
Joost Visser

Building

 Software
Teams
TEN BEST PR ACTICES FOR EFFECTIVE SOFTWARE DEVELOPMENT

www.ebook3000.com

http://www.ebook3000.org

Joost Visser

Building Software Teams
Ten Best Practices for Effective

Software Development

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.ebook3000.com

http://www.ebook3000.org

978-1-491-95177-4

[LSI]

Building Software Teams
by Joost Visser

Copyright © 2017 Software Improvement Group, B.V. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Nan Barber and Rachel Roumeliotis
Production Editor: Colleen Cole
Copyeditor: Kim Cofer
Proofreader: Jasmine Kwityn

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2016: First Edition

Revision History for the First Edition
2016-12-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491951774 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Software Teams, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491951774

Table of Contents

Preface. vii

1. Introduction. 1
1.1 Software Development as an Observable Process 2
1.2 Software Quality According to the ISO 25010 Standard 4
1.3 The Contribution of Each Developer Matters 4
1.4 Measuring and Benchmarking Development Process Maturity 5
1.5 The Goal-Question-Metric Approach 5
1.6 An Overview of the Development Best Practices in This Book 6

2. Derive Metrics from Your Measurement Goals. 9
2.1 Motivation 10
2.2 How to Apply the Best Practice 11
2.3 Make Assumptions about Your Metrics Explicit 15
2.4 Common Objections to GQM 17

3. Make Definition of Done Explicit. 19
3.1 Motivation 21
3.2 How to Apply the Best Practice 21
3.3 Common Objections to Using Definition of Done 23

4. Control Code Versions and Development Branches. 27
4.1 Motivation 29
4.2 How to Apply the Best Practice 30
4.3 Controlling Versions in Practice 31
4.4 Common Objections to Version Control Metrics 33
4.5 Metrics Overview 34

iii

www.ebook3000.com

http://www.ebook3000.org

5. Control Development, Test, Acceptance, and Production Environments. 37
5.1 Motivation 39
5.2 How to Apply the Best Practice 41
5.3 Measuring the DTAP Street in Practice 42
5.4 Common Objections to DTAP Control Metrics 45
5.5 Metrics Overview 46

6. Automate Tests. 49
6.1 Motivation 50
6.2 How to Apply the Best Practice 52
6.3 Managing Test Automation in Practice 53
6.4 Common Objections to Test Automation Metrics 58
6.5 Metrics Overview 60

7. Use Continuous Integration. 63
7.1 Motivation 64
7.2 How to Apply the Best Practice 65
7.3 Controlling Continuous Integration 66
7.4 Common Objections to Continuous Integration Metrics 68
7.5 Metrics Overview 69

8. Automate Deployment. 71
8.1 Motivation 72
8.2 How to Apply the Best Practice 73
8.3 Measuring the Deployment Process 74
8.4 Common Objections to Deployment Automation Metrics 76
8.5 Metrics Overview 77

9. Standardize the Development Environment. 79
9.1 Motivation 80
9.2 How to Apply the Best Practice 82
9.3 Controlling Standards Using GQM 85
9.4 Common Objections to Standardization 87
9.5 Metrics Overview 88

10. Manage Usage of Third-Party Code. 91
10.1 Motivation 92
10.2 How to Apply the Best Practice 93
10.3 Measuring Your Dependency Management 97
10.4 Common Objections to Third-Party Code Metrics 100
10.5 Metrics Overview 101

iv | Table of Contents

11. Document Just Enough. 103
11.1 Motivation 104
11.2 How to Apply the Best Practice 105
11.3 Managing Your Documentation 107
11.4 Common Objections to Documentation 108
11.5 Metrics Overview 109

12. Next Steps. 111
12.1 Applying the Best Practices Requires Persistence 111
12.2 One Practice at a Time 111
12.3 Avoid the Metric Pitfalls 112
12.4 What Is Next? 112

Index. 113

Table of Contents | v

www.ebook3000.com

http://www.ebook3000.org

About the Authors
Joost Visser is Head of Research at the Software Improvement Group (SIG). In this
role, he is responsible for the science behind the methods and tools that SIG offers to
measure and master software. Joost also holds a position as professor of Large-Scale
Software Systems at Radboud University Nijmegen. He has obtained his PhD in
Computer Science from the University of Amsterdam and has published over 100
papers on topics such as generic programming, program transformation, green com‐
puting, software quality, and software evolution. Joost considers software engineering
a socio-technical discipline, and he is convinced that software measurement is essen‐
tial for development teams and product owners to thrive.

Sylvan Rigal has worked as a software quality consultant at SIG since 2011 and has
advised clients on managing their IT since 2008. He helps clients achieve lower soft‐
ware maintenance costs and enhanced security by prioritizing improvements in soft‐
ware design and development processes. He holds an MSc in International Business
from Maastricht University, The Netherlands. As an active member of SIG’s software
security team, Sylvan trains consultants on analyzing software security risks. When
he is not assessing the technical health of software, he is training in Brazilian jiu-jitsu,
enjoying Amsterdam and its restaurants, or traveling through Asia (approximately in
that order).

Gijs Wijnholds joined SIG in 2015 as a software quality consultant in Public Admin‐
istration. He helps clients get in control of their software projects by advising them on
development processes and translating technical risks into strategic decisions. Gijs
holds a BSc in Artificial Intelligence from Utrecht University and an MSc degree in
Logic from the University of Amsterdam. He is an expert on Haskell and mathemati‐
cal linguistics.

Zeeger Lubsen started consulting for SIG in 2008 as an all-around expert in software
engineering and software quality and is now a senior consultant. Having worked as a
web developer during his MSc study at the Delft University of Technology, he found
great revelation in learning about how to build high-quality software. In his role as a
consultant, he now helps both nontechnical managers and development teams to
understand and grasp software. He finds that developing software is a creative and
cultural activity, but also one that needs clear and objective guardrails to achieve real‐
istic goals.

Preface

You can’t control what you can’t measure.
—Tom DeMarco

Insufficient software quality is a problem of all times and in all industries. We at the
Software Improvement Group (SIG) see this time and again in our daily work of
source code measurement and code review. That is why we have chosen to share the
lessons we have learned with a larger audience. In the companion to this book, Build‐
ing Maintainable Software: Ten Guidelines for Future-Proof Code, we focused on the
contributions made by each individual developer. In that book, we discussed ten
guidelines that any practicing software developer should master to consistently write
maintainable source code. Those guidelines are based on our experience that lack of
software maintainability is largely caused by simple issues that occur over and over
again. And thus the best way to improve maintainability is to address these simple
issues.

But that is not enough. To fully benefit from those guidelines, developers also need to
work as a team according to a shared process. That is the focus of this book. This
book discusses ten best practices for getting the development process right such that
software is produced of consistently high quality. Our best practices do not just point
a development team in the right direction. They are accompanied with a set of met‐
rics that helps the team to consistently execute and monitor them.

Getting software development practices right is essential. The right development pro‐
cess facilitates the team and each individual developer to perform at their best. Using
these practices, we can avoid inefficiencies in development work. Think of the diffi‐
culties of reconciling inconsistencies between contributions (merge conflicts!), chas‐
ing nonreproducible bugs, manually rerunning tests, and everything else that
distracts us from creating the best possible product.

vii

www.ebook3000.com

http://www.ebook3000.org

The Topic of This Book
This book lays out ten best practices for facilitating a team of software developers and
enabling them to develop high-quality code. Having high-quality code is a great asset:
it means lower costs for testing and software maintenance, and faster delivery of
functionality. Conversely, software that is insecure, unreliable, or difficult to maintain
is a source of developer frustration, delays, and software defects.

The practices address shared ways of working in the team, together with the technol‐
ogies they employ, the processes they have followed, and the work environment they
share. Think, for instance, of using Continuous Integration together with its required
technology (see Chapter 7). Another example is standardization of code style guide‐
lines (see Chapter 9). The best practices in this book are well-known, and many pro‐
grammers may have heard about them during their education or earlier experience.
This book puts those best practices in an overall, lightweight approach to manage
software quality. The best practices presented in the following chapters are independ‐
ent of the choice of programming language and the type of software that is being
built.

Why You Should Read This Book
Taken in isolation, each of the best practices in the following chapters are well-
known. What is not so well-known, however, is which ones are most important and
how to determine whether they are being done in the right way. That is what this
book aims to do, setting it apart from other books on software best practices in two
ways:

We have selected the ten most important best practices from experience
From our experience with advising software teams and managers, we know what
works in software development and what does not. We also measure and bench‐
mark software maintainability for hundreds of software systems each year, so the
effects of specific practices such as Continuous Integration or test automation are
very visible to us. We explain the most important best practices in a short and
simple manner.

We explain how to measure success toward using these ten best practices
Knowing a best practice is only the first step toward getting it right. We provide
ways to measure how effectively each practice is being applied, and thus to man‐
age its consistent use.

viii | Preface

Who Should Read This Book
This book is aimed at those involved in managing and steering the software develop‐
ment process. You may be a team lead, a senior developer, a software architect, or a
leader of IT projects or software development (such as a Scrum Master). You may
have management responsibilities of your own, or perhaps you are advising/reporting
to management.

This book will help you and your team adopt our ten best practices for effectively
producing high-quality software.

What You Need to Know to Read This Book
This book is the follow-up to Building Maintainable Software: Ten Guidelines for
Future-Proof Code. We assume you are familiar with the concepts explained in that
book, either from your own experience or because you have read it. Having develop‐
ment experience in a modern object-oriented programming language will certainly
make it easier to read this book. But even if you do not have (recent) programming
experience, you will be able to understand, apply, and benefit from our best practices.

Many of the best practices we discuss will be familiar to those who use Agile software
development methods. Regardless of how much you know about Agile and how
much you like it, the practices we present in this book will help you to produce high-
quality software more consistently.

What This Book Is Not
This book fulfills a different role than existing process approaches such as Capability
Maturity Model Integration (CMMI) and ISO 9001. Those approaches focus on what
kinds of process activities are needed to gain a certain process maturity. They provide
conceptual frameworks that are applicable to many contexts, defining what is impor‐
tant in general terms. However, they do not focus on software development and they
do not provide development teams with immediately actionable guidance. This is
what our best practices aim to do.

Process frameworks emphasize documentation and structure. They prescribe certain
areas for which you need to design processes and document them, but they do not
prescribe which way of working suits you best. This book reasons in another direc‐
tion. We recommend best practices that can be incorporated directly in your own
existing work processes. Our guidelines do not require the use of a formal process
framework such as the ones listed earlier.

Preface | ix

www.ebook3000.com

http://www.ebook3000.org

While this book does speak about the technology available for equipping a state-of-
the-art development environment, this book is neither a recommendation for partic‐
ular technologies, nor a hands-on user guide for them. In more concrete terms: we do
discuss tools and technologies for version control, automated testing, Continuous
Integration, static code analysis, and dependency management. While we may name
specific tools, such as Jenkins, this book is not meant as an endorsement of any par‐
ticular technology. It is also not a technical guide for the technology at hand. Instead,
this book discusses the role the technology plays in today’s best practice software
development.

About the Software Improvement Group (SIG)
The real author of this book is much more than just the one person mentioned on its
cover. The real author is SIG, a software management consulting company. That is,
the book consolidates the collective experience and knowledge of the SIG consultants
that have been measuring software quality and advising about it since 2000. We run a
unique, certified, software analysis laboratory that performs standardized inspections
against the ISO 25010 international standard for software product quality.

Apart from assessing the quality of software products in our laboratory, SIG also
assesses software development processes of our customers. We do so for two reasons.
One is that it helps to put the outcome of a software product quality assessment in
perspective. If the outcome of an assessment is lower than desired, this often can be
explained by a process that impedes developing high-quality code. Or the other way
around, if a team achieves high quality, is this because of or despite the environment in
which they work? The best practices presented in this book are based on our experi‐
ence in answering these types of questions.

SIG was established in 2000. Its roots can be traced back to the Dutch National
Research Institute for Mathematics and Computer Science (Centrum voor Wiskunde
en Informatica [CWI] in Dutch). After 16 years, we still keep and value our links with
the academic software engineering research community. SIG consultants regularly
contribute to scientific publications, and several PhD theses have been based on
research to develop and improve the SIG quality models.

Related Books
For further elaboration on achieving high-quality software, we recommend several
books in the field of software quality and development process measurement:

Building Maintainable Software: Ten Guidelines for Future-Proof Code by Joost Visser
(O’Reilly)

The companion to the current book, written by the same authors. It focuses on
10 guidelines for developers to write maintainable software.

x | Preface

http://jenkins-ci.org

Continuous Delivery: Reliable Software Releases through Build, Test and Deployment
Automation by Jez Humble and David Farley (Addison-Wesley)

This book discusses development process best practices in detail with focus on
Continuous Delivery principles.

Software Development Metrics by David Nicolette and Agile Metrics in Action by
Christopher W.H. Davis (both from Manning Publications)

These books provide examples of using metrics in the software development pro‐
cess.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a general note.

This element indicates an important remark

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,

Preface | xi

www.ebook3000.com

http://oreilly.com/safari
http://www.ebook3000.org

John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/building_software_teams.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank the following people for helping us to write this book:

• Yiannis Kanellopoulos (SIG), our project manager for overseeing everything
• Soerin Bipat (SIG) for his thorough review
• Ed Louwers (SIG) for his help with the visuals in this book
• All current and former SIG employees that are working and have worked on per‐

fecting models for measuring, benchmarking, and interpreting software quality

xii | Preface

http://oreilly.com/safari
http://bit.ly/building_software_teams
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

We would also like to thank the following people at our publisher, O’Reilly:

• Nan Barber, our text reviewer
• Steve Suehring, our technical reviewer
• Holly Forsyth, our managing editor

Preface | xiii

www.ebook3000.com

http://www.ebook3000.org

CHAPTER 1

Introduction

Experience is the name everyone gives to their mistakes.
—Oscar Wilde

Imagine you lived a century and a half ago, and you needed a car. Nothing fancy, just
something for the occasional family visit. Obviously, it would be the variant that
needs a horse in front of it, and it would be called a “carriage.” Given a period in the
mid-1800s in which carriage-making was not yet standard practice, your only option
would be the local blacksmith. Carriage making was a craft, not an industrial process,
with a unique result each time (so not with a fully predictable result). In addition,
carriages were very expensive relative to disposable income: few people could afford
their own carriage.

Fast-forward to 2016. Even if your town still features an artisanal blacksmith, that is
not where you get your car(riage). Except for very special hobby cases, cars are man‐
ufactured by the tens of thousands on assembly lines, in an industrial process. This
process is so predictable that two cars of the same model and color can only be distin‐
guished by their license plates. Relative to disposable income, they also became a lot
cheaper.

This predictability is a result of a mature industry, in which processes are standar‐
dized and highly automated. Of course, a comparison with software only goes so far.
You do not need to build identical copies of the same software system for different
users and the functionality of a car is fixed during the manufacturing process, while
software needs to keep changing. But just as each car that comes off the production
line must offer the same reliability, performance, safety, and comfort, so must each
new version of a software system provide the same reliability, performance, security,
and usability.

1

www.ebook3000.com

http://www.ebook3000.org

And consider what the experience of the car industry has done for its quality and
process: designing components with computer simulation models, in a way that they
are backward compatible—replaceable—with other versions of the car brand. Testing
them individually before integrating them into the product. Testing overall car design
in simulated environments, measuring and predicting effects of changes on the road.
Doing crash tests, volatility tests, endurance tests. Following a structured process for
checking and testing scenarios.

Software development can benefit a lot from these best practices in terms of predicta‐
bility. For instance, process standardization, automation of the production line, and
test automation and simulation. Also, the principle still holds for software that quality
cannot simply be added after the product is finished. A bad design or chaotic imple‐
mentation cannot simply be turned around. In a car assembly line this is evident, but
from experience we know that this is just as applicable for software.

In this chapter, we first present the big picture: our view on software development and
the role that the best practices of this book play in it. We discuss software develop‐
ment as a process in the following section, followed by software quality and ISO/IEC
25010, then the ISO standard that defines key software quality concepts. After that,
we introduce the so-called Goal-Question-Metric (GQM) approach as a practical,
lightweight way to control software development. Finally, we present a preview of the
practices that are discussed in the subsequent chapters.

1.1 Software Development as an Observable Process
At the beginning of this chapter, we argued that software should be developed in a
controlled process. This means that we can view software development as a process in
the first place. In order to arrive at output (working software), organizations clearly
need resources (developers, tools). Developers receive inputs such as requirements
and change requests, and work on code within the constraints and controls of the
organization (time, budget, quality goals).

The best practices presented in this book are about controlling this process. Control‐
ling in this context means ensuring that working software is delivered that meets the
requirements and quality goals, within a reasonable time and budget. To control is a
verb, and rightfully so: in this book, we view process control as a continuous activity.
To control software development, we need to observe its characteristics: output,
input, resources, and controls. This observing and controlling asks for an active
organizational role.

2 | Chapter 1: Introduction

So what are concrete observations and control actions in software development, and
how does this connect to the best practices that we discuss?

First, the observations. Software development is suited for measured observations.
You may think of the following:

• How large is the backlog?
• How many issues have been resolved (over a given amount of time)?
• Which part of the codebase is covered by automated tests?
• What is the performance efficiency of the software delivered (e.g., as measured

by transactions per second or number of possible concurrent users)?
• How much of the budget has already been spent?
• How many of the developers have passed a formal certification such as the Oracle

Certification Program?

You can see that there is a lot that can be measured in software development. In fact,
we believe that anything can be measured. But that does not mean that everything
should be measured. This is exactly why we introduce GQM in “The Goal-Question-
Metric Approach” on page 5, because this approach helps the controlling party (e.g., a
development lead) to choose the best metrics, given specific goals.

Consider that measurements are only effective if they help you control something.
Requirements, change requests, and time and budget constraints are typically not
under the direct control of the development team or its lead. However, developers are
in control of the way that development best practices are applied. You may think of
control actions such as the following:

• Bring test automation to a higher level.
• Start using a third-party authentication framework.
• Introduce a tool for Continuous Integration.
• Change or improve staff skills by training.

With “process control,” we are referring to measures that facilitate
development and prevent issues. Resolving issues after software
delivery is not a type of process control, but rather damage control.

1.1 Software Development as an Observable Process | 3

www.ebook3000.com

http://www.ebook3000.org

1 International Organization for Standardization, “Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and software quality models”, 2011-03-01.

1.2 Software Quality According to the ISO 25010 Standard
This book is about best practices for achieving high-quality software. We are using
the ISO 25010 standard as a framework for understanding what makes software high
quality.1 This section discusses how ISO 25010 defines software quality and how we
use and interpret this in this book.

Software Product Quality in ISO 25010
Up to a certain point, quality is something subjective and undefinable. Luckily, ISO
25010 makes a distinction between experienced (subjective) quality and inherent
(product) quality. In ISO 25010 these are defined and separated as two models, called
the quality in use model and the software product quality model.

The term quality in use refers to the impact a software system has on its stakeholders
or users. The same system may have different quality in use for different people,
depending on their wishes and behavior. This is subjective quality: it depends on who
judges it.

We focus on the software product quality model. It deals with software quality charac‐
teristics that are inherent to a software system and can be assessed in production. The
eight defined characteristics of software product quality are: maintainability, func‐
tional suitability, performance efficiency, compatibility, usability, reliability, security,
and portability.

These eight characteristics are independent of users and context. That is a good start‐
ing point for assessing quality in a reasonably objective manner. For example, source
code can be analyzed for security flaws or impediments to performance. And indeed,
security weaknesses and performance issues are well suited for source code analysis.
Note that it is dependent on the way the system is deployed, whether such findings
manifest themselves in production.

1.3 The Contribution of Each Developer Matters
From experience we know that the contribution of each developer counts for achiev‐
ing high-quality software. Following these best practices requires consistency and dis‐
cipline from each team member. It is not just the most senior developers who are
responsible for delivering quality software. And it is not only the junior programmers
who should stick to the rules.

4 | Chapter 1: Introduction

http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

It also requires setting the right example, in order to avoid the “broken windows
effect” where people break the rules and others follow. For example, when one devel‐
oper takes shortcuts in terms of quality, other developers tend to copy that behavior.
Setting the right example is not necessarily about being the most skilled engineer, but
more about retaining discipline during development.

Developers can be greatly facilitated to retain that discipline. For example, establish a
consistent development process in which technical steps are largely automated or
define standards for using third-party code. Also, having metrics makes behavior
transparent, such that a team can hold each other accountable for shared responsibili‐
ties.

1.4 Measuring and Benchmarking Development Process
Maturity
As mentioned in the Preface, we (at SIG) measure both the software products and the
software development process of hundreds of software teams each year. To measure
the software product, code quality is rated against our Maintainability model. The
thresholds for various metrics in the model are derived from code measurement data
that we collected over the years.

Similarly, to measure software development processes, we check the activities of a
team against a standard set of best practices. We call this a Development Process
Assessment (DPA). Over the years, we have learned which best practices are most
important and from the collected data we have been able to assign simple maturity
levels to each practice. We categorize each practice as “basic,” “intermediate,” or
“advanced,” depending on how difficult it is to apply. That categorization is based on
our data of how clients have adopted those practices.

The chapters of this book are a reflection of what we have learned to be most impor‐
tant to the working developer. At the end of each chapter, starting at Chapter 3, we
provide results of our DPA benchmark. We relate each of the practices to the total
benchmark and explain why certain practices are more difficult to implement than
others.

1.5 The Goal-Question-Metric Approach
GQM serves as the linking pin between the practices: we present them as a combina‐
tion of goals, questions, and metrics. We believe that anything can be measured. But
that does not mean that everything should be measured. Measurements do help in
identifying problems and monitoring the progress when working to correct them.
Identifying the right metrics begins with asking the right questions. That is why the

1.4 Measuring and Benchmarking Development Process Maturity | 5

www.ebook3000.com

http://www.ebook3000.org

2 The GQM approach is described in: Victor R. Basili, Gianluigi Caldiera, H. Dieter Rombach, “The Goal Ques‐
tion Metric Approach,” in Encyclopedia of Software Engineering, Wiley, 1994.

Goal-Question-Metric (or GQM)2 approach takes a central position in this book. We
experience in practice that it is essential to be able to apply GQM’s reasoning to make
use of the right metrics. It is common to measure too few, too many, or irrelevant
things and that is frustrating rather than revealing.

Defining the right measurements is not easy. Also, measurements can be misunder‐
stood or used for the wrong purposes. This is why we devote the next chapter to the
topic of how the GQM approach can help a team and a team leader with defining the
right metrics to achieve high-quality software.

1.6 An Overview of the Development Best Practices in This
Book
In the following chapters, the best practices are presented one by one. The order of
the chapters signifies a level of “maturity” of those practices: from development pre‐
requisites to “mature” ideals in software development.

Here is a brief overview of the outline we will follow:

Derive Metrics from Your Measurement Goals (Chapter 2)
Apply Goal-Question-Metric to choose metrics that help you control your devel‐
opment process.

Make Definition of Done Explicit (Chapter 3)
Define a specific Definition of Done to be able to tell how far away you are from
your goals and to know when you are done.

Control Code Versions and Development Branches (Chapter 4)
Use a version control system to control and merge different development tracks.

Control Development, Test, Acceptance, and Production Environments (Chapter 5)
Take control over your Development, Test, Acceptance, and Production environ‐
ments to achieve higher consistency in the way your software flows through the
development pipeline.

Automate Tests (Chapter 6)
Automated tests enable near-instantaneous feedback on the effectiveness of mod‐
ifications. Manual tests, in which you provide some input and then observe the
output and behavior of the system, do not scale.

6 | Chapter 1: Introduction

Use Continuous Integration (Chapter 7)
Writing tests and automating the build/test cycle makes developers’ work easier
and repeatable. Combined with automated testing, you have more confidence in
the actual behavior of the system.

Automate Deployment (Chapter 8)
Automate the process of pushing versions into production. This involves auto‐
mation of tests and deployment steps, which gives more confidence when push‐
ing into production, or rolling back when something goes wrong.

Standardize the Development Environment (Chapter 9)
Standardize the development environment, because it relieves developers from
having to manage manual configurations and makes the behavior of your soft‐
ware more predictable.

Manage Usage of Third-Party Code (Chapter 10)
Reusing software written by others avoids reinventing the wheel, but needs to be
managed.

Document Just Enough (Chapter 11)
The main things you need to document are nonfunctional requirements, high-
level design decisions, and your Definition of Done. Documentation needs to be
current, concise, and retrievable.

1.6 An Overview of the Development Best Practices in This Book | 7

www.ebook3000.com

http://www.ebook3000.org

CHAPTER 2

Derive Metrics from Your
Measurement Goals

Only good questions deserve good answers.
—Oscar Wilde

Best Practice:

• Apply the Goal-Question-Metric approach to determine
meaningful metrics for achieving your goals.

• Make the assumptions behind your metrics explicit and
avoid common metric pitfalls.

• This helps to manage the development process and improves
the quality of its outcomes.

Every development process is aimed at gradual improvement, of the process as well as
the product delivered. In order to determine progress, all kinds of measurements and
metrics can be used, but not all measurements and metrics are meaningful in the spe‐
cific context of an organization.

The Goal-Question-Metric approach (hereafter GQM) provides a simple structure
for arriving at the right measurements for your context. These measurements allow
you to manage the development process by assessing its status and progress, and to
know when your goals are reached.

The GQM approach is a simple top-down approach: we start with goals, then ques‐
tions that need answering to determine whether goals are being met, and metrics that
can help answer these questions. So there might be one goal with multiple questions

9

www.ebook3000.com

http://www.ebook3000.org

1 Originally published in the following article: Eric Bouwers, Joost Visser, Arie van Deursen, “Getting what you
measure,” Communications of the ACM, Vol.55, No.7, p.54–59, 2012.

with which each question has multiple metrics to answer. The GQM idea itself is very
simple. GQM’s purpose is to keep questioning whether you are coming closer to your
goals.

2.1 Motivation
On the face of it, GQM looks rather trivial. Of course metrics should answer the right
questions. Using metrics for managing the development process provides you with
facts instead of impressions. Unfortunately, it is fairly common not to use software-
related metrics at all. So exactly how useful are metrics? That depends on your goals.
This simple reasoning is the main advantage of using GQM: it gives a structured
approach toward the right metrics instead of choosing metrics off the cuff.

From practice we know that choosing the right metrics in the right context is not triv‐
ial. If software metrics are used at all, they are often used without keeping the goal in
mind, leading to negative side effects. With GQM you get the right clarity and meth‐
odology in order to avoid metric pitfalls, the four most common of which are as fol‐
lows:1

Metric in a bubble
A metric is used without the proper context. You should track metrics over time
or compare a specific metric to other cases. A metric is only valuable in compari‐
son.

Treating the metric
The team optimizes the metrics but does not solve the problem that the metric is
meant to signal. You should have a clear notion of the problem you address with
a metric, and how the metric helps you in solving it.

One-track metric
A sole metric is used, which may lead to wrong conclusions. For example, meas‐
uring the total volume of a codebase, without measuring the degree of duplica‐
tion, may give a false impression of progress. You should use several metrics that
jointly address a goal (i.e., a problem that you want to solve).

Metrics galore
Too many metrics are used, while many of them do not add value. Typically this
leads to a team ignoring the metrics, because they cannot interpret them mean‐
ingfully. You should limit the number of metrics you use, for instance, by not
adding a metric that correlates too much with one you are already using.

10 | Chapter 2: Derive Metrics from Your Measurement Goals

In the next section, we explain how GQM works and how you can define meaningful
metrics.

2.2 How to Apply the Best Practice
To help you understand applying the best practice, imagine that you are leading a
team to build a new system. Let us assume this concerns a modern web application
that is well suited to Agile development. As an example, consider a system providing
video streaming services to users over the Web.

Now suppose that development started not too long ago. Before, developers in your
organization were accustomed to classic waterfall development (developing based on
detailed designs and specifications in long iterations). Now you have decided that for
this development Agile is suitable. You suggest dividing work into two teams of seven
people. Team members have different expertise and experience, yet all of them have at
least half a year of development experience in the system’s main programming lan‐
guage. You do not intend to follow the Agile Manifesto to the letter, but want to
adhere to basic Agile practices:

• You do development work in fixed-time iterations (sprints).
• You demonstrate functionality after each sprint to user representatives.
• You work with a prioritized backlog of system requirements.
• You assign a Product Owner role, as a representative of “the business” that repre‐

sents the interests of the users.
• Development work is peer reviewed before it is pushed to the main development

line (the trunk).

The team feels that it takes an unusual amount of time to change functionality. Your
initial diagnosis is that it may be due to high code complexity (many logical decision
paths), so you are interested in tracking the complexity of the codebase.

Goal
Consider that with measurements you want to obtain meaningful values about rele‐
vant characteristics. To make sure that you are measuring the right things, a measure‐
ment should follow from a goal that it helps to achieve.

2.2 How to Apply the Best Practice | 11

www.ebook3000.com

http://www.ebook3000.org

So the first step is to determine a specific goal. Every goal should have five character‐
istics. This helps you define a goal in a meaningful way. A goal should clearly describe
these elements:

Object of examination
What are we looking at? In this case, that refers to the software that you are man‐
aging.

Purpose
Why are we examining the object?

Focus
What attribute or characteristic of the object are we interested in? Depending on
your measurement purpose, a characteristic could be, for example, performance,
maintainability, functional fit, or some other attribute.

Viewpoint
Who is the primary target? This is about perspective of the goal and may be you
as an observer.

Environment
In which context does the object exist?

This can be written down by filling out a table or in the form of a sentence. By start‐
ing to fill out a table you can obtain a sentence that includes all aspects. Table 2-1
shows an example.

Table 2-1. Example for defining a goal for reducing code complexity

Topic Response
Object of examination Total codebase

Purpose To reduce

Focus Complexity of units

Viewpoint Development team

Environment Streaming application development

In sentence form, the goal would be “to analyze the total codebase of the streaming
application in order to reduce the complexity of units from the viewpoint of the
development team.”

Filling out a table may appear to be a tedious task, but it is not that much work and
helps to make problems explicit. Therefore, it aids in creating the right questions.

12 | Chapter 2: Derive Metrics from Your Measurement Goals

2 McCabe complexity is a standard measure for the complexity of code; it can be interpreted as the minimum
number of test cases that you need to write for a unit and it is based on the number of decision statements in
which code can take more than one direction.

3 As an example, the Spearman coefficient is a standard measure for correlation, but its mechanics are outside
the scope of this book.

Question
The next step is to formulate questions related to your goal that help achieve that
goal. There is no strict bound on the number or type of questions. As an example,
consider the questions in Table 2-2.

Table 2-2. Questions in this GQM model

Question Description
Q1 How is the complexity of units in the codebase distributed?

Q2 Does complexity in units stay the same or change over time?

Q3 Is there a correlation between complexity of units and time to market?

With these questions in mind, we can start to think of the right metrics.

Metric
Consider that metrics can appear in different forms. A metric can be either objective
(its value is not dependent on who measures it) or subjective (its value is dependent
on who measures it and tends to involve an opinion or estimation). In addition, it
might be direct (its value originates directly from observation) or derived (its value is
calculated or deduced in some way).

Suppose that we use a uniform measure of the complexity of code units (e.g., McCabe
complexity2). Then we can use a tool to go through the codebase and rank the units
in terms of their complexity. That would be an objective, direct measurement that
quickly answers Q1. Once we start using the metric over time we can confidently
answer Q2. For instance, we can measure the number of units that become more
complex relative to the total number of units.

To measure the correlation between unit complexity and time to market we need a
measure of time to market. This could be the total time needed from receiving
requirements, up to user acceptance of its implementation. That means that you need
two observations: when receiving the requirement and after putting code into pro‐
duction. After every release, you could measure the correlation in some form (e.g., by
calculating a correlation metric such as the Spearman coefficient of the two measure‐
ments3). Then you can observe whether there is indeed a relationship and whether
that relationship changes over time.

2.2 How to Apply the Best Practice | 13

www.ebook3000.com

http://www.ebook3000.org

Consider how important it is to make your assumptions explicit. The preceding cor‐
relation is a deduction of the metrics of unit complexity and time to market. It is
slightly subjective, as it depends on how you define when functionality “hits the mar‐
ket.” When explicit, you can consistently interpret the measurements.

Of course, not all requirements are of equal functional and technical difficulty. There‐
fore you can choose to measure deviations of the estimations that the development
team makes when planning implementation of requirements. That has the risk of
essentially measuring estimation skills, not code complexity. The relationship
between unit complexity and development team estimates could be included as a
metric itself, but here we choose to ignore that.

Table 2-3 summarizes the metrics that complete the GQM model.

Table 2-3. Metrics in this GQM model

Metric # Metric description Corresponding question
M1 Unit complexity in the codebase Answers Q1

M2 Complexity of units written for new functionality Answers Q2 and Q3

M2a Percentage of code with certain complexity (e.g., volume
percentage of units with McCabe complexity of 5)

Answers Q2

M3 Time from specification to acceptance of functionality Answers Q3

The team lead can now decide upon what and how to measure. In this particular case
of complexity in the codebase, the development team may decide to actively reduce
that complexity (e.g., by splitting complex units into simpler ones). But if the com‐
plexity seems to be uncorrelated with the time to market, Q3 is answered and M3
becomes irrelevant. Such metrics also require careful consideration. For the purpose
of testing and maintenance, average complexity in a codebase is much less important
than “hotspots” of complexity that are hard to understand and test. For identifying
hotspots you would need to define categories of what is, for example, “Good,” “OK,”
“Hard to test,” and “Untestable.”

Goals may also change: if the system owner turns out to be satisfied with the time to
market, there is no urgency to reduce complexity given this particular goal and the
team may ask itself “why are we measuring again?”. Obviously, for the sake of main‐
tainability, there are still good reasons to keep a codebase as simple as possible. In
practice it is common to reason back from those metrics to determine whether they
actually bring you closer to your goals.

If a metric appears not to help in achieving your goal, remove it. If
a specific GQM model becomes obsolete, do not use it until you
need it again.

14 | Chapter 2: Derive Metrics from Your Measurement Goals

4 See Chapter 3.

2.3 Make Assumptions about Your Metrics Explicit
Simplifying a metric itself is easier than trying to correct the metric for all possible
objections. The most common objection is that the metric does not measure what it
promises to measure, because of various circumstances. But that does not render the
metric useless. You should make assumptions explicit about the context in which the
metric is valid. And of course, circumstances may change, making assumptions inva‐
lid. With clear assumptions, this relationship is clear.

Let us discuss some common assumptions underlying software development metrics
(these are not necessarily true, but they help you in making your own assumptions
explicit):

Assumption: Measurements are comparable
For practical purposes, you will need to assume that measurements have comparable
meanings. When comparing data we at least need to assume that it is administered
completely (no details are left out), correctly (intended data is recorded), and consis‐
tently (data is administered in the same manner/format).

As an example, consider that you want to measure issue resolution time (issues here
defined as including both defects and features). You can greatly simplify measure‐
ments when you assume that issues are of approximately the same work size. Con‐
sider what this means for the process of registering issues.

This assumption forms a good reason to administer issues in approximately equal
sizes. To achieve this, issues should somehow reflect how much work they take to
solve. This may be a simple classification such as low, medium, or high effort or
something more detailed (e.g., hours, story points, etc.).4

Then we also need to assume that the classification is scaled such that scales reflect the
same size. This is to avoid that “low” and “medium” effort are about the same amount
of work, but “high” is tenfold that. In this example, the difference between classifica‐
tions such as “low” and “medium” effort is equal to the difference between “medium”
and “high” effort.

Assumption: Trends are more important than precise facts
A typical assumption is that a trend line that compares measurements over time is
more meaningful than the precise numbers. The trend will reflect how things are
changing, instead of precise facts. This implies that outliers should have a small
impact.

2.3 Make Assumptions about Your Metrics Explicit | 15

www.ebook3000.com

http://www.ebook3000.org

Assumption: Averages are more important than outliers
Trends focus on average movements. Outliers are sometimes just that, outliers. So
this assumption is not always appropriate. An outlier may signify a problem, for
example, when it takes extraordinarily long to run certain tests or to solve bugs. How‐
ever, to simplify your measurements, you may assume that some circumstances are
not worth correcting for. Consider measuring issue resolution time. Using business
hours between identification and resolution would be more accurate than the number
of calendar days between them. However, you may choose to ignore the difference
when you assume that the impact is small and that the distribution is consistent.

These assumptions are about the metrics and their underlying behavior. Let us move
on to the usage of these metrics.

Find Explanations Instead of Judgments When Metrics Deviate from
Expectations
When you find a metric that deviates from the average, resist the urge to judge it as
good or bad too soon. It is more important to find explanations for why metrics devi‐
ate. That way you can put the metrics into practice for achieving their goal.

Consider the goal in the GQM reasoning that wants to understand how team produc‐
tivity is influenced. Let us say that the issue resolution time had grown last month.
Not necessarily deteriorated, but grown. Investigate this difference by asking yourself
why this deviation may have occurred:

• What are the most plausible explanations?
• Are there reasons to believe that the assumptions are not valid anymore?
• Is this period different from other periods? Are there special circumstances (e.g.,

holidays, inexperienced new team members)?

Using Norms with the GQM Approach
In many cases, metrics become useful and supportive only when there is a clear defi‐
nition of good and bad values—in other words, there has to be a norm. You can add
norms to the GQM models by defining them for each metric. In the example in this
chapter, a norm on complexity could be that the McCabe unit complexity should be
below 5, in 75% of the code (Figure 2-1). Once you agree upon a norm, you can visu‐
alize a metric as, for example, a distribution of different risk categories, to see what
percentage of the units is too complex. Such a norm may also serve as the basis of a
Definition of Done (DoD, see Chapter 3).

16 | Chapter 2: Derive Metrics from Your Measurement Goals

Figure 2-1. Example of code volume distribution of unit complexity

A variation on this is one of shifting norms. Then you define an end goal, such as “the
unit test coverage of our system should be 80%” and continuously move the norm to
the latest and highest state. That would show whether you are “setting new records.”

2.4 Common Objections to GQM
The GQM approach is a powerful way to determine the right metrics for your prob‐
lem. Often, measurement goals are phrased based on the software metrics that are
already available in tooling. With GQM in mind, this is clearly the wrong order of
things: metrics should support decision making, instead of metrics defining what is
important. In practice this means that you may need to install different tooling for
measuring purposes.

Goals come before questions, questions come before metrics.
Measure what you need to measure instead of measuring what you
can measure.

2.4 Common Objections to GQM | 17

www.ebook3000.com

http://www.ebook3000.org

Objection: Yes, Good Metric, but We Cannot Measure This
“That is a good metric, but it we will not be able to measure it correctly enough to rely
on it.”

Even when the GQM approach is performed to define metrics, in our practice we
often encounter objections against measuring in general. Typically the objections are
not about the metrics themselves. They tend to take the form of “Yes, it is a useful
metric, but we cannot use it because…”. In Table 2-4, common objections are dis‐
cussed.

Table 2-4. Common objections to metrics and possible solutions

Objection Possible solution
Measurements may be interpreted in the wrong
manner by management.

Help management to interpret them and simplify the measurements.

Metrics may act as a wrong incentive (leading to
“treating the metric”).

Do not make the metric itself a KPI/metric for job evaluation.

Data is registered in an inconsistent/incomplete/
incorrect manner.

Automate measurements, help your colleagues to register consistently
by defining a step-by-step process.

Goal for measuring is unclear or outdated. Revisit the GQM model.

This metric is not appropriate or specific for our
goals.

Explain the goal and assumptions of the metric (using GQM). Explain
whether alternatives (if any) are equally simple to gather and use.
Possibly revisit the GQM model.

These objections may all be relevant in a particular situation, but having the metric
and using it are separate things. It may be fine to have an inconsistent metric as long
as you acknowledge that it is inconsistent and is for rough trend analysis only. A typi‐
cal example is “those” team members that are lenient in registering their hours (late,
incomplete, or undetailed). If you acknowledge that, you should either focus on
administrative discipline to get the metrics done, or accept it as given and look more
at “the bigger picture” instead of precise values.

In general, having a measurement is just another data point. In that sense we believe
it is better than having no measurement at all and fully relying on gut feeling. Metrics
may be used or ignored, as not all metrics are “born equal” in terms of quality.

We will use the GQM approach throughout the book. As such, you will see GQM
return in all the subsequent chapters.

18 | Chapter 2: Derive Metrics from Your Measurement Goals

CHAPTER 3

Make Definition of Done Explicit

I have the simplest tastes. I am always satisfied with the best.
—Oscar Wilde

Best Practice:

• Make a Definition of Done, listing all items necessary to reach
your development goals.

• Ensure that the Definition of Done is measurable.
• This improves the quality of development because you can

track the progress of the product.

Before you can manage something, you need information about status and change.
Are we reaching our development goals? Well, that depends on the status and on
what your goals are.

The Definition of Done (hereafter DoD) is a term specific to the Scrum approach of
Agile development. It can be an organizational standard or it is made by the develop‐
ment team. The DoD defines when a product is “done”: everything that needs to be
done to produce software in a releasable (or shippable) state to end users. It does not
guarantee user acceptance or success in production, but does provide a check toward
achieving nonfunctional requirements (such as performance, security, reliability, or
other characteristics as defined by the ISO 25010 standard). Because user acceptance
criteria are defined by the owner of the system, they are complementary to the DoD.
Think of the DoD as a list of the software development activities that add value to the
end product, though those activities are not necessarily visible to the user. For exam‐
ple: a minimum amount of unit test coverage, adherence to coding standards, and
documentation requirements.

19

www.ebook3000.com

http://www.ebook3000.org

Revisiting Agile Practices
The DoD is a concept that originates with Agile/Scrum. In this book we adopt this
concept for any development process. Therefore, some Agile/Scrum background is
useful for those not quite familiar with its concepts.

Short iterations
From experience we know that in software development, major changes made
late tend to be more difficult and expensive to implement, compared to when
they are identified early. An advantage of Agile is that it forces work into short
iterations (typically 2 or 3 weeks). Those iterations are ordered by what is most
relevant now; that is, functionality or system behavior that adds the most value to
the system owner.

The end of each sprint is a mini-evaluation in which the Product Owner (here‐
after: stakeholder) can decide to continue or halt the project. The possibility to
halt a project early reduces the risk of fully investing and committing and then
realizing later on that it is doomed to fail. Therefore the (implicit) decision to
start a new sprint becomes a trade-off of effort and prioritized benefits.

For management, this is a change in thinking about projects. The way of initial
budgeting remains broadly the same, but there is initially only commitment for
the amount of effort that will be spent, instead of a clearly defined end point
apart from “a valuable system that works.”

Agile planning
Given Agile’s short iterations, it requires planning functionality in small pieces.
The level of formality differs a lot between organizations, but generally a sprint
planning takes place in which the team prioritizes work together with a stake‐
holder. The definition of functionality is typically based on user stories. A user
story is a feature described from a user perspective, which ideally fits into devel‐
opment work for a sprint.

To aid planning, the team defines story points. A story point is a rough estimate
of effort for implementing functionality: the more points, the more work is
needed. As it has only team-specific meaning, it is meant for internal planning
and comparison. It can act as a measure of productivity within the team, by com‐
paring the average speed with which story points are implemented. That speed is
simply called velocity. The velocity may be visualized in a burndown chart, which
is a graph of the amount of work left (in terms of story points) versus time. With
story points on the vertical axis, they are “burned down” over time.

To keep an overview of tasks, development teams typically use kanban boards. In
its simplest form, it is a visible board with different columns for development
stages (such as: plan/develop/review/test/release). Team members then place

20 | Chapter 3: Make Definition of Done Explicit

tasks/issues in those columns with sticky notes to signal in what stage of develop‐
ment they are and who is working on them.

The DoD may change over time, but should only do so in between
sprints and only in agreement with the party that is responsible for
the product.

3.1 Motivation
This section describes the advantages of using a DoD. Defining an end state in a DoD
helps you to manage achieving that end state. Because the DoD concerns non-
functionals, it puts focus on software quality.

With a DoD You Can Track Progress and Prove Success
In general, a DoD is useful for helping you to manage the nonfunctional aspects of
software development. The reason is simple. Knowing the end goal and knowing the
current status allows you to see whether you are on track and what needs to be done.
This applies to different roles in the organization: developers can assess when their
work is done. A project manager can assess whether software quality meets expecta‐
tions. Acceptance testers can verify nonfunctionals such as performance.

A DoD Focuses on Software Quality
Because a DoD defines when a product is ready from the developer’s perspective, it is
an aid in assuring the quality level of your software. Consider that when software
quality is not defined, it is hard to manage whether software implementations adhere
to your quality standards. However, in practice we often see a lack of software quality
requirements.

When checking off a DoD, it can be confirmed that development is actually done.
Done then means that implementation has finished, including coded functionality
and nonfunctional work such as unit tests, coding standards, or documentation.

3.2 How to Apply the Best Practice
In order to know both the current situation and assess the end situation, a DoD
should comply to the following:

It is assessable
Preferably its items are quantified as a metric.

3.1 Motivation | 21

www.ebook3000.com

http://www.ebook3000.org

It clarifies its own scope
A DoD normally applies to all development within a sprint but may be specific
for a feature. Also, what is “done” is not always defined in the same way. If
responsibilities for development, testing, and deployment are clearly separated
(e.g., they are different departments), then “done” for the development team may
mean “development work is done.” If a team mixes these specialties in one team
with a shared responsibility (such as in a DevOps team), an item may be consid‐
ered “done” when it is accepted and ready for release, and pushed from an
acceptance version into production. In any case, the DoD should define an end
state within the scope of responsibilities of the team.

In Chapter 2 we showed an example of a norm for a code complexity measure.
Extending it, a specific technical requirement for the DoD may be:

In all development for this system, at least 75% of code volume has a McCabe complexity
of at most 5. For newly written units in development, at least 75% of units comply.

A DoD typically includes many different requirements that may be as concise as the
team wants it to be. Several topics tend to reoccur in DoD lists. Consider the follow‐
ing (nonexhaustive) elements of a DoD:

Version control
• All source code is committed and merged into the main development line

(trunk) or a specified branch.
• Code commits include a code/identifier in a specific format for functionality/

issue identifier.
• Commits build without errors.

Proof that code works as intended
• There are no failing unit, integration, and regression tests.
• During code maintenance, corresponding unit tests, integration tests, and regres‐

sion tests (if applicable) are adjusted accordingly and their code is committed to
version control.

• Unit code coverage for a specific task is at least 80% (as a rule of thumb) as
defined by number of lines of code affected by unit tests.

Administration for maintenance and planning
• Documentation requirements (dependent on team agreements): code should be

mostly self-documenting, contain comments sparingly yet always in a specified
format (date-author-issue ID-comment). A separate document describes overall
system structure in no more than five pages.

• No code comments are left behind that signal work to be done (i.e., ensure that
TODOs are addressed and removed).

22 | Chapter 3: Make Definition of Done Explicit

• The user requirements (issue/ticket/requirement/user story, etc.) are closed in a
traceable way (e.g., in an issue tracking system and/or on the kanban board).

Wrap-up to complete sprint
• New acceptance test cases are created for added functionality.
• A sprint is formally finished when a stakeholder signs off the sprint after a dem‐

onstration of functionality (“sprint review”).

3.3 Common Objections to Using Definition of Done
This section discusses objections regarding usage of DoD. The most common objec‐
tions are about the effort required in using a DoD and maintaining it, and the wrong
incentives it may give to the team.

Objection: DoD Is Too Much Overhead
“Using a DoD is too much overhead.”

A DoD is not a bureaucratic goal: it is an agreement within the team that provides
transparency and a way of managing software quality. By extension this is also an
agreement with the business owner.

From practice we know that quality must be defined in advance. When quality is not
defined at all, it is the first thing that suffers when deadlines need to be met! Shortcuts
will be taken in the form of code hacks, workarounds, and concessions in testing.

Quality must not be left to chance. Even if it is not called a “Defini‐
tion of Done,” a team should agree on quality expectations.

If a team is very skilled and quality-conscious, the DoD is not a big deal: it will simply
be a representation of the way of working. If a team is more junior and not yet
quality-conscious, it will help them develop better quality software by focusing on
what is important.

The DoD’s level of detail and its application is up to the team. A team might especially
favor a summary definition, or apply the DoD as a quality agreement that is only
assessed at the end of each sprint. A check at the end of each sprint is a minimum
requirement, though; otherwise, the team cannot guarantee quality toward the sys‐
tem stakeholders.

3.3 Common Objections to Using Definition of Done | 23

www.ebook3000.com

http://www.ebook3000.org

Objection: DoD Makes the Team Feel Less Responsible
“Formalizing what ‘done’ means makes the team feel less responsible for overall quality
because they just adhere to the DoD without thinking about actual improvement.”

Consider that the DoD itself defines an end state of work that you are doing right
now, but implies nothing about quality improvement. If a certain (quality) character‐
istic appears to be lacking (e.g., performance), the DoD should be written in a way to
facilitate that. Typically such requirements are nonfunctional in nature.

Also, remember that the DoD is only as fixed as you want it to be (typically fixed for a
sprint at least, though). Change its content or its application together with the team if
you feel that the DoD does not provide the right incentive to achieve high-quality
software. A DoD should be a good representation of which quality aspects are valued
by the team, and to which standards they hold each other’s work.

Objection: With DoD There Is No Room for Technical Maintenance
“With the DoD there is no room for technical maintenance such as refactoring or
upgrading frameworks.”

In fact, there is. If “technical maintenance” here means, for example, simplicity of
code units, then that could be part of the DoD. If the technical maintenance has a
broader scope, like renewal of frameworks, the team should put it on the develop‐
ment backlog and it can then be treated as “regular functionality.” Putting technical
maintenance on the backlog is an effective custom. It forces the team to reason why
the improvements are advantageous for the system’s operation or maintainability.

You can imagine that such technical maintenance typically is not foreseen by stake‐
holders and therefore it may not receive priority from a user perspective (because the
improvements are invisible). Discuss with the team how they prefer to deal with this.
For example, one can agree that a certain percentage of time is reserved for technical
maintenance (say, 10%). Within the 90% remainder, user stories can be prioritized.
Such a fixed effort can be agreed on with the stakeholders.

This should not relieve developers from having a critical eye toward low-quality code
when they see it. For that matter, the “Boy Scout Rule” is a great principle. For devel‐
opers this means that the right opportunity to refactor code is when modifying that
code. The result is that code is left behind “cleaner” and of higher quality compared to
when the developer found it.

24 | Chapter 3: Make Definition of Done Explicit

Objection: Changing the DoD May Mean Extra Work
“When the DoD changes, should we revisit all earlier sprints for compliance with the
updated requirements?”

The simple answer is: only when the change in DoD is important enough to warrant
this. Changes in the DoD affect only what is being delivered from now on. The effects
of changes should be considered for the next sprint planning. If the DoD becomes
more strict or more specific, the team should agree with the system stakeholder
whether the change applies in retrospect. If so, it should be put on the backlog,
because reanalyzing code takes time. Then in the sprint planning it will emerge
whether applying the changed DoD over older pieces of code has enough priority.

You can assess whether your DoD standards are being met by measuring them. Typi‐
cally this is done with some kind of quality dashboards that include code quality
measurements (such as unit test coverage, coding standards violations, etc.). So
clearly, the more specific and quantified a DoD is, the easier it will be to measure
them. Remember to walk through the GQM process to determine what kind of met‐
rics help you toward your goals.

3.3 Common Objections to Using Definition of Done | 25

www.ebook3000.com

http://www.ebook3000.org

Experience in the Field
In our daily practice, we assess whether development teams have specific, measurable,
attainable, realistic, and testable (SMART) nonfunctional requirements that they use
to build and test their software against. Having SMART nonfunctionals is not the
same as having a Definition of Done, but it goes a long way. We observe that it is an
advanced practice: in 77% of the cases nonfunctional requirements are either not
defined or not quantified. Often, it is the case that a lack of SMART requirements
from business stakeholders trickles through to the development team. This makes
development hard, because nobody knows what the delivered software should be able
to do from a nonfunctional perspective (see Figure 3-1).

Figure 3-1. Benchmark results on usage of SMART requirements in development teams

One of the key arguments for judging the maturity of a team when it comes to non‐
functional requirements is whether they have a Definition of Done with quantified
metrics to assess whether they reach their goals. This is regardless of whether they
actually have been required to do so by their stakeholders. To apply this practice par‐
tially typically means that a DoD has been defined, yet without quantified metrics.

26 | Chapter 3: Make Definition of Done Explicit

CHAPTER 4

Control Code Versions and
Development Branches

I was working on the proof of one of my poems all the morning, and took out a
comma. In the afternoon I put it back again.

—Oscar Wilde

Best Practice:

• Use a standard version control system and keep track of
development branches.

• Integrate your code regularly and commit changes both reg‐
ularly and specifically.

• This improves the development process because developers
can work in isolation without drifting apart.

In this chapter we apply the ideas of GQM to version control. Bugs and regressions
(recurring defects) occur regularly during development and maintenance of any
codebase. To solve those you will need to reanalyze code, and you may need to revert
some code or configuration to earlier versions. Consider what happens if there is no
version control and all developers can only work on one version. It will be hard to see
who is changing what and hard to avoid that developers break each other’s code.

Version control is a solution to this. It does what it says: controlling versions, which
allows you to divide work among developers. In its most basic form, a version control
system tracks changes by labeling them with the person who made the change, and a
timestamp of that change. Having the version history available allows you to revert to
an earlier version when necessary.

27

www.ebook3000.com

http://www.ebook3000.org

To better understand what version control systems do, let us start at the beginning.
There is one main version of the code that is leading for what is being put into pro‐
duction, referred as the trunk (main line). When developers make changes, they can
commit changes and additions to the trunk. When multiple developers work on the
trunk, they can get in each other’s way. To avoid this, variations can be developed in
branches (meaning a new, parallel version of the software). Branches can later be
merged into the trunk.

Therefore version control systems generally have integration functionality for merg‐
ing different versions. In that way, developers can work on isolated parts of the source
code. Usually, the merging of source code (which is text-based) proceeds automati‐
cally, but when there is a conflict, it needs to be resolved manually.

There can be a central repository that holds the trunk (a centralized version control
system). In that case, developers make a copy of that trunk to work on and commit to
the central version control system. With distributed version control, each developer
has a local repository, and changes can be shared among each other to create a ver‐
sion (pushing their own changes and pulling changes of others).

There are several version control systems available, such as Git, Subversion, and Mer‐
curial, each with a slightly different vocabulary and different mechanisms. A notable
difference is that Git and Mercurial allow developers to commit changes into local
(individual) branches on their own machines, which can later be merged with the
main repository. Subversion prefers to always commit changes directly to the central
repository.

Although version control has the most visible benefits for source code, you should
put all versionable parts of the software in version control, including test cases, data‐
base configuration, deployment scripts, and the like. That way, you can re-create the
different testing and production environments more easily. Documentation can be
under version control, and sometimes external libraries (when you cannot rely only
on the versioning of the library provider).

Do not put generated code into version control. You do not need
to, because the build system will generate that code for you. In case
that generated code is actually maintained, it should be versioned
and be part of version control. But you should refrain from adjust‐
ing generated code as it will lead to problems when you need to re-
generate it.

There are situations in which libraries need to be included in version control (e.g., for
audits to ensure that known-working versions are used). A more thorough discussion
on using third-party code appears in Chapter 10.

28 | Chapter 4: Control Code Versions and Development Branches

4.1 Motivation
Different version control systems share common advantages: they allow the develop‐
ment team to track changes over time, they use branching to allow developers to
work independently on variations of the same codebase, and they merge files auto‐
matically when versions somehow conflict.

Tracking Changes
Tracking changes with a version control system has the advantage of going back in
time. When things go right, there may not be a reason to do so. However, when func‐
tionality breaks, comparing old versions is a good tactic to find the cause of the issue
(instead of reanalyzing the whole code). So the developer can revert the source code
version (in its working copy) to the moment when the bug was introduced. This
comparison helps with fixing the bug or simply replacing the new version with the
old one. Then, a new (local) version can be merged back into the trunk again.

Version Control Allows Independent Modification
Independent modification in part of the source code avoids conflicts that happen
when different pieces are adjusted at the same time. So when two developers need to
implement different functionalities but need the common codebase for testing, for
example, they can create two isolated branches of the same codebase that they can
modify independently. In that way, the code of the one developer will not interfere
with the work of the other. When one of the branches functions satisfactorily, it can
be pushed back and merged into the main development line. Then the changed func‐
tionality becomes available to the whole team.

Version Control Allows Automatic Merging of Versions
Every time developers need to exchange their work, source files need to be merged.
Merging source code versions manually is notoriously difficult if they are very differ‐
ent from each other. Luckily, version control can do most of the merging automati‐
cally by analyzing the difference between a modified file and the original. It is only
when there is no definite way to combine the two files that a problem (merge con‐
flict) occurs. Merge conflicts need to be dealt with manually because they indicate
that two persons made different changes to the same line in a file, and you still need
to agree on the modification that is most suitable.

4.1 Motivation | 29

www.ebook3000.com

http://www.ebook3000.org

4.2 How to Apply the Best Practice
Consider that changes and additions are much easier to manage when done in small
iterations. Each iteration moves the software forward with a small step. Difficulties
arise when you want to make large and ambitious changes infrequently.

Therefore, there are two main principles you should adhere to:

• Commit specifically and regularly
• Integrate your code regularly, by building the full product from source code and

testing it

We will show how you can use different metrics of the version control system to
measure the quality of your development process.

Commit Specifically and Regularly
In many cases, team members will not be aware of what other developers are working
on, so it is important to register this when you make changes in version control. So,
every commit should be specific to one piece of functionality or, when you have an
issue tracking system in place, it should be linked to precisely one issue. Commits
also should be done on a regular basis: this helps to keep track of the flow of work
and of the progress toward the team goal. Moreover, you will avoid merge conflicts by
committing your changes to the version control server regularly.

Note that “keeping changes small” implies that you also divide
development work into small parts.

A typical indicator for this principle is the commit frequency of team members, and
to link the commit messages with the issue tracker. You could further measure the
build success rate to determine how quickly issues are solved, and in how many cases
the issues need extra work. This could serve as an alternative measure of team veloc‐
ity.

Integrate Your Code Regularly
Besides committing new code on a regular basis, it is vital to integrate code between
different branches of the codebase as often as possible, preferably daily. This is
because the later you integrate your code, the more likely it is that there will be merge
conflicts or bugs introduced.

30 | Chapter 4: Control Code Versions and Development Branches

There should be a proper balance between the time a programmer operates inde‐
pendently on a branch and the number of merge conflicts. An indication of this is
(average) branch lifespan or the relation between branch lifespan and the number of
related merge conflicts.

Having long-lived branches (that exist for, say, more than two sprints) poses prob‐
lems. In general, it makes truly isolated maintenance more difficult, and in some
cases unlikely. Long-lived branches heighten the risk of merge conflicts, because the
longer they live, the more they tend to divert from the trunk. When branches start to
evolve into notably different functionality, they may even become impossible to
merge and become forks (independent versions of the software). It is easy to imagine
the panic if one fast-paced developer that works independently tries to merge a
month of work one day before the release deadline.

4.3 Controlling Versions in Practice
Keeping in mind that effectively managing code variations requires avoiding long-
lived branches, you also wish to confirm whether the team works more productively
with the help of version control. Therefore, you would expect that issue resolution
time should not increase when applying version control. Assuming that the goals are
formulated from the viewpoint of the team lead, you can come up with the following
GQM model:

• Goal A: To manage code variations by preventing long-lived development
branches.
— Question 1: How much time passes between commits?

— Metric 1a: Number of developers that did not commit the last 24 hours.
This is a simple metric that serves as an indicator of whether long-term
branches are developing. Of course, developers could be working on other
things, out of office, not committing code. Those explanations are easy.
The not-so-obvious cases are the interesting ones. Expect this metric to be
fairly stable over time, yet it will almost never be zero.

— Metric 1b: Average branch lifespan. This metric attempts to measure that
branch lifespan is limited to avoid the risks of long-lived branches. Expect
a downward trend toward the period of time that it takes to implement
one work package (task, bug, user story, etc.). In most cases this means
resolving the full work package and ideally that work package should be
sized in a way that it can be fixed in a day. Therefore it is also dependent
on how well issues are registered.

— Metric 1c: Commit frequency. The same reasoning applies here. A high
commit frequency signals that work packages are small enough to be done
in a short period and that branches are not open indefinitely. Expect a

4.3 Controlling Versions in Practice | 31

www.ebook3000.com

http://www.ebook3000.org

downward trend toward daily commits. Note that in some situations, this
metric may be inaccurate due to, for example, bug fixes that require the
use of specialized frequent commits, such as in high-security and mission-
critical environments.

• Goal B: To understand the causes influencing team productivity (by analyzing
issue resolution time).
— Question 2: What is the typical issue resolution time for the system?

— Metric 2a: Average issue resolution time, calculated as the total issue reso‐
lution time divided by number of issues. Expect a downward trend toward
a relatively stable minimum amount of effort where the team can resolve
issues efficiently.

— Metric 2b: Percentage of issues that are both raised and solved within the
same sprint. A high percentage could signify that bugs are processed
immediately instead of postponed, which is desired behavior. Expect an
upward trend.

— Metric 2c: Average issue resolution time between different levels of
urgency. The distinction is relevant because different levels of urgency
may explain different resolution times. Expect a downward trend for each
category.

— Question 3: Are enough issues resolved within a reasonable amount of time?
In this case, assume 24 hours is quick and 72 hours is acceptable.
— Metric 3a: Percentage of issues resolved within 24 hours. Expect an

upward trend until a stable rate has been achieved.
— Metric 3b: Percentage of issues resolved within 72 hours. Expect an

upward trend until a stable rate has been achieved.

Although issue resolution time is a common metric, it is important to realize its limi‐
tations. The metric could be distorted when issues are being defined in ever-smaller
work packages (which makes it seem that efficiency rises), or if team members are
closing unsolved issues instead of resolving them to clear the backlog. The latter may
be a case of treating the metric. This is particularly a problem if there is incentive to
make the metric more favorable. This would be especially at risk when team mem‐
bers’ performance is evaluated with (mainly) this metric. Therefore make sure that
you are not using only one metric (the pitfall one track metric), especially when that
metric is important in evaluating performance. That can lead to the pitfall treating the
metric, which causes unintended behavior.

Also note that productivity is not straightforward to define. It definitely is not only
about lines of code written. Quality of the written code is a more serious considera‐
tion. For considerations on code quality, refer to “Related Books” on page x.

32 | Chapter 4: Control Code Versions and Development Branches

• Goal B (continued)
— Question 4: How productive are we in terms of functionality implemented?

— Metric 4: Velocity/productivity in terms of story points. Compare the
average per sprint with the velocity measured over the system as a whole.
Expect an upward trend initially as the team gets up to speed. Expect the
trend to move toward a stable rate of “burning” story points each sprint
(assuming similar conditions such as team composition). If version con‐
trol is not present, we expect productivity to be lower, as it causes more
overhead to check and merge code adjustments. The story point metric
clearly assumes that story points are estimated consistently by the team. To
use this metric we need to assume that on average a story point reflects
approximately the same amount of effort.

Note that the initial measurements can serve as a baseline for later
comparison. Often, the trend is more meaningful than the (initial)
values.

4.4 Common Objections to Version Control Metrics
When you have a version control system in place and you adhere to the two most
important conventions of version control, you are in a better position to measure the
effectiveness of your development process. Common objections to the best practice
in this chapter is that using different version control systems inhibits analysis or that
specific measurements are unfeasible because commits are hard to trace to issues.

Objection: We Use Different Version Control Systems
“We cannot meaningfully measure branch lifespan because one part of the team likes Git
while another prefers Subversion.”

There seems to be a problem underlying this that is more important than the meas‐
urement. Measuring the effectiveness of your version control is unfeasible if you use
version control in an inconsistent manner. Using different version control systems
increases complexity for merging and partially offsets its advantages. As a team you
will need to make a choice for one over the other version control system in order to
achieve consistency.

4.4 Common Objections to Version Control Metrics | 33

www.ebook3000.com

http://www.ebook3000.org

Objection: Measuring the Recommendations Is Unfeasible (for
Example, Whether Commits Are Specific)
“We cannot determine in all cases where specifically commits refer to. We would need to
read through all commit messages.”

Consider that it is a matter of discipline whether commit messages are specific. In
order to find out whether commit messages are specific, you could sample commit
messages or ask developers directly. Many version control systems help you to be spe‐
cific in pushing changes by requiring a commit message, but this can also be enforced
technically. This could be done by adding a pre-commit check in the version control
system that checks whether the commit message contains a valid ticket identifier.

4.5 Metrics Overview
As a recap, Table 4-1 shows an overview of the metrics discussed in this chapter, with
their corresponding goals.

Table 4-1. Summary of metrics and goals in this chapter

Metric # in text Metric description Corresponding goal
VC 1a Number of developers that did not commit the last

24 hours
Preventing long-lived development branches

VC 1b Average branch lifespan Preventing long-lived development branches

VC 1c Commit frequency Preventing long-lived development branches

VC 2a Average issue resolution time Team productivity

VC 2b Percentage of issues raised and solved within sprint Team productivity

VC 2c Average issue resolution time for each level of urgency Team productivity

VC 3a Percentage of issues resolved within 1 day Team productivity

VC 3b Percentage of issues resolved within 3 days Team productivity

VC 4 Velocity in terms of story point burn rate Team productivity

See also Chapter 5 on controlling different environments: development, test, accept‐
ance, and production. This avoids surprises such as failed tests due to unequal testing
and deployment environments.

34 | Chapter 4: Control Code Versions and Development Branches

Experience in the Field
We classify version control as a basic practice, as we believe it can be implemented
fairly easily and is necessary for proper software development. In practice, proper
version control actually seems an intermediate practice: only 41% of development
teams fully adhere to version control best practices, as can be seen in Figure 4-1.

Figure 4-1. Benchmark results on proper usage of version control in development teams

We find that most teams initially apply version control properly, but find it difficult to
control the more advanced aspects of the best practice, especially keeping develop‐
ment branches in order.

In one particular situation, we saw that a development team had installed a version
control system, and that this initially helped them to keep track of the work and keep
it all in sync. With business demands the team started growing until eventually, they
needed to use branching to be able to simultaneously work on different parts of the
codebase. With different styles of coding and long branch lifespans, half a year later
they were in trouble: the different branches diverged too much to merge them; merge
conflicts were inexorable and backporting notoriously led to regression issues.

4.5 Metrics Overview | 35

www.ebook3000.com

http://www.ebook3000.org

CHAPTER 5

Control Development, Test, Acceptance,
and Production Environments

Testing shows the presence, not the absence of bugs.
—Edsger Dijkstra, Software Engineering Techniques

Best Practice:

• Create separate environments for various stages in the devel‐
opment pipeline.

• Keep these environments as similar as possible and strictly
control the progression of code from one environment to the
next.

• This improves speed and predictability of development,
because defects found in each environment can be diagnosed
clearly and fixed without disturbing the development flow.

Imagine that in your development team, a sprint-specific Definition of Done is
defined and a version control system is in place. The developers are now able to write
code and quickly merge their versions. You notice that development of new features
proceeds quickly, but the process of testing, acceptance testing, and production mon‐
itoring takes a long time to perform and validate. There is still a fair amount of code
that was tested successfully in the test environment that fails during acceptance test‐
ing. The team encounters trouble when they need to fix bugs/defects for which they
had written the fix long ago.

37

www.ebook3000.com

http://www.ebook3000.org

These are the kind of issues that may be caused by inconsistencies between different
environments: Development, Test, Acceptance, and Production (DTAP in short). Let
us briefly review these four environments:

• Development, in which developers modify source code. This environment is
optimized for developer productivity.

• Test, in which the system is tested in various ways (e.g., validating whether tech‐
nical requirements are being met). It is optimized for testing developers’ products
efficiently and in combination.

• Acceptance, in which it is verified whether user needs are met. It is optimized for
mimicking the production environment as realistically as possible.

• Production, where the system is made available to its users. It therefore should be
optimized for operation—that is, it needs to be secure, reliable, and perform well.

By controlling this “DTAP street” (the pipeline from development through produc‐
tion) you are in a better position to interpret problems. In particular, by ruling out
inconsistent environments as a cause.

Controlling DTAP means defining, agreeing on, and standardizing three main char‐
acteristics:

• The configuration of different environments.
• The transfer from one environment to another.
• Responsibilities of each environment—that is, which activities are performed

where (notably, whether fixes for issues found in later stages always need to be
retested in earlier stages).

Making assumptions about the behavior of different environments causes trouble.
Consider an example in which bugs are found in production after acceptance testing.
If you can only guess that the acceptance and production environments are “fairly
similar” in configurations, version numbers, etc., it will be a lot harder to find the
underlying causes of bugs.

Take careful notice: for this best practice to work, the organization will need to be
involved. Consider that an IT department could be reluctant to give up control over
environments. But this separation of environments is a crucial step. Failure to have a
proper separation of environments will jeopardize progress later!

38 | Chapter 5: Control Development, Test, Acceptance, and Production Environments

5.1 Motivation
Controlling your DTAP street is useful for at least the following reasons:

• It clarifies responsibilities of the different development phases, avoiding undesir‐
able behavior.

• It allows predicting the required effort of each phase of development and thus
planning.

• It allows identifying bottlenecks and problems in the development process early.
• It reduces dependence on key personnel.

Consider that without defining different environments, testing, acceptance, and
pushing to production “occurs somewhere, sometime.” The DTAP environments are
undefined (Figure 5-1).

Figure 5-1. Uncontrolled DTAP

In this situation it is rather likely that the environments are set up and configured dif‐
ferently. They might be using the same resources (or not), they might use similar test
data, they might be configured properly. Who knows? In fact, we see often that the
answer to this question is unclear.

In many organizations the availability of these environments is an issue, especially for
acceptance environments. Oftentimes we see that acceptance tests have to be reserved
and planned well in advance. Similarly, the test environment is often shared with
other systems. Without clear separation of capacity it will then be hard to tell whether
performance test results are due to code changes or the environment itself.

In a highly controlled DTAP street (Figure 5-2), the environments’ configuration and
setup are predictable and consistent with agreements. Notably test, acceptance, and
production environments should be as similar as possible. Separation between may
be technical (e.g., transfer between different servers) or formal (handover), and it
may be physical (different servers) or virtualized (a physical server with different
instances).

5.1 Motivation | 39

www.ebook3000.com

http://www.ebook3000.org

Figure 5-2. Controlled DTAP

Controlled DTAP Clarifies Responsibilities Between Development
Phases
Different development environments should separate concerns, just like good soft‐
ware should separate concerns in its implementation. Let us discuss the typical
boundaries of different environments:

• A separation between development and test environments distinguishes clearly
which code is ready for testing and which code is under development. Unit tests
are commonly performed locally by developers, but these ought to be repeated in
a test environment (typically managed by a Continuous Integration server).

• The separation between test and acceptance environments is needed to avoid
time being wasted on verifying the system while the code is insufficiently tested
and not ready. The test environment should be as similar to the production envi‐
ronment as possible in order to obtain realistic results.

• The separation between acceptance and production is needed to prevent code
going to production that is insufficiently verified; i.e., the system does not behave
the way it is supposed to. Typical examples of this are performance or reliability
issues because of certain implementation/configuration flaws in the production
environment.

Controlled DTAP Allows for Good Predictions
When you have a clear separation between responsibilities in the DTAP street, you
can meaningfully measure the time spent in each phase. The more consistent the
environments are among each other, the better you can compare those measure‐
ments. This is especially useful for making predictions and estimates for the time-to-
market of new functionality. Clear separation of environment responsibilities
facilitates accurate estimation of the lead times required for each development phase
(typically, a division into the four phases of DTAP, but that can be more specific).

40 | Chapter 5: Control Development, Test, Acceptance, and Production Environments

Controlled DTAP Reveals Development Bottlenecks and Explains
Problems More Easily
When you have an overview of the time it takes to develop new features, you can
track the time between the discovery of a bug and its introduction and the time it
takes to resolve it. See Figure 5-3 for a simple visualization of such a feedback cycle.

Figure 5-3. DTAP feedback cycles

By measuring you can verify the difference in effort when issues are identified early
or late in the development process. Clearly, issues found in production take more
time to fix than the ones found in the test environment. Therefore, you want to keep
the loop as close as possible. And this is why effective automated testing will make a
huge difference: it will identify issues early and effortlessly.

Controlled DTAP Reduces Dependence on Key Personnel
With more consistency between environments, less specialist knowledge is required
to fix problems or set up infrastructure. This is generally true for standardization:
consistency means less dependence on assumptions and specialist knowledge.

It is of particular interest because different specialties are involved: development, test‐
ing (including data, scenarios, scripting), and infrastructure. Consider how much
expertise is necessary when none of these is standardized. Not all of this expertise
might be part of the development team and therefore there may be dependencies on
other teams, other departments, and even other companies (when infrastructure/
hosting are outsourced).

5.2 How to Apply the Best Practice
Usually, the production environment is already clearly distinguished from the other
environments in terms of organization. This is because often another department
(operations) or another organization (hosting provider) is contracted to provide and
manage the system’s operation. To get the most out of the distinction between envi‐
ronments, you should:

• Separate concerns and restrict access to the different environments: developers
should not by default be able to, for example, access the production environment.

5.2 How to Apply the Best Practice | 41

www.ebook3000.com

http://www.ebook3000.org

For testing and acceptance environments, the distinction is less solid; e.g., when
work is performed with cross-functional teams (DevOps).

• Only push code into the next environment when all tests have succeeded: when a
test fails, the code should quickly return to the development environment so that
the developers can fix the underlying cause. For consistency, bug fixes should be
done in the development environment only. This seems evident, but we often see
bug fixes being made in the acceptance environment and then backported (merg‐
ing to an earlier version). See also Figure 5-3.

• Have the test environments resemble production as much as possible. This
includes at least uniformity in versions, (virtualized) configuration of hardware,
configured usage of frameworks, libraries, software, and having representative
test data and scenarios. A particular point of interest is the actual test data. The
ideal, most realistic dataset is an anonymized production copy, but this is often
restricted because of security requirements or may not be feasible because of the
production database size or other technical issues. For systems in which data
integrity is especially important, one solution is to use an older backup that has
lost its sensitivity.

5.3 Measuring the DTAP Street in Practice
Suppose that you have taken steps to make your DTAP environments clearly separa‐
ted. You now want to identify the effect on productivity: the effort that the team
needs to implement new features. Therefore, as team lead, you could come up with
the following GQM model:

• Goal A: To understand productivity by gaining insight into effort spent within
the different development DTAP phases.
— Question 1: What is the average time spent in each development phase for a

particular feature?
— Metric 1: Time spent on realizing features/issues/user stories divided by

each DTAP phase. This could be the average time spent from development
to acceptance as measured by a Continuous Integration server (see Chap‐
ter 7). The time spent for the last push to production is typically manually
registered. At the start you may find much effort concentrated in the
acceptance environment. Gradually you may expect a distribution where
the time spent in test and acceptance environments lowers, as tests
improve and processes run more smoothly. Ideally, the maximum amount
of time is spent in development producing new features (instead of fixing
bugs that were developed earlier).

42 | Chapter 5: Control Development, Test, Acceptance, and Production Environments

— Question 2: How many features pass through the testing environment but fail
in the acceptance environment?
— Metric 2: Percentage of rejected features/issues/user stories during accept‐

ance testing. You could take the average for each sprint. Expect a down‐
ward trend. Investigate acceptance test rejections to see whether human
error played a role, or unclear expectations, configurations, or require‐
ments. This metric indicates how well code is developed and tested, but
also signals how well the test and acceptance environments are aligned.

— Question 3: How long are the feedback cycles on average?
— Metric 3: Time between checking in erroneous code into version control

and discovery of issue. The timeline can be determined after analysis of
the bug, sifting through version control. Tracing the issue is clearly easier
if you follow the version control guideline on doing specific commits with
issue IDs (refer back to “Commit Specifically and Regularly” on page 30).
Expect this metric to follow the feature phase time, and expect a declining
trend.

This model is initially designed to obtain a baseline: the initial value from which you
can measure improvement. Consider the first metric: the time spent in each phase
combined with the duration of feedback cycles gives you information on how well
development moves through the DTAP street. In combination these metrics can help
you understand where improvements are possible. For example, when issues seem to
take a long time to resolve, an underlying problem could be that the team members
are unevenly distributed over the different environments. It could be that there are
too many developers compared to the number of testers, so that the testers cannot
keep up the work, resulting in a longer phase time in the testing environment.

For this, you can use the following GQM model:

• Goal B: To understand whether the team is properly staffed/distributed over the
DTAP environments.
— Question 4: Is the development capacity balanced with the testing capacity?

— Metric 4a: Number of work items for testers. Ideally, the amount of work
should be stable and according to the testing capacity; that is, the metric
moves toward a stable “standard backlog.” If the backlog is rising it seems
that testers cannot keep up with the load. That may lead to different causes
(e.g., a lack of test capacity, a lack of test automation, or unclarity of
requirements).

— Metric 4b: Workload for different roles (developers, testers, infrastructure
specialists). Depending on the exact composition of the team, the distribu‐
tion of the team might be uneven. This can be measured by monitoring

5.3 Measuring the DTAP Street in Practice | 43

www.ebook3000.com

http://www.ebook3000.org

actual working hours (as present in your time registration). Comparable
to the number of work items for testers, a growing number of working
(over)hours signals that a backlog is building up. You would have to
assume that team members are writing hours consistently and accurately.

— Question 5: Are issues resolved at a faster pace than they are created?
— Metric 5: The sum of created issues versus resolved issues, averaged per

week. This would exclude closed issues that are unresolved. A negative
sum signifies that the backlog is shrinking and that the team can manage
the issue load. Expect a downward trend that stabilizes at a point where
the number of created issues is on average about the same as the number
of resolved issues. That signifies that the influx of issues can be managed,
even when taking into consideration peaks and troughs. In Figure 5-4, the
surfaces signify whether more issues are resolved than created (green) or
whether the backlog is growing (red).

Figure 5-4. Created versus resolved issues per day

With this GQM model you can determine whether a bottleneck exists in your staff‐
ing: when testing work is piling up, maybe more testers or different/better tests are
needed. Or the other way around, when testers are not occupied, you may want to
increase the number of developers. Over time you can determine norms that are con‐

44 | Chapter 5: Control Development, Test, Acceptance, and Production Environments

sidered “business as usual;” for example, a 1:1 relationship between development and
testing effort.

Consider that it is advantageous to split functionality into small parts so that they
reach the testing and acceptance phases more quickly. In terms of automation and
tooling you can also improve the speed and predictability of code through the devel‐
opment pipeline with the help of the following:

• Automate your tests to speed up the two testing phases (see Chapter 6)
• Implementing Continuous Integration to improve the speed and reliability of

building, integrating, and testing code modifications (see Chapter 7)
• Automate deployment (see Chapter 8)

These practices are discussed in the following chapters. Notice that test automation is
placed before Continuous Integration because an important advantage of using Con‐
tinuous Integration servers is that they kick-off tests automatically.

5.4 Common Objections to DTAP Control Metrics
Objections against controlling the DTAP street concern perceptions of slowing down
development or the idea that it is unnecessarily complex to distinguish test and
acceptance environments.

Objection: A Controlled DTAP Street Is Slow
“Controlling DTAP will actually slow down our development process because we need
more time to move our code between environments.”

There may be some overhead time to move code from the development environment
to the test environment and from the test environment to the acceptance environ‐
ment. But you “win back” that time when bugs arise: analyzing bugs will be faster
when you know in what phase they occur, as it gives you information about their
causes. Moreover, these transitions are suited for automation.

The pitfall of controlling different environments is to end up with a classical “nothing
gets in” kind of pipeline, with formal tollgates or entry criteria (e.g., some sort of rigid
interpretation of service management approaches such as ITIL).

5.4 Common Objections to DTAP Control Metrics | 45

www.ebook3000.com

http://www.ebook3000.org

Objection: There Is No Need to Distinguish Test and Acceptance
Environments
“We can do all the testing, including acceptance testing, in one environment, so it is
unnecessarily complex to create a separate acceptance environment.”

An acceptance environment requires an investment to have it resemble the produc‐
tion environment as much as possible. But this has several advantages. First, you can
distinguish better between integration issues (essentially of technical nature) and
acceptance issues (which typically have a deeper cause). Second, it distinguishes
responsibilities in testing. When acceptance testing starts, the technical tests should
all have passed, which provides extra certainty that the system will behave well. Then,
acceptance tests can make assumptions about the system’s technical behavior. This
narrows down the scope somewhat for acceptance tests. Of course, to what extent
those assumptions hold depends on whether the configuration in the test environ‐
ment is sufficiently representative of production.

5.5 Metrics Overview
As a recap, Table 5-1 shows an overview of the metrics discussed in this chapter, with
their corresponding goals.

Table 5-1. Summary of metrics and goals in this chapter

Metric # in text Metric description Corresponding goal
DTAP 1 Average feature phase time DTAP phase effort

DTAP 2 Percentage of features that fail during acceptance testing DTAP phase effort

DTAP 3 Feedback cycle time DTAP phase effort

DTAP 4a Number of work items for testing Team distribution and workload

DTAP 4b Workload of different roles Team distribution and workload

DTAP 5 Sum created versus resolved issues Team distribution and workload

With a controlled DTAP street, you are in a good position to shorten feedback cycles
and delivery times. The next three chapters are aimed at achieving those goals
through automated testing (Chapter 6), Continuous Integration (Chapter 7), and
automated deployment (Chapter 8).

46 | Chapter 5: Control Development, Test, Acceptance, and Production Environments

Experience in the Field
In our development process assessment work, we check for the existence of separate
environments, and we inspect how closely the production circumstances are simula‐
ted in the test environment (think data, infrastructure, configurations, etc.).

Having separate environments for development, testing, acceptance, and production
is something we consider a basic practice: it is increasingly rare to see organizations
in which that separation is not in order.

The difficult part is gaining control over the environments. There are many situations
we have seen where test data does not represent production data well. This is not nec‐
essarily a problem, but can lead to unforeseen issues in production that you want to
catch beforehand. We regularly see situations where development teams are not
allowed to replicate all production data, either for privacy or for cost reasons. Those
reasons may be valid. We stress that business representatives should make an explicit
trade-off and determine whether the risks of nonrepresentative data (e.g., unpredicta‐
ble reliability or performance) are acceptable.

Those risks vary with the system’s usage intentions and requirements. A core banking
application certainly needs representative test data for testing reliability, whereas an
HR system that is allowed to be offline for a day may not benefit a lot from investing
in creating a (mock) dataset.

Our benchmark shows that, even though we classify separation of DTAP as a basic
practice, in reality it appears much harder. It appears as an intermediate practice with
less than 40% not fully applying it (Figure 5-5).

Figure 5-5. Benchmark results on proper control of DTAP in development teams

5.5 Metrics Overview | 47

www.ebook3000.com

http://www.ebook3000.org

CHAPTER 6

Automate Tests

Beware of bugs in the above code; I have only proved it correct, not tried it.
—Donald Knuth

Best Practice:

• Write automated tests for anything that is worth testing.
• Agree on guidelines and expectations for tests and keep

track of test coverage.
• Automated tests help to find and diagnose defects early and

with little effort.

The advantages of automation are easy to recognize. Automated tasks are effortless to
run. The more often an automated task is executed, the more you are saving. In addi‐
tion to saving time and effort for repeating the same tasks, it also removes opportu‐
nity for error. Therefore it adds reliability to your development process. This leads to
less rework and thus faster development. Of course, to automate something, you need
to invest in the automation itself and its maintenance (maintaining test code, script,
test data, etc.). After the investment, you save time at each repeat. You should aim to
automate as much as feasible in the development pipeline, as that gives developers
more time to spend on other, creative tasks. You should also make it easy for yourself
by using testing frameworks and tooling as much as possible.

Testing tasks are excellent candidates for automation. Table 6-1 provides a summary
of the different testing types.

49

www.ebook3000.com

http://www.ebook3000.org

Table 6-1. Types of testing

Type What it tests Why Who
Unit test Behavior of one unit in isolation Verify that units behave as

expected
Developer (preferably
of the unit)

Integration test Joint behavior of multiple parts (units,
classes, components) of a system at once

Verify that parts of the
system work together

Developer

End-to-end (or system)
test

System interaction (with a user or
another system)

Verify that system behaves
as expected

Developer/tester

Regression test (may be
unit/integration/end-to-
end test)

Previously erroneous behavior of a unit,
class, or system interaction

Ensure that bugs do not
reappear

Developer/tester

Acceptance test (may be
end-to-end test if
automated)

System interaction (with a user or
another system)

Confirm the system
behaves as required

End-user
representative (never
the developer)

Note that in Table 6-1, only unit tests are white-box tests, in which the inner workings
of the system are known to the tester. The other tests operate on a higher level of
aggregation. Thereby they are making assumptions about the system’s internal logic
(black-box tests). Different types of testing call for different specialized automation
frameworks. Test frameworks should be used consistently and, therefore, the choice
of test framework should be a team decision. The way in which (testing) responsibili‐
ties are divided may differ per team. For example, writing integration tests is a speci‐
alized skill that may or may not reside within the development team, but unit testing
is a skill that every developer should master.

6.1 Motivation
Automated tests increase confidence in the reliability of your code. Automated tests
find causes of problems early and help to reduce bugs in your code.

Automated Testing Finds Root Causes of Bugs Earlier with Little Effort
Automated tests give more certainty on the root cause of problems because they are
executed consistently. Therefore, if a test executes a piece of code at two different
points in time yet gives different results, you know that something has changed in the
system to cause that outcome. With manual tests you do not have the same amount of
certainty.

Because automated tests generally run fast and their effort for execution is negligible,
they allow for early identification of problems. This early identification limits the
effort it takes to fix problems: when a bug is found later in the development pipeline
it will certainly require more effort to fix it. Consider that the (development) capacity
to fix problems is costly and scarce when a release deadline approaches.

50 | Chapter 6: Automate Tests

This is why acceptance tests should ideally be automated as much as possible. Func‐
tionality visible to users can be tested with frameworks that simulate user behavior
and can “walk through” the user interface. An example is scripted user interaction
through the screen, for which frameworks may provide a specific scripting language.
This is especially useful for simulating browser interaction in web applications.

Automated Testing Reduces the Number of Bugs
Automated tests help your software become “more bug-free” (there is no such thing
as bug-free software). Take, for example, unit tests and integration tests: they test the
technical inner logic of code and the cohesion/integration of that code. Certainty
about that inner working of your system avoids introduction of bugs (not all, of
course). Therefore, unit tests allow for an effortless double-check of the entire code‐
base (isolated in units, of course), before turning to the next change.

Writing tests also has two side effects that help reduce bugs:

• By writing tests, developers tend to write code that is more easily testable. The act
of designing the tests makes developers rethink the design of the code itself:
clean, simple code is testable code. If a developer finds that units are hard to test,
it provides a good reason and opportunity to simplify those units. This is typi‐
cally done by refactoring—for example, separating responsibilities into units, and
simplifying code structure. Writing tests thus results in code that is easier to
understand and maintain: you easily consider that to be higher quality code.
Some development approaches advocate writing a unit test before writing the
code that conforms to the test (this approach is popularized as Test-Driven Devel‐
opment or TDD). TDD leads to writing methods that have at least one test case
and therefore TDD tends to deliver code with fewer errors.

• Tests document the code that is tested. Test code contains assertions about the
expected behavior of the system under test. This serves as documentation for the
assumptions and expectations of the system: it defines what is correct and incor‐
rect behavior.

Keep in mind that tests only signal problems; they do not solve
their root cause. Be aware that a team may acquire a false sense of
security when all tests pass. That should not release them from crit‐
ically reviewing code smells.

6.1 Motivation | 51

www.ebook3000.com

http://www.ebook3000.org

6.2 How to Apply the Best Practice
Based on our experience, we discuss the most important principles for achieving a
great level of test automation. Come to clear agreements on tests and implement the
right range of them. Make sure that those tests limit themselves to the things you
want to test. Then plan and define responsibility for their maintenance:

Agree on guidelines and expectations for tests
It is helpful to formalize test guidelines as part of the Definition of Done (see also
Chapter 3). The principles described in this section further help you define what
criteria should be adhered to for developing, configuring, and maintaining tests.

All relevant tests are in place
The development team must agree on which tests need to be in place and in what
order. Generally the order moves from detailed, white-box testing to high-level,
black-box testing (see Table 6-1). Unit tests are most critical, as they provide cer‐
tainty about the technical workings of the system on the lowest level. The behav‐
ior of code units is often the root cause of problems. You can therefore consider
unit tests to be a primary safeguard against repeated defects (regression). But
unit tests are no guarantee. This is because their isolated nature on the unit level
does not tell you how the system performs as a whole. So higher-level tests always
remain necessary.

Therefore, the high-level tests such as integration tests and end-to-end tests give
more certainty about whether functionality is broken or incorrect. They are more
sparse as they combine smaller functionalities into specific scenarios that the sys‐
tem likely encounters. A specific and simple form of end-to-end testing is to con‐
firm that basic system operations are in good order. For example, testing whether
the system is responsive to basic interaction or testing whether system configura‐
tion and deployment adhere to technical conventions. They are commonly
referred to as smoke tests or sanity tests. Typical examples of frameworks that
allow for automated (functional) testing include SOAPUI, Selenium, and Fit‐
Nesse.

The occurrence of bugs (or unexpected system behavior) is an
opportunity to write tests. These tests will verify that the bugs do
not reappear. Make sure to evaluate such situations, such that the
team learns in terms of, for example, sharper specifications or
requiring similar tests in the DoD.

Good tests have sufficient coverage
A rule of thumb for unit test coverage is to have 80% line coverage. This refers to
the percentage of lines of code in your codebase that are executed during those

52 | Chapter 6: Automate Tests

http://www.soapui.org
http://seleniumhq.org
http://www.fitnesse.org
http://www.fitnesse.org

unit tests. In practice, this roughly translates to a 1:1 relation between the volume
of production code and test code. A 100% unit test coverage is unfeasible,
because some fragments of code are too trivial to write tests for. For other types
of tests, the most important test scenarios must be defined.

Good tests are isolated
The outcomes of a test should only reflect behavior of the subject that is tested.
For example, for unit testing, this means that each test case should test only one
functionality. If a test is isolated to a certain functionality, it is easier to conclude
where deviations from that functionality are coming from: the cause is restricted
to the functionality it is testing. This principle is rather straightforward, but also
requires that the code itself has a proper isolation and separation of concerns. If
in a unit test the state or behavior of another unit is needed, those should be
simulated, not called directly. Otherwise, the test would not be isolated and
would test more than one unit. For simulation you may need techniques like
stubbing (here: a fake object) and mocking (here: a fake object simulating behav‐
ior). Both are substitutes for actual code but differ in the level of logic they con‐
tain. Typically a stub provides a standard answer while a mock tests behavior.

Test maintenance is part of regular maintenance
Written tests should be as maintainable as the code that it is testing. When code
is adjusted in the system, the changes should be reflected in tests, unit tests par‐
ticularly. Part of regular maintenance is therefore that developers check whether
code changes are reflected in modified and new test cases.

6.3 Managing Test Automation in Practice
Imagine that your team has identified a backlog for developing tests. The team is
starting up, so to say. Unit test coverage is still low, there are a few integration tests,
and no end-to-end tests yet. The team therefore depends largely on feedback from
the acceptance tests for identification of bugs. Sometimes those bugs are identified
only in production. When (regression) defects are found, they go back to develop‐
ment. The team wants to catch problems earlier. Let us consider the following GQM
model formulated from the viewpoint of the team lead. Again, note that initial meas‐
urements can serve as a baseline for later comparison. The ideal state would be
defined in the DoD and an idea of the future state should appear from a trend line.
Even when the ideal level for a metric is unknown, you can tell whether you are
improving. Then, changes in the trend line ask for investigation. It is now important
for you to understand how you can efficiently and effectively focus efforts on writing
tests:

• Goal A: Knowing the optimal amount of automated tests (i.e., the point where
writing automated tests costs more effort than the extra certainty they offer).

6.3 Managing Test Automation in Practice | 53

www.ebook3000.com

http://www.ebook3000.org

— Question 1: What is the reach/coverage of our automated tests for functional
and nonfunctional requirements?
— Metric 1a: Unit test coverage. Unit test coverage is a metric that is well

suited for a specific standard. The easiest way to measure this would be
line coverage, with an industry standard objective of 80%. The coverage
may of course be higher if developers identify a need for that. A higher
coverage gives more certainty, but in practice 95% is about the maximum
coverage percentage that is still meaningful. That is typically because of
boilerplate code in systems that is not sensible to test, or trivial code that
does not need to be tested all the way.

— Metric 1b: Number of executed test cases grouped by test type. Expect an
upward trend. Clearly this metric should move upward together with the
number of tests developed. However, there may be reasons to exclude cer‐
tain test cases. Exclusion needs some kind of documented justification
(e.g., excluding when test cases are currently not relevant).

— Question 2: How much effort are we putting into developing automated tests?
— Metric 2a: Number of test cases developed per sprint, ordered by test type.

Expect an upward trend until the team gets up to speed and gains experi‐
ence with test tooling. Because different test cases/scripts are typically pro‐
duced with different frameworks (e.g., performance, security, GUI tests),
they have different productivity. Therefore they should be compared
among their own type. After some fundamental tests are in place, expect
the number of tests developed to drop over time. However, they will still
be maintained. Source for this metric could be, for example, the Continu‐
ous Integration server or a manual count.

— Metric 2b: Average development + maintenance effort for tests ordered by
test type. Expect the effort for developing and maintaining tests to drop on
average as the team gains experience and as some fundamental tests are in
place. Maintenance effort could be a standard ratio of maintenance work
or be separately administrated.

— Question 3: How much benefit do automated tests offer us?
— Metric 3a: Total development + maintenance effort for integration/regres‐

sion/end-to-end tests divided by number of defects found. Initially, expect a
correlation between a higher test development effort and fewer defects
found. This would signify that tests become better over time in preventing
defects. As the system grows naturally, more defects may occur because of
more complex interactions. Therefore, the effect between test develop‐
ment effort and declining number of defects will weaken over time. Unit
tests may be excluded as should be part of regular development and there‐

54 | Chapter 6: Automate Tests

fore you can assume that time for writing unit tests is not separately regis‐
tered.

— Metric 3b: Manual test time in acceptance environment. With an increase
in test automation, expect a downward trend in manual test time. It may
stabilize at some “minimum amount of manual acceptance testing.” Some
development teams do achieve a full automation of acceptance testing but
your organization might not have that ambition and constellation. In par‐
ticular, ambitions would need to translate to costs and efforts of automat‐
ing acceptance tests, and that is rather uncommon. There is an advantage
of keeping part of acceptance tests manual: keeping in contact with users
with the help of demos after each sprint (sprint reviews) also provides
unforeseen feedback on usability, for example.

— Metric 3c: Manual test time in acceptance divided by number of defects
found in acceptance. This metric can help you to determine whether full
acceptance test automation is a realistic goal. In general, the correlation is
positive: the less time you spend on manual acceptance testing, the fewer
defects you will find; the more time you spend, the more you will find. But
with a high level of test automation, outcomes of additional manual
acceptance tests should not surprise you. At some point you should find
that extra effort spent in manual acceptance testing identifies no more
bugs.

— Metric 3d: Velocity/productivity in terms of story points per sprint. You can
compare the velocity within a sprint with the average velocity over all
development of the system. Initially you may expect an upward trend as
the team gets up to speed and moves toward a stable rate of “burning”
story points each sprint. We also expect productivity to gain with better
tests. The velocity may be adversely affected by improperly implemented
version control (because of merging difficulties after adjustments). The
story point metric clearly assumes that story points are defined consis‐
tently by the team, so that a story point reflects approximately the same
amount of effort over time.

Achieving the goal of optimizing the number of automated tests (Goal A) requires
careful weighing. The question of whether you are doing enough testing should be
answered by trading off risks and effort. With a mission-critical system the tolerance
for bugs may be much lower than for an administrative system that does not cause
too much trouble if it happens to be offline. A simple criterion to determine whether
enough tests have been written is answering the question “does writing a further test
really isolate a use case or situation that is not covered by other tests?” If the answer is
“no,” your test writing efforts may be complete enough for the moment. However,
tests need maintenance and fine-tuning for changing circumstances, such as adjust‐

6.3 Managing Test Automation in Practice | 55

www.ebook3000.com

http://www.ebook3000.org

ing the datasets for performance tests when functionality has changed. So testing, just
like development, never really stops.

One way of visualizing test coverage is by using a treemap report: a chart that shows
how big parts of your codebase are and how much of it is covered by tests (they could
be unit tests, but also integration tests). Figure 6-1 shows a simplified visualization.

Figure 6-1. An example treemap test coverage report

Although such an image is not ideal for discovering a trend in your test coverage, it
gives you insight into the overall test coverage of your system. In Figure 6-1, you can
see that the database layer is hardly covered by tests, as well as the user interface part
of the system. This does not need to be a problem, but asks for some analysis.
Database-related code should normally not include a lot of logic and you should
therefore expect tests in the database abstraction layer. Depending on your priorities,
you may want to increase these test coverages or you may want to focus on getting,
for example, the business logic layer fully covered.

Once you have more insight on the status of your test coverage, you can also better
estimate the weak spots in your codebase:

• Goal B: Knowing our weak spots in code that automated tests should catch.
— Question 4: Based on test results, how well is our code guarded against known

defects?
— Metric 4a: Total of passed and failed tests ordered by test category. Expect a

consistently high ratio of passed versus failed tests. Failed tests are not
necessarily a problem. In fact, if tests never fail, they may not be strict
enough or otherwise they may not have proper coverage of functionality.
A sudden increase of failing tests definitely demands investigation. It
could be that newer tests are of lesser quality, but also that test assump‐
tions have changed that have not been taken into account yet.

56 | Chapter 6: Automate Tests

— Metric 4b: Percentage of failed tests blocking for shipment (has highest
urgency). Expect a consistent low toward zero. Deviations ask for investi‐
gation.

— Metric 4c: Percentage of failed unit tests for each build. Expect a consistent
low percentage. Unit tests should fail sometimes, but they may signify that
certain pieces of code are particularly complex or entangled. That may be
a good starting point for refactoring efforts.

— Metric 4d: Number of defects found in Test, Acceptance, and Production.
This applies to all defects such as disappointing performance or found
security vulnerabilities, but notably regression bugs can be well identified
and prevented by tests. Therefore, the ideal number is zero but expect that
to never happen. Do expect a downward trend and decreasing percentages
between Test, Acceptance, and Production. The later the bugs are found,
the more effort they require to solve. They may also signify the complexity
of the bugs and give you new information about how tests can be
improved.

— Question 5: How well do we solve defects when they are identified?
— Metric 5a: Average defect resolution time after identification. Consider the

average resolution time for the current sprint and compare with the aver‐
ages of all sprints. Expect a downward trend over time toward a stable
amount of time needed to resolve defects, as tests are becoming more
advanced. When comparing trends on system or sprint levels, you can tell
whether in the current sprint, solving defects was easier or tougher than
normal.

— Metric 5b: Number of reoccurrences of the same or similar bug. Expect a
downward slope with an ideal count of zero. Good tests particularly
should avoid regression bugs from reappearing. This assumes mainly that
reoccurrences are traceable. See also the following assumptions.

Assumptions Regarding These Metrics
Again we will make some assumptions about the nature of the metrics. These
assumptions should allow us to keep the metrics fairly simple and help understand
possible explanations of unexpected trend behavior.

For the metrics discussed here, consider the following assumptions:

• Defects cannot be avoided completely but good tests identify failures/regression
bugs quickly. This shortens the feedback loop and thus the development time
needed to fix a defect.

6.3 Managing Test Automation in Practice | 57

www.ebook3000.com

http://www.ebook3000.org

• On average, the odds of bugs and defects occurring within a system are roughly
the same. We know this is not true in practice, because as a system grows in size
and complexity, code tends to become more entangled and therefore there are
more possibilities of defects occurring. However, we want to keep this assump‐
tion in mind because good tests should still ensure that these bugs are caught
early.

• We ignore weekends/holidays for the defect resolution metrics. Refer back to the
discussion in “Make Assumptions about Your Metrics Explicit” on page 15.

• Defects (in production) will be reported consistently when they occur. This
assumption keeps us from concluding too quickly that a change in the number of
defects is caused by a change in user behavior or defect administration.

• Defects are registered in a way that reoccurrences refer to an earlier defect with,
for example, a ticket identifier.

• Defects are preferably registered with an estimate of resolution effort. However, it
is generally beneficial to leave the defect effort estimates out of consideration, as
otherwise we are essentially measuring how good the team is at effort estimation.
What we really want to know is how good the team is at resolving defects. If
those defects always happen to be tough ones, it is fair to investigate whether
those large defects could have been avoided with code improvements and more,
better tests.

• Hours of effort are registered in a way specific enough to distinguish different
types of development and test activities, for example, as development time for
tests, and time for manual acceptance tests.

• Writing unit tests is considered as an integral part of development and therefore
not separately registered.

6.4 Common Objections to Test Automation Metrics
In this section, we discuss some common objections with respect to automating tests
and measuring their implementation. The objections deal with the visibility of failing
tests in production and the trade-off for writing unit tests.

Objection: Failing Tests Have No Noticeable Effects
“In our measurements we see that tests keep failing but they do not have noticeable
effects in production.”

Situations exist where tests fail consistently while their effects are unclear. When
using a metric for the number of failing tests, this seems to distort measurements.
Remember that outliers in measurement always warrant an investigation into the
causes. Consider two examples:

58 | Chapter 6: Automate Tests

Suddenly failing regression tests
Tests may fail because of changes in test data, test scripts, external systems’
behavior or data, or the test environment itself (tooling, setup), etc. Changes in
any of the aforementioned may have been intentional. However, they still ask for
analysis of the causes and revision of the tests.

Consistently failing unit tests without noticeable effects
Failing unit tests are a showstopper for going to production! However, we know
from experience that this occurs. An explanation can be that the failing unit tests
concern code that does not run in production (and thus the test should be adjus‐
ted). It is more likely that effects are not noticeable because functionality is rarely
used, or because the test is dependent on rare and specific system behavior. In
fact, such rare and specific circumstances are typically the cases for which unit
tests are insufficiently complete: tests should fail but they do not, because they
have not been taken into account during development.

Thus, tests that fail but do not (immediately) have noticeable effects in produc‐
tion can still be highly useful tests. Remember that functionality that is rarely
used in production may still be used at any moment and could even become fre‐
quently used in the future. Your automated tests should give you confidence for
those situations as well.

Objection: Why Invest Effort in Writing Unit Tests for Code That Is
Already Working?
“Why and to what extent should we invest in writing extra unit tests for code that
already works?”

The best time to write a unit test is when the unit itself is being written, because the
reasoning behind the unit is still fresh in the developer’s mind. When a very large sys‐
tem has little to no unit test code, it would be a significant investment to start writing
unit tests from scratch. This should only be done if its effort is worth the added cer‐
tainty. The effort is especially worth it for critical, central functionality and when
there is reason to believe that units are behaving unpredictably.

A common variation of this objection is that there is no time to write (unit) tests
because developers are pushed to deliver functionality before a deadline. This is
unfortunately common but very risky. We can be curt about this: no unit tests means
no quality. If all else fails, the team may choose to write higher-level tests that add
confidence on the functionality such as interfaces and end-to-end tests. However,
without proper unit testing you will lack confidence knowing whether or not the sys‐
tem arrives at the right output by accident or not.

6.4 Common Objections to Test Automation Metrics | 59

www.ebook3000.com

http://www.ebook3000.org

Make it a habit for all developers to review (or add) unit tests each
time units are changed or added. This practice of leaving code bet‐
ter than you found it is known as the “Boy Scout Rule.” Consider
that it is especially worth refactoring code during maintenance
when unit test coverage is low because the code is hard to test.

6.5 Metrics Overview
As a recap, Table 6-2 shows an overview of the metrics discussed in this chapter, with
their corresponding goals.

Table 6-2. Summary of metrics and goals in this chapter

Metric # in text Metric description Corresponding goal
AT 1a Unit test coverage Optimal amount of testing (coverage)

AT 1b Executed test cases Optimal amount of testing (coverage)

AT 2a Developed test cases Optimal amount of testing (investment)

AT 2b Test case development/maintenance effort Optimal amount of testing (investment)

AT 3a Development effort versus defects Optimal amount of testing (effectiveness)

AT 3b Manual acceptance test time Optimal amount of testing (effectiveness)

AT 3c Manual acceptance test time versus defects Optimal amount of testing (effectiveness)

AT 3d Velocity Optimal amount of testing (effectiveness)

AT 4a Passed versus failed tests Robustness against bugs

AT 4b Percentage failed blocking tests Robustness against bugs

AT 4c Percentage failed unit tests for each build Robustness against bugs

AT 4d Defects found in Test, Acceptance, Production Robustness against bugs

AT 5a Average defect resolution time Defect resolution effectiveness

AT 5b Reoccurrences of same bug Defect resolution effectiveness

To fully benefit from automated tests you must integrate test runs in the development
pipeline so that they are also kicked off automatically. Notably this concerns unit tests
as part of the build cycle. Chapter 7 elaborates on this.

60 | Chapter 6: Automate Tests

Experience in the Field
Because we believe that testing is paramount to high-quality software, we assess it
extensively in our daily work. Notably we benchmark the maturity of an organiza‐
tion’s testing strategy and the fitness of tests given the requirements.

We see that having a clear test strategy is already quite difficult: you need to think
about the types of tests you perform, how much coverage you require, and then
ensure that this strategy is known to everyone involved.

Requirements testing turns out to be an advanced practice, only fully applied by 13%
of the teams. Often testing criteria are not defined at all, or they are not SMART. We
also see cases where SMART test criteria are defined, test results are available, but
they are not looked into until problems occur in production.

This leads to the benchmark result shown in Figure 6-2.

Figure 6-2. Benchmark results on proper (automated) testing in development teams

6.5 Metrics Overview | 61

www.ebook3000.com

http://www.ebook3000.org

CHAPTER 7

Use Continuous Integration

Fall seven times, stand up eight times
—Japanese proverb

Best Practice:

• Achieve Continuous Integration by setting up a CI server
after you have version control, build automation, and automa‐
ted tests in place.

• Keep track of the build time and test time.
• This improves the development process because it relieves

developers of building the system and it shortens the feed‐
back loop of issues.

The term continuous in Continuous Integration (CI) says it all: continuously integrate
(merge) code. CI puts into practice the idea that code integration and building should
be done as often as possible. The integration happens at each commit to a CI server
that merges the commit into a central repository. Fortunately, most CI servers do
more: after each commit, they perform a clean checkout of the branch that was
changed, build it, and perform the supplied tests (unit, integration, and regression
tests). Running automated tests is not “required” in order to be called CI, but why
would you not? Using a CI server is a great opportunity to have your tests run auto‐
matically. You can even automate further and run additional scripts after successful
builds, to achieve automated deployment. The latter is a topic for Chapter 8.

63

www.ebook3000.com

http://www.ebook3000.org

7.1 Motivation
Continuous Integration speeds up development because it is fast, has short feedback
cycles, and is more reliable than manual integration. Thereby it allows for further
automation steps such as “continuous delivery.”

CI Is Efficient
With test automation as part of the CI server, developers are relieved from tedious
manual integration efforts and integration testing. Because automated tests are fast
and effortless, you can frequently test your system. This controls the consequences of
human error: instead of fearing that integration goes wrong, you merge and test code
as often as possible.

Of course, when merge conflicts happen during a commit, the version control system
asks the developer which change should take precedence over the other.

CI Gives Feedback Quickly and Thereby Speeds Up Bug Fixing
CI gives developers quick feedback on whether integration of code succeeds. Quick
feedback means identifying problems early, when they are relatively easy to fix. Imag‐
ine that your team integrates all code at the end of the week, and it turns out that
application builds fail because of integration errors. This can mean a lot of work and
code reversions in order to get things to work again.

CI Is More Reliable Than Manual Merging
With CI, the building, merging, and testing process is consistent. As with all automa‐
ted tasks, this consistency avoids a fair level of human error. A CI server should start
processing a commit with setting up a clean checkout. That controls the risk that
cached files or a corrupted database will influence the build process.

CI Facilitates Further Automation
Using a CI server paves the way for other kinds of “continuous” development such as
“continuous delivery.” Continuous delivery shares the goals of automating the devel‐
opment pipeline as much as possible and achieving short iterations of deploying new
code. Continuous delivery implies that you can deliver each code modification into
production. This demands a high level of certainty on whether the system is working
as intended. Therefore, it is a horizon for developers as to what can be achieved by
automating tests and deployment.

64 | Chapter 7: Use Continuous Integration

7.2 How to Apply the Best Practice
Before you can achieve CI, you need three things: version control, automated builds,
and (obviously) a CI server. In particular, to get the most out of CI you need automa‐
ted tests: CI without testing will do nothing more than tell you whether the code can
be merged and compiled.

Requirement: Version Control
To integrate code automatically after each commit, you need a version control system.
This is also necessary for the CI server to initiate a build on the central code reposi‐
tory. See Chapter 4 for elaboration on the use of version control.

Requirement: Automated Builds
The CI server will need build scripts and configurations (i.e., configuration of code
structure and conventions) in order to execute builds. It is important that you are able
to synchronize configuration files from developers, not just for Integrated Develop‐
ment Environments (IDEs) but also for databases and any other elements that may be
customized for their development environment. In this way, newly introduced depen‐
dencies are taken into account when the CI server executes new builds.

Requirement: CI Server
A CI server is a dedicated server that checks out code from version control, uses the
build scripts and configurations to execute builds, and performs tests after building.
For basic setups and mainstream technologies, most CI servers already have default
build tools, so this can save you time. For less common technologies, you may need to
adapt your CI server configuration to accommodate the desired build tools.

Requirement: Automated Tests
Strictly speaking, when you have set up the previous parts, you already have Continu‐
ous Integration in place. But really you should add automated testing to the mix. A CI
server is the ideal tool to perform all necessary unit, integration, and regression tests
immediately and report the results to developers.

Additions to the CI Server
Most CI servers allow the execution of additional scripts, depending on the outcome
of a build. So you can add deployment scripts on successful builds when you have
automated your deployment process (this is the subject of Chapter 8). When the
build fails, the CI server notifies you and points you to the failing tests. Typically you
will have a quick overview of which unit tests have failed on which lines, and whether
this was due to, for example, unexpected values or a compile/syntax error.

7.2 How to Apply the Best Practice | 65

www.ebook3000.com

http://www.ebook3000.org

Important Best Practices for CI
Continuous Integration works by virtue of regular commits and quick builds.

If commits are not done on a regular basis—say, at least daily—you can still end up
with integration errors that are hard to fix. After all, after a day a lot of time has been
spent writing code that may break the build. The person fixing it (not necessarily the
one who “broke it”) has to go through a lot of code. So commits should be done regu‐
larly, as often as possible. This assumes that tasks can be broken down into pieces of
work that take less than a day, but that is normally not a problem.

With branching, separate builds and tests become a greater concern. If developers use
a new branch for every feature they implement, they should be built and tested
through the CI server before they are merged into the master branch. This require‐
ment can be configured in the CI server. In this way, you ensure that developers must
have a successful build before they merge their new feature into the master branch.
This is notably helpful when developers are making feature branches that need exten‐
sive testing (which may be the reason to use feature branches in the first place). This
sounds trivial, but may be of particular concern when development teams are scat‐
tered geographically and/or have different release cycles.

When an application grows really large, it could be that build and test times increase
to a point where it becomes impractical to always build after every commit. This
should not happen too easily and it is a cue to revisit the design of the system to be
able to build smaller parts. However, most CI servers can also cope with this techni‐
cally. They allow parallel build jobs and dependency caching to speed up your builds.
Of course, when changes are layered upon each other and build/test jobs take a long
time, there is still a risk that after a certain change, all other changes need revisiting as
well.

7.3 Controlling Continuous Integration
With the advantages of CI in speed, reliability, and flexibility, you would expect that
your development process is speeding up with fewer issues. Fundamentally you
would like to know whether and how productivity is improving. To have more confi‐
dence in a successful implementation of CI for your team, consider the following
GQM model and metrics.

66 | Chapter 7: Use Continuous Integration

For the following metrics, the value is again mostly in large deviations, since these
signal a problem. In agreement with the team you should determine a norm for
which test and build durations are “short” enough.

• Goal A: Understanding how CI influences development productivity.
— Question 1: Do our developers receive timely feedback on integration errors?

— Metric 1: Average feedback time after a commit. Compared to a situation
without CI, the feedback time will be lower, as CI deals with building and
testing automatically. Over time, expect the trend line to go up: as the
codebase grows, more tests are written and builds take more time. Because
codebase volume of systems in maintenance is typically a few percent per
year, those times should not raise alarms. The interest of this metric is
mostly in large deviations, which warrant an investigation: is new develop‐
ment somehow too complex? Are tests being skipped?

— Question 2: Can we integrate/merge fast enough?
— Metric 2a: Average build time (comparing builds of the master branch).

Expect a downward trend of this metric if you are comparing with a situa‐
tion without CI. Expect a slight upward trend line over time as the size of
the codebase grows.

— Metric 2b: Average test run time per type of test. Expect this metric to be
fairly stable, assuming that the different test types (e.g., unit tests, sanity
checks, end-to-end tests) are internally consistent (i.e., for each test type,
their tests are similar in size, complexity, etc.).

In Question 2, what is “fast” is typically a comparison with the baseline. Primarily, the
feedback time depends on server processing time. So if the processing times are out
of control, it will influence all of the above metrics. You will then need to speed up the
CI process first before gaining benefits of quick feedback. Beware that speeding up
build time at the expense of creating a clean environment may lower reliability of test
results.

An easy way to see the progress of your CI server is to show the average build and test
times per week. We show a simplified example in the following figure, where results
are aggregated per week. Figure 7-1 shows an example chart that tracks the build and
test time on a weekly basis.

7.3 Controlling Continuous Integration | 67

www.ebook3000.com

http://www.ebook3000.org

Figure 7-1. Trend line of build and test times

7.4 Common Objections to Continuous Integration Metrics
Typical objections to using CI metrics concern whether its processing time can be
controlled and how one should deal with expectations of who will fix the build. They
are discussed in this section.

Objection: We Cannot Get Control Over Our Build Time
“My CI server reinstalls all dependencies when a new build is available, so we cannot
keep our build time low enough.”

We do not wish to be puritans: if reinstalls keep you from doing regular builds, do
not reinstall everything. For instance, a database does not have to be reinstalled every
time you do a build as long as you clean and refill the database with data that is con‐
sistent with other environments. Of course, the ideal is that the test data realistically
represents data in the production environment. Or you could opt for a special nightly
build that carries out reinstallation of your dependencies. For added certainty it is
more important to be sure that builds in the acceptance environment reinstall every‐
thing.

68 | Chapter 7: Use Continuous Integration

Objection: My Colleague Broke the Build, Not Me
“After my commit, the new build was broken, but I am sure my code is perfect. It is only
because the code of my colleague in the other room does not align with mine that the
build failed.”

A broken build is a broken system, so this is an urgent matter. These are the situa‐
tions that can be solved by having good agreements about what the leading principles
of build success are. If you have agreed as a team that the tests determine build suc‐
cess, then your colleague committed code that has passed the test, so your code
should be revised. If for some reason the (unit) tests are no longer adequate, then
they should have been revised in the latest commit. Who will do the fix is a matter of
agreement. Effective teams share responsibilities: if the task seems small, any devel‐
oper with available time should feel responsible to take it up and fix it.

7.5 Metrics Overview
As a recap, Table 7-1 shows an overview of the metrics discussed in this chapter, with
their corresponding goals.

Table 7-1. Summary of metrics and goals in this chapter

Metric # in text Metric description Corresponding goal
CI 1 Commit feedback time Team productivity

CI 2a Build time Team productivity

CI 2b Test run time Team productivity

When you have CI in place in a stable manner, you have already made great progress
toward continuous delivery and automation. In the following chapter, we will look at
automated deployment: automating manual configuration of environments and their
deployment.

7.5 Metrics Overview | 69

www.ebook3000.com

http://www.ebook3000.org

Experience in the Field
Continuous Integration is one of the first steps toward an automated development
pipeline. We check for the proper usage of CI by observing whether there is a CI
server used for builds, and whether the server automatically starts a build after each
commit. Additionally we check for automated test runs: when there are automated
tests, does the CI server automatically perform those when a build has passed?

The results are shown in Figure 7-2. It turns out that having Continuous Integration
is an advanced practice when we look at our collected data, although we would clas‐
sify it as intermediate in difficulty. Combining CI with automated test runs seems to
be slightly more difficult, but they correlate strongly: teams that do apply CI typically
include automated tests as well.

Figure 7-2. Benchmark results on Continuous Integration in development teams

70 | Chapter 7: Use Continuous Integration

CHAPTER 8

Automate Deployment

There should be two tasks for a human being to perform to deploy software into a
development, test, or production environment: to pick the version and environment
and to press the “deploy” button.

—Jez Humble and David Farley in Continuous Delivery

Best Practice:

• Use appropriate tools to automate deployment to various
environments.

• Keep track of deployment times.
• This improves the development process because no time is

wasted on manual deployment tasks or errors caused by
manual work.

Once your DTAP street is under control, including automated tests that are kicked off
in the development pipeline by a CI server, a further step for automation is automated
deployment. In its general sense, here we mean automatically transferring code from
one environment to the next one. Because this saves time for manual configuration
steps, deployment times to new environments may drop from hours to minutes.

Consider the difference with Continuous Integration: CI is about automating builds
and the tests that go with it, within the environment. Automated deployment is about
automation of the deployment to each environment, typically when integration
(including tests) has succeeded on the previous environment.

71

www.ebook3000.com

http://www.ebook3000.org

8.1 Motivation
When comparing automated with manual deployment, automated deployment is
more reliable, faster, more flexible, and simplifies root cause analysis.

Automated Deployment Is Reliable
Ideally, deployment automation requires no manual intervention at all. In that case,
once a build is finished and fully tested, the code is automatically pushed to the next
environment. Such a process is typically controlled by a CI server. Because this is
automated and repeatable, it minimizes the amount of (manual) mistakes and errors.

Automated Deployment Is Fast and Efficient
Automated processes run faster than manual ones, and when they need to be exe‐
cuted repeatedly, the initial investment to automate them is quickly earned back. Typ‐
ically, deployment is a specialization of deployment/infrastructure experts who know
their way around different environments. There is always “that one person” who
knows how to do it. When this process is automated, such expertise is only needed
for significant changes (in the deployment scripts) and root cause analysis of prob‐
lems.

Automated Deployment Is Flexible
By extension of its reliability and efficiency, automated deployment makes a system
more portable (the ability to move a system to another environment). This is relevant
because systems may change infrastructure multiple times in their lifecycle (mainly
the production environment, that is). Causes are various but often they are based on
considerations of scalability (dealing with temporary high loads), transfer of a hosting
contract to a new party, cost reductions, and strategic decisions (moving infrastruc‐
ture to the cloud or outsourcing it altogether).

Automated Deployment Simplifies Root Cause Analysis
Given that automation makes for a reliable (or at least consistent) process, finding the
cause of problems is easier. This is because it excludes human error. Causes are then
more likely to be found in changed circumstances (e.g., different frameworks, data,
configurations) that somehow have rendered the automation process outdated.

72 | Chapter 8: Automate Deployment

8.2 How to Apply the Best Practice
In this section, we discuss specifics on how to achieve automated deployment. The
main principle behind this is that you need to think ahead about what steps need to
be performed in the pipeline, and what that requires (e.g., in terms of configuration).

You will need at least the following controls:

Define your environments clearly
Define for each environment its goals and intended usage. An inconsistent or
unstable environment may disrupt your deployment process and makes root
cause analysis difficult. It is preferable to use virtual environments that are state‐
less in the sense that they clean themselves up after use. By “reinstalling” them
after use, you do not need to make assumptions about their configuration. See
Chapter 5 for the separation of different environments.

Define all necessary steps
What special needs does the system have for deployment? Are different versions
run in production? If so, how do they vary? Use such assumptions and invariants
for tests that check whether configuration and deployment are set up as intended.

Get your configuration right
The more uniform development environments are, the better. Script configura‐
tion defaults in a uniform manner, so that an environment can be built/rebuilt
quickly without human intervention. Your tooling should include provisioning
functionality that checks (third-party code) dependencies and installs their
appropriate versions.

Make sure you can do rollbacks early
In case of unexpected issues in production, such as performance issues or secu‐
rity bugs, you need to be able to quickly revert to an earlier version of your sys‐
tem. Also allow for a rollback during the process—for example, when the
deployment process freezes and you want to return to the begin state.

Use deployment-specialized tooling
Tooling will help you supervise and configure deployment in a consistent man‐
ner (e.g., Chef). When portability to other environments has special interest,
tooling that “containerizes” your application is especially useful (e.g., Docker).
Such tooling can package deployment configurations, required software compo‐
nents, and other dependencies in a way that testing in different environments can
be done consistently. This would benefit you if you intend to use, for example,
different operating systems or different kinds of servers.

8.2 How to Apply the Best Practice | 73

www.ebook3000.com

https://www.chef.io/
https://www.docker.com/
http://www.ebook3000.org

8.3 Measuring the Deployment Process
With deployment automation, you would expect that deployment times between
environments will decrease. By extension you can also expect overall delivery time to
decrease (from development to production). With added reliability you would also
expect a decrease in the frequency and time to analyze deployment errors. Of main
interest is then knowing whether deployment automation is helping you to achieve
improved productivity and reliability. Then consider the following GQM model:

• Goal A: Understand the impact of automated deployment on development effort
and reliability of the deployment process.
— Question 1: How much time are we gaining by automating deployment?

— Metric 1a: Difference between (former) average time spent and current
time spent on deployment from acceptance (after a manual or automatic
“go”) to production. Expect an upward trend in the beginning because of
the investment in writing deployment scripts, testing them, and setting up
tooling. Then you should expect a downward trend as the scripts and pro‐
cess become more solid and dependable. If the savings are marginal, con‐
sider where most manual work is still required (e.g., troubleshooting, fine-
tuning, error analysis) and focus on their automation.

— Metric 1b: Amount of time it takes for code to move from development to
production (as measured by the CI server/deployment tooling). When all
tests (including acceptance tests) are automated, the gains in time will be
apparent when you compare this metric with a process in which each step
needs manual intervention. Expect a downward trend over time as the
team gains experience with automating and less manual work is needed.

— Metric 1c: Percentage of overall development time spent on deployment.
By automating, expect the percentage to decrease over time. If absolute
delivery time decreases together with this percentage (thus, the relative
effort for deployment for development as a whole), you can assume you
have implemented automated deployment well.

Consider a situation in which the average deployment time (the baseline) has been
identified at 8 hours of effort and you want deployment time on average to stay below
the baseline. A trend report may then look like Figure 8-1.

74 | Chapter 8: Automate Deployment

Figure 8-1. Deployment time after automation (in week 10, deployment scripts are ready
and only minor fixes need to be performed)

• Goal A (continued):
— Question 2: Is our deployment process more reliable after automating it?

— Metric 2a: Number of deployment issues. Expect this number to drop. If
you went from manual to automated deployment, typically you may
expect a significant decrease in the number of bugs arising during deploy‐
ment, simply because human error is much less of an issue. If this change
is not visible, your deployment process may not be stable yet. That asks for
issue analysis. It is most probable that the deployment scripts are yet
unstable (faulty) or insufficiently tested. Deeper issues could be that the
production environment is inconsistent over time or is inconsistent com‐
pared to test environments. You would probably have identified that
before because it will probably distort other measurements as well.

— Metric 2b: Amount of time spent on solving deployment bugs. Expect a
downward trend line. This metric should follow the trend of the previous
metric: having fewer issues means less time fixing them. If this is not the
case, then bugs apparently are harder to fix when they appear. Then you
should investigate why that is the case.

8.3 Measuring the Deployment Process | 75

www.ebook3000.com

http://www.ebook3000.org

8.4 Common Objections to Deployment Automation
Metrics
Common objections to deployment automation (and its measurement) are that it cre‐
ates unnecessary overhead, that automated deployment to production is prohibited,
or that the developer’s technology of choice cannot be automatically deployed.

Objection: Single Platform Deployment Does Not Need Automation
“We only deploy on a single platform so there is no gain in automating our deployment
process.”

While generally it is easier to deploy on a single platform than on several platforms,
the benefits of deployment automation still hold. Automated deployment will still be
faster than manual deployment, it makes issue analysis easier (more structured), and
allows for flexibility such as switching deployment platforms. Just like code itself,
platforms requirements will change over time, though not that often. Consider
deployment platform updates, new operating systems, switches to mobile applica‐
tions, cloud hosting, 32-bit versus 64-bit systems, and so on.

Objection: Time Spent on Fixing Deployment Issues Is Increasing
“After automating deployment, we now spend more time on fixing deployment bugs!”

Automating deployment requires an elaborate investment. Time spent on fixing
deployment issues is initially part of the deal. Gain experience by doing it more often.
That experience will ease the process and solidify the scripts. This is one of the rea‐
sons why releases should be done regularly and frequently, given that a sufficient
width and depth of tests add certainty on the system’s behavior.

Objection: We Are Not Allowed to Deploy in Production By Ourselves
“For security reasons, we cannot deploy new releases of our software without permission
of our user representatives.”

This objection concerns the last step in the development pipeline in which code is
pushed to production. However, the advantages of automating the pushes between
development, test, and acceptance environments should still hold. When your team
and the user representatives gain positive experience with the effects of deployment
automation, eventually this last push may also be (allowed to be) more automated.

In practice we see that some large organizations use acceptance and production envi‐
ronments that are controlled by different parties or departments. These environments
typically require strict requests for changes, due to concerns that changes hurt their
KPIs such as uptime and number of incidents. Although deployment automation and

76 | Chapter 8: Automate Deployment

test automation should help manage those feared consequences, facing such a situa‐
tion may be out of the span of control of the development team.

Objection: No Need to Automate Because of Infrequent Releases
“We only release a few times a year so there is little to gain by automating deployment.”

Clearly, this should not be the case when you are practicing Agile development. We
often hear this argument with legacy systems, though. Those are the archetypes of
“anti-continuous-deployment.” This situation is likely due to a combination of tech‐
nology/system properties, available expertise, and constrained resources. The more
infrequent your deployments, the more likely that they are difficult, requiring exper‐
tise, and thus expensive. Due to these costs, the business may not be willing to pay
(“releases are really expensive, which is why we only have three of them”), which rein‐
forces the cycle.

The “right solution” is to do it more often, to “diminish the pain of the experience.”
But when technical or organizational constraints force you to release only a few times
a year, you may have bigger problems to solve in your development process.

Objection: Automating Deployment Is Too Costly
“It is very hard to get all the people and resources together to automate the deployment.”

It could be the case that in your development you are dealing with multiple disparate
systems that require manual steps for deployment. This is a particular type of com‐
plexity in which each system may require specific knowledge or skills. Automation of
those steps and therefore of the process can seem costly in terms of resources. But it
should also be evident that this complexity can benefit greatly from automation. Also,
most systems can be automated at least partially. Those parts should be your initial
focus to reap the immediate benefits.

8.5 Metrics Overview
As a recap, Table 8-1 shows an overview of the metrics discussed in this chapter, with
their corresponding goals.

Table 8-1. Summary of metrics and goals in this chapter

Metric # in text Metric description Corresponding goal
AD 1a Deployment time acceptance to production compared with baseline Deployment effort and reliability

AD 1b Deployment time to production Deployment effort and reliability

AD 1c Percentage of time spent on deployment Deployment effort and reliability

AD 2a Number of deployment issues Deployment effort and reliability

AD 2b Time spent on fixing deployment issues Deployment effort and reliability

8.5 Metrics Overview | 77

www.ebook3000.com

http://www.ebook3000.org

This is the last chapter on automation of the development process. After you have
automated testing, integration, and deployment, you are right on track to deliver soft‐
ware (almost) continuously. In the subsequent chapters, we will look at best practices
in software development from an organizational perspective. This includes practices
for standardization (Chapter 9), managing usage of third-party code (Chapter 10),
and proper yet minimal documentation (Chapter 11).

Experience in the Field
We consider deployment automation as a two-step process in practice: first we assess
the level of automation for moving between environments, especially production.
This can range from completely manually copying files from a local machine into a
production environment (basic practice), semi-automatic deployment using a few
deployment scripts (intermediate practice), up to complete automation where any
commit triggers a build, a full test run, and a deployment given that all tests have
passed. The latter is a very advanced and rare practice, though.

Then we also consider existence of patching and/or updating policies. This serves as a
risk control of deployment reliability.

In the resulting graphs shown in Figure 8-2, we see that these two practices both get
ranked as intermediate.

Figure 8-2. Benchmark results on deployment automation in development teams

Compared with deployment automation, a policy is relatively easy to implement but
still ranks as an intermediate practice. One reason that a patching policy is also
applied more often is that it is often part of contractual obligations with suppliers/
clients, while deployment automation is almost never a contractual obligation.

78 | Chapter 8: Automate Deployment

CHAPTER 9

Standardize the Development Environment

To accomplish anything whatsoever one must have standards. None have yet accom‐
plished anything without them.

—Mozi

Best Practice:

• Define and agree on standards in the development process.
• Ensure that developers adhere to standards and that stand‐

ards reflect the goals of the team.
• This improves the development process because standards

help enforce best practices and standards simplify both the
development process and code.

This chapter deals with standardization in the development process. Standards make
the results of development work more predictable. This predictability leads to a
“hygienic development environment,” in which developers work in a consistent man‐
ner. By this standardization, we mean four things:

Standardized tooling and technologies
Agreeing on default tools and technologies, and not using a complex technology
stack for solving a simple problem.

Process standards
Agreeing on steps that developers need to perform during development.

Standardized coding style
Defining a coding style (e.g., conventions for naming or indentation) and enforc‐
ing it.

79

www.ebook3000.com

http://www.ebook3000.org

Code quality control
Defining and continuously measuring code quality in terms of complexity, read‐
ability, and testability of code.

Arriving at standards that are the best fit for your development team or organization
is not trivial: if you put three developers in a room, they will usually offer three differ‐
ent ways to solve a certain problem, all three according to best practice. The team
should ultimately agree on what is “best.” Settling the issue is up to a quality cham‐
pion, which typically is a team lead or (software) architect.

The following section explains the benefits of having these standards defined.

9.1 Motivation
Development standards make software more predictable, which eases maintenance.
Standards also help in enforcing best practices, simplifying development and avoid‐
ing discussion overhead.

As a result, standards also ease comparison of metrics. Comparison allows for trend
analysis and may be about comparing developers, teams, systems, or other factors.
When the development process is consistent, there is less “noise” in observations that
would otherwise make metrics hard to compare.

Development Standards Lead to Predictable Software Development
Standards lead to consistency and consistency is good for predictability. Therefore,
agreeing on standards is a useful way to achieve predictable behavior and products
(the software). The most important advantages for maintenance are:

• It lowers the effort to understand how other developers have made decisions
about design and implementation.

• It makes it more likely that code and tests can be reused by others. Not by copy‐
ing and pasting, of course!

Development Standards Help Enforce Best Practices
Standards should reflect best practices. With the exclusion of externally set standards
(e.g., legal requirements), standards appear when a user community apparently pre‐
fers to do things a certain way. Therefore, standards reflect what commonly works
well in practice.

80 | Chapter 9: Standardize the Development Environment

1 Encapsulation here has a general meaning: being able to control access to a piece of code (e.g., an object) in
order to isolate effects (e.g., for maintenance).

Thus indirectly, standards help to enforce development best practices. For example,
with consistent naming conventions, the relationships between different pieces of
code (be it methods, classes, components) are clear. This helps dividing code into the
right abstractions and allows, for example, for proper code encapsulation.1

A naming convention is a common type of standard. Identifiers that are very long or
hard to understand are confusing for other developers, such as (a real example) Add
PaymentOrderToPayOrderPaymentGroupTaskHelper. If those identifiers are named in
a consistent manner, it serves as a system’s documentation of itself, because they show
how functionality is organized technically.

This consistency is important. Standards are only effective when they are applied
consistently. And tooling can help you with that (by facilitating or enforcing). A com‐
mon example is to have a CI server automatically check code commits for certain
characteristics (such as an issue identifier) and based on the result, allow or deny the
commit.

Development Standards Simplify Both the Development Process and
Code
Standardization decreases the number of specific decisions that developers need to
make. Variations in implementations complicate maintenance, such as using different
technologies to solve a similar problem. Using a single technology per domain
ensures that developers can understand each other’s code, and learn from each other.
This improves code reusability.

For large software development efforts it is common to have separate development
teams working rather isolated from each other. Without standards, different teams
may use a different development process and implement “custom solutions” that can‐
not be reused or they may duplicate functionality already present elsewhere.

Development Standards Decrease Discussion Overhead
Using standards limits discussion in development teams to the exceptions outside the
standard. This is because with good standards, their context and application are
understood. This eases understanding and communicating what is going on in source
code. This also means that code is easier to transfer to new developers or other devel‐
opment teams.

9.1 Motivation | 81

www.ebook3000.com

http://www.ebook3000.org

9.2 How to Apply the Best Practice
Without standards, questions arise such as “What technology should I use?” or “How
should I deal with version control?” With development process standards, these are
defined and agreed upon. The following best practices are in place to obtain clear
standards.

Standardize Tooling and Technologies—and Document It
Standardization of tooling and technologies should include a summary description of
their context. Context information should list a few simple situations with their solu‐
tion. That leaves less room for developers to misunderstand in which situation (and
how) they should use which technology.

Agreeing on standards verbally may not be enough to have a lasting effect. Therefore,
centralize documentation of these standards (e.g., in a wiki or document). This allows
for access from different teams that may be physically separated.

A clear standard for tooling and technologies includes the following:

• Prescribing a simple technology stack—for example, agreeing to use only one
back-end programming language for implementing business logic.

• Scoping of technologies and frameworks—for example, using multiple special‐
ized tools instead of using all features of one framework whose features might
not be mature yet. Typically, areas such as testing, security, and performance war‐
rant specialized tooling. This tends to require some deliberation, especially given
cost trade-offs (licensing/open source). See Chapter 10 for elaboration.

• Default configurations of technologies or tooling (e.g., IDE, test suite, plug-ins).
To achieve consistency, it is beneficial if default technologies and configurations
are pushed over the internal network.

Chapter 11 elaborates on documentation efforts.

Considerations for Combinations of Technologies
Standards should be applicable and suitable to your organization and development
team. The following are typical considerations for choosing combinations of pro‐
gramming languages and frameworks:

Assimilation
Is it likely that one of the technologies will evolve quickly with advanced capabili‐
ties? Such that it integrates (assimilates) qualities from the other technology?

82 | Chapter 9: Standardize the Development Environment

Compatibility
How compatible are the different technologies? Do they require custom code to
work together?

Time frame
Are the technology’s benefits really needed right now, or are you anticipating
future demands?

Maturity
How long has the technology been around? How viable is usage of the technol‐
ogy?

Independence
Can different technologies be maintained independently or are they dependent
on each other?

Specialized skills
Do the different technologies require essentially different technical skills? Is it
likely that one developer can work with the complete stack or is specific training
needed (or even different staff)?

Testability
Will the usage of different technologies significantly complicate testing?

Nonfunctionals
Are there foreseeable effects on non-functionals, such as performance or security,
when using multiple technologies? This is likely to be the case when you foresee
that testability is negatively influenced when using certain combinations.

Defining Process Standards
Process standards describe the steps that should be followed during the development
process. Think of standards such as:

• “Every commit should include an issue identifier.”
• “Code should have a sufficient unit test coverage before it is committed.”
• “Every implemented feature should be peer reviewed on code quality by a senior

developer.”

These examples could be enforced with pre-commit hooks that perform a check on
the code commit before pushing it to the CI server. Peer review could be enforced by
requiring authorization from a developer other than the one doing the commit. The
aim of the peer review should be to check for adherence with standards, understand‐
ability, and general feel of code quality (is the code well tested, simple enough, iso‐
lated, etc?).

9.2 How to Apply the Best Practice | 83

www.ebook3000.com

http://www.ebook3000.org

Though these are only a few examples, any of the best practices in this book can be
standardized. When they are actions that developers must perform, you could also
put them in your Definition of Done (see Chapter 3).

Coding Style
Most IDEs already have default style checking features that give warnings or even
errors when your code formatting is not compliant with the predefined style configu‐
ration in the IDE. It is a good idea to use such a style checker, if only to be consistent
in your code formatting. Do make sure that your style guidelines are not being sup‐
pressed. You would rather have an overview of violations than assuming that all code
is according to standards. Commonly we see CHECKSTYLE tags such as the following:

// CHECKSTYLE:OFF
piece of code that violates coding style standards
// CHECKSTYLE:ON

Here, the style checker is bypassed by enclosing the violating code in between sup‐
pressing tags. This is something you should definitely avoid! There are several ways
to facilitate this technically. For instance, pre-commit hooks can be configured to
check for these tags or to ignore suppress messages.

Another good way to standardize coding style is to adhere to conventions and
defaults rather than specific configurations. So, instead of writing lengthy mapping
tables to relate the objects in your data access layer to the corresponding database
table, you assume the convention that an object like “Book” will be mapped to a
“book” table by default. This principle is known as convention over configuration,
because you typically adhere to the convention and only violate it when exceptions
occur. In general that leads to less configuration and less code. Using the conventions
of the technology you use also improves transferability of the software, for example
when hiring new developers. Conventions can be understood by newcomers to the
team even when they originate from a completely different environment. Tooling and
technologies help you in adhering to conventions with default presets.

Code Quality Control
What makes high-quality code? With maintainability as a quality aspect, some basic
measurements for quality are system size in lines of code, lines of code per unit, the
amount of duplication, and complexity of decision paths within units.

There are numerous static code analysis tools available for determining and enforcing
code quality. Most of them can measure a few simple metrics such as size, duplica‐
tion, and complexity of code, but do require some level of configuration. Combined
with an IDE that includes built-in style checks, developers will get quick feedback on
their code, which speeds up code improvement. Usually, style checks are performed
immediately while coding, and code quality control measurements are executed in

84 | Chapter 9: Standardize the Development Environment

the CI server. Quality control checks can also be checked before a release, but by
adding preconditions on a build in the CI server, you can do quality checks automati‐
cally. You can even ensure that all code has passed quality control before it is built for
integration testing. This is rather strict, but practice shows that this is the best way to
obtain high-quality code because it cannot be ignored.

Perform code quality checks before a build is performed. In the
most strict form of control you can choose not to build when the
code is not up to code quality standards.

9.3 Controlling Standards Using GQM
Suppose that you have agreed upon standards for tooling and technologies and that
now you want to put those into practice. The IDEs that developers use support code
style checks such as duplication, unit test coverage, and complexity of units/methods.
You know why it is useful to measure those software characteristics. But if standards
for complexity and test coverage are enforced (e.g., checked by the CI server before a
commit triggers a new build), you may want to know whether the standards are in
fact appropriate. Therefore, consider the following GQM model:

• Goal A: To understand the effect of our development standards by monitoring
adherence to those standards.
— Question 1: Do developers adhere to process and coding standards?

— Metric 1a: Number of process standard violations as a percentage of the
number of commits. A violation here could be the omission of a peer
review before committing code. You would expect this percentage to be
low, such as 5%, but not 0%. If there are never any violations, then the
standard may be too conservative. When there are many violations you
will hear complaints soon enough, about the standards breaking the flow
of work or being unreasonably strict. Both cases are worth investigating.
The standard itself may be unfeasible, or the developers may lack certain
skills necessary to comply with the standard.

— Metric 1b: Number of coding style violations as a percentage of the num‐
ber of commits. Expect a downward trend as developers learn the stan‐
dard. If the standard is enforced by tooling, this can be near zero, because
coding style can be corrected in real time.

— Metric 1c: Number of code quality violations as a percentage of the num‐
ber of commits. Expect this percentage to gradually decrease as the code
quality increases.

9.3 Controlling Standards Using GQM | 85

www.ebook3000.com

http://www.ebook3000.org

The reason to normalize the number of code quality violations is that the number of
violations alone may not be meaningful enough to the team: imagine a productivity
peak in which the team produces much more code than usual. In that case the num‐
ber of code quality violations will surely rise, even though the relative number of vio‐
lations might decrease. We capture this in Figures 9-1 and 9-2. Although the absolute
number of violations did not decrease dramatically, compared to the increasing num‐
ber of commits we see that the relative number of violations decreases more quickly.

Figure 9-1. Absolute number of violations versus the number of commits

Figure 9-2. Normalized number of violations (as percentage of the number of commits)

In other words, it has become easier to adhere to code quality standards. This GQM
model could be enforced automatically, if you wish to. In practice we see that this

86 | Chapter 9: Standardize the Development Environment

works mainly when the team understands and agrees with the standards. Clearly,
standards should not be too lenient, otherwise they do not lead to improvement.
There should be a middle way to achieve this. You can measure perceptions manually
with the following GQM model:

• Goal B: To understand the quality of our development standards by taking
inventory of developers’ opinions of them.
— Question 2: Do developers think that the standards are fair?

— Metric 2: Opinion per developer about the fairness of the standards, on a
scale (say, from 1 to 10). The outcome of this measurement should be dis‐
cussed with the team. When developers have widely different opinions,
this may be caused by difference in experience. When the measurement
shows that everyone agrees that the standards are unreasonable, you
should distinguish between the parts that are unreasonable and the parts
that you can keep. Then you can focus on tackling the standards that are
unfair.

— Question 3: Do developers find it easy or hard to adhere to the standards?
— Metric 3: Opinion per developer about the effort to adhere to standards,

on a scale (say, from 1 to 10). Again, different opinions may reflect differ‐
ence in experience. The important observations come from the trend line.
Maybe some developers do not find it easier to adhere to standards over
time. Then consider pairing up more experienced developers with less
experienced ones, which is a good practice anyway. For instance, you
could define in your process standards that the commits of junior devel‐
opers with less than 2 years of experience should be peer reviewed by a
developer with at least 5 years of development experience. Or you could
organize regular plenary sessions in which the top violations are discussed
in terms of their causes and solutions. Then, everyone can learn from each
other and code quality will increase.

It is important to monitor your standards periodically (say, quarterly), because stand‐
ards should change (however slightly) over time to reflect new gains in experience
and technology.

9.4 Common Objections to Standardization
Typical objections to standardization are that certain standards do not apply. You may
choose to accept certain violations, as long as they are not being covered up. Keep in
mind that standards are a reflection of how the team should work or wants to work.
That means that the objections of single developers will not always make sense
toward team goals.

9.4 Common Objections to Standardization | 87

www.ebook3000.com

http://www.ebook3000.org

Objection: We Cannot Work Like This!
“Our code keeps violating our standards. We cannot work like this!”

We do not expect that standards are a perfect fit right away, or that they should for‐
ever be held on to. Developers should understand the reasoning behind and the need
for standards and what they intend to achieve. Resistance to standards may invite
developers to circumvent them in clever ways. Hiding or not knowing violations is a
bigger problem than knowing where violations occur. This may mean going back to
the goals of the standards and possibly loosening them. Be careful when doing so,
because having certain standards may serve a particular purpose. For instance, the
standards you introduce may be high, but they reflect a quality level you want to have
in the future. Then you should be explicit about this fact and have the team agree that
they do not have to do it right first, as long as they understand this is something the
team should work toward.

Objection: Can You Standardize on Multiple Technologies?
“Can we standardize on multiple technologies, such as using two programming lan‐
guages for frontend code?”

Try to stick with one technology stack that is consistent, ideally with a single pro‐
gramming language. Simplicity is an important determinant notably for maintaina‐
bility and security. Complex relations between technologies require a lot of testing
and are at risk of breaking. There may be good reasons to use multiple technologies,
to benefit from the specialties and strengths of each technology. For common consid‐
erations, see “Considerations for Combinations of Technologies” on page 82.

Objection: Organization Unfit for Standardization
“Our organization/project is not fit for standardization. We cannot get it through.”

This is essentially a management issue. If formal standardization is not possible, an
intermediate solution is to verbally agree on standards; for example, agreeing within
your team to apply a standard within (part of) a system. If a “bad” standard applies
consistently to a whole organization, it is generally better to adhere to it consistently
than to ignore it with custom solutions. Deviating from an organization-wide stan‐
dard tends to lead to problems in maintenance and failing interfaces, in addition to a
lot of miscommunication and trouble with other departments.

9.5 Metrics Overview
As a recap, Table 9-1 shows an overview of the metrics discussed in this chapter, with
their corresponding goals.

88 | Chapter 9: Standardize the Development Environment

Table 9-1. Summary of metrics and goals in this chapter

Metric # in text Metric description Corresponding goal
ST 1a Number of process standard violations Adherence to standards

ST 1b Number of coding style violations Adherence to standards

ST 1c Number of code quality violations Adherence to standards

ST 2 Developer opinion about fairness of standards Quality of standards

ST 3 Developer opinion about effort to adhere to standards Quality of standards

In the next two chapters, we will further refine the hygiene of the development pro‐
cess by looking at two other kinds of standards: the usage of third-party code (Chap‐
ter 10) and documentation (Chapter 11).

Experience in the Field
The topic of standardization is very broad, and we could not claim that we assess all
of its aspects of all the development teams we encounter. In process assessments, the
question of standardization mostly relates to coding and building aspects about the
use of a fit IDE, the use of issue tracking, and the use of coding standards and/or
quality control. For all these practices, we observe whether they are used, but also
whether they are used by the whole team. For example, issue tracking is often not
used consistently. In many situations, issues are not linked to actual development
work, making it harder to see the benefits of administering them.

The most difficult practice in standardization is consistent code quality control. Even
if teams use standard coding style checks (say, for automatically formatting or com‐
pleting their code), code metrics may be hard to implement. This makes the code
quality practice an advanced one, whereas choosing a fit IDE and applying issue
tracking are considered basic.

The results from our benchmark are shown in Figure 9-3.

Figure 9-3. Benchmark results on standardization in development teams

9.5 Metrics Overview | 89

www.ebook3000.com

http://www.ebook3000.org

CHAPTER 10

Manage Usage of Third-Party Code

Oscar Wilde: “I wish I had said that.” Whistler: “You will, Oscar; you will.”
—James McNeill Whistler

Best Practice:

• Manage the usage of third-party code well.
• Determine the specific advantages of using an external code‐

base, and keep third-party code up-to-date.
• This improves the development process because using third-

party code saves times and effort, and proper third-party
code management makes the system’s own behavior more
predictable.

Third-party code is code that you have not written yourself. It comes in several var‐
iants: sometimes in the form of a single library, sometimes in the form of a complete
framework. The code can be open source and maintained by a (volunteer) commu‐
nity, it can be a paid product that derives from open source code, or it can be a paid
product using only proprietary code.

There is a lot of third-party code and there are good reasons to use it. However, man‐
aging the use of third-party code requires a policy based on the right requirements
for your team and/or organization.

91

www.ebook3000.com

http://www.ebook3000.org

10.1 Motivation
While using third-party code may feel like being out of control (you are not the
writer or maintainer of the code), it comes with a lot of benefits. For one, it saves you
from having to “reinvent the wheel,” and so saves you development effort. Usually,
third-party code has also passed some form of quality control.

Using third-party code is, however, not trivial: external code can become outdated,
cause security concerns, and thereby it may require additional maintenance. In com‐
plex cases the number of dependencies of your own codebase can explode. The deci‐
sion to use third-party code is essentially a risk versus reward decision: the risk of
security concerns or added maintenance versus the reward of reduced development
time. So the usage of third-party code should be managed to ensure predictable
behavior of that code.

Using Third-Party Code Saves Time and Effort
Using third-party code saves the development team time and effort in reinventing the
wheel. It relieves them from writing custom code for which standard solutions are
already present.

This is relevant as many applications share the same type of behavior. Consider basic
needs for almost all systems: UI interaction, database access, manipulation of com‐
mon data structures, administrating settings, or security measures. Using third-party
libraries is especially helpful for such generic functionality, as it avoids unnecessary
over-engineering. Widely known examples include web application frameworks such
as Spring for Java, Django for Python, and AngularJS for JavaScript. For testing, there
are the JUnit framework and its corresponding ports for other languages. For data‐
base communication there are also numerous frameworks available, such as NHiber‐
nate and the Entity Framework. So there is plenty of third-party code to choose from,
saving you time and effort in the end.

Third-Party Code Has at Least Base-Level Quality
Third-party code is widely available as open source code next to commercial alterna‐
tives. All variations provide some form of quality control. Free open source solutions
are maintained by the community: when that community is sufficiently large and
active, they maintain and control the source code of the product. Although this is not
a quality guarantee, the popularity of open source products suggests that many more
benefit from its usage. When many users disagree with the quality or content of that
product, typically this will lead to someone fixing the issues or someone making a
development fork (a separately maintained version).

92 | Chapter 10: Manage Usage of Third-Party Code

Typically, within paid subscriptions of open source derivatives, you have the possibil‐
ity to request support in installing/using the products. In some cases you can com‐
municate with the developers to report bugs or request improvements.

The commercial variations are hopefully quality controlled by the developers/organi‐
zation itself. They clearly have the incentive to provide proper quality because they
depend on satisfied clients and clients may expect proper quality. What is more, they
constitute a professional organization that has some level of maturity, and so applies
certain standards before a new version is released.

Managing Usage of Third-Party Code Makes a System’s Behavior
More Predictable
Having control over external dependencies makes the behavior of those dependencies
more predictable. By extension, this also applies to your system as a whole: to know
the expected behavior of third-party code helps to predict the behavior of your own
system. With a clear overview of external dependencies, developers do not need to
make assumptions about which library versions are used where. This gives a fair indi‐
cation of how third-party libraries and frameworks affect the behavior of your own
system.

It is rather common that different versions of a library are used within a system. This
introduces unnecessary maintenance complexity. There may be, for example, con‐
flicting behavior of libraries that perform the same functions. Therefore, the starting
point for managing third-party code is to have an overview of its usage. That is, gain‐
ing insight on the specific frameworks and libraries and the versions that are used.

10.2 How to Apply the Best Practice
Making decisions on how to use third-party code is essentially a matter of standardi‐
zation. It includes decisions on a general approach (policy, for which you should list
general requirements) and specific choices (e.g., listing advantages and disadvantages
for a particular library). Requirements include an update policy and maintenance
requirements. We elaborate on these points in this section.

Determine the Specific Maintainability Advantages of Using an
External Codebase
Using third-party code for general functionality is a best practice. That is, insofar as it
decreases the actual maintenance burden on your own source code. Using third-party
code is a good choice when it offers much functionality that can be delegated away
from the system while it requires reasonable effort to adapt your system to it. For util‐
ity functionalities this is generally straightforward and those are a great opportunity.
One should also use libraries for functionality that is complex but widely available as

10.2 How to Apply the Best Practice | 93

www.ebook3000.com

http://www.ebook3000.org

a library. This is especially true for general security functionality (such as the algo‐
rithms for setting up secure connections between systems). They should never be
written yourself, as it is hard to guarantee the security of that code.

In order to determine the quality of a library or framework, answer or give estimates
for the following questions:

Replacing functionality
Is the functionality that you are trying to implement utility functionality that is
widely used by other systems? Is that functionality complex and specialized, i.e.,
is coding it yourself error-sensitive?

• Expectations: Is it likely that functionality in the library will be expanded
soon such that you can use it also to replace other functionality that you are
coding yourself now?

Maintenance
Does the specific third-party code have a reasonably active community with fre‐
quent updates? How widely is it used (e.g., number of downloads, number of
forum topics, or mentions on popular developer forums)?

• Experience/knowledge: Does the development team already have experience
with the third-party code? Is knowledge readily available—is the code well-
documented, either in the form of a book or online tutorials/forums?

Compatibility/reliability
Is the third-party code compatible with other technologies used in the system
and the deployment environment?

• Trustworthiness: Has the source code been audited with good results? This is
especially relevant for security functionality.

• Licensing: Is the source code licensed in a way that it is compatible with your
form of licensing?

• Intrusiveness: Can the third-party code be used in such a way that your own
code is relatively loosely coupled to the framework you use? Will upgrading
not break your own code because of coupling? Every “yes” to these questions
implies an advantage and argument for using that particular library/frame‐
work.

94 | Chapter 10: Manage Usage of Third-Party Code

Keep Third-Party Code Up-to-Date
Updates are needed to stay up to speed with bug fixes and improved functionality.
However, without a policy this tends to lag behind. Checking and updating libraries
costs time and the advantages may not seem evident. Therefore, before creating a pol‐
icy the following must be known:

Effort
The amount of work required to perform updates each check/update cycle. By all
means, automate as much as possible with tooling.

Priority
What has highest priority in the system’s development when it comes to updates?
Typically, security has high priority and thereby policies tend to prescribe to
always update libraries immediately when security flaws are patched. Consider
that such a security emergency is especially hard to solve when libraries have
been lagging behind major versions.

Then the policy should define how/when to check, and how/when to update. Note
that the policy execution can be managed and automated with CI/dependency man‐
agement tooling. (Examples of such tooling are Nexus, JFrog, Maven, and Gradle.)

How to check
Automatically scan recency of updates daily or manually check it (e.g., at the start
of a release cycle).

When to update
Updating immediately when updates are available, or bundling all update work in
a certain release cycle.

Update to what exactly
Updating to the newest versions, even if that is a beta version, or to the latest sta‐
ble version.

• Staying behind: You may choose to consistently wait a certain amount of time
before updating, for example, to see whether the community experiences
updating problems. You might therefore choose to always stay one version
behind the latest stable release.

• Not updating at all: You may choose to remain at the current version and not
update, for example, when updates introduce a notable instability concern
with respect to your own codebase.

Note that libraries can become unsupported because users have moved to an alterna‐
tive. Unsupported libraries run risks for compatibility (interacting with other tech‐

10.2 How to Apply the Best Practice | 95

www.ebook3000.com

http://www.sonatype.org/nexus/
https://www.jfrog.com/
https://maven.apache.org/
https://gradle.org/
http://www.ebook3000.org

nologies that are updated in the meantime) and security (because new flaws are not
being fixed).

Ensure Quick Response to Dependency Updates
Regardless of your update strategy, you should be able to detect and perform library
updates quickly. To this end, the intrusiveness of a library or framework is very rele‐
vant. If your codebase is tightly coupled with library code, it becomes harder to per‐
form updates because you have to fix a lot of your own code to make sure it works as
it did before. This is yet another reason to take unit tests seriously: when you update a
library and several unit tests fail, there is a good chance that the update caused it.

If you decide that you want to keep up with certain versions of
libraries, do the work as soon as you can. Postponing this increases
the effort required to adjust your own code when the next update
arrives.

Do Not Let Developers Change Library Source Code
Developers should be able to change and update libraries with minimal effort. There‐
fore, agree with developers that they do not make changes to the source code of a
third-party library. If developers do that, the library code has become part of your
own codebase and that defeats the purpose of third-party code. Updates of changed
libraries are especially cumbersome and can easily lead to bugs. It requires developers
to analyze exactly what has been changed in the library code and how that impacts
the adjusted code. If a library does not perfectly fit the functionality you need (but it
solves part of a difficult problem), it is easier to use it anyway and write custom code
around it.

For large or complex functionality, it is well worth it to consider
adjusting functionality to fit it to third-party code, instead of build‐
ing a custom solution (or adjusting third-party libraries).

Manage the Usage and Versions of Libraries and Frameworks
Centrally
To keep libraries up-to-date, you need an overview of what versions are used.
Dependency management tooling can help with this. To facilitate library updates, a
best practice is to use a central repository with all used libraries. The process can be
fully automated. In that case, when a developer creates a new build, a dependency
management tool retrieves and imports the latest versions of the required libraries.

96 | Chapter 10: Manage Usage of Third-Party Code

You can also manually document the usage of types/versions of libraries and frame‐
works centrally, but in practice this is a huge maintenance issue. If the list cannot be
fully relied upon, it loses its effectiveness completely.

10.3 Measuring Your Dependency Management
Suppose that you have a dependency management tool in place that automatically
checks for and notifies you about new versions of libraries that the development team
uses. You want to make sure that the team keeps updating their dependencies, but
you also want to make sure that updates do not cost too much effort. Consider the
following GQM model, to give you insight into the problems of the team and for
checking whether your dependency management is done right:

• Goal A: To understand how the team manages the use of third-party code by
assessing the effort required to keep the system up-to-date with external depen‐
dencies.
— Question 1: How much time does the team spend on updating external

dependencies and fixing potential bugs introduced to the system?
— Metric 1a: Number of bugs found after updating a library. This metric will

not be useful directly, but will provide useful insight over time. This is
because it tells you something about how the team uses specific libraries:
some will introduce more bugs than others. Expect the trend line to stabi‐
lize per library. If some library updates require a lot of work, you can
investigate whether the team is, for example, behind with updating. A
cause could be that issues are accumulating because developers do not
have the time for updates or because the library is altered very often. Or
possibly, the library is not very suitable for the system, in which case you
should consider switching to another library.

— Metric 1b: Number of versions the team is behind per library. This num‐
ber may indicate trouble with updating when the team is working with
libraries that have already had two major updates, for example. It could be
that the team postpones it because they think it is too much work or that
they cannot allocate time. Or they may have run into technical issues try‐
ing to update. In any case, when the metric signals trouble, you should
find out what the problem is.

If you use this model to assess your library usage, you may discover that you need to
update your standards for using third-party code, or that you are better off by switch‐
ing to other libraries.

A good way to gain insight into your usage of third-party code is to create a chart of
your dependencies that shows how far behind you are with them. For instance, the

10.3 Measuring Your Dependency Management | 97

www.ebook3000.com

http://www.ebook3000.org

chart in Figure 10-1 indicates the status of support for a list of libraries. For each
library or framework the latest version is shown, together with the version that is cur‐
rently in use. The colors show how far behind you are: blue means the framework is
stable, while gray indicates that you should update to a newer version. Burgundy
indicates an unsupported framework, meaning that you either should update as soon
as possible, or consider switching to another framework.

Figure 10-1. An example of library freshness

Suppose now that you need to select a new library for encryption functionality. This
is a definite example of functionality you should never try to write yourself because of
its complexity and impact of dysfunction. You may have found a few open source
libraries, but want to select the right one. These considerations can be answered in a
measurable manner:

• Goal B: To select the most suitable library by measuring its community activity
and trustworthiness.
— Question 2: For which of these libraries are issues fixed the fastest?

— Metric 2: Per library, the issue resolution time. Consider this metric as an
indicator for the level of support you can expect from the maintainers.
That is, when you report a bug or an issue, how fast the maintainers will
respond and solve the bug or issue. Of course, a lower issue resolution
time is usually better. A codebase that releases very often can probably
also fix bugs very fast.

— Question 3: Which of the libraries is most actively maintained?
— Metric 3a: Number of contributions per week, per library (assuming that

the libraries are on version control that is publicly accessible so that you

98 | Chapter 10: Manage Usage of Third-Party Code

can see the activity. Here, the number of contributions is a signal of main‐
tenance activity).

— Metric 3b: Number of contributors per library. A higher number of con‐
tributors indicates an active community. Having several contributors work
on one library also makes it more likely that some form of quality control
is used. Be cautious, however, of too many contributors as this could also
signify a distorted library. Too many contributors may also lead to forking
when the contributors disagree about the contents.

This GQM model can help you in deciding which third-party codebase is most suit‐
able for you. Remember that finding the best library is a trade-off: you should neither
choose a library when you do not have the capacity to keep up with its pace, nor a
library that is stagnant, as this may leave bugs unfixed for a long time.

When you have decided to use an external component, you may want to track the
time you save on custom implementation and the time you spend on adapting to a
framework or library. In this way, you gain insight into the benefits of specific third-
party code. So you could use the following GQM model for this:

• Goal C: To determine the time gain of a specific framework by measuring the
time spent on adapting to the framework versus the time saved on implementing
custom functionality.
— Question 4: How much time did we save by implementing functionality using

the framework?
— Metric 4: For each functionality that is using the framework, the estimated

time it would take to implement it from scratch minus the time it took to
implement using the framework. This metric gives a raw estimate of the
time gain in using the framework. Therefore you should expect this value
to at least be positive, otherwise it would mean that building it from
scratch is faster!

— Question 5: How much time is spent on learning about and staying up-to-
date with the framework?
— Metric 5: Time spent specifically on updates, or studying the framework.

This time should be relatively high when you start using the framework
(unless developers already know it, of course), and should gradually drop.
The point is that it contributes negatively to the time you save by using the
framework.

When you know how much time goes into using the framework itself and the time
you save by delegating custom implementations, it is easy to predict your savings: just
determine the break-even point and decide if it works for you. If you notice that it is
very hard to save time on it, think about the other reasons for using the framework. If

10.3 Measuring Your Dependency Management | 99

www.ebook3000.com

http://www.ebook3000.org

there are no convincing reasons, then decide whether to keep using it or to switch to
another framework.

10.4 Common Objections to Third-Party Code Metrics
Controlling the usage of third-party code is important from a maintainability per‐
spective. However, common objections are concerns of their trustworthiness, mainte‐
nance benefits, and inability to update.

Objection: Safety and Dependability of Third-Party Libraries
“We cannot know whether third-party libraries are dependable and safe. Should we test
them?”

As libraries are imported pieces of code, you cannot unit test them directly the way
you do with normal production code. Also, once you have determined that the
library is dependable and adequate, you should avoid efforts to test it yourself and
trust it is working. However, testing is possible in the following ways:

• You could use the unit test code of the library itself to find bugs that may arise
because your system has uncommon requirements or input. However, this
mainly enables you to find bugs that the community should have found as well.
Proper documentation of the library should clarify what it can and cannot do.

• If you have further concerns on a library, you could test it while abstracting the
library behind an interface. This does cost you extra work and may lead to
unnecessary code, so you should only do this when you have particular concerns
about the library. It does, however, give you the possibility of easily switching to
another library.

Objection: We Cannot Update a Particular Library
“We cannot update a certain library—doing so leads to trouble/regression in another
system.”

If the usage of a certain library leads to problems in another system, there is a deeper
problem at work. The library may have changed significantly in a way that it is no
longer compatible. In most cases, failing unit tests should signal what kind of func‐
tionality is in trouble. There could also be other reasons: young frameworks usually
introduce a lot of breaking changes. If you do not have the capacity to keep up with
such changes, this is all the more reason to switch libraries.

100 | Chapter 10: Manage Usage of Third-Party Code

Objection: Does Third-Party Code Actually Lead to Maintenance
Benefits?
“How can we determine whether using third-party code leads to benefits in mainte‐
nance?

As third-party code is not built by yourself, you do not know exactly how much effort
was spent building it. But it is clear that for highly complex functionality it is much
easier to import it than it is to code, test, and maintain it yourself. You do need to
make sure that your system remains compatible with that library (which requires
some testing and maintenance) and that effects of library changes are isolated in your
code.

The important consideration is whether you are using your time to write code that
makes your system unique and useful to your goals, or you are using that time to
implement functionality that is already available in the form of a framework or
library. It turns out in practice that a lot of functionality is very common among sys‐
tems, so that most of the time there are already solutions readily available.

There are lots of ways in which you determine maintenance benefits: you can use sto‐
ries or function points to determine how much work you save on implementing those
while at the same time considering the investment you make to understand and use a
third-party component. You can use the metrics provided in the previous section to
gain insight into these times.

10.5 Metrics Overview
As a recap, Table 10-1 shows an overview of the metrics discussed in this chapter,
with their corresponding goals.

Table 10-1. Summary of metrics and goals in this chapter

Metric # in text Metric description Corresponding goal
TPC 1a Number of bugs found after updating a library Third-party code effort

TPC 1b Number of versions behind on a library Third-party code effort

TPC 2 Issue resolution time per library-related issue Library selection

TPC 3a Number of contributions per week per library Library selection

TPC 3b Number of contributors per library Library selection

TPC 4 Difference between time effort for implementing functionality
from scratch and using a framework

Framework effectiveness

TPC 5 Time invested in studying or updating a framework Framework effectiveness

10.5 Metrics Overview | 101

www.ebook3000.com

http://www.ebook3000.org

This is the penultimate chapter that has dealt with standardization issues. The follow‐
ing and last best practice chapter covers (code) documentation.

Experience in the Field
Managing third-party code is hard in practice. In process assessments, we check for
the existence of a library management strategy. Then, we assess whether the strategy
is actually adhered to: are updates executed regularly and in line with the strategy?
How many unsupported libraries are used? Is tooling supporting the library manage‐
ment strategy?

It turns out that this is hard for many development teams we encounter. Usually there
is some kind of consensus about how and when to update libraries or frameworks,
but this is not set in stone. We also see that developers have difficulty keeping third-
party libraries up-to-date. Not only because they do not have the time to perform an
update, but because they may need to change their own code as well and that time is
not accounted for. The result is often that the used versions increasingly fall behind,
until they become unsupported. Typically, the more versions you lag behind, the
harder it is to get back on track. This requires discipline but teams would also be
hugely supported by tooling telling them of version updates (or updating them cen‐
trally and automatically).

So it is unsurprising that this practice is an advanced one. So why this particular
spread in the data? The answer is that completely doing it right is extremely difficult,
but adhering to at least some basic principles of library management is easy. The dis‐
tribution can be seen in Figure 10-2.

Figure 10-2. Benchmark results on third-party code management in development teams

102 | Chapter 10: Manage Usage of Third-Party Code

CHAPTER 11

Document Just Enough

Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir de la faire plus courte.
(The only reason why I have written this long is because I did not have the time to
shorten it.)

—Blaise Pascal

Best Practice:

• Document just enough for the development team to have a
common understanding of design decisions and nonfunc‐
tional requirements.

• Keep documentation current, concise, and accessible.
• This improves the development process because documenta‐

tion retains knowledge and helps to avoid discussion.

Some of the previous chapters have already dealt with documenting in some way,
such as the Definition of Done, coding style standards, and third-party code policies.
Because documentation is a form of knowledge transfer, consider that for all develop‐
ers the following should also be clear:

Design decisions
By this we mean the fundamental choices that are made about the subdivision of
the system into components, but also how the system is implemented, how input
is handled, and how data is processed. In this sense, design decisions cover high-
level architectural choices as well as low-level design patterns. They are based on
assumptions about the circumstances in which the system will run (for instance,
requirements and criteria).

103

www.ebook3000.com

http://www.ebook3000.org

Requirements and criteria
Functional requirements and nonfunctional criteria describe what the system
should deliver when, and how.

Testing approach
Decisions about what, when, and how to test.

Code documentation
Code is ideally self-documenting, but for complex pieces of code you can supply
reference implementations, and when supplying an API, you can use automati‐
cally generated API specifications.

We explain why good documentation is important, and how you can arrive at good
documentation.

11.1 Motivation
Documentation is important for your development team, in order to have a common
understanding of how the system is structured and how it should behave. Technical
documentation is also important to retain knowledge of the system, whether it is for
new developers or for the external world (in case others are to maintain the system as
well). Documentation also helps you to see whether you are reaching your goals.

Documentation Retains Knowledge and Helps to Avoid Discussion
Documentation of your design, assumptions, and requirements is a means of knowl‐
edge transfer, in case new developers join the team or when your codebase becomes
available to external developers. When introducing new developers, they should be
able to get acquainted quickly with the system and its design.

When you have documented why certain design decisions were made, and explain
the rationale behind these decisions, this helps avoid discussions later. That way
developers can consider, for example, whether assumptions made in the past are still
valid. When the code that is written is aimed to be exposed to the outside world with
APIs, you require an API specification and greatly help others with a reference imple‐
mentation.

Documentation Helps You to Know Whether You Are Reaching Your
Goals
With an overview of (non)functional requirements you can assess whether the system
is successful. Of course, requirements change over time, but they remain the standard
by which you can measure system success.

104 | Chapter 11: Document Just Enough

11.2 How to Apply the Best Practice
Good documentation is concise, current, and complete, and these properties should
be enforced by quality control.

Keep Documentation Current, Concise, and Accessible
Documentation is only useful if you can depend on a reasonable amount of currency.
Therefore, good documentation is concise and is actively kept up-to-date (thus
requires maintenance effort during development).

Documentation tends to be complete only up to a certain level of detail and therefore
can remain concise. Indeed, it is not necessary to document all implementation
details, as source code (structure) and tests should be self-explanatory. High-level
design decisions such as technology choices should be documented in order to be
reviewable when circumstances change. Such documents should in general not con‐
sist of more than 10 pages for any subject. If it does, it usually contains a high level of
detail. This can be useful in some cases, but make sure these are documents to refer to
from other, shorter documents. The general rule of thumb is that a document that is
not a reference manual can be read and understood within an hour.

If documentation is unretrievable or scattered, it cannot be used properly. Therefore
it is a prerequisite that documentation is stored and maintained in some central loca‐
tion that allows for access to those who need it (for proper security that should be on
a need-to-know basis). This can be part of a central version control system, a wiki
(that contains version control management), or similar other repositories.

Do not think of documentation as a “Write Once, Read Never”
device. It should be actively maintained simultaneously with the
system to be valuable.

Required Elements of System Documentation
All design choices should include basic assumptions underlying those choices. Those
assumptions are based on the circumstances in which the system is available. For
example, when defining a performance requirement one may assume a certain num‐
ber of concurrent users and intensity of usage. Once those assumptions are docu‐
mented, they can be reviewed, challenged, and improved when the circumstances
change.

The form that documentation is presented in is up to the team. Typically, tests, use
cases, and scripts describe well what the system should do and what it should not do.
Consider that there are different things you want to know about a system as a devel‐

11.2 How to Apply the Best Practice | 105

www.ebook3000.com

http://www.ebook3000.org

oper if you are building on it. Therefore, in whatever form, system documentation
should include the following:

Goals and functionality
The goals of the system in terms of functionality and value for users and the
organization as well as what functionality and behavior the system should pro‐
vide to achieve those goals.

Internal architecture
Division of the system in functional components. A well-designed source code
organization should be able to show this division.

Deployment
The way a system behaves can largely be influenced by the environment in which
it runs. Therefore its deployment architecture and its assumptions should some‐
how be documented; e.g., visualized and described.

Standardization
Agreements on decision choices for the technology stack, technology-specific
usage, and the internal (code) architecture. For more on standardization, see
Chapter 9.

Owner and process
To ensure that the documentation is and stays current, each type of documenta‐
tion needs an owner and a process understood by the maintenance team that
they adjust documentation once assumptions, design choices and /or circum‐
stances change significantly. For code, tests, and scripts, the one that is adjusting
it tends to take responsibility naturally to update it (be it a document, comments,
test cases, etc.).

Quality control is enforced to keep the nonfunctional requirements in check
After defining nonfunctional requirements, development should be actively con‐
trolled for adherence to those requirements. Preferably, this is an automated process
(part of the development/test pipeline), but it should at least appear as part of the
Definition of Done. In case of an automated process of quality control, the nonfunc‐
tional requirements also require a testing strategy. For more on quality control, refer
back to Chapter 9.

106 | Chapter 11: Document Just Enough

11.3 Managing Your Documentation
Assessing your documentation is a delicate issue. With too much documentation, the
maintenance burden becomes high, knowledge is harder to find, and often large
documents are neglected. With too little, you are at risk of not knowing enough about
the system, which may lead to making wrong decisions and assumptions. However,
the code should be clear enough to document itself to a large extent. Perceptions of
what is good documentation may also depend on experience. More experienced
developers generally need less documentation to understand the technical intricacies
of a system.

With the following GQM model we focus on the maintenance burden and the quality
of documentation.

• Goal A: To understand the maintenance burden of documentation.
— Question 1: How much time is being spent on maintaining documentation?

— Metric 1: Number of hours spent on documenting. This assumes that
developers can and do write hours specific for administration. This should
neither be zero, nor a significant investment. Expect documentation
investment to be high in beginning stages of system development, reduc‐
ing to a stable figure. The risk notably is in arriving at “too much docu‐
mentation to maintain” after which maintenance becomes neglected.
What is “high” should therefore be discussed with the team based on this
metric.

• Goal B: To understand the quality of our documentation (completeness, concise‐
ness, and currency) by taking inventory of developers’ opinions of them (after all,
they are the ones using it).
— Question 2: What do developers think about the documentation’s quality?

— Metric 2a: Opinion per developer about the quality of documentation
overall.

— Metric 2b: Opinion per developer about the documentation’s complete‐
ness for their purpose.

— Metric 2c: Opinion per developer about the documentation’s conciseness
for their purpose.

— Metric 2d: Opinion per developer about the documentation’s currency for
their purpose.

11.3 Managing Your Documentation | 107

www.ebook3000.com

http://www.ebook3000.org

These opinions can be rated on a scale (e.g., from 1 to 10). The outcome of these
measurements should be discussed with the team. Just as with standards, when devel‐
opers have widely different opinions, this may be caused by difference in experience.
When the measurement shows that everyone agrees that the documentation is not of
high quality, you know that improvements are necessary. This assessment could be
repeated every six months, for example.

There is a clear trade-off between completeness and conciseness. There is also a rela‐
tionship between the maintenance burden and currency. Finding the right balance is
dependent on team preference and development experience.

11.4 Common Objections to Documentation
Common objections to documentation are that the team does not get the time to
write documentation, that there is disagreement in the team, or that knowledge about
the system is too scattered to write documentation.

Objection: No Time to Write Documentation
“We do not get the time to write documentation from the business!”

Consider that maintaining documentation is not a task in itself. It is part of regular
development, when software changes thoroughly or when the software design has
intricacies that are hard to understand quickly (for new developers). Documentation
is not necessary for each modification, but lack of it may especially hurt future main‐
tenance when modification concerns high-level design decisions. Consider also that
the requirements or changes as defined by the business may themselves serve as doc‐
umentation.

Objection: Disagreement in the Team
“My development team does not agree on the internal architecture of the system.”

Documentation is something that the whole team should agree on. When there is
friction between team members, you should appoint a quality champion within the
team with the task of pulling the rest of the team along. Typically a lead/senior devel‐
oper with a software architect’s role can make the final decisions on architectural
issues, in consultation with the team. If this is still difficult, consider having a work‐
shop to evaluate the possibilities of revising the architecture or to explore the current
issues.

108 | Chapter 11: Document Just Enough

Objection: Knowledge about System Is Scattered
“Knowledge about the system is too scattered to achieve consistent documentation.”

Consider that you cannot document all knowledge. Start by documenting what you
know now and write down the assumptions that you make under the current circum‐
stances. This does require active maintenance when the situation changes or new
knowledge is gained. This maintenance should be part of a standard (e.g., part of the
DoD). That way, it becomes a shared responsibility for the team. In practice it works
well if one person is assigned an authority responsibility to remind others to retain
discipline to maintain documentation.

11.5 Metrics Overview
As a recap, Table 11-1 shows an overview of the metrics discussed in this chapter,
with their corresponding goals.

Table 11-1. Summary of metrics and goals in this chapter

Metric # in text Metric description Corresponding goal
DOC 1 Number of hours spent on documentation Documentation maintenance burden

DOC 2a Developers’ opinions on documentation quality overall Documentation quality

DOC 2b Developers’ opinions on documentation completeness Documentation quality

DOC 2c Developers’ opinions on documentation conciseness Documentation quality

DOC 2d Developers’ opinions on documentation currency Documentation quality

Because documentation should describe common understanding, this chapter is
closely related to the topics of standardization (Chapter 9) and the usage of third-
party code (Chapter 10).

11.5 Metrics Overview | 109

www.ebook3000.com

http://www.ebook3000.org

Experience in the Field
When we assess the quality and extent of documentation of a system, we assess how
balanced that documentation is: not too much detail, not too little. Typically we
expect to see a general, high-level design document explaining the functional and
technical architecture of a system as well as some details on its implementation. This
commonly is in the form of a wiki. We take the assumption of a new developer that
will be maintaining a system with little former experience with it. How well would
that developer be helped with the available documentation?

The results show a fairly proportional distribution: about one third in our benchmark
has been evaluated between having proper documentation (i.e., most areas are cov‐
ered for maintenance), improper documentation (“not applied”), and a group in
between, in which some key areas about the software system are missing or too com‐
prehensive to be useful. See the details of this distribution in Figure 11-1.

Figure 11-1. Benchmark results on documentation in development teams

110 | Chapter 11: Document Just Enough

CHAPTER 12

Next Steps

Le secret d’ennuyer est celui de tout dire.
(The secret of being boring is to tell everything.)

—Voltaire

Of course, there are more best practices for software development than those dis‐
cussed in this book. At this point you will know the essential ingredients of a mature
development process. The power of these practices and their metrics is that you can
make improvement visible and manageable.

12.1 Applying the Best Practices Requires Persistence
We know, it is a bit of a downer. The best practices in this book will only work for
disciplined and persistent teams. Persistence requires discipline and a belief that what
you are doing is right. Discipline is not about being in the office at the same time
every day or having a clean desk. It is about working consistently, standing your
ground, and being able to say “for this issue we will not make an exception.”

Persistence also implies patience. It takes time to master best practices and that will
require an investment in time.

12.2 One Practice at a Time
We have presented our ten best practices in an order that reflects the typical order in
which you want to accomplish them. For instance, Continuous Integration (Chap‐
ter 7) cannot possibly be effective without version control (Chapter 4) and to benefit
fully from it, requires automated testing (Chapter 6). Of course, often they appear
together. For example, when defining the DoD (Chapter 3), this is part of documenta‐

111

www.ebook3000.com

http://www.ebook3000.org

tion (Chapter 11). In fact, all best practices in this book are standards themselves
(Chapter 9).

It is more effective to implement one best practice in a complete and dependable way,
instead of doing multiple ones partially. Partial implementation of best practices does
not demonstrate their full benefits and that may be discouraging: it seems like you are
investing all the time, and not reaping the advertised benefits.

12.3 Avoid the Metric Pitfalls
We know, the metric pitfalls (“Motivation” on page 10) are hard to avoid and their
effects may not be visible immediately. Using the Goal-Question-Metric approach in
a rigorous manner (Chapter 2) helps to define the right metrics for your purposes. Of
particular interest are metrics that provide “perverse” incentives (that is, the opposite
of what you are trying to achieve), leading your team to treat or misinterpret metrics
in a manner that is not helping achieve the team goals. To find out whether this is the
case, you will need to able to discuss this openly with the team. This may lead you to
change or remove metrics. After all, if the metrics do not help you, change them!

12.4 What Is Next?
We hope that this book is helping you to improve the quality of your software, by
applying the mentioned best practices. And that you have found or will find proper
metrics to help you to confidently follow progress.

If you want to hone your individual coding skills, we refer you to our companion
book Building Maintainable Software: Ten Guidelines for Future-Proof Code. For other
process-related issues, consult the books listed in “Related Books” on page x.

112 | Chapter 12: Next Steps

Index

A
acceptance environment

characteristics of, 38
feature failures that passed in test environ‐

ment, 43
production environment boundary and, 40
test environment boundary and, 40
test environment vs., 46

Agile/Scrum methodology, 11
(see also Scrum)
Agile planning, 20
DoD's origins in, 20
short iterations, 20

assumptions, about metrics, 15-17
automated builds, 65
automated deployment, 71-78

best practice application, 73
CI vs., 71
common objections to metrics, 76
field experience, 78
measurement of process, 74-75
measuring reliability gained by, 75
measuring time gained by, 74
metrics overview, 77
motivation for, 72

automated testing, 49-61
assumptions about metrics, 57
best practice application, 52-53
CI and, 63, 65
common objections to metrics, 58
field experience, 61
for detecting root causes of bugs, 50
managing in practice, 53-58
measuring benefits of, 54

measuring development effort for, 54
metrics overview, 60
motivation for, 50
optimal amount of, 53
unit tests for code that already works, 59
when failed tests have no noticeable effects

in production, 58
automation, CI as facilitator of, 64
automobile industry, 1
averages, outliers vs., 16

B
baseline, 43
best practices

automated deployment, 73
automated testing, 52-53
CI, 65
controlled DTAP, 41
development standards, 80, 82-85
DoD, 21-23
for documentation, 105
GQM approach, 11-14
implementing one practice at a time, 111
metric pitfalls and, 112
overview of, 6
persistence in application of, 111
third-party code, 93-97
version control systems, 30-31

black-box tests, 50
branches, long-lived, 31
branching, 66
broken windows effect, 5
bugs, testing for (see automated testing)
builds

113

www.ebook3000.com

http://www.ebook3000.org

automated, 65
average time for, 68
CI and, 66

burndown chart, 20

C
car industry, 1
changes, tracking, 29
CI (see Continuous Integration)
classification, scaling of, 15
code integration, regularity of, 30
code quality control, 84, 89
code, testable, 51
codebase, estimating weak spots in, 56
coding style, 84
commit messages, version control systems and,

34
commits

CI and, 66
process standards and, 83
specificity/regularity of, 30
time between, 31

consistency, development standards and, 80
continuous delivery, 64
Continuous Integration (CI), 63-70

automated deployment vs., 71
best practice application, 65
common objections to metrics, 68
controlling, 66
dedicated server for, 65
field experience, 70
metrics overview, 69
motivation for, 64

control
defined, 2
measurement and, vii, 2

controlled DTAP, 37-47
best practice application, 41
common objections to metrics, 45
development bottleneck discovery with, 41
field experience, 47
GQM model for measuring in practice,

42-45
lead time predictions and, 40
metrics overview, 46
motivation for, 39
reduction of dependence on specialist

knowledge, 41

separation of concerns between develop‐
ment phases, 40

speed of DTAP street, 45
test/acceptance environment separation, 46

convention over configuration principle, 84
cost, automated deployment and, 77
coverage, by good tests, 52
craft, 1

D
decision-making, metrics and, 17
Definition of Done (DoD), 24

Agile/Scrum background for, 20
best practice application, 21-23
common objections to using, 23-25
elements of, 22
extra work with, 25
field experience with, 26
making explicit, 19-26
motivation for using, 21
overhead and, 23
proving success with, 21
software quality assurance, 21
team responsibility and, 24
technical maintenance and, 24
tracking progress with, 21

DeMarco, Tom, vii
dependency management

reinstalls, 68
third-party code and, 97-100

deployment issues, 76
deployment, automated (see automated deploy‐

ment)
derived metrics, 13
design decisions

documentation and, 105
documentation of, 103

developers, importance of contributions, 4
development best practices (see best practices)
development bottlenecks, 41
development capacity, test capacity balance

with, 43
development environment

characteristics of, 38
test environment boundaries and, 40

Development Process Assessment (DPA), 5
development standards, 79-89

best practice application, 82-85
best practices enforced by, 80

114 | Index

choosing combinations of technologies, 82
code quality control, 84
coding style, 84
common objections to, 87
controlling using GQM, 85-87
defining process standards, 83
developers' opinion inventory, 87
discussion overhead and, 81
documentation and, 82
field experience, 89
metrics overview, 88
motivation for, 80
on multiple technologies, 88
organizational fit, 88
predictability and, 80
simplification of process/code, 81
standardization of tooling/technologies, 82
violations and, 88

Development, Test, Acceptance, and Produc‐
tion (DTAP)
controlled (see controlled DTAP)
controlled vs. uncontrolled, 39

Dijkstra, Edsger, 37
direct metrics, 13
distributed version control, 28
documentation, 103-110

best practice application, 105
common objections to, 108
discussion minimization, 104
field experience, 110
goal assessment and, 104
keeping current, concise, accessible, 105
knowledge retention, 104
level of detail for, 105, 110
maintenance burden of, 107
managing, 107-108
metrics overview, 109
motivation for, 104
required elements, 105
scattered knowledge about system and, 109
team disagreements on, 108
testing and, 51
time limitations, 108

DoD (see Definition of Done)
DPA (Development Process Assessment), 5
DTAP (Development, Test, Acceptance, and

Production)
controlled (see controlled DTAP)
controlled vs. uncontrolled, 39

E
end-to-end tests, 52
environments (see also development environ‐

ment; production environment; test envi‐
ronment; acceptance environment)
inconsistencies between, 38
separation of concerns between develop‐

ment phases, 40
expectations, deviations of metrics from, 16
experienced (subjective) quality, 4
explanations, judgments vs., 16
external dependencies, third-party code and, 97

F
Farley, David, 71
feedback

average cycle length, 43
CI and, 64
integration errors and, 67

G
generated code, version control and, 28
Git, 28
goal assessment, documentation as means of,

104
Goal-Question-Metric (GQM) approach, 5

as means of choosing metrics, 3
automated deployment, 74-75
automated testing, 53-58
best practice application with, 11-14
common objections to, 17
controlling development standards with,

85-87
deriving metrics from measurement goals,

9-18
documentation management, 107
for measuring DTAP street in practice,

42-45
for third-party code dependency manage‐

ment, 97-100
goal definition with, 11
making assumptions about metrics explicit,

15-17
metrics in, 13
motivation for using, 10
questions in, 13
using norms with, 16
version control and, 27-35

Index | 115

www.ebook3000.com

http://www.ebook3000.org

version control systems, 31-33
goals

definition for GQM, 11
deriving metrics from, 9-18

(see also Goal-Question-Metric
approach)

five characteristics of, 12
GQM approach (see Goal-Question-Metric

approach)

H
high-level tests, 52
Humble, Jez, 71

I
inconsistencies

between environments, 38
in metrics, 18

industrial process, 1
inherent (product) quality, 4
integration

speed of, 67
tests, 52

ISO 25010, x
quality in use model, 4
software product quality model, 4
software quality according to, 4

isolation of tests, 53
issue resolution time, 32, 44
iterations, short, 20

J
judgments, explanations vs., 16

K
kanban boards, 20
Knuth, Donald, 49

L
lead time predictions, 40
legacy systems, 77

M
maintenance

development standards and, 81
documentation and, 107
of tests, 53

third-party code and, 93, 93, 101
manual merging, CI vs., 64
maturity of team, 26
McCabe complexity, 13
measured observations, 3
measurement, 3

(see also metrics)
control and, vii, 3
scaling of classification, 15

Mercurial, 28
merging

CI vs. manual, 64
speed of, 67
version control systems and, 29

metric in a bubble, 10
metric pitfalls, 10, 112
metrics

assumptions about, 15-17
averages vs. outliers, 16
common objections to/solutions for, 18
common pitfalls in selecting/applying, 10
comparable meanings of, 15
decision-making and, 17
deriving from measurement goals, 9-18

(see also Goal-Question-Metric
approach)

finding explanations for deviations from
expectations, 16

trends vs. facts, 15
metrics galore, 10
mocking, 53
modification, independent, 29
Mozi, 79

N
norms, GQM and, 16

O
objective metrics, 13
one-track metric, 10, 32
open-source third-party code, 92, 98
outliers, averages vs., 16
overhead

discussion, 81
DoD and, 23

P
Pascal, Blaise, 103

116 | Index

patching policies, 78
permission, for deployment, 76
personnel, key

automated deployment and, 72
controlled DTAP and, 41

perverse incentives, 112
planning, Agile, 20
portability, automated deployment and, 72
precision, trends vs., 15
predictability

development standards and, 80
process and, 1

predictions, lead time, 40
process control

as continuous activity, 2
defined, 3

process frameworks, ix
process standards, 83
product (inherent) quality, 4
Product owner, 20
production environment

acceptance environment boundary and, 40
characteristics of, 38
importance of resembling test environment,

42
productivity, functionality implemented as

measure of, 33
progress, tracking with DoD, 21

Q
quality

DoD and, 21
experienced vs. inherent, 4
importance of defining, 23
ISO 25010 standard, 4
unit tests and, 59

quality champion, 108
quality control

code standards and, 84, 89
documentation and, 106
third-party code, 92

questions, in GQM approach, 13

R
regressions, 27
reinstalls, 68
releases, infrequent, 77
reliability, automated deployment and, 75
responsibility(-ies) of team, 24

rollbacks, automated deployment and, 73
root cause analysis

automated deployment and, 72
of bugs, 50

S
sanity tests, 52

(see also end-to-end tests)
scaling of classification, 15
scope, DoD and, 22
Scrum, 19

(see also Agile/Scrum methodology)
short iterations, 20
SIG (Software Improvement Group), x
single platform deployment, 76
SMART nonfunctional requirements, 26
SMART test criteria, 61
smoke tests, 52

(see also end-to-end tests)
software development

as observable process, 2
best practices overview, 6
importance of each developer's contribu‐

tion, 4
measuring/benchmarking development

process maturity, 5
separation of concerns between develop‐

ment phases, 40
Software Improvement Group (SIG), x
software quality, 21

(see also quality)
according to ISO 25010 standard, 4
DoD and, 21

source code, independent modification of, 29
source files, merging of, 29
specialist knowledge

automated deployment and, 72
controlled DTAP and, 41

sprint planning, 20
stakeholder, 20
standardization

of development (see development stand‐
ards)

third-party code and, 93
static code analysis, 84
story point, 20
stubbing, 53
style checkers, 84
style of coding, 84

Index | 117

www.ebook3000.com

http://www.ebook3000.org

subjective (experienced) quality, 4
subjective metrics, 13
Subversion, 28
success, proving with DoD, 21

T
TDD (Test Driven Development), 51
team maturity, 26
technical maintenance, 24
technology choices, documentation of, 105
test capacity, development capacity and, 43
Test Driven Development (TDD), 51
test environment

acceptance environment boundary, 40
acceptance environment failures, 43
acceptance environment vs., 46
characteristics of, 38
development environment boundaries, 40
importance of resembling production envi‐

ronment, 42
test failures, 42
test maintenance, 53
testing approach

automated (see automated testing)
black-box tests, 50
end-to-end tests, 52
high-level tests, 52
sanity tests, 52
smoke tests, 52
third-party code, 100
unit tests (see unit tests)

third-party code
base-level quality of, 92
best practice application, 93-97
central repository for, 96
change of library source code by developers,

96
common objections to metrics, 100
dependency management measurement,

97-100
dependency updates, 96
determining maintainability advantages of,

93
field experience, 102
maintenance benefit determination, 101
management of usage, 91-102
metrics overview, 101
motivation for using, 92-93
predictability of system behavior, 93

safety/dependability, 100
time/effort savings with, 92
update management, 95
update problems, 100

tooling
automated deployment and, 73
standardization of, 82

treating the metric, 10, 32
treemap report, 56
trends, precise numbers vs., 15

U
unit tests, 50, 52

for code that is already working, 59
quality and, 59
third-party code and, 96

unsupported libraries, 95
updates

deployment automation and, 78
third-party code, 95

user acceptance, DoD and, 19
user stories, 20

V
velocity, of a development team, 20
version control systems

automatic merging, 29
basics, 28
best practice application, 30-31
CI and, 65
code integration and, 30
commit messages and, 34
commits and, 30
common objects to metrics for, 33
field experience, 35
GQM and, 27-35
in practice, 31-33
inconsistent use of, 33
metrics overview, 34
motivation for using, 29
recommendation measurement, 34

versions, automatic merging of, 29
violations, development standards and, 85-87,

88
Voltaire, 111

W
Whistler, James McNeill, 91

118 | Index

white-box tests, 50 Wilde, Oscar, 1, 27, 91

Index | 119

www.ebook3000.com

http://www.ebook3000.org

Colophon
The animals on the cover of Building Software Teams are three species of pipit: water,
Richard’s, and tawny.

Pipits are slender songbirds who prefer open country. The genus is widespread,
occurring across most of the world with the exception of the driest deserts, rainfor‐
ests, and mainland Antarctica. Molecular studies of the pipits suggest that the genus
arose in East Asia around seven million years ago and that the genus had spread to
the Americas, Africa, and Europe between five and six million years ago.

The plumage of the pipit is generally drab and brown, buff, or faded white. The
undersides are usually darker than the top, and there is a variable amount of barring
and streaking on the back, wings, and breast. The mottled brown colors provide cam‐
ouflage against the soil and stones of their environment. The pipit feeds primarily on
insects, larvae, and plant matter (especially berries), by picking items from the
ground or from low-lying vegetation as it walks. Pipits are monogamous and territo‐
rial. The nest tends to be situated on the side of a steep bank or in a hollow and is
made from surrounding vegetation by the female. Females lay two clutches a year,
consisting of 4 to 5 eggs, which are incubated for 15 to 16 days. The male and female
both forage for their young and tend to feed them larger and slower arthropods that
are easy to catch, in order to obtain the most food they can in the shortest amount of
time.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	About the Authors
	Preface
	The Topic of This Book
	Why You Should Read This Book
	Who Should Read This Book
	What You Need to Know to Read This Book
	What This Book Is Not
	About the Software Improvement Group (SIG)
	Related Books
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	1.1 Software Development as an Observable Process
	1.2 Software Quality According to the ISO 25010 Standard
	Software Product Quality in ISO 25010

	1.3 The Contribution of Each Developer Matters
	1.4 Measuring and Benchmarking Development Process Maturity
	1.5 The Goal-Question-Metric Approach
	1.6 An Overview of the Development Best Practices in This Book

	Chapter 2. Derive Metrics from Your Measurement Goals
	2.1 Motivation
	2.2 How to Apply the Best Practice
	Goal
	Question
	Metric

	2.3 Make Assumptions about Your Metrics Explicit
	Find Explanations Instead of Judgments When Metrics Deviate from Expectations
	Using Norms with the GQM Approach

	2.4 Common Objections to GQM
	Objection: Yes, Good Metric, but We Cannot Measure This

	Chapter 3. Make Definition of Done Explicit
	3.1 Motivation
	With a DoD You Can Track Progress and Prove Success
	A DoD Focuses on Software Quality

	3.2 How to Apply the Best Practice
	3.3 Common Objections to Using Definition of Done
	Objection: DoD Is Too Much Overhead
	Objection: DoD Makes the Team Feel Less Responsible
	Objection: With DoD There Is No Room for Technical Maintenance
	Objection: Changing the DoD May Mean Extra Work

	Chapter 4. Control Code Versions and Development Branches
	4.1 Motivation
	Tracking Changes
	Version Control Allows Independent Modification
	Version Control Allows Automatic Merging of Versions

	4.2 How to Apply the Best Practice
	Commit Specifically and Regularly
	Integrate Your Code Regularly

	4.3 Controlling Versions in Practice
	4.4 Common Objections to Version Control Metrics
	Objection: We Use Different Version Control Systems
	Objection: Measuring the Recommendations Is Unfeasible (for Example, Whether Commits Are Specific)

	4.5 Metrics Overview

	Chapter 5. Control Development, Test, Acceptance, and Production Environments
	5.1 Motivation
	Controlled DTAP Clarifies Responsibilities Between Development Phases
	Controlled DTAP Allows for Good Predictions
	Controlled DTAP Reveals Development Bottlenecks and Explains Problems More Easily
	Controlled DTAP Reduces Dependence on Key Personnel

	5.2 How to Apply the Best Practice
	5.3 Measuring the DTAP Street in Practice
	5.4 Common Objections to DTAP Control Metrics
	Objection: A Controlled DTAP Street Is Slow
	Objection: There Is No Need to Distinguish Test and Acceptance Environments

	5.5 Metrics Overview

	Chapter 6. Automate Tests
	6.1 Motivation
	Automated Testing Finds Root Causes of Bugs Earlier with Little Effort
	Automated Testing Reduces the Number of Bugs

	6.2 How to Apply the Best Practice
	6.3 Managing Test Automation in Practice
	Assumptions Regarding These Metrics

	6.4 Common Objections to Test Automation Metrics
	Objection: Failing Tests Have No Noticeable Effects
	Objection: Why Invest Effort in Writing Unit Tests for Code That Is Already Working?

	6.5 Metrics Overview

	Chapter 7. Use Continuous Integration
	7.1 Motivation
	CI Is Efficient
	CI Gives Feedback Quickly and Thereby Speeds Up Bug Fixing
	CI Is More Reliable Than Manual Merging
	CI Facilitates Further Automation

	7.2 How to Apply the Best Practice
	Additions to the CI Server
	Important Best Practices for CI

	7.3 Controlling Continuous Integration
	7.4 Common Objections to Continuous Integration Metrics
	Objection: We Cannot Get Control Over Our Build Time
	Objection: My Colleague Broke the Build, Not Me

	7.5 Metrics Overview

	Chapter 8. Automate Deployment
	8.1 Motivation
	Automated Deployment Is Reliable
	Automated Deployment Is Fast and Efficient
	Automated Deployment Is Flexible
	Automated Deployment Simplifies Root Cause Analysis

	8.2 How to Apply the Best Practice
	8.3 Measuring the Deployment Process
	8.4 Common Objections to Deployment Automation Metrics
	Objection: Single Platform Deployment Does Not Need Automation
	Objection: Time Spent on Fixing Deployment Issues Is Increasing
	Objection: We Are Not Allowed to Deploy in Production By Ourselves
	Objection: No Need to Automate Because of Infrequent Releases
	Objection: Automating Deployment Is Too Costly

	8.5 Metrics Overview

	Chapter 9. Standardize the Development Environment
	9.1 Motivation
	Development Standards Lead to Predictable Software Development
	Development Standards Help Enforce Best Practices
	Development Standards Simplify Both the Development Process and Code
	Development Standards Decrease Discussion Overhead

	9.2 How to Apply the Best Practice
	Standardize Tooling and Technologies—and Document It
	Considerations for Combinations of Technologies
	Defining Process Standards
	Coding Style
	Code Quality Control

	9.3 Controlling Standards Using GQM
	9.4 Common Objections to Standardization
	Objection: We Cannot Work Like This!
	Objection: Can You Standardize on Multiple Technologies?
	Objection: Organization Unfit for Standardization

	9.5 Metrics Overview

	Chapter 10. Manage Usage of Third-Party Code
	10.1 Motivation
	Using Third-Party Code Saves Time and Effort
	Third-Party Code Has at Least Base-Level Quality
	Managing Usage of Third-Party Code Makes a System’s Behavior More Predictable

	10.2 How to Apply the Best Practice
	Determine the Specific Maintainability Advantages of Using an External Codebase
	Keep Third-Party Code Up-to-Date
	Ensure Quick Response to Dependency Updates
	Do Not Let Developers Change Library Source Code
	Manage the Usage and Versions of Libraries and Frameworks Centrally

	10.3 Measuring Your Dependency Management
	10.4 Common Objections to Third-Party Code Metrics
	Objection: Safety and Dependability of Third-Party Libraries
	Objection: We Cannot Update a Particular Library
	Objection: Does Third-Party Code Actually Lead to Maintenance Benefits?

	10.5 Metrics Overview

	Chapter 11. Document Just Enough
	11.1 Motivation
	Documentation Retains Knowledge and Helps to Avoid Discussion
	Documentation Helps You to Know Whether You Are Reaching Your Goals

	11.2 How to Apply the Best Practice
	Keep Documentation Current, Concise, and Accessible
	Required Elements of System Documentation

	11.3 Managing Your Documentation
	11.4 Common Objections to Documentation
	Objection: No Time to Write Documentation
	Objection: Disagreement in the Team
	Objection: Knowledge about System Is Scattered

	11.5 Metrics Overview

	Chapter 12. Next Steps
	12.1 Applying the Best Practices Requires Persistence
	12.2 One Practice at a Time
	12.3 Avoid the Metric Pitfalls
	12.4 What Is Next?

	Index
	Colophon

