. The tanks can rotate and fire a single shot at a time. When a bullet hits another tank, the tank
positions are reset, and the player who destroyed the tank gets a point (Figure 8-1). The round lasts for 99
seconds, with the player with the most hits after that time winning.

» ' BEuMax Application | = o

N

Figure 8-1. Tank Attack

© Sloan Kelly 2016 7
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_8

CHAPTER 8 * TANK ATTACK: THE SECOND GAME

The game features three maps that we will load from disk. We'll be creating them in a somewhat unique
way, with Google Docs spreadsheets, although you could use any spreadsheet program you want. Full
graphics and source code are available on the web site www.blitzmaxbook.com.

The finished game code, including comments, comes in at more than 600 lines. That might seem like a
lot, but we’ll break the program into smaller chunks, to make things easier. Our smaller chunks, or functions,
will make the program easier to read and to follow what’s going on. To make it even easier, we're going to
look at the structure chart of the program (Figure 8-2). It will show us where the information flows to and
comes from within our program.

[Tank Attack]

Chosenmap 4
g Next game state
$ “ Nextgame state
[DrawSplash] [Main Loop]—r{Draw End Game]

gwo‘u -

Update Tanks

Map Data

[Update Bullets][Draw Map][Draw Tanks]

(GetMapData]

[Draw Information]

Figure 8-2. Structure chart of the Tank Attack program
The main entry point to the application is the “Tank Attack” block. It sets up the game state and starts
the outer loop. The loop repeats until the player elects to quit the game. The game has three states:
1. Information/splash screen
2. Main game loop

3. Quit

78

http://www.blitzmaxbook.com/

CHAPTER 8 ' TANK ATTACK: THE SECOND GAME

Information/Splash Screen

The initial screen shown to the user is the splash screen. This page allows players to choose which map
they want to play. The chosen map is returned to the main loop, and the state is changed to “play game.” If
players decide that they don’t want to play, no map data is returned (we'll see how following), and the state
is changed to “quit”

Main Game Loop

The main game loop handles all the updates and drawing of the items. It does it in a linear way. Updates are
performed, then the screen is cleared, and the player, map, and information panel are drawn next.

Reset Game

The reset game method is called when a player’s bullet connects with the tank of the opposing player. This
function resets the players’ positions to their starting locations and rotation.

Draw Endgame

The endgame screen shows which of the two players has won. The players are given a choice to play again or
quit to the OS. This choice response is returned to the main game loop, which, in turn, passes it back to the
main program, to alter the game state accordingly.

Remaining Functions

I'will cover the remaining functions one at a time in due course, but first, we must generate some graphics
and some data for our maps.

The Graphics

Our graphics are very simple, and there are only three of them. We reuse the graphics for each player,
because we can recolor them when we draw them, so the first player is red, and the second is blue. The tank
graphic looks like this (Figure 8-3):

79

CHAPTER 8 * TANK ATTACK: THE SECOND GAME

Figure 8-3. The tank graphic

The bullet is a 5x5 square (also white) with the corner pixels removed (Figure 8-4).

80

CHAPTER 8 ' TANK ATTACK: THE SECOND GAME

Figure 8-4. Tank Attack bullet

The block can be any color you want, but please ensure that it’s 32x24 pixels. I made it a gray bas-relief
brick (Figure 8-5).

Figure 8-5. Tank Attack game block

81

CHAPTER 8 © TANK ATTACK: THE SECOND GAME

Create a folder called TankAttack in your BlitzMax working folder and save the images there as the
following names:

tank.png
bullet.png
brick.png

The Data

The data is created in a spreadsheet that can save files as tab-separated values. This isn’t that important,
but our code is assuming that it’s in that format. If you're using another format, you'll have to change the
GetMapData() function in the code listing. I suggest using Google Docs Spreadsheet. It’s free to create a
Google account, and, most important, it’s free.

The files can be downloaded to your local hard drive as tab-separated value files (. tsv). These are just
text files with each column’s data separated by a tab character. The GetMapData() function shows how we
parse that to get our game data.

Create a new blank spreadsheet and design your maps. Wherever an uppercase X is, we’ll place a block
in the game. The spreadsheet is 25 rows and has 25 columns (A-Y). This is how MapA looks in the web
browser as a Google Docs spreadsheet (Figure 8-6):

GOUS[C dOCS MapA M Private only to me
Fide Edt View Insen Format Data Tools Help

o Ar A £ % 122y pty B ax A By - E- - A N 4

Formula: X
ABCDEFOHIJKLMNOPORSTUVWXY
l?-J(}(xX):I(XXJ(J(X:(J():XXXJ(XKJ(XKI
2 X X
3 IX X
¢ X XXXXX XXXXX X
5 X X X X
8 X X X X
T X X X X
8 X X X X
? X X
10 X X
1" X X
2 X X
13X X
TR X
15 X X
% X X
17 X X X X
e X X X X
1" X X X X
20 X X & X
2 X XXXXX XXX XX X
2 X X
3 X X
28 XXXXXXXXXXXXXXXXXXXXXXXXXX

Shost! - | 4 | @ |

Figure 8-6. How MapA looks in the web browser as a Google Docs spreadsheet
82

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 8 ' TANK ATTACK: THE SECOND GAME

You can make your own maps. There are three included with the source code on the web site. Make sure
that they are named as follows:

MapA.tsv
MapB.tsv
MapC.tsv

In addition, ensure that they have columns A-Y and rows 1-25. If you wanted to add more objects, you
could add other letters/numbers, to create the map. For example, G for grass or W for water.

The Stub Code

Ifitisn’t open already, start up BlitzMax and create a new file. Save this file in the same folder as the images,
as TankAttack.bmx. The outline code is shown following. We will be filling this in as we go through this
chapter. The outline will run, but it will not produce any output.

Graphics 800, 600 Type TVector2

Graphics 800, 600

Type TVector2

End Type

Type TBullet

End Type

Type TTank

End Type

Function DrawNumber(x:Int, number:Int, offsetlLeft:Int)

End Function

Function LoadMap:TList(mapID:Int)
Local mapChar:String = Chr(65 + (mapID - 1))
Local mapFilename:String = "Map" + mapChar +

.tsv
Return GetMapData(mapFilename)
End Function
Function GetMapData:TList(filename:String)
Return Null
End Function
Function DrawInformation(tankList:TList,
countDown:Int)
End Function
Function PrintMessage(s:String, x:Int, y:Int, centre:Int = False)
End Function
Function UpdateCountDown:Int(roundTime:Int Var, countDown:Int)
Local ms:Int = MilliSecs()
If ms > roundTime + 1000
roundTime = MilliSecs()
countDown:-1
End If
Return countDown
End Function
Function DrawTanks(tankList:TList)
End Function

83

CHAPTER 8 © TANK ATTACK: THE SECOND GAME

Function IsCrashWithBricks:Int(mapData:TList,
img:TImage, x:Float, y:Float)
Return False
End Function
Function UpdateBullets:Int(mapData:TList, tankList:TList)
Local currentTank:Int = 0
Local tankVictor:Int = -1
Return tankVictor
End Function
Function UpdateTanks(mapData:TList, tankList:TList)
End Function
Function DrawMap(mapData:TList)
End Function
Function ResetGame(tankList:TList, tankVictor:Int)
End Function
Function MainGameLoop:Int(currentlLevel:Int)
Return 2
End Function

Function DrawSplash:Int()
Return 99
End Function
Function DrawEndGame:Int(p1:TTank, p2:TTank)
Return 2
End Function
Local state:Int = 0
Local quit:Int = 0
Local currentlLevel:Int = 0
While Not quit
Select state
Case 0
currentLevel = DrawSplash()
If currentlLevel = 99

quit = True
Else
state = 1
End If
Case 1
state = MainGameLoop(currentlLevel)
If state = 2
quit = True
End If
End Select
End While

There are a couple of new constructs that I'm introducing here that I'll explain in much more depth in
the next chapter. The Type .. End Types at the start of the program listing are BlitzMax’s interpretation of
object-oriented programming and are called user-defined types, or UDTs. They allow data and algorithms
(code) to exist together in a neat package. UDTs can be reused in any number of projects, not just this one.

Save and run the program. It won’t do anything, but just make sure you don’t get any errors when

running it. We're going to start fleshing out the details now.

84

CHAPTER 8 ' TANK ATTACK: THE SECOND GAME

The Splash Screen

The splash screen introduces us to the game and gives the players a choice as to what map they want to play
on. We will be updating the following functions in this section:

PrintMessage

DrawSplash

PrintMessage

BlitzMax allows us to draw text to the screen using DrawText. However, it is somewhat limited in its
functionality. For this game, we want to center the text on a particular line, given the length of text. For our
text, we'll write our own draw text method called PrintMessage. This will provide our functionality wrapped
around the existing DrawText command. The PrintMessage looks like the following:

Function PrintMessage(s:String, x:Int, y:Int, centre:Int = False)
If centre Then
x = x - TextWidth(s) / 2
End If
DrawText s, X, y
End Function

We've kept the same format as the DrawText command, but we’ve added an optional parameter called
centre. When you pass in True for that value, the text will be centered on the screen, on the specified y
coordinate line, effectively ignoring the x coordinate specified.

DrawSplash

For the most part, there is nothing complicated in DrawSplash. It merely draws a series of text strings to
the screen—using the PrintMessage function we just created—but it also contains some code to retrieve
information from users, in particular, what map they want to play or whether they want to quit the game
back to the OS. The DrawSplash function is shown following. Delete the Return 99 line and change the
function to look like this:

Function DrawSplash:Int()
Local retVal:Int =0
While retVal = 0
Cls
SetColor 255, 255, 255
PrintMessage "Tank Attack", 400,
32, True
SetColor 255, 192, 0
PrintMessage "A GAME FOR TWO
PLAYERS", 400, 96, True
SetColor 255, 255, 255
PrintMessage "FIGHT TO THE DEATH
IN", 400, 228, True
PrintMessage "NINETY-NINE

85

CHAPTER 8 © TANK ATTACK: THE SECOND GAME

SECONDS", 400, 260, True

SetColor 0, 255, 192

PrintMessage "PLAYER WITH
HIGHEST", 400, 292, True

PrintMessage "SCORE WINS", 400,
324, True

SetColor 255, 0, 0

PrintMessage "PRESS A B OR C FOR
MAP", 400, 492, True

PrintMessage "ESCAPE TO QUIT TO
0S", 400, 524, True

Flip
If KeyDown(KEY_A)
retVal = 1
Else If KeyDown(KEY_B)
retval = 2
Else If KeyDown(KEY_C)
retval = 3
Else If KeyDown(KEY_ESCAPE)
retVal = 99
End If
Wend
FlushKeys

Return retVal
End Function

Save and run the program. Now we have a splash screen! The game won’t do anything beyond that.
In fact, pressing a key will exit the program.

Loading and Drawing the Map

The main playing area is cell-based; that is each map clock represents one 32x24 area filling an 800x600
screen. In our map files, an X represents a block, and anything else is ignored. If you want to change that
(please feel free), you will have to alter the GetMapData function. In this section, we will be updating the

following:

Loading images just under the Graphics command
Adding fields to the TVector2 type

GetMapData

DrawMapData

MainGameLoop

The Brick Graphic

To load the brick graphic, add the following line after the Graphics command:
Global brick:TImage = LoadImage("brick.png")

This will get used in the DrawMapData function.
86

CHAPTER 8 ' TANK ATTACK: THE SECOND GAME

Map Positions

The block positions are stored using the TVector2 type. T just means “type,” and Vector is a position in
space. See http://en.wikipedia.org/wiki/Vector space for more details. The 2 just represents how many
coordinates we have. Because this is a 2D (flat) game, we have two coordinates: x and y.

Change the TVector2 definition to

Type TVector2
Field X:Float
Field Y:Float

End Type

Type is short for “User Defined Type” and allows us to create a single record of information that we can
pass around, rather than multiple variables. A trivial reason is that it makes parameter lists easier to read.

We'll see how types get created when we get the map data. It returns a list of positions in which each of
the bricks is located onscreen.

Getting the Map Data

The map data is stored in a text file that contains blank spaces in which there are no blocks onscreen and an
Xwherein a block is to be placed. The spreadsheet this came from was 25 columns across by 25 rows. Our
bricks are 32x24 pixels. This means that our playing field is 25 * 32 by 25 * 24 pixels, which is 800x600 pixels,
which just so happens to be our screen size!

For this method, I've kept the comments in the code to make what’s happening a little clearer. Breaking
the code down, it does the following:

Initializes some local variables used in the loop
Opens the file
Reads the file line by line

Parses each line by splitting it up by tab character, and, if it’s an X, it adds a cell to
the list

When all lines have been parsed, the collection of brick positions are returned to the calling function.
The list of positions is actually made up of lists of TVector2 instances. The screen position is determined
by multiplying the local x coordinate by 32 and the local y coordinate by 24, as follows:

Local vec:TVector2 = New TVector2
vec.X = x * 32
vec.Y =y * 24

Note that to create a user-defined type is slightly different than creating an instance of a simple type
such as an integer or a floating point number. You must tell the BlitzMax complier that you are wanting to
reserve some new memory for your type.

The full listing for GetMapData is shown following:

Function GetMapData:TList(filename:String)
Local list:TList = Createlist()
Local y:Int = 0
Local x:Int = 0
Local file:TStream = OpenFile(filename, True, False)

87

http://en.wikipedia.org/wiki/Vector_space

CHAPTER 8 © TANK ATTACK: THE SECOND GAME

While Not Eof(file)

Rem
When we read in the string from the file, we need
to parse out the tab characters that are put in
by Google docs.

EndRem

Local line:String = ReadLine(file)

Local cells:String[] = line.Split(Chr(9))

Rem
Once that is done, it's a trivial matter of going
through each of the characters in turn and deciding
to put a block if the character contains an upper
case X.

EndRem

For Local x:Int = 0 To cells.Length - 1
Local c:String = cells[x]
If c = "X"
Local vec:TVector2 = New TVector2
vec.X = x * 32
vec.Y =y * 24
ListAddLast(list, vec)

End If
Next
y=y+1
Wend
CloseFile(file)

Return list
End Function

That was the hard part, now for the easy part. We've successfully transported the data in our file to an
in-memory representation of the layout of the bricks. How do we display them? Well, we only have one brick
shape, so displaying them is just a matter of going through each one and displaying it at the correct position
onscreen. That’s what the DrawMap function does.

Function DrawMap(mapData:TList)
SetColor 255, 255, 255
For Local vec:TVector2 = EachIn mapData
DrawImage brick, vec.X, vec.Y
Next
End Function

Because we only have one block, we need only store the position information. We can let the DrawMap
decide how that block is drawn. In this case, we use the brick image that we loaded earlier and is available
globally.

We're still not out of the woods yet. We still can’t see the map when we choose it from the splash screen.
To at least see something, we must add some code to MainGamelLoop.

88

CHAPTER 8 ' TANK ATTACK: THE SECOND GAME

The Main Game Loop

The main game loop, as you remember from the structure diagram at the start of the chapter, calls LoadMap.
It returns the loaded map data to the caller, in this case, the MainGameLoop. We'll add code that (for now) will
atleast get us to see the loaded map.

Function MainGameloop:Int(currentlevel:Int)
Local mapData:TList = LoadMap(currentlevel)
While Not KeyHit(KEY_ ESCAPE)

Cls
DrawMap (mapData)
Flip

Wend

Return 2

End Function

You can now save and run the game. When you select a map, it will now appear onscreen. Pressing the
Escape key will quit the game.
Let’s add some combat to the game, by adding another player and a way to update fired bullets.

Adding Combat

Now that we have our world, we have to add conflict to it, and nothing says conflict more than red vs. blue.
We are going to create two tanks: one colored red that starts on the left-hand side of the screen and a blue
tank that starts on the right-hand side of the screen. The tanks are controlled by players, and their keys are
listed in Table 8-1.

Table 8-1. Keys Controlling Tank Movements and Their Meaning

Key Meaning

w Move red tank forward
A Rotate red tank left

D Rotate red tank right

S Fire red tank’s gun
Up-Arrow Move blue tank forward
Left-Arrow Rotate blue tank left
Right-Arrow Rotate blue tank right
M Fire blue tank’s gun

Because we are going to color the tanks when we draw them, we only have to bring in two new images:
one for the tank shape and one for the bullet. Locate the following line in the source code:

Global brick:TImage = LoadImage("brick.png")

89

CHAPTER 8 © TANK ATTACK: THE SECOND GAME

Add the following lines underneath:

Global tankImage:TImage = LoadImage("tank.png")
Global bulletImage:TImage =
LoadImage("bullet.png")

The tanks must rotate. If we left them as default, they would turn around the top-left corner of the
image. Instead, we instruct BlitzZMax to rotate and place them in the world using their center.

The bullets must align with the center of the tank, so we mid-handle that image too. So, after those two
new lines to load the images, add these lines just underneath:

MidHandleImage (tankImage)
MidHandleImage(bulletImage)

We're going to use UDTs again, to store data. Our bullet class will hold the location, speed, and the
“aliveness” (that’s not a word!) of the bullet. Any “dead” bullet will be removed from the game. A “dead”
bullet is one that hits a wall but misses a player. You could also add a time-out to that too, just to make the
game a little harder. For now, though, our bullet UDT looks like this:

Type TBullet
Field Location:TVector2
Field Speed:TVector2
Field IsAlive:Int

Rem
The init method sets the initial values for the bullet.
EndRem
Method Init(x:Float, y:Float, sx:Float, sy:Float)
Location.X = x
Location.Y =y

Speed.X = sx

Speed.Y = sy

IsAlive = True
End Method

End Type

The Init() method is used just to make our lives easier when we have to create bullets in the game. It
sets up the fields of the bullet and sets its aliveness to True.

The tank is our most (at first glance, anyway) complex UDT. It contains lots of fields (values that will
change when we run the program) and a Create function that is attached to the TTank UDT. This is a quick
way for us to create a tank with some parameters, rather than setting each individual field itself.

Type TTank

Field X:Float
Field Y:Float

Field R:Int
Field G:Int
Field B:Int

Field Rotation:Float

90

CHAPTER 8

Field rotRightKey:Int
Field rotLeftKey:Int
Field forwardKey:Int

Field fireKey:Int

Field Bullet:TBullet

Field Score:Int
Function Create:TTank(x:Int, y:Int, r:Int,
g:Int, b:Int, rotLeft:Int, rotRight:Int,

forward:Int, fire:Int)

Local tank:TTank = New TTank

tank.X = x

tank.Y =y

tank.R = 1

tank.G = g

tank.B = b

tank.rotRightKey = rotRight
tank.rotLeftKey = rotlLeft
tank.forwardkey = forward

tank.

tank.
tank.
tank.
tank.
tank.
tank.
tank.
tank.

fireKey = fire

Bullet

Bullet.
Bullet.
Bullet.
Bullet.
Bullet.
Bullet.

Bullet

Return tank

End Function

End Type

.Speed.Y

= New TBullet

IsAlive = False
Location = New TVector2
Speed = New TVector2
Location.X = 0
Location.Y = 0

Speed.X = 0

0

TANK ATTACK: THE SECOND GAME

I'will get to the difference between a function and a method, with respect to UDTs, in the next chapter.
For now, I'll just say that a method is run on an instance of a UDT, and a function runs on the UDT name
itself, meaning that you don’t have to create an instance of the type to run the code in the function.

Now that we have our images and data types set up, we must update the following functions in our bare-

bones code:

UpdateTanks

UpdateBullets

IsCrashWithBricks

DrawTanks

MainGameLoop

91

CHAPTER 8 © TANK ATTACK: THE SECOND GAME

Updating the Tanks

The UpdateTanks method is the longest in the whole program listing. Don’t let that put you off. The method
doesn’t contain any trick code and is straightforward enough:

For Each Tank:
Update the tank's rotation based upon player input
If the Fire button is down and no bullet is alive, create a bullet
If the forward key is pressed
If the tank's new position would not crash into a wall
Update the tank's position
End For
End If
End If
End If

The full function is laid out next. It has some additional tests (for screen bounds), but those are not
required, unless the map has no outside blocks. Note that at the end of the function, the rotation is set to 0
degrees, just to be on the safe side. It’s good practice to tidy up the settings, such as rotation, coloring, and
blending, when you've finished using them.

Function UpdateTanks(mapData:TList, tankList:TList)
For Local t:TTank = EachIn tankList
If KeyDown(t.rotLeftKey)
t.Rotation = t.Rotation - 2.0
If t.Rotation < 0
t.Rotation = 360 - t.Rotation
End If
Else If KeyDown(t.rotRightKey)
t.Rotation = t.Rotation + 2.0
If t.Rotation > 360
t.Rotation = t.Rotation - 360
End If
End If

If KeyDown(t.fireKey) And Not
t.Bullet.IsAlive

Local x:Float

Local y:Float

t.X
t.Y

X = X + (3.14/2.0 * Sin(t.Rotation))
y =y - (3.14/2.0 * Cos(t.Rotation))
Local dx:Float = x - t.X
Local dy:Float =y - t.Y
t.Bullet.Init(t.X, t.Y, dx * 2, dy * 2)
End If
If KeyDown(t.forwardKey)
Local x:Float = t.X
Local y:Float = t.Y
X = X + (3.14/2.0 * Sin(t.Rotation))
y =y - (3.14/2.0 * Cos(t.Rotation))
If IsCrashWithBricks(mapData, tankImage, x, y)

92

CHAPTER 8 ' TANK ATTACK: THE SECOND GAME

Continue

End If

If x >= 32 And x <= 768
t.X = x

End If

If y >= 32 And y <= 568
t.Y=y

End If

End If
Next
SetRotation 0.0
End Function

At first glance, the bullet update function is also complex, but only because of its length. The function
updates each tank’s “alive” bullet in turn. Each time the function goes around, it remembers the “other”
tank. We then use the IsCrashiWithBricks and ImagesCollide functions (see under “Collision Detection”),
to determine if the bullet has hit a wall or a tank.

If the bullet has hit a wall, it is marked as dead, by setting the IsAlive field to False. We use the
Continue keyword to skip all the other instructions that follow and move on to the next tank. If a tank’s bullet
hits the other player, his index value (red is 0, blue is 1) is returned to the calling function. If no bullet hits a
tank, -1 is returned. The tank that wins is stored locally in the function as tankVictor

The full UpdateBullets function is shown following:

Function UpdateBullets:Int(mapData:TList, tankList:TList)
Local currentTank:Int = 0
Local tankVictor:Int = -1
For Local t:TTank = EachIn tankList
Local otherTank:TTank = Null
If currentTank = 0

otherTank = TTank(tankList.Last())
Else

otherTank = TTank(tankList.First())
End If

If t.Bullet.IsAlive
Local nx:Float = t.Bullet.lLocation.X + t.Bullet.Speed.X
Local ny:Float = t.Bullet.Location.Y + t.Bullet.Speed.Y
If IsCrashWithBricks(mapData, bulletImage, nx, ny)
t.Bullet.IsAlive = False
Continue
End If
If ImagesCollide(bulletImage, nx, ny, 0, tankImage, otherTank.X, otherTank.Y, 0)
tankVictor = currentTank
End If
t.Bullet.Location.X = nx
t.Bullet.Location.Y = ny
If t.Bullet.Location.X < 0 Or t.Bullet.lLocation.X > 800 Or t.Bullet.Location.Y <
0 Or t.Bullet.Location.Y > 600
t.Bullet.IsAlive = False
End If
End If
currentTank:+1

93

CHAPTER 8 © TANK ATTACK: THE SECOND GAME

Next
Return tankVictor
End Function

Collision Detection

Collision detection for 2D graphics in BlitzMax is handled by the ImagesCollide function. It returns a true
if the images overlap in any way. It’s very accurate, as it uses per-pixel matching to determine collisions. Our
IsCrashWithBricks uses the ImagesCollide function for both tank against wall and bullet against tank and
bullet against wall. It does a very lazy check by looping through each brick in the map and testing the brick
image against the supplied image and its coordinates.

There are a couple of drawbacks with this function that you can put right later. The first is that it does
not take rotation into consideration. The second is that it loops through all the bricks in the level. You could
partition the level into quadrants, for example, to reduce the amount of checks required. Here is the full
listing for the IsCrashWithBricks as it stands now:

Function IsCrashWithBricks:Int(mapData:TList,
img:TImage, x:Float, y:Float)
For Local vec:TVector2 = EachIn mapData
If ImagesCollide(brick, vec.X, vec.Y,
0, img, x, y, 0)
Return True
End If
Next
Return False
End Function

Drawing the Tanks

The tanks use the same shape. As you've seen, we use this technique a lot in the code. Basically, we cycle
through all the tanks in the given list and then set the appropriate color and rotation and then draw them. If
they have an “alive” bullet, we draw that too. This means that if you have three, four, or four hundred tanks,
all you would have to do is add them to the tankList and call the DrawTanks function, as follows:

Function DrawTanks(tankList:TList)

For Local t:TTank = EachIn tanklList
SetColor t.R, t.G, t.B
SetRotation t.Rotation
DrawImage tankImage, t.X, t.Y
SetRotation 0.0
If t.Bullet.IsAlive

DrawImage bulletImage, t.Bullet.Location.X, t.Bullet.Location.Y
End If
Next
End Function

Main Game Loop

Our main game loop has to be rewritten. We want to add code that will

94

CHAPTER 8 ' TANK ATTACK: THE SECOND GAME

Update the tanks
Update the bullets
Draw the map

Draw the tanks

Our new main game loop now looks like this:

Function MainGameLoop:Int(currentLevel:Int)
Local roundTime:Int = MilliSecs()

Local countDown:Int
Local mapData:TList

99
LoadMap(currentLevel)

Local tankList:TList = Createlist()

Local player1:TTank = TTank.Create(64, 300, 255, 0, 0, KEY_A, KEY D, KEY_W, KEY_S)
Local player2:TTank = TTank.Create(704, 300, 0, 0, 255, KEY LEFT, KEY_RIGHT,
KEY_UP, KEY M)

ListAddLast(tankList, player1)

ListAddLast(tankList, player2)

While Not KeyHit(KEY_ESCAPE) And countDown > O

Wend

UpdateTanks(mapData, tankList)
Local tankVictor:Int = UpdateBullets(mapData, tankList)
If tankVictor > -1
ResetGame(tankList, tankVictor)
End If
Cls
DrawMap (mapData)
DrawTanks (tankList)
Flip

Return 2
End Function

We use the Create function of the TTank UDT to create our two player tanks. We use the UpdateTanks
function to get the user input to determine the new location and rotation of the tanks. And, who could forget,
to fire the bullet, we use the tankList again to DrawTanks.

Save and run the game. The tanks can now roll about the screen firing at each other. The next step is to
build tension by adding a countdown and a heads-up display, to let players know what their scores are.

Adding Tension

We have a world, we have combat, but we also must build tension in our game. In this next section, we will
add the following:

Countdown timer
Players’ scores

Reset function

But first, we'll add methods that will draw information onto the screen:

DrawNumber

DrawInformation
95

CHAPTER 8 © TANK ATTACK: THE SECOND GAME

Drawing Information

Drawing numbers onscreen is done using the DrawText built-in function. I have wrapped it in its own
function, to allow an offset to the left to be set. This allows better positioning for the number on the screen.
The DrawNumber function is in the code as a skeleton. Locate it in code and change it to the following:

Function DrawNumber(x:Int, number:Int, offsetlLeft:Int)
Local s:String = "" + number
X = x - TextWidth(s) / 2
X = x - offsetlLeft
DrawText s, x, 48
End Function

The heads-up display, or HUD for short (see http://en.wikipedia.org/wiki/HUD_(video_gaming)),
allows players to see at a glance their status in the game. Our HUD will consist of three numbers. The
red number is the number of times that the red player has hit the blue tank. The orange number is the
countdown number for the round, and the blue number is the number of times the blue tank’s bullets have
hit the red tank.

Locate the DrawInformation function in the code and change it look like this:

Function DrawInformation(tankList:TList,
countDown:Int)

Local firstTank:TTank =
TTank(tankList.First())

Local secondTank:TTank =
TTank(tankList.Last())

SetColor 255, 0, 0
DrawNumber 200, firstTank.Score, True

SetColor 255, 192, 0
DrawNumber 366, countDown, False

SetColor 0, 0, 255
DrawNumber 600, secondTank.Score, False
End Function

Resetting the Game

When a player hits the other with a bullet, the game is reset. This means that we're going to return the
players to their original starting positions and rotations. We remove all bullets from the game and increase
the winning player’s score.

Locate the ResetGame function in the code and change it as follows:

Function ResetGame(tanklList:TList, tankVictor:Int)
Local winningTank:TTank = Null
If tankVictor = 0
winningTank = TTank(tankList.First())
Else
winningTank = TTank(tankList.Last())

96

http://en.wikipedia.org/wiki/HUD_(video_gaming

CHAPTER 8 ' TANK ATTACK: THE SECOND GAME

End If
winningTank.Score:+1

Local i:Int = 0

For Local t:TTank = EachIn tankList
t.Bullet.IsAlive = False
t.Rotation = 0

Ifi=o0
t.X = 64
t.Y = 300
Else
t.X = 704
t.Y = 300
End If
i+l

Next
End Function

Again, we're using the For. .EachInloop to reset the tanks. If i = 0 .. Else .. End Ifisusedto

reset the player to the right position. If it'’s the red player (i = 0), then its location is reset to the left-hand
side of the screen, the opposite side from the blue player.

Decrementing the Counter

We already have code to decrement our counter. It’s the UpdateCountDown function. We've just never called
it. Until now. Locate the MainGameLoop function in the code and scroll down to the following line:

While Not KeyHit(KEY_ESCAPE) And countDown > O

Below that line, enter the following text:
countDown = UpdateCountDown(roundTime, countdown)

Now locate the DrawInformation line in the same While. .Wend block. Below that line add:
DrawInformation(tankList, countDown)

Save and run the game. We’re almost there! We have tank movement and firing, the scores update, and
the countdown...counts down.

The End Screen

Our final piece to the Tank Attack puzzle is the end screen. This screen tells the players who won and gives
them an opportunity to cool down before the next round. They're given a choice to play again or return to
the OS. There’s also some housekeeping we want to perform here. Up until now, the game could be quit by
pressing the Escape key at any time, to return to the OS, or, in our case, the BlitzMax IDE. We have to stop
that from happening. So, locate the MainGameLoop function and this line within it:

While Not KeyHit(KEY_ESCAPE) And countDown > 0

Change that to:
While countDown > 0

97

CHAPTER 8 © TANK ATTACK: THE SECOND GAME

This will stop the player from being able to hit the Escape key to break out of the game. After the Wend
inside the MainGameLoop, add the following code. This will display the endgame and wait for the user to press
the P key to play again, or escape to quit to the OS.

Local result:Int = 0
While result = 0
result = DrawEndGame(playeri, player2)
Wend
Return result

The result is returned to the loop at the bottom of the source code that uses the return value to
determine the state of the application. Play again or quit to the OS.

The Endgame State

The endgame code doesn’t exist yet. It currently looks like this:

Function DrawEndGame:Int(p1:TTank, p2:TTank)
Return 2
End Function

This means that the game will always quit to the OS. If the user were to choose to play, this would return
1. In our endgame screen, we’re going to establish what player won, or if both players drew, and tell the user
what can happen next. We use FlushKeys because both players will probably be pressing the keyboard. This
command resets all the keys and removes any pending characters in the queue.

The updated DrawEndGame is shown following:

Function DrawEndGame:Int(p1:TTank, p2:TTank)
Local retVal:Int = 0
FlushKeys
While retVal = 0
Cls
SetColor 255, 255, 255
PrintMessage "Tank Attack", 400, 32, True
SetColor 255, 255, 255
If p1.Score = p2.Score
PrintMessage "IT WAS A DRAW", 400, 228, True
Else If p1.Score > p2.Score
PrintMessage "PLAYER ONE IS THE WINNER", 400, 228, True
Else
PrintMessage "PLAYER TWO IS THE WINNER", 400, 228, True
End If

98

CHAPTER 8 ' TANK ATTACK: THE SECOND GAME

SetColor 255, 0, 0
PrintMessage "PRESS P TO PLAY AGAIN", 400, 492, True
PrintMessage "ESCAPE TO QUIT TO 0S", 400, 524, True
Flip
If KeyDown(KEY_P)
retVal = 1
Else If KeyDown(KEY ESCAPE)
retVal = 2
End If
Wend
FlushKeys
Return retVal
End Function

And that’s it! Our tank game is complete. Now it’s time to move on to learning more about UDTs and
how they can help with your games.

99

CHAPTER 9

Object-Oriented Programming)

Object-oriented programming (OOP) has been with us since the 1970s, but it has only really taken the
software engineering world by storm in the last 20 years, even fewer for the games industry. There are a
number of buzzwords associated with OOP that I have to clarify.
This is an introductory chapter to OOP. I will delve into it in more detail for our last project—Flood.
If you have never used an object-oriented language, you should understand the underlying concepts
before you begin. By the end of this section, you should be able to answer the following questions:

What is an object? What is a class? What is an attribute? What is a method?
What is the difference between an object and a class? What is inheritance?

What is an interface?

What Is an Object?

An object is a software bundle of related variables and methods.
Software objects are often used to model real-world objects that you find in everyday life, such as a car,
a person, or an animal.

What Is a Class?

A class is a blueprint or prototype that defines the attribute and the methods common to all objects of a
certain kind.

What Is an Attribute?

An attribute describes an object, for example, its width, height, lives, power, gas level, etc.

What Is a Method?

A method is a special function that is only available to an object and performs some kind of action: move,
draw, die, etc.

© Sloan Kelly 2016 101
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_9

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

What Is the Difference Between an Object and a Class?

A class is the abstract of a physical object, a description. An object is an implementation or instance of that
class. Much like the data type Int and the BlitzMax statement i:Int = 5. Intisan abstract concept, a
whole number, whereas i:Int = 5 creates an instance of an Int and assigns a whole number value (in this
case, 5) to it.

What Is Inheritance?

A class inherits state and behavior from its parent. Inheritance provides a powerful and natural mechanism
for organizing and structuring software programs. For example, if you have a Player object, you could derive
two new objects from it: OurHero and Baddie. Both would share common code (such as Move(), Draw(),
Die()) but could be enhanced too. For example, Baddie could have a method SeekOurHero(). Inheritance is
used to extend a parent class’s attributes and methods.

What Is an Interface?

An interface is a contract in the form of a collection of method and constant declarations. When a class
implements an interface, it promises to implement all of the methods declared in that interface.

Classes in BlitzMax

BlitzMax bases its implementation of OOP on its previous Type ... End Type construct. To this end, there is
no “Class” keyword in BlitzMax. BlitzMax prefers to call classes “user-defined types” (UDTs).

Defining a User-Defined Type

The format to define a UDT is shown following:
Type type name [Extends parent type]
[Fields]
[Methods]
[Functions]
End Type
The format of a Field is
Field attribute name[:Type]
The format of Method is

Method method name[:Type]([param-1[:Type], param-
2[:Type], ..., param-n[:Type]]) [Abstract]

End Method

102

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

The format of Function is

Function function_name[:Type]([param-1[:Type],
param-2[:Type], ..., param-n[:Type]])

End Function

Asyou can see, methods and functions are declared in almost the same way. The difference is in when
and how each are called. I will discuss this at length below.

A Simple Class

The following is a simple class that contains three fields: X, Y, and Lives:

Type TSimplePlayer
Field X:Int
Field Y:Int
Field Lives:Int

End Type

This is the BlitzMax version of a class. To create an object of this class, we have to create an instance.

Local simplePlayer:TSimplePlayer = New
TSimplePlayer

You can create instances of such types using the New operator. New takes one parameter—a user-defined
type—and returns an instance of that type. Such instances are known as objects.

The preceding code line declares a variable simplePlayer to be of type TSimplePlayer. We then assign
itavalue New TSimplePlayer. Because it is an object, we must assign it an object. We cannot assign it a class,
so we do the following:

Local simplePlayer:TSimplePlayer = TSimplePlayer

This line would result in a compilation error. This tries to set sinplePlayer to be a class. The New
keyword is used to create a new instance of the TSimplePlayer UDT.

Now that we have an instance of TSimplePlayer, we can assign values to its attributes or call its
methods and functions.

simplePlayer.X = 320
simplePlayer.Y = 240
Print simplePlayer.X
Print simplePlayer.Y
Print simplePlayer.X / 2

It should be noted that the period character (.) is used to separate the instance of the UDT and its
attribute/method/function. This is a standard that has been adopted throughout the OOP world. The
general format is:

object_instance.[Attribute | Method | Function]

103

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

Within a user-defined type, you can declare the following:
Fields
Methods

Functions

Fields

Fields are variables associated with each instance of a user-defined type. Fields are declared in the same way
as local or global variables using the Field keyword. To access the fields of an object, use the . operator.

Methods

Methods are function-like operations associated with each instance of a user-defined type. Methods are
declared in the same way as functions, only using the Method keyword instead of Function. To access the
methods of an object, use the . operator. Program code within a method can access other fields, methods,
functions, consts, and globals within the same object, simply by referring to them by name.

Functions

These are declared in the same way as “normal” functions and can be accessed using the . operator. Unlike
methods, functions within a type are not associated with instances of the type but with the type itself. This
means such functions can be used regardless of whether any instances of the type have been created yet.
Functions within a type can access other functions, consts, or globals within the same type, by referring to
them by name. In OOP parlance, a function is the same as a static method.

Consts and Globals or Static Attributes

These are declared in the same way as “normal” consts and globals and can be accessed using the .
operator. As with type functions, these are not associated with instances of the type but with the type itself.
Here is another example of a user-defined type:

Type TStar

Global Count:Int

Field X:Int

Field Y:Int

Field R:Int

Field G:Int

Field B:Int

Method Draw()
SetColor(R, G, B)
Plot(X, Y)
SetColor(255, 255, 255)

End Method

Function Create:TStar(nx:Int, ny:Int, nr:Int, ng:Int, nb:Int)
TStar.Count:+1
star:TStar = New TStar
star.X = nx
star.Y = ny

104

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

star.R = nr
star.G = ng
star.B = nb
Return star
End Function
End Type

In this example, the following attributes and functions are available to the class:
Count attribute
Create() function
The following attributes and methods are available to the object:
X attribute
Y attribute
R attribute
G attribute
B attribute
Draw() method

In object-oriented terms an attribute is something that describes an object. For example the colour of
a pen would be an attribute. In BlitzMax, the keyword Field is used to denote an attribute. A field is like a
variable but it can only be accessed from a class instance using the dot (.) operator. The following sample
code is correct. It is assumed that star is an instance (object) of the TStar class and that BlitzMax is in
graphics mode (using the Graphics keyword).

Local star:TStar = TStar.Create(50, 50, 255, 255,
255)
While Not KeyHit(KEY ESCAPE)
Cls
star.Draw()
Flip
Wend

The following sample code is incorrect. It is assumed that star is an instance (object) of the TStar class:

TStar.X
star.Create()

The full program listing follows:
Graphics 640, 480

Type TStar
Global Count:Int
Field X:Int
Field Y:Int
Field R:Int
Field G:Int
Field B:Int

105

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

Method Draw()
SetColor(R, G, B)
Plot(X, Y)
SetColor(255, 255, 255)
End Method
Function Create:TStar(nx:Int, ny:Int, nr:Int, ng:Int, nb:Int)
TStar.Count:+1
star:TStar = New TStar
star.X = nx

star.Y = ny
star.R = nr
star.G = ng
star.B = nb

Return star
End Function

End Type
Local starfield:TList = Createlist()
While Not KeyHit(KEY ESCAPE)
If TStar.Count < 250
star:TStar = TStar.Create(Rnd(640), Rnd(480), Rnd(255),Rnd(255), Rnd(255))
starfield.AddLast(star)
End If
Cls
For s:TStar = EachIn starfield
s.Draw()
Next
DrawText("Star Count = " + TStar.Count, 0, 0)
Flip
Wend

The object is created indirectly using the Create() function. This static method, if you will, creates a
new instance of the class TStar, initializes the fields, increments the count of stars, and passes a reference
back to the calling routine.

The Create() function is a technique that is used by the majority of BlitzMax programmers and will be
employed within this book. It allows for complex initializations of an object before returning it to the calling
routine.

Inheritance and Polymorphism

User-defined types can extend other user-defined types, using the Extends keyword. Extending a type means
adding more functionality to an existing type. The type being extended is often referred to as the base type,
and the resulting, extended type is often referred to as the derived type.

A Simple Object

In a game, we have a number of objects that share common features, such as player objects. In our game
world, these objects inhabit a physical screen with x and y coordinates. These objects can be described using
the following UDT declaration:

106

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

Type TSimplePlayer
Field x:Int = 0
Field y:Int

End Type

n
o

Perhaps we want to create a player object that has additional attributes: Lives and Score. We could
create an entirely new object, but because we are developers, we are into recycling and believe in reuse. So,
we dust off our TSimplePlayer to create a new derived class, as follows:

Type TOurHero Extends TSimplePlayer
Field lives:Int = 0
Field score:Int = 0

End Type

This is called inheritance, because, like humans, we gain some of our attributes from our parents—our
mother’s eyes and our father’s nose (but the rest belongs to you), for example. Likewise, the TOurHero UDT
inherits the fields x and y, so the following is a perfectly valid program:

Type TSimplePlayer
Field x:Int = 0
Field y:Int = 0

End Type

Type TOurHero Extends TSimplePlayer
Field lives:Int = 0
Field score:Int = 0

End Type

hero:TOurHero = New TOurHero

hero.x = 5

hero.y = 50

hero.lives = 10

But the following is invalid:

Type TSimplePlayer
Field x:Int = 0
Field y:Int

End Type

n
o

Type TOurHero Extends TSimplePlayer
Field lives:Int = 0
Field score:Int = 0

End Type

hero:TSimplePlayer = New TSimplePlayer
hero.x = 5

hero.y = 50

hero.lives = 10

This will fail because TSimplePlayer does not contain a definition of lives. But that is not all that

inheritance can be used for. BlitzMax allows you to use a derived type anywhere a base-type object is
expected. This is because a derived-type object is a base-type object with additional fields and methods.

107

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

For example, you can assign a derived-type object to a base-type variable or pass a derived-type object to a
function expecting a base-type parameter.
The following program is perfectly valid. Type it in and run it.

Type TSimplePlayer
Field x:Int = 0
Field y:Int = 0
End Type
Type TOurHero Extends TSimplePlayer
Field lives:Int = 0
Field score:Int = 0
End Type

simple:TSimplePlayer = New TSimplePlayer
hero:TOurHero = New TOurHero
simple.x = 5
hero.x = 10
list:TList = Createlist()
list.AddLast(simple)
list.AddLast(hero)
For so:TSimplePlayer = EachIn list
Print so.x
Next

So, you can see that all derived classes can be assumed to be base classes, but with extra attributes/
methods/functions. In fact, we can take this one step forward with a new word: polymorphism.

Polymorphism

Dictionary.com defines polymorphism as “The occurrence of different forms, stages, or types in individual
organisms or in organisms of the same species.” In OOP, polymorphism allows us to rewrite methods, to
adapt to our derived class’s needs. This is often referred to as overriding.

Type in the following program and run it. You should see a circle and a rectangle on the screen. Press
Escape to continue. The program code is broken up into sections. Each section is followed by a description.

Graphics 640, 480
Type TShape
Field x:Int
Field y:Int
Method Draw()
Plot x, y
Plot x+1, y
Plot x+1, y+1
Plot x, y+1
End Method
End Type

This is our base class. It contains the declaration of the x and y variables that define where the shape

will be drawn onscreen. It also contains a rudimentary Draw() method that we will override in each of our
derived classes.

108

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

Type TCircle Extends TShape
Field r:Int
Method Draw()
DrawOval(x, y, 1, T)
End Method
End Type

The TCircle derived class contains an additional field, 1, to allow a circle to be drawn—we need a
radius. The Draw() method has been updated to draw an oval, as BlitzMax can only draw ellipses.

Type TRectangle Extends TShape
Field w:Int
Field h:Int
Method Draw()
DrawRect(x, y, w, h)
End Method
End Type

As with TCircle, TRectangle extends the TShape class and provides two new fields, w and h, for the
width of the rectangle and its height. The Draw method is overridden again to draw a rectangle.

:TShape = New TShape
:TCircle = New TCircle
:TRectangle = New TRectangle
.Xx =50

= 240

= 200

= 240

- 50

= 500

= 240

= 100

= 50

H R R ROCOOWmWwWmwHR-NWm
S I X HY XX
I

Instances of the variables are created, and their fields are assigned values.

shapes:TList = Createlist()
shapes.AddLast(s)
shapes.AddLast(c)
shapes.AddLast(r)
All the shapes are added to the ‘shapes’ list.
While Not KeyHit(KEY ESCAPE)
Cls
For shp:TShape = EachIn shapes
shp.Draw()
Next
Flip
Wend

109

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

We use the same technique as before to loop through each of the contents of the list and, this time, call
the Draw() method of each object. Because each object is either a TShape or derived from TShape, we can use
this construct.

Save the program in your BlitzMaxSource\Objects folder. Remove the Draw() method from the
TRectangle class. What happens?

When a method is not redefined in a derived class, the parent method is used. It's kind of like a
biological throwback to an earlier time. After all, we didn’t invent vision!

All the declarations for Draw have the same signature. This is required by the language. And, indeed, this
definition for TCircle would be wrong.

Type TCircle Extends TShape
Method Draw(r:Int)
DrawOval(x, y, 1, T)
End Method
End Type

Self and Super

Code inside a method can access two special variables called Self and Super. These variables refer to the
current class and its base class that it was derived from, respectively.
Enter the following program in a new editor panel and run it.

Graphics 640, 480, 16
Type TText
Field x:Int
Field y:Int
Field txt:String
Method Draw()
DrawText(txt, x, y)
Debuglog "TText"
End Method
End Type
Type TBold Extends TText
Method Draw()
Super.Draw()
DrawText(txt, x + 1, y)
Debuglog "TBold"
End Method
End Type
b:TBold = New TBold
b.x = 280
b.y = 234
b.txt = "BlitzMax Super!"
While Not KeyHit(KEY ESCAPE)
Cls
b.Draw()
Flip
Wend

110

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

When you run the program, wait a few seconds, then press Escape. The output from the DebuglLog()
lines will be shown, as follows:

Building 001_SuperSelf
Compiling:001_SuperSelf.bmx
flat assembler version 1.51

3 passes, 6207 bytes.
Linking:001_SuperSelf.debug.exe
Executing:001_SuperSelf.debug.exe
TText

TBold

TText

TBold

TText

TBold

TText
TBold
Process complete

Note that because we call the Draw() method of the derived class, it in turn calls the Draw() method of
its base class, using the Super keyword.

New and Delete

User-defined types can optionally declare two special methods named New and Delete. Both methods must
take no arguments, and any returned value is ignored.

The New method is called when an object is first created with the New operator. This allows you to
perform extra initialization code.

The Delete method is called when an object is discarded by the memory manager—when you make an
explicit call to Flushmem (see following code). Note that critical shutdown operations such as closing files,
etc., should not be placed in the Delete method, as you are not always sure when Delete will be called.

The New and Delete methods are illustrated in the following code. Enter the code in a new editor panel.

Type TSimple
Method New()
Debuglog "New object created!"
End Method
Method Delete()
Debuglog "Object deleted!"
End Method
End Type
s = New TSimple
Release s
FlushMem

Note that Release only works with integer variables. Try changing the line s = New TSimple to
s:TSimple = new TSimple, to see what happens. The compiler doesn’t like it! This is because we have
defined s as an instance of TSimple and not an integer pointer. Don’t worry too much about this. We will
always use strong type conventions in this book

111

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

Abstract and Final

Abstraction allows us to create a user defined type that exposes an interface that acts as a contract for other
UDTs. You cannot create an abstract class directly, but you can derive child classes from it. This contract, for
example, stipulates that certain methods must be provided. Take the following class as an example:

Type IBurgerPlace Abstract
Method MakeFries() Abstract
Method MakeBurgers() Abstract
Method MakeShake() Abstract
End Type

Much like a fast food franchisee signs a contract to deliver quality fast food, so, too, does our class. Using
a drawing known as a class diagram, this class is represented by the diagram below.

<<interface>>

IBurgerPlace
+MakeFries()
+MakeBurgers()
+MakeShakes()

GlasgowBranch ErskineBranch

Figure 9-1. Class diagram

The rectangle is split into two areas. The top part is the name of the interface class. The capital I is used
instead of capital T for the type name, because we are declaring an interface and not a type (as such). The
bottom part lists the methods within the class that each derived object must expose.

The arrows represent the direction of the abstraction and should be read as “is a.”

In BlitzMax, we would implement—code—the preceding diagram as

Type IBurgerPlace Abstract
Method MakeFries() Abstract
Method MakeBurgers() Abstract
Method MakeShakes() Abstract
End Type
Type GlasgowBranch Extends IBurgerPlace
Method MakeFries()
End Method
Method MakeBurgers()
End Method

112

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

Method MakeShakes()
End Method

End Type

Type ErskineBranch Extends IBurgerPlace
Method MakeFries()
End Method
Method MakeBurgers()
End Method
Method MakeShakes ()
End Method

End Type

We could create an object based on the GlasgowBranch class, using the following code:
gb:GlasgowBranch = New GlasgowBranch

Or we can use the abstract class.
gb:IBurgerPlace = New GlasgowBranch

This is much like the inheritance we have previously seen. Indeed, we can even add fully implemented
methods, for example:

Type IBurgerPlace Abstract
Method MakeFries() Abstract
Method MakeBurgers() Abstract
Method MakeShakes() Abstract
Method CheeseFries()

Print "Cheese Fries!"

End Method

End Type

The CheeseFries() method can be overridden by developers who require more control over the
making of cheese fries.

Differences Between Abstract and Inheritance

When an object is inherited, it obtains all the methods of the base class. The programmer can then override
these methods, as he or she sees fit. The base class can be instantiated as an object. With abstraction, this is
not the case.

When a class is defined as abstract, it can never be instantiated. It is designed to provide its child
classes with a contract—methods they must provide. Not all methods in an abstract class need themselves
be abstract. Indeed, as we have seen, it is possible to create an abstract class that contains implemented
methods.

Inheritance always implements the base class’s methods. Abstraction must implement the base class’s
methods.

113

CHAPTER 9 © OBJECT-ORIENTED PROGRAMMING

And Finally...

If a user-defined type is declared as Final, it cannot be extended. If a method is declared as Final, it
cannot be overridden. In our previous example, we had an implemented method in IBurgerPlace for
CheeseFries(). GlasgowBranch could easily change this to the following:

Method CheeseFries()

Print "Glasgow's Cheese Fries - Made from
Girders!"
End Method

But if we were to change the declaration of the CheeseFries() method in IBurgerPlace to Final, the
following would result:

Method CheeseFries() Final
Print "Cheese Fries!"
End Method

With the keyword Final after the method declaration, the following compilation error occurs:

Compile Error
Final methods cannot be overridden

Use Final when you don’t want people to change the code in a class or method.

Abstract types and methods are mostly used to create “template” types and methods that leave
implementation details up to derived types. Final types and methods are mostly used to prevent
modification to a type’s behavior.

Summary

Object-oriented programming has been with us for a long time, but it was initially slow to take hold with
developers. Whereas functions allowed us to reuse small bits of code, objects, or user-defined types, as they
are called in BlitzMax, allow us to reuse entire data structures, or make component-based models, with ease.

114

CHAPTER 10

Project File Management

Correct file management is important in any project, but especially in game development, where it is not

always possible to release patches to end users. Without correct file management, teams would not be able

to function. We are going to look at two keywords that help:

Include

IncBin

Include

Include allows the developer or a group of developers to split the tasks and avoid having all their code in

one file. Let’s take the Burger Place example from Chapter 9 (Figure 10-1).

GlasgowBranch

Figure 10-1. Class diagram

<<interface>>
IBurgerPlace

+MakeFries()
+MakeBurgers()
+MakeShakes()

ErskineBranch

We are going to create a separate file for each of the classes, as follows:

IBurgerPlace.bmx:

© Sloan Kelly 2016

S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_10

115

http://dx.doi.org/10.1007/978-1-4842-2523-3_9

CHAPTER 10 = PROJECT FILE MANAGEMENT

Type IBurgerPlace Abstract
Method MakeFries() Abstract
Method MakeBurgers() Abstract
Method MakeShakes() Abstract
End Type

GlasgowBranch.bmx:

Type GlasgowBranch Extends IBurgerPlace
Method MakeFries()
End Method
Method MakeBurgers()
End Method
Method MakeShakes ()
End Method
End Type

ErskineBranch.bmx

Type ErskineBranch Extends IBurgerPlace
Method MakeFries()
End Method
Method MakeBurgers()
End Method
Method MakeShakes()
End Method
End Type

And now we create our main file, called BurgerPlace.bmx.

Include "IBurgerPlace.bmx"
Include "GlasgowBranch.bmx"
Include "ErskineBranch.bmx"
gb:GlasgowBranch = New GlasgowBranch
eb:ErskineBranch = New ErskineBranch

Why use Includes? They de-clutter the main program and allow teams of developers to work on a larger
project, because they are not editing the same file.

IncBin

Most professional programs include the majority of their binary data (sounds, images, etc.) within the main
executable. BlitzMax allows you to do this too, with one small quirk, the use of the incbin:: URL prefix.

Incbin "images/tiger.png"
tiger = LoadImage("incbin::images/tiger.png")

We will see Include and IncBin used extensively from now on. Indeed, we started with the Tank Attack
project.

116

CHAPTER 11

Graphics

The following built-in commands are available in BlitzMax, to allow us to display graphics on the screen:

AutoImageFlags AutoMidHandle Cls
CollideImage CollideRect CountGraphicsModes
CreateImage DrawImage DrawImageRect
DrawLine DrawOval DrawPixmap
DrawPoly DrawRect DrawText
EndGraphics Flip GetAlpha
GetBlend GetClsColor GetColor
GetGraphics GetGraphicsMode GetHandle
GetImageFont GetLineWidth GetMaskColor
GetOrigin GetRotation GetScale
GetViewport GrabImage GrabPixmap
Graphics GraphicsHeight GraphicsModeExists
GraphicsWidth HideMouse ImageHeight
ImagesCollide ImagesCollide2 ImageWidth
LoadAnimImage LoadImage LoadImageFont
LockImage MidHandleImage Plot
ResetCollisions SetAlpha SetBlend
SetClsColor SetColor SetHandle
SetImageHandle SetLineWidth SetMaskColor
SetOrigin SetRotation SetScale
SetTransform SetViewport ShowMouse
TextHeight TextWidth TileImage
UnlockImage

BlitzMax uses the OpenGL (www.opengl.org) API to draw graphics. Although OpenGL is known for
producing 3D worlds, in this book, we only look at the production of 2D images. Blitz Research has called
this Max2D, and although not three-dimensional, it allows us to use some special effects, such as blending
and rotation.

© Sloan Kelly 2016 117
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_11

http://www.opengl.org/

CHAPTER 11 GRAPHICS

Graphics Modes

For each graphics card, there are a number of modes that it supports. Before we put the computer into
graphics mode, we have to know that the mode exists. To access the list, BlitzMax has a number of
commands.

CountGraphicsModes
GetGraphicsMode
GraphicsModeExists
Graphics
EndGraphics
GraphicsWidth
GraphicsHeight
GetGraphics

CountGraphicsModes

Used in conjunction with the GetGraphicsMode will list the modes available to the system.

Local ;
For i:Int = 0 To modes -1

GetGraphicsMode(i, width, height, depth, hertz)

Print width + "x" + height + " " + depth + "bit " + hertz + "hz"
Next

GraphicsModeExists(width, height, depth=0, hertz=0)

GraphicsModeExists returns Boolean True, if the graphics mode specified exists.

If GraphicsModeExists (640, 480)

Print "680x480 exists!"
Else

Print "Can't find 640x480 graphics mode"
End If
If GraphicsModeExists(640, 480, 48)

Print "48bit color exists at 640x480"
Else

Print "Don't be daft - 48bit color?!?"
End If

118

CHAPTER 11 GRAPHICS

Graphics

Once we have our graphics mode, we can put the video card into graphics mode. We do this using the
Graphics keyword, as follows:

Graphics 640, 480, 16, 75

While Not KeyHit(KEY_ ESCAPE)
DrawText("Hello, BlitzMax!", 0, 0)
Flip
Cls

Wend

The last two parameters—color depth and frequency—are optional and are defaulted to 16 and 60,
respectively. However, as you have noticed, this Graphics keyword puts the video card in full-screen mode.
What is we wanted to put it into windowed mode? Easy: just change the preceding Graphics line to

Graphics 640, 480

This creates a window with a 640x480 viewing area! Quite handy if a video mode is not available!

EndGraphics

Although not necessary, it is still good programming practice to end the graphics mode using the
EndGraphics keyword. Note, though, that EndGraphics invalidates all images and image fonts. If you want to
reuse these objects later, you will have to re-create them.

GraphicsWidth and GraphicsHeight

GraphicsWidth returns the width of the current graphics mode, and, likewise, GraphicsHeight returns the
height of the current graphics mode. As in this example, it should be noted that it will also happily return the
metrics of a windowed graphics mode.

Graphics 640, 480

While Not KeyHit(KEY ESCAPE)
DrawText("; + GraphicsWidth(), 0, 0)
DrawText("Height: " + GraphicsHeight(), 0, 10)
Flip
Cls

Wend

119

CHAPTER 11 GRAPHICS

GetGraphics

GetGraphics returns the metrics for the current graphics mode.

Graphics 800, 600, 16, 75

While Not KeyHit(KEY_ESCAPE)
Local ;x" + height + ", " + depth + "bit color,
Flip
Cls

Wend

+ hertz + "Hz", 0, 0)

If we ran similar code before putting the video card into graphics mode, we would get an entirely
different answer. This is because although we are in a windowed environment, BlitzMax compiles to a shell
window, in other words, a command line interpreter (such as Terminal/DOS prompt, bash).

Local ;
Print width + "x" + height + ", " + depth + "bit
color, " + hertz + "Hz"

Some Advice

Use a low-resolution (640x480) graphics mode to start your game to allow the user to choose the graphics
mode they want to play the game at. Remember to check that the low-mode works before entering it!

Most modern video cards have two areas of memory. Both are used to display images to the user, but only

one is shown at a time. This technique is called double buffering and is shown in the following diagram
(Figure 11-1).

120

Graphics Card

Objects are being drawn
on the back buffer

Objects are re-drawn in
new posibions on the back
buffer

This process 1s continued
during program execution

All you need 1o do i1s “Flip™

in BlitzMax!

Figure 11-1. Provide caption

Buffer

CHAPTER 11 © GRAPHICS

What the player sees

Buffer

Buffer

Buffer

A

Buffer

B

From the user’s viewpoint, they see the items visible on the monitor, but behind the scenes, the
program is drawing to the back buffer. With the flick of an electronic finger, the user is shown the images on
the back buffer. The following diagram (Figure 11-2) shows what happens.

121

CHAPTER 11 © GRAPHICS

Back buffer
4 g
Graphics Card
| I
— —
N J

ARRRRL

Visible on the Monitor
7 ™~

Figure 11-2. Provide caption

This technique has been used in the theater for years. While the actors are out on stage, behind the
curtain, a new scene is being dressed. When the actors’ scene is finished, the curtain opens, and the new
scene is revealed.

All this happens in BlitzMax using two keywords: C1s and Flip.

Cls

The C1s keyword clears the back buffer of the video card, making it ready to draw on again. We have used
this in all our graphic mode examples so far. Note that, for the most part, it is paired with the F1ip command.

Flip
Cls

This means that all drawings on the back buffer are now on the front buffer, and the back buffer is once
again ready to be drawn on.

Another common technique is to put the Cls after the update code in your main loop and then F1lip just
before the end—usually just before the Wend keyword. See the Tank Attack code for details. Either way will
work.

122

CHAPTER 11 GRAPHICS

SetClsColor

This sets the color Cls clears the screen to. In this example, pressing 1 will clear the screen to red, 2 to green,
and 3 to blue. Key 0 will return the C1s color to black.

Graphics 640, 480
While Not KeyHit(KEY_ESCAPE)

If KeyHit(KEY 1)
SetClsColor(255, 0, 0)
End If

If KeyHit(KEY 2)
SetClsColor(0, 255, 0)
End If

If KeyHit(KEY_3)
SetC1sColor(o, 0, 255)
End If

If KeyHit(KEY 0)
SetClsColor(o, 0, 0)
End If

Flip

Cls
Wend

GetClsColor

This returns the current color used to clear the screen with, as follows:
Graphics 640, 480
While Not KeyHit(KEY_ESCAPE)
If KeyHit(KEY_1)
SetClsColor(255, 0, 0)
End If
If KeyHit(KEY 2)
SetClsColor(o, 255, 0)
End If
If KeyHit(KEY 3)

SetClsColor(0, 0, 255)
End If

123

CHAPTER 11 GRAPHICS

If KeyHit(KEY 0)
SetClsColor(o, 0, 0)
End If

Local red:Int=0
Local green:Int = 0
Local blue:Int = 0

GetClsColor(red, green, blue)
DrawText("SetClsColor(" + red + "," + green + "," + blue + ")", 0, 0)

Flip
Cls
Wend

Drawing Simple Objects

BlitzMax allows the programmer to use some graphics primitives as well as more complex images. The
primitives are

Plot

DrawRect
DrawLine
DrawOval
DrawPoly

DrawText

Plot

Plot draws a point on the graphics display.
Graphics 640, 480
While Not KeyHit(KEY ESCAPE)
Local red:Int = Rnd(255)
Local green:Int = Rnd(255)
Local blue:Int = Rnd(255)
SetColor(red, green, blue)
Plot Rnd(640), Rnd(480)

Flip
Wend

124

CHAPTER 11 GRAPHICS

DrawRect

DrawRect draws a rectangle at a given (x, y) coordinate with width and height.

Graphics 640, 480
While Not KeyHit(KEY_ESCAPE)

Local red:Int = Rnd(255)
Local green:Int = Rnd(255)
Local blue:Int = Rnd(255)

SetColor(red, green, blue)
DrawRect (Rnd(640), Rnd(480), Rnd(640), Rnd(480))
Flip

Wend

DrawLine

This draws a line from one (%, y) coordinate to another.
Graphics 640, 480

Local lastx:Int = 0
Local lasyy:Int = 0

While Not KeyHit(KEY ESCAPE)
Local red:Int = Rnd(255)
Local green:Int = Rnd(255)
Local blue:Int = Rnd(255)

SetColor(red, green, blue)

Rnd(640)
Rnd(640)

X
y

DrawLine(lastx, lasty, x, y)
lastx = x
lasty = y

Flip
Wend

DrawOQval
DrawOval draws an ellipse at the specified coordinates with two radii: one for the x axis and one for the y axis.
Graphics 640, 480

Local r:Int = 100
While Not KeyHit(KEY_E SCAPE)

Cls
DrawOval(320 - (r/2), 240 - (z/2), r, 1)
r=1r-1

125

CHAPTER 11 GRAPHICS

Ifr

n o

T 100
End If

Flip
Wend

DrawPoly

DrawPoly is slightly more complex than previous graphics, in that it requires an array of floats representing
the coordinate groups. In this case, we are plotting the following points onscreen.

(50, 0), (100, 100), (0, 100)
This will draw a triangle at the top left of the screen.

Graphics 640,480
Local triangle#[]=[50.0,0.0,100.0,100.0,0.0,100.0]

While Not KeyHit(KEY ESCAPE)
Cls
DrawPoly triangle
Flip

Wend

DrawText

DrawText prints text in the current font at the specified x and y coordinates.

Graphics 640, 480

While Not KeyHit(KEY ESCAPE)
SetColor(Rnd(255),Rnd(255),Rnd(255))
DrawText("BlitzMax", Rnd(640), Rnd(480))
Flip

Wend

Images

Computer games need sprites to represent characters in the game world. A sprite is a small image
manipulated by either the player directly or some logic programmed in. With BlitzMax, we have a wide range

of commands to help us deal with images.
LoadImage
LoadAnimImage
DrawImage
DrawImageRect
TileImage
SetColor

Asyou can see from the list, that is quite a lot to get on with! Let’s break this down into easy chunks of

information. First, let’s look at the image drawing.

126

CHAPTER 11 GRAPHICS

Images and BlitzMax

For the most part, you will want to create images in a third-party product, such as the open source GIMP
(GNU Image Manipulation Program) at www.gimp.org. GIMP is a professional-level graphics program on a
par with Photoshop. If, like me, you have spent most of your professional life using Photoshop, you might
find GIMP a bit frustrating to use at first. This is no fault of the application! Just relax, find your way around,
and you'll be creating images like you did in Photoshop!

Any image creation program that allows you to generate BMP, PNG, and JPG images is fine. There is a
list of these in the appendixes. If you are stuck with images, there are some (badly) drawn ones located on
this book’s web site (blitzmax.sloankelly.co.uk) to help you.

LoadImage

Before we can draw an image on the screen, we have to load it into memory. As we have seen in the Tank
Attack project, this is done using the LoadImage keyword. The only required parameter is the path to the
image file. In the following example, we are going to load a 16x16 picture with alternating 4-pixel wide blocks
of yellow and blue. This will be displayed in the middle of the screen.

Graphics 640, 480
block:TImage = LoadImage("block.png")
While Not KeyHit(KEY ESCAPE)
DrawImage(block, 312, 232)
Flip
Cls
Wend

LoadAnimImage

An animated image is a block of images loaded as one graphic, and BlitzMax does all the hard work of
splitting each individual block out into separate images. This can be used to load animated graphics or tiles
for a platform game. The parameters for LoadAnimImage are:

LoadAnimImage(path, width, height, first index, image count)
path: Path to the image
width: Width of the individual graphics
height: Height of the individual graphics
first_index: Always a zero
image_count: Number of images in the larger block
In the following example, we load in a 32x16 image that has two 16x16 images on it.
Graphics 640, 480
Local block:TImage = LoadAnimImage("blockani.png",
16, 16, 0, 2)

Local tmr:Int = MilliSecs()
Local frame:Int=0

127

http://www.gimp.org/

CHAPTER 11 GRAPHICS

While Not KeyHit(KEY ESCAPE)
DrawImage(block, 312, 232, frame)
If MilliSecs() > tmr + 450
tmr = MilliSecs()
frame:~1
End If
Flip
Cls
Wend

Drawlmage

As we have seen in the preceding two examples, DrawImage can be used to draw both static and animated
images. The parameters for DrawImage are

DrawImage(image, x, y [, frame])

Note that the frame part is optional and must only be specified when you want to split up an image.
Take a look at the following example:

Graphics 640, 480

Local block:TImage = LoadAnimImage("blockani.png",
16, 16, 0, 2)

Local tmr:Int = MilliSecs()

Local frame:Int=0

While Not KeyHit(KEY ESCAPE)
Cls
DrawImage(block, 0, 0)
DrawImage(block, 312, 232, frame)
If MilliSecs() > tmr + 450
tmr = MilliSecs()
frame:~1
End If
Flip
Wend

What did you expect to see? Because BlitzMax defaults the frame parameter to zero, only the first image
is shown.

TileImage

With DrawImage, we can display a single image on the screen once.

When we are working with a large area, we sometimes like to flood, that is, fill a backdrop with a single
image. We can do this with TileImage.

The format for TileImage is: TileImage(image, x, y [, frame])

Again, the frame parameter is optional.

Graphics 640, 480
block:TImage = LoadImage("block.png")

128

CHAPTER 11

While Not KeyHit(KEY ESCAPE)
TileImage(block, 0, 0)
Flip
Cls

Wend

SetViewport

SetViewport masks off an area of the screen that can be drawn to. Anything outside this area is not
displayed. The format of SetViewport is

SetViewport(x, y, width, height)

In the following example, we use our animated image in the previous examples to simulate a ZX
Spectrum loading:

Graphics 640, 480

Local block:TImage = LoadAnimImage("blockani.png",
16, 16, 0, 2)

Local tmr:Int = MilliSecs()

Local frame:Int=0

Local SPECTRUM WIDTH = 256 * 2
Local SPECTRUM_HEIGHT = 192 * 2

Local SPECTRUM_LEFT = ((640 - SPECTRUM_WIDTH) / 2)
Local SPECTRUM TOP = ((480 - SPECTRUM_HEIGHT) / 2)
Local msgx:Int = 640

While Not KeyHit(KEY ESCAPE)
If MilliSecs() > tmr + 450
tmr = MilliSecs()
frame:~1
End If
TileImage(block, 0, 0, frame)
SetViewport (SPECTRUM_LEFT, SPECTRUM TOP, SPECTRUM WIDTH, SPECTRUM HEIGHT)
SetColor(o, 0, 0)
DIawRect(SPECTRUM_LEFT, SPECTRUM_TOP, SPECTRUM_WIDTH, SPECTRUM_HEIGHT)

SetColor(255, 255, 255)

DrawText("BlitzMax!", msgx, 240)
msgx: -2
If msgx <= 0
msgx = 640
End If

SetViewport(0, 0, 640, 480)
Flip

Cls
Wend

GRAPHICS

129

CHAPTER 11 GRAPHICS

Those of you familiar with this wonderful machine will appreciate the retro ambience! For those of you
who have never heard of a ZX Spectrum, it was an 8-bit computer from the early 1980s that (pretty much)
kick-started bedroom coding in the United Kingdom.

GetViewport

GetViewport returns the metrics for the current viewport. The format of the command is
GetViewport(x, y, width, height)

See, for example, the following. Note that this is the same as the previous example, with a few extra lines
to grab the viewport information.

Graphics 640, 480

Local block:TImage = LoadAnimImage("blockani.png",
16, 16, 0, 2)

Local tmr:Int = MilliSecs()
Local frame:Int=0

Local SPECTRUM WIDTH = 256 * 2
Local SPECTRUM HEIGHT = 192 * 2

Local SPECTRUM_LEFT = ((640 - SPECTRUM_WIDTH) / 2)
Local SPECTRUM TOP = ((480 - SPECTRUM_HEIGHT) / 2)

Local msgx:Int = 640

While Not KeyHit(KEY ESCAPE)

If MilliSecs() > tmr + 450
tmr = MilliSecs()
frame:~1

End If

TileImage(block, 0, 0, frame)

SetViewport (SPECTRUM_LEFT, SPECTRUM TOP, SPECTRUM_WIDTH, SPECTRUM HEIGHT)

SetColor(o, 0, 0)

DrawRect (SPECTRUM LEFT, SPECTRUM TOP,

SPECTRUM WIDTH, SPECTRUM_HEIGHT)

SetColor(255, 255, 255)

Local x:Int

Local y:Int

Local ;Current viewport is at " + x + "," + y + " with dimensions " + width + " by
" + height, SPECTRUM LEFT, SPECTRUM TOP)

DrawText("BlitzMax!", msgx, 240)

msgx: -2

130

CHAPTER 11 GRAPHICS

If msgx <= 0
msgx = 640
End If
SetViewport(o, 0, 640, 480)
Flip
Cls

Wend

Fonts

The BlitzMax system font is quite boring and can be livened up by loading your own fonts at runtime.
BlitzMax can load TTF (TrueType Font) and FON files. TTF is standard across all three platforms now—
Windows, Mac OS X, and Linux—and you should be able to locate some free distributable fonts for use in
your applications. In the examples that follow, I will be using the Tahoma font, which is distributed with
Windows and Office for Mac OS X. If you don’t have this font, feel free to substitute it for another.

The following commands allow us to manipulate the fonts that can be used in our programs:

LoadImageFont
SetImageFont
GetImageFont

LoadimageFont

LoadImageFont requires two parameters and an optional third. The format of the keyword is shown
following:

LoadImageFont:TImageFont(url:Object, size:Int, style:Int=SMOOTHFONT)

BOLDFONT = 1
ITALICFONT = 2
SMOOTHFONT = 4

SetimageFont

SetImageFont requires one parameter: the image font to use in subsequent DrawText () operations. If null is
passed, the default font is used. The format of the keyword is shown following:

SetImageFont(font:TImageFont)

If null is passed, the default font is used.

GetlmageFont

GetImageFont returns the current image font as an instance of TImageFont. It requires no parameters.

131

CHAPTER 11 GRAPHICS

Example of Font Use in BlitzMax

For the example, to work, you will have to copy the Tahoma font to the same folder as your program. The
example then loads in the font from size 8 to 48 in 8-pixel increments. It places all the fonts into a TList.

In the main loop, the fonts inside the TList fonts variable are cycled through, and the SetImageFont
keyword is called. A message is displayed on the screen using the desired font. Notice that the y coordinate
is incremented by the height of the letter X and 4 pixels. This gives a nice space between the last line and the
next.

Graphics 800, 600

fonts:TList = Createlist()

For i = 8 To 48 Step 8
font:TImageFont = LoadImageFont("tahoma.ttf", i, SMOOTHFONT)
fonts.AddLast(font)

Next

While Not KeyHit(KEY ESCAPE)

y:Int = 0
For f:TImageFont = EachIn fonts
SetImageFont(f)

DrawText("BlitzMax font handling!", o, y)

y =y + TextHeight("X") + 4
Next
Flip
Cls
Wend

You can also be a little more adventurous. In the next example, I downloaded a font from dafont.com
and placed it in the same folder as my . bmx file. I then used the incbin keyword to embed the font right into
the executable, as follows:

Rem
The font used in this program is called
"PROMISES BROKEN DREAM" and was designed by Gersan Borge.
It was retrieved from dafont.com on the 23rd May 2011
http://www.dafont.com/promises-brokendream.font
Gersan Borge's daFont page is:
http://www.dafont.com/gersan-borge.d3068

EndRem

SuperStrict
Graphics 800, 600

Incbin "Promses Broken Dreami.ttf"

Local promises:TImageFont =

LoadImageFont("incbin: :Promses Broken Dreami.ttf", 64)
SetImageFont promises

SetClsColor 0, 0, 192

132

CHAPTER 11 GRAPHICS

While Not KeyHit(KEY ESCAPE)
Cls
SetColor 0, 0, O
DrawText "1234567890ABCXYZ", 20, 50
SetColor 255, 255, 0
DrawText "1234567890ABCXYZ", 18, 48
Flip

Wend

This displays the following on the screen (Figure 11-3).

B BhtzMax Apphcaton . o W= pldm e ﬂ

Figure 11-3. Provide figure caption

133

CHAPTER 12

User Input

Because the operating systems that we are using are graphical in nature, the input method of choice is the
mouse. There are several keywords available to the BlitzMax developer, including the following:

MouseX
MouseY
MouseZ
ShowMouse
HideMouse
MouseDown
MouseHit

MoveMouse

MouseX and MouseY

MouseX and MouseY return the current x and y coordinates of the mouse.

Graphics 640, 480
pointer:TImage = LoadImage("pointer.png")

While Not KeyHit(KEY ESCAPE)

Local x:Int = MouseX()
Local y:Int = MouseY()

DrawImage(pointer, x, y)
Flip
Cls

Wend

© Sloan Kelly 2016 135
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_12

CHAPTER 12 = USER INPUT

Showing and Hiding the System Mouse

There is a problem, because, as you will have noticed after running the preceding code (you'll need
a suitable image to use as a cursor), the operating system mouse is shown. We can get around this by
executing the HideMouse keyword.

Graphics 640, 480
pointer:TImage = LoadImage("pointer.png")
While Not KeyHit(KEY_ ESCAPE)
If KeyHit(KEY 1)
HideMouse()
End If
If KeyHit(KEY 2)

ShowMouse()
End If

Local x:Int = MouseX()
Local y:Int = MouseY()

DrawImage(pointer, x, y)
Flip
Cls

Wend

By pressing 1 on the keyboard, you can hide the pointer. Pressing 2 will show the mouse pointer. At all
times, the image is shown at the current mouse coordinates.

MouseZ

If your computer is suitably equipped with a scroll wheel, BlitzMax can use this to enhance the user
experience.

Graphics 640, 480
pointer:TImage = LoadImage("pointer.png")
While Not KeyHit(KEY ESCAPE)
If KeyHit(KEY 1)
HideMouse()
End If
If KeyHit(KEY 2)

ShowMouse()
End If

136

CHAPTER 12 USER INPUT

Local x:Int = MouseX()
Local y:Int = MouseY()
Local z:Int = MouseZ()

DrawText("Mouse Z= " + z, 0, 0)
DrawImage(pointer, x, y)
Flip
Cls
Wend

On my system (IBM Thinkpad with a Microsoft Optical Trackball), a click on the mouse wheel
represents an increment of 1 on the mouse z axis each time the mouse is scrolled away from me and a
decrement of 1 each time the mouse is scrolled toward me.

MouseDown

In this example, I created a mouse image with four layers. The main layer has the mouse shape on it; the
other layers have highlight colors (see Figure 12-1).

Figure 12-1. Provide a caption

137

CHAPTER 12 USER INPUT

When you press the mouse buttons, the corresponding images highlight which buttons were pressed.
The output of the program with the left mouse button down is shown following (Figure 12-2).

(%7 BitzMax Application [N =)

Figure 12-2. Provide caption

The MouseDown function takes one parameter: which mouse button to check.

Value Mouse Button
1 Left

2 Right

3 Middle

The full program listing follows. Note that we set the C1s color to a more neutral tone, to fit in with the
mouse image. We also set the blend mode to ALPHABLEND, because we want to show the opacity of the red
overlays. Try taking the SetBlend line out to see what happens.

Graphics 640, 480

SetClsColor 224, 224, 224
SetBlend ALPHABLEND

138

mouse
Imb:T
mb: T
mmb:T

x:Int
y:Int

While

Wend

:TImage = LoadImage("mouse.png")
Image = LoadImage("lmb.png")
Image = LoadImage("rmb.png")
Image = LoadImage("mmb.png")

(640 - ImageWidth(mouse)) / 2
(480 - ImageHeight(mouse)) / 2

Not KeyHit(KEY_ ESCAPE)
Cls
DrawImage(mouse, X, Y)

If MouseDown(1)
DrawImage(1lmb, x, y)
End If

If MouseDown(2)
DrawImage(rmb, X, y)
End If

If MouseDown(3)
DrawImage(mmb, X, y)
End If

Flip

MouseHit

MouseHit is slightly different, in that it only records if the mouse has been hit. It does not care if the mouse
button is being held down.
This could be ideal for a click event on a button. The following example illustrates this best:

Graph
SetCl
SetBl

mouse
Imb:T
mb:T
mmb: T

x:Int
y:Int

While

ics 640, 480
sColor 224, 224, 224
end ALPHABLEND

:TImage = LoadImage("mouse.png")
Image = LoadImage("lmb.png")
Image = LoadImage("rmb.png")
Image = LoadImage("mmb.png")

= (640 - ImageWidth(mouse)) / 2
= (480 - ImageHeight(mouse)) / 2
Not KeyHit(KEY ESCAPE)
Cls

CHAPTER 12

USER INPUT

139

CHAPTER 12 = USER INPUT

DrawImage(mouse, X, Yy)

If MouseHit(1)
DrawImage(1lmb, x, y)
End If

If MouseHit(2)
DrawImage(rmb, x, y)
End If

If MouseHit(3)
DrawImage(mmb, X, y)
End If

Flip
Wend

WaitMouse

WaitMouse pauses the program and then returns which mouse button was clicked.

Graphics 640, 480

DrawText("Press any mouse button to exit", 0, 0)
Flip

WaitMouse()

MoveMouse

We can also move the mouse! The following example uses mathematical functions to move the cursor up
and down the screen, plotting a nice ellipse:

Graphics 640, 480

Local angle:Float = 0

Local y:Int

Local x:Int

Local tmr:Int = MilliSecs()

While Not KeyHit(KEY ESCAPE)

Sin(angle) * 240
Cos(angle) * 320

y
X

If MilliSecs() > tmr + 150
tmr = MilliSecs()
angle = angle + 2
If angle = 360

angle = 0
End If

140

CHAPTER 12 USER INPUT

End If
MoveMouse (320 + X, 240 + y)

SetColor(255, 255, 255)
Plot(320 + x, 240 +y)
Flip

Wend

Adapt the preceding program to fill in the dots. Now add spokes to the wheel. Hint: The center is always
320, 240. And now, add random color each revolution.

141

CHAPTER 13

Keyboard Input

The second input device on a modern computer system is the keyboard. This is the most common keyboard
input device and one that most people will use approximately 80% of the time. There are a number of ways

to get information from the keyboard.
KeyDown
KeyHit
WaitKey
WaitChar
GetChar

KeyDown, KeyHit, and WaitKey all use the BlitzMax key code constants, listed in the appendixes.
WaitChar and GetChar use the ASCII character set, again listed in the appendixes.

KeyDown

This is the simplest keyboard method and returns true if a key is being held down. In the following example,
arocket ship is taking off. Holding down the space bar will pump more fuel into the rocket. You will require a

64x64 pixel image of a rocket loaded as an animated image (128x4).
Graphics 640, 480

Const GRAVITY_VALUE:Float = .01

Local y:Float = GraphicsHeight() - 64

Local gravity:Float = GRAVITY_ VALUE

Local frame:Int = 0

Local velocity:Float = 0

Local rocket:TImage = LoadAnimImage("spaceship.png", 64, 64, 0, 2)
SetBlend (ALPHABLEND)

HideMouse
While Not KeyHit(KEY_ESCAPE)

© Sloan Kelly 2016
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_13

143

CHAPTER 13 KEYBOARD INPUT

If KeyDown(KEY_SPACE)
velocity = velocity + (GRAVITY VALUE/2)
frame = 1
gravity=gravity-GRAVITY_VALUE
If gravity <=0
gravity = 0
End If
End If
If Not KeyDown(KEY_ SPACE)
velo city = 0
gravity = gravity + GRAVITY_VALUE
If gravity > 9.81
gravity = 9.81
End If
frame = 0
End If

y =y + gravity - velocity
If y>= GraphicsHeight() - 64

y = GraphicsHeight() - 64
End If

DrawImage(rocket, 320 - 32, y, frame)

DrawText("Velocity:" + velocity + "m/s", 0, 0)
DrawText("Gravity:" + gravity + "m/s", 0, 10)
DrawText("Height: " + ((480-64) - y) + "m",0, 20)
Flip
Cls

Wend

KeyHit

We have used the KeyHit keyword on just about every example in this book to trap the Escape key being
pressed. KeyHit is a one-off hit of a key and returns a Boolean True if the key has been hit.

Graphics 640, 480
While Not KeyHit(KEY ESCAPE)
If KeyHit(KEY SPACE)

SetColor(Rnd(255), Rnd(255), Rnd(255))
End If

DrawText("BlitzMax", Rnd(640), Rnd(480))
Flip

Wend

144

CHAPTER 13 KEYBOARD INPUT

Rewrite the rocket example with KeyHit and see how far you get up the screen! Rewrite the KeyHit
example with KeyDown trapping the space bar being hit. What happens?

WaitKey

WaitKey halts all operations and waits until a key has been pressed. The following example shows
an example of WaitKey, a retro text adventure input. But please be aware that this is not the perfect
implementation. I'm getting to that!

Graphics 640, 480

Type TKeyInput

Method GetMemo:String()

memo:String =

DrawText(">_", 0, 0)

Flip

ch:Int = WaitKey()

While ch <> KEY_ENTER

Wend

Select ch
Case KEY_SPACE, KEY A, KEY B, KEY C, KEY D, KEY_E, KEY F, KEY G, KEY H,
KEY I, KEY_J, KEY K, KEY_L, KEY M, KEY N, KEY 0, KEY P, KEY Q, KEY R,
KEY_S, KEY_T, KEY U, KEY_V, KEY W, KEY X, KEY_Y, KEY Z
memo = memo + Chr(ch)
Case KEY_DELETE, KEY_ BACKSPACE
If memo <> ""
memo = Left(memo, Len(memo)-1)

End If
End Select
Cls
DrawText(">" + memo + " ", 0, 0)
Flip

ch = WaitKey()

Return memo

End Method

Function Create:TKeyInput()
0:TKeyInput = New TKeyInput
Return o

End Function

End Type

145

CHAPTER 13 KEYBOARD INPUT

keyinput:TKeyInput = TKeyInput.Create()
s:String = keyinput.GetMemo()

Cls
Flip

FlushKeys()

DrawText("Input text:" + s, 0, 0)
Flip

WaitKey()

At the moment, only A-Z and space characters are allowed. Allow the user to enter numbers too.

WaitChar

Much like WaitKey, WaitChar pauses until a key is pressed. When it has been pressed, its ASCII
representation is returned to the user. So, the preceding example can be rewritten as follows:

Graphics 640, 480
Type TKeyInput

Method GetMemo:String()

memo:String =

DrawText(">_ ", 0, 0)
Flip
ch:Int = WaitChar()

While ch <> 13

If ch »>="32" And ch <=127
memo = memo + Chr(ch)
End If
If ch = 8 And memo <> "" memo = Left(memo, Len(memo)-1)

End If
Cls
DrawText(">" + memo + " ", 0, 0)
Flip
ch = WaitChar()

Wend

Return memo

End Method
Function Create:TKeyInput()
0:TKeyInput = New TkeyInput

Return o
End Function

146

CHAPTER 13 KEYBOARD INPUT

End Type
keyinput:TKeyInput = TKeyInput.Create()

s:String = keyinput.GetMemo()

Cls

Flip

FlushKeys()

DrawText("Input text:" + s, 0, 0)
Flip

WaitKey()

It is slightly more elegant, and it allows for a larger number of characters to be entered. For example,
you can use a mixture of upper- and lowercase letters.

Don’t allow the user to enter symbol characters. For a list of ASCII characters and codes, see the
appendixes. Hint: The keyword Asc can be used to determine the ASCII value of any given character, for
example, ASC(“A”) returns 65.

GetChar

Pausing a live game is a little severe, and BlitzMax addresses that by using the GetChar keyword. This
means that we can have a flashing cursor! Rewriting the preceding examples, I have included a flashing
cursor to show the user we are expecting input. Remember: This would not be possible if we were using
WaitChar/WaitKey, because ALL PROCESSING is stopped for WaitChar/WaitKey.

Graphics 640, 480
Type TKeyInput
Method GetMemo:String()
memo:String = ""
tmr:Int = MilliSecs()
cursor:Int =1

DrawText(">_", 0, 0)
Flip
ch:Int = GetChar()

While ch <> 13

If ch »>="32" And ch <=127
memo = memo + Chr(ch)
End If

If ch = 8 And memo <> ""
memo = Left(memo, Len(memo)-1)
End If
Cls
If MilliSecs()>tmr+500
tmr = MilliSecs()
cursor:~1
End If

147

CHAPTER 13 KEYBOARD INPUT

If cursor
DrawText(">" + memo + " ", 0, 0)
Else
DrawText(">" + memo, 0, 0)
End If
Flip

ch = GetChar()

Wend
Return memo

End Method
Function Create:TKeyInput()
o:TKeyInput = New TkeyInput
Return o
End Function
End Type

keyinput:TKeyInput = TKeyInput.Create()
s:String = keyinput.GetMemo()

Cls

Flip

FlushKeys()

DrawText("Input text:" + s, 0, 0)
Flip

WaitKey()

Change the cursor to a solid block. Hint: Use the DrawRect and TextWidth keywords.

148

CHAPTER 14

Joystick

We've seen that BlitzMax can get input from keyboard and mouse, but the final piece of the puzzle is the
joystick, or, as it’s more commonly called now, the controller. BlitzMax offers a wide variety of functions to
get input from this device.

JoyAxisCaps JoyButtonCaps JoyCount
JoyDown JoyHat JoyName
JoyPitch JoyR JoyRoll
JoyU JoyV JoyWheel
JoyX JoyY JoyYaw
Joyz

The joystick took a long time to be adopted by computer users who preferred the keyboard and mouse
to move their onscreen avatar. This has all changed, and most gamers have either a joystick or a joypad with
an easy-to-plug-in USB connection. I only have an inexpensive joypad to play with (Figure 14-1).

X-Roll Y-Roll

Button 4
Button 8
Button 2
Button 7
Button 6
Button 9
Button 5
Z-Axis Roll and Pitch
Figure 14-1. Joypad
© Sloan Kelly 2016 149

S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_14

CHAPTER 14 © JOYSTICK

It’s in the style of the PlayStation controller, with eight—count 'em—buttons. This will be my reference
controller.

Joystick Information

We can get information on the various joysticks that are plugged into the system using the following
keywords:

JoyCount
JoyName
JoyAxisCaps
JoyButtonCaps

JoyCount

JoyCount counts the number of game controllers you have connected to your system.

If Not JoyCount()

Print "No controllers”
Else

Print "You have
End If

+ JoyCount() + " game controllers connected to your system.”

JoyName

JoyName returns the name of the joystick on the selected port, as follows:

If Not JoyCount()
Print "No controllers”
Else
For i:Int = 0 To JoyCount()-1
Print "Controller "
Next
End If

+ (i+1) + " is a " + JoyName(i)

JoyAxisCaps

JoyAxisCaps, short for “Joystick Axis Capabilities,” returns a bit field detailing the capabilities of the
connected controller. The following example reads these capabilities and displays them as text:

If Not JoyCount()

RuntimeError "Sorry - you need a joystick to run this app!"
End If
Graphics 640, 480

"' find out the capabilities of the controller in port o
caps:Int = JoyAxisCaps(0)

150

string representing capabilities
capstring:String = "XYZYUVYPOHW"

While Not KeyHit(KEY ESCAPE)

' Loop through each of the capabilities

s:String =
For i:Int = 0 To 10
If caps And (2"1i)
s = s + Mid(capstring, i+1, 1)
Else
S =5+
End If

Next

' Draw the standard capabilities flags and the
' actuals reported from the controller
DrawText(capstring, 0, 0)

DrawText(s, 0, 10)

Flip

Cls

Wend

The preceding program displays the axis capabilities of each joystick plugged into your PC. The

program checks to see if you have at least one stick attached before proceeding.

CHAPTER 14

JOYSTICK

The JoyAxisCaps keyword returns a bit-mapped representation of the capabilities of your joystick. This

program splits out the bits and displays them as English words. The bitmap for these capabilities is

8] R Z-Axis Y-Axis X-Axis

9 8 7 6 5
Hat Roll Pitch Yaw \%

10
Wheel

151

CHAPTER 14 © JOYSTICK

JoyButtonCaps

JoyButtonCaps, short for “Joystick Button Capabilities,” returns a bit field representing the number of
buttons a joystick has. The following example returns this as a more meaningful number to the calling
routine:

If Not JoyCount()
RuntimeError "No joystick"
End If
Function JoyButtonCount:Int(buttoncaps:Int)
s:String = Bin(buttoncaps)
count:Int = 0
For i:Int = 1 To Len(s)
If Mid(s, i, 1) = "1"
count:+1
End If
Next

Return count
End Function

Print "There are " + JoyButtonCount(JoyButtonCaps(0)) + " buttons on the controller"

Getting Direction

Historically, PC joysticks have been analog in nature. This means that the change in direction is not a simple
switch, as in modern controllers. Because this is the case, the values returned are between -1 and 1 in
variable increments. The following example covers each of the values for the available axis:

JoyX
JoyY
JoyZ
JoyR
JoyU
JoyV
JoyRoll
JoyYaw
JoyWheel

If Not JoyCount()
RuntimeError "There is no joystick connected"
End If
Graphics 640, 480
Function DrawAxis(x:Int, y:Int, dir:Float, ishoriz:Int=True)

152

CHAPTER 14 © JOYSTICK

Local w:Int
Local h:Int

SetColor(255, 192, 0)

If ishoriz
w = dir * 64
h=3
Ifw<o
DrawRect(x+w-1, y-1, Abs(w), h)
Else
DrawRect(x-1, y+h-1, w, Abs(h))
End If
Else
W =3
h = dir * 64 If h < 0
ifh<o
DrawRect(x-1, y-1, w, h)
Else

DrawRect(x-1, y-1, w, h)
End If
End If

SetColor(255, 255, 255)
End Function

Function JoyButtonCount:Int(buttoncaps:Int)
s:String = Bin(buttoncaps)
count:Int = 0
For i:Int = 1 To Len(s)

If Mid(s, i, 1) = "1"
count:+1
End If
Next
Return count
End Function
While Not KeyHit(KEY_ ESCAPE)

SetColor(255, 255, 255)
DrawlLine(320, 240, 320+64, 240)
DrawLine(320, 240, 320-64, 240)
DrawLine(320, 240, 320, 240+64)
DrawlLine(320, 240, 320, 240-64)
DrawAxis (320, 240, JoyX(), True)
DrawAxis (320, 240, JoyY(), False)

For i:Int = 0 To JoyButtonCount(JoyButtonCaps(0))-1

If JoyDown(i)
SetColor(228, 228, 228)

153

CHAPTER 14 © JOYSTICK

Else
SetColor(58, 58, 58)

End If
DrawOval(50 + (i * 16), 10, 10, 10)
Next

Flip
(ls

Wend

Add lines for the R and U axis. Now what about Yaw and the Wheel? You will need a suitable joystick
with these functions.

154

CHAPTER 15

Common Input Routine

I created a number of classes that allow movement by joystick or keyboard to be abstracted. The listing is in
the appendixes and also available on the web site. Programs can then use these abstracted routines to move
game characters around the screen. From this point, these classes will be used in the book to move playable

objects around the screen.

This means that we can reuse these classes in all our projects, and we won’t have to implement them

over and over again.

The Classes

There are six classes, as listed following:

IController An interface class that TStick and TKeyboard extend

IFire An interface class that TStickFire and TKeyboardFire extend
TStick Inherited from TController; handles joystick input
TKeyboard Inherited from TController; handles keyboard input
TStickFire Inherited from IFire; handles fire events from the joystick
TKeyFire Inherited from IFire; handles fire events from the keyboard

IController

This is the base class for both TStick and TKeyboard. It contains a number of abstract methods that the child
classes must implement. It also contains some fully formed Final methods that the classes will inherit. The

abstract methods are as follows:
Dup: Returns Boolean True if the user presses the Up key
DDown: Returns Boolean True if the user presses the Down key
DLeft: Returns Boolean True if the user presses the Left key
DRight: Returns Boolean True if the user presses the Right key
IController contains two fields:
Name

FireMethods

© Sloan Kelly 2016
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_15

155

CHAPTER 15 COMMON INPUT ROUTINE

Name

The Name field can be used by the application to identify the controller, for example “Player1l” or “Keyboard.”
This field is not used by the class but can be useful. See the sample application that follows below.

FireMethods

This is a collection of firing events that expose the IFire interface. At the moment this is just two classes:
TkeyFire and TstickFire, for keyboard and joystick, respectively.
The three final methods contained within the abstract IController class are

AddFire
Fire

ButtonCount

AddFire

AddFire passesin an IFire class to be added to the FireMethods list.

Fire

Fire takes in one integer parameter referencing the index of the button and returns a Boolean True, if the
button has been pressed.

ButtonCount
ButtonCount returns the number of buttons in the abstract controller. Note that this is not the same as

JoyButtonCaps. It is up to the developer to add all the joystick buttons to the class, as shown following:

For f:Int = 0 To 7
jfire:TStickFire = TStickFire.Create(f, 0)
stick.AddFire(jfire)

Next

This code would add eight buttons to the joystick (0 through 7 inclusive).

TStick and TKeyboard

TStick and TKeyboard abstract the game controller and keyboard, respectively. They both inherit from
IController and use the interface that IController has defined to implement their own ways of capturing
user input.

TStickFire and TKeyFire

TStickFire and TKeyFire abstract the firing events for the game controller and keyboard, respectively. They
inherit from IFire and use the interface that IFire has defined to implement their own ways of capturing
the user pressing a particular fire button.

156

CHAPTER 15 © COMMON INPUT ROUTINE

Create a new class called TMouseFire that extends IFire. In this instance, we need to capture a mouse
button being hit.

Sample Application Using Controller.omx

This application is based on the joystick-only version referred to previously in this chapter. The F1 key
toggles the input method. Note that the keyboard has one firing method (the spacebar), but that the
keyboard has two (space and button zero). This shows that abstracting the controllers is good. We can have
any mix of control that we need!

Include "Controller.bmx"
If Not JoyCount()
RuntimeError "There is no joystick connected"
End If
Graphics 640, 480

Function DrawAxis(x:Int, y:Int, dir:Int, ishoriz:Int=True, isnegative:Int=True)

Local w:Int
Local h:Int

SetColor(255, 192, 0)

If ishoriz
w = dir * 64
h =3

If isnegative
DrawRect(x-w-1, y-1, Abs(w), h)
Else
DrawRect(x-1, y-1, w, h)
End If
Else
W =3
h = dir * 64
If isnegative
DrawRect(x-1, y-h-1, w, Abs(h))
Else
DrawRect(x-1, y-1, w, h)
End If
End If

SetColor(255, 255, 255)

End Function

Function JoyButtonCount:Int(buttoncaps:Int)
s:String = Bin(buttoncaps)

count:Int = 0
For i:Int = 1 To Len(s)

157

CHAPTER 15 COMMON INPUT ROUTINE

If Mid(s, i, 1) = "1"
count:+1
End If
Next

Return count
End Function

stick:TStick = TStick.Create("Joystick", 0) keyboard:TKeyboard = TKeyboard.
Create("Keyboard", KEY UP, KEY_DOWN, KEY_LEFT, KEY RIGHT)

kfire:TKeyFire = TKeyFire.Create(KEY_SPACE) jfire:TStickFire = TStickFire.Create(0, 0)
keyboard.AddFire(kfire)

stick.AddFire(jfire)
stick.AddFire(kfire)

Local controller:IController = keyboard
While Not KeyHit(KEY ESCAPE)

SetColor(255, 255, 255)

DrawlLine(320, 240, 320+64, 240)
DrawLine(320, 240, 320-64, 240)
DrawLine(320, 240, 320, 240+64)
DrawlLine(320, 240, 320, 240-64)

If KeyHit(KEY F1)
If controller.Name = "Keyboard"
controller = stick
Else
controller = keyboard
End If
End If

If controller.Name = "Keyboard"
DrawText("Keyboard", 0, 25)
Else
DrawText("Joystick", 0, 25)
End If

DrawAxis (320, 240, controller.DLeft(), True, True)
DrawAxis (320, 240, controller.DRight(), True, False)
DrawAxis (320, 240, controller.DUp(), False, True)
DrawAxis (320, 240, controller.DDown(), False, False)

158

Wend

For i:Int = 0 To controller.ButtonCount()-1

Next
Flip
Cls

If controller.Fire(i)
SetColor(228, 228, 228)
Else

SetColor(58, 58, 58)
End If
DrawOval(50 + (i * 16), 10, 10, 10)

CHAPTER 15

COMMON INPUT ROUTINE

159

CHAPTER 16

Collision Detection

Collision detection is the most important part of an action game. Without it, you would walk through walls,
bullets...Wait! What am I saying? That would be great! Great, if we were cheating. This section takes us
through what collision detection is.

Simple Collisions

In our game world, we must respect the laws of physics. We can bend them, if we like, but they should
remain intact. To this end, there are some simple laws that we can apply.

e No object can occupy the same space and time as another object.
e Abodyis at rest until a force is applied to it.

¢ Abody will maintain its motion until a force equal to it is applied.

The First Rule—Collision Detection

Because two physical objects cannot appear at the same space at the same time, we must be able to build
that somehow into our game world. We can do this using the keyword ImagesCollide. For the following
example, we will need two different images, both 32x32 pixels. One called a.png and the other called b.png.
b.png will be controlled by the mouse, and a.png will remain static in the middle of the screen. When the two
come into contact with each other (Figure 16-1), a message will be displayed (“Bang!”).

© Sloan Kelly 2016 161
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_16

CHAPTER 16 * COLLISION DETECTION

® | BlitzMax Apphcation B o *

"

Figure 16-1. Collision of two physical objects

Graphics 640, 480
AutoMidHandle(True)
a:TImage = LoadImage("a.png")
b:TImage = LoadImage("b.png")
While Not KeyHit(KEY_ ESCAPE)
If ImagesCollide(a, 320, 240, 0, b, MouseX(), MouseY(), 0)
DrawText("Bang!", 0, 0)
End If

DrawImage(a, 320, 240)
DrawImage(b, MouseX(), MouseY())

Flip
Cls

Wend

Notice that, technically, we’ve broken the first rule. We can still move block B over block A (Figure 16-2).
We can rewrite the preceding code to allow for solid collisions, as follows:

162

CHAPTER 16 * COLLISION DETECTION

-

8 ' BlitzMax Application L& Lo

e

Figure 16-2. Insert caption

Graphics 640, 480
AutoMidHandle(True)

a:TImage = LoadImage("a.png")
b:TImage = LoadImage("b.png")
lastx:Int = MouseX()
lasty:Int = MouseY()

While Not KeyHit(KEY ESCAPE)
X = MouseX()

y = MouseY()

If ImagesCollide(a, 320, 240, 0, b, X, y, 0)
DrawText("Bang!", 0, 0)

X = lastx

y = lasty
Else

lastx = x

lasty = y
End If

163

CHAPTER 16 * COLLISION DETECTION

DrawImage(a, 320, 240)
DrawImage(b, x, y)

Flip
Cls

Wend

A Simple Game

In this simple game, you have to traverse the screen, starting at the top left and ending at the bottom right.
There are a number of images to create—all at 16x16 pixels.

Red: Red block will kill you (red.png)
Blue: Blue block is impenetrable (blue.png)
Yellow: End block (yellow.png)

You will also have to create a player (16x16 also) image (man.png) (Figure 16-3). Oh, and there is a time
limit!

8 | BlitzMax Application & o *

51 seconds left!

.

Figure 16-3. Provide caption

164

CHAPTER 16 COLLISION DETECTION

Rem
Simple game
Red - Avoid! They kill you and send you back to the start
Blue - Can't get around them Yellow - Your goal

End Rem

Graphics 640, 480
Incbin "red.png"
Incbin "blue.png"
Incbin "yellow.png"
Incbin "man.png"

Type TBlock
Field X:Int
Field Y:Int
Field BlockType:Int

Method Draw()
Select BlockType

Case 1
DrawImage(red, X, Y)
Case 2
DrawImage(blue, X, Y)
End Select
End Method

Function Create:TBlock()
0:TBlock = New TBlock
0.X = Rnd(600) + 40 ' buffer of 40 pixels around start
0.Y = Rnd(440) + 40 ' and end markers
0.BlockType = Rnd(2) + 1
Return o
End Function

End Type

Global red:TImage = LoadImage("red.png")
Global blue:TImage = LoadImage("blue.png")
Global yellow:TImage = LoadImage("yellow.png")
Global man:TImage = LoadImage("man.png")

Global blocks:TList = Createlist()

While Not KeyHit(KEY_ SPACE)
DrawText("This is a very simple game. Cursor keys move the man on-screen.", 0, 0)
DrawText("Avoid the red blocks. The blue blocks just slow you down", 0, 10)
DrawText("There is a time limit of 60 seconds. Each screen you go through", 0, 20)

DrawText("your available time decreases by 5 seconds.", 0, 30)
DrawText("Press SPACE to play", 0, 50)

165

CHAPTER 16 = COLLISION DETECTION

Flip
Cls

Wend
#StartGame

Global counter:Int = 60000
Global blockcounter:Int = 40
exitgame:Int=False

#AnotherRound

tmr:Int = MilliSecs()
x:Int =0

y:Int = 0

FlushKeys()
Rand(MilliSecs())
ClearList(blocks)

For i = 1 To blockcounter
b:TBlock = TBlock.Create()
blocks.AddLast(b)

Next

While MilliSecs() < (tmr + counter+1000) And Not exitgame
allowmovement:Int = True

If KeyHit(KEY ESCAPE)
exitgame=True
End If

If KeyDown(KEY LEFT) And x > 0
For b:Tblock = EachIn blocks
If b.BlockType = 1
If ImagesCollide(man, x-4, y, 0, red, b.X, b.Y, 0)

X =0
y==0
End If
Else

If ImagesCollide(man, x-4, y, 0, blue, b.X, b.Y, 0)
allowmovement = False
End If

End If
Next

166

CHAPTER 16

If allowmovement
X = X -4
End If
End If

allowmovement = True

If KeyDown(KEY_RIGHT) And x < 640 - 16
For b:Tblock = EachIn blocks
If b.BlockType = 1
If ImagesCollide(man, x+4, y, 0, red, b.X, b.Y, 0)

X =0

y=0

allowmovement = False
End If

Else
If ImagesCollide(man, x+4, y, 0, blue, b.X, b.Y, 0)
allowmovement = False
Exit
End If
End If
Next

If allowmovement
X = X +4 End If
End If
End If

allowmovement = True

If KeyDown(KEY_UP) And y > 0
For b:Tblock = EachIn blocks
If b.BlockType = 1
If ImagesCollide(man, x, y-4, 0, red, b.X, b.Y, 0)

X =0

y=0

allowmovement = False
End If

Else
If ImagesCollide(man, x+4, y, 0, blue, b.X, b.Y, 0)
allowmovement = False
Exit
End If
End If
Next
If allowmovement
y=y-4
End If
End If
allowmovement = True

COLLISION DETECTION

167

CHAPTER 16 = COLLISION DETECTION

If KeyDown(KEY DOWN) And y < 480 - 16
For b:Tblock = EachIn blocks
If b.BlockType = 1
If ImagesCollide(man, x, y+4, 0, red, b.X, b.Y, 0)

X =0

y=0

allowmovement = False
End If

Else
If ImagesCollide(man, x, y+4, 0, blue, b.X, b.Y, 0)
allowmovement = False
Exit
End If
End If
Next

If allowmovement
y=y+
End If
End If

If ImagesCollide(man, x, y, 0, yellow, 640- 16, 480-16, 0)
Goto EndGame
End If

secsleft:Float = (counter/1000) - ((MilliSecs() - tmr) / 1000)
s:String = Int(secsleft) + " seconds left!" DrawText(s, (640 - TextWidth(s))/2, 0)
For b:TBlock = EachIn blocks
b.Draw()
Next

DrawImage(yellow, 640-16, 480-16)
DrawImage(man, x, y)

Flip

Cls

ResetCollisions()
FlushMem()
Wend
#EndGame
FlushKeys()
If Int(secsleft) > 0 And Not exitgame
counter = counter - 5000
If counter < 10000

counter = 10000
End If

168

CHAPTER 16 COLLISION DETECTION

While Not KeyHit(KEY SPACE)
DrawText("Congratulations you did that with only " + Int(secsleft) +
left!", 0, 10)
DrawText("Press SPACE to start again -with only " + (Int(counter/1000)) + " on
the clock!", 0, 20)
Flip
Cls

seconds

Wend
blockcounter = blockcounter + 5
Goto AnotherRound
Else If Int(secsleft) = 0
While Not KeyHit(KEY SPACE)
DrawText("Bad luck! You ran out of time", 0, 10)
DrawText("Press SPACE to start again!", 0, 20)
Flip
Cls
Wend
Goto AnotherRound
End If

DrawText("Want to play again? Y = Again", 0, 0)
Flip
Cls
kc = WaitKey()
If ke = KEY_ Y
Goto StartGame
End If

Rewrite the preceding simple game to allow the user to choose between a keyboard or joystick as
controllers.

169

CHAPTER 17

OpenGL Special Effects

BlitzMax has access to the richness that the OpenGL API exposes. This also includes some neat screen-based
effects.

Rotating Images

Images can be rotated in real time using SetRotation before you draw them. Note that unless you specify
SetRotation(0), all images will be rotated.

SetRotation

Set rotation requires one parameter—the angle of rotation. BlitzMax then does all the hard calculations
behind the scenes (Figure 17-1). The following example also uses GetRotation to obtain the angle of the
current rotation:

© Sloan Kelly 2016 171
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_17

CHAPTER 17 = OPENGL SPECIAL EFFECTS

r — A

8 BlitzMax Application @ o et

Angle 323.000000

e

Figure 17-1. BlitzMax rotating application

Graphics 640, 480

Local stick:TImage = LoadImage("stick.png")
MidHandleImage(stick)

Local angle:Int = 0
While Not KeyHit(KEY_ESCAPE)

SetRotation(angle)

DrawImage(stick, 160, 120)

DrawImage(stick, 460, 120)

DrawImage(stick, 160, 360)

DrawImage(stick, 460, 360)

s:String = "Angle " + GetRotation() SetRotation(0)
DrawText(s, (640 - TextWidth(s))/2, 240)

Flip
Cls

172

CHAPTER 17 © OPENGL SPECIAL EFFECTS

angle = angle + 1

If angle=360
angle = 0
End If

Wend

Notice that we have to call SetRotation(0) after we find out the current rotation.
What would happen if we removed SetRotation(0)? Alter the preceding program to only rotate the
top-left and bottom-right images. Hint: Use SetRotation(0).

Scaling Images

Images can be scaled in BlitzZMax just as easily as they can be rotated. The SetScale command is used to
increase or decrease the scale of any objects drawn after its use, much as with the SetRotation keyword
(Figure 17-2). The following program displays growing text, starting off very small and ending up x3 scale:

r A

8 ' BlitzMax Application LG Lo
Scale: 3.00000000

BlitzMax!

e

Figure 17-2. Increasing the scale of text times three

173

CHAPTER 17 = OPENGL SPECIAL EFFECTS

Graphics 640, 480

Local s:String = "BlitzMax!"
Local scale:Float = 0

Local x:Int = 0

Local y:Int = 0

While Not KeyHit(KEY ESCAPE)
SetScale(scale, scale)
scale = scale + .05

If scale > 3
scale = 3
End If
x = (320 - TextWidth(s))

y = (240 - TextHeight(s))

DrawText(s, X, y)

SetScale(1, 1)
DrawText("Scale:
Flip
Cls

Wend

+ scale, 0, 0)

Note that GetScale is used to display the current scale.

Collisions Revisited

The simple ImagesCollide keyword cannot be used with scaled or rotated images. There is another keyword
that deals with images that have been rotated and/or scaled: the originally titled ImagesCollide2 keyword.
The parameters for ImagesCollide2 are

ImagesCollide(img1, x1, y1, framel, anglel, scalexl, scaleyl, img2, x2, y2, frame2, angle2,
scalex2, scaley2)

The example below shows a rotating Xbox controller with our stick man from the simple game a few pages
ago. When he touches the spinning controllers, “Man hits stick!” is displayed on the screen (Figure 17-3).

174

CHAPTER 17 © OPENGL SPECIAL EFFECTS

r p— - N
® ° BlitzMax Apphcation — - S|

FPS: 61

Man hits stick!

S

Figure 17-3. Rotating Xbox controller colliding with stick man

Graphics 640, 480

Local stick:TImage = LoadImage("stick.png")
Local man:TImage = LoadImage("man.png")
MidHandleImage(stick)

MidHandleImage(man)

Local angle:Int = 0

HideMouse
While Not KeyHit(KEY_ESCAPE)

If ImagesCollide2(stick, 320, 240, 0, angle, 1, 1, man, MouseX(), MouseY(), 0, 0, 1, 1)
SetRotation(0)
DrawText("Man hits stick!", 0, 0)

End If

175

CHAPTER 17 = OPENGL SPECIAL EFFECTS

SetRotation(angle)

DrawImage(stick, 320, 240)
SetRotation(360 - angle)
DrawImage(man, MouseX(), MouseY())

Flip
Cls

ResetCollisions()
FlushMem()

angle = angle + 1
If angle=360

angle = 0
End If

Wend

Scale the stick graphic from .5 to 2 as it rotates.

Blending Modes

BlitzMax allows you to control how pixels are combined with existing pixels in the back buffer. The two
keywords that are used to set the blending modes are

SetBlend
SetAlpha

The SetBlend keyword controls the blend mode of how pixels are combined with the existing pixels in
the back buffer. The effect values are shown in Table 17-1.

Table 17-1. Blend Modes and Their Effects

Blend mode Effect

SOLIDBLEND Pixels overwrite existing back buffer pixels.

MASKBLEND Pixels are drawn only if their alpha component is greater than .5.

ALPHABLEND Pixels are alpha blended with existing back buffer pixels.

LIGHTBLEND Pixel colors are added to back buffer pixel colors, giving a “lightening” effect.
SHADEBLEND Pixel colors are multiplied with back buffer pixel colors, giving a “shading” effect.
Blend Mode Effects

The following example uses the rotating Xbox controller graphic but adds a twist. By pressing the spacebar,
the program toggles between all five modes (Figure 17-4).

176

CHAPTER 17 OPENGL SPECIAL EFFECTS

S et o [e

Figure 17-4. Using the spacebar to toggle between modes

Graphics 640, 480

Local stick:TImage = LoadImage("stick.png")
Local flowers:TImage = LoadImage("flowers.jpg")
MidHandleImage(stick)

Local angle:Int = 0
Local blendmode:Int = ALPHABLEND
Local blendfordisplay:Int = 0

HideMouse
While Not KeyHit(KEY_ESCAPE)

SetBlend(1)
SetRotation(0)
SetAlpha(1)
DrawImage(flowers, 0, 0)

DrawText("SOLID " + SOLIDBLEND + ".", 0, 0)
DrawText("MASK " + MASKBLEND + ".", 0, 10)
DrawText("ALPHABLEND " + ALPHABLEND, 0, 20)

177

CHAPTER 17 = OPENGL SPECIAL EFFECTS

DrawText ("LIGHTBLEND" + LIGHTBLEND,O ,30)
DrawText ("SHADEBLEND" + SHADEBLEND, 0, 40)

SetRotation(angle)
If KeyHit(KEY_SPACE)

blendmode = blendmode + 1

If blendmode = 6
blendmode = 1

End If

blendfordisplay = GetBlend()
End If

SetBlend(blendmode)

If blendmode = ALPHABLEND
SetAlpha(.5)

Else
SetAlpha(1)

End If

DrawImage(stick, 320, 240)
Flip

Cls

angle = angle + 1

If angle=360
angle = 0
End If
Wend

178

CHAPTER 18

Paratrooper: Retro Involved

Paratrooper is a game for one player. You control the gun turret at the bottom center of the screen (Figure 18-1).
The idea is to protect your base from the descending paratroopers being flown in. Once 15 paratroopers have

landed safely, it is game over.

= S ;
| BtzMax Apphcation & - =

5606e100000)

Figure 18-1. The Paratrooper game screen

© Sloan Kelly 2016
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_18

179

CHAPTER 18 = PARATROOPER: RETRO INVOLVED

It's a simple game concept that hides a number of intricate programming routines. For example, there is
rotation in the gun barrel that is separate from the main turret block. Then the player fires the gun. We'll use
a little math to send the bullet along the right trajectory.

We also look at some of the special effects covered in Chapter 17. You can, I hope, see the evolution of
the games throughout the book and observe that, using BlitzMax, you can create some fantastic 2D games
that are every bit as complex and fast as those made with machine code or C++. Not to mention the added
bonus that all that is required to get it running across three platforms (PC , Mac, Linux) is a recompile!

Project Management

The project is split across multiple files. Each file contains either the main program or a supporting UDT
definition. I have deliberately split up the files, to show that multiple developers can work on the same
project at the same time.

The main paratrooper.bmx file contains all the code to instantiate the objects from the UDTs defined
in the supporting files. There is no game code whatsoever in the paratrooper.bmx file! In fact, there is only
code to control the menu system that we will employ on this project.

Game Dynamics

In order to keep the player interested, he or she can choose the level of difficulty before setting off to play the
game. From the menu system, a player can choose from four options.

Lots of Options

Speaking of options, the player has the option to pause the game by pressing the F9 key. On doing so, the
screen darkens, and the game freezes. This is a really simple but effective technique that will be explained in
this chapter.

Graphics

There are a number of graphics associated with this project, and these are detailed below.

The Paratrooper

The paratrooper image is an animated image consisting of two frames. The first frame is a soldier at
attention. The second is the paratrooper with his arms raised. This is the frame that is shown when the
paratrooper is holding his parachute (Figure 18-2).

180

http://dx.doi.org/10.1007/978-1-4842-2523-3_17

CHAPTER 18 I PARATROOPER: RETRO INVOLVED

A
b
L}
:
F
oy
)
Y
5
P‘

.
r‘r‘-f_‘r

-
ALE A AR AR A A AR A

Figure 18-2. Frame showing the paratrooper holding his parachute

Each frame is 32x48, giving an overall size of 64x48.

The Gun Emplacement

The gun emplacement is split into two sections (Figure 18-3). The major part is the dome that measures
48x48 pixels.

3l

T 9 e Tot -

e

e)
.

LJ

Figure 18-3. The gun emplacement, split in two screens

181

CHAPTER 18 ' PARATROOPER: RETRO INVOLVED

We cheat with the barrel of the emplacement. We're going to place the rotation handle for the barrel at
the center of the image. This means that we also can make the barrel 48x48 pixels (Figure 18-4).

Figure 18-4. The barrel of the gun emplacement

The bullet is a simple 6x6 image (Figure 18-5).

182

CHAPTER 18 PARATROOPER: RETRO INVOLVED

Figure 18-5. Image of the bullet

Joystick vs. Keyboard?

Yes, it’s true! You can use either the keyboard or joystick to play the game. Select the option you want from
the main menu. There is no option for mouse—could you code one?

Sound FX

There are spot sound effects used throughout the game. I created them by making shooting noises and
saying “Arrgh!” and generally making silly noises in Audacity.

On with the Game

As mentioned before, this game is based on the old Apple][game that’s resurfaced on the iPod. It’s always
been good fun! Your job is to stop enemy troops from entering the base. When 15 troops have successfully
landed, it's game over! Control the turret using the keyboard or joystick (left-right) and fire when ready. You
can also use a joystick by changing the playwithstick variable to True. The control keys are left and right
cursors and space fires. Good luck!

Paratroops.bmx

The Paratroops.bmx file contains the main program for our game. It controls the various options that can
be set and how the game is started. The code is commented, so that we don’t have to break up the code with
explanatory text. The comment blocks contain the why rather than the how that the code provides.

183

CHAPTER 18 = PARATROOPER: RETRO INVOLVED

Rem
Paratroops! A game by Sloan Kelly

This game is based upon the old Apple game that's resurfaced on the iPod. It's always
good for a wee blast! Your job is to stop enemy troops entering the base. When 15
troops have

successfully landed, it's game over for you, m'laddy!

Control the turret using the keyboard or joystick (left - right) and fire when ready.
The control
keys are left and right cursors and space fires. Good luck!

End Rem

Graphics 800, 600

' Some include files for classes

Include "Controller.bmx
keyboard abstract classes

Include "TParatroopGame.bmx the actual game
itself is contained in this one file

this is the joystick /

Include a few images in the executable

Incbin "images/dome.png"

Incbin "images/mountain.jpg"
Incbin "images/grass.png"
Incbin "images/bullet.png"
Incbin "images/barrel.png"
Incbin "images/paratrooper.png"
Incbin "images/parachute.png"

' some level constants
Const MOMMY:Int
Const ADULT:Int
Const FAST:Int
Const DUDE:Int

999

995
990
985

Boolean: If we're using a game controller this is set to true

Global playwithstick:Int = False

This is the percentage chance of another trooper being created in a
' game cycle. This is passed to the game engine

184

CHAPTER 18 PARATROOPER: RETRO INVOLVED

Global gamelevel:Int = 997
Rem

Show the main menu from the list

End Rem

Function ShowMenu:Int()
menuitems:TList = New Tlist
menuitems.AddLast("Play Game")
menuitems.AddLast("Help")
If playwithstick

menuitems.AddLast("Playing With Joystick")

Else

menuitems.AddLast("Playing With Keyboard")
End If
menuitems.AddLast("Set Difficulty")
menuitems.AddLast("Exit")
menu:TMenuScreen =TMenuScreen.Create("incbin::images/backdrop.png”, "incbin::images/
title.png", menuitems)
item:Int = menu.Show()
Return item
End Function

Rem

Set the difficulty level of the game
End Rem
Function SetDifficulty:Int()

Select gamelevel

Case MOMMY
itemsel = 0
Case ADULT
itemsel = 1
Case FAST
itemsel = 2
Case DUDE
itemsel = 3
End Select

menuitems:TList = New Tlist

menuitems.AddLast("Please don't let mummy know I'm playing")
menuitems.AddLast("It's OK - I'm an adult")

menuitems.AddLast("2Fast 2Furious was for children!")
menuitems.AddLast("Dude. That's just wrong...")

menu:TMenuScreen = TMenuScreen.Create("incbin::images/backdrop.png",
"incbin::images/title.png", menuitems, itemsel)

item:Int = menu.Show()

1vl:Int = 997

185

CHAPTER 18 = PARATROOPER: RETRO INVOLVED

Select item

Case 0
vl = MOMMY
Case 1
1vl = ADULT
Case 2
1vl = FAST
Case 3
1vl = DUDE
End Select
Return 1vl

End Function

Function ShowHelp()

helplines:TList = New TList

helplines.AddLast("Welcome to Paratroops!")

helplines.AddLast("")

helplines.AddLast("Move the cannon at the bottom of the screen to shoot down enemy
paratroopers!")

helplines.AddLast("")

helplines.AddLast("Make sure you get all of them, because if 15 of them land it's game
over!")

helplines.AddLast("")

helplines.AddLast("Use joystick or keys to move - cursor left/right and space is fire.
F9 - Pause / Un-Pause")

helplines.AddLast("")

helplines.AddLast("You can select keyboard or joystick on the front menu.")
helplines.AddLast("")

helplines.AddLast("")

helplines.AddLast("Press SPACE to return to the main menu.")

help:THelpScreen = THelpScreen.Create("incbin::images/backdrop.png",. "incbin::images/

smalltitle.png",..helplines,.. 240)

help.Show()

End Function

Function DoGame()

We're using the abstract IController from the previous section - see code in

appendices

186

Local controller:Icontroller

Local stick:TStick = TStick.Create("Joystick", 0)

Local keyboard:TKeyboard = TKeyboard.Create("Keyboard", KEY UP, KEY DOWN, KEY LEFT,
KEY_RIGHT)

Local keyfire:TKeyFire = TKeyFire.Create(KEY_ SPACE)

CHAPTER 18 PARATROOPER: RETRO INVOLVED

For i:Int="0" To 7
stickfire:TStickFire = TStickFire.Create(i)
stick.AddFire(stickfire)

Next

keyboard.AddFire(keyfire)

Notice that the 'controller' variable is assigned
a value depending on the 'playwithstick' boolean
The 'controller' variable is then passed to the game
engine. This abstraction means that we should be safe
even If someone invents a New virtual reality glove to
control game objects '
If playwithstick

controller = stick
Else

controller = keyboard
End If

Setting up the game engine is a simple call to the create routine
' passing in the paths to the image files '
game:TParatroopGame = TParatroopGame.Create(controller,..

"incbin::images/mountain.jpg",..
"incbin::images
"incbin::images/dome.png",..
"incbin::images/barrel.png",..
"incbin::images/bullet.png"”,..
"incbin::images/paratrooper.png”,..
"incbin::images/parachute.png”,..

gamelevel)

FlushKeys() '

' Start the game loop. This will run until the game is over (player loses)
or the 'Quit' option is taken (player quits)

game.GameLoop()
FlushKeys()
End Function

This is the main program from this point.
'The mouse is hidden and the menu is shown.

187

CHAPTER 18 = PARATROOPER: RETRO INVOLVED

When the user selects an option, the respective ' function is called.

HideMouse()

#MainMenu
FlushKeys()
Select ShowMenu()
Case 0
DoGame() ' Play the game
Case 1
ShowHelp() ' Show the help screen
Case 2
playwithstick:~True ' Toggle between using the joystick and the keyboard
Case 3
gamelevel = SetDifficulty() ' set the difficulty of the game
Case 4
Goto Quitter
End Select
FlushKeys()
' There is an option on the main menu that allows the user to exit the game to the 0S
This functionality is missing in our game, so we're straight out to the 0S when the
user base is over run or they quit
'Goto MainMenu ' this has been commented out because the main menu isn't finished

' This is the end of the game. No more code to run, so the program exits

#Quitter

TMenuScreen.bmx

The menu screen gets its own class. Its purpose is to prompt the user with various options: play the game,
change the input method, change the difficulty, request help, and quit to the OS. It does all that through the
Show() method. It implements its own version of the outline draw. Could you re-code it to use a centrally
available function?

Type TMenuScreen
Field backdrop:Timage
Field title:TImage
Field current_item:Int = 0

Field items:TList

Method DrawOutline(str:String, x:Int, y:Int, r:Int, g:Int, b:Int)
SetColor(o, 0, 0)
DrawText(str, x, y)
DrawText(str, x+1, y)
DrawText(str, x-1, y)
DrawText(str, x, y+1)
DrawText(str, x, y-1)
DrawText(str, x+1, y+1)
DrawText(str, x+1, y-1)

188

CHAPTER 18 PARATROOPER: RETRO INVOLVED

DrawText(str, x-1, y+1)

DrawText(str, x-1, y-1)

SetColor(r, g, b)

DrawText(str, x, y)

SetColor(255, 255, 255)
End Method

Rem

Show Method
Displays the menu screen and does some basic animation You could spice this up
somewhat. ..

End Rem

Method Show:Int()

Local y:Int = 0
Local count:Int
Local last:Long

0;
MilliSecs()

SetBlend(ALPHABLEND)

While Not KeyHit(KEY_SPACE) And Not KeyHit(KEY ENTER)
Cls
DrawImage(backdrop, 0, 0)
DrawImage(title, 0, 0)

menu_y:Int = 388
count:Int = 0O;
For s:String = EachIn items

If current_item = count DrawOutline(s, (800-
TextWidth(s))/2 , menu_y, 255, 255, 128)

Else
DrawOutline(s, (800- TextWidth(s))/2 , menu_y, 128, 128, 128)
End If
count = count + 1
menu_y = menu_y + 25

Next

Flip

If KeyHit(KEY_DOWN)
current_item = current_item + 1
End If

If KeyHit(KEY_UP)
current_item = current_item - 1
End If

If current_item < 0

current_item = CountlList(items)-1
End If

189

CHAPTER 18 = PARATROOPER: RETRO INVOLVED

If current item > CountlList(items)-1
current_item = 0

End If
Wend
Return current_item '' return the currently selected item to the calling
method
End Method
Rem

Create Function
Creates a copy of the TMenuScreen UDT and assigns
two images and a list of menu options to it

End Rem

Function Create: TMenuScreen(backimg:String, titleimg:String, list:TList,
itemsel:Int=0)
0:TMenuScreen = New TmenuScreen

o.backdrop = LoadImage(backimg)
o.title = LoadImage(titleimg)
o.items = list
o.current_item = itemsel
Return o

End Function

End Type

Controller.omx

Controller.bmx contains the abstraction for keyboard and joystick events (user turns right, user turns left, etc.)
as well as starting the game itself. The code for this is in the appendixes at the end of the book.

TParatroopGame.bmx

This is the main game engine and controls all the aspects of the game while it is in play:
User input
Random trooper creation and placement
Updating the existing troopers
Pausing the game
Quitting the game

It contains one function and nine methods. They are described following.

190

CHAPTER 18 PARATROOPER: RETRO INVOLVED

Create

This function creates an instance of TParatroopGame and assigns some default values before returning the
instance to the calling routine (Paratrooper.bmx).

CheckCollisions

For each bullet fired, a check is made to see if it hits a falling trooper or his chute. If the trooper is hit, both
the trooper and the chute are destroyed. If the chute is hit by the bullet, only the chute is destroyed, and the
trooper’s speed increases until he splats on the ground and is removed.

DrawScore

DrawScore draws the player’s score onscreen. It uses scaling and a homemade routine to give an outline
(see “DrawOutline”).

DrawLanded

DrawLanded is similar to DrawScore in that it give the user feedback on his progress. In this case, a count of
how many troops has landed on the ground. If there are ten or more, a further indication flashes, telling the
user how many troops are required to overrun the base.

Draw

Draw cycles through all the displayable objects in the game and displays them. Note that objects drawn first
are at the back. Later images are superimposed on these images in the back buffer.

Update

Update updates the player and adds more troops, if required. The trigger is set here if ten or more troops
have landed to start the flashing sign (see “DrawLanded”).

DoQuit

The background is dulled by making a call to SetColor. This is an important use of this keyword. You can
create great effects just by changing the current drawing color. Try different colors!

DoGameOver

When all the troops have landed, a “Game Over” message is displayed.

DrawQutline

DrawOutline draws text in the system font with a black outline. It reminded me of Super Mario World on the
SNES, and I liked the look.

191

CHAPTER 18 = PARATROOPER: RETRO INVOLVED

GameLoop
The main game loop cycles through all the updates and screen draws in this order:
Update all the player nonplayer characters
Draw all the images
Flip the back buffer
Clear the back buffer

Include "TGameBackdrop.bmx"
Include "TDome.bmx"
Include "TParatrooper.bmx"

Type TParatroopGame

Field back:TGameBackdrop = TGameBackdrop.Create()
Field dome:TDome

Field ctrl:Icontroller

Field paused:Int = False

Field quitgame:Int = False

Field ChanceOfNewTrooper:Int = 997

Field troops:TTroops

Field flashlanded:Int=False

Field flashtmr:Int = -1

Field gametimer:Int = MilliSecs() '' every 10 seconds, your chances of more troops
increase!

Method DrawOutline(str:String, x:Int, y:Int, r:Int, g:Int, b:Int)
SetColor(o, 0, 0)
DrawText(str, x, y)
DrawText(str, x+1, y)
DrawText(str, x-1, y)
DrawText(str, x, y+1)
DrawText(str, x, y-1)
DrawText(str, x+1, y+1)
DrawText(str, x+1, y-1)
DrawText(str, x-1, y+1)
DrawText(str, x-1, y-1)
SetColoxr(r, g, b)
DrawText(str, x, y)
SetColor(255, 255, 255)

End Method

Method CheckCollisions:Int(bulletlist:TList, trooperlist:TList)
Local sc:Int = 0

For b:TBullet = EachIn bulletlist
For t:TParatrooper = EachIn trooperlist

192

CHAPTER 18 PARATROOPER: RETRO INVOLVED

If Not t.Landed
If ImagesCollide(b.Image, b.X, b.Y, 0, t.Image, t.X, t.Y, 1)
b.Destroy = True
t.Destroy = True
SC =sC+5
End If

If ImagesCollide(b.Image, b.X, b.Y, 0, t.ChuteImage, t.X-8,
t.Y-48, 0)
t.haschute = False
t.YSpeed:*1.5
sC = sc + 10
End If
End If
Next
Next
Return sc
End Method

Method DrawScore()
s :String = "0000000" + dome.Score
s = "Score " + Right(s, 5)
SetScale(1.0, 2.0)
DrawOutline(s, 4, 4, 255, 255, 0)
SetScale(1.0, 1.0)

End Method

Method DrawLanded()
s:String = "00" + troops.Landed()
s = Right(s, 2) + " Landed!"
s1:String = "00" + (15 - troops.Landed())
s1 = "Watch out - " + Right(s1, 2) + " to go!"
SetScale(1.0, 2.0)

' this little bit of code flashes the "XX Landed!" text
' if the number landed >=10
If troops.Landed()>=10
If MilliSecs() > flashtmr + 750
flashtmr = MilliSecs()
flashlanded = Not flashlanded
End If
If flashlanded
DrawOutline(s, 794 - TextWidth(s), 4, 0, 255, 0)
SetScale(2.0, 1.0)
DrawOutline(s1, 400 - TextWidth(s)*2, 576, 0, 255, 0)
Else
DrawOutline(s, 794 -TextWidth(s), 4, 255, 0, 0)
SetScale(2.0, 1.0)
DrawOutline(s1, 400 - TextWidth(s)*2, 576, 255, 0, 0)
End If

193

CHAPTER 18 = PARATROOPER: RETRO INVOLVED

Else
DrawOutline(s, 794 - TextWidth(s), 4, 0, 255, 0)
End If
SetScale(1.0, 1.0)
End Method

Method Draw()
back.Draw(True) ' show backdrop scenery items
dome .Draw()
troops.Draw()
back.Draw(False) ' show foreground scenery items
DrawScore()
DrawLanded()

End Method

Method Update()
dome.Update(ctrl)
dome.Score = dome.Score + CheckCollisions(dome.Bullets, troops.Troopers)
troops.AddTrooper (ChanceOfNewTrooper)
troops.Update()

If troops.lLanded() >= 10 And flashtmr = -1
flashtmr = MilliSecs()
End If

If MilliSecs() > gametimer + 15000

gametimer = MilliSecs()

ChanceOfNewTrooper = ChanceOfNewTrooper - 1
End If

End Method

Method DoQuit()
SetColor(96, 96, 96)
Draw()
SetColor(255, 255, 255)
DrawOutline("Quit Game? (Y - Quit, Any other key continues)",
400- (TextWidth("Quit Game? (Y - Quit, Any other key continues)")/2), 298,
255, 0, 0)
Flip
Cls
ch = WaitKey()
If ch = KEY_ Y
quitgame = True
End If
End Method

Method DoGameOver ()
SetColor(96, 96, 96)
Draw()

SetColor(255, 255, 255)

194

CHAPTER 18 PARATROOPER: RETRO INVOLVED

Yourbasewasoverrun!",

DrawOutline("G A M E ER -
OVER-Yourbasewasoverrun !")/2),

400- (TextWidth("G A
298, 255, 0, 0)
DrawOutline("Thank you for playing", 400-(TextWidth("Thank you for playing")/2),
340, 255, 255, 255)
Flip
Cls
tmr=MilliSecs()
While MilliSecs() < tmr + 5000 ' wait five seconds
Wend
quitgame = True
End Method

Method GameLoop()
While Not quitgame
If KeyHit(KEY_ESCAPE) And Not paused

DoQuit()

'quitgame = True

FlushMem()

ResetCollisions()
End If

If troops.Landed() »>=15
DoGameOver ()
End If

If Not quitgame
If KeyHit(KEY_F9)
paused:~True
End If

If Not paused
Update()
SetColor(255, 255, 255)
Else
SetColor(96, 96, 96) '' make everything 'dark’

End If
Draw()

If paused
SetColor(255, 255, 255)
DrawOutline("G AME P AU S E D", 400-(TextWidth("GAME P AU
S E D")/2), 298, 255, 255, 0)

End If

Flip

Cls
FlushMem()

195

CHAPTER 18 = PARATROOPER: RETRO INVOLVED

ResetCollisions()
End If

Wend
End Method

Function Create:TParatroopGame(controller:IController,..

background:String, ..

grass:String,..
domesrc:String,..
gunsrc:String,..
bullet:String,..
trooper:String, ..
chute:String, ..

chance:Int)

o:TParatroopGame = New TparatroopGame
o.ctrl = controller
s:TScenery = TScenery.Create(background, False, 0, 0)
g:TScenery = TScenery.Create(grass, True, 0, 568)
o0.back.AddImage(s)
o0.back.AddImage(g)
0.Troops = TTroops.Create(trooper, chute)
o.dome = TDome.Create(domesrc, gunsrc, bullet)
0.ChanceOfNewTrooper = chance
Return o
End Function

End Type

TGameBackdrop.bmx

TGameBackdrop is a simple class to allow elaborate fore- and background objects to be drawn. I did it
especially for this game, and it’s not something that I would use all the time, but it’s nice to have an extra
class in there!

Type TScenery
Field Image:TImage
Field IsForeground:Int = False
Field X:Int
Field Y:Int

196

CHAPTER 18 PARATROOPER: RETRO INVOLVED

Method Draw()
DrawImage(Image, X, V)
End Method

Function Create:TScenery(src:String, isFore:Int=False, x:Int, y:Int)
0:TScenery = New Tscenery
o.Image = LoadImage(src)
o.IsForeground = isFore
0.X = x
0.Y =y
Return o

End Function

End Type

Type TGameBackdrop

Field Images:TList = Createlist()
Method Draw(backgroundOnly:Int=True)
For s:TScenery = EachIn Images
If backgroundOnly = Not s.IsForeground
s.Draw()
End If
Next
End Method

Method AddImage(s:TScenery)
Images.AddLast(s)
End Method

Function Create:TGameBackdrop()
o:TGameBackdrop = New TGameBackdrop

Return o
End Function

End Type

TParatrooper.bmx

The TParatrooper file contains two classes: TParatrooper and TTroops. TTroops is the container class for
all the TParatrooper instances in the game.

TParatrooper
TParatrooper contains one function and two methods:
Create
Draw
Update
197

CHAPTER 18 = PARATROOPER: RETRO INVOLVED

Create

This creates an instance of the TParatrooper object.

Draw

When the trooper is in flight, his parachute is drawn, if he has landed, then the parachute is not drawn, and
the standing trooper image is shown. If he has had his chute destroyed and is still falling, the chute is not
displayed.

Update

This updates the position of the trooper, based upon its y axis speed. If the trooper lands without a
parachute, he is destroyed—read removed from the game world.

Type Tparatrooper
Field X:Float
Field Y:Float
Field Image:Timage
Field ChuteImage:Timage
Field YSpeed:Float
Field Landed:Int = False
Field haschute:Int = True
Field Destroy:Int = False

Method Update()
If Not Landed

Y =Y + Yspeed

If Y >= 600-32
Y = 600-32
Landed = True
YSpeed = 0

If Not haschute ' get rid of the ones who fell to earth!
Destroy = True
End If
End If
End If
End Method

Method Draw()
If Landed
DrawImage(Image, X, Y, 0)
Else
If haschute
DrawImage(ChuteImage, X-8, Y- 48)
End If
DrawImage(Image, X, Y, 1)
End If
End Method

198

CHAPTER 18 PARATROOPER: RETRO INVOLVED

Function Create:TParatrooper(x:Int,..
y:Int=-64,..
ys:Float=0.4,..
trooper:String,..
chute:String)

o:TParatrooper = New TParatrooper
0.X = X
0.Y =y
0.YSpeed = ys
0.Image = LoadAnimImage(trooper, 32, 48, 0, 2)
0.ChuteImage = LoadImage(chute)
Return o
End Function

End Type

TTroops

TTroops contains one function and three methods.
Create
Draw
Update
Landed

Create

This returns an instance of TTroops.

Draw

Draw cycles through all the TParatrooper instances within the Troopers field variable and draws them
onscreen.

Update

This method cycles through all the TParatrooper instances within the Troopers field variable and updates
them. Any that have their Destroy field set to True are removed from the list.

Landed

Landed returns the number of TParatrooper instances within the Troopers field variable that have their
HasLanded flag set to True.

Type TTroops
Field Image:String
Field ChuteImage:String
Field Troopers:TList = Createlist()

199

CHAPTER 18 = PARATROOPER: RETRO INVOLVED

Method Update()
For t:TParatrooper = EachIn Troopers
t.Update()
If t.Destroy
ListRemove(Troopers, t)
End If
Next
End Method

Method Landed:Int()
c:Int =0
For t:TParatrooper = EachIn Troopers
If t.Landed
Ci4l
End If
Next
Return c
End Method

Method Draw()
For t:TParatrooper = EachIn Troopers
t.Draw()
Next
End Method

Method AddTrooper(val:Int)

If Rnd(1000) > val
x:Int = Rnd(768) + 32
y:Int = -64
ys:Float = 2
""trooper = LoadAnimImage(Image, 32, 48, 0, 2)
'"chute = LoadImage(ChuteImage)
Rand(MilliSecs())
t:TParatrooper = TParatrooper.Create(x, y, ys, Image, ChuteImage)
Troopers.AddlLast(t)
End If

End Method

Function Create:TTroops(trooper:String, chute:String)
0:TTroops = New Ttroops
o.Image = trooper ''LoadAnimImage(trooper, 32, 48, 0, 2)
0.ChuteImage = chute ''LoadImage(chute)
Return o
End Function
End Type

200

CHAPTER 18 PARATROOPER: RETRO INVOLVED

TDome.bmx

TDome . bmx contains two UDTs: TDome and TBullet.

TBullet

TBullet is the class containing information and methods about each and every bullet fired by the player.
TBullet contains one function and two methods, as follows.

Create

Create returns an instance of the TBullet class.

Draw

Draw draws the image of the bullet onto the back buffer.

Update

Update adds the x and y speeds to move the bullet away from the gun barrel and toward the edges. If the
bullet reaches the edges and has not hit a target, then it is destroyed.

Type TBullet
Field X:Float
Field Y:Float
Field XSpeed:Float
Field YSpeed:Float
Field Destroy:Int = False
Field Image:TImage

Method Draw()
DrawImage(Image, X, V)
End Method

Method Update()
x:+XSpeed
y:+YSpeed

If x < 00r x > 800
Destroy = True
End If

Ify<o
Destroy = True
End If
End Method

201

CHAPTER 18 = PARATROOPER: RETRO INVOLVED

Function Create:TBullet(x:Int, y:Int, xs:Float, ys:Float, img:TImage)
0:TBullet = New TBullet
0.X = X
0.Y =y
0.XSpeed = xs
0.YSpeed = ys
o.Image = img
Return o
End Function
End Type

TDome

TDome is the class that represents the player’s gun installation at the foot of the screen. It contains seven
fields, one function, and two methods.

The Fields

Dome: Shape of the dome

Gun: Shape of the gun

Bullet: Shape of the bullet

Rot: The current rotation (from -90 to +90) in degrees

LastFire: Timer used to count the last time the player fired. Although autofire
is permitted, the user cannot fire in rapid succession, because there is a gap of
250ms between each shot.

Score: How well the player is doing

Bullets: List of TBullet instances

Create

Create returns an instance of the TDome class.

Draw

Draw cycles through all the bullets and draws them first. It then draws the gun at the current rotation and
then draws the dome over the top.

202

CHAPTER 18

Update
Update updates the position of the bullets and the rotation of the gun.
Rem
Class : TDome
Author : Sloan Kelly
Purpose ¢ Player object for Paratroops!
game
End Rem
Type TDome

Const BULLET SPEED:Float = 4.5

Field Dome:TImage
Field Gun:TImage
Field Bullet:TImage
Field Rot:Float = 0.0
Field lastfire:Int
Field Score:Int = 0

Field Bullets:TList = Createlist()

Method Draw()
SetRotation(0)
For b:TBullet = EachIn Bullets
b.Draw()
Next
SetRotation(Rot)
DrawImage(Gun, 392, 576)
SetRotation(0)
DrawImage(Dome, 368, 555)
End Method

Method Update(controller:IController)
For b:TBullet = EachIn Bullets
b.Update()
If b.Destroy
ListRemove(Bullets, b)
End If
Next

If controller.DLeft()
Rot = Rot - 5.0
If Rot <= -90.0
Rot = -90.0
End If
End If

PARATROOPER: RETRO INVOLVED

203

CHAPTER 18 = PARATROOPER: RETRO INVOLVED

If controller.DRight()
Rot = Rot + 5.0

If Rot >= 90.0
Rot = 90.0
End If
End If

Local fired:Int = False

If controller.Fire(0) And MilliSecs() > lastfire + 250 ' don't want them to fire
too quickly!
lastfire = MilliSecs()
bx:Int = 388 + (32 * Sin(Rot))
by:Int = 574 - (32 * Cos(Rot))
xs:Float = BULLET_SPEED * Sin(Rot)
ys:Float = -BULLET_SPEED * Cos(Rot)
b:TBullet = TBullet.Create(bx, by, xs, ys, Bullet)
Bullets.AddLast(b)
End If

End Method
Function Create:TDome(domesrc:String, gunsrc:String, bulletsrc:String)

0:TDome = New TDome

0.Dome = LoadImage(domesrc)
0.Gun = LoadImage(gunsrc)
0.Bullet = LoadImage(bulletsrc)
MidHandleImage(o.Gun)

Return o

End Function
End Type

The image below (Figure 18-6) shows how the speed of the bullet is calculated. To get the bullet to move
in the right direction, we have to employ a little bit of math.

204

CHAPTER 18 PARATROOPER: RETRO INVOLVED

4

Figure 18-6. Diagram illustrating how the speed of the bullet is calculated

The x speed of the bullet is calculated by multiplying the radius of the barrel (32 pixels) by the sine of
the barrel’s angle.

The y speed of the bullet is calculated by multiplying the radius of the barrel (32 pixels) by the cosine of
the barrel’s angle.

This means that the bullet travels along the same path that the barrel is pointing. In the preceding
example, the bullet would be fired out toward the top right of the screen.

Enter the code as listed previously in the files indicated. Save them all to the SAME folder. You will have to
download images for these files. These images are available at waw.blitzmaxbook.com.

Change the pause screen to show the background in a blue shade. Hint: Use SetColor(r, g, b), where
1, g, and b are the red, green and blue elements.

205

http://www.blitzmaxbook.com/

CHAPTER 19

Sound Effects and Audio

There are a number of audio tools out there that will handle WAV and OGG files. The best I have come across
so far, and one that is available on Mac, PC, and Linux, is Audacity. Visit the SourceForge web site for more
details and download this great product. Best of all is that it’s free!

Currently, BlitzMax can only play back two sound file formats: WAV and OGG.

WAV

Developed by IBM and Microsoft, this is a format for storing sound in files. Support for WAV files was
built into Windows 95, making it the de facto standard for sound on PCs. WAV sound files end with a .wav
extension and can be played by nearly all Windows applications that support sound.

0GG

Ogg Vorbis is an audio compression format, comparable to other MP3 or AAC used to store and play digital
music, but differs in that it is free, open, and unpatented. The Ogg Vorbis specification is in the public
domain and is freely available for commercial and/or noncommercial use. Ogg refers to the Ogg Project,
which is an open source multimedia initiative, while Vorbis is the actual compression format.

BlitzMax and Sound

BlitzMax allows for a high degree of control over what sounds can be heard and where they are heard—left,
right, or center to the listener. In this chapter, I will discuss the following keywords:

LoadSound
PlaySound
SetChannelVolume
PauseChannel

ResumeChannel

© Sloan Kelly 2016 207
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_19

CHAPTER 19 SOUND EFFECTS AND AUDIO

LoadSound

LoadSound loads a sound into memory to a TSound variable. The format for this keyword is

Variable:TSound = LoadSound(path:String
[,LoopSound:Int=False])

By default, any sound loaded into BlitzMax is not looped.

PlaySound

PlaySound returns a TChannel variable containing the channel the sound is being played on. We use this
TChannel variable to control the sound later.

Channel:TChannel =
PlaySound(sound_variable:TSound)

SetChannelVolume

SetChannelVolume sets the volume for the specified channel. The format of the keyword is
SetChannelVolume(channel:TChannel, volume:Float)

where volume is between 0 and 1.0.

PauseChannel

PauseChannel pauses the playback of the sound on the specified channel. The format of this keyword is

PauseChannel(channel:TChannel)

ResumeChannel

ResumeChannel resumes the playback of the sound on the specified channel. The format of this keyword is

ResumeChannel (channel:TChannel)

BlitzMax Sound Example

The following example loads a sound—imaginatively called “music.ogg”—into memory and starts playing it.
Rem
Example sound application

End Rem
Graphics 640, 480, 16, 75 ' put in graphics mode for KeyHit()

sound:TSound = LoadSound("music.ogg", True)
channel:TChannel = PlaySound(sound)

208

curvol:Float = 1
playing:Int = True

While Not KeyHit(KEY ESCAPE)

Wend

Volume down...
If KeyHit(KEY_DOKWN)

curvol = curvol - 0.1

If curvol < 0.0

curvol = 0.0

End If

SetChannelVolume(channel, curvol)
End If

" Volume up...
If KeyHit(KEY_UP)

curvol = curvol + 0.1

If curvol > 1.0

curvol = 1.0

End If

SetChannelVolume(channel, curvol)
End If

' Pause
If KeyHit(KEY SPACE)
If playing
PauseChannel (channel)
Else
ResumeChannel (channel)
End If
playing:~True
End If

SetColor(255, 255, 255)
DrawText("Vol: " + (curvol*10), 0, 0)
If playing
SetColor(o, 255, 0)
DrawText("Play", 0, 10)
Else
SetColor(255, 0, 0)
DrawText("Paused", 0, 10)
End If
Flip
Cls

StopChannel(channel)

CHAPTER 19 = SOUND EFFECTS AND AUDIO

209

CHAPTER 19 SOUND EFFECTS AND AUDIO

Installing Audacity

nAudzwi

Launch a web browser and go to http://audacity.sourceforge.net/. Click the Download Audacity
for Windows link. If you have a Mac or Linux, click Other Downloads.

Follow the links onscreen until you get to the Select a mirror page. Click the location nearest you. The
file should download automatically. If you have a firewall or Microsoft Spyware filters, you may not be able to
download the file without Ctrl+clicking the link.

When you have downloaded the installer, double-click it and follow the instructions. Audacity will be
installed on your machine. Using Audacity, record the following three sounds.

Music.0gg

Take an MP3 file that you own and load it into Audacity. To do this, click File » Open from the menu bar
along the top of the screen. Browse to the location where your file is located. Select it and click Open » OK.
The file will load into Audacity, and the wave form will be displayed in the window. The file can be
saved as an OGG file by clicking File » Export as Ogg Vorbis...from the menu. Enter the name “music.ogg”

and ensure that the location is the same folder as the Paratroops game. Click Save » OK.

Argh.0gg and Ugh.0Ogg

For these two sounds, we're going to have a little fun! From the File menu in Audacity, select File » New.
This creates a new blank sound file. We’re now going to populate it with our own voice! You will need a
microphone connected to your computer for this to work.

Start recording by clicking the circular red Record button. Then, for the falling sound, say “Arghhhhh.”
Click the square yellow Stop button. You should have something like that shown in Figure 19-1.

210

http://audacity.sourceforge.net/

CHAPTER 19 © SOUND EFFECTS AND AUDIO

Ble (At Yew fromct Geneate Effect draivze tieb
et L] L]
= !

pn:: y :) .J '_'j .J y ni:)m'_-il-a\-iz nt[?m_-u 2 92 0
-8.

T b P o e =)

@t o] ppA
-10 (] 10 30 a0

Propct rate. 44100 Curser €00 000000 masec [Saep-To OM

Figure 19-1. What the “Arghhhhh” sound looks like in Audacity

There will be a lot of space at either side of the actual sound. To get rid of this, highlight the quiet area by
dragging the mouse over the quiet part of the wave (Figure 19-2).

M

Ble [St Yew Poject Gewate Effet drohre teb

._-;’0 o) n | "i 'ii

- % _)_)_)_)_)_) .‘qm‘-u-a-izo‘}m-iic-le

I P

R|DIA#E] olc]| ss2L
-10

[Cick a0 drag 1o select suto.

Promctrate 44100 | [Selecton: 001671837 - 0.04 353741 (002 681905 min sec) [Saap-To O]

Figure 19-2. Deleting whitespace

With this area selected, press the Delete key. Repeat this process for the other side. Once you have a file
you are happy with, export to Ogg Vorbis, as described in the preceding “Music.Ogg” section. Repeat this
process for an “Ugh” sound.

211

CHAPTER 19 SOUND EFFECTS AND AUDIO

You should now have three Ogg files in the Paratroops folder. Now it’s time to load them in and start
making some noise!

Altering the Paratrooper Game

Reload the files for the Paratrooper game in the previous section.
Add the following lines to the top of the file (just under Type TParatroopGame):

Field music:TSound = LoadSound("music.ogg", True)
"' loop the music

Field argh:TSound = LoadSound("argh.ogg", False) '
chute hit

Field ugh:TSound = LoadSound("ugh.ogg", False) '
bullet hit

This loads the sounds into memory. Now, we have to play the sounds. Note that the first sound
(music) is looped, and the other two are not. This is important, because while the first sound is to be played
throughout the game, the other two are spot effects and must not be looped.

Collisions

Alter the CheckCollisions() method to play a sound when either the parachute is hit (“Arghhhhh”) or the
trooper is hit (“Ugh!”).

Method CheckCollisions:Int(bulletlist:TList,
trooperlist:TList)
Local sc:Int = 0
For b:TBullet = EachIn bulletlist
For t:TParatrooper = EachIn trooperlist
If Not t.Landed
If ImagesCollide(b.Image, b.X, b.Y, 0, t.Image, t.X, t.Y, 1)
b.Destroy = True
t.Destroy = True
SC =sC+5
PlaySound(ugh)
End If
If ImagesCollide(b.Image, b.X, b.Y, 0, t.ChuteImage,
t.X-8, t.Y-48, 0)
t.haschute = False
b.Destroy = True
PlaySound(argh)
t.YSpeed:*1.5
sC = sc + 10
End If
End If
Next
Next
Return sc
End Method

212

CHAPTER 19 = SOUND EFFECTS AND AUDIO

Playing the Music

To play the music, add the PlaySound line to the GameLoop method, as follows:

Method GameLoop()
channel:TChannel = PlaySound(music)
While Not quitgame

And at the bottom:

Wend
StopChannel(channel)
End Method

And that’s it! Music and sound added to the game!

The music still plays while the game is paused. Can you stop the music temporarily?

What about shooting? Can you make a suitable sound for the firing gun? Where would you load the
sound? What event would play the sound?

213

CHAPTER 20

Putting It All Together

In this final chapter, we are going to look at designing a game from scratch and implementing and testing
it. In order to do this, you have need to learn a little about the design process, as well as how to implement
testing for each individual module. This chapter is divided into the following five sections:

Game design

Object-oriented design
Implementing OOP in BlitzMax
Testing modules

Project management

We will be creating a game called Flood, starring Jasper, a bear. He has bred orchids on a remote island
and must save them from the flood. Unfortunately, the island is inhabited by Badbears, who will stop at

nothing to thwart our hero’s quest!
The full code for the game, including the graphics and sound, is available to download from the
companion web site: www.blitzmaxbook.com/.

© Sloan Kelly 2016 215
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_20

http://www.blitzmaxbook.com/

CHAPTER 21

Game Design

In this chapter, I discuss getting a game from an idea to storyboards. Once we have the storyboards, we can
move onto taking that information and abstracting it. This is part of the object-oriented process that I will
detail later.

What'’s the Big Idea?

Before we start to code our game, we have to have an idea. Ideas can be high-concept or low-concept.
The definition of each concept depends on who you ask. We are going to use the Hollywood method.

High Concept

A high-concept idea can be expressed in one phrase: no more, no less. For example:

It's Pac-Man meets Doom

It’s The Sims meets Mario with a twist of Ridge Racer

This is very similar to some companies adding radios to other devices, such as frying pans. Sometimes
it’s so quirky it might work. The last one in particular...

Low Concept

A low-concept idea, on the other hand, cannot be expressed in one phrase. It requires a great deal of text.
Examples of these games include SimCity, WarCratft, etc.

So What Is Flood?

Flood is a collect-the-items-and-avoid-the-bad-guys game. This type of game has been popular since
Donkey Kong. If you wanted a high-concept tag line,“It's Donkey Kong in the jungle, with bears and orchids.”
That pretty much sums up Flood!

© Sloan Kelly 2016 217
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_21

CHAPTER 22

Storyboarding

Before we start writing detailed ideas about the game, we should draw up some concepts first. For example,
what will the screen look like? Where is the score lives text? Where will the platforms go? What about the bad
guys? How will the wave work?

Figure 22-1 illustrates some concepts for the game that I roughed out of an evening.

Figure 22-1. Some rough concepts for the game

© Sloan Kelly 2016 219
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_22

CHAPTER 22 = STORYBOARDING

Iinitially called it “Sinking Ship” and thought about global warming and ice caps...The mind does tend
to wander. Once you play Flood, you'll realize that I changed the concept from sinking ship to flooding
jungle. There was a very simple reason for that—graphics. The only graphics I could lay my hands on were
for a jungle setting. This meant that the game’s setting had to change. Other than that, though, the rough
idea for the game remained. The right-hand column contains some notes about gravity and its effect on our
main character—Jasper. The name “Baddie” appears later too. I also started to rough out the fields required
for the objects.

Writing a Specification for a Game

When you write a specification for a game, you are defining the game world that your characters will inhabit.
It should list all the events that can occur and what should be done when the event is triggered. Remember
that it is possible that a nonplayer character can trigger an event. The sample specification below is for
Flood.

Flood Game Specification

Introduction

Flood is a game for one player, using either the keyboard or joystick for movement. The object of the game is
to collect the flashing orchids from around the screen. Two problems confront the player: roaming enemies
on the platforms and a rising water level.

The roaming enemies cannot be damaged, and their touch sends the player’s character spinning
randomly about the screen and to his death. The player starts with five lives. When all five lives are
exhausted, the game is over.

The water level rises from the bottom of the screen, and if the player’s character goes beneath the level
of the water, he is killed. Likewise, if an orchid falls beneath the level of the water, it is destroyed and cannot
be collected.

To complete a level, the player must collect all the orchids on the screen and reach the end marker
before the water level rises above the head of his/her character.

The Screen

The game screen is divided by platforms. The ground at the bottom is the main platform. The top platform
has a gap, as if the middle platform sank at some point. The two side platforms are between the middle and
ground platforms (Figure 22-2).

220

CHAPTER 22 © STORYBOARDING

FEPPFEPBEPFPPEPPFPERPPE

Figure 22-2. Flood game screen

The score will be displayed at the top left of the screen, and, at the top right, the number of lives
remaining. It is possible to add branding to the lower right-hand area.

Main Actor—“Jasper”

The player character can move in two directions—Ileft and right. He can jump onto platforms and over
enemies. The player should not be hindered when jumping through a platform. It is only solid when the
player lands on it. See the following diagram (Figure 22-3).

221

CHAPTER 22 © STORYBOARDING

oy Arrow indicates direction

Ca of fall. “Jasper”ends his fall

0F {.n “o¢ when he hits the platform
‘__ ' "‘ o,

Figure 22-3. A platform stops the player character (Jasper) from falling

In this time-lapsed image, we see Jasper falling. He must stop when he hits the green-top of the
platform. Similarly, he can “jump-through” the platform from below (Figure 22-4).

A

Arrow indicates direction
of jump. “Jasper” jumps
through the platform

Figure 22-4. The player character (Jasper) can jump up through a platform

In this instance, Jasper jumps through the platform to land safely on top.

222

CHAPTER 22 © STORYBOARDING

Enemies
There is only one enemy type in this game, and it patrols the following four platforms:
Ground
Left-bottom
Right-bottom
Middle

The patrol area for the enemy is limited to the length of the platform it patrols. The enemy can only
move from left or right (Figure 22-5).

Enemy can only move in
two directions; left and
right. Patrol area determined
by length of platform.

« >

Figure 22-5. The enemy can only move from left to right

When an enemy touches Jasper, the player loses a life, and Jasper spins and moves around the screen
randomly. This is nicknamed the “death rattle”

The Wave

The wave is initially configured by the user when he or she sets the level of difficulty. There are four levels of
difficulty, and this equates to the number of milliseconds in which the wave rises up the screen by 1 pixel.
The levels are

250ms
200ms
150ms
50ms

The Orchids

There are six orchids onscreen that the player must collect to complete the level. They are located as shown
in the following diagram (Figure 22-6).

223

CHAPTER 22 © STORYBOARDING

. . —
h i

Figure 22-6. Location of the orchids

The player collects 100 points by collecting an orchid. This is achieved by running into it. Once an
orchid has been collected, it is removed from the screen.

Entities

From this specification, we can determine that there are a number of entities. An entity is an element of
the game, for example, the player character, enemy, orchid, etc. In Flood, the following entities have been
identified:

Player
Enemy
Platform
Wave

Orchid

224

CHAPTER 22 © STORYBOARDING

Next Steps

The next step is to translate that specification into an abstract, using processes contained within the Unified
Modeling Language (UML). The entities that are identified in the preceding section will be abstracted within
the UML to create class diagrams. We may have to bring in other classes, such as our reusable IController
class from before.

Object-Oriented Design

In this section, we will look at the role of object-oriented design in the context of video game development.

Introduction

In the early days of computing, people pretty much backed together solutions. These programs worked well
enough but were virtually unmaintainable. There was no way you could go back to a program to try and fix a
bug. It was, in fact, cheaper to scrap the code and start again.

As was mentioned in Chapter 9, reusability is important to software engineers and games programmers
especially. With tighter and tighter deadlines being imposed, it is imperative to reuse code. This is where
UML comes into play.

UML is the brainchild of the “Three Amigos”: Grady Booch, James Rumbaugh, and Ivar Jacobson.

They worked in separate organizations through the 1980s and 1990s, each devising his own methodology
for object-oriented analysis and design. By the mid-1990s they decided to get together to create a unified
modeling language.

UML is used by every major corporation, from Microsoft to IBM and Rational. In fact, the latter was
bought by IBM because of its extensive ties to UML.

There are a number of components within UML, but we will be dealing with just two: use cases and
class diagrams.

Use Cases

The specification that you get from a customer or an in-house designer may not be as complete as you
would like. In order to go back to them and ask the question “Is this what you want?” we have to refine our
ideas with documents called use case. Each use case represents a particular event that can occur within the
system. So, for example:

What happens when the player hits the boundaries of the screen?
What happens when the player hits a platform?

What happens when the player hits an enemy?

What Is a Use Case?

A use case document is a collection of scenarios, and each scenario is a sequence of steps. For each scenario,
we want to show the following:

A brief description of the scenario (“Player Boundaries”)
Assumptions for the scenario (“User can move in two directions and jump”)

The entity who initiates the use case (“Player”)

225

http://dx.doi.org/10.1007/978-1-4842-2523-3_9

CHAPTER 22 = STORYBOARDING

Preconditions for the use case (“The player has moved”)

Post-conditions for the use case (“Player is barred from moving left”)
The format for a scenario is shown below:

UC-XXX Title of use case

Abstract:

Assumptions:

Actor:

Preconditions

Post-conditions:

Description:

The “XXX” represents a three-digit number, usually starting from 005 and going up in increments of
five (005, 010, 015, etc.). You can group use cases together too, so, for example, all use cases referring to the
Player might begin 1XX, the enemy 2XX, and so on.

The Title is fairly straightforward and can be used instead of the Abstract, so long as the Title is
unambiguous and performs the same as the abstract.

The Abstract allows the author of the use case to give a brief overview of what is happening in the given
scenario.

Assumptions allow the author to detail the items that are assumed to be correct. This is an important
section, because assumptions can lead to complications later on. A programmer should read this section
carefully!

An Actor in a use case is the same as an entity. It is a real-world object that can refer to the user, a (sub-)
system or an external-to-the-system entity, such as a web server. The actor(s) supplied in this section are
affected by the use case.

The Preconditions section lists all the conditions that must be met before the scenario can be stepped
through.

The Post-conditions section lists all the conditions that will be met once the scenario has been stepped
through.

The Description tells the programmer what must be done in a sequence of steps.

Sample Use Case
The following is a sample use case for the collision-detection system for the player. There are five scenarios:
UC-100 Player Movement
UC-105 Jumping
UC-110 Falling
UC-115 Enemy Collision
UC-120 Orchid Collision

The first (Player Movement) is shown in Figure 22-7.

226

—_—

CHAPTER 22 © STORYBOARDING

Player |
AYeris not jump;

Player is not falling © !

!

J

POstiConditi ons:

Theplayer i

Player ismoveq tp 5 NeW position On-screen }
!

Descripti on:
!

Ifthe sum of
m of the player's current p osition and their speeq II
!
!

&
g
£
&
R
a
&
&
5
2
g
ke
2
:
b
&
8
g

Figure 22-7. My use case for Flood

227

CHAPTER 22 = STORYBOARDING

The actual code in BlitzMax is

' The player can only go left if they haven't hit

the left-edge of the screen and they are

" not jumping or falling

If ctrl.DLeft() And x > 0 And Not jumping And Not falling
X = X - xspeed

dir = 1
Else
nohitleft = True

End If
' The player can only go right if they haven't hit the right-edge of the screen and they are
' not jumping or falling
If ctrl.DRight() And x < GraphicsWidth() - 34 And
Not jumping And Not falling

X = X + xspeed

dir = 2
Else

nohitright = True
End If

Note that the code contains the following preconditions of the use case:
Player is not jumping
Player is not falling

The boundaries are also being checked in the IF statements. The first tests to see if the current X value is
greater than zero and, if so, allows the player to move left. The second tests to see if the current X value is less
than the width of the screen minus the width of the sprite—in this case, 34 pixels.

None of this information is known to the author of the use case.

They are writing what should happen, but not how it should happen. The use case should be kept clean
with respect to technologies and/or implementation language. The same use case can be used equally well
within a Java application running on a mobile phone or on a desktop computer.

Take a look at the following use case for “Jumping” (Figure 22-8):

228

CHAPTER 22 © STORYBOARDING

[UC105 Jumping
J

|'
eplayefcanpe;fom :
|' ﬁ-anp]atfo,mtoplaﬁm;{unptoavoﬂm%mdmm }
!

—_—
—_—

| Assumptions.

—

2
&1
7]
g
=
]

Figure 22-8. Use case for “Jumping”
229

CHAPTER 22 = STORYBOARDING

Write the use case scenario for platform collision based upon the game specification discussed earlier
in this chapter. Remember the following:

Gravity is a constant, so the player is always being pulled to the ground.
The player should always land on top of the platform.

The player can jump through a platform, so colliding a platform at the side
should not be counted as hitting the platform.

What Is the Purpose of Use Cases?

Use cases allow the lead developers to tell their staff what has to be handled in the gaming universe the
designers created. A class diagram, as we see, shows us what classes must be developed, but a use case tells
us what events we have to code for.

Class Diagrams

A class is an abstraction of a real-world object. By abstraction, we mean that we have removed the physical
portions of the entity and kept its attributes (things that define the entity) and actions (things the entity can
do). Actions in object-oriented design are called methods.

In UML, a class is represented by a rectangle divided into three sections as shown following (Figure 22-9):

SimpleClass
+Attribute
+Method()

Figure 22-9. Representation of a class in UML

The first area is the class name. This is usually written in boldface. The attributes are listed in the next
area, and, finally, at the bottom are the methods. The attribute and method boxes are optional and can be
omitted. UML allows the author to be flexible in the amount of information that is shown in a diagram. Also,
you do not have to show all the attributes and/or methods for a particular class.

The class diagram can be enhanced by describing the attributes and methods in greater detail. So, for
example, you may have the following (Figure 22-10):

SimpleClass
+Attribute: int
+Method(type: int): string

Figure 22-10. Enhanced class diagram
230

CHAPTER 22 © STORYBOARDING

Have you noticed that the types are separated from the attributes/methods by a colon? Isn’t that similar
to how BlitzMax makes you declare variables/fields/methods/functions? I think that Blitz Research spent a
lot of time with these diagrams and decided to use them as a template when it came to defining the BlitzMax

language.

The plus (+) and minus (-) signs indicate the scope of the attribute/method. A plus sign indicates that
the item is exposed to anything outside of the class. A minus sign indicates that the item is internal to the
class and is not visible outside. A class diagram is composed of the following:

e Entity: A real-world object
e Class: An abstraction of a real-world object
e Attribute: Something that describes the entity

e Method: Something that an action does

A DVD Recorder

A DVD recorder has a number of attributes—things that describe it—and a number of actions or methods
that it can perform. These can be listed as:

o Attributes

e IsPlaying?

e IsRecording?

e Start Time of recording
¢ EndTime of recording

e Methods:

e Ejectdisc

e Playdisc

e Stop playback

e Move to the next chapter

e Move to the previous chapter
e Showthe menu

e Record

In UML, this is drawn as a class diagram. A class diagram is a rectangle split into three areas. The top
area is the name of the class (DVDRecorder); the middle area lists the attributes of the class; and the bottom
area contains the list of methods. Note in this particular diagram there are plus (+) and minus (-) signs. This
indicates the scope of the attributes and methods. A plus indicates that the attribute/method is public, and

231

CHAPTER 22 © STORYBOARDING

DVDRecorder

+StartTime
+EndTime
+IsPlaying
+IsRecording

+Eject()

+Play()

+Stop()
+NextChapter()
+PreviousChapter()
+ShowMenu()
+Record()

Figure 22-11. Class diagram for DVDRecorder

the minus indicates that the attribute/method is private. In the following diagram (Figure 22-11), all the
attributes are private.

What other attributes or methods do you think we could add to our DVD recorder? Should our recorder
be able to record on an ad hoc basis too? What other method would be required?

Our Jasper character has the following attributes:

X
y
score
yspeed
xspeed
starty
lives
ctrl

These attributes describe the x and y coordinates, score, vertical speed, horizontal speed, the starty
coordinate of the jump, number of lives, and controller used for the player character.
The main character has the following methods:

Reset

Update

232

CHAPTER 22 © STORYBOARDING

Draw
Create

Draw the class diagram for the Jasper character. Call the class TPlayer and add the attributes and
methods in the preceding list to it.

A class diagram only indicates a single entity, but in our object-oriented world, classes mix with each
other. We need some way to show how each class relates to each other.

Class Relationships

We know that we can encapsulate other classes within each other and inherit classes from a parent class,
using inheritance. We have seen this in BlitzMax. To show this in a class diagram, we draw lines between two
classes representing the relationship.

Encapsulate “to contain within.” Encapsulation is a fundamental part of object-oriented design.
Attributes should not be accessible outside the method and should provide “getter” and “setter” methods to
access them. This is not necessarily true in BlitzMax, however, because fields are by default visible outside
the UDP-based Data Transfer (UDT).

ClassA ClassB

ClassC ClassD

Figure 22-12. Class diagram showing aggregation (left) and composition (right)

Aggregation and Composition

Aggregation and composition occur when an instance of a class contains an attribute that is an instance of
another object. The two types are shown following (Figure 22-12):

On the left is aggregation, with the white diamond representing the class containing the instance of
the “partial class.” The partial class, in this case, can be shared with any number of classes. On the right is
composition, wherein the partial class can only be part of whole class.

233

CHAPTER 22 = STORYBOARDING

Aggregation

Aggregation is represented by placing an outline diamond beside the aggregate class. Your computer system
is an example of aggregation. It can contain a monitor, disk drives, CD-ROM drive, printer, keyboard and/

or mouse. But these components can be shared with other computers too. For example, if you have a laptop,
you can take your mouse with you on the go, and use it with the laptop. This can be represented in a class
diagram, as follows (Figure 22-13):

DesktopPC Mouse Notebook PC

Figure 22-13. Class diagram of mouse aggregation with desktop and laptop

The Mouse class is contained within both the DesktopPC class and the NotebookPC class.
Aggregation is read as “Has a.” So, “DesktopPC has a Mouse” and “NotebookPC has a Mouse” are valid
statements. UML diagram relationships are bidirectional, unless arrowheads are used.

Composition

Composition is represented by a black diamond. Composition implies that the main object is only whole
when composed of child classes. Take, for example, a shirt. It is comprised of two arms, a body, collar, and
cuffs. In an object diagram, “Shirt” could be represented by the following (Figure 22-14):

Shirt

Arm Collar Cuff

Figure 22-14. Class diagram for a hypothetical Shirt class

The diagram only shows that Shirt has to contain Arm, Collar, and Cuff. It does not show how many
items of each are required. This is called multiplicity.

Multiplicity

Not only can we show the relationship between certain classes, but we can also show how many classes can be
aggregated or composed with a particular class. This is shown by writing numbers and stars (*) and even two
periods (..), to show the multiplicity of an aggregate or composite class. Taking another look at our Shirt example,
we can use multiplicity to indicate the required number of each item that makes up our shirt (Figure 22-15).

234

Collar

CHAPTER 22 © STORYBOARDING

Cuff

Figure 22-15. Using multiplicity to indicate numbers of items in aggregated classes

It is assumed for the time being that there is only one shirt, although we can explicitly place the value 1
beside the black diamond, if we desired. Other valid multiplicities are as follows (Figure 22-16):

Class1 % ClassA .| any rumber of
ClassA's can belong to Class 1
0..1 Class8 None or 1 of Class8 &s aggregated

TIR Y . 1 Vel LENRNSEEEL e with Class2
Class3 0..° SISty No coposition at al, or any number of

- ClassC’s can be composited in Class3
Class4 gy T — Mmcwmm‘ﬁ

. Classt Class$ must have at least one ClassE

ClassS ol L R compoation, but can have more

Figure 22-16. Class diagram showing additional valid multiplicities

In the preceding examples, I have included the diamond multiplicities, but they need not be included.

Naming the Attribute

It is also possible to name the attribute that the parent class calls the instance of the class it aggregates/
composes, as in the following illustration (Figure 22-17):

235

CHAPTER 22 © STORYBOARDING

Cuff

Figure 22-17. Class diagram naming the attributes of the parent class

From the preceding class diagram, we can see that the Shirt class contains three attributes:
itsArms
itsCollar
itsCuffs

We can also see that itsArms and itsCuffs include alist of the classes associated with the attributes,
because the multiplicity states that there must be two each of Arm and Cuff.

Take a look at the following class diagram (Figure 22-18). It represents the old proverb “A bird in the
hand is worth two in the bush.”

Bush

Hand 1..1 Bird

+itsBird

Figure 22-18. Class diagram representing the proverb “A bird in the hand...”

Draw a class diagram for each of the following:
“Every cloud has a silver lining”
“Cat of Nine Tails”
“Six of one, half a dozen of the other”

“Two’s company; three’s a crowd”

236

CHAPTER 22 © STORYBOARDING

Inheritance

Inheritance is depicted by a triangular arrowhead. This arrowhead points to the base class. One or more
lines proceed from the base class to the derived classes, as shown in the following diagram (Figure 22-19).

Class1

+foo()

Class2

Figure 22-19. Diagram depicting inheritance

Although we do not explicitly place the foo() method in Classz2, it is inherited from base Class1. We
can also have detailed inheritance hierarchies, as expressed in the following diagram (Figure 22-20):

Animal

/ Avian
R .

+whistie()

Mammal

§

Figure 22-20. Class diagram of detailed inheritance hierarchies

237

CHAPTER 22 = STORYBOARDING

The base class Animal is inherited by Mammal and Avian. Both classes inherit all the methods of Animal.
In this case, the walk() method is inherited, so all their descendants also have this ability. The individual
classes can either keep the method as is or redefine it, as required. But: They must implement some form of
walk() method.

Draw inheritance diagrams for the following entities: Vehicle, Aircraft, Car, Boeing 747, Ford Fiesta.

Add the following methods, where appropriate: startEngine(), take0Off(), land(), indicateLeft(),
indicateRight(), stopEngine().

Summary

Use cases allow us to tell the story for each and every event. These are fed into the class diagrams and
become operations.

Class diagrams detail the relationship between each of the classes within our game. We can contain
optional data too, such as attributes and operations (methods).

Aggregation is used in a class diagram to show classes that contain instances of generic classes as
attributes. These classes are available for reuse within any other class. Aggregation is shown using the
outline diamond and can include multiplicity metrics.

Composition is used in a class diagram to show classes that contain instances of classes as attributes.
These classes that are contained in the parent cannot be used elsewhere. Composition is shown using the
black diamond and can include multiplicity metrics.

Inheritance shows a class that has derived from a base class, using a triangle pointing to the base class
and a line extending to the derived class.

Implementing OOP in BlitzMax

As we have discovered, there are only five entities in our game:
Player
Enemy
Platform
Wave
Orchid

There are a number of “hidden” entities that we have not discussed—until now. These represent the menus
and the actual game engine itself. The following class diagram (Figure 22-21) represents our game so far:

Player Platform

Orchid

Enemy Wave

Figure 22-21. Class diagram representing our game up to this point

238

CHAPTER 22 © STORYBOARDING

We will now examine these five classes and refine the requirements piece by piece until we are satisfied
that we have defined all the classes that we require. Once this process has taken place, we will be in a
position to convert the class diagram to UDTs.

Were Do We Get the Methods From?

The methods come from our previous work. Each playable object (either by the user or the computer) must
be drawn, updated, reset, and created. I have included these operations in the class diagrams below.

Player

The Player class is fairly straightforward, and we will only be renaming this to fit in with BlitzMax
convention. This means that the Player entity will become the TPlayer UDT (Figure 22-22).

TPlayer

+Draw()
+Update()
+Reset()
+Create()

Figure 22-22. Player class diagram

Enemy

The Enemy class represents a single enemy’s position. We will have several enemies onscreen at any one time,
and this means that a single class will not do. We can use the Enemy class as a starting point. I also don’t like
the name “Enemy,” so we are going to rename the classes that represent these as “Baddie” (Figure 22-23).

oo TBaddiePos

+Draw() = | +X

+Update() R +y

+Reset() -baddies
+Setup() +Draw g 3
+Create() HUpda

Figure 22-23. Class diagrams for the “baddies” (enemies)
239

CHAPTER 22 = STORYBOARDING

Now we have two classes. One represents each individual baddie (TBaddiePos), and the other is a
container class, called TBaddies, that handles the creation, update, and drawing of each of the baddies.

Platform

The Platform class is much like the Enemy class, in that we require lists of these objects, not just single
entities. I propose that we create a new class called TPlayScreen that handles the creation and drawing of
these platforms (Figure 22-24).

TPlayScreen

+Draw() 0..%
+Update) [—] +x

+Setup() blocks| *Y
+Create()

Figure 22-24. Class diagram of the TP1ayScreen class

This is based on our knowing that the graphic artist has provided us with a bitmap containing a list
of blocks. We will have to draw the blocks onscreen individually, one block at a time, to simulate solid
platforms. This will be done using the Setup () method.

Orchid

The Orchid class like the P1atform and Enemy classes requires a holding class. There is a distinct pattern
forming here (Figure 22-25).

TOrchids
TOrchidPos
+Draw() 0..6
+Update() <F. +X
+Reset() dist +y
+Setup()
+Create()

Figure 22-25. Diagram of class Orchid and its holding class

Note that some or all of the methods have appeared in previous classes. What could we do to marshal
all that effort? There’s a lot of duplication. What if we created a base class? What if we abstracted the
positional information? Remember TVector2 from our Tank Attack game?

The TOrchids class contains an attribute called 1ist that contains a list of TOrchidPos.

240

CHAPTER 22 © STORYBOARDING

Wave

The Wave class is fairly simple and other than the name change, to Twave, we will not alter anything else
(Figure 22-26).

TWave

+Draw()
+Update()
+Reset()
+Create()

Figure 22-26. TWave class diagram

Putting It All Together

Putting all these classes together gives us a new class diagram (Figure 22-27). I have included another object
called TFloodGame. This object will control our game.

32

- 0.6
st
TBaddiePos TOrchidPos
*x *x
+ »
lraal)
+Upcste)

Figure 22-27. Diagram of all the classes in the Flood game

241

CHAPTER 22 = STORYBOARDING

TFloodGame

We know from this diagram that TFloodGame contains the following methods:
Draw
Update
MainLoop
Create

TFloodGame also contains the following attributes:

Screen
Baddies
Orchids
Wave
Player

Note that we still have five main classes! Isn't OOP wonderful? Although we have nine classes now, we
still only have five main entities!

A main program is required to instantiate the TFloodGame class and to display menus/help screens, as
we have done in previous projects.

We can see from this section so far that as we break the problem down into smaller chunks, we are
making the program implementation (the coding) easier. This is because we are telling the developer what
to code, what objects interact with other objects, etc.

Converting Class Diagrams to UDTs

Now that we have our class diagram for Flood, we have to convert this to UDT. To do this, we should refine
the class diagram further, adding parameters and function returns.
Taking TPlayScreen as an example, we can redraw the diagram as shown in Figure 22-28.

TBlock

+x
+y

-blocks

0.

TPlayScreen

+Draw()

+Jpdate()

+Setup()

+Create(block: string, tree: string, endmarker: string): TPlayScreen

Figure 22-28. Class diagram redrawn with new paramaters and functions

242

CHAPTER 22 © STORYBOARDING

The Create method has been underlined to indicate that it is part of a class definition and not part of an
instance. In BlitzMax, this means that this operation is implemented as a function and not as a method.

An underlined operation (SomeOperation()) is implemented in BlitzMax as a function. All other
operations (non-underlined) are implemented as methods in BlitzMax.

The parameters can be marked as in, out, or in/out. To implement out and in/out in BlitzMax, we use
the Var keyword to indicate that a parameter is being passed by reference. Remember that by default, all
parameters are passed by value.

See Chapter 6, on using functions, for details on the Var keyword. Again, I have taken some liberties
here with the required parameters. We know that the screen requires blocks to display platforms and that an
end marker is needed. We are assuming here that the path to these image files will be passed to the creation
method. If we don’t know the exact parameters at design time, we could use the following:

+Create() : TPlayScreen

This operation could be used if the parameters are unknown.

Stub Code for TFloodGame

I have included empty code for the TFloodGame annotated, to show the various attributes and methods. This
is not the full implementation, as only the attributes, methods, and functions definitions are shown. There is
no code between the blocks!

Type TFloodGame
Field screen:TPlayScreen
Field player:TPlayer
Field baddies:TBaddies
Field orchids:TOrchids
Field wave:TWave

These are the instances of the classes in our class diagram. Note that there are no initial values set for
these fields. We will implement this in the Create function later. Note also that these are the only fields that
are listed in the class diagram.

Field background:TImage

The background field is used to store the jungle backdrop image that is placed behind all the platforms,
baddies, orchids, and Jasper. We could have left it with a black background, but I thought that a backdrop
would be nice.

Field wavespeed:Int = 275
Field levelid:Int = 0

Field doDeath:Int = False
Field endoflevel:Int = False
Field flushch:TChannel

Field flushplaying:Int = False

The preceding fields cover some housekeeping for our game engine. For example, we have to keep tabs
on the current level (levelid), the speed of the wave rising (wavespeed), and whether the player is in the
throws of death (doDeath).

Field ctrl:IController

243

http://dx.doi.org/10.1007/978-1-4842-2523-3_6

CHAPTER 22 = STORYBOARDING

The ctrl field holds an IController derived class for our controller—either joystick or keyboard. The
IController class is from Chapter 17.

Method DrawOutline(str:String, x:Int, y:Int,
r:Int, g:Int, b:Int)
End Method

The DrawOutline method is used to draw text onscreen. It was used in our Paratrooper game to print
text onscreen with a black outline. We have reused it here for the same effect.

Method DoLevelMessage(levelid:Int, top:Int)
End Method

A simple “Get Ready!” text excites the player and prepares him/her for the next level.

Method DoGameOver (top:Int)
End Method

DoGameOver displays the “Game Over!” message to the player.

Method Draw()
End Method

The Draw method is called by the MainLoop method. Draw calls all the objects’ draw methods.

Method Update:Int()
End Method

The Update method is called by the MainLoop method. Update calls all the objects’ update methods.

Method MainLoop()
End Method

The engine for this game is the MainLoop method. It is called by the main program after creating an
instance of the object. Once called, the method initializes the variables and objects for the game and then
falls into a loop to update the objects and display the characters and text onscreen.

Function Create:TFloodGame(flushsound:String,..
blocks:String, ..
tree:String, ..
endmarker:String, ..
background:String, ..
jasper:String, ..
jumpsound:String, ..
baddies:String, .
arghsound:String, ..
orchid:String, .
orchidsound:String, ..
wave:String, ..
ocean:String, ..
wavespeed:Int, ..
ctrl:IController)

End Function

244

http://dx.doi.org/10.1007/978-1-4842-2523-3_17

CHAPTER 22 © STORYBOARDING

The Create method is called by the main program to instantiate an instance of the TFloodGame class
(UDT). The MainLoop method is then called, and the game begins on Level 1.

End Type

Testing Modules

The other advantage of structured design using OOP is that you can test modules on their own, without
having to write the entire program first. The first module I wrote was TWave, to see what the flood wave would
look like. The code for the module is shown following:

Rem
upT ¢ TWave
Author : Sloan Kelly
Date ! 2005-08-31
Description

UDT for the wave in the game "Flood". The wave moves up the screen at a predetermined rate
'speed'. The crest of the wave moves from left to right. It makes the wave look a little
more realistic than a static pointy blue thing moving up the screen.

The start x-coordinate is offset to -64 (the width of the crest is 128). This is because we
are using a little trick here. The x co-ordinate is increased until x = 0, we then reset it
back to -64.

The user gets the appearance that the wave is moving from left to right.

End Rem

Type TWave
Field crest:TImage
Field ocean:TImage

Image file containing the crest of the wave
Image file containing the body of the wave

Field crestx:Int = -64 ' Offset for the x-coordinate of the wave

Field cresty:Int = GraphicsHeight() ' Top of the wave - initially the bottom of the
screen

Field crestspeed:Int = 25 ' Speed in milliseconds for each increment of x-

Field speed:Int = 250 ' in millisecs ' Speed of the wave, the increment of y-

Field crestcount:Int = MilliSecs() ' Counter for the crest movement (x-coord)

Field speedcount:Int = MilliSecs() ' Counter for the flood movement (y-coord)

' Method : Reset
' Description : Resets the wave to the starting values. Used when a player dies or
when a new level

is reached
Method Reset(newspeed:Int = 250)
crestx = 0

cresty = GraphicsHeight()
crestspeed = 25

speed = newspeed

245

CHAPTER 22 = STORYBOARDING

246

Method Update()

crestcount:Int

MilliSecs()

speedcount:Int = MilliSecs()
End Method

Method
Description

: Update
: Updates the x- and ycoordinates based upon the speeds above. The wave

can only get to

48 pixels from the top of the screen. The player would be killed by
the wave by then

Update the crest - move it from left to right

If MilliSecs() > crestcount + crestspeed
crestcount = MilliSecs()
crestx = crestx + 1
If crestx > 63

crestx = -64

End If

End If

' Update the y-coord of the flood

If MilliSecs() > speedcount + speed And cresty > 48
speedcount = MilliSecs()
cresty = cresty - 1

End If

End Method

Method
Description

: StartFlush
: For future expansion

Method StartFlush()
' for future
' expansion

End Method

Method
Description

: FlushUpdate
: This is the alternative "Update" when the user completes a level, the

water is flushed

out of the screen. This updates the position of the water level in the
flood.

Method FlushUpdate:Int()

CHAPTER 22 © STORYBOARDING

If MilliSecs() > crestcount + crestspeed
crestcount = MilliSecs()
crestx = crestx + 1
If crestx > 63
crestx = -64
End If
End If

cresty = cresty + 1
If cresty > GraphicsHeight()

Return 1 ' tell the calling routine we're finished
Else
Return 0 " tell the calling routine we're NOT finished
End If
End Method
' Method : TileOcean
' Description : Fills in the rest of the screen with 'ocean'. I tried to use

'TileImage' (in-built

keyword) with no success.

Wrote this instead, it does exactly what TileImage should
' do!

Method TileOcean()
For y:Int = cresty+32 To GraphicsHeight() + 32 Step 32 ' Height of crest is 32px,
so draw below that on-screen
For x:Int = 0 To GraphicsWidth() Step 32
DrawImage(ocean, X, Y)
Next
Next
End Method

' Method : Draw
' Description : Draws the crest and ocean on-screen.

Method Draw()
blend:Int = GetBlend() ' capture the blend mode
SetBlend(ALPHABLEND) ' only want to see a big thru the ocean
SetAlpha(.6) ' so 60% is ok
For x:Int = crestx - 64 To GraphicsWidth() + 64 Step 64
DrawImage(crest, x, cresty)

Next

TileOcean()

SetBlend(blend) ' reset the blend mode

SetAlpha(1) ' reset the alpha (should always be 1)
End Method

247

CHAPTER 22 = STORYBOARDING

' Function : Create
' Description : Creates a TWave object and passes it back to the calling routine
Function Create:TWave(crest:String, ocean:String, speed:Int)

o:ThWave = New TWave

o.crest = LoadImage(crest)
o.ocean = LoadImage(ocean)
o.speed = speed

Return o

End Function
End Type

Enter the code for TWave exactly as written and save it to your BlitzMax project folder Flood. Create
Flood if you haven’t done so already. Call the file TWave .bmx. We will use this file in the next section.

Testing the Code

A computer program is a complex machine. There are a number of moving parts in its construction, each
of which must be tested before we start bolting them together. Because we have modularized the code by
creating different classes (UDTs), we can test each one individually.

The code that we develop to test each module on its own is called stub code. Stub code will not form
part of the completed program and is usually thrown away when development is completed.

Creating Stub Code

Stub code is a short program that will allow us to run through the functionality of any class or function,
without having to place it into a larger program. This approach to software development leads to fewer
headaches later because

Each module/class can be tested as a single entity. This type of test is called a
unit test.

Small problems—bugs—can be spotted at an earlier stage of production. The
earlier you catch a bug, the less it will cost to fix!

Stub code can be seen as prototyping the main functionality.

The stub code for the TWave UDT is shown below:
Graphics 640, 480, 16, 75

Incbin "gfx/background.jpg"
Incbin "gfx/wave.png"
Incbin "gfx/ocean.png"

wave:TWave = TWave.Create("incbin::gfx/wave.png",
"incbin: :gfx/ocean.png", 100)

background:TImage =

LoadImage("incbin: :gfx/background.jpg")

248

CHAPTER 22 © STORYBOARDING

While Not KeyHit(KEY ESCAPE)
wave.Update()
DrawImage(background, 0, 0)
wave.Draw()

Flip
Cls

Wend

I'have highlighted the important lines in the code to show that you do not need a large amount of code
to test modules/classes.

Open up the TWave.bmx file and enter the stub code at the bottom of the file. Save the file. When you
run the application, you should see the wave traveling up the screen.

Using the TPlayScreen.bmx file, create stub code to display the play screen. Save the file.

249

CHAPTER 23

Project Management

So far, we have looked at programs that appear as one single file.
While this is suitable for the lone bedroom coder, it is not acceptable from a team-coding point of view.
In BlitzMax, there is a way to write code in a team environment without everyone working on the same file.

Using the Include Keyword

The Include keyword allows you to bring in other people’s code to be compiled with your project. In our
case, we are working on a game called Flood that has a number of components (UDTs) that we can quite
easily pass out to other developers. To bring the code back into our main program, we use the Include
keyword.

Open the TWave. bmx file with the stub code attached to it. Take a copy of the stub code and create a new
file. Paste the stub code into the new file and delete it from the TWave.bmx file. At the top of the new file, add
the following line:

Include "TWave.bmx"

When including a file make sure you spell the name correctly and include its extension, ".bmx" in this
case. You should have the following code in your new file:

Include "TWave.bmx"

Graphics 640, 480, 16, 75

Incbin "gfx/background.jpg"

Incbin "gfx/wave.png"

Incbin "gfx/ocean.png"

wave:TWave = TWave.Create("incbin::gfx/wave.png",
"incbin: :gfx/ocean.png", 100)

background:TImage =

LoadImage("incbin: :gfx/background.jpg")

While Not KeyHit(KEY ESCAPE)
wave.Update()
DrawImage(background, 0, 0)
wave.Draw()

Flip
Cls
Wend

© Sloan Kelly 2016 251
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3_23

CHAPTER 23 © PROJECT MANAGEMENT

Save the file as TWave_Stub.bmx and run the new file. You should get the same output as before: a
wave slowly creeping up the screen. In the finished game, the main file is called FloodTheGame . bmx, and it
contains the following lines:

Include "udts/TBlock.bmx" ' The platform blocks

Include "udts/TWave.bmx" ' The rising tide

Include "udts/TOrchidPos.bmx" ' Orchid position

Include "udts/TOrchids.bmx" ' All the orchids

Include "udts/TBaddiePos.bmx" ' Baddie position

Include "udts/TBaddies.bmx" ' All the baddies

Include "udts/TPlayScreen.bmx" ' The actual screen - displays all the blocks
Include "udts/TPlayer.bmx" ' Jasper - our hero

Include "udts/TFloodGame.bmx" ' The game engine

Include "udts/TMenuScreen.bmx" ' The menu

Include "udts/THelpScreen.bmx" " Help!

Include "udts/IController.bmx" ' The infamous game controller

When the program is compiled, BlitzMax ensures that these files are compiled as if they were part of the
program.

Be aware that if you mistakenly declare two items of the same name in two separate include files, you
will have to track the problem down and change one of the item’s names. You will get a compilation error if
BlitzMax detects a variable being re-declared.

Advantages of Using the Include Keyword

The obvious advantage is that code can be developed by a number of programmers, and quick empty code
can be used when there has yet to be code developed. It also makes your program easier to read, because
you won't have to scroll past page after page of UDT definitions.

Embedding Binary Resources

As a BlitzMax developer, you can also embed binary resources, such as sound, image, and font files, to your
executable. To do this, you use the IncBin keyword.

The IncBin Keyword

To embed a binary file into your executable, you use the IncBin keyword. The format of this keyword is
IncBin <path to file>

where <path to file> is a known path. This can be a relative path (using . . /images/sprite.png) or an
absolute path (such as C:\images\sprites\player1.png). So, for example, you could use the following:

Incbin "gfx/background.jpg"

Incbin "gfx/wave.png"

Incbin "gfx/ocean.png"

wave:TWave = TWave.Create("incbin::gfx/wave.png",

252

CHAPTER 23 I PROJECT MANAGEMENT

"incbin: :gfx/ocean.png", 100)
background:TImage =
LoadImage("incbin::gfx/background.jpg")

When we reference the file later, we put incbin: : in front of the path to the file. This ensures that we are
referencing the copy contained within our executable, as follows:

background:TImage =
LoadImage("incbin::gfx/background.jpg")

253

APPENDIX A

Web Site Addresses

All code and graphics used within this book are available for download from www.blitzmaxbook.com/
(Figure A-1).

e [e e — . e

- (o] -— M aA
Figure A-1. BlitzMax web site (Blitz Research Limited © 2011)
© Sloan Kelly 2016 255

S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3

http://www.blitzmaxbook.com/

APPENDIXA © WEB SITE ADDRESSES

To order a copy of BlitzMax, or to join the BlitzMax development community, visit www.blitzmax.com/
(Figure A-2).

L e Ty S

Figure A-2. BlitzMax web site (Blitz Research Limited © 2011)

256

http://www.blitzmax.com/

APPENDIX B

BlitzMax Key Codes

For use with KeyHit, KeyDown, etc.

Table B-1. Key Codes in BlitzMax

Key Value Key Value

Backspace KEY_BACKSPACE \Y% KEY V

Tab KEY_TAB w KEY_W

Clear KEY_CLEAR X KEY_X

Return KEY_RETURN Y KEY_Y

Enter KEY_ENTER zZ KEY Z

Pause KEY_PAUSE Sys key (Left) KEY_LSYS

Escape KEY_ESCAPE Sys key (Right) KEY_RSYS

Space KEY_SPACE Numpad 0 KEY_NUMo

Page Up KEY_PAGEUP Numpad 1 KEY_NUM1

Page Down KEY_PAGEDOWN Numpad 2 KEY_NUM2

End KEY_END Numpad 3 KEY_NUM3

Home KEY_HOME Numpad 4 KEY_NUM4

Cursor (Left) KEY_LEFT Numpad 5 KEY_NUM5

Cursor (Up) KEY_UP Numpad 6 KEY_NUM6

Cursor (Right) KEY_RIGHT Numpad 7 KEY_NUM7

Cursor (Down) KEY_DOWN Numpad 8 KEY_NUM8

Select KEY SELECT Numpad 9 KEY_NUM9

Print KEY_PRINT Numpad * KEY_NUMMULTIP

Execute KEY_EXECUTE Numpad + KEY_NUMADD

Screen KEY_SCREEN Numpad - KEY_NUMSUBTRA

Insert KEY_INSERT Numpad . KEY_NUMDECIMA

Delete KEY _DELETE Numpad / KEY_NUMDIVIDE

Help KEY_HELP F1 KEY_F1
(continued)

© Sloan Kelly 2016

S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3

257

APPENDIX B BLITZMAX KEY CODES

Table B-1. (continued)

Key Value Key Value

0 KEY 0 F2 KEY_F2

1 KEY 1 F3 KEY F3

2 KEY 2 F4 KEY_F4

3 KEY 3 F5 KEY_Fs

4 KEY_4 F6 KEY_F6

5 KEY 5 F7 KEY F7

6 KEY 6 F8 KEY_F8

7 KEY 7 F9 KEY F9

8 KEV_8 F10 KEY_F10

9 KEY 9 F11 KEY F11

A KEY_A F12 KEY_F12

B KEY B Num Lock KEY_NUMLOCK

C KEY_C Scroll Lock KEY_SCROLL

D KEY D Shift (Left) KEY_ LSHIFT

E KEY_E Shift (Right) KEY_RSHIFT

F KEY F Control (Left) KEY_LCONTROL
G KEY_G Control (Right) KEY_RCONTROL
H KEY_H Altkey (Left) KEY_LALT

I KEY I Alt key (Right) KEY_RALT

] KEY_J Tilde KEY_TILDE

K KEY K Minus KEY_MINUS

L KEY L Equals KEY_EQUALS

M KEY_M Bracket (Open) KEY_OPENBRACK
N KEY_N Bracket (Close) KEY_CLOSEBRAC
0} KEY_O Backslash KEY_BACKSLASH
P KEY_P Semicolon KEY_SEMICOLON
Q KEY 0 Quote KEY_QUOTES

R KEY_R Comma KEY_COMMA

S KEY_S Period KEY_PERIOD

T KEY_T Slash KEY_SLASH

U KEY U

258

APPENDIX C

ASCII Table

Table C-1. AACII Table

Dec. Hex. Meaning / Symbol Dec. Hex. Meaning/Symbol
0 0 null 64 40 @
1 1 start of heading 65 41 A
2 2 start of text 66 42 B
3 3 end of text 67 43 C
4 4 end of transmission 68 44 D
5 5 enquiry 69 45 E
6 6 acknowledge 70 46 F
7 7 bell 71 47 G
8 8 backspace 72 48 H
9 9 horizontal tab 73 49 I
10 A new line 74 4A]
11 B vertical tab 75 4B K
12 C new page 76 4C L
13 D carriage return 77 4D M
14 E shift out 78 4E N
15 F shift in 79 4F 0]
16 10 data link escape 80 50 P
17 11 device control 1 81 51 Q
18 12 device control 2 82 52 R
19 13 device control 3 83 53 S
20 14 device control 4 84 54 T
21 15 negative acknowledge 85 55 U
22 16 synchronous idle 86 56 A%
(continued)
© Sloan Kelly 2016 259

S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3

APPENDIX C * ASCII TABLE

Table C-1. (continued)

Dec. Hex. Meaning / Symbol Dec. Hex. Meaning/Symbol
23 17 end of trans. block 87 57 Y
24 18 cancel 88 58 X
25 19 end of medium 89 59 Y
26 1A substitute 90 5A Z
27 1B escape 91 5B [
28 1C file separator 92 5C \
29 1D group separator 93 5D]
30 1E record separator 94 5E A
31 1F unit separator 95 5F _
32 20 space 96 60 *
33 21 ! 97 61 a
34 22 " 98 62 b
35 23 # 99 63 c
36 24 $ 100 64 d
37 25 % 101 65 e
38 26 & 102 66 f
39 27 ' 103 67 g
40 28 (104 68 h
41 29) 105 69 i
42 2A * 106 6A j
43 2B + 107 6B k
44 2C , 108 6C
45 2D - 109 6D m
46 2E . 110 6E n
47 2F / 111 6F 0
48 30 0 112 70 p
49 31 1 113 71 q
50 32 2 114 72 T
51 33 3 115 73 S
52 34 4 116 74
53 35 5 117 75 u
54 36 6 118 76 v
55 37 7 119 77 w
(continued)

260

APPENDIX C ' ASCII TABLE

Table C-1. (continued)

Dec. Hex. Meaning / Symbol Dec. Hex. Meaning/Symbol
56 38 8 120 78 X

57 39 9 121 79 y

58 3A : 122 7A z

59 3B ; 123 7B {

60 3C < 124 7C |

61 3D = 125 7D }

62 3E > 126 7E ~

63 3F ? 127 7F DEL

261

APPENDIX D

Controller Abstraction Classes /

Rem
File : Controller.bmx
Author : Sloan Kelly
Purpose : Controller abstraction classes to allow game code to be free from multiple

controller code.
Keeping the game engine pure, if you will

End Rem
Rem
Class : IFire
Author : Sloan Kelly
Description : Abstract firing mechanism.

Contained within the IController
class is a list of firing mechanisms. It's possible to extend
this list over time to other input devices. For example a mouse
button etc.

End Rem

Type IFire Abstract
Field Item:Int

Method FireDown:Int() Abstract
Method FireHit:Int() Abstract

End Type
Rem
Class : IController
Author : Sloan Kelly
Purpose : Abstraction of controller method. Useful if you want your game to be
played with people who want to use either keyboard or joysticks.
Contains a number of abstract methods that are implemented in the
child classes that inherit. Contains three final methods that are
used by all child-controller classes.
End Rem

Type IController Abstract

© Sloan Kelly 2016 263
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3

APPENDIX D © CONTROLLER ABSTRACTION CLASSES

Field FireMethods:TList = Createlist() ' List of ways user can press fire / jump

/ dash ...

Field
Name:String
"Joystick")

Name of controller ("Keyboard", "Mouse",

can be used within the program to identify the controller
' implementation to the coder
Method DUp:Int()

Abstract ' User presses
Up

Method DDown:Int()
Abstract ' User
presses Down

Method DLeft:Int()
Abstract ' User
presses Left

Method DRight:Int()
Abstract ' User presses Right

' Adds an IFire method to the list of available

' methods. Notice that this is an INTERFACE that

is required, so any object that inherits this
interface can be used too. This method is built-in
to all classes that inherit IController

Method AddFire(fire:IFire) Final
FireMethods.AddLast(fire)
End Method

Checks to see that fire 'index' has been hit and
' returns a boolean True if it has. Like AddFire, this
' method is inherited by all children of IController
Method Fire:Int(index:Int) Final
rtn:Int = False
i:Int =0
For f:IFire = EachIn FireMethods
If i = index
If f.FireDown()
rtn = True
End If
End If
i=1i+1
Next
Return rtn
End Method

264

APPENDIX D © CONTROLLER ABSTRACTION CLASSES

' Returns the number of buttons a particular controller has

Method ButtonCount:Int() Final
Return CountlList(FireMethods)

End Method
End Type

Rem
Class
Author
Purpose

: TStick
: Sloan Kelly
: Implementation of the

IController 1nterface This is the code for a joystick or similar game controller

End Rem

Type TStick Extends IController

Field Port:Int

Method DUp:Int()

Return JoyY(Port)

End Method

1}
1
[y

Method DDown:Int()

Return JoyY(port)

End Method

n
[N

Method DLeft:Int()

Return JoyX(Port)

End Method

n
1
[N

Method DRight:Int()

Return JoyX(Port)

End Method

Function Create:TStick(Name:String, Port:Int)
0:TStick =

o.Name
0.Port
Return
End Function

End Type
Rem
Class
Author

Purpose

End Rem

n
[

New TStick
Name
Port

: TKeyboard
: Sloan Kelly

: Implementation of the IController interface. This is the code for a

keyboard

Type TKeyboard Extends IController

265

APPENDIX D © CONTROLLER ABSTRACTION CLASSES

Field kcUp:Int

Field kcDown:Int
Field kclLeft:Int
Field kcRight:Int

Method DUp:Int()
Return KeyDown(kcUp)
End Method

Method DDown:Int()
Return KeyDown(kcDown)
End Method

Method DLeft:Int()
Return KeyDown(kcLeft)
End Method

Method DRight:Int()
Return KeyDown(kcRight)
End Method

Function Create:TKeyboard(Name:String, up:Int, dwn:Int, 1ft:Int, rght:Int)
o:TKeyboard = New TKeyboard

o.Name = Name
o.kcUp = up
0.kcDown = dwn
o.kcleft = 1ft
o.kcRight = rght
Return o

End Function

End Type
Rem
Class : TKeyFire
Author : Sloan Kelly
Purpose : Inherits from the IFire interface. This class traps keyboard
events.
End Rem

Type TKeyFire Extends IFire
Field Item:Int

Method FireDown:Int()
Return KeyDown(Item)
End Method

Method FireHit:Int()

Return KeyHit(Item)
End Method

266

APPENDIX D © CONTROLLER ABSTRACTION CLASSES

Function Create:TKeyFire(kc:Int)
o:TKeyFire = New TKeyFire
o.Item = kc
Return o

End Function

End Type
Rem
Class : TStickFire
Author : Sloan Kelly
Purpose : Inherits from the IFire interface. This class traps joystick button
events.
End Rem

Type TStickFire Extends IFire
Field Item:Int
Field Port:Int

Method FireDown:Int()
Return JoyDown(Item, Port)
End Method

Method FireHit:Int()
Return JoyDown(Item, Port)
End Method

Function Create:TStickFire(Item:Int, Port:Int)
0:TStickFire = New TStickFire
o.Item = Item
o0.Port = Port
Return o
End Function
End Type

267

APPENDIX E

Compiler Directives

Compiler directives are statements that are not converted into actual code but control the compiler’s
operation. BlitzMax supports the following compiler directives:

Strict
Operating-system-specific code
Processor-specific code
Endian-specific code

Debug mode code

Strict

Usually, if BlitzMax encounters an identifier (variable name) in your code that has not already been
declared, it assumes that it is an integer variable.

In the following code example, as myVar has not been declared, the compiler will create a new integer
and set its value to 0.

Print(myVar)
This can cause problems if you misspell a variable name, as instead of giving an error, the compiler will
think that the misspelled variable is actually a different variable altogether.
To avoid this, place the Strict compiler directive at the top of the code.
Strict
Local myVar=42
Print(myVar)

This gives an error, because myVaar has not been declared.

Print(myVaar)

© Sloan Kelly 2016 269
S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3

APPENDIX E © COMPILER DIRECTIVES

When in Strict mode, all variables must be declared using the Local or Global keywords (unless they
are fields inside types or parameters inside a function). You can go one step further and use the SuperStrict
keyword, to ensure that you explicitly set your data types too.

SuperStrict
Local i:Int = 5
Print i

By default, BlitzMax assumes the Integer (Int) data type. With SuperStrict mode, you must explicitly
indicate that the variable is an integer.

Operating-System-Specific Code

In BlitzMax, you can specify that a certain block of code should only be included when the code is compiled
on a certain operating system (OS). This is useful if you want a module to have one function that actually
runs different code on different operating systems. To start an OS-specific block, use the statement ?Linux,
?Mac0S, or ?Win32. To switch back to non-0S-specific mode, just use a question mark (?).

?Linux

"this block of code will only be compiled under Linux
?Win32

"this block of code will only be compiled under Windows.
?Mac0S

"this block of code will only be compiled under Mac.
?

"this block of code will be compiled on all platforms.

Processor-Specific Code

Use these if you must know which processor the code is being compiled for. It comes in handy if you are
using an assembler.

?PPC
"this block of code will only be compiled on a PowerPC system.
?x86

"this block of code will only be compiled on a x86 (Intel, AMD etc) system.
?

'all code from this point on will be compiled on all systems.

Endian-Specific Code

Sometimes, you only have to know the endianness of the target platform. The following directives can help.

?LittleEndian

"this block of code will only be compiled on platforms that use the little endian format.
?BigEndian

"this block of code will only be compiled on platforms that use the big endian format.

?

'all code from this point on will be compiled on all platforms.

270

APPENDIX E © COMPILER DIRECTIVES

Debug Mode Code

This works in a similar way to OS-specific code, except that it allows the program to specify that code will
only be compiled when the project is built in debug mode.

?Debug

"this block of code will only be compiled in debug mode.
?

'all code from this point on will be compiled in debug and release modes.

271

Index

A

American Standard Code for Information
Interchange (ASCII), 16, 259-261

AND operator, 33

Application/game/program, 16

Argh.Ogg and Ugh.Ogg, 210

Arithmetic operators, 30

Attribute definition, 101

Audacity, 210

Audio tools, 207

B

BASIC programming language, 13
Binary digits, 9
Binary numbering, 8
Binary system, 8
Blending modes, 176, 178
BlitzMax, 13, 25, 207, 251
BlitzMax IDE

editing, 18

file operations, 19

insert, 19

launching, 17

menu bar, 18

screen, 17

toolbar, 18
BlitzMax Sound, 208
BlitzMax web site, 255-256
BlitzSource, 19
Booleaan Bitwise Operators, 30
Boolean Logic, 42
Boolean mathematics

exclusive OR operator, 34
ButtonCount, 156
Bytes, 9

© Sloan Kelly 2016

C

Cache, 4

Central processing unit (CPU), 13
CheckCollisions() method, 191, 212
Class definition, 101

Class diagrams, 230

Clipboard, 20-22

Code, 270

Collision detection

action game, 161

first rule, 161-163

laws, 161

simple game, 164-166, 168-169

Collisions revisited, 174, 176
Colon, 32
Compilation process

assembly language, 14
23 characters, string, 15
Print() function, 15
program, 14

Compiler, 13,17
Compiler drectives

BlitzMax, 269
Endian-Specific Code, 270
strict, 269-270

Computer programming, 25
Computer system

aesthetics, 1
CPU, 3

in electronics, 2
input, 2
motherboard, 3
output, 2
process, 2

Constants, 29
Continue keyword, 50

S. Kelly, BlitzMax for Absolute Beginners, DOI 10.1007/978-1-4842-2523-3

273

INDEX

Controller abstraction class, 263-267

Controller.bmx, 157-159, 190
Correct file management, 115
Create method, 243

ctrl field, 244

D

Debugger, 17

Debug Mode Code, 271
Decimal system, 7
Disk, 3

Divide operator, 31
DoGameOver, 191, 244
DoQuit, 191

Double buffering, 120
Draw cycles, 191
DrawLanded, 191
DrawOutline method, 191, 244
DVD recorder, 231

E

Editor, 17

Embed binary resources, 252
Endian-Specific Code, 270
Enemy class, 239

Enhanced class diagram, 230
Entities, 224

Equality testing, 40-42

Exit keyword, 49

F

Fetch-execute cycle, 13
File Manipulation, OpenFile, 74-76
File operations
BlitzSource, 19
close, 20
open, 20
operating system, 19
save, 20
File System
directories
ChangeDir, 72
CreateDir, 74
CurrentDir, 72
DeleteDir, 74
FileType, 73

graphical representations, 73

LoadDir, 72

ReadDir, NextFile, and CloseDir, 72

OpenfFile, 74-76
FindLast, 35
FireMethods, 156

274

Flood, 215, 217, 251
Flood Game Specification
enemies, 223
orchids, 223
player character, 221
roaming enemies, 220
screen, 220
wave, 223
FloodTheGame.bmx, 252
FlushKeys, 98
foo() method, 237
For EachlIn...Next, 46
for Loop, 45-46

G

Game design
high-conceptidea, 217
low-conceptidea, 217

GameLoop method, 213

Game loop cycles, 192

GetChar, 147-148

GetMapData() function, 82

Global variables, 28

GNU Image Manipulation

Program (GIMP), 127

Graphics
built-in commands, 117
Cls, 122
color depth and frequency, 119
CountGraphicsModes, 118
EndGraphics, 119
flip, 120-122
fonts

GetlmageFont, 131
incbin keyword, 132
LoadImageFont, 131
SetlmageFont, 131-132
GetClsColor, 123
GetGraphics, 120
GraphicsModeExists, 118
GraphicsWidth and
GraphicsHeight, 119
images
Drawlmage, 128
GetViewport, 130
LoadAnimImage, 127
LoadImage, 127
SetViewport, 129
TileImage, 128
ZX Spectrum loading, 129
OpenGL, 117
primitives
DrawlLine, 125
DrawOval, 125

DrawPoly, 126
DrawRect, 125
DrawText, 126
Plot, 124-125
SetClsColor, 123
gun emplacement, 181-182

H

Hardware/software stack, 4-5
Hexadecimal, 9-11

IController
AddFire, 156
FireMethods, 156
Name, 156
TKeyFire, 156-157
TStickFire, 156-157
IF statements, 228
IncBin Keyword, 252
Include Keyword
advantages, 252
Inheritance, 102, 237
Input routine
classes, 155
IController, 155
web site, 155
Interface, 102
Iteration, 45

J

Java application, 228

JoyAxisCaps, 150-152

JoyButtonCaps, 152

JoyCount, 150

JoyName, 150

Joystick
BlitzMax, 149
computer users, 149
direction, 152-153
information, 150
JoyCount, 150
PlayStation controller, 150

K

Keyboard Input

BlitzMax key code, 143
Key Codes, 257-258
KeyDown, 143-144
KeyHit, 144-145

L

Larger numbers, 11
Light-emitting diodes (LEDs), 13
Literals, 29

LoadSound, 208

Local variables, 28
Low-concept idea, 217

Machine code (English to Computerese

Translation), 13
MainLoop method, 244
Method definition, 101
Minus Operator, 31
Modulo operator, 31
Mouse, 5
Multiplication operator, 31

N

Nesting IFs, 43
NOT operator, 33
Number systems, 7

(0

Object definition, 101
Object- oriented design, 215

aggregation and composition, 233

Introduction, 225

plus (+) and minus (-) signs, 231

UML, 225

Object-oriented programming (OOP)

abstraction, 112-113

attributes and functions, 101, 105

BlitzMax clasess, 102
CheeseFries(), 114

class, 101

consts and globals, 104-105
fields, 104

functions, 104

inheritance and polymorphism, 102, 106

interface, 102
methods, 101, 104

new and delete methods, 111

object, 101

polymorphism, 108-109
Self and Super variable, 110
simple class, 103

TStar class, 105, 106

UDT declaration, 106-107
UDT defining, 102

INDEX

275

INDEX

Ogg Vorbis, 207

OOP in BlitzMax, 215, 238

OpenGL special effects
set rotation, 171-172

Operating-system, 270

Orchid class, 240

Orchids, 223, 224

OR operator, 33

PQ
Paratrooper
DrawLanded, 191
DrawScore, 191
game concept, 180
game dynamics, 180
graphics, 180
gun emplacement, 181
Joystick vs. Keyboard, 183
options, 180
Project Management, 180
sound effects, 183
updates, 191
Paratrooper game, 212
paratrooper image, 180
Paratroops.bmx file, 183
PauseChannel, 208
Platform class, 240
player character, 222
Player class diagram, 239
PlaySound, 208
Plus Operator, 30
Polymorphism, 108
Portability, 13
Preconditions section, 226
Processor-specific code, 270
Project file management
BurgerPlace.bmx, 116
class diagram, 115
game development, 115
IncBin, 116
Include, 115-116

R

Random Access Memory (RAM), 4

Read-Only Memory, 4
Recursion, 66
Repeat...Forever, 49
Repeat...Until, 48-49
Resolution, 6-7
ResumeChannel, 208

276

Reusing code with functions
extend existing keywords, 65
line drawing, 63
recursion, 66

returning multiple values, 67-69

return values, 66

simple function declaration, 63

specify parameters, 64

S

Scaling images, 173

Screen, 5

Select Case, 44

SetChannelVolume, 208

Sound effects and audio
BlitzMax, 207
LoadSound, 208
Ogg Vorbis, 207
PauseChannel, 208
PlaySound, 208
ResumeChannel, 208
SetChannelVolume, 208
WAV, 207

Source code, 13

Storyboarding
concepts, 219
graphics, 220

Strict, 269-270

String Concatenation, 31

String methods
Contains, 36
decisions, 39
EndsWith, 36
Find, 35
FromBytes, 38
FromCString, 38
FromDouble, 38
FromPFloat, 38
Fromlint, 38
FromLong, 38
FromShorts, 39
FromWString, 39
Join, 36
length, 39
replace, 36
Split, 37
StartsWith, 36
String object, 34-35
ToCString, 37
ToDouble, 37
ToFloat, 37

Tolnt, 37

ToLong, 37

ToLower, 37

ToUpper, 37

ToWString method, 38

Trim, 35

TRUE/FALSE, 40
structured design, 245
Stub code, 248

T

Tab Panel, 18
Tank attack

brick graphic, 86

bullet, 81

Combat adding
bullet UDT, 90
collision detection, 94
drawing tanks, 94
Init() method, 90
main game loop, 95
source code, 89
tank creation, parameters, 90-91
UpdateBullets function, 93
UpdateTanks method, 92

data, 82

endgame screen, 79

end screen, 98-99

features, 78

game block, 81

GetMapData, 87-88

google docs spreadsheet, 82

graphics, 79-80

information/splash screen, 79

keys controlling tank movements, 89

main game loop, 79, 89, 98

map data, 87

map positions, 87

reset game method, 79

splash screen
DrawSplash, 85-86
PrintMessage, 85

structure chart, 78

Stub Code, 83-84

tension adding
DrawlInformation function, 96
DrawNumber function, 96
ResetGame function, 97
UpdateCountDown function, 97

TBullet, 201
TDome.bmzx, 201-202
TFloodGame, 243
TGameBackdrop.bmx, 196
The Great Escape
debugging, code, 59
debug methods, 62
description, 51
game elements, 51
graphic elements
Mac, 52
platforms, 52
Windows, 51
initial setup, 52-53
linear gradient, 57-59
main loop, 53-56
player feedback, 57
printing output, 61-62
starting game, 56-57
stopping execution, 60-61
time-lapsed image, 222
TKeyboard, 156
TMenuScreen.bmx, 188
TParatrooper.bmx, 197
TParatroopGame.bmx, 190
TPlayScreen, 240, 242
TPlayScreen.bmx file, 249
TrueType Font (TTF), 131
TStick, 156
TTroops, 199
TWave class diagram, 241
TWave.bmx file, 249, 251

U

Undo, 22

Unified Modeling Language (UML), 225, 231

Update method, 244

Use Case, 225

User-defined type (UDT), 102

User input
MouseDown, 137-139
MouseHit, 139-140
MouseX and MouseY, 135
MouseZ, 136-137
MoveMouse, 140-141
SetBlend line, 138
showing and hiding,

system mouse, 136

WaitMouse, 140

INDEX

277

INDEX

\Vj operators, 30
Strict, 25

Variables types, 26

code, 27 values, 27

data types, 26

field, 29

global, 28 W’ X! Y! Z

local, 28 WaitChar, 146-147

location, 27 WaitKey, 145-146

names, 26 While/Wend, 47-48

number of phrases, 25

278

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Computer System
	Input
	Process
	Output
	The Computer System
	Computer Memory
	Disk
	Random Access Memory
	Read-Only Memory
	Cache

	The Hardware/Software Stack
	Keyboard
	Mouse
	Screen
	Resolution

	Number Systems
	The Decimal System
	The Binary System
	Binary Numbering
	Groups of Binary Digits
	Groups of Bytes

	Hexadecimal
	Larger Numbers

	Chapter 2: How BlitzMax Works
	Computers Can’t Read English
	Translating English to Computerese (Machine Code)
	Compilation Process
	Application/Game/Program

	Chapter 3: The BlitzMax IDE
	Launching the IDE
	Menu Bar
	Toolbar
	The Tab Panel
	Editing
	Insert
	File Operations
	Save
	Close
	Open

	Clipboard
	Cut

	Undo
	Getting Help

	Chapter 4: Literals, Constants, and Variables
	Variables
	Data Types
	Variable Names
	Variable Types
	Variable Values
	Why Do We Use Variables?

	Variable Scope
	Local
	Global
	Field

	Literals
	Constants
	Changing Variables
	Arithmetic Operators
	The Plus Operator
	String Concatenation
	The Minus Operator
	The Multiplication Operator
	The Divide Operator
	The Modulo Operator
	Using the Colon

	Boolean Mathematics
	The AND Operator
	The OR Operator
	The NOT Operator
	The Exclusive OR Operator

	String Methods
	Find
	FindLast
	Trim
	Replace
	StartsWith
	EndsWith
	Contains
	Join
	Split
	ToLower
	ToUpper
	ToInt, ToLong, ToFloat, ToDouble
	ToCString
	ToWString
	FromInt, FromLong, FromFloat, FromDouble,
	FromBytes
	FromCString
	FromShorts
	FromWString
	Length of String

	Going with the Flow
	Simple Decisions
	IF Conditions Always Equate to One of Two Values: TRUE or FALSE

	Testing for Equality
	Using Boolean Logic
	Nesting IFs
	Select Case
	Iteration—Making the Computer Repeat Itself
	The for Loop
	For EachIn…Next

	While/Wend
	Repeat…Until
	Repeat…Forever
	Exit
	Continue
	A Note on Exit and Continue

	Chapter 5: The Great Escape
	Game Elements
	Creating the Graphic Elements
	Windows
	Mac
	All Platforms

	Splitting Up the Tasks
	Initial Setup
	The Main Loop

	Starting the Game
	Giving the Player Feedback
	The Linear Gradient
	Debugging Your Code
	Stopping Execution
	Printing Output
	Other Debug Methods

	Chapter 6: Reusing Code with Functions
	Where Would I Use a Function?
	Declaring a Simple Function
	Drawing a Line
	Specifying Parameters
	Optional Parameters

	Extending Existing Keywords
	Returning Values from Functions
	Recursion
	Returning Multiple Values

	Chapter 7: Using the File System
	Reading a Directory
	CurrentDir
	ChangeDir
	ReadDir, NextFile, and CloseDir
	LoadDir
	FileType
	Graphical Representations of Directories

	CreateDir
	DeleteDir

	File Manipulation with OpenFile
	ReadLine
	Eof
	CloseStream
	WriteLine

	Chapter 8: Tank Attack: The Second Game
	Information/Splash Screen
	Main Game Loop
	Reset Game
	Draw Endgame
	Remaining Functions
	The Graphics
	The Data
	The Stub Code
	The Splash Screen
	PrintMessage
	DrawSplash

	Loading and Drawing the Map
	The Brick Graphic
	Map Positions
	Getting the Map Data
	The Main Game Loop

	Adding Combat
	Updating the Tanks
	Collision Detection
	Drawing the Tanks
	Main Game Loop

	Adding Tension
	Drawing Information
	Resetting the Game
	Decrementing the Counter

	The End Screen
	The Endgame State

	Chapter 9: Object-Oriented Programming
	What Is an Object?
	What Is a Class?
	What Is an Attribute?
	What Is a Method?
	What Is the Difference Between an Object and a Class?
	What Is Inheritance?
	What Is an Interface?
	Classes in BlitzMax
	Defining a User-Defined Type
	A Simple Class
	Fields
	Methods
	Functions
	Consts and Globals or Static Attributes
	Inheritance and Polymorphism
	A Simple Object
	Polymorphism
	Self and Super
	New and Delete
	Abstract and Final
	Differences Between Abstract and Inheritance

	And Finally…
	Summary

	Chapter 10: Project File Management
	Include
	IncBin

	Chapter 11: Graphics
	Graphics Modes
	CountGraphicsModes
	GraphicsModeExists(width, height, depth=0, hertz=0)
	Graphics
	EndGraphics
	GraphicsWidth and GraphicsHeight
	GetGraphics

	Some Advice
	Flip
	Cls
	SetClsColor
	GetClsColor
	Drawing Simple Objects
	Plot
	DrawRect
	DrawLine
	DrawOval
	DrawPoly
	DrawText

	Images
	Images and BlitzMax
	LoadImage
	LoadAnimImage
	DrawImage
	TileImage
	SetViewport
	GetViewport

	Fonts
	LoadImageFont
	SetImageFont
	GetImageFont
	Example of Font Use in BlitzMax

	Chapter 12: User Input
	MouseX and MouseY
	Showing and Hiding the System Mouse
	MouseZ
	MouseDown
	MouseHit
	WaitMouse
	MoveMouse

	Chapter 13: Keyboard Input
	KeyDown
	KeyHit
	WaitKey
	WaitChar
	GetChar

	Chapter 14: Joystick
	Joystick Information
	JoyCount
	JoyName
	JoyAxisCaps
	JoyButtonCaps

	Getting Direction

	Chapter 15: Common Input Routine
	The Classes
	IController
	Name
	FireMethods
	AddFire
	Fire
	ButtonCount

	TStick and TKeyboard
	TStickFire and TKeyFire
	Sample Application Using Controller.bmx

	Chapter 16: Collision Detection
	Simple Collisions
	The First Rule—Collision Detection
	A Simple Game

	Chapter 17: OpenGL Special Effects
	Rotating Images
	SetRotation

	Scaling Images
	Collisions Revisited
	Blending Modes
	Blend Mode Effects

	Chapter 18: Paratrooper: Retro Involved
	Project Management
	Game Dynamics
	Lots of Options
	Graphics
	The Paratrooper
	The Gun Emplacement

	Joystick vs. Keyboard?
	Sound FX
	On with the Game
	Paratroops.bmx
	TMenuScreen.bmx
	Controller.bmx
	TParatroopGame.bmx
	Create
	CheckCollisions
	DrawScore
	DrawLanded
	Draw
	Update
	DoQuit
	DoGameOver
	DrawOutline
	GameLoop

	TGameBackdrop.bmx
	TParatrooper.bmx
	TParatrooper
	Create
	Draw
	Update

	TTroops
	Create
	Draw
	Update
	Landed

	TDome.bmx
	TBullet
	Create
	Draw
	Update
	TDome
	The Fields
	Create
	Draw
	Update

	Chapter 19: Sound Effects and Audio
	WAV
	OGG
	BlitzMax and Sound
	LoadSound
	PlaySound
	SetChannelVolume
	PauseChannel
	ResumeChannel
	BlitzMax Sound Example

	Installing Audacity
	Music.Ogg
	Argh.Ogg and Ugh.Ogg
	Altering the Paratrooper Game
	Collisions
	Playing the Music

	Chapter 20: Putting It All Together
	Chapter 21: Game Design
	What’s the Big Idea?
	High Concept
	Low Concept

	So What Is Flood?

	Chapter 22: Storyboarding
	Writing a Specification for a Game
	Flood Game Specification
	Introduction
	The Screen
	Main Actor—“Jasper”
	Enemies
	The Wave
	The Orchids
	Entities
	Next Steps

	Object-Oriented Design
	Introduction
	Use Cases
	What Is a Use Case?
	Sample Use Case
	What Is the Purpose of Use Cases?
	Class Diagrams
	A DVD Recorder

	Class Relationships
	Aggregation and Composition
	Aggregation
	Composition
	Multiplicity
	Naming the Attribute
	Inheritance
	Summary

	Implementing OOP in BlitzMax
	Were Do We Get the Methods From?
	Player
	Enemy
	Platform
	Orchid
	Wave
	Putting It All Together
	TFloodGame

	Converting Class Diagrams to UDTs
	Stub Code for TFloodGame

	Testing Modules
	Testing the Code
	Creating Stub Code

	Chapter 23: Project Management
	Using the Include Keyword
	Advantages of Using the Include Keyword
	Embedding Binary Resources
	The IncBin Keyword

	Appendix A: Web Site Addresses
	Appendix B: BlitzMax Key Codes
	Appendix C: ASCII Table
	Appendix D: Controller Abstraction Classes
	Appendix E: Compiler Directives
	Strict
	Operating-System-Specific Code
	Processor-Specific Code
	Endian-Specific Code
	Debug Mode Code

	Index

