
Building a 2D Game
Physics Engine

Using HTML5 and JavaScript
—
Michael Tanaya
Huaming Chen
Jebediah Pavleas
Kelvin Sung

www.allitebooks.com

http://www.allitebooks.org

Building a 2D Game
Physics Engine

Using HTML5 and JavaScript

Michael Tanaya

Huaming Chen

Jebediah Pavleas

Kelvin Sung

www.allitebooks.com

http://www.allitebooks.org

Building a 2D Game Physics Engine: Using HTML5 and JavaScript

Michael Tanaya				 Huaming Chen
Bothell, Washington, USA			 Bothell, Washington, USA

Jebediah Pavleas				 Kelvin Sung
Kenmore, Washington, USA			 Woodinville, Washington, USA

ISBN-13 (pbk): 978-1-4842-2582-0		 ISBN-13 (electronic): 978-1-4842-2583-7
DOI 10.1007/978-1-4842-2583-7

Library of Congress Control Number: 2017930129

Copyright © 2017 by Michael Tanaya, Huaming Chen, Jebediah Pavleas and Kelvin Sung

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Jason Sturges
Coordinating Editor: Mark Powers
Copy Editor: Larissa Shmailo
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/us/
services/rights-permission.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/us/services/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers for download via the book's product page, located at www.apress.com/9781484225820.
For more detailed information, please visit http://www.apress.com/us/services/source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/us/services/rights-permission
http://www.apress.com/us/services/rights-permission
http://www.apress.com/us/services/bulk-sales
www.apress.com/9781484225820
http://www.apress.com/us/services/source-code
http://www.allitebooks.org

To my love, Josephine Janice, for her companionship through many long
nights of writing, and my parents, Hendi and Ros,

 for their support, advice, and love.

—Michael Tanaya

To my parents, Chen Yaoqing and Tang Hua,
for their encouragements and love.

—Huaming Chen

To my Mother, Diana, for the love and support she has given me
throughout my life.

—Jebediah Pavleas

To my wife, Clover, and our girls, Jean and Ruth, for completing my life.

—Kelvin Sung

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors�� xi

About the Technical Reviewer��� xiii

Acknowledgements�� xv

Introduction�� xvii

■■�Chapter 1: Introduction to 2D Game Physics
Engine Development�� 1

■■Chapter 2: Implementing the 2D Physics Engine Core������������������ 15

■■Chapter 3: Incorporating Collision Detection�������������������������������� 37

■■�Chapter 4: Completing the Physics Engine and
Rigid Shape Component�� 71

■■Chapter 5: Summarizing the Physics Engine������������������������������ 105

Index��� 113

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors�� xi

About the Technical Reviewer��� xiii

Acknowledgements�� xv

Introduction�� xvii

■■�Chapter 1: Introduction to 2D Game Physics
Engine Development��� 1

Setting Up Your Development Environment�� 2

Downloading and Installing JavaScript Syntax Checker�������������������������� 3

Working in the NetBeans Development Environment������������������������������� 3

Creating an HTML5 Project in NetBeans�� 4

The Relationship Between the Project Files and the File System ���������������������������� 8

HTML5 Canvas Project��� 8

Drawing Core�� 9

Creating the HTML Canvas�� 10

Creating the Core Script�� 10

User Control�� 12

Creating User Control Script�� 12

Using the User Control Script�� 13

Summary�� 14

www.allitebooks.com

http://www.allitebooks.org

viii

■ CONTENTS

■■Chapter 2: Implementing the 2D Physics Engine Core������������������ 15

Vector Calculation Library�� 16

Creating the Library��� 16

Physics Engine and Rigid Shapes�� 17

The Rigid Shape Project�� 18

Observation��� 27

The Core Engine Loop�� 27

Engine Loop Implementations��� 28

The Core Engine Loop Project�� 29

Observation��� 35

Summary�� 36

■■Chapter 3: Incorporating Collision Detection�������������������������������� 37

Interpenetration of Colliding Objects�� 38

Collision Detection�� 40

Broad Phase Method�� 40

The Broad Phase Method Project�� 40

Observation��� 45

Collision Information�� 45

The Circle Collision Detection Project�� 46

Observation��� 52

Separating Axis Theorem �� 52

A Simple SAT-based Algorithm�� 54

An Efficient SAT Algorithm: The Support Points��� 56

The Rectangle Collision Project��� 58

Observation��� 62

www.allitebooks.com

http://www.allitebooks.org

ix

CONTENTS ■ ﻿

Collision Between Rectangles and Circles��� 62

The Rectangle Circle Collision Project��� 63

Observation��� 69

Summary�� 69

■■�Chapter 4: Completing the Physics Engine and Rigid Shape
Component�� 71

Movement�� 72

Explicit Euler Integration��� 73

Symplectic Euler Integration��� 74

Implementing Symplectic Euler Integration and Defining Attributes to
Support Collision Response�� 74

The Rigid Shape Movement Project��� 74

Observation��� 82

Resolving Interpenetrations��� 83

The Positional Correction Project�� 84

Observation��� 87

Resolving Collisions��� 87

Formulating the Impulse Method�� 88

The Steps for Resolving Collisions�� 92

The Collision Impulse Project�� 93

Observation��� 96

Supporting Rotation in Collision Response�� 96

Integrating Newtonian Mechanics for Rotation��� 97

Formulating Impulse Method with Rotation�� 97

The Angular Impulse Project�� 100

Observation��� 102

Summary�� 103

www.allitebooks.com

http://www.allitebooks.org

x

■ ﻿CONTENTS

■■Chapter 5: Summarizing the Physics Engine������������������������������ 105

The Concepts and Theories ��� 105

The Engine Source Code�� 106

The Cool Demo Project��� 108

Modifying Simulation Scene�� 108

Observation��� 109

Further Exploration and Related Topics�� 110

Physics Topics��� 110

Collision Detection Topics�� 111

Reference��� 112

Index��� 113

www.allitebooks.com

http://www.allitebooks.org

xi

About the Authors

Michael Tanaya is an international graduate student from Indonesia in the Computer
Science and Software Engineering program at the University of Washington Bothell
(UWB). He received his Bachelor of Computer Science in 2014 from the University of
Minnesota at Twin Cities. During his time as an undergraduate, he took interests in
computer games and web application development. In his free time, he enjoys playing
competitive video games, designing and developing video games with Unity™ and
Cocos2D™. Currently Michael is working with Professor Kelvin Sung on developing a
system that integrates Virtual and Augmented Reality technologies in creating a
learning multimedia environment for active hands-on learning. He will be graduating
in Spring 2017.

Huaming Chen is an international graduate student from China in the Computer Science
and Software Engineering program at the University of Washington Bothell (UWB). He
received dual undergraduate degrees, in Computer Science and Economics, from Xiamen
University in 2015. During his time as an undergraduate, he was interested in data mining
and videogame design. His project includes a structure of website groups that related to
each other and a software system that recommends useful information based on the
website groups. He also developed a mobile game based on Unity3D. Currently, Huaming
is working on a project that focuses on designing videogames that simplify vision therapy
for children. He will be graduating in Spring 2017.

Jebediah Pavleas is a software engineer who received his Master of Science in
Computer Science and Software Engineering from the University of Washington
Bothell (UWB) in 2016 as well as a Bachelor of Science in 2012, where he was the
recipient of the Chancellor’s Medal for his class. In 2015 he interned at Microsoft
Research, where he worked on improving the safety and usability of an eye gaze
wheelchair. During his time as a student, he took a great interest in both computer
graphics and games. His projects included an interactive math application that
utilizes Microsoft’s Kinect sensor to teach algebra and a 2D role-playing game
designed to teach students introductory programming concepts. Relating to these
projects, he co-authored publications in IEEE Computers and The Journal of
Computing Sciences in Colleges. He enjoys designing, building, and playing games of
all kinds, as well as adapting technology for improved accessibility. Jebediah is also
the primary author of Learn 2D Game Development with C# (APress, December 2013)
and co-author of Build Your Own 2D Game Engine and Create Great Web Games
(Apress, October 2015).

www.allitebooks.com

http://www.allitebooks.org

xii

■ ﻿ ABOUT THE AUTHORS

Kelvin Sung is a professor with the Computing and Software Systems division at
University of Washington Bothell (UWB). He received his Ph.D. in Computer Science
from the University of Illinois at Urbana-Champaign. Kelvin's background is in computer
graphics, hardware, and machine architecture. He came to UWB from Alias|Wavefront
(now part of Autodesk), where he played a key role in designing and implementing the
Maya Renderer, an Academy Award-winning image generation system. Funded by
Microsoft Research and the National Science Foundation, Kelvin’s recent work focused
on the intersection of video game mechanics, solutions to real-world problems, and
mobile technologies. Together with his students, Kelvin has co-authored three recent
books: one in computer graphics (Essentials of Interactive Computer Graphics: Concepts
and Implementations, A.K. Peters, 2008), and the others in 2D game engines (Learn 2D
Game Development with C#, APress, December 2013; and Build Your Own 2D Game
Engine and Create Great Web Games, Apress, October 2015).

xiii

About the Technical
Reviewer

Jason Sturges is a cutting edge technologist focused on ubiquitous delivery of immersive
user experiences. Coming from a visualization background, he’s always pushing the
boundaries of computer graphics to the widest reach across platforms while maintaining
natural and intuitive usability per device. From interactivity, motion, and animation to
creative design, he has worked with numerous creative agencies on projects from kiosks
to video walls to Microsoft Kinect games. Most recently, the core of his work has been
mobile apps. Committed to the open source community, he is also a frequent contributor
at GitHub and Stack Overflow as a community resource leveraging modern standards,
solid design patterns, and best practices in multiple developer tool chains for web,
mobile, desktop, and beyond.

xv

Acknowledgments

This and our prior books on Games and Game Engine development are the direct result
of the authors learning from building games for the Game-Themed CS1/2: Empowering
the Faculty project, funded by the Transforming Undergraduate Education in Science
Technology, Engineering, and Mathematics (TUES) Program, National Science
Foundation (NSF) (award number DUE-1140410). We would like to thank NSF officers
Suzanne Westbrook for believing in our project and Jane Prey, Valerie Bar, and Paul
Tymann for their encouragement.

The invaluable collaboration between the technical team in the Game-Themed
Research Group (https://depts.washington.edu/cmmr/GTCS/) and the design team
in the Digital Future Lab (http://www.bothell.washington.edu/digitalfuture) at
the University of Washington Bothell (where much of our learning occurred during
the production of the many casual games for teaching introductory programming
concepts) formed the foundation that allowed the development of this book. Thank
you to all the participants of this research undertaking. The authors would also like
to thank the students at the University of Washington Bothell for the games they built
from the course CSS385: Introduction to Game Development (see http://courses.
washington.edu/css385). Their interest and passion for games has provided us with the
ideal deployment vehicle and are a source of continuous inspiration. They have tested,
retested, contributed to, and assisted in the formation and organization of the contents of
this book.

Jebediah Pavleas would like to thank the Computing and Software Systems Division
at the University of Washington Bothell for the generous tuition scholarships that funded
his education throughout his participation with this book project.

Thanks to Clover Wai, for once again helping us with the figures and illustrations in
this book.

We also want to thank Steve Anglin at Apress for believing in this project, to our
editor Mark Powers for his patience and toleration with our constantly behind-schedule
frenzy. Finally, we would like to thank Jason Sturges for his insightful technical feedback.

All opinions, findings, conclusions, and recommendations in this work are those of
the authors and do not necessarily reflect the views of the sponsors.

https://depts.washington.edu/cmmr/GTCS/
http://www.bothell.washington.edu/digitalfuture
http://courses.washington.edu/css385
http://courses.washington.edu/css385

xvii

Introduction

Welcome to Building a 2D Game Physics Engine: Using HTML5 and JavaScript. Because you
have picked up this book, you are likely interested in the details of a game physics engine
and the creation of your own games to be played over the Internet. This book teaches
you how to build a 2D game physics engine by covering the involved technical concepts,
and providing detailed implementations for you to follow. The source code in this book
is provided in HTML5 and JavaScript, which are technologies that are freely available and
supported by virtually all web browsers. After reading this book, the game physics engine
you develop will be playable through a web browser from anywhere on the Internet.

This book focuses only on the relevant concepts and implementation details for
building a 2D game physics engine. The presentations are tightly integrated with the
analysis and development of source code. Much of the book guides you in implementing
related concepts and building blocks while the actual functioning engine only becomes
available towards the end. Some of the algorithms and mathematics can be challenging.
Be patient. It will all pay off by the end of Chapter 4. By Chapter 5, you will be familiar
with the concepts and technical details of 2D game physics engines, and feel competent
in implementing the associated functionality.

Who Should Read This Book
This book is targeted toward programmers who are familiar with basic object-oriented
programming concepts and have a basic to intermediate knowledge of an object-oriented
programming language such as Java or C#. For example, if you are a student who has
taken a few introductory programming courses, an experienced developer who is new to
games and graphics programming, or a self-taught programming enthusiast, you will be
able to follow the concepts and code presented in this book with little trouble. If you’re
new to programming in general, it is suggested that you first become comfortable with
the JavaScript programming language and concepts in object-oriented programming
before tackling the content provided in this book.

Assumptions
You should have some basic background in Newtonian Mechanics and be experienced
with programming in an object-oriented programming language, such as Java or C#.
Knowledge and expertise in JavaScript would be a plus but is not necessary. The examples
in this book were created with the assumption that you understand data encapsulation
and inheritance. In addition, you should be familiar with basic data structures such as
linked lists and dictionaries, and be comfortable working with the fundamentals of algebra
and geometry, particularly linear equations and coordinate systems.

http://dx.doi.org/10.1007/978-1-4842-2583-7_4
http://dx.doi.org/10.1007/978-1-4842-2583-7_5

xviii

■ ﻿ INTRODUCTION

Who Should Not Read This Book
This book is not designed to teach readers how to program, the formal mathematics of
physics, nor does it attempt to explain the intricate details of HTML5 or JavaScript. If you
have no prior experience developing software with an object-oriented programming
language, you will probably find the examples in this book difficult to follow.

On the other hand, if you have an extensive background in game physics engine
development based on other platforms, the content in this book will be too basic; this is a
book intended for developers without 2D game physics engine development experience.

Organization of This Book
This book teaches how to develop a game physics engine by describing the foundational
infrastructure, collision detection algorithms, information that should be gathered during
a collision, and approaches to resolving and computing responses after a collision.

Chapter 2 introduces the foundational infrastructure, including the mathematics library,
and supporting framework for game loop, user input, and basic drawing. Chapter 3 focuses on
how to detect collisions covering efficiency, generality, and vital information to record during
a collision. Chapter 4 integrates the building blocks from the previous two chapters and
presents the details on simulating motions and computing responses after a collision.
Chapter 5 summarizes the book with a demonstration program and references for further
readings.

Code Samples
Every chapter in this book includes examples that let you interactively experiment with
and learn the new materials. You can download the source code for all the projects,
including the associated assets (images, audio clips, or fonts), from the following page:
www.apress.com/9781484225820.

Follow the instructions to download the 9781484225820.zip file. To install the code
samples, unzip the 9781484225820.zip file. You should see a folder structure that is
organized by chapter numbers. Within each folder are subfolders containing NetBeans
projects that correspond to sections of this book.

http://dx.doi.org/10.1007/978-1-4842-2583-7_2
http://dx.doi.org/10.1007/978-1-4842-2583-7_3
http://dx.doi.org/10.1007/978-1-4842-2583-7_4
http://dx.doi.org/10.1007/978-1-4842-2583-7_5
http://www.apress.com/9781484225820

1© Michael Tanaya, Huaming Chen, Jebediah Pavleas and Kelvin Sung 2017
M. Tanaya et al., Building a 2D Game Physics Engine, DOI 10.1007/978-1-4842-2583-7_1

CHAPTER 1

Introduction to 2D Game
Physics Engine Development

Physics engines play an important part in many types of games. A believable physics
interaction between game objects has become a key element of most modern PC and
console games as well as, more recently, browser and smartphone games. The range of
topics within physics for games is broad and includes, but is not limited to, areas such
as rigid body, fluid dynamics, soft-body, vehicle physics, and particle physics. This book
will cover the fundamental topics needed for you to get started in understanding and
building a general purpose, rigid body physics engine in two dimensions. The book also
aims to provide you with a reusable game physics engine, which can be used for your
own games, by guiding you through the process of building a physics engine step-by-step
from scratch. This way you will gain a foundational understanding of the concepts and
components required for a typical 2D rigid body system.

While you can just download a physics engine library and continue on with your
game or engine development, building your own game engine from scratch has its own
advantages. Besides giving you an underlying understanding of how the physics engine
operates, it gives you more control over the flexibility, performance, functionality, and
usability of the engine itself.

As stated, this book will cover the foundation of 2D rigid body physics. The topics will
include properties and behavior of rigid bodies, collision detection, collision information
encoding, and collision response. The goal is to obtain a fundamental understanding of
these concepts which are required to build a usable physics engine.

The book approaches physics engine development from three important avenues:
practicality, approachability, and reusability. While reading the book, we want you to get
involved and experience the process of building the game engine. The step-by-step guide
should facilitate the practicality of this book. The theories and practices introduced in this
book are based on research and investigation from many sources which cover the topics in
varying detail. The information is presented in a way that is approachable, by allowing you
to follow along as each code snippet is explained in parallel to the overall concepts behind

Electronic supplementary material  The online version of this chapter  
(doi:10.1007/978-1-4842-2583-7_1) contains supplementary material, which is available  
to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2583-7_1

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

2

each component of the engine. After following along and creating your own engine, you
will be able to extend and reuse the finished product by adding your own features.

This chapter describes the implementation technology and organization of the
book. The discussion then leads you through the steps of downloading, installing, and
setting up the development environment; guides you through building your first HTML5
application; and extends this first application with the JavaScript programming language
to run your first simulation.

Setting Up Your Development Environment
The physics engine you are going to build will be accessible through web browsers that
could be running on any operating system (OS). The development environment you are
about to set up is also OS agnostic. For simplicity, the following instructions are based on
a Windows 7/8/10 OS. You should be able to reproduce a similar environment with minor
modifications in a Unix-based environment like the Apple macOS or Ubuntu.

Your development process includes an integrated development environment (IDE)
and a runtime web browser that is capable of hosting the running game engine. The most
convenient systems we have found are the NetBeans IDE with the Google Chrome web
browser as the runtime environment. Here are the details:

•	 IDE: All projects in this book are based on the NetBeans IDE. You
can download and install the bundle for HTML5 and PHP from
https://netbeans.org/downloads.

•	 Runtime environment: You will execute your projects in the
Google Chrome web browser. You can download and install this
browser from https://www.google.com/chrome/browser/.

•	 Connector Google Chrome plug-in: This is a Google Chrome
extension that connects the web browser to the NetBeans IDE to
support HTML5 development. You can download and install this
extension from https://chrome.google.com/webstore/detail/
netbeans-connector/hafdlehgocfcodbgjnpecfajgkeejnaa.
The download will automatically install the plug-in to Google
Chrome. You may have to restart your computer to complete the
installation.

Notice that there are no specific system requirements to support the JavaScript
programming language or HTML5. All these technologies are embedded in the web
browser runtime environment.

■■ Note  As mentioned, we chose a NetBeans-based development environment because
we found it to be the most convenient. There are many other alternatives that are also free,
including and not limited to IntelliJ IDEA, Eclipse, Sublime, Microsoft’s Visual Studio Code,
and Adobe Brackets.

https://netbeans.org/downloads
https://www.google.com/chrome/browser/
https://chrome.google.com/webstore/detail/netbeans-connector/hafdlehgocfcodbgjnpecfajgkeejnaa
https://chrome.google.com/webstore/detail/netbeans-connector/hafdlehgocfcodbgjnpecfajgkeejnaa

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

3

Downloading and Installing JavaScript
Syntax Checker
We have found JSLint to be an effective tool in detecting potential JavaScript source code
errors. You can download and install JSLint as a plug-in to the NetBeans IDE with the
following steps:

•	 Download it from http://plugins.netbeans.org/
plugin/40893/jslint. Make sure to take note of the
location of the downloaded file.

•	 Start NetBeans, select Tools ➤ Plugins, and go to the
Downloaded tab.

•	 Click the Add Plugins button and search for the downloaded file
from step 1. Double-click this file to install the plug-in.

The following are some useful references for working with JSLint:

•	 For instructions on how to work with JSLint, see
http://www.jslint.com/help.html.

•	 For details on how JSLint works, see
http://plugins.netbeans.org/plugin/40893/jslint.

Working in the NetBeans Development
Environment
The NetBeans IDE is easy to work with, and the projects in this book require only the
editor and debugger. To open a project, select File ➤ Open Projects. Once a project
is open, you need to become familiarized with three basic windows, as illustrated in
Figure 1-1.

•	 Projects window: This window displays the source code files of the
project.

•	 Editor window: This window displays and allows you to edit the
source code of your project. You can select the source code file to
work with by double-clicking the corresponding file name in the
Projects window.

•	 Action Items window: This window displays the error message
output from the JSLint checker.

http://plugins.netbeans.org/plugin/40893/jslint
http://plugins.netbeans.org/plugin/40893/jslint
http://www.jslint.com/help.html
http://plugins.netbeans.org/plugin/40893/jslint

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

4

■■ Note  If you cannot see a window in the IDE, you can click the Window menu and select
the name of the missing window to cause it to appear. For example, if you cannot see the
Projects window in the IDE, you can select Window ➤ Projects to open it.

Creating an HTML5 Project in NetBeans
You are now ready to create your first HTML5 project.

	 1.	 Start NetBeans. Select File ➤ New Project (or press
Ctrl+Shift+N), as shown in Figure 1-2. A New Project
window will appear.

Figure 1-1.  The NetBeans IDE

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

5

	 2.	 In the New Project window, select HTML5 in the Categories
section, and select HTML5 Application from the Projects
section, as shown in Figure 1-3. Click the Next button to bring
up the project configuration window.

	 3.	 As shown in Figure 1-4, enter the name and location of the
project, and click the Finish button to create your first HTML5
project.

Figure 1-2.  Creating a new project

Figure 1-3.  Selecting the HTML5 project

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

6

NetBeans will generate the template of a simple and complete HTML5 application
project for you. Your IDE should look similar to Figure 1-5.

Figure 1-4.  Naming the project

Figure 1-5.  The HTML5 application project

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

7

By selecting and double-clicking the index.html file in the Projects window, you
can open it in the Editor window and observe the content of the file. The contents are as
follows:

<!DOCTYPE html>
<!--
To change this license header, choose License Headers in Project Properties.
To change this template file, choose Tools | Templates
and open the template in the editor.
-->
<html>
 <head>
 <title>TODO supply a title</title>
 </head>
 <body>
 <div>TODO write content</div>
 </body>
</html>

The first line declares the file to be an HTML file. The block that follows within the
<!-- and --> tags is a comment block. The complementary <html></html> tags contain
all the HTML code. In this case, the template defines the head and body sections. The
head sets the title of the web page, and the body is where all the content for the web page
will be located.

You can run this project by selecting Run ➤ Run Project or by pressing the F6 key.
Figure 1-6 shows an example of what the default project looks like when you run it.

To stop the program, either close the web page or click the Cancel button in the
browser to stop NetBeans from tracking the web page. You have successfully run your first
HTML5 project. You can use this project to understand the IDE environment.

Figure 1-6.  Running the simple HTML5 project

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

8

The Relationship Between the Project Files and
the File System
Navigate to the HTML5Application project location on your file system, for example with
the Explorer OS utility in Windows. You can observe that in the project folder, NetBeans
has generated the nbProject, public_html, and test folders. Table 1-1 summarizes the
purpose of these folders and the index.html file.

HTML5 Canvas Project
This project demonstrates how to set up the core drawing functionality for the engine as
well as define a user control script. Figure 1-7 shows an example of running this project,
which is defined in the project folder.

Table 1-1.  Folders and files in a NetBeans HTML5 project

NetBeans HTML5 project: folder/file Purpose

nbProject/ This folder contains the IDE configuration files.
You will not modify any of the files in this folder.

public_html/ This is the root folder of your project. Source
code and assets from your project will be
created in this folder.

public_html/index.html This is the default entry point for your web site.
This file will be modified to load JavaScript
source code files.

test/ This is the default folder for unit testing source
code files. This folder is not used in this book
and has been removed from all the projects.

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

9

Figure 1-7.  Running the HTML5 project with drawing core and user control

The goals of the project are as follows:

•	 To learn how to set up the HTML canvas element

•	 To learn how to retrieve the canvas element from an HTML
document for use in JavaScript

•	 To learn how to create a reference context to an HTML canvas,
and use it to manipulate the canvas

•	 To get familiar with basic user control scripting

Drawing Core
This engine will use simple drawing code for the sole purpose of simulating the physics
engine code. After all, the only thing the simulation needs to show is how simple objects
interact after the physics engine code is implemented. Thus, advanced graphical
functionalities such as illumination, texturing, or shadow rendering will only serve to
further complicate the code base. For that reason, a simple HTML5 canvas with primitive
drawing support will serve the purpose of rendering the physics simulation during
creation and debugging.

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

10

Creating the HTML Canvas
In this step, you will create an empty HTML5 canvas for the drawing of all the objects.

	 1.	 Open the index.html file in the editor by double-clicking
the project name in the project view, then open the Site Root
folder, and double-click the index.html file.

	 2.	 To create your HTML canvas for drawing, add the following
line in the index.html file within the body element

<table style="padding: 2px">
 <tr>
 <td>
 <div>
 <canvas id="canvas"></canvas>
 </div>
 </td>
 </tr>
</table>

The code defines a canvas element with an id of canvas. An id is the name of the
element and can be used to retrieve the corresponding element when the web page is
loaded. Notice that no width and height is specified in the code. This is because you will
specify those attributes in the next step. You will use the canvas id to retrieve the reference
to the actual canvas drawing area where you will draw into.

Creating the Core Script
This section details the steps needed to create your first script, the drawing canvas
initialization. This script will evolve to contain more core functionalities for the physics
engine. For this step, you will only write the initialization code for the drawing canvas.

	 1.	 Create a new folder named EngineCore inside the SiteRoot
(or public_html) folder by right-clicking and creating a
new folder.

	 2.	 Create a new JavaScript file within the EngineCore folder by
right-clicking the EngineCore folder. Name the file Core.js.

	 3.	 Open the new Core.js file for editing.

	 4.	 Create a static reference to gEngine by adding the following
code.

var gEngine = gEngine || {};
gEngine.Core = (function () {
}());

gEngine.Core is where all the physics engine core
functionality will reside.

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

11

■■ Note A ll global variable names begin with a “g” and are followed by a capital letter, as
in gEngine.

	 5.	 Inside the gEngine.Core you want to access and define the
width and height of the canvas element. To do this you will
create a variable mCanvas, and reference it to the canvas
element of index.html such that you could set and modify the
canvas attributes. You also need the variable mContext, which
will keep a reference to all the methods and properties needed
to draw into the canvas. Add the following code to accomplish
these.

var mCanvas, mContext, mWidth = 800, mHeight = 450;
mCanvas = document.getElementById('canvas');
mContext = mCanvas.getContext('2d');
mCanvas.height = mHeight;
mCanvas.width = mWidth;

■■ Note A ll instance variable names begin with an “m” and are followed by a capital letter,
as in mCanvas.

	 6.	 Create an object variable mPublic, because you need to make
some of the engine core variables and functions accessible by
other scripts later in the development of the engine. For now,
mPublic will only need to keep three variables accessible, that
is, the width and height of canvas, and the mContext to draw
into the canvas.

var mPublic = {
 mWidth: mWidth,
 mHeight: mHeight,
 mContext: mContext
};
return mPublic;

	 7.	 Finally, for the Core.js to be included in the simulation, you
need to add it into the index.html file. To do this, simply add
the following code inside the body element.

<script type="text/javascript" src="EngineCore/Core.js"></script>

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

12

User Control
In this section, you will be introduced to basic user control event handlers using
JavaScript. This is to enable you to test your implementation in every step of the physics
engine’s incremental development. For this chapter, the user control script will be used
to test if you have correctly initialized the canvas and implemented drawing functionality
properly.

Creating User Control Script
Let’s get started:

	 1.	 Create a new JavaScript File within the SiteRoot folder by
right-clicking the SiteRoot (or public_html) folder. Name the
file UserControl.js.

	 2.	 Open the new UserControl.js file for editing

	 3.	 Here you want to create a function that will handle all the
keyboard input. Let’s name the function userControl. This
function will have a variable called keycode that will keep
track of the user keyboard input. To do this, add the following
code inside the UserControl.js.

function userControl(event) {
 var keycode;
}

	 4.	 Since some browsers handle input events differently, you
want to know in which type of browser the simulation will
run. Add the following code within the control function
to distinguish between an IE key event handler and other
browser key event handler.

if (window.event) { // IE
 keycode = event.keyCode;
}
else if (event.which) { // Netscape/Firefox/Opera
 keycode = event.which;
}

This script will enable you to handle keyboard input events from the browser as well
as process the input and response accordingly. In this case, you want to test the canvas
you just created in the last section. This testing can be achieved by drawing rectangles
and circles when keyboard inputs are received, as detailed in the next section.

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

13

Using the User Control Script
In this section, you will complete the UserControl.js file for this chapter by adding some
user input responses to draw a rectangle or a circle in random positions on the canvas
when F or G keys are pressed.

The control script will be triggered by the HTML onkeydown event. It is important to
recognize that in the browser, each keyboard key is associated with a unique key code.
For example, “a” is associated with a keycode of 65, “b” is 66, and so on.

■■ Note  The UserControl.js will evolve over the development to handle more keyboard
inputs and more complex responses. 

	 1.	 Open the UserControl.js file for edit.

	 2.	 You need to access the width and height of canvas, and the
context to draw into the canvas. Add the following lines of
code inside the control function.

var width = gEngine.Core.mWidth;
var height = gEngine.Core.mHeight;
var context = gEngine.Core.mContext;

	 3.	 Create a rectangle at a random position if the “F” key (with
key code value of 70) is pressed, and a circle if the “G” key
(with key code value of 71) is pressed. Add the following lines
to accomplish this task.

if (keycode === 70) { //f
 //create new Rectangle at random position
 �context.strokeRect(Math.random() * width * 0.8,

// x position of center
 �Math.random() * height * 0.8,

// y position of center
 �Math.random() * 30 + 10, Math.random() * 30 + 10);

// width and height location
}
if (keycode === 71) { //g
 //create new Circle at random position
 context.beginPath();
 //draw a circle
 �context.arc(Math.random() * width * 0.8,

// x position of center
 �Math.random() * height * 0.8,

// y position of center
 Math.random() * 30 + 10, 0, Math.PI * 2, true);

Chapter 1 ■ Introduction to 2D Game Physics Engine Development

14

 // radius
 context.closePath();
 context.stroke();
}

	 4.	 Next, for the UserControl.js to be included in the simulation,
you need to add it into the index.html file. To do this, simply
add the following code inside the body element.

<script type="text/javascript" src="EngineCore/Control.js">
</script>

	 5.	 Finally, you want HTML to handle the key pressing event.
Open the index.html file to edit and add the onkeydown
attribute to the body tag to call your JavaScript function
control. Modify your index.html file so the body tag will look
like the following.

<body onkeydown="return userControl(event);" >

Now if you run the project and press the key F or G, the simulation will draw either
a circle or rectangle at a random position with random sizes as shown in Figure 1-7 above.

Summary
By this point the physics engine’s basic drawing function has been initialized, and
should be able to draw a rectangle and a circle onto the canvas with basic input required
from the user. In this chapter, you have structured the source code that supports future
increase in complexity with a simple way to draw rigid bodies. You are now ready to
extend the functionalities and features of your project into a physics engine. The next
chapter will focus on the core functionalities needed for any game or physics engine
(engine loops, vector calculation), as well as evolving rectangles and circles into rigid
body object-oriented objects to encapsulate their drawing and behaviors.

15© Michael Tanaya, Huaming Chen, Jebediah Pavleas and Kelvin Sung 2017
M. Tanaya et al., Building a 2D Game Physics Engine, DOI 10.1007/978-1-4842-2583-7_2

CHAPTER 2

Implementing the 2D Physics
Engine Core

In the previous chapter, you implemented functionality to support basic drawing
operations. Drawing is the first step to constructing your physics engine because it allows
you to observe the output while continuing to expand the engine’s capabilities. In this
chapter, two critical components for 2D physics simulations, the core engine loop and
rigid shape class, will be examined and added to the engine. The core engine loop, or the
engine loop, allows the engine to control and handle the real-time interaction of game
objects, while the rigid shape class abstracts and hides the detailed information such as
positions and rotation angles that are required for future physics calculations.

This chapter begins with the brief coverage of a simple vector calculation library. It
is assumed that you have a background in basic vector operations in 2D space, and thus
the required code is provided without extensive conceptual explanations. The chapter
then introduces you to a rigid shape class, a critical abstraction that will encapsulate
all the information of an object that is required in a physics simulation, for example
(as will be introduced in a following chapter) information such as width, height, center
position, mass, inertia, and friction. This information presented through the rigid shape
class will be utilized throughout the engine’s evolution into a fully featured 2D game
physics library. For this chapter you will begin with the creation of the rigid shape class
that only contains information for drawing of the object onto the canvas. Lastly, you will
be introduced to one of the more important components of the physics engine, the core
engine loop.

After completing this chapter, you will be able to:

•	 Control the position and rotation of objects based on user
keyboard input.

•	 Simulate gravity that affects all objects in the scene and the ability
to toggle gravity on and off.

•	 Select and display the properties of a specific object.

•	 Reset the scene.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Implementing the 2D Physics Engine Core

16

Vector Calculation Library
Physics simulation requires a vector library to represent object positions and orientations,
and to support the computations involved in the simulation that changes these quantities.
The computation involved in 2D physics simulations are basic vector operations, including
addition, subtraction, scaling, cross product, etc. For this reason, you will create a simple
Vec2 vector math library to be included in all subsequent projects.

Creating the Library
In this step, you will create a new file within a new Library folder to support all the
required calculations.

	 1.	 Create a new folder name Lib inside the SiteRoot (or public_
html) folder by right-clicking and creating a new folder.

	 2.	 Create a new JavaScript file within the Library folder by right-
clicking the Lib folder. Name the file Vec2.js.

	 3.	 Open the new Vec2.js file for editing.

	 4.	 Add the Vec2 constructor.

var Vec2 = function (x, y) {
 this.x = x;
 this.y = y;
};

	 5.	 Add all the functions to support basic vector operations.

Vec2.prototype.length = function () {
 return Math.sqrt(this.x * this.x + this.y * this.y);
};

Vec2.prototype.add = function (vec) {
 return new Vec2(vec.x + this.x, vec.y + this.y);
};

Vec2.prototype.subtract = function (vec) {
 return new Vec2(this.x - vec.x, this.y - vec.y);
};

Vec2.prototype.scale = function (n) {
 return new Vec2(this.x * n, this.y * n);
};

Chapter 2 ■ Implementing the 2D Physics Engine Core

17

Vec2.prototype.dot = function (vec) {
 return (this.x * vec.x + this.y * vec.y);
};

Vec2.prototype.cross = function (vec) {
 return (this.x * vec.y - this.y * vec.x);
};

Vec2.prototype.rotate = function (center, angle) {
 //rotate in counterclockwise
 var r = [];
 var x = this.x - center.x;
 var y = this.y - center.y;
 r[0] = x * Math.cos(angle) - y * Math.sin(angle);
 r[1] = x * Math.sin(angle) + y * Math.cos(angle);
 r[0] += center.x;
 r[1] += center.y;
 return new Vec2(r[0], r[1]);
};

Vec2.prototype.normalize = function () {
 var len = this.length();
 if (len > 0) {
 len = 1 / len;
 }
 return new Vec2(this.x * len, this.y * len);
};

Vec2.prototype.distance = function (vec) {
 var x = this.x - vec.x;
 var y = this.y - vec.y;
 return Math.sqrt(x * x + y * y);
};

With these functions defined, it is now possible to operate on vectors to calculate and
manipulate the position, size, and orientation of objects drawn on the canvas. It is expected
that you understand these elementary operators. Do not forget to include the new library in
the project by adding the new file into the index.html using the <script> tag, like so:

<script type="text/javascript" src="Lib/Vec2.js"></script>

Physics Engine and Rigid Shapes
This book focuses on primitive objects that do not change shape during their physical
interactions, or objects that are rigid. For example, a falling Lego block bouncing off of
your desk and landing on a hardwood floor would be considered an interaction between
rigid objects. This type of simulation is known as a rigid body physics simulation, or more
simply a rigid body simulation.

Chapter 2 ■ Implementing the 2D Physics Engine Core

18

The computation involved in simulating the interactions between arbitrary rigid shapes
can be algorithmically complicated and computationally costly. For these reasons, rigid body
simulations are often based on a limited set of simple geometric shapes, for example, rigid
circles and rectangles. In typical game engines, these simple rigid shapes can be attached
to geometrically complex game objects for approximating their physics simulations, for
example, attaching rigid circles on spaceships and using the rigid body physics simulation of
the rigid circles to approximate the physical interactions between the spaceships.

The physics engine you will build is based on simulating the interactions between
rigid circles and rectangles. This simulation consists of four fundamental steps:

	 1.	 Implementing motions

	 2.	 Detecting collisions

	 3.	 Resolving the collisions

	 4.	 Deriving responses to the collisions

The rest of this chapter leads you to build the infrastructure to represent simple rigid
circles and rectangles. The following chapters present the intricate details of collision
detection, motion approximation, collision resolution, and collision responses.

The Rigid Shape Project
This project demonstrates how to implement the basic infrastructure to encapsulate the
characteristics of a rigid body. You can see an example of this project running in Figure 2-1.

The source code to this project is defined in the Rigid Shape Project folder.
Project Goals:

•	 To define the base class for all rigid shape objects.

•	 To lay the foundation for building a rigid shape physics simulator.

Figure 2-1.  Running the Rigid Shape Project

Chapter 2 ■ Implementing the 2D Physics Engine Core

19

•	 To understand the relationships between rigid shape classes and
the engine core functionality.

•	 To define an initial scene for testing your implement.

The List Object in Engine Core
You will begin by defining a list object, mAllObjects, to keep track of all defined rigid
shapes. As you will see in the next chapter, the mAllObjects list allows the simulation
of physical interaction among all defined rigid shapes. To conveniently support the
simulation computation, the mAllObjects list is defined in the gEngine.Core component.

	 1.	 Edit Core.js and add the following line inside gEngine.Core.
This creates a list for keeping track of all defined rigid shapes.

var mAllObjects = [];

	 2.	 Update the mPublic variable in the Core.js to allow access
to the newly defined list object. This is accomplished in the
following code snippet.

var mPublic = {
 mAllObjects: mAllObjects,
 mWidth: mWidth,
 mHeight: mHeight,
 mContext: mContext
};

The Rigid Shape Base Class
You can now define a base class for the rectangle and circle shape objects. This base class
will encapsulate all the functionality that is common to the two shapes.

	 1.	 Start by creating a new subfolder called RigidBody under the
SiteRoot (or public_html) folder. In the RigidBody folder,
create a new file and name it RigidShape.js

	 2.	 Edit RigidShape.js to define the constructor. For now the
constructor only receives one vector argument representing
the center of the object. The rotation angle of the rigid shape
has a default value of 0. The created object is then pushed into
the global object list, mAllObjects.

function RigidShape(center) {
 this.mCenter = center;
 this.mAngle = 0;
 gEngine.Core.mAllObjects.push(this);
}

Chapter 2 ■ Implementing the 2D Physics Engine Core

20

The Rigid Rectangle Class
With the base abstract class for rigid shapes defined, you can now create the first concrete
rigid shape, the rigid rectangle.

	 1.	 Under the RigidBody folder, create a new file and name it
Rectangle.js.

	 2.	 Edit this file to create a constructor that receives the center,
a width and height properties. In the constructor, define the
type of rigid body as Rectangle, allocate an array to store the
vertex positions of the rectangle, and a separate array to store
the face normal vectors (to be discussed later).

var Rectangle = function (center, width, height) {
 RigidShape.call(this, center);
 this.mType = "Rectangle";
 this.mWidth = width;
 this.mHeight = height;
 this.mVertex = [];
 this.mFaceNormal = [];
};

	 3.	 In the constructor, compute the vertex positions of the
rectangle using the center, width, and height information.

//0--TopLeft;1--TopRight;2--BottomRight;3--BottomLeft
this.mVertex[0] = new Vec2(center.x - width / 2, center.y -
height / 2);
this.mVertex[1] = new Vec2(center.x + width / 2, center.y -
height / 2);
this.mVertex[2] = new Vec2(center.x + width / 2, center.y +
height / 2);
this.mVertex[3] = new Vec2(center.x - width / 2, center.y +
height / 2);

	 4.	 Next, compute the face normal vectors. As illustrated in
Figure 2-2, face normals are vectors that are perpendicular
to the edges and point away from the center of the rectangle.
Notice that the face normal vectors are normalized with a
length of 1. In addition, notice the relationship between the
rectangle vertices and the corresponding face normals. Face
normal index-0 is in the same direction as the vector from
vertex 2 to 1. This direction is perpendicular to the edge
formed by vertices 0 and 1. In this way, face normal index-0
is the direction pointing away from the rectangle that is
perpendicular to the first edge, and so on. The face normal
vectors will be used later for determining collisions.

Chapter 2 ■ Implementing the 2D Physics Engine Core

21

//0--Top;1--Right;2--Bottom;3--Left
//mFaceNormal is normal of face toward outside of rectangle
this.mFaceNormal[0] = this.mVertex[1].subtract(this.mVertex[2]);
this.mFaceNormal[0] = this.mFaceNormal[0].normalize();
this.mFaceNormal[1] = this.mVertex[2].subtract(this.mVertex[3]);
this.mFaceNormal[1] = this.mFaceNormal[1].normalize();
this.mFaceNormal[2] = this.mVertex[3].subtract(this.mVertex[0]);
this.mFaceNormal[2] = this.mFaceNormal[2].normalize();
this.mFaceNormal[3] = this.mVertex[0].subtract(this.mVertex[1]);
this.mFaceNormal[3] = this.mFaceNormal[3].normalize();

	 5.	 Ensure the newly defined Rectangle class properly inherits
from the RigidShape base class by including the following
code after the constructor.

var prototype = Object.create(RigidShape.prototype);
prototype.constructor = Rectangle;
Rectangle.prototype = prototype;

	 6.	 Now you can create the draw function for the rectangle
object. The strokeRect function of the context, a reference
to the canvas, is invoked to accomplish this. Corresponding
translation and rotation must be defined in order to draw
the rectangle at the proper position and orientation. The
implementation is shown as follows.

Rectangle.prototype.draw = function (context) {
 context.save();
 context.translate(this.mVertex[0].x, this.mVertex[0].y);
 context.rotate(this.mAngle);
 context.strokeRect(0, 0, this.mWidth, this.mHeight);
 context.restore();
};

Figure 2-2.  The face normals of a rectangle

Chapter 2 ■ Implementing the 2D Physics Engine Core

22

The Rigid Circle Class
You can now implement the rigid circle object based on an overall structure that is similar
to that of the rigid rectangle.

	 1.	 Under the RigidBody folder, create a new file and name it
Circle.js.

	 2.	 Edit this file to create a constructor that initializes the
radius of the circle, the rigid body type as Circle, and an
mStartpoint position for the purpose of drawing a reference
line to visualize the rotation angle of a circle. Initially, without
rotation, the reference line is vertical, connecting the center
of the circle to the top of the circumference. Changing the
rotation angle of the circle will result in this line being rotated.

var Circle = function (center, radius) {
 RigidShape.call(this, center);
 this.mType = "Circle";
 this.mRadius = radius;
 // The start point of line in circle
 this.mStartpoint = new Vec2(center.x, center.y - radius);
};

	 3.	 Similar to the Rectangle class, you must include the following
code to ensure that the Circle class properly inherits from the
RigidShape base class.

var prototype = Object.create(RigidShape.prototype);
prototype.constructor = Circle;
Circle.prototype = prototype;

	 4.	 Distinct from that of the rectangle, the arc function of
the context is used to draw the circle onto the canvas. In
addition, you need to draw the rotation reference line from
the center to the mStartpoint, the top of the circle.

Circle.prototype.draw = function (context) {
 context.beginPath();
 //draw a circle
 context.arc(�this.mCenter.x, this.mCenter.y,

this.mRadius, 0, Math.PI * 2, true);
 //draw a line from start point toward center
 context.moveTo(this.mStartpoint.x, this.mStartpoint.y);
 context.lineTo(this.mCenter.x, this.mCenter.y);
 context.closePath();
 context.stroke();
};

Chapter 2 ■ Implementing the 2D Physics Engine Core

23

Modify the User Control Script
You will modify the UserControl.js file for testing the new functionality.

	 1.	 Edit the UserControl.js file in the SiteRoot (or public_html)
folder.

	 2.	 Add the gObjectNum variable, an index to the mAllObjects
array representing the currently selected object. Notice
that this variable is defined before the definition of the
userControl function and is a global variable.

var gObjectNum = 0;

	 3.	 Within the userControl function, define supports for the
creation of random rectangles and circles with the F and G
keys.

if (keycode === 70) { // f
 var r1 = new Rectangle(new �Vec2(Math.random()*width*0.8,

Math.random()*height*0.8),
 �Math.random() * 30+10,

Math.random() * 30+10);
}
if (keycode === 71) { //g
 var r1 = new Circle(new �Vec2(Math.random()*width*0.8,

Math.random()*height*0.8),
 Math.random() * 10 + 20);
}

	 4.	 Within the userControl function, define supports for
selecting an object index based on the up/down arrows and
the 0 to 9 keys.

if (keycode >= 48 && keycode <= 57) { //number
 if (keycode - 48 < gEngine.Core.mAllObjects.length)
 gObjectNum = keycode - 48;
}
if (keycode === 38) { //up arrow
 if (gObjectNum > 0)
 gObjectNum--;
}
if (keycode === 40) { // down arrow
 if (gObjectNum < gEngine.Core.mAllObjects.length-1)
 gObjectNum++;
}

Chapter 2 ■ Implementing the 2D Physics Engine Core

24

Integrate into the Core
You can now modify the Core.js file to integrate and test the newly defined functionality.
Your modification will invoke the drawing of all created rigid shapes, and update the User
Interface (UI) to properly reflect the state of the application. For now, the drawing will be
accomplished through a simple and continuous loop of calling the appropriate drawing
functions, or the engine loop. In the next section of this chapter, you will implement a
more advanced engine loop to handle the physics engine’s calculations.

	 1.	 Open Core.js in the Engine Core folder for editing.

	 2.	 Create a new runGameLoop function. In runGameLoop, call the
windows.requestAnimationFrame to specify the function
for the next frame redraw. Additionally, invoke two other
functions, the draw and updateUIEcho functions, to draw all
the defined rigid shapes and to receive user keyboard entries.

var runGameLoop = function () {
 requestAnimationFrame(function () {
 runGameLoop();
 })
 updateUIEcho();
 draw();
};

	 3.	 Define the updateUIEcho function to update the HTML to
display the proper state of the application.

var updateUIEcho = function () {
 �document.getElementById("uiEchoString").innerHTML =

"<p>Selected Object::</p>" +
 "<ul style=\"margin:-10px\">" +
 "Id: " + gObjectNum + "" +
 �"Center: " + mAllObjects[gObjectNum].mCenter.x.

toPrecision(3) + "," +
 mAllObjects[gObjectNum].mCenter.y.toPrecision(3) + "" +
 " <hr>" + "<p>Control: of selected object</p>" +
 "<ul style=\"margin:-10px\">" +
 "Num or Up/Down Arrow: SelectObject" +
 " <hr>" +
 "F/G: Spawn [Rectangle/Circle] at random location" + "<hr>";
};

Chapter 2 ■ Implementing the 2D Physics Engine Core

25

	 4.	 Add the draw function to iterate through and invoke the
corresponding draw functions of the rigid shapes in the
mAllObjects list. The strokeStyle property is set such that
only the currently selected object is drawn in red while the
rest are in blue.

var draw = function () {
 mContext.clearRect(0, 0, mWidth, mHeight);
 var i;
 for (i = 0; i < mAllObjects.length; i++) {
 mContext.strokeStyle = 'blue';
 if (i === gObjectNum)
 mContext.strokeStyle = 'red';
 mAllObjects[i].draw(mContext);
 }
};

	 5.	 Define support to initialize the engine loop when the script
runs for the first time.

var initializeEngineCore = function () {
 runGameLoop();
};

	 6.	 Allow public access to the initializeEngineCore function by
including it in the mPublic variable.

var mPublic = {
 initializeEngineCore: initializeEngineCore,
 mAllObjects: mAllObjects,
 mWidth: mWidth,
 mHeight: mHeight,
 mContext: mContext
};

Define the Initial Scene
You can now define a bounded empty environment to test the new functionality.

	 1.	 Create a new file under the SiteRoot (or public_html) folder,
and name it MyGame.js.

	 2.	 Edit this file by creating a new function named MyGame.
Inside this function, use the new rigid shape object you just
implemented to create the four bounds that define border for
future physics simulation.

Chapter 2 ■ Implementing the 2D Physics Engine Core

26

 function MyGame() {
 var width = gEngine.Core.mWidth;
 var height = gEngine.Core.mHeight;
 var up = new Rectangle(new Vec2(width / 2, 0), width, 3);
 var down = new Rectangle(new Vec2(width / 2, height), width, 3);
 var left = new Rectangle(new Vec2(0, height / 2), 3, height);
 var right = new Rectangle(new Vec2(width, height / 2), 3, height);
 }

Note that you can modify the initial scene by editing this function. This can become
handy in the following chapters when you want to test the performance of the physics
simulation.

Modify the index.html File
To include the new functionality, you need to always remember to include and call them
inside the index.html file.

	 1.	 Open the index.html file for editing.

	 2.	 Modify the body tag to support the handling of keyboard
events, define the initial testing environment by instantiating
a new MyGame object, and initialize the engine loop by calling
the initializeEngineCore.

<body onkeydown="return userControl(event);"
 onload="var game = new MyGame();
 gEngine.Core.initializeEngineCore()">

	 3.	 Add a new table row for echoing the application state.

<table style="padding: 2px">
 <tr>
 <td>
 <div><canvas id="canvas"></canvas></div>
 </td>
 <td>
 <div id=”uiEchoString”> </div>
 </td>
 </tr>
</table>

	 4.	 Remember to include all the new scripts with the <script> tag.

<script type="text/javascript" src="RigidBody/RigidShape.js"></
script>

Chapter 2 ■ Implementing the 2D Physics Engine Core

27

<script type="text/javascript" src="RigidBody/Circle.js"></
script>
<script type="text/javascript" src="RigidBody/Rectangle.js">

</script><script type="text/javascript" src="EngineCore/Core.
js"></script>

<script type="text/javascript" src="MyGame.js"></script>
<script type="text/javascript" src="UserControl.js"></script>

You can now run the project and test your implementations. It should look like
Figure 2-1.

Observation
You can now run the project to test your implementation. Notice the four bounding
borders and the text output to the right that prints instructions for the user and echoes
the application state, which includes the index of the selected object. Pressing the F or G
key generates a rectangle or circle at a random position with a random size. This drawing
simulation seems rather similar to the previous project. The main differences are in the
object abstraction and drawing mechanism—RigidShape class definition and engine
loop monitoring user input and drawing of all defined objects. In the next project you will
evolve the engine loop to support the changing of rigid shape states, including allowing
the user to change the attributes of each of the rigid shapes in the scene and simple
simulation of falling objects.

The Core Engine Loop
One of the most important characteristics of any physics engine is the support of
seemingly intuitive and continuous interactions between the objects and the graphical
simulation elements. In reality, these interactions are implemented as a continuous
running loop that receives and processes the calculations, updates the object states, and
renders the objects. This constantly running loop is referred to as the engine loop.

To convey the proper sense of intuitiveness, each cycle of the engine loop must be
completed within a normal human’s reaction time. This is often referred to as real time,
which is the amount of time that is too short for humans to detect visually. Typically, real-
time can be achieved when the engine loop is running at a rate of higher than 40 to 60
cycles in a second. Since there is often one drawing operation in each loop cycle, the loop
cycle’s rate can also be expressed as frames per second (FPS), or the frame rate. An FPS of
60 is a good target for performance. This is to say, your engine must process calculations,
update the object states, and then draw the canvas all within 1/60th of a second!

The loop itself, including the implementation details, is the most fundamental
control structure for an engine. With the main goal of maintaining real-time performance,
the details of an engine loop’s operation are of no concern to the rest of the physics
engine. For this reason, the implementation of an engine loop should be tightly
encapsulated in the core of the engine, with its detailed operations hidden from other
elements.

Chapter 2 ■ Implementing the 2D Physics Engine Core

28

Engine Loop Implementations
An engine loop is the mechanism through which logic and drawing are continuously
executed. A simple engine loop consists of processing the input, updating the state of
objects, and drawing those objects, as illustrated in the following pseudocode:

initialize();
while(game running) {
 input();
 update();
 draw();
}

As discussed, an FPS of 60 or higher is ideal to maintain the sense of real-time
interactivity. When the game complexity increases, one problem that may arise is when
sometimes a single loop can take longer than 1/60th of a second to complete, causing
the game to run at a reduced frame rate. When this happens, the entire game will appear
to slow down. A common solution is to prioritize which operations to emphasis and
which to skip. Since correct input and updates are required for an engine to function as
designed, it is often the draw operation that is skipped when necessary. This is referred to
as frame skipping, and the following pseudocode illustrates one such implementation:

elapsedTime = now;
previousLoop = now;
while(game running) {
 elapsedTime += now - previousLoop;
 previousLoop = now;

 input();
 while(elapsedTime >= UPDATE_TIME_RATE) {
 update();
 elapsedTime -= UPDATE_TIME_RATE;
 }
 draw();
}

In the previous pseudocode listing, UPDATE_TIME_RATE is the required real-time
update rate. When the elapsed time between the engine loop cycle is greater than the
UPDATE_TIME_RATE, the update function will be called until it is caught up. This means
that the draw operation is essentially skipped when the engine loop is running too slowly.
When this happens, the entire game will appear to run slowly, with lagging play input
response and frames skipped. However, the game logic will continue to be correct.

Notice that the while loop that encompasses the update function call simulates a
fixed update time step of UPDATE_TIME_RATE. This fixed time step update allows for a
straightforward implementation in maintaining a deterministic game state.

Chapter 2 ■ Implementing the 2D Physics Engine Core

29

The Core Engine Loop Project
This project demonstrates how to incorporate a loop into your engine and to support
real-time simulation by updating and drawing the objects accordingly. You can see an
example of this project running in Figure 2-3. The source code to this project is defined in

the Core Engine Loop Project folder.
The goals of the project are as follows:

•	 To understand the internal operations of an engine loop.

•	 To implement and encapsulate the operations of an engine loop.

•	 To gain experience with continuous update and draw to simulate
animation.

Implement the Engine Loop Component
The engine loop component is a core engine functionality and thus should be
implemented as a property of the gEngine.Core. The actual implementation is similar to
the pseudocode listing discussed.

	 1.	 Edit the Core.js file.

	 2.	 Add the necessary variables to determine the loop frequency.

var mCurrentTime, mElapsedTime, mPreviousTime = Date.now(),
mLagTime = 0;
var kFPS = 60; // Frames per second
var kFrameTime = 1 / kFPS;
var mUpdateIntervalInSeconds = kFrameTime;
var kMPF = 1000 * kFrameTime; // Milliseconds per frame.

Figure 2-3.  Running the Core Engine Loop Project

Chapter 2 ■ Implementing the 2D Physics Engine Core

30

	 3.	 Update the runGameLoop function to keep track of the elapsed
time between frames and to ensure that the update function is
called at the frame rate frequency.

var runGameLoop = function () {
 requestAnimationFrame(function () {
 runGameLoop();
 });
 �//compute how much time has elapsed since the last RunLoop
 mCurrentTime = Date.now();
 mElapsedTime = mCurrentTime - mPreviousTime;
 mPreviousTime = mCurrentTime;
 mLagTime += mElapsedTime;
 �//Update the game the appropriate number of times.
 //Update only every Milliseconds per frame.
 //If lag larger then update frames, update until caught up.
 while (mLagTime >= kMPF) {
 mLagTime -= kMPF;
 update();
 }
 updateUIEcho();
 draw();
};

	 4.	 Modify the updateUIEcho function to print out additional
relevant application state information, like how to rotate and
move the selected rigid shape. The code in bold is the only
addition to the function.

var updateUIEcho = function () {
 document.getElementById("uiEchoString").innerHTML =
 // ... identical to previous project
 mAllObjects[gObjectNum].mCenter.y.toPrecision(3) + "" +
 �"Angle: " + mAllObjects[gObjectNum].mAngle.

toPrecision(3) + "" +
 " <hr>" +
 "<p>Control: of selected object</p>" +
 "<ul style=\"margin:-10px\">" +
 �"Num or Up/Down Arrow: SelectObject</

li>" +
 �"WASD + QE: Position [Move + Rotate]</

li>" +
 " <hr>" +
 "F/G: Spawn [Rectangle/Circle] at selected object" +
 "<p>H: Fix object</p>" +
 "<p>R: Reset System</p>" +
 "<hr>";
};

Chapter 2 ■ Implementing the 2D Physics Engine Core

31

	 5.	 Create a new function named update, which will call the
update function of every rigid shape defined.

var update = function () {
 var i;
 for (i = 0; i < mAllObjects.length; i++) {
 mAllObjects[i].update(mContext);
 }
};

Extend the Rigid Shape Classes
You are going to modify the rigid shape base class, and both of the Rectangle and Circle
classes to support the implementation of simple behavior. While the update function is
defined in the rigid shape base class to be invoked by the game engine loop, the detailed
implementation of update must necessarily be subclass-specific. For instance, a circle
object implements moving behavior by changing the values in its center while a rectangle
object must change all of the values in the vertex and face normal arrays to simulate the
same movement behavior.

Rigid Shape Base Class

	 1.	 Edit the RigidShape.js file.

	 2.	 Define the update function to be called by the engine loop
and implement the simple falling behavior by changing the
center position with a constant y-direction vector. Notice that
the free fall behavior is only applied when the shape is within
the vertical bounds of the canvas.

RigidShape.prototype.update = function () {
 if (this.mCenter.y < gEngine.Core.mHeight && this.mFix !== 0)
 this.move(new Vec2(0, 1));
};

Subclasses are responsible for defining the mFix variable and the move function to
control if the shape is fixed where it should not follow the falling behavior and to implement
the moving of the shape. It should be emphasized that this rigid shape movement behavior
is included here for testing purposes only and will be removed in the next project. Actual
physics-based movement of rigid shape objects and the associated physical quantities
(including velocity and acceleration) will be introduced and discussed in Chapter 4.

http://dx.doi.org/10.1007/978-1-4842-2583-7_4

Chapter 2 ■ Implementing the 2D Physics Engine Core

32

Note that by default the canvas coordinate defines the origin, (0, 0), to be located at
the top left corner, and positive y direction to be downwards. For this reason, to simulate
gravity, you will move all objects in the positive y direction.

The Circle Class

The Circle class is modified to implement movements.

	 1.	 Edit the Circle.js file.

	 2.	 Define the mFix instance variable to enable or disable the
falling behavior.

var Circle = function (center, radius, fix) {
 // ... code similar to previous project
 this.mFix = fix;
 // ... code similar to previous project

	 3.	 Add a move function to define how a circle is moved by a
vector—adding the movement vector to the center and the
mStartpoint.

Circle.prototype.move = function (s) {
 this.mStartpoint = this.mStartpoint.add(s);
 this.mCenter = this.mCenter.add(s);
 return this;
};

	 4.	 Add rotate function to implement the rotation of a circle.
Note that since a circle is infinitely symmetrical, a rotated
circle would appear identical to the original shape. The
mStartpoint position allows a rotated reference line to be
drawn to indicate angle of rotation of a circle.

// rotate angle in counterclockwise
Circle.prototype.rotate = function (angle) {
 this.mAngle += angle;
 this.mStartpoint = this.mStartpoint.rotate(this.mCenter, angle);
 return this;
};

The Rectangle Class

Similar to the circle class, the Rectangle class must be modified to support the new
functionality.

Chapter 2 ■ Implementing the 2D Physics Engine Core

33

	 1.	 Edit the Rectangle.js file.

	 2.	 Define the mFix instance variable to enable or disable the
falling behavior.

var Rectangle = function (center, width, height, fix) {
 // ... code similar to previous project
 this.mFix = fix;
 // ... code similar to previous project

	 3.	 Define the move function by changing the values of all vertices
and the center.

Rectangle.prototype.move = function (v) {
 var i;
 for (i = 0; i < this.mVertex.length; i++) {
 this.mVertex[i] = this.mVertex[i].add(v);
 }
 this.mCenter = this.mCenter.add(v);
 return this;
};

	 4.	 Define the rotate function by rotating all over the vertices
and recomputing the face normals.

Rectangle.prototype.rotate = function (angle) {
 this.mAngle += angle;
 var i;
 for (i = 0; i < this.mVertex.length; i++) {
 �this.mVertex[i] = this.mVertex[i].rotate(this.mCenter,

angle);
 }
 �this.mFaceNormal[0] = this.mVertex[1].subtract(this.

mVertex[2]);
 this.mFaceNormal[0] = this.mFaceNormal[0].normalize();
 �this.mFaceNormal[1] = this.mVertex[2].subtract(this.

mVertex[3]);
 this.mFaceNormal[1] = this.mFaceNormal[1].normalize();
 �this.mFaceNormal[2] = this.mVertex[3].subtract(this.

mVertex[0]);
 this.mFaceNormal[2] = this.mFaceNormal[2].normalize();
 �this.mFaceNormal[3] = this.mVertex[0].subtract(this.

mVertex[1]);
 this.mFaceNormal[3] = this.mFaceNormal[3].normalize();
 return this;
};

Chapter 2 ■ Implementing the 2D Physics Engine Core

34

Modify User Control Script
You will need to extend the userControl function defined in the UserControl.js file to
support movements, rotation, disable/enable gravity, and reset the entire scene.

	 1.	 Edit the UserControl.js file.

	 2.	 Add statements to support moving, rotating, and toggling of
gravity on the selected object.

// move with WASD keys
if (keycode === 87) { //W
 gEngine.Core.mAllObjects[gObjectNum].move(new Vec2(0, -10));
}
if (keycode === 83) { // S
 gEngine.Core.mAllObjects[gObjectNum].move(new Vec2(0, +10));
}
if (keycode === 65) { //A
 gEngine.Core.mAllObject[gObjectNum].move(new Vec2(-10, 0));
}
if (keycode === 68) { //D
 gEngine.Core.mAllObjects[gObjectNum].move(new Vec2(10, 0));
}

// Rotate with QE keys
if (keycode === 81) { //Q
 gEngine.Core.mAllObjects[gObjectNum].rotate(-0.1);
}
if (keycode === 69) { //E
 gEngine.Core.mAllObjects[gObjectNum].rotate(0.1);
}

// Toggle gravity with the H key
if (keycode === 72) { //H
 if(gEngine.Core.mAllObjects[gObjectNum].mFix === 0)
 gEngine.Core.mAllObjects[gObjectNum].mFix = 1;
 else gEngine.Core.mAllObjects[gObjectNum].mFix = 0;
}

	 3.	 Add a statement to reset the scene.

if (keycode === 82) { //R
 �gEngine.Core.mAllObjects.splice(5, gEngine.Core.mAllObjects.

length);
 gObjectNum = 0;
}

Chapter 2 ■ Implementing the 2D Physics Engine Core

35

	 4.	 Modify object creation statements of the G and F keys such
that the new object is created at the location of the currently
selected object, rather than a random position.

if (keycode === 70) { //f
 �var r1 = new Rectangle(new Vec2(gEngine.Core.

mAllObjects[gObjectNum].mCenter.x,
 gEngine.Core.mAllObjects[gObjectNum].mCenter.y),
 Math.random() * 30 + 10, Math.random() * 30 + 10);
}
if (keycode === 71) { //g
 �var r1 = new Circle(new Vec2(gEngine.Core.

mAllObjects[gObjectNum].mCenter.x,
 gEngine.Core.mAllObjects[gObjectNum].mCenter.y),
 Math.random() * 10 + 20);
}

Update the Scene
To test the implemented engine loop and object movements, you will create an initial
selected object to the scene. This initial object will serve as the cursor position for
spawning created rigid shapes. This can be accomplished by editing the MyGame.js file
and creating an initial object.

function MyGame() {
 var width = gEngine.Core.mWidth;
 var height = gEngine.Core.mHeight;
 var r1 = new Rectangle(new Vec2(width / 2, height / 2), 3, 3, 0);

 var up = new Rectangle(new Vec2(width / 2, 0), width, 3, 0);
 var down = new Rectangle(new Vec2(width / 2, height), width, 3, 0);
 var left = new Rectangle(new Vec2(0, height / 2), 3, height, 0);
 var right = new Rectangle(new Vec2(width, height / 2), 3, height, 0);
}

Observation
Run the project to test your implementation. You will see that the scene is almost the same
as that of the previous project except for the small initial cursor object. See that you can
change the selected object, and thereby the cursor object, with the 0 to 9, or the up and
down arrow keys. Type F and G keys to see that new objects are created at the cursor object
location and they always follow the falling behavior. This real-time smooth falling behavior
indicates that the engine loop has been successfully implemented. You can play around
with the selected shape position using the WASD, QE, and H keys; and move, rotate, and
toggle gravity on the selected object. You may also notice that without movement of the
cursor object, the newly created objects are clustered together, which can be confusing.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Implementing the 2D Physics Engine Core

36

That is because the physics simulation has yet to be defined. In the next chapter you will
learn about and implement collision detection as a first step to remedy the clustered
object problem.

Summary
In this chapter, you have implemented basic rigid shape classes. Although only simple
position, orientation, and drawing are supported, these classes represent a well-defined
abstraction, hide implementation details, and thus support future integration of complexity.
In the following chapters, you will learn about other physical quantities including mass,
inertia, friction, and restitution. The engine loop project introduced you to the basics of
a continuous update loop that supports real time per-shape computation and enables
visually appealing physics simulations. In the next chapter, you will begin learning about
physics simulation by first examining the collision between rigid shapes in detail.

37© Michael Tanaya, Huaming Chen, Jebediah Pavleas and Kelvin Sung 2017
M. Tanaya et al., Building a 2D Game Physics Engine, DOI 10.1007/978-1-4842-2583-7_3

CHAPTER 3

Incorporating Collision
Detection

In the context of 2D video games, the fundamentals of a physical simulation involves
movements of rigid shapes, collisions of the moving shapes, and responses after the
collisions. In the previous chapter, you defined the rigid shape classes and a core engine
loop to support basic drawing, update operations, and simple movements of rigid shapes.
In this chapter, you will learn about and implement the detection of rigid shape collisions
and compute the necessary information, such that in the next chapter you can begin
resolving and implementing the responses to the collisions. The proper implementation
based on these concepts enables believable scenarios when objects physically interact
with each other in the simulated world.

This chapter focuses on the foundations of detecting collisions, including how
to approximate the detection, a theory for exact detection of colliding rectangles and
circles in any orientations, and essential information to capture after detecting a collision
to support resolution of interpenetration and proper responses to collisions. You will
implement this system in a step-by-step manner, from a simple broad phase collision
detection method, to the more accurate and computationally more costly Separating
Axis Theorem (SAT). In this way, at each step the collision detection will become more
accurate and be applicable to more general cases until your solution is ready to be used in
the next chapter for resolving and responding to collisions. The final result of this chapter
will be a collision detection system that can detect collisions between rigid rectangles and
circles of any size and in orientations where the information required for resolving and
responding to the collisions are computed and available.

After completing this chapter, you will be able to:

•	 Appreciate the significant computational cost of detecting object
collisions.

•	 Optimize object collision detection with broad phase collisions to
avoid unnecessary computations.

•	 Understand that, in a computer simulation, rigid bodies can
interpenetrate during a collision and that this interpenetration
must be resolved.

Chapter 3 ■ Incorporating Collision Detection

38

•	 Learn and use the Separating Axis Theorem (SAT) to detect rigid
body collisions.

•	 Compute the necessary information to support efficient
positional correction. In the next chapter, you will learn about
effective resolution of rigid body interpenetration using this
computed information.

•	 Implement an efficient collision detection algorithm that is based
on SAT.

•	 Detect collisions between rigid rectangles and circles accurately.

Interpenetration of Colliding Objects
As illustrated in Figure 3-1, the fixed update time step introduced in the previous chapter
means object positions in continuous motion are approximated by a discrete set of
positions. The most notable ramifications of these approximations are in detecting
collisions.

Figure 3-1.  A rigid square in continuous motion

Chapter 3 ■ Incorporating Collision Detection

39

You can see one such problem in Figure 3-1; imagine a thin wall existed in the space
between the current and the next update. You would expect the object to collide and
stop by the wall in the next update. However, if the wall were thin enough, the object
would essentially pass right through it as it jumped from one position to the next. This
is a common problem faced in many game engines. A general solution for these types of
problems can be algorithmically complex and computationally intensive. It is typically
the job of the game designer to mitigate and avoid this problem with well-designed (for
example, appropriate size) and well-behaved (for example, appropriate traveling speed)
game objects.

Figure 3-2 shows two objects colliding after a time step. Before the time step, the
objects are not touching. However, after the time step, the results of the movement
simulation place the two objects over each other.

This is another example ramification of fixed update time step with discrete intervals.
In the real world, given that the objects were solid, the two would never interpenetrate.
This is where details of a collision must be computed such that the interpenetrating
situation can be properly resolved.

Figure 3-2.  The interpenetration of colliding objects

Chapter 3 ■ Incorporating Collision Detection

40

Collision Detection
Collision detection is a vital and potentially a costly piece of physics simulations that
can impact performance significantly. For example, if you want to detect the collisions
between five objects, in the worst case you must perform four detection computations for
the first objects, followed by three computations for the second, two for the third, and one
for the fourth. In general, without dedicated optimizations, in the worst case you must
perform O(N 2) operations to detect the collisions between N objects.

In addition to reporting if a collision has occurred, a collision detection algorithm
should also support the computation of information that can be used to resolve and
respond to the collision. This information can include penetration depth, and the normal
vector of penetration. It is important to compute this information accurately such that the
collision can be effectively resolved and the response properly computed to simulate the
real world. Remember that object interpenetration does not happen in real world, thus
the computed information are only an approximation of the actual law of physics.

Broad Phase Method
A detailed collision detection algorithm involves intensive computations. This is because
accurate results must be computed to support effective interpenetration resolution
and realistic collision response simulation. A broad phase method optimizes this
computation by exploiting the proximity of objects: the detailed and computationally
intensive algorithm are only deployed for objects that are physically closed to each other.

A popular broad phase method uses bounding boxes/circles to approximate
collisions between all objects. A bounding box is an x/y-axes aligned rectangular box
that completely bounds a given object. The term x/y-axes aligned refers to the fact that
the four sides of a bounding box are parallel to the horizontal x-axis and to the vertical
y-axis. Similarly, a bounding circle is a circle that centers around and completely
bounds an object. By performing the straightforward bounding box/circle intersection
computations, it becomes possible to narrow down the candidates for detailed collision
detection operations to only those with colliding bounds.

There are other broad phase methods that organize objects either with a spatial
structure such as uniform grid or quad-tree or into coherent groups such as hierarchies
of bounding colliders. Results from broad phase methods are typically fed into mid
phase and finally narrow phase collision detection methods. Each phase narrows
down candidates for the eventual collision computation, and each subsequent phase is
incrementally more accurate and more expensive.

This chapter only introduces you to the bounding circle broad phase collision method
followed by a narrow phase algorithm that is based on the Separation Axis Theorem (SAT).

The Broad Phase Method Project
This project demonstrates how to implement a broad phase collision detection method
using bounding circles. You can see an example of this project running in Figure 3-3. The
source code to this project is defined in the Broad Phase Method Project folder.

Chapter 3 ■ Incorporating Collision Detection

41

Project goals:

•	 To understand the implementation of bounding circle collision
detection.

•	 To understand the strengths and weaknesses of broad phase
collision detection.

•	 To lay the foundation for building a narrow phase collision
detection algorithm.

Define the Physics Engine Component
A physics engine component can now be defined to support the collision detection
computations. To begin, follow the steps of defining an engine component.

	 1.	 In the SiteRoot/EngineCore (or public_html/EngineCore)
folder, create a new file and name it Physics.js. This file will
implement the physics engine component. Remember to load
this new source file in index.html.

	 2.	 Define the physics component in a similar fashion as you
defined gEngine.Core:

var gEngine = gEngine || { };
gEngine.Physics = (function () {
 var mPublic = {
 };
 return mPublic;
}());

Figure 3-3.  Running the Broad Phase Method Project

Chapter 3 ■ Incorporating Collision Detection

42

	 3.	 Create a collision function within gEngine.Physics to test
the intersection of bounding circles between all objects in the
mAllObjects list. Notice the nested loops that test every object
against each other for collision and that the colliding objects
are drawn with green color.

var collision = function () {
 var i, j;
 for (i = 5; i < gEngine.Core.mAllObjects.length; i++) {
 for (j = i + 1; j < gEngine.Core.mAllObjects.length; j++){
 If (�gEngine.Core.mAllObjects[i].boundTest(gEngine.

Core.mAllObjects[j])) {
 gEngine.Core.mContext.strokeStyle = 'green';
 �gEngine.Core.mAllObjects[i].draw(gEngine.Core.

mContext);
 �gEngine.Core.mAllObjects[j].draw(gEngine.Core.

mContext);
 }
 }
 }
};

	 4.	 Add public variable within mPublic to allow access to the
collision function.

var mPublic = {
 collision: collision
};

Invoke the Physics Collision and Update the UI
Edit the Core.js file in the SiteRoot/EngineCore (or public_html/EngineCore) folder.

	 1.	 Invoke the collision computation from the runGameLoop
function within the core engine loop.

//....identical to previous project
while (mLagTime >= kMPF) {
 mLagTime -= kMPF;
 gEngine.Physics.collision();
 update();
}
//....identical to previous project

Chapter 3 ■ Incorporating Collision Detection

43

	 2.	 Modify the updateUIEcho function to remove support for
the H button. The gravity on/off functionality is no longer
required.

//...identical to previous project
"F/G: Spawn [Rectangle/Circle] at selected object" +
"<p>H: Fix object</p>" + // remove this line
"<p>R: Reset System</p>" +

Modify Rigid Shape Classes
Now you can modify all the files inside the rigid shape folder to support a bounding circle
test for the broad phase collision detection method.

	 1.	 You need to modify rigid shape base class. Open
RigidShape.js under the folder SiteRoot/RigidBody (or
public_html/RigidBody).

	 2.	 Add the mBoundRadius variable to the RigidShape constructor.
This is the radius of the bounding circle for the rigid shape.

this.mBoundRadius = 0;

	 3.	 Define a new prototype function, and name it boundTest, a
function that will test if two bounding circles have collided.
The most straightforward way to detect the collision between
two circles is to determine if the distance between the two
centers is less than the sum of the radii. The scenario is
depicted in Figure 3-4.

RigidShape.prototype.boundTest = function (otherShape) {
 var vFrom1to2 = otherShape.mCenter.subtract(this.mCenter);
 var rSum = this.mBoundRadius + otherShape.mBoundRadius;
 var dist = vFrom1to2.length();
 if (dist > rSum) {
 return false; //not overlapping
 }
 return true;
};

Chapter 3 ■ Incorporating Collision Detection

44

	 4.	 You also need to remove the movement testing code that was
defined as the update function of the RigidShape base class.

RigidShape.prototype.update = function () { };

	 5.	 Next, modify the Circle.js file in the same folder to initialize
the value for the mBoundRadius variable in the constructor.
The bounding circle of a rigid circle shape has the same radius
as the rigid shape. Remember to remove the mFix variable.

this.mBoundRadius = radius;
this.mFix = fix; //remove this line

	 6.	 Modify the Rectangle.js file for a similar purpose, to
initialize the mBoundRadius variable in the constructor. In this
case, the bounding circle for a rectangle rigid shape is defined
as half of the diagonal distance of the rectangle. Once again,
remember to remove the unused mFix variable.

this.mBoundRadius = Math.sqrt(width*width + height*height)/2;

Figure 3-4.  Circle collision detection: (a) no collision (b) collision detected

Chapter 3 ■ Incorporating Collision Detection

45

Observation
Run the project to test your implementation. Notice that by default, objects are created
in the same location, have bounding circles that overlap, and thus are drawn in a green
color. You can select an object and move/rotate it to observe the green color changing
back to black when there are no overlaps of their corresponding bounding circles. Now,
create a rectangle and a circle, and move them apart. Rotate the rectangle and move it
close to, but without actually touching, the circle. You may notice that the two shapes are
not touching and yet both are drawn in green. That is because the collision bound for the
rectangle is a circle, which overestimates the bounds of the object as shown in Figure 3-5.
This is the most important drawback with this broad phase method: though efficient, it is
inaccurate. This issue will be remedied by the SAT algorithm to be introduced in a later
section.

Collision Information
With the broad phase collision method implemented, you can now begin the process
of defining narrow phase methods for detecting the collision between different rigid
shapes. As discussed earlier, information regarding the specifics of a collision must be
computed to support proper resolution of interpenetration and response. As illustrated
in Figure 3-6, the essential information of a collision includes: collision depth, normal,
start, and end. The collision depth is the smallest amount that the objects interpenetrated
where the collision normal is the direction along which the collision depth is measured.
The start and end are beginning and end positions of the interpenetration defined for
the convenience of drawing the interpenetration as a line segment. It is always true that
any interpenetration can be resolved by moving the colliding objects along the collision
normal by the collision depth distance from the start to the end position.

This section leads you to develop the infrastructure for computing and working with
collision information based on collisions between rigid circle shapes—a straightforward
extension to the previous project. After this section, with the proper support for
storing and accessing collision information, the Separating Axis Theorem (SAT) will be
introduced and implemented.

Figure 3-5.  False positive collision between Rectangle-A and Circle-B

Chapter 3 ■ Incorporating Collision Detection

46

The Circle Collision Detection Project
This project builds the infrastructure for computing and working with collision
information based on collisions between circles. As will be discussed, collision
information records the specific details of a collision for resolving interpenetration
and generating responses. Notice that the bounding circle-based broad phase collision
detection method computes the exact collision detection solution for rigid circle shapes.
For this reason, this project can take advantage of the previous project and focus on
computing and working with collision information. You can see an example of this
project running in Figure 3-7. The source code to this project is defined in the Circle
Collision Detection Project folder.

Figure 3-6.  Collision information

Figure 3-7.  Running the Circle Collision Detection Project

Chapter 3 ■ Incorporating Collision Detection

47

Project goals:

•	 To define collision information.

•	 To build the infrastructure for computing and working with
collision information.

•	 To compute and display collision information for circles.

Define Collision Information Object
A new class must be defined to support the storage of collision information.

	 1.	 Under the SiteRoot/Lib (or public_html/Lib) folder, create
a new file and name it CollisionInfo.js. Remember to load
this new source file in index.html.

	 2.	 Define the constructor of the object to contain collision
depth, collision normal, and a start and end positions.
These are the beginning and ending positions of a collision
interpenetration.

function CollisionInfo() {
 this.mDepth = 0;
 this.mNormal = new Vec2(0, 0);
 this.mStart = new Vec2(0, 0);
 this.mEnd = new Vec2(0, 0);
}

	 3.	 Define the getter and setter for the object.

CollisionInfo.prototype.setNormal = function (s) {
 this.mNormal = s;
};

CollisionInfo.prototype.getDepth = function () {
 return this.mDepth;
};

CollisionInfo.prototype.getNormal = function () {
 return this.mNormal;
};

CollisionInfo.prototype.setInfo = function (d, n, s) {
 this.mDepth = d;
 this.mNormal = n;
 this.mStart = s;
 this.mEnd = s.add(n.scale(d));
};

Chapter 3 ■ Incorporating Collision Detection

48

	 4.	 Create a function to change the direction of the normal. This
function will be used to ensure that the normal is always
pointing from the primary to the object that is being tested for
collision.

CollisionInfo.prototype.changeDir = function () {
 this.mNormal = this.mNormal.scale(-1);
 var n = this.mStart;
 this.mStart = this.mEnd;
 this.mEnd = n;
};

Compute Collision Information Between Two Circles
In the previous project you implemented the functionality for detecting collisions
between two circles. In the following, you will amend the computation of collision
information to include the information gained from circle collisions.

	 1.	 Create a new file under the SiteRoot/RigidBody (or public_
html/RigidBody) folder, and name it Circle_collision.js.
This file will contain the implementation of colliding a rigid
circle shape with other rigid shapes.

	 2.	 Define the collisionTest function to collide a rigid circle
shape with another RigidShape object. Notice that the actual
collision testing function is shape-specific. For now, a circle
only knows how to collide with a circle and will always return
false for any other shapes.

Circle.prototype.collisionTest = function (otherShape,
collisionInfo) {
 var status = false;
 if (otherShape.mType === "Circle")
 �status = this.collidedCircCirc(this, otherShape,

collisionInfo);
 else
 status = false;
 return status;
};

Chapter 3 ■ Incorporating Collision Detection

49

	 3.	 Define the collideCircCirc function to detect the collision
between two circles and to compute the corresponding
collision information when a collision is detected. There are
three cases to the collision detection: no collision, collision
with centers of the two circles located at different, and at
exactly the same positions. The following code shows the
detection of no collision. The details are depicted in Figure 3-8;
vFrom1to2 is the vector pointing from center of c1 to center
of c2, rSum is the sum of the radii, and dist is the distance
between the centers of two circles.

Circle.prototype.collidedCircCirc = function (c1, c2,
collisionInfo) {
 var vFrom1to2 = c2.mCenter.subtract(c1.mCenter);
 var rSum = c1.mRadius + c2.mRadius;
 var dist = vFrom1to2.length();
 if (dist > Math.sqrt(rSum * rSum)) {
 return false; //not overlapping
 }
 // ... details in the following steps
};

	 4.	 A collision is detected when dist, the distance between the
centers of the two circles, is less than the sum of the radii.
In this case, if the two circles do not have centers located
at the exact same position, the collision depth and normal
can be computed. As illustrated in Figure 3-8, since c2 is the
reference to the other RigidShape, the collision normal is a
vector pointing from c1 towards c2, or in the same direction as
vFrom1to2. The collision depth is the difference between rSum
and dist, and the start position for c1 is simple c2’s radius
distance away from the center of c2 along the normalFrom2to1
direction.

Figure 3-8.  Details of a circle-circle collision

Chapter 3 ■ Incorporating Collision Detection

50

//... continue from the previous step
if (dist !== 0) {
 // overlapping but not same position
 var normalFrom2to1 = vFrom1to2.scale(-1).normalize();
 var radiusC2 = normalFrom2to1.scale(c2.mRadius);
 �collisionInfo.setInfo(rSum - dist, vFrom1to2.normalize(),

c2.mCenter.add(radiusC2));
}
//... details in the next step

	 5.	 The last case for two colliding circles is when both circles’
centers are located at exactly the same position. In this case,
as shown in the following code, the collision normal is defined
to be the negative y-direction, and the collision depth is
simply the larger of the two radii.

//...continue from the previous step
if (dist !== 0) {
 //...identical to previous step
} else {
 //same position
 if (c1.mRadius > c2.mRadius)
 collisionInfo.setInfo(rSum, new Vec2(0, -1),
 c1.mCenter.add(new Vec2(0, c1.mRadius)));
 else
 collisionInfo.setInfo(rSum, new Vec2(0, -1),
 c2.mCenter.add(new Vec2(0, c2.mRadius)));
}

Case for Collision with a Rectangle
The collision computations for a rectangle will be covered later in this chapter. For now,
an empty structure will be defined to avoid runtime errors.

	 1.	 Create a new file under the SiteRoot/RigidBody (or public_
html/RigidBody) folder, and name it Rectangle_collision.js.

	 2.	 Add the following code to the file to return a false condition
for all collisions with a rectangle rigid shape for now.

Rectangle.prototype.collisionTest = function (otherShape,
collisionInfo) {
 var status = false;
 if (otherShape.mType === "Circle")
 status = false;

Chapter 3 ■ Incorporating Collision Detection

51

 else
 status = false;
 return status;
};

Modify Physics Engine Component
You can now modify the physics component to support the computation of collision
information when computing circle-to-circle collisions.

	 1.	 Edit EngineCore/Physics.js to support the drawing of
collision information and to call the newly defined rigid shape
collisionTest function.

	 2.	 For debugging and testing purposes, define the
drawCollisionInfo function to draw the collision depth and
normal as an orange colored line over the rigid shape.

var drawCollisionInfo = function (collisionInfo, context) {
 context.beginPath();
 �context.moveTo(collisionInfo.mStart.x, collisionInfo.

mStart.y);
 context.lineTo(collisionInfo.mEnd.x, collisionInfo.mEnd.y);
 context.closePath();
 context.strokeStyle = "orange";
 context.stroke();
};

	 3.	 In the collision function, first create a collisionInfo object
to record the details of collisions. After the broad phase
boundTest returns true, the details for the collision must be
determined by calling the rigid shape collisionTest function
you just defined.

//....identical to previous project
var collisionInfo = new CollisionInfo();
for (i = 0; i < gEngine.Core.mAllObjects.length; i++) {
 for (j = i + 1; j < gEngine.Core.mAllObjects.length; j++) {
 �if (gEngine.Core.mAllObjects[i].boundTest(gEngine.Core.

mAllObjects[j])) {
 �if (gEngine.Core.mAllObjects[i].collisionTest(gEngine.

Core.mAllObjects[j], collisionInfo)) {
 // ... details in the next step
 }
 }
 //....identical to previous project

Chapter 3 ■ Incorporating Collision Detection

52

	 4.	 When a collision is deemed valid, it is important to ensure
that the collision normal is always in the direction towards
the object being tested. As illustrated in the following code,
this can be determined by the sign of the dot product between
the collision normal and the vector defined by the centers of
the colliding objects. drawCollisionInfo function is called to
draw the corresponding collision information.

//... continue from the previous step
if (gEngine.Core.mAllObjects[i].collisionTest(gEngine.Core.
mAllObjects[j], collisionInfo)) {
 //make sure the normal is always from object[i] to object[j]
 �if (collisionInfo.getNormal().dot(
 �gEngine.Core.mAllObjects[j].mCenter.subtract({
 gEngine.Core.mAllObject[i].mCenter)) < 0) {
 collisionInfo.changeDir();
 }
 //draw collision info (a black line that shows normal)
 drawCollisionInfo(collisionInfo, gEngine.Core.mContext);
}
//... identical to previous project

Observation
Run the project to test your implementation. Notice that when you create two circles,
their collision is no longer indicated by a change of color. Instead, orange lines are drawn
inside the colliding circles to indicate the corresponding collision depth and normal.
You can create and observe the collision information drawn on all colliding circles. The
collision information will be used to resolve collision interpenetrations. Lastly, observe
that collision information is absent from rigid rectangle shapes. This is because you
have not implemented the functionality and the corresponding collisionTest function
always returns false. The next two projects will guide you through the implementation of
collision computation between rigid rectangle shape.

Separating Axis Theorem
The Separating Axis Theorem (SAT) is the foundation for one of the most popular
algorithms used for detecting collision between general convex shapes in 2D. Since
the derived algorithm can be overly computationally intensive for real-time systems, it
is typically preceded with an initial pass of broad phase method, as introduced in the
previous section. The SAT states that:

Chapter 3 ■ Incorporating Collision Detection

53

Two convex polygons are not colliding if there exists a line (or axis)
that is perpendicular to one of the given edges of the two polygons and
when projecting all edges of the two polygons onto this axis results in no
overlaps of the projected edges.

In other words, given two convex shapes in 2D space, you can iterate through all of
the edges of the convex shapes, one at a time. For each of the edges, compute a line (or
axis) that is perpendicular to the edge, project all edges of the two convex shapes onto
this line, and compute for overlaps of the projected edges. If you can find one of the
perpendicular lines where none of the projected edges overlaps, then the two convex
shapes do not collide.

Figure 3-9 illustrates this description using two axes-aligned rectangles. In this case,
there are two lines that are perpendicular to the two given shapes, the X and Y axes.

When projecting all of the shape edges onto these two lines, note that the projection
results on the Y-axis overlaps, while there is no overlap on the X-axis. Since there exists
one line that is perpendicular to one of the rectangle edges where the projected edges do
not overlap, the SAT concludes that the two given rectangles do not collide.

The main strength of algorithms derived from the SAT is that for non-colliding
shapes, it has an early exit capability. As soon as an axis with no overlapping projected
edges is detected, an algorithm can report no collision and does not need to continue
with the testing for other axes. In the case of Figure 3-9, if the algorithm began with
processing the X-axis, there would be no need to perform the computation for the
Y-axis.

Figure 3-9.  There exists a projection that does not overlap

Chapter 3 ■ Incorporating Collision Detection

54

A Simple SAT-based Algorithm
Algorithms derived based on the SAT typically consist of four steps:

•	 Step 1 Compute Face Normals: Compute the perpendicular
axes, or face normals for projecting the edges. As illustrated
in Figure 3-10, a rectangle has four edges and each edge has
a corresponding perpendicular axis. For example, A1 is the
corresponding axis for and thus is perpendicular to the edge eA1.
Note that in your rigid rectangle implementation, mFaceNormal,
or face normals, are the perpendicular axes A1, A2, A3, and A4.

•	 Step 2 Project Vertices: Project each of the vertices of the two
convex shapes onto the face normals. Figure 3-11 illustrates this
projection of all vertices onto the A1 axis from Figure 3-10.

Figure 3-10.  Rectangle edges and face normals

Figure 3-11.  Project each vertex onto face normals (example shows A1)

Chapter 3 ■ Incorporating Collision Detection

55

•	 Step 3 Identify Bounds: Identify the min and max bounds for the
projected vertices of each convex shape. Continue with the previous
rectangle example. Figure 3-12 shows identifying the min and max
positions for each of the two rectangles. Notice that the min/max
positions are defined with respect to the direction of the given axis.

•	 Step 4 Determine overlaps: Determine if the two min/max bounds
overlap. Figure 3-13 shows that the two projected bounds do indeed
overlap. In this case, the algorithm cannot conclude and must
proceed to process the next face normal. Notice that, as illustrated
in the drawing on the right of Figure 3-10, the process of face normal
B1 will result in a deterministic conclusion of no collision.

Figure 3-12.  Identify the min and max bound positions for each rectangle

Figure 3-13.  Test for overlap for every axis of projection (example using A1)

Chapter 3 ■ Incorporating Collision Detection

56

The given algorithm is capable of determining if a collision has occurred with no
additional information. Recall that, after detecting a collision, the physics engine must
also resolve potential interpenetration and derive a response for the colliding shapes.
Both of these computations require additional information—the collision information as
introduced in Figure 3-6. The next section introduces an efficient SAT-based algorithm
that computes support points to both inform the true/false outcome of the collision
detection and serve as the basis for deriving collision information.

An Efficient SAT Algorithm: The Support Points
A support point for a face normal of shape-A is defined to be the vertex position on
shape-B where the vertex has the most negative distance from the corresponding edge of
shape-A. This is illustrated in Figure 3-14 for the face normal A1 of shape-A. The vertex
S

A1
 on shape-B has the largest negative distance from edge e

A1
 when measured along the

A1 direction, and thus S
A1

 is the support point for face normal A1. The negative distance
signifies that the measurement is directional and that a support point must be in the
reverse direction from the face normal.

In general, the support point for a given face normal may be different during every
update cycle and thus must be recomputed during each collision invocation. In addition,
and very importantly, it is entirely possible for a face normal to not have a defined
support point.

Support Point May Not Exist for a Face Normal
A support point is defined only when the measured distance along the face normal has a
negative value. For example, the face normal B1 of shape-B in Figure 3-14 does not have
a corresponding support point on shape-A. This is because all vertices on shape-A are
positive distances away from the corresponding edge e

B1
 when measured along B1. The

Figure 3-14.  Support points of face normals

Chapter 3 ■ Incorporating Collision Detection

57

positive distances signify that all vertices of shape-A are in front of the edge e
B1

. In other
words, the entire shape-A is in front of the edge e

B1
 of shape-B and thus the two shapes

are not physically touching, and thus they are not colliding.
It follows that, when computing the collision between two shapes, if any of the

face normals does not have a corresponding support point, then the two shapes are not
colliding. Once again, the early exit capability is an important advantage—the algorithm
can return a decision as soon as the first case of undefined support point is detected.

For convenience of discussion and implementation, the distance between a support
point and the corresponding edge is referred to as the support point distance and this
distance is computed as a positive number. In this way, the support point distance is
actually measured along the negative face normal direction. This will be the convention
followed in the rest of the discussions in this book.

The Axis of Least Penetration and Collision Information
When support points are defined for all face normals of a convex shape, the face normal
of the smallest support point distance is the axis leading to the least interpenetration.
Figure 3-15 shows the collision between two shapes where supports points for all of
the face normals of shape-B are defined: vertex S

B1
 on shape-A is the corresponding

support point for face normal B1, S
B2

 for face normal B2, and so on. In this case, S
B1

 has
the smallest corresponding support point distance and thus the face normal B1 is the
axis that leads to the least interpenetration. The illustration on the right on Figure 3-15
shows that, in this case, support point distance is the collision depth, face normal B1 is
collision normal, support point S

B1
 is the start of the collision, and the end of the collision

can be readily computed; it is simply S
B1

 offset by collision depth in the collision normal
direction.

Figure 3-15.  Axis of least penetration and the corresponding collision information

Chapter 3 ■ Incorporating Collision Detection

58

The Algorithm
With the background description, the efficient SAT-based algorithm to compute the
collision between two convex shapes, A and B, can be summarized as:

•	 Compute the support points for all the face normals on shape-A.

•	 If any of the support points is not defined, there is no
collision.

•	 If all support points are defined, compute the axis of least
penetration.

•	 Compute the support point for all the face normals on shape-B.

•	 If any of the support points is not defined, there is no
collision.

•	 If all support points are defined, compute the axis of least
penetration.

The collision information is simply the smaller collision depth from the above two
results. You are now ready to implement the support point SAT algorithm.

The Rectangle Collision Project
This project will guide you to implement the support point SAT algorithm. You can see an
example of this project running in Figure 3-16. The source code to this project is defined
in the Rectangle Collision Project folder.

Project goals:

•	 To gain insights into and implement the support point SAT
algorithm.

Figure 3-16.  Running the Rectangle Collision Project

Chapter 3 ■ Incorporating Collision Detection

59

Modify Rectangle Collision
Begin by modifying the Rectangle_collision.js file to implement the collision
detection between rectangles.

	 1.	 Edit the Rectangle_collision.js file in the RigidBody folder.

	 2.	 Create a new function findSupportPoint to compute
a support point based on dir, the negated face normal
direction, and ptOnEdge, a position on the given edge (e.g., a
vertex). The following code marches through all the vertices;
compute vToEdge, the vector from vertices to ptOnEdge;
project this vector onto the input dir, and record the largest
positive projected distant. Recall that dir is the negated
face normal direction, and thus the largest positive distant
corresponds to the furthest vertex position. Additionally,
it is entirely possible for all of the projected distances to be
negative. In such cases, all vertices are in front of the input dir,
a support point does not exist for the given edge, and thus the
two rectangles do not collide.

Rectangle.prototype.findSupportPoint = function (dir, ptOnEdge) {
 //the longest project length
 var vToEdge;
 var projection;
 // initialize the computed results
 tmpSupport.mSupportPointDist = -9999999;
 tmpSupport.mSupportPoint = null;
 //check each vector of other object
 for (var i = 0; i < this.mVertex.length; i++) {
 vToEdge = this.mVertex[i].subtract(ptOnEdge);
 projection = vToEdge.dot(dir);
 //find the longest distance with certain edge
 //dir is -n direction, so the distance should be positive
 if (�(projection > 0) &&

(projection > tmpSupport.mSupportPointDist)) {
 tmpSupport.mSupportPoint = this.mVertex[i];
 tmpSupport.mSupportPointDist = projection;
 }
 }
};

Chapter 3 ■ Incorporating Collision Detection

60

	 3.	 With the ability to locate a support point for any face normal,
the next step is the find the axis of least penetration by
implementing the findAxisLeastPenetration function.
Recall that the axis of least penetration is derived based on
the support point with the least support point distant. The
following code loops over the four face normals, finds the
corresponding support point and support point distance, and
records the shortest distance. The while-loop signifies that if a
support point is not defined for any of the face normals, then
the two rectangles do not collide.

Rectangle.prototype.findAxisLeastPenetration = function
(otherRect, collisionInfo) {
 var n;
 var supportPoint;
 var bestDistance = 999999;
 var bestIndex = null;
 var hasSupport = true;
 var i = 0;
 while ((hasSupport) && (i < this.mFaceNormal.length)) {
 // Retrieve a face normal from A
 n = this.mFaceNormal[i];
 �// use -n as direction and

// the vectex on edge i as point on edge
 var dir = n.scale(-1);
 var ptOnEdge = this.mVertex[i];
 // find the support on B
 // the point has longest distance with edge i
 otherRect.findSupportPoint(dir, ptOnEdge);
 hasSupport = (tmpSupport.mSupportPoint !== null);
 //get the shortest support point depth
 �if ((hasSupport) && (tmpSupport.mSupportPointDist <

bestDistance)) {
 bestDistance = tmpSupport.mSupportPointDist;
 bestIndex = i;
 supportPoint = tmpSupport.mSupportPoint;
 }
 i = i + 1;
 }
 if (hasSupport) {
 //all four directions have support point
 �var bestVec = this.mFaceNormal[bestIndex].

scale(bestDistance);
 �collisionInfo.setInfo(bestDistance, this.

mFaceNormal[bestIndex], supportPoint.add(bestVec));
 }
 return hasSupport;
};

Chapter 3 ■ Incorporating Collision Detection

61

	 4.	 You can now implement the collidedRectRect function by
computing the axis of least penetration with respect to each of
the two rectangles and choosing the smaller of the two results.

Rectangle.prototype.collidedRectRect = function (r1, r2,
collisionInfo) {
 var status1 = false;
 var status2 = false;
 //find Axis of Separation for both rectangle
 status1 = r1.findAxisLeastPenetration(r2, collisionInfoR1);
 if (status1) {
 �status2 = r2.findAxisLeastPenetration(r1,

collisionInfoR2);
 if (status2) {
 �//choose the shorter normal as the normal
 �if (collisionInfoR1.getDepth() < collisionInfoR2.

getDepth()) {
 �var depthVec = collisionInfoR1.getNormal().

scale(collisionInfoR1.getDepth());
 collisionInfo.setInfo(collisionInfoR1.getDepth(),
 collisionInfoR1.getNormal(),
 �collisionInfoR1.mStart.

subtract(depthVec));
 } else {
 collisionInfo.setInfo(collisionInfoR2.getDepth(),
 �collisionInfoR2.getNormal().

scale(-1),
 collisionInfoR2.mStart);
 }
 }
 }
 return status1 && status2;
};

	 5.	 Complete the implementation by modifying the
collisionTest function to call the newly defined
collidedRectRect function to compute the collision between
two rectangles.

Rectangle.prototype.collisionTest = function (otherShape,
collisionInfo) {
 var status = false;
 if (otherShape.mType === "Circle") {
 status = false;

Chapter 3 ■ Incorporating Collision Detection

62

 } else {
status = this.collidedRectRect(�this, otherShape,

collisionInfo);
 }
 return status;
};

Observation
You can now run the project to test your implementation. Try creating multiple rectangles
with the F key. You can see an orange line representing collision information (collision
depth, in the collision normal direction, from start to end) when two or more rectangles
collide. Remember that this line shows the least amount of positional correction required
to resolve the collision. Use the up and down arrows to select and rotate the rectangles and
observe how the collision info changes accordingly. At this stage you have implemented
collision detection between a circle and a circle, as well as a rectangle and another rectangle.
If you try to collide a rectangle and a circle, no collision info is generated because you have
not implemented support for this type of collision. This will be resolved in the next project.

Collision Between Rectangles and Circles
The support point approach to computing collision detection does not work with circles
because a circle does not have identifiable vertex positions. Instead, you will implement
an algorithm that detects collisions between a rectangle and a circle according to the
relative position of the circle’s center with respect to the rectangle.

Before discussing the actual algorithm, as illustrated in Figure 3-17, it is convenient
to recognize that the area outside an edge of a rectangle can be categorized into three
distinct regions by extending the connecting edges. In this case, the dotted lines
separated the area outside the given Edge into: R1, the region to the left/top; R2, the
region to the right/bottom; and R3, the region immediately outside of the given Edge.

With this background, the collision between a rectangle and a circle can be detected
as follows:

•	 Step A: Edge = Compute the nearest edge (the edge on the
rectangle that is closest to the circle center).

•	 Step B: If circle center is outside

•	 Step B1: If in Region R1: the distance between the circle
center and left/top vertex from the Edge determines if
collision has occurred.

•	 Step B2: If in Region R2: the distance between the circle
center and right/bottom vertex from the Edge determines if
collision has occurred.

•	 Step B3: If in Region R3: the perpendicular distance between
the center and the Edge determines if collision has occurred.

Chapter 3 ■ Incorporating Collision Detection

63

•	 Step C: If the circle center is inside the rectangle: collision is
detected.

The Rectangle Circle Collision Project
This project guides you in implementing the described rectangle-circle collision detection
algorithm with detailed discussions for each of the steps. You can see an example of this
project running in Figure 3-18. The source code to this project is defined in the Rectangle
Circle Collision Project folder.

Project goals:

•	 To understand and implement the rectangle circle collision
detection algorithm.

Figure 3-17.  The three regions outside a given edge of a rectangle

Figure 3-18.  Running the Rectangle Circle Collision Project

Chapter 3 ■ Incorporating Collision Detection

64

Modify Rectangle Collision
You are going to implement the described algorithm in the Rectangle_collision.js file.

	 1.	 Edit the Rectangle_collision.js file in the RigidBody folder.

	 2.	 Create a new function, collidedRectCirc, to detect the
collision between a rectangle and a circle. Accordingly, there
will be five major steps in this function. The following listing
collapsed all of the steps with details to be filled in in the rest
of this section.

Rectangle.prototype.collidedRectCirc = function (otherCir,
collisionInfo) {
 // Step A: Compute the nearest edge
 if (!inside) {
 // Step B1: If center is in Region R1
 // Step B2: If center is in Region R2
 // Step B3: If center is in Region R3
 } else {
 // Step C: If center is inside
 }
 return true;
};

	 3.	 Step A: Compute the nearest edge. The nearest edge can
be computed by computing the perpendicular distances
between the circle center to each of the edges of the rectangle.
This distance is simply the projection of the vector between
each vertex and the circle center onto the corresponding
face normal. The following code shows marching through
all of the vertices, computing the vector from the vertex to
the circle center, and projecting the computed vector to the
corresponding face normals.

// Step A: Compute the nearest edge
for (i = 0; i < 4; ++i) {
 //find the nearest face for center of circle
 circ2Pos = otherCir.mCenter;
 v = circ2Pos.subtract(this.mVertex[i]);
 projection = v.dot(this.mFaceNormal[i]);
 if (projection > 0) {
 //if the center of circle is outside of rectangle
 bestDistance = projection;
 nearestEdge = i;
 inside = false;
 break;
 }

Chapter 3 ■ Incorporating Collision Detection

65

 if (projection > bestDistance) {
 bestDistance = projection;
 nearestEdge = i;
 }
}

		 As illustrated in Figure 3-19, one interesting observation is
that when the circle center is inside the rectangle, all vertex-
to-center vectors will be in the opposite directions of their
corresponding face normal and thus will result in negative
projected length. This is in contrast to when the center is
outside of the rectangle; then, at least one of the projected
lengths is positive. For this reason, the “nearest projected
distance” is the one with the least negative value and thus is
actually the largest number.

	 4.	 Step B1: if center is outside of the rectangle and in Region R1.
As illustrated in Figure 3-20-a, the Region R1 can be detected
when



V1 , the vector between the center and the edge vertex,
is in the opposite direction of



V2 , the direction of the edge.
This is to say, the center of the circle is in Region R1 when the
dot product of those two vectors is negative. Figure 3-20-b
shows that collision occurs when the length of vector



V1
is less than the circle radius, and in this case, the collision
normal is simply along the vector



V1 , and collision depth
is the difference between the radius and dist, the length of
vector



V1

Figure 3-19.  (a) Center inside the rectangle will result in all negative projected length
(b) Center outside the rectangle will result in at least one positive projected length

Chapter 3 ■ Incorporating Collision Detection

66

// Step A: Compute the nearest edge (details discussed)
if (!inside) { //the center of circle is outside of rectangle
 // Step B1: if ceter is in Region R1
 //v1 is from left vertex of face to center of circle
 //v2 is from left vertex of face to right vertex of face
 var v1 = circ2Pos.subtract(this.mVertex[nearestEdge]);
 �var v2 = this.mVertex[(nearestEdge + 1) % 4].subtract(this.

mVertex[nearestEdge]);
 var dot = v1.dot(v2);
 if (dot < 0) { // Region R1
 �//the center of circle is in corner region of

mVertex[nearestEdge]
 var dis = v1.length();
 //compare the distance with radium to decide collision
 if (dis > otherCir.mRadius)
 return false;
 var normal = v1.normalize();
 �var radiusVec = normal.scale(-otherCir.mRadius);
 collisionInfo.�setInfo(otherCir.mRadius - dis, normal,

circ2Pos.add(radiusVec));
 } else { // Not in Region R1
 // ... details to follow ...
 // Step B2: If center is in Region B2
 if (...) { // in Region R2
 // ... details to follow ...
 } else { // not in Region R2
 // Step B3: If center is in Region B3
 // ... details to follow ...
 }
 }

Figure 3-20.  (a) Condition when center is in Region R1 (b) The corresponding collision
information

Chapter 3 ■ Incorporating Collision Detection

67

} else { // else of (!inside)
 // Step C: If center is inside the rectangle
 // ... details to follow ...
}

	 5.	 Step B2: if the center is outside of the rectangle and in Region
R2. The following code complements that of Step B1, with the
only difference being the direction of



V2 , the vector along the
edge. In this case, the vector along the edge is in the opposite
direction as compared to working with Region R1.

// Step A: Compute the nearest edge (details discussed)
if (!inside) {
 // Step B1: If center is in Region R1 (detailed discussed)
} else {
 // Step B2: If center is in Region R2
 �//the center of circle is in corner region of

mVertex[nearestEdge+1]
 //v1 is from right vertex of face to center of circle
 //v2 is from right vertex of face to left vertex of face
 var v1 = circ2Pos.subtract(this.mVertex[(nearestEdge + 1) % 4]);
 var v2 = v2.scale(-1);
 var dot = v1.dot(v2);
 if (dot < 0) {
 var dis = v1.length();
 //compare the distance with radium to decide collision
 if (dis > otherCir.mRadius)
 return false;
 var normal = v1.normalize();
 var radiusVec = normal.scale(-otherCir.mRadius);
 �collisionInfo.setInfo(otherCir.mRadius - dis, normal,

circ2Pos.add(radiusVec));
 } else {
 // Step B3: If center is in Region B3
 // ... details to follow ...
 }

	 6.	 Step B3: If the center is in Region R3. The last possible
region for the circle center to be located in would be the
area immediately outside the nearest edge. In this case, the
bestDistance computed previously in Step A is the distance;
if this distance is less than the circle radius, then collision
occurred.

// Step B3: If center is in Region B3
//the center of circle is in face region of face[nearestEdge]

Chapter 3 ■ Incorporating Collision Detection

68

if (bestDistance < otherCir.mRadius) {
 �var radiusVec = this.mFaceNormal[nearestEdge].scale(otherCir.

mRadius);
 collisionInfo.setInfo(otherCir.mRadius - bestDistance,
 �this.mFaceNormal[nearestEdge], circ2Pos.

subtract(radiusVec));
} else {
 return false;
}

	 7.	 Step C: If the circle center is inside the rectangle, then
collision is detected and the corresponding collision
information can be computed and returned.

 if (!inside) {
 �//... conditions for Region R1, R2, and R3 as

discussed
 } else {
 //the center of circle is inside of rectangle
 �var radiusVec = this.mFaceNormal[nearestEdge].

scale(otherCir.mRadius);
 �col�lisionInfo.setInfo

(otherCir.mRadius - bestDistance,
 �this.mFaceNormal[nearestEdge],

circ2Pos.subtract(radiusVec));
 }
 return true;
};

	 8.	 The last step is to modify the collisionTest function to call
the newly defined collision function accordingly.

Rectangle.prototype.collisionTest = function (otherShape,
collisionInfo) {
 var status = false;
 if (otherShape.mType === "Circle") {
 �status = this.collidedRectCirc(otherShape,

collisionInfo);
 } else {
 �status = this.collidedRectRect(this, otherShape,

collisionInfo);
 }
 return status;
};

Chapter 3 ■ Incorporating Collision Detection

69

Observation
You can now run the project to test your implementation. You can create rectangles
and circles, move and rotate them to observe the corresponding collision information
represented by orange lines. Rotate colliding rectangles to observe the collision
information, adapting to the shape’s rotation. That is because the calculated collision
information is dependent on the position of the vertex and face normal of the rectangle.
However, when you rotate a colliding circle, the collision information does not change.
That is because the calculated collision information is only dependent on the circle's
center position and its radius. For this reason, the rotation of a circle does not change its
collision information.

Summary
At this stage, your physics engine simulation is capable of detecting collisions accurately,
and computing the appropriate collision information when rigid shapes collide. You
have been introduced to broad phase method, the Separating Axis Theorem, and support
points for efficiently detecting collisions of convex shapes. You have implemented
algorithms based on these concepts that successfully detect collisions and compute the
associated information necessary for resolving any potential interpenetrations. The next
chapter will introduce you to some elementary physics about movements, and how to use
the computed collision information for simulating a real-world physics interaction in 2D
space by properly resolving collisions.

71© Michael Tanaya, Huaming Chen, Jebediah Pavleas and Kelvin Sung 2017
M. Tanaya et al., Building a 2D Game Physics Engine, DOI 10.1007/978-1-4842-2583-7_4

CHAPTER 4

Completing the Physics
Engine and Rigid Shape
Component

In the previous chapter, you have implemented algorithms to detect collisions between
rigid circles and rectangles. In addition to the boolean condition of whether a collision
has indeed occurred, the algorithms you have implemented also computed information
that tells you important details—the collision information, which includes the
interpenetration depth and normal direction. In this chapter, you will further expand
the physics engine by using the collision information to correct the interpenetration
condition, and learn about simulating collision responses that resemble real-world rigid
shape behaviors. Initially, your responses will be in linear motion, and finally you will
support objects rotating as a result of collisions.

To begin with this last phase of the investigation, you will first amend the rigid
shape classes to support proper simulation of Newtonian motion and to include relevant
physical attributes to allow the simulation of energy transfers between colliding objects.
After you implement movements in the physics engine together with the collision
detection algorithms from the previous chapter, you can start resolving collisions.
Collisions are resolved by correcting the interpenetration state of the rigid shapes, and
instituting a proper response. Interpenetrations will be corrected by moving the colliding
shapes apart such that they do not overlap, and collision responses will be instituted
based on the Impulse Method to simulate the transfer of both linear and angular
momentum.

After completing this chapter, you will be able to:

•	 Understand how to approximate integrals with Euler Method and
Symplectic Euler Integration.

•	 Approximate Newtonian motion formulation with Symplectic
Euler Integration.

•	 Resolve interpenetrating collisions based on a numerically stable
relaxation method.

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

72

•	 Compute and implement responses to collisions that resemble
the responses of rigid bodies in the real-world.

•	 Complete the physics engine in simulating the collisions and
responses of rigid circles and rectangles.

Movement
Movement is the description of how object positions change in the simulated world.
Mathematically, movement can be formulated in many ways. In previous chapters, you
experienced working with movement where you continuously changed the position of an
object with a constant value, or a displacement. Although desired results can be achieved,
mathematically this is problematic because a velocity and a position are different types of
quantities with different units and the two cannot be simply combined. As illustrated in
Figure 4-1 and the following equation, in practice, you have been working with describing
movement based on constant displacements.

•	 p p displacementnew current= +

Figure 4-1.  Movement Based on Constant Displacements

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

73

A movement that is governed by the constant displacement formulation becomes
restrictive when it is necessary to change the amount that is displaced over time.
Newtonian mechanics address this restriction by considering time in the movement
formulations, as seen in the following equations.

•	 v v a t dtnew current= + ()ò
•	 p p v t dtnew current= + ()ò

These two equations implement a Newtonian based movement where v(t) is the
velocity that describes the change in position over time and a(t) is the acceleration that
describes the change in velocity over time.

Notice that both velocity and acceleration are vector quantities encoding the change
in magnitude and direction. The magnitude of a velocity vector defines the speed, and
the normalized velocity vector identifies the direction that the object is traveling. An
acceleration vector lets you know whether an object is speeding up or slowing down
via its magnitude and the direction that the acceleration is occurring in. Acceleration is
changed by the forces acting upon an object. For example, if you were to throw a ball into
the air, the gravitational force of the earth would affect the object’s acceleration over time,
which in turn would change the object’s velocity.

Explicit Euler Integration
The following two equations show that the Euler method, or Explicit Euler Integration,
approximates integrals based on initial values. Though potentially unstable, this is one of
the simplest and thus a good beginning point to learn about integration approximation
methods. As illustrated in the following two equations, in the case of the Newtonian
movement formulation the new velocity, v

new
, of the object can be approximated as the

current velocity, v
current

, plus the current acceleration, a
current

, multiplied by the amount
of elapsed time. Similarly, the object’s new position, p

new
, can be approximated by the

object’s current position, p
current

, plus the current velocity, v
current

, multiplied by the amount
of elapsed time.

■■ Note  An example of a numerically unstable system is one where under gravitational
force a bouncing ball slows down but never stops jittering and, in some cases, may even
start bouncing again.

•	  v v a dtnew current current= + *

•	 p p v dtnew current current= + *

The left diagram of Figure 4-2 illustrates a simple example of approximating
movements with Explicit Euler Integration. Notice that the new position p

new
 is computed

based on the current velocity, v
current

, while the new velocity v
new

, is computed to move the
position for the next update cycle.

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

74

Symplectic Euler Integration
In practice, because of system stability concerns, Explicit Euler Integration is seldom
implemented. This shortcoming is overcome with the method you will be implementing,
known as the Semi-Implicit Euler Integration or Symplectic Euler Integration, where
intermediate results are used in subsequent approximations. The following equations
show Symplectic Euler Integration. Notice that it is nearly identical to the Euler method
except that the new velocity, v

new
, is being used when calculating the new position, p

new
.

This essentially means that the velocity for the next frame is being used to calculate the
position of this frame.

•	 v v a dtnew current current= + *

•	 p p v dtnew current new= + *

The right diagram of Figure 4-2 illustrates that with the Symplectic Euler Integration,
the new position p

new
 is computed based on the newly computed velocity, v

new
.

Implementing Symplectic Euler Integration and
Defining Attributes to Support Collision Response
You are now ready to implement Symplectic Euler Integration. The fixed time step update
function architecture of the game engine allows the dt quantity to be implemented as the
update time interval and the integral to be evaluated once per update cycle.

In addition to implement Symplectic Euler Integration, this project also defines
the attributes and their corresponding accessor and getter functions. Though relatively
straightforward, these functions are presented here to avoid distracting the discussions of
the more complex concepts to be covered in the subsequent projects.

You will modify the RigidShape class for this implementation.

The Rigid Shape Movement Project
This project will guide you through completing the rigid shape component to support
movement calculations and collision responses. In addition to implement Symplectic
Euler Integration, the information that you are going to add includes the attributes

Figure 4-2.  Explicit (Left) and Symplectic (Right) Euler Integration

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

75

required for collision simulation and response, such as mass, inertia, friction, and
restitution. As will be explained, each of these attributes will play a part in the calculation
of simulating object movements and collision responses based on Euler integration. You
can see an example of this project running in Figure 4-3. The source code to this project is
defined in the Rigid Shape Movements Project folder.

Project Goals:

•	 To experience implementing movements based on Symplectic
Euler Integration.

•	 To complete the implementation of RigidShape classes to include
relevant physical attributes.

•	 To build the infrastructure for responding to collisions.

Implement Symplectic Euler Integration
You must define movement support and constants in the core of the engine and in rigid
shape.

Modify the Engine Core

Let’s start with the engine core:

	 1.	 Modify the Core.js file to include two more instance variables
in the constructor, the first to support applying gravity on all
objects, and the second to enable/disable object movements.

var mGravity = new Vec2(0, 10);
var mMovement = false;

Figure 4-3.  Running the Rigid Shape Movements Project

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

76

	 2.	 Update the mPublic variable to allow external access to the
newly defined instances.

var mPublic = {
 initializeEngineCore: initializeEngineCore,
 mAllObject: mAllObject,
 mWidth: mWidth,
 mHeight: mHeight,
 mContext: mContext,
 mGravity: mGravity,
 mUpdateIntervalInSeconds: mUpdateIntervalInSeconds,
 mMovement: mMovement
};

Modify the RigidShape Class

Modify the RigidShape class constructor to support velocity, angular velocity, and
acceleration, as shown in the following code.

function RigidShape(center, mass, friction, restitution) {
 this.mCenter = center;
 this.mVelocity = new Vec2(0, 0);
 this.mAcceleration = gEngine.Core.mGravity;

 //angle
 this.mAngle = 0;
 //negetive-- clockwise
 //positive-- counterclockwise
 this.mAngularVelocity = 0;

 this.mAngularAcceleration = 0;

 gEngine.Core.mAllObject.push(this);
}

Implement Symplectic Euler Integration

You can now add the behavior to the rigid shape object for numerical integration.
Continue with the RigidShape base class, and complete the update function to apply
Symplectic Euler Integration to the rigid shape where the updated velocity is used for
computing the new position. Notice the implementation similarities between linear and
angular motion. In both cases, the velocities are updated before the results are being
applied to the displacements. Rotation will be examined in detail in the last section of this
chapter.

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

77

RigidShape.prototype.update = function () {
 if (gEngine.Core.mMovement) {
 var dt = gEngine.Core.mUpdateIntervalInSeconds;
 //v += a*t
 this.mVelocity = this.mVelocity.add(this.mAcceleration.scale(dt));
 //s += v*t
 this.move(this.mVelocity.scale(dt));

 this.mAngularVelocity += this.mAngularAcceleration * dt;
 this.rotate(this.mAngularVelocity * dt);
 }
};

Define Attributes to Support Collision Simulation and Response
As mentioned, in order to allow focused discussions of the more complex concepts in the
later sections, the attributes for supporting collisions and the corresponding supporting
functions are introduced in this project. These attributes are defined in the RigidShape class.

Modify the RigidShape Class

Now it’s time for the RigidShape class:

	 1.	 Modify the RigidShape class constructor again, this time to
support mass, restitution (bounciness), and friction, as shown
in the following code. Notice that the inverse of the mass value
is actually stored for computation efficiency (by avoiding an
extra division during each update calculation). Additionally,
notice that a mass of zero is used to represent a stationary
object.

function RigidShape(center, mass, friction, restitution) {
 this.mCenter = center;
 this.mInertia = 0;
 if (mass !== undefined)
 this.mInvMass = mass;
 else
 this.mInvMass = 1;

 if (friction !== undefined)
 this.mFriction = friction;
 else
 this.mFriction = 0.8;

 if (restitution !== undefined)
 this.mRestitution = restitution;
 else

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

78

 this.mRestitution = 0.2;

 this.mVelocity = new Vec2(0, 0);

 if (this.mInvMass !== 0) {
 this.mInvMass = 1 / this.mInvMass;
 this.mAcceleration = gEngine.Core.mGravity;
 } else {
 this.mAcceleration = new Vec2(0, 0);
 }

 //angle
 this.mAngle = 0;
 //negetive-- clockwise
 //positive-- counterclockwise
 this.mAngularVelocity = 0;

 this.mAngularAcceleration = 0;

 this.mBoundRadius = 0;

 gEngine.Core.mAllObject.push(this);
}

	 2.	 Define a function, updateMass, to support changing of
the mass during runtime. Notice that the updateInertia
function is empty. This reflects the fact that rotational inertia
is shape-specific and the actual implementation would be the
responsibility of individual subclasses (Rectangle and Circle).

RigidShape.prototype.updateMass = function (delta) {
 var mass;
 if (this.mInvMass !== 0)
 mass = 1 / this.mInvMass;
 else
 mass = 0;

 mass += delta;
 if (mass <= 0) {
 this.mInvMass = 0;
 this.mVelocity = new Vec2(0, 0);
 this.mAcceleration = new Vec2(0, 0);
 this.mAngularVelocity = 0;
 this.mAngularAcceleration = 0;
 } else {
 this.mInvMass = 1 / mass;
 this.mAcceleration = gEngine.Core.mGravity;

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

79

 }
 this.updateInertia();
};

RigidShape.prototype.updateInertia = function () {
 // subclass must define this.
 // must work with inverted this.mInvMass
};

Modify the Circle and Rectangle Classes

Next, modify the Circle and Rectangle classes:

	 1.	 Modify the Circle class to implement the updateInertia
function. This function calculates the rotational inertia of a
circle when its mass is changed.

Circle.prototype.updateInertia = function() {
 if (this.mInvMass === 0) {
 this.mInertia = 0;
 } else {
 // this.mInvMass is inverted!!
 // Inertia=mass * radius^2
 // 12 is a constant value that can be changed
 �this.mInertia = (1 / this.mInvMass) * (this.mRadius *

this.mRadius) / 12;
 }
};

	 2.	 Update the Circle object constructor to call the new
RigidShape base class, and to accept relevant parameters
of physical attributes. Remember to call the newly defined
updateInertia for initialization.

var Circle = function (center, radius, mass, friction,
restitution) {
 RigidShape.call(this, center, mass, friction, restitution);
 this.mType = "Circle";
 //...identical to previous project
 this.updateInertia();
};

	 3.	 Modify the Rectangle class to implement its updateIntertia
function.

Rectangle.prototype.updateInertia = function() {

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

80

 // Expect this.mInvMass to be already inverted!
 if (this.mInvMass === 0)
 this.mInertia = 0;
 else {
 //inertia=mass*width^2+height^2
 �this.mInertia = (1 / this.mInvMass) * (this.mWidth *

this.mWidth + this.mHeight * this.mHeight) / 12;
 this.mInertia = 1 / this.mInertia;
 }
};

	 4.	 Update the Rectangle constructor in a similar manner to the
Circle class to accept the relevant parameters of physical
attributes and to invoke the newly defined shape-specific
updateIntertia function.

var Rectangle = function (center, width, height, mass, friction,
restitution) {
 RigidShape.call(this, center, mass, friction, restitution);
 this.mType = "Rectangle";
 this.mWidth = width;
 this.mHeight = height;
 //...indetical to previous project
 this.updateInertia();
};

Modify the updateUIEcho Function

Since the engine has become more powerful and flexible, you want the UI to display the
corresponding attributes and allow the user to control these for testing purposes. Modify
the updateUIEcho function in the Core.js file to print out all the options of user control.

var updateUIEcho = function () {
 document.getElementById("uiEchoString").innerHTML =
 "<p>Selected Object::</p>" +
 "<ul style=\"margin:-10px\">" +
 "Id: " + gObjectNum + "" +
 "Center: " + mAllObject[gObjectNum].mCenter.x.toPrecision(3) +
 "," + mAllObject[gObjectNum].mCenter.y.toPrecision(3) + "" +
 �"Angle: " + mAllObject[gObjectNum].mAngle.toPrecision(3) + "" +
 "Velocity: " + mAllObject[gObjectNum].mVelocity.x.toPrecision(3) +
 "," + mAllObject[gObjectNum].mVelocity.y.toPrecision(3) + "" +
 �"AngluarVelocity: " + mAllObject[gObjectNum].mAngularVelocity.

toPrecision(3) + "" +
 �"Mass: " + 1 / mAllObject[gObjectNum].mInvMass.toPrecision(3) +

"" +

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

81

 �"Friction: " + mAllObject[gObjectNum].mFriction.toPrecision(3) +
"" +

 �"Restitution: " + mAllObject[gObjectNum].mRestitution.
toPrecision(3) + "" +

 "Movement: " + gEngine.Core.mMovement + "" +
 " <hr>" +
 "<p>Control: of selected object</p>" +
 "<ul style=\"margin:-10px\">" +
 "Num or Up/Down Arrow: Select Object" +
 "WASD + QE: Position [Move + Rotate]" +
 "IJKL + UO: Velocities [Linear + Angular]" +
 "Z/X: Mass [Decrease/Increase]" +
 "C/V: Frictrion [Decrease/Increase]" +
 "B/N: Restitution [Decrease/Increase]" +
 ",: Movement [On/Off]" +
 " <hr>" +
 "F/G: Spawn [Rectangle/Circle] at selected object" +
 "<p>H: Excite all objects</p>" +
 "<p>R: Reset System</p>" +
 "<hr>";
};

Modify the userControl function
For testing purposes, you want to update the UserControl.js file to allow the
modification of game engine attributes during runtime. Add the following cases to the
userControl function.

//... identical to previous project
if (keycode === 73) //I
 gEngine.Core.mAllObject[gObjectNum].mVelocity.y -= 1;
if (keycode === 75) //k
 gEngine.Core.mAllObject[gObjectNum].mVelocity.y += 1;
if (keycode === 74) //j
 gEngine.Core.mAllObject[gObjectNum].mVelocity.x -= 1;
if (keycode === 76) //l
 gEngine.Core.mAllObject[gObjectNum].mVelocity.x += 1;
if (keycode === 85) //U
 gEngine.Core.mAllObject[gObjectNum].mAngularVelocity -= 0.1;
if (keycode === 79) //O
 gEngine.Core.mAllObject[gObjectNum].mAngularVelocity += 0.1;
if (keycode === 90) //Z
 gEngine.Core.mAllObject[gObjectNum].updateMass(-1);
if (keycode === 88) //X
 gEngine.Core.mAllObject[gObjectNum].updateMass(1);
if (keycode === 67) //C
 gEngine.Core.mAllObject[gObjectNum].mFriction -= 0.01;

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

82

if (keycode === 86) //V
 gEngine.Core.mAllObject[gObjectNum].mFriction += 0.01;
if (keycode === 66) //B
 gEngine.Core.mAllObject[gObjectNum].mRestitution -= 0.01;
if (keycode === 78) //N
 gEngine.Core.mAllObject[gObjectNum].mRestitution += 0.01;
if (keycode === 188) //’
 gEngine.Core.mMovement = !gEngine.Core.mMovement;
if (keycode === 70) //f
 var r1 = new Rectangle(new Vec2(gEngine.Core.mAllObjects[gObjectNum].mCenter.x,
 gEngine.Core.mAllObjects[gObjectNum].mCenter.y),
 Math.random() * 30 + 10, Math.random() * 30 + 10,
 Math.random() * 30, Math.random(), Math.random());
if (keycode === 71) //g
 var r1 = new Circle(new Vec2(gEngine.Core.mAllObjects[gObjectNum].mCenter.x,
 gEngine.Core.mAllObjects[gObjectNum].mCenter.y),
 Math.random() * 10 + 20, Math.random() * 30,
 Math.random(), Math.random());
if (keycode === 72) { //H
 var i;
 for (i = 0; i < gEngine.Core.mAllObject.length; i++) {
 if (gEngine.Core.mAllObject[i].mInvMass !== 0)
 gEngine.Core.mAllObject[i].mVelocity =
 new Vec2(Math.random() * 20 - 10, Math.random() * 20 - 10);
 }
}
//... identical to previous project

Observation
Run the project to test your implementation. Create a few objects in the scene; you
can examine the attributes of your selected object. Notice that when you enable the
movement by pressing the comma (,) key, the objects with higher downward initial
velocity will drop faster because of the gravitational force or acceleration. Now create an
object and set its initial y-velocity to negative. Observe that the object will move upwards
until the y-component velocity reaches zero, and then it will start to fall downwards as a
result of gravitational acceleration. You can also change the object’s initial x-velocity and
observe the motion of a projectile. Another interesting case to try is to create a few objects
and excite them by pressing the H key. Observe how all the objects move according to
their own velocities. You may see objects that move beyond the scene boundary. This is
because at this point the physics engine does not support collision resolution. This will be
remedied in the next section.

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

83

Resolving Interpenetrations
In the context of game engines, collision resolution refers to the process that determines
how objects respond after a collision, including strategies to resolve the potential
interpenetration situations that may occur. Notice that there are no collision resolution
processes in the real world where interpenetration of rigid objects cannot occur since
collisions are strictly governed by the law of physics. Resolutions of interpenetrations
are relevant only in a virtual simulated world, where movements are approximated and
impossible conditions may occur but can be resolved in ways that are desirable to the
developer or designer.

In general, there are three common methods for responding to interpenetrating
collisions. The first is to simply displace the objects from one another by the depth of
penetration. This is known as the Projection Method since you simply move an object’s
position so that it no longer penetrates the other. While this is simple to calculate and
implement, it lacks stability when many objects are in proximity and resting upon
one another. The simple resolving of one pair of interpenetrating objects can result in
new penetrations with other nearby objects. However, this is still a common method
for simple engines or games with simple object interaction rules. For example, in the
Pong game, the ball never comes to rest on the paddles or walls and continuously
remains in motion by bouncing off any object it collides with. The Projection Method is
perfect for resolving collisions for these types of simple object interactions. The second
method is known as the Impulse Method, which uses object velocities to compute and
apply impulses to initiate the objects to move in the opposite directions at the point of
collision. This method tends to slow down colliding objects rapidly and converges to
relatively stable solutions. This is because impulses are computed based on the transfer
of momentum, which in turn has a damping effect on the velocities of the colliding
objects. The third method is known as the Penalty Method, which models the depth of
object interpenetration as the degree of compression of a spring and approximates an
acceleration to apply forces to separate the objects. This last method is the most complex
and challenging to implement.

For your engine, you will be combining the strengths of the Projection and Impulse
Methods. The Projection Method will be used to separate the interpenetrating objects,
while the Impulse Method will be used to apply small impulses to reduce the object
velocities in the direction that caused the interpenetration. As described, the simple
Projection Method can result in an unstable system, such as objects that sink into each
other when stacked. You will overcome this instability by implementing a relaxation loop
where interpenetrated objects are separated incrementally via repeated applications
of the Projection Method in a single update cycle. With a relaxation loop, the number
of times that the Projection Method is applied is referred to as the relaxation iterations.
During each relaxation iteration, the Projection Method reduces the interpenetration
incrementally by a fixed percentage of the total penetration depth. For example, by
default the engine sets relaxation iterations to 15, and during each relaxation iteration
the interpenetration is reduced by 80%. This means that within one update function call,
after the movement integration approximation, the collision detection and resolution
procedures will be executed 15 times. While costly, the repeated incremental separation
ensures a stable system under normal circumstances. However, the 15 relaxation iterations
may not be sufficient when the system undergoes sudden large changes. For example,

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

84

if a large number of significantly overlapped objects, e.g., 100 overlapped circles, were
to be added to the system simultaneously, then the 15 relaxation iterations may not be
sufficient. This situation can be resolved by increasing the relaxation iterations at the
cost of a loss in performance. From our experience, under normal operation conditions,
a relaxation iteration of around 15 is a balanced trade-off between accuracy and
performance.

The Positional Correction Project
This project will guide you through the implementation of the relaxation iterations to
incrementally resolve inter-object interpenetrations. You are going to use the collision
information computed from the previous chapter to correct the position of the colliding
objects. You can see an example of this project running in Figure 4-4. The source code to
this project is defined in the Positional Correction Project folder.

Project Goals:

•	 To appreciate the importance of the computed collision
information.

•	 To implement positional correction with relaxation iteration.

•	 To understand and experience implementing interpenetration
resolution.

Figure 4-4.  Running the Positional Correction Project

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

85

Update the Physics Engine
This project will only modify Physics.js because this is the file that implements the
details of collisions.

	 1.	 Edit Physics.js and add in the following variables to support
the correction of positions incrementally via the relaxation
iterations.

//...identical to previous project
gEngine.Physics = (function () {
 var mPositionalCorrectionFlag = true;
 // number of relaxation iteration
 var mRelaxationCount = 15;
 // percentage of separation to project objects
 var mPosCorrectionRate = 0.8;

 //... identical to previous project

 var mPublic = {
 collision: collision,
 mPositionalCorrectionFlag: mPositionalCorrectionFlag
 };
 return mPublic;
}());

	 2.	 Modify the collision function to include an enclosing
relaxation iteration loop over the collision detection loop.

var collision = function () {
 var i, j, k;
 for (k = 0; k < mRelaxationCount; k++) {
 for (i = 0; i < gEngine.Core.mAllObject.length; i++) {
 //...identical to previous project
 }
 }
};

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

86

	 3.	 Create a new function in gEngine.Physics and name
it positionalCorrection. This function reduces the
overlaps between objects by the predefined constant
mPosCorrectionRate with a default value of 80%. To properly
support object momentum in the simulation, the amount in
which each object moves is governed by their corresponding
masses. For example, upon the collision of two objects, the
object with a larger mass will generally move by an amount
that is less than the object with smaller mass. Notice that
the direction of movement is along the collision normal as
defined in the collisionInfo structure.

var positionalCorrection = function (s1, s2, collisionInfo) {
 var s1InvMass = s1.mInvMass;
 var s2InvMass = s2.mInvMass;

 var num = �collisionInfo.getDepth() /
(s1InvMass + s2InvMass) * mPosCorrectionRate;

 var correctionAmount = collisionInfo.getNormal().scale(num);

 s1.move(correctionAmount.scale(-s1InvMass));
 s2.move(correctionAmount.scale(s2InvMass));
};

	 4.	 Create another function and name it resolveCollision. This
function receives two RigidShape objects as parameter, and
determines if the collision detected should be positionally
corrected. As pointed out previously, objects with infinite
mass, or zero inversed mass, are stationary and will not
participate in positional correction after a collision.

var resolveCollision = function (s1, s2, collisionInfo) {
 if ((s1.mInvMass === 0) && (s2.mInvMass === 0))
 return;
 // correct positions
 if(gEngine.Physics.mPositionalCorrectionFlag)
 positionalCorrection(s1, s2, collisionInfo);
};

	 5.	 Finally, you should call the newly defined resolveCollision
function from within the collision function when a collision
is detected. You can invoke resolveCollision after calling
the drawCollisionInfo function.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

87

var collision = function () {
 var i, j, k;
 var collisionInfo = new CollisionInfo();
 for (k = 0; k < mRelaxationCount; k++) {
 //....identical to previous project
 drawCollisionInfo(collisionInfo, gEngine.Core.mContext);
 �resolveCollision(�gEngine.Core.mAllObject[i],

gEngine.Core.mAllObject[j],
collisionInfo);

 //... identical to previous project

Note that the drawCollisionInfo function is a drawing
operation and, strictly speaking, does not belong within the
update loop in the collision function. Additionally, this
draw operation is invoked within the core of relaxation loop
iterations, which is computationally expensive. Fortunately,
this function is for debugging purposes and will be
commented out after this project.

Observation
Run the project to test your implementation. Create a few objects in the scene.
Notice that with the M key, you can control whether the newly created objects overlap.
Now, reset the scene with the R key, and then create some objects followed by enabling
movement. You will notice small amounts of interpenetration happening and, when left
alone, objects may begin to sink below the bottom of the scene. Select any of the objects
to notice the ever-increasing negative y-velocity component. During each update cycle,
all objects’ y-velocities are changed by gravitational acceleration, and yet the positional
correction relaxation iterations are preventing them from moving downwards. By
disabling the movement, you will notice overlaps disappearing completely, as positional
correction will not be countered anymore. The ever-increasing y-velocities of the
objects are a serious concern when attempting to create a stable system. Continuously
increasing/decreasing numbers will result in unstable and unpredictable behavior, as
witnessed in the objects sinking below the bottom boundary. In the following sections
you will learn about the Impulse Method to further improve collision resolutions.

Resolving Collisions
With a functioning positional correction system, you can now begin implementing
collision resolution and support behaviors that resemble real-world situations. In order to
focus on the core functionality of a collision resolution system, including understanding
and implementing the Impulse Method and ensuring system stability, you will continue
to work with axis-aligned rigid shapes. The complications associated with angular
impulse resolutions will be examined in the next section, after the mechanics behind
linear impulse resolution are fully understood and implemented.

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

88

In the following discussion, the rectangles and circles will not rotate as a response to
collisions. However, the concepts and implementation described generalize to support
rotational collision responses. This project is designed to help you understand the basic
concepts of impulse-based collision resolution with axis-aligned shapes.

Formulating the Impulse Method
You will formulate the solution for the Impulse Method by first reviewing how a circle can
bounce off of a wall and other circles in a perfect world. This will subsequently be used
to derive an approximation for an appropriate collision response. Note that the following
discussion focuses on deriving the formulation for the Impulse Method and does not
attempt to present a review on the fundamentals of Newtonian Mechanics. Here is a brief
review of some of the relevant terms.

•	 Mass is the amount of matter in an object, or how dense an object is.

•	 Force is any interaction or energy imparted on an object that will
change the motion of that object.

•	 Relative Velocity is the difference in velocity between two
travelling shapes.

•	 Coefficient of Restitution is the ratio of relative velocity after and
before a collision. This is a measure of how much of the kinetic
energy remains for the object to rebound from one another, or
bounciness.

•	 Coefficient of Friction is a number that describes the ratio of
the force of friction between two bodies. In your very simplistic
implementation, friction is applied directly to slow down linear
motion or rotation.

•	 Impulse is accumulated force over time that can cause a change
in the velocity, for example, resulting from a collision.

Decomposing the Velocity in a Collision
Figure 4-5 illustrates a circle A in three different stages. At stage 1 the circle is traveling at
velocity



V1 towards the wall on its right. At stage 2 the circle is colliding with the wall. At

stage 3 the circle has been reflected and is traveling away from the wall with velocity


V2 .

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

89

Mathematically, this collision and its response can be described by decomposing the
initial velocity,



V1 , into the components that are parallel, or tangent T


, and perpendicular,

or normal N̂ , to the colliding wall. As seen in the following equation.

•	
  

V V VN N T T1 1 1= ×() + ×()ˆ ˆ ˆ ˆ

In a perfect world with no friction and no loss of kinetic energy, after the collision,
the component along the tangent direction will not be affect while the normal component
will be simply reversed. In this way, the reflected vector



V2 can be expressed as a linear

combination of normal and tangent components of


V1 as followed.

•	
  

V V N N V T T2 1 1= - ×() + ×()ˆ ˆ ˆ ˆ

Notice the negative sign in front of the N̂ component. You can see in Figure 4-5, that

the N̂ component for vector


V2 points in the opposite direction of that of


V1 as a result

of the collision. Notice also that the tangent component, T̂ , is still pointing in the same

direction since it is parallel to the of the wall and is unaffected by the collision. This
demonstrates a vector reflection.

Relative Velocity of Colliding Shapes
This decomposition of vectors into the normal and tangent directions of the collision also
applies in the general cases when the colliding shapes are both in motion. For example
Figure 4-6 illustrates two traveling circle shapes, A and B, colliding.

Figure 4-5.  Collision Between a Circle and a Wall in a Perfect World

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

90

In the case of Figure 4-6, before the collision, shape A is traveling with velocity


VA1 while

shape B with velocity


VB1 . The normal direction of the collision, N


, is defined to be the

vector between the two circle centers and the tangent direction of the collision, T


, is the

vector that is tangential to both of the circles at the point of collision. To resolve this collision,

the velocities for shape A and B after the collision,


VA2 and


VB2 , must be computed.

The relative velocity between shapes A and B is defined as follows.

•	
  

V V VAB A B1 1 1= -

The collision vector decomposition can now be applied to the normal direction of
the relative velocity where the relative velocity after the collision is



VAB2 .

•	
� �� �
V N e V NAB AB2 1× = - ×æ

è
ç

ö
ø
÷ 	 (1)

The coefficient of restitution, e, models the real-world situation where some kinetic
energy is changed to some other form of energy during the collision. Notice that all
variables on the right-hand-side of Equation (1) are defined, as they are known at the
time of collision, and that the normal component of the relative velocity after the collision
of shapes A and B,



VAB2 , is also defined. It is important to remember that,

•	
  

V V VAB A B2 2 2= - .

You are now ready to approximate


VA2 and


VB2 , the velocities of the colliding shapes

after the collision.

Figure 4-6.  Collision Between Two Circles

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

91

Approximating the Impulse Response
Accurately describing a collision involves complex considerations including factors like
energy changing form, or frictions resulting from different material properties, etc.
Without considering these advanced issues, a simplistic description of a collision that
occurs on a shape is, a constant mass object changing its velocity from



VA1 to


VA2 after

contact with another object. Conveniently, this is the definition of an impulse, as can be
seen in the following.

•	 j m V m VA A A A= -
 

2 1

Or, when solving for


VA2 ,

•	
 

V V
j

mA A
A

2 1= +

Take a step back from the math and think about what this formula states. It makes
intuitive sense. It states that the change in velocity is inversely proportional to the mass of
a shape. In other words, the more mass a shape has, the less its velocity will change after a
collision. The Impulse Method implements this observation, and for the normal
component, it defines the velocities after a collision for shapes A and B,



VA2 and


VB2 , to

be as followed. In this case, m
A
, and m

B
 are the masses of Shapes A and B.

•	
� �� �
V N V N

j

mA A
N

A
2 1× = × +

•	
� �� �
V N V N

j

mB B
N

B
2 1× = × -

Subtracting the above two equations computes the normal component of relative
velocity.

•	
� � � �� �
V V N V V N j

m mA A B N
A B

2 2 1 1

1 1
-()× = -()× + +

æ

è
ç

ö

ø
÷B

Recall that,
 

V VA B2 2-() is simply


VAB2 , and that,
 

V VA B1 1-() is


VAB1 , this equation

simplifies to the following.

•	
� �� �
V N V N j

m mAB AB N
A B

2 1

1 1
× = × + +

æ

è
ç

ö

ø
÷

Substituting Equation (1) to the left-hand-side and the following equation can be
derived.

•	 - ×æ
è
ç

ö
ø
÷ = × + +

æ

è
ç

ö

ø
÷e V N V N j

m mAB AB N
A B

� �� �

1 1

1 1

Collecting terms, and solving the formula for j
N

, the impulse in the normal direction,
gives you the following.

•	 j
e V N

m m

N

AB

A B

=
- +() ×æ

è
ç

ö
ø
÷

+

1

1 1

1

� �

	 (2)

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

92

Finally, the impulse in the tangent direction, j
T
, can be derived in a similar manner

the results of which follow.

•	 j
e V T f

m m

T

AB

A B

=
- +() ×æ

è
ç

ö
ø
÷

+

1

1 1

1

� �

	 (3)

The coefficient of friction, f, is a simplistic approximation of friction.

The Steps for Resolving Collisions
You are now ready to modify the resolveCollision function in the Physics.js file
to implement the collision resolution between two colliding shapes. The resolution
procedure requires access to the two RigidShape objects and the corresponding collision
information. The following are the detailed steps involved:

•	 Step A: make sure at least one of the colliding shapes is not static
(an inverse mass that is not equal to 0).

•	 Step B: invoke the positional correction function to snap the
shapes apart by a percentage of the interpenetration depth. Recall
that in your implementation, the colliding shapes will be pushed
apart by a default of 80% of the interpenetration depth.

•	 Step C: compute the relative velocity between the two shapes. As
presented in the derivation, the relative velocity is essential for
computing the impulse in the normal and tangent direction.

•	 Step D: compute the component of the relative velocity that is in
the collision normal direction. This component indicates how
rapidly the two shapes are moving toward or away from each
other. A positive value indicates that the shapes are moving away
from each other and impulse response will not be necessary.

•	 Step E: compute the impulse in the normal direction based on
results from the previous step, restitution (bounciness), and the
masses of the colliding shapes.

•	 Step F: compute the impulse in the tangent direction.

•	 Step G: apply impulses to modify the normal and tangent
components of the shapes’ velocities to simulate the reflection of
both shapes after the collision as well as friction.

The normal and tangent components of the impulse accomplish distinct purposes in
simulating the results of a collision. The normal component simulates the bounciness of
shapes, while the tangent component handles the friction. As illustrated in Figure 4-7,
when a ball is tossed from the left towards the right, its initial spinning direction will
determine the motion after the collision with the floor. On the left of Figure 4-7 the ball
has an initial counter-clockwise spin while the ball on the right of the figure has an initial
clockwise spin. At the point of collision with the floor, the tangent impulse component

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

93

modified by the respective friction force will either reduce or increase the right-ward
linear velocity of the ball depending on its initial spinning direction. This particular
functionality will be implemented in the following section on rotational collision
response. However, take note that regardless of the objects rotation, upon collision the
heights of the balls, after the collision, are equal to each other. This is a result of friction
only affecting the tangent impulse component while the restitution affects the normal
impulse component.

The Collision Impulse Project
This project will guide you through implementing the outlined steps to create a function
that resolves the collision between axis-aligned shapes using the Impulse Method. You
can see an example of this project running in Figure 4-8. The source code to this project is
defined in the Collision Impulse Project folder.

Project Goals:

•	 To understand the details of Impulse Method computations.

•	 To build a system that resolves the collision between colliding
shapes.

Figure 4-7.  Tangent Component Impulse and Friction

Figure 4-8.  Running the Collision Impulse Project

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

94

Modify the Physics Engine Component
To properly support collision resolution, you only need to modify the physics.js file to
implement the previously outlined steps.

	 1.	 Open the Physics.js file and go to the resolveCollision
function.

	 2.	 After positional correction, you will begin the implementation
by computing the collision normal, the relative velocity,
the coefficient of restitution and the friction of the colliding
shapes.

var resolveCollision = function (s1, s2, collisionInfo) {
 if ((s1.mInvMass === 0) && (s2.mInvMass === 0))
 return;

 // correct positions
 if (gEngine.Physics.mPositionalCorrectionFlag)
 positionalCorrection(s1, s2, collisionInfo);

 var n = collisionInfo.getNormal();
 var v1 = s1.mVelocity;
 var v2 = s2.mVelocity;
 var relativeVelocity = v2.subtract(v1);

 // Relative velocity in normal direction
 var rVelocityInNormal = relativeVelocity.dot(n);

 // if objects moving apart ignore
 if (rVelocityInNormal > 0)
 return;

 // compute and apply response impulses for each object
 �var newRestituion = Math.min(s1.mRestitution,

s2.mRestitution);
 var newFriction = Math.min(s1.mFriction, s2.mFriction);
 //... details in the following steps
};

	 3.	 Compute the impulse in the direction of the collision normal
based on Equation (2).

//...continue from the previous step
// Calc impulse scalar
var jN = -(1 + newRestituion) * rVelocityInNormal;
jN = jN / (s1.mInvMass + s2.mInvMass);
//... details in the next step

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

95

	 4.	 Apply the impulse to the velocities of the colliding shapes.

//...continue from the previous step
//impulse is in direction of normal (from s1 to s2)
var impulse = n.scale(jN);
// impulse = F dt = m * v
// v = impulse / m
s1.mVelocity = s1.mVelocity.subtract(impulse.scale(s1.mInvMass));
s2.mVelocity = s2.mVelocity.add(impulse.scale(s2.mInvMass));
//... details in the next step

	 5.	 Compute the direction that is tangent to the collision normal.

//... continue from the previous step
var tangent = �relativeVelocity.subtract(

n.scale(relativeVelocity.dot(n)));
// relativeVelocity.dot(tangent) should less than 0
tangent = tangent.normalize().scale(-1);
//... details in the next step

	 6.	 Compute the impulse, jT, in the direction that is tangent to
the collision normal based on Equation (3), and apply the
impulse to the velocities of the colliding shapes.

//...continue from the previous step
var jT = �-(1 + newRestituion) *

relativeVelocity.dot(tangent) * newFriction;
jT = jT / (s1.mInvMass + s2.mInvMass);

// friction should be less than force in normal direction
if (jT > jN) jT = jN;
//impulse is from s1 to s2 (in opposite direction of velocity)
impulse = tangent.scale(jT);

s1.mVelocity = s1.mVelocity.subtract(impulse.scale(s1.mInvMass));
s2.mVelocity = s2.mVelocity.add(impulse.scale(s2.mInvMass));

Defining an Initial Rectangle in Mygame.js
You need to modify the Mygame.js file to define an initial rectangular RigidShape object
for testing purposes. Edit Mygame.js and add the following code to define a stationary
rectangle with infinite mass.

function MyGame() {
 //...identical to previous project
 var r2 = new Rectangle(new Vec2(200, 400), 400, 20, 0, 1, 0);
 //...identical to previous project
}

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

96

Observation
You should test your implementation in two ways. First, ensure that moving shapes
collide and behave naturally. Second, ensure the collision resolution system is stable
when there are many shapes that are in close proximity. You also can test the collision
resolution between regular shapes and shapes with infinite mass.

Notice that the scene now has a platform-like shape. This is a shape with infinite
mass that can be tested for collision resolution with other regular moving shapes. Now
make sure movement is switched on with the comma (,) key and create several rectangle
and circle shapes with the F and G keys. Notice that the shapes fall gradually to the floor
and their motions stop with a slight rebound. This is a clear indication that the base case
for Euler Integration, collision detection, and resolution all are operating as expected.
Press the H key to excite all shapes. Notice the wandering shapes interact properly
with the platforms and the walls of the game world with soft bounces and no apparent
interpenetrations. In addition, pay attention to the apparent transfer of energy during
collisions. Try adjusting the shape attributes, for example, the mass, and observe what
happens when two shapes with very different masses collide. Notice that the shape with
more mass does not change its trajectory much after the collision. Lastly, notice that the
shapes do not rotate as a result of collision. That is because your current implementation
only considers the linear velocity of the shapes. In the next project you will improve the
resolution function to consider angular velocity changes as a result of collisions.

The stability of the system can be tested by increasing the number of shapes in the
scene. The relaxation loop count of 15 continuously pushes interpenetrating shapes apart
by 80% of the interpenetration depth during each iteration, in addition to the impulse
correction. For example, you can switch off movement and positional corrections with
the comma and M keys and create multiple, e.g., 10 to 20, overlapping shapes at the exact
same position. Now enable position correction with the M key and notice that, after a
short pause, the shapes will appear again with no interpenetrations.

Supporting Rotation in Collision Response
Now that you have a concrete understanding and have successfully implemented the
Impulse Method for collision responses with linear velocities, it is time to integrate
the support for the more general case of rotations. Before discussing the details, it is
helpful to relate the relevant correspondences of Newtonian linear mechanics to that of
rotational mechanics. That is, linear displacement corresponds to rotation, velocity to
angular velocity, force to torque, and mass to rotational inertia. From basic mechanics,
rotational inertia is also known as the angular mass. It determines the torque needed for
a desired angular acceleration about a rotational axis. The following discussion focuses
on integrating rotation into the Impulse Method formulation and does not attempt to
present a review on Newtonian Mechanics for Rotation. Conveniently, integrating proper
rotation into the Impulse Method does not involve derivation of any new algorithm. All
that is required is the formulation of impulse responses with proper consideration of
rotational attributes.

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

97

Integrating Newtonian Mechanics for Rotation
The key to integrating rotation into the Impulse Method formulation is recognizing the
fact that the linear velocity you have been working with, e.g., velocity



VA1 of shape A, is
actually the velocity of the shape at its center location. In the absence of rotation, this
velocity is constant throughout the shape and can be applied to any position. However, as
illustrated in Figure 4-9, when the movement of a shape includes angular velocity,



wA1, its
linear velocity at a position P,



VAP1, is actually a function of the relative position
between the point and the center of rotation of the shape,



RAP .

•	
 





V V RAP A A AP1 1 1= + ´()w

Figure 4-9.  Linear Velocity at a Position in the Presence of Rotation

■■ Note  Angular velocity is a vector that is perpendicular to the linear velocity. In this
case, as linear velocity is defined on the X/Y plane,



w is a vector in the z direction since
objects rotate around their center of mass. For simplicity, in your implementation,



w will be
stored as a simple scalar representing the z-component magnitude of the vector.

Formulating Impulse Method with Rotation
Similar to the case for linear impulse response, it is also true that change in angular
velocity after a collision is inversely proportional to the rotational inertia. As illustrated in
Figure 4-10, for shapes A and B with rotational inertia of I

A
 and I

B
; and initial angular

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

98

velocities of


wA1 and


wB1; after a collision the angular velocities,


wA2 and


wB2, are
defined as follows.

•	
� � � �� �
w wA A AP

N

A
AP

T

A

R N
j

I
R T

j

I2 1= + ´æ
è
ç

ö
ø
÷ + ´æ

è
ç

ö
ø
÷

•	
� � � �� �
w wB B BP

N

B
BP

T

B

R N
j

I
R T

j

I2 1= + ´æ
è
ç

ö
ø
÷ + ´æ

è
ç

ö
ø
÷

Where


RAP and


RBP are positional vectors from each shape’s center of rotation to

the point of collision, P; N


 and T


 are the collision normal and tangent.

Figure 4-10.  Angular Velocities of two Colliding Shapes

Recall that the Impulse Method formulation is derived based on decomposing the
relative velocity after the collision,

  

V V VAB A B2 2 2= - , into normal and tangent directions.
With

  

V V VAB A B1 1 1= - , being the relative velocity from before the collision, Equation (1)
from previous section is repeated in the following.

•	
� �� �
V N e V NAB AB2 1× = - ×æ

è
ç

ö
ø
÷

Note that this equation was derived before the considerations for rotation and the
formulation assumes that the velocity for each shape is constant over the entire shape.
In order to support rotation, this equation must be generalized and solved at the point of
collision, P.

•	
� �� �
V N e V NABP ABP2 1× = - ×æ

è
ç

ö
ø
÷ (4)

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

99

In this case,


VABP1 and


VABP2 are relative velocities at collision position P, from before
and after the collision where the following is still true for these vectors.

•	
  

V V VABP AP BP1 1 1= -

•	
  

V V VABP AP BP2 2 2= -

As previously derived, it is now possible to substitute the following equations
together with the definition of the relative vectors into Equation (4) and solve for the
impulse, j.

•	
 





V V RAP A A AP2 2 2= + ´()w

•	
 





V V RBP B B BP2 2 2= + ´()w

•	
 

V V
j

mA A
A

2 1= +

•	
 

V V
j

mB B
B

2 1= +

•	
� � � �� �
w wA A AP

N

A
AP

T

A

R N
j

I
R T

j

I2 1= + ´æ
è
ç

ö
ø
÷ + ´æ

è
ç

ö
ø
÷

•	
� � � �� �
w wB B BP

N

B
BP

T

B

R N
j

I
R T

j

I2 1= + ´æ
è
ç

ö
ø
÷ + ´æ

è
ç

ö
ø
÷

Though tedious, the simplification algebra is relatively straightforward, and the
resulting impulse in the collision normal direction, j

N
, can be expressed as followed.

•	
j

e V N

m m

R N

I

R N
N

AB

A B

AP

A

BP

=
- +() ×æ

è
ç

ö
ø
÷

+ +
´æ

è
ç

ö
ø
÷

+
´æ

è
ç

1

1 1

1

2

�

� �

�

� � öö
ø
÷
2

IB

	 (5)

Similar to the case in linear response, the impulse in the tangent direction, j
T
, can be

derived and expressed as followed.

•	 j
e V T f

m m

R T

I

R T
T

AB

A B

AP

A

BP

=
- +() ×æ

è
ç

ö
ø
÷

+ +
´æ

è
ç

ö
ø
÷

+
´æ

è

1

1 1

1

2

�

� �

�

� �

çç
ö
ø
÷
2

IB

	 (6)

Once again, the coefficient of friction, f, is a simplistic approximation of friction. In
addition, note that since



RAP and N
 are vectors in the X/Y plane, in implementation

� �
R NAP ´ is a scalar representing the z-component magnitude of the resulting vector.

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

100

You are now ready to implement Impulse Method collision response with support
for rotation, or angular impulse.

The Angular Impulse Project
This project will guide you through the implementation of angular impulse. You can
see an example of this project running in Figure 4-11. The source code to this project is
defined in the Angular Impulse Project folder.

Figure 4-11.  Running the Angular Impulse Project

Project Goals:

•	 To understand the details of angular impulse

•	 To integrate rotation into your collision resolution

•	 To complete the physics component

To implement angular impulse, in the resolve collision function, you only need to
modify the Physics.js file to implement the generalized formulation derived.

	 1.	 Edit the Physics.js file and go to resolveCollision function
that you have created in the previous projects.

	 2.	 It is important to compute the velocities at the collision
position,



VAP1 and


VBP1. In the following, r1 and r2 are the


RAP and


RAP positional vectors for shapes A and B. Notice
that in the implementation, the collision position, P, is simply
the mStart position in the collisionInfo. The variables v1
and v2 are the actual



VAP1 and


VBP1 vectors.

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

101

var resolveCollision = function (s1, s2, collisionInfo) {
 //..identical to previous project
 var n = collisionInfo.getNormal();
 //the direction of collisionInfo is always from s1 to s2
 �//but the Mass is inversed, so start scale with s2 and end

scale with s1
 �var start = collisionInfo.mStart.scale(s2.mInvMass /

(s1.mInvMass + s2.mInvMass));
 �var end = collisionInfo.mEnd.scale(s1.mInvMass /

(s1.mInvMass + s2.mInvMass));
 var p = start.add(end);
 //r is vector from center of shape to collision point
 var r1 = p.subtract(s1.mCenter);
 var r2 = p.subtract(s2.mCenter);

 //newV = V + mAngularVelocity cross R
 var v1 = �s1.mVelocity.add(new Vec2(-1 * s1.mAngularVelocity * r1.y,
 s1.mAngularVelocity * r1.x));
 var v2 = �s2.mVelocity.add(new Vec2(-1 * s2.mAngularVelocity * r2.y,
 s2.mAngularVelocity * r2.x));
 var relativeVelocity = v2.subtract(v1);

 // Relative velocity in normal direction
 var rVelocityInNormal = relativeVelocity.dot(n);

 //..details in the next step
};

	 3.	 The next step is to compute the impulse in the collision
normal direction, j

N
, according to Equation (5).

//...identical to previous project
//...continue from previous step
var newFriction = Math.min(s1.mFriction, s2.mFriction);
//R cross N
var R1crossN = r1.cross(n);
var R2crossN = r2.cross(n);

// Calc impulse scalar
// Reference: http://www.myphysicslab.com/collision.html
var jN = -(1 + newRestituion) * rVelocityInNormal;
jN = jN / (s1.mInvMass + s2.mInvMass +
 R1crossN * R1crossN * s1.mInertia +
 R2crossN * R2crossN * s2.mInertia);
//...details in the next step

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

102

	 4.	 Now, update the angular velocity according to the Impulse
Method formulation introduced.

s1.mAngularVelocity -= R1crossN * jN * s1.mInertia;
s2.mAngularVelocity += R2crossN * jN * s2.mInertia;
//...details in the next step

	 5.	 Now, compute the impulse in the collision tangent direction,
j

T
, according to Equation (6).

//...identical to previous project
//relativeVelocity.dot(tangent) should less than 0
tangent = tangent.normalize().scale(-1);

var R1crossT = r1.cross(tangent);
var R2crossT = r2.cross(tangent);

var jT = �-(1 + newRestituion) *
relativeVelocity.dot(tangent) *
newFriction;

jT = jT / (s1.mInvMass + s2.mInvMass +
 R1crossT * R1crossT * s1.mInertia +
 R2crossT * R2crossT * s2.mInertia);
//...identical to previous project

	 6.	 Finally, update the angular velocity based on the tangent
direction impulse

s1.mAngularVelocity -= R1crossT * jT * s1.mInertia;
s2.mAngularVelocity += R2crossT * jT * s2.mInertia;

Observation
Run the project to test your implementation. The shape that you insert into the scene
should now be rotating, colliding, and responding in fashions that are similar to the
real world. A circle shape rolls around when other shapes collide with them, while a
rectangle shape should rotate naturally upon collision. The interpenetration between
shapes should not be visible under normal circumstances. However, two reasons can
still cause observable interpenetrations. First, a small relaxation iteration, or second,
your CPU is struggling with the number of shapes. In the first case, you can try increasing
the relaxation iteration to prevent any interpenetration. Now your 2D physics engine
implementation is completed. You can continue testing by creating additional shapes to
observe when your CPU begins to struggle with keep up real time performance.

Chapter 4 ■ Completing the Physics Engine and Rigid Shape Component

103

Summary
This chapter has guided you through understanding the foundation behind a working
physics engine. A step-by-step derivation of the relevant formulae for the simulations
followed by a detailed guide to the building of a functioning system. You have computed
the movement of shapes, resolved interpenetrations after collisions, implemented
resolution based on the Impulse Method for shapes both linearly and rotationally. Now
that you have completed your physics engine, you can integrate the system into almost
any 2D game engine. Additionally, you can test your implementation by supporting other
shapes. You can also carefully examine the system and identify potentials for optimization
and further abstractions. Many improvements to the physics engine are still possible.

105© Michael Tanaya, Huaming Chen, Jebediah Pavleas and Kelvin Sung 2017
M. Tanaya et al., Building a 2D Game Physics Engine, DOI 10.1007/978-1-4842-2583-7_5

CHAPTER 5

Summarizing the Physics
Engine

Congratulations! You have learned the basic ideas and concepts behind and completed
the implementation of a 2D physics engine. This chapter will summarize all of your work
done from Chapter 1 to 4, what you should understand and take away from this book, and
highlight improvements or future explorations on the physics engine that you have created.

This chapter begins by summarizing all of the physics engine theories and concepts
that you have learned and used throughout the book. Next, a detailed list of source code
files, and the associated functions that you have written are presented, serving as a simple
“readme” file. Lastly, further topics you can explore and possibly implement in your physics
engine will be presented as a starting point for your future endeavors with game physics
engines. This chapter will also include a simple project serving as the final and complete
functionality and features testing of your engine. You can follow the project guide on setting
up and running the simulation, or be creative and set up your own test cases.

The Concepts and Theories
This book is designed to guide you to build your own physics simulation. As such, all
topics introduced relate to the building of such a system.

•	 Rigid Shape - A primitive that does not change its shape during
physical interaction. In order to support efficient interaction
simulation, these are usually simple geometric shapes, e.g., circles
and rectangles. A rigid shape has its own attributes that support
physics simulation such as mass, width, height, center of gravity,
inertia, friction, restitution, etc.

•	 Engine Loop - A continuous running loop that updates the
object states, invokes the calculations of inter-object interactions,
and renders the objects. The engine loop must cycle through
all operations and maintain a real-time performance. By
implementing a fixed time step update in the loop, it becomes
straightforward to simulate movement integration and maintain a
deterministic game state.

http://dx.doi.org/10.1007/978-1-4842-2583-7_1
http://dx.doi.org/10.1007/978-1-4842-2583-7_4

Chapter 5 ■ Summarizing the Physics Engine

106

•	 Collision Detection - An algorithm to determine if objects have
overlapped and/or interpenetrated other objects.

•	 Broad Phase Method - An optimization for collision detection by
exploiting the proximity of objects. Axis-aligned bounding boxes
are used by the engine to reduce the overhead of invoking actual
collision detection algorithms.

•	 Separating Axis Theorem - One of the most popular algorithms
for detecting collisions between general convex shapes in 2D. It
is typically preceded with an initial pass of a broad phase method
to improve its overall performance. This algorithm can detect
collisions between axis-aligned as well as rotated shapes.

•	 Collision Information - The information describing the details
of a collision including interpenetration depth, normal direction
that caused the interpenetration, and beginning and end of an
interpenetration. This information is essential for resolving a
collision.

•	 Symplectic Euler Integration - A method of approximating
integrals based on initial values. This engine uses the Symplectic
Euler Integration to approximate an object’s new linear and
rotational velocities, and its new position.

•	 Positional Correction - The process of separating two
interpenetration objects using collision information collected
during collision detection.

•	 Relaxation Loop - An iterative loop in the core of the physics
engine that repeatedly and incrementally apply positional
correction on interpenetrating objects in an attempt to remove
the occurrence of colliding object interpenetration.

•	 Impulse Method - A largely simplified, physically-based
collision response formulation that is capable of capturing object
bounciness and friction considerations during a collision.

•	 Collision Resolution - A process that determines how objects
should respond after a collision. When applying the Impulse
Method to resolve a collision, colliding objects receive new linear
and angular velocities.

The Engine Source Code
The following is the list of source code files and the associated functionality.

•	 Core.js

•	 Core engine loop

•	 Update function

Chapter 5 ■ Summarizing the Physics Engine

107

•	 Drawing function

•	 UI control

•	 Physics.js

•	 Collision detection

•	 Relaxation loop

•	 Positional correction

•	 Resolving collision

•	 CollisionInfo.js

•	 Collision information object

•	 Constructor and getter/setter

•	 Vec2.js

•	 2D vector calculation

•	 RigidShape.js

•	 Base class of rigid shape

•	 Constructor

•	 Update function

•	 Bounding box collision test for broad phase method support

•	 Rectangle.js & Circle.js

•	 Inherit from rigid shape base class

•	 Specific constructor for each

•	 Rotate function

•	 Draw function

•	 Move function

•	 Rectangle_collision.js & Circle_collision.js

•	 Collision detection functions

•	 Gather collision information

•	 UserControl.js

•	 User input controller

Chapter 5 ■ Summarizing the Physics Engine

108

•	 MyGame.js

•	 Simulation scene controller

•	 Index.html

•	 Script calling

•	 Initialize simulation scene

The Cool Demo Project
This project guides you in setting up the scene to test the functionality of your physics
engine implementation. You can see an example of this project running in Figure 5-1. The
source code to this project is defined in the A Cool Demo Project folder.

Project Goal:

•	 To test and engage with all the functionalities and features of the
physics engine

Modifying Simulation Scene
Let’s start by modifying the simulation scene:

	 1.	 Edit the MyGame.js file.

	 2.	 Replace all the code inside the MyGame constructor to create a
new scene for the simulation.

Figure 5-1.  Running the Cool Demo Project

Chapter 5 ■ Summarizing the Physics Engine

109

"use strict";
/* global height, width, gEngine */
function MyGame() {
}

	 3.	 In the MyGame constructor, create four platforms, with one
rotated for testing the angular movements.

//...continue from previous step
var r1 = new Rectangle(new Vec2(500, 200), 400, 20, 0, 0.3, 0);
r1.rotate(2.8);
var r2 = new Rectangle(new Vec2(200, 400), 400, 20, 0, 1, 0.5);
var r3 = new Rectangle(new Vec2(100, 200), 200, 20, 0);
var r4 = new Rectangle(new Vec2(10, 360), 20, 100, 0, 0, 1);
//...more in next step

	 4.	 Create 10 circle and rectangle objects with random attributes
to begin with the simulation.

//...continue from previous step
for (var i = 0; i < 10; i++) {
 �var r1 = new �Rectangle(

new Vec2(Math.random() * gEngine.Core.mWidth,
 Math.random() * gEngine.Core.mHeight / 2),
 Math.random() * 50 + 10, Math.random() * 50 + 10,
 Math.random() * 30, Math.random(), Math.random());
 �r1.mVelocity = new Vec2(�Math.random() * 60 - 30,

Math.random() * 60 - 30);
 r1 = new �Circle(

new Vec2(Math.random() * gEngine.Core.mWidth,
 Math.random() * gEngine.Core.mHeight / 2),
 Math.random() * 20 + 10, Math.random() * 30,
 Math.random(), Math.random());
 �r1.mVelocity = new� Vec2(Math.random() * 60 - 30,

Math.random() * 60 - 30);
}

Observation
You can see that there are no borders in the scene. This allows objects to fall off the screen
and not crowd the space. In this way you can continue to create new objects and observe
the simulation of object behaviors. You can also test the performance of your engine by
creating more objects at the beginning of the simulation. Note that this book provides
you with the basic understanding of creating your own physics engine. There is plenty
of room for improvements, ranging from choosing alternative algorithms, supporting
different features, to optimizing the efficiency of the calculations, etc. The next section
will point out some of the topics you could look into to improve your engine.

Chapter 5 ■ Summarizing the Physics Engine

110

Further Exploration and Related Topics
With your physics engine now completed you may be asking yourself, what now? How
should I proceed with the knowledge I have gained, what should I do with the physics
engine I created or what should I learn next? Ultimately, as is most often the case, the
answer is that it depends. It depends on your interests in game physics engines in the first
place and why you decided to read and follow along with this book. If your desire was to
create a game or game engine from scratch, you may wish to integrate this physics engine
into your own game engine or an existing game engine in order to add rigid body physics
functionality to the project. If your reason had a more academic nature with the goal of
learning and understanding how game physics engines function you may want to explore
further into related topics within game physics.

Regardless of which category you lie in, you may wish to extend the functionality
of the physics engine by improving its performance and capabilities by adding more
advanced features or components. If that is the case, then the following topics provide
you with some suggested jumping off points for further exploration within game physics.

Physics Topics
•	 Advanced 2-D Rigid Body Physics - If you enjoyed the Impulse

Method approach and are looking to improve the functionality
of your physics engine by adding features such as kinematics
(often used for moving platforms), joints (for more complex
rigid body behavior), or a host of other great features, we suggest
that you look at the Box2D physics engine and the literature
from its creator, Erin Catto. Box2D is the game physics engine
that popularized the Impulse Method and is available in several
programming languages.

http://box2d.org/

•	 Verlet Physics - If you’re looking to simulate soft body physics,
then we suggest exploring Verlet physics. Verlet physics provides
a fast and simple way to simulate soft bodies, such as rag dolls,
ropes, jelly-like objects and even cloth, through the use of
particles, constraints (springs) and Verlet Integration to build
complex soft-bodied objects. In particular, we suggest you take a
look at Thomas Jakobsen’s paper on Advanced Character Physics,
which is probably the most popular starting point for people
interested in game physics, due to its ease of implementation and
understandability. The downside of Verlet physics is the potential
of instability when applied to rigid body simulations.

•	 Networked Physics - The subject of networked physics contains
its own unique set of problems that need to be addressed, many
of which revolve around synchronization. To get your bearings on
the subject, we suggest you take a look at the following website.

http://box2d.org/

Chapter 5 ■ Summarizing the Physics Engine

111

http://gafferongames.com/game-physics/

•	 3-D Rigid Body Physics - If you’re interested in venturing into
3-D physics simulations, a great starting point is the Impulse
Method! The great thing about the Impulse Method is that it can
also be used in 3-D physics, as well as 2-D. Newcastle University
provides some great information on implementing the impulse
method in 3-D.

https://research.ncl.ac.uk/game/mastersdegree/
gametechnologies/

Collision Detection Topics
•	 Continuous Collision - Continuous collision is a method to solve

the problem of physics objects passing through other physics
object geometries that are too small or traveling at too high
velocities. This is a problem due to the discrete time step nature
of game engines. There are several approaches to address this
problem. A great place to start and get your bearings for the topic
is Erin Catto’s GDC (Game Developers Conference) presentation.

http://www.gdcvault.com/play/1018239/Physics-for-Game-
Programmers-Continuous

•	 Collision Callbacks - Collision callbacks provide a more
advanced and flexible collision behavior. They can be used
to customize the behavior for your physics objects such as
OnCollisionEnter or OnCollisionExit. In addition, they can also
be useful for passing any collision information needed for any
game logic. Collision callbacks are often a key feature for more
advanced physics engines.

•	 GJK Collision Detection - The GJK (Gilbert-Johnson-Keerthi)
algorithm is an alternate collision detection method to the
Separating Axis Theorem. GJK provides more flexibility and
performs collision detection for many-sided convex polygons.

•	 Spatial Partitioning - Spatial partitioning is a more advanced
broad phase method commonly used in physics engines to
improve performance for both collision detection and response.
The method divides the world space into discrete areas in order
to detect likely collisions. One of the more commonly used spatial
partitioning techniques in 2D is known as quad-tree.

http://gafferongames.com/game-physics/
https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/
https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/
http://www.gdcvault.com/play/1018239/Physics-for-Game-Programmers-Continuous
http://www.gdcvault.com/play/1018239/Physics-for-Game-Programmers-Continuous

Chapter 5 ■ Summarizing the Physics Engine

112

Reference
The following are some of the references we consulted when we learned this topic.

•	 General definitions: https://en.wikipedia.org/

•	 Physic shape and attributes: http://buildnewgames.com/
gamephysics/

•	 Separating Axis Theorem: http://www.metanetsoftware.com/
technique/tutorialA.html#section3

•	 Resolve collision without rotation: https://gamedevelopment.
tutsplus.com/tutorials/how-to-create-a-custom-2d-
physics-engine-friction-scene-and-jump-table--
gamedev-7756

•	 The formula of impulse in collision with rotation: http://www.
myphysicslab.com/collision.html

•	 Resolve collision rotation and Separating Axis Theorem: https://
gamedevelopment.tutsplus.com/tutorials/how-to-create-
a-custom-2d-physics-engine-oriented-rigid-bodies--
gamedev-8032

https://en.wikipedia.org/
http://buildnewgames.com/gamephysics/
http://buildnewgames.com/gamephysics/
http://www.metanetsoftware.com/technique/tutorialA.html#section3
http://www.metanetsoftware.com/technique/tutorialA.html#section3
https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-friction-scene-and-jump-table--gamedev-7756
https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-friction-scene-and-jump-table--gamedev-7756
https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-friction-scene-and-jump-table--gamedev-7756
https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-friction-scene-and-jump-table--gamedev-7756
http://www.myphysicslab.com/collision.html
http://www.myphysicslab.com/collision.html
https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-oriented-rigid-bodies--gamedev-8032
https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-oriented-rigid-bodies--gamedev-8032
https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-oriented-rigid-bodies--gamedev-8032
https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-oriented-rigid-bodies--gamedev-8032

113© Michael Tanaya, Huaming Chen, Jebediah Pavleas and Kelvin Sung 2017
M. Tanaya et al., Building a 2D Game Physics Engine, DOI 10.1007/978-1-4842-2583-7

�       � A
Acceleration vector, 73
Angular impulse, 100–102
Angular velocity, 97–98

�       � B
Broad phase method, 106

coherent groups/hierarchies, 40
false positive collision, 45
goals, 41
implementation, 45
objects, 40
physics engine component, 41
rigid shape classes, 43
soruce code and folder, 40
UI, 42
uniform grid/quad-tree, 40

�       � C
Circle class, 79–80
Circle collision detection project

compute information, 48
implementation, 52
physics component modification, 51
rectangle, 50
source code, 46
storage of, 47

Coefficient of friction, 88
Coefficient of restitution, 88, 90
Collision

information, 71
resolving, 87–88

approximating impulse
response, 91–92

Collision Impulse Project, 93

decomposing velocity in
collision, 88–89

formulating the Impulse
Method, 88

modify physics engine
component, 94–95

Mygame.js, 95
observation, 96
relative velocity of colliding

shapes, 89–90
steps for, 92–93

resolving interpenetrations, 83–84
observation, 87
Physics Engine, updation 85–87
Positional Correction

Project, 84
response, attributes to

support, 74, 77–78
circle and rectangle class, 79–80
updateUIEcho function, 80–81

Collision detection
broad phasemethod (see Broad phase

method)
circleproject (see Circle collision

detection project)
information, 45
interpenetration

object positions, 38
objects, 39

narrow phase methods, 45
O(N2) operations, 40
optimizations, 40
rectangles and circles, 62

rectangle circle projects, 63
Rectangle_collision.js file, 64
three regions outside, 63

SAT (see Separating Axis Theorem
(SAT))

Index

■ INDEX

114

Collision Impulse Project, 93
Collision resolution process, 83
Collisions

resolving, 71
supporting rotation in, 96

Constant displacements, movement, 72
Cool demo project

simulation scene, 108–109
soure code and folder, 108

Core engine loop, 27
characteristics, 27
FPS/frame rate, 27
implementations, 28
projects

base class, 31
circle class, 32
component, 29
goals, 29
observation, 35
rectangle class, 32
source code, 29
update scene, 35
user control script, 34

rigidshapes (see Rigid Shape projects)
vector library, 16

�       � D
2-D rigid body physics, 110
3-D rigid body physics, 111
drawCollisionInfo function, 51–52, 86–87
Drawing core, 9

core script, 10
HTML canvas, 10

�       � E
Euler Integration, 96
Euler method, 71, 73–74
Explicit Euler Integration, 73–74

�       � F
Force, 88
Frame skipping, 28
Frames per second (FPS), 27

�       � G
Gilbert-Johnson-Keerthi (GJK)

algorithm, 111

�       � H
HTML5 canvas project, 8

�       � I
Impulse Method, 71, 83, 87, 91, 93

2-D rigid body physics, 110
3-D rigid body physics, 111
formulating, 88
with rotation, 97–100

index.html file, 26–27
initializeEngineCore function, 25
Integrated development environment

(IDE), 2
Interpenetration

collision, 83–84
observation, 87
Positional Correction

Project, 84
update Physics Engine, 85–87

object positions, 38
objects, 39

�       � J, K
JavaScript syntax checker, 3

�       � L
Linear velocity, 97

�       � M
Magnitude of velocity vector, 73
Mass, 88
Movement, 72–73

Explicit Euler Integration, 73
Symplectic Euler Integration, 74

MyGame.js file, 35

�       � N, O
NetBeans development environment

HTML5 project
application project, 6
creation, 4
default project, 7
index.html file, 7
name and location, 5
selection, 5

■ INDEX

115

project files and file system
relationship, 8

windows, 3
Networked physics, 110–111
Newtonian mechanics, 73, 96, 97
Newtonian movement, 73
Normal impulse component, 92

�       � P, Q
Penalty method, 83
Physics engine, 71
Physics engines development

(2D games), 1
2-D rigid body physics, 1, 110
3-D rigid body physics, 111
approaches, 1
collision callbacks, 111
concepts and theories, 105–106
continuous collision, 111
cool demo project

simulation scene, 108–109
soure code and folder, 108

development environment, 2
drawing core, 9

core script, 10
HTML canvas, 10

fundamentals, 1
further exploration, 110
GJK algorithm, 111
HTML5 canvas project, 8
JSLint, 3
NetBeansIDE (see NetBeans

development environment)
networked physics, 110–111
source code, 106–108
spatial partitioning, 111
user control, 12

script creation, 12
usage, 13

Verlet physics, 110
Positional Correction Project, 84
Projection Method, 83

�       � R
Rectangle class, 79–80
Relative velocity, 88–90
Relaxation iterations, 83–84
resolveCollision function, 86, 92
Rigid Shape Movements Project, 74–75

Rigid Shape projects
base class, 19
circle class, 22
face normals, 21
fundamental steps, 18
gEngine.Core component, 19
goals, 18
index.html file, 26
infrastructure, 18
initial scene, 25
integrate, 24
interactions, 18
list object, 19
observation, 27
rectangle class, 20
user control script, 23

runGameLoop function, 24, 30, 42

�       � S
Semi-Implicit Euler Integration, 74
Separating axis theorem (SAT), 37, 106

algorithms
determine overlap, 55–56
face normals, 54
min and max bounds, 55
vertices, 54

collidedRectRect function, 61
findAxisLeastPenetration function, 60
findSupportPoint function, 59
implementation, 62
non-colliding shapes, 53
projection, 53
rectangle collision project

folder, 58
Rectangle_collision.js file, 59

states, 52
support point, 56

algorithm, 58
axis of least interpenetration, 57
face normals, 56
negative value, 56

Spatial partitioning, 111
Symplectic Euler Integration, 74

implementing, 74–77
Rigid Shape Movements

Project, 74–75

�       � T
Tangent impulse component, 92–93

■ INDEX

116

�       � U
updateInertia function, 78–80
updateMass function, 78
updateUIEcho function, 24, 30, 43,

80–81
User control, 12

core engine loop projects, 34
rigid shape projects script, 23

script creation, 12
usage, 13

UserControl.js file, 13, 81–82

�       � V, W, X, Y, Z
Vector calculation library, 16
Velocity vector, magnitude of, 73
Verlet physics, 110

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to 2D Game Physics Engine Development
	Setting Up Your Development Environment
	Downloading and Installing JavaScript Syntax Checker
	Working in the NetBeans Development Environment
	Creating an HTML5 Project in NetBeans
	The Relationship Between the Project Files and the File System

	HTML5 Canvas Project
	Drawing Core
	Creating the HTML Canvas
	Creating the Core Script

	User Control
	Creating User Control Script
	Using the User Control Script

	Summary

	Chapter 2: Implementing the 2D Physics Engine Core
	Vector Calculation Library
	Creating the Library

	Physics Engine and Rigid Shapes
	The Rigid Shape Project
	The List Object in Engine Core
	The Rigid Shape Base Class
	The Rigid Rectangle Class
	The Rigid Circle Class
	Modify the User Control Script
	Integrate into the Core
	Define the Initial Scene
	Modify the index.html File

	Observation

	The Core Engine Loop
	Engine Loop Implementations
	The Core Engine Loop Project
	Implement the Engine Loop Component
	Extend the Rigid Shape Classes
	Rigid Shape Base Class
	The Circle Class
	The Rectangle Class

	Modify User Control Script
	Update the Scene

	Observation

	Summary

	Chapter 3: Incorporating Collision Detection
	Interpenetration of Colliding Objects
	Collision Detection
	Broad Phase Method
	The Broad Phase Method Project
	Define the Physics Engine Component
	Invoke the Physics Collision and Update the UI
	Modify Rigid Shape Classes

	Observation

	Collision Information
	The Circle Collision Detection Project
	Define Collision Information Object
	Compute Collision Information Between Two Circles
	Case for Collision with a Rectangle
	Modify Physics Engine Component

	Observation

	Separating Axis Theorem
	A Simple SAT-based Algorithm
	An Efficient SAT Algorithm: The Support Points
	Support Point May Not Exist for a Face Normal
	The Axis of Least Penetration and Collision Information
	The Algorithm

	The Rectangle Collision Project
	Modify Rectangle Collision

	Observation

	Collision Between Rectangles and Circles
	The Rectangle Circle Collision Project
	Modify Rectangle Collision

	Observation

	Summary

	Chapter 4: Completing the Physics Engine and Rigid Shape Component
	Movement
	Explicit Euler Integration
	Symplectic Euler Integration

	Implementing Symplectic Euler Integration and Defining Attributes to Support Collision Response
	The Rigid Shape Movement Project
	Implement Symplectic Euler Integration
	Modify the Engine Core
	Modify the RigidShape Class
	Implement Symplectic Euler Integration

	Define Attributes to Support Collision Simulation and Response
	Modify the RigidShape Class
	Modify the Circle and Rectangle Classes
	Modify the updateUIEcho Function

	Modify the userControl function

	Observation

	Resolving Interpenetrations
	The Positional Correction Project
	Update the Physics Engine

	Observation

	Resolving Collisions
	Formulating the Impulse Method
	Decomposing the Velocity in a Collision
	Relative Velocity of Colliding Shapes
	Approximating the Impulse Response

	The Steps for Resolving Collisions
	The Collision Impulse Project
	Modify the Physics Engine Component
	Defining an Initial Rectangle in Mygame.js

	Observation

	Supporting Rotation in Collision Response
	Integrating Newtonian Mechanics for Rotation
	Formulating Impulse Method with Rotation
	The Angular Impulse Project
	Observation

	Summary

	Chapter 5: Summarizing the Physics Engine
	The Concepts and Theories
	The Engine Source Code
	The Cool Demo Project
	Modifying Simulation Scene
	Observation

	Further Exploration and Related Topics
	Physics Topics
	Collision Detection Topics

	Reference

	Index

