
Building APIs
with Node.js

—
Caio Ribeiro Pereira

www.allitebooks.com

http://www.allitebooks.org

Building APIs with
Node.js

Caio Ribeiro Pereira

www.allitebooks.com

http://www.allitebooks.org

Building APIs with Node.js

Caio Ribeiro Pereira
São Vicente - SP, São Paulo, Brazil

ISBN-13 (pbk): 978-1-4842-2441-0 ISBN-13 (electronic): 978-1-4842-2442-7
DOI 10.1007/978-1-4842-2442-7

Library of Congress Control Number: 2016961314

Copyright © 2016 by Caio Ribeiro Pereira

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher's location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Celestin Suresh John, Nikhil Karkal, Robert Hutchinson,
James Markham, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: Teresa F. Horton
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springer.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

I dedicate this book to my family who always supports me and
has motivated me since the beginning of my life.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author �� xi

About the Technical Reviewer �� xiii

Acknowledgments ��� xv

Introduction ��� xvii

 ■Chapter 1: Introduction to Node�js ��� 1

 ■Chapter 2: Setting Up the Environment �� 5

 ■Chapter 3: Managing Modules with NPM ��������������������������������������� 9

 ■Chapter 4: Building an API ��� 15

 ■Chapter 5: Working with SQL Databases �������������������������������������� 27

 ■Chapter 6: CRUDify API Resources ��� 37

 ■Chapter 7: Authenticating Users ��� 49

 ■Chapter 8: Testing the Application: Part 1 ������������������������������������ 61

 ■Chapter 9: Testing the Application: Part 2 ������������������������������������ 71

 ■Chapter 10: Documenting the API �� 81

 ■Chapter 11: Preparing the Production Environment ��������������������� 93

 ■Chapter 12: Building the Client-Side App: Part 1������������������������ 105

 ■Chapter 13: Building the Client-Side App: Part 2������������������������ 121

Index �� 135

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author �� xi

About the Technical Reviewer �� xiii

Acknowledgments ��� xv

Introduction ��� xvii

 ■Chapter 1: Introduction to Node�js ��� 1

What Is Node.js? .. 1

Main Features ... 1

Single-Thread Architecture ... 1

Event-Loop ... 2

Why Do I Need to Learn Node.js? .. 3

Conclusion ... 3

 ■Chapter 2: Setting Up the Environment �� 5

Node.js Standard Installation .. 5

About io.js and Node.js Merge .. 6

Node.js Installation Via NVM .. 7

Set Up NVM ... 7

Top NVM Commands ... 7

Installing Node.js Via NVM .. 8

Conclusion ... 8

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

 ■Chapter 3: Managing Modules with NPM ��������������������������������������� 9

What Does NPM Do? ... 9

Top NPM Commands ... 10

Understanding the package.json File .. 10

NPM Task Automation.. 12

Conclusion ... 13

 ■Chapter 4: Building an API ��� 15

Introduction to Express ... 15

Getting Started on the Pilot Project ... 17

Pilot Project Source Code ... 17

Implementing a Simple and Static Resource .. 20

Arranging the Loading of Modules .. 22

Conclusion ... 26

 ■Chapter 5: Working with SQL Databases �������������������������������������� 27

Setting Up Sequelize ... 29

Creating Models .. 31

Model: Tasks ... 31

Model: Users ... 32

Conclusion ... 35

 ■Chapter 6: CRUDify API Resources ��� 37

Organizing Task Routes ... 37

Listing Tasks Via GET ... 39

About HTTP Status .. 39

Creating Tasks Via POST .. 40

Finding a Task Via GET ... 40

Updating a Task Via PUT .. 41

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Deleting a Task Via DELETE ... 42

Refactoring Some Middlewares .. 43

Creating Users’ Endpoints ... 44

Testing Endpoint Access Using Postman ... 45

Conclusion ... 48

 ■Chapter 7: Authenticating Users ��� 49

Introduction to Passport.js and JWT ... 49

About Passport.js .. 49

About JWT .. 50

Installing Passport and JWT .. 51

Implementing JWT Authentication .. 52

Generating Tokens for Authenticated Users .. 54

Conclusion ... 59

 ■Chapter 8: Testing the Application: Part 1 ������������������������������������ 61

Setting Up the Test Environment ... 62

Writing the First Test ... 65

Testing the Authentication Endpoint .. 66

Conclusion ... 69

 ■Chapter 9: Testing the Application: Part 2 ������������������������������������ 71

Testing a Task’s Endpoints .. 71

Testing a User’s Endpoints .. 76

Conclusion ... 80

 ■Chapter 10: Documenting the API �� 81

Introduction to ApiDoc.js ... 81

Documenting Token Generation .. 84

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

Documenting User Resource ... 85

Documenting Tasks Resource ... 87

Conclusion ... 91

 ■Chapter 11: Preparing the Production Environment ��������������������� 93

Enabling CORS in the API... 93

A Bit More About CORS ... 94

Generating Logs .. 95

Configuring Parallel Processing Using Cluster Module 97

Developing Clusters .. 99

Compacting Requests Using GZIP Middleware.................................... 100

Installing SSL Support to Use HTTPS .. 101

Armoring the API with Helmet ... 102

Conclusion ... 104

 ■Chapter 12: Building the Client-Side App: Part 1������������������������ 105

Setting Up the App Environment ... 105

Creating Sign-in and Signup Views ... 110

Writing Sign-in and Signup Components .. 112

Conclusion ... 119

 ■Chapter 13: Building the Client-Side App: Part 2������������������������ 121

Views and Components for Task’s CRUD ... 121

Views and Components for Logged Users ... 125

Creating the Main Menu .. 127

Treating All Screen Events ... 129

Conclusion ... 133

Index �� 135

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Caio Ribeiro Pereira is a software engineer from
Brazil who love works with Node.js, JavaScript, Meteor,
Ruby On Rails, DevOps, and front-end stuffs. He has
a bacharelor’s degree in Information Systems, author
of the blog https://udgwebdev.com, creator of the
DevFreeBooks (https://devfreebooks.github.io) and
DevFreeCasts (https://devfreecasts.github.io), and
is actively engaged in many local meet-ups including
NodeBr, DevInSantos, Meteor Brazil and JavaScript
Brazil.

www.allitebooks.com

https://udgwebdev.com
https://devfreebooks.github.io
https://devfreecasts.github.io
http://www.allitebooks.org

xiii

About the Technical
Reviewer

Massimo Nardone has more than 22 years of
experience in security, Web/ and mobile development,
and cloud and IT architecture. His true IT passions are
security and Android.

He has been programming and teaching how to
program with Android, Perl, PHP, Java, VB, Python,
C/C++, and MySQL for more than 20 years. He holds a
master’s of science degree in Computing Science from
the University of Salerno, Italy.

He has worked as a project manager, software
engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor,
and senior lead IT security/cloud/SCADA architect for
many years.

His technical skills include: security, Android,
cloud, Java, MySQL, Drupal, Cobol, Perl, Web and mobile development, MongoDB, D3,
Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll, Scratch, and
more.

He currently works as Chief Information Security Officer for Cargotec Oyj.
He worked as visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas).

Massimo has reviewed more than 40 IT books for different publishing companies
and he is the coauthor of Pro Android Games (Apress, 2015).

xv

Acknowledgments

Special thanks go to Mrs. Charlotte Bento de Carvalho, my cousin Cláudio Souza, my
friends Leandro Alvares da Costa and Bruno Alvares da Costa, Paulo Silveira, and Adriano
Almeida. They have had an important role in my life, influencing me to be who I am
today, and consequently, to write this book.

Thanks to all the readers from Underground WebDev (https://udgwebdev.com);
after all, the essence of this book is based on many posts from this blog.

Finally, thank you, dear reader, for purchasing this book.

https://udgwebdev.com/

xvii

Introduction

We live in a time in which the majority of users use different types of devices to connect
to the Internet. The most popular devices are smartphones, tablets, and notebooks.
Developing systems for different types of devices requires the work of building web
services, also known by the name of application program interfaces (APIs).

Basically, the APIs are back-end systems that are designed to work only with data in a
centralized manner, allowing client-side applications to be developed separately, to have
a unique interface to the final user. These client-side applications are typically mobile
apps, desktop applications, or web apps.

Since 2010 Node.js has increasingly proven to be an excellent platform to solve
many problems, especially for building REST APIs. The single-thread architecture that
performs nonblocking I/O running on top of JavaScript, which is a ubiquitous language
in all current browsers, showed good performance in the processing of many kinds of
applications. Some large companies, such as LinkedIn and PayPal, have significantly
reduced expenses with servers migrating some of their projects to Node.js.

In addition, another advantage of using Node.js, which captivated many developers,
is the short learning curve. After all, anyone who has worked with web development
already has at least a basic understanding of the JavaScript language.

Who Is This Book For?
This book is intended for developers who have at least a basic knowledge of JavaScript
and, especially, those who understand object-oriented programming (OOP), a little bit of
client-server architecture, and those with an understanding of the main characteristics of
REST APIs.

Mastering these concepts, or at minimum a basic knowledge of them, is essential to
fully understand this book.

All the code in this book is written using the latest JavaScript implementation, the
ECMAScript 2015 (also called ECMAScript 6, or ES6).

How Should I Use This Book?
Throughout the book, many concepts and codes are going to be presented for you to
learn through practice all the theoretical parts of this book. It will guide you in a didactic
way in the development of two projects (an API and a web client application), which in
the end are both integrated to work as a single project.

It is highly recommended that you follow the book’s instructions step by step, so in
the end you can complete the project correctly.

1© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_1

CHAPTER 1

Introduction to Node.js

What Is Node.js?
Node.js is a low-level, highly scalable platform. It was created explicitly to be an
experiment in asynchronous processing. Using Node.js, you will program directly with
many network and Internet protocols or use libraries that have access to operating system
(OS) resources. To program in Node.js you only need to master JavaScript language;
that’s right, only JavaScript! The JavaScript runtime used in this platform is the famous
Javascript V8, which is also used in Google Chrome.

Main Features
Single-Thread Architecture
A single-thread architecture works with only the main thread instance for each initiated
process. If you are used to programming in multithread architectures, like Java or .NET
to use the concurrency processing, unfortunately that won’t be possible with Node.js.
However, you can work with parallel processing using multiple processes.

For example, you can use a native library from Node.js called clusters that allows
you to implement a network of multiple processes. In Node.js you can create N-1
processes to work with parallel processing, as the main process (or master process) works
on balancing the load among the other processes (or slave process). If your server has
multiple cores, applying this technique will optimize the usage of the processing.

Another way is to use asynchronous programming, which is one of the main
resources from JavaScript. The asynchronous functions on Node.js work as nonblocking
I/O: If your application has to read a huge file it will not block the CPU, because the I/O
operation runs out of a thread pool, allowing your application to continue to process
other tasks requested by other users.

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2442-7_1) contains supplementary material, which is available to
authorized users.

http://dx.doi.org/10.1007/978-1-4842-2442-7_1

Chapter 1 ■ IntroduCtIon to node.js

2

Event-Loop
Node.js has an event-oriented paradigm. It follows the same event-oriented philosophy
on the JavaScript client side; the only difference is the type of event, meaning that there
are not events such as mouse’s click, key up from the keyboard, or any other events
from web browsers. In fact, Node.js works with I/O events; for example, connect from a
database, open a file or read data from a stream, and many others.

The event-loop (Figure 1-1) is the agent responsible for noticing and emitting events.
Simply speaking, it is an infinite loop that in each iteration verifies in the event queue
if some event was triggered. When an event is triggered, the event-loop executes it and
sends it to the queue of executed events. When an event is running, we can write any
business logic on it inside the callback function commonly used in JavaScript.

Figure 1-1. The event-loop process

Chapter 1 ■ IntroduCtIon to node.js

3

Why Do I Need to Learn Node.js?
•	 JavaScript everywhere: Node.js uses JavaScript as a server-side

programming language. This feature allows you to streamline your
learning process; after all, the language is the same as the JavaScript
client side. Your main challenge in this platform is to learn how to
work with the asynchronous programming to make the most of
this technique. Another advantage of working with JavaScript is
that you can keep a project that is easy to maintain, as long as you
know how to write codes using JavaScript. You are going to easily
find professionals for your projects and you’re going to spend less
time studying a new server-side language. A technical JavaScript
advantage in comparison with other back-end languages is that you
will no longer use specific frameworks to parse JavaScript Object
Notation (JSON) objects; after all, the JSON from the client side will
be same as on the server side. There are also cases of applications
running databases that persist JSON objects, such as the popular
NoSQL: MongoDB, CouchDB, and Riak. An important detail is that
Node.js uses many functionalities from ECMAScript 6, allowing you
write elegant and robust JavaScript code.

•	 Active community: This is one of the biggest advantages in Node.
js. Currently, there are many communities around the world
striving to make Node.js a huge platform, either writing posts
and tutorials, giving speeches at events, or publishing and
maintaining new modules.

•	 Active open source modules: Today there are more than 300,000
open source modules published into NPM that can be used
instantly for Node.js projects.

•	 Ready to real time: Node.js has become popular thanks to some
frameworks for real-time communications between client
and server. SockJS and Socket.IO are good examples. They are
compatible with the WebSockets protocol and they allow you to
traffic data through a single bidirectional connection, treating all
data by JavaScript events.

•	 Big players: LinkedIn, WalMart, Groupon, Microsoft, Netflix, Uber,
and Paypal are some of the big companies using Node.js, and
there are many more.

Conclusion
Up to this point, I explained the main concepts and advantages of using Node.js. In the
next chapters, we are going to see how it works in practice, with a single condition: Open
your mind to new ideas and read this book with excitement

5© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_2

CHAPTER 2

Setting Up the Environment

In this chapter, we are going to install Node.js on the most used OSs (Windows, Linux,
and MacOSX). However, the entire book uses MacOSX as the default OS. Don’t worry
about the differences among these OSs, because all examples in this book are compatible
with all the three OS platforms.

Node.js Standard Installation
Setting up the Node.js environment is much the same despite the OS. Just a few
procedures will be different in each OS, especially for Linux, because in the Linux
environment you can compile an application or install it using a package manager, but
this is not a major change.

The first step is to access the official Node.js web site at http://nodejs.org. On the
home page, shown in Figure 2-1, v6.9.1 LTS Stable to download the latest compatible
version for Windows or MacOSX. If you use Linux, I recommend you read the quick wiki
at https://github.com/nodejs/node/wiki/Installing-and-Building-Node.js, which
explains how to compile and install Node.js in some popular Linux distros.

http://nodejs.org/
https://github.com/nodejs/node/wiki/Installing-and-Building-Node.js

Chapter 2 ■ Setting Up the environment

6

After the download, install the software. If you use Windows or MacOSX, just click
through the installation wizard screens until the installation is completed; after all, there
is no specific configuration required.

To test if everything is running correctly, just open the terminal (for Linux or
MacOSX), command prompt, or Power Shell (for Windows) and type this command:

1 node -v && npm -v

This checks the version of Node.js and NPM. This book uses Node v6.9.1 LTS and
NPM 3.10.8.

About io.js and Node.js Merge
As of September 2015, Node.js was upgraded from 0.12.x to version 4.0.0 because of the
merge with io.js. The io.js was a fork built and maintained by the Node.js community.
They worked to include some features from ECMAScript 6 implementation, in addition to
making several improvements that were slow on Node.js. When io.js reached version 3.0.0
and both groups decided to merge io.js into Node.js, the result was the Node.js v4.0.0.
This merger not only gave a huge upgrade to this platform, but also resulted in a more
stable and reliable version of Node.js.

Figure 2-1. Node.js home page

Chapter 2 ■ Setting Up the environment

7

 ■ Note this book uses node v6.9.1 LtS, with a lot of eS6 codes. You can learn more
about eCmaScript 6 at http://es6-features.org.

Node.js Installation Via NVM

 ■ Tip in this section, we are just going to explore an alternative way to set up node.
js using a version manager. Feel free to skip this step if you don’t need to or don’t want to
learn how to use the nvm.

Just like Ruby language has the Ruby Version Manager (RVM) to manage multiple
Ruby versions, Node.js also has a manager, the Node Version Manager (NVM).

NVM is a perfect solution to test your projects in different Node.js versions. It is
also useful for people who like to test unstable or the latest versions. NVM has great
advantages: It is practical, it is easy to use, it can uninstall a Node.js version with a single
command, and it will save you time searching and installing a versions of Node.js. It is a
good alternative, especially on Linux, because its native package managers are frequently
outdated, which invalidates a new Node.js version to be installed.

Set Up NVM
In few steps you can set up NVM for a MacOSX or Linux system; you just need to run this
command:

1 curl https://raw.githubusercontent.com/creationix/nvm/v0.32.1/install.
sh | bash

Unfortunately, the official version of NVM is not available for Windows, but there
are alternative projects created by the community. Here are two similar alternatives for
Windows:

•	 NVM-Windows: https://github.com/coreybutler/nvm-windows

•	 Nodist: https://github.com/marcelklehr/nodist

Both have a similar command-line interface (CLI) inspired by NVM.

Top NVM Commands
As as a sort of recipe, here is a list of the top commands that will be essential to manage
multiple versions or at least keep your environment updated with the latest version.

http://es6-features.org/
https://github.com/coreybutler/nvm-windows
https://github.com/marcelklehr/nodist

Chapter 2 ■ Setting Up the environment

8

•	 nvm ls: Lists all versions installed.

•	 nvm ls-remote: Lists all the Node.js versions available to
download and install.

•	 nvm install vX.X.X: Downloads and installs a version.

•	 nvm uninstall vX.X.X: Uninstalls an existing version.

•	 nvm use vX.X.X: Chooses an existing version to use.

•	 nvm alias default vX.X.X: Chooses an existing version to be
loaded by default in the OS boot time.

 ■ Note replace the vX.X.X with the node.js version of your choice, such as v6.9.1.

Installing Node.js Via NVM
To install Node.js via NVM, you need to run the following commands:

1 nvm install v6.9.1
2 nvm use v6.9.1
3 nvm alias default v6.9.1

After running these commands, Node.js will be installed and ready to use.

Conclusion
Congratulations! Now, besides having Node.js installed and working, you also learned a
new way to manage multiple Node.js versions via NVM. In the next chapter, we are going
to explore some important things about Node Package Manager (NPM), so keep reading,
because the fun is just starting!

9© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_3

CHAPTER 3

Managing Modules with NPM

What Does NPM Do?
Just like RubyGems from Ruby or Maven from Java, Node.js also has a package manager,
Node Package Manager (NPM). It has become so popular throughout the community
that beginning with the 0.6.X Node.js version it was integrated within the main Node.js
installer, becoming the standard manager of this platform. This helped the developers at
that time, because it made several projects converge to this tool.

Nowadays, the NPM home page, shown in Figure 3-1, hosts more than 350k of
modules created and there are 4 million developers and thousands of companies using this
platform.

Figure 3-1. The NPM home page at npmjs.org

Chapter 3 ■ Managing Modules with npM

10

Top NPM Commands
NPM is very easy to use. You can use it to manage your project’s dependencies, and when
you create commands for task automation purposes, everything is created and managed
into the package.json file. The following are the top NPM commands.

•	 npm init: Displays a simple wizard to help you create and
describe your new project.

•	 npm install module_name: Installs a module.

•	 npm install -g module_name: Install a global module.

•	 npm install module_name --save: Installs a module and adds it
into the package.json file, inside dependencies.

•	 npm install module_name --save-dev: Installs a module and
adds it into the package.json file, inside devDependencies.

•	 npm list: Lists all the modules installed on the project.

•	 npm list -g: Lists all the global modules installed on the OS.

•	 npm remove module_name: Uninstalls a module from the project.

•	 npm remove -g module_name: Uninstalls a global module.

•	 npm remove module_name --save: Uninstalls a module from the
project and also removes it from the attribute dependencies.

•	 npm remove module_name --save-dev: Uninstalls a module
from the project and also removes it from the attribute
devDependencies.

•	 npm update module_name: Updates the module version.

•	 npm update -g module_name: Updates the global module version.

•	 npm -v: Displays the NPM current version.

•	 npm adduser username: Creates an account to https://npmjs.org.

•	 npm whoami: Displays details of your public NPM profile (you
must create an account using the previous command).

•	 npm publish: Publishes a module to npmjs.org (it’s necessary to
have an active account first).

Understanding the package.json File
All Node.js projects are called modules. What is a module? Throughout the book, note I
use the terms module, library, and framework. In practice, they all mean the same thing.

https://npmjs.org/
https://npmjs.org/

Chapter 3 ■ Managing Modules with npM

11

The term module was taken from JavaScript’s concept, which is a language that
works with a modular architecture. When we create a Node.js project (i.e., a module), this
project is followed by a descriptor file of modules, called package.json.

This file is essential to a Node.js project. A badly written package.json can cause
bugs or even prevent your project from executing, because this file has some key
attributes that are read by both Node.js and the NPM.

To demonstrate it, here is a simple example of a package.json file that describes the
main attributes of a module:

 1 {
 2 "name": "my-first-node-app",
 3 "description": "My first node app",
 4 "author": "User <user@email.com>",
 5 "version": "1.2.3",
 6 "private": true,
 7 "dependencies": {
 8 "module-1": "1.0.0",
 9 "module-2": "~1.0.0",
10 "module-3": ">=1.0.0"
11 },
12 "devDependencies": {
13 "module-4": "*"
14 }
15 }

With those few attributes, you are able to describe your module. The attribute name
is the main one, as it defines a programmatic name of the project. This module name will
be called via the require("my- first-node-app") function. It must be written in a clean
and short way, offering an abstract about the module will be.

The author attribute is provides the name and e-mail of the author. You can use the
format Name <email> so that web sites, such as npmjs.org, can read this information
correctly.

Another main attribute is the version, which defines the current version of the
module. It is highly recommended that you use this attribute to allow a module installation
via the npm install my-first-node-app command. The attribute private is optional; it
is only a boolean that determines if the project is an open source or a private project.

Node.js modules work with three levels of versioning. For example, the version 1.2.3
is divided into the following levels:

 1. Major: X.0.0

 2. Minor: 0.X.0

 3. Patch: 0.0.X

Note the X means the current level version to date.
The previous package.json has four modules, and each one uses a different

semantic version. The first one, "module-1", has a fixed version 1.0.0. Use this kind of
version to install dependencies with updates that can break the project if you change the
version.

https://npmjs.org/

Chapter 3 ■ Managing Modules with npM

12

The next module, "module-2", already has a certain update flexibility. It uses the
character "∼", which allows you to update a module as a patch level 1.0.x (it only
updates the x version). Generally, these updates are safe, as they bring improvements and
bug fixes.

The "module-3" updates versions that are greater than or equal to 1.0.0 in all the
version levels. In many cases, using ">=" can be risky, because the dependency can be
updated to a major or minor level and, consequently, can bring some modifications that
can break your application.

The last one, "module-4", uses the "*" character. This one always catches the latest
version of the module in any version level. It also can cause trouble in the updates and
it has the same behavior as the module-3 versioning. Generally, it is used only in the
devDependencies, which are dependencies used for test purposes that do not affect the
application behavior. Do not use this kind of version in a production environment!

If you want to have more precise control over the versions of your dependencies
after their installation in your project, run the npm shrinkwrap command. It will lock
all dependencies versions within the file npm-shrinkwrap.json giving you control over
the dependencies versions of your project. This command is very useful in a production
environment, where the versions need to be stricter.

NPM Task Automation
You can also automate tasks using the npm command. In practice, you can only create
new executable commands running npm run command_name. To declare those new
commands, just create them inside the attribute scripts on package.json as in this
example.

 1 {
 2 "name": "my-first-node-app",
 3 "description": "My first node app",
 4 "author": "User <user@email.com>",
 5 "version": "1.2.3",
 6 "private": true,
 7 "scripts": {
 8 "start": "node app.js",
 9 "clean": "rm -rf node_modules",
10 "test": "node test.js"
11 },
12 "dependencies": {
13 "module-1": "1.0.0",
14 "module-2": "~1.0.0",
15 "module-3": ">=1.0.0"
16 },
17 "devDependencies": {
18 "module-4": "*"
19 }
20 }

Chapter 3 ■ Managing Modules with npM

13

Note that this new package.json created three scripts: start, clean, and test.
These scripts are executable now via their commands: npm run start, npm run clean,
and npm run test. As a shortcut, only the start and test commands can be executed
by the alias: npm start and npm test. Within the scripts, you can run the command
node, npm or any other global command from the OS. The npm run clean command is an
example of a global command from the bash, which internally runs the command rm -rf
node_modules to delete all files from the node_modules folder.

Conclusion
At this point, you have learned the basics about managing dependencies and automating
tasks using NPM. It is important to understand these concepts because they are used
frequently throughout this book.

Fasten your seatbelts and get ready! In the next chapter we are going to start our API
RESTful pilot project, which is going to be worked on throughout the next chapters. As a
spoiler, I am going to tell you what this project will be.

In the next chapters, we are going to create a simple API REST system to manage
tasks. In addition to the API, we’ll also create a web application to consume data from
this API. All development is going to happen using popular Node.js frameworks: Express
to create the API resources, Sequelize to persist data in a relational database, Passport to
deal with user authentications, and many more.

15© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_4

CHAPTER 4

Building an API

Now that we have the Node.js environment installed and ready to work, we are going to
explore the creation of our REST API application. This kind of application is currently
being developed by many projects and companies, because it has the advantage of an
application focused only on feeding any client-side application with data. Nowadays, it’s
quite common to create web and mobile apps that consume data from one more APIs.
This means that several kinds of client applications consult the same server focused on
dealing with data. Besides, it also allows each application—client or server—to be worked
with by different teams.

First, we are going to build an API. Throughout to the last chapters, however, we will
also build a simple web client-side application to consume data from the API. To start
developing the API, we are going to use a very popular web framework called Express.

Introduction to Express
Express is a minimalist web framework that was highly inspired by the Sinatra framework
from the Ruby language. With this module, you can create anything from small
applications to large, complex ones. This framework allows you to build APIs and also to
create simple web sites. The home page for Express is shown in Figure 4-1.

Chapter 4 ■ Building an api

16

It is focused on working with views, routes, and controllers, only models are not
handled by this framework, giving you the freedom to use any persistence framework
without creating any incompatibility or conflict in the application. This is an important
advantage, because there are many object data mappers (ODMs) and also object
relational mapping (ORMs) available. You can use any of them with Express without a
problem; you just need to load this kind of module, write some models, and use them
inside the controllers, routes, or views.

Express allows developers to freely arrange the project’s code; that is, there are no
inflexible conventions in this framework. Each convention can be created and applied
by yourself. This makes Express flexible to be used on both small and large applications,
because it’s not always necessary to apply many conventions to a small project.

You can also reapply conventions from other frameworks. Ruby On Rails is an
example of a framework full of conventions that are worth reapplying for some of their
technical features. This independence forces the developer to fully understand how each
application structure works.

To sum up, here is a list of the main features of Express.

•	 Robust routing.

•	 Easily integratable with a lot of template engines.

•	 Minimalist code.

Figure 4-1. The Express home page at expressjs.com

Chapter 4 ■ Building an api

17

•	 Works with middlewares concept.

•	 A huge list of third-party middlewares to integrate.

•	 Content negotiation.

•	 Adopt standards and best practices of REST APIs.

Getting Started on the Pilot Project
What about creating a project in practice? From this chapter on, we are going to explore
some concepts for creating a REST API using some Node.js frameworks.

Our application is going to be a simple task manager that will be divided into two
projects: API and web app.

Our API will be called NTask (Node Task) and it will have the following features:

•	 List of tasks.

•	 Create, delete, and update a task.

•	 Create, delete, and update user data.

•	 User authentication.

•	 API documentation page.

Pilot Project Source Code
If you are curious to check out the source code of all projects that are going to be explored
in this book, you can access it online at https://github.com/caio-ribeiro-pereira/
building-apis-with-nodejs.

In this application, we’ll explore the main resources to create an REST API on Node.
js and, throughout the chapters, we include new important frameworks to help with the
development effort.

To begin, let’s create our first project named ntask-api, running these commands:

1 mkdir ntask-api
2 cd ntask-api
3 npm init

You need to answer the npm init command wizard as you like or you can copy the
result shown in Figure 4-2.

https://github.com/caio-ribeiro-pereira/building-apis-with-nodejs
https://github.com/caio-ribeiro-pereira/building-apis-with-nodejs

Chapter 4 ■ Building an api

18

In the end, the package.json will be created with these attributes:

 1 {
 2 "name": "ntask-api",
 3 "version": "1.0.0",
 4 "description": "Task list API",
 5 "main": "index.js",
 6 "scripts": {
 7 "test": "echo \"Error: no test specified\" && exit 1"
 8 },
 9 "author": "Caio Ribeiro Pereira",
10 "license": "ISC"
11 }

The current Node.js version does not support ES6 perfectly, but we can use a module
that emulates some of the resources from ES6/ES7 to make our codes better. To do this,
we are going to install babel, a JavaScript compiler responsible for converting ES6/ES7
codes to an ES5 code only when the JavaScript runtime doesn’t recognize some ES6/ES7
features.

Figure 4-2. Describing the project using npm init

Chapter 4 ■ Building an api

19

To use all features from ES6/ES7, we are going to install the babel-cli and babel-
preset-es2015 modules in the project, running this command:

1 npm install babel-cli@6.5.1 babel-preset-es2015@6.5.0 --save

Now you need to link the preset babel-preset-es2015 to be recognized by the
babel-cli. To do this, just create the file .babelrc with this simple code:

1 {
2 "presets": ["es2015"]
3 }

After that, we’ll turbocharge package.json. First we are going to remove the fields
license and scripts.test. Then, include the field scripts.start to enable the alias
command npm start. This command will be responsible for starting our API server via
the Babel compiler using the command babel-node index.js. Our package.json is
going to look like this:

 1 {
 2 "name": "ntask-api",
 3 "version": "1.0.0",
 4 "description": "Task list API",
 5 "main": "index.js",
 6 "scripts": {
 7 "start": "babel-node index.js"
 8 },
 9 "author": "Caio Ribeiro Pereira",
10 "dependencies": {
11 "babel-cli": "^6.5.1",
12 "babel-preset-es2015": "^6.5.0"
13 }
14 }

Now we have a basic configuration and description of our project, and each piece of
information is inside package.json. To start off, let’s install the express framework:

1 npm install express@4.13.4 --save

By installing Express, we’ll create our first code. This code is going to load the
express module, create a simple endpoint using the GET / via function app.get("/"),
and start the server on the port 3000 using the function app.listen(). To do this, create
the index.js file using this code:

1 import express from "express";
2
3 const PORT = 3000;
4 const app = express();
5

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Building an api

20

6 app.get("/", (req, res) => res.json({status: "NTask API"}));
7
8 app.listen(PORT, () => console.log(`NTask API - Port ${PORT}`));

To test this code and especially check if the API is running, start the server running:

1 npm start

Your application must display the message shown in Figure 4-3.

Next, open your browser and navigate to localhost:3000. If nothing goes wrong, a
JSON status message will be displayed, similar to Figure 4-4.

Implementing a Simple and Static Resource
RESTful APIs work with the concept of creating and manipulating resources. These
resources are entities that are used for queries, entries, and updating and deleting data,
and everything is based on manipulating data from resources.

Figure 4-4. JSON status message

Figure 4-3. Starting the API

Chapter 4 ■ Building an api

21

For example, our application will have as its main resource the entity named tasks,
which will be accessed by the endpoint /tasks. This entity is going to have some data that
describes what kind of information can be persisted in this resource. This concept follows
the same line as data modeling; the only difference is that the resources abstract the data
source. Therefore, a resource can return data from different sources, such as databases, static
data, or any data from external systems, and it can return data from another external API, too.

An API aims to address and unify the data to, in the end, build and show a resource.
Initially, we are going to work with static data, but throughout the book we will perform
some refactoring to integrate a database.

For a while, static data will be implemented only to mold an endpoint. To mold our API,
we are going to include a route via the app.get("/tasks") function, which is going to return
only a static JSON via the res.json() function, which is responsible for rendering JSON
content as output. Here is how these modifications are going to look in the index.js file:

 1 import express from "express";
 2
 3 const PORT = 3000;
 4 const app = express();
 5
 6 app.get("/", (req, res) => res.json({status: "NTask API"}));
 7
 8 app.get("/tasks", (req, res) => {
 9 res.json({
10 tasks: [
11 {title: "Buy some shoes"},
12 {title: "Fix notebook"}
13]
14 });
15 });
16
17 app.listen(PORT, () => console.log(`NTask API - Port ${PORT}`));

To test this new endpoint, restart the application by typing CTRL + C or Control + C
(if you are a MacOSX user) and then run npm start again.

 ■ Caution always follow this same step to restart the application correctly.

Now we have a new endpoint available to access via the address localhost:3000/tasks.
Once you open it, you will have the result shown in Figure 4-5.

Figure 4-5. Listing tasks

Chapter 4 ■ Building an api

22

If you want your results to return as formatted and tabbed JSON output, include in
index.js the following configuration: app.set("json spaces", 4); as shown here.

 1 import express from "express";
 2
 3 const PORT = 3000;
 4 const app = express();
 5
 6 app.set("json spaces", 4);
 7
 8 app.get("/", (req, res) => res.json({status: "NTask API"}));
 9
10 app.get("/tasks", (req, res) => {
11 res.json({
12 tasks: [
13 {title: "Buy some shoes"},
14 {title: "Fix notebook"}
15]
16 });
17 });
18
19 app.listen(PORT, () => console.log(`NTask API - Port ${PORT}`));

Now, restart the server to see the more elegant result shown in Figure 4-6.

Arranging the Loading of Modules
Indeed, writing all endpoints into index.js won’t be a smart move, especially if your
application has a lot of them. Let’s therefore arrange the directories and the loading of all
codes according to their responsibilities.

We are going to apply the Model-View-Router (MVR) pattern to arrange this. To do
it, we’ll use the consign module, which will allow our project to autoload models, routers,
middlewares, configs, and more, as this module injects dependencies easily. Let’s install.

1 npm install consign@0.1.2 --save

Figure 4-6. Listing tasks with formatted JSON

Chapter 4 ■ Building an api

23

With this new module installed, let’s migrate the endpoints from the index.js file,
creating two new files in the new directory named routes. To do this, create the file
routes/index.js.

1 module.exports = app => {
2 app.get("/", (req, res) => {
3 res.json({status: "NTask API"});
4 });
5 };

Move the endpoint function app.get("/tasks") from index.js to this new file,
routes/tasks.js:

 1 module.exports = app => {
 2 app.get("/tasks", (req, res) => {
 3 res.json({
 4 tasks: [
 5 {title: "Buy some shoes"},
 6 {title: "Fix notebook"}
 7]
 8 });
 9 });
10 };

To finish this step, edit index.js to be able to load those routes via the consign
module and start the server.

 1 import express from "express";
 2 import consign from "consign";
 3
 4 const PORT = 3000;
 5 const app = express();
 6
 7 app.set("json spaces", 4);
 8
 9 consign()
10 .include("routes")
11 .into(app);
12
13 app.listen(PORT, () => console.log(`NTask API - Port ${PORT}`));

That’s it: We have just arranged the loading of all routes. Note that at this point we
are only focusing on working with VR (view and router) from the MVR pattern. In our
case, the JSON outputs are considered views, which are provided by the routes. The next
step will be arranging the models.

Let’s create the models directory and return to index.js to add one more include()
function inside consign() to allow the loading of the models before the routes. To make
this modification clearer, edit the index.js.

Chapter 4 ■ Building an api

24

 1 import express from "express";
 2 import consign from "consign";
 3
 4 const PORT = 3000;
 5 const app = express();
 6
 7 app.set("json spaces", 4);
 8
 9 consign()
10 .include("models")
11 .then("routes")
12 .into(app);
13
14 app.listen(PORT, () => console.log(`NTask API - Port ${PORT}`));

At this moment, the consign() function won’t load any model, because the directory
models doesn’t exist. To fill this gap, let’s temporarily create a model with static data just
to finish this step. To do this, create the file models/tasks.js and fill it with these codes.

 1 module.exports = app => {
 2 return {
 3 findAll: (params, callback) => {
 4 return callback([
 5 {title: "Buy some shoes"},
 6 {title: "Fix notebook"}
 7]);
 8 }
 9 };
10 };

Initially, this model is going to only have the function Tasks.findAll(), which
is going to receive two arguments: params and callback. The variable params will not
be used here, but it serves as a base to send some SQL query filters, something that we
are going to cover in detail in the next chapters. The second argument is the callback
function, which returns asynchronously a static array of tasks.

To call it in the routes/tasks.js file, you are going to load this module via the
app variable. After all, the modules added by the consign() function are injected into a
main variable, in our case, injected into app via consign().into(app);. To see how to
use a loaded module, in this case, we’ll use the app.models.tasks module and edit the
routes/tasks.js following this code.

1 module.exports = app => {
2 const Tasks = app.models.tasks;
3 app.get("/tasks", (req, res) => {
4 Tasks.findAll({}, (tasks) => {
5 res.json({tasks: tasks});
6 });
7 });
8 };

Chapter 4 ■ Building an api

25

Note that the function Tasks.findAll() has in the first parameter an empty
object. This is the value of the params variable. In this case, there is no need to include
parameters to filter the tasks list.

The callback of this function returns the tasks variable, which was created to return
some static values from his model. So, at this point, we are sure that tasks is going to
return a static array with some task descriptions.

To finish these refactorings, let’s create a file that is going to load all the middlewares
and specific settings of Express. Currently, we only have a simple configuration of JSON’s
format, which occurs via the function app.set("json spaces", 4). However, we are
going to include another setting, in this case, the server port calling the app.set("port",
3000) function.

Throughout this book, we are going to explore a lot of new middlewares and settings to
customize our API server. So, here I recommend preparing the house for these new visitors.

Create the file libs/middlewares.js and write this code.

1 module.exports = app => {
2 app.set("port", 3000);
3 app.set("json spaces", 4);
4 };

To simplify the server boot, create the file libs/boot.js, which is going to be
responsible for the server initialization via the app.listen() function. This time, we’ll
use app.get("port") instead of the old constant PORT.

1 module.exports = app => {
2 app.listen(app.get("port"), () => {
3 console.log(`NTask API - Port ${app.get("port")}`);
4 });
5 };

To finish this chapter, let’s load the libs/boot.js inside the module’s structure
provided by consign and remove the old const PORT, app.set(), and app.listen()
declarations to simplify this main file. To do this, just edit the index.js.

 1 import express from "express";
 2 import consign from "consign";
 3
 4 const app = express();
 5
 6 consign()
 7 .include("models")
 8 .then("libs/middlewares.js")
 9 .then("routes")
10 .then("libs/boot.js")
11 .into(app);

To test everything, restart the server and access the endpoint again:
localhost:3000/tasks. To make sure everything is okay, no errors should occur and all
the data must be displayed normally, as shown in Figure 4-7.

Chapter 4 ■ Building an api

26

Conclusion
Mission complete! In the next chapter we’ll expand our project by implementing new
functions to manage tasks dynamically using a database and the Sequelize.js framework.

Figure 4-7. Listing loaded modules

27© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_5

CHAPTER 5

Working with SQL Databases

In Chapter 4, we created simple routes for the application to list tasks via a static data
model. That was enough to start to explore some basic concepts about API resources.

Now, we are going to work deeper on using a relational database to create dynamic
management of tasks and users. To simplify our examples, we are going to use SQLite3
(Figure 5-1). It is a preinstalled database on Linux, Unix, and MacOSX, so there’s no need
to set it up. However, if you are using Windows, you can easily install it by following the
instructions at https://www.sqlite.org/download.htm.

SQLite3 is a database that keeps all the data in an .sqlite file. It has an interface
based on SQL language very similar to other databases and is present not only on desktop
systems, but mobile applications as well.

On Node.js, there are several frameworks that work with SQLite3. On our
application, we’ll use the Sequelize.js module (Figure 5-2), which is a complete module
that has a nice, user-friendly interface. On it, it is possible to manipulate data using
SQL commands (or not) and it also supports the main SQL databases, such as Postgres,
MariaDB, MySQL, SQL Server, and SQLite3.

Figure 5-1. SQLite3 logo

http://dx.doi.org/10.1007/978-1-4842-2442-7_4
http://www.sqlite.org/download.htm

Chapter 5 ■ Working With SQL DatabaSeS

28

Sequelize is an ORM for Node.js. It is a Promises-based framework. Currently, it
is on version 3.19.0 and has a lot of features like transactions, modeling tables, table
relationships, database replication for reading mode, and more.

To read the full documentation, visit the Sequelize home page shown in Figure 5-3 at
http://sequelizejs.com.

Figure 5-2. Sequelize.js logo

Figure 5-3. Sequelize.js home page

http://sequelizejs.com/

Chapter 5 ■ Working With SQL DatabaSeS

29

Setting Up Sequelize
To install Sequelize and the SQLite3 wrapper, execute on the terminal this command:

1 npm install sequelize@3.19.2 sqlite3@3.1.1 --save

With these two modules installed, we already have the dependencies that we need
for the database connection with the API. Now, let’s create a connection settings file
between Sequelize and SQLite3. To do so, create the file libs/config.js using these
parameters:

•	 database: Defines the database name.

•	 username: Informs the username of access.

•	 password: Informs the username’s password.

•	 params.dialect: Informs which database will be used (sqlite,
mysql, postgres, mariadb, mssql).

•	 params.storage: A specific attribute for only SQLite3, it defines
the directory where the database files will be recorded.

•	 params.define.underscored: Standardizes the tables fields’
names to appear in lowercase letters with an underscore.

The file is going to look like this.

 1 module.exports = {
 2 database: "ntask",
 3 username: "",
 4 password: "",
 5 params: {
 6 dialect: "sqlite",
 7 storage: "ntask.sqlite",
 8 define: {
 9 underscored: true
10 }
11 }
12 };

After creating this settings file, we’re going create a code that will be responsible for
connecting with the database. This connection code will adopt the Singleton pattern to
ensure that the Sequelize connection will be instantiated only once. This is going to allow
us to load this module innumerable time via a single database’s connection.

Chapter 5 ■ Working With SQL DatabaSeS

30

To do this, create the db.js code following this step.

 1 import Sequelize from "sequelize";
 2 const config = require("./libs/config.js");
 3 let sequelize = null;
 4
 5 module.exports = () => {
 6 if (!sequelize) {
 7 sequelize = new Sequelize(
 8 config.database,
 9 config.username,
10 config.password,
11 config.params
12);
13 }
14 return sequelize;
15 };

To start this connection module, let’s include it inside the consign() function. Now
the db.js will be the first module to be loaded. To do this, edit index.js as shown here.

 1 import express from "express";
 2 import consign from "consign";
 3
 4 const app = express();
 5
 6 consign()
 7 .include("db.js")
 8 .then("models")
 9 .then("libs/middlewares.js")
10 .then("routes")
11 .then("libs/boot.js")
12 .into(app);

To finish the Sequelize.js setup, let’s implement a simple sync function between
Sequelize and the database. This sync function performs, if necessary, alterations on
database tables, according to what is going to be set up on the models. Let’s include the
app.db.sync() function to ensure this action will be executed before the server starts.
This refactoring needs to be written into the libs/boot.js file.

1 module.exports = app => {
2 app.db.sync().done(() => {
3 app.listen(app.get("port"), () => {
4 console.log(`NTask API - Port ${app.get("port")}`);
5 });
6 });
7 };

Chapter 5 ■ Working With SQL DatabaSeS

31

To test those modifications, restart the server. If everything is okay, your application
must work as it was working before; after all, no visible modification was made, only some
adjustments to establish a connection between the API and SQLite3. In the next section,
we’ll create all the necessary models for our application, and will have a huge impact for
our project.

Creating Models
To this point, the only model in the API is model/tasks.js, which is a static model that is
not connected with any database. In this section, we explore the main Sequelize features
to create models that perform as tables in the database and as resources in the API.

Our application will have two simple models: Users and Tasks. The relationship
between them will be Users 1-N Tasks, similar to Figure 5-4.

To work with this kind of relationship, we use Sequelize’s functions Users.
hasMany(Tasks) (on models/users.js) and Tasks.belongsTo(Users) (on models/
tasks.js). These associations will be encapsulated within a model’s attribute called
classMethods, which allows us to include static functions in the model. In our case, we
are going to create the associate function within the classMethods of each model.

Model: Tasks
To start, let’s modify the models/tasks.js file, applying the following code.

 1 module.exports = (sequelize, DataType) => {
 2 const Tasks = sequelize.define("Tasks", {
 3 id: {
 4 type: DataType.INTEGER,
 5 primaryKey: true,
 6 autoIncrement: true
 7 },
 8 title: {
 9 type: DataType.STRING,
10 allowNull: false,

Figure 5-4. NTask models relationship

Chapter 5 ■ Working With SQL DatabaSeS

32

11 validate: {
12 notEmpty: true
13 }
14 },
15 done: {
16 type: DataType.BOOLEAN,
17 allowNull: false,
18 defaultValue: false
19 }
20 }, {
21 classMethods: {
22 associate: (models) => {
23 Tasks.belongsTo(models.Users);
24 }
25 }
26 });
27 return Tasks;
28 };

The function sequelize.define("Tasks") is responsible for creating or changing
a table. This happens only when Sequelize syncs with the application during boot time
(in our case, this happens on the libs/boot.js file via the app.db.sync() function). The
second parameter is an object; their attributes respectively represent the fields of a table,
and their values are subattributes that describe the data type of their fields.

On this model, the field id is an integer via DataType.INTEGER. It represents a
primary key (primaryKey: true) and its value is autoincremented (autoIncrement:
true‘) on each new record.

The field title is a string (DataType.STRING). This field has the attribute allowNull:
false to block null values and it is a validator field as well, which verifies if the string is
not empty (validate.notEmpty: true). The field done is a boolean (DataType.BOOLEAN)
that doesn’t allow null values (allowNull: false). By the way, if a value is not informed
in this field, it will be registered as false via the defaultValue: false attribute.

Finally, we have a third parameter, which allows including static functions within
the attribute classMethods. The associate(models) function was created to allow
models’ relationships. In this case, the relationship was established via the Tasks.
belongsTo(models.Users) function, because this is a Tasks 1-NUsers relationship.

 ■ Warning the model Users hasn’t been created yet, so if you restart the server right
now, an error will occur. Stay calm, then keep reading and coding until the end of this
chapter to see the final result.

Model: Users
To complete our database modeling, let’s create a model that will represent the users of
our application. You need to create the models/users.js file with the following model
definitions.

Chapter 5 ■ Working With SQL DatabaSeS

33

 1 module.exports = (sequelize, DataType) => {
 2 const Users = sequelize.define("Users", {
 3 id: {
 4 type: DataType.INTEGER,
 5 primaryKey: true,
 6 autoIncrement: true
 7 },
 8 name: {
 9 type: DataType.STRING,
10 allowNull: false,
11 validate: {
12 notEmpty: true
13 }
14 },
15 password: {
16 type: DataType.STRING,
17 allowNull: false,
18 validate: {
19 notEmpty: true
20 }
21 },
22 email: {
23 type: DataType.STRING,
24 unique: true,
25 allowNull: false,
26 validate: {
27 notEmpty: true
28 }
29 }
30 }, {
31 classMethods: {
32 associate: (models) => {
33 Users.hasMany(models.Tasks);
34 }
35 }
36 });
37 return Users;
38 };

This time, the modeling of the table Users was very similar to Tasks. The only
difference was the inclusion of the unique: true attribute, inside the field email, to
ensure that repeated e-mails won’t be allowed.

After finishing this step, we are going to change some codes in the project so it
can load these models correctly and run their respective relationship functions in the
database. To start, let’s modify some of the modules loading on index.js. First, we are
going to order the loading of the modules so the libs/config.js is loaded first, then the
db.js, and then also remove the loading of the models directory from consign, because
now all models are loaded from db.js. The code should look like this.

Chapter 5 ■ Working With SQL DatabaSeS

34

 1 import express from "express";
 2 import consign from "consign";
 3
 4 const app = express();
 5
 6 consign()
 7 .include("libs/config.js")
 8 .then("db.js")
 9 .then("libs/middlewares.js")
10 .then("routes")
11 .then("libs/boot.js")
12 .into(app);

The reason the directory models was deleted from consign() is that now, all models
will be loaded directly by db.js file, via the sequelize.import() function. After all, if
you go back to the models codes, you will notice that two new attributes within module.
exports = (sequelize, DataType) appeared. Those are going to be magically injected
via sequelize.import(), which is responsible for loading and defining the models. Let’s
refactor the db.js file, to import and load all models correctly.

 1 import fs from "fs";
 2 import path from "path";
 3 import Sequelize from "sequelize";
 4
 5 let db = null;
 6
 7 module.exports = app => {
 8 if (!db) {
 9 const config = app.libs.config;
10 const sequelize = new Sequelize(
11 config.database,
12 config.username,
13 config.password,
14 config.params
15);
16 db = {
17 sequelize,
18 Sequelize,
19 models: {}
20 };
21 const dir = path.join(__dirname, "models");
22 fs.readdirSync(dir).forEach(file => {
23 const modelDir = path.join(dir, file);
24 const model = sequelize.import(modelDir);
25 db.models[model.name] = model;
26 });
27 Object.keys(db.models).forEach(key => {
28 db.models[key].associate(db.models);

Chapter 5 ■ Working With SQL DatabaSeS

35

29 });
30 }
31 return db;
32 };

This time, the code got a little complex, didn’t it? Its features are pretty cool,
though. Now we can use the database settings via app.libs.config object. Another
detail is in the execution of the nested function fs.readdirSync(dir).forEach(file),
which basically returns an array of strings referring to the file names from the directory
models. Then, this array is iterated to import and load all models using the sequelize.
import(modelDir) function and, then, inserted in this module inside the structure db.
models via db.models[model.name] = model.

After loading all models, a new iteration happens through the Object.keys(db.
models).forEach(key) function, which basically executes the function db.models[key].
associate(db.models) to ensure the models’ relationship.

To finish the adjustments, we need to write a simple modification in the libs/boot.
js file, changing from the app.db.sync() function to app.db.sequelize.sync():

1 module.exports = app => {
2 app.db.sequelize.sync().done(() => {
3 app.listen(app.get("port"), () => {
4 console.log(`NTask API - Port ${app.get("port")}`);
5 });
6 });
7 };

Then, let’s modify routes/tasks.js to load the Tasks model correctly using app.
db.models.Tasks and modify the function Tasks.findAll() to this Promises-based
function provided by Sequelize. This is how it should look.

1 module.exports = app => {
2 const Tasks = app.db.models.Tasks;
3 app.get("/tasks", (req, res) => {
4 Tasks.findAll({}).then(tasks => {
5 res.json({tasks: tasks});
6 });
7 });
8 };

Conclusion
Finally we have finished the Sequelize.js adaptation into our API. To test it, just restart the
server and go to http://localhost:3000/tasks.

This time it is going to display a JSON object with empty tasks, as shown in Figure 5-5.

http://localhost:3000/tasks

Chapter 5 ■ Working With SQL DatabaSeS

36

Don’t worry, though: In the next chapter we’ll implement the main endpoints to
perform a complete CRUD in the API. Just keep reading!

Figure 5-5. Now, the tasks list is empty

37© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_6

CHAPTER 6

CRUDify API Resources

In this chapter, we’ll continue to explore the new functions from Sequelize and also
organize the API’s routes and some middlewares of Express. The create, read, update,
delete (CRUD) will be built using the Tasks and Users models.

Organizing Task Routes
To start this refactoring, let’s explore the main HTTP methods to CRUDify our application.
In this case, we are going to use the functions app.route("/tasks") and app.route("/
tasks/:id") to define the path: "/tasks" and "/tasks/(task_id)".

These functions allow us to use nested functions, reusing the routes through all
HTTP methods provided by the following Express functions.

•	 app.all(): A middleware that is executed via any HTTP method
call.

•	 app.get(): Executes the method GET from HTTP, and is used to
search and get some set of data from one or multiple resources.

•	 app.post(): Executes the method POST from HTTP, and is
semantically used to send and persist new data into a resource.

•	 app.put(): Executes the method PUT from HTTP, and is used to
update the data of a resource.

•	 app.patch(): Executes the method PATCH to HTTP, and has
similar semantics to the PUT method, but is recommended only
to update some attributes of a resource, not the entire data of a
resource.

•	 app.delete(): Executes the method DELETE from HTTP, as its
name implies, to delete particular data of a resource.

To better understand the use of these routes, we are going to edit routes/tasks.js,
applying the needed functions to CRUDify the tasks resource.

 1 module.exports = app => {
 2 const Tasks = app.db.models.Tasks;

Chapter 6 ■ CrUDify api resoUrCes

38

 3
 4 app.route("/tasks")
 5 .all((req, res) => {
 6 // Middleware for preexecution of routes
 7 })
 8 .get((req, res) => {
 9 // "/tasks": List tasks
10 })
11 .post((req, res) => {
12 // "/tasks": Save new task
13 });
14
15 app.route("/tasks/:id")
16 .all((req, res) => {
17 // Middleware for preexecution of routes
18 })
19 .get((req, res) => {
20 // "/tasks/1": Find a task
21 })
22 .put((r eq, res) => {
23 // "/tasks/1": Update a task
24 })
25 .delete((req, res) => {
26 // "/tasks/1": Delete a task
27 });
28 };

With this basic structure, we already have an outline of the needed routes to manage
tasks. Now, we can implement their logics to correctly deal with each action of our tasks
CRUD.

On both endpoints ("/tasks" and "/tasks/:id") we are going to deal with some
rules inside their middlewares via the app.all() function to avoid some invalid access
if somebody sends the task id inside the request’s body. This is going to be a simple
modification, which should look like this.

 1 app.route("/tasks")
 2 .all((req, res, next) => {
 3 delete req.body.id;
 4 next();
 5 })
 6 // Continuation of routes...
 7
 8 app.route("/tasks/:id")
 9 .all((req, res, next) => {
10 delete req.body.id;
11 next();
12 })
13 // Continuation of routes...

Chapter 6 ■ CrUDify api resoUrCes

39

We are practically ensuring the exclusion of the id attribute within the request’s
body, via delete req.body.id. This happens because, on each request function, we are
going to use req.body as a parameter for Sequelize.js functions, and the attribute req.
body.id could overwrite the id of a task, for example, on update or create for a task.

To finish the middleware, warning that it should perform a corresponding function
to an HTTP method, you just need to include at the end of the callback the next()
function to warn the Express router that now it can execute the next function on the route
or the next middleware below.

Listing Tasks Via GET
We already have a basic middleware for treating all the task’s resources, now let’s
implement some CRUD functions, step by step. To start, we’ll use the app.get() function,
which is going to list all data from tasks models, running the Tasks.findAll() function.

 1 app.route("/tasks")
 2 .all((req, res, next) => {
 3 delete req.body.id;
 4 next();
 5 })
 6 .get((req, res) => {
 7 Tasks.findAll({})
 8 .then(result => res.json(result))
 9 .catch(error => {
10 res.status(412).json({msg: error.message});
11 });
12 })

In this first implementation, we are listing all the tasks running: Tasks.findAll({}).
Although it is a bad practice to list all data, we are only using it for didactic matters.
Throughout the chapters that follow, however, some arguments will be implemented to
make this list of tasks more specific. The search results occur via the then() function,
and any problems that happen can be handled via the catch() function. An important
detail about an API’s development is to treat all or the most important results using the
correct HTTP status code, in this case a successful result will return the 200 - OK status
by default. On our API, to simplify things, several common errors will use the 412 -
Precondition Failed status code.

About HTTP Status
There are no rules to follow in the HTTP status definition; however, it’s advisable to
understand the meaning of each status to make your server’s response more semantic.
To learn more about HTTP status codes, visit www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html.

www.allitebooks.com

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.allitebooks.org

Chapter 6 ■ CrUDify api resoUrCes

40

Creating Tasks Via POST
There is no secret in the implementation of the POST method. Just use the Tasks.
create(req.body) function and then treat their Promises callbacks: then() and catch().

One of the most interesting things on Sequelize is the sanitization of parameters
you send to a model. This is very good, because if the req.body has some attributes not
defined in the model, they will be removed before inserts or updates are made to a model.
The only problem is the req.body.id that could modify the id of a model. However, we
already handled this when we wrote a simple rule into the app.all() middleware. The
implementation of this route will be like this piece of code.

 1 app.route("/tasks")
 2 .all((req, res, next) => {
 3 delete req.body.id;
 4 next();
 5 })
 6 .get((req, res) => {
 7 Tasks.findAll({})
 8 .then(result => res.json(result))
 9 .catch(error => {
10 res.status(412).json({msg: error.message});
11 });
12 })
13 .post((req, res) => {
14 Tasks.create(req.body)
15 .then(result => res.json(result))
16 .catch(error => {
17 res.status(412).json({msg: error.message});
18 });
19 });

Finding a Task Via GET
Now we are going to treat the /tasks/:id endpoints. To do this, let’s start with the
implementation of the app.route("/tasks/:id") function, which has the same
middleware logic as the last app.all() function.

To finish, we’ll use the function Tasks.findOne({where: req.params}), which
executes, for example, Tasks.findOne({where: {id: "1"}}). It does a single search of
tasks based on the task id. If there isn’t a task, the API will respond with the 404 - Not
Found status code via the res.sendStatus(404) function. It should look like this.

 1 app.route("/tasks/:id")
 2 .all((req, res, next) => {
 3 delete req.body.id;
 4 next();
 5 })

Chapter 6 ■ CrUDify api resoUrCes

41

 6 .get((req, res) => {
 7 Tasks.findOne({where: req.params})
 8 .then(result => {
 9 if (result) {
10 res.json(result);
11 } else {
12 res.sendStatus(404);
13 }
14 })
15 .catch(error => {
16 res.status(412).json({msg: error.message});
17 });
18 })

Updating a Task Via PUT
Now we are going to implement a function to update a task in the database. To do this,
there is no secret: Just use the Task.update() function with a first parameter in which
you have included an updated object and, in the second one, an object with parameters
to find the current task to be updated. These functions will return a simple array with a
number of changes made. This information won’t be very useful as a response, though,
so to simplify things, let’s force the 204 - No Content status code using the res.
sendStatus(204) function, which means that the request was successful and no content
will be returned in the response. This implementation looks like this.

 1 app.route("/tasks/:id")
 2 .all((req, res, next) => {
 3 delete req.body.id;
 4 next();
 5 })
 6 .get((req, res) => {
 7 Tasks.findOne({where: req.params})
 8 .then(result => {
 9 if (result) {
10 res.json(result);
11 } else {
12 res.sendStatus(404);
13 }
14 })
15 .catch(error => {
16 res.status(412).json({msg: error.message});
17 });
18 })
19 .put((req, res) => {
20 Tasks.update(req.body, {where: req.params})
21 .then(result => res.sendStatus(204))
22 .catch(error => {

Chapter 6 ■ CrUDify api resoUrCes

42

23 res.status(412).json({msg: error.message});
24 });
25 })

Just like the Tasks create() function, the Tasks.update cleans the fields that are
not on its own model, so there is no problem sending req.body directly as a parameter.

Deleting a Task Via DELETE
To finish, we have to implement a route to delete a task, and once more, there is no secret
here. You just have to use the Tasks.destroy() function, which uses as arguments an
object containing data to find and delete a task. In our case, we’ll use req.params.id to
remove a single task and, as a successful response, uses 204 - No Content as status code
via the res.sendStatus(204) function:

 1 app.route("/tasks/:id")
 2 .all((req, res, next) => {
 3 delete req.body.id;
 4 next();
 5 })
 6 .get((req, res) => {
 7 Tasks.findOne({where: req.params})
 8 .then(result => {
 9 if (result) {
10 res.json(result);
11 } else {
12 res.sendStatus(404);
13 }
14 })
15 .catch(error => {
16 res.status(412).json({msg: error.message});
17 });
18 })
19 .put((req, res) => {
20 Tasks.update(req.body, {where: req.params})
21 .then(result => res.sendStatus(204))
22 .catch(error => {
23 res.status(412).json({msg: error.message});
24 });
25 })
26 .delete((req, res) => {
27 Tasks.destroy({where: req.params})
28 .then(result => res.sendStatus(204))
29 .catch(error => {
30 res.status(412).json({msg: error.message});
31 });
32 });

So, we have finish to CRUDifying the task’s resources of our API.

Chapter 6 ■ CrUDify api resoUrCes

43

Refactoring Some Middlewares
To avoid code duplication, we’ll apply a simple refactoring migrating the business logic
used inside the app.all() function to an Express middleware, using the app.use()
function, into the lib-s/middlewares.js file. To apply this refactoring, first, remove the
function app.all() from the routes/tasks.js file, leaving the code with the following
structure:

 1 module.exports = app => {
 2 const Tasks = app.db.models.Tasks;
 3
 4 app.route("/tasks")
 5 .get((req, res) => {
 6 // GET /tasks callback...
 7 })
 8 .post((req, res) => {
 9 // POST /tasks callback...
10 });
11
12 app.route("/tasks/:id")
13 .get((req, res) => {
14 // GET /tasks/id callback...
15 })
16 .put((req, res) => {
17 // PUT /tasks/id callback...
18 })
19 .delete((req, res) => {
20 // DELETE /tasks/id callback...
21 });
22 };

To enable a JSON parse inside all the API’s routes, we must install the body-parser
moduleby running this command.

1 npm install body-parser@1.15.0 --save

After this installation, open and edit the libs/middlewares.js file to insert the
bodyParser.json() function as middleware, and in the end, include the middleware
exclusion logic using the app.use() callback, following this code.

 1 import bodyParser from "body-parser";
 2
 3 module.exports = app => {
 4 app.set("port", 3000);
 5 app.set("json spaces", 4);

Chapter 6 ■ CrUDify api resoUrCes

44

 6 app.use(bodyParser.json());
 7 app.use((req, res, next) => {
 8 delete req.body.id;
 9 next();
10 });
11 };

Creating Users’ Endpoints
We also have to create routes to manage users in the application. After all, without them,
it becomes impossible to manage tasks.

Our CRUD of users is not going to have anything new. In fact, it won’t be a complete
CRUD, because we just need to create, find, and delete a user, so it won’t be necessary to
include the app.route() function. Each route will be directly called by its corresponding
HTTP method. The code will follow a similar treatment as the task’s routes has. The only
new thing that will be used is the attributes: ["id", "name", "email"] parameter
inside the Users.findById() function. This parameter allows us to return some selected
fields from a model’s result instead of the full data of a model. It’s similar to running the
SQL query:

1 SELECT id, name, email FROM users;

To code the users’ routes, creates the routes/users.js file, using this code.

 1 module.exports = app => {
 2 const Users = app.db.models.Users;
 3
 4 app.get("/users/:id", (req, res) => {
 5 Users.findById(req.params.id, {
 6 attributes: ["id", "name", "email"]
 7 })
 8 .then(result => res.json(result))
 9 .catch(error => {
10 res.status(412).json({msg: error.message});
11 });
12 });
13
14 app.delete("/users/:id", (req, res) => {
15 Users.destroy({where: {id: req.params.id} })
16 .then(result => res.sendStatus(204))
17 .catch(error => {
18 res.status(412).json({msg: error.message});
19 });
20 });
21
22 app.post("/users", (req, res) => {
23 Users.create(req.body)

Chapter 6 ■ CrUDify api resoUrCes

45

24 .then(result => res.json(result))
25 .catch(error => {CRUDify API resources 45
26 res.status(412).json({msg: error.message});
27 });
28 });
29 };

 ■ Note the reason we’re not using the function app.route() here is because in the next
chapter, we are going to modify some specific points on each user’s route, to find or delete
only if the user is logged into the api.

Testing Endpoint Access Using Postman
To test these modifications, restart the application, open the browser and use some REST
client application, because it will be necessary to test the POST, PUT, and DELETE HTTP
methods. To simplify, I recommend you use Postman, which is a useful Google Chrome
extension that is easy to use. To install it go to http:///www.getpostman.com.

After the installation, open the Chrome Apps page and click the Postman icon,
shown in Figure 6-1.

A login page is displayed, as shown in Figure 6-2, but you do not need to log in to use
it. To skip this step and go straight to the main page, click Go to the app.

Figure 6-1. Postman REST client app

https://www.getpostman.com/

Chapter 6 ■ CrUDify api resoUrCes

46

To test the endpoints, let’s perform the following tests:

 1. Choose the method POST via the address
http://localhost:3000/tasks.

 2. Click on the menu Body, choose the option raw, and change
the format from Text to JSON (application/json).

 3. Create the JSON: {"title": "Sleep"} and click Send
(see Figure 6-3).

 4. Modify the same JSON to {"title": "Study"} and click Send
again (see Figure 6-4).

Figure 6-2. Opening Postman

http://localhost:3000/tasks

Chapter 6 ■ CrUDify api resoUrCes

47

Figure 6-3. Registering the task “Sleep”

Figure 6-4. Registering the task “Study”

Chapter 6 ■ CrUDify api resoUrCes

48

With this procedure, you created two tasks, and now, you can explore the other task’s
routes. To test them, you can follow this simple list:

•	 Method GET, route http://localhost:3000/tasks

•	 Method GET, route http://localhost:3000/tasks/1

•	 Method GET, route http://localhost:3000/tasks/2

•	 Method PUT, route http://localhost:3000/tasks/1 using the
body {"title": "Work"}

•	 Method DELETE, route http://localhost:3000/tasks/2

You can also test the user’s endpoints, if you like.

Conclusion
Congratulations! Now that you have reached this point, you have an outline of a RESTful
API, which means now it’s possible to build a client-side app to consume the tasks or
users resources. Don’t stop reading! In the next chapter we’ll write some important things
to make sure that our users will be authenticated by the API.

http://localhost:3000/tasks
http://localhost:3000/tasks/1
http://localhost:3000/tasks/2
http://localhost:3000/tasks/1
http://localhost:3000/tasks/2

49© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_7

CHAPTER 7

Authenticating Users

Our API already has tasks and users resources, which, thanks to the Sequelize framework,
are integrated into a SQL database, in our case SQLite3. We have already implemented
their routes via the main routing functions provided by Express.

In this chapter, we explore the main concepts and implementations of user
authentication. After all, this is an important step to ensure that our users can manage
their tasks safely.

Introduction to Passport.js and JWT
About Passport.js
There is a very cool Node.js module that is easy to work with for user authentication
called Passport. Passport is a framework that is extremely flexible and modular. It allows
you to work with the main authentication strategies: Basic & Digest, OpenID, OAuth,
OAuth 2.0, and JWT. It also allows you to work with external services authentication
as single sign-on by using existing social networking account information, such as
Facebook, Google+, Twitter, and more. By the way, on the official Passport web site at
http://passportjs.org (see Figure 7-1), there is a list with more than 300 authentication
strategies created and maintained by third parties.

http://passportjs.org/

Chapter 7 ■ authentiCating users

50

About JWT
JSON Web Tokens (JWT) is a very simple and secure authentication strategy for REST
APIs. It is an open standard for web authentication and is based on the JSON token’s
requests between client and server. Its authentication engine works like this.

 1. Client makes a request once by sending login credentials and
password.

 2. Server validates the credentials and, if everything is right,
it returns to the client a JSON with token that encodes data
from a user logged into the system. Optionally, this token
could have a expiration date, to enforce the authentication’s
security.

 3. Client, after receiving this token, can store it the way it wants,
whether via LocalStorage, cookie, or other client-side storage
mechanisms.

 4. Every time the client accesses a route that requires
authentication, it will only send this token to the API to
authenticate and release consumption data.

 5. Server always validates this token to allow or deny a customer
request.

For specific details about JWT, go to http://jwt.io (see Figure 7-2).

Figure 7-1. Passport home page

http://jwt.io/

Chapter 7 ■ authentiCating users

51

Installing Passport and JWT
To start the fun, we’ll use the following modules:

•	 Passport: This will be used as the authentication engine.

•	 Passport JWT: This is the JWT authentication strategy for Passport.

•	 JWT Simple: This is used as encoder and decoder JSON tokens.

Now, let’s install them by running this command:

1 npm install passport@0.3.2 passport-jwt@2.0.0 jwt-simple@0.4.1 --save

To start this implementation, first we are going to add two new settings items for
JWT (jwtSecret and jwtSession). Edit the libs/config.js file and in the end, add the
following attributes:

 1 module.exports = {
 2 database: "ntask",
 3 username: "",
 4 password: "",
 5 params: {
 6 dialect: "sqlite",
 7 storage: "ntask.sqlite",
 8 define: {
 9 underscored: true
10 }
11 },

Figure 7-2. JWT home page

Chapter 7 ■ authentiCating users

52

12 jwtSecret: "Nta$K-AP1",
13 jwtSession: {session: false}
14 };

The field jwtSecret keeps a secret key string that serves as a base to encode and
decode tokens. It’s highly advisable to use a complex string that uses many different
characters. Never share or publish this secret key in public, because if it leaks, you will
leave your application vulnerable, making it possible for those with bad intentions to
access the system and manage the tokens from logged users without using the correct
credentials in the system.

To finish, the last included field is jwtSession, which has the value {session: false}.
This item is going to be used to inform Passport that the API won’t manage the session.

Implementing JWT Authentication
Now that we have the Passport and JWT settings ready, let’s implement the rules on
how the client will be authenticated in our API. To start, we are going to implement the
authentication rules that will also have middleware functions provided by Passport to
use into the API’s routes. This code is going to have a middleware and two functions. The
middleware will be executed when it starts the application, and it basically receives in this
callback a payload that contains a decoded JSON that was decoded using the secret key
cfg.jwtSecret. This payload will have the attribute id that will be a user id to be used as
an argument for the Users.findById(payload.id) function. As this middleware is going
to be frequently accessed, to avoid some overheads, we are going to send a simple object
containing only the id and email of the authenticated user, using the callback function:

1 done(null, {id: user.id, email: user.email});

This middleware will be injected via the passport.use(strategy) function. To
finish, two functions will be included from Passport to be used on the application. They
are the initialize() function, which starts Passport, and authenticate(), which is used
to authenticate the access for a route.

To understand this implementation better, let’s create in the root folder the auth.js
file, using this code:

 1 import passport from "passport";
 2 import {Strategy, ExtractJwt} from "passport-jwt";
 3
 4 module.exports = app => {
 5 const Users = app.db.models.Users;
 6 const cfg = app.libs.config;
 7 const params = {
 8 secretOrKey: cfg.jwtSecret,
 9 jwtFromRequest: ExtractJwt.fromAuthHeader()
10 };
11 const strategy = new Strategy(params, (payload, done) => {
12 Users.findById(payload.id)

Chapter 7 ■ authentiCating users

53

13 .then(user => {
14 if (user) {
15 return done(null, {
16 id: user.id,
17 email: user.email
18 });
19 }
20 return done(null, false);
21 })
22 .catch(error => done(error, null));
23 });
24 passport.use(strategy);
25 return {
26 initialize: () => {
27 return passport.initialize();
28 },
29 authenticate: () => {
30 return passport.authenticate("jwt", cfg.jwtSession);
31 }
32 };
33 };

To load the auth.js during the server boot time, edit the index.js code like this.

 1 import express from "express";
 2 import consign from "consign";
 3
 4 const app = express();
 5
 6 consign()
 7 .include("libs/config.js")
 8 .then("db.js")
 9 .then("auth.js")
10 .then("libs/middlewares.js")
11 .then("routes")
12 .then("libs/boot.js")
13 .into(app);

To initiate the Passport middleware, edit the libs/middlewares.js and include
the middleware app.use(app.auth.initialize()). The following code shows where to
include it.

 1 import bodyParser from "body-parser";
 2
 3 module.exports = app => {
 4 app.set("port", 3000);
 5 app.set("json spaces", 4);
 6 app.use(bodyParser.json());

Chapter 7 ■ authentiCating users

54

 7 app.use(app.auth.initialize());
 8 app.use((req, res, next) => {
 9 delete req.body.id;
10 next();
11 });
12 };

Generating Tokens for Authenticated Users
To finish the JWT authentication, we are going to prepare the model Users to be able to
encrypt the user’s password. We also will create a route to generate tokens for users who
are going to authenticate themselves using their login and password on the system, and
we’ll do a refactoring in the tasks and users routes so that their access properly uses the
id of an authenticated user. Doing this, we complete this authentication step, making our
application reliable and safer.

The encryption of user passwords will be performed by the module bcrypt. To do
this, install it by running this command.

1 npm install bcrypt@0.8.5 --save

Now, let’s edit the Users model, including the function hooks, which executes
functions before or after a database operation. In our case, we will include a function to
be executed before registering a new user, via the function beforeCreate(), to use the
bcrypt to encrypt the user’s password before saving it.

A new function inside the classMethods will be included as well. It is used to
compare if the given password matches with the user’s encrypted one. To encode these
rules, edit the models/users.js with the following logic.

 1 import bcrypt from "bcrypt";
 2
 3 module.exports = (sequelize, DataType) => {
 4 const Users = sequelize.define("Users", {
 5 // Users fields, defined in Chapter 5...
 6 }, {
 7 hooks: {
 8 beforeCreate: user => {
 9 const salt = bcrypt.genSaltSync();
10 user.password = bcrypt.hashSync(user.password, salt);
11 }
12 },
13 classMethods: {
14 associate: models => {
15 Users.hasMany(models.Tasks);
16 },
17 isPassword: (encodedPassword, password) => {
18 return bcrypt.compareSync(password, encodedPassword);
19 }

Chapter 7 ■ authentiCating users

55

20 }
21 });
22 return Users;
23 };

With these implemented modifications on the model Users, now we can create the
endpoint /token. This route will be responsible for generating an encoded token with a
payload, given to the user that sends the right e-mail and password via req.body.email
and req.body.password.

The payload is going to have only the user id. The token generation occurs via the
jwt-simple module using the function jwt.encode(payload, cfg.jwtSecret) that must
use the same secret key jwtSecret that was created on the libs/config.js file. Any error
in this route will be treated using the HTTP 401 - Unauthorized status code using the
res.sendStatus(401) function.

To include this rule of token generation, you need to create the routes/token.js file
using the following code.

 1 import jwt from "jwt-simple";
 2
 3 module.exports = app => {
 4 const cfg = app.libs.config;
 5 const Users = app.db.models.Users;
 6 app.post("/token", (req, res) => {
 7 if (req.body.email && req.body.password) {
 8 const email = req.body.email;
 9 const password = req.body.password;
10 Users.findOne({where: {email: email}})
11 .then(user => {
12 if (Users.isPassword(user.password, password)) {
13 const payload = {id: user.id};
14 res.json({
15 token: jwt.encode(payload, cfg.jwtSecret)
16 });
17 } else {
18 res.sendStatus(401);
19 }
20 })
21 .catch(error => res.sendStatus(401));
22 } else {
23 res.sendStatus(401);
24 }
25 });
26 };

We already have the user’s authentication and also the token generation’s logic. To
finish, let’s use the app.auth.authenticate() function to validate the tokens sent by
clients and allow (or deny) access in some routes. To do this, edit the routes/tasks.js

Chapter 7 ■ authentiCating users

56

file and add the middleware function all(app.auth.authenticate()) at the beginning
of both endpoints. The code should look like this.

 1 module.exports = app => {
 2 const Tasks = app.db.models.Tasks;
 3
 4 app.route("/tasks")
 5 .all(app.auth.authenticate())
 6 .get((req, res) => {
 7 // "/tasks": List tasks
 8 })
 9 .post((req, res) => {
10 // "/tasks": Save new task
11 });
12
13 app.route("/tasks/:id")
14 .all(app.auth.authenticate())
15 .get((req, res) => {
16 // "/tasks/1": Find a task
17 })
18 .put((req, res) => {
19 // "/tasks/1": Update a task
20 })
21 .delete((req, res) => {
22 // "/tasks/1": Delete a task
23 });
24 };

When a client sends a valid token, their access will be successfully authenticated and
consequently, the object req.user appears to be used inside the routes. This object is
only created when the auth.js logic returns an authenticated user; that is, only when the
following function returns a valid user.

 1 // Do you remember this function from auth.js?.
 2 Users.findById(payload.id)
 3 .then(user => {
 4 if (user) {
 5 return done(null, {
 6 id: user.id,
 7 email: user.email
 8 });
 9 }
10 return done(null, false);
11 })
12 .catch(error => done(error, null));

The done() callback sends the authenticated user’s data to the authenticated routes,
which receive these data via the req.user object. In our case, this object only has the id
and email attributes.

Chapter 7 ■ authentiCating users

57

To ensure the proper access to tasks resources, let’s do a refactoring on all Sequelize
functions from the routes /tasks and /tasks/:id so their queries use as a parameter the
req.user.id. To do this, edit routes/tasks.js and, in the route app.route("/tasks"),
do the following modifications.

 1 app.route("/tasks")
 2 .all(app.auth.authenticate())
 3 .get((req, res) => {
 4 Tasks.findAll({
 5 where: { user_id: req.user.id }
 6 })
 7 .then(result => res.json(result))
 8 .catch(error => {
 9 res.status(412).json({msg: error.message});
10 });
11 })
12 .post((req, res) => {
13 req.body.user_id = req.user.id;
14 Tasks.create(req.body)
15 .then(result => res.json(result))
16 .catch(error => {
17 res.status(412).json({msg: error.message});
18 });
19 });

In the same file, make the same modification inside the queries of the app.route
("/tasks/:id")function.

 1 app.route("/tasks/:id")
 2 .all(app.auth.authenticate())
 3 .get((req, res) => {
 4 Tasks.findOne({ where: {
 5 id: req.params.id,
 6 user_id: req.user.id
 7 }})
 8 .then(result => {
 9 if (result) {
10 return res.json(result);
11 }
12 return res.sendStatus(404);
13 })
14 .catch(error => {
15 res.status(412).json({msg: error.message});
16 });
17 })
18 .put((req, res) => {
19 Tasks.update(req.body, { where: {
20 id: req.params.id,

Chapter 7 ■ authentiCating users

58

21 user_id: req.user.id
22 }})
23 .then(result => res.sendStatus(204))
24 .catch(error => {
25 res.status(412).json({msg: error.message});
26 });
27 })
28 .delete((req, res) => {
29 Tasks.destroy({ where: {
30 id: req.params.id,
31 user_id: req.user.id
32 }})
33 .then(result => res.sendStatus(204))
34 .catch(error => {
35 res.status(412).json({msg: error.message});
36 });
37 });

To finish this refactoring, let’s modify the users’ resources. Now we need to adapt
some pieces of code inside the users’ routes. Basically, we are going to change the way of
searching or deleting a user to use the authenticated user’s id.

In this case, it won’t be necessary to use an id in the route parameter, because now
the route/users/:id will be just /user (in the singular, because we are now dealing with
a single logged user). Only to search and delete will have an authentication middleware,
so now both of them can be grouped via the app.route("/user") function to reuse the
middleware all(app.auth.authenticate()). Instead of req.params.id, we are going to
use req.user.id, to ensure that an authenticated userid will be used.

To understand better how this logic will works, edit the routes/users.js file and
make the following modifications.

 1 module.exports = app => {
 2 const Users = app.db.models.Users;
 3
 4 app.route("/user")
 5 .all(app.auth.authenticate())
 6 .get((req, res) => {
 7 Users.findById(req.user.id, {
 8 attributes: ["id", "name", "email"]
 9 })
10 .then(result => res.json(result))
11 .catch(error => {
12 res.status(412).json({msg: error.message});
13 });
14 })
15 .delete((req, res) => {
16 Users.destroy({where: {id: req.user.id} })
17 .then(result => res.sendStatus(204))
18 .catch(error => {

Chapter 7 ■ authentiCating users

59

19 res.status(412).json({msg: error.message});
20 });
21 });
22
23 app.post("/users", (req, res) => {
24 Users.create(req.body)
25 .then(result => res.json(result))
26 .catch(error => {
27 res.status(412).json({msg: error.message});
28 });
29 });
30 };

Conclusion
Congratulations! We have finished an extremely important step of the application. This
time, all tasks will be returned only by an authenticated user. Thanks to JWT, we now have
a safe mechanism for user authentication between client and server.

To this point, we have implemented all of the application back end, and we have not
created a client application that uses the power of our API. Don’t worry, though: There
are several surprises in the next chapters that are going to get you excited. Just keep
reading!

61© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_8

CHAPTER 8

Testing the Application:
Part 1

Creating automated tests is highly recommended. There are several types of tests:
unitary, functional, acceptance, and others. This chapter focuses only on the acceptance
test, which in our case aims to test the outputs and behaviors of our API’s routes.

To create and execute the tests, it’s necessary to use a test runner. We’ll use Mocha
(Figure 8-1), which is very popular in the Node.js community.

Mocha has the following features:

•	 TDD style.

•	 BDD style.

•	 Code coverage HTML report.

•	 Customized test reports.

•	 Asynchronous test support.

•	 Easy integration with the should, assert, and chai modules.

It is a complete environment for writing tests, and you can learn more by accessing
the Mocha web site at https://mochajs.org.

Figure 8-1. Mocha test runner

https://mochajs.org/

Chapter 8 ■ testing the appliCation: part 1

62

Setting Up the Test Environment
To set up our test environment, first we are going to set up a new database that we can use
to work with some fake data. This practice is often used to make sure that an application
can work easily in multiple environments. For now, our API has just a single environment,
because all the examples were developed in the development environment.

To enable support for multiple environments, let’s rename the current libs/config.
js file libs/config.development.js and then create the libs/config.test.js file.
The only new parameter in this new file is logging: false, which disables the SQL log
outputs. It is necessary to disable these logs to avoid difficulty with the test report in the
terminal. This file (libs/config.test.js) should look like the following code.

 1 module.exports = {
 2 database: "ntask_test",
 3 username: "",
 4 password: "",
 5 params: {
 6 dialect: "sqlite",
 7 storage: "ntask.sqlite",
 8 logging: false,
 9 define: {
10 underscored: true
11 }
12 },
13 jwtSecret: "NTASK_TEST",
14 jwtSession: {session: false}
15 };

Next we have to set up some files, each one with data specific to its corresponding
environments. To load the settings according to the current environment, we must create
a code to identify what environment it is. In this case, we can use the process.env object,
which basically returns several environment variables from the OS.

A good practice in Node.js projects is to work with the variable process.env.NODE_
ENV and use this value as a base. Our application will have to load the settings from a test
or development environment. By default, the development will be defined when process.
env.NODE_ENV returns null or an empty string.

Based on this brief explanation, let’s re-create the libs/config.js file to load the
settings according to the right system environment.

1 module.exports = app => {
2 const env = process.env.NODE_ENV;
3 if (env) {
4 return require(`./config.${env}.js`);
5 }
6 return require("./config.development.js");
7 };

In our project, we are going to explore the acceptance tests only. To create them, we
need to use these modules:

Chapter 8 ■ testing the appliCation: part 1

63

•	 babel-register: To run ES6 codes.

•	 mocha: To run the tests.

•	 chai: To write BDD tests.

•	 supertest: To execute some requests in the API.

All of these modules will be installed as devDependencies in the package.json file to
use them only as test dependencies. To do this, you need to use the --save-dev flag with
the npm install command, as shown here.

1 npm install babel-register@6.5.2 mocha@2.4.5 chai@3.5.0 supertest@1.2.0
--save-d\
2 ev

Now, let’s encapsulate the mocha test runner into the npm test alias command to
internally run the command NODE_ENV=test mocha test/**/*.js. To implement this
new command, edit package.json and include the scripts.test attribute.

 1 {
 2 "name": "ntask-api",
 3 "version": "1.0.0",
 4 "description": "Task list API",
 5 "main": "index.js",
 6 "scripts": {
 7 "start": "babel-node index.js",
 8 "test": "NODE_ENV=test mocha test/**/*.js"
 9 },
10 "author": "Caio Ribeiro Pereira",
11 "dependencies": {
12 "babel-cli": "^6.5.1",
13 "babel-preset-es2015": "^6.5.0",
14 "bcrypt": "^0.8.5",
15 "body-parser": "^1.15.0",
16 "consign": "^0.1.2",
17 "express": "^4.13.4",
18 "jwt-simple": "^0.4.1",
19 "passport": "^0.3.2",
20 "passport-jwt": "^2.0.0",
21 "sequelize": "^3.19.2",
22 "sqlite3": "^3.1.1"
23 },
24 "devDependencies": {
25 "babel-register": "^6.5.2",
26 "chai": "^3.5.0",
27 "mocha": "^2.4.5",
28 "supertest": "^1.2.0"
29 }
30 }

Chapter 8 ■ testing the appliCation: part 1

64

Then, we are going to export our main API module, index.js, to allow the API to
be started during the tests. To do so, you must include the module.exports = app at the
end of the index.js file, and we’ll also disable the logs created by the consign module via
consign({verbose: false}) settings to not pollute the test report.

 1 import express from "express";
 2 import consign from "consign";
 3
 4 const app = express();
 5
 6 consign({verbose: false})
 7 .include("libs/config.js")
 8 .then("db.js")
 9 .then("auth.js")
10 .then("libs/middlewares.js")
11 .then("routes")
12 .then("libs/boot.js")
13 .into(app);
14
15 module.exports = app;

Now, the application can be internally started by the supertest module during the
tests. To avoid the server running twice in the test environment, you need to modify the
libs/boot.js to run the database sync and have the server listen only when process.
env.NODE_ENV does not have the test value.

To change this, open and edit the libs/boot.js using the following simple code.

1 module.exports = app => {
2 if (process.env.NODE_ENV !== "test") {
3 app.db.sequelize.sync().done(() => {
4 app.listen(app.get("port"), () => {
5 console.log(`NTask API - Port ${app.get("port")}`);
6 });
7 });
8 }
9 };

To finish our test environment setup, let’s prepare some Mocha-specific settings to
load the API server and the modules chai and supertest as global variables. This will
accelerate the execution of tests; after all, each one will load these modules again and
again, and if we have all the main things load once, we will save milliseconds in test
execution. To implement this simple practice, create the file test/helpers.js.

1 import supertest from "supertest";
2 import chai from "chai";
3 import app from "../index.js";
4
5 global.app = app;

Chapter 8 ■ testing the appliCation: part 1

65

6 global.request = supertest(app);
7 global.expect = chai.expect;

Then, let’s create a simple file that allows us to include some settings as parameters
to the mocha command. This will be responsible for loading test/helpers.js and also
use the --reporter spec flag to show a detailed report about the tests. After that, we’ll
include the --compilers js:babel- register flag for Mocha be able to run the tests in
ECMAScript 6 standard via the babel-register module.

The last flag is --slow 5000, which waits five seconds before starting all tests (time
enough to start the API server and database connection safely). Create the test/mocha.
opts file using the following parameters.

1 --require test/helpers
2 --reporter spec
3 --compilers js:babel-register
4 --slow 5000=

Writing the First Test
Now that we have finished the setup of the test environment, it is time to test something.
We can write some test code for routes/index.js because it is very simple to test:
Basically, we can make sure the API is returning the JSON correctly, comparing the results
with the static JSON const expected = {status: "NTask API"} to see if both match.

To create our first test, let’s use the request.get("/") function to validate if this
request is returning the status 200. To finish this test, we check if the req.body and
expected are the same using the expect(res.body).to.eql(expected) function.

To implement this test, create the test/routes/index.js file using the following
code.

 1 describe("Routes: Index", () => {
 2 describe("GET /", () => {
 3 it("returns the API status", done => {
 4 request.get("/")
 5 .expect(200)
 6 .end((err, res) => {
 7 const expected = {status: "NTask API"};
 8 expect(res.body).to.eql(expected);
 9 done(err);
10 });
11 });
12 });
13 });

To execute this test, run the following command.

1 npm test

After the execution, you should have output similar to what is shown in Figure 8-2.

Chapter 8 ■ testing the appliCation: part 1

66

Testing the Authentication Endpoint
In this section, we implement several tests. To start, let’s test the endpoint from routes/
token.js, which is responsible to generate JSON web tokens for authenticated users.

Basically, this endpoint will have four tests to validate.

•	 Request authenticated by a valid user.

•	 Request with a valid e-mail but with the wrong password.

•	 Request with an unregistered e-mail.

•	 Request without an e-mail and password.

Create the test test/routes/token.js with the following structure.

 1 describe("Routes: Token", () => {
 2 const Users = app.db.models.Users;
 3 describe("POST /token", () => {
 4 beforeEach(done => {
 5 // Runs before each test...
 6 });
 7 describe("status 200", () => {
 8 it("returns authenticated user token", done =>{
 9 // Test's logic...
10 });
11 });
12 describe("status 401", () => {
13 it("throws error when password is incorrect", done => {
14 // Test's logic...
15 });
16 it("throws error when email not exist", done => {
17 // Test's logic...
18 });
19 it("throws error when email and password are blank", done => {

Figure 8-2. Running the first test

Chapter 8 ■ testing the appliCation: part 1

67

20 // Test's logic...
21 });
22 });
23 });
24 });

To start writing these tests, we first need to code some queries to clear the user table
and create one valid user inside the beforeEach() callback. This function will be executed
before each test. To do this, we’ll use the model app.db.models.Users and its functions
Users.destroy({where: {}}) to clean the user table and Users.create() to save a single
valid user for each test execution. This will allow us to test the main flows of this route.

 1 beforeEach(done => {
 2 Users
 3 .destroy({where: {}})
 4 .then(() => Users.create({
 5 name: "John",
 6 email: "john@mail.net",
 7 password: "12345"
 8 }))
 9 .then(() => done());
10 });

Now, we are going to implement things test by test. The first test is a successful case.
To test it, let’s use the function request.post("/token") to request a token by sending
the e-mail and password of a valid user via the send() function.

To finish the test, the end(err, res) callback must return res.body with the token
key to be checked via the expect(res.body).to.include.keys("token") function. To
conclude a test, it’s required to execute the callback done() in the end of a test.

Always send the variable err as a parameter into the done(err) function, because
if something goes wrong during the test, this function will show the details of the error.
Here is the complete code of this first test.

 1 it("returns authenticated user token", done => {
 2 request.post("/token")
 3 .send({
 4 email: "john@mail.net",
 5 password: "12345"
 6 })
 7 .expect(200)
 8 .end((err, res) => {
 9 expect(res.body).to.include.keys("token");
10 done(err);
11 });
12 });

Chapter 8 ■ testing the appliCation: part 1

68

After this first test, we’ll write some further tests to verify if errors is being handled
appropriately. Now, let’s test the request of an invalid password, expecting a 401
unauthorized access status code. This test is simpler, because basically we’ll test if the
request returns the status 401 error, via the function expect(401).

 1 it("throws error when password is incorrect", done => {
 2 request.post("/token")
 3 .send({
 4 email: "john@mail.net",
 5 password: "WRONG_PASSWORD"
 6 })
 7 .expect(401)
 8 .end((err, res) => {
 9 done(err);
10 });
11 });

The next test is very similar to the last one, but now, it tests an invalid user’s e-mail,
expecting the request to return the 401 status code again.

 1 it("throws error when email not exist", done => {
 2 request.post("/token")
 3 .send({
 4 email: "wrong@email.com",
 5 password: "12345"
 6 })
 7 .expect(401)
 8 .end((err, res) => {
 9 done(err);
10 });
11 });

To finish this test case, let’s check if we get the same 401 status code when no e-mail
and no password are sent. This one is even simpler, because we don’t need to send
parameters in this request.

1 it("throws error when email and password are blank", done => {
2 request.post("/token")
3 .expect(401)
4 .end((err, res) => {
5 done(err);
6 });
7 });

Chapter 8 ■ testing the appliCation: part 1

69

Conclusion
To run all tests now, just run the npm test command again. You should see a result
similar to Figure 8-3.

Keep reading because the subject of tests is extensive, and we’ll keep talking about it
in the next chapter and write more tests for our API’s routes.

Figure 8-3. Test result

71© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_9

CHAPTER 9

Testing the Application:
Part 2

Continuing the test implementation, now focus next on writing some tests for the
resources: tasks and users.

Testing a Task’s Endpoints
To test the endpoints of a task’s resource, we are going to cheat the JWT authentication. After
all, it will be necessary to correctly test the results of this resource and also the other resources
that involves user authentication. To start, let’s create the structure for the tasks test.

Create the file test/routes/tasks.js with the following code.

 1 import jwt from "jwt-simple";
 2
 3 describe("Routes: Tasks", () => {
 4 const Users = app.db.models.Users;
 5 const Tasks = app.db.models.Tasks;
 6 const jwtSecret = app.libs.config.jwtSecret;
 7 let token;
 8 let fakeTask;
 9 beforeEach(done => {
10 // Runs before each test...
11 });
12 describe("GET /tasks", () => {
13 describe("status 200", () => {
14 it("returns a list of tasks", done => {
15 // Test's logic...
16 });
17 });
18 });
19 describe("POST /tasks/", () => {
20 describe("status 200", () => {
21 it("creates a new task", done => {

Chapter 9 ■ testing the appliCation: part 2

72

22 // Test's logic...
23 });
24 });
25 });
26 describe("GET /tasks/:id", () => {
27 describe("status 200", () => {
28 it("returns one task", done => {
29 // Test's logic...
30 });
31 });
32 describe("status 404", () => {
33 it("throws error when task not exist", done => {
34 // Test's logic...
35 });
36 });
37 });
38 describe("PUT /tasks/:id", () => {
39 describe("status 204", () => {
40 it("updates a task", done => {
41 // Test's logic...
42 });
43 });
44 });
45 describe("DELETE /tasks/:id", () => {
46 describe("status 204", () => {
47 it("removes a task", done => {
48 // Test's logic...
49 })
50 });
51 });
52 });

Detailing how to cheat the authentication part, we are going to reuse the module
jwt-simple to create a valid token that will be used in the header of all the tests. This
token will be repeatedly generated within the callback of the function beforeEach(done).
To generate it, though, we have to delete all users first, using the function Users.
destroy({where: {}}) and then create a new one via the Users.create() function.

We’ll do the same with task creation, but instead of using the function Tasks.create()
it will be the function Tasks.bulkCreate(), which allows sending an array of tasks to be
inserted in a single execution (this function is very useful for inclusion in a plot of data).

The tasks are going to use the user.id field, created to ensure that they are from
the authenticated user. In the end, let’s use the first task created by the piece fakeTask
= tasks[0] to reuse its id on the tests that need a task id as a route parameter. We’ll
generate a valid token using the function jwt.encode({id: user.id}, jwtSecret).

Both the objects fakeTask and token are created in a scope above the function
beforeEach(done), so they can be reused on the tests. To understand in detail, you need
to write the following implementation.

Chapter 9 ■ testing the appliCation: part 2

73

 1 beforeEach(done => {
 2 Users
 3 .destroy({where: {}})
 4 .then(() => Users.create({
 5 name: "John",
 6 email: "john@mail.net",
 7 password: "12345"
 8 }))
 9 .then(user => {
10 Tasks
11 .destroy({where: {}})
12 .then(() => Tasks.bulkCreate([{
13 id: 1,
14 title: "Work",
15 user_id: user.id
16 }, {
17 id: 2,
18 title: "Study",
19 user_id: user.id
20 }]))
21 .then(tasks => {
22 fakeTask = tasks[0];
23 token = jwt.encode({id: user.id}, jwtSecret);
24 done();
25 });
26 });
27 })

With the pretest routine ready, we are going to write all the tasks tests, starting with
the GET / route. Performed a request on it via the request.get("/tasks") function, also
using the function set("Authorization", JWT ${token}) to allow sending a header on the
request. In this case, the header Authorization is sent along with the value of a valid token.

To make sure the test is successfully accomplished, follow these steps.

 1. Check the status 200 via the expect(200) function.

 2. Apply a simple validation to ensure that the array of size 2 will
be returned via the expect(res.body).to.have.length 2)
function.

 3. Compare if the titles of the first two tasks are the same as
those created by the function Tasks.bulkCreate().

 1 describe("GET /tasks", () => {
 2 describe("status 200", () => {
 3 it("returns a list of tasks", done => {
 4 request.get("/tasks")
 5 .set("Authorization", `JWT ${token}`)
 6 .expect(200)

Chapter 9 ■ testing the appliCation: part 2

74

 7 .end((err, res) => {
 8 expect(res.body).to.have.length(2);
 9 expect(res.body[0].title).to.eql("Work");
10 expect(res.body[1].title).to.eql("Study");
11 done(err);
12 });
13 });
14 });
15 })

To test the successful case of the route POST /tasks, there is no secret: Basically it
is a header with an authentication token and a title for a new task. As result, we test if the
answer returns the 200 status code and if the object req.body has the same title as the
one that was sent to register a new task.

 1 describe("POST /tasks", () => {
 2 describe("status 200", () => {
 3 it("creates a new task", done => {
 4 request.post("/tasks")
 5 .set("Authorization", `JWT ${token}`)
 6 .send({title: "Run"})
 7 .expect(200)
 8 .end((err, res) => {
 9 expect(res.body.title).to.eql("Run");
10 expect(res.body.done).to.be.false;
11 done(err);
12 });
13 });
14 });
15 });

Now we are going to test two simple flows of the route GET /tasks/:id. In the
successful case we’ll use the id of the object fakeTask to make sure a valid task will be
returned. To test how the application behaves when an id of an invalid task is used, we
are going to use the function expect(404) to test the status 404 that indicates if the
request did not find a resource.

 1 describe("GET /tasks/:id", () => {
 2 describe("status 200", () => {
 3 it("returns one task", done => {
 4 request.get(`/tasks/${fakeTask.id}`)
 5 .set("Authorization", `JWT ${token}`)
 6 .expect(200)
 7 .end((err, res) => {
 8 expect(res.body.title).to.eql("Work");
 9 done(err);
10 });
11 });

Chapter 9 ■ testing the appliCation: part 2

75

12 });
13 describe("status 404", () => {
14 it("throws error when task not exist", done => {
15 request.get("/tasks/0")
16 .set("Authorization", `JWT ${token}`)
17 .expect(404)
18 .end((err, res) => done(err));
19 });
20 });
21 }

To finish the tests, we are going to test the successful behavior of the routes PUT /
tasks/:id and DELETE /tasks/:id. Both of them will use the same functions, except
that one test is going to execute the function request.put() and the other one is going
to execute the function request.delete(). Both of them, though, expect that the request
returns a 204 status code via the expect(204) function.

 1 describe("PUT /tasks/:id", () => {
 2 describe("status 204", () => {
 3 it("updates a task", done => {
 4 request.put(`/tasks/${fakeTask.id}`)
 5 .set("Authorization", `JWT ${token}`)
 6 .send({
 7 title: "Travel",
 8 done: true
 9 })
10 .expect(204)
11 .end((err, res) => done(err));
12 });
13 });
14 });
15 describe("DELETE /tasks/:id", () => {
16 describe("status 204", () => {
17 it("removes a task", done => {
18 request.delete(`/tasks/${fakeTask.id}`)
19 .set("Authorization", `JWT ${token}`)
20 .expect(204)
21 .end((err, res) => done(err));
22 });
23 });
24 })

We have finished the tests of tasks resources. If you execute the command npm test
again, you will see the result shown in Figure 9-1.

Chapter 9 ■ testing the appliCation: part 2

76

Testing a User’s Endpoints
To test the user’s resource is even simpler, because basically we are going what was
explained in the last tests. To start, create the file test/routes/users.js with the
following structure.

 1 import jwt from "jwt-simple";
 2
 3 describe("Routes: Tasks", () => {
 4 const Users = app.db.models.Users;
 5 const jwtSecret = app.libs.config.jwtSecret;
 6 let token;
 7 beforeEach(done => {
 8 // Runs before each test...
 9 });

Figure 9-1. Testing a task’s resources

Chapter 9 ■ testing the appliCation: part 2

77

10 describe("GET /user", () => {
11 describe("status 200", () => {
12 it("returns an authenticated user", done => {
13 // Test's logic...
14 });
15 });
16 });
17 describe("DELETE /user", () => {
18 describe("status 204", () => {
19 it("deletes an authenticated user", done => {
20 // Test's logic...
21 });
22 });
23 });
24 describe("POST /users", () => {
25 describe("status 200", () => {
26 it("creates a new user", done => {
27 // Test's logic...
28 });
29 });
30 });
31 });

The pretest logic is going to be simplified, but it will have the generation of a valid
token. This code shows how to implement the beforeEach(done) function.

 1 beforeEach(done => {
 2 Users
 3 .destroy({where: {}})
 4 .then(() => Users.create({
 5 name: "John",
 6 email: "john@mail.net",
 7 password: "12345"
 8 }))
 9 .then(user => {
10 token = jwt.encode({id: user.id}, jwtSecret);
11 done();
12 });
13 });

Now, to implement these tests, let’s get started testing the GET /user route, which
must return the authenticated user’s data, which basically sends a token and receives as a
response the user’s data created by the beforeEach(done) function.

 1 describe("GET /user", () => {
 2 describe("status 200", () => {
 3 it("returns an authenticated user", done => {
 4 request.get("/user")

Chapter 9 ■ testing the appliCation: part 2

78

 5 .set("Authorization", `JWT ${token}`)
 6 .expect(200)
 7 .end((err, res) => {
 8 expect(res.body.name).to.eql("John");
 9 expect(res.body.email).to.eql("john@mail.net");
10 done(err);
11 });
12 });
13 });
14 })

Then, let’s write the tests to the DELETE /user route. In this case, you simply need to
send a token and wait for the 204 status code.

 1 describe("DELETE /user", () => {
 2 describe("status 204", () => {
 3 it("deletes an authenticated user", done => {
 4 request.delete("/user")
 5 .set("Authorization", `JWT ${token}`)
 6 .expect(204)
 7 .end((err, res) => done(err));
 8 });
 9 });
10 });

To finish the last test, we are going to implement the test for new user’s route. This
one, doesn’t require a token; after all, it is an open route for new users to register an
account in the API. This test’s code is shown here.

 1 describe("POST /users", () => {
 2 describe("status 200", () => {
 3 it("creates a new user", done => {
 4 request.post("/users")
 5 .send({
 6 name: "Mary",
 7 email: "mary@mail.net",
 8 password: "12345"
 9 })
10 .expect(200)
11 .end((err, res) => {
12 expect(res.body.name).to.eql("Mary");
13 expect(res.body.email).to.eql("mary@mail.net");
14 done(err);
15 });
16 });
17 });
18 });

Chapter 9 ■ testing the appliCation: part 2

79

Now, if you execute the command npm test again, you’ll see a report like the one
shown in Figure 9-2.

Figure 9-2. Testing user’s resources

Chapter 9 ■ testing the appliCation: part 2

80

Conclusion
If you have reached this step, then you have developed a small but powerful API using
Node.js and SQL database. Everything is already working and has been tested to ensure
the quality of the project code. In the next chapter, we explore a very useful tool for
generating API documentation.

81© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_10

CHAPTER 10

Documenting the API

If you have reached this chapter and your application is working correctly—with
routes to the management tasks and users, integrated with a database, and with user
authentication via JSON Web Token—congratulations! You have created, following some
best practices, a REST API using Node.js. If you intend to use this pilot project as a base to
construct your own API, then you already have enough of an application to deploy it into
a production environment.

Introduction to ApiDoc.js
In this chapter, we’ll learn how to write and generate API documentation; after all, it is a
good practice to provide documentation about how the client applications can connect to
consume the data from an API. The best part is that we are going to use a very simple tool
and all the documentation of our application will be built using the code’s comments.

Our project will use ApiDoc.js (see Figure 10-1), which is a Node.js module to
generate elegant documentation for APIs.

Figure 10-1. ApiDoc.js home page

Chapter 10 ■ DoCumenting the api

82

This module is a command-line interface (CLI) and it is highly advisable to install it
as a global module (using the command npm install –g). However, in our case, we can
use it as local module and we’ll create an npm alias command to use every time we start
the API server. Therefore, its installation is going to be as a local module, similar to the
others. Install it using this command.

1 npm install apidoc@0.15.1 --save-dev

First, let’s create the command npm run apidoc to execute internally the command
apidoc -i routes/ -o public/apidoc. Then, modify the attribute scripts.start so
it can generate the API documentation before starting the API server. We also include
the attribute apidoc.name to set a title and apidoc.template.forceLanguage to set the
default language to be used in the API documentation.

Open and edit the package.json, making these changes.

 1 {
 2 "name": "ntask-api",
 3 "version": "1.0.0",
 4 "description": "Task list API",
 5 "main": "index.js",
 6 "scripts": {
 7 "start": "npm run apidoc && babel-node index.js",
 8 "apidoc": "apidoc -i routes/ -o public/apidoc",
 9 "test": "NODE_ENV=test mocha test/**/*.js"
10 },
11 "apidoc": {
12 "name": "Node Task API - Documentation",
13 "template": {
14 "forceLanguage": "en"
15 }
16 },
17 "author": "Caio Ribeiro Pereira",
18 "dependencies": {
19 "babel-cli": "^6.5.1",
20 "babel-preset-es2015": "^6.5.0",
21 "bcrypt": "^0.8.5",
22 "body-parser": "^1.15.0",
23 "consign": "^0.1.2",
24 "express": "^4.13.4",
25 "jwt-simple": "^0.4.1",
26 "passport": "^0.3.2",
27 "passport-jwt": "^2.0.0",
28 "sequelize": "^3.19.2",
29 "sqlite3": "^3.1.1"
30 },
31 "devDependencies": {
32 "apidoc": "^0.15.1",
33 "babel-register": "^6.5.2",

Chapter 10 ■ DoCumenting the api

83

34 "chai": "^3.5.0",
35 "mocha": "^2.4.5",
36 "supertest": "^1.2.0"
37 }
38 }

Now, every time you run the command npm start, if you want to generate new
documentation without initiating the server, you can just run the npm run apidoc
command. Both of the commands are going to search all the existing comments in the
routes directory to generate new API documentation, which will be published in the
public/apidoc folder, and then start the server.

To be able to view the documentation page, first we have to enable our API server
static file from the folder public. To enable it, you have to import the express module
to use the middleware app.use(express.static("public")) at the end of the libs/
middlewares.js file, and don’t forget to create the public empty folder. The code should
look like this.

 1 import bodyParser from "body-parser";
 2 import express from "express";
 3
 4 module.exports = app => {
 5 app.set("port", 3000);
 6 app.set("json spaces", 4);
 7 app.use(bodyParser.json());
 8 app.use(app.auth.initialize());
 9 app.use((req, res, next) => {
10 delete req.body.id;
11 next();
12 });
13 app.use(express.static("public"));
14 };

To validate if everything is working correctly, let’s start documenting the GET /
endpoint. For this endpoint, we’ll use the following comments.

•	 @api: Informs the type, the address, and the title of the endpoint.

•	 @apiGroup: Informs the endpoint group name.

•	 @apiSuccess: Describes the fields and their data types for a
successful response.

•	 @apiSuccessExample: Shows an output sample of a successful
response.

To document this endpoint, edit the file routes/index.js using this code.

 1 module.exports = app => {
 2 /**
 3 * @api {get} / API Status

Chapter 10 ■ DoCumenting the api

84

 4 * @apiGroup Status
 5 * @apiSuccess {String} status API Status' message
 6 * @apiSuccessExample {json} Success
 7 * HTTP/1.1 200 OK
 8 * {"status": "NTask API"}
 9 */
10 app.get("/", (req, res) => {
11 res.json({status: "NTask API"});
12 });
13 };

To test these changes, restart the server, then open the browser and go to
http://localhost:3000/apidoc. If no errors occur, you will see a beautiful
documentation page about your API, as shown in Figure 10-2.

Documenting Token Generation
Now, we are going to explore the ApiDoc’s features deeper, documenting all of the API’s
routes.

Figure 10-2. API documentation page

http://localhost:3000/apidoc

Chapter 10 ■ DoCumenting the api

85

To start, let’s document the route POST /token. This has some extra details to be
documented. To do this, we’ll use not only the items from the last section, but some new
ones as well.

•	 @apiParam: Describes an input parameter, which might or might
not be required to be submitted in a request.

•	 @apiParamExample: Shows a sample of an input parameter; in our
case, we will display a JSON input format.

•	 @apiErrorExample: Shows a sample of some errors that could be
generated by the API if something goes wrong.

To understand in practice the usage of these new items, let’s edit routes/token.js,
following the comments in this code.

 1 import jwt from "jwt-simple";
 2
 3 module.exports = app => {
 4 const cfg = app.libs.config;
 5 const Users = app.db.models.Users;
 6
 7 /**
 8 * @api {post} /token Authentication Token
 9 * @apiGroup Credentials
10 * @apiParam {String} email User email
11 * @apiParam {String} password User password
12 * @apiParamExample {json} Input
13 * {
14 * "email": "john@connor.net",
15 * "password": "123456"
16 * }
17 * @apiSuccess {String} token Token of authenticated user
18 * @apiSuccessExample {json} Success
19 * HTTP/1.1 200 OK
20 * {"token": "xyz.abc.123.hgf"}
21 * @apiErrorExample {json} Authentication error
22 * HTTP/1.1 401 Unauthorized
23 */
24 app.post("/token", (req, res) => {
25 // The code here was explained in Chapter 7.
26 });
27 };

Documenting User Resource
In this section and in the next one, we focus on documenting the main resources of our
API. As the majority of the routes of these resources need an authenticated token—which
is sent in the request’s header—we are going to use the following items to describe more
about this header:

Chapter 10 ■ DoCumenting the api

86

•	 @apiHeader: Describes the name and data type of a header.

•	 @apiHeaderExample: Shows a sample of the header to be used in
the request.

Open routes/users.js and let’s document it. First, we’ll document the GET /user
endpoint.

 1 module.exports = app => {
 2 const Users = app.db.models.Users;
 3
 4 app.route("/user")
 5 .all(app.auth.authenticate())
 6 /**
 7 * @api {get} /user Return the authenticated user's data
 8 * @apiGroup User
 9 * @apiHeader {String} Authorization Token of authenticated user
10 * @apiHeaderExample {json} Header
11 * {"Authorization": "JWT xyz.abc.123.hgf"}
12 * @apiSuccess {Number} id User id
13 * @apiSuccess {String} name User name
14 * @apiSuccess {String} email User email
15 * @apiSuccessExample {json} Success
16 * HTTP/1.1 200 OK
17 * {
18 * "id": 1,
19 * "name": "John Connor",
20 * "email": "john@connor.net"
21 * }
22 * @apiErrorExample {json} Find error
23 * HTTP/1.1 412 Precondition Failed
24 */
25 .get((req, res) => {
26 // GET /user logic...
27 })

Then, let’s document the route DELETE /user.

 1 /**
 2 * @api {delete} /user Deletes an authenticated user
 3 * @apiGroup User
 4 * @apiHeader {String} Authorization Token of authenticated user
 5 * @apiHeaderExample {json} Header
 6 * {"Authorization": "JWT xyz.abc.123.hgf"}
 7 * @apiSuccessExample {json} Success
 8 * HTTP/1.1 204 No Content
 9 * @apiErrorExample {json} Delete error
10 * HTTP/1.1 412 Precondition Failed

Chapter 10 ■ DoCumenting the api

87

11 */
12 .delete((req, res) => {
13 // DELETE /user logic...
14 })

To finish this endpoint, we need to document its last route, the POST /user. Now
we’ll use several items to describe the input and output fields of this route.

 1 /**
 2 * @api {post} /users Register a new user
 3 * @apiGroup User
 4 * @apiParam {String} name User name
 5 * @apiParam {String} email User email
 6 * @apiParam {String} password User password
 7 * @apiParamExample {json} Input
 8 * {
 9 * "name": "John Connor",
10 * "email": "john@connor.net",
11 * "password": "123456"
12 * }
13 * @apiSuccess {Number} id User id
14 * @apiSuccess {String} name User name
15 * @apiSuccess {String} email User email
16 * @apiSuccess {String} password User encrypted password
17 * @apiSuccess {Date} updated_at Update's date
18 * @apiSuccess {Date} created_at Register's date
19 * @apiSuccessExample {json} Success
20 * HTTP/1.1 200 OK
21 * {
22 * "id": 1,
23 * "name": "John Connor",
24 * "email": "john@connor.net",
25 * "password": "$2a$10$SK1B1",
26 * "updated_at": "2016-02-10T15:20:11.700Z",
27 * "created_at": "2016-02-10T15:29:11.700Z",
28 * }
29 * @apiErrorExample {json} Register error
30 * HTTP/1.1 412 Precondition Failed
31 */
32 app.post("/users", (req, res) => {
33 // POST /users logic...
34 });
35 };

Documenting Tasks Resource
Continuing our API documentation, now we need to finish the tasks routes documentation.
Let’s edit the routes/tasks.js file, initially describing the GET /tasks route.

Chapter 10 ■ DoCumenting the api

88

 1 module.exports = app => {
 2 const Tasks = app.db.models.Tasks;
 3
 4 app.route("/tasks")
 5 .all(app.auth.authenticate())
 6 /**
 7 * @api {get} /tasks List the user's tasks
 8 * @apiGroup Tasks
 9 * @apiHeader {String} Authorization Token of authenticated user
10 * @apiHeaderExample {json} Header
11 * {"Authorization": "JWT xyz.abc.123.hgf"}
12 * @apiSuccess {Object[]} tasks Task list
13 * @apiSuccess {Number} tasks.id Task id
14 * @apiSuccess {String} tasks.title Task title
15 * @apiSuccess {Boolean} tasks.done Task is done?
16 * @apiSuccess {Date} tasks.updated_at Update's date
17 * @apiSuccess {Date} tasks.created_at Register's date
18 * @apiSuccess {Number} tasks.user_id Id do usuário
19 * @apiSuccessExample {json} Success
20 * HTTP/1.1 200 OK
21 * [{
22 * "id": 1,
23 * "title": "Study",
24 * "done": false
25 * "updated_at": "2016-02-10T15:46:51.778Z",
26 * "created_at": "2016-02-10T15:46:51.778Z",
27 * "user_id": 1
28 * }]
29 * @apiErrorExample {json} List error
30 * HTTP/1.1 412 Precondition Failed
31 */
32 .get((req, res) => {
33 // GET /tasks logic...
34 })

Then, let’s document the route POST /tasks.

 1 /**
 2 * @api {post} /tasks Register a new task
 3 * @apiGroup Tasks
 4 * @apiHeader {String} Authorization Token of authenticated user
 5 * @apiHeaderExample {json} Header
 6 * {"Authorization": "JWT xyz.abc.123.hgf"}
 7 * @apiParam {String} title Task title
 8 * @apiParamExample {json} Input
 9 * {"title": "Study"}
10 * @apiSuccess {Number} id Task id
11 * @apiSuccess {String} title Task title

Chapter 10 ■ DoCumenting the api

89

12 * @apiSuccess {Boolean} done=false Task is done?
13 * @apiSuccess {Date} updated_at Update's date
14 * @apiSuccess {Date} created_at Register's date
15 * @apiSuccess {Number} user_id User id
16 * @apiSuccessExample {json} Success
17 * HTTP/1.1 200 OK
18 * {
19 * "id": 1,
20 * "title": "Study",
21 * "done": false,
22 * "updated_at": "2016-02-10T15:46:51.778Z",
23 * "created_at": "2016-02-10T15:46:51.778Z",
24 * "user_id": 1
25 * }
26 * @apiErrorExample {json} Register error
27 * HTTP/1.1 412 Precondition Failed
28 */
29 .post((req, res) => {
30 // POST /tasks logic...
31 })

Then, we are going to document the route GET /tasks/:id with the following
comments.

 1 /**
 2 * @api {get} /tasks/:id Get a task
 3 * @apiGroup Tasks
 4 * @apiHeader {String} Authorization Token of authenticated user
 5 * @apiHeaderExample {json} Header
 6 * {"Authorization": "JWT xyz.abc.123.hgf"}
 7 * @apiParam {id} id Task id
 8 * @apiSuccess {Number} id Task id
 9 * @apiSuccess {String} title Task title
10 * @apiSuccess {Boolean} done Task is done?
11 * @apiSuccess {Date} updated_at Update's date
12 * @apiSuccess {Date} created_at Register's date
13 * @apiSuccess {Number} user_id User id
14 * @apiSuccessExample {json} Success
15 * HTTP/1.1 200 OK
16 * {
17 * "id": 1,
18 * "title": "Study",
19 * "done": false
20 * "updated_at": "2016-02-10T15:46:51.778Z",
21 * "created_at": "2016-02-10T15:46:51.778Z",
22 * "user_id": 1
23 * }
24 * @apiErrorExample {json} Task not found error

Chapter 10 ■ DoCumenting the api

90

25 * HTTP/1.1 404 Not Found
26 * @apiErrorExample {json} Find error
27 * HTTP/1.1 412 Precondition Failed
28 */
29 .get((req, res) => {
30 // GET /tasks/:id logic...
31 })

Next is PUT /tasks/:id.

 1 /**
 2 * @api {put} /tasks/:id Update a task
 3 * @apiGroup Tasks
 4 * @apiHeader {String} Authorization Token of authenticated user
 5 * @apiHeaderExample {json} Header
 6 * {"Authorization": "JWT xyz.abc.123.hgf"}
 7 * @apiParam {id} id Task id
 8 * @apiParam {String} title Task title
 9 * @apiParam {Boolean} done Task is done?
10 * @apiParamExample {json} Input
11 * {
12 * "title": "Work",
13 * "done": true
14 * }
15 * @apiSuccessExample {json} Success
16 * HTTP/1.1 204 No Content
17 * @apiErrorExample {json} Update error
18 * HTTP/1.1 412 Precondition Failed
19 */
20 .put((req, res) => {
21 // PUT /tasks/:id logic...
22 })

Finally, let’s finish this chapter by documenting the route DELETE /tasks/:id.

 1 /**
 2 * @api {delete} /tasks/:id Remove a task
 3 * @apiGroup Tasks
 4 * @apiHeader {String} Authorization Token of authenticated user
 5 * @apiHeaderExample {json} Header
 6 * {"Authorization": "JWT xyz.abc.123.hgf"}
 7 * @apiParam {id} id Task id
 8 * @apiSuccessExample {json} Success
 9 * HTTP/1.1 204 No Content
10 * @apiErrorExample {json} Delete error
11 * HTTP/1.1 412 Precondition Failed
12 */
13 .delete((req, res) => {

Chapter 10 ■ DoCumenting the api

91

14 // DELETE /tasks/:id logic...
15 });
16 };

Let’s test our efforts. Just restart the server and then go to http://localhost:3000/
apidoc.

This time, we have a complete documentation page that describes step-by-step for a
new developer how to create a client application to consume data from our API, as shown
in Figure 10-3.

Conclusion
Congratulations! You have finished another excellent chapter. Now, in addition to a
functional API, you also have complete documentation to allow other developers to
create client-side applications using your API.

Keep reading, because in the next chapter, we include some frameworks and best
practices for our API so that it works fine in a production environment.

Figure 10-3. Now our API is well documented

www.allitebooks.com

http://localhost:3000/apidoc
http://localhost:3000/apidoc
http://www.allitebooks.org

93© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_11

CHAPTER 11

Preparing the Production
Environment

Cross-origin resource sharing (CORS) is an important HTTP mechanism. It is responsible
for allowing or denying asynchronous requests from other domains.

CORS, in practice, includes only the HTTP headers that are included on the
server side. Those headers can indicate which domain can consume the API, which
HTTP methods are allowed, and, mainly, which endpoints can be shared publicly for
applications from other domains to consume. Generally when implementing CORS in a
browser, each cross-origin request will be preceded by an OPTIONS request that checks
whether the GET or POST will be okay.

Enabling CORS in the API
As we are developing an API that will serve data for any kind of client-side applications,
we need to enable the CORS’s middleware for the endpoints to become public, meaning
that any client can make requests on our API. For security reasons, then, let’s install and
use the module cors to limit which resources a client can gain access to from another
domain.

1 npm install cors@2.7.1 --save

To initiate it, just use the middleware app.use(cors()) in libs/middlewares.js.

 1 import bodyParser from "body-parser";
 2 import express from "express";
 3 import cors from "cors";
 4
 5 module.exports = app => {
 6 app.set("port", 3000);
 7 app.set("json spaces", 4);
 8 app.use(cors());
 9 app.use(bodyParser.json());
10 app.use(app.auth.initialize());

Chapter 11 ■ preparing the produCtion environment

94

11 app.use((req, res, next) => {
12 delete req.body.id;
13 next();
14 });
15 app.use(express.static("public"));
16 };

When using only the function cors(), the middleware will release full access of our
API. However, it is advisable to control which client domains can have access to, which
methods they can use, and, mainly, which headers must be required for the clients to
include in the request. In our case, let’s set up only three attributes: origin (allowed
domains), methods (allowed methods), and allowedHeaders (requested headers).

In libs/middlewares.js, let’s add these parameters in the app.use(cors()) function.

 1 import bodyParser from "body-parser";
 2 import express from "express";
 3 import cors from "cors";
 4
 5 module.exports = app => {
 6 app.set("port", 3000);
 7 app.set("json spaces", 4);
 8 app.use(cors({
 9 origin: ["http://localhost:3001"],
10 methods: ["GET", "POST", "PUT", "DELETE"],
11 allowedHeaders: ["Content-Type", "Authorization"]
12 }));
13 app.use(bodyParser.json());
14 app.use(app.auth.initialize());
15 app.use((req, res, next) => {
16 delete req.body.id;
17 next();
18 });
19 app.use(express.static("public"));
20 }

Now we have an API that is only going to allow client apps from the address
http://localhost:3001. Don’t be concerned, because this will be the domain of the
client application that we’ll build in the next chapters.

A Bit More About CORS
For study purposes, to understand CORS headers and, most important, to learn how to
customize the rule for your API, I recommend you read the full documentation available
at https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS.

http://localhost:3001/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Chapter 11 ■ preparing the produCtion environment

95

Generating Logs
In this section, we are going to set up our application to report and generate logs files
about the user’s requests. To do this, let’s use the module winston, which is useful in
treating several kinds of logs.

In our case, the log requests will be treated by the module morgan, which is a
middleware for generating request logs in the server. We also will get logs for any SQL
command from the database to generate a full log in the API. First, install the modules
winston and morgan.

1 npm install winston@2.1.1 morgan@1.6.1 --save

After that, let’s write the code responsible for setting up and loading the winston
module. We are going to verify if the logs folder exists, using the native module fs (file
system) to treat files.

Then, we will implement a simple conditional via the fs.existsSync("logs")
function, to check if there is a logs folder. If it doesn’t exist, it will be created by the fs.
mkdirSync("logs") function.

After this verification, we’ll load and export the module.exports = new winston.
Logger to be able to generate log files. The logs object will use as transports the object
new winston.transports.File, which is responsible for creating and maintaining
several recent log files. Create the file libs/log- ger.js like this.

 1 import fs from "fs";
 2 import winston from "winston";
 3
 4 if (!fs.existsSync("logs")) {
 5 fs.mkdirSync("logs");
 6 }
 7
 8 module.exports = new winston.Logger({
 9 transports: [
10 new winston.transports.File({
11 level: "info",
12 filename: "logs/app.log",
13 maxsize: 1048576,
14 maxFiles: 10,
15 colorize: false
16 })
17]
18 });

Now, we are going to use our libs/logger.js for two important aspects of our
application. The first is to generate SQL log commands modifying the file libs/config.
development.js to load our module logger. We’ll use its function logger.info() as a
callback of the attribute logging from Sequelize to capture the SQL command via the
logger.info() function. To do this, just edit libs/config.development.js as shown here.

Chapter 11 ■ preparing the produCtion environment

96

 1 import logger from "./logger.js";
 2
 3 module.exports = {
 4 database: "ntask",
 5 username: "",
 6 password: "",
 7 params: {
 8 dialect: "sqlite",
 9 storage: "ntask.sqlite",
10 logging: (sql) => {
11 logger.info(`[${new Date()}] ${sql}`);
12 },
13 define: {
14 underscored: true
15 }
16 },
17 jwtSecret: "Nta$K-AP1",
18 jwtSession: {session: false}
19 };

To finish, we are going to use the module logger to generate the request’s logs. To do
this, let’s use the module morgan and include at the top of the middlewares the function
app.use(morgan("common")) to log all requests.

To send these logs to our module logger, add the attribute stream as a callback
function called write(message) and then send the variable message to our log function,
logger.info(message). To understand this implementation better, edit the file libs/
middlewares.js as the following code shows.

 1 import bodyParser from "body-parser";
 2 import express from "express";
 3 import morgan from "morgan";
 4 import cors from "cors";
 5 import logger from "./logger.js";
 6
 7 module.exports = app => {
 8 app.set("port", 3000);
 9 app.set("json spaces", 4);
10 app.use(morgan("common", {
11 stream: {
12 write: (message) => {
13 logger.info(message);
14 }
15 }
16 }));
17 app.use(cors({
18 origin: ["http://localhost:3001"],
19 methods: ["GET", "POST", "PUT", "DELETE"],
20 allowedHeaders: ["Content-Type", "Authorization"]

Chapter 11 ■ preparing the produCtion environment

97

21 }));
22 app.use(bodyParser.json());
23 app.use(app.auth.initialize());
24 app.use((req, res, next) => {
25 delete req.body.id;
26 next();
27 });
28 app.use(express.static("public"));
29 };

To test the log generation, restart the server and access many times any API address,
such as http://localhost:3000. After making some requests, access the logs folder. There
will be a file containing the logs of the requests similar to the one shown in Figure 11-1.

Configuring Parallel Processing Using Cluster
Module
Unfortunately, Node.js does not work with multithreads. This is is considered a negative
aspect by many developers and causes disinterest in learning and in taking it seriously.
However, despite being a single-thread application, it’s possible to prepare it to work at
least with parallel processing. To do this, you can use the native module called cluster.

This module basically instantiates new processes of an application working in a
distributed way, and this module takes care to share the same port network between the
active clusters. You determine the number of processes to be created, but a good practice
is to instantiate a number of processes based on the amount of server processor cores, or

Figure 11-1. Log of the requests

http://localhost:3000/

Chapter 11 ■ preparing the produCtion environment

98

also a relative amount to core × processors. For example, if you have a single processor
of eight cores, you can instantiate eight processes, creating a network of eight clusters.
However, if there are four processors of eight cores each, you can create a network of 32
clusters in action.

To make sure the clusters work in a distributed and organized way, it is necessary
that a parent process exists (also called a cluster master). Because it is responsible for
balancing the parallel processing among the other clusters, it distributes this load to the
other processes, called child processes (or cluster slaves). It is very easy to implement this
technique on Node.js, because all processing distribution is performed abstractedly to
the developer.

Another advantage is that the clusters are independent. That is, if one cluster goes
down, the others will continue working. However, it is necessary to manage the instances
and the shutdown of clusters manually to ensure the successful return of the cluster that
went down.

Basing our work on these concepts, we are going to apply in practice the
implementation of clusters. Create in the root directory the file clusters.js using the
following code.

 1 import cluster from "cluster";
 2 import os from "os";
 3
 4 const CPUS = os.cpus();
 5 if (cluster.isMaster) {
 6 CPUS.forEach(() => cluster.fork());
 7 cluster.on("listening", worker => {
 8 console.log("Cluster %d connected", worker.process.pid);
 9 });
10 cluster.on("disconnect", worker => {
11 console.log("Cluster %d disconnected", worker.process.pid);
12 });
13 cluster.on("exit", worker => {
14 console.log("Cluster %d is dead", worker.process.pid);
15 cluster.fork();
16 // Ensure starts of a new cluster if an old one dies
17 });
18 } else {
19 require("./index.js");
20 }

This time, to set up the server, first edit package.json inside the attribute scripts
and create the command npm run clusters, as shown here.

1 "scripts": {
2 "start": "npm run apidoc && babel-node index.js",
3 "clusters": "babel-node clusters.js",
4 "test": "NODE_ENV=test mocha test/**/*.js",
5 "apidoc": "apidoc -i routes/ -o public/apidoc"
6 }

Chapter 11 ■ preparing the produCtion environment

99

Now, if you execute the command npm run clusters, this time the application will
run distributed into the clusters. To make sure it worked, you will see the message "NTask
API - Port 3000" more than once in the terminal, as shown in Figure 11-2.

Basically, we have to load the module cluster and first, verify it is the master
cluster via the cluster.isMaster variable. If the cluster is master, a loop will be iterated
based on the total of processing cores (CPUs) forking new slave clusters inside the CPUS.
forEach(() => cluster.fork()) function.

When a new process is created (in this case a child process), it does not fit in the
conditional if(cluster.isMaster). Therefore, the application server is started via
require("./index.js") for this child process.

Also, some events created by the cluster master are included. In the last code, we
only used the main events, listed here.

•	 listening: Happens when a cluster is listening to a port. In this
case, our application is listening to the port 3000.

•	 disconnect: Happens when a cluster is disconnected from the
cluster’s network.

•	 exit: Occurs when a cluster is closed in the OS.

Developing Clusters
Many things can be explored about developing clusters on Node.js. Here, we only applied
a little bit, which was enough to run parallel processing. If you have to implement a more
detailed cluster design, I recommend you read the documentation at https://nodejs.
org/api/cluster.html.

Figure 11-2. Running Node.js in cluster mode

https://nodejs.org/api/cluster.html
https://nodejs.org/api/cluster.html

Chapter 11 ■ preparing the produCtion environment

100

To finish and automate the command npm start to start the server in cluster mode,
let’s update the package.json file, following this code.

1 "scripts": {
2 "start": "npm run apidoc && npm run clusters",
3 "clusters": "babel-node clusters.js",
4 "test": "NODE_ENV=test mocha test/**/*.js",
5 "apidoc": "apidoc -i routes/ -o public/apidoc"
6 }

Done! Now you can start the cluster network using the command npm start.

Compacting Requests Using GZIP Middleware
To make the requests lighter and enable them to load faster, let’s enable another
middleware that will compact the JSON responses and the entire API documentation
static files into GZIP format, a format compatible with several browsers. We’ll do this
simple, but important refactoring just using the module compression. First, let’s install it.

1 npm install compression@1.6.1 --sav

After installing it, it will be necessary to include its middleware into the libs/
middlewares.js file.

 1 import bodyParser from "body-parser";
 2 import express from "express";
 3 import morgan from "morgan";
 4 import cors from "cors";
 5 import compression from "compression";
 6 import logger from "./logger.js";
 7
 8 module.exports = app => {
 9 app.set("port", 3000);
10 app.set("json spaces", 4);
11 app.use(morgan("common", {
12 stream: {
13 write: (message) => {
14 logger.info(message);
15 }
16 }
17 }));
18 app.use(cors({
19 origin: ["http://localhost:3001"],
20 methods: ["GET", "POST", "PUT", "DELETE"],
21 allowedHeaders: ["Content-Type", "Authorization"]
22 }));

Chapter 11 ■ preparing the produCtion environment

101

23 app.use(compression());
24 app.use(bodyParser.json());
25 app.use(app.auth.initialize());
26 app.use((req, res, next) => {
27 delete req.body.id;
28 next();
29 });
30 app.use(express.static("public"));
31 };

To test this implementation, restart the server and then go to the API
documentation—after all, there are a lot of static files there—at the address
http://localhost:3000/apidoc.

To see the details, open the browser console (Firefox and Google Chrome have great
client-side consoles) and go to the Networks menu. There, you can see the transferred
size versus file size, which will look something similar to Figure 11-3.

Installing SSL Support to Use HTTPS
Nowadays, it is required to build an application that has a safe connection between the
server and the client. To do this, many applications use security certificates to ensure a
Secure Sockets Layer (SSL) connection via the HTTPS protocol.

To implement an HTTPS protocol connection, it is necessary to buy a digital
certificate for use in the production environment. For our purposes here, we are
going to work with a fake certificate, which is not valid for production usage, but valid
enough for didactic ends. To create a simple certificate, you can go to http://www.
selfsignedcertificate.com.

Figure 11-3. Applying GZIP in some files

http://localhost:3000/apidoc
http://www.selfsignedcertificate.com/
http://www.selfsignedcertificate.com/

Chapter 11 ■ preparing the produCtion environment

102

Naviate to the ntask domain and click Generate. A new screen will be displayed
with two extension files: .key and .cert. Download these files and put them into the root
folder of your project.

Now, let’s use the native https module to allow our server to start using the HTTPS
protocol and the fs module to read the downloaded files ntask.key and ntask.cert to be
used as credential parameters to start our server in HTTPS mode. To do this, we are going
to replace the function app.listen() with the https.createServer(credentials, app).
listen() function. To implement this change, edit the libs/boot.js as shown here.

 1 import https from "https";
 2 import fs from "fs";
 3
 4 module.exports = app => {
 5 if (process.env.NODE_ENV !== "test") {
 6 const credentials = {
 7 key: fs.readFileSync("ntask.key", "utf8"),
 8 cert: fs.readFileSync("ntask.cert", "utf8")
 9 }
10 app.db.sequelize.sync().done(() => {
11 https.createServer(credentials, app)
12 .listen(app.get("port"), () => {
13 console.log(`NTask API - Port ${app.get("port")}`);
14 });
15 });
16 }
17 };

Now your application is running in a safe protocol, ensuring that the data won’t
be intercepted. Note that in a real project this kind of implementation requires a valid
digital certificate, so don’t forget to buy one if you put a serious API in a production
environment.

To test these changes, just restart and go to https://localhost:3000.

Armoring the API with Helmet
To complete the development of our API, let’s include a very important module, which
is a security middleware that handles several kinds of attacks in the HTTP/HTTPS
protocols. This module is called helmet, which is a set of nine internal middlewares,
responsible for treating the following HTTP settings:

•	 Configures the Content Security policy.

•	 Removes the header X-Powered-By that informs the name and the
version of a server.

•	 Configures rules for HTTP Public Key Pinning.

•	 Configures rules for HTTP Strict Transport Security.

https://localhost:3000/

Chapter 11 ■ preparing the produCtion environment

103

•	 Treats the header X-Download-Options for Internet Explorer 8+.

•	 Disables client-side caching.

•	 Prevents sniffing attacks on the client Mime Type.

•	 Prevents ClickJacking attacks.

•	 Protects against Cross-Site Scripting (XSS) attacks.

To sum up, even if you do not understand a lot about HTTP security, use helmet
modules, because in addition to having a simple interface, it will armor your web
application against many kinds of attacks. To install it, run this command.

1 npm install helmet@1.1.0 --save

To ensure maximum security on our API, we are going to use all middlewares
provided by the helmet module, which can easily be included via the app.
use(helmet())function. Edit the libs/middle- wares.js file as shown here.

 1 import bodyParser from "body-parser";
 2 import express from "express";
 3 import morgan from "morgan";
 4 import cors from "cors";
 5 import compression from "compression";
 6 import helmet from "helmet";
 7 import logger from "./logger.js";
 8
 9 module.exports = app => {
10 app.set("port", 3000);
11 app.set("json spaces", 4);
12 app.use(morgan("common", {
13 stream: {
14 write: (message) => {
15 logger.info(message);
16 }
17 }
18 }));
19 app.use(helmet());
20 app.use(cors({
21 origin: ["http://localhost:3001"],
22 methods: ["GET", "POST", "PUT", "DELETE"],
23 allowedHeaders: ["Content-Type", "Authorization"]
24 }));
25 app.use(compression());
26 app.use(bodyParser.json());
27 app.use(app.auth.initialize());
28 app.use((req, res, next) => {
29 delete req.body.id;
30 next();

Chapter 11 ■ preparing the produCtion environment

104

31 });
32 app.use(express.static("public"));
33 };

Now, restart your application and go to https://localhost:3000. Open the browser
console and, on the Networks menu, you can view details of the GET / request’s data.
There, you’ll see new items included in the header, as shown in Figure 11-4.

Conclusion
We have just finished the complete development of our API. You can use this project as a
base for your future APIs, because we have developed a documented API that applies the
main REST standards, has well-tested endpoints, persists data in a SQL database via the
Sequelize.js module and, most important, follows best practices about performance and
security for production environments.

The book is not complete yet, though. In the next chapter, we’ll create a web
application that is going to consume our API. It will be a simple single-page application
(SPA) and will be developed using only JavaScript ES6 code.

Figure 11-4. Security headers

https://localhost:3000/

105© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_12

CHAPTER 12

Building the Client-Side
App: Part 1

After building a REST API using Node.js using JavaScript ES6 language, for the final two
chapters of this book, we’ll create a new project. This time it will be a front-end project
using the best of JavaScript.

This book has devoted 80 percent of its content to back-end development, but now,
we focus on the remaining 20percent, which is about front-end development. After all,
we have an API, but we need a client-side app, because it’s the only way for users interact
with our project.

For this reason, in these last two chapters, we are going to build an SPA application
using only pure JavaScript. That’s right: only vanilla JavaScript! No front-end framework
like Angular, Backbone, Ember, React, jQuery, or any others will be used; only the best of
vanilla JavaScript, or perhaps I should say vanilla ES6.

Setting Up the App Environment
Our client-side app will be built under an object-oriented programming (OOP) paradigm
using ES6 classes and Browserify to be able to use some front-end modules from NPM.
Also, we are going to automate some tasks to build our application using only the npm
alias command, like we used in the API project.

To kick off, let’s open the terminal to create a new project, which cannot be in the
same API directory. This new project will be named ntask-web.

1 mkdir ntask-web
2 cd ntask-web
3 npm init

With the npm init command, we answer these questions to describe this new
project.

After executing the npm init command, the file package.json is generated
(see Figure 12-1). To organize this new project, we must create some directories in the
project’s root, as follows.

Chapter 12 ■ Building the Client-Side app: part 1

106

•	 public: For static files like CSS, fonts, JavaScript and images.

•	 public/css: For CSS files only (we use Ionic CSS).

•	 public/fonts: For font files (we use Ionic FontIcons).

•	 public/js: For JavaScript files, here we’ll put a compiled and
minified JavaScript file, generated from the src folder.

•	 src/components: For components business logic.

•	 src/templates: For components views.

To create these folders, just run this command.

1 mkdir public/{css,fonts,js}
2 mkdir src/{components,templates}

Here is a list of all the modules that will be used in this project.

Figure 12-1. NTask Web generating package.json file

Chapter 12 ■ Building the Client-Side app: part 1

107

•	 http-server: CLI for starting a simple HTTP server for static files
only.

•	 browserify: A JavaScript compiler that allows use of some NPM
modules. We’ll use some modules that have JavaScript Universal
codes (codes that works in back-end and front-end layers) and
also allows loading using CommonJS pattern, which is the same
standard as Node.js.

•	 babelify: A plug-in for the browserify module to enable reading
and compiling ES6 code in the front end.

•	 babel-preset-es2015: The presets for Babel recognizes ES6 code
via babelify.

•	 tiny-emitter: A small module to create and handle events.

•	 browser-request: A version of the request module focused
for browsers, it is a cross-browser (compatible with all major
browsers) and abstracts the whole complexity of an AJAX request.

Basically, we are going to build a web client using these modules, so let’s install them
running these commands.

1 npm install http-server@0.9.0 browserify@13.0.0 --save
2 npm install babelify@7.2.0 babel-preset-es2015@6.5.0 --save
3 npm install tiny-emitter@1.0.2 browser-request@0.3.3 --save

After the installation, modify package.json by removing the attributes main, script.
test, and license, and add all the alias commands that will be necessary to automate the
build process of this project.

Basically, we’ll perform these tasks:

•	 Compile and concatenate all ES6 codes from the src folder via the
npm run build command.

•	 Initiate the server in port 3001 via the npm run server command.

•	 Create the command npm start, which will run the npm run
build and npm run server commands.

To apply these alterations, edit the package.json file as shown here.

 1 {
 2 "name": "ntask-web",
 3 "version": "1.0.0",
 4 "description": "NTask web client application",
 5 "scripts": {
 6 "start": "npm run build && npm run server",
 7 "server": "http-server public -p 3001",
 8 "build": "browserify src -t babelify -o public/js/app.js"
 9 },

Chapter 12 ■ Building the Client-Side app: part 1

108

10 "author": "Caio Ribeiro Pereira",
11 "dependencies": {
12 "babel-preset-es2015": "^6.5.0",
13 "babelify": "^7.2.0",
14 "browser-request": "^0.3.3",
15 "browserify": "^13.0.0",
16 "http-server": "^0.9.0",
17 "tiny-emitter": "^1.0.2"
18 }
19 }

Now, we need to again create the .babelrc file to set up the babel-preset-es2015
module. To do this simple task, create the .babelrc in the root folder using this code.

1 {
2 "presets": ["es2015"]
3 }

After this setup, let’s include some static files that will be responsible for the layout of
our project. To save time, we use a ready CSS stylization, from the Ionic framework, a very
cool framework with several mobile components ready to build responsive apps.

We won’t use the full Ionic framework, because it has a strong dependency on
the Angular framework. We only use the CSS file and font icon package. To do this, I
recommend you download the files from the following links.

•	 Ionic CSS: http://code.ionicframework.com/1.0.0/css/
ionic.min.css

•	 Ionic CSS icons: http://code.ionicframework.com/
ionicons/2.0.0/css/ionicons.min.css

•	 Ionic Font icons: http://code.ionicframework.com/1.0.0/
fonts/ionicons.eot

•	 Ionic Font icons: http://code.ionicframework.com/1.0.0/
fonts/ionicons.svg

•	 Ionic Font icons: http://code.ionicframework.com/1.0.0/
fonts/ionicons.ttf

•	 Ionic Font icons: http://code.ionicframework.com/1.0.0/
fonts/ionicons.woff

Put their CSS files into the public/css folder and put the font files into public/fonts.
To start coding, let’s create the home page and the JavaScript code responsible for

loading the main page just to test if everything will run fine. The main HTML is going to
be responsible for loading the Ionic CSS stylization, the main JavaScript files, and also
enough HTML tags to build the layout structure. To understand this implementation,
create the file public/index.html using this code.

http://code.ionicframework.com/1.0.0/css/ionic.min.css
http://code.ionicframework.com/1.0.0/css/ionic.min.css
http://code.ionicframework.com/ionicons/2.0.0/css/ionicons.min.css
http://code.ionicframework.com/ionicons/2.0.0/css/ionicons.min.css
http://code.ionicframework.com/1.0.0/fonts/ionicons.eot
http://code.ionicframework.com/1.0.0/fonts/ionicons.eot
http://code.ionicframework.com/1.0.0/fonts/ionicons.svg
http://code.ionicframework.com/1.0.0/fonts/ionicons.svg
http://code.ionicframework.com/1.0.0/fonts/ionicons.ttf
http://code.ionicframework.com/1.0.0/fonts/ionicons.ttf
http://code.ionicframework.com/1.0.0/fonts/ionicons.woff
http://code.ionicframework.com/1.0.0/fonts/ionicons.woff

Chapter 12 ■ Building the Client-Side app: part 1

109

 1 <!DOCTYPE html>
 2 <html>
 3 <head>
 4 <meta charset="utf-8">
 5 <title>NTask - Task manager</title>
 6 <meta name="viewport" content="width=device-width,initial-scale=1">
 7 <link rel="stylesheet" href="css/ionic.min.css">
 8 <link rel="stylesheet" href="css/ionicons.min.css">
 9 <script src="js/app.js" async defer></script>
10 </head>
11 <body>
12 <header class="bar bar-header bar-calm">
13 <h1 class="title">NTask</h1>
14 </header>
15 <div class="scroll-content ionic-scroll">
16 <div class="content overflow-scroll has-header">
17 <main></main>
18 <footer></footer>
19 </div>
20 </div>
21 </body>
22 </html>

 ■ Note there are two empty tags: <main></main> and <footer></footer>. all the page
interaction will manipulate these tags dynamically using JavaScript codes from the src/
components files that we will write soon.

To finish this section, create the src/index.js file. This will display a simple
Welcome! message in the browser when the page is loaded. This will be modified soon;
after all, we are going to create it just to test if our project will work.

1 window.onload = () => {
2 alert("Welcome!");
3 };

Now we already have a simple, but functional environment to run our NTask client-
side app. To execute it, run the command npm start and go to http://localhost:3001.

If everything works fine, you’ll see the result shown in Figure 12-2.

http://localhost:3001/

Chapter 12 ■ Building the Client-Side app: part 1

110

Creating Sign-in and Signup Views
In this section, we create all the templates to be used in the application. The templates are
basically HTML pieces of strings, manipulated via JavaScript, and are largely used on SPA
projects. After all, one of the SPA concepts is to load once all static files and only transfer
data frequently between client and server.

All transition screens (template’s transition) become a task for client-side apps,
causing the server only to work with data and the client to pick up the data to put them
into appropriate screens for users to interact in the application.

Our application is a simple task manager, which has a REST API with endpoints to
create, update, delete, and list tasks, and register, find, and delete users. All templates will
be based on these API features.

To start, let’s build the template that is going to be the sign-in and signup screens.
Thanks to the Template String feature provided by ES6, it is possible to create strings with
data concatenation in an elegant way using this syntax.

1 console.log(`Olá ${nome}!`);

With this, it’s no longer necessary to use any template engine framework, because
we can easily create the templates using a simple function to return an HTML string
concatenated with some data.

Figure 12-2. First NTask screen

Chapter 12 ■ Building the Client-Side app: part 1

111

To understand this implementation better, let’s write the sign-in home page
templates using the function render() to return an HTML string. Create the file src/
templates/signin.js as shown here.

 1 exports.render = () => {
 2 return `<form>
 3 <div class="list">
 4 <label class="item item-input item-stacked-label">
 5 Email
 6 <input type="text" data-email>
 7 </label>
 8 <label class="item item-input item-stacked-label">
 9 Password
10 <input type="password" data-password>
11 </label>
12 </div>
13 <div class="padding">
14 <button class="button button-positive button-block">
15 <i class="ion-home"></i> Login
16 </button>
17 </div>
18 </form>
19 <div class="padding">
20 <button class="button button-block" data-signup>
21 <i class="ion-person-add"></i> Sign up
22 </button>
23 </div>`;
24 };

Now, to complete the flow, we also create the signup screen template. Create the file
src/templates/signup.js, using this code.

 1 exports.render = () => {
 2 return `<form>
 3 <div class="list">
 4 <label class="item item-input item-stacked-label">
 5 Name
 6 <input type="text" data-name>
 7 </label>
 8 <label class="item item-input item-stacked-label">
 9 Email
10 <input type="text" data-email>
11 </label>
12 <label class="item item-input item-stacked-label">
13 Password
14 <input type="password" data-password>
15 </label>
16 </div>

Chapter 12 ■ Building the Client-Side app: part 1

112

17 <div class="padding">
18 <button class="button button-positive button-block">
19 <i class="ion-thumbsup"></i> Register
20 </button>
21 </div>
22 </form>`;
23 };

We now already have two important screens of the application. Now, we have to
create the interaction code for these screens, which will be responsible for rendering these
templates and, especially, interacting with the users and communicating with the API.

Writing Sign-in and Signup Components
The codes for the template’s interaction are going to be put into the src/components
folder, but before creating them, let’s explore two new JavaScript ES6 features: classes and
inheritance. To write our front-end code to be well organized, we’ll create a parent class,
which is going to have only two important attributes as inheritance for all components
that extend it: this.URL (contains the API URL address) and this.request (contains the
browser-request module loaded).

Another detail of this parent class is that it will inherit all functionalities from the
tiny-emitter module (via the class NTask extends TinyEmitter declaration), and
these functionalities will be passed to their child classes as well, allowing our components
to be able to listen and trigger events among the other components. To understand this
class better, create the file src/ntask.js following this code.

 1 import TinyEmitter from "tiny-emitter";
 2 import request from "browser-request";
 3
 4 class NTask extends TinyEmitter {
 5 constructor() {
 6 super();
 7 this.request = request;
 8 this.URL = "https://localhost:3000";
 9 }
10 }
11
12 module.exports = NTask;

Now that we have the parent class NTask, will be possible to create the component’s
classes. Not only will they have specific functionalities, but also attributes and generic
functions inherited by the parent class. The components, instead of double or triple the
codes, will simply reuse the codes.

Let’s create our first component for the sign-in screen. All component classes of
our application will receive from the constructor the body object. This body is basically
the DOM object from the tag <main> or <footer>. All components will inherit from
the parent class NTask, so the execution of the function super() is required on the

Chapter 12 ■ Building the Client-Side app: part 1

113

child class’s constructor. We’ll use the methods: render() (to render a template) and
addEventListener() (to listen and treat any DOM components from the templates) to
organize our components.

In this case, we will have two encapsulated events in the methods: formSubmit()
(responsible for performing user authentication on the API) and signupClick()
(responsible for rendering the sign-up screen in the browser).

Each component must emit an event via the function this.emit("event-name"),
because we will create an observer class to listen and delegate tasks among the
application’s components. A good example of a task that is going to be widely used is the
template’s transitions, which occurs when a user clicks on a template’s button. The click
event triggers the observer class to listen and delegate a task for a new template to be
rendered in the browser.

To better understand these rules, create the file src/components/signin.js
following this code.

 1 import NTask from "../ntask.js";
 2 import Template from "../templates/signin.js";
 3
 4 class Signin extends NTask {
 5 constructor(body) {
 6 super();
 7 this.body = body;
 8 }
 9 render() {
10 this.body.innerHTML = Template.render();
11 this.body.querySelector("[data-email]").focus();
12 this.addEventListener();
13 }
14 addEventListener() {
15 this.formSubmit();
16 this.signupClick();
17 }
18 formSubmit() {
19 const form = this.body.querySelector("form");
20 form.addEventListener("submit", (e) => {
21 e.preventDefault();
22 const email = e.target.querySelector("[data-email]");
23 const password = e.target.querySelector("[data-password]");
24 const opts = {
25 method: "POST",
26 url: `${this.URL}/token`,
27 json: true,
28 body: {
29 email: email.value,
30 password: password.value
31 }
32 };
33 this.request(opts, (err, resp, data) => {

Chapter 12 ■ Building the Client-Side app: part 1

114

34 if (err || resp.status === 401) {
35 this.emit("error", err);
36 } else {
37 this.emit("signin", data.token);
38 }
39 });
40 });
41 }
42 signupClick() {
43 const signup = this.body.querySelector("[data-signup]");
44 signup.addEventListener("click", (e) => {
45 e.preventDefault();
46 this.emit("signup");
47 });
48 }
49 }
50
51 module.exports = Signin;

Let’s also create the Signup class. This will follow the same pattern as the Signin
class. To see how it should be, create the src/components/signup.js file as shown here.

 1 import NTask from "../ntask.js";
 2 import Template from "../templates/signup.js";
 3
 4 class Signup extends NTask {
 5 constructor(body) {
 6 super();
 7 this.body = body;
 8 }
 9 render() {
10 this.body.innerHTML = Template.render();
11 this.body.querySelector("[data-name]").focus();
12 this.addEventListener();
13 }
14 addEventListener() {
15 this.formSubmit();
16 }
17 formSubmit() {
18 const form = this.body.querySelector("form");
19 form.addEventListener("submit", (e) => {
20 e.preventDefault();
21 const name = e.target.querySelector("[data-name]");
22 const email = e.target.querySelector("[data-email]");
23 const password = e.target.querySelector("[data-password]");
24 const opts = {
25 method: "POST",
26 url: `${this.URL}/users`,

Chapter 12 ■ Building the Client-Side app: part 1

115

27 json: true,
28 body: {
29 name: name.value,
30 email: email.value,
31 password: password.value
32 }
33 };
34 this.request(opts, (err, resp, data) => {
35 if (err || resp.status === 412) {
36 this.emit("error", err);
37 } else {
38 this.emit("signup", data);
39 }
40 });
41 });
42 }
43 }
44
45 module.exports = Signup;

To finish this initial flow, we still have to create the observer class and then, load
it inside the src/index.js file. This will be the code responsible for starting all the
interactions among the application’s components. The observer class will be called
App. This constructor will perform the instance of all components, and will have two
main methods: init() (responsible for starting the component’s interactions) and
addEventListener() (responsible for listening and treating the component’s events). To
understand this implementation, let’s create the src/app.js file, following this code.

 1 import Signin from "./components/signin.js";
 2 import Signup from "./components/signup.js";
 3
 4 class App {
 5 constructor(body) {
 6 this.signin = new Signin(body);
 7 this.signup = new Signup(body);
 8 }
 9 init() {
10 this.signin.render();
11 this.addEventListener();
12 }
13 addEventListener() {
14 this.signinEvents();
15 this.signupEvents();
16 }
17 signinEvents() {
18 this.signin.on("error", () => alert("Authentication error"));
19 this.signin.on("signin", (token) => {
20 localStorage.setItem("token", `JWT ${token}`);

Chapter 12 ■ Building the Client-Side app: part 1

116

21 alert("You are logged in!");
22 });
23 this.signin.on("signup", () => this.signup.render());
24 }
25 signupEvents() {
26 this.signup.on("error", () => alert("Register error"));
27 this.signup.on("signup", (user) => {
28 alert(`${user.name} you were registered!`);
29 this.signin.render();
30 });
31 }
32 }
33
34 module.exports = App;

Basically, it created the component’s events for successful authentication,
authentication error, accessing the signup screen, successful signup, and signup
error. The init() method starts the home page, which is the signin screen, and then
executes the addEventListener() method to listen to all the component events that are
encapsulated inside the methods signinEvents() and signupEvents().

To finish this chapter, edit the src/index.js file to be able to load and initiate the
App class inside the window.onload() event and then start the interactive flow of the
application.

1 import App from "./app.js"
2
3 window.onload = () => {
4 const main = document.querySelector("main");
5 new App(main).init();
6 };

Let’s test it. If you followed these implementations step by step, you’ll have a basic
sign-in and signup flow. To run this application, first, open two terminals: one for the API
server and the other for the client-side app.

On both terminals, you must run the command npm start. Now these applications
will be available in the addresses:

•	 NTask API: https://localhost:3000

•	 Ntask Web: http://localhost:3001

As we are not using a valid digital certificate for the production environment, it is
quite probable that your browser will block the first attempt to access the API. If that
happens, just open it in the browser: https://localhost:3000.

Next, add an exception in your browser to enable the API access. See Figure 12-3 to
understand how to add an exception in the Mozilla Firefox browser, for example.

https://localhost:3000/
http://localhost:3001/
https://localhost:3000/

Chapter 12 ■ Building the Client-Side app: part 1

117

Now that the API has full access, go to the NTask web address at http://
localhost:3001.

If everything is right, you’ll be able to access the screens shown in Figures 12-4
through 12-7.

Figure 12-3. Adding an exception for the API address

Figure 12-4. Sign-in screen

http://localhost:3001/
http://localhost:3001/

Chapter 12 ■ Building the Client-Side app: part 1

118

Figure 12-6. Registering a new user

Figure 12-5. User signup screen

Chapter 12 ■ Building the Client-Side app: part 1

119

Figure 12-7. Logging in with a new account

Conclusion
Our new project is taking shape, and we are closer to building a functional system for
real users, all of this integrating the client application with the API that was built in the
previous chapters.

In this chapter, we created only the environment and some screens, enough to
structure the application. Keep reading, because in the next chapter we’ll go deeper until
we finish this project.

121© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7_13

CHAPTER 13

Building the Client-Side
App: Part 2

Continuing with the client application construction, to this point we have an application
with the main layout that connects with the API and allows us to authenticate a user to
access the system. In this chapter, we are going to build the main features for users to be
able to manage their tasks.

Views and Components for Task’s CRUD
The tasks template construction will be quite complex, but in the end, it will be great. This
template must list all of the user’s tasks, so this function will receive as an argument a
tasks list. Using the tasks.map() function, it will generate a template’s array of the tasks.

At the end of this new array generation, the function .join("") will be executed
and will concatenate all items returning a single template string of tasks. To make this
manipulation and generation of the tasks templates easier, this logic is encapsulated via the
renderTasks(tasks) function. Otherwise, it displays a message about an empty task list.

To understand better this implementation, create the file src/templates/tasks.js
as shown here.

 1 const renderTasks = tasks => {
 2 return tasks.map(task => {
 3 let done = task.done ? "ios-checkmark" : "ios-circle-outline";
 4 return `<li class="item item-icon-left item-button-right">
 5 <i class="icon ion-${done}" data-done
 6 data-task-done="${task.done ? 'done' : ''}"
 7 data-task-id="${task.id}"></i>
 8 ${task.title}
 9 <button data-remove data-task-id="${task.id}"
10 class="button button-assertive">
11 <i class="ion-trash-a"></i>
12 </button>
13 `;
14 }).join("");

Chapter 13 ■ Building the Client-Side app: part 2

122

15 };
16 exports.render = tasks => {
17 if (tasks && tasks.length) {
18 return `<ul class="list">${renderTasks(tasks)}`;
19 }
20 return `<h4 class="text-center">The task list is empty</h4>`;
21 };

Using the attributes data-task-done, data-task-id, data-done, and data-remove,
we work on how to create components for tasks manipulation. These attributes will be
used to trigger some events to allow deleting a task (via method taskRemoveClick())or
setting which task will be performed (via method taskDoneCheckbox()). These business
rules will be written in the src/components/tasks.js file.

 1 import NTask from "../ntask.js";
 2 import Template from "../templates/tasks.js";
 3
 4 class Tasks extends NTask {
 5 constructor(body) {
 6 super();
 7 this.body = body;
 8 }
 9 render() {
10 this.renderTaskList();
11 }
12 addEventListener() {
13 this.taskDoneCheckbox();
14 this.taskRemoveClick();
15 }
16 renderTaskList() {
17 const opts = {
18 method: "GET",
19 url: `${this.URL}/tasks`,
20 json: true,
21 headers: {
22 authorization: localStorage.getItem("token")
23 }
24 };
25 this.request(opts, (err, resp, data) => {
26 if (err) {
27 this.emit("error", err);
28 } else {
29 this.body.innerHTML = Template.render(data);
30 this.addEventListener();
31 }
32 });
33 }
34 taskDoneCheckbox() {

Chapter 13 ■ Building the Client-Side app: part 2

123

35 const dones = this.body.querySelectorAll("[data-done]");
36 for(let i = 0, max = dones.length; i < max; i++) {
37 dones[i].addEventListener("click", (e) => {
38 e.preventDefault();
39 const id = e.target.getAttribute("data-task-id");
40 const done = e.target.getAttribute("data-task-done");
41 const opts = {
42 method: "PUT",
43 url: `${this.URL}/tasks/${id}`,
44 headers: {
45 authorization: localStorage.getItem("token"),
46 "Content-Type": "application/json"
47 },
48 body: JSON.stringify({done: !done})
49 };
50 this.request(opts, (err, resp, data) => {
51 if (err || resp.status === 412) {
52 this.emit("update-error", err);
53 } else {
54 this.emit("update");
55 }
56 });
57 });
58 }
59 }
60 taskRemoveClick() {
61 const removes = this.body.querySelectorAll("[data-remove]");
62 for(let i = 0, max = removes.length; i < max; i++) {
63 removes[i].addEventListener("click", (e) => {
64 e.preventDefault();
65 if (confirm("Do you really wanna delete this task?")) {
66 const id = e.target.getAttribute("data-task-id");
67 const opts = {
68 method: "DELETE",
69 url: `${this.URL}/tasks/${id}`,
70 headers: {
71 authorization: localStorage.getItem("token")
72 }
73 };
74 this.request(opts, (err, resp, data) => {
75 if (err || resp.status === 412) {
76 this.emit("remove-error", err);
77 } else {
78 this.emit("remove");
79 }
80 });
81 }
82 });

Chapter 13 ■ Building the Client-Side app: part 2

124

83 }
84 }
85 }
86
87 module.exports = Tasks;

Now that we have the component responsible for listing, updating, and deleting
tasks, let’s implement the template and component responsible for adding a new task.
This will be easier, because it will be a template with a simple form to register new
tasks, and in the end, it redirects to the task list. To do it, create the file src/templates/
taskForm.js.

 1 exports.render = () => {
 2 return `<form>
 3 <div class="list">
 4 <label class="item item-input item-stacked-label">
 5 Task
 6 <input type="text" data-task>
 7 </label>
 8 </div>
 9 <div class="padding">
10 <button class="button button-positive button-block">
11 <i class="ion-compose"></i> Add
12 </button>
13 </div>
14 </form>`;
15 };

Then, create its respective component, which will have only the form submission
event from the encapsulated function formSubmit(). Create the file src/components/
taskForm.js.

 1 import NTask from "../ntask.js";
 2 import Template from "../templates/taskForm.js";
 3
 4 class TaskForm extends NTask {
 5 constructor(body) {
 6 super();
 7 this.body = body;
 8 }
 9 render() {
10 this.body.innerHTML = Template.render();
11 this.body.querySelector("[data-task]").focus();
12 this.addEventListener();
13 }
14 addEventListener() {
15 this.formSubmit();
16 }

Chapter 13 ■ Building the Client-Side app: part 2

125

17 formSubmit() {
18 const form = this.body.querySelector("form");
19 form.addEventListener("submit", (e) => {
20 e.preventDefault();
21 const task = e.target.querySelector("[data-task]");
22 const opts = {
23 method: "POST",
24 url: `${this.URL}/tasks`,
25 json: true,
26 headers: {
27 authorization: localStorage.getItem("token")
28 },
29 body: {
30 title: task.value
31 }
32 };
33 this.request(opts, (err, resp, data) => {
34 if (err || resp.status === 412) {
35 this.emit("error");
36 } else {
37 this.emit("submit");
38 }
39 });
40 });
41 }
42 }
43
44 module.exports = TaskForm;

Views and Components for Logged Users
To finish the screen creation of our application, we build the last screen, which will
display the logged user’s data and a button to be allow the user to cancel his or her
account. This screen will have a component that is very easy to implement as well,
because this will only treat the event of the account’s cancellation button. Create the src/
templates/user.js file.

 1 exports.render = user => {
 2 return `<div class="list">
 3 <label class="item item-input item-stacked-label">
 4 Name
 5 <small class="dark">${user.name}</small>
 6 </label>
 7 <label class="item item-input item-stacked-label">
 8 Email
 9 <small class="dark">${user.email}</small>
10 </label>

Chapter 13 ■ Building the Client-Side app: part 2

126

11 </div>
12 <div class="padding">
13 <button data-remove-account
14 class="button button-assertive button-block">
15 <i class="ion-trash-a"></i> Cancel account
16 </button>
17 </div>`;
18 };

Now that we have the user’s screen template, let’s create its respective component in
the src/components/user.js file, following this code.

 1 import NTask from "../ntask.js";
 2 import Template from "../templates/user.js";
 3
 4 class User extends NTask {
 5 constructor(body) {
 6 super();
 7 this.body = body;
 8 }
 9 render() {
10 this.renderUserData();
11 }
12 addEventListener() {
13 this.userCancelClick();
14 }
15 renderUserData() {
16 const opts = {
17 method: "GET",
18 url: `${this.URL}/user`,
19 json: true,
20 headers: {
21 authorization: localStorage.getItem("token")
22 }
23 };
24 this.request(opts, (err, resp, data) => {
25 if (err || resp.status === 412) {
26 this.emit("error", err);
27 } else {
28 this.body.innerHTML = Template.render(data);
29 this.addEventListener();
30 }
31 });
32 }
33 userCancelClick() {
34 const button = this.body.querySelector("[data-remove-account]");
35 button.addEventListener("click", (e) => {
36 e.preventDefault();

Chapter 13 ■ Building the Client-Side app: part 2

127

37 if (confirm("This will cancel your account, are you sure?")) {
38 const opts = {
39 method: "DELETE",
40 url: `${this.URL}/user`,
41 headers: {
42 authorization: localStorage.getItem("token")
43 }
44 };
45 this.request(opts, (err, resp, data) => {
46 if (err || resp.status === 412) {
47 this.emit("remove-error", err);
48 } else {
49 this.emit("remove-account");
50 }
51 });
52 }
53 });
54 }
55 }
56
57 module.exports = User;

Creating the Main Menu
To make this application more elegant and interactive, we are going to also create in its
footer the main menu to help users interact with the tasks list and user settings. To create
this screen, first we need to create its template, which will have only three buttons: tasks,
add task, and logout. Create the file src/templates/footer.js.

 1 exports.render = path => {
 2 let isTasks = path === "tasks" ? "active" : "";
 3 let isTaskForm = path === "taskForm" ? "active" : "";
 4 let isUser = path === "user" ? "active" : "";
 5 return `
 6 <div class="tabs-striped tabs-color-calm">
 7 <div class="tabs">
 8 <a data-path="tasks" class="tab-item ${isTasks}">
 9 <i class="icon ion-home"></i>
10
11 <a data-path="taskForm" class="tab-item ${isTaskForm}">
12 <i class="icon ion-compose"></i>
13
14 <a data-path="user" class="tab-item ${isUser}">
15 <i class="icon ion-person"></i>
16
17 <a data-logout class="tab-item">
18 <i class="icon ion-android-exit"></i>

Chapter 13 ■ Building the Client-Side app: part 2

128

19
20 </div>
21 </div>`;
22 };

Then, create its corresponding component file, src/components/menu.js.

 1 import NTask from "../ntask.js";
 2 import Template from "../templates/footer.js";
 3
 4 class Menu extends NTask {
 5 constructor(body) {
 6 super();
 7 this.body = body;
 8 }
 9 render(path) {
10 this.body.innerHTML = Template.render(path);
11 this.addEventListener();
12 }
13 clear() {
14 this.body.innerHTML = "";
15 }
16 addEventListener() {
17 this.pathsClick();
18 this.logoutClick();
19 }
20 pathsClick() {
21 const links = this.body.querySelectorAll("[data-path]");
22 for(let i = 0, max = links.length; i < max; i++) {
23 links[i].addEventListener("click", (e) => {
24 e.preventDefault();
25 const link = e.target.parentElement;
26 const path = link.getAttribute("data-path");
27 this.emit("click", path);
28 });
29 }
30 }
31 logoutClick() {
32 const link = this.body.querySelector("[data-logout]");
33 link.addEventListener("click", (e) => {
34 e.preventDefault();
35 this.emit("logout");
36 })
37 }
38 }
39
40 module.exports = Menu;

Chapter 13 ■ Building the Client-Side app: part 2

129

Treating All Screen Events
Our project has all the necessary components to build a task list application, now to finish
our project we need to assemble all pieces of the puzzle! To start, let’s modify the src/
index.js so it can manipulate not only the <main> tag, but also the <footer> tag, because
this new tag will be used to handle events of the footer menu.

Edit the src/index.js file, applying this simple modification.

1 import App from "./app.js";
2
3 window.onload = () => {
4 const main = document.querySelector("main");
5 const footer = document.querySelector("footer");
6 new App(main, footer).init();
7 };

Now, to finish our project, we have to update the object App so it can be responsible
for loading all the components that were created and treating the events of each
component. By making this change we will ensure the correct flow for all screen
transitions, the menu transition, and the data traffic between the ntask-api and ntask-
web projects. To do this, edit the src/app.js script.

 1 import Tasks from "./components/tasks.js";
 2 import TaskForm from "./components/taskForm.js";
 3 import User from "./components/user.js";
 4 import Signin from "./components/signin.js";
 5 import Signup from "./components/signup.js";
 6 import Menu from "./components/menu.js";
 7
 8 class App {
 9 constructor(body, footer) {
10 this.signin = new Signin(body);
11 this.signup = new Signup(body);
12 this.tasks = new Tasks(body);
13 this.taskForm = new TaskForm(body);
14 this.user = new User(body);
15 this.menu = new Menu(footer);
16 }
17 init() {
18 this.signin.render();
19 this.addEventListener();
20 }
21 addEventListener() {
22 this.signinEvents();
23 this.signupEvents();
24 this.tasksEvents();
25 this.taskFormEvents();

Chapter 13 ■ Building the Client-Side app: part 2

130

26 this.userEvents();
27 this.menuEvents();
28 }
29 signinEvents() {
30 this.signin.on("error", () => alert("Authentication error"));
31 this.signin.on("signin", (token) => {
32 localStorage.setItem("token", `JWT ${token}`);
33 this.menu.render("tasks");
34 this.tasks.render();
35 });
36 this.signin.on("signup", () => this.signup.render());
37 }
38 signupEvents(){
39 this.signup.on("error", () => alert("Register error"));
40 this.signup.on("signup", (user) => {
41 alert(`${user.name} you were registered!`);
42 this.signin.render();
43 });
44 }
45 tasksEvents() {
46 this.tasks.on("error", () => alert("Task list error"));
47 this.tasks.on("remove-error", () => alert("Task delete error"));
48 this.tasks.on("update-error", () => alert("Task update error"));
49 this.tasks.on("remove", () => this.tasks.render());
50 this.tasks.on("update", () => this.tasks.render());
51 }
52 taskFormEvents() {
53 this.taskForm.on("error", () => alert("Task register error"));
54 this.taskForm.on("submit", () => {
55 this.menu.render("tasks");
56 this.tasks.render();
57 });
58 }
59 userEvents() {
60 this.user.on("error", () => alert("User load error"));
61 this.user.on("remove-error", () => alert("Cancel account error"));
62 this.user.on("remove-account", () => {
63 alert("So sad! You are leaving us :(");
64 localStorage.clear();
65 this.menu.clear();
66 this.signin.render();
67 });
68 }
69 menuEvents() {
70 this.menu.on("click", (path) => {
71 this.menu.render(path);
72 this[path].render();
73 });

Chapter 13 ■ Building the Client-Side app: part 2

131

74 this.menu.on("logout", () => {
75 localStorage.clear();
76 this.menu.clear();
77 this.signin.render();
78 })
79 }
80 }
81
82 module.exports = App;

Phew! It’s done! We built our simple but useful client application to interact with our
current API. To test it, you just need to restart the client application and use it normally.
Figures 13-1 through 13-3 display some new screens to access.

Figure 13-1. Adding a task

Chapter 13 ■ Building the Client-Side app: part 2

132

Figure 13-3. User settings screen

Figure 13-2. Listing and checking some tasks

Chapter 13 ■ Building the Client-Side app: part 2

133

Conclusion
Congratulations! If you reached this far with your application running perfectly, you have
successfully completed this book. I hope you’ve learned a lot about the Node.js platform
reading this book, and especially about how to build a simple, but useful REST API,
because that’s the essence of the book. I believe I have passed the necessary knowledge to
you, faithful reader.

Remember that all source code is available on my personal GitHub. Just access this
link: github.com/caioribeiro-pereira/building-apis-with-nodejs.

Thank you very much for reading this book!

https://github.com/caio-ribeiro-pereira/building-apis-with-nodejs
https://github.com/caio-ribeiro-pereira/building-apis-with-nodejs

135

��������� A, B
ApiDoc.js, 81–84
API, documenting, 15, 17–25,

27, 29–31, 35–36, 102–104
ApiDoc, 81–84
tasks resource, 87–91
token generation, 84
user resource, 85–87

Automated tests, 61

��������� C, D
Callback function, 24
Child processes, 98
ClassMethods, 31
Client-Side App

creating main menu, 127–128
setting up app

environment, 105–110, 112
sign-in and signup

components, 112–119
treating all screen events, 129–132
views and components for logged

users, 125–126
views and components

for task’s CRUD, 121–124
Cluster Module

configuring parallel processing, 97–99
developing clusters, 99

clusters, 1
Command-line interface (CLI), 82
Create, read, update, delete (CRUD), 37
Cross-origin resource

sharing (CORS), 93–94
enabling in API, 93–94

Cross-Site Scripting (XSS), 103

CRUDify API rResources
creating users’ endpoints, 44–45
deleting task Via DELETE, 42
organizing task routes, 37, 39
refactoring some middlewares, 43
tasks via GET, 39–40
tasks via POST, 40
testing endpoint access

using postman, 45–46, 48
Updating Task Via PUT, 41

��������� E, F
ECMAScript 3, 6
ECMAScript 6 standard, 65
Event-loop process, 2
Express, 15–17

��������� G
Generate logs files, 95–97
GitHub, 133
GZIP Middleware, 100–101

��������� H, I
Helmet, 102–103
HTTPS protocol

connection, 37, 39, 44–45, 101

��������� J, K, L
JavaScript, 1–3, 18
JavaScript ES6 code, 104
JavaScript ES6 language, 105
JavaScript Object Notation

(JSON), 3, 43

Index

© Caio Ribeiro Pereira 2016
C. R. Pereira, Building APIs with Node.js, DOI 10.1007/978-1-4842-2442-7

■ INDEX

136

JavaScript Universal codes, 107
JSON Web Tokens (JWT), 49–52, 54, 59

authentication, 52–53, 71
generating tokens for

authenticated users, 54–58

��������� M
Mocha, 61, 64–65
Model/tasks.js, 31
Model-View-Router (MVR)

pattern, 22–23
Module, 10

��������� N
Node.js, 1, 15, 27–28, 97–99

event-loop, 2s
event-oriented paradigm, 2
home page, 6
installation Via NVM, 7–8
and io.js merge, 6
and JavaScript, 3
and NPM, 11
official web site, 5
single-thread architecture, 1
standard installation, 5–6

Node Package Manager
(NPM), 8–9

commands, 10
home page, 9
task automation, 12

npm init command
wizard, 17

npm-shrinkwrap.json, 12
NTask client-side app, 109
NTask models relationship, 31
NTask (Node Task), 17
NVM

commands, 7
Set Up, 7

��������� O
Object data mappers (ODMs), 16
object-oriented programming (OOP), 105
object relational mapping (ORMs), 16

��������� P, Q, R
package.json, 11–13, 19
Passport and JWT, Installing, 51–52
Passport.js, 49
Postman REST client app, 45

��������� S
Secure Sockets Layer (SSL)

support to use HTTPS, 101–102
Sequelize.js home page, 28
Sequelize.js module, 104
Sinatra framework, 15
single-page application (SPA), 104
SQL databases, 49, 104

creating models, 31–33, 35
setting up sequelize, 29–31
SQLite3, 27

SQLite3, 27, 29, 31, 49

��������� T, U, V
Tasks.findAll() function, 24–25
Testing application

authentication endpoint, 66–68
setting up the test

environment, 62, 64–65
task’s endpoints, 71–75
user’s endpoints, 76–77, 79
writing first test, 65–66

��������� W, X, Y, Z
WebSockets protocol, 3

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Node.js
	What Is Node.js?
	Main Features
	Single-Thread Architecture
	Event-Loop

	Why Do I Need to Learn Node.js?
	Conclusion

	Chapter 2: Setting Up the Environment
	Node.js Standard Installation
	About io.js and Node.js Merge

	Node.js Installation Via NVM
	Set Up NVM
	Top NVM Commands
	Installing Node.js Via NVM

	Conclusion

	Chapter 3: Managing Modules with NPM
	What Does NPM Do?
	Top NPM Commands
	Understanding the package.json File
	NPM Task Automation
	Conclusion

	Chapter 4: Building an API
	Introduction to Express
	Getting Started on the Pilot Project
	Pilot Project Source Code

	Implementing a Simple and Static Resource
	Arranging the Loading of Modules
	Conclusion

	Chapter 5: Working with SQL Databases
	Setting Up Sequelize
	Creating Models
	Model: Tasks
	Model: Users

	Conclusion

	Chapter 6: CRUDify API Resources
	Organizing Task Routes
	Listing Tasks Via GET
	About HTTP Status

	Creating Tasks Via POST
	Finding a Task Via GET
	Updating a Task Via PUT
	Deleting a Task Via DELETE
	Refactoring Some Middlewares
	Creating Users’ Endpoints
	Testing Endpoint Access Using Postman
	Conclusion

	Chapter 7: Authenticating Users
	Introduction to Passport.js and JWT
	About Passport.js
	About JWT

	Installing Passport and JWT
	Implementing JWT Authentication
	Generating Tokens for Authenticated Users
	Conclusion

	Chapter 8: Testing the Application: Part 1
	Setting Up the Test Environment
	Writing the First Test
	Testing the Authentication Endpoint
	Conclusion

	Chapter 9: Testing the Application: Part 2
	Testing a Task’s Endpoints
	Testing a User’s Endpoints
	Conclusion

	Chapter 10: Documenting the API
	Introduction to ApiDoc.js
	Documenting Token Generation
	Documenting User Resource
	Documenting Tasks Resource
	Conclusion

	Chapter 11: Preparing the Production Environment
	Enabling CORS in the API
	A Bit More About CORS

	Generating Logs
	Configuring Parallel Processing Using Cluster Module
	Developing Clusters

	Compacting Requests Using GZIP Middleware
	Installing SSL Support to Use HTTPS
	Armoring the API with Helmet
	Conclusion

	Chapter 12: Building the Client-Side App: Part 1
	Setting Up the App Environment
	Creating Sign-in and Signup Views
	Writing Sign-in and Signup Components
	Conclusion

	Chapter 13: Building the Client-Side App: Part 2
	Views and Components for Task’s CRUD
	Views and Components for Logged Users
	Creating the Main Menu
	Treating All Screen Events
	Conclusion

	Index

