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Introduction

Welcome to Building a 2D Game Physics Engine: Using HTML5 and JavaScript. Because you 
have picked up this book, you are likely interested in the details of a game physics engine 
and the creation of your own games to be played over the Internet. This book teaches 
you how to build a 2D game physics engine by covering the involved technical concepts, 
and providing detailed implementations for you to follow. The source code in this book 
is provided in HTML5 and JavaScript, which are technologies that are freely available and 
supported by virtually all web browsers. After reading this book, the game physics engine 
you develop will be playable through a web browser from anywhere on the Internet.

This book focuses only on the relevant concepts and implementation details for 
building a 2D game physics engine. The presentations are tightly integrated with the 
analysis and development of source code. Much of the book guides you in implementing 
related concepts and building blocks while the actual functioning engine only becomes 
available towards the end. Some of the algorithms and mathematics can be challenging. 
Be patient. It will all pay off by the end of Chapter 4. By Chapter 5, you will be familiar 
with the concepts and technical details of 2D game physics engines, and feel competent 
in implementing the associated functionality.

Who Should Read This Book
This book is targeted toward programmers who are familiar with basic object-oriented 
programming concepts and have a basic to intermediate knowledge of an object-oriented 
programming language such as Java or C#. For example, if you are a student who has 
taken a few introductory programming courses, an experienced developer who is new to 
games and graphics programming, or a self-taught programming enthusiast, you will be 
able to follow the concepts and code presented in this book with little trouble. If you’re 
new to programming in general, it is suggested that you first become comfortable with 
the JavaScript programming language and concepts in object-oriented programming 
before tackling the content provided in this book.

Assumptions
You should have some basic background in Newtonian Mechanics and be experienced 
with programming in an object-oriented programming language, such as Java or C#. 
Knowledge and expertise in JavaScript would be a plus but is not necessary. The examples 
in this book were created with the assumption that you understand data encapsulation 
and inheritance. In addition, you should be familiar with basic data structures such as 
linked lists and dictionaries, and be comfortable working with the fundamentals of algebra 
and geometry, particularly linear equations and coordinate systems.

http://dx.doi.org/10.1007/978-1-4842-2583-7_4
http://dx.doi.org/10.1007/978-1-4842-2583-7_5
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■ ﻿ INTRODUCTION

Who Should Not Read This Book
This book is not designed to teach readers how to program, the formal mathematics of 
physics, nor does it attempt to explain the intricate details of HTML5 or JavaScript. If you 
have no prior experience developing software with an object-oriented programming 
language, you will probably find the examples in this book difficult to follow.

On the other hand, if you have an extensive background in game physics engine 
development based on other platforms, the content in this book will be too basic; this is a 
book intended for developers without 2D game physics engine development experience.

Organization of This Book
This book teaches how to develop a game physics engine by describing the foundational 
infrastructure, collision detection algorithms, information that should be gathered during 
a collision, and approaches to resolving and computing responses after a collision.

Chapter 2 introduces the foundational infrastructure, including the mathematics library, 
and supporting framework for game loop, user input, and basic drawing. Chapter 3 focuses on 
how to detect collisions covering efficiency, generality, and vital information to record during 
a collision. Chapter 4 integrates the building blocks from the previous two chapters and 
presents the details on simulating motions and computing responses after a collision. 
Chapter 5 summarizes the book with a demonstration program and references for further 
readings.

Code Samples
Every chapter in this book includes examples that let you interactively experiment with 
and learn the new materials. You can download the source code for all the projects, 
including the associated assets (images, audio clips, or fonts), from the following page: 
www.apress.com/9781484225820.

Follow the instructions to download the 9781484225820.zip file. To install the code 
samples, unzip the 9781484225820.zip file. You should see a folder structure that is 
organized by chapter numbers. Within each folder are subfolders containing NetBeans 
projects that correspond to sections of this book.

http://dx.doi.org/10.1007/978-1-4842-2583-7_2
http://dx.doi.org/10.1007/978-1-4842-2583-7_3
http://dx.doi.org/10.1007/978-1-4842-2583-7_4
http://dx.doi.org/10.1007/978-1-4842-2583-7_5
http://www.apress.com/9781484225820
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CHAPTER 1

Introduction to 2D Game 
Physics Engine Development

Physics engines play an important part in many types of games. A believable physics 
interaction between game objects has become a key element of most modern PC and 
console games as well as, more recently, browser and smartphone games. The range of 
topics within physics for games is broad and includes, but is not limited to, areas such 
as rigid body, fluid dynamics, soft-body, vehicle physics, and particle physics. This book 
will cover the fundamental topics needed for you to get started in understanding and 
building a general purpose, rigid body physics engine in two dimensions. The book also 
aims to provide you with a reusable game physics engine, which can be used for your 
own games, by guiding you through the process of building a physics engine step-by-step 
from scratch. This way you will gain a foundational understanding of the concepts and 
components required for a typical 2D rigid body system.

While you can just download a physics engine library and continue on with your 
game or engine development, building your own game engine from scratch has its own 
advantages. Besides giving you an underlying understanding of how the physics engine 
operates, it gives you more control over the flexibility, performance, functionality, and 
usability of the engine itself.

As stated, this book will cover the foundation of 2D rigid body physics. The topics will 
include properties and behavior of rigid bodies, collision detection, collision information 
encoding, and collision response. The goal is to obtain a fundamental understanding of 
these concepts which are required to build a usable physics engine.

The book approaches physics engine development from three important avenues: 
practicality, approachability, and reusability. While reading the book, we want you to get 
involved and experience the process of building the game engine. The step-by-step guide 
should facilitate the practicality of this book. The theories and practices introduced in this 
book are based on research and investigation from many sources which cover the topics in 
varying detail. The information is presented in a way that is approachable, by allowing you 
to follow along as each code snippet is explained in parallel to the overall concepts behind 

Electronic supplementary material  The online version of this chapter  
(doi:10.1007/978-1-4842-2583-7_1) contains supplementary material, which is available  
to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2583-7_1
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each component of the engine. After following along and creating your own engine, you 
will be able to extend and reuse the finished product by adding your own features.

This chapter describes the implementation technology and organization of the 
book. The discussion then leads you through the steps of downloading, installing, and 
setting up the development environment; guides you through building your first HTML5 
application; and extends this first application with the JavaScript programming language 
to run your first simulation.

Setting Up Your Development Environment
The physics engine you are going to build will be accessible through web browsers that 
could be running on any operating system (OS). The development environment you are 
about to set up is also OS agnostic. For simplicity, the following instructions are based on 
a Windows 7/8/10 OS. You should be able to reproduce a similar environment with minor 
modifications in a Unix-based environment like the Apple macOS or Ubuntu.

Your development process includes an integrated development environment (IDE) 
and a runtime web browser that is capable of hosting the running game engine. The most 
convenient systems we have found are the NetBeans IDE with the Google Chrome web 
browser as the runtime environment. Here are the details:

•	 IDE: All projects in this book are based on the NetBeans IDE. You 
can download and install the bundle for HTML5 and PHP from 
https://netbeans.org/downloads.

•	 Runtime environment: You will execute your projects in the 
Google Chrome web browser. You can download and install this 
browser from https://www.google.com/chrome/browser/.

•	 Connector Google Chrome plug-in: This is a Google Chrome 
extension that connects the web browser to the NetBeans IDE to 
support HTML5 development. You can download and install this 
extension from https://chrome.google.com/webstore/detail/
netbeans-connector/hafdlehgocfcodbgjnpecfajgkeejnaa. 
The download will automatically install the plug-in to Google 
Chrome. You may have to restart your computer to complete the 
installation.

Notice that there are no specific system requirements to support the JavaScript 
programming language or HTML5. All these technologies are embedded in the web 
browser runtime environment.

■■ Note   As mentioned, we chose a NetBeans-based development environment because 
we found it to be the most convenient. There are many other alternatives that are also free, 
including and not limited to IntelliJ IDEA, Eclipse, Sublime, Microsoft’s Visual Studio Code, 
and Adobe Brackets.

https://netbeans.org/downloads
https://www.google.com/chrome/browser/
https://chrome.google.com/webstore/detail/netbeans-connector/hafdlehgocfcodbgjnpecfajgkeejnaa
https://chrome.google.com/webstore/detail/netbeans-connector/hafdlehgocfcodbgjnpecfajgkeejnaa
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Downloading and Installing JavaScript  
Syntax Checker
We have found JSLint to be an effective tool in detecting potential JavaScript source code 
errors. You can download and install JSLint as a plug-in to the NetBeans IDE with the 
following steps:

•	 Download it from http://plugins.netbeans.org/
plugin/40893/jslint. Make sure to take note of the  
location of the downloaded file.

•	 Start NetBeans, select Tools ➤ Plugins, and go to the 
Downloaded tab.

•	 Click the Add Plugins button and search for the downloaded file 
from step 1. Double-click this file to install the plug-in.

The following are some useful references for working with JSLint:

•	 For instructions on how to work with JSLint, see  
http://www.jslint.com/help.html.

•	 For details on how JSLint works, see  
http://plugins.netbeans.org/plugin/40893/jslint.

Working in the NetBeans Development 
Environment
The NetBeans IDE is easy to work with, and the projects in this book require only the 
editor and debugger. To open a project, select File ➤ Open Projects. Once a project 
is open, you need to become familiarized with three basic windows, as illustrated in 
Figure 1-1.

•	 Projects window: This window displays the source code files of the 
project.

•	 Editor window: This window displays and allows you to edit the 
source code of your project. You can select the source code file to 
work with by double-clicking the corresponding file name in the 
Projects window.

•	 Action Items window: This window displays the error message 
output from the JSLint checker.

http://plugins.netbeans.org/plugin/40893/jslint
http://plugins.netbeans.org/plugin/40893/jslint
http://www.jslint.com/help.html
http://plugins.netbeans.org/plugin/40893/jslint
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■■ Note   If you cannot see a window in the IDE, you can click the Window menu and select 
the name of the missing window to cause it to appear. For example, if you cannot see the 
Projects window in the IDE, you can select Window ➤ Projects to open it.

Creating an HTML5 Project in NetBeans
You are now ready to create your first HTML5 project.

	 1.	 Start NetBeans. Select File ➤ New Project (or press 
Ctrl+Shift+N), as shown in Figure 1-2. A New Project  
window will appear.

Figure 1-1.  The NetBeans IDE
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	 2.	 In the New Project window, select HTML5 in the Categories 
section, and select HTML5 Application from the Projects 
section, as shown in Figure 1-3. Click the Next button to bring 
up the project configuration window.

	 3.	 As shown in Figure 1-4, enter the name and location of the 
project, and click the Finish button to create your first HTML5 
project.

Figure 1-2.  Creating a new project

Figure 1-3.  Selecting the HTML5 project
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NetBeans will generate the template of a simple and complete HTML5 application 
project for you. Your IDE should look similar to Figure 1-5.

Figure 1-4.  Naming the project

Figure 1-5.  The HTML5 application project
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By selecting and double-clicking the index.html file in the Projects window, you 
can open it in the Editor window and observe the content of the file. The contents are as 
follows:

<!DOCTYPE html>
<!--
To change this license header, choose License Headers in Project Properties.
To change this template file, choose Tools | Templates
and open the template in the editor.
-->
<html>
    <head>
        <title>TODO supply a title</title>        
    </head>
    <body>
        <div>TODO write content</div>
    </body>
</html>

The first line declares the file to be an HTML file. The block that follows within the 
<!-- and --> tags is a comment block. The complementary <html></html> tags contain 
all the HTML code. In this case, the template defines the head and body sections. The 
head sets the title of the web page, and the body is where all the content for the web page 
will be located.

You can run this project by selecting Run ➤ Run Project or by pressing the F6 key. 
Figure 1-6 shows an example of what the default project looks like when you run it.

To stop the program, either close the web page or click the Cancel button in the 
browser to stop NetBeans from tracking the web page. You have successfully run your first 
HTML5 project. You can use this project to understand the IDE environment.

Figure 1-6.  Running the simple HTML5 project
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The Relationship Between the Project Files and  
the File System 
Navigate to the HTML5Application project location on your file system, for example with 
the Explorer OS utility in Windows. You can observe that in the project folder, NetBeans 
has generated the nbProject, public_html, and test folders. Table 1-1 summarizes the 
purpose of these folders and the index.html file.

HTML5 Canvas Project
This project demonstrates how to set up the core drawing functionality for the engine as 
well as define a user control script. Figure 1-7 shows an example of running this project, 
which is defined in the project folder.

Table 1-1.  Folders and files in a NetBeans HTML5 project

NetBeans HTML5 project: folder/file Purpose

nbProject/ This folder contains the IDE configuration files. 
You will not modify any of the files in this folder.

public_html/ This is the root folder of your project. Source 
code and assets from your project will be 
created in this folder.

public_html/index.html This is the default entry point for your web site. 
This file will be modified to load JavaScript 
source code files.

test/ This is the default folder for unit testing source 
code files. This folder is not used in this book 
and has been removed from all the projects.
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Figure 1-7.  Running the HTML5 project with drawing core and user control

The goals of the project are as follows:

•	 To learn how to set up the HTML canvas element

•	 To learn how to retrieve the canvas element from an HTML 
document for use in JavaScript

•	 To learn how to create a reference context to an HTML canvas, 
and use it to manipulate the canvas

•	 To get familiar with basic user control scripting

Drawing Core
This engine will use simple drawing code for the sole purpose of simulating the physics 
engine code. After all, the only thing the simulation needs to show is how simple objects 
interact after the physics engine code is implemented. Thus, advanced graphical 
functionalities such as illumination, texturing, or shadow rendering will only serve to 
further complicate the code base. For that reason, a simple HTML5 canvas with primitive 
drawing support will serve the purpose of rendering the physics simulation during 
creation and debugging.
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Creating the HTML Canvas
In this step, you will create an empty HTML5 canvas for the drawing of all the objects.

	 1.	 Open the index.html file in the editor by double-clicking 
the project name in the project view, then open the Site Root 
folder, and double-click the index.html file.

	 2.	 To create your HTML canvas for drawing, add the following 
line in the index.html file within the body element

<table style="padding: 2px">
    <tr>
        <td> 
            <div>
                <canvas id="canvas"></canvas>    
            </div>
        </td>
    </tr>
</table>

The code defines a canvas element with an id of canvas. An id is the name of the 
element and can be used to retrieve the corresponding element when the web page is 
loaded. Notice that no width and height is specified in the code. This is because you will 
specify those attributes in the next step. You will use the canvas id to retrieve the reference 
to the actual canvas drawing area where you will draw into.

Creating the Core Script
This section details the steps needed to create your first script, the drawing canvas 
initialization. This script will evolve to contain more core functionalities for the physics 
engine. For this step, you will only write the initialization code for the drawing canvas.

	 1.	 Create a new folder named EngineCore inside the SiteRoot  
(or public_html) folder by right-clicking and creating a  
new folder.

	 2.	 Create a new JavaScript file within the EngineCore folder by 
right-clicking the EngineCore folder. Name the file Core.js.

	 3.	 Open the new Core.js file for editing.

	 4.	 Create a static reference to gEngine by adding the following 
code.

var gEngine = gEngine || {};
gEngine.Core = (function () {
}());

gEngine.Core is where all the physics engine core 
functionality will reside.
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■■ Note A ll global variable names begin with a “g” and are followed by a capital letter, as 
in gEngine.

	 5.	 Inside the gEngine.Core you want to access and define the 
width and height of the canvas element. To do this you will 
create a variable mCanvas, and reference it to the canvas 
element of index.html such that you could set and modify the 
canvas attributes. You also need the variable mContext, which 
will keep a reference to all the methods and properties needed 
to draw into the canvas. Add the following code to accomplish 
these.

var mCanvas, mContext, mWidth = 800, mHeight = 450;
mCanvas = document.getElementById('canvas');
mContext = mCanvas.getContext('2d');
mCanvas.height = mHeight;
mCanvas.width = mWidth;

■■ Note A ll instance variable names begin with an “m” and are followed by a capital letter, 
as in mCanvas.

	 6.	 Create an object variable mPublic, because you need to make 
some of the engine core variables and functions accessible by 
other scripts later in the development of the engine. For now, 
mPublic will only need to keep three variables accessible, that 
is, the width and height of canvas, and the mContext to draw 
into the canvas.

var mPublic = {
    mWidth: mWidth,
    mHeight: mHeight,
    mContext: mContext
};
return mPublic;

	 7.	 Finally, for the Core.js to be included in the simulation, you 
need to add it into the index.html file. To do this, simply add 
the following code inside the body element.

<script type="text/javascript" src="EngineCore/Core.js"></script>
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User Control
In this section, you will be introduced to basic user control event handlers using 
JavaScript. This is to enable you to test your implementation in every step of the physics 
engine’s incremental development. For this chapter, the user control script will be used 
to test if you have correctly initialized the canvas and implemented drawing functionality 
properly.

Creating User Control Script
Let’s get started:

	 1.	 Create a new JavaScript File within the SiteRoot folder by  
right-clicking the SiteRoot (or public_html) folder. Name the  
file UserControl.js.

	 2.	 Open the new UserControl.js file for editing

	 3.	 Here you want to create a function that will handle all the 
keyboard input. Let’s name the function userControl. This 
function will have a variable called keycode that will keep 
track of the user keyboard input. To do this, add the following 
code inside the UserControl.js.

function userControl(event) {
    var keycode;
}

	 4.	 Since some browsers handle input events differently, you 
want to know in which type of browser the simulation will 
run. Add the following code within the control function 
to distinguish between an IE key event handler and other 
browser key event handler.

if (window.event) { // IE
    keycode = event.keyCode;
}
else if (event.which) { // Netscape/Firefox/Opera
    keycode = event.which;
}

This script will enable you to handle keyboard input events from the browser as well 
as process the input and response accordingly. In this case, you want to test the canvas 
you just created in the last section. This testing can be achieved by drawing rectangles 
and circles when keyboard inputs are received, as detailed in the next section.
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Using the User Control Script
In this section, you will complete the UserControl.js file for this chapter by adding some 
user input responses to draw a rectangle or a circle in random positions on the canvas 
when F or G keys are pressed.

The control script will be triggered by the HTML onkeydown event. It is important to 
recognize that in the browser, each keyboard key is associated with a unique key code. 
For example, “a” is associated with a keycode of 65, “b” is 66, and so on.

■■ Note   The UserControl.js will evolve over the development to handle more keyboard 
inputs and more complex responses. 

	 1.	 Open the UserControl.js file for edit.

	 2.	 You need to access the width and height of canvas, and the 
context to draw into the canvas. Add the following lines of 
code inside the control function.

var width = gEngine.Core.mWidth;
var height = gEngine.Core.mHeight;
var context = gEngine.Core.mContext;

	 3.	 Create a rectangle at a random position if the “F” key (with 
key code value of 70) is pressed, and a circle if the “G” key 
(with key code value of 71) is pressed. Add the following lines 
to accomplish this task.

if (keycode === 70) { //f
    //create new Rectangle at random position
    �context.strokeRect(Math.random() * width * 0.8,      

// x position of center
    �Math.random() * height * 0.8,     

// y position of center
    �Math.random() * 30 + 10, Math.random() * 30 + 10);   

// width and height location
}
if (keycode === 71) { //g
    //create new Circle at random position
    context.beginPath();
    //draw a circle
    �context.arc(Math.random() * width * 0.8,       

// x position of center
    �Math.random() * height * 0.8,       

// y position of center
    Math.random() * 30 + 10, 0, Math.PI * 2, true);
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    // radius
    context.closePath();
    context.stroke();
}

	 4.	 Next, for the UserControl.js to be included in the simulation, 
you need to add it into the index.html file. To do this, simply 
add the following code inside the body element.

<script type="text/javascript" src="EngineCore/Control.js"> 
</script>

	 5.	 Finally, you want HTML to handle the key pressing event. 
Open the index.html file to edit and add the onkeydown 
attribute to the body tag to call your JavaScript function 
control. Modify your index.html file so the body tag will look 
like the following.

<body onkeydown="return userControl(event);" >

Now if you run the project and press the key F or G, the simulation will draw either 
a circle or rectangle at a random position with random sizes as shown in Figure 1-7 above.

Summary
By this point the physics engine’s basic drawing function has been initialized, and 
should be able to draw a rectangle and a circle onto the canvas with basic input required 
from the user. In this chapter, you have structured the source code that supports future 
increase in complexity with a simple way to draw rigid bodies. You are now ready to 
extend the functionalities and features of your project into a physics engine. The next 
chapter will focus on the core functionalities needed for any game or physics engine 
(engine loops, vector calculation), as well as evolving rectangles and circles into rigid 
body object-oriented objects to encapsulate their drawing and behaviors.
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CHAPTER 2

Implementing the 2D Physics 
Engine Core

In the previous chapter, you implemented functionality to support basic drawing 
operations. Drawing is the first step to constructing your physics engine because it allows 
you to observe the output while continuing to expand the engine’s capabilities. In this 
chapter, two critical components for 2D physics simulations, the core engine loop and 
rigid shape class, will be examined and added to the engine. The core engine loop, or the 
engine loop, allows the engine to control and handle the real-time interaction of game 
objects, while the rigid shape class abstracts and hides the detailed information such as 
positions and rotation angles that are required for future physics calculations.

This chapter begins with the brief coverage of a simple vector calculation library. It 
is assumed that you have a background in basic vector operations in 2D space, and thus 
the required code is provided without extensive conceptual explanations. The chapter 
then introduces you to a rigid shape class, a critical abstraction that will encapsulate 
all the information of an object that is required in a physics simulation, for example 
(as will be introduced in a following chapter) information such as width, height, center 
position, mass, inertia, and friction. This information presented through the rigid shape 
class will be utilized throughout the engine’s evolution into a fully featured 2D game 
physics library. For this chapter you will begin with the creation of the rigid shape class 
that only contains information for drawing of the object onto the canvas. Lastly, you will 
be introduced to one of the more important components of the physics engine, the core 
engine loop.

After completing this chapter, you will be able to:

•	 Control the position and rotation of objects based on user 
keyboard input.

•	 Simulate gravity that affects all objects in the scene and the ability 
to toggle gravity on and off.

•	 Select and display the properties of a specific object.

•	 Reset the scene.

www.allitebooks.com

http://www.allitebooks.org


Chapter 2 ■ Implementing the 2D Physics Engine Core

16

Vector Calculation Library
Physics simulation requires a vector library to represent object positions and orientations, 
and to support the computations involved in the simulation that changes these quantities. 
The computation involved in 2D physics simulations are basic vector operations, including 
addition, subtraction, scaling, cross product, etc. For this reason, you will create a simple 
Vec2 vector math library to be included in all subsequent projects.

Creating the Library
In this step, you will create a new file within a new Library folder to support all the 
required calculations.

	 1.	 Create a new folder name Lib inside the SiteRoot (or public_
html) folder by right-clicking and creating a new folder.

	 2.	 Create a new JavaScript file within the Library folder by right-
clicking the Lib folder. Name the file Vec2.js.

	 3.	 Open the new Vec2.js file for editing.

	 4.	 Add the Vec2 constructor.

var Vec2 = function (x, y) {
    this.x = x;
    this.y = y;
};

	 5.	 Add all the functions to support basic vector operations.

Vec2.prototype.length = function () {
    return Math.sqrt(this.x * this.x + this.y * this.y);
};

Vec2.prototype.add = function (vec) {
    return new Vec2(vec.x + this.x, vec.y + this.y);
};

Vec2.prototype.subtract = function (vec) {
    return new Vec2(this.x - vec.x, this.y - vec.y);
};

Vec2.prototype.scale = function (n) {
    return new Vec2(this.x * n, this.y * n);
};
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Vec2.prototype.dot = function (vec) {
    return (this.x * vec.x + this.y * vec.y);
};

Vec2.prototype.cross = function (vec) {
    return (this.x * vec.y - this.y * vec.x);
};

Vec2.prototype.rotate = function (center, angle) {
    //rotate in counterclockwise
    var r = [];
    var x = this.x - center.x;
    var y = this.y - center.y;
    r[0] = x * Math.cos(angle) - y * Math.sin(angle);
    r[1] = x * Math.sin(angle) + y * Math.cos(angle);
    r[0] += center.x;
    r[1] += center.y;
    return new Vec2(r[0], r[1]);
};

Vec2.prototype.normalize = function () {
    var len = this.length();
    if (len > 0) {
        len = 1 / len;
    }
    return new Vec2(this.x * len, this.y * len);
};

Vec2.prototype.distance = function (vec) {
    var x = this.x - vec.x;
    var y = this.y - vec.y;
    return Math.sqrt(x * x + y * y);
};

With these functions defined, it is now possible to operate on vectors to calculate and 
manipulate the position, size, and orientation of objects drawn on the canvas. It is expected 
that you understand these elementary operators. Do not forget to include the new library in 
the project by adding the new file into the index.html using the <script> tag, like so:

<script type="text/javascript" src="Lib/Vec2.js"></script>

Physics Engine and Rigid Shapes
This book focuses on primitive objects that do not change shape during their physical 
interactions, or objects that are rigid. For example, a falling Lego block bouncing off of 
your desk and landing on a hardwood floor would be considered an interaction between 
rigid objects. This type of simulation is known as a rigid body physics simulation, or more 
simply a rigid body simulation.
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The computation involved in simulating the interactions between arbitrary rigid shapes 
can be algorithmically complicated and computationally costly. For these reasons, rigid body 
simulations are often based on a limited set of simple geometric shapes, for example, rigid 
circles and rectangles. In typical game engines, these simple rigid shapes can be attached 
to geometrically complex game objects for approximating their physics simulations, for 
example, attaching rigid circles on spaceships and using the rigid body physics simulation of 
the rigid circles to approximate the physical interactions between the spaceships.

The physics engine you will build is based on simulating the interactions between 
rigid circles and rectangles. This simulation consists of four fundamental steps:

	 1.	 Implementing motions

	 2.	 Detecting collisions

	 3.	 Resolving the collisions

	 4.	 Deriving responses to the collisions

The rest of this chapter leads you to build the infrastructure to represent simple rigid 
circles and rectangles. The following chapters present the intricate details of collision 
detection, motion approximation, collision resolution, and collision responses.

The Rigid Shape Project
This project demonstrates how to implement the basic infrastructure to encapsulate the 
characteristics of a rigid body. You can see an example of this project running in Figure 2-1.

The source code to this project is defined in the Rigid Shape Project folder.
Project Goals:

•	 To define the base class for all rigid shape objects.

•	 To lay the foundation for building a rigid shape physics simulator.

Figure 2-1.  Running the Rigid Shape Project
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•	 To understand the relationships between rigid shape classes and 
the engine core functionality.

•	 To define an initial scene for testing your implement.

The List Object in Engine Core
You will begin by defining a list object, mAllObjects, to keep track of all defined rigid 
shapes. As you will see in the next chapter, the mAllObjects list allows the simulation 
of physical interaction among all defined rigid shapes. To conveniently support the 
simulation computation, the mAllObjects list is defined in the gEngine.Core component.

	 1.	 Edit Core.js and add the following line inside gEngine.Core. 
This creates a list for keeping track of all defined rigid shapes.

var mAllObjects = [];

	 2.	 Update the mPublic variable in the Core.js to allow access 
to the newly defined list object. This is accomplished in the 
following code snippet.

var mPublic = {
    mAllObjects: mAllObjects,
    mWidth: mWidth,
    mHeight: mHeight,
    mContext: mContext
};

The Rigid Shape Base Class
You can now define a base class for the rectangle and circle shape objects. This base class 
will encapsulate all the functionality that is common to the two shapes.

	 1.	 Start by creating a new subfolder called RigidBody under the 
SiteRoot (or public_html) folder. In the RigidBody folder, 
create a new file and name it RigidShape.js

	 2.	 Edit RigidShape.js to define the constructor. For now the 
constructor only receives one vector argument representing 
the center of the object. The rotation angle of the rigid shape 
has a default value of 0. The created object is then pushed into 
the global object list, mAllObjects.

function RigidShape(center) {
    this.mCenter = center;
    this.mAngle = 0;
    gEngine.Core.mAllObjects.push(this);
}
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The Rigid Rectangle Class
With the base abstract class for rigid shapes defined, you can now create the first concrete 
rigid shape, the rigid rectangle.

	 1.	 Under the RigidBody folder, create a new file and name it 
Rectangle.js.

	 2.	 Edit this file to create a constructor that receives the center, 
a width and height properties. In the constructor, define the 
type of rigid body as Rectangle, allocate an array to store the 
vertex positions of the rectangle, and a separate array to store 
the face normal vectors (to be discussed later).

var Rectangle = function (center, width, height) {
    RigidShape.call(this, center);
    this.mType = "Rectangle";
    this.mWidth = width;
    this.mHeight = height;
    this.mVertex = [];
    this.mFaceNormal = [];
};

	 3.	 In the constructor, compute the vertex positions of the 
rectangle using the center, width, and height information.

//0--TopLeft;1--TopRight;2--BottomRight;3--BottomLeft
this.mVertex[0] = new Vec2(center.x - width / 2, center.y - 
height / 2);
this.mVertex[1] = new Vec2(center.x + width / 2, center.y - 
height / 2);
this.mVertex[2] = new Vec2(center.x + width / 2, center.y + 
height / 2);
this.mVertex[3] = new Vec2(center.x - width / 2, center.y + 
height / 2);

	 4.	 Next, compute the face normal vectors. As illustrated in 
Figure 2-2, face normals are vectors that are perpendicular 
to the edges and point away from the center of the rectangle. 
Notice that the face normal vectors are normalized with a 
length of 1. In addition, notice the relationship between the 
rectangle vertices and the corresponding face normals. Face 
normal index-0 is in the same direction as the vector from 
vertex 2 to 1. This direction is perpendicular to the edge 
formed by vertices 0 and 1. In this way, face normal index-0 
is the direction pointing away from the rectangle that is 
perpendicular to the first edge, and so on. The face normal 
vectors will be used later for determining collisions.
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//0--Top;1--Right;2--Bottom;3--Left
//mFaceNormal is normal of face toward outside of rectangle
this.mFaceNormal[0] = this.mVertex[1].subtract(this.mVertex[2]);
this.mFaceNormal[0] = this.mFaceNormal[0].normalize();
this.mFaceNormal[1] = this.mVertex[2].subtract(this.mVertex[3]);
this.mFaceNormal[1] = this.mFaceNormal[1].normalize();
this.mFaceNormal[2] = this.mVertex[3].subtract(this.mVertex[0]);
this.mFaceNormal[2] = this.mFaceNormal[2].normalize();
this.mFaceNormal[3] = this.mVertex[0].subtract(this.mVertex[1]);
this.mFaceNormal[3] = this.mFaceNormal[3].normalize();

	 5.	 Ensure the newly defined Rectangle class properly inherits 
from the RigidShape base class by including the following 
code after the constructor.

var prototype = Object.create(RigidShape.prototype);
prototype.constructor = Rectangle;
Rectangle.prototype = prototype;

	 6.	 Now you can create the draw function for the rectangle 
object. The strokeRect function of the context, a reference 
to the canvas, is invoked to accomplish this. Corresponding 
translation and rotation must be defined in order to draw 
the rectangle at the proper position and orientation. The 
implementation is shown as follows.

Rectangle.prototype.draw = function (context) {
    context.save();
    context.translate(this.mVertex[0].x, this.mVertex[0].y);
    context.rotate(this.mAngle);
    context.strokeRect(0, 0, this.mWidth, this.mHeight);
    context.restore();
};

Figure 2-2.  The face normals of a rectangle
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The Rigid Circle Class
You can now implement the rigid circle object based on an overall structure that is similar 
to that of the rigid rectangle.

	 1.	 Under the RigidBody folder, create a new file and name it 
Circle.js.

	 2.	 Edit this file to create a constructor that initializes the 
radius of the circle, the rigid body type as Circle, and an 
mStartpoint position for the purpose of drawing a reference 
line to visualize the rotation angle of a circle. Initially, without 
rotation, the reference line is vertical, connecting the center 
of the circle to the top of the circumference. Changing the 
rotation angle of the circle will result in this line being rotated.

var Circle = function (center, radius) {
    RigidShape.call(this, center);
    this.mType = "Circle";
    this.mRadius = radius;
    // The start point of line in circle
    this.mStartpoint = new Vec2(center.x, center.y - radius);
};

	 3.	 Similar to the Rectangle class, you must include the following 
code to ensure that the Circle class properly inherits from the 
RigidShape base class.

var prototype = Object.create(RigidShape.prototype);
prototype.constructor = Circle;
Circle.prototype = prototype;

	 4.	 Distinct from that of the rectangle, the arc function of 
the context is used to draw the circle onto the canvas. In 
addition, you need to draw the rotation reference line from 
the center to the mStartpoint, the top of the circle.

Circle.prototype.draw = function (context) {
    context.beginPath();
    //draw a circle
    context.arc(�this.mCenter.x, this.mCenter.y,  

this.mRadius, 0, Math.PI *  2, true);
    //draw a line from start point toward center
    context.moveTo(this.mStartpoint.x, this.mStartpoint.y);
    context.lineTo(this.mCenter.x, this.mCenter.y);
    context.closePath();
    context.stroke();
};
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Modify the User Control Script
You will modify the UserControl.js file for testing the new functionality.

	 1.	 Edit the UserControl.js file in the SiteRoot (or public_html) 
folder.

	 2.	 Add the gObjectNum variable, an index to the mAllObjects 
array representing the currently selected object. Notice 
that this variable is defined before the definition of the 
userControl function and is a global variable.

var gObjectNum = 0;

	 3.	 Within the userControl function, define supports for the 
creation of random rectangles and circles with the F and G 
keys.

if (keycode === 70) {    // f
    var r1 = new Rectangle(new �Vec2(Math.random()*width*0.8,  

Math.random()*height*0.8), 
                         �Math.random() * 30+10,  

Math.random() * 30+10);
}
if (keycode === 71) { //g
    var r1 = new Circle(new �Vec2(Math.random()*width*0.8,  

Math.random()*height*0.8), 
                     Math.random() * 10 + 20);
}

	 4.	 Within the userControl function, define supports for 
selecting an object index based on the up/down arrows and 
the 0 to 9 keys.

if (keycode >= 48 && keycode <= 57) {  //number
    if (keycode - 48 < gEngine.Core.mAllObjects.length)
        gObjectNum = keycode - 48;
}
if (keycode === 38) {   //up arrow
    if (gObjectNum > 0)
        gObjectNum--;
}
if (keycode === 40) {   // down arrow
    if (gObjectNum < gEngine.Core.mAllObjects.length-1)
        gObjectNum++;
}
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Integrate into the Core
You can now modify the Core.js file to integrate and test the newly defined functionality. 
Your modification will invoke the drawing of all created rigid shapes, and update the User 
Interface (UI) to properly reflect the state of the application. For now, the drawing will be 
accomplished through a simple and continuous loop of calling the appropriate drawing 
functions, or the engine loop. In the next section of this chapter, you will implement a 
more advanced engine loop to handle the physics engine’s calculations.

	 1.	 Open Core.js in the Engine Core folder for editing.

	 2.	 Create a new runGameLoop function. In runGameLoop, call the 
windows.requestAnimationFrame to specify the function 
for the next frame redraw. Additionally, invoke two other 
functions, the draw and updateUIEcho functions, to draw all 
the defined rigid shapes and to receive user keyboard entries.

var runGameLoop = function () {
    requestAnimationFrame(function () {
        runGameLoop();
    })
    updateUIEcho();
    draw();
};

	 3.	 Define the updateUIEcho function to update the HTML to 
display the proper state of the application.

var updateUIEcho = function () {
    �document.getElementById("uiEchoString").innerHTML = 

"<p><b>Selected Object:</b>:</p>" +
        "<ul style=\"margin:-10px\">" + 
        "<li>Id: " + gObjectNum + "</li>" +
        �"<li>Center: " + mAllObjects[gObjectNum].mCenter.x. 

toPrecision(3) + "," + 
        mAllObjects[gObjectNum].mCenter.y.toPrecision(3) + "</li>" +
        "</ul> <hr>" + "<p><b>Control</b>: of selected object</p>" +
        "<ul style=\"margin:-10px\">" + 
        "<li><b>Num</b> or <b>Up/Down Arrow</b>: SelectObject</li>" +
        "</ul> <hr>" + 
        "<b>F/G</b>: Spawn [Rectangle/Circle] at random location" + "<hr>";
};
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	 4.	 Add the draw function to iterate through and invoke the 
corresponding draw functions of the rigid shapes in the 
mAllObjects list. The strokeStyle property is set such that 
only the currently selected object is drawn in red while the 
rest are in blue.

var draw = function () {
    mContext.clearRect(0, 0, mWidth, mHeight);
    var i;
    for (i = 0; i < mAllObjects.length; i++) {
        mContext.strokeStyle = 'blue';
        if (i === gObjectNum)
            mContext.strokeStyle = 'red';
        mAllObjects[i].draw(mContext);
    }
};

	 5.	 Define support to initialize the engine loop when the script 
runs for the first time.

var initializeEngineCore = function () {
    runGameLoop();
};

	 6.	 Allow public access to the initializeEngineCore function by 
including it in the mPublic variable.

var mPublic = {
    initializeEngineCore: initializeEngineCore,
    mAllObjects: mAllObjects,
    mWidth: mWidth,
    mHeight: mHeight,
    mContext: mContext
};

Define the Initial Scene
You can now define a bounded empty environment to test the new functionality.

	 1.	 Create a new file under the SiteRoot (or public_html) folder, 
and name it MyGame.js.

	 2.	 Edit this file by creating a new function named MyGame. 
Inside this function, use the new rigid shape object you just 
implemented to create the four bounds that define border for 
future physics simulation.
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    function MyGame() {
        var width = gEngine.Core.mWidth;
        var height = gEngine.Core.mHeight;
        var up = new Rectangle(new Vec2(width / 2, 0), width, 3);
        var down = new Rectangle(new Vec2(width / 2, height), width, 3);
        var left = new Rectangle(new Vec2(0, height / 2), 3, height);
        var right = new Rectangle(new Vec2(width, height / 2), 3, height);
    }

Note that you can modify the initial scene by editing this function. This can become 
handy in the following chapters when you want to test the performance of the physics 
simulation.

Modify the index.html File
To include the new functionality, you need to always remember to include and call them 
inside the index.html file.

	 1.	 Open the index.html file for editing.

	 2.	 Modify the body tag to support the handling of keyboard 
events, define the initial testing environment by instantiating 
a new MyGame object, and initialize the engine loop by calling 
the initializeEngineCore.

<body onkeydown="return userControl(event);" 
    onload="var game = new MyGame();
    gEngine.Core.initializeEngineCore()">

	 3.	 Add a new table row for echoing the application state.

<table style="padding: 2px">
    <tr>
        <td>
            <div><canvas id="canvas"></canvas></div>
        </td>
        <td>
            <div id=”uiEchoString”> </div>
        </td>
    </tr>
</table>

	 4.	 Remember to include all the new scripts with the <script> tag.

<script type="text/javascript" src="RigidBody/RigidShape.js"></
script>



Chapter 2 ■ Implementing the 2D Physics Engine Core

27

<script type="text/javascript" src="RigidBody/Circle.js"></
script>
<script type="text/javascript" src="RigidBody/Rectangle.js">

</script><script type="text/javascript" src="EngineCore/Core.
js"></script>

<script type="text/javascript" src="MyGame.js"></script>
<script type="text/javascript" src="UserControl.js"></script>

You can now run the project and test your implementations. It should look like 
Figure 2-1.

Observation
You can now run the project to test your implementation. Notice the four bounding 
borders and the text output to the right that prints instructions for the user and echoes 
the application state, which includes the index of the selected object. Pressing the F or G 
key generates a rectangle or circle at a random position with a random size. This drawing 
simulation seems rather similar to the previous project. The main differences are in the 
object abstraction and drawing mechanism—RigidShape class definition and engine 
loop monitoring user input and drawing of all defined objects. In the next project you will 
evolve the engine loop to support the changing of rigid shape states, including allowing 
the user to change the attributes of each of the rigid shapes in the scene and simple 
simulation of falling objects.

The Core Engine Loop
One of the most important characteristics of any physics engine is the support of 
seemingly intuitive and continuous interactions between the objects and the graphical 
simulation elements. In reality, these interactions are implemented as a continuous 
running loop that receives and processes the calculations, updates the object states, and 
renders the objects. This constantly running loop is referred to as the engine loop.

To convey the proper sense of intuitiveness, each cycle of the engine loop must be 
completed within a normal human’s reaction time. This is often referred to as real time, 
which is the amount of time that is too short for humans to detect visually. Typically, real-
time can be achieved when the engine loop is running at a rate of higher than 40 to 60 
cycles in a second. Since there is often one drawing operation in each loop cycle, the loop 
cycle’s rate can also be expressed as frames per second (FPS), or the frame rate. An FPS of 
60 is a good target for performance. This is to say, your engine must process calculations, 
update the object states, and then draw the canvas all within 1/60th of a second!

The loop itself, including the implementation details, is the most fundamental 
control structure for an engine. With the main goal of maintaining real-time performance, 
the details of an engine loop’s operation are of no concern to the rest of the physics 
engine. For this reason, the implementation of an engine loop should be tightly 
encapsulated in the core of the engine, with its detailed operations hidden from other 
elements.
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Engine Loop Implementations
An engine loop is the mechanism through which logic and drawing are continuously 
executed. A simple engine loop consists of processing the input, updating the state of 
objects, and drawing those objects, as illustrated in the following pseudocode:

initialize();
while(game running) {
    input();
    update();
    draw();
}

As discussed, an FPS of 60 or higher is ideal to maintain the sense of real-time 
interactivity. When the game complexity increases, one problem that may arise is when 
sometimes a single loop can take longer than 1/60th of a second to complete, causing 
the game to run at a reduced frame rate. When this happens, the entire game will appear 
to slow down. A common solution is to prioritize which operations to emphasis and 
which to skip. Since correct input and updates are required for an engine to function as 
designed, it is often the draw operation that is skipped when necessary. This is referred to 
as frame skipping, and the following pseudocode illustrates one such implementation:

elapsedTime = now;
previousLoop = now;
while(game running) {
    elapsedTime += now - previousLoop;
    previousLoop = now;

    input();
    while( elapsedTime >= UPDATE_TIME_RATE ) {
        update();
        elapsedTime -= UPDATE_TIME_RATE;
    }
    draw();
}

In the previous pseudocode listing, UPDATE_TIME_RATE is the required real-time 
update rate. When the elapsed time between the engine loop cycle is greater than the 
UPDATE_TIME_RATE, the update function will be called until it is caught up. This means 
that the draw operation is essentially skipped when the engine loop is running too slowly. 
When this happens, the entire game will appear to run slowly, with lagging play input 
response and frames skipped. However, the game logic will continue to be correct.

Notice that the while loop that encompasses the update function call simulates a 
fixed update time step of UPDATE_TIME_RATE. This fixed time step update allows for a 
straightforward implementation in maintaining a deterministic game state.



Chapter 2 ■ Implementing the 2D Physics Engine Core

29

The Core Engine Loop Project
This project demonstrates how to incorporate a loop into your engine and to support 
real-time simulation by updating and drawing the objects accordingly. You can see an 
example of this project running in Figure 2-3. The source code to this project is defined in 

the Core Engine Loop Project folder.
The goals of the project are as follows:

•	 To understand the internal operations of an engine loop.

•	 To implement and encapsulate the operations of an engine loop.

•	 To gain experience with continuous update and draw to simulate 
animation.

Implement the Engine Loop Component
The engine loop component is a core engine functionality and thus should be 
implemented as a property of the gEngine.Core. The actual implementation is similar to 
the pseudocode listing discussed.

	 1.	 Edit the Core.js file.

	 2.	 Add the necessary variables to determine the loop frequency.

var mCurrentTime, mElapsedTime, mPreviousTime = Date.now(), 
mLagTime = 0;
var kFPS = 60;          // Frames per second
var kFrameTime = 1 / kFPS;
var mUpdateIntervalInSeconds = kFrameTime;
var kMPF = 1000 * kFrameTime; // Milliseconds per frame.

Figure 2-3.  Running the Core Engine Loop Project
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	 3.	 Update the runGameLoop function to keep track of the elapsed 
time between frames and to ensure that the update function is 
called at the frame rate frequency.

var runGameLoop = function () {
    requestAnimationFrame(function () {
    runGameLoop();
    });
    �//compute how much time has elapsed since the last RunLoop
    mCurrentTime = Date.now();
    mElapsedTime = mCurrentTime - mPreviousTime;
    mPreviousTime = mCurrentTime;
    mLagTime += mElapsedTime;
    �//Update the game the appropriate number of times.
    //Update only every Milliseconds per frame.
    //If lag larger then update frames, update until caught up.
    while (mLagTime >= kMPF) {
        mLagTime -= kMPF;
        update();
    }
    updateUIEcho();
    draw();
};

	 4.	 Modify the updateUIEcho function to print out additional 
relevant application state information, like how to rotate and 
move the selected rigid shape. The code in bold is the only 
addition to the function.

var updateUIEcho = function () {
    document.getElementById("uiEchoString").innerHTML =
    // ... identical to previous project
    mAllObjects[gObjectNum].mCenter.y.toPrecision(3) + "</li>"  + 
        �"<li>Angle: " + mAllObjects[gObjectNum].mAngle.

toPrecision(3) + "</li>"  +
    "</ul> <hr>" +
    "<p><b>Control</b>: of selected object</p>" +
    "<ul style=\"margin:-10px\">" +
        �"<li><b>Num</b> or <b>Up/Down Arrow</b>: SelectObject</

li>" +
        �"<li><b>WASD</b> + <b>QE</b>: Position [Move + Rotate]</

li>" +
    "</ul> <hr>" +
    "<b>F/G</b>: Spawn [Rectangle/Circle] at selected object" +
    "<p><b>H</b>: Fix object</p>" +
    "<p><b>R</b>: Reset System</p>" +
    "<hr>";
};
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	 5.	 Create a new function named update, which will call the 
update function of every rigid shape defined.

var update = function () {
    var i;
    for (i = 0; i < mAllObjects.length; i++) {
        mAllObjects[i].update(mContext);
    }
};

Extend the Rigid Shape Classes
You are going to modify the rigid shape base class, and both of the Rectangle and Circle 
classes to support the implementation of simple behavior. While the update function is 
defined in the rigid shape base class to be invoked by the game engine loop, the detailed 
implementation of update must necessarily be subclass-specific. For instance, a circle 
object implements moving behavior by changing the values in its center while a rectangle 
object must change all of the values in the vertex and face normal arrays to simulate the 
same movement behavior.

Rigid Shape Base Class

	 1.	 Edit the RigidShape.js file.

	 2.	 Define the update function to be called by the engine loop 
and implement the simple falling behavior by changing the 
center position with a constant y-direction vector. Notice that 
the free fall behavior is only applied when the shape is within 
the vertical bounds of the canvas.

RigidShape.prototype.update = function () { 
    if (this.mCenter.y < gEngine.Core.mHeight && this.mFix !== 0)
        this.move(new Vec2(0, 1)); 
};

Subclasses are responsible for defining the mFix variable and the move function to 
control if the shape is fixed where it should not follow the falling behavior and to implement 
the moving of the shape. It should be emphasized that this rigid shape movement behavior 
is included here for testing purposes only and will be removed in the next project. Actual 
physics-based movement of rigid shape objects and the associated physical quantities 
(including velocity and acceleration) will be introduced and discussed in Chapter 4.

http://dx.doi.org/10.1007/978-1-4842-2583-7_4
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Note that by default the canvas coordinate defines the origin, (0, 0), to be located at 
the top left corner, and positive y direction to be downwards. For this reason, to simulate 
gravity, you will move all objects in the positive y direction.

The Circle Class

The Circle class is modified to implement movements.

	 1.	 Edit the Circle.js file.

	 2.	 Define the mFix instance variable to enable or disable the 
falling behavior.

var Circle = function (center, radius, fix) {
    // ... code similar to previous project
    this.mFix = fix;
    // ... code similar to previous project

	 3.	 Add a move function to define how a circle is moved by a 
vector—adding the movement vector to the center and the 
mStartpoint.

Circle.prototype.move = function (s) {
    this.mStartpoint = this.mStartpoint.add(s);
    this.mCenter = this.mCenter.add(s);
       return this;
};

	 4.	 Add rotate function to implement the rotation of a circle. 
Note that since a circle is infinitely symmetrical, a rotated 
circle would appear identical to the original shape. The 
mStartpoint position allows a rotated reference line to be 
drawn to indicate angle of rotation of a circle.

// rotate angle in counterclockwise
Circle.prototype.rotate = function (angle) {
    this.mAngle += angle;
    this.mStartpoint = this.mStartpoint.rotate(this.mCenter, angle);
    return this;
};

The Rectangle Class

Similar to the circle class, the Rectangle class must be modified to support the new 
functionality.
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	 1.	 Edit the Rectangle.js file.

	 2.	 Define the mFix instance variable to enable or disable the 
falling behavior.

var Rectangle = function (center, width, height, fix) {
    // ... code similar to previous project
    this.mFix = fix;
    // ... code similar to previous project

	 3.	 Define the move function by changing the values of all vertices 
and the center.

Rectangle.prototype.move = function (v) {
    var i;
    for (i = 0; i < this.mVertex.length; i++) {
        this.mVertex[i] = this.mVertex[i].add(v);
    }
    this.mCenter = this.mCenter.add(v);
    return this;
};

	 4.	 Define the rotate function by rotating all over the vertices 
and recomputing the face normals.

Rectangle.prototype.rotate = function (angle) {
    this.mAngle += angle;
    var i;
    for (i = 0; i < this.mVertex.length; i++) {
        �this.mVertex[i] = this.mVertex[i].rotate(this.mCenter, 

angle);
    }
    �this.mFaceNormal[0] = this.mVertex[1].subtract(this.

mVertex[2]);
    this.mFaceNormal[0] = this.mFaceNormal[0].normalize();
    �this.mFaceNormal[1] = this.mVertex[2].subtract(this.

mVertex[3]);
    this.mFaceNormal[1] = this.mFaceNormal[1].normalize();
    �this.mFaceNormal[2] = this.mVertex[3].subtract(this.

mVertex[0]);
    this.mFaceNormal[2] = this.mFaceNormal[2].normalize();
    �this.mFaceNormal[3] = this.mVertex[0].subtract(this.

mVertex[1]);
    this.mFaceNormal[3] = this.mFaceNormal[3].normalize();
    return this;
};
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Modify User Control Script
You will need to extend the userControl function defined in the UserControl.js file to 
support movements, rotation, disable/enable gravity, and reset the entire scene.

	 1.	 Edit the UserControl.js file.

	 2.	 Add statements to support moving, rotating, and toggling of 
gravity on the selected object.

// move with WASD keys
if (keycode === 87) { //W
    gEngine.Core.mAllObjects[gObjectNum].move(new Vec2(0, -10));
}
if (keycode === 83) { // S
    gEngine.Core.mAllObjects[gObjectNum].move(new Vec2(0, +10));
}
if (keycode === 65) { //A
    gEngine.Core.mAllObject[gObjectNum].move(new Vec2(-10, 0));
}
if (keycode === 68) { //D
    gEngine.Core.mAllObjects[gObjectNum].move(new Vec2(10, 0));
}

// Rotate with QE keys
if (keycode === 81) { //Q
    gEngine.Core.mAllObjects[gObjectNum].rotate(-0.1);
}
if (keycode === 69) { //E
    gEngine.Core.mAllObjects[gObjectNum].rotate(0.1);
}

// Toggle gravity with the H key
if (keycode === 72) { //H
    if(gEngine.Core.mAllObjects[gObjectNum].mFix === 0)
        gEngine.Core.mAllObjects[gObjectNum].mFix = 1;
    else gEngine.Core.mAllObjects[gObjectNum].mFix = 0;
}

	 3.	 Add a statement to reset the scene.

if (keycode === 82) { //R
    �gEngine.Core.mAllObjects.splice(5, gEngine.Core.mAllObjects.

length);
    gObjectNum = 0;
}
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	 4.	 Modify object creation statements of the G and F keys such 
that the new object is created at the location of the currently 
selected object, rather than a random position.

if (keycode === 70) { //f
    �var r1 = new Rectangle(new Vec2(gEngine.Core.

mAllObjects[gObjectNum].mCenter.x,
    gEngine.Core.mAllObjects[gObjectNum].mCenter.y), 
    Math.random() * 30 + 10, Math.random() * 30 + 10);
}
if (keycode === 71) { //g
    �var r1 = new Circle(new Vec2(gEngine.Core.

mAllObjects[gObjectNum].mCenter.x,
    gEngine.Core.mAllObjects[gObjectNum].mCenter.y), 
    Math.random() * 10 + 20);
}

Update the Scene
To test the implemented engine loop and object movements, you will create an initial 
selected object to the scene. This initial object will serve as the cursor position for 
spawning created rigid shapes. This can be accomplished by editing the MyGame.js file 
and creating an initial object.

function MyGame() {
    var width = gEngine.Core.mWidth;
    var height = gEngine.Core.mHeight;
    var r1 = new Rectangle(new Vec2(width / 2, height / 2), 3, 3, 0);

    var up = new Rectangle(new Vec2(width / 2, 0), width, 3, 0);
    var down = new Rectangle(new Vec2(width / 2, height), width, 3, 0);
    var left = new Rectangle(new Vec2(0, height / 2), 3, height, 0);
    var right = new Rectangle(new Vec2(width, height / 2), 3, height, 0);
}

Observation
Run the project to test your implementation. You will see that the scene is almost the same 
as that of the previous project except for the small initial cursor object. See that you can 
change the selected object, and thereby the cursor object, with the 0 to 9, or the up and 
down arrow keys. Type F and G keys to see that new objects are created at the cursor object 
location and they always follow the falling behavior. This real-time smooth falling behavior 
indicates that the engine loop has been successfully implemented. You can play around 
with the selected shape position using the WASD, QE, and H keys; and move, rotate, and 
toggle gravity on the selected object. You may also notice that without movement of the 
cursor object, the newly created objects are clustered together, which can be confusing. 
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That is because the physics simulation has yet to be defined. In the next chapter you will 
learn about and implement collision detection as a first step to remedy the clustered 
object problem.

Summary
In this chapter, you have implemented basic rigid shape classes. Although only simple 
position, orientation, and drawing are supported, these classes represent a well-defined 
abstraction, hide implementation details, and thus support future integration of complexity. 
In the following chapters, you will learn about other physical quantities including mass, 
inertia, friction, and restitution. The engine loop project introduced you to the basics of 
a continuous update loop that supports real time per-shape computation and enables 
visually appealing physics simulations. In the next chapter, you will begin learning about 
physics simulation by first examining the collision between rigid shapes in detail.
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CHAPTER 3

Incorporating Collision 
Detection

In the context of 2D video games, the fundamentals of a physical simulation involves 
movements of rigid shapes, collisions of the moving shapes, and responses after the 
collisions. In the previous chapter, you defined the rigid shape classes and a core engine 
loop to support basic drawing, update operations, and simple movements of rigid shapes. 
In this chapter, you will learn about and implement the detection of rigid shape collisions 
and compute the necessary information, such that in the next chapter you can begin 
resolving and implementing the responses to the collisions. The proper implementation 
based on these concepts enables believable scenarios when objects physically interact 
with each other in the simulated world.

This chapter focuses on the foundations of detecting collisions, including how 
to approximate the detection, a theory for exact detection of colliding rectangles and 
circles in any orientations, and essential information to capture after detecting a collision 
to support resolution of interpenetration and proper responses to collisions. You will 
implement this system in a step-by-step manner, from a simple broad phase collision 
detection method, to the more accurate and computationally more costly Separating 
Axis Theorem (SAT). In this way, at each step the collision detection will become more 
accurate and be applicable to more general cases until your solution is ready to be used in 
the next chapter for resolving and responding to collisions. The final result of this chapter 
will be a collision detection system that can detect collisions between rigid rectangles and 
circles of any size and in orientations where the information required for resolving and 
responding to the collisions are computed and available.

After completing this chapter, you will be able to:

•	 Appreciate the significant computational cost of detecting object 
collisions.

•	 Optimize object collision detection with broad phase collisions to 
avoid unnecessary computations.

•	 Understand that, in a computer simulation, rigid bodies can 
interpenetrate during a collision and that this interpenetration 
must be resolved.
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•	 Learn and use the Separating Axis Theorem (SAT) to detect rigid 
body collisions.

•	 Compute the necessary information to support efficient 
positional correction. In the next chapter, you will learn about 
effective resolution of rigid body interpenetration using this 
computed information.

•	 Implement an efficient collision detection algorithm that is based 
on SAT.

•	 Detect collisions between rigid rectangles and circles accurately.

Interpenetration of Colliding Objects
As illustrated in Figure 3-1, the fixed update time step introduced in the previous chapter 
means object positions in continuous motion are approximated by a discrete set of 
positions. The most notable ramifications of these approximations are in detecting 
collisions.

Figure 3-1.  A rigid square in continuous motion
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You can see one such problem in Figure 3-1; imagine a thin wall existed in the space 
between the current and the next update. You would expect the object to collide and 
stop by the wall in the next update. However, if the wall were thin enough, the object 
would essentially pass right through it as it jumped from one position to the next. This 
is a common problem faced in many game engines. A general solution for these types of 
problems can be algorithmically complex and computationally intensive. It is typically 
the job of the game designer to mitigate and avoid this problem with well-designed (for 
example, appropriate size) and well-behaved (for example, appropriate traveling speed) 
game objects.

Figure 3-2 shows two objects colliding after a time step. Before the time step, the 
objects are not touching. However, after the time step, the results of the movement 
simulation place the two objects over each other. 

This is another example ramification of fixed update time step with discrete intervals. 
In the real world, given that the objects were solid, the two would never interpenetrate. 
This is where details of a collision must be computed such that the interpenetrating 
situation can be properly resolved.

Figure 3-2.  The interpenetration of colliding objects
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Collision Detection
Collision detection is a vital and potentially a costly piece of physics simulations that 
can impact performance significantly. For example, if you want to detect the collisions 
between five objects, in the worst case you must perform four detection computations for 
the first objects, followed by three computations for the second, two for the third, and one 
for the fourth. In general, without dedicated optimizations, in the worst case you must 
perform O(N 2) operations to detect the collisions between N objects.

In addition to reporting if a collision has occurred, a collision detection algorithm 
should also support the computation of information that can be used to resolve and 
respond to the collision. This information can include penetration depth, and the normal 
vector of penetration. It is important to compute this information accurately such that the 
collision can be effectively resolved and the response properly computed to simulate the 
real world. Remember that object interpenetration does not happen in real world, thus 
the computed information are only an approximation of the actual law of physics.

Broad Phase Method
A detailed collision detection algorithm involves intensive computations. This is because 
accurate results must be computed to support effective interpenetration resolution 
and realistic collision response simulation. A broad phase method optimizes this 
computation by exploiting the proximity of objects: the detailed and computationally 
intensive algorithm are only deployed for objects that are physically closed to each other.

A popular broad phase method uses bounding boxes/circles to approximate 
collisions between all objects. A bounding box is an x/y-axes aligned rectangular box 
that completely bounds a given object. The term x/y-axes aligned refers to the fact that 
the four sides of a bounding box are parallel to the horizontal x-axis and to the vertical 
y-axis. Similarly, a bounding circle is a circle that centers around and completely 
bounds an object. By performing the straightforward bounding box/circle intersection 
computations, it becomes possible to narrow down the candidates for detailed collision 
detection operations to only those with colliding bounds.

There are other broad phase methods that organize objects either with a spatial 
structure such as uniform grid or quad-tree or into coherent groups such as hierarchies 
of bounding colliders. Results from broad phase methods are typically fed into mid 
phase and finally narrow phase collision detection methods. Each phase narrows 
down candidates for the eventual collision computation, and each subsequent phase is 
incrementally more accurate and more expensive.

This chapter only introduces you to the bounding circle broad phase collision method 
followed by a narrow phase algorithm that is based on the Separation Axis Theorem (SAT).

The Broad Phase Method Project
This project demonstrates how to implement a broad phase collision detection method 
using bounding circles. You can see an example of this project running in Figure 3-3. The 
source code to this project is defined in the Broad Phase Method Project folder.
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Project goals:

•	 To understand the implementation of bounding circle collision 
detection.

•	 To understand the strengths and weaknesses of broad phase 
collision detection.

•	 To lay the foundation for building a narrow phase collision 
detection algorithm.

Define the Physics Engine Component
A physics engine component can now be defined to support the collision detection 
computations. To begin, follow the steps of defining an engine component.

	 1.	 In the SiteRoot/EngineCore (or public_html/EngineCore) 
folder, create a new file and name it Physics.js. This file will 
implement the physics engine component. Remember to load 
this new source file in index.html.

	 2.	 Define the physics component in a similar fashion as you 
defined gEngine.Core:

var gEngine = gEngine || { }; 
gEngine.Physics = (function () {
    var mPublic = {
    };
    return mPublic;
}());

Figure 3-3.  Running the Broad Phase Method Project
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	 3.	 Create a collision function within gEngine.Physics to test 
the intersection of bounding circles between all objects in the 
mAllObjects list. Notice the nested loops that test every object 
against each other for collision and that the colliding objects 
are drawn with green color.

var collision = function () {
    var i, j;
    for (i = 5; i < gEngine.Core.mAllObjects.length; i++) {
        for (j = i + 1; j < gEngine.Core.mAllObjects.length; j++){
            If (�gEngine.Core.mAllObjects[i].boundTest(gEngine.

Core.mAllObjects[j])) {
                gEngine.Core.mContext.strokeStyle = 'green';
                �gEngine.Core.mAllObjects[i].draw(gEngine.Core.

mContext);
                �gEngine.Core.mAllObjects[j].draw(gEngine.Core.

mContext);
            }
        }
    }
};

	 4.	 Add public variable within mPublic to allow access to the 
collision function.

var mPublic = {
    collision: collision
};

Invoke the Physics Collision and Update the UI
Edit the Core.js file in the SiteRoot/EngineCore (or public_html/EngineCore) folder.

	 1.	 Invoke the collision computation from the runGameLoop 
function within the core engine loop.

//....identical to previous project
while (mLagTime >= kMPF) {
    mLagTime -= kMPF;
    gEngine.Physics.collision();
    update();
}
//....identical to previous project
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	 2.	 Modify the updateUIEcho function to remove support for 
the H button. The gravity on/off functionality is no longer 
required.

//...identical to previous project
"<b>F/G</b>: Spawn [Rectangle/Circle] at selected object" +
"<p><b>H</b>: Fix object</p>" + // remove this line
"<p><b>R</b>: Reset System</p>" +

Modify Rigid Shape Classes
Now you can modify all the files inside the rigid shape folder to support a bounding circle 
test for the broad phase collision detection method.

	 1.	 You need to modify rigid shape base class. Open  
RigidShape.js under the folder SiteRoot/RigidBody (or 
public_html/RigidBody).

	 2.	 Add the mBoundRadius variable to the RigidShape constructor. 
This is the radius of the bounding circle for the rigid shape.

this.mBoundRadius = 0;

	 3.	 Define a new prototype function, and name it boundTest, a 
function that will test if two bounding circles have collided. 
The most straightforward way to detect the collision between 
two circles is to determine if the distance between the two 
centers is less than the sum of the radii. The scenario is 
depicted in Figure 3-4.

RigidShape.prototype.boundTest = function (otherShape) {
    var vFrom1to2 = otherShape.mCenter.subtract(this.mCenter);
    var rSum = this.mBoundRadius + otherShape.mBoundRadius;
    var dist = vFrom1to2.length();
    if (dist > rSum) {
        return false;  //not overlapping
    }
    return true;
};
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	 4.	 You also need to remove the movement testing code that was 
defined as the update function of the RigidShape base class.

RigidShape.prototype.update = function () { };

	 5.	 Next, modify the Circle.js file in the same folder to initialize 
the value for the mBoundRadius variable in the constructor. 
The bounding circle of a rigid circle shape has the same radius 
as the rigid shape. Remember to remove the mFix variable.

this.mBoundRadius = radius;
this.mFix = fix; //remove this line

	 6.	 Modify the Rectangle.js file for a similar purpose, to 
initialize the mBoundRadius variable in the constructor. In this 
case, the bounding circle for a rectangle rigid shape is defined 
as half of the diagonal distance of the rectangle. Once again, 
remember to remove the unused mFix variable.

this.mBoundRadius = Math.sqrt(width*width + height*height)/2;

Figure 3-4.  Circle collision detection: (a) no collision (b) collision detected
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Observation
Run the project to test your implementation. Notice that by default, objects are created 
in the same location, have bounding circles that overlap, and thus are drawn in a green 
color. You can select an object and move/rotate it to observe the green color changing 
back to black when there are no overlaps of their corresponding bounding circles. Now, 
create a rectangle and a circle, and move them apart. Rotate the rectangle and move it 
close to, but without actually touching, the circle. You may notice that the two shapes are 
not touching and yet both are drawn in green. That is because the collision bound for the 
rectangle is a circle, which overestimates the bounds of the object as shown in Figure 3-5. 
This is the most important drawback with this broad phase method: though efficient, it is 
inaccurate. This issue will be remedied by the SAT algorithm to be introduced in a later 
section.

Collision Information
With the broad phase collision method implemented, you can now begin the process 
of defining narrow phase methods for detecting the collision between different rigid 
shapes. As discussed earlier, information regarding the specifics of a collision must be 
computed to support proper resolution of interpenetration and response. As illustrated 
in Figure 3-6, the essential information of a collision includes: collision depth, normal, 
start, and end. The collision depth is the smallest amount that the objects interpenetrated 
where the collision normal is the direction along which the collision depth is measured. 
The start and end are beginning and end positions of the interpenetration defined for 
the convenience of drawing the interpenetration as a line segment. It is always true that 
any interpenetration can be resolved by moving the colliding objects along the collision 
normal by the collision depth distance from the start to the end position.

This section leads you to develop the infrastructure for computing and working with 
collision information based on collisions between rigid circle shapes—a straightforward 
extension to the previous project. After this section, with the proper support for 
storing and accessing collision information, the Separating Axis Theorem (SAT) will be 
introduced and implemented.

Figure 3-5.  False positive collision between Rectangle-A and Circle-B
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The Circle Collision Detection Project
This project builds the infrastructure for computing and working with collision 
information based on collisions between circles. As will be discussed, collision 
information records the specific details of a collision for resolving interpenetration 
and generating responses. Notice that the bounding circle-based broad phase collision 
detection method computes the exact collision detection solution for rigid circle shapes. 
For this reason, this project can take advantage of the previous project and focus on 
computing and working with collision information. You can see an example of this 
project running in Figure 3-7. The source code to this project is defined in the Circle 
Collision Detection Project folder.

Figure 3-6.  Collision information

Figure 3-7.  Running the Circle Collision Detection Project
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Project goals:

•	 To define collision information.

•	 To build the infrastructure for computing and working with 
collision information.

•	 To compute and display collision information for circles.

Define Collision Information Object
A new class must be defined to support the storage of collision information.

	 1.	 Under the SiteRoot/Lib (or public_html/Lib) folder, create 
a new file and name it CollisionInfo.js. Remember to load 
this new source file in index.html.

	 2.	 Define the constructor of the object to contain collision 
depth, collision normal, and a start and end positions. 
These are the beginning and ending positions of a collision 
interpenetration.

function CollisionInfo() {
    this.mDepth = 0;
    this.mNormal = new Vec2(0, 0);
    this.mStart = new Vec2(0, 0);
    this.mEnd = new Vec2(0, 0);
}

	 3.	 Define the getter and setter for the object.

CollisionInfo.prototype.setNormal = function (s) {  
  this.mNormal = s;
};

CollisionInfo.prototype.getDepth = function () {  
  return this.mDepth; 
};

CollisionInfo.prototype.getNormal = function () {  
  return this.mNormal; 
};

CollisionInfo.prototype.setInfo = function (d, n, s) {
    this.mDepth = d;
    this.mNormal = n;
    this.mStart = s;
    this.mEnd = s.add(n.scale(d));
};
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	 4.	 Create a function to change the direction of the normal. This 
function will be used to ensure that the normal is always 
pointing from the primary to the object that is being tested for 
collision.

CollisionInfo.prototype.changeDir = function () {
    this.mNormal = this.mNormal.scale(-1);
    var n = this.mStart;
    this.mStart = this.mEnd;
    this.mEnd = n;
};

Compute Collision Information Between Two Circles
In the previous project you implemented the functionality for detecting collisions 
between two circles. In the following, you will amend the computation of collision 
information to include the information gained from circle collisions.

	 1.	 Create a new file under the SiteRoot/RigidBody (or public_
html/RigidBody) folder, and name it Circle_collision.js. 
This file will contain the implementation of colliding a rigid 
circle shape with other rigid shapes.

	 2.	 Define the collisionTest function to collide a rigid circle 
shape with another RigidShape object. Notice that the actual 
collision testing function is shape-specific. For now, a circle 
only knows how to collide with a circle and will always return 
false for any other shapes.

Circle.prototype.collisionTest = function (otherShape, 
collisionInfo) {
    var status = false;
    if (otherShape.mType === "Circle")
        �status = this.collidedCircCirc(this, otherShape, 

collisionInfo);
    else
        status = false;
    return status;
};
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	 3.	 Define the collideCircCirc function to detect the collision 
between two circles and to compute the corresponding 
collision information when a collision is detected. There are 
three cases to the collision detection: no collision, collision 
with centers of the two circles located at different, and at 
exactly the same positions. The following code shows the 
detection of no collision. The details are depicted in Figure 3-8;  
vFrom1to2 is the vector pointing from center of c1 to center 
of c2, rSum is the sum of the radii, and dist is the distance 
between the centers of two circles.

Circle.prototype.collidedCircCirc = function (c1, c2, 
collisionInfo) {
    var vFrom1to2 = c2.mCenter.subtract(c1.mCenter);
    var rSum = c1.mRadius + c2.mRadius;
    var dist = vFrom1to2.length();
    if (dist > Math.sqrt(rSum * rSum)) {
        return false; //not overlapping
    }
    // ... details in the following steps 
}; 

	 4.	 A collision is detected when dist, the distance between the 
centers of the two circles, is less than the sum of the radii. 
In this case, if the two circles do not have centers located 
at the exact same position, the collision depth and normal 
can be computed. As illustrated in Figure 3-8, since c2 is the 
reference to the other RigidShape, the collision normal is a 
vector pointing from c1 towards c2, or in the same direction as 
vFrom1to2. The collision depth is the difference between rSum 
and dist, and the start position for c1 is simple c2’s radius 
distance away from the center of c2 along the normalFrom2to1 
direction.

Figure 3-8.  Details of a circle-circle collision
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//... continue from the previous step
if (dist !== 0) {
    // overlapping but not same position
    var normalFrom2to1 = vFrom1to2.scale(-1).normalize();
    var radiusC2 = normalFrom2to1.scale(c2.mRadius);
    �collisionInfo.setInfo(rSum - dist, vFrom1to2.normalize(), 

c2.mCenter.add(radiusC2));
}
//... details in the next step

	 5.	 The last case for two colliding circles is when both circles’ 
centers are located at exactly the same position. In this case, 
as shown in the following code, the collision normal is defined 
to be the negative y-direction, and the collision depth is 
simply the larger of the two radii.

//...continue from the previous step
if (dist !== 0) {
    //...identical to previous step
} else {
    //same position
    if (c1.mRadius > c2.mRadius)
        collisionInfo.setInfo(rSum, new Vec2(0, -1), 
                        c1.mCenter.add(new Vec2(0, c1.mRadius)));
    else
        collisionInfo.setInfo(rSum, new Vec2(0, -1), 
                        c2.mCenter.add(new Vec2(0, c2.mRadius)));
}

Case for Collision with a Rectangle
The collision computations for a rectangle will be covered later in this chapter. For now, 
an empty structure will be defined to avoid runtime errors.

	 1.	 Create a new file under the SiteRoot/RigidBody (or public_
html/RigidBody) folder, and name it Rectangle_collision.js.

	 2.	 Add the following code to the file to return a false condition 
for all collisions with a rectangle rigid shape for now.

Rectangle.prototype.collisionTest = function (otherShape, 
collisionInfo) {
    var status = false;
    if (otherShape.mType === "Circle")
        status = false;
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    else
        status = false;
    return status;
};

Modify Physics Engine Component
You can now modify the physics component to support the computation of collision 
information when computing circle-to-circle collisions.

	 1.	 Edit EngineCore/Physics.js to support the drawing of 
collision information and to call the newly defined rigid shape 
collisionTest function.

	 2.	 For debugging and testing purposes, define the 
drawCollisionInfo function to draw the collision depth and 
normal as an orange colored line over the rigid shape.

var drawCollisionInfo = function (collisionInfo, context) {
    context.beginPath();
    �context.moveTo(collisionInfo.mStart.x, collisionInfo.

mStart.y);
    context.lineTo(collisionInfo.mEnd.x, collisionInfo.mEnd.y);
    context.closePath();
    context.strokeStyle = "orange";
    context.stroke();
};

	 3.	 In the collision function, first create a collisionInfo object 
to record the details of collisions. After the broad phase 
boundTest returns true, the details for the collision must be 
determined by calling the rigid shape collisionTest function 
you just defined.

//....identical to previous project
var collisionInfo = new CollisionInfo();
for (i = 0; i < gEngine.Core.mAllObjects.length; i++) {
    for (j = i + 1; j < gEngine.Core.mAllObjects.length; j++) {
        �if (gEngine.Core.mAllObjects[i].boundTest(gEngine.Core.

mAllObjects[j])) {
            �if (gEngine.Core.mAllObjects[i].collisionTest(gEngine.

Core.mAllObjects[j], collisionInfo)) {
                // ... details in the next step
            }
        }
    //....identical to previous project
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	 4.	 When a collision is deemed valid, it is important to ensure 
that the collision normal is always in the direction towards 
the object being tested. As illustrated in the following code, 
this can be determined by the sign of the dot product between 
the collision normal and the vector defined by the centers of 
the colliding objects. drawCollisionInfo function is called to 
draw the corresponding collision information.

//... continue from the previous step
if (gEngine.Core.mAllObjects[i].collisionTest(gEngine.Core.
mAllObjects[j], collisionInfo)) {  
    //make sure the normal is always from object[i] to object[j]
    �if (collisionInfo.getNormal().dot(
        �gEngine.Core.mAllObjects[j].mCenter.subtract({
        gEngine.Core.mAllObject[i].mCenter)) < 0) {
          collisionInfo.changeDir();
          }
    //draw collision info (a black line that shows normal)
    drawCollisionInfo(collisionInfo, gEngine.Core.mContext);
}
//... identical to previous project

Observation
Run the project to test your implementation. Notice that when you create two circles, 
their collision is no longer indicated by a change of color. Instead, orange lines are drawn 
inside the colliding circles to indicate the corresponding collision depth and normal. 
You can create and observe the collision information drawn on all colliding circles. The 
collision information will be used to resolve collision interpenetrations. Lastly, observe 
that collision information is absent from rigid rectangle shapes. This is because you 
have not implemented the functionality and the corresponding collisionTest function 
always returns false. The next two projects will guide you through the implementation of 
collision computation between rigid rectangle shape.

Separating Axis Theorem 
The Separating Axis Theorem (SAT) is the foundation for one of the most popular 
algorithms used for detecting collision between general convex shapes in 2D. Since 
the derived algorithm can be overly computationally intensive for real-time systems, it 
is typically preceded with an initial pass of broad phase method, as introduced in the 
previous section. The SAT states that:
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Two convex polygons are not colliding if there exists a line (or axis) 
that is perpendicular to one of the given edges of the two polygons and 
when projecting all edges of the two polygons onto this axis results in no 
overlaps of the projected edges.

In other words, given two convex shapes in 2D space, you can iterate through all of 
the edges of the convex shapes, one at a time. For each of the edges, compute a line (or 
axis) that is perpendicular to the edge, project all edges of the two convex shapes onto 
this line, and compute for overlaps of the projected edges. If you can find one of the 
perpendicular lines where none of the projected edges overlaps, then the two convex 
shapes do not collide.

Figure 3-9 illustrates this description using two axes-aligned rectangles. In this case, 
there are two lines that are perpendicular to the two given shapes, the X and Y axes.

When projecting all of the shape edges onto these two lines, note that the projection 
results on the Y-axis overlaps, while there is no overlap on the X-axis. Since there exists 
one line that is perpendicular to one of the rectangle edges where the projected edges do 
not overlap, the SAT concludes that the two given rectangles do not collide.

The main strength of algorithms derived from the SAT is that for non-colliding 
shapes, it has an early exit capability. As soon as an axis with no overlapping projected 
edges is detected, an algorithm can report no collision and does not need to continue 
with the testing for other axes. In the case of Figure 3-9, if the algorithm began with 
processing the X-axis, there would be no need to perform the computation for the 
Y-axis.

Figure 3-9.  There exists a projection that does not overlap
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A Simple SAT-based Algorithm
Algorithms derived based on the SAT typically consist of four steps:

•	 Step 1 Compute Face Normals: Compute the perpendicular 
axes, or face normals for projecting the edges. As illustrated 
in Figure 3-10, a rectangle has four edges and each edge has 
a corresponding perpendicular axis. For example, A1 is the 
corresponding axis for and thus is perpendicular to the edge eA1. 
Note that in your rigid rectangle implementation, mFaceNormal, 
or face normals, are the perpendicular axes A1, A2, A3, and A4.

•	 Step 2 Project Vertices: Project each of the vertices of the two 
convex shapes onto the face normals. Figure 3-11 illustrates this 
projection of all vertices onto the A1 axis from Figure 3-10.

Figure 3-10.  Rectangle edges and face normals

Figure 3-11.  Project each vertex onto face normals (example shows A1)
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•	 Step 3 Identify Bounds: Identify the min and max bounds for the 
projected vertices of each convex shape. Continue with the previous 
rectangle example. Figure 3-12 shows identifying the min and max 
positions for each of the two rectangles. Notice that the min/max 
positions are defined with respect to the direction of the given axis.

•	 Step 4 Determine overlaps: Determine if the two min/max bounds 
overlap. Figure 3-13 shows that the two projected bounds do indeed 
overlap. In this case, the algorithm cannot conclude and must 
proceed to process the next face normal. Notice that, as illustrated 
in the drawing on the right of Figure 3-10, the process of face normal 
B1 will result in a deterministic conclusion of no collision.

Figure 3-12.  Identify the min and max bound positions for each rectangle

Figure 3-13.  Test for overlap for every axis of projection (example using A1)
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The given algorithm is capable of determining if a collision has occurred with no 
additional information. Recall that, after detecting a collision, the physics engine must 
also resolve potential interpenetration and derive a response for the colliding shapes. 
Both of these computations require additional information—the collision information as 
introduced in Figure 3-6. The next section introduces an efficient SAT-based algorithm 
that computes support points to both inform the true/false outcome of the collision 
detection and serve as the basis for deriving collision information.

An Efficient SAT Algorithm: The Support Points
A support point for a face normal of shape-A is defined to be the vertex position on 
shape-B where the vertex has the most negative distance from the corresponding edge of 
shape-A. This is illustrated in Figure 3-14 for the face normal A1 of shape-A. The vertex 
S

A1
 on shape-B has the largest negative distance from edge e

A1
 when measured along the 

A1 direction, and thus S
A1

 is the support point for face normal A1. The negative distance 
signifies that the measurement is directional and that a support point must be in the 
reverse direction from the face normal.

In general, the support point for a given face normal may be different during every 
update cycle and thus must be recomputed during each collision invocation. In addition, 
and very importantly, it is entirely possible for a face normal to not have a defined 
support point.

Support Point May Not Exist for a Face Normal
A support point is defined only when the measured distance along the face normal has a 
negative value. For example, the face normal B1 of shape-B in Figure 3-14 does not have 
a corresponding support point on shape-A. This is because all vertices on shape-A are 
positive distances away from the corresponding edge e

B1
 when measured along B1. The 

Figure 3-14.  Support points of face normals
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positive distances signify that all vertices of shape-A are in front of the edge e
B1

. In other 
words, the entire shape-A is in front of the edge e

B1
 of shape-B and thus the two shapes 

are not physically touching, and thus they are not colliding.
It follows that, when computing the collision between two shapes, if any of the 

face normals does not have a corresponding support point, then the two shapes are not 
colliding. Once again, the early exit capability is an important advantage—the algorithm 
can return a decision as soon as the first case of undefined support point is detected.

For convenience of discussion and implementation, the distance between a support 
point and the corresponding edge is referred to as the support point distance and this 
distance is computed as a positive number. In this way, the support point distance is 
actually measured along the negative face normal direction. This will be the convention 
followed in the rest of the discussions in this book.

The Axis of Least Penetration and Collision Information
When support points are defined for all face normals of a convex shape, the face normal 
of the smallest support point distance is the axis leading to the least interpenetration. 
Figure 3-15 shows the collision between two shapes where supports points for all of 
the face normals of shape-B are defined: vertex S

B1
 on shape-A is the corresponding 

support point for face normal B1, S
B2

 for face normal B2, and so on. In this case, S
B1

 has 
the smallest corresponding support point distance and thus the face normal B1 is the 
axis that leads to the least interpenetration. The illustration on the right on Figure 3-15 
shows that, in this case, support point distance is the collision depth, face normal B1 is 
collision normal, support point S

B1
 is the start of the collision, and the end of the collision 

can be readily computed; it is simply S
B1

 offset by collision depth in the collision normal 
direction.

Figure 3-15.  Axis of least penetration and the corresponding collision information
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The Algorithm
With the background description, the efficient SAT-based algorithm to compute the 
collision between two convex shapes, A and B, can be summarized as:

•	 Compute the support points for all the face normals on shape-A.

•	 If any of the support points is not defined, there is no 
collision.

•	 If all support points are defined, compute the axis of least 
penetration.

•	 Compute the support point for all the face normals on shape-B.

•	 If any of the support points is not defined, there is no 
collision.

•	 If all support points are defined, compute the axis of least 
penetration.

The collision information is simply the smaller collision depth from the above two 
results. You are now ready to implement the support point SAT algorithm.

The Rectangle Collision Project
This project will guide you to implement the support point SAT algorithm. You can see an 
example of this project running in Figure 3-16. The source code to this project is defined 
in the Rectangle Collision Project folder.

Project goals:

•	 To gain insights into and implement the support point SAT 
algorithm.

Figure 3-16.  Running the Rectangle Collision Project
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Modify Rectangle Collision
Begin by modifying the Rectangle_collision.js file to implement the collision 
detection between rectangles.

	 1.	 Edit the Rectangle_collision.js file in the RigidBody folder.

	 2.	 Create a new function findSupportPoint to compute 
a support point based on dir, the negated face normal 
direction, and ptOnEdge, a position on the given edge (e.g., a 
vertex). The following code marches through all the vertices; 
compute vToEdge, the vector from vertices to ptOnEdge; 
project this vector onto the input dir, and record the largest 
positive projected distant. Recall that dir is the negated 
face normal direction, and thus the largest positive distant 
corresponds to the furthest vertex position. Additionally, 
it is entirely possible for all of the projected distances to be 
negative. In such cases, all vertices are in front of the input dir, 
a support point does not exist for the given edge, and thus the 
two rectangles do not collide.

Rectangle.prototype.findSupportPoint = function (dir, ptOnEdge) {
    //the longest project length
    var vToEdge;
    var projection;
    // initialize the computed results
    tmpSupport.mSupportPointDist = -9999999;
    tmpSupport.mSupportPoint = null;
    //check each vector of other object
    for (var i = 0; i < this.mVertex.length; i++) {
        vToEdge = this.mVertex[i].subtract(ptOnEdge);
        projection = vToEdge.dot(dir);
        //find the longest distance with certain edge
        //dir is -n direction, so the distance should be positive
        if (�(projection > 0) &&  

(projection > tmpSupport.mSupportPointDist)) {
            tmpSupport.mSupportPoint = this.mVertex[i];
            tmpSupport.mSupportPointDist = projection;
        }
    }
};
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	 3.	 With the ability to locate a support point for any face normal, 
the next step is the find the axis of least penetration by 
implementing the findAxisLeastPenetration function. 
Recall that the axis of least penetration is derived based on 
the support point with the least support point distant. The 
following code loops over the four face normals, finds the 
corresponding support point and support point distance, and 
records the shortest distance. The while-loop signifies that if a 
support point is not defined for any of the face normals, then 
the two rectangles do not collide.

Rectangle.prototype.findAxisLeastPenetration = function 
(otherRect, collisionInfo) {
    var n;
    var supportPoint;    
    var bestDistance = 999999;
    var bestIndex = null;
    var hasSupport = true;
    var i = 0;
    while ((hasSupport) && (i < this.mFaceNormal.length)) {
        // Retrieve a face normal from A
        n = this.mFaceNormal[i];
        �// use -n as direction and  

// the vectex on edge i as point on edge
        var dir = n.scale(-1);
        var ptOnEdge = this.mVertex[i];
        // find the support on B
        // the point has longest distance with edge i
        otherRect.findSupportPoint(dir, ptOnEdge);
        hasSupport = (tmpSupport.mSupportPoint !== null);
        //get the shortest support point depth
        �if ((hasSupport) && (tmpSupport.mSupportPointDist < 

bestDistance)) {
            bestDistance = tmpSupport.mSupportPointDist;
            bestIndex = i;
            supportPoint = tmpSupport.mSupportPoint;
        }
        i = i + 1;
    }
    if (hasSupport) {
        //all four directions have support point
        �var bestVec = this.mFaceNormal[bestIndex].

scale(bestDistance);
        �collisionInfo.setInfo(bestDistance, this.

mFaceNormal[bestIndex], supportPoint.add(bestVec));
    }
    return hasSupport;
};
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	 4.	 You can now implement the collidedRectRect function by 
computing the axis of least penetration with respect to each of 
the two rectangles and choosing the smaller of the two results.

Rectangle.prototype.collidedRectRect = function (r1, r2, 
collisionInfo) {
    var status1 = false;
    var status2 = false;
    //find Axis of Separation for both rectangle
    status1 = r1.findAxisLeastPenetration(r2, collisionInfoR1);
    if (status1) {
        �status2 = r2.findAxisLeastPenetration(r1, 

collisionInfoR2);
        if (status2) {
            �//choose the shorter normal as the normal
            �if (collisionInfoR1.getDepth() < collisionInfoR2.

getDepth()) {
                �var depthVec = collisionInfoR1.getNormal().

scale(collisionInfoR1.getDepth());
                collisionInfo.setInfo(collisionInfoR1.getDepth(), 
                                collisionInfoR1.getNormal(),
                                �collisionInfoR1.mStart.

subtract(depthVec));
            } else {
                collisionInfo.setInfo(collisionInfoR2.getDepth(), 
                                �collisionInfoR2.getNormal().

scale(-1), 
                                collisionInfoR2.mStart);
            }
        }
    }    
    return status1 && status2;
};

	 5.	 Complete the implementation by modifying the 
collisionTest function to call the newly defined 
collidedRectRect function to compute the collision between 
two rectangles.

Rectangle.prototype.collisionTest = function (otherShape, 
collisionInfo) {
    var status = false;
    if (otherShape.mType === "Circle") {
        status = false;
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    } else {
status = this.collidedRectRect(�this, otherShape,  

collisionInfo);
    }
    return status;
};

Observation
You can now run the project to test your implementation. Try creating multiple rectangles 
with the F key. You can see an orange line representing collision information (collision 
depth, in the collision normal direction, from start to end) when two or more rectangles 
collide. Remember that this line shows the least amount of positional correction required 
to resolve the collision. Use the up and down arrows to select and rotate the rectangles and 
observe how the collision info changes accordingly. At this stage you have implemented 
collision detection between a circle and a circle, as well as a rectangle and another rectangle. 
If you try to collide a rectangle and a circle, no collision info is generated because you have 
not implemented support for this type of collision. This will be resolved in the next project.

Collision Between Rectangles and Circles
The support point approach to computing collision detection does not work with circles 
because a circle does not have identifiable vertex positions. Instead, you will implement 
an algorithm that detects collisions between a rectangle and a circle according to the 
relative position of the circle’s center with respect to the rectangle.

Before discussing the actual algorithm, as illustrated in Figure 3-17, it is convenient 
to recognize that the area outside an edge of a rectangle can be categorized into three 
distinct regions by extending the connecting edges. In this case, the dotted lines 
separated the area outside the given Edge into: R1, the region to the left/top; R2, the 
region to the right/bottom; and R3, the region immediately outside of the given Edge.

With this background, the collision between a rectangle and a circle can be detected 
as follows:

•	 Step A: Edge = Compute the nearest edge (the edge on the 
rectangle that is closest to the circle center).

•	 Step B: If circle center is outside

•	 Step B1: If in Region R1: the distance between the circle 
center and left/top vertex from the Edge determines if 
collision has occurred.

•	 Step B2: If in Region R2: the distance between the circle 
center and right/bottom vertex from the Edge determines if 
collision has occurred.

•	 Step B3: If in Region R3: the perpendicular distance between 
the center and the Edge determines if collision has occurred.
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•	 Step C: If the circle center is inside the rectangle: collision is 
detected.

The Rectangle Circle Collision Project
This project guides you in implementing the described rectangle-circle collision detection 
algorithm with detailed discussions for each of the steps. You can see an example of this 
project running in Figure 3-18. The source code to this project is defined in the Rectangle 
Circle Collision Project folder.

Project goals:

•	 To understand and implement the rectangle circle collision 
detection algorithm.

Figure 3-17.  The three regions outside a given edge of a rectangle

Figure 3-18.  Running the Rectangle Circle Collision Project
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Modify Rectangle Collision
You are going to implement the described algorithm in the Rectangle_collision.js file.

	 1.	 Edit the Rectangle_collision.js file in the RigidBody folder.

	 2.	 Create a new function, collidedRectCirc, to detect the 
collision between a rectangle and a circle. Accordingly, there 
will be five major steps in this function. The following listing 
collapsed all of the steps with details to be filled in in the rest 
of this section.

Rectangle.prototype.collidedRectCirc = function (otherCir, 
collisionInfo) {
    // Step A: Compute the nearest edge
    if (!inside) {
        // Step B1: If center is in Region R1
        // Step B2: If center is in Region R2
        // Step B3: If center is in Region R3
    } else {
        // Step C: If center is inside
    }
    return true;
};

	 3.	 Step A: Compute the nearest edge. The nearest edge can 
be computed by computing the perpendicular distances 
between the circle center to each of the edges of the rectangle. 
This distance is simply the projection of the vector between 
each vertex and the circle center onto the corresponding 
face normal. The following code shows marching through 
all of the vertices, computing the vector from the vertex to 
the circle center, and projecting the computed vector to the 
corresponding face normals.

// Step A: Compute the nearest edge
for (i = 0; i < 4; ++i) {
    //find the nearest face for center of circle
    circ2Pos = otherCir.mCenter;
    v = circ2Pos.subtract(this.mVertex[i]);
    projection = v.dot(this.mFaceNormal[i]);
    if (projection > 0) {
        //if the center of circle is outside of rectangle
        bestDistance = projection;
        nearestEdge = i;
        inside = false;
        break;
    }
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    if (projection > bestDistance) {
        bestDistance = projection;
        nearestEdge = i;
    }
}

		  As illustrated in Figure 3-19, one interesting observation is 
that when the circle center is inside the rectangle, all vertex-
to-center vectors will be in the opposite directions of their 
corresponding face normal and thus will result in negative 
projected length. This is in contrast to when the center is 
outside of the rectangle; then, at least one of the projected 
lengths is positive. For this reason, the “nearest projected 
distance” is the one with the least negative value and thus is 
actually the largest number.

	 4.	 Step B1: if center is outside of the rectangle and in Region R1. 
As illustrated in Figure 3-20-a, the Region R1 can be detected 
when 



V1 , the vector between the center and the edge vertex,  
is in the opposite direction of 



V2 , the direction of the edge. 
This is to say, the center of the circle is in Region R1 when the 
dot product of those two vectors is negative. Figure 3-20-b  
shows that collision occurs when the length of vector 



V1   
is less than the circle radius, and in this case, the collision 
normal is simply along the vector 



V1 , and collision depth  
is the difference between the radius and dist, the length of 
vector 



V1

Figure 3-19.  (a) Center inside the rectangle will result in all negative projected length  
(b) Center outside the rectangle will result in at least one positive projected length
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// Step A: Compute the nearest edge (details discussed)
if (!inside)  { //the center of circle is outside of rectangle
    // Step B1: if ceter is in Region R1
    //v1 is from left vertex of face to center of circle
    //v2 is from left vertex of face to right vertex of face
    var v1 = circ2Pos.subtract(this.mVertex[nearestEdge]);
    �var v2 = this.mVertex[(nearestEdge + 1) % 4].subtract(this.

mVertex[nearestEdge]);
    var dot = v1.dot(v2);
    if (dot < 0) {  // Region R1
        �//the center of circle is in corner region of 

mVertex[nearestEdge]
        var dis = v1.length();
        //compare the distance with radium to decide collision
        if (dis > otherCir.mRadius)
            return false;
        var normal = v1.normalize();
        �var radiusVec = normal.scale(-otherCir.mRadius);
        collisionInfo.�setInfo(otherCir.mRadius - dis, normal,  

circ2Pos.add(radiusVec));
    } else {  // Not in Region R1
        // ... details to follow ... 
        // Step B2: If center is in Region B2
        if (...) { // in Region R2
            // ... details to follow ... 
        } else {  // not in Region R2
            // Step B3: If center is in Region B3
            // ... details to follow ... 
        }
    }

Figure 3-20.  (a) Condition when center is in Region R1 (b) The corresponding collision 
information
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} else {  // else of (!inside)
    // Step C: If center is inside the rectangle
    // ... details to follow ... 
}

	 5.	 Step B2: if the center is outside of the rectangle and in Region 
R2. The following code complements that of Step B1, with the 
only difference being the direction of 



V2 , the vector along the 
edge. In this case, the vector along the edge is in the opposite 
direction as compared to working with Region R1.

// Step A: Compute the nearest edge (details discussed)
if (!inside) {
    // Step B1: If center is in Region R1 (detailed discussed)
} else {
    // Step B2: If center is in Region R2
    �//the center of circle is in corner region of 

mVertex[nearestEdge+1]
    //v1 is from right vertex of face to center of circle
    //v2 is from right vertex of face to left vertex of face
    var v1 = circ2Pos.subtract(this.mVertex[(nearestEdge + 1) % 4]);
    var v2 = v2.scale(-1);
    var dot = v1.dot(v2);
    if (dot < 0) {
        var dis = v1.length();
        //compare the distance with radium to decide collision
        if (dis > otherCir.mRadius)
            return false;
        var normal = v1.normalize();
        var radiusVec = normal.scale(-otherCir.mRadius);
        �collisionInfo.setInfo(otherCir.mRadius - dis, normal, 

circ2Pos.add(radiusVec));
    } else {
        // Step B3: If center is in Region B3
        // ... details to follow ... 
    }        

	 6.	 Step B3: If the center is in Region R3. The last possible 
region for the circle center to be located in would be the 
area immediately outside the nearest edge. In this case, the 
bestDistance computed previously in Step A is the distance; 
if this distance is less than the circle radius, then collision 
occurred.

// Step B3: If center is in Region B3
//the center of circle is in face region of face[nearestEdge]
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if (bestDistance < otherCir.mRadius) {
    �var radiusVec = this.mFaceNormal[nearestEdge].scale(otherCir.

mRadius);
    collisionInfo.setInfo(otherCir.mRadius - bestDistance, 
                    �this.mFaceNormal[nearestEdge], circ2Pos.

subtract(radiusVec));
} else {
    return false;
}     

	 7.	 Step C: If the circle center is inside the rectangle, then 
collision is detected and the corresponding collision 
information can be computed and returned.

        if (!inside) {
            �//... conditions for Region R1, R2, and R3 as 

discussed
        } else {
            //the center of circle is inside of rectangle
            �var radiusVec = this.mFaceNormal[nearestEdge].

scale(otherCir.mRadius);
            �col�lisionInfo.setInfo 

(otherCir.mRadius - bestDistance, 
               �this.mFaceNormal[nearestEdge],  

circ2Pos.subtract(radiusVec));
    }
    return true;
};

	 8.	 The last step is to modify the collisionTest function to call 
the newly defined collision function accordingly.

Rectangle.prototype.collisionTest = function (otherShape, 
collisionInfo) {
    var status = false;
    if (otherShape.mType === "Circle") {
        �status = this.collidedRectCirc(otherShape, 

collisionInfo);
    } else {
        �status = this.collidedRectRect(this, otherShape, 

collisionInfo);
    }
    return status;
};



Chapter 3 ■ Incorporating Collision Detection

69

Observation
You can now run the project to test your implementation. You can create rectangles 
and circles, move and rotate them to observe the corresponding collision information 
represented by orange lines. Rotate colliding rectangles to observe the collision 
information, adapting to the shape’s rotation. That is because the calculated collision 
information is dependent on the position of the vertex and face normal of the rectangle. 
However, when you rotate a colliding circle, the collision information does not change. 
That is because the calculated collision information is only dependent on the circle's 
center position and its radius. For this reason, the rotation of a circle does not change its 
collision information.

Summary
At this stage, your physics engine simulation is capable of detecting collisions accurately, 
and computing the appropriate collision information when rigid shapes collide. You 
have been introduced to broad phase method, the Separating Axis Theorem, and support 
points for efficiently detecting collisions of convex shapes. You have implemented 
algorithms based on these concepts that successfully detect collisions and compute the 
associated information necessary for resolving any potential interpenetrations. The next 
chapter will introduce you to some elementary physics about movements, and how to use 
the computed collision information for simulating a real-world physics interaction in 2D 
space by properly resolving collisions.
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CHAPTER 4

Completing the Physics 
Engine and Rigid Shape 
Component

In the previous chapter, you have implemented algorithms to detect collisions between 
rigid circles and rectangles. In addition to the boolean condition of whether a collision 
has indeed occurred, the algorithms you have implemented also computed information 
that tells you important details—the collision information, which includes the 
interpenetration depth and normal direction. In this chapter, you will further expand 
the physics engine by using the collision information to correct the interpenetration 
condition, and learn about simulating collision responses that resemble real-world rigid 
shape behaviors. Initially, your responses will be in linear motion, and finally you will 
support objects rotating as a result of collisions.

To begin with this last phase of the investigation, you will first amend the rigid 
shape classes to support proper simulation of Newtonian motion and to include relevant 
physical attributes to allow the simulation of energy transfers between colliding objects. 
After you implement movements in the physics engine together with the collision 
detection algorithms from the previous chapter, you can start resolving collisions. 
Collisions are resolved by correcting the interpenetration state of the rigid shapes, and 
instituting a proper response. Interpenetrations will be corrected by moving the colliding 
shapes apart such that they do not overlap, and collision responses will be instituted 
based on the Impulse Method to simulate the transfer of both linear and angular 
momentum.

After completing this chapter, you will be able to:

•	 Understand how to approximate integrals with Euler Method and 
Symplectic Euler Integration.

•	 Approximate Newtonian motion formulation with Symplectic 
Euler Integration.

•	 Resolve interpenetrating collisions based on a numerically stable 
relaxation method.
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•	 Compute and implement responses to collisions that resemble 
the responses of rigid bodies in the real-world.

•	 Complete the physics engine in simulating the collisions and 
responses of rigid circles and rectangles.

Movement
Movement is the description of how object positions change in the simulated world. 
Mathematically, movement can be formulated in many ways. In previous chapters, you 
experienced working with movement where you continuously changed the position of an 
object with a constant value, or a displacement. Although desired results can be achieved, 
mathematically this is problematic because a velocity and a position are different types of 
quantities with different units and the two cannot be simply combined. As illustrated in 
Figure 4-1 and the following equation, in practice, you have been working with describing 
movement based on constant displacements.

•	 p p displacementnew current= +

Figure 4-1.  Movement Based on Constant Displacements
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A movement that is governed by the constant displacement formulation becomes 
restrictive when it is necessary to change the amount that is displaced over time. 
Newtonian mechanics address this restriction by considering time in the movement 
formulations, as seen in the following equations.

•	 v v a t dtnew current= + ( )ò
•	 p p v t dtnew current= + ( )ò

These two equations implement a Newtonian based movement where v(t) is the 
velocity that describes the change in position over time and a(t) is the acceleration that 
describes the change in velocity over time.

Notice that both velocity and acceleration are vector quantities encoding the change 
in magnitude and direction. The magnitude of a velocity vector defines the speed, and 
the normalized velocity vector identifies the direction that the object is traveling. An 
acceleration vector lets you know whether an object is speeding up or slowing down 
via its magnitude and the direction that the acceleration is occurring in. Acceleration is 
changed by the forces acting upon an object. For example, if you were to throw a ball into 
the air, the gravitational force of the earth would affect the object’s acceleration over time, 
which in turn would change the object’s velocity.

Explicit Euler Integration
The following two equations show that the Euler method, or Explicit Euler Integration, 
approximates integrals based on initial values. Though potentially unstable, this is one of 
the simplest and thus a good beginning point to learn about integration approximation 
methods. As illustrated in the following two equations, in the case of the Newtonian 
movement formulation the new velocity, v

new
, of the object can be approximated as the 

current velocity, v
current

, plus the current acceleration, a
current

, multiplied by the amount 
of elapsed time. Similarly, the object’s new position, p

new
, can be approximated by the 

object’s current position, p
current

, plus the current velocity, v
current

, multiplied by the amount 
of elapsed time.

■■ Note   An example of a numerically unstable system is one where under gravitational 
force a bouncing ball slows down but never stops jittering and, in some cases, may even 
start bouncing again.

•	  v v a dtnew current current= + *

•	 p p v dtnew current current= + *

The left diagram of Figure 4-2 illustrates a simple example of approximating 
movements with Explicit Euler Integration. Notice that the new position p

new
 is computed 

based on the current velocity, v
current

, while the new velocity v
new

, is computed to move the 
position for the next update cycle.
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Symplectic Euler Integration
In practice, because of system stability concerns, Explicit Euler Integration is seldom 
implemented. This shortcoming is overcome with the method you will be implementing, 
known as the Semi-Implicit Euler Integration or Symplectic Euler Integration, where 
intermediate results are used in subsequent approximations. The following equations 
show Symplectic Euler Integration. Notice that it is nearly identical to the Euler method 
except that the new velocity, v

new
, is being used when calculating the new position, p

new
. 

This essentially means that the velocity for the next frame is being used to calculate the 
position of this frame.

•	 v v a dtnew current current= + *

•	 p p v dtnew current new= + *

The right diagram of Figure 4-2 illustrates that with the Symplectic Euler Integration, 
the new position p

new
 is computed based on the newly computed velocity, v

new
.

Implementing Symplectic Euler Integration and 
Defining Attributes to Support Collision Response
You are now ready to implement Symplectic Euler Integration. The fixed time step update 
function architecture of the game engine allows the dt quantity to be implemented as the 
update time interval and the integral to be evaluated once per update cycle.

In addition to implement Symplectic Euler Integration, this project also defines 
the attributes and their corresponding accessor and getter functions. Though relatively 
straightforward, these functions are presented here to avoid distracting the discussions of 
the more complex concepts to be covered in the subsequent projects.

You will modify the RigidShape class for this implementation.

The Rigid Shape Movement Project
This project will guide you through completing the rigid shape component to support 
movement calculations and collision responses. In addition to implement Symplectic 
Euler Integration, the information that you are going to add includes the attributes 

Figure 4-2.  Explicit (Left) and Symplectic (Right) Euler Integration
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required for collision simulation and response, such as mass, inertia, friction, and 
restitution. As will be explained, each of these attributes will play a part in the calculation 
of simulating object movements and collision responses based on Euler integration. You 
can see an example of this project running in Figure 4-3. The source code to this project is 
defined in the Rigid Shape Movements Project folder.

Project Goals:

•	 To experience implementing movements based on Symplectic 
Euler Integration.

•	 To complete the implementation of RigidShape classes to include 
relevant physical attributes.

•	 To build the infrastructure for responding to collisions.

Implement Symplectic Euler Integration
You must define movement support and constants in the core of the engine and in rigid 
shape.

Modify the Engine Core

Let’s start with the engine core:

	 1.	 Modify the Core.js file to include two more instance variables 
in the constructor, the first to support applying gravity on all 
objects, and the second to enable/disable object movements.

var mGravity = new Vec2(0, 10);
var mMovement = false;

Figure 4-3.  Running the Rigid Shape Movements Project
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	 2.	 Update the mPublic variable to allow external access to the 
newly defined instances.

var mPublic = {
    initializeEngineCore: initializeEngineCore,
    mAllObject: mAllObject,
    mWidth: mWidth,
    mHeight: mHeight,
    mContext: mContext,
    mGravity: mGravity,
    mUpdateIntervalInSeconds: mUpdateIntervalInSeconds, 
    mMovement: mMovement
};

Modify the RigidShape Class

Modify the RigidShape class constructor to support velocity, angular velocity, and 
acceleration, as shown in the following code.

function RigidShape(center, mass, friction, restitution) {
  this.mCenter = center;
  this.mVelocity = new Vec2(0, 0); 
  this.mAcceleration = gEngine.Core.mGravity;

  //angle
  this.mAngle = 0;
  //negetive-- clockwise
  //positive-- counterclockwise
  this.mAngularVelocity = 0;

  this.mAngularAcceleration = 0;

  gEngine.Core.mAllObject.push(this);
}

Implement Symplectic Euler Integration

You can now add the behavior to the rigid shape object for numerical integration. 
Continue with the RigidShape base class, and complete the update function to apply 
Symplectic Euler Integration to the rigid shape where the updated velocity is used for 
computing the new position. Notice the implementation similarities between linear and 
angular motion. In both cases, the velocities are updated before the results are being 
applied to the displacements. Rotation will be examined in detail in the last section of this 
chapter.
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RigidShape.prototype.update = function () {
    if (gEngine.Core.mMovement) {
        var dt = gEngine.Core.mUpdateIntervalInSeconds;
        //v += a*t
        this.mVelocity = this.mVelocity.add(this.mAcceleration.scale(dt));
        //s += v*t
        this.move(this.mVelocity.scale(dt));

        this.mAngularVelocity += this.mAngularAcceleration * dt;
        this.rotate(this.mAngularVelocity * dt);
    }
};

Define Attributes to Support Collision Simulation and Response
As mentioned, in order to allow focused discussions of the more complex concepts in the 
later sections, the attributes for supporting collisions and the corresponding supporting 
functions are introduced in this project. These attributes are defined in the RigidShape class.

Modify the RigidShape Class

Now it’s time for the RigidShape class:

	 1.	 Modify the RigidShape class constructor again, this time to 
support mass, restitution (bounciness), and friction, as shown 
in the following code. Notice that the inverse of the mass value 
is actually stored for computation efficiency (by avoiding an 
extra division during each update calculation). Additionally, 
notice that a mass of zero is used to represent a stationary 
object.

function RigidShape(center, mass, friction, restitution) {
  this.mCenter = center;
  this.mInertia = 0;
  if (mass !== undefined)
      this.mInvMass = mass;
  else
      this.mInvMass = 1;

  if (friction !== undefined)
      this.mFriction = friction;
  else
      this.mFriction = 0.8;

  if (restitution !== undefined)
      this.mRestitution = restitution;
  else
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      this.mRestitution = 0.2;

  this.mVelocity = new Vec2(0, 0);

  if (this.mInvMass !== 0) {
      this.mInvMass = 1 / this.mInvMass;
      this.mAcceleration = gEngine.Core.mGravity;
  } else {
      this.mAcceleration = new Vec2(0, 0);
  }

  //angle
  this.mAngle = 0;
  //negetive-- clockwise
  //positive-- counterclockwise
  this.mAngularVelocity = 0;

  this.mAngularAcceleration = 0;

  this.mBoundRadius = 0;

  gEngine.Core.mAllObject.push(this);
}

	 2.	 Define a function, updateMass, to support changing of 
the mass during runtime. Notice that the updateInertia 
function is empty. This reflects the fact that rotational inertia 
is shape-specific and the actual implementation would be the 
responsibility of individual subclasses (Rectangle and Circle).

RigidShape.prototype.updateMass = function (delta) {
    var mass;
    if (this.mInvMass !== 0)
        mass = 1 / this.mInvMass;
    else
        mass = 0;

    mass += delta;
    if (mass <= 0) {
        this.mInvMass = 0;
        this.mVelocity = new Vec2(0, 0);
        this.mAcceleration = new Vec2(0, 0);
        this.mAngularVelocity = 0;
        this.mAngularAcceleration = 0;
    } else {
        this.mInvMass = 1 / mass;
        this.mAcceleration = gEngine.Core.mGravity;
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    }
    this.updateInertia();
};

RigidShape.prototype.updateInertia = function () {
    // subclass must define this.
    // must work with inverted this.mInvMass
};

Modify the Circle and Rectangle Classes

Next, modify the Circle and Rectangle classes:

	 1.	 Modify the Circle class to implement the updateInertia 
function. This function calculates the rotational inertia of a 
circle when its mass is changed.

Circle.prototype.updateInertia = function() {
    if (this.mInvMass === 0) {
        this.mInertia = 0;
    } else {
        // this.mInvMass is inverted!!
        // Inertia=mass * radius^2
        // 12 is a constant value that can be changed
        �this.mInertia = (1 / this.mInvMass) * (this.mRadius * 

this.mRadius) / 12;
    }
};

	 2.	 Update the Circle object constructor to call the new 
RigidShape base class, and to accept relevant parameters 
of physical attributes. Remember to call the newly defined 
updateInertia for initialization.

var Circle = function (center, radius, mass, friction, 
restitution) {
    RigidShape.call(this, center, mass, friction, restitution);
    this.mType = "Circle";
    //...identical to previous project 
    this.updateInertia();
};

	 3.	 Modify the Rectangle class to implement its updateIntertia 
function.

Rectangle.prototype.updateInertia = function() {   
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    // Expect this.mInvMass to be already inverted!
    if (this.mInvMass === 0) 
        this.mInertia = 0;
    else {
        //inertia=mass*width^2+height^2
        �this.mInertia = (1 / this.mInvMass) * (this.mWidth * 

this.mWidth + this.mHeight * this.mHeight) / 12;
        this.mInertia = 1 / this.mInertia;
    }
};

	 4.	 Update the Rectangle constructor in a similar manner to the 
Circle class to accept the relevant parameters of physical 
attributes and to invoke the newly defined shape-specific 
updateIntertia function.

var Rectangle = function (center, width, height, mass, friction, 
restitution) {
    RigidShape.call(this, center, mass, friction, restitution);
    this.mType = "Rectangle";
    this.mWidth = width;
    this.mHeight = height;
    //...indetical to previous project
    this.updateInertia();
};

Modify the updateUIEcho Function

Since the engine has become more powerful and flexible, you want the UI to display the 
corresponding attributes and allow the user to control these for testing purposes. Modify 
the updateUIEcho function in the Core.js file to print out all the options of user control.

var updateUIEcho = function () {
    document.getElementById("uiEchoString").innerHTML = 
        "<p><b>Selected Object:</b>:</p>" +
        "<ul style=\"margin:-10px\">" +
        "<li>Id: " + gObjectNum + "</li>" +
        "<li>Center: " + mAllObject[gObjectNum].mCenter.x.toPrecision(3) + 
        "," + mAllObject[gObjectNum].mCenter.y.toPrecision(3) + "</li>"  + 
        �"<li>Angle: " + mAllObject[gObjectNum].mAngle.toPrecision(3) + "</li>" +
        "<li>Velocity: " + mAllObject[gObjectNum].mVelocity.x.toPrecision(3) + 
        "," + mAllObject[gObjectNum].mVelocity.y.toPrecision(3) + "</li>"  +
        �"<li>AngluarVelocity: " + mAllObject[gObjectNum].mAngularVelocity.

toPrecision(3) + "</li>"  +
        �"<li>Mass: " + 1 / mAllObject[gObjectNum].mInvMass.toPrecision(3) + 

"</li>"  +
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        �"<li>Friction: " + mAllObject[gObjectNum].mFriction.toPrecision(3) + 
"</li>"  +

        �"<li>Restitution: " + mAllObject[gObjectNum].mRestitution.
toPrecision(3) + "</li>"  +

        "<li>Movement: " + gEngine.Core.mMovement + "</li>"  +
        "</ul> <hr>" +
        "<p><b>Control</b>: of selected object</p>" +
        "<ul style=\"margin:-10px\">" +
        "<li><b>Num</b> or <b>Up/Down Arrow</b>: Select Object</li>" +
        "<li><b>WASD</b> + <b>QE</b>: Position [Move + Rotate]</li>" +
        "<li><b>IJKL</b> + <b>UO</b>: Velocities [Linear + Angular]</li>" +
        "<li><b>Z/X</b>: Mass [Decrease/Increase]</li>" +
        "<li><b>C/V</b>: Frictrion [Decrease/Increase]</li>" +
        "<li><b>B/N</b>: Restitution [Decrease/Increase]</li>" +
        "<li><b>,</b>: Movement [On/Off]</li>" +
        "</ul> <hr>" +
        "<b>F/G</b>: Spawn [Rectangle/Circle] at selected object" +
        "<p><b>H</b>: Excite all objects</p>" +
        "<p><b>R</b>: Reset System</p>" +
        "<hr>";     
};

Modify the userControl function
For testing purposes, you want to update the UserControl.js file to allow the 
modification of game engine attributes during runtime. Add the following cases to the 
userControl function.

//... identical to previous project
if (keycode === 73)     //I
    gEngine.Core.mAllObject[gObjectNum].mVelocity.y -= 1;
if (keycode === 75)     //k
    gEngine.Core.mAllObject[gObjectNum].mVelocity.y += 1;
if (keycode === 74)     //j
    gEngine.Core.mAllObject[gObjectNum].mVelocity.x -= 1;
if (keycode === 76)     //l
    gEngine.Core.mAllObject[gObjectNum].mVelocity.x += 1;
if (keycode === 85)     //U
    gEngine.Core.mAllObject[gObjectNum].mAngularVelocity -= 0.1;
if (keycode === 79)     //O
    gEngine.Core.mAllObject[gObjectNum].mAngularVelocity += 0.1;
if (keycode === 90)     //Z
    gEngine.Core.mAllObject[gObjectNum].updateMass(-1);
if (keycode === 88)     //X
    gEngine.Core.mAllObject[gObjectNum].updateMass(1);
if (keycode === 67)     //C
    gEngine.Core.mAllObject[gObjectNum].mFriction -= 0.01;
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if (keycode === 86)     //V
    gEngine.Core.mAllObject[gObjectNum].mFriction += 0.01;
if (keycode === 66)     //B
    gEngine.Core.mAllObject[gObjectNum].mRestitution -= 0.01;
if (keycode === 78)     //N 
    gEngine.Core.mAllObject[gObjectNum].mRestitution += 0.01;
if (keycode === 188)    //’ 
    gEngine.Core.mMovement = !gEngine.Core.mMovement;
if (keycode === 70)     //f 
    var r1 = new Rectangle(new Vec2(gEngine.Core.mAllObjects[gObjectNum].mCenter.x,
                                  gEngine.Core.mAllObjects[gObjectNum].mCenter.y),
                         Math.random() * 30 + 10, Math.random() * 30 + 10,
                         Math.random() * 30, Math.random(), Math.random());
if (keycode === 71)    //g
    var r1 = new Circle(new Vec2(gEngine.Core.mAllObjects[gObjectNum].mCenter.x,
                               gEngine.Core.mAllObjects[gObjectNum].mCenter.y),
                      Math.random() * 10 + 20, Math.random() * 30, 
                      Math.random(), Math.random());
if (keycode === 72) {   //H
    var i;
    for (i = 0; i < gEngine.Core.mAllObject.length; i++) {
        if (gEngine.Core.mAllObject[i].mInvMass !== 0)
            gEngine.Core.mAllObject[i].mVelocity = 
                new Vec2(Math.random() * 20 - 10, Math.random() * 20 - 10);
    }
}
//... identical to previous project

Observation
Run the project to test your implementation. Create a few objects in the scene; you 
can examine the attributes of your selected object. Notice that when you enable the 
movement by pressing the comma (,) key, the objects with higher downward initial 
velocity will drop faster because of the gravitational force or acceleration. Now create an 
object and set its initial y-velocity to negative. Observe that the object will move upwards 
until the y-component velocity reaches zero, and then it will start to fall downwards as a 
result of gravitational acceleration. You can also change the object’s initial x-velocity and 
observe the motion of a projectile. Another interesting case to try is to create a few objects 
and excite them by pressing the H key. Observe how all the objects move according to 
their own velocities. You may see objects that move beyond the scene boundary. This is 
because at this point the physics engine does not support collision resolution. This will be 
remedied in the next section.
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Resolving Interpenetrations
In the context of game engines, collision resolution refers to the process that determines 
how objects respond after a collision, including strategies to resolve the potential 
interpenetration situations that may occur. Notice that there are no collision resolution 
processes in the real world where interpenetration of rigid objects cannot occur since 
collisions are strictly governed by the law of physics. Resolutions of interpenetrations 
are relevant only in a virtual simulated world, where movements are approximated and 
impossible conditions may occur but can be resolved in ways that are desirable to the 
developer or designer.

In general, there are three common methods for responding to interpenetrating 
collisions. The first is to simply displace the objects from one another by the depth of 
penetration. This is known as the Projection Method since you simply move an object’s 
position so that it no longer penetrates the other. While this is simple to calculate and 
implement, it lacks stability when many objects are in proximity and resting upon 
one another. The simple resolving of one pair of interpenetrating objects can result in 
new penetrations with other nearby objects. However, this is still a common method 
for simple engines or games with simple object interaction rules. For example, in the 
Pong game, the ball never comes to rest on the paddles or walls and continuously 
remains in motion by bouncing off any object it collides with. The Projection Method is 
perfect for resolving collisions for these types of simple object interactions. The second 
method is known as the Impulse Method, which uses object velocities to compute and 
apply impulses to initiate the objects to move in the opposite directions at the point of 
collision. This method tends to slow down colliding objects rapidly and converges to 
relatively stable solutions. This is because impulses are computed based on the transfer 
of momentum, which in turn has a damping effect on the velocities of the colliding 
objects. The third method is known as the Penalty Method, which models the depth of 
object interpenetration as the degree of compression of a spring and approximates an 
acceleration to apply forces to separate the objects. This last method is the most complex 
and challenging to implement.

For your engine, you will be combining the strengths of the Projection and Impulse 
Methods. The Projection Method will be used to separate the interpenetrating objects, 
while the Impulse Method will be used to apply small impulses to reduce the object 
velocities in the direction that caused the interpenetration. As described, the simple 
Projection Method can result in an unstable system, such as objects that sink into each 
other when stacked. You will overcome this instability by implementing a relaxation loop 
where interpenetrated objects are separated incrementally via repeated applications 
of the Projection Method in a single update cycle. With a relaxation loop, the number 
of times that the Projection Method is applied is referred to as the relaxation iterations. 
During each relaxation iteration, the Projection Method reduces the interpenetration 
incrementally by a fixed percentage of the total penetration depth. For example, by 
default the engine sets relaxation iterations to 15, and during each relaxation iteration 
the interpenetration is reduced by 80%. This means that within one update function call, 
after the movement integration approximation, the collision detection and resolution 
procedures will be executed 15 times. While costly, the repeated incremental separation 
ensures a stable system under normal circumstances. However, the 15 relaxation iterations 
may not be sufficient when the system undergoes sudden large changes. For example, 
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if a large number of significantly overlapped objects, e.g., 100 overlapped circles, were 
to be added to the system simultaneously, then the 15 relaxation iterations may not be 
sufficient. This situation can be resolved by increasing the relaxation iterations at the 
cost of a loss in performance. From our experience, under normal operation conditions, 
a relaxation iteration of around 15 is a balanced trade-off between accuracy and 
performance.

The Positional Correction Project
This project will guide you through the implementation of the relaxation iterations to 
incrementally resolve inter-object interpenetrations. You are going to use the collision 
information computed from the previous chapter to correct the position of the colliding 
objects. You can see an example of this project running in Figure 4-4. The source code to 
this project is defined in the Positional Correction Project folder.

Project Goals:

•	 To appreciate the importance of the computed collision 
information.

•	 To implement positional correction with relaxation iteration.

•	 To understand and experience implementing interpenetration 
resolution.

Figure 4-4.  Running the Positional Correction Project
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Update the Physics Engine 
This project will only modify Physics.js because this is the file that implements the 
details of collisions.

	 1.	 Edit Physics.js and add in the following variables to support 
the correction of positions incrementally via the relaxation 
iterations.

//...identical to previous project
gEngine.Physics = (function () {
    var mPositionalCorrectionFlag = true;
    // number of relaxation iteration
    var mRelaxationCount = 15;   
    // percentage of separation to project objects
    var mPosCorrectionRate = 0.8;

    //... identical to previous project

    var mPublic = {
        collision: collision,
        mPositionalCorrectionFlag: mPositionalCorrectionFlag
    };
    return mPublic;
}());

	 2.	 Modify the collision function to include an enclosing 
relaxation iteration loop over the collision detection loop.

var collision = function () {
    var i, j, k;
    for (k = 0; k < mRelaxationCount; k++) {
        for (i = 0; i < gEngine.Core.mAllObject.length; i++) {
            //...identical to previous project
        }
    }
};
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	 3.	 Create a new function in gEngine.Physics and name 
it positionalCorrection. This function reduces the 
overlaps between objects by the predefined constant 
mPosCorrectionRate with a default value of 80%. To properly 
support object momentum in the simulation, the amount in 
which each object moves is governed by their corresponding 
masses. For example, upon the collision of two objects, the 
object with a larger mass will generally move by an amount 
that is less than the object with smaller mass. Notice that 
the direction of movement is along the collision normal as 
defined in the collisionInfo structure.

var positionalCorrection = function (s1, s2, collisionInfo) {
    var s1InvMass = s1.mInvMass;
    var s2InvMass = s2.mInvMass;

    var num = �collisionInfo.getDepth() /  
(s1InvMass + s2InvMass) * mPosCorrectionRate;

    var correctionAmount = collisionInfo.getNormal().scale(num);

    s1.move(correctionAmount.scale(-s1InvMass));
    s2.move(correctionAmount.scale(s2InvMass));
};

	 4.	 Create another function and name it resolveCollision. This 
function receives two RigidShape objects as parameter, and 
determines if the collision detected should be positionally 
corrected. As pointed out previously, objects with infinite 
mass, or zero inversed mass, are stationary and will not 
participate in positional correction after a collision.

var resolveCollision = function (s1, s2, collisionInfo) {
    if ((s1.mInvMass === 0) && (s2.mInvMass === 0))
        return;
    //  correct positions
    if(gEngine.Physics.mPositionalCorrectionFlag)
        positionalCorrection(s1, s2, collisionInfo);
};

	 5.	 Finally, you should call the newly defined resolveCollision 
function from within the collision function when a collision 
is detected. You can invoke resolveCollision after calling 
the drawCollisionInfo function.

www.allitebooks.com
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var collision = function () {
    var i, j, k;
    var collisionInfo = new CollisionInfo();
    for (k = 0; k < mRelaxationCount; k++) {
        //....identical to previous project
        drawCollisionInfo(collisionInfo, gEngine.Core.mContext);
        �resolveCollision(�gEngine.Core.mAllObject[i],  

gEngine.Core.mAllObject[j], 
collisionInfo);

        //... identical to previous project

Note that the drawCollisionInfo function is a drawing 
operation and, strictly speaking, does not belong within the 
update loop in the collision function. Additionally, this 
draw operation is invoked within the core of relaxation loop 
iterations, which is computationally expensive. Fortunately, 
this function is for debugging purposes and will be 
commented out after this project.

Observation
Run the project to test your implementation. Create a few objects in the scene.  
Notice that with the M key, you can control whether the newly created objects overlap. 
Now, reset the scene with the R key, and then create some objects followed by enabling  
movement. You will notice small amounts of interpenetration happening and, when left  
alone, objects may begin to sink below the bottom of the scene. Select any of the objects  
to notice the ever-increasing negative y-velocity component. During each update cycle,  
all objects’ y-velocities are changed by gravitational acceleration, and yet the positional 
correction relaxation iterations are preventing them from moving downwards. By 
disabling the movement, you will notice overlaps disappearing completely, as positional 
correction will not be countered anymore. The ever-increasing y-velocities of the 
objects are a serious concern when attempting to create a stable system. Continuously 
increasing/decreasing numbers will result in unstable and unpredictable behavior, as 
witnessed in the objects sinking below the bottom boundary. In the following sections 
you will learn about the Impulse Method to further improve collision resolutions.

Resolving Collisions
With a functioning positional correction system, you can now begin implementing 
collision resolution and support behaviors that resemble real-world situations. In order to 
focus on the core functionality of a collision resolution system, including understanding 
and implementing the Impulse Method and ensuring system stability, you will continue 
to work with axis-aligned rigid shapes. The complications associated with angular 
impulse resolutions will be examined in the next section, after the mechanics behind 
linear impulse resolution are fully understood and implemented.
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In the following discussion, the rectangles and circles will not rotate as a response to 
collisions. However, the concepts and implementation described generalize to support 
rotational collision responses. This project is designed to help you understand the basic 
concepts of impulse-based collision resolution with axis-aligned shapes.

Formulating the Impulse Method
You will formulate the solution for the Impulse Method by first reviewing how a circle can 
bounce off of a wall and other circles in a perfect world. This will subsequently be used 
to derive an approximation for an appropriate collision response. Note that the following 
discussion focuses on deriving the formulation for the Impulse Method and does not 
attempt to present a review on the fundamentals of Newtonian Mechanics. Here is a brief 
review of some of the relevant terms.

•	 Mass is the amount of matter in an object, or how dense an object is.

•	 Force is any interaction or energy imparted on an object that will 
change the motion of that object.

•	 Relative Velocity is the difference in velocity between two 
travelling shapes.

•	 Coefficient of Restitution is the ratio of relative velocity after and 
before a collision. This is a measure of how much of the kinetic 
energy remains for the object to rebound from one another, or 
bounciness.

•	 Coefficient of Friction is a number that describes the ratio of 
the force of friction between two bodies. In your very simplistic 
implementation, friction is applied directly to slow down linear 
motion or rotation.

•	 Impulse is accumulated force over time that can cause a change 
in the velocity, for example, resulting from a collision.

Decomposing the Velocity in a Collision
Figure 4-5 illustrates a circle A in three different stages. At stage 1 the circle is traveling at 
velocity 



V1  towards the wall on its right. At stage 2 the circle is colliding with the wall. At 

stage 3 the circle has been reflected and is traveling away from the wall with velocity 


V2 .
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Mathematically, this collision and its response can be described by decomposing the 
initial velocity, 



V1 , into the components that are parallel, or tangent T


, and perpendicular, 

or normal N̂ , to the colliding wall. As seen in the following equation.

•	
  

V V VN N T T1 1 1= ×( ) + ×( )ˆ ˆ ˆ ˆ

In a perfect world with no friction and no loss of kinetic energy, after the collision, 
the component along the tangent direction will not be affect while the normal component 
will be simply reversed. In this way, the reflected vector 



V2  can be expressed as a linear 

combination of normal and tangent components of 


V1  as followed.

•	
  

V V N N V T T2 1 1= - ×( ) + ×( )ˆ ˆ ˆ ˆ

Notice the negative sign in front of the N̂  component. You can see in Figure 4-5, that 

the N̂  component for vector 


V2  points in the opposite direction of that of 


V1  as a result 

of the collision. Notice also that the tangent component, T̂ , is still pointing in the same 

direction since it is parallel to the of the wall and is unaffected by the collision. This 
demonstrates a vector reflection.

Relative Velocity of Colliding Shapes
This decomposition of vectors into the normal and tangent directions of the collision also 
applies in the general cases when the colliding shapes are both in motion. For example 
Figure 4-6 illustrates two traveling circle shapes, A and B, colliding.

Figure 4-5.  Collision Between a Circle and a Wall in a Perfect World
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In the case of  Figure 4-6, before the collision, shape A is traveling with velocity 


VA1  while 

shape B with velocity 


VB1 . The normal direction of the collision, N


, is defined to be the 

vector between the two circle centers and the tangent direction of the collision, T


, is the 

vector that is tangential to both of the circles at the point of collision. To resolve this collision, 

the velocities for shape A and B after the collision, 


VA2  and 


VB2 , must be computed.

The relative velocity between shapes A and B is defined as follows.

•	
  

V V VAB A B1 1 1= -

The collision vector decomposition can now be applied to the normal direction of 
the relative velocity where the relative velocity after the collision is 



VAB2 .

•	
� �� �
V N e V NAB AB2 1× = - ×æ

è
ç

ö
ø
÷ 	 (1)

The coefficient of restitution, e, models the real-world situation where some kinetic 
energy is changed to some other form of energy during the collision. Notice that all 
variables on the right-hand-side of Equation (1) are defined, as they are known at the 
time of collision, and that the normal component of the relative velocity after the collision 
of shapes A and B, 



VAB2 , is also defined. It is important to remember that,

•	
  

V V VAB A B2 2 2= - .

You are now ready to approximate 


VA2  and 


VB2 , the velocities of the colliding shapes 

after the collision.

Figure 4-6.  Collision Between Two Circles
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Approximating the Impulse Response
Accurately describing a collision involves complex considerations including factors like 
energy changing form, or frictions resulting from different material properties, etc. 
Without considering these advanced issues, a simplistic description of a collision that 
occurs on a shape is, a constant mass object changing its velocity from 



VA1  to 


VA2  after 

contact with another object. Conveniently, this is the definition of an impulse, as can be 
seen in the following.

•	 j m V m VA A A A= -
 

2 1

Or, when solving for 


VA2 ,

•	
 

V V
j

mA A
A

2 1= +

Take a step back from the math and think about what this formula states. It makes 
intuitive sense. It states that the change in velocity is inversely proportional to the mass of 
a shape. In other words, the more mass a shape has, the less its velocity will change after a 
collision. The Impulse Method implements this observation, and for the normal 
component, it defines the velocities after a collision for shapes A and B, 



VA2  and 


VB2 , to 

be as followed. In this case, m
A
, and m

B
 are the masses of Shapes A and B.

•	
� �� �
V N V N

j

mA A
N

A
2 1× = × +

•	
� �� �
V N V N

j

mB B
N

B
2 1× = × -

Subtracting the above two equations computes the normal component of relative 
velocity.

•	
� � � �� �
V V N V V N j

m mA A B N
A B

2 2 1 1

1 1
-( )× = -( )× + +

æ

è
ç

ö

ø
÷B

Recall that, 
 

V VA B2 2-( )  is simply 


VAB2 , and that, 
 

V VA B1 1-( )  is 


VAB1 , this equation 

simplifies to the following.

•	
� �� �
V N V N j

m mAB AB N
A B

2 1

1 1
× = × + +

æ

è
ç

ö

ø
÷

Substituting Equation (1) to the left-hand-side and the following equation can be 
derived.

•	 - ×æ
è
ç

ö
ø
÷ = × + +

æ

è
ç

ö

ø
÷e V N V N j

m mAB AB N
A B

� �� �

1 1

1 1

Collecting terms, and solving the formula for j
N

, the impulse in the normal direction, 
gives you the following.

•	 j
e V N

m m

N

AB

A B

=
- +( ) ×æ

è
ç

ö
ø
÷

+

1

1 1

1

� �

	 (2)
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Finally, the impulse in the tangent direction, j
T
, can be derived in a similar manner 

the results of which follow.

•	 j
e V T f

m m

T

AB

A B

=
- +( ) ×æ

è
ç

ö
ø
÷

+

1

1 1

1

� �

	 (3)

The coefficient of friction, f, is a simplistic approximation of friction.

The Steps for Resolving Collisions
You are now ready to modify the resolveCollision function in the Physics.js file 
to implement the collision resolution between two colliding shapes. The resolution 
procedure requires access to the two RigidShape objects and the corresponding collision 
information. The following are the detailed steps involved:

•	 Step A: make sure at least one of the colliding shapes is not static 
(an inverse mass that is not equal to 0).

•	 Step B: invoke the positional correction function to snap the 
shapes apart by a percentage of the interpenetration depth. Recall 
that in your implementation, the colliding shapes will be pushed 
apart by a default of 80% of the interpenetration depth.

•	 Step C: compute the relative velocity between the two shapes. As 
presented in the derivation, the relative velocity is essential for 
computing the impulse in the normal and tangent direction.

•	 Step D: compute the component of the relative velocity that is in 
the collision normal direction. This component indicates how 
rapidly the two shapes are moving toward or away from each 
other. A positive value indicates that the shapes are moving away 
from each other and impulse response will not be necessary.

•	 Step E: compute the impulse in the normal direction based on 
results from the previous step, restitution (bounciness), and the 
masses of the colliding shapes.

•	 Step F: compute the impulse in the tangent direction.

•	 Step G: apply impulses to modify the normal and tangent 
components of the shapes’ velocities to simulate the reflection of 
both shapes after the collision as well as friction.

The normal and tangent components of the impulse accomplish distinct purposes in 
simulating the results of a collision. The normal component simulates the bounciness of 
shapes, while the tangent component handles the friction. As illustrated in Figure 4-7,  
when a ball is tossed from the left towards the right, its initial spinning direction will 
determine the motion after the collision with the floor. On the left of Figure 4-7 the ball 
has an initial counter-clockwise spin while the ball on the right of the figure has an initial 
clockwise spin. At the point of collision with the floor, the tangent impulse component 
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modified by the respective friction force will either reduce or increase the right-ward 
linear velocity of the ball depending on its initial spinning direction. This particular 
functionality will be implemented in the following section on rotational collision 
response. However, take note that regardless of the objects rotation, upon collision the 
heights of the balls, after the collision, are equal to each other. This is a result of friction 
only affecting the tangent impulse component while the restitution affects the normal 
impulse component.

The Collision Impulse Project
This project will guide you through implementing the outlined steps to create a function 
that resolves the collision between axis-aligned shapes using the Impulse Method. You 
can see an example of this project running in Figure 4-8. The source code to this project is 
defined in the Collision Impulse Project folder.

Project Goals:

•	 To understand the details of Impulse Method computations.

•	 To build a system that resolves the collision between colliding 
shapes.

Figure 4-7.  Tangent Component Impulse and Friction

Figure 4-8.  Running the Collision Impulse Project
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Modify the Physics Engine Component
To properly support collision resolution, you only need to modify the physics.js file to 
implement the previously outlined steps.

	 1.	 Open the Physics.js file and go to the resolveCollision 
function.

	 2.	 After positional correction, you will begin the implementation 
by computing the collision normal, the relative velocity, 
the coefficient of restitution and the friction of the colliding 
shapes.

var resolveCollision = function (s1, s2, collisionInfo) {
    if ((s1.mInvMass === 0) && (s2.mInvMass === 0))
        return;

    // correct positions
    if (gEngine.Physics.mPositionalCorrectionFlag)
        positionalCorrection(s1, s2, collisionInfo);

    var n = collisionInfo.getNormal();
    var v1 = s1.mVelocity;
    var v2 = s2.mVelocity;
    var relativeVelocity = v2.subtract(v1);

    // Relative velocity in normal direction
    var rVelocityInNormal = relativeVelocity.dot(n);

    // if objects moving apart ignore
    if (rVelocityInNormal > 0)
        return;

    // compute and apply response impulses for each object    
    �var newRestituion = Math.min(s1.mRestitution, 

s2.mRestitution);
    var newFriction = Math.min(s1.mFriction, s2.mFriction);
        //... details in the following steps
};

	 3.	 Compute the impulse in the direction of the collision normal 
based on Equation (2).

//...continue from the previous step
// Calc impulse scalar
var jN = -(1 + newRestituion) * rVelocityInNormal;
jN = jN / (s1.mInvMass + s2.mInvMass);
//... details in the next step
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	 4.	 Apply the impulse to the velocities of the colliding shapes.

//...continue from the previous step
//impulse is in direction of normal ( from s1 to s2)
var impulse = n.scale(jN);
// impulse = F dt = m * v
// v = impulse / m
s1.mVelocity = s1.mVelocity.subtract(impulse.scale(s1.mInvMass));
s2.mVelocity = s2.mVelocity.add(impulse.scale(s2.mInvMass));
//... details in the next step

	 5.	 Compute the direction that is tangent to the collision normal.

//... continue from the previous step
var tangent = �relativeVelocity.subtract( 

n.scale(relativeVelocity.dot(n)));
// relativeVelocity.dot(tangent) should less than 0
tangent = tangent.normalize().scale(-1);
//... details in the next step

	 6.	 Compute the impulse, jT, in the direction that is tangent to 
the collision normal based on Equation (3), and apply the 
impulse to the velocities of the colliding shapes.

//...continue from the previous step
var jT = �-(1 + newRestituion) *  

relativeVelocity.dot(tangent) * newFriction;
jT = jT / (s1.mInvMass + s2.mInvMass);

// friction should be less than force in normal direction
if (jT > jN) jT = jN;
//impulse is from s1 to s2 (in opposite direction of velocity)
impulse = tangent.scale(jT);

s1.mVelocity = s1.mVelocity.subtract(impulse.scale(s1.mInvMass));
s2.mVelocity = s2.mVelocity.add(impulse.scale(s2.mInvMass));

Defining an Initial Rectangle in Mygame.js 
You need to modify the Mygame.js file to define an initial rectangular RigidShape object 
for testing purposes. Edit Mygame.js and add the following code to define a stationary 
rectangle with infinite mass.

function MyGame() {
    //...identical to previous project
    var r2 = new Rectangle(new Vec2(200, 400), 400, 20, 0, 1, 0);
    //...identical to previous project
}
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Observation
You should test your implementation in two ways. First, ensure that moving shapes 
collide and behave naturally. Second, ensure the collision resolution system is stable 
when there are many shapes that are in close proximity. You also can test the collision 
resolution between regular shapes and shapes with infinite mass.

Notice that the scene now has a platform-like shape. This is a shape with infinite 
mass that can be tested for collision resolution with other regular moving shapes. Now 
make sure movement is switched on with the comma (,) key and create several rectangle 
and circle shapes with the F and G keys. Notice that the shapes fall gradually to the floor 
and their motions stop with a slight rebound. This is a clear indication that the base case 
for Euler Integration, collision detection, and resolution all are operating as expected. 
Press the H key to excite all shapes. Notice the wandering shapes interact properly 
with the platforms and the walls of the game world with soft bounces and no apparent 
interpenetrations. In addition, pay attention to the apparent transfer of energy during 
collisions. Try adjusting the shape attributes, for example, the mass, and observe what 
happens when two shapes with very different masses collide. Notice that the shape with 
more mass does not change its trajectory much after the collision. Lastly, notice that the 
shapes do not rotate as a result of collision. That is because your current implementation 
only considers the linear velocity of the shapes. In the next project you will improve the 
resolution function to consider angular velocity changes as a result of collisions.

The stability of the system can be tested by increasing the number of shapes in the 
scene. The relaxation loop count of 15 continuously pushes interpenetrating shapes apart 
by 80% of the interpenetration depth during each iteration, in addition to the impulse 
correction. For example, you can switch off movement and positional corrections with 
the comma and M keys and create multiple, e.g., 10 to 20, overlapping shapes at the exact 
same position. Now enable position correction with the M key and notice that, after a 
short pause, the shapes will appear again with no interpenetrations.

Supporting Rotation in Collision Response
Now that you have a concrete understanding and have successfully implemented the 
Impulse Method for collision responses with linear velocities, it is time to integrate 
the support for the more general case of rotations. Before discussing the details, it is 
helpful to relate the relevant correspondences of Newtonian linear mechanics to that of 
rotational mechanics. That is, linear displacement corresponds to rotation, velocity to 
angular velocity, force to torque, and mass to rotational inertia. From basic mechanics, 
rotational inertia is also known as the angular mass. It determines the torque needed for 
a desired angular acceleration about a rotational axis. The following discussion focuses 
on integrating rotation into the Impulse Method formulation and does not attempt to 
present a review on Newtonian Mechanics for Rotation. Conveniently, integrating proper 
rotation into the Impulse Method does not involve derivation of any new algorithm. All 
that is required is the formulation of impulse responses with proper consideration of 
rotational attributes.
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Integrating Newtonian Mechanics for Rotation
The key to integrating rotation into the Impulse Method formulation is recognizing the 
fact that the linear velocity you have been working with, e.g., velocity 



VA1  of shape A, is 
actually the velocity of the shape at its center location. In the absence of rotation, this 
velocity is constant throughout the shape and can be applied to any position. However, as 
illustrated in Figure 4-9, when the movement of a shape includes angular velocity, 



wA1, its 
linear velocity at a position P, 



VAP1, is actually a function of the relative position 
between the point and the center of rotation of the shape, 



RAP .

•	
 





V V RAP A A AP1 1 1= + ´( )w

Figure 4-9.  Linear Velocity at a Position in the Presence of Rotation

■■ Note   Angular velocity is a vector that is perpendicular to the linear velocity. In this 
case, as linear velocity is defined on the X/Y plane, 



w  is a vector in the z direction since 
objects rotate around their center of mass. For simplicity, in your implementation, 



w  will be 
stored as a simple scalar representing the z-component magnitude of the vector.

Formulating Impulse Method with Rotation
Similar to the case for linear impulse response, it is also true that change in angular 
velocity after a collision is inversely proportional to the rotational inertia. As illustrated in 
Figure 4-10, for shapes A and B with rotational inertia of I

A
 and I

B
; and initial angular 
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velocities of 


wA1  and 


wB1; after a collision the angular velocities, 


wA2 and 


wB2, are  
defined as follows.

•	
� � � �� �
w wA A AP

N
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Where 


RAP  and 


RBP  are positional vectors from each shape’s center of rotation to 

the point of collision, P; N


 and T


 are the collision normal and tangent.

Figure 4-10.  Angular Velocities of two Colliding Shapes

Recall that the Impulse Method formulation is derived based on decomposing the 
relative velocity after the collision, 

  

V V VAB A B2 2 2= - , into normal and tangent directions. 
With 

  

V V VAB A B1 1 1= - , being the relative velocity from before the collision, Equation (1) 
from previous section is repeated in the following.

•	
� �� �
V N e V NAB AB2 1× = - ×æ

è
ç

ö
ø
÷

Note that this equation was derived before the considerations for rotation and the 
formulation assumes that the velocity for each shape is constant over the entire shape. 
In order to support rotation, this equation must be generalized and solved at the point of 
collision, P.

•	
� �� �
V N e V NABP ABP2 1× = - ×æ

è
ç

ö
ø
÷ (4)



Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

99

In this case, 


VABP1  and 


VABP2  are relative velocities at collision position P, from before 
and after the collision where the following is still true for these vectors.

•	
  

V V VABP AP BP1 1 1= -

•	
  

V V VABP AP BP2 2 2= -

As previously derived, it is now possible to substitute the following equations 
together with the definition of the relative vectors into Equation (4) and solve for the 
impulse, j.

•	
 





V V RAP A A AP2 2 2= + ´( )w

•	
 





V V RBP B B BP2 2 2= + ´( )w
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V V
j

mA A
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Though tedious, the simplification algebra is relatively straightforward, and the 
resulting impulse in the collision normal direction, j

N
, can be expressed as followed.
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Similar to the case in linear response, the impulse in the tangent direction, j
T
, can be 

derived and expressed as followed.
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Once again, the coefficient of friction, f, is a simplistic approximation of friction. In 
addition, note that since 



RAP  and N
  are vectors in the X/Y plane, in implementation 

� �
R NAP ´  is a scalar representing the z-component magnitude of the resulting vector.
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You are now ready to implement Impulse Method collision response with support 
for rotation, or angular impulse.

The Angular Impulse Project
This project will guide you through the implementation of angular impulse. You can 
see an example of this project running in Figure 4-11. The source code to this project is 
defined in the Angular Impulse Project folder.

Figure 4-11.  Running the Angular Impulse Project

Project Goals:

•	 To understand the details of angular impulse

•	 To integrate rotation into your collision resolution

•	 To complete the physics component

To implement angular impulse, in the resolve collision function, you only need to 
modify the Physics.js file to implement the generalized formulation derived.

	 1.	 Edit the Physics.js file and go to resolveCollision function 
that you have created in the previous projects.

	 2.	 It is important to compute the velocities at the collision 
position, 



VAP1  and 


VBP1. In the following, r1 and r2 are the 


RAP  and 


RAP  positional vectors for shapes A and B. Notice 
that in the implementation, the collision position, P, is simply 
the mStart position in the collisionInfo. The variables v1 
and v2 are the actual 



VAP1  and 


VBP1  vectors.
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var resolveCollision = function (s1, s2, collisionInfo) {
    //..identical to previous project
    var n = collisionInfo.getNormal();
    //the direction of collisionInfo is always from s1 to s2
    �//but the Mass is inversed, so start scale with s2 and end 

scale with s1
    �var start = collisionInfo.mStart.scale(s2.mInvMass /  

(s1.mInvMass + s2.mInvMass));
    �var end = collisionInfo.mEnd.scale(s1.mInvMass /  

(s1.mInvMass + s2.mInvMass));
    var p = start.add(end);
    //r is vector from center of shape to collision point
    var r1 = p.subtract(s1.mCenter);
    var r2 = p.subtract(s2.mCenter);

    //newV = V + mAngularVelocity cross R
    var v1 = �s1.mVelocity.add(new Vec2(-1 * s1.mAngularVelocity * r1.y,
                                    s1.mAngularVelocity * r1.x));
    var v2 = �s2.mVelocity.add(new Vec2(-1 * s2.mAngularVelocity * r2.y,
                                    s2.mAngularVelocity * r2.x));
    var relativeVelocity = v2.subtract(v1);

    // Relative velocity in normal direction
    var rVelocityInNormal = relativeVelocity.dot(n);

    //..details in the next step
};

	 3.	 The next step is to compute the impulse in the collision 
normal direction, j

N
, according to Equation (5).

//...identical to previous project
//...continue from previous step
var newFriction = Math.min(s1.mFriction, s2.mFriction);
//R cross N
var R1crossN = r1.cross(n);
var R2crossN = r2.cross(n);

// Calc impulse scalar
// Reference: http://www.myphysicslab.com/collision.html
var jN = -(1 + newRestituion) * rVelocityInNormal;
jN = jN / (s1.mInvMass + s2.mInvMass + 
          R1crossN * R1crossN * s1.mInertia + 
          R2crossN * R2crossN * s2.mInertia);
//...details in the next step
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	 4.	 Now, update the angular velocity according to the Impulse 
Method formulation introduced.

s1.mAngularVelocity -= R1crossN * jN * s1.mInertia;
s2.mAngularVelocity += R2crossN * jN * s2.mInertia;
//...details in the next step

	 5.	 Now, compute the impulse in the collision tangent direction, 
j

T
, according to Equation (6).

//...identical to previous project
//relativeVelocity.dot(tangent) should less than 0
tangent = tangent.normalize().scale(-1);

var R1crossT = r1.cross(tangent);
var R2crossT = r2.cross(tangent);

var jT = �-(1 + newRestituion) *  
relativeVelocity.dot(tangent) *  
newFriction;

jT = jT / (s1.mInvMass + s2.mInvMass + 
          R1crossT * R1crossT * s1.mInertia + 
          R2crossT * R2crossT * s2.mInertia);
//...identical to previous project

	 6.	 Finally, update the angular velocity based on the tangent 
direction impulse

s1.mAngularVelocity -= R1crossT * jT * s1.mInertia;
s2.mAngularVelocity += R2crossT * jT * s2.mInertia;

Observation
Run the project to test your implementation. The shape that you insert into the scene 
should now be rotating, colliding, and responding in fashions that are similar to the 
real world. A circle shape rolls around when other shapes collide with them, while a 
rectangle shape should rotate naturally upon collision. The interpenetration between 
shapes should not be visible under normal circumstances. However, two reasons can 
still cause observable interpenetrations. First, a small relaxation iteration, or second, 
your CPU is struggling with the number of shapes. In the first case, you can try increasing 
the relaxation iteration to prevent any interpenetration. Now your 2D physics engine 
implementation is completed. You can continue testing by creating additional shapes to 
observe when your CPU begins to struggle with keep up real time performance.
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Summary
This chapter has guided you through understanding the foundation behind a working 
physics engine. A step-by-step derivation of the relevant formulae for the simulations 
followed by a detailed guide to the building of a functioning system. You have computed 
the movement of shapes, resolved interpenetrations after collisions, implemented 
resolution based on the Impulse Method for shapes both linearly and rotationally. Now 
that you have completed your physics engine, you can integrate the system into almost 
any 2D game engine. Additionally, you can test your implementation by supporting other 
shapes. You can also carefully examine the system and identify potentials for optimization 
and further abstractions. Many improvements to the physics engine are still possible.
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CHAPTER 5

Summarizing the Physics 
Engine

Congratulations! You have learned the basic ideas and concepts behind and completed 
the implementation of a 2D physics engine. This chapter will summarize all of your work 
done from Chapter 1 to 4, what you should understand and take away from this book, and 
highlight improvements or future explorations on the physics engine that you have created.

This chapter begins by summarizing all of the physics engine theories and concepts 
that you have learned and used throughout the book. Next, a detailed list of source code 
files, and the associated functions that you have written are presented, serving as a simple 
“readme” file. Lastly, further topics you can explore and possibly implement in your physics 
engine will be presented as a starting point for your future endeavors with game physics 
engines. This chapter will also include a simple project serving as the final and complete 
functionality and features testing of your engine. You can follow the project guide on setting 
up and running the simulation, or be creative and set up your own test cases.

The Concepts and Theories 
This book is designed to guide you to build your own physics simulation. As such, all 
topics introduced relate to the building of such a system.

•	 Rigid Shape - A primitive that does not change its shape during 
physical interaction. In order to support efficient interaction 
simulation, these are usually simple geometric shapes, e.g., circles 
and rectangles. A rigid shape has its own attributes that support 
physics simulation such as mass, width, height, center of gravity, 
inertia, friction, restitution, etc.

•	 Engine Loop - A continuous running loop that updates the 
object states, invokes the calculations of inter-object interactions, 
and renders the objects. The engine loop must cycle through 
all operations and maintain a real-time performance. By 
implementing a fixed time step update in the loop, it becomes 
straightforward to simulate movement integration and maintain a 
deterministic game state.

http://dx.doi.org/10.1007/978-1-4842-2583-7_1
http://dx.doi.org/10.1007/978-1-4842-2583-7_4
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•	 Collision Detection - An algorithm to determine if objects have 
overlapped and/or interpenetrated other objects.

•	 Broad Phase Method - An optimization for collision detection by 
exploiting the proximity of objects. Axis-aligned bounding boxes 
are used by the engine to reduce the overhead of invoking actual 
collision detection algorithms.

•	 Separating Axis Theorem - One of the most popular algorithms 
for detecting collisions between general convex shapes in 2D. It 
is typically preceded with an initial pass of a broad phase method 
to improve its overall performance. This algorithm can detect 
collisions between axis-aligned as well as rotated shapes.

•	 Collision Information - The information describing the details 
of a collision including interpenetration depth, normal direction 
that caused the interpenetration, and beginning and end of an 
interpenetration. This information is essential for resolving a 
collision.

•	 Symplectic Euler Integration - A method of approximating 
integrals based on initial values. This engine uses the Symplectic 
Euler Integration to approximate an object’s new linear and 
rotational velocities, and its new position.

•	 Positional Correction - The process of separating two 
interpenetration objects using collision information collected 
during collision detection.

•	 Relaxation Loop - An iterative loop in the core of the physics 
engine that repeatedly and incrementally apply positional 
correction on interpenetrating objects in an attempt to remove 
the occurrence of colliding object interpenetration.

•	 Impulse Method - A largely simplified, physically-based 
collision response formulation that is capable of capturing object 
bounciness and friction considerations during a collision.

•	 Collision Resolution - A process that determines how objects 
should respond after a collision. When applying the Impulse 
Method to resolve a collision, colliding objects receive new linear 
and angular velocities.

The Engine Source Code
The following is the list of source code files and the associated functionality.

•	 Core.js

•	 Core engine loop

•	 Update function
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•	 Drawing function

•	 UI control

•	 Physics.js

•	 Collision detection

•	 Relaxation loop

•	 Positional correction

•	 Resolving collision

•	 CollisionInfo.js

•	 Collision information object

•	 Constructor and getter/setter

•	 Vec2.js

•	 2D vector calculation

•	 RigidShape.js

•	 Base class of rigid shape

•	 Constructor

•	 Update function

•	 Bounding box collision test for broad phase method support

•	 Rectangle.js & Circle.js

•	 Inherit from rigid shape base class

•	 Specific constructor for each

•	 Rotate function

•	 Draw function

•	 Move function

•	 Rectangle_collision.js & Circle_collision.js

•	 Collision detection functions

•	 Gather collision information

•	 UserControl.js

•	 User input controller
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•	 MyGame.js

•	 Simulation scene controller

•	 Index.html

•	 Script calling

•	 Initialize simulation scene

The Cool Demo Project
This project guides you in setting up the scene to test the functionality of your physics 
engine implementation. You can see an example of this project running in Figure 5-1. The 
source code to this project is defined in the A Cool Demo Project folder.

Project Goal:

•	 To test and engage with all the functionalities and features of the 
physics engine

Modifying Simulation Scene
Let’s start by modifying the simulation scene:

	 1.	 Edit the MyGame.js file.

	 2.	 Replace all the code inside the MyGame constructor to create a 
new scene for the simulation.

Figure 5-1.  Running the Cool Demo Project
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"use strict";
/* global height, width, gEngine */
function MyGame() {
}

	 3.	 In the MyGame constructor, create four platforms, with one 
rotated for testing the angular movements.

//...continue from previous step
var r1 = new Rectangle(new Vec2(500, 200), 400, 20, 0, 0.3, 0);
r1.rotate(2.8);
var r2 = new Rectangle(new Vec2(200, 400), 400, 20, 0, 1, 0.5);
var r3 = new Rectangle(new Vec2(100, 200), 200, 20, 0);
var r4 = new Rectangle(new Vec2(10, 360), 20, 100, 0, 0, 1);
//...more in next step

	 4.	 Create 10 circle and rectangle objects with random attributes 
to begin with the simulation.

//...continue from previous step
for (var i = 0; i < 10; i++) {
  �var r1 = new �Rectangle( 

new Vec2(Math.random() * gEngine.Core.mWidth, 
                    Math.random() * gEngine.Core.mHeight / 2), 
                Math.random() * 50 + 10, Math.random() * 50 + 10, 
                Math.random() * 30, Math.random(), Math.random());
  �r1.mVelocity = new Vec2(�Math.random() * 60 - 30,  

Math.random() * 60 - 30);
  r1 = new �Circle( 

new Vec2(Math.random() * gEngine.Core.mWidth, 
               Math.random() * gEngine.Core.mHeight / 2), 
           Math.random() * 20 + 10, Math.random() * 30, 
           Math.random(), Math.random());
  �r1.mVelocity = new� Vec2(Math.random() * 60 - 30,  

Math.random() * 60 - 30);
}

Observation
You can see that there are no borders in the scene. This allows objects to fall off the screen 
and not crowd the space. In this way you can continue to create new objects and observe 
the simulation of object behaviors. You can also test the performance of your engine by 
creating more objects at the beginning of the simulation. Note that this book provides 
you with the basic understanding of creating your own physics engine. There is plenty 
of room for improvements, ranging from choosing alternative algorithms, supporting 
different features, to optimizing the efficiency of the calculations, etc. The next section 
will point out some of the topics you could look into to improve your engine.
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Further Exploration and Related Topics
With your physics engine now completed you may be asking yourself, what now? How 
should I proceed with the knowledge I have gained, what should I do with the physics 
engine I created or what should I learn next? Ultimately, as is most often the case, the 
answer is that it depends. It depends on your interests in game physics engines in the first 
place and why you decided to read and follow along with this book. If your desire was to 
create a game or game engine from scratch, you may wish to integrate this physics engine 
into your own game engine or an existing game engine in order to add rigid body physics 
functionality to the project. If your reason had a more academic nature with the goal of 
learning and understanding how game physics engines function you may want to explore 
further into related topics within game physics.

Regardless of which category you lie in, you may wish to extend the functionality 
of the physics engine by improving its performance and capabilities by adding more 
advanced features or components. If that is the case, then the following topics provide 
you with some suggested jumping off points for further exploration within game physics.

Physics Topics
•	 Advanced 2-D Rigid Body Physics - If you enjoyed the Impulse 

Method approach and are looking to improve the functionality 
of your physics engine by adding features such as kinematics 
(often used for moving platforms), joints (for more complex 
rigid body behavior), or a host of other great features, we suggest 
that you look at the Box2D physics engine and the literature 
from its creator, Erin Catto. Box2D is the game physics engine 
that popularized the Impulse Method and is available in several 
programming languages.

http://box2d.org/

•	 Verlet Physics - If you’re looking to simulate soft body physics, 
then we suggest exploring Verlet physics. Verlet physics provides 
a fast and simple way to simulate soft bodies, such as rag dolls, 
ropes, jelly-like objects and even cloth, through the use of 
particles, constraints (springs) and Verlet Integration to build 
complex soft-bodied objects. In particular, we suggest you take a 
look at Thomas Jakobsen’s paper on Advanced Character Physics, 
which is probably the most popular starting point for people 
interested in game physics, due to its ease of implementation and 
understandability. The downside of Verlet physics is the potential 
of instability when applied to rigid body simulations.

•	 Networked Physics - The subject of networked physics contains 
its own unique set of problems that need to be addressed, many 
of which revolve around synchronization. To get your bearings on 
the subject, we suggest you take a look at the following website.

http://box2d.org/
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http://gafferongames.com/game-physics/

•	 3-D Rigid Body Physics - If you’re interested in venturing into 
3-D physics simulations, a great starting point is the Impulse 
Method! The great thing about the Impulse Method is that it can 
also be used in 3-D physics, as well as 2-D. Newcastle University 
provides some great information on implementing the impulse 
method in 3-D.

https://research.ncl.ac.uk/game/mastersdegree/
gametechnologies/

Collision Detection Topics
•	 Continuous Collision - Continuous collision is a method to solve 

the problem of physics objects passing through other physics 
object geometries that are too small or traveling at too high 
velocities. This is a problem due to the discrete time step nature 
of game engines. There are several approaches to address this 
problem. A great place to start and get your bearings for the topic 
is Erin Catto’s GDC (Game Developers Conference) presentation.

http://www.gdcvault.com/play/1018239/Physics-for-Game-
Programmers-Continuous

•	 Collision Callbacks - Collision callbacks provide a more 
advanced and flexible collision behavior. They can be used 
to customize the behavior for your physics objects such as 
OnCollisionEnter or OnCollisionExit. In addition, they can also 
be useful for passing any collision information needed for any 
game logic. Collision callbacks are often a key feature for more 
advanced physics engines.

•	 GJK Collision Detection - The GJK (Gilbert-Johnson-Keerthi) 
algorithm is an alternate collision detection method to the 
Separating Axis Theorem. GJK provides more flexibility and 
performs collision detection for many-sided convex polygons.

•	 Spatial Partitioning - Spatial partitioning is a more advanced 
broad phase method commonly used in physics engines to 
improve performance for both collision detection and response. 
The method divides the world space into discrete areas in order 
to detect likely collisions. One of the more commonly used spatial 
partitioning techniques in 2D is known as quad-tree.

http://gafferongames.com/game-physics/
https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/
https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/
http://www.gdcvault.com/play/1018239/Physics-for-Game-Programmers-Continuous
http://www.gdcvault.com/play/1018239/Physics-for-Game-Programmers-Continuous
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•	 Resolve collision without rotation: https://gamedevelopment.
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