

Table of Contents
C# Programming Cookbook
Credits
About the Author
Acknowledgements
About the Reviewer
www.PacktPub.com

eBooks, discount offers, and more
Why Subscribe?

Preface
What this book covers
What you need for this book
Who this book is for
Sections

Getting ready
How to do it…
How it works…
There's more…
See also

Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. New Features in C# 6.0
Introduction
Creating your Visual Studio project

Getting ready
How to do it…
How it works…

String interpolation
Getting ready
How to do it…
How it works…

Null-conditional operator
Getting ready
How to do it…

How it works…
Initializers for auto-implemented properties and getter-only auto properties

Getting ready
How to do it…
How it works…

Index initializers
Getting ready
How to do it…
How it works…

The nameof expressions
Getting ready
How to do it…
How it works…

Expression-bodied functions and properties
Getting ready
How to do it…
How it works…

Using static
Getting ready
How to do it…
How it works…

Exception filters
Getting ready
How to do it…
How it works…

Using await operator in catch and finally blocks
Getting ready
How to do it…
How it works…

2. Classes and Generics
Introduction
Creating and implementing an abstract class

Getting ready
How to do it…
How it works…

Creating and implementing an interface
Getting ready
How to do it…
How it works…

Creating and using a generic class or method
Getting ready
How to do it…
How it works…

Creating and using a generic interface
Getting ready
How to do it…
How it works…

3. Object-Oriented Programming in C#
Introduction
Using inheritance in C#

Getting ready
How to do it…
How it works…

Using abstraction
Getting ready
How to do it…
How it works…

Leveraging encapsulation
Getting ready
How to do it…
How it works…

Implementing polymorphism
Getting ready
How to do it…
How it works…

Single responsibility principle
Getting ready
How to do it…
How it works…

Open/closed principle
Getting ready
How to do it…
How it works…

4. Composing Event-Based Programs Using Reactive Extensions
Introduction
Installing Rx

Getting ready
How to do it…
How it works…

Events versus observables
Getting ready
How to do it…
How it works…

Using LINQ to perform queries
Getting ready
How to do it…

How it works…
Using schedulers in Rx

Getting ready
How to do it…
How it works…

Debugging lambda expressions
Getting ready
How to do it…
How it works…

5. Create Microservices on Azure Service Fabric
Introduction
Downloading and installing Service Fabric

Getting ready
How to do it…
How it works…

Creating a Service Fabric application with a stateless actor service
Getting ready
How to do it…
How it works…

Using Service Fabric Explorer
Getting ready
How to do it…
How it works…

6. Making Apps Responsive with Asynchronous Programming
Introduction
Return types of asynchronous functions

Getting ready
How to do it…
How it works…

Handling tasks in asynchronous programming
Getting ready
How to do it…
How it works…

Exception handling in asynchronous programming
Getting ready
How to do it…
How it works…

7. High Performance Programming Using Parallel and Multithreading in C#
Introduction
Creating and aborting a low-priority background thread

Getting ready
How to do it…
How it works…

Increasing maximum thread pool size
Getting ready
How to do it…
How it works…

Creating multiple threads
Getting ready
How to do it…
How it works…

Locking one thread until the contended resources are available
Getting ready
How to do it…
How it works…

Invoking parallel calls to methods using Parallel.Invoke
Getting ready
How to do it…
How it works…

Using a parallel foreach loop to run multiple threads
Getting ready
How to do it…
How it works…

Cancelling a parallel foreach loop
Getting ready
How to do it…
How it works…

Catching errors in parallel foreach loops
Getting ready
How to do it…
How it works…

Debugging multiple threads
Getting ready
How to do it…
How it works…

8. Code Contracts
Introduction
Downloading, installing, and integrating code contracts into Visual Studio

Getting ready
How to do it…
How it works…

Creating code contract preconditions
Getting ready
How to do it…
How it works…

Creating code contract postconditions

Getting ready
How to do it…
How it works…

Creating code contract invariant
Getting ready
How to do it…
How it works…

Creating code contract Assert and Assume methods
Getting ready
How to do it…
How it works…

Creating code contract ForAll method
Getting ready
How to do it…
How it works…

Creating code contract ValueAtReturn method
Getting ready
How to do it…
How it works…

Creating code contract Result method
How to do it…
How it works…

Using code contracts on abstract classes
Getting ready
How to do it…
How it works…

Using contract abbreviator methods
Getting ready
How to do it…
How it works…

Creating tests using IntelliTest
Getting ready
How to do it…
How it works…

Using code contracts in extension methods
Getting ready
How to do it…
How it works…

9. Regular Expressions
Introduction
Getting started with regex

Getting ready
How to do it…

How it works…
Matching a valid date

Getting ready
How to do it…
How it works…

Sanitizing input
Getting ready
How to do it…
How it works…

Dynamic regex matching
Getting ready
How to do it…
How it works…

10. Choosing and Using a Source Control Strategy
Introduction
Setting up Visual Studio account management and determining which source control

solution is best for you
Getting ready
How to do it...
How it works...

Setting up Visual Studio GitHub integration, checking in code for the first time, and
checking in changes

Getting ready
How to do it...
How it works...

Working as a team using GitHub, and handling and resolving conflicts in code
Getting ready
How to do it...
How it works...

11. Creating a Mobile Application in Visual Studio
Introduction
Installing Xamarin and other required components

Getting ready
How to do it…
How it works…

Creating an Android Visual Studio project using Apache Cordova
Getting ready
How to do it…
How it works…

Creating an iOS application using Xamarin Forms
Getting ready
How to do it…
How it works…

12. Writing Secure Code and Debugging in Visual Studio
Introduction
Encrypting and storing passwords correctly

Getting ready
How to do it…
How it works…

Using SecureString in code
Getting ready
How to do it…
How it works…

Securing sensitive parts of App.config/web.config
Getting ready
How to do it…
How it works…

Preventing SQL injection attacks
Getting ready
How to do it…
How it works…

Using Diagnostic Tools and Historical Debugging
Getting ready
How to do it…
How it works…

Setting conditional breakpoints
Getting ready
How to do it…
How it works…

Using PerfTips to identify bottlenecks in code
Getting ready
How to do it…
How it works…

13. Creating a Web Application in Azure
Introduction
Creating a database in Azure for testing

Getting ready
How to do it…
How it works…

Creating a web application and hosting on Azure
Getting ready
How to do it…
How it works…

Using virtual machines on Azure
Getting ready
How to do it…

How it works…
Index

C# Programming Cookbook

C# Programming Cookbook
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1210716

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78646-730-0

www.packtpub.com

http://www.packtpub.com

Credits
Author

Dirk Strauss

Reviewer

Fabio Claudio Ferracchiati

Commissioning Editor

Edward Gordon

Acquisition Editor

Nitin Dasan

Content Development Editor

Zeeyan Pinheiro

Technical Editor

Kunal Chaudhari

Copy Editor

Karuna Narayan

Project Coordinator

Izzat Contractor

Proofreader

Safis Editing

Indexer

Rekha Nair

Graphics

Jason Monteiro

Production Coordinator

Melwyn Dsa

Cover Work

Melwyn Dsa

About the Author
Dirk Strauss is a software developer and Microsoft .NET MVP from South Africa with over
13 years of programming experience. He has extensive experience in SYSPRO
Customization, an ERP system, with C# and web development as his main focus.

He works for Evolution Software, but in all fairness, he doesn't really like to call it working at
all. According to him, when you're having fun and loving what you do with incredibly
inspirational individuals, you will not work a day in your life.

Acknowledgements
Firstly, I would like to thank my mom for giving me the opportunities I had in life. Without
your support, love, and sacrifice, I would not be where I am today. You made do with less
so that I could have more. As I grow older, with kids of my own, I now realize the depth and
breadth of your love and dearly appreciate it all.

I would also like to thank all of the educators at the Nelson Mandela Metropolitan University
who are shaping the future IT professionals for an increasingly complex technological world.
I specifically want to thank Professor Reinhardt A. Botha and Dr. Johan Van Niekerk. Their
passion for information technology and their dedication to their students had a huge impact
on me and made me the IT person I am today.

Throughout my career, I have met many people, had many colleagues, and dealt with more
clients than I can probably remember. There is, however, a colleague and dear friend that
has remained steadfast and resolute in his friendship, support, and mentorship. Vincent Van
Zyl formed a big part of my early career and gave me a friendly nudge in the right direction
when I was trying to find my way within a technology that was new to me. He was, and still
is, a mentor and confidant in my professional life. He possesses a gentle spirit and a
friendly nature that sets an example and truly makes the world a better place to live in. He
loves his wife more than any man I have ever met and I am honored to know him, utterly
humbled to call him a colleague, and incredibly blessed to have him as a friend.

Last but by no means least, I'd like to thank my wife and children. It would seem like such a
cliché to thank you for putting up with me during the weekends and evenings that I spent
working on this book, as this is a common theme that almost all authors thank their families
for. The reality is that you all went above and beyond what was needed for me to complete
this book. You guys expressed a profound understanding of what this project meant to me,
which was so evident in the way your actions and sacrifices made a difference. Adele, you
are my wingman, my comrade of can-do, and my rock throughout some grueling times.
From the little things you did, such as supplying copious amounts of coffee in the cold
evenings with an accuracy that made me wonder if you could read my mind, to the more
important things, such as being mommy and daddy to our kids, fills me with an appreciation
and gratitude that I will probably never be able to repay. I saw it all, I appreciate it all, and I
love you all the more for it.

To my daughter Irénéé (pops) and my son Tristan (squeak), while you are still too young to
read this now, you will be able to one day. I want to thank you for making do with a little
less daddy time and for being patient and understanding when daddy could not play. You
kids make me a better man and inspire me to face challenges in all aspects of my life with a
determination and resolve I see in your eyes every day. You teach me more about life and
all that is good by just being who you are. Your dreams are my dreams come true and
there is nothing in this existence of ours that can separate me from the love I have for you. I

therefore dedicate this book to Adele, Irénéé, and Tristan.

About the Reviewer
Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using
Microsoft technologies. He works for Blu Arancio (www.bluarancio.com). He is a Microsoft
Certified Solution Developer for .NET, Microsoft Certified Application Developer for .NET,
and Microsoft Certified Professional. He is also a prolific author and technical reviewer.
Over the last ten years, he's written articles for Italian and international magazines and
coauthored more than 10 books on a variety of computer topics.

http://www.bluarancio.com

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Preface
Visual Studio 2015 brings a lot to the developer's toolset when it comes to creating world-
class applications across a variety of platforms. The new language features in C# 6.0
provide developers with easier ways to perform familiar tasks. This book will show you the
beauty of C#, which when combined with the power of Visual Studio, makes you a very
formidable developer capable of meeting a variety of programming challenges head on.

Many of the chapters in this book will provide you with just enough to jumpstart your
understanding of the topics discussed. Irrespective of your skill level, when it comes to
programming with C#, this book provides something for everyone.

What this book covers
Chapter 1, New Features in C# 6.0, introduces you to the new features available in C# 6.0.

Chapter 2, Classes and Generics, covers classes and generics, which form the building
blocks of modern day applications. You will learn what they are and how to use them more
effectively.

Chapter 3, Object-Oriented Programming in C#, covers OOP, which is why we do what we
do in the way we do it. We will discuss the fundamentals when it comes to this concept.

Chapter 4, Composing Event-Based Programs Using Reactive Extensions, helps you
make your applications more responsive using Rx and leveraging the power of providing
real-time data.

Chapter 5, Create Microservices on Azure Service Fabric, shows how you can break away
from the traditional approach to developing applications. Instead of one single monolithic
application, microservices break an application up into smaller bits that can function on their
own.

Chapter 6, Making Apps Responsive with Asynchronous Programming, covers using
asynchronous programming to never let your application lock up because it is waiting for a
long running task to complete.

Chapter 7, High Performance Programming Using Parallel and Multithreading in C#,
demonstrates how you can make good use of the performance provided by today's
multicore CPUs.

Chapter 8, Code Contracts, deals with writing robust code that will validate the correctness
of data being passed to a method. We will also cover code contracts, which allow
developers to write better code.

Chapter 9, Regular Expressions, covers regex, which is a technology that is baked into the
.NET Framework and is often overlooked in most books. Understanding it better will go a
long way toward adding value to your skillset.

Chapter 10, Choosing and Using a Source Control Strategy, delves into the different
strategies that different developers in different situations require when it comes to using
source control.

Chapter 11, Creating a Mobile Application in Visual Studio, discusses what you can do
with Visual Studio, which has made it possible to make developing mobile applications
across multiple platforms within reach for practically any developer.

Chapter 12, Writing Secure Code and Debugging in Visual Studio, emphasizes how being
able to write more secure code will set your application apart from others. Being able to
debug like a boss will set you apart from the rest.

Chapter 13, Creating a Web Application in Azure, demonstrates just how easy it is to
create a web application in Azure.

What you need for this book
To complete the code samples in this book, you will need a copy of Visual Studio 2015 or
later. Most other required components can be installed via NuGet.

Who this book is for
This book is aimed at developers who have basic familiarity with C# programming and know
the VS 2015 environment.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any
software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Add a
class called CSharpSix. Add a property to this class called FavoriteFeature."

A block of code is set as follows:

public class CSharpSix
{
 public string FavoriteFeature { get; set; }
}

Any command-line input or output is written as follows:

PM> Install-Package System.Reactive.Windows.Forms

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Start Visual Studio 2015
and click on the File menu. Then, click on New and then select Project."

Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book
—what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the
book's name in the Search box. Please note that you need to be logged in to your Packt
account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/CSharp-Programming-Cookbook. We also have other
code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/CSharp-Programming-Cookbook
https://github.com/PacktPublishing/

output. You can download this file from
https://www.packtpub.com/sites/default/files/downloads/CSharpProgrammingCookbook_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code
—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section
of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
<questions@packtpub.com>, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/CSharpProgrammingCookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chapter 1. New Features in C# 6.0
In this chapter, we will cover the following recipes with regard to the new features of C#
6.0:

Creating your Visual Studio project
String interpolation
Null-conditional operator
Initializers for auto-implemented properties and getter-only auto properties
Index initializers
The nameof expressions
Expression-bodied functions and properties
Using static
Exception filters
Using await operator in catch and finally blocks

Introduction
C# as a programming language first appeared in 2000. Its development team is led by the
prominent Danish software engineer Anders Hejlsberg. He is the lead architect of C# and
core developer of TypeScript. The C# programming language is simple to use, and this
book will deal with C# 6.0, which was released on 20 July, 2015.

Knowing what new language features are available in C# 6.0 will not only make you a more
effective developer, but will also allow you to implement the latest and best practices in the
software that you create. A little-known fact is that C# was actually called C-like Object
Oriented Language (Cool) before its release at Microsoft's Professional Developers
Conference in July 2000, but was changed to C# at the time of its release.

The name might have changed, but C# remains a very cool language to learn and use. This
chapter will take you through the new features of C# 6.0 and illustrate how to effectively
use these features in you daily programming tasks.

Creating your Visual Studio project
The Visual Studio project that you will create will be used to add the classes that contain
the code samples in each recipe of this book. The project will be a simple console
application that will call into static classes that do the work of illustrating the recipe code
and outputting the results (if any) to the console window.

Getting ready
To step through the recipes in this book, you will need a copy of Visual Studio 2015. If you
do not have a copy of Visual Studio 2015, you can download a free copy of Visual Studio
2015 Community from https://www.visualstudio.com/en-us/products/visual-studio-
community-vs.aspx.

You can also compare editions of Visual Studio 2015 by navigating to
https://www.visualstudio.com/en-us/products/compare-visual-studio-2015-products-vs.aspx.

After you have downloaded and installed Visual Studio 2015, create a new console
application that will contain the recipes illustrated in this book.

How to do it…
1. Start Visual Studio 2015 and click on the File menu. Then, click on New and then select

Project. You can also use the Ctrl + Shift + N keyboard shortcut:

https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx
https://www.visualstudio.com/en-us/products/compare-visual-studio-2015-products-vs.aspx

2. From the New Project dialog screen, select Console Application, which can be found
by going to Installed | Templates | Visual C# | Windows | Classic Desktop in the
tree view to the left. You can call your console application CodeSamples:

Note
You will notice that the selected framework is .NET Framework 4.6.1, which is
selected by default. Leave this framework selected when creating your project.

3. Visual Studio now creates your console application, which we will use to create all the
code samples needed for this book.

How it works…
This console application will form the base of the recipes in this book. Each recipe can be
individually added to this console application. A recipe, therefore, can function on its own
without the need to create a previous recipe. You can also easily separate any custom
code you might want to add and experiment with. It is also recommended that you play
around with the code by adding classes of your own.

String interpolation
String interpolation is a very easy and precise way to inject variable values into a string. An
interpolated string expression looks at contained expressions. It then replaces those
expressions with the ToString representations of the expressions' results.

Getting ready
Create a new class to test your code. We will use the example of reading the current
exchange rate for a specific currency to illustrate how string interpolation can be used to
output strings to the user interface.

How to do it…
1. Create a new class by right-clicking on your solution, selecting Add, and then selecting

New Project from the context menu:

2. From the Add New Project dialog screen, select Class Library from the installed
templates and call your class Chapter1:

3. Your new class library will be added to your solution with a default name of Class1.cs,
which I renamed to Recipes.cs in order to distinguish the code properly. You can,
however, rename your class to whatever you like if that makes more sense to you.

4. To rename your class, simply click on the class name in Solution Explorer and select
Rename from the context menu:

5. Visual Studio will ask you to confirm a rename of all references to the Class1 code
element in the project. Just click on Yes:

6. The class that is created now needs to be made static using the static keyword. Also,
rename the class name in code to Recipe1StringInterpolation:

namespace Chapter1
{
 public static class Recipe1StringInterpolation
 {

 }
}

Note
Note that static classes, therefore, do not need to be instantiated and will be sealed
classes by default. This means that they cannot be inherited further. In practice, you
would normally define helper or utility classes as static. These are classes that will be
used often by your application to, for example, parse dates or perform calculations.
The use of the static keyword here is simply to illustrate the specific new features of
C# 6.0 within a class that can easily and quickly be called from the console application.
The static class in reality would most likely not be a good fit for all the examples
illustrated.

7. Inside your class, add a property to contain the base currency:

public static string BaseCurrency { get; private set; }

8. Next, include a dummy method to return the exchange rate:

private static decimal PreformConversion(string toCurrency)
{
 decimal rate = 0.0m;

 if (BaseCurrency.Equals("ZAR"))
 {
 switch (toCurrency)
 {
 case "USD":
 rate = 16.3040m;
 break;
 default:
 rate = 1.0m;
 break;
 }
 }

 return rate;
}

9. The last method to add is the method that will return the interpolated string expression:

public static string ReadExchangeRate(string fromCurrencyCode,
string toCurrencyCode)
{
 BaseCurrency = fromCurrencyCode;
 decimal conversion = PreformConversion(toCurrencyCode);
 return $"1 {toCurrencyCode} = {conversion}
{fromCurrencyCode} ";
}

10. You now need to hook up the class you created to your console application. You
therefore need to add a reference to the class from the console application. Right-click
on References in your CodeSamples project and select Add Reference…:

11. From the Reference Manager dialog that pops up, select the Chapter1 solution to add
it as a reference. Then, click on the OK button:

12. In your CodeSamples project, double-click on the Program.cs file and add the following
code to the Main method:

string RandDollarExchangeRate =
Chapter1.Recipe1StringInterpolation.ReadExchangeRate("ZAR",
"USD");
Console.WriteLine("The current Rand / Dollar exchange rate
is:");
Console.WriteLine(RandDollarExchangeRate);
Console.Read();

13. To see the result, run your application and see the output in the console application:

14. The interpolated string expression is output as 1 USD = 16,3040 ZAR.

How it works…
The console application passes the currency codes for South African Rand and US Dollar to
the static class by calling the following line of code:
Chapter1.Recipe1StringInterpolation.ReadExchangeRate("ZAR", "USD");

This class is static and, as mentioned previously, does not need to be instantiated. The
ReadExchangeRate method then reads the exchange rate and formats it into a suitable string
using string interpolation. You will notice that the interpolated string expression is written as
$"1 {toCurrencyCode} = {conversion} {fromCurrencyCode} ";.

The toCurrencyCode, conversion, and fromCurrencyCode variables are expressed directly
inside the string expression. This is a much easier way of formatting strings because you
can do away with String.Format, used in the previous versions of C#. Previously, the same
expression would have been written as String.Format("1 {0} = {1} {2} ",
toCurrencyCode, conversion, fromCurrencyCode);.

As you can see, the interpolated string expression is much easier to read and write. In
reality though, string interpolation is merely syntactical sugar because the compiler treats
the expression like String.Format anyway. You might be wondering how you would
express a curly bracket when using string interpolation. To do this, you can simply use a
double curly bracket in your expression. If you need to express the exchange rate as
{16,3040}, you would need to express it as $"{{{conversion}}}";.

You can also format your string right there inside the interpolated string expression. If you
returned the $"The date is {DateTime.Now}"; expression, the output would be The date
is 2016/01/10 3:04:48 PM. You can go ahead and modify the expression to format the
date using a colon, followed by the format to use. Change the code to $"The date is
{DateTime.Now : MMMM dd, yyyy}";. The output will be formatted and result in The date
is January 5, 2016.

Another great tip is that you can express a condition in the string expression. Consider the
following line of code that determines whether a year is a leap year or not:

$"The year {DateTime.Now.Year}
{(DateTime.IsLeapYear(DateTime.Now.Year) ? " is " : " is not ")} a
leap year.";

We can use the ternary ? operator one step further. Consider the following line of code:

$"There {(StudentCount > 1 ? "are " : "is ")}{StudentCount}
student{(StudentCount > 1 ? "s" : "")} in the list."

As the colon is used to denote formatting, we have to wrap the conditional part of the
expression in parenthesis. String interpolation is a very nice way to express strings in code
that is easy to read and understand.

Null-conditional operator
The worst thing that a developer can do is not check for null in code. This means that there
is no reference to an object, in other words, there is a null. Reference-type variables have a
default value of null. Value types, on the other hand, cannot be null. In C# 2, developers
were introduced to the nullable type. To effectively make sure that objects are not null,
developers usually write sometimes elaborate if statements to check whether objects are
null or not. C# 6.0 made this process very easy with the introduction of the null-conditional
operator.

It is expressed by writing ?. and is called the question-dot operator. The question is written
after the instance, right before calling the property via the dot. An easy way to think of the
null-conditional operator is to remember that if the left-hand side of the operator is null, the
whole expression is null. If the left-hand side is not null, the property is invoked and
becomes the result of the operation. To really see the power of the null-conditional operator
is to see it in action.

Getting ready
We will create another class that will illustrate the use of the null-conditional operator. The
method will call a Student class to return a count of students in the resulting list. We will
check to see whether the Student class is valid before returning the student count.

How to do it…
1. Create another class called Recipe2NullConditionalOperator beneath the last class

you wrote in the Creating your Visual Studio project recipe:

public static class Recipe2NullConditionalOperator
{

}

2. Add a method called GetStudents to the class and add the following code to it:

public static int GetStudents()
{
 List<Student> students = new List<Student>();
 Student st = new Student();

 st.FirstName = "Dirk";
 st.LastName = "Strauss";
 st.JobTitle = "";
 st.Age = 19;
 st.StudentNumber = "20323742";
 students.Add(st);

 st.FirstName = "Bob";
 st.LastName = "Healey";
 st.JobTitle = "Lab Assistant";
 st.Age = 21;
 st.StudentNumber = "21457896";
 students.Add(st);

 return students?.Count() ?? 0;
}

3. Next, add a third class to your code called Student with the following properties:

public class Student
{
 public string StudentNumber { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int Age { get; set; }
 public string JobTitle { get; set; }
}

4. Our Student class will be the object we will call from our GetStudents method. In the
Program.cs file, add the following code:

int StudentCount =
Chapter1.Recipe2NullConditionalOperator.GetStudents();
 if (StudentCount >= 1)
 Console.WriteLine($"There {(StudentCount > 1 ?
"are " : "is ")}{StudentCount} student{(StudentCount > 1 ? "s"
: "")} in the list.");
 else
 Console.WriteLine($"There were {StudentCount}
students contained in the list.");
 Console.Read();

5. Running the console application will result in the application telling us that there are two
students contained in the list. This is expected, because we added two Student objects
to our List<Student> class:

6. To see the null-conditional operator in action, modify the code in your GetStudents
method to set the students variable to null. Your code should look like this:

public static int GetStudents()
{
 List<Student> students = new List<Student>();
 Student st = new Student();

 st.FirstName = "Dirk";
 st.LastName = "Strauss";
 st.JobTitle = "";
 st.Age = 19;
 st.StudentNumber = "20323742";
 students.Add(st);

 st.FirstName = "Bob";
 st.LastName = "Healey";
 st.JobTitle = "Lab Assistant";
 st.Age = 21;
 st.StudentNumber = "21457896";
 students.Add(st);

 students = null;
 return students?.Count() ?? 0;
}

7. Run the console application again, and see how the output has changed:

How it works…
Consider the code we used in the return statement:

return students?.Count() ?? 0;

We told the compiler to check whether the List<Student> class' variable students is null.
We did this by adding ? after the students object. If the students object is not null, we use
the dot operator, and the Count() property becomes the result of the statement.

If the students object however is null, then we return zero. This way of checking for null
makes all that if(students != null) code unnecessary. The null check sort of fades into
the background and makes it much easier to express and read null checks (not to mention
less code).

If we had to change the return statement to a regular Count() method without the null-
conditional operator, we would see an ArgumentNullException was unhandled error:

return students.Count();

Calling Count() on the students object without using the null-conditional operator breaks
the code. The null-conditional operator is an exciting addition to the C# language because it
makes writing code to check for null a lot easier. Less code is better code.

Initializers for auto-implemented
properties and getter-only auto properties
The release of C# 6.0 saw two enhancements made to auto-implemented properties. You
can now initialize auto-implemented properties inline, and you can also define them without
a setter.

Getting ready
To illustrate how to implement these two new enhancements to auto-implemented
properties, we will create another class that calculates the sales price after discount for a
given barcode and discount type.

How to do it…
1. Start off by creating a static class called Recipe3AutoImplementedProperties and add

the DiscountType enumerator to the class, along with the auto-implemented properties.
You will then initialize those auto-implemented properties with default values:

public static class Recipe3AutoImplementedProperties
{
 public enum DiscountType { Sale, Clearout, None }
 private static int SaleDiscountPercent { get; } = 20;
 private static int ClearoutDiscountPercent { get; } = 35;
 public static decimal ShelfPrice { get; set; } = 100;
 public static decimal SalePrice { get; set; } = 100;
}

2. The next step is to add the method to calculate the sales price of an item linked to the
barcode supplied to the method:

public static void CalculateSalePrice(string barCode,
DiscountType discount)
{
 decimal shelfPrice = GetPriceFromBarcode(barCode);

 if (discount == DiscountType.Sale)
 SalePrice = (shelfPrice == 0 ?
ShelfPrice.CalculateSalePrice(SaleDiscountPercent) :
shelfPrice.CalculateSalePrice(SaleDiscountPercent));

 if (discount == DiscountType.Clearout)
 SalePrice = (shelfPrice == 0 ?
ShelfPrice.CalculateSalePrice(ClearoutDiscountPercent):
shelfPrice.CalculateSalePrice(ClearoutDiscountPercent));

 if (discount == DiscountType.None)
 SalePrice = (shelfPrice == 0 ? ShelfPrice :shelfPrice);
}

3. In order to simulate a database lookup to find the selling price of a barcode, create
another method to return a price for a given barcode:

private static decimal GetPriceFromBarcode(string barCode)
{
 switch (barCode)
 {
 case "123450":
 return 19.95m;
 case "123451":
 return 7.55m;
 case "123452":
 return 59.99m;
 case "123453":
 return 93.99m;
 default:
 return 0;
 }
}

4. Finally, we will create an extension method class to calculate the sale price after the
discount has been applied:

public static class ExtensionMethods
{
 public static decimal CalculateSalePrice(this decimal
shelfPrice, int discountPercent)
 {
 decimal discountValue = (shelfPrice / 100) *
discountPercent;
 return shelfPrice - discountValue;
 }
}

Note
Extension methods are static methods by default and allow you to extend your code's
functionality (extend existing types) without having to modify the original type. You can
now have an extension methods class in your solution where you add helpful code. A
nice example of using an extension method is to calculate the financial year for a given
date. Extension methods are differentiated from other static methods using the this
keyword in the method signature. In the preceding example, the compiler knows that
this is an extension method for the decimal class by looking at the type it extends.

5. Replace the code of your Progam.cs file and run the program:

string BarCode = String.Empty;

BarCode = "123450";
Chapter1.Recipe3AutoImplementedProperties.CalculateSalePric
e(BarCode,
Chapter1.Recipe3AutoImplementedProperties.DiscountType.Sale);
Console.WriteLine(Chapter1.Recipe3AutoImplementedProperties
.SalePrice);

6. The sales price is calculated after applying the sale discount and returned to the
console application:

How it works…
If you look at the auto-implemented properties again, you would notice that we have two
getter-only auto-implemented properties. All four auto-implemented properties have been
initialized with default values. The SaleDiscountPercent and ClearoutDiscountPercent
properties are read-only. This ensures that the discount values can't be modified in any
way.

You will also notice that if the shelf price returned from the GetPriceFromBarcode method is
zero, then the default ShelfPrice property value is used in determining the discount price. If
no discount is applied, the CalculateSalePrice method simply returns the barcode price. If
no price is determined from the barcode, the default ShelfPrice property value is returned.

Auto-implemented property initializers and getter-only auto-implemented properties are
great to cut down on unnecessary if else statements. It also makes the code
implementing the properties more readable because the intent can be contained in the
property itself by initializing it.

Look at what happens if we try to set the SaleDiscountPercent or
ClearoutDiscountPercent property to a different value:

Visual Studio will emit an error for the getter-only properties because using the get
keyword, we can only read from this property, not assign a value to it.

Index initializers
You need to remember that C# 6.0 does not introduce big new concepts, but small features
designed to make your code cleaner and easier to read and understand. With index
initializers, this is not an exception. You can now initialize the indices of newly created
objects. This means you do not have to use separate statements to initialize the indexes.

Getting ready
The change here is subtle. We will create a method to return the day of the week based on
an integer. We will also create a method to return the start of the financial year and salary
increase month, and then set the salary increase month to a different value than the default.
Finally we will use properties to return a specific type of species to the console window.

How to do it…
1. Start off by creating a new class called Recipe4IndexInitializers and add a second

class called Month to your code. The Month class simply contains two auto-
implemented properties that have been initialized. StartFinancialYearMonth has been
set to month two (February), and SalaryIncreaseMonth has been set to month three
(March):

public static class Recipe4IndexInitializers
{

}

public class Month
{
 public int StartFinancialYearMonth { get; set; } = 2;
 public int SalaryIncreaseMonth { get; set; } = 3;
}

2. Go ahead and add a method called ReturnWeekDay that takes an integer for the day
number as a parameter, to the Recipe4IndexInitializers class:

public static string ReturnWeekDay(int dayNumber)
{
 Dictionary<int, string> day = new Dictionary<int, string>
 {
 [1] = "Monday",
 [2] = "Tuesday",
 [3] = "Wednesday",
 [4] = "Thursday",
 [5] = "Friday",
 [6] = "Saturday",
 [7] = "Sunday"
 };

 return day[dayNumber];
}

3. For the second example, add a method called ReturnFinancialAndBonusMonth to the
Recipe4IndexInitializers class:

public static List<int> ReturnFinancialAndBonusMonth()
{
 Month currentMonth = new Month();
 int[] array = new[] { currentMonth.StartFinancialYearMonth,
currentMonth.SalaryIncreaseMonth };
 return new List<int>(array) { [1] = 2 };
}

4. Finally, add several auto-implemented properties to the class to contain species and a
method called DetermineSpecies to the Recipe4IndexInitializers class. Your code
should look like this:

public static string Human { get; set; } = "Homo sapiens";
public static string Sloth { get; set; } = "Choloepus
hoffmanni";
public static string Rabbit { get; set; } = "Oryctolagus
cuniculus";
public static string Mouse { get; set; } = "Mus musculus";
public static string Hedgehog { get; set; } = "Erinaceus
europaeus";
public static string Dolphin { get; set; } = "Tursiops
truncatus";
public static string Dog { get; set; } = "Canis lupus
familiaris";

public static void DetermineSpecies()
{
 Dictionary<string, string> Species = new
Dictionary<string, string>
 {
 [Human] = Human + " : Additional species information",
 [Rabbit] = Rabbit + " : Additional species
information",
 [Sloth] = Sloth + " : Additional species information",
 [Mouse] = Mouse + " : Additional species information",
 [Hedgehog] = Hedgehog + " : Additional species
information",
 [Dolphin] = Dolphin + " : Additional species
information",
 [Dog] = Dog + " : Additional species information"
 };

 Console.WriteLine(Species[Human]);
}

5. In your console application, add the following code to call the code in the
Recipe4IndexInitializers class:

int DayNumber = 3;
string DayOfWeek =
Chapter1.Recipe4IndexInitializers.ReturnWeekDay(DayNumber);
Console.WriteLine($"Day {DayNumber} is {DayOfWeek}");

List<int> FinancialAndBonusMonth =
Chapter1.Recipe4IndexInitializers.ReturnFinancialAndBonusMo
nth();
Console.WriteLine("Financial Year Start month and Salary
Increase Months are:");
for (int i = 0; i < FinancialAndBonusMonth.Count(); i++)
{
 Console.Write(i == 0 ? FinancialAndBonusMonth[i].ToString()
+ " and " : FinancialAndBonusMonth[i].ToString());
}

Console.WriteLine();
Chapter1.Recipe4IndexInitializers.DetermineSpecies();
Console.Read();

6. Once you have added all your code, run your application. The output will look like this:

How it works…
The first method ReturnWeekDay created a Dictionary<int, string> object. You can see
how the indices are initialized with the day names. If we now pass the day integer to the
method, we can return the day name by referencing the index.

Note
The reason for not using a zero-based index in ReturnWeekDay is because the first day of
the week is associated to the numerical value 1.

In the second example, we called a method called ReturnFinancialAndBonusMonth that
creates an array to hold the financial year start month and the salary increase month. Both
properties of the Month class are initialized to 2 and 3, respectively. You can see that we
are overriding the value of the SalaryIncreaseMonth property and setting it to 2. It is done
in the following line of code:

return new List<int>(array) { [1] = 2 };

The last example uses the Human, Rabbit, Sloth, Mouse, Hedgehog, Dolphin, and Dog

properties to return the correct index value of the Species object.

The nameof expressions
The nameof expressions are particularly nice. You can now provide a string that names an
object in code. This is especially handy if you are throwing exceptions. You can now see
which variable caused the exception. In the past, developers had to rely on messy string
literals in their code. This was particularly error prone and vulnerable to spelling errors.
Another problem was that any code refactoring might miss a string literal, and then that
code becomes obsolete and broken.

The nameof expressions have come to save the day. The compiler will see that you are
referencing the name of a specific variable and correctly convert it to a string. nameof
expressions, therefore, also stay in sync with any refactoring you may do.

Getting ready
We will use the same code example that we wrote in the String interpolation recipe from
this chapter, with a few small changes. We will create a Student object and add students to
it. We will then return that object to the console and output the student count.

How to do it…
1. Create a class called Recipe5NameofExpression. Add an auto-implemented property to

this class called StudentCount:

public static class Recipe5NameofExpression
{
 public static int StudentCount { get; set; } = 0;
}

2. Next, we need to add the GetStudents method, which returns a List<Student> object.
The method contains a try/catch statement and will throw ArgumentNullException():

public static List<Student> GetStudents()
{
 List<Student> students = new List<Student>();
 try
 {
 Student st = new Student();

 st.FirstName = "Dirk";
 st.LastName = "Strauss";
 st.JobTitle = "";
 st.Age = 19;
 st.StudentNumber = "20323742";
 students.Add(st);

 st.FirstName = "Bob";
 st.LastName = "Healey";
 st.JobTitle = "Lab Assistant";
 st.Age = 21;
 st.StudentNumber = "21457896";
 students.Add(st);

 //students = null;

 StudentCount = students.Count();

 return students;
 }
 catch (Exception ex)
 {
 throw new ArgumentNullException(nameof(students));
 }
}

Note
In reality, we would not simply return ArgumentNullException off the bat like that. This
is simply being used to illustrate the concept of the nameof expression as used in
ArgumentNullException.

3. In the console application, we will add code that returns the List<Student> object and
reports how many students were contained in the list by outputting the StudentCount
property value to the console window:

try
{
 List<Chapter1.Student> StudentList =
Chapter1.Recipe5NameofExpression.GetStudents();
 Console.WriteLine($"There are
{Chapter1.Recipe5NameofExpression.StudentCount} students");
}
catch (Exception ex)
{
 Console.WriteLine(ex.Message);
}
finally
{
 Console.Read();
}

How it works…
Running the console application with the code as is will call the GetStudents() method. This
will then create the List<Student> object and add two Student objects to it. The
StudentCount property is set equal to the count of the List<Student> object. The
GetStudents() method then returns the result to the console application, which then reads
the StudentCount property and displays it in the console output:

If we now went ahead and modified the code in the GetStudents() method to set the

students variable to null right before we called students.Count(), an exception would be
thrown. The exception is caught in catch, and this is where we use the nameof expression
to display a string literal of the students variable:

Using the nameof expression, we can ensure that the expression stays in sync with
refactoring actions such as renaming the students variable:

If we had written the code in the catch statement using a string literal, we would not have
had the code updated automatically when we renamed the students variable. The nameof
expression effectively allowed developers to stop writing throw new
ArgumentNullException("students");, which will not be affected by refactoring actions.

Another benefit of using a nameof expression in your code is that it involves no runtime cost,
because the code containing the string literal is generated at compile time.

Modify the code in the console application slightly to make it look like this:

List<Chapter1.Student> StudentList =
Chapter1.Recipe5NameofExpression.GetStudents();

int iStudentCount = Chapter1.Recipe5NameofExpression.StudentCount;
Console.WriteLine($"The value of the {
nameof(Chapter1.Recipe5NameofExpression.StudentCount)} property is
{iStudentCount}");

When you run your console application now, you can see that the nameof expression has
been used to create the string literal of the StudentCount property:

Note
Ensure that you have commented out the students = null; line of code in the
GetStudents() method; otherwise, you will still receive the null exception.

You can also use the nameof expression with enumerators. Add the following code to your
class. We are basically creating an enumerator called Course. In the SetCourse() method,
we set a course based on a course ID:

public enum Course { InformationTechnology = 1, Statistics = 2,
AppliedSciences = 3 }
public static string SelectedCourse { get; set; }
public static void SetCourse(int iCourseID)
{
 Course course = (Course)iCourseID;
 switch (course)
 {
 case Course.InformationTechnology:
 SelectedCourse = nameof(Course.InformationTechnology);
 break;
 case Course.Statistics:
 SelectedCourse = nameof(Course.InformationTechnology);
 break;
 case Course.AppliedSciences:
 SelectedCourse = nameof(Course.InformationTechnology);
 break;
 default:
 SelectedCourse = "InvalidCourse";
 break;
 }
}

We then use a switch statement to select the course defined by the course ID parameter
and set the SelectedCourse property equal to the nameof expression of the enumerator.
Add the following code to your console application:

Chapter1.Recipe5NameofExpression.SetCourse(1);
Console.WriteLine($"The selected course is {
Chapter1.Recipe5NameofExpression.SelectedCourse}");

Running the console application will result in the string representation of the selected
enumerator value:

The nameof expression is a very good way of keeping your code in sync when dealing with
the string literals of objects in C# 6.0.

Expression-bodied functions and
properties
As the name suggests, expression-bodied functions and properties allow methods and
properties to have a body that is an expression instead of a statement. You will notice that
expression-bodied members look a lot like lambda expressions, because they are inspired
by lambda expressions.

Getting ready
To truly appreciate expression-bodied functions and properties, we need to look at the way
code had to be written previously. We will create a class to calculate the sale price of an
item, and the class will contain two public methods. One will set a shelf price, and the other
will return a message displaying the calculated sale price.

How to do it…
1. Create a class called Recipe6ExpressionBodiedFunctionMembers and add two private

auto-implemented properties to hold the sale discount percent and the shelf price:

public static class Recipe6ExpressionBodiedFunctionMembers
{
 private static int SaleDiscountPercent { get; } = 20;
 private static decimal ShelfPrice { get; set; } = 100;
}

2. If you haven't done so in an earlier recipe, add the extension method class to calculate
the sale price of an item:

public static class ExtensionMethods
{
 public static decimal CalculateSalePrice(this decimal
shelfPrice, int discountPercent)
 {
 decimal discountValue = (shelfPrice / 100) *
discountPercent;
 return shelfPrice - discountValue;
 }
}

3. We will now add a calculated property to the class. This calculated property uses the
extension method on the ShelfPrice property to get the sale price:

private static decimal GetCalculatedSalePrice
{
 get { return
Math.Round(ShelfPrice.CalculateSalePrice(SaleDiscountPercen t)
,2); }
}

4. Finally, add two methods to your class to set the shelf price and another to return a
message with the sale price:

public static void SetShelfPrice(decimal shelfPrice)
{
 ShelfPrice = shelfPrice;
}

public static string ReturnMessage(string barCode)
{
 return $"The sale price for barcode {barCode} is
{GetCalculatedSalePrice}";
}

5. To see the result of the code, add the following code to your console application:

string BarCode = "12345113";
decimal ShelfPrice = 56.99m;
Chapter1.Recipe6ExpressionBodiedFunctionMembers.SetShelfPri
ce(ShelfPrice);
Console.WriteLine(Chapter1.Recipe6ExpressionBodiedFunctionM
embers.ReturnMessage(BarCode));
Console.Read();

How it works…
Running your application produces the message displaying the calculated sale price:

Note
Here, we are just supplying the bar code in the output message. However, in a live system,
the shelf price would be looked up from a data store for the specific bar code.

Looking back at our class, we can see that it is somewhat bulky. We have a calculated
property that returns a sale price and two methods with a single return statement. One
sets the shelf price, while the other gets a message containing the sale price. This is where
expression-bodied function members come into play. Modify your code in the
Recipe6ExpressionBodiedFunctionMembers class to make it look like this:

public static class Recipe6ExpressionBodiedFunctionMembers
{
 private static int SaleDiscountPercent { get; } = 20;
 private static decimal ShelfPrice { get; set; } = 100;

 private static decimal GetCalculatedSalePrice =>
Math.Round(ShelfPrice.CalculateSalePrice(SaleDiscountPercent));

 public static void SetShelfPrice(decimal shelfPrice) =>
ShelfPrice = shelfPrice;

 public static string ReturnMessage(string barCode) => $"The
sale price for barcode {barCode} is {GetCalculatedSalePrice}";
}

What we are left with is a terse class that does exactly the same as the code we wrote
before. There is less code, it is easier to read, and it looks much cleaner. You will notice
the use of the lambda => operator. For the GetCalculatedSalePrice computed property,
the get keyword is missing. This became implied when we changed the computed property
body to an expression.

One point to remember though is that expression-bodied function members do not work
with constructors.

Using static
C# 6.0 introduces a new kind of using statement that now refers to types instead of
namespaces. This means that the static members of the type are then directly put into
scope. What this means for your code is evident in the condensed result of this recipe.

Getting ready
We will create a class called Recipe7UsingStatic that will determine the sale price of an
item depending on the day of the week. If it is Friday, we want to apply the sale discount to
the item. On any other day, we will sell the item at the shelf price.

How to do it…
1. Start by creating a Recipe7UsingStatic class that contains two auto-implemented

properties and an enumerator for the day of the week:

public static class Recipe7UsingStatic
{
 public enum TheDayOfWeek
 {
 Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday
 }

 private static int SaleDiscountPercent { get; } = 20;
 private static decimal ShelfPrice { get; set; } = 100;
}

2. We will now add a computed property and two methods to our Recipe7UsingStatic
class. One method will set the shelf price and the other will get the sale price:

private static decimal GetCalculatedSalePrice
{
 get { return Math.Round(ShelfPrice.CalculateSalePrice
(SaleDiscountPercen t), 2); }
}

public static void SetShelfPrice(decimal shelfPrice)
{
 ShelfPrice = shelfPrice;
}

public static decimal GetSalePrice(TheDayOfWeek dayOfWeek)
{
 return dayOfWeek == TheDayOfWeek.Friday ?
GetCalculatedSalePrice : ShelfPrice;
}

3. In the console application, we will add the code to define the day of the week, set the
shelf price, and then get the sale price. The sale price is then written out to the console
application:

decimal ShelfPrice = 56.99m;

Chapter1.Recipe7UsingStatic.TheDayOfWeek weekday =
Chapter1.Recipe7UsingStatic.TheDayOfWeek.Friday;
Chapter1.Recipe7UsingStatic.SetShelfPrice(ShelfPrice);
Console.WriteLine(Chapter1.Recipe7UsingStatic.GetSalePrice(
weekday));
Console.Read();

How it works…
Run your console application and see that the sale price is calculated correctly and output
to the console application:

Now, let's have a closer look at the code. In particular, look at the GetCalculatedSalePrice
computed property. It uses the Math.Round function to round the sale price to two decimals:

private static decimal GetCalculatedSalePrice
{
 get { return Math.Round(ShelfPrice.CalculateSalePrice
(SaleDiscountPercent), 2); }
}

The Math class is in reality a static class that contains a collection of functions that you can
use throughout your code to perform different mathematical calculations. So, go ahead and
add the following using statement at the top of your Recipes.cs file:

using static System.Math;

We can now change our computed GetCalculatedSalePrice property to omit the Math
class name:

private static decimal GetCalculatedSalePrice
{
 get { return
Round(ShelfPrice.CalculateSalePrice(SaleDiscountPercent), 2); }
}

This is really a fantastic enhancement. Look at the following lines of code:

Math.Sqrt(64);
Math.Tan(64);
Math.Pow(8, 2);

Because of this enhancement, the preceding lines of code can simply be written as follows:

Sqrt(64);
Tan(64);
Pow(8, 2);

There is, however, more to using the static keyword's functionality. We are using static
classes for all the recipes in this chapter. We can, therefore, also implement the using
static statement for our own custom static classes. Add the following using statements to
the top of the console application's Program class:

using static Chapter1.Recipe7UsingStatic;
using static Chapter1.Recipe7UsingStatic.TheDayOfWeek;
using static System.Console;

You will notice that we have included the enumerator in the using static statements. This
is equally fantastic, because Friday is clearly a day of the week, and the enumerator
doesn't need to be called fully, as in the old console application code. By adding the using
static statements, the code in our console application can be changed as follows:

TheDayOfWeek weekday = Friday;
SetShelfPrice(ShelfPrice);
WriteLine(GetSalePrice(weekday));
Read();

This is where the real benefit of the using static statements become evident. It means
less code and makes your code more readable. To recap the idea behind C# 6.0, it didn't
introduce big new concepts but many small features to make your code cleaner and your
intent easier to understand. The using static feature does exactly this.

Exception filters
Exception filters have been around for some time. Visual Basic.NET (VB.NET) and F#
devs have had this functionality for a while. Luckily for us, it has now been introduced in C#
6.0. Exception filters do more than what meets the eye. At first glance, it looks as if
exception filters merely specify a condition when an exception needs to be caught. This is,
after all, what the name "exception filter" implies. Upon closer inspection, however, we see
that exception filters act as more than just syntactical sugar.

Getting ready
We will create a new class called Recipe8ExceptionFilters and call a method that reads
an XML file. The file read logic is determined by a Boolean flag being set to true. Imagine
here that there is some other database flag that when set, also sets our Boolean flag to
true, and thus, our application knows to read the given XML file.

How to do it…
1. Create a class called Recipe8ExceptionFilters that contains two methods. One

method reads the XML file, and the second method logs any exception errors:

public static class Recipe8ExceptionFilters
{
 public static void ReadXMLFile(string fileName)
 {
 try
 {
 bool blnReadFileFlag = true;
 if (blnReadFileFlag)
 {
 File.ReadAllLines(fileName);
 }
 }
 catch (Exception ex)
 {
 Log(ex);
 throw;
 }
 }

 private static void Log(Exception e)
 {
 /* Log the error */
 }
}

2. In the console application, add the following code to call the ReadXMLFile method,
passing it the file name to read:

string File = @"c:\temp\XmlFile.xml";
Chapter1.Recipe8ExceptionFilters.ReadXMLFile(File);

How it works…
If we had to run our application now, we would obviously receive an error (this is assuming
that you actually don't have a file called XMLFile.xml in your temp folder). Visual Studio will
break on the throw statement:

Note
You need to add the correct namespace using System.IO at the top of your code file.

The Log(ex) method has logged the exception, but have a look at the Watch1 window. We
have no idea what the value of blnReadFileFlag is. When an exception is caught, the stack
is unwound (adding overhead to your code) to whatever the actual catch block is.
Therefore, the state of the stack before the exception happened is lost. Modify your
ReadXMLFile and Log methods as follows to include an exception filter:

public static void ReadXMLFile(string fileName)
{
 try
 {
 bool blnReadFileFlag = true;
 if (blnReadFileFlag)
 {
 File.ReadAllLines(fileName);
 }
 }
 catch (Exception ex) when (Log(ex))
 {

 }
}

private static bool Log(Exception e)
{
 /* Log the error */
 return false;
}

When you run your console application again, Visual Studio will break on the actual line of
code that caused the exception:

More importantly, the value of blnReadFileFlag is still in scope. This is because exception
filters can see the state of the stack at the point where the exception occurred instead of
where the exception was handled. Looking at the Locals window in Visual Studio, you will
see that the variables are still in scope at the point where the exception occurred:

Imagine being able to view the exception information in a log file with all the local variable
values available. Another interesting point to note is the return false statement in the
Log(ex) method. Using this method to log the error and return false will allow the
application to continue and have the exception handled elsewhere. As you know, catching
Exception ex will catch everything. By returning false, the exception filter doesn't run into
the catch statement, and more specific catch exceptions (for example, catch
(FileNotFoundException ex) after our catch (Exception ex) statement) can be used to
handle specific errors. Normally, when catching exceptions, FileNotFoundException will
never be caught in the following code example:

catch (Exception ex)
{

}
catch (FileNotFoundException ex)
{

}

This is because the order of the exceptions being caught is wrong. Traditionally, developers
must catch exceptions in their order of specificity, which means that
FileNotFoundException is more specific than Exception and must therefore be placed
before catch (Exception ex). With exception filters that call a false returning method, we
can inspect and log an exception accurately:

catch (Exception ex) when (Log(ex))
{

}
catch (FileNotFoundException ex)
{

}

The preceding code will catch all exceptions, and in doing so log the exception accurately
but not step into the exception handler because the Log(ex) method returns false.

Another implementation of exception filters is that they can allow developers to retry code in
the event of a failure. You might not specifically want to catch the first exception, but

implement a type of timeout element to your method. When the error counter has reached
the maximum iterations, you can catch and handle the exception. You can see an example
of catching an exception based on a try clauses' count here:

public static void TryReadXMLFile(string fileName)
{
 bool blnFileRead = false;
 do
 {
 int iTryCount = 0;
 try
 {
 bool blnReadFileFlag = true;
 if (blnReadFileFlag)
 File.ReadAllLines(fileName);
 }
 catch (Exception ex) when (RetryRead(ex, iTryCount++) ==
true)
 {

 }
 } while (!blnFileRead);
}

private static bool RetryRead(Exception e, int tryCount)
{
 bool blnThrowEx = tryCount <= 10 ? blnThrowEx = false :
blnThrowEx = true;
 /* Log the error if blnThrowEx = false */
 return blnThrowEx;
}

Exception filtering is a very useful and extremely powerful way to handle exceptions in your
code. The behind-the-scenes workings of exception filters are not as immediately obvious
as one might imagine, but here lies the actual power of exception filters.

Using await operator in catch and finally
blocks
Finally, in C# 6.0, you can now use the await keyword in the catch and finally blocks.
Previously, developers had to resort to all sorts of strange workarounds to achieve what is
now easily achievable in C# 6.0. There really is not much more to it than the following.

Getting ready
We will create another class that will simulate the deletion of a file. An exception is thrown,
and the catch block is then executed along with the finally statement. In both the catch
and finally clauses, we will delay and await a task for 3 seconds. Then, we will output this
delay to the console application window.

How to do it…
1. Create a class called Recipe9AwaitInCatchFinally and add a method called

FileRunAsync() to the class with the following code. Make sure that the file does not
exist in the path given to the filePath variable:

public static class Recipe9AwaitInCatchFinally
{
 public static void FileRunAsync()
 {
 string filePath = @"c:\temp\XmlFile.xml";
 RemoveFileAcync(filePath);
 ReadLine();
 }
}

2. Then, add another method called RemoveFileAcync() to the class that takes a file path
as a parameter. Include try catch in this method and add the code that will attempt to
read the file at the path supplied:

public static async void RemoveFileAcync(string filepath)
{
 try
 {
 WriteLine("Read file");
 File.ReadAllLines(filepath);
 }
 catch (Exception ex)
 {

 }
 finally
 {

 }
}

3. In the catch clause, add the following code to simulate a process that takes a few
seconds to complete:

WriteLine($"Exception - wait 3 seconds
{DateTime.Now.ToString("hh:MM:ss tt")}");
await Task.Delay(3000);
WriteLine($"Exception - Print {DateTime.Now.ToString("hh:MM:ss
tt")}");
WriteLine(ex.Message);

4. In the finally clause, add another delay that simulates a task which also takes a few
seconds to complete:

WriteLine($"Finally - wait 3 seconds
{DateTime.Now.ToString("hh:MM:ss tt")}");
await Task.Delay(3000);
WriteLine($"Finally - completed
{DateTime.Now.ToString("hh:MM:ss tt")}");

5. In the console application, simply add a call to the FileRunAsync() method in the
Recipe9AwaitInCatchFinally class:

Chapter1.Recipe9AwaitInCatchFinally.FileRunAsync();

How it works…
After adding the code, run the console application and have a look at the output:

You will notice that the exception thrown was a "file not found" exception. In catch, the
code stopped for 3 seconds while the task was delayed. The same is evident for the code
in the finally clause. It too was delayed for 3 seconds while the task was delayed.

This means that now, in your C# 6.0 applications, you can, for example, await in the catch
clause while an exception log message is written to the log. You can do the same thing in
the finally clause while closing database connections to dispose of other objects.

The process of how the compiler does this is rather complicated. You, however, don't need
to worry about how this functionality is achieved. All you need to do is know that the await
keyword is now available to you as a developer for use in the catch and finally blocks.

Tip
Detailed steps to download the code bundle are mentioned in the Preface of this book.
Please have a look. The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/CSharp-Programming-Cookbook. We also have other
code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/CSharp-Programming-Cookbook
https://github.com/PacktPublishing/

Chapter 2. Classes and Generics
Classes form the building blocks of software development and are essential in building good
code. In this chapter, we will be looking at classes and generics and why we need to use
them. The recipes we will be covering are going to be as follows:

Creating and implementing an abstract class
Creating and implementing an interface
Creating and using a generic class or method
Creating and using a generic interface

Introduction
As you probably know, classes are simply containers for related methods and properties to
describe some object in your software. An object is an instance of a specific class and,
sometimes, mimics real-world things. When thinking of a car, you might create a vehicle
class that contains certain attributes (properties) that all vehicles contain, such as automatic
or manual transmission, wheel count (not all vehicles have only four wheels), or fuel type.

When we create an instance of the vehicle class, we can create a car object, an SUV
object, and so on. Here lies the power of classes, which is to describe the world around us
and translate it into a programming language that a compiler can understand.

Creating and implementing an abstract
class
Many developers have heard about abstract classes, but their implementation is a mystery.
How can you as a developer identify an abstract class and decide when to use one? The
definition is quite a simple one actually. Once you understand this fundamental definition of
an abstract class, when and why to use one becomes obvious.

Imagine for a moment that you are developing an application that manages the animals in a
cat sanctuary. The cat sanctuary rehabilitates lions, tigers, jaguars, leopards, cheetahs,
pumas, and even domestic cats. The common noun that describes all these animals is the
word cat. You can, therefore, safely assume that the abstraction of all these animals is a
cat, and thus, this word identifies our abstract class. You would then create an abstract
class called Cat.

However, you need to keep in mind that you will never ever create an instance of the
abstract class Cat. All the classes that inherit from the abstract class also share some
functionality. This means that you will create a Lion class and a Tiger class that inherit
from the abstract class Cat. In other words, the inherited classes are a kind of cat. Both
classes share functionality in the form of Sleep(), Eat(), Hunt(), and various other
methods. In this way, we can ensure that inherited classes all contain this common
functionality.

Getting ready
Let's go ahead and create our abstract class for cat. We will then use it to inherit from and
create other objects to define different types of cats.

How to do it…
1. In the Visual Studio Solution Explorer, right-click on the solution, click on Add, and

then click on New Project. Select Class Library option to add a new class library
project to your solution and call it Chapter2:

2. A class library project called Chapter2 is added to your solution. Go ahead and right-
click on the default class called Class1.cs that was added to your Chapter2 project
and rename it to Recipes.cs:

3. Once you have done this, your code should resemble the following code listing. You
can see that the default class has been renamed to Recipes and that it exists in the
Chapter2 namespace:

namespace Chapter2
{
 public class Recipes
 {
 }
}

4. We will now change the default class Recipes to an abstract class called Cat. To do
this, add the abstract keyword to the class and change the name from Recipes to Cat.
We are now ready to describe the Cat abstract class:

namespace Chapter2
{
 public abstract class Cat
 {
 }
}

Note
The abstract keyword indicates to us that the object it is applied to has no
implementation. When used in a class declaration, it basically tells the compiler that the
class is to be used as a base class. This means that no instance of the class can be
created. The only way in which implementation of the abstract class happens is when it
is implemented by derived classes that inherit from the base class.

5. Add three methods to the abstract class called Eat(), Hunt(), and Sleep(). You will
notice that these methods don't contain a body (curly braces). This is because they
have been defined as abstract. As with abstract classes, the abstract methods
contained within the abstract class contain no implementation. These three methods
basically describe functionality that is common to all cats. All cats must eat, hunt, and
sleep. Therefore, to ensure that all classes that inherit from the Cat abstract class
contain this functionality, it is added to the abstract class. These methods are then
implemented in the derived classes, which we will see in the upcoming steps:

 public abstract class Cat
 {
 public abstract void Eat();
 public abstract void Hunt();
 public abstract void Sleep();
 }

6. We want to define two types of cat. The first type of cat we want to define is a lion.

For this, we create a Lion class:

public class Lion
{

}

7. At this point in time, the Lion class is simply an ordinary class and does not contain any
common functionality defined in the Cat abstract class. To inherit from the Cat abstract
class, we need to add : Cat after the Lion class name. The colon indicates that the
Lion class inherits from the Cat abstract class. The Lion class is therefore a derived
class of the Cat abstract class:

public class Lion : Cat
{

}

As soon as you specify that the Lion class inherits from the Cat class, Visual Studio
will show you an error. This is expected, because we have told the compiler that the
Lion class needs to inherit all the features of the Cat abstract class, but we have not
actually added these features to the Lion class. The derived class is said to override
the methods in the abstract class, and needs to specifically be written with the
override keyword.

8. If you hover over the red squiggly line underlining the Lion class, Visual Studio will offer
an explanation for the error via the lightbulb feature. As you can see, Visual Studio is
telling you that while you have defined the class to be inheriting from the abstract class,
you have not implemented any of the abstract members of the Cat class:

Note
You can, therefore, see that using abstract classes is a fantastic way to enforce
specific functionality within your system. If you define abstract members in an abstract
class, the derived classes that inherit from that abstract class must implement those
members; otherwise, your code will not compile. This can be used to enforce

standards and practices adopted by your company, or to simply allow other
developers to implement certain best practices as they use your base class for their
derived classes. With the advent of the Visual Studio 2015 feature code analyzers, this
can ensure a consistent development effort by the team.

9. To implement these members that Visual Studio is warning us about, place your mouse
cursor on the Lion class name and hit Ctrl + . (period). You can also click on the Show
potential fixes link in the lightbulb popup. Visual Studio will give you a small heads up,
displaying the changes it will make to your code. You can preview these changes by
clicking on the Preview changes link, as well as fix all occurrences in the document,
project, or solution by clicking on the appropriate link:

After Visual Studio has added the changes displayed in the suggestions window, your
Lion class will be correct and will look like the code listed in the following step.

10. You will notice that Visual Studio automatically adds a NotImplementedException
exception with the following line of code in each overridden method: throw new
NotImplementedException();:

public class Lion : Cat
{
 public override void Eat()
 {
 throw new NotImplementedException();
 }

 public override void Hunt()
 {
 throw new NotImplementedException();
 }

 public override void Sleep()
 {
 throw new NotImplementedException();
 }
}

Note
This is the default behavior of Visual Studio when overriding methods in the base class.
Basically, if you had to instantiate the Lion class without writing any implementation in
the overridden methods, a runtime exception would be generated. The idea of
inheriting from our abstract class was to extend it and implement common functionality.
This is where we need to implement that functionality, and this is the reason there is no
implementation in the abstract class. The abstract class just tells us that the following
methods need to be implemented. The derived class does the actual implementation.

11. Go ahead and add some implementation to the overridden methods of the Lion class.
First, add the using static statement for the Console.WriteLine method to the top of
your class file:

using static System.Console;

12. Then, add the implemented code for the methods, as follows:

public override void Eat()
{
 WriteLine($"The {LionColor} lion eats.");
}

public override void Hunt()
{
 WriteLine($"The {LionColor} lion hunts.");
}

public override void Sleep()
{
 WriteLine($"The {LionColor} lion sleeps.");
}

13. Next, we will create another class called Tiger that also derives from the abstract
class Cat. Follow step 7 to step 12 to create the Tiger class and inherit the Cat
abstract class:

public class Tiger : Cat
{
 public override void Eat()
 {
 throw new NotImplementedException();
 }

 public override void Hunt()
 {
 throw new NotImplementedException();
 }

 public override void Sleep()
 {
 throw new NotImplementedException();
 }
}

14. Add the same implementation for the Tiger class, as follows:

public override void Eat()
{
 WriteLine($"The {TigerColor} tiger eats.");
}

public override void Hunt()
{
 WriteLine($"The {TigerColor} tiger hunts.");
}

public override void Sleep()
{
 WriteLine($"The {TigerColor} tiger sleeps.");
}

15. For our Lion class, add an enumerator for ColorSpectrum and a property called
LionColor. It is here that the implementations of the Lion and Tiger classes will differ.

While they both must implement the common functionality specified in the abstract
class, namely Eat(), Hunt(), and Sleep(), only the lion can have a color of either
brown or white in its available range of colors:

public enum ColorSpectrum { Brown, White }
public string LionColor { get; set; }

16. Next, add the Lion() constructor in our Lion class. This will allow us to specify a color
for the lions in the cat sanctuary. The constructor also takes as parameter a variable of
the ColorSpectrum enumerator type:

public Lion(ColorSpectrum color)
{
 LionColor = color.ToString();
}

17. Slightly similar to this, but quite different in color, the Tiger class can only have a
ColorSpectrum enumeration that defines tigers as being orange, white, gold, blue (yes,
you actually get a blue tiger), or black. Add the ColorSpectrum enumerator to the
Tiger class, as well as a property called TigerColor:

public enum ColorSpectrum { Orange, White, Gold, Blue, Black }
public string TigerColor { get; set; }

18. Finally, we will create a Tiger() constructor for our Tiger class to set the colors of
tigers in the cat sanctuary to the valid colors that tigers are found in. By doing this, we
are separating certain functionality specific only to tigers and lions in their respective
classes, while all the common functionality is contained in the abstract class Cat:

public Tiger(ColorSpectrum color)
{
 TigerColor = color.ToString();
}

19. To see the class in action, we first need to add a reference to our Chapter2.cs class
file. Right-click on References in the console application project:

20. The Reference Manager window will open for the CodeSamples project. Select
Chapter2 and click on the OK button. Then, add the using Chapter2; statement:

21. We now need to instantiate the Lion and Tiger classes. You will see that we set the
respective cat's color from the constructor:

Lion lion = new Lion(Lion.ColorSpectrum.White);
lion.Hunt();
lion.Eat();
lion.Sleep();

Tiger tiger = new Tiger(Tiger.ColorSpectrum.Blue);
tiger.Hunt();
tiger.Eat();
tiger.Sleep();

Console.ReadLine();

22. When you run your console application, you see that the methods are called in
sequence:

How it works…
While the example illustrated earlier is a rather simplistic one, the theory is sound. The
abstract class takes collective functionality across all cats and groups so that it can be
shared inside each derived class. No implementation exists in the abstract class; it only
defines what needs to happen. Think of abstract classes as a type of blueprint for classes
that inherit from the abstract class.

While the content of the implementation is up to you, the abstract class requires that you
add the abstract methods it defines. From here on, you can create a solid foundation for
similar classes in your applications that are supposed to share functionality. This is the goal
of inheritance. Let's recap the features of an abstract class:

You can't instantiate an abstract class with the new keyword.
You can only add abstract methods and accessors to an abstract class.
You can never modify an abstract class as sealed. The sealed modifiers prevents
inheritance, while abstract requires inheritance.
Any class derived from your abstract class must include the implementations of the
abstract methods that were inherited from the abstract class.
Because abstract methods inside the abstract class have no implementation, they don't
contain a body either.

Creating and implementing an interface
For many developers, interfaces are confusing and their purpose not clearly understood.
Interfaces are actually quite easy to get to grips with once you understand the concept that
defines an interface.

Interfaces act like verbs. So, for example, if we had to create two classes called Lion and
Tiger that derive from the Cat abstract class, the interface would describe some sort of
action. Lions and tigers can roar (but not purr). We can then create an interface called
IRoarable. If we had to derive a class called Cheetah from our abstract class Cat, we
would not be able to use the IRoarable interface, because cheetahs purr. We would need
to create an IPurrable interface.

Getting ready
Creating an interface is very similar to creating an abstract class. The difference is that the
interface is describing what the class can do, in the case of the Cheetah class, by
implementing IPurrable.

How to do it…
1. If you haven't already done so in the previous recipe, create an abstract class called

Cat:

public abstract class Cat
{
 public abstract void Eat();
 public abstract void Hunt();
 public abstract void Sleep();
}

2. Next, add a class called Cheetah that inherits from the Cat abstract class:

public class Cheetah : Cat
{

}

3. As soon as you inherit from the Cat abstract class, Visual Studio will show you a
warning via the lightbulb feature. As you inherited from the abstract class Cat, you have
to implement the abstract members within the abstract class in your derived class
Cheetah:

4. This is easily fixable by typing Ctrl +. (period) and fixing all occurrences in the
document. You can also do this for the project or solution. For our purpose, we only
select the Document link at the bottom of the lightbulb suggestions. Visual Studio will
automatically add the abstract methods defined in the abstract class to implement
inside your Cheetah class:

5. You will notice that Visual Studio adds just the methods you need to override but will
throw NotImplementedException if you try to use the class as is. The reason for using
an abstract class is to implement the functionality defined in the abstract class Cat in
the derived class Cheetah. Not doing so contravenes the rules for using abstract
classes:

public class Cheetah : Cat
{
 public override void Eat()
 {
 throw new NotImplementedException();
 }

 public override void Hunt()
 {
 throw new NotImplementedException();
 }

 public override void Sleep()
 {
 throw new NotImplementedException();
 }
}

6. To add some implementation, modify your Cheetah class as follows. The
implementation in the overridden methods is simple, but this validates the rule of writing
some sort of implementation in the overridden methods:

public class Cheetah : Cat
{
 public override void Eat()
 {
 WriteLine($"The cheetah eats.");
 }

 public override void Hunt()
 {
 WriteLine($"The cheetah hunts.");
 }

 public override void Sleep()
 {
 WriteLine($"The cheetah sleeps.");
 }
}

Note
You will notice that the following WriteLine method is used without the Console class.
This is because we are using a new feature in C# 6.0 that allows developers to bring
static classes into scope by adding the using static System.Console; statement to
the top of your class file.

7. Create an interface called IPurrable that will be implemented on the Cheetah class. A
common naming convention for interfaces dictates that the interface name should be

prefixed with a capital I:

interface IPurrable
{

}

8. Next, we will add a method to the interface that any class implementing the interface
must implement. You will notice that the interface's SoftPurr method contains no
implementation at all. It however specifies that we will need to pass this method an
integer value for the decibel that the Cheetah class will purr at:

interface IPurrable
{
 void SoftPurr(int decibel);
}

9. The next step is to implement the IPurrable interface on the Cheetah class. To do this,
we need to add the IPurrable interface name after the Cat abstract class name. If the
Cheetah class did not inherit from the abstract class, then the interface name would
simply follow after the colon:

public class Cheetah : Cat, IPurrable
{
 public override void Eat()
 {
 WriteLine($"The cheetah eats.");
 }

 public override void Hunt()
 {
 WriteLine($"The cheetah hunts.");
 }

 public override void Sleep()
 {
 WriteLine($"The cheetah sleeps.");
 }
}

10. After specifying that the Cheetah class implements the IPurrable interface, Visual
Studio once again displays a warning via the lightbulb feature. It is warning us that the
Cheetah class does not implement the SoftPurr method defined in the interface
IPurrable:

11. As we did earlier, we can let Visual Studio suggest possible fixes for the problems
encountered by typing Ctrl + . (period). Visual Studio suggests that the interface can
be implemented implicitly or explicitly:

12. Knowing when to use an implicit or explicit implementation is also quite easy. We first
need to know when using one over the other would be preferred. Let's start off by
implementing the SoftPurr method implicitly by selecting the first option in the lightbulb
suggestion. You will see that by selecting to implement the SoftPurr method defined in
the IPurrable interface implicitly, adds it as if it were part of the Cheetah class:

public class Cheetah : Cat, IPurrable
{
 public void SoftPurr(int decibel)
 {
 throw new NotImplementedException();
 }

 public override void Eat()
 {
 WriteLine($"The cheetah eats.");
 }

 public override void Hunt()
 {
 WriteLine($"The cheetah hunts.");
 }

 public override void Sleep()
 {
 WriteLine($"The cheetah sleeps.");
 }
}

13. If we look at the SoftPurr method, it looks like a normal method inside the Cheetah
class. This would be fine unless our Cheetah class already contains a property called
SoftPurr. Go ahead and add a property called SoftPurr to your Cheetah class:

public class Cheetah : Cat, IPurrable
{
 public int SoftPurr { get; set; }

 public void SoftPurr(int decibel)
 {
 throw new NotImplementedException();
 }

 public override void Eat()
 {
 WriteLine($"The cheetah eats.");
 }

 public override void Hunt()
 {
 WriteLine($"The cheetah hunts.");
 }

 public override void Sleep()
 {
 WriteLine($"The cheetah sleeps.");
 }
}

14. Visual Studio immediately displays a warning by telling us that the Cheetah class
already contains a definition for SoftPurr:

15. It is here that the use of an explicit implementation becomes evident. This specifies that
the SoftPurr method is a member of the implementation defined in the IPurrable
interface:

16. Therefore, selecting the second option to implement the interface explicitly will add the
SoftPurr method to your Cheetah class as follows:

public class Cheetah : Cat, IPurrable
{
 public int SoftPurr { get; set; }

 void IPurrable.SoftPurr(int decibel)
 {
 throw new NotImplementedException();
 }

 public override void Eat()
 {
 WriteLine($"The cheetah eats.");
 }

 public override void Hunt()
 {
 WriteLine($"The cheetah hunts.");
 }

 public override void Sleep()
 {
 WriteLine($"The cheetah sleeps.");
 }
}

The compiler now knows that this is an interface that is being implemented and is
therefore a valid line of code.

17. For the purpose of this book, let's just use the implicit implementation. Let's write some
implementation for the SoftPurr method and use the new nameof keyword in C# 6.0,
as well as the interpolated string for the output. Also, remove the SoftPurr property
added earlier:

public void SoftPurr(int decibel)
{
 WriteLine($"The {nameof(Cheetah)} purrs at {decibel}
decibels.");
}

18. Heading over to our console application, we can call our Cheetah class as follows:

Cheetah cheetah = new Cheetah();
cheetah.Hunt();
cheetah.Eat();
cheetah.Sleep();
cheetah.SoftPurr(60);
Console.ReadLine();

19. Running the application will produce the following output:

How it works…
So, you might be wondering what the difference between an abstract class and an interface
is. It basically comes down to where you want your implementation. If you need to share
functionality between derived classes, then an abstract class is the best fit for your needs.
In other words, we had specific things that were common to all cats (lions, tigers, and
cheetahs) such as hunting, eating, and sleeping. This is then best used within an abstract
class.

If your implementation is specific to a class or several classes (but not all classes), then
your best course of action would be to use an interface. In this case, the IPurrable
interface can be applied to several classes (for example, cheetahs and domestic cats) but
can't be applied to all cats (such as lions and tigers), because not all cats can purr.

Knowing this difference and where you need to place your implementation will aid you in
deciding whether you need to use an abstract class or an interface.

Creating and using a generic class or
method
Generics is a very interesting way of writing code. Instead of specifying the data type of the
elements in the code at design time, you can actually delay the specification of those
elements until they are used in code. This basically means that your class or method can
work with any data type.

Getting ready
We will start off by writing a generic class that can take any data type as a parameter in its
constructor and do something with it.

How to do it…
1. Declaring a generic class is actually very easy. All that we need to do is create the

class with the generic type parameter <T>:

public class PerformAction<T>
{

}

Note
The generic type parameter is basically a placeholder for a specific type that will need
to be defined when the class of variable is instantiated. This means that the generic
class PerformAction<T> can never just be used without specifying the type argument
inside angle brackets when instantiating the class.

2. Next, create a private variable of the generic type parameter T. This will hold the
value we pass to the generic class:

public class PerformAction<T>
{
 private T _value;
}

3. We now need to add a constructor to the generic class. The constructor will take as
parameter a value of type T. The private variable _value will be set to the parameter
passed to the constructor:

public class PerformAction<T>
{
 private T _value;

 public PerformAction(T value)
 {
 _value = value;
 }
}

4. Finally, to complete our generic class, create a void return method called
IdentifyDataType(). All that this is going to do is tell us what data type we passed to
the generic class. We can find the type of the variable using GetType():

public class PerformAction<T>
{
 private T _value;

 public PerformAction(T value)
 {
 _value = value;
 }

 public void IdentifyDataType()
 {
 WriteLine($"The data type of the supplied variable is
{_value.GetType()}");
 }
}

5. To see the true beauty of our generic class in action, instantiate the generic class in the
console application and specify different data type arguments inside the angle brackets
of each new instantiation:

PerformAction<int> iAction = new PerformAction<int>(21);
iAction.IdentifyDataType();

PerformAction<decimal> dAction = new PerformAction<decimal>
(21.55m);
dAction.IdentifyDataType();

PerformAction<string> sAction = new PerformAction<string>
("Hello Generics");
sAction.IdentifyDataType();

Console.ReadLine();

6. Running your console application will output the given data types that you instantiated
the generic class with each time:

We have used the exact same class but let it perform with three very different data
types. This kind of flexibility is a very powerful feature in your code.

Another feature of C# is that you can constrain the generic types implemented:

1. We can do this by telling the compiler that only types that implement the IDisposable
interface can be used with the generic class. Change your generic class by adding
where T : IDisposable to it. Your generic class should now look like this:

public class PerformAction<T> where T : IDisposable
{
 private T _value;

 public PerformAction(T value)
 {
 _value = value;
 }

 public void IdentifyDataType()
 {
 WriteLine($"The data type of the supplied variable is
{_value.GetType()}");
 }
}

2. Go back to the console application and have a look at the previous instantiations of the
generic class:

Visual Studio will tell you that the types underlined by the red squiggly lines do not
implement IDisposable and therefore can't be supplied to the PerformAction generic
class.

3. Comment out those lines of code and add the following instantiation to your console
application:

DataSet dsData = new DataSet();
PerformAction<DataSet> oAction = new PerformAction<DataSet>
(dsData);
oAction.IdentifyDataType();

Note
Note that for this to work, you might need to add using System.Data; to your code
file. This is needed so that you can declare a DataSet.

4. As you might know, a DataSet type implements IDisposable, and therefore, it is a valid
type to pass to our generic class. Go ahead and run the console application:

The DataSet type is valid, and the generic class performs as expected, identifying the
type of the parameter passed to the constructor.

But what about generic methods? Well, just like generic classes, generic methods also do
not specify their type at design time. It is only known when the method is called. Let's have
a look at the following implementation of generic methods:

1. Let's go ahead and create a new helper class called MyHelperClass:

public class MyHelperClass
{
}

2. Inside this helper class, we will create a generic method called InspectType. What is
interesting about this generic method is that it can return multiple types because the
return type is also marked with the generic type parameter. Your generic method does
not have to return anything. It can also be declared as void:

public class MyHelperClass
{
 public T InspectType<T>(T value)
 {

 }
}

3. To illustrate that this generic method can return multiple types, we will output the type
passed to the generic method to the console window and then return that type and

display it in the console application. You will notice that you need to cast the return
type as (T) when returning it:

public class MyHelperClass
{
 public T InspectType<T>(T value)
 {
 WriteLine($"The data type of the supplied parameter is
{value.GetType()}");

 return (T)value;
 }
}

4. In the console application, go ahead and create an enumerator called MyEnum. The
generic method can also accept enumerators:

public enum MyEnum { Value1, Value2, Value3 }

5. After creating the enumerator, add the following code to the console application. We
are instantiating and calling the oHelper class and passing different values to it:

MyHelperClass oHelper = new MyHelperClass();
var intExample = oHelper.InspectType(25);
Console.WriteLine($"An example of this type is {intExample}");

var decExample = oHelper.InspectType(11.78m);
Console.WriteLine($"An example of this type is {decExample}");

var strExample = oHelper.InspectType("Hello Generics");
Console.WriteLine($"An example of this type is {strExample}");

var enmExample = oHelper.InspectType(MyEnum.Value2);
Console.WriteLine($"An example of this type is {enmExample}");

Console.ReadLine();

6. If you run the console application, you will see that the generic method correctly
identifies the type of the parameter passed to it and then returns that type to the calling
code in the console application:

Generic methods can be used in a multitude of situations. This is however only an
introduction to generic classes and methods. It is recommended that you do further
research to learn how to implement generics in your code appropriately.

How it works…
At the heart of generics lies the ability to reuse a single class or method. It allows
developers to essentially not repeat similar code throughout their code base. This conforms
well to the Don't Repeat Yourself (DRY) principle. This design principle states that a
specific bit of logic should be represented in code only once.

Using generic classes also allows developers to create a class that is type safe when
compiling. Type safe basically means that the developer can be assured of the type of the
object and can use the class in a specific way without experiencing any unexpected
behavior. Therefore, the compiler takes over the burden of type safety.

Generics also allow developers to write less code because code can be reused, and less
code also performs better.

Creating and using a generic interface
Generic interfaces work in much the same way as the previous examples in generics. Let's
assume that we want to find the properties of certain classes in our code, but we can't be
sure how many classes we will need to inspect. A generic interface could come in very
handy here.

Getting ready
We need to inspect several classes for their properties. To do this, we will create a generic
interface that will return a list of all the properties found for a class as a list of strings.

How to do it…
Let's take a look at the following implementation of the generic interface as follows:

1. Go ahead and create a generic interface called IListClassProperties<T>. The
interface will define a method that needs to be used called GetPropertyList() that
simply uses a LINQ query to return a List<string> object:

interface IListClassProperties<T>
{
 List<string> GetPropertyList();
}

2. Next, create a generic class called InspectClass<T>. Let the generic class implement
the IListClassProperties<T> interface created in the previous step:

public class InspectClass<T> : IListClassProperties<T>
{

}

3. As usual, Visual Studio will highlight that the interface member GetPropertyList() has
not been implemented in the InspectClass<T> generic class:

4. To show any potential fixes, type Ctrl + . (period) and implement the interface implicitly:

5. This will create the GetPropertyList() method in your InspectClass<T> class without
any implementation. You will add the implementation in a moment. If you try to run your
code without adding any implementation to the GetpropertyList() method, the
compiler will throw NotImplementedException:

public class InspectClass<T> : IListClassProperties<T>
{
 public List<string> GetPropertyList()
 {
 throw new NotImplementedException();
 }
}

6. Next, add a constructor to your InspectClass<T> class that takes a generic type
parameter and sets it equal to the private variable _classToInspect that you also need
to create. This is setting up the code that we will use to instantiate the
InspectClass<T> object. We will pass to the object we need a list of properties from
the constructor, and the constructor will set the private variable _classToInspect so
that we can use it in our GetPropertyList() method implementation:

public class InspectClass<T> : IListClassProperties<T>
{
 T _classToInspect;
 public InspectClass(T classToInspect)
 {
 _classToInspect = classToInspect;
 }

 public List<string> GetPropertyList()
 {
 throw new NotImplementedException();
 }
}

7. To finish off our class, we need to add some implementation to the GetPropertyList()
method. It is here that the LINQ query will be used to return a List<string> object of
all the properties contained in the class supplied to the constructor:

public List<string> GetPropertyList()
{
 return _classToInspect.GetType().GetProperties().Select(p
=> p.Name).ToList();
}

8. Moving to our console application, go ahead and create a simple class called Invoice.
This is one of several classes that can be used in the system, and the Invoice class is
one of the smaller classes. It usually just holds invoice data specific to a record in the
invoices records of the data store you connect to. We need to find a list of the
properties in this class:

public class Invoice
{
 public int ID { get; set; }
 public decimal TotalValue { get; set; }
 public int LineNumber { get; set; }
 public string StockItem { get; set; }
 public decimal ItemPrice { get; set; }
 public int Qty { get; set; }
}

9. We can now make use of our InspectClass<T> generic class that implements the
IListClassProperties<T> generic interface. To do this, we will create a new instance
of the Invoice class. We will then instantiate the InspectClass<T> class, passing the
type in the angle brackets and the oInvoice object to the constructor. We are now
ready to call the GetPropertyList() method. The result is returned to a List<string>
object called lstProps. We can then run foreach on the list, writing the value of each
property variable to the console window:

Invoice oInvoice = new Invoice();
InspectClass<Invoice> oClassInspector = new
InspectClass<Invoice>(oInvoice);
List<string> lstProps = oClassInspector.GetPropertyList();

foreach(string property in lstProps)
{
 Console.WriteLine(property);
}
Console.ReadLine();

10. Go ahead and run the code to see the output generated by inspecting the properties of
the Invoice class:

As you can see, the properties are listed as they exist in the Invoice class. The
IListClassProperties<T> generic interface and the InspectClass<T> class don't care
what type of class they need to inspect. They will take any class, run the code on it,
and produce a result.

But the preceding implementation still poses a slight problem. Let's have a look at one of
the variation of this problem:

1. Consider the following code in the console application:

InspectClass<int> oClassInspector = new InspectClass<int>(10);
List<string> lstProps = oClassInspector.GetPropertyList();
foreach (string property in lstProps)
{
 Console.WriteLine(property);
}
Console.ReadLine();

You can see that we have easily passed an integer value and type to the
InspectClass<T> class, and the code does not show any warnings at all. In fact, if you
ran this code, nothing would be returned and nothing outputs to the console window.
What we need to do is implement the constraints on our generic class and interface.

2. At the end of the interface implementation after the class, add the where T : class
clause. The code now needs to look like this:

public class InspectClass<T> : IListClassProperties<T> where T
: class
{
 T _classToInspect;
 public InspectClass(T classToInspect)
 {
 _classToInspect = classToInspect;
 }

 public List<string> GetPropertyList()
 {
 return
_classToInspect.GetType().GetProperties().Select(p =>
p.Name).ToList();
 }
}

3. If we returned to our console application code, you will see that Visual Studio has
underlined the int type passed to the InspectClass<T> class:

The reason for this is because we have defined a constraint against our generic class
and interface. We have told the compiler that we only accept reference types.
Therefore, this applies to any class, interface array, type, or delegate. Our Invoice
class will therefore be a valid type, and the constraint will not apply to it.

We can also be more specific in our type parameter constraints. The reason for this is that
we perhaps do not want to constrain the parameters to reference types. If we, for
example, wanted to button down the generic class and interface to only accept classes
created inside our current system, we can implement a constraint that the argument for T
needs to be derived from a specific object. Here, we can use abstract classes again:

1. Create an abstract class called AcmeObject and specify that all classes that inherit
from AcmeObject implement a property called ID:

public abstract class AcmeObject
{
 public abstract int ID { get; set; }
}

2. We can now ensure that objects we create in our code for which we need to read the
properties from are derived from AcmeObject. To apply the constraint, modify the
generic class and place the where T : AcmeObject constraint after the interface
implementation. Your code should now look like this:

public class InspectClass<T> : IListClassProperties<T> where T
: AcmeObject
{
 T _classToInspect;
 public InspectClass(T classToInspect)
 {
 _classToInspect = classToInspect;
 }

 public List<string> GetPropertyList()
 {
 return
_classToInspect.GetType().GetProperties().Select(p =>
p.Name).ToList();
 }
}

3. In the console application, modify the Invoice class to inherit from the AcmeObject
abstract class. Implement the ID property as defined in the abstract class:

public class Invoice : AcmeObject
{
 public override int ID { get; set; }
 public decimal TotalValue { get; set; }
 public int LineNumber { get; set; }
 public string StockItem { get; set; }
 public decimal ItemPrice { get; set; }
 public int Qty { get; set; }
}

4. Create two more classes called SalesOrder and CreditNote. This time, however, only
make the SalesOrder class inherit from AcmeObject. Leave the CreditNote object as
is. This is so that we can clearly see how the constraint can be applied:

public class SalesOrder : AcmeObject
{
 public override int ID { get; set; }
 public decimal TotalValue { get; set; }
 public int LineNumber { get; set; }
 public string StockItem { get; set; }
 public decimal ItemPrice { get; set; }
 public int Qty { get; set; }
}

public class CreditNote
{
 public int ID { get; set; }
 public decimal TotalValue { get; set; }
 public int LineNumber { get; set; }
 public string StockItem { get; set; }
 public decimal ItemPrice { get; set; }
 public int Qty { get; set; }
}

5. Create the code needed to get the property list for the Invoice and SalesOrder

classes. The code is straightforward, and we can see that Visual Studio does not
complain about either of these two classes:

Invoice oInvoice = new Invoice();
InspectClass<Invoice> oInvClassInspector = new
InspectClass<Invoice>(oInvoice);
List<string> invProps = oInvClassInspector.GetPropertyList();

foreach (string property in invProps)
{
 Console.WriteLine(property);
}
Console.ReadLine();
SalesOrder oSalesOrder = new SalesOrder();
InspectClass<SalesOrder> oSoClassInspector = new
InspectClass<SalesOrder>(oSalesOrder);
List<string> soProps = oSoClassInspector.GetPropertyList();

foreach (string property in soProps)
{
 Console.WriteLine(property);
}
Console.ReadLine();

6. If, however, we had to try do the same for our CreditNote class, we will see that
Visual Studio will warn us that we can't pass the CreditNote class to the
InspectClass<T> class because the constraint we implemented only accepts objects
that derive from our AcmeObject abstract class. By doing this, we have effectively
taken control over exactly what we allow to be passed to our generic class and
interface by means of constraints:

How it works…
Speaking of generic interfaces, we have seen that we can implement behavior on a generic
class by implementing a generic interface. The power of using the generic class and generic
interface is well illustrated earlier.

Having said that, we do believe that knowing when to use constraints is also important so
that you can close down your generic classes to only accept the specific types that you
want. This ensures that you don't get any surprises when someone accidently passes an

integer to your generic class.

Finally, the constraints that you can use are as follows:

where T: struct: The type argument must be any value types
where T: class: The type argument must be any reference types
where T: new(): The type argument needs to have a parameterless constructor
where T: <base class name>: The type argument must derive from the given base
class
where T: <T must derive from object>: T The type argument must derive from the
object after the colon
where T: <interface>: The type argument must implement the interface specified

Chapter 3. Object-Oriented Programming
in C#
This chapter will introduce you to the foundation of C# and object-oriented programming
(OOP). In this chapter, you will cover the following recipes:

Using inheritance in C#
Using abstraction
Leveraging encapsulation
Implementing polymorphism
Single responsibility principle
Open/closed principle

Introduction
During your career as a creator of software, you will hear the term OOP many times. This
design philosophy allows for objects to exist independently and can be reused by different
sections of code. This is all made possible by what we refer to as the four pillars of OOP,
namely inheritance, encapsulation, abstraction, and polymorphism.

In order to grasp this, you need to start thinking of objects (which are basically instantiated
classes) that perform a specific task. Classes need to adhere to the SOLID design
principle. This principle is explained here:

Single responsibility principle (SRP)
Open/closed principle
Liskov substitution principle (LSP)
Interface segregation principle
Dependency inversion principle

Let's start off with an explanation of the four pillars of OOP, after which we will have a look
at the SOLID principle in more detail.

Using inheritance in C#
In today's world, inheritance is usually associated with the end of things. In OOP, however,
it is associated with the beginning of something new and better. When we create a new
class, we can take an already existing class and have our new class inherit from it. This
means that our new object will have all the features of the inherited class, as well as the
additional features added to the new class. This is at the root of inheritance. We call a
class that inherits from another a derived class.

Getting ready
To illustrate the concept of inheritance, we will create a few classes that inherit from
another to form new, more feature-rich objects.

How to do it…
1. Create a new class library by right-clicking on your solution and selecting Add and then

New Project from the context menu:

2. From the Add New Project dialog screen, select Class Library from the installed
templates and call your class Chapter3:

3. Your new class library will be added to your solution with a default name Class1.cs,
which we renamed to Recipes.cs in order to distinguish the code properly. You can,
however, rename your class to whatever you like if it makes more sense to you.

4. To rename your class, simply click on the class name in the Solution Explorer and
select Rename from the context menu:

5. Visual Studio will ask you to confirm the renaming of all references to the code element
Class1 in the project. Just click on Yes:

6. Now, let's create a new class called SpaceShip:

public class SpaceShip
{

}

7. Our SpaceShip class will contain a few methods that describe the basics of a
spaceship. Go ahead and add these methods to your SpaceShip class:

public class SpaceShip
{
 public void ControlBridge()
 {

 }
 public void MedicalBay(int patientCapacity)
 {

 }
 public void EngineRoom(int warpDrives)
 {

 }
 public void CrewQuarters(int crewCapacity)
 {

 }
 public void TeleportationRoom()
 {

 }
}

Because the SpaceShip class forms part of all other intergalactic vessels, it becomes
the blueprint for every other vessel.

8. Next, we want to create a Destroyer class. To accomplish this, we will create a
Destroyer class and use a colon after the class name to indicate that we want to

inherit from another class (the SpaceShip class). Therefore, the following needs to be
added when creating the Destroyer class:

public class Destroyer : SpaceShip
{

}

Note
We can also say that the Destroyer class is derived from the SpaceShip class. The
SpaceShip class is therefore the base class of all other intergalactic vessels.

9. Next, add a few methods to the Destroyer class that are unique to a destroyer. These
methods belong only to the Destroyer class and not to the SpaceShip class:

public class Destroyer : SpaceShip
{
 public void WarRoom()
 {

 }
 public void Armory(int payloadCapacity)
 {

 }

 public void WarSpecialists(int activeBattalions)
 {

 }
}

10. Finally, create a third class called Annihilator. This is the most powerful intergalactic
vessel and is used to wage war on planets. Let the Annihilator class inherit from the
Destroyer class by creating the class and marking it as derived from the Destroyer
class as follows Annihilator : Destroyer:

public class Annihilator : Destroyer
{

}

11. Finally, add a few methods to the Annihilator class that only belong to this type of
SpaceShip class:

public class Annihilator : Destroyer
{
 public void TractorBeam()
 {

 }

 public void PlanetDestructionCapability()
 {

 }
}

12. Inside the console application, add a reference to the Chapter3 class library by right-
clicking on References under the CodeSamples project and selecting Add Reference
from the context menu:

13. In the Reference Manager window, select the Chapter3 solution under Projects |
Solutions. This will allow you to use the classes we just created in your console
application:

14. What we see now is that when we create a new instance of the SpaceShip class, only
the methods defined in that class are available to us. This is because the SpaceShip
class does not inherit from any other class:

15. Go ahead and create the SpaceShip class with its methods in the console application:

SpaceShip transporter = new SpaceShip();
transporter.ControlBridge();
transporter.CrewQuarters(1500);
transporter.EngineRoom(2);
transporter.MedicalBay(350);
transporter.TeleportationRoom();

You will see that these are the only methods available to us when instantiating a new
instance of this class.

16. Next, create a new instance of the Destroyer class. You will notice that the Destroyer
class contains more methods than what we defined when we created the class. This is
because the Destroyer class is inheriting the SpaceShip class and therefore inherits the
methods of the SpaceShip class:

17. Go ahead and create the Destroyer class with all its methods in the console
application:

Destroyer warShip = new Destroyer();
warShip.Armory(6);
warShip.ControlBridge();
warShip.CrewQuarters(2200);
warShip.EngineRoom(4);
warShip.MedicalBay(800);
warShip.TeleportationRoom();
warShip.WarRoom();
warShip.WarSpecialists(1);

18. Finally, create a new instance of the Annihilator class. This class contains all the
methods of the Destroyer class as well as the methods from the SpaceShip class. This
is because Annihilator inherits from Destroyer, which, in turn, inherits from
SpaceShip:

19. Go ahead and create the Annihilator class with all its methods in the console
application:

Annihilator planetClassDestroyer = new Annihilator();
planetClassDestroyer.Armory(12);
planetClassDestroyer.ControlBridge();
planetClassDestroyer.CrewQuarters(4500);
planetClassDestroyer.EngineRoom(7);
planetClassDestroyer.MedicalBay(3500);
planetClassDestroyer.PlanetDestructionCapability();
planetClassDestroyer.TeleportationRoom();
planetClassDestroyer.TractorBeam();
planetClassDestroyer.WarRoom();
planetClassDestroyer.WarSpecialists(3);

How it works…
We can see that inheritance allowed us to easily extend our classes by reusing functionality
that already exists within another class created earlier. You also need to be aware though
that any changes to the SpaceShip class will be inherited up the stack to the top-most
derived class.

Inheritance is a very powerful feature of C#, which allows developers to write less code and
reuse working and tested methods.

Using abstraction
With abstraction, we take from the object we want to create the basic functionality that all
objects derived from the abstracted object must have. To explain this in simple terms, we
abstract the common functionality and put it in a single class that will be used to provide this
shared functionality to all classes that inherit from it.

Getting ready
To explain abstraction, we will use abstract classes. Imagine that you are dealing with
trainee space astronauts who need to progress through the ranks as they get trained. The
truth is that once you as trainee learn a new skill, that skill is learned and will remain with
you even though you learn more advanced ways to do things. You must also implement all
the previous skills learned in the new object you create. Abstract classes demonstrate this
concept very nicely.

How to do it…
1. Create an abstract class called SpaceCadet. This is the first type of astronaut you can

be when starting with training. The abstract class and its members are defined using
the abstract keyword. A thing to note is that abstract classes cannot be instantiated.
The members represent the skills that SpaceCadet will have, such as negotiation and
basic weapons training:

public abstract class SpaceCadet
{
 public abstract void ChartingStarMaps();
 public abstract void BasicCommunicationSkill();
 public abstract void BasicWeaponsTraining();
 public abstract void Negotiation();
}

2. Next, create another abstract class called SpacePrivate. This abstract class inherits
from the SpaceCadet abstract class. What we are basically saying is that when a space
cadet is trained as a space private, they will still have all the skills learned as a space
cadet:

public abstract class SpacePrivate : SpaceCadet
{
 public abstract void AdvancedCommunicationSkill();
 public abstract void AdvancedWeaponsTraining();
 public abstract void Persuader();
}

3. To demonstrate this, create a class called LabResearcher and inherit the SpaceCadet
abstract class. Inheriting from the abstract class is done by defining a colon and

abstract class name after the newly created class name. This tells the compiler that
the LabResearcher class inherits from the SpaceCadet class:

public class LabResearcher : SpaceCadet
{

}

Because we are inheriting an abstract class, the compiler will underline the
LabResearcher class name to warn us that the derived class does not implement any of
the methods in the SpaceCadet abstract class.

4. If you hover your mouse over the squiggly line, you will see that the lightbulb tip
provides us with the issues discovered:

5. Visual Studio does a great job of providing a solution to the issues discovered. By
typing Ctrl + . (Control key and dot), you can let Visual Studio show you some potential
fixes (in this case, only one fix) for the issues identified:

6. After Visual Studio has added the required methods, you will see that these are the
same methods defined in the SpaceCadet abstract class. Abstract classes, therefore,
require the classes inheriting from the abstract class to implement the methods defined
in the abstract class. You will also notice that the methods added to the LabResearcher
class contain no implementation and will throw an exception if used as is:

public class LabResearcher : SpaceCadet
{
 public override void BasicCommunicationSkill()
 {
 throw new NotImplementedException();
 }

 public override void BasicWeaponsTraining()
 {
 throw new NotImplementedException();
 }

 public override void ChartingStarMaps()
 {
 throw new NotImplementedException();
 }

 public override void Negotiation()
 {
 throw new NotImplementedException();
 }
}

7. Next, create a class called PlanetExplorer and make this class inherit from the
SpacePrivate abstract class. You will remember that the SpacePrivate abstract class
inherited from the SpaceCadet abstract class:

public class PlanetExplorer : SpacePrivate
{

}

8. Visual Studio will once again warn you that your new class does not implement the
methods of the abstract class that you are inheriting from. Here, however, you will
notice that the lightbulb tip informs you that you are not implementing any of the
methods in the SpacePrivate and SpaceCadet abstract classes. This is because the
SpacePrivate abstract class is inheriting from the SpaceCadet abstract class:

9. To fix the issues identified, type Ctrl + . (Control key and dot) and let Visual Studio
show you some potential fixes (in this case, only one fix) for the issues identified:

10. After the fixes have been added to your code, you will see that the PlanetExplorer
class contains all the methods in the SpacePrivate and SpaceCadet abstract classes:

public class PlanetExplorer : SpacePrivate
{
 public override void AdvancedCommunicationSkill()
 {
 throw new NotImplementedException();
 }

 public override void AdvancedWeaponsTraining()
 {
 throw new NotImplementedException();
 }

 public override void BasicCommunicationSkill()
 {
 throw new NotImplementedException();
 }

 public override void BasicWeaponsTraining()
 {
 throw new NotImplementedException();
 }

 public override void ChartingStarMaps()
 {
 throw new NotImplementedException();
 }

 public override void Negotiation()
 {
 throw new NotImplementedException();
 }

 public override void Persuader()
 {
 throw new NotImplementedException();
 }
}

How it works…
Abstraction has allowed us to define a common set of functionality that is to be shared
among all the classes that derive from the abstract classes. The difference between
inheriting from the abstract class and a normal class is that with an abstract class, you have
to implement all the methods defined in that abstract class.

This makes the class easy to version and change. If you need to add new functionality, you
can do so by adding that functionality to the abstract class without breaking any of the
existing code. Visual Studio will require that all inherited classes implement the new method
defined in the abstract class.

You can, therefore, be assured that the change applied will be implemented in all your

classes that derive from the abstract classes in your code.

Leveraging encapsulation
What is encapsulation? Simply put, it is hiding the inner workings of a class that aren't
necessary for the implementation of that class. Think of encapsulation as follows: most
people who own a car know that it runs on gas. They don't need to know the inner workings
of an internal combustion engine to be able to use a car. They only need to know that they
need to fill it up with gas when it is close to empty and that they need to check the oil and
tyre pressure. Even then, it is usually not done by the car owner. This is true for classes
and encapsulation.

The owner of the class is the one who uses it. The inner workings of that class need not be
exposed to the developer using the class. The class is, therefore, like a black box. You
know that the class will be consistent in its functionality, given the correct set of
parameters. How exactly the class gets to the output is of no concern to the developer as
long as the input is correct.

Getting ready
To illustrate the concept of encapsulation, we will create a class that is somewhat complex
in its inner workings. We need to calculate the thrust to weight ratio (TWR) of a space
shuttle to determine whether it will be able to take off vertically. It needs to exert more
thrust than its weight to counteract gravity and get into a stable orbit. This also depends on
which planet the shuttle takes off from, because different planets exert different
gravitational forces on objects on their surface. In simple terms, the TWR must be greater
than one.

How to do it…
1. Create a new class called LaunchSuttle. Then, add the following private variables to

the class for engine thrust; the mass of the shuttle; the local gravitational acceleration;
the constant values for the gravity of the Earth, Moon, and Mars (these are constants
because they will never change); the universal gravitational constant; and an
enumerator for the planet we are dealing with:

public class LaunchShuttle
{
 private double _EngineThrust;
 private double _TotalShuttleMass;
 private double _LocalGravitationalAcceleration;

 private const double EarthGravity = 9.81;
 private const double MoonGravity = 1.63;
 private const double MarsGravity = 3.75;
 private double UniversalGravitationalConstant;

 public enum Planet { Earth, Moon, Mars }
}

2. To our class, we will add three overloaded constructors that are essential to perform
the calculation of the TWR based on the known facts at the time of instantiation (we
assume that we will always know the engine thrust capability and mass of the shuttle).
We will pass the gravitational acceleration for the first constructor. This is useful if we
know beforehand what that value will be. For example, the gravitational acceleration of
the Earth is 9.81 m/s2.

The second constructor will use the Planet enumerator to calculate the TWR that uses
the constant variable values.

The third constructor will use the radius and mass of the planet to calculate the
gravitational acceleration when those values are knows to return the TWR:

public LaunchShuttle(double engineThrust, double
totalShuttleMass, double gravitationalAcceleration)
{
 _EngineThrust = engineThrust;
 _TotalShuttleMass = totalShuttleMass;
 _LocalGravitationalAcceleration =
gravitationalAcceleration;

}

public LaunchShuttle(double engineThrust, double
totalShuttleMass, Planet planet)
{
 _EngineThrust = engineThrust;
 _TotalShuttleMass = totalShuttleMass;
 SetGraviationalAcceleration(planet);

}

public LaunchShuttle(double engineThrust, double
totalShuttleMass, double planetMass, double planetRadius)
{
 _EngineThrust = engineThrust;
 _TotalShuttleMass = totalShuttleMass;
 SetUniversalGravitationalConstant();
 _LocalGravitationalAcceleration =
Math.Round(CalculateGravitationalAcceleration (planetRadius,
planetMass), 2);
}

3. In order to use the second overloaded constructor that passes the Planet enumerator
as a parameter to the class, we need to create another method that has been scoped
as private to calculate the gravitational acceleration. We also need to set the
_LocalGravitationalAcceleration variable to the specific constant that matches the
enumerator value. This method is something that the user of the class does not need to
see in order to use the class. It is, therefore, scoped as private in order to hide that
functionality from the user:

private void SetGraviationalAcceleration(Planet planet)
{
 switch (planet)
 {
 case Planet.Earth:
 _LocalGravitationalAcceleration = EarthGravity;
 break;
 case Planet.Moon:
 _LocalGravitationalAcceleration = MoonGravity;
 break;
 case Planet.Mars:
 _LocalGravitationalAcceleration = MarsGravity;
 break;
 default:
 break;
 }
}

4. Of the following methods, only one is defined as public and will, therefore, be visible to
the user of the class. Create the private methods to set the universal gravitational
constant, to calculate the TWR, and to calculate the gravitational acceleration. These
are all scoped as private, because the developer does not need to know what these
methods do in order to use the class:

private void SetUniversalGravitationalConstant()
{
 UniversalGravitationalConstant = 6.6726 * Math.Pow(10, -
11);
}

private double CalculateThrustToWeightRatio()
{
 // TWR = Ft/m.g > 1
 return _EngineThrust / (_TotalShuttleMass *
_LocalGravitationalAcceleration);
}

private double CalculateGravitationalAcceleration(double
radius, double mass)
{
 return (UniversalGravitationalConstant * mass) /
Math.Pow(radius, 2);
}

public double TWR()
{
 return Math.Round(CalculateThrustToWeightRatio(), 2);
}

5. Finally, in your console application, create the following variables with their known
vales:

double thrust = 220; // kN
double shuttleMass = 16.12; // t
double graviatatonalAccelerationEarth = 9.81;
double earthMass = 5.9742 * Math.Pow(10, 24);
double earthRadius = 6378100;
double thrustToWeightRatio = 0;

6. Create a new instance of the LaunchShuttle class and pass it the values needed to
calculate the TWR:

LaunchShuttle NasaShuttle1 = new LaunchShuttle(thrust,
shuttleMass, graviatatonalAccelerationEarth);
thrustToWeightRatio = NasaShuttle1.TWR();
Console.WriteLine(thrustToWeightRatio);

7. When you use the dot operator on the NasaShuttle1 variable, you will notice that
IntelliSense only shows the TWR method. The class exposes nothing of the inner
workings of how it gets to the calculated TWR value. The only thing that the developer
knows is that the LaunchShuttle class will consistently return the correct TWR value,
given the same input parameters:

8. To test this, create two more instances of the LaunchShuttle class and call a different
constructor each time:

LaunchShuttle NasaShuttle2 = new LaunchShuttle(thrust,
shuttleMass, LaunchShuttle.Planet.Earth);
thrustToWeightRatio = NasaShuttle2.TWR();
Console.WriteLine(thrustToWeightRatio);

LaunchShuttle NasaShuttle3 = new LaunchShuttle(thrust,
shuttleMass, earthMass, earthRadius);
thrustToWeightRatio = NasaShuttle3.TWR();
Console.WriteLine(thrustToWeightRatio);

Console.Read();

9. If you run your console application, you will see that the same value is returned for the
TWR. The value indicates that a shuttle weighing 16.12 tons with a rocket that puts out
220 kilonewtons of thrust will be able to lift off the surface of the Earth (if only just):

How it works…

The class uses the scoping rules to hide certain functionality inside the class from the
developer using the class. As mentioned earlier, the developer does not need to know how
the calculations are done to return the value for the TWR. This all aids in making the class
more useful and easy to implement. Here is a list of the various scopes available in C#,
along with their uses:

Public: This is used with variables, properties, types, and methods and is visible
anywhere.
Private: This is used with variables, properties, types, and methods and is visible only
in the block where they are defined.
Protected: This is used with variables, properties, and methods. Don't think of this in
terms of public or private. The protected scope is only visible inside the class in which it
is used, as well as in any inherited classes.
Friend: This is used with variables, properties, and methods and can only be used by
code in the same project or assembly.
Protected Friend: This is used with variables, properties, and methods and is a
combination (as the name suggests) of the protected and friend scopes.

Implementing polymorphism
Polymorphism is a concept that is quite easy to grasp once you have looked at and
understood the other pillars of OOP. Polymorphism literally means that something can have
many forms. This means that from a single interface, you can create multiple
implementations.

There are two subsections to this, namely static and dynamic polymorphism. With static
polymorphism, you are dealing with the overloading of methods and functions. You can use
the same method, but perform many different tasks.

With dynamic polymorphism, you are dealing with the creation and implementation of
abstract classes. These abstract classes act as a blueprint that tells you what a derived
class should implement. The following section looks at both.

Getting ready
We will begin by illustrating the use of an abstract class, which is an example of dynamic
polymorphism. We will then create overloaded constructors as an example of static
polymorphism.

How to do it…
1. Create an abstract class called Shuttle and give it a member called TWR, which is the

calculation of the TWR of the shuttle:

public abstract class Shuttle
{
 public abstract double TWR();
}

2. Next, create a class called NasaShuttle and have it inherit from the abstract class
Shuttle, by putting the abstract class name after a colon at the end of the
NasaShuttle class declaration:

public class NasaShuttle : Shuttle
{

}

3. Visual Studio will underline the NasaShuttle class because you have told the compiler
that the class inherits from an abstract class, but you have not yet implemented the
members of that abstract class:

4. To fix the issues identified, type Ctrl + . (Control key and dot) and let Visual Studio
show you some potential fixes (in this case, only one fix) for the issues identified:

5. Visual Studio then adds the missing implementation to your NasaShuttle class. By
default, it will add it as not implemented, because you are required to provide
implementation for the abstract member you overrode in the abstract class:

public class NasaShuttle : Shuttle
{
 public override double TWR()
 {
 throw new NotImplementedException();
 }
}

6. Create another class called RoscosmosShuttle and inherit from the same Shuttle
abstract class:

public class RoscosmosShuttle : Shuttle
{

}

7. Visual Studio will underline the RoscosmosShuttle class because you have told the

compiler that the class inherits from an abstract class, but you have not yet
implemented the members of that abstract class:

8. To fix the issues identified, type Ctrl + . (Control key and dot) and let Visual Studio
show you some potential fixes (in this case, only one fix) for the issues identified:

9. The overridden method is then added to the RoscosmosShuttle class as not
implemented. You have just seen an example of dynamic polymorphism in action:

public class RoscosmosShuttle : Shuttle
{
 public override double TWR()
 {
 throw new NotImplementedException();
 }
}

10. To see an example of static polymorphism, create the following overloaded constructor
for NasaShuttle. The constructor name stays the same, but the signature of the
constructor changes, which makes it overloaded:

public NasaShuttle(double engineThrust, double
totalShuttleMass, double gravitationalAcceleration)
{

}

public NasaShuttle(double engineThrust, double
totalShuttleMass, double planetMass, double planetRadius)
{

}

How it works…
Polymorphism is something you will easily be using already by simply applying good object
oriented principles to the design of your classes. With the abstract Shuttle class, we saw
that the class took on the shape of the NasaShuttle class and the RoscosmosShuttle class
when it was used to derive those new classes from its abstraction. The constructor of the
NasaShuttle class was then overridden to provide the same method name, but
implemented using different signatures.

This is at the heart of polymorphism. Most likely, you have been using it without knowing
about it.

Single responsibility principle
When talking about SOLID principles, we will start off with the SRP. Here, we are actually
saying that a class has a specific task that it needs to fulfil and it should not do anything
else.

Getting ready
You will create a new class and write code to log an error to the database when an
exception is thrown on adding more troops to the star ship, causing it to be over capacity.

How to do it…
1. Create a new class called StarShip:

public class Starship
{

}

2. To your class, add a new method that will set the maximum troop capacity of the
StarShip class:

public void SetMaximumTroopCapacity(int capacity)
{

}

3. Inside this method, add a trycatch clause that will attempt to set the maximum troop
capacity, but for some reason, it will fail. Upon failure, it will write the error to the log
table inside the database:

try
{
 // Read current capacity and try to add more
}
catch (Exception ex)
{
 string connectionString = "connection string goes here";
 string sql = $"INSERT INTO tblLog (error, date) VALUES
({ex.Message}, GetDate())";
 using (SqlConnection con = new
SqlConnection(connectionString))
 {
 SqlCommand cmd = new SqlCommand(sql);
 cmd.CommandType = CommandType.Text;
 cmd.Connection = con;
 con.Open();
 cmd.ExecuteNonQuery();
 }
 throw ex;
}

How it works…
If you have code that looks like the preceding one, you are in contravention of the SRP. The
StarShip class is no longer responsible for just itself and things that have to do with star
ships. It now has to fulfill the role of logging errors to the database too. You see the
problem here is that the database-logging code does not belong in the catch clause of the
SetMaximumTroopCapacity method. A better approach would be to create a separate
DatabaseLogging class with methods to create connections and write exceptions to the
appropriate log table. You will also find that you are going to have to write that logging code
in multiple places (in every catch clause). If you are finding that you are repeating code (by
copying and pasting from other areas), you probably need to put that code into a common
class, and you have likely broken the SRP rule.

Open/closed principle
When creating classes, we need to ensure that the class prohibits any breaking
modifications by needing to change internal code. We say that such a class is closed. If we
need to change it somehow, we can do so by extending the class. This extensibility is
where we say that the class is open for extensions.

Getting ready
You will create a class that determines the skills of a trooper by looking at the class of
trooper. We will show you the way many developers create such a class and the way it can
be created using the open/closed principle.

How to do it…
1. Create a class called StarTrooper:

public class StarTrooper
{

}

2. To this class, add an enumerator called TrooperClass to identify the type of trooper
we want to return the skills of. Also, create a List<string> variable to contain the
skills of the specific trooper class. Finally, create a method called GetSkills that
returns the specific set of skills for the given trooper class.

The class is quite straightforward, but the implementation of the code is something we
see a lot. Sometimes, instead of a switch statement, you will see a whole lot of if
else statements. While the functionality of the code is clear, it is not easy to add
another class of trooper to the StarTrooper class without changing code. Assume that
you now have to add an additional Engineer class to the StarTrooper class. You would
have to modify the TrooperClass enumeration and the code in the switch statement.

This changing of code can cause you to introduce bugs into code that was previously
working fine. We now see that the StarTrooper class is not closed and can't be
extended easily to accommodate additional TrooperClass objects:

public enum TrooperClass { Soldier, Medic, Scientist }
List<string> TroopSkill;

public List<string> GetSkills(TrooperClass troopClass)
{
 switch (troopClass)
 {
 case TrooperClass.Soldier:
 return TroopSkill = new List<string>(new string[] {
"Weaponry", "TacticalCombat", "HandToHandCombat" });

 case TrooperClass.Medic:
 return TroopSkill = new List<string>(new string[] {
"CPR", "AdvancedLifeSupport" });

 case TrooperClass.Scientist:
 return TroopSkill = new List<string>(new string[] {
"Chemistry", "MollecularDeconstruction", "QuarkTheory" });

 default:
 return TroopSkill = new List<string>(new string[] {
"none" });
 }
}

3. The solution to this problem is inheritance. Instead of having to change code, we
extend it. Start off by rewriting the above StarTrooper class and create a Trooper
class. The GetSkills method is declared as virtual:

public class Trooper
{
 public virtual List<string> GetSkills()
 {
 return new List<string>(new string[] { "none" });
 }
}

4. Now, we can easily create derived classes for the Soldier, Medic, and Scientist
trooper classes available. Create the following derived classes that inherit from the
Trooper class. You can see that the override keyword is used when creating the
GetSkills method:

public class Soldier : Trooper
{
 public override List<string> GetSkills()
 {
 return new List<string>(new string[] { "Weaponry",
"TacticalCombat", "HandToHandCombat" });
 }
}

public class Medic : Trooper
{
 public override List<string> GetSkills()
 {
 return new List<string>(new string[] { "CPR",
"AdvancedLifeSupport" });
 }
}

public class Scientist : Trooper
{
 public override List<string> GetSkills()
 {
 return new List<string>(new string[] { "Chemistry",
"MollecularDeconstruction", "QuarkTheory" });
 }
}

5. The code becomes extremely easy to implement when extending the class to add an
additional class of Trooper. If we now want to add the Engineer class, we would
simply override the GetSkills method after inheriting from the Trooper class created
earlier:

public class Engineer : Trooper
{
public override List<string> GetSkills()
 {
 return new List<string>(new string[] { "Construction",
"Demolition" });
 }
}

How it works…
The classes derived from the Trooper class are extensions of the Trooper class. We can
say that each class is closed, because modifying it does not necessitate changing the
original code. The Trooper class is also extensible because we have been able to easily
extend the class by creating derived classes from it.

Another by-product of this design is smaller, more manageable code that is easier to read
and understand.

Chapter 4. Composing Event-Based
Programs Using Reactive Extensions
This chapter deals with Reactive Extensions (Rx). To understand Rx, we will cover the
following recipes:

Installing Rx
Events versus observables
Using LINQ to perform queries
Using schedulers in Rx
Debugging lambda expressions

Introduction
Often, during your day-to-day dealings with developing applications in C#, you will have to
use asynchronous programming. You might also have to deal with many data sources.
Think of a web service that returns the current exchange rates, a Twitter search returning a
stream of related data, or even different events generated by multiple computers. Rx
provides an elegant solution in the form of the IObserver<T> interface.

You use the IObserver<T> interface to subscribe to the events. Then, the IObservable<T>
interface, which maintains a list of IObserver<T> interfaces, will notify them on the change
of state. In essence, Rx will stick together multiple data sources (social media, RSS feeds,
UI events, and so on) that generate data. Rx, therefore, brings these data sources together
in one interface. In fact, Rx can be thought of as consisting of three sections:

Observables: The interface that brings together and represents all these data streams
Language-Integrated Query (LINQ): The ability to use LINQ to query these multiple
data streams
Schedulers: Parametrizing concurrency using schedulers

The question on many minds might be why developers should use (or find use for) Rx. Here
are a few examples where Rx are really useful:

Creating a search that has an autocomplete function. You don't want the code to
perform a search for each value you type into the search area. Rx allows you to
throttle the search.
Making the UI of your application more responsive.
Being notified when data changes instead of having to poll the data for changes. Think
of real-time stock prices.

To keep up to date with Rx, you can have a look at the GitHub page:
https://github.com/Reactive-Extensions/Rx.NET.

https://github.com/Reactive-Extensions/Rx.NET

Installing Rx
Before we can begin exploring Rx, we need to install it. The easiest way to do this is using
NuGet.

Getting ready
For this chapter on Rx, we will not create a separate class. All the code will be written in a
console application.

How to do it…
1. Right-click on your solution and select Manage NuGet Packages for Solution… from

the context menu:

2. In the window that is displayed afterwards, type System.Reactive in the search text
box and search for the NuGet installer:

3. At the time of writing this book, the last stable release was version 3.0.0. Next, select
the projects that you want to install Rx on. For simplicity sake, we just selected it to be
installed project wide:

4. The next screenshot that is displayed is a confirmation dialog box, asking you to
confirm the changes to the project. It will show a preview of the changes it will be
making to each project. If you are happy with the changes, click on the OK button:

5. A license agreement might be presented to you in the last dialog screen, which you will
need to accept. To continue, click on the I Accept button.

6. After the installation is complete, you will see the references added to Rx under the
References node in your project. These are as follows:

System.Reactive.Core

System.Reactive.Interfaces

System.Reactive.Linq

System.Reactive.PlatformServices

How it works…
NuGet is by far the easiest way to add additional components to your projects. As you can
see from the added references, System.Reactive is the main assembly. To gain a better
understanding of System.Reactive, view the assemblies in Object Browser. To do this,
double-click on any of the assemblies in the References option of your project:

System.Reactive.Linq contains all the querying functionality in Rx. You will also notice that
System.Reactive.Concurrency contains all the schedulers.

Events versus observables
Being developers, we should all be quite familiar with events. Most developers have been
creating events since we started writing code. In fact, if you have even dropped a button
control on a form and double-clicked the button to create the method that handles the click
of the button, you have created an event. In .NET, we can declare events using the event
keyword, publish to the event by invoking it, and subscribe to that event by adding a handler
to the event. We therefore have the following operations:

Declare
Publish
Subscribe

With Rx, we have a similar structure where we declare a data stream, publish data to that
stream, and subscribe to it.

Getting ready
First, we will see how an event works in C#. We will then see the working of an event using
Rx and, in doing so, highlight the differences.

How to do it…
1. In your console application, add a new class called DotNet. To this class, add a

property called AvailableDatatype:

public class DotNet
{
 public string AvailableDatatype { get; set; }
}

2. In the main program class, add a new static action event called types. Basically, this is
just a delegate and will receive some value, in our case, the available .NET data types:

class Program
{
 // Static action event
 static event Action<string> types;

 static void Main(string[] args)
 {

 }
}

3. Inside void Main, create a List<DotNet> class called lstTypes. Inside this list, add

several values of type DotNet class. Here, we will just add hardcoded data of some of
the data types in .NET:

List<DotNet> lstTypes = new List<DotNet>();
DotNet blnTypes = new DotNet();
blnTypes.AvailableDatatype = "bool";
lstTypes.Add(blnTypes);

DotNet strTypes = new DotNet();
strTypes.AvailableDatatype = "string";
lstTypes.Add(strTypes);

DotNet intTypes = new DotNet();
intTypes.AvailableDatatype = "int";
lstTypes.Add(intTypes);

DotNet decTypes = new DotNet();
decTypes.AvailableDatatype = "decimal";
lstTypes.Add(decTypes);

4. Our next task is to subscribe to this event with an event handler that is simply
outputting the value of x to the console window. We will then raise the event each time
we loop through our lstTypes list by adding the line
types(lstTypes[i].AvailableDatatype);:

types += x =>
{
 Console.WriteLine(x);
};

for (int i = 0; i <= lstTypes.Count - 1; i++)
{
 types(lstTypes[i].AvailableDatatype);
}

Console.ReadLine();

Note
In reality, before raising an event, we should always check that the event isn't null.
Only after this check should we raise the event. For brevity, we have not added this
check before raising the event.

5. When you have added all the code from step 1 to step 4, your console application
should look like this:

class Program
{
 // Static action event
 static event Action<string> types;

 static void Main(string[] args)
 {
 List<DotNet> lstTypes = new List<DotNet>();
 DotNet blnTypes = new DotNet();
 blnTypes.AvailableDatatype = "bool";
 lstTypes.Add(blnTypes);

 DotNet strTypes = new DotNet();
 strTypes.AvailableDatatype = "string";
 lstTypes.Add(strTypes);

 DotNet intTypes = new DotNet();
 intTypes.AvailableDatatype = "int";
 lstTypes.Add(intTypes);

 DotNet decTypes = new DotNet();
 decTypes.AvailableDatatype = "decimal";
 lstTypes.Add(decTypes);

 types += x =>
 {
 Console.WriteLine(x);
 };

 for (int i = 0; i <= lstTypes.Count - 1; i++)
 {
 types(lstTypes[i].AvailableDatatype);
 }

 Console.ReadLine();
 }
}

6. Running your application will set our list with values and then raise the event created to
output the values of the list to the console window:

7. Let's see the working of events using Rx. Add a static Subject of string. You might
also need to add the System.Reactive.Subjects namespace to your project as
Subjects live in this separate namespace:

class Program
{

 static Subject<string> obsTypes = new Subject<string>();

 static void Main(string[] args)
 {

 }
}

8. After the code that created the list of DotNet, we used += to wire up an event handler.
This time round, we will use Subscribe. This is the IObservable portion of the code.
After you have added this, raise the event using the OnNext keyword. This is the
IObserver portion of the code. Therefore, as we loop through our list, we will call
OnNext to pump out the values to the subscribed IObservable interface:

// IObservable
obsTypes.Subscribe(x =>
{
 Console.WriteLine(x);
});

// IObserver
for (int i = 0; i <= lstTypes.Count - 1; i++)
{
 obsTypes.OnNext(lstTypes[i].AvailableDatatype);
}

Console.ReadLine();

9. When you have completed adding all the code, your application should look like this:

class Program
{

 static Subject<string> obsTypes = new Subject<string>();

 static void Main(string[] args)
 {
 List<DotNet> lstTypes = new List<DotNet>();
 DotNet blnTypes = new DotNet();
 blnTypes.AvailableDatatype = "bool";
 lstTypes.Add(blnTypes);

 DotNet strTypes = new DotNet();
 strTypes.AvailableDatatype = "string";
 lstTypes.Add(strTypes);

 DotNet intTypes = new DotNet();
 intTypes.AvailableDatatype = "int";
 lstTypes.Add(intTypes);

 DotNet decTypes = new DotNet();
 decTypes.AvailableDatatype = "decimal";
 lstTypes.Add(decTypes);

 // IObservable
 obsTypes.Subscribe(x =>
 {
 Console.WriteLine(x);
 });

 // IObserver
 for (int i = 0; i <= lstTypes.Count - 1; i++)
 {
 obsTypes.OnNext(lstTypes[i].AvailableDatatype);
 }

 Console.ReadLine();
 }
}

10. When you run your application, you will see the same items output to the console
window as earlier:

How it works…
In Rx, we can declare an event stream with the Subject keyword. So, we have a source of
events that we can publish to using OnNext. To see those values in the console window, we
subscribed to the event stream using Subscribe.

Rx allows you to have objects that are just publishers or just subscribers. This is because
the IObservable and IObserver interfaces are in fact separate. Also, note that in Rx, the
observables can be passed as parameters, returned as results, and stored in variables,
which makes them first class:

Rx also allows you to specify that the event stream is completed or that an error occurred.
This really sets Rx apart from events in .NET. Also, it is important to note that including the
System.Reactive.Linq namespace in your project allows developers to write queries over

the Subject type because a Subject is an IObservable interface:

This is another feature that sets Rx apart from the events in .NET.

Using LINQ to perform queries
Rx allow developers to use the IObservable interface that represents synchronous data
streams to write queries using LINQ. To recap, Rx can be thought of as consisting of three
sections:

Observables: The interface that brings together and represents all these data streams
Language-Integrated Query (LINQ): The ability to use LINQ to query these multiple
data streams
Schedulers: Parametrizing concurrency using schedulers

In this recipe, we will be looking at the LINQ functionality of Rx in more detail.

Getting ready
As observables are just data streams, we can use LINQ to query them. In the following
recipe, we will output text to the screen based on a LINQ query.

How to do it…
1. Start by adding a new Windows Forms project to your solution:

2. Call the project winformRx and click on the OK button:

3. In Toolbox, search for the TextBox control and add it to your form:

4. Finally, add a label control to your form:

5. Right-click on your winformRx project and select Manage NuGet Packages… from the
context menu:

6. In the search text box, enter System.Reactive to search for the NuGet package and
click on the Install button:

7. Visual Studio will ask you to review the changes it's about to make to your project.
Click on the OK button:

8. Before the installation starts, you might need to accept the license agreement by
clicking on the I Accept button:

9. After the installation completes, you should see the newly added references to your
winformRx project if you expand the References for the project:

10. Finally, right-click on the project and set winformRx as your startup project by clicking
on Set as StartUp Project from the context menu:

11. Create the form load event handler for the form by double-clicking anywhere on the
Windows Form. To this form, add the Observable keyword. You will notice that the
keyword is immediately underlined. This is because you are missing the reference to
the LINQ assembly of System.Reactive:

12. To add this, press Ctrl + . (period) to bring up the possible suggestions to fix the issue.
Select to add the using System.Reactive.Linq namespace to your project:

13. Continue adding the following code to your form load event. Basically, you are using
LINQ and telling the compiler that you want to select the text from the event pattern
that matches the text changed event of the text box on the form called textBox1. After
you have done that, add a subscription to the variable and tell it to output whatever it
finds in the text to the label on the form called label1:

private void Form1_Load(object sender, EventArgs e)
{
 var searchTerm = Observable.FromEventPattern<EventArgs>
(textBox1, "TextChanged")
 .Select(x => ((TextBox)x.Sender).Text);

 searchTerm.Subscribe(trm => label1.Text = trm);
}

Note
When we added the text box and label to our form, we left the control names as

default. If, however, you changed the default names, you would need to specify those
names instead of textBox1 and label1 for the controls on the form.

14. Click on the run button to run your application. The Windows Form will be displayed
with the text box and label on it:

15. Notice that the text is output to the label on the form as you type:

16. Let's jazz things up a bit by adding a Where condition to the LINQ statement. We will
specify that the text string must only select the text when it ends with a period. This
means that the text will only be displayed in the label after each full sentence. As you
can see, we aren't doing anything special here. We are merely using standard LINQ to
query our data stream and return the results to our searchTerm variable:

private void Form1_Load(object sender, EventArgs e)
{
 var searchTerm = Observable.FromEventPattern<EventArgs>
(textBox1, "TextChanged")
 .Select(x => ((TextBox)x.Sender).Text)
 .Where(text => text.EndsWith("."));

 searchTerm.Subscribe(trm => label1.Text = trm);
}

17. Run your application and start typing in a line of text. You will see that nothing is output
to the label control as you type, as was evident in the previous example before we
added in our Where condition:

18. Add a period and start adding a second line of text:

19. You will see that only after each period, the text entered is added to the label. Our
Where condition is, therefore, working perfectly:

How it works…
The LINQ aspect of Rx allows developers to construct observables. Here are some
examples:

Observable.Empty<>: Returns an empty observable sequence
Observable.Return<>: Returns an observable sequence containing a single element
Observable.Throw<>: Returns an observable sequence terminating with an exception
Observable.Never<>: Returns a non-terminating observable sequence infinite in
duration

The use of LINQ in Rx allows the developer to manipulate and filter the data stream to
return exactly what they need.

Using schedulers in Rx
Sometimes, we need to have an IObservable subscription run at a specific time. Imagine
having to synchronize events across servers in geographically different areas and time
zones. You might also need to read data from a queue while preserving the order in which
the events occur. Another example would be to perform some kind of I/O task that could
take some time to complete. Schedulers come in very handy in these situations.

Getting ready
Additionally, you can consider reading up more on using schedulers on MSDN. Have a look
at https://msdn.microsoft.com/en-us/library/hh242963(v=vs.103).aspx.

How to do it…
1. If you haven't already done so, create a new Windows Form application and call it

winformRx. Open the form designer and in Toolbox, search for the TextBox control
and add it to your form:

2. Next, add a label control to your form:

https://msdn.microsoft.com/en-us/library/hh242963(v=vs.103).aspx

3. Double-click on your Windows Form designer to create the onload event handler.
Inside this handler, add some code to read the text entered into the text box and only
display that text 5 seconds after the user has stopped typing. This is achieved using
the Throttle keyword. Add a subscription to the searchTerm variable, writing the result
of the text input to the label control's text property:

private void Form1_Load(object sender, EventArgs e)
{
 var searchTerm = Observable.FromEventPattern<EventArgs>
(textBox1, "TextChanged")
 .Select(x => ((TextBox)x.Sender).Text)
 .Throttle(TimeSpan.FromMilliseconds(5000));

 searchTerm.Subscribe(trm => label1.Text = trm);
}

Note
Note that you might need to add System.Reactive.Linq in your using statements.

4. Run your application and start typing in some text into the text box. Immediately, we
will receive an exception. It is a cross-thread violation. This occurs when there is an
attempt to update the UI from a background thread. The Observable interface is
running a timer from System.Threading, which isn't on the same thread as the UI.
Luckily, there is an easy way to overcome this. Well, it turns out that the UI-threading
capabilities lie in a different assembly, which we found easiest to get via the Package
Manager Console:

5. Click on View | Other Windows | Package Manager Console to access the Package
Manager Console:

6. Enter the following command: PM> Install-Package System.Reactive.Windows.Forms

Note
Please note that you need to ensure that the Default project selection is set to
winformRx in the Package Manager Console. If you don't see this option, resize the
Package Manager Console screen width until the option is displayed. This way you
can be certain that the package is added to the correct project.

7. After the installation completes, modify your code in the onload event handler and
change searchTerm.Subscribe(trm => label1.Text = trm);, which does the
subscription, to look like this:

searchTerm.ObserveOn(new ControlScheduler(this)).Subscribe(trm
=> label1.Text = trm);

You will notice that we are using the ObserveOn method here. What this basically tells
the compiler is that the this keyword in new ControlScheduler(this) is actually a
reference to our Windows Form. Therefore, ControlScheduler will use the Windows
Forms timers to create the interval to update our UI. The message happens on the
correct thread, and we no longer have our cross-thread violation.

8. If you have not added the System.Reactive.Concurrency namespace to your project,
Visual Studio will underline the ControlScheduler line of code with a squiggly line.
Pressing Ctrl + . (the Control key and dot) will allow you to add the missing
namespace:

9. This means that System.Reactive.Concurrency contains a scheduler that can talk to
Windows Forms controls so that it can do the scheduling. Run your application again
and start typing some text into your text box:

10. Five seconds after we stop typing, the throttle condition is fulfilled, and the text is
output to our label:

How it works…
What we need to keep in mind here from the code we created is that there are ObserveOn
and Subscribe. You should not confuse the two. In most cases, when dealing with
schedulers, you will use ObserveOn. The ObserveOn method allows you to parametrize
where the OnNext, OnCompleted, and OnError messages run. With Subscribe, we
parameterize where the actual subscribe and unsubscribe code runs.

We also need to remember that Rx use the threading timers (System.Threading.Timer) as

a default, which is why we encountered the cross-thread violation earlier. As you saw
though, we used schedulers to parameterize what timer to use. The way schedulers do this
is by exposing three components. These are:

The scheduler's ability to perform some action
The order in which the action or work to be performed is executed
A clock that allows the scheduler to have a notion of time

The use of a clock is important because it allows the developer to use timers on remote
machines, for example (where there might be a time difference between you and them), to
tell them to perform an action at a particular time.

Debugging lambda expressions
Visual Studio 2015 has added the ability for developers to debug lambda expressions. This
is a fantastic addition to the features of our favorite IDE. It allows us to check the results of
a lambda expression on the fly and modify the expression to test different scenarios.

Getting ready
We will create a very basic lambda expression and change it in the Watch window to
produce a different value.

How to do it…
1. Add a class called CSharpSix. Add a property to this class called FavoriteFeature:

public class CSharpSix
{
 public string FavoriteFeature { get; set; }
}

2. Next, create a List<CSharpSix> object and add a few of your favorite C# 6 features to
this list:

List<CSharpSix> FavCSharpFeatures = new List<CSharpSix>();
CSharpSix feature1 = new CSharpSix();
feature1.FavoriteFeature = "String Interpolation";
FavCSharpFeatures.Add(feature1);

CSharpSix feature2 = new CSharpSix();
feature2.FavoriteFeature = "Exception Filters";
FavCSharpFeatures.Add(feature2);

CSharpSix feature3 = new CSharpSix();
feature3.FavoriteFeature = "Nameof Expressions";
FavCSharpFeatures.Add(feature3);

3. Then, create an expression to return only the features starting with the "Ex" string.
Here, we would obviously expect to see exception filters as a result:

var filteredFeature = FavCSharpFeatures.Where(feature =>
feature.FavoriteFeature.StartsWith("Ex"));

4. Place a breakpoint on the expression and run your application. When the code stops at
the breakpoint, you can copy the lambda expression:

5. Paste the lambda expression into your Watch windows and change the string in the
StartsWith method. You will see that the result has changed to the "Nameof
Expressions" string:

How it works…
Being able to debug lambda expressions allows us to change and debug a lambda
expression easily. This is something that was not possible in previous versions of Visual
Studio. It is obviously of great importance to know this tip when working with these
expressions.

Another point to note is that you can do the same thing from the Immediate window in
Visual Studio 2015, as well as pinned variables from the lambda expression.

Chapter 5. Create Microservices on Azure
Service Fabric
This chapter deals with the exciting world of microservices and Azure Service Fabric. In
this chapter, we will cover the following recipes:

Downloading and installing Service Fabric
Creating a Service Fabric application with a stateless actor service
Using Service Fabric Explorer

Introduction
Traditionally, developers wrote applications in a monolithic manner. This means one single
executable that is broken up into components via classes and so on. Monolithic applications
require a great deal of testing, and deployment is tedious due to the bulkiness of the
monolithic application. Even though you might have multiple developer teams, they all need
to have a solid understanding of the application as a whole.

Microservices is a technology that aims to address the issues surrounding monolithic
applications and the traditional way of developing applications. With microservices, you can
break the application into smaller bits (services) that can function on their own without being
dependent on any of the other services. These smaller services can be stateless or stateful
and are also smaller in scale in terms of functionality, making them easier to develop, test,
and deploy. You can also version each microservice independently from the others. If one
microservice is receiving more load than the others, you can scale only that service up to
meet the demands placed on it. With monolithic applications, you would have to try and
scale the whole application up in order to meet the demands for a single component within
the application.

Take, for example, the workings of a popular online web store. It could consist of a
shopping cart, shopper profile, order management, backend login, inventory management,
billing, returns, and much more. Traditionally, a single web application is created to provide
all these services. With microservices, you can isolate each service as a standalone, self-
contained bit of functionality and code base. You can also dedicate a team of developers to
work on a single portion of the web store. If this team is responsible for the inventory-
management microservice, they would handle every aspect of it. This, for example, means
everything from writing code and enhancing functionality, to testing and deployment.

Another excellent side effect of microservices is that it allows you to easily isolate any faults
you might come across. Finally, you can also create microservices in any technology you
want (C#, Java, VB.NET), as they are language independent.

Azure Service Fabric allows you to scale your microservices easily and increases
application availability because it implements failover. When microservices are used with
Fabric, microservices become a very powerful technology. Think of Azure Service Fabric as
a Platform as a Service (PaaS) solution, on top of which your microservices sit. We call
the collection that the microservices live on a Service Fabric cluster. Each microservice lives
on a virtual machine, which is referred to as a node in the Service Fabric cluster. This
Service Fabric cluster can live in the cloud or on a local machine. If a node becomes
unavailable for any reason, the Service Fabric cluster will automatically redistribute the
microservices to the other nodes so that the application remains available.

Finally, here is a word on the differences between stateful and stateless microservices. You
are able to create a microservice as stateless or stateful. When a microservice relies on an
external data store to persist data, it is stateless in nature. This simply means that the
microservice does not maintain its state internally. A stateful microservice, on the other
hand, maintains its own state by storing it locally on the server it resides on.

Downloading and installing Service Fabric
You will have to install and set up a local Service Fabric cluster on your PC before you can
create and test Service Fabric applications.

Getting ready
We will download and install the software development kit (SDK) from the Azure site.
This will allow us to create a local Service Fabric cluster on your local development
machine.

How to do it…
1. From the Microsoft Azure site, download the SDK and access other resources, such

as documentation, via the Service Fabric learning path, from
https://azure.microsoft.com/en-us/documentation/learning-paths/service-fabric/:

2. You will need to accept the license terms before the installation begins:

https://azure.microsoft.com/en-us/documentation/learning-paths/service-fabric/

3. The web platform installer then starts downloading the Microsoft Azure Service Fabric
runtime. Allow this process to complete:

4. After the download has completed, the install process will begin:

5. When the installation has completed, the following products would have been installed,
which is also evident in the following screenshot:

Microsoft Azure Service Fabric Runtime
Microsoft Azure Service Fabric Core SDK Preview
Microsoft Azure Service Fabric Visual Studio 2015 Tools Preview
Microsoft Azure Service Fabric SDK Preview

6. The next task is to open PowerShell as the administrator. In the Windows 10 Start
menu, type the word PowerShell, and the search will immediately return the desktop
application as a result. Right-click on the desktop application and select Run as
administrator from the context menu:

7. Once Windows PowerShell has opened up, run the Set-ExecutionPolicy -
ExecutionPolicy Unrestricted -Force -Scope CurrentUser command. The reason
for this is that Service Fabric uses PowerShell scripts for the creation of the local
development cluster. It is also used for the deployment of Visual Studio developed
apps. Running this command prevents Windows from blocking those scripts:

8. Next, create the local Service Fabric cluster. Enter the &
"$ENV:ProgramFiles\Microsoft SDKs\Service

Fabric\ClusterSetup\DevClusterSetup.ps1" command.

This will create the local cluster needed to host Service Fabric applications:

9. After the cluster is created, PowerShell will start the service:

10. The process might take several minutes. Be sure to let it complete:

11. Once the naming service is ready, you can close PowerShell:

12. To view the created cluster, you can navigate to http://localhost:19080/Explorer on
your local machine.

This will give you a snapshot of the cluster's health and state. It will also show any
applications running in the cluster:

How it works…

As you can see, the Service Fabric cluster is essential for creating and running applications
created in Visual Studio. This will allow us to test applications directly on your local machine
before publishing them to the cloud.

Creating a Service Fabric application with
a stateless actor service
As part of the introduction to this chapter, we looked at the difference between stateful and
stateless microservices. The Service Fabric application templates available are then further
divided into Reliable Services (stateful/stateless) and Reliable Actors (stateful/stateless).
When to use which one is something that will depend on the specific business requirement
of your application.

To put it simply though, if you wanted to create a service that should be exposed to many
users of your application at any one time, a Reliable Service would probably be a good fit.
Think of a service exposing the latest exchange rates that can be consumed by many users
or applications at once.

Again, looking back to the introduction of this chapter, we used the example of an online
web store with a shopping cart. A Reliable Actor could be a good fit for every customer
buying items, so you could have a shopping cart actor. The Reliable Actor as part of the
Service Fabric framework is based on the Virtual Actor pattern. Have a look at the article
on the Virtual Actor pattern at http://research.microsoft.com/en-us/projects/orleans/.

To show you how easy it is to create a microservice using a stateless actor service as an
example, we will use Visual Studio to publish a service to the Service Fabric cluster and call
that service from a console (client) application.

Getting ready
To complete this recipe, you must ensure that you have installed your local Service Fabric
cluster on your local machine.

How to do it…
1. In Visual Studio, create a new project by going to File | New | Project:

http://research.microsoft.com/en-us/projects/orleans/

2. From the Visual C# node, expand the nodes until you see the Cloud node. When you
click on it, you will see that Visual Studio now lists a new Service Fabric Application
template. Select the Service Fabric Application template, call it sfApp, and click on
OK:

3. Next, select Stateless Reliable Actor from the Create a Service window that pops
up. We just called ours UtilitiesActor:

4. Once your solution is created, you will notice that it consists of three projects. These
are:

sfApp

UtilitiesActor

UtilitiesActor.Interfaces

5. We will start off by modifying the IUtilitiesActor interface. This interface will simply
require that UtilitiesActor implements a method called ValidateEmailAsync that
takes an e-mail address as a parameter and returns a Boolean value indicating
whether it is a valid email address or not:

namespace UtilitiesActor.Interfaces
{
 public interface IUtilitiesActor : IActor
 {
 Task<bool> ValidateEmailAsync(string emailToValidate);
 }
}

6. Next, open up your UtilitiesActor project and view the class. It will be underlined
with a red squiggly line because it does not implement the interface member
ValidateEmailAsync():

7. Using Ctrl + . (period), implement the interface. Remove all the other unnecessary
default code (if any):

8. The implemented interface code inserted for you should look like this. At the moment, it
only contains NotImplementedException. It is here that we will implement the code to
validate the e-mail address:

namespace UtilitiesActor
{
 internal class UtilitiesActor : StatelessActor,
IUtilitiesActor
 {
 public Task<bool> ValidateEmailAsync(string
emailToValidate)
 {
 throw new NotImplementedException();
 }
 }
}

9. We will use a regular expression to validate the e-mail address passed to this method
via the parameter. Regular expressions are very powerful. I have, however, in all my
years of programming, never written my own expression. These are readily available
on the Internet, and you can create a utilities class (or extension methods class) for
your own projects to reuse. You can make use of regular expressions and other code
that is often used.

Finally, you will notice the ActorEventSource code. This is simply just to create Event
Tracing for Windows (ETW) events that will help you see what is happening in your
application from the diagnostic events window in Visual Studio. To open the diagnostic
events window, go to View, Other Windows and click on Diagnostic Events Viewer:

internal class UtilitiesActor : StatelessActor, IUtilitiesActor
{
 public async Task<bool> ValidateEmailAsync(string
emailToValidate)
 {
 ActorEventSource.Current.ActorMessage(this, "Email
Validation");

 return await
Task.FromResult(Regex.IsMatch(emailToValidate, @"\A(?:[a-z0-
9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0- 9!#$%&'*+/=?^_`{|}~-]+)*@(?:
[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-
9])?)\Z", RegexOptions.IgnoreCase));
 }
}

10. Be sure to add a reference to the System.Text.RegularExpressions namespace.
Without it, you will not be able to use the regular expressions. If you added the regular
expression in your code without adding the reference, Visual Studio will display a red
squiggly line under the Regex method:

11. Using Ctrl + . (period), add the using statement to your project. This will bring the
regular expression namespace into scope:

12. Now that we have created the interface and also added the implementation of that
interface, it is time to add a client application that we will use for testing. Right-click on
your solution and add a new project:

13. The easiest way is to add a simple console application. Call your client application
sfApp.Client and click on the OK button:

14. After you have added your console application to your solution, your solution should
look like this:

15. You will now need to add references to your client application. Right-click the
References node in your sfApp.Client project and select Add Reference from the
context menu:

16. Start off by adding a reference to the UtilitiesActor.Interfaces project:

17. You will also need to add references to several Service Fabric dynamic link libraries
(DLLs). When you created your Service Fabric application, it should have added a
folder called packages to your project folder structure. Browse to this folder and add
your Service Fabric DLLs from there. After you have added the required DLLs, your
project should look like this:

18. In the Program.cs file of your console application, you need to add the following code
to the Main method:

namespace sfApp.Client
{
 class Program
 {
 static void Main(string[] args)
 {
 var actProxy = ActorProxy.Create<IUtilitiesActor>
(ActorId.NewId(), "fabric:/sfApp");

 WriteLine("Utilities Actor {0} - Valid Email?:
{1}", actProxy.GetActorId(), actProxy.ValidateEmailAsync
("validemail@gmail.com").Result);
 WriteLine("Utilities Actor {0} - Valid Email?:
{1}", actProxy.GetActorId(), actProxy.ValidateEmailAsync
("invalid@email@gmail.com").Result);
 ReadLine();
 }
 }
}

All we are doing is creating a proxy for our actor and writing the output of the e-mail
validation to the console window. Your client application is now ready.

19. Before we can run the client application, however, we need to publish our service first.
In Solution Explorer, right-click on the sfApp service and click on Publish from the
context menu:

20. The Publish Service Fabric Application window will now be displayed. Click on the
Select… button next to the Connection endpoint text box:

21. Select Local Cluster as your Connection endpoint and click on OK:

22. Change Target profile and Application Parameters File to Local.xml. When you are
done, click on the Publish button:

23. If you navigate to http://localhost:19080/Explorer, you will notice that the service
you created has been published to your local Service Fabric cluster:

24. You are now ready to run your client application. Right-click on the sfApp.Client
project, and select Debug and Start new instance from the context menu:

25. The console application calls the validate method to check the e-mail addresses, and
displays the results to the console window. The results are as expected:

26. We can, however, be more specific when creating the actor ID. We can give it a
specific name. Modify your proxy code and create a new ActorId method, and give it
any string value:

var actProxy = ActorProxy.Create<IUtilitiesActor>(new
ActorId("Utilities"), "fabric:/sfApp");

WriteLine("Utilities Actor {0} - Valid Email?: {1}",
actProxy.GetActorId(),
actProxy.ValidateEmailAsync("validemail@gmail.com").Result) ;
WriteLine("Utilities Actor {0} - Valid Email?: {1}",
actProxy.GetActorId(),
actProxy.ValidateEmailAsync("invalid@email@gmail.com").Resu
lt);
ReadLine();

Note
The ActorId method can take a parameter of type Guid, long or string.

27. When you debug your client application again, you will notice that Utilities Actor
now has a logical name (the same name you passed as a string value when creating a
new ActorId method):

How it works…
Creating your Service Fabric application and publishing it locally is a perfect solution for
testing your application before publishing it to the cloud. Creating small independent
microservices allows developers many benefits related to testing, debugging, and deploying
efficient and robust code that your applications can leverage to ensure maximum availability.

Using Service Fabric Explorer
There is another tool that you can use to visualize the Service Fabric cluster. It is a
standalone tool that you can find by navigating to the local installation path at %Program
Files%\Microsoft SDKs\Service Fabric\Tools\ServiceFabricExplorer and clicking on
ServiceFabricExplorer.exe. When you run the application, it will automatically connect to
your local Service Fabric cluster. It can display rich information regarding the applications
on the cluster, the cluster nodes, the heath status of the applications and nodes, and any
load on the applications in the cluster.

Getting ready
You must have already completed the installation of Service Fabric on your local machine
for the Service Fabric Explorer to work. If you have not done so yet, follow the
Downloading and installing Service Fabric recipe in this chapter.

How to do it…
1. When you start the Service Fabric Explorer, the following window will appear:

2. Note that the tree view to the left displays Application View and Node View:

3. The pane on the right-hand side will display information regarding the local cluster. This
makes it easy for you to see the overall health of the local Service cluster:

4. When you expand Application View, you will notice that our sfApp service has been
published. Expanding it even further, you will see that the sfApp service has been
published on Node.2. Expand Node View and Node.2 to see the service active on that
node:

5. To illustrate the scalability of microservices, right-click on Node.2, and from the context
menu, stop the node. Then, click on the Refresh button at the top of the window to
refresh the nodes and applications.

6. If you now had to go ahead and expand Application View, and looked at the service
again, you will notice that the Service Fabric cluster noticed that Node.2 was down. It
then automatically pushed the service on to a new, healthy node (in this case, Node.5):

7. The local cluster nodes view in the right panel of the Service Fabric Explorer also
reports that Node.2 is down:

How it works…
The Service Fabric Explorer will allow you to see information on the selected node, and you
will be able to drill down and see a rich amount of information regarding the Service Fabric
cluster applications.

Chapter 6. Making Apps Responsive with
Asynchronous Programming
This chapter will introduce you to asynchronous programming. This chapter will cover the
following recipes:

Return types of asynchronous functions
Handling tasks in asynchronous programming
Exception handling in asynchronous programming

Introduction
Asynchronous programming is an exciting feature in C#. It allows you to continue program
execution on the main thread while a long-running task runs in its own thread separately
from the main thread. When this long-running task is complete, it will let the main thread
know that it has completed (or failed). The benefit of asynchronous programming is that it
improves the responsiveness of your application. The best way to learn and understand
asynchronous programming is to experience it. The following recipes will illustrate some of
the basics to you.

Return types of asynchronous functions
In asynchronous programming, the async methods can have three possible return types.
These are:

void

Task

Task<TResult>

We will have a look at each return type in the following recipe.

Getting ready
What could be the use of a void return type in asynchronous methods? Generally, void is
used with event handlers. Just bear in mind that void returns nothing, so you can't wait for
it. Therefore, if you call a void return type asynchronous method, your calling code should
be able to continue executing code without having to wait for the asynchronous method to
complete.

With asynchronous methods that have a return type of Task, you can utilize the await
operator to pause the execution of the current thread until the called asynchronous method
has completed. Keep in mind that an asynchronous method that returns a type of Task
basically does not return an operand. Therefore, if it was written as a synchronous method,
it would be a void return type method. This statement might be confusing, but it will
become clear in the following recipes.

Finally, asynchronous methods that have a return statement have a return type of TResult.
In other words, if the asynchronous method returns a Boolean, you would create an
asynchronous method with a return type of Task<bool>.

Let's start with the void return type asynchronous method.

How to do it…
1. Create a new class library by right-clicking on your solution and selecting Add and then

New Project from the context menu:

2. From the Add New Project dialog screen, select Class Library from the installed
templates and call your class Chapter6:

3. Your new class library will be added to your solution with a default name of Class1.cs,
which we renamed to Recipes.cs in order to distinguish the code properly. You can,
however, rename your class to whatever you like, if it makes more sense to you.

4. To rename your class, simply click on the class name in Solution Explorer and select
Rename from the context menu:

5. Visual Studio will ask you to confirm the new names of all references to the code
element Class1 in the project. Just click on Yes:

6. The next step is to add another new project. Right-click on the solution and select Add
and then New Project from the context menu:

7. This time, you will be creating a new Windows Forms application for your solution. We
need to do this so that we can create a button click event. We called our project

winformAsync:

8. Your Solution Explorer will now look similar to the following screenshot, with the
Winforms application added:

9. After you have added your Winforms application, add a reference to the Chapter6
class you created earlier. To do this, right-click on References under the
winformAsync project and click on the Add Reference menu item from the context
menu:

10. From the Reference Manager screen, select the Chapter6 class, which is found under
the Projects | Solution node in the tree view to the left. Then, click on the OK button:

11. Another important step is to set the winformAsync project as the startup project in the
solution. To do this, right-click the winformAsync project and select the Set as
StartUp Project menu item from the context menu:

12. On the winformAsync form designer, open Toolbox and select the Button control,
which is found under the All Windows Forms node:

13. Drag the button control onto the Form1 designer:

14. With the button control selected, double-click on the control to create the click event in
the code behind. Visual Studio will insert the event code for you:

namespace winformAsync
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {

 }
 }
}

15. Change the button1_Click event and add the async keyword to the click event. This is
an example of a void returning an asynchronous method:

private async void button1_Click(object sender, EventArgs e)
{

}

16. In the Chapter6 class library, add a new class called AsyncDemo:

public class AsyncDemo
{
}

17. The next method to add to the AsyncDemo class is the asynchronous method that
returns TResult (in this case, a Boolean). This method simply checks whether the
current year is a leap year. It then returns a Boolean to the calling code:

async Task<bool> TaskOfTResultReturning_AsyncMethod()
{
 return await Task.FromResult<bool>
(DateTime.IsLeapYear(DateTime.Now.Year));
}

18. The next method to add is the void returning method that returns a Task type so that it
allows you to await the method. The method itself does not return any result, making it
a void returning method. However, in order to use the await keyword, you return the
Task type from this asynchronous method:

async Task TaskReturning_AsyncMethod()
{
 await Task.Delay(5000);
 Console.WriteLine("5 second delay");
}

19. Finally, add a method that will call the previous asynchronous methods and display the
result of the leap year check. You will notice that we are using the await keyword with
both method calls:

public async Task LongTask()
{
 bool isLeapYear = await
TaskOfTResultReturning_AsyncMethod();
 Console.WriteLine($"{DateTime.Now.Year} {(isLeapYear ? " is
" : " is not ")} a leap year");
 await TaskReturning_AsyncMethod();
}

20. In the button click, add the following code that calls the long-running task
asynchronously:

private async void button1_Click(object sender, EventArgs e)
{
 Console.WriteLine("Button Clicked");
 Chapter6.AsyncDemo oAsync = new Chapter6.AsyncDemo();
 await oAsync.LongTask();
 Console.WriteLine("Button Click Ended");
}

21. Running your application will display the Windows Forms application:

22. Before clicking on the button1 button, ensure that the Output window is visible:

23. From the View menu, click on the Output menu item or type Ctrl + Alt + O to display
the Output window. This will allow us to see the Console.Writeline() outputs as we
have added them to the code in the Chapter6 class and in the Windows application.

24. Clicking on the button1 button will display the outputs to our Output window.
Throughout this code execution, the form remains responsive:

25. Finally, you can also use the await operator in separate calls. Modify the code in the
LongTask() method as follows:

public async Task LongTask()
{
 Task<bool> blnIsLeapYear =
TaskOfTResultReturning_AsyncMethod();

 for (int i = 0; i <= 10000; i++)
 {
 // Do other work that does not rely on blnIsLeapYear
before awaiting
 }

 bool isLeapYear = await
TaskOfTResultReturning_AsyncMethod();

 Console.WriteLine($"{DateTime.Now.Year} {(isLeapYear ? " is
" : " is not ")} a leap year");

 Task taskReturnMethhod = TaskReturning_AsyncMethod();

 for (int i = 0; i <= 10000; i++)
 {
 // Do other work that does not rely on
taskReturnMethhod before awaiting
 }

 await taskReturnMethhod;
}

How it works…
In the preceding code, we have seen the void returning type asynchronous method that
was used in the button1_Click event. We also created a Task returning method that
returns nothing (that would be a void if used in synchronous programming), but returning

Task type allows us to await the method. Finally, we created a Task<TResult> returning
method that performs some task and returns the result to the calling code.

Handling tasks in asynchronous
programming
Task-Based Asynchronous Pattern (TAP) is now the recommended method to create
asynchronous code. It executes asynchronously on a thread from the thread pool and does
not execute synchronously on the main thread of your application. It allows us to check the
task's state by calling the Status property.

Getting ready
We will create a task to read a very large text file. This will be accomplished using an
asynchronous Task.

How to do it…
1. Create a large text file (we called ours taskFile.txt) and place it in your C:\temp

folder:

2. In the AsyncDemo class, create a method called ReadBigFile() that returns a
Task<TResult> type, which will be used to return an integer of bytes read from our big
text file:

public Task<int> ReadBigFile()
{

}

3. Add the following code to open and read the file bytes. You will see that we are using
the ReadAsync() method that asynchronously reads a sequence of bytes from the
stream and advances the position in that stream by the number of bytes read from that
stream. You will also notice that we are using a buffer to read those bytes:

public Task<int> ReadBigFile()
{
 var bigFile = File.OpenRead(@"C:\temp\taskFile.txt");
 var bigFileBuffer = new byte[bigFile.Length];
 var readBytes = bigFile.ReadAsync(bigFileBuffer, 0,
(int)bigFile.Length);

 return readBytes;
}

Note
Exceptions you can expect to handle from the ReadAsync() method are
ArgumentNullException, ArgumentOutOfRangeException, ArgumentException,
NotSupportedException, ObjectDisposedException and InvalidOperatorException.

4. Finally, add the final section of code just after the var readBytes =
bigFile.ReadAsync(bigFileBuffer, 0, (int)bigFile.Length); line that uses a
lambda expression to specify the work that the task needs to perform. In this case, it is
to read the bytes in the file:

public Task<int> ReadBigFile()
{
 var bigFile = File.OpenRead(@"C:\temp\taskFile.txt");
 var bigFileBuffer = new byte[bigFile.Length];
 var readBytes = bigFile.ReadAsync(bigFileBuffer, 0,
(int)bigFile.Length);
 readBytes.ContinueWith(task =>
 {
 if (task.Status == TaskStatus.Running)
 Console.WriteLine("Running");
 else if (task.Status == TaskStatus.RanToCompletion)
 Console.WriteLine("RanToCompletion");
 else if (task.Status == TaskStatus.Faulted)
 Console.WriteLine("Faulted");

 bigFile.Dispose();
 });
 return readBytes;
}

5. If not done so in the previous recipe, add a button to your Windows Forms application's
Forms Designer. On the winformAsync form designer, open Toolbox and select the
Button control, which is found under the All Windows Forms node:

6. Drag the button control onto the Form1 designer:

7. With the button control selected, double-click the control to create the click event in the
code behind. Visual Studio will insert the event code for you:

namespace winformAsync
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {

 }
 }
}

8. Change the button1_Click event and add the async keyword to the click event. This is

an example of a void returning an asynchronous method:

private async void button1_Click(object sender, EventArgs e)
{

}

9. Now, make sure that you add code to call the AsyncDemo class's ReadBigFile()
method asynchronously. Remember to read the result from the method (which are the
bytes read) into an integer variable:

private async void button1_Click(object sender, EventArgs e)
{
 Console.WriteLine("Start file read");
 Chapter6.AsyncDemo oAsync = new Chapter6.AsyncDemo();
 int readResult = await oAsync.ReadBigFile();
 Console.WriteLine("Bytes read = " + readResult);
}

10. Running your application will display the Windows Forms application:

11. Before clicking on the button1 button, ensure that the Output window is visible:

12. From the View menu, click on the Output menu item or type Ctrl + Alt + O to display
the Output window. This will allow us to see the Console.Writeline() outputs as we
have added them to the code in the Chapter6 class and in the Windows application.

13. Clicking on the button1 button will display the outputs in our Output window.
Throughout this code execution, the form remains responsive:

Note
Take note though that the information displayed in your Output window will differ from
the screenshot. This is because the file you used is different from mine.

How it works…
The task is executed on a separate thread from the thread pool. This allows the application
to remain responsive while the large file is being processed. Tasks can be used in multiple
ways to improve your code. This recipe is but one example.

Exception handling in asynchronous
programming
Exception handling in asynchronous programming has always been a challenge. This was
especially true in the catch blocks. As of C# 6, you are now allowed to write asynchronous
code inside the catch and finally block of your exception handlers.

Getting ready
The application will simulate the action of reading a logfile. Assume that a third-party
system always makes a backup of the logfile before processing it in another application.
While this processing is happening, the logfile is deleted and recreated. Our application,
however, needs to read this logfile on a periodic basis. We, therefore, need to be prepared
for the case where the file does not exist in the location we expect it in. Therefore, we will
purposely omit the main logfile, so that we can force an error.

How to do it…
1. Create a text file and two folders to contain the logfiles. We will, however, only create

a single logfile in the BackupLog folder. The MainLog folder will remain empty:

2. In our AsyncDemo class, write a method to read the main logfile in the MainLog folder:

private async Task<int> ReadMainLog()
{
 var bigFile =
File.OpenRead(@"C:\temp\Log\MainLog\taskFile.txt");
 var bigFileBuffer = new byte[bigFile.Length];
 var readBytes = bigFile.ReadAsync(bigFileBuffer, 0,
(int)bigFile.Length);
 await readBytes.ContinueWith(task =>
 {
 if (task.Status == TaskStatus.RanToCompletion)
 Console.WriteLine("Main Log RanToCompletion");
 else if (task.Status == TaskStatus.Faulted)
 Console.WriteLine("Main Log Faulted");

 bigFile.Dispose();
 });
 return await readBytes;
}

3. Create a second method to read the backup file in the BackupLog folder:

private async Task<int> ReadBackupLog()
{
 var bigFile =
File.OpenRead(@"C:\temp\Log\BackupLog\taskFile.txt");
 var bigFileBuffer = new byte[bigFile.Length];
 var readBytes = bigFile.ReadAsync(bigFileBuffer, 0,
(int)bigFile.Length);
 await readBytes.ContinueWith(task =>
 {
 if (task.Status == TaskStatus.RanToCompletion)
 Console.WriteLine("Backup Log RanToCompletion");
 else if (task.Status == TaskStatus.Faulted)
 Console.WriteLine("Backup Log Faulted");

 bigFile.Dispose();
 });
 return await readBytes;
}

Note
In actual fact, we would probably only create a single method to read the logfiles,
passing only the path as a parameter. In a production application, creating a class and
overriding a method to read the different logfile locations would be a better approach.
For the purposes of this recipe, however, we specifically wanted to create two
separate methods so that the different calls to the asynchronous methods are clearly
visible in the code.

4. We will then create a main ReadLogFile() method that tries to read the main logfile. As

we have not created the logfile in the MainLog folder, the code will throw a
FileNotFoundException. It will then run the asynchronous method and await that in the
catch block of the ReadLogFile() method (something that was impossible in the
previous versions of C#), returning the bytes read to the calling code:

public async Task<int> ReadLogFile()
{
 int returnBytes = -1;
 try
 {
 Task<int> intBytesRead = ReadMainLog();
 returnBytes = await ReadMainLog();
 }
 catch (Exception ex)
 {
 try
 {
 returnBytes = await ReadBackupLog();
 }
 catch (Exception)
 {
 throw;
 }
 }
 return returnBytes;
}

5. If not done so in the previous recipe, add a button to your Windows Forms application's
Forms Designer. On the winformAsync Forms Designer, open Toolbox and select
the Button control, which is found under the All Windows Forms node:

6. Drag the button control onto the Form1 designer:

7. With the button control selected, double-click on the control to create the click event in
the code behind. Visual Studio will insert the event code for you:

namespace winformAsync
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {

 }
 }
}

8. Change the button1_Click event and add the async keyword to the click event. This is
an example of a void returning an asynchronous method:

private async void button1_Click(object sender, EventArgs e)
{

}

9. Next, we will write the code to create a new instance of the AsyncDemo class and
attempt to read the main logfile. In a real-world example, it is at this point that the code
does not know that the main logfile does not exist:

private async void button1_Click(object sender, EventArgs e)
{
 Console.WriteLine("Read backup file");
 Chapter6.AsyncDemo oAsync = new Chapter6.AsyncDemo();
 int readResult = await oAsync.ReadLogFile();
 Console.WriteLine("Bytes read = " + readResult);
}

10. Running your application will display the Windows Forms application:

11. Before clicking on the button1 button, ensure that the Output window is visible:

12. From the View menu, click on the Output menu item or type Ctrl + Alt + O to display
the Output window. This will allow us to see the Console.Writeline() outputs as we
have added them to the code in the Chapter6 class and in the Windows application.

13. To simulate a file not found exception, we deleted the file from the MainLog folder. You
will see that the exception is thrown, and the catch block runs the code to read the
backup logfile instead:

How it works…
The fact that we can await in catch and finally blocks allows developers much more
flexibility, because asynchronous results can consistently be awaited throughout the
application. As you can see from the code we wrote, as soon as the exception was thrown,
we asynchronously read the file read method for the backup file.

Chapter 7. High Performance
Programming Using Parallel and
Multithreading in C#
This chapter takes a look at improving your code's performance using multithreading and
parallel programming. In this chapter, we will cover the following recipes:

Creating and aborting a low-priority background thread
Increasing maximum thread pool size
Creating multiple threads
Locking one thread until the contended resources are available
Invoking parallel calls to methods using Parallel.Invoke
Using a parallel foreach loop to run multiple threads
Cancelling a parallel foreach loop
Catching errors in parallel foreach loops
Debugging multiple threads

Introduction
If you can find a single-core CPU in a computer today, it will probably mean that you are
standing in a museum. Every new computer today utilizes the advantages of multiple cores.
Programmers can take advantage of this extra processing power in their own applications.
As applications have grown in size and complexity, in many cases they actually need to
utilize multithreading.

While not every situation is always suited for the implementation of multithreaded code
logic, it is good to know how to use multithreading to improve the performance of your
applications. This chapter will take you through the fundamentals of this exciting technology
in C# programming.

Creating and aborting a low-priority
background thread
The reason we want to have a look at a background thread specifically is because by
default, all threads created by the main app thread or Thread class constructor are
foreground threads. So, what exactly separates a foreground thread from a background
thread? Well, background threads are identical to foreground threads with the exception
that if all foreground threads are terminated, the background threads are stopped too. This
is useful if you have a process in your application that must not stop the application from
terminating. In other words, while your application is running, the background thread must
continue to run.

Getting ready
We will create a simple application that defines the thread created as a background thread.
It will then suspend, resume, and abort the thread.

How to do it…
1. Create a new class library by right-clicking on your solution and selecting Add and then

New Project from the context menu:

2. From the Add New Project dialog screen, select Class Library from the installed
templates and call your class Chapter7:

3. Your new class library will be added to your solution with a default name Class1.cs,
which we renamed to Recipes.cs in order to distinguish the code properly. You can,
however, rename your class to whatever you like if that makes more sense to you.

4. To rename your class, simply click on the class name in Solution Explorer and select
Rename from the context menu:

5. Visual Studio will ask you to confirm a rename of all references to the code element
Class1 in the project. Just click on Yes:

6. The following class is added to your Chapter7 library project:

namespace Chapter7
{
 public class Recipes
 {

 }
}

7. Inside the Recipes class, add a method called DoBackgroundTask() with the public
void modifiers, and add the following console output to it:

public void DoBackgroundTask()
 {
 WriteLine($"Thread
{Thread.CurrentThread.ManagedThreadId} has a threadstate of
{Thread.CurrentThread.ThreadState} with
{Thread.CurrentThread.Priority} priority");
 WriteLine($"Start thread sleep at
{DateTime.Now.Second} seconds");
 Thread.Sleep(3000);
 WriteLine($"End thread sleep at
{DateTime.Now.Second} seconds");
 }

Note
Make sure that you have added the using statements for System.Threading and
static System.Console to your using statements.

8. Inside the console application called CodeSamples, added previously, add a reference
to the Chapter7 class library by right-clicking on References under the CodeSamples
project and selecting Add Reference from the context menu:

9. In the Reference Manager window, select the Chapter7 solution by going to Projects
| Solutions. This will allow you to use the classes we just created in your console
application:

10. In the void Main method, create a new instance of your Recipes class and add it to a
new thread called backgroundThread. Define this newly created thread to be a
background thread and then start it. Finally, set the thread to sleep for five seconds.
We need to do this because we have created a background thread that is set to sleep
for three seconds. Background threads do not prohibit foreground threads from
terminating. Therefore, if the main application thread (which is by default a foreground
thread) terminates before the background thread completes, the application will
terminate and also terminate the background thread:

static void Main(string[] args)
{
 Chapter7.Recipes oRecipe = new Chapter7.Recipes();
 var backgroundThread = new
Thread(oRecipe.DoBackgroundTask);
 backgroundThread.IsBackground = true;
 backgroundThread.Start();
 Thread.Sleep(5000);
}

Note
Please note that you might need to add the using System.Threading; directive.

11. Run your console application by pressing F5. You will see that we have created a
background thread with a normal priority:

12. Let's modify our thread and set its priority down to low. Add this line of code to your
console application: backgroundThread.Priority = ThreadPriority.Lowest;. This line
will downgrade the thread priority:

Chapter7.Recipes oRecipe = new Chapter7.Recipes();
var backgroundThread = new Thread(oRecipe.DoBackgroundTask);
backgroundThread.IsBackground = true;
backgroundThread.Priority = ThreadPriority.Lowest;
backgroundThread.Start();
Thread.Sleep(5000);

13. Run your console application again. This time, you will see that the thread priority has
been set to the lowest priority:

14. Go back to your DoBackgroundTask() method and add
Thread.CurrentThread.Abort(); right before Thread.Sleep(3000); is called. This line
will prematurely kill the background thread. Your code should look like this:

public void DoBackgroundTask()
{
 WriteLine($"Thread {Thread.CurrentThread.ManagedThreadId}
has a threadstate of {Thread.CurrentThread.ThreadState} with
{Thread.CurrentThread.Priority} priority");
 WriteLine($"Start thread sleep at {DateTime.Now.Second}
seconds");
 Thread.CurrentThread.Abort();
 Thread.Sleep(3000);
 WriteLine($"End thread sleep at {DateTime.Now.Second}
seconds");
}

15. When you run your console application, you will see that the thread is aborted before
the Thread.Sleep method is called. Aborting a thread in this way, however, is generally
not recommended:

How it works…
Being able to create a background thread is a great way to work on a different thread from
the main thread while not interfering with the process of the main application thread.
Another added benefit is that the background thread is terminated as soon as the main
application thread is completed. This process ensures that your application will terminate
gracefully.

Increasing maximum thread pool size
The thread pool in .NET resides in the System.Threading.ThreadPool class. Generally,
there is a lot of discussion around creating your own threads as opposed to using the
thread pool. Popular thinking dictates that the thread pool should be used for brief jobs.
This is because the thread pool is limited in size. There are many other processes in the
system that will use the thread pool. You therefore do not want your application to hog all
the threads in the thread pool.

The rule is that you can't set the number of maximum worker or completion threads to be
less than the number of processors on your computer. You are also not allowed to set the
maximum worker or completion threads to less than the minimum thread pool size.

Getting ready
We will read the number of processors on the current computer. Then, we will get the
minimum and maximum allowable thread pool size, generate a random number between the
minimum and maximum thread pool size, and set the maximum number of threads on the
thread pool.

How to do it…
1. Create a new method called IncreaseThreadPoolSize() in the Recipes class:

public class Recipes
{
 public void IncreaseThreadPoolSize()
 {

 }
}

2. Start by adding the code to read the number of processors on the current machine
using Environment.ProcessorCount:

public class Recipes
{
 public void IncreaseThreadPoolSize()
 {
 int numberOfProcessors = Environment.ProcessorCount;
 WriteLine($"Processor Count = {numberOfProcessors}");
 }
}

3. Next, we will retrieve the maximum and minimum threads available in the thread pool:

int maxworkerThreads;
int maxconcurrentActiveRequests;
int minworkerThreads;
int minconcurrentActiveRequests;
ThreadPool.GetMinThreads(out minworkerThreads, out
minconcurrentActiveRequests);
WriteLine($"ThreadPool minimum Worker = {minworkerThreads} and
minimum Requests = {minconcurrentActiveRequests}");

ThreadPool.GetMaxThreads(out maxworkerThreads, out
maxconcurrentActiveRequests);
WriteLine($"ThreadPool maximum Worker = {maxworkerThreads} and
maximum Requests = {maxconcurrentActiveRequests}");

4. Then, we will generate a random number between the maximum and minimum number
of threads in the thread pool:

Random rndWorkers = new Random();
int newMaxWorker = rndWorkers.Next(minworkerThreads,
maxworkerThreads);
WriteLine($"New Max Worker Thread generated = {newMaxWorker}");

Random rndConRequests = new Random();
int newMaxRequests =
rndConRequests.Next(minconcurrentActiveRequests,
maxconcurrentActiveRequests);
WriteLine($"New Max Active Requests generated =
{newMaxRequests}");

5. We now need to attempt to set the maximum number of threads in the thread pool by
calling the SetMaxThreads method and setting it to our new random maximum value for
the worker threads and the completion port threads. Any requests above this maximum
number will be queued until the thread pool threads become active again. If the
SetMaxThreads method is successful, the method will return true; otherwise, it will
return false. It is a good idea to ensure that the SetMaxThreads method is successful:

bool changeSucceeded = ThreadPool.SetMaxThreads(newMaxWorker,
newMaxRequests);
if (changeSucceeded)
{
 WriteLine("SetMaxThreads completed");
 int maxworkerThreadCount;
 int maxconcurrentActiveRequestCount;
 ThreadPool.GetMaxThreads(out maxworkerThreadCount, out
maxconcurrentActiveRequestCount);
 WriteLine($"ThreadPool Max Worker =
{maxworkerThreadCount} and Max Requests =
{maxconcurrentActiveRequestCount}");
}
else
 WriteLine("SetMaxThreads failed");

Note
Worker threads is the maximum number of worker threads in the thread pool, while the
completion port threads is the maximum number of asynchronous I/O threads in the
thread pool.

6. When you have added all the code in the steps listed, your IncreaseThreadPoolSize()
method should look like this:

public class Recipes
{
 public void IncreaseThreadPoolSize()
 {
 int numberOfProcessors = Environment.ProcessorCount;
 WriteLine($"Processor Count = {numberOfProcessors}");

 int maxworkerThreads;
 int maxconcurrentActiveRequests;
 int minworkerThreads;
 int minconcurrentActiveRequests;
 ThreadPool.GetMinThreads(out minworkerThreads, out
minconcurrentActiveRequests);
 WriteLine($"ThreadPool minimum Worker =
{minworkerThreads} and minimum Requests =
{minconcurrentActiveRequests}");

 ThreadPool.GetMaxThreads(out maxworkerThreads, out
maxconcurrentActiveRequests);
 WriteLine($"ThreadPool maximum Worker =
{maxworkerThreads} and maximum Requests =
{maxconcurrentActiveRequests}");

 Random rndWorkers = new Random();
 int newMaxWorker = rndWorkers.Next(minworkerThreads,
maxworkerThreads);
 WriteLine($"New Max Worker Thread generated =
{newMaxWorker}");

 Random rndConRequests = new Random();
 int newMaxRequests =
rndConRequests.Next(minconcurrentActiveRequests,
maxconcurrentActiveRequests);
 WriteLine($"New Max Active Requests generated =
{newMaxRequests}");

 bool changeSucceeded =
ThreadPool.SetMaxThreads(newMaxWorker, newMaxRequests);
 if (changeSucceeded)
 {
 WriteLine("SetMaxThreads completed");
 int maxworkerThreadCount;
 int maxconcurrentActiveRequestCount;
 ThreadPool.GetMaxThreads(out maxworkerThreadCount,
out maxconcurrentActiveRequestCount);
 WriteLine($"ThreadPool Max Worker =
{maxworkerThreadCount} and Max Requests =
{maxconcurrentActiveRequestCount}");
 }
 else
 WriteLine("SetMaxThreads failed");

 }
}

7. Head on over to your console application and create a new instance of your Recipe

class, and call the IncreaseThreadPoolSize() method:

Chapter7.Recipes oRecipe = new Chapter7.Recipes();
oRecipe.IncreaseThreadPoolSize();
Console.ReadLine();

8. Finally, run your console application and take note of the output:

How it works…
From the console application, we can see that the processor count is 8. The minimum
number of thread pool threads, therefore, also equals 8. We then read the maximum thread
pool size and generate a random number between the minimum and maximum numbers.
Lastly, we set the maximum thread pool size to our randomly generated minimum and
maximum.

While this is only a proof of concept and not something one would do in a production
application (setting the thread pool to a random number), it clearly illustrates the ability to
set the thread pool to a value specified by the developer.

Tip
The code in this recipe was compiled for 32 bit. Try changing your application to a 64-bit
application and run the code again. See the difference 64 bit makes.

Creating multiple threads
Sometimes, we need to create multiple threads. Before we can continue, however, we
need to wait for these threads to complete doing whatever they need to do. For this, the
use of tasks is best suited.

Getting ready
Make sure that you have added the using System.Threading.Tasks; statement to the top
of your Recipes class.

How to do it…
1. Create a new method called MultipleThreadWait() in your Recipes class. Then,

create a second method called RunThread() with the private modifier, which takes an
integer of seconds to make the thread sleep. This will simulate the process of doing
some work for a variable amount of time:

public class Recipes
{
 public void MultipleThreadWait()
 {

 }

 private void RunThread(int sleepSeconds)
 {

 }
}

Note
In reality, you would probably not call the same method. You could, for all intents and
purposes, call three separate methods. Here, however, for the sake of simplicity, we
will call the same method with different sleep durations.

2. Add the following code to your MultipleThreadWait() method. You will notice that we
are creating three tasks that then create three threads. We will then fire off these three
threads and make them sleep for 3, 5, and 2 seconds. Finally, we will call the
Task.WaitAll method to wait before continuing the execution of the application:

Task thread1 = Task.Factory.StartNew(() => RunThread(3));
Task thread2 = Task.Factory.StartNew(() => RunThread(5));
Task thread3 = Task.Factory.StartNew(() => RunThread(2));

Task.WaitAll(thread1, thread2, thread3);
WriteLine("All tasks completed");

3. Then, in the RunThread() method, we will read the current thread ID and then make the
thread sleep for the amount of milliseconds supplied. This is just the integer value for
the seconds multiplied by 1000:

int threadID = Thread.CurrentThread.ManagedThreadId;

WriteLine($"Sleep thread {threadID} for {sleepSeconds} seconds
at {DateTime.Now.Second} seconds");
Thread.Sleep(sleepSeconds * 1000);
WriteLine($"Wake thread {threadID} at {DateTime.Now.Second}
seconds");

4. When you have completed the code, your Recipes class should look like this:

public class Recipes
{
 public void MultipleThreadWait()
 {
 Task thread1 = Task.Factory.StartNew(() =>
RunThread(3));
 Task thread2 = Task.Factory.StartNew(() =>
RunThread(5));
 Task thread3 = Task.Factory.StartNew(() =>
RunThread(2));

 Task.WaitAll(thread1, thread2, thread3);
 WriteLine("All tasks completed");
 }

 private void RunThread(int sleepSeconds)
 {
 int threadID = Thread.CurrentThread.ManagedThreadId;

 WriteLine($"Sleep thread {threadID} for {sleepSeconds}
seconds at {DateTime.Now.Second} seconds");
 Thread.Sleep(sleepSeconds * 1000);
 WriteLine($"Wake thread {threadID} at
{DateTime.Now.Second} seconds");
 }
}

5. Finally, add a new instance of the Recipe class to your console application and call the
MultipleThreadWait() method:

Chapter7.Recipes oRecipe = new Chapter7.Recipes();
oRecipe.MultipleThreadWait();
Console.ReadLine();

6. Run your console application and view the output produced:

How it works…
You will notice that three threads (thread 9, thread 10, and thread 11) are created.
These are then paused by making them sleep for various amounts of time. After each
thread wakes, the code waits for all three threads to complete before continuing the
execution of the application code.

Locking one thread until the contended
resources are available
There are instances where we want to give sole access to a process to a specific thread.
We can do this using the lock keyword. This will execute this process in a thread-safe
manner. Therefore, when a thread runs the process, it will gain exclusive access to the
process for the duration of the lock scope. If another thread tries to gain access to the
process inside the locked code, it will be blocked and have to wait its turn until the lock is
released.

Getting ready
For this example, we will use tasks. Make sure that you have added the using
System.Threading.Tasks; statement to the top of your Recipes class.

How to do it…
1. In the Recipes class, add an object called threadLock with the private modifier. Then,

add two methods called LockThreadExample() and ContendedResource() that take an
integer of seconds to sleep as a parameter:

public class Recipes
{
 private object threadLock = new object();
 public void LockThreadExample()
 {

 }

 private void ContendedResource(int sleepSeconds)
 {

 }
}

Note
It is considered a best practice to define the object to lock on as private.

2. Add three tasks to the LockThreadExample() method. They will create threads that try
to access the same section of code simultaneously. This code will wait until all the
threads have completed before terminating the application:

Task thread1 = Task.Factory.StartNew(() =>
ContendedResource(3));
Task thread2 = Task.Factory.StartNew(() =>
ContendedResource(5));
Task thread3 = Task.Factory.StartNew(() =>
ContendedResource(2));

Task.WaitAll(thread1, thread2, thread3);
WriteLine("All tasks completed");

3. In the ContendedResource() method, create a lock using the private threadLock
object and then make the thread sleep for the amount of seconds passed to the
method as a parameter:

int threadID = Thread.CurrentThread.ManagedThreadId;
lock (threadLock)
{
 WriteLine($"Locked for thread {threadID}");
 Thread.Sleep(sleepSeconds * 1000);
}
WriteLine($"Lock released for thread {threadID}");

4. Back in the console application, add the following code to instantiate a new Recipes
class and call the LockThreadExample() method:

Chapter7.Recipes oRecipe = new Chapter7.Recipes();
oRecipe.LockThreadExample();
Console.ReadLine();

5. Run the console application and see the information output to the console window:

How it works…
We can see that thread 11 gained exclusive access to the contended resource. At the
same time, thread 11 and thread 12 tried to access the contended resource locked by
thread 11. This then caused the other two threads to wait until thread 11 had completed
and released the lock. The result of this is that the code is executed in an orderly manner,
as can be seen in the console window output. Each thread waits its turn until it can access
the resource and lock its thread.

Invoking parallel calls to methods using
Parallel.Invoke
Parallel.Invoke allows us to execute tasks in (you guessed it) parallel. Sometimes, you
need to perform operations simultaneously and, in so doing, speed up processing. You can
therefore expect that the total time taken to process the tasks is equal to the longest
running process. Using Parallel.Invoke is quite easy.

Getting ready
Make sure that you have added the using System.Threading.Tasks; statement to the top
of your Recipes class.

How to do it…
1. Start off by creating two methods in the Recipes class called ParallelInvoke() and

PerformSomeTask(), which take an integer of seconds to sleep as the parameter:

public class Recipes
{
 public void ParallelInvoke()
 {

 }

 private void PerformSomeTask(int sleepSeconds)
 {

 }
}

2. Add the following code to the ParallelInvoke() method. This code will call
Paralell.Invoke to run the PerformSomeTask() method:

WriteLine($"Parallel.Invoke started at {DateTime.Now.Second}
seconds");
Parallel.Invoke(
 () => PerformSomeTask(3),
 () => PerformSomeTask(5),
 () => PerformSomeTask(2)
);

WriteLine($"Parallel.Invoke completed at {DateTime.Now.Second}
seconds");

3. In the PerformSomeTask() method, make the thread sleep for the amount of seconds
passed to the method as the parameter (converting the seconds to milliseconds by

multiplying it by 1000):

int threadID = Thread.CurrentThread.ManagedThreadId;
WriteLine($"Sleep thread {threadID} for {sleepSeconds}
seconds");
Thread.Sleep(sleepSeconds * 1000);
WriteLine($"Thread {threadID} resumed");

4. When you have added all the code, your Recipes class should look like this:

public class Recipes
{
 public void ParallelInvoke()
 {
 WriteLine($"Parallel.Invoke started at
{DateTime.Now.Second} seconds");
 Parallel.Invoke(
 () => PerformSomeTask(3),
 () => PerformSomeTask(5),
 () => PerformSomeTask(2)
);

 WriteLine($"Parallel.Invoke completed at
{DateTime.Now.Second} seconds");
 }

 private void PerformSomeTask(int sleepSeconds)
 {
 int threadID = Thread.CurrentThread.ManagedThreadId;
 WriteLine($"Sleep thread {threadID} for {sleepSeconds}
seconds");
 Thread.Sleep(sleepSeconds * 1000);
 WriteLine($"Thread {threadID} resumed");
 }
}

5. In the console application, instantiate a new instance of the Recipes class and call the
ParallelInvoke() method:

Chapter7.Recipes oRecipe = new Chapter7.Recipes();
oRecipe.ParallelInvoke();
Console.ReadLine();

6. Run the console application and look at the output produced in the console window:

How it works…
Because we are running all these threads in parallel, we can assume that the longest
process will denote the total duration of the all the tasks. This means that the total duration
of the process will be 5 seconds because the longest task will take 5 seconds to complete
(we set thread 10 to sleep for a maximum of 5 seconds).

As we can see, the time difference between the start and the end of Parallel.Invoke is
exactly 5 seconds.

Using a parallel foreach loop to run
multiple threads
A while ago, during a work retreat (yes, the company I work for is really that cool), Graham
Rook, who is one of my colleagues, showed me a parallel foreach loop. It certainly speeds
up processing a great deal. But here's the rub. It makes no sense using a parallel foreach
loop if you're dealing with small amounts of data or little tasks. The parallel foreach loop
excels when there is bulk processing to do or huge amounts of data to process.

Getting ready
We will start off by looking at where the parallel foreach loop does not perform better than
the standard foreach loop. For this, we will create a small list of 500 items and just iterate
over the list, writing the items to the console window.

For the second example that illustrates the power of the parallel foreach loop, we will use
the same list and create a file for each item in the list. The power and benefit of the parallel
foreach loop will be evident in the second example.

How to do it…
1. Start off by creating two methods in the Recipes class. Call one method

ReadCollectionForEach() and pass it a parameter of List<string>. Create a second
method called ReadCollectionParallelForEach() that also accepts a parameter of
List<string>:

public class Recipes
{
 public double ReadCollectionForEach(List<string>
intCollection)
 {

 }

 private double ReadCollectionParallelForEach(List<string>
intCollection)
 {

 }
}

2. In the ReadCollectionForEach() method, add a standard foreach loop that will iterate
over the collection of strings passed to it and write the value it finds to the console
window. Then, clear the console window. Use a timer to keep track of the total
seconds elapsed during the foreach loop:

var timer = Stopwatch.StartNew();
foreach (string integer in intCollection)
{
 WriteLine(integer);
 Clear();
}
return timer.Elapsed.TotalSeconds;

3. In the second method, called ReadCollectionParallelForEach(), do the same.
However, instead of using a standard foreach loop, add a Parallel.ForEach loop. You
will notice that the Parallel.ForEach loop looks slightly different. The signature of
Parallel.ForEach requires that you pass it an enumerable data source (List<string>
intCollection) and define an action, which is the delegate that is invoked for every
iteration (integer):

var timer = Stopwatch.StartNew();
Parallel.ForEach(intCollection, integer =>
{
 WriteLine(integer);
 Clear();
});
return timer.Elapsed.TotalSeconds;

4. When you have added all the required code, your Recipes class should look like this:

public class Recipes
{
 public double ReadCollectionForEach(List<string>
intCollection)
 {
 var timer = Stopwatch.StartNew();
 foreach (string integer in intCollection)
 {
 WriteLine(integer);
 Clear();
 }
 return timer.Elapsed.TotalSeconds;
 }

 public double ReadCollectionParallelForEach(List<string>
intCollection)
 {
 var timer = Stopwatch.StartNew();
 Parallel.ForEach(intCollection, integer =>
 {
 WriteLine(integer);
 Clear();
 });
 return timer.Elapsed.TotalSeconds;
 }
}

5. In the console application, create the List<string> collection and pass it to the two
methods created in the Recipes class. You will notice that we are only creating a

collection of 500 items. After the code is completed, return the time elapsed in seconds
and output it to the console window:

List<string> integerList = new List<string>();
for (int i = 0; i <= 500; i++)
{
 integerList.Add(i.ToString());
}
Chapter7.Recipes oRecipe = new Chapter7.Recipes();
double timeElapsed1 =
oRecipe.ReadCollectionForEach(integerList);
double timeElapsed2 =
oRecipe.ReadCollectionParallelForEach(integerList);
WriteLine($"foreach executed in {timeElapsed1}");
WriteLine($"Parallel.ForEach executed in {timeElapsed2}");

6. Run your application. From the output displayed, you will see that the performance gain
using the Parallel.ForEach loop is negligible. In fact, in this case, the
Parallel.ForEach loop only improved performance by 0.4516 percent:

7. Let's use a different example now. We will create a process-intensive task and
measure the performance gain that the Parallel.ForEach loop will give us. Create two
methods called CreateWriteFilesForEach() and
CreateWriteFilesParallelForEach(), which both take the List<string> collection as
the parameter:

public class Recipes
{
 public void CreateWriteFilesForEach(List<string>
intCollection)
 {

 }

 private void CreateWriteFilesParallelForEach(List<string>
intCollection)
 {

 }
}

8. Add the following code to the CreateWriteFilesForEach() method. This code starts
the timer and executes the standard foreach loop on the List<string> object. It then
writes the elapsed time out to the console window:

WriteLine($"Start foreach File method");
var timer = Stopwatch.StartNew();
foreach (string integer in intCollection)
{

}
WriteLine($"foreach File method executed in
{timer.Elapsed.TotalSeconds} seconds");

9. Inside the foreach loop, add the code to check whether a file exists with the specific
name created by appending the integer value to the filename portion of the filePath
variable. Create the file (ensuring that you use Dispose method in order not to lock the
file when trying to write to it) and write some text to the newly created file:

string filePath =
$"C:\\temp\\output\\ForEach_Log{integer}.txt";
if (!File.Exists(filePath))
{
 File.Create(filePath).Dispose();
 using (StreamWriter sw = new StreamWriter(filePath, false))
 {
 sw.WriteLine($"{integer}. Log file start:
{DateTime.Now.ToUniversalTime().ToString()}");
 }
}

10. Next, add this code to the CreateWriteFilesParallelForEach() method, which
basically performs the same function as the CreateWriteFilesForEach() method, but
uses a Parallel.ForEach loop to create and write files:

WriteLine($"Start Parallel.ForEach File method");
var timer = Stopwatch.StartNew();
Parallel.ForEach(intCollection, integer =>
{

});
WriteLine($"Parallel.ForEach File method executed in
{timer.Elapsed.TotalSeconds} seconds");

11. Add the slightly modified file-creation code inside the Parallel.ForEach loop:

string filePath =
$"C:\\temp\\output\\ParallelForEach_Log{integer}.txt";
if (!File.Exists(filePath))
{
 File.Create(filePath).Dispose();
 using (StreamWriter sw = new StreamWriter(filePath, false))
 {
 sw.WriteLine($"{integer}. Log file start:
{DateTime.Now.ToUniversalTime().ToString()}");
 }
}

12. When you are done, your code needs to look like this:

public class Recipes
{
 public void CreateWriteFilesForEach(List<string>
intCollection)
 {
 WriteLine($"Start foreach File method");
 var timer = Stopwatch.StartNew();
 foreach (string integer in intCollection)
 {
 string filePath =
$"C:\\temp\\output\\ForEach_Log{integer}.txt";
 if (!File.Exists(filePath))
 {
 File.Create(filePath).Dispose();
 using (StreamWriter sw = new
StreamWriter(filePath, false))
 {
 sw.WriteLine($"{integer}. Log file start:
{DateTime.Now.ToUniversalTime() .ToString()}");
 }
 }
 }
 WriteLine($"foreach File method executed in
{timer.Elapsed.TotalSeconds} seconds");
 }

 public void CreateWriteFilesParallelForEach(List<string>
intCollection)
 {
 WriteLine($"Start Parallel.ForEach File method");
 var timer = Stopwatch.StartNew();
 Parallel.ForEach(intCollection, integer =>
 {
 string filePath =
$"C:\\temp\\output\\ParallelForEach_Log {integer}.txt";
 if (!File.Exists(filePath))
 {
 File.Create(filePath).Dispose();
 using (StreamWriter sw = new
StreamWriter(filePath, false))
 {
 sw.WriteLine($"{integer}. Log file start:
{DateTime.Now.ToUniversalTime()
 .ToString()}");
 }
 }
 });
 WriteLine($"Parallel.ForEach File method executed in
{timer.Elapsed.TotalSeconds} seconds");
 }
}

13. Heading over to the console application, modify the List<string> object slightly and
increase the count from 500 to 1000. Then, call the file methods created in the Recipes
class:

List<string> integerList = new List<string>();
for (int i = 0; i <= 1000; i++)
{
 integerList.Add(i.ToString());
}

Chapter7.Recipes oRecipe = new Chapter7.Recipes();
oRecipe.CreateWriteFilesForEach(integerList);
oRecipe.CreateWriteFilesParallelForEach(integerList);
ReadLine();

14. Finally, when you are ready, make sure that you have the C:\temp\output directory
and that there aren't any other files in that directory. Run your application and review
the output to the console window. This time round, we can see that the
Parallel.ForEach loop has made a huge difference. The performance gain is massive
and heralds a 60.7074 percent performance increase over the standard foreach loop:

How it works…
From the examples used in this recipe, it is clear that the use of the parallel foreach loop
should be considered carefully. If you are dealing with relatively low volumes of data or non-
process intensive transactions, the parallel foreach loop will not benefit your application's
performance much. In some instances, the standard foreach loop could be much faster
than the parallel foreach loop. If, however, you find your application running into
performance issues when processing large amounts of data or running processor-intensive
tasks, give the parallel foreach loop a try. It just might surprise you.

Cancelling a parallel foreach loop
When dealing with parallel foreach loops, the obvious question is how one would terminate
the loop prematurely based on a certain condition, such as a timeout. As it turns out, the
parallel foreach loop is quite easy to terminate prematurely.

Getting ready
We will create a method that takes a collection of items and loops through this collection in
a parallel foreach loop. It will also be aware of a timeout value that, if exceeded, will
terminate the loop and exit the method.

How to do it…
1. Start off by creating a new method called CancelParallelForEach() in the Recipes

class, which takes two parameters. One is a collection of List<string>, while the
other is an integer specifying a timeout value. When the timeout value is exceeded, the
Parallel.ForEach loop must terminate:

public class Recipes
{
 public void CancelParallelForEach(List<string>
intCollection, int timeOut)
 {

 }
}

2. Inside the CancelParallelForEach() method, add a timer to keep track of the elapsed
time. This will signal the loop that the timeout threshold has been exceeded and that
the loop needs to exit. Create the Parallel.ForEach method, defining a state. In each
iteration, check the elapsed time against the timeout, and if the time is exceeded,
break out of the loop:

var timer = Stopwatch.StartNew();
Parallel.ForEach(intCollection, (integer, state) =>
{
 Thread.Sleep(1000);
 if (timer.Elapsed.Seconds > timeOut)
 {
 WriteLine($"Terminate thread
{Thread.CurrentThread.ManagedThreadId}.Elapsed time
{timer.Elapsed.Seconds} seconds");
 state.Break();
 }
 WriteLine($"Processing item {integer} on thread
{Thread.CurrentThread.ManagedThreadId}");
});

3. In the console application, create the List<string> object and add 1000 items to it.
Call the CancelParallelForEach() method with a timeout of only 5 seconds:

List<string> integerList = new List<string>();
for (int i = 0; i <= 1000; i++)
{
 integerList.Add(i.ToString());
}

Chapter7.Recipes oRecipe = new Chapter7.Recipes();
oRecipe.CancelParallelForEach(integerList, 5);
WriteLine($"Parallel.ForEach loop terminated");
ReadLine();

4. Run your console application and review the output results:

How it works…
You can see from the console window output that as soon as the elapsed time exceeded
the timeout value, the parallel loop was notified to cease the execution of iterations beyond
the current iteration at the system's earliest convenience. Having this kind of control over
the Parallel.ForEach loop allows developers to avoid runaway loops and give the user
control to cancel a loop operation by clicking on a button, or automatically having the
application terminate when the timeout value has been reached.

Catching errors in parallel foreach loops
With parallel foreach loops, developers can wrap the loop in a try catch statement. Care
needs to be taken, however, because the Parallel.ForEach will throw
AggregatedException, which has the exceptions it encounters over several threads rolled
into one.

Getting ready
We will create a List<string> object that contains a collection of machine IP addresses.
The Parallel.ForEach loop will check the IP addresses to see whether the machines on
the other end of the given IP are alive. It does this by pinging the IP address. The method
that performs the Parallel.ForEach loop will also be given the minimum required alive
machines as an integer value. If the minimum number of machines alive is not met, an
exception is thrown.

How to do it…
1. In the Recipes class, add a method called CheckClientMachinesOnline() that takes as

parameters a List<string> collection of IP addresses and an integer that specifies the
minimum number of machines required to be online. Add a second method called
MachineReturnedPing() that will receive an IP address to ping. For our purpose, we
will just return false to mimic a dead machine (the ping to the IP address timed out):

public class Recipes
{
 public void CheckClientMachinesOnline(List<string>
ipAddresses, int minimumLive)
 {

 }

 private bool MachineReturnedPing(string ip)
 {
 return false;
 }
}

2. Inside the CheckClientMachinesOnline() method, add the Parallel.ForEach loop and
create the ParallelOptions variable, which will specify the degree of parallelism.
Wrap all this code inside a try catch statement and catch AggregateException:

try
{
 int machineCount = ipAddresses.Count();
 var options = new ParallelOptions();
 options.MaxDegreeOfParallelism = machineCount;
 int deadMachines = 0;

 Parallel.ForEach(ipAddresses, options, ip =>
 {

 });
}
catch (AggregateException aex)
{
 WriteLine("An AggregateException has occurred");
 throw;
}

3. Inside the Parallel.ForEach loop, write the code to check whether the machine is
online by calling the MachineReturnedPing() method. In our example, this method will
always return false. You will notice that we are keeping track of the offline machine
count via the Interlocked.Increment method. This is just a way of incrementing a
variable across the threads of the Parallel.ForEach loop:

if (MachineReturnedPing(ip))
{

}
else
{
 if (machineCount - Interlocked.Increment(ref deadMachines)
< minimumLive)
 {
 WriteLine($"Machines to check = {machineCount}");
 WriteLine($"Dead machines = {deadMachines}");
 WriteLine($"Minimum machines required =
{minimumLive}");
 WriteLine($"Live Machines = {machineCount -
deadMachines}");

 throw new Exception($"Minimum machines requirement of
{minimumLive} not met");
 }
}

4. If you have added all the code correctly, your Recipes class will look like this:

public class Recipes
{
 public void CheckClientMachinesOnline(List<string>
ipAddresses, int minimumLive)
 {
 try
 {
 int machineCount = ipAddresses.Count();
 var options = new ParallelOptions();
 options.MaxDegreeOfParallelism = machineCount;
 int deadMachines = 0;

 Parallel.ForEach(ipAddresses, options, ip =>
 {
 if (MachineReturnedPing(ip))
 {

 }
 else
 {
 if (machineCount -
Interlocked.Increment(ref deadMachines) < minimumLive)
 {
 WriteLine($"Machines to check =
{machineCount}");
 WriteLine($"Dead machines =
{deadMachines}");
 WriteLine($"Minimum machines required =
{minimumLive}");
 WriteLine($"Live Machines =
{machineCount - deadMachines}");

 throw new Exception($"Minimum machines
requirement of {minimumLive} not met");
 }
 }
 });
 }
 catch (AggregateException aex)
 {
 WriteLine("An AggregateException has occurred");
 throw;
 }
 }

 private bool MachineReturnedPing(string ip)
 {
 return false;
 }
}

5. In the console application, create the List<string> object to store a collection of
dummy IP addresses. Instantiate your Recipes class and call the
CheckClientMachinesOnline() method, passing the collection of IP addresses and a
minimum number of machines required to be online to it:

List<string> ipList = new List<string>();
for (int i = 0; i <= 10; i++)
{
 ipList.Add($"10.0.0.{i.ToString()}");
}

try
{
 Chapter7.Recipes oRecipe = new Chapter7.Recipes();
 oRecipe.CheckClientMachinesOnline(ipList, 2);
}
catch (Exception ex)
{
 WriteLine(ex.InnerException.Message);
}
ReadLine();

6. Run your application and review the output in the console window:

How it works…
From the console window output, you can see that the minimum number of machines
required to be online was not achieved. The application then threw an exception and caught
it from the Parallel.ForEach loop. Being able to handle exceptions in parallel loops such as
this one is essential to maintain the stability of your application by being able to handle
exceptions as they occur.

We encourage you to play around a little with the Parallel.ForEach loop and drill into some
of the inner methods of the AggregareException class to really understand it better.

Debugging multiple threads
Debugging multiple threads in Visual Studio is tricky, especially since these threads are all
running at the same time. Luckily, we have a few tools available to us as developers to use
to get a better understanding of what is happening in our multithreaded applications.

Getting ready
While debugging multithreaded applications, you can access various windows by going to
Debug | Windows in Visual Studio.

How to do it…
1. Start debugging your multithreaded application after adding a breakpoint somewhere in

the code. You can access various debugging windows by going to Debug | Windows
in Visual Studio:

2. The first window available to you is the Threads window. Access it by going to Debug
| Windows in Visual Studio or type Ctrl + Alt + H. In here, you can right-click on a
thread to watch and flag it. If you have given your threads names, you will see that
name appear in the Name column. To give your thread a name, you could add the
following code to your application, which runs the method on a separate thread:

int threadID = Thread.CurrentThread.ManagedThreadId;
Thread.CurrentThread.Name = $"New Thread{threadID}";

You will also be able to see the currently active thread in the debugger. It will be
marked with a yellow arrow. Then, there is the managed ID, which is the same ID you
would have used to create the unique thread name earlier on.

The Location column displays the current method that the thread is in. The Threads

window allows you to view the stack of the thread by double-clicking on the Location
field. You can also freeze and thaw threads. Freezing stops a thread from executing,
while thawing allows the frozen thread to continue as normal:

3. The Tasks window can be accessed by going to Debug | Windows or by holding
down Ctrl + Shift + D and then pressing K. You will notice that the thread you flagged
earlier in the Threads window is also flagged here in the Tasks window. The status of
the task shows the status at that moment and can be Active, Deadlocked, Waiting,
Scheduled, or Completed:

4. The Parallel Stacks window can be accessed by going to Debug | Windows in Visual
Studio or by holding down Ctrl + Shift + D, and then pressing the S key. Here, you can
see a graphical view of the tasks and threads. You can switch between the Threads
and Tasks view by making a selection in the dropdown list in the upper-left corner of
the Parallel Stacks window:

5. Changing the selection to Tasks will show you the current tasks in the debug session:

6. The next window, and undoubtedly my favorite is the Parallel Watch window. It is in
fact identical to the standard Watch window in Visual Studio, but this watches values
across all threads in your application. You can type in any valid C# expression into
Parallel Watch and see the values as they are at that moment in the debug session.
As you can see, we have added the sleepSeconds variable and the name of the thread
to the watch:

How it works…
Being able to use the debugging tools for multithreaded applications effectively in Visual
Studio makes it much easier to understand the structure of your application and helps you
identify possible bugs, bottlenecks, and areas of concern.

We encourage you to learn more about the various debugging windows available to you.

Chapter 8. Code Contracts
This chapter will introduce you to code contracts. This is a very powerful technology and
one that will enable you to secure your code from unnecessary errors. This is especially
true when you are writing a class that is shared between several developers. Code
contracts allow you to inspect and handle data passed to your method under contract. If the
contract fails its validation, you can take decisive action within your method to handle this
eventuality. This chapter will cover the following recipes:

Downloading, installing, and integrating code contracts into Visual Studio
Creating code contract preconditions
Creating code contract postconditions
Creating code contract invariant
Creating code contract Assert and Assume methods
Creating code contract ForAll method
Creating code contract ValueAtReturn method
Creating code contract Result method
Using code contracts on abstract classes
Using contract abbreviator methods
Creating tests using IntelliTest
Using code contracts in extension methods

Introduction
You might be wondering what code contracts are exactly. To explain it in layman's terms, a
code contract is a definition that you add to your methods. It tells the compilers that the
method under contract will always adhere to specific conditions. An example of this is that
the method will never return a null value to the calling code or that the method will always
expect a parameter greater than a specific value. If any of these conditions are not met,
your code can emit an exception, and the developer integrating with your class will be
prompted to refine their calling code. On the flip side, when a developer calls your class,
they can be sure that the method under contract will always behave in a specific way and
never deviate from it.

Code contracts really stand out when working within a team of developers, but
implementing this technology in a single-developer solution will only improve your code.

Downloading, installing, and integrating
code contracts into Visual Studio
Before you can use code contracts in your applications, you need to download and install
them. The easiest way of doing this is via extensions and updates. After the installation is
complete, you will need to define a few settings for the code contracts to start functioning
against the code they are implemented in. Let's have a look at the following recipe.

Getting ready
First, we will create a new class and add it to our Visual Studio project. We will then get the
Code Contracts installer and install it for our project.

How to do it…
1. Create a new class by right-clicking on your solution and selecting Add and then New

Project from the context menu:

2. From the Add New Project dialog screen, select Class Library from the installed
templates and call your class Chapter8:

3. Your new class library will be added to your solution with a default name of Class1.cs,
which we renamed to Recipes.cs in order to distinguish the code properly. You can,
however, rename your class to whatever you like.

4. To rename your class, simply click on the class name in Solution Explorer and select
Rename from the context menu:

5. Visual Studio will ask you to confirm a rename of all references to the code element
Class1 in the project. Just click on Yes:

6. Next, click on the Tools menu and select Extensions and Updates…:

7. You will see the Extensions and Updates window appear. Be sure to click on the
Visual Studio Gallery on the left-hand side and type Code Contracts as the search
term. If you have not got the Code Contracts installer, you will see a download button
appear on the Code Contracts for .NET result. Click on it to download and install
code contracts:

8. After code contracts have been installed, you might need to restart Visual Studio. After
doing this, right-click on the Chapter8 project and select Properties from the context
menu:

9. You will notice that a new Code Contracts tab has been added to the properties page
for your Chapter8 project. Click on this tab and make sure that Perform Runtime
Contract Checking is checked. Then, save your changes and close the properties
page:

10. Finally, add a reference to your Chapter8 project in the console application created
earlier. Do this by expanding your console application project and right-clicking on the
References item. Select Add Reference from the context menu:

11. Make sure that you have selected Chapter8 in the project references section and click
on OK:

How it works…
You have now installed and configured the minimum requirements to enable code contracts
in your Chapter8 class. You can now go ahead and build your solution to make sure that
everything builds successfully.

Creating code contract preconditions
Preconditions allow you to control exactly what the parameters need to look like before
they are used in your method. This means that you can assume a lot of things about the
data being sent to your method by the calling code. You can, for example, specify that a
parameter should never be null or that a value must always be within a specific value range.
Dates can be checked, and objects can be verified and vetted.

You have complete control over the data coming in to your method. It gives you the peace
of mind to use that data once it has passed your contract without having to do additional
checks.

Getting ready
Be sure that you have installed code contracts and that you have configured the settings
correctly in the project properties, as described in the previous recipe.

How to do it…
1. In your Recipes class, create a new method called ValueGreaterThanZero() and have

it take an integer as a parameter:

public static class Recipes
{
 public static void ValueGreaterThanZero(int iNonZeroValue)
 {

 }
}

2. In the ValueGreaterThanZero() method, type the start of the Contract declaration, and
you will notice that the code is underlined with a red squiggly line. Hold down Crtl + .
(period) to bring up the suggestions for potential fixes. Click on the suggestion to add
the using statement for the code contracts to your class:

3. When you have done that, continue entering the precondition. Define that the
parameter value must be greater than zero:

public static void ValueGreaterThanZero(int iNonZeroValue)
{
 Contract.Requires(iNonZeroValue >= 1, "Parameter
iNonZeroValue not greater than zero");
}

4. If you go back to the console application, add the following using statements:

using static System.Console;
using static Chapter8.Recipes;

5. Since we have created a static class and brought it into scope with the using
statement, you can just call the method name in the Recipes class directly. To see how
code contracts work, pass a zero parameter to the method:

try
{
 ValueGreaterThanZero(0);
}
catch (Exception ex)
{
 WriteLine(ex.Message);
 ReadLine();
}

6. Finally, run your console application and see the exception generated:

How it works…
The code contract has inspected the precondition and determined that the parameter value
passed to the method under contract failed the precondition check. An exception is thrown
and output to the console window.

Creating code contract postconditions
Just as code contract preconditions control what information is passed to the method under
contract, code contract postconditions control what information the method under contract
returns to the calling code. You can, therefore, specify that the method will never return a
null value or an empty dataset, for example. The actual condition does not matter; this is
something that will change on a case-by-case basis. The important thing to remember here
is that this code contract allows you to have more control over the data returned by your
code.

Getting ready
Assume that the method under contract needs to ensure that the value returned will always
be greater than zero. Using a code contract postcondition, we can easily enforce this rule.

How to do it…
1. Before you start, make sure that you have added the following using statement to the

top of your Recipes class:

using System.Diagnostics.Contracts;

2. In the Recipes class, add a method called NeverReturnZero() and pass an integer
parameter to this method:

public static class Recipes
{
 public static int NeverReturnZero(int iNonZeroValue)
 {

 }
}

3. Inside the method, add your postcondition contract. As one could expect, the method in
the contract class is called Ensures. This is quite descriptive of its function. The code
contract ensures that a specific method result is never returned. You can see this in the
signature of the Contract.Ensures method. The postcondition, therefore, ensures that
the result of this method will never be zero:

public static int NeverReturnZero(int iNonZeroValue)
{
 Contract.Ensures(Contract.Result<int>() > 0, "The value
returned was not greater than zero");

 return iNonZeroValue - 1;
}

4. Go back to the console application, and add the following using statements:

using static System.Console;
using static Chapter8.Recipes;

5. Since you have created a static class and brought it into scope with the using
statement, you can just call the method name in the Recipes class directly. Pass the
NeverReturnZero() method a value of 1:

try
{
 NeverReturnZero(1);
}
catch (Exception ex)
{
 WriteLine(ex.Message);
 ReadLine();
}

6. Finally, run your console application and review the output in the console window:

How it works…
When the value of 1 was passed to the method under contract, it resulted in a return value
of zero being returned. We forced this by subtracting 1 from the parameter passed to the
method. As the method ensures non-zero values, an exception was thrown with the
message we defined.

Creating code contract invariant
Something that is defined as invariant tells us that it will never change. It will always be the
same, no matter what. This brings up a vast array of use cases if we consider this in the
context of code contracts. The invariant code contract is basically used to validate the
internal state of a class. So, what do we mean by the "internal state?" Well, the properties
of the class give that class a specific state. Let's assume that we wanted to guarantee that
the properties of the class we are using only accept specific values, thereby assuring the
internal state of that class. This is where the code contract invariant comes into play.

Getting ready
You can understand the use of the invariant better with the use of the following example.
Assume that the class needs to store dates. We can't ever store a date in the past though.
Any date used in the class must be a current or future date.

How to do it…
1. Before you go on, ensure that you have added the code contracts using statement to

the top of your Recipes.cs class file:

using System.Diagnostics.Contracts;

2. Next, we will add a new class called InvariantClassState to the Recipes.cs class file.
This is so that we can create an instance class and not a static class:

public class InvariantClassState
{

}

3. Add the following private properties to your InvariantClassState class that will
accept integer values for the year, month, and day:

private int _Year { get; set; }
private int _Month { get; set; }
private int _Day { get; set; }

4. We will now add a constructor to our InvariantClassState class. The constructor will
accept parameters to set the properties created earlier:

public InvariantClassState(int year, int month, int day)
{
 _Year = year;
 _Month = month;
 _Day = day;
}

Note
If you create public properties, it is always a good practice to create them with
private setters such as public int Value { get; private set; }.

5. The next method we need to add is the contract invariant method. You can call this
method any name you like, and in this example, it is called Invariants(). You will read
many developers stating that a commonly accepted practice is to call this method
ObjectInvariant(). The naming of this method, however, has no impact on the
invariant code contract. You will notice that we decorate this method with
[ContractInvariantMethod], and it is this that defines this method (whatever the
name) as the invariant code contract. Another important thing to remember is that the
invariant code contract method must be a void method and be specified as a private
method.

Inside our code contract invariant method, we now specify which properties are
invariant. In other words, those properties that can never be any other value than what
we specify inside this code contract invariant method. For starters, we will specify that
the year value cannot be in the past. We will also ensure that the month value is a valid
value between 1 and 12. Finally, we will specify that the day value cannot be a value
outside the days contained in the month supplied or a value less than 1:

[ContractInvariantMethod]
private void Invariants()
{
 Contract.Invariant(this._Year >= DateTime.Now.Year);
 Contract.Invariant(this._Month <= 12);
 Contract.Invariant(this._Month >= 1);
 Contract.Invariant(this._Day >= 1);
 Contract.Invariant(this._Day <= DateTime.DaysInMonth(_Year,
_Month);
}

6. You can further extend the Contract.Invariant methods by supplying an exception
message. Your Invariants() method will then look like this:

[ContractInvariantMethod]
private void Invariants()
{
 Contract.Invariant(this._Year >= DateTime.Now.Year, "The
supplied year is in the past");
 Contract.Invariant(this._Month <= 12, $"The value {_Month}
is not a valid Month value");
 Contract.Invariant(this._Month >= 1, $"The value {_Month}
is not a valid Month value");
 Contract.Invariant(this._Day >= 1, $"The value {_Day} is
not a valid calendar value");
 Contract.Invariant(this._Day <= DateTime.DaysInMonth(_Year,
_Month), $"The month given does not contain {_Day} days");
}

7. Finally, add another method that returns the date formatted as month/day/year:

public string ReturnGivenMonthDayYearDate()
{
 return $"{_Month}/{_Day}/{_Year}";
}

8. When you are finished, your InvariantClassState class will look like this:

public class InvariantClassState
{
 private int _Year { get; set; }
 private int _Month { get; set; }
 private int _Day { get; set; }

 public InvariantClassState(int year, int month, int day)
 {
 _Year = year;
 _Month = month;
 _Day = day;
 }

 [ContractInvariantMethod]
 private void Invariants()
 {
 Contract.Invariant(this._Year >= DateTime.Now.Year,
"The supplied year is in the past");
 Contract.Invariant(this._Month <= 12, $"The value
{_Month} is not a valid Month value");
 Contract.Invariant(this._Month >= 1, $"The value
{_Month} is not a valid Month value");
 Contract.Invariant(this._Day >= 1, $"The value {_Day}
is not a valid calendar value");
 Contract.Invariant(this._Day <=
DateTime.DaysInMonth(_Year, _Month), $"The month given does not
contain {_Day} days");
 }

 public string ReturnGivenMonthDayYearDate()
 {
 return $"{_Month}/{_Day}/{_Year}";
 }
}

9. Head back to the console application and add the following using statement to your
console application Program.cs file:

using Chapter8;

10. We will now add a new instance of our InvariantStateClass class and pass the
values to the constructor. First, pass the current year less than 1 to the constructor.
This will result in the last year being passed to the constructor:

try
{
 InvariantClassState oInv = new
InvariantClassState(DateTime.Now.Year - 1, 13, 32);
 string returnedDate = oInv.ReturnGivenMonthDayYearDate();
 WriteLine(returnedDate);
}
catch (Exception ex)
{
 WriteLine(ex.Message);
}
ReadLine();

11. Running your console application will result in the code contract invariant throwing an
exception because the year passed to the constructor is in the past:

12. Let's modify our code by passing a valid year value to the constructor, but keep the
rest of the parameter values the same:

try
{
 InvariantClassState oInv = new
InvariantClassState(DateTime.Now.Year, 13, 32);
 string returnedDate = oInv.ReturnGivenMonthDayYearDate();

 WriteLine(returnedDate);
}
catch (Exception ex)
{
 WriteLine(ex.Message);
}
ReadLine();

13. Running the console application will again result in an exception message stating that
the month value cannot be greater then 12:

14. Once again, modify the parameters passed to the method and supply a valid year and
month value, but pass an invalid day value:

try
{
 InvariantClassState oInv = new
InvariantClassState(DateTime.Now.Year, 11, 32);
 string returnedDate = oInv.ReturnGivenMonthDayYearDate();

 WriteLine(returnedDate);
}
catch (Exception ex)
{
 WriteLine(ex.Message);
}
ReadLine();

15. Running the console application again will result in the code contract invariant throwing
an exception because the day is clearly wrong. No month contains 32 days:

16. Modify the parameters passed to the constructor again, and this time, add valid values
for year, month, and day:

try
{
 InvariantClassState oInv = new
InvariantClassState(DateTime.Now.Year, 11, 25);
 string returnedDate = oInv.ReturnGivenMonthDayYearDate();

 WriteLine(returnedDate);
}
catch (Exception ex)
{
 WriteLine(ex.Message);
}
ReadLine();

17. Because November 25, 2016 is a valid date (because the current year is 2016), the
formatted date is returned to the console application window:

18. Let's mix things up a little by passing 29 February, 2017 to the constructor:

try
{
 InvariantClassState oInv = new
InvariantClassState(DateTime.Now.Year + 1, 2, 29);
 string returnedDate = oInv.ReturnGivenMonthDayYearDate();

 WriteLine(returnedDate);
}
catch (Exception ex)
{
 WriteLine(ex.Message);
}
ReadLine();

19. Again, the code contract invariant method throws an exception because 2017 is not a
leap year:

How it works…
The code contract invariant method is a simple yet effective way to ensure that the state of
your class is not modified. You can then assume that the properties you use inside your
class are always correct and will never contain unexpected values. We like to think of the
code contract invariant as a type of immutable (which it isn't). Strings are immutable, which
means that the original value is never modified when the value changes. A new space in
memory is always created when you change the value of a string. Similarly, this reminds me
of the properties defined as invariant. These property values can never change to values
other than those defined by our code contract invariant method.

Creating code contract Assert and
Assume methods
The code contract Assert and Assume methods might seem confusing at first, but both
provide a specific function. Where the previous code contract conditions had to appear at
the beginning of the methods they were defined in, the Assert method can be placed
somewhere inside a method. This means that it will have an effect on the code at that
specific time in the compilation. If you, for example, perform a calculation somewhere in
your method under contract and you need to check the value calculated, you can use
Assert to perform a check in place to ascertain whether the calculated value passes the
contract.

Note
Don't confuse Debug.Assert with Contract.Assert. They aren't the same thing.
Debug.Assert will only have an effect if your code is run in the Debug mode.
Contract.Assert will run in the Debug and Release modes.

With Contract.Assume, however, we are telling the code contract that it needs to assume
that the condition it needs to check is true. This is only applicable when the static checker is
switched on, and this will become clearer in this recipe.

Getting ready
We will use the same method under contract to illustrate the use of Assert and Assume
methods with the static checker switched on.

How to do it…
1. Before you go on, ensure that you have added the code contracts using statement to

the top of your Recipes.cs class file:

using System.Diagnostics.Contracts;

2. Add a method called ValueIsValid() to the class, which accepts two integer
parameters:

public static int ValueIsValid(int valueForCalc, int
valueToDivide)
{

}

3. To this method, add a calculation (it appears first in the method before the contract)
that subtracts 1 from the valueForCalc parameter. The Contract.Assert method is
placed after the calculation to check the value of the calculated value. We want to
ensure that the value is not zero:

public static int ValueIsValid(int valueForCalc, int
valueToDivide)
{
 int calculatedVal = valueForCalc - 1;
 Contract.Assert(calculatedVal >= 1, "Calculated value will
result in divide by zero exception.");
 return valueToDivide / calculatedVal;
}

4. In the console application, add the relevant using statement to the Program.cs class to
bring the static class into scope:

using static Chapter8.Recipes;

5. Call the ValueIsValid() method by passing two integer values to it. As you can see,
the first parameter will result in a zero value being calculated inside the method under
contract:

try
{
 int calcVal = ValueIsValid(1, 9);
}
catch (Exception ex)
{
 WriteLine(ex.Message);
 ReadLine();
}

6. Run your console application and inspect the output window. We can see that the
Assert contract correctly threw an exception because the calculated value was zero:

7. However, what if we want our code to be checked when we build our application? This
is where the static checker comes into play. Right-click on the Chapter8 project and
select Properties:

8. Click on the Code Contracts tab and select the checkbox next to Perform Static
Contract Checking. Also, uncheck the Check in background box and select Fail
build on warnings. Moreover, set Warning Level to hi:

Note
We assume that the developers of Code Contracts meant to make the warning level
between low and high. "Hi" is probably a typo in the code.

9. Save your code contract settings and run your console application. You will notice that
your build fails:

10. If we have a look at the ValueIsValid() method, we can see that the static checker
has identified that the method under contract needs an additional contract defined. The
static checker has identified that we need to add Contract.Requires to our method to
check whether the valueForCalc parameter is greater than zero:

11. If we had to correct this, we would add Contract.Requires to the method as follows:

public static int ValueIsValid(int valueForCalc, int
valueToDivide)
{
 Contract.Requires((valueForCalc - 1) >= 1);
 int calculatedVal = valueForCalc - 1;
 Contract.Assert(calculatedVal >= 1, "Calculated value will
result in divide by zero exception.");
 return valueToDivide / calculatedVal;
}

12. For now, let's ignore the recommendation of the static checker and, instead, add
Contract.Assume to our method. Here, we are telling the static checker to assume that
the value will never be zero after the calculation is done on the valueForCalc
parameter:

public static int ValueIsValid(int valueForCalc, int
valueToDivide)
{
 Contract.Assume((valueForCalc - 1) >= 1);
 int calculatedVal = valueForCalc - 1;
 Contract.Assert(calculatedVal >= 1, "Calculated value will
result in divide by zero exception.");
 return valueToDivide / calculatedVal;
}

13. If we run our console application again, we will get a clean build, because the static
checker assumes that you know best and that the value will never equal zero after the
calculation. If, however, the calculated value turns out to be zero, Assume still checks
the value at runtime and will throw an exception if the value equals zero:

How it works…
You might be wondering what the use of Assume in code contracts is. As it turns out, this is
quite useful when working with code that you have no control over. If you implement code
that you can't edit or that does not contain code contracts, you can tell the static checker to
ignore specific portions of the code that produce errors based on the check it does.

Creating code contract ForAll method
If this code contract sounds like it is validating some or the other collection, then you would
be correct. The code contract ForAll will perform validation of IEnumerable collections.
This is very handy, because as a developer, you do not need to do any kind of iteration
over the collection and writing validation logic. This contract does it for you.

Getting ready
We will create a simple list of integers and populate the list with values. Our code contract
will validate that the list does not contain any zero values.

How to do it…
1. Before you go on, ensure that you have added the code contracts using statement to

the top of your Recipes.cs class file:

using System.Diagnostics.Contracts;

2. Add a method called ValidateList() to your class and pass a List<int> collection to
it:

public static void ValidateList(List<int> lstValues)
{

}

3. Inside the ValidateList() method, add the Contract.ForAll contract. Interestingly,
you will notice that we are using Contract.Assert here to check whether this list
passes our contract conditions. The Contract.ForAll will use a lambda expression to
check that none of the values contained in our list of integers equals zero:

public static void ValidateList(List<int> lstValues)
{
 Contract.Assert(Contract.ForAll(lstValues, n => n != 0),
"Zero values are not allowed");
}

4. In the console application, add the relevant using statement to the Program.cs class to
bring the static class into scope:

using static Chapter8.Recipes;

5. You can then add a simple list of integers containing at least one zero value and pass it
to the ValidateList() method:

try
{
 List<int> intList = new List<int>();
 int[] arr;
 intList.AddRange(arr = new int[] { 1, 3, 2, 6, 0, 5});
 ValidateList(intList);
}
catch (Exception ex)
{
 WriteLine(ex.Message);
 ReadLine();
}

6. Run the console application and inspect the results in the output:

How it works…
We can see that the ForAll contract has worked exactly as we had expected. This is an
extremely useful code contract to use, especially since you need not add copious amounts
of boilerplate code to check the collection for various invalid values.

Creating code contract ValueAtReturn
method
The best example we can think of when using the code contract ValueAtReturn is out
parameters. Personally, I do not use out parameters often, but there are times when you
need to use them. Code contracts make provision for this, and you can check the value at
the time it is returned.

Getting ready
We will create a simple method that subtracts a value from a parameter. The out
parameter will be validated by the code contract, and the result will be output to the console
window.

How to do it…
1. Before you go on, ensure that you have added the code contracts using statement to

the top of your Recipes.cs class file:

using System.Diagnostics.Contracts;

2. In the Recipes class, create a new method called ValidOutValue() and pass an out
parameter called secureValue to it:

public static void ValidOutValue(out int secureValue)
{

}

3. Finally, add Contract.ValueAtReturn to the method. Interestingly, you will note that
this needs to be contained in Contract.Ensures. This actually makes sense, because
the code contract ensures that the value that we will return will adhere to a specific
condition:

public static void ValidOutValue(out int secureValue)
{
 Contract.Ensures(Contract.ValueAtReturn<int>(out
secureValue) >= 1, "The secure value is less or equal to
zero");
 secureValue = secureValue - 10;
}

4. In the console application, add the relevant using statement to the Program.cs class to
bring the static class into scope:

using static Chapter8.Recipes;

5. Then, add some code to call the ValidOutValue() method and pass an out parameter
to it:

try
{
 int valueToCheck = 5;
 ValidOutValue(out valueToCheck);
 WriteLine("The value is not zero");
}
catch (Exception ex)
{
 WriteLine(ex.Message);
}
ReadLine();

6. Run the console application and inspect the results in the output window:

How it works…
We can see that the out parameter has been successfully validated. As soon as the
condition was not met, the code contract threw an exception that we were able to catch.

Creating code contract Result method
Sometimes, we simply want a way to validate the result of a method. We want to be able
to check what is returned and validate it against some or the other condition. It is here that
the code contract Result can be used. It will inspect the value returned by the method
under contract against the contract specified, and then it will succeed or fail.

How to do it…
1. Before you go on, ensure that you have added the code contracts using statement to

the top of your Recipes.cs class file:

using System.Diagnostics.Contracts;

2. In the Recipes class, add a new method called ValidateResult() that takes two
integer values as parameters:

public static int ValidateResult(int value1, int value2)
{

}

3. To this method, add the code contract Result that checks the resultant value of the
method. It has to be mentioned that the code contract Result can never be used in a
void method. This is obvious, because the very purpose of this code contract is to
examine and validate the result of a method. You will also notice that the code contract
Result method is used in conjunction with the Contract.Ensures method. The format of
Contract.Result is made up of the return type <int>() and the condition >= 0 that the
return value needs to adhere to:

public static int ValidateResult(int value1, int value2)
{
 Contract.Ensures(Contract.Result<int>() >= 0, "Negative
result not allowed");
 return value1 - value2;
}

4. In the console application, add the relevant using statement to the Program.cs class to
bring the static class into scope:

using static Chapter8.Recipes;

5. Add the call to the static method under contract and pass to it parameters that will
cause the code contract to throw an exception. In this case, we are passing 10 and 23,
which will result in a negative result being returned from the ValidateResult() method:

try
{
 WriteLine(ValidateResult(10, 23));
}
catch (Exception ex)
{
 WriteLine(ex.Message);
}
ReadLine();

6. Finally, run the console application and inspect the result returned to the console output
window:

How it works…
You will see that the code contract has inspected the resultant value of the
ValidateResult() method and found that it contravenes the contract. An exception is then
thrown and displayed in the console window.

Using code contracts on abstract classes
If you use abstract classes in your code, you will know that being able to control how they
are used with code contracts will result in more robust code. But how exactly can we use
code contracts with abstract classes? Especially since abstract classes are supposed to
contain no implementation? Well, it is definitely possible, and here is how we do it.

Getting ready
If you have not worked with abstract classes before, we advise you to first read Chapter 2,
Classes and Generics, to familiarise yourself with how abstract classes are used and
created.

How to do it…
1. Before you go on, ensure that you have added the code contracts using statement to

the top of your Recipes.cs class file:

using System.Diagnostics.Contracts;

2. Create an abstract class called Shape that defines two methods called Length() and
Width() which each take an integer value as a parameter. Remember that abstract
classes contain no implementation:

public abstract class Shape
{
 public abstract void Length(int value);
 public abstract void Width(int value);
}

3. Create another abstract class called ShapeContract that inherits the Shape abstract
class. It is here that our code contracts will reside:

public abstract class ShapeContract : Shape
{

}

4. Override the Length() and Width() methods of the Shape abstract class and ensure
that they require a non-zero parameter:

public abstract class ShapeContract : Shape
{
 public override void Length(int value)
 {
 Contract.Requires(value > 0, "Length must be greater
than zero");
 }

 public override void Width(int value)
 {
 Contract.Requires(value > 0, "Width must be greater
than zero");
 }
}

5. We now need to associate the ShapeContract contract class to the Shape abstract
class. We will do this via the use of attributes. Add the following attribute to the top of
your Shape abstract class:

[ContractClass(typeof(ShapeContract))]

6. After doing this, your Shape abstract class will look like this:

[ContractClass(typeof(ShapeContract))]
public abstract class Shape
{
 public abstract void Length(int value);
 public abstract void Width(int value);
}

7. We also need to associate the Shape abstract class to the ShapeContract abstract
class as a means of telling the compiler which class the contracts need to act upon.
We will do this by adding the following attribute to the top of the ShapeContract class:

[ContractClassFor(typeof(Shape))]

8. When you have done this, your ShapeContract class will look like this:

[ContractClassFor(typeof(Shape))]
public abstract class ShapeContract : Shape
{
 public override void Length(int value)
 {
 Contract.Requires(value > 0, "Length must be greater
than zero");
 }

 public override void Width(int value)
 {
 Contract.Requires(value > 0, "Width must be greater
than zero");
 }
}

9. We are now ready to implement the Shape abstract class. Create a new class called

Rectangle and inherit the Shape abstract class:

public class Rectangle : Shape
{

}

10. You will notice that Visual Studio underlines the Rectangle class with a red squiggly
line. This is because no implementation of the Shape class exists yet. Hover your
mouse cursor over the red squiggly line and look at the lightbulb pop-up suggestion
provided by Visual Studio:

11. By holding down Ctrl + . (period), you will see the suggested fixes that you can
implement to correct the error that Visual Studio is warning you about. In this instance,
there is only a single fix that Visual Studio suggests we implement, which is to
implement the abstract class:

12. After you have clicked on the Implement Abstract Class suggestion in the lightbulb
suggestion, Visual Studio will insert the implementation of the Shape abstract class.

You will notice that the methods inserted for you still don't contain any implementation
and will throw NotImplementedException if you don't add any implementation to the
Length() and Width() methods:

13. To add implementation to our Rectangle class, create two properties for the Length()
and Width() methods and set these properties equal to the value of the supplied
parameter value:

public class Rectangle : Shape
{
 private int _length { get; set; }
 private int _width { get; set; }
 public override void Length(int value)
 {
 _length = value;
 }

 public override void Width(int value)
 {
 _width = value;
 }
}

14. In the console application, add the relevant using statement to the Program.cs class to
bring the Chapter8 class into scope:

using Chapter8;

15. Create a new instance of the Rectangle class and pass some values to the Length()
and Width() methods of the Rectangle class:

try
{
 Rectangle oRectangle = new Rectangle();
 oRectangle.Length(0);
 oRectangle.Width(1);
}
catch (Exception ex)
{
 WriteLine(ex.Message);
}
ReadLine();

16. Finally, run the console application and inspect the output window:

How it works…
As we have added a zero value to the Length() method, the code contract on the abstract
class has correctly thrown an exception. Being able to implement code contracts on
abstract classes allows developers to create better code, especially when working in teams
where you need to convey implementation limitations based on certain business rules.

Using contract abbreviator methods
Abbreviator methods are a great addition to the features of code contracts. They allow us
to create a single abbreviator method that contains often used or grouped code contracts.
This means that we can simplify our code and make it more readable.

Getting ready
We will create two methods with the same code contract requirements. We will then
simplify the methods under contract by implementing an abbreviator method to contain the
code contracts.

How to do it…
1. Before you go on, ensure that you have added the code contracts using statement to

the top of your Recipes.cs class file:

using System.Diagnostics.Contracts;

2. Consider the following methods before you add them. We have two methods here, and
each method requires that the parameter passed to it is not equal to zero and that the
result is also not zero. The implementation within each method is different, but the code
contracts applied are identical. To avoid a situation where code contracts are
unnecessarily repeated, we can use abbreviator methods:

public static int MethodOne(int value)
{
 Contract.Requires(value > 0, "Parameter must be greater
than zero");
 Contract.Ensures(Contract.Result<int>() > 0, "Method result
must be greater than zero");

 return value - 1;
}

public static int MethodTwo(int value)
{
 Contract.Requires(value > 0, "Parameter must be greater
than zero");
 Contract.Ensures(Contract.Result<int>() > 0, "Method result
must be greater than zero");

 return (value * 10) - 10;
}

3. Add a new method called StandardMethodContract() to your Recipes class. This
method's name can be anything you like, but the signature needs to match the methods
it abbreviates. Inside this method, add the required code contracts defined earlier in

MethodOne() and MethodTwo():

private static void StandardMethodContract(int value)
{
 Contract.Requires(value > 0, "Parameter must be greater
than zero");
 Contract.Ensures(Contract.Result<int>() >= 1, "Method
result must be greater than zero");
}

4. Add the following attribute to the top of the StandardMethodContract() method to
identify it as an abbreviator method:

[ContractAbbreviator]

5. Once you have done this, your abbreviator method should look like this:

[ContractAbbreviator]
private static void StandardMethodContract(int value)
{
 Contract.Requires(value > 0, "Parameter must be greater
than zero");
 Contract.Ensures(Contract.Result<int>() >= 1, "Method
result must be greater than zero");
}

6. You can now go ahead and simplify MethodOne() and MethodTwo() by simply
referencing the abbreviator method in place of the code contracts:

public static int MethodOne(int value)
{
 StandardMethodContract(value);

 return value - 1;
}

public static int MethodTwo(int value)
{
 StandardMethodContract(value);

 return (value * 10) - 10;
}

7. In the console application, add the relevant using statement to the Program.cs class to
bring the static class into scope:

using static Chapter8.Recipes;

8. First, call the two methods using the following parameters:

try
{
 MethodOne(0);
 MethodTwo(1);
}
catch (Exception ex)
{
 WriteLine(ex.Message);
}
ReadLine();

9. If you run your console application, you will notice that the code contract throws an
exception in the abbreviator contract, telling us that the supplied parameter can't be
zero:

10. Then, modify your calling code and pass a valid value for MethodOne(), but leave the
call to MethodTwo() as is. Run your console application again:

try
{
 MethodOne(200);
 MethodTwo(1);
}
catch (Exception ex)
{
 WriteLine(ex.Message);
}
ReadLine();

11. This time, you will see that the code contract in the abbreviator method throws an
exception on the return value that can't be zero:

How it works…
Abbreviator methods allow us to create more readable code and to group often used code
contracts in a common method decorated with the [ContractAbbreviator] attribute.
Abbreviator methods are a powerful feature of code contracts that developers can utilize to
produce better code.

Creating tests using IntelliTest
IntelliTest allows developers to create and run tests against their code contracts. This
allows developers to create the most robust code possible by creating additional code
contracts to pass the test failures reported by IntelliTest. One thing to note, however, is
that IntelliTest is included in the Visual Studio Enterprise only.

Getting ready
You will need to use Visual Studio Enterprise 2015 to be able to create and run IntelliTests.

How to do it…
1. Before you go on, ensure that you have added the code contracts using statement to

the top of your Recipes.cs class file:

using System.Diagnostics.Contracts;

2. Add a new class called CodeContractTests to your Recipes.cs file:

public class CodeContractTests
{

}

3. Then, add a method called Calculate() to the CodeContractTests class and pass two
integer values as parameters to the Calculate() method. Inside the Calculate()
method, add a code contract to ensure that the result from this method is never equal
to zero:

public class CodeContractTests
{
 public int Calculate(int valueOne, int valueTwo)
 {
 Contract.Ensures(Contract.Result<int>() >= 1, "");

 return valueOne / valueTwo;
 }
}

4. Select the Calculate() method and right-click on it. From the context menu, click on
the Create IntelliTest menu item:

5. Visual Studio will then show the Create IntelliTest window. Here, you can define
several settings for your IntelliTest. One thing to note is that you can use a different
test framework than MSTest. For our purposes, however, we will use MSTest and
keep the rest of the settings set to their defaults:

6. When you click on the OK button, Visual Studio will continue to create a new test
project for you:

7. When the project creation is complete, you will see the new test project created in the
Solution Explorer. In this case, because we kept the default settings in the Create
IntelliTest window, our new test project will be called Chapter8.Tests:

8. Go ahead and expand the Chapter8.Tests project and then click on the
CodeContractTestsTest.cs file created for you. You will see the following code
created for you by Visual Studio:

/// <summary>This class contains parameterized unit tests for
CodeContractTests</summary>
[PexClass(typeof(CodeContractTests))]
[PexAllowedExceptionFromTypeUnderTest(typeof(InvalidOperati
onException))]
[PexAllowedExceptionFromTypeUnderTest(typeof(ArgumentExcept
ion), AcceptExceptionSubtypes = true)]
[TestClass]
public partial class CodeContractTestsTest
{
 /// <summary>Test stub for Calculate(Int32, Int32)
</summary>
 [PexMethod]
 public int CalculateTest(
 [PexAssumeUnderTest]CodeContractTests target,
 int valueOne,
 int valueTwo
)
 {
 int result = target.Calculate(valueOne, valueTwo);
 return result;
 // TODO: add assertions to method
CodeContractTestsTest.CalculateTest (CodeContractTests, Int32,
Int32)
 }
}

9. Back in the CodeContractTests class, right-click on the Calculate() method and select
Run IntelliTest from the context menu:

10. IntelliTest will jump into action and open the IntelliTest Exploration Results window:

11. From the test results we ran for the Calculate() method, we can see that we have
three failed tests and one successful test. The test failures reported are
DivideByZeroException, ContractException, and OverflowException. Clicking on
individual test failures allows you to view the test details as well as the Stack trace:

12. Let's modify the Calculate() method by adding the following additional code contracts:

public int Calculate(int valueOne, int valueTwo)
{
 Contract.Requires(valueOne > 0, "Parameter must be greater
than zero");
 Contract.Requires(valueTwo > 0, "Parameter must be greater
than zero");
 Contract.Requires(valueOne > valueTwo, "Parameter values
will result in value <= 0");
 Contract.Ensures(Contract.Result<int>() >= 1, "");

 return valueOne / valueTwo;
}

13. From the additional code contracts, we can see that by requiring the valueTwo
parameter to be greater than zero, we have resolved the DivideByZeroException. We
can also see that the code contract that requires valueOne is always greater than
valueTwo. Thus, we have resolved the ContractException. Finally, by requiring that
both parameters be greater than zero, we have automatically resolved the
OverflowException:

14. Right-click on the Calculate() method and run the IntelliTest again. This time, you will
see that all the tests have passed, and our method under contract is now ready for use
in production code:

How it works…
IntelliTest allows developers to quickly and efficiently create tests for your code contracts
with a few clicks of your mouse.

Using code contracts in extension
methods
The previous recipes illustrated how a developer might create various code contracts to
secure your code from unexpected input and output, but let's look at how a developer could
leverage code contracts. The idea of extension methods come to mind, where we create
code that can be used throughout your project to perform actions that are often used.

Let's use the code contract ForAll method. This has an impact on a collection, so naturally,
its use in extension methods leads us to a possible implementation. In this recipe, we will
create an extension method that uses a code contract to validate the list we have just
created.

Getting ready
We will create a static class for our extension method and then use the ForAll code
contract to validate the List collection.

How to do it…
1. Before you go on, ensure that you have added the code contracts using statement to

the top of your Recipes.cs class file:

using System.Diagnostics.Contracts;

2. Create a new static class called ExtensionMethods and add it to your Recipes.cs class
file:

public static class ExtensionMethods
{

}

3. Next, add an extension method called ContainsInvalidValue() that takes the given list
of anonymous type T and an invalid value to check as type T as parameters:

public static bool ContainsInvalidValue<T>(this List<T> value,
T invalidValue)
{

}

4. Inside our extension method, add code contract ForAll wrapped in a try catch
statement that checks the existence of the given parameter in the list:

try
{
 Contract.Assert(Contract.ForAll(value, n =>
!value.Contains(invalidValue)), "Zero values are not allowed");
 return false;
}
catch
{
 return true;
}

5. Once you have added all the code to your extension method, it should look like this:

public static class ExtensionMethods
{
 public static bool ContainsInvalidValue<T>(this List<T>
value, T invalidValue)
 {
 try
 {
 Contract.Assert(Contract.ForAll(value, n =>
!value.Contains(invalidValue)), "Zero values are not allowed");
 return false;
 }
 catch
 {
 return true;
 }
 }
}

6. In the console application, add the relevant using statement to the Program.cs class to
bring the Chapter8 class into scope:

using Chapter8;

7. As we did earlier, create a simple list, but this time, call the extension method that is
exposed via the static extension methods class on the list. We will now be able to
directly validate our list via the use of extension methods and code contracts:

List<int> intList = new List<int>();
int[] arr;
intList.AddRange(arr = new int[] { 1, 3, 2, 6, 0, 5 });

if (intList.ContainsInvalidValue(4))
 WriteLine("Invalid integer Value");
else
 WriteLine("Valid integer List");

8. Running the application will result in the following output:

9. As we are using an anonymous type here, we can easily call this extension method on
lists containing different types. Here is an example of an implementation on a list of
strings:

List<string> strList = new List<string>();
string[] arr2;
strList.AddRange(arr2 = new string[] { "S", "A", "Z" });

if (strList.ContainsInvalidValue("G"))
 WriteLine("Invalid string Value");
else
 WriteLine("Valid string List");

10. Running the application again will result in the following output:

How it works…
We can see that using code contracts along with other powerful features of C# allows us to
utilize very powerful code checking and validation techniques. The extension methods can
be used throughout your project to perform frequent validation or other code logic specific
to your project.

Chapter 9. Regular Expressions
Regular Expressions (regex) are somewhat of a mystery for many developers. We admit
that they are something that we use often enough to warrant a deeper understanding of
how they work. On the flip side, there are so many tried and tested regex patterns on the
Internet that just reusing one that already exists is most times easier than trying to create
one yourself. The subject of regex is much larger than what can be explained in a single
chapter in this book.

Therefore, in this chapter, we will merely introduce some of the concepts of regex. For a
deeper understanding of regex, further study is needed. For the purpose of this book,
however, we will take a closer look at how regex are created and how they can be applied
to some common programming problems. In this chapter, we will cover the following
recipes:

Getting started with regex
Matching a valid date
Sanitizing input
Dynamic regex matching

Introduction
A regex is a pattern that describes a string through the use of special characters that
denote a specific bit of text to match. The use of regex is not a new concept in
programming. For regex to work, they need to use a regex engine that does all the heavy
lifting.

In the .NET Framework, Microsoft has provided for the use of regex. To use regex, you will
need to import the System.Text.RegularExpressions assembly to your project. This will
allow the compiler to use your regex pattern and apply it to the specific text you need to
match.

Secondly, regex have a specific set of metacharacters that hold special meaning to the
Regex engine. These characters are [], { }, (), *, +, \, ?, |, $, . and, ^.

The use of the curly brackets { }, for example, enables developers to specify the number
of times a specific set of characters need to occur. Using square brackets, on the other
hand, defines exactly what needs to be matched.

If we, for example, specified [abc], the pattern would look for lowercase As, Bs, and Cs.
Regex, therefore, also allows you to define a range, for example, [a-c], which is
interpreted in exactly the same way as the [abc] pattern.

Regex then also allow you to define characters to exclude by using the ^ character.
Therefore, typing [^a-c] would find lowercase D through Z because the pattern is telling
the regex engine to exclude lowercase As, Bs, and Cs.

Regex also define \d and \D as types of shortcut for [0-9] and [^0-9], respectively.
Therefore, \d matches all numeric values, and \D matches all non-numeric values. Another
shortcut is \w and \W, which match any character from lowercase A to Z, irrespective of the
case, all numeric values from 0 to 9, and the underscore character. Therefore, \w is [a-zA-
Z0-9_], while \W is [^a-zA-Z0-9_].

The basics of regex are rather easy to understand, but there is a lot more that you can do
with regex.

Getting started with regex
We will be create a new class in C# called Chapter9. Here, we will create various methods
to illustrate the use of regex.

Getting ready
For the purpose of this book, we will create a simple console application to illustrate the
use of regex. In reality, you would probably not have this logic mixed in with your production
code, because this would result in code being rewritten. The best place to add something
like regex is in a helper class within an extension method.

How to do it…
1. Start by right-clicking the solution, going to Add, and then to New Project from the

context menu:

2. The Add New Project window opens up. Select the Class Library project type and
call the project Chapter9:

3. After the new class file has been added, your Solution Explorer should look like this:

4. Right-click the Class1.cs file and select Rename from the context menu:

5. Rename the Class1.cs file to Recipes.cs and select Yes from the confirmation dialog:

6. In the console application, click on the References section and select Add Reference
from the context menu:

7. In Reference Manager for the console application, select Chapter9 and click on OK to
add it as a reference to the console application:

8. In the Recipes class, add the following using statement so that we can use the regex
assembly in .NET:

using System.Text.RegularExpressions;

9. After you have done all this, your Chapter9 class should look like this:

using System.Text.RegularExpressions;
namespace Chapter9
{
 public class Recipes
 {
 }
}

How it works…
We have added a basic class file that will be used to validate regex patterns, which is
called from our console application.

Matching a valid date
We will create a regex to validate a date pattern of yyyy-mm-dd, yyyy/mm/dd, or
yyyy.mm.dd. At first, the regex will look daunting, but bear with me. When you have
completed the code and run the application, we will dissect the regex. Hopefully, the
expression logic will become clear.

Getting ready
Ensure that you have added the correct assembly to your class. At the top of your code
file, add the following line of code if you haven't already done so:

using System.Text.RegularExpressions;

How to do it…
1. Create a new method called ValidDate() that takes a string as the parameter. This

string will be the date pattern we want to validate:

public void ValidDate(string stringToMatch)
{

}

2. Add the following regex pattern to your method, to a variable in the method:

string pattern = $@"^(19|20)\d\d[-./](0[1-9]|1[0-2])[- ./](0[1-
9]|[12][0-9]|3[01])$";

3. Finally, add the regex to match the supplied string parameter:

if (Regex.IsMatch(stringToMatch, pattern))
 Console.WriteLine($"The string {stringToMatch} contains a
valid date.");
else
 Console.WriteLine($"The string {stringToMatch} DOES NOT
contain a valid date.");

4. When you have done this, your method should look like this:

public void ValidDate(string stringToMatch)
{
 string pattern = $@"^(19|20)\d\d[-./](0[1-9]|1[0-2])[- ./]
(0[1-9]|[12][0-9]|3[01])$";

 if (Regex.IsMatch(stringToMatch, pattern))
 Console.WriteLine($"The string {stringToMatch} contains
a valid date.");
 else
 Console.WriteLine($"The string {stringToMatch} DOES NOT
contain a valid date.");
}

5. Going back to your console application, add the following code and debug your
application by clicking on Start:

Chapter9.Recipes oRecipe = new Chapter9.Recipes();
oRecipe.ValidDate("1912-12-31");
oRecipe.ValidDate("2018-01-01");
oRecipe.ValidDate("1800-01-21");
 oRecipe.ValidDate($"{DateTime.Now.Year}.
{DateTime.Now.Month }.{DateTime.Now.Day}");
oRecipe.ValidDate("2016-21-12");
Read();

Note
You will notice that Read() is used in the preceding code example instead of
Console.Read(). This is because using static System.Console; is added to the
console application's using statements. Doing this will allow you to omit the Console
keyword.

6. The date strings are passed to the regex, and the pattern is matched against the date
string in the parameter. The output is displayed in the console application:

7. If you look at the output carefully, you will notice that there is a mistake. We are

validating the date string in the format yyyy-mm-dd, yyyy/mm/dd, and yyyy.mm.dd. If
we use this logic, our regex has incorrectly flagged a valid date as invalid. This is the
date 2016.4.10, which is 10 April, 2016, and is in fact quite valid.

Note
We will explain shortly why the date 1800-01-21 is invalid.

8. Go back to your ValidDate() method and change the regular expression to read as
follows:

string pattern = $@"^(19|20)\d\d[-./](0[1-9]|1[0-2]|[1- 9])[-
./](0[1-9]|[12][0-9]|3[01])$";

9. Run the console application again and look at the output:

This time the regex worked for all the given date strings. But what exactly did we do? This
is how it works.

How it works…
Let's take a closer look at the two expressions used in the previous code example.
Comparing them with each other, you can see the change we made in yellow:

Before we get to what that change means, let's break up the expression and view the
individual components. Our regex is basically saying that we must match all string dates
that start with 19 or 20 and have the following separators:

Dash (-)

Decimal (.)
Forward slash (/)

To understand the expression better, we need to understand the following format of the
expression <Valid Years><Valid Separators><Valid Months><Valid Separators><Valid
Days>.

We also need to be able to tell the regex engine to consider one OR another pattern. The
word OR is symbolised by the | metacharacter. To make the regex engine consider the
word OR without splitting up the whole expression, we wrap it in parenthesis ().

Here are the symbols used in the regex:

The conditional OR

| This denotes the OR metacharacter.

The year portion

(19|20) Only allow 19 or 20.

\d\d
Match two single digits between 0 and 9. To match only one digit between 0 and
9, you would use \d.

The valid separator character set

[-./]

Match any of the following characters in the character set. These are our valid
separators. To match a space date separator, you would change this to [- ./],
where you add a space anywhere in the character set. We added the space
between the dash and the decimal.

Valid digits for months and days

0[1-9]
Match any part starting with zero followed by any digit between 1 and 9. This will

match 01, 02, 03, 04, 05, 06, 07, 08, and 09.

1[0-2]
Match any part starting with 1 followed by any digit between 0 and 2. This will
match 10, 11, or 12.

[1-9] Match any digit between 1 and 9.

[12][0-
9]

Match any part starting with 1 or 2, followed by any digit between 0 and 9. This
will match all number strings between 10 and 29.

3[01] Match any part starting with 3 and followed by 0 or 1. This will match 30 or 31.

Start and end of string

^ Tells the regex engine to start at the beginning of the given string to match.

$ Tells the regex engine to stop at the end of the given string to match.

The first regex we created, interprets as follows:

^: Start at the beginning of the string to match
(19|20): Check whether the string starts with 19 or 20
\d\d: After the check, follows two single digits between 0 and 9
[-./]: The year portion ends followed by a date separator
(0[1-9]|1[0-2]): Find the month logic by looking for digits starting with 0, followed by
any digit between 1 and 9, or digits starting with 1, followed by any digit between 0
and 2
[-./]: The month logic ends, followed by a date separator
(0[1-9]|[12][0-9]|3[01]): Then, find the day logic by looking for digits starting with
0, followed by a digit between 1 and 9, or digits starting with 1 or 2, followed by any
digit between 0 and 9, or a digit matching 3, followed by any digit between 0 and 1
$: Do this until the end of the string

Our first regex was incorrect because our month logic was incorrect. Our month logic
dictates to find the month logic by looking for digits starting with a 0 followed by any digit

between 1 and 9, or digits starting with a 1 followed by any digit between 0 and 2 (0[1-
9]|1[0-2]).

This will then find 01, 02, 03, 04, 05, 06, 07, 08, 09 or 10, 11, 12. The date that it didn't
match was 2016.4.10 (the date separators don't make a difference here). This is because
our month came through as a single digit, and we were looking for months where the single
digits started with a zero. To fix this, we had to modify the expression of the month logic to
include single digits between 1 and 9. We did this by adding [1-9] to the expression at the
end.

The modified regex then reads as follows:

^: Start at the beginning of the string to match.
(19|20): Check whether the string starts with 19 or 20.
\d\d: After the check, follows two single digits between 0 and 9.
[-./]: The year portion ends, followed by a date separator
(0[1-9]|1[0-2]): Find the month logic by looking for digits starting with 0, followed by
any digit between 1 and 9, or digits starting with 1, followed by any digit between 0
and 2, or any single digits between 1 and 9
[-./]: The month logic ends, followed by a date separator
(0[1-9]|[12][0-9]|3[01]): Then, find the day logic by looking for digits starting with
0, followed by a digit between 1 and 9, or digits starting with 1 or 2, followed by any
digit between 0 and 9, or a digit matching 3, followed by any digit between 0 and 1
$: Do this until the end of the string

This is a basic regex, and we say basic because there is a lot more we can do to make the
expression better. We can include logic to consider alternative date formats such as mm-
dd-yyyy or dd-mm-yyyy. We can add logic to check February and validate that it contains
only 28 days, unless it is a leap year, in which case we need to allow the twenty-ninth day
of February. Furthermore, we can also extend the regex to check that January, March,
May, July, August, October, and December have 31 days while April, June, September,
and November contain only 30 days.

Sanitizing input
Sometimes, you will need to sanitize input. This could be to prevent SQL injections or
ensure that an entered URL is valid. In this recipe, we will look at replacing the bad words
in a string with asterisks. We are sure that there are more elegant and code-efficient
methods of writing sanitation logic using regex (especially when we have a large collection
of blacklist words), but we want to illustrate a concept here.

Getting ready
Ensure that you have added the correct assembly to your class. At the top of your code
file, add the following line of code if you haven't done so already:

using System.Text.RegularExpressions;

How to do it…
1. Create a new method in your Recipes.cs class called SanitizeInput() and let it

accept a string parameter:

public string SanitizeInput(string input)
{

}

2. Add a list of type List<string> to the method that contains the bad words we want to
remove from the input:

List<string> lstBad = new List<string>(new string[] {
"BadWord1", "BadWord2", "BadWord3" });

Note
In reality, you might make use of a database call to read the blacklisted words from a
table in the database. You would usually not hardcode them in a list like this.

3. Start constructing the regex that we will use to look for the blacklisted words.
Concatenate the words with the | (OR) metacharacter so that the regex will match any
of the words. When the list is complete, you can append the \b expression to either
side of the regex. This denotes a word boundary and, therefore, will only match whole
words:

string pattern = "";
foreach (string badWord in lstBad)
 pattern += pattern.Length == 0 ? $"{badWord}" : $"|
{badWord}";

pattern = $@"\b({pattern})\b";

4. Finally, we will add the Regex.Replace() method that takes the input and looks for the
occurrence of the words defined in the pattern, while ignoring case and replacing the
bad words with *****:

return Regex.Replace(input, pattern, "*****",
RegexOptions.IgnoreCase);

5. When you have completed this, your SanitizeInput() method will look like this:

public string SanitizeInput(string input)
{
 List<string> lstBad = new List<string>(new string[] {
"BadWord1", "BadWord2", "BadWord3" });
 string pattern = "";
 foreach (string badWord in lstBad)
 pattern += pattern.Length == 0 ? $"{badWord}" : $"|
{badWord}";

 pattern = $@"\b({pattern})\b";

 return Regex.Replace(input, pattern, "*****",
RegexOptions.IgnoreCase);
}

6. In the console application, add the following code to call the SanitizeInput() method
and run your application:

string textToSanitize = "This is a string that contains a
badword1, another Badword2 and a third badWord3";
Chapter9.Recipes oRecipe = new Chapter9.Recipes();
textToSanitize = oRecipe.SanitizeInput(textToSanitize);
WriteLine(textToSanitize);
Read();

7. When you run your application, you will see the following in the console window:

Let's take a closer look at the regular expression generated.

How it works…
Let's step through the code to understand what is happening. We need to get a regex that
looks like this: \b(wordToMatch1|wordToMatch2|wordToMatch3)\b.

What this basically says is find me any of the words and only whole words that are denoted
by \b. When we look at the list we created, we will see the words we want to remove from
the input string:

We then created a simple loop that will create the list of words to match using the OR
metacharacter. We ended up with a BadWord1|BadWord2|BadWord3 pattern after the
foreach loop has completed. However, this is still not a valid regex:

To complete the pattern resulting in the valid regex, we need to add the \b expression on
either side of the pattern to tell the regex engine to only match whole words. As you can
see, we are using string interpolation. String interpolation is covered in detail in Chapter 1,
New Features in C#6.

It is here, however, that we need to be very careful. Start off by writing the code to
complete the pattern without the @ sign, as follows:

pattern = $"\b({pattern})\b";

If you run your console application, you will see that the bad words are not matched and
filtered out. This is because we have not escaped the \ character before b. The compiler,
therefore, interprets this line of code:

The generated expression [](BadWord1| BadWord2| BadWord3)[] is not a valid expression
and will therefore not sanitize the input string.

To correct this, we need to add the @ symbol before the string to tell the compiler to treat
the string as a literal. This means any escape sequences are ignored. The correctly
formatted line of code looks like this:

pattern = $@"\b({pattern})\b";

Once you do this, the string for the pattern is interpreted literally by the compiler, and the
correct regex pattern generated:

With our correct regex pattern, we called the Regex.Replace() method. It takes the input to
check, the regex to match, the text to replace the matched words with, and optionally
allows for the ignoring of case:

When the string returns to the calling code in the console application, the string will be
sanitized properly:

Regex can become quite complex and can be used to perform a multitude of tasks to
format and validate input and other text.

Dynamic regex matching
What does dynamic regex matching even mean? Well, it isn't an official term, but it is a term
we use to explain a Regex that uses variables at runtime to generate a specific expression.
Assume for a minute that you are working on a document-management system that needs
to implement versioning of documents for a company called Acme Corporation. To do this,
the system validates that the document has a valid file name.

A business rule states that the file name of any file uploaded on a specific day must be
prefixed with acm (for Acme) and today's date in the yyyy-mm-dd format. There can be only
text files, Word documents (only .docx), and Excel documents (only .xlsx). Any documents
not conforming to this file format are processed by another method that takes care of
archive and invalid documents.

The only task that your method needs to perform is to process fresh documents as version
one documents.

Note
In a production system, further logic will probably be needed to determine whether the
same document has been uploaded previously on the same day. This, however, is beyond
the scope of this chapter. We are just trying to set the scene.

Getting ready
Ensure that you have added the correct assembly to your class. At the top of your code
file, add the following line of code if you haven't already done so:

using System.Text.RegularExpressions;

How to do it…
1. A really nice way to do this is to use an extension method. This way, you can call the

extension method directly on the file name variable and have it validated. In your
Recipes.cs file, start off by adding a new class called CustomRegexHelper with the
public static modifier:

public static class CustomRegexHelper
{

}

2. Add the usual extension method code to the CustomRegexHelper class and call the
ValidAcmeCompanyFilename method:

public static bool ValidAcmeCompanyFilename(this String value)
{

}

3. Inside your ValidAcmeCompanyFilename method, add the following regex. We will
explain the makeup of this regex in the How it works… section of this recipe:

return Regex.IsMatch(value, $@"^acm[_]{DateTime.Now.Year}[_]
({DateTime.Now.Month}|0[{Da teTime.Now.Month}])[_]
({DateTime.Now.Day}|0[{DateTime.Now.D ay}])
(.txt|.docx|.xlsx)$");

4. When you have completed this, your extension method should look like this:

public static class CustomRegexHelper
{
 public static bool ValidAcmeCompanyFilename(this String
value)
 {
 return Regex.IsMatch(value, $@"^acm[_]
{DateTime.Now.Year}[_]
({DateTime.Now.Month}|0[{DateTime.Now.Month}]) [_]
({DateTime.Now.Day}|0[{DateTime.Now.Day}])
(.txt|.docx|.xlsx)$");
 }
}

5. Back in the Recipes class, create a method with the void return type called
DemoExtendionMethod():

public void DemoExtendionMethod()
{

}

6. Add some output text to show the current date and the valid file name types:

Console.WriteLine($"Today's date is: {DateTime.Now.Year}-
{DateTime.Now.Month}-{DateTime.Now.Day}");
Console.WriteLine($"The file must match:
acm_{DateTime.Now.Year}_{DateTime.Now.Month}_{DateTime.Now.
Day}.txt including leading month and day zeros");
Console.WriteLine($"The file must match:
acm_{DateTime.Now.Year}_{DateTime.Now.Month}_{DateTime.Now.
Day}.docx including leading month and day zeros");
Console.WriteLine($"The file must match:
acm_{DateTime.Now.Year}_{DateTime.Now.Month}_{DateTime.Now.
Day}.xlsx including leading month and day zeros");

7. Then, add the file name checking code:

string filename = "acm_2016_04_10.txt";
if (filename.ValidAcmeCompanyFilename())
 Console.WriteLine($"{filename} is a valid file name");
else
 Console.WriteLine($"{filename} is not a valid file name");

filename = "acm-2016_04_10.txt";
if (filename.ValidAcmeCompanyFilename())
 Console.WriteLine($"{filename} is a valid file name");
else
 Console.WriteLine($"{filename} is not a valid file name");

8. You will notice that the if statement contains the call to the extension method on the
variable that contains the file name:

filename.ValidAcmeCompanyFilename()

9. If you have completed this, your method should look like this:

public void DemoExtendionMethod()
{
 Console.WriteLine($"Today's date is: {DateTime.Now.Year}-
{DateTime.Now.Month}- {DateTime.Now.Day}");
 Console.WriteLine($"The file must match:
acm_{DateTime.Now.Year}_{DateTime.Now.Month}_
{DateTime.Now.Day}.txt including leading month and day zeros");
 Console.WriteLine($"The file must match:
acm_{DateTime.Now.Year}_{DateTime.Now.Month}_
{DateTime.Now.Day}.docx including leading month and day
zeros");
 Console.WriteLine($"The file must match:
acm_{DateTime.Now.Year}_{DateTime.Now.Month}
_{DateTime.Now.Day}.xlsx including leading month and day
zeros");

 string filename = "acm_2016_04_10.txt";
 if (filename.ValidAcmeCompanyFilename())
 Console.WriteLine($"{filename} is a valid file name");
 else
 Console.WriteLine($"{filename} is not a valid file
name");

 filename = "acm-2016_04_10.txt";
 if (filename.ValidAcmeCompanyFilename())
 Console.WriteLine($"{filename} is a valid file name");
 else
 Console.WriteLine($"{filename} is not a valid file
name");
}

10. Going back to the console application, add the following code that simply just calls the
void method. This is just to simulate the versioning method talked about earlier:

Chapter9.Recipes oRecipe = new Chapter9.Recipes();
oRecipe.DemoExtendionMethod();
Read();

11. When you are done, run your console application:

How it works…
Let's have a closer look at the regex generated. The line of code we are looking at is the
return statement in the extension method:

return Regex.IsMatch(value, $@"^acm[_]{DateTime.Now.Year}[_]
({DateTime.Now.Month}|0[{DateTime. Now.Month}])[_]
({DateTime.Now.Day}|0[{DateTime.Now.Day}])(.txt|.do cx|.xlsx)$");

To appreciate what is happening, we need to break this expression up into the different
components:

The conditional OR

| This denotes the OR metacharacter.

The file prefix and separator

acm The file must begin with the text acm.

[_]
The only valid separator between the date components and the
prefix in the file name is an underscore.

The date parts

{DateTime.Now.Year} The interpolated year part of the date for the file name.

{DateTime.Now.Month} The interpolated month part of the date for the file name.

0[{DateTime.Now.Month}]
The interpolated month part of the date with a leading zero for
the file name.

{DateTime.Now.Day} The interpolated day part of the date for the file name.

0[{DateTime.Now.Day}]
The interpolated day part of the date with a leading zero for the
file name.

Valid file formats

(.txt|.docx|.xlsx)
Match any of these file extensions for text documents, Word
documents, or Excel documents.

Start and end of string

^
Tells the regex engine to start at the beginning of the given
string to match.

$
Tells the regex engine to stop at the end of the given string to
match.

Creating the regex in this manner allows us to always have it stay up to date. As we have
to always match the current date to the file being validated, this creates a unique challenge
that is easily overcome using string interpolation, DateTime, and regex OR statements.

Having a look at some of the more useful bits of regex, you will see that this chapter has
not even begun to scratch the surface of what can be accomplished. There is a whole lot
more to explore and learn. There are many resources on the Internet, as well as some free

(some online) and commercial tools that will assist you in creating regex.

Chapter 10. Choosing and Using a Source
Control Strategy
Source control is an essential part of every developer's toolkit. It doesn't matter whether
you are a hobbyist or professional programmer; when you get up from your desk to go
home you better be sure your code is safe. In this chapter, we will be looking at choosing
and using a source control strategy. Some of the topics we will be taking a look at are:

Setting up Visual Studio account management and determining which source control
solution is best for you
Setting up Visual Studio GitHub integration, checking in code for the first time, and
checking in changes
Working as a team using GitHub, and handling and resolving conflicts in code

Introduction
During my career, I have used Visual SourceSafe, SVN, VSTS, Bitbucket, and GitHub. It
really does not matter how you approach it, the important thing is that you keep your source
code safe and versioned.

Setting up Visual Studio account
management and determining which
source control solution is best for you
Visual Studio allows developers to create an account and sign in. This is particularly
beneficial if you hot desk often or work in multiple locations on different machines (think
work and home PCs), because Visual Studio will then automatically sync your settings
between the machines you're signed in to.

Getting ready
This recipe will assume that you have just completed installing Visual Studio 2015 on your
machine. It doesn't matter whether you have installed the trial or licensed version of Visual
Studio 2015.

How to do it...
1. After installation completes, open up Visual Studio:

2. At the top right of Visual Studio, you will see that there is a Sign in link:

3. Clicking on the Sign in link, you will be allowed to enter your e-mail address here. I find
it useful to just use my Outlook e-mail address. In my opinion, it is one of the best web
e-mails available.

Note
Please note, I'm not endorsing Outlook for any reason other than I really think it is a
great product. I also have a Gmail account as well as an iCloud e-mail account.

4. After adding your e-mail account, Visual Studio will redirect you to a sign-in page:

5. Because I already have an Outlook account, Visual Studio simply allows me to sign in
with it. If you don't have an account, you can create one here:

6. Visual Studio will now ask you to enter some additional information. One part to note is
that you can already link your Team Services account here if you have one. For now,
leave it blank, as this will be dealt with in a later recipe:

7. After your account is created, you can see that you have been signed in by looking at
the account selected in the right-hand corner of the Visual Studio IDE:

8. Clicking on the down arrow next to your account name, you can view your Account
settings…

9. This will show you a summary of your account, from where you can further personalize
your account:

The choice of source control is a topic every developer has a strong opinion about.
Unfortunately, if you work for a boss, that decision might not even be up to you. Many
companies have already set up their source control system just the way they like it, and you
will need to fall in with company procedure. That is just the way it is. It is however good to
know about the options available to you as an indie developer.

All good developers should be writing code on their own time too. You are not only a
developer while you sit at work. We eat, breathe, sleep, and live code. It is part of who and
what we are. I will say that in order for you to become better at your job as a developer,
you must play with code on your own time. Start a pet project, get some friends together,
and decide to write some software together. Not only will this make you all better at what
you do, but you will learn a lot from each other.

If you are a remote developer that does not commute to, and work in, an office every day,
you can still connect with the developer community. There are so many resources available
to developers, and the developer community is more than happy to rally around newbies
and help them grow. Starting a solo or pet project is useless if you don't commit (pun
intended) to keeping your code safe. To do this, you don't have to pay a single dollar either.
Visual Studio Online (now called Team Services) and GitHub both provide developers with a
fantastic platform to keep your code safe.

Let us start by looking at Team Services. The site can be found by pointing your browser to
https://www.visualstudio.com/en-us/products/what-is-visual-studio-online-vs.

Here you will see that Microsoft has given developers a fantastic opportunity to use Team
Services. It is absolutely free for up to five users. This means that you and your mates can
collaboratively work on the next big thing while ensuring that your code remains secure.
Signing up is as simple as clicking on the Get started for free link:

The second excellent option is GitHub. It differs slightly in its free offering by requiring
developers to using a public repository on the free account. If you don't mind your code
being essentially open source, then GitHub is a great choice. With GitHub though, you can
have unlimited collaborators and public repositories:

https://www.visualstudio.com/en-us/products/what-is-visual-studio-online-vs

How it works...
The choice of source control essentially comes down to the openness of your code. If you
can afford to let other developers see and download your code, then GitHub is a great
choice. If you need your code to remain private and only shared between specific people,
then a paid GitHub account will be better suited. If you don't want to fork out money yet,
then Team Services will be your best bet.

Setting up Visual Studio GitHub
integration, checking in code for the first
time, and checking in changes
GitHub has been a tour de force for so many years. There are developers that swear by it.
In fact, it is the default option when using Apple's Xcode IDE. For whatever reason you
decide to use GitHub, rest assured that you and your code are in good hands.

Getting ready
The following recipe will assume that you have already signed up for GitHub and that you
have enabled Two-factor authentication. If you have not signed up for a GitHub account,
you can do so by going to www.github.com and creating a new account. To enable Two-
factor authentication on your GitHub account (something I personally strongly advise), do
the following:

1. Click on the down arrow next to your profile image, and select Settings:

http://www.github.com

2. From the Personal settings menu that appears on the left of the next web page,
select Security:

3. The first section on the security page will be your Two-factor authentication status.
To get started with setting it up, click on the Set up two-factor authentication button:

4. You will then be presented with a brief overview of what Two-factor authentication is
and you will be given the choice of Set up using an app (which I recommend) or Set
up using SMS. Using an app is by far the easiest, and if you have a smartphone or
tablet you can download an authenticator application from the applicable app store.
From there on, follow the prompts that GitHub gives you to complete the Two-factor
authentication setup:

How to do it...
1. If you are installing Visual Studio 2015 for the first time, have a look at the Custom

installation option. Under Common Tools, when expanded you will see the option to
add GitHub to your Visual Studio installation. After you have selected that and other
options to install, click Next and finish the installation window wizard. Visual Studio
2015 will now begin to install. You can now take a break, and go have a cup of coffee
because the installation can take a while, depending on the hardware of your machine
and speed of your Internet connection:

2. If you have already installed Visual Studio 2015 without adding the GitHub extension,
you can easily just download it from the following link and install it:
https://visualstudio.github.com/downloads/GitHub.VisualStudio.vsix.

3. Assuming that you have an existing application you want to add to GitHub, the process
of adding it to a new repository is quite simple. I have simply created a console
application with nothing but the template code, but you can add any project type and
size to GitHub:

4. On the View menu in Visual Studio 2015, select the Team Explorer option:

https://visualstudio.github.com/downloads/GitHub.VisualStudio.vsix

5. You will be presented with two options under the Hosted Service Providers section.
For now, we will select GitHub and, seeing as we already have an account, we will
click on Connect…

6. You will now be presented with the GitHub login page. You are also offered the chance
to sign up from here if you do not have an existing GitHub account:

7. Because I have Two-factor authentication set up on my GitHub account, I am
prompted to use my authenticator application to enter the generated authentication
code and authenticate myself:

8. After you have been authenticated, you will return to the Manage Connections
screen:

9. Next, you will want to click on the Home icon, which is a picture of a little house at the
top of the Team Explorer window. From the Home screen, click on the Sync button:

10. This will display the Publish window to you. Under GitHub, click on the Get Started
link. This is going to publish your project to a new repository on GitHub.

Note
Remember, if you are using the free GitHub, all your repositories are public. If you are
writing code that can't be made public (is not open source), then sign up for one of the
paid GitHub accounts that include private repositories.

11. GitHub will then prompt you to add in the details for this publish. Because you
connected to GitHub earlier, your username will already be selected in the drop-down
menu. When you are ready, click Publish:

12. When the project has been published to GitHub, you will automatically be returned to
the Home screen:

13. Looking at your GitHub account online, you will see that the project has been added:

14. Next, let us go and make some changes to the CommandCentre application. Just go
ahead and add a new class to your project. I called mine Dominion.cs, but you can call
yours whatever you like:

15. You will notice that as soon as a change is made to your project, that the solution will
mark the changed items with a red tick:

16. To add the changes to your GitHub repository, you can follow two routes. The first
option is to go to the Team Explorer - Home window and click on the Changes
button:

17. The second (and in my opinion more convenient) option, is to right-click the solution in
Solution Explorer and click on the Commit... menu item from the context menu:

18. GitHub might ask you for your user information the first time you perform a commit:

19. Before you are allowed to commit your changes, you must fill in the required commit
message. In a real team project, be as descriptive as possible in your commit
message. Consider using task item code (or backlog codes) to uniquely identify the
code being added. This will save your (or another developer's) bacon sometime in the
future, I guarantee it:

20. One important thing to note is that you have three commit options available to you if
you click on the down arrow next to the Commit All button. The Commit All button will
just record the changes you make on your local machine. In other words, the change
will not be reflected in the remote repository. The Commit All and Push button will
record the changes on your local machine and push those changes to your remote
GitHub repository. The Commit All and Sync button will record the changes on your
local machine, then it will pull any changes from the remote repository, and finally it will
do the push. You will want to do this if you are working in a team. For this recipe,
however, I will just do a Commit All and Push, seeing as I am the only developer
working on this repo:

21. When the commit has completed, the Team Explorer window will notify you of the
successful commit:

22. Heading over to GitHub online, you will see the newly pushed changes reflected in your
GitHub repository, along with the commit message:

23. GitHub is a fantastic source control solution for any developer. Consider creating an
open source project. It is more beneficial than you might imagine.

How it works...
The free GitHub account allows you to create public repositories. This means that anyone is
able to search for, view, and clone your project from GitHub to their own desktop. This is
the central idea behind GitHub. This is obviously a key factor for indie developers and
corporates that don't want to spend money. Corporates can afford it more though than an
indie developer, but I think that some companies prefer to roll their own than use a service
provider hosted in the cloud somewhere. This means that they prefer to keep the source
control under their control by setting up a source control system on their own corporate
servers. Having GitHub as an option for indie developers is an awesome solution. For those
that require private repos, the fee isn't a stumbling block either.

Working as a team using GitHub, and
handling and resolving conflicts in code
GitHub and Team Services really come into their own when working in teams. The effect of
collaborative effort is quite powerful. Sometimes though, it can be a bit challenging. Let us
have a look at using GitHub to work in a team setup.

Getting ready
We will be using the existing CommandCentre app checked in to GitHub. Before you can let
other developers push code to your branch, you need to add them as a collaborator. To do
this, log in to GitHub and click on the down arrow next to the plus sign. Click on New
collaborator in the menu:

You can then search for collaborators to add by entering their GitHub username, full name,
or e-mail address:

When you are done, click on the Add collaborator button to add that user as a collaborator
to your project:

How to do it...
1. Let us assume that a new developer (let's call him John) has joined the team. You have

already added the developer as a collaborator to your project. John goes about setting
up his Visual Studio environment, including getting connected to GitHub. Click on Team
in the menu and click on Manage Connections…

2. Presented with the options for the Hosted Service Providers, select Connect…
under the GitHub service:

3. Log in to GitHub with your e-mail address and password.

Note
Take note that if you have just signed up to GitHub, you will need to click on a
verification e-mail sent to the e-mail address you specified when signing up. Without
verifying your e-mail address, you will not be able to log in from Visual Studio.

4. When you have connected, you will see your GitHub details loaded:

5. We now want to work on the CommandCentre application. You can find it on GitHub by
searching for it by name:

6. When you have found the correct project, copy the URL from the HTTPS text box on
the page:

7. Back in Visual Studio, expand the Local Git Repositories and click on Clone. Paste
the copied URL to the Git Repository path and specify where the code should be
cloned to on your hard drive. When you are ready, click on Clone:

8. When the code is cloned, you will see it in the folder path you specified earlier:

9. Time to make some changes to the code. Open the project in Visual Studio as normal.
John decided to work on the Dominion.cs class and added a new function that returns
a countdown integer:

10. After the code change is complete, John commits the code he just added to the GitHub
repository:

11. GitHub then asks for John's name and e-mail address for this commit:

12. John adds a meaningful commit message to describe the change he made:

13. He then clicks on Commit All and Sync.

14. John's changes are committed to the GitHub repository:

15. On the other side of the office, I am working on the same bit of code. The only problem
is that I have added the same method with my own implementation of the CountDown
logic:

16. I get ready and commit my changes to GitHub:

17. GitHub immediately prevents me from doing this. This is because if my code is pushed,
the earlier commit by John will be lost. GitHub has a great help file on the subject in
GitHub Help here: https://help.github.com/articles/dealing-with-non-fast-forward-
errors/.

https://help.github.com/articles/dealing-with-non-fast-forward-errors/

18. To resolve this, click on Pull to get the latest commit that John did. Your code will then
be in a conflicted state. This sounds bad, but it isn't. It is putting you in control of the
decision on which code will be used. You can see that the pull shows that there are
conflicted files and also the incoming commit message that John added:

19. To view the conflicts, click on the Resolve the conflicts link in the message pop-up:

20. You will then see the Resolve Conflicts screen listing the conflicted files. Clicking on a
file will expand it into a short summary and action options screen. It is always prudent
to click on the Compare Files link to see the difference between the files in conflict:

21. The differences in code are immediately evident. The process you follow from here on
is subject to how you work together as a team. Usually, the conflict can be quite
complex, and it is always a good idea to speak to the developer concerned about the
way forward:

22. In this case, John and I decided that his code was simply better and more concise. So
the decision was made to simply click on Take Remote and use John's code. When
you have clicked on the link, you need to click on Commit Merge:

23. After adding a commit message, you can then push your code to the repo. In this case,
I simply replaced all my code with John's, but there might be situations when you will
be using some of your code and some of another developer's code. GitHub allows us

to easily handle these conflicts:

24. After pushing the code to the remote, GitHub notifies you that the code has
successfully been synchronised:

How it works...
GitHub takes the pain out of committing, resolving conflicts, and merging code. It is without
a doubt an essential tool in any developer's toolkit and essential for development teams.

Chapter 11. Creating a Mobile Application
in Visual Studio
Visual Studio is the tour de force of integrated development environments (IDEs). There
is no doubt about that. You as a developer are able to be as versatile as you like by
creating applications for a wide range of platforms. One of these platforms is mobile
development. Developers are starting to create mobile applications, but don't want to use a
different IDE. With Visual Studio 2015, you don't have to. It will allow you to create Android
and (now with Xamarin) iOS applications too. This chapter will therefore take a look at the
following concepts:

Installing Xamarin and other required components
Creating an Android Visual Studio project using Apache Cordova
Creating an iOS application using Xamarin Forms

Introduction
If you have not heard about Xamarin, we encourage you to do a Google search for this
tool. Traditionally, developers needed to use Xcode or NetBeans to create iOS and
Android applications. The challenge for developers was that it meant learning a new
programming language. If you, for example, created an application that you wanted to
deploy to iOS, Android, and Windows, you needed to know Objective-C or Swift, Java, and
a .NET language.

This also created additional challenges for development, because it meant having to
maintain multiple code bases. If a change was to be made in the Windows version of the
application, it also had to be made to the iOS and Android code base. Sometimes
companies would manage different development teams for each platform. You can imagine
the complications involved in managing a change across multiple teams on multiple
platforms. This is especially true if you are dealing with a large code base.

Xamarin solves this problem by allowing .NET developers to use standard .NET libraries to
create iOS and Android applications using Visual Studio. You, as a .NET developer, can
now use the skills you already have to accomplish this. In a nutshell, you would create a
shared library for your applications and then have different facades for the different
platforms. A second option is to use Xamarin Forms to create one Visual Studio project and
target all three platforms. This makes it very easy for developers to target multiple
platforms.

Installing Xamarin and other required
components
Xamarin can be installed during custom Visual Studio installation. For now, let's assume that
Xamarin has not been installed and that you need to do that now, after you have installed
Visual Studio.

Getting ready
One thing to be aware of if you want to target iOS is that you will need to use a Mac to
build your iOS applications.

How to do it…
1. In the Control Panel, click on Programs and Features. Right-click on your Visual

Studio installation and click on Change:

2. This will display the Visual Studio installer for you. Here you can modify your current
Visual Studio installation by adding and removing components at will. Notice that we
have selected C#/.NET (Xamarin v4.0.3) and HTML/JavaScript (Apache Cordova)
Update 8.1 to install. If you have no interest in using Xamarin, then leave off the
Xamarin component and just keep the Apache Cordova option selected. This will still
allow you to create Android applications using Apache Cordova instead of using
Xamarin. Similarly, if you have no interest in Apache Cordova and simply want to
create Android applications and iOS applications using Visual Studio, select the
Xamarin component to install. The rest of the installation is straightforward:

3. There is also a second step we need to take if we want to use Xamarin to target iOS
applications. We have to install the required software on a Mac. Head on over to
Xamarin's website on your Mac. The URL is https://www.xamarin.com/. Click on the
Products dropdown and select Xamarin Platform from the list:

4. You can also access the required page by going to https://www.xamarin.com/platform.
Clicking on the Download now for free button will install something called Xamarin
Studio on your Mac. You need to be aware that when installed on a Mac, Xamarin
Studio cannot create Windows Apps. It will only allow you to create iOS and Android
apps on a Mac. Along with Xamarin Studio, you will also get the Xamarin Mac Agent
(previously called the Xamarin Build Host). This is a required component so that you
can link your PC to your Mac in order to build your iOS application. Lastly, the PC and
Mac must also be able to connect to each other over a network (more on this later):

https://www.xamarin.com/
https://www.xamarin.com/platform

5. After downloading the installer on the Mac, the installation is straightforward. Just
follow the screen prompts to complete the installation:

How it works…
The steps we took previously when installing Xamarin and Apache Cordova will allow us to
do the following:

Install Apache Cordova: If you only want to target Android, iOS, and Windows but
don't want to use Xamarin
Install Xamarin: If you want to target Android, iOS, Windows, or all three and use a
single solution to do so

Visual Studio is extremely flexible and offers developers a wide variety of choice.

Creating an Android Visual Studio project
using Apache Cordova
Creating an Android application using Apache Cordova is extremely easy. This recipe,
however, will only show you how to get started.

Getting ready
You will need to have Apache Cordova installed as part of the custom installation options
during Visual Studio setup. To see how to do this, refer to the Installing Xamarin and other
required components recipe in this chapter.

How to do it…
1. From the New Project dialog screen, select Apache Cordova Apps and select the

Blank App (Apache Cordova) as the template to use. Choose a location for your
project and click on the OK button:

2. Once Visual Studio has created your application, you will notice that it has a very
specific structure to it. From the project, you will notice that you can target Android,

iOS, Windows, or Windows Phone 8.1. This is the framework you will be using to
create your Android application:

3. When you are ready to debug, you can choose an emulator from the Debug menu.
This will deploy your application to the selected emulator and allow you to test your
application:

How it works…
Being able to target different mobile devices from a single solution using Visual Studio
allows developers the freedom to experiment and find what solution fits them and their
development style the best.

Creating an iOS application using Xamarin
Forms
Many developers want to try their hand at writing an iOS application. The big drawback has
always been learning a new programming language and a new IDE. For some, it is
probably not an issue as they want to learn something new. But for many .NET developers,
being able to stick to an IDE and programming language they know is immensely
empowering. Well, this is exactly what Xamarin Forms and Visual Studio achieve. It gives
.NET developers the ability to use Visual Studio to write applications that can be run cross-
platform easily, without having a separate code base for each.

Getting ready
You will need to have a Mac running OS X. You will only need this for debugging iOS
applications.

How to do it…
1. In Visual Studio 2015, create a new project. From the installed templates, choose

Cross-Platform and select Blank App (Xamarin.Forms.Portable). This will allow us
to create an application that will be cross-platform and not specific to a single platform
(Android or iOS, for example):

2. Project creation can take a few minutes to complete. Along the way, you might see a
message telling you that Developer Mode is not enabled for Windows 10 (assuming
you are running Windows 10):

3. Enabling this is easy enough. You can click on the settings for developers link in the
message that popped up, or you can type in Developer mode in the Find a setting
search box in Windows 10 Settings:

4. Clicking on the Developer mode option will display the Use developer features
confirmation dialog. Just click on Yes to continue:

5. After the project is created, you will be presented with a Get started with
Xamarin.Forms screen:

6. Looking at your Solution Explorer you will notice that several projects have been
created. We will only focus on the iOS project:

7. Taking a look at the debug targets, you will notice that as you change your target to
Droid, for example, the Android project is set as the start-up project. The same
happens if you set it to iOS:

8. As it stands now, before you can go ahead and debug your iOS application, you need
to connect Visual Studio to the Xamarin Mac Agent on your Mac. In Visual Studio,
hover over the Xamarin Mac Agent button on the iOS toolbar. It will show as
disconnected:

Note
See the Installing Xamarin and other required components recipe earlier in this
chapter for how to install the Xamarin Mac Agent.

9. To connect to the Xamarin Mac Agent, click on this button. The Xamarin Mac Agent
Instructions window will be displayed. You can follow the instructions on this screen,
which are as follows:

10. On your Mac, open up System Preferences. Look for and click on the Sharing icon:

11. This will display the Sharing window. Select Remote Login from the menu on the left
and, under Only these users, select or add your current Mac user to this list:

12. When you have added your current Mac user to the Remote Login list, click the back
button to return to the previous screen. Then look for and click on Network:

13. This will open up the Network screen. Look where it shows the current status as
Connected. Underneath that, you will see an IP address. Make a note of the IP
address displayed, because you will need to use it to connect Visual Studio to the
Xamarin Mac Agent:

Note
Just note that I have purposefully masked my IP address in the screenshot.

14. Back in Windows, in Visual Studio click OK to dismiss the Xamarin Mac Agent
Instructions screen. The Xamarin Mac Agent screen will now be visible. At the
bottom of this screen, click on the Add Mac… button:

15. This will display the Add Mac screen, where you need to enter the IP address you
noted from the Network screen in your Mac's System Preferences. Click on the Add
button:

Note
Just note that I have purposefully masked my IP address in the screenshot.

16. You will now be asked to provide the username and password for the Mac user you
added on the Remote Login screen earlier. Click on the Login button:

Note
Just note that I have purposefully masked IP addresses and GUID in the screenshot.

17. After clicking Login, you should automatically be connected to your Xamarin Mac
Agent from Visual Studio:

18. You can now select the iOS device you want to debug on. As you can see, there are a
wide variety of iOS devices to choose from:

19. For the purposes of this recipe, we have just chosen an iPhone 4S iOS 9.3. Click on

the Debug button to start the app:

20. This will now build your application and send that information over the network
connection to the Xamarin Mac Agent. This will then fire up the simulator on your Mac.
The first time you do this, it might take a few minutes to spin up the simulator, but once
it is done, successive debug sessions will go much quicker:

21. After the simulator is started on the Mac, the Xamarin application will be launched:

22. When the Xamarin splash screen closes, you will see the Welcome to Xamarin
Forms! text:

23. Back in Visual Studio, stop debugging. You will notice that the app closes in the
simulator app on the Mac, and that debugging stops in Visual Studio. The simulator,
however, remains open on your Mac.

Now let's change some text. Look at the portable project in your Visual Studio solution.
This is the shared project that all the other projects in the solution will use. In the
portable project, click on the App.cs file:

24. The default code is displayed. Here you can see the Welcome to Xamarin Forms! text
we saw in the application we debugged earlier:

25. Change the code to look as follows. All we are doing is adding the date and time. A
few things to note here are:

We are using the standard .NET DateTime library here
We are using string interpolation to create our text to display on the form:

MainPage = new ContentPage
{
 Content = new StackLayout
 {
 VerticalOptions = LayoutOptions.Center,
 Children = {
 new Label { HorizontalTextAlignment =
TextAlignment.Center,
 Text = $"Welcome to Xamarin Forms! The date
is {DateTime.Now}"
 }
 }
 }
};

26. When you have done that, debug your application again. When the simulator displays
your iOS application on the Mac, you will see that the date and time are shown:

How it works…
One thing to note is that we are not doing anything different here than we would do in any
other standard .NET application. We are writing C# code and compiling it to run on an iOS
operating system. We can also easily change the application to debug on any iOS device.
We didn't need to learn Objective-C or Swift (although Swift is an awesome language and
well worth learning). We also didn't need to get to grips with learning a new IDE (Xcode,
which is used to develop iOS and Mac applications). We didn't have to tweak any
constraints, modify any playground elements, or learn how to use any new controls.
Xamarin Forms and Visual Studio take care of all of this for us out of the box. Best of all,
Xamarin is now free with Visual Studio. There is no reason why you shouldn't try your hand
at writing an iOS application.

Chapter 12. Writing Secure Code and
Debugging in Visual Studio
In this chapter, we will have a look at some examples of being more efficient as a
developer when it comes to debugging your code. We will also be looking at how to write
secure code. Writing secure code can be a challenge, but consider the following: if part of
your code security involves making sure that passwords are securely stored, why write that
code over and over between projects? Write the code once and implement it in every new
project you create. The concepts we will be looking at are as follows:

Encrypting and storing passwords correctly
Using SecureString in code
Securing sensitive parts of App.config/web.config
Preventing SQL injection attacks
Using Diagnostic Tools and Historical Debugging
Setting conditional breakpoints
Using PerfTips to identify bottlenecks in code

Introduction
Something that many developers tend to miss is the need to write secure code.
Development deadlines and other project-related pressures cause developers to put
delivering code above doing it the right way. Many of you might not agree with me, but
believe me when I say that I have heard the excuse of "We do not have budget for this"
once too many times. This is usually when the development budget has been determined by
other stakeholders and the developer not consulted.

Consider a situation where a consultant tells the developer that they have sold a system to
a customer. That system now needs to be developed. Furthermore, the developer is told
that they have x amount of hours to complete the development. A document outlining the
requirements is given to the developer and the developer is given the go-ahead to begin,
and to complete development in the required time.

This scenario is the reality many developers face. You might think that this scenario can't
possibly exist, or perhaps you are reading this and relate to the scenario as being how the
process currently works in your company. Whatever the case may be, this is something that
happens today in software development.

So how do developers combat project suicide? (I call these projects this because projects
approached like this rarely succeed.) Start by creating reusable code. Think of processes
you repeat often enough to warrant writing a reusable DLL for. Did you know that you can

create Visual Studio templates? If you have a standard project structure you use, create a
template from it and re-use it for each new project, thereby speeding up delivery and
cutting down on bugs.

A few considerations for project templates are database layers, security layers, common
validation code (does this data table contain any data), common extension methods, and so
on.

Encrypting and storing passwords
correctly
One thing I have often seen is badly stored passwords. Just because the password is
stored in a database on your server, does not make it secure. So what do badly stored
passwords look like?

Secure passwords stored badly are no longer secure. The passwords in the previous
screenshot are the actual user passwords. Entering the first password, ^tj_Y4$g1!8LkD at
the login screen will give the user access to the system. Passwords should be stored
securely in the database. In fact, you need to employ salted password hashing. You should
be able to encrypt the user's password, but never decrypt it.

So how do you decrypt the password to match it to the password the user enters at the
login screen? Well, you don't. You always hash the password the user enters at the login
screen. If it matches the hash of their real password stored in the database, you give them
access to the system.

Getting ready
The SQL tables in this recipe are for illustration only and are not written to by the code in
the recipe. The database can be found in the _database scripts folder that accompanies
the source code for this book.

How to do it…
1. Create a new class library by right-clicking on your solution, and selecting Add and

then New Project from the context menu:

2. From the Add New Project dialog screen, select Class Library from the installed
templates and call your class Chapter12:

3. Your new class library will be added to your solution with a default name of Class1.cs,
which we renamed Recipes.cs in order to distinguish the code properly. You can,
however, rename your class whatever you like if that makes more sense to you.

4. To rename your class, simply click on the class name in the Solution Explorer and
select Rename from the context menu:

5. Visual Studio will ask you to confirm a rename of all references to the code element
Class1 in the project. Just click Yes:

6. The following class is added to your Chapter12 library project:

namespace Chapter12
{
 public class Recipes
 {

 }
}

7. Add the following using statement to your class:

using System.Security.Cryptography;

8. Next, you need to add two properties to the class. These properties will store the salt
and the hash. Usually you will write these values to the database along with the
username, but for the purposes of this recipe we will simply add them to the static
properties. Also add two methods to the class called RegisterUser() and
ValidateLogin(). Both methods take as parameters the username and password
variables:

public static class Recipes
{
 public static string saltValue { get; set; }
 public static string hashValue { get; set; }

 public static void RegisterUser(string password, string
username)
 {

 }

 public static void ValidateLogin(string password, string
username)
 {

 }
}

9. Starting with the RegisterUser() method, here we do a number of things. To list the
steps in the method:

1. We generate a truly random, cryptographically strong salt value using
RNGCryptoServiceProvider

2. Add the salt to the password and hash the salted password using SHA256.

Note
It doesn't matter if you add the salt before or after the password. Just remember
to be consistent each time you do it.

3. Store the salt value and the hash value along with the username in the database.

Note
In order to cut down on code, I have not actually added code to write the hash
and salt values to the database. I simply added them to the properties created
earlier. In a real-world situation, you would always write these to the database.

This is a very secure way to handle user passwords in your application:

public static void RegisterUser(string password, string
username)
{
 // Create a truly random salt using
RNGCryptoServiceProvider.
 RNGCryptoServiceProvider csprng = new
RNGCryptoServiceProvider();
 byte[] salt = new byte[32];
 csprng.GetBytes(salt);

 // Get the salt value
 saltValue = Convert.ToBase64String(salt);
 // Salt the password
 byte[] saltedPassword =
Encoding.UTF8.GetBytes(saltValue + password);

 // Hash the salted password using SHA256
 SHA256Managed hashstring = new SHA256Managed();
 byte[] hash = hashstring.ComputeHash(saltedPassword);

 // Save both the salt and the hash in the user's
database record.
 saltValue = Convert.ToBase64String(salt);
 hashValue = Convert.ToBase64String(hash);
}

10. The next method we need to create is the ValidateLogin() method. Here we take the

username and validate that first. If the user entered the username incorrectly, do not
tell them so. This would alert someone trying to compromise the system that they have
the wrong username and that as soon as they get a wrong password notification, they
know that the username is correct. The steps in this method are as follows:

1. Get the salt and hash values for the entered username from the database.
2. Salt the password the user entered at the login screen with the salt read from the

database.
3. Hash the salted password using the same hashing algorithm as when the user

registered.
4. Compare the hash value read from the database to the hash value generated in

the method. If the two hashes match, then the password is correctly entered and
the user validated.

Note that we never decrypt the password from the database. If you have code
decrypting user passwords and matching that to the password entered, you need
to reconsider and rewrite your password logic. A system should never be able to
decrypt user passwords.

public static void ValidateLogin(string password, string
username)
{
 // Read the user's salt value from the database
 string saltValueFromDB = saltValue;

 // Read the user's hash value from the database
 string hashValueFromDB = hashValue;

 byte[] saltedPassword =
Encoding.UTF8.GetBytes(saltValueFromDB + password);

 // Hash the salted password using SHA256
 SHA256Managed hashstring = new SHA256Managed();
 byte[] hash = hashstring.ComputeHash(saltedPassword);

 string hashToCompare = Convert.ToBase64String(hash);

 if (hashValueFromDB.Equals(hashToCompare))
 Console.WriteLine("User Validated.");
 else
 Console.WriteLine("Login credentials incorrect.
User not validated.");
}

11. To test the code, add a reference to the Chapter12 class in your CodeSamples project:

12. Because we created a static class, you can add the new using static to your
Program.cs file:

using static Chapter12.Recipes;

13. Test the code by calling the RegisterUser() method and pass it the username and
password variable. After that, call the ValidateLogin() method and see whether the
password matches the hash. This would obviously not happen at the same time in a
real production system:

string username = "dirk.strauss";
string password = "^tj_Y4$g1!8LkD";
RegisterUser(password, username);

ValidateLogin(password, username);
Console.ReadLine();

14. When you debug the code, you will see the user has been validated:

15. Lastly, modify the code slightly and set the password variable to something else. This
will mimic a user entering an incorrect password:

string username = "dirk.strauss";
string password = "^tj_Y4$g1!8LkD";
RegisterUser(password, username);

password = "WrongPassword";
ValidateLogin(password, username);
Console.ReadLine();

16. When you debug the application, you will see that the user is not validated:

How it works…
Nowhere in the code did we decrypt the password. In fact, the password is never stored
anywhere. We always worked with the hash of the password. Here are the important points
to take away from this recipe:

Never use the Random class in C# to generate your salt. Always use the
RNGCryptoServiceProvider class.
Never re-use the same salt in your code. So don't create a constant with your salt and
use it to salt all the passwords in your system.
Never tell the user that the password is incorrect if the password didn't match. Also,
never tell the user that they entered an incorrect username. This prevents someone
trying to compromise the system from knowing that they got one of the two login
credentials correct. If either the username or password has been entered incorrectly,
rather notify the user that their login credentials are incorrect. This could mean that
either the username or password (or both) have been entered incorrectly.
You can't get the passwords from the hash or salt stored in the database. Therefore, if
the database was compromised, the password data stored within it would not be at
risk. The encryption of the user's password is a one-way operation, meaning that it can
never be decrypted. Also important to note is that even if the source code was
compromised and stolen by someone with malicious intent, you would not be able to
use the code to decipher the encrypted data in the database.

Combine the previous methods with a strong password policy (because even in 2016,
there are still users that think using 'l3tm31n' for a password is good enough), and
you have a very good password encryption routine.

When we look at the user access table, the correct way to store user credentials would
look something like this:

The salt and hash are stored alongside the username, and are secure because they can't
be decrypted to expose the actual password.

Tip
If you sign up for a service on the Internet and they send you a confirmation either via email
or text message and display your password in this message in plain text, then you should
seriously consider closing your account. If a system can read your password and send it to
you in plain text, then so can anybody else. Never use the same password for all your
logins.

Using SecureString in code
Securing your application against malicious attacks is not an easy task. It is the constant
struggle between writing secure code while minimizing bugs (which hackers usually exploit)
and black hats writing more and more sophisticated methods to compromise systems and
networks. I personally believe that higher learning institutions need to teach IT students two
things:

How to use and integrate with a popular ERP system
Proper software security principles

In fact, I believe that secure programming 101 must not simply be a module or topic in a
given IT course, but a whole course on its own. It needs to be handled with the seriousness
and respect it deserves and needs to preferably be taught by someone that can actually
hack a system or network.

White hats teaching students how to compromise systems, exploit vulnerable code, and
infiltrate networks will make a big difference in changing the way future software developers
approach programming. It comes down to developers knowing what not to do when
programming defensively. It is quite possible that some of those students might go on to
become black hats themselves, but they would have done that irrespective of whether they
took a class on hacking secure programming or not.

Getting ready
The code might look a little funny in some places. This is because SecureString is using
unmanaged memory to store the sensitive information. Rest assured that SecureString is
well supported and used within the .NET Framework, as can be seen from the instantiation
of the SqlCredential object used in creating connections to a database:

How to do it…
1. Start by adding a new Windows Forms project to your solution:

2. Call the project winformSecure and click on the OK button:

3. In the Toolbox, search for the TextBox control and add it to your form:

4. Lastly, add a button control to your form. You can resize this form however you like to
look more like a login form:

5. With the text box control selected on the Windows Forms, open up the Properties
panel and click on the Events button (it looks like a lightning bolt). In the Key group,
double-click on the KeyPress event to create the handler in the code behind:

The code that is created for you is the KeyPress event handler for the text box control.
This will fire whenever a user presses a key on the keyboard:

private void textBox1_KeyPress(object sender, KeyPressEventArgs
e)
{

}

6. Back in the Properties panel, expand the Behavior group and change the value of
UseSystemPasswordChar to true:

7. In the code behind, add the following using statement:

using System.Runtime.InteropServices;

8. Add the SecureString variable as a global variable to your Windows Forms:

SecureString secure = new SecureString();

9. Then in the KeyPress event, append the KeyChar value to the SecureString variable
every time the user presses a key. You might want to add code to ignore certain key
presses, but this is beyond the scope of this recipe:

private void textBox1_KeyPress(object sender, KeyPressEventArgs
e)
{
 secure.AppendChar(e.KeyChar);
}

10. Then in the Login button's event handler, add the following code to read the value from
the SecureString object. Here we are working with unmanaged memory and
unmanaged code:

private void btnLogin_Click(object sender, EventArgs e)
{
 IntPtr unmanagedPtr = IntPtr.Zero;

 try
 {
 if (secure == null)
 throw new ArgumentNullException("Password not
defined");
 unmanagedPtr =
Marshal.SecureStringToGlobalAllocUnicode(secure);
 MessageBox.Show($"SecureString password to validate is
{Marshal.PtrToStringUni(unmanagedPtr)}");
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 finally
 {
 Marshal.ZeroFreeGlobalAllocUnicode(unmanagedPtr);
 secure.Dispose();
 }
}

11. Run your Windows Forms application and type in a password:

12. Then click on the Login button. You will then see the password you typed in displayed
in the message box:

How it works…
It has become almost a habit for many developers to use System.String to store sensitive
information such as passwords. The problem with this approach is that System.String is
immutable. This means that the object created in memory by System.String can't be
changed. If you modify the variable, a new object is created in memory. You also cannot
determine when the object created by System.String will be removed from memory during
garbage collection. Conversely, by using the SecureString object, you will encrypt sensitive
information and when that object is no longer needed, it is deleted from memory.
SecureString encrypts and decrypts your sensitive data in unmanaged memory.

Now I need to be clear regarding one thing here. SecureString is by no means foolproof. If
your system contains a virus with the sole purpose of compromising the SecureString

operations, using it doesn't help much (be sure to use proper anti-virus software anyway).
At some point during the code execution, the string representation of your password (or
sensitive information) is visible. Secondly, if a hacker somehow found a way to inspect your
heap or log your key strokes, the password might be visible. The use of SecureString,
however makes this window of opportunity for a hacker much smaller. The window of
opportunity reduces because there are less attack vectors (points of entry for a hacker),
thereby reducing your attack surface (sum of all points of attack by a hacker).

The bottom line is this: SecureString is there for a reason. As a software developer
concerned about security, you should be using SecureString.

Securing sensitive parts of
App.config/web.config
As a developer, you will undoubtedly work with sensitive information such as passwords.
How you handle this information during development is very important. In the past, I have
received copies of a client's live database to use for testing. This does pose a very real
security risk for your client.

Often, we keep settings in a web.config file (when working with web applications). For this
example, though, I will be demonstrating a console application that uses an App.config file.
The same logic can be applied to a web.config file too.

Getting ready
Creating a console application is the quickest way to demonstrate this recipe. If, however,
you want to follow along using a web application (and securing a web.config file), you can
do so.

How to do it…
1. In the console application, locate the App.config file. This is the file that contains the

sensitive data:

2. If you open the App.config file, you will see that within the appSettings tag there is a
key added called Secret. This information should probably not be in the App.config to
start off with. The problem here is that it might be checked into your source control.
Imagine that on GitHub?

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0"
sku=".NETFramework,Version=v4.6.1"/>
 </startup>
 <appSettings>
 <add key="name" value="Dirk"/>
 <add key="lastname" value="Strauss"/>
 <add key="Secret" value="letMeIn"/>
 </appSettings>
</configuration>

3. To overcome this vulnerability, we need to move the sensitive data out of the
App.config file into another file. To do this, we specify a path to a file that will contain
the sensitive data we want to remove from the App.config file:

<appSettings file="C:\temp\secret\secret.config">

Note
You might be wondering, why not simply just encrypt the information? Well, that is a
given really. The reason this value is in plain text is just to demonstrate a concept here.
You would probably encrypt this value anyway in a real-world situation. You would not,
however, want this sensitive information sitting on a server in a code repository
somewhere, even if it is encrypted. Be safe, move it out of your solution.

4. When you have added the path to the secure file, remove the key containing the
sensitive information:

5. Navigate to the path you specified in the App.config file property. Create your
secret.config file and open it up for editing:

6. Inside this file, repeat the appSettings section and add the Secret key to it. What
happens now is that when your console application runs, it reads the appSettings
section in your solution and finds the reference to the secret file. It then looks for the
secret file and merges it with the App.config in your solution:

7. To see that this merge works, add a reference to your console application:

8. Search for and add System.Configuration to your references:

9. When you have added the reference, your solution references should look something
like this:

10. To the top of your Program.cs file, add the following using statement:

using System.Configuration;

11. Add the following code to read the Secret key setting from your App.config file. Only
this time, it will read the merged file, which is made up of your App.config and your

secret.config file:

string sSecret = ConfigurationManager.AppSettings["Secret"];
Console.WriteLine(sSecret);
Console.ReadLine();

12. Run your console application and you will see that the sensitive data has been read
from the secret.config file, which was merged with the App.config file at runtime:

How it works…
Something I need to point out here is that this technique will also work for web.config files.
If you need to remove sensitive information from your configuration file, move it to another
file so that it doesn't get included in your source control check-in or deployment.

Preventing SQL injection attacks
SQL injection attacks are a very real problem. There are too many applications that still
make themselves vulnerable to this kind of attack. If you develop a web application or
website, you should be vigilant of bad database operations. Vulnerable in-line SQL exposes
the database to a SQL injection attack. A SQL injection attack is where an attacker
modifies SQL statements via a web form input box to produce a different result than
originally intended. This is usually attempted on a form where the web application is
supposed to access the database to authenticate the user login. By not sanitizing the user
input, you are exposing your data to exploits such as this.

The accepted solution to mitigate SQL injection attacks is to create a parametrized stored
procedure and call that from your code.

Getting ready
You need to create the CookbookDB database in your SQL Server before continuing this
recipe. You will find the script in the _database scripts folder in the accompanying source
code.

How to do it…
1. For this recipe, I am using SQL Server 2012. The concept is the same if you are using

an older version of SQL Server. After you have created the CookbookDB database, you
will see that there is a table called UserDisplayData under the Tables folder:

2. The UserDisplayData table is simply used to illustrate the concept of querying using a
parameterized stored procedure. It would not have any real benefit in a production
database, because it only returns a screen name:

3. We need to create a stored procedure to select data from this table for a specific ID
(user ID). Click on the Programmability node to expand it:

4. Next, right-click on the Stored Procedures node and select New Stored Procedure…
from the context menu:

5. SQL Server will create the following stored procedure template for you. This template
consists of a section where you can comment on the particular stored procedure, as
well as a section to add parameters you might need, and obviously a section that you
need to add the actual SQL statement to:

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- ===
-- Author: <Author,,Name>
-- Create date: <Create Date,,>
-- Description: <Description,,>
-- ===
CREATE PROCEDURE <Procedure_Name, sysname, ProcedureName>
 -- Add the parameters for the stored procedure here
 <@Param1, sysname, @p1> <Datatype_For_Param1, , int> =
<Default_Value_For_Param1, , 0>,
 <@Param2, sysname, @p2> <Datatype_For_Param2, , int> =
<Default_Value_For_Param2, , 0>
AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 -- Insert statements for procedure here
 SELECT <@Param1, sysname, @p1>, <@Param2, sysname, @p2>
END
GO

6. Give the stored procedure a suitable name that will describe the action or intent of the
stored procedure:

CREATE PROCEDURE cb_ReadCurrentUserDisplayData

Note
There are many people that do prefix their stored procedures, and I'm one of those. I
like to keep my stored procedures grouped. I therefore name my stored procedures in
the format [prefix]_[tablename_or_module]_[stored_procedure_action]. Having said
that, I generally avoid using sp_ as a prefix to my stored procedures. There are a lot of
opinions on the Internet as to why this is a bad idea. It is generally believed that using
sp_ as a stored procedure prefix impacts on performance because it is used as the
stored procedure prefix in the master database.

For the purposes of this recipe, I have just kept to a simple name for the stored
procedure.

7. Define a parameter for this stored procedure. By doing this, you are telling the
database that when this stored procedure is called, it will pass through a value of type
integer that is stored in a parameter caller @userID:

@userID INT

8. You now define the SQL statement to be used by this stored procedure. We are just
going to do a straightforward SELECT statement:

SELECT
 Firstname, Lastname, Displayname
FROM
 dbo.UserDisplayData
WHERE
 ID = @userID

Note
You will notice that my SELECT statement contains the specific column names instead
of a SELECT * FROM. Doing a SELECT * is considered bad practice. You would usually
not want to return all the column values from a table. If you want all the column values,
then it is better to explicitly list the columns by name instead of just getting all.

Using SELECT * returns unnecessary columns and increases the overhead on the
server. This does make a difference in the bigger scheme of things, especially when
the database starts getting a lot of traffic.

The thought of having to type out the column names for a large table is definitely not
something I would look forward to. You can however use the following tricks to make it
easy for you to add the column names to your SQL SELECT statement. You can right-
click on the database table and select Script Table As to create one of several SQL
statements. Secondly, you can expand the Table node and expand the table you wish
to write the statement for. You will then see a node called Columns. Drag the Columns
node onto the query editor. That will insert all the column names into the query editor
for you.

9. When you have completed adding the code to your stored procedure, it will look like
this:

10. To create the stored procedure, you need to click on the Execute button. Be certain
that you have the correct database selected when clicking on the Execute button:

11. The stored procedure will then be created under the Stored Procedures node in SQL
Server:

12. We have now got to halfway through this task. It is time to construct the code that we
will use in our application to query the database. We will be adding this code directly to
the Program.cs file of your console application. While this code isn't considered best
practice (hardcoding the server credentials), it serves merely to illustrate the concept
of calling a parameterized stored procedure from C#.

13. To start, add the following using statement to the top of your console application:

using System.Data.SqlClient;

14. We then add the variables to contain the credentials we need to log on to the server:

int intUserID = 1;
int cmdTimeout = 15;
string server = "DIRK";
string db = "CookbookDB";
string uid = "dirk";
string password = "uR^GP2ABG19@!R";

15. We now use SecureString to store the password and add it to a SqlCredential
object:

SecureString secpw = new SecureString();
if (password.Length > 0)
{
 foreach (var c in password.ToCharArray())
secpw.AppendChar(c);
}
secpw.MakeReadOnly();

string dbConn = $"Data Source={server};Initial Catalog={db};";
6SqlCredential cred = new SqlCredential(uid, secpw);

Note
For more on SecureString, see the Using SecureString in code recipe of this chapter.

16. We now create a SqlConnection object inside a using statement. This ensures that the
SQL connection is closed when the using statement moves out of scope:

using (SqlConnection conn = new SqlConnection(dbConn, cred))
{
 try
 {

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}
Console.ReadLine();

17. Inside the try, add the following code to open the connection string and create a
SqlCommand object that takes the open connection and name of the stored procedure
as parameters. You can use the shortcut method of creating the actual SQL parameter
to pass to the stored procedure:

cmd.Parameters.Add("userID", SqlDbType.Int).Value = intUserID;

Because I'm just passing a parameter of type integer to the stored procedure, I'm not
defining a length for this parameter:

If, however, you ever need to define a parameter of type VarChar(MAX), you would
need to define the size of the parameter type by adding -1. Let's say, for example you
need to store a student's essay in the database, the code would then look as follows
for the VarChar(MAX):

cmd.Parameters.Add("essay", SqlDbType.VarChar, -1).Value =
essayValue;

18. After we have added our parameter with its value to the SqlCommand object, we specify
a timeout value, execute the SqlDataReader, and load it into a DataTable. The value is
then output to the console application:

conn.Open();
SqlCommand cmd = new
SqlCommand("cb_ReadCurrentUserDisplayData", conn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.Add("userID", SqlDbType.Int).Value = intUserID;
cmd.CommandTimeout = cmdTimeout;
var returnData = cmd.ExecuteReader();
var dtData = new DataTable();
dtData.Load(returnData);

if (dtData.Rows.Count != 0)
 Console.WriteLine(dtData.Rows[0]["Displayname"]);

19. After you have added all the code to your console application, the correct completed
code will look as follows:

int intUserID = 1;
int cmdTimeout = 15;
string server = "DIRK";
string db = "CookbookDB";
string uid = "dirk";
string password = "uR^GP2ABG19@!R";
SecureString secpw = new SecureString();
if (password.Length > 0)
{
 foreach (var c in password.ToCharArray())
secpw.AppendChar(c);
}
secpw.MakeReadOnly();

string dbConn = $"Data Source={server};Initial Catalog={db};";

SqlCredential cred = new SqlCredential(uid, secpw);
using (SqlConnection conn = new SqlConnection(dbConn, cred))
{
 try
 {
 conn.Open();
 SqlCommand cmd = new
SqlCommand("cb_ReadCurrentUserDisplayData", conn);
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add("userID", SqlDbType.Int).Value =
intUserID;
 cmd.CommandTimeout = cmdTimeout;
 var returnData = cmd.ExecuteReader();
 var dtData = new DataTable();
 dtData.Load(returnData);
 if (dtData.Rows.Count != 0)
 Console.WriteLine(dtData.Rows[0]["Displayname"]);

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}
Console.ReadLine();

20. Run your console application and you will see the display name output to the screen:

How it works…
By creating a parameterized SQL query, the compiler correctly substitutes the arguments
before running the SQL statement against the database. It will prevent malicious data
changing your SQL statement in order to exact a malicious result. This is because the
SqlCommand object does not directly insert the parameter values into the statement.

To sum it all up, using parameterized stored procedures means no more Little Bobby
Tables.

Using Diagnostic Tools and Historical
Debugging
The trusty old bug has been the bane of software developers and engineers for more than
140 years. Yes, you read that right. It was in fact Thomas Edison that coined the term
"bug" in the late 1870s. It appeared in many of his notebook entries where he describes for
example that the incandescent lightbulb still had many "bugs left."

His efforts to debug his inventions are quite legendary. Consider the true grit and
determination it took for a man already in his mid-sixties to work 112-hour working weeks.
He and his seven-person team (it is a common misconception that there were only six
because the seventh member didn't appear in the group photograph) became known as the
insomnia squad during a 5-week stint that resulted in very little sleep.

These days, thanks to advances in technology, software developers have a vast array of
debugging tools (inside and outside of Visual Studio) at their disposal. So does debugging
really matter? Of course it does. It is part of what we as software developers do. If we
don't debug, well, here are some examples:

In 2004, the Electronic Data Systems (EDS) Child Support System in the UK
overpaid almost 2 million people, underpaying almost a million and resulted in billions of
dollars in uncollected child support payments. The incompatibility between EDS and
another system it relied on resulted in taxpayers losing money and negatively affecting
the lives of so many single parents.
The initial release of Apple Maps in 2012. Enough said. While bemusing for many, I still
find myself using Google Maps for turn-by-turn directions when in an unfamiliar city or
area.
The Therac-25 radiation therapy machine used electrons to target tumors in patients.
Unfortunately, a race condition in the software caused the machine to deliver lethal
overdoses of radiation in several patients.

Examples of software bugs affecting the lives of millions of people can be found all over the
Internet. We're not simply talking about the run-of-the-mill bugs either. Sometimes we're
faced with seemingly insurmountable issues. It is the comfort of knowing how to use some
of the tools available that makes the difference between a stable application and one that is
totally unusable.

Getting ready
As of writing this, IntelliTrace is only available in Visual Studio 2015 Enterprise. IntelliTrace
is, however, not a new feature in Visual Studio. It has evolved over time, since Visual Studio

2010, into what we have available today.

How to do it…
1. First off, go to Tools | Options:

2. Expand the IntelliTrace node and click on General. Ensure that Enable IntalliTrace is
checked. Also, make sure that the IntelliTrace events and call information option is
selected. Click on OK:

3. In the Recipes.cs file, you might need to add the following using statements:

using System.Diagnostics;
using System.Reflection;
using System.IO;

4. Add a method called ErrorInception() to the Recipes class. Also, add the code to
read the base path and assume that there is a folder called log. Do not create this
folder on your hard drive. We want an exception to be thrown. Lastly, add another
method called LogException() that does nothing:

public static void ErrorInception()
{
 string basepath = Path.GetDirectoryName
(Assembly.GetEntryAssembly().Location);
 var full = Path.Combine(basepath, "log");
}

private static void LogException(string message)
{

}

5. Add the following code to your ErrorInception() method after the full path has been
determined. Here we are trying to open the log file. This is where the exception will

occur:

try
{
 for (int i = 0; i <= 3; i++)
 {
 // do work
 File.Open($"{full}\\log.txt", FileMode.Append);
 }
}
catch (Exception ex)
{
 StackTrace st = new StackTrace();
 StackFrame sf = st.GetFrame(0);
 MethodBase currentMethodName = sf.GetMethod();
 ex.Data.Add("Date", DateTime.Now);
 LogException(ex.Message);
}

6. When you have added all your code, your code should look like this:

public static void ErrorInception()
{
 string basepath =
Path.GetDirectoryName(Assembly.GetEntryAssembly().Location);
 var full = Path.Combine(basepath, "log");

 try
 {
 for (int i = 0; i <= 3; i++)
 {
 // do work
 File.Open($"{full}\\log.txt", FileMode.Append);
 }
 }
 catch (Exception ex)
 {
 StackTrace st = new StackTrace();
 StackFrame sf = st.GetFrame(0);
 MethodBase currentMethodName = sf.GetMethod();
 ex.Data.Add("Date", DateTime.Now);
 LogException(ex.Message);
 }
}

private static void LogException(string message)
{

}

7. In the Program.cs file, call the ErrorInception() method. Right after that, do a
Console.ReadLine() so that our console application will pause there. Do not add any
breakpoints anywhere to your code:

ErrorInception();
Console.ReadLine();

8. Start debugging your application. The exception is thrown and the application continues
running, a condition often experienced with much more complex applications. At this
point, you would expect a log file to be appended with the fictitious data of the app, but
nothing happened. It is at this point that you stop your application and start adding
breakpoints all over your code in a hit and miss-type exercise. I say hit and miss
because you probably will not know exactly where the error is. This is especially true if
your code file contains a few thousand lines of code.

Well now, with IntelliTrace and Historical Debugging, you just need to click on the
Break All button:

9. Your application is now essentially paused. If you don't see the Diagnostic Tools
window, go to Debug and click on Show Diagnostic Tools (or Ctrl + Alt + F2):

10. Visual Studio now displays the Diagnostic Tools window. Immediately you can see
that there is a problem indicated by the red diamond icon on the Events section. In the
Events tab at the bottom, you can click on the exception:

11. Doing this expands the exception details, where you can see that the log file was not
found. Visual Studio, however, goes one step further with Historical Debugging:

12. You will see a link at the bottom of the exception details that says Activate Historical
Debugging. Click on this link. This allows you to see the actual line of code that
caused this exception in the code editor. It also allows you to view the history of the
application's state in the Locals window, call stack, and other windows. You now can
see the specific line of code that caused the exception in your code editor. In the
Locals window, you can also see what the path was that the application used to look
for the log file. This kind of debugging experience is immensely powerful and allows
developers to go straight to the source of the error. This leads to increased
productivity and better code:

How it works…
So what is the takeaway here? If you only remember one thing, remember this. Once the
users of your system lose faith in the abilities and potential of that system due to bugs, that
confidence is almost impossible to regain. Even if you resurrect your system from the
ashes, after it was laid low by bugs and other issues, to produce a flawless product, your
users will not be easily swayed. This is because in their mind, the system is buggy.

I once had to take over a system partially developed by a senior developer who was
leaving the company. She had an excellent specification and a well presented prototype
shown to the customer. The only problem was that she left the company shortly after the

system's phase one was implemented. When the bugs came popping up, the client naturally
asked for her assistance.

Telling the client that the developer (who has been solely responsible for building a
relationship with the client) has left the company did not bode well to instil a sense of
confidence. Having a single developer involved was the first mistake of this particular
project anyway.

Secondly, phase two was about to be developed by yours truly, who was also the only
developer assigned to this client. This had to be done while building on top of the buggy
phase one. So I was fixing bugs while developing new features for the system. Luckily this
time round, I had a fantastic project manager called Rory Shelton as my wingman. Together
we were dumped in the deep end and Rory did a fantastic job managing the client's
expectations while being totally transparent with the client regarding the challenges we
were facing.

The users were unfortunately already disillusioned with the provided system and didn't trust
the software. This trust was never fully regained. If we had IntelliTrace and Historical
Debugging back in 2007, I definitely would have been able to track down the issues in a
code base that was unfamiliar to me.

Always debug your software. When you find no more bugs, debug it again. Then give the
system to my mom (love you mom). You as the developer of that system know which
buttons to click and what data to enter, and in which order things need to happen. My mom
doesn't and I can assure you that a user unfamiliar with a system can break it quicker than
you can brew a fresh cup of coffee.

Visual Studio provides developers with a very powerful and feature rich set of debugging
tools. Use them.

Setting conditional breakpoints
Conditional breakpoints are another hidden gem when it comes to debugging. These allow
you to specify one or several conditions. When one of these conditions are met, the code
will stop at the breakpoint. Using conditional breakpoints is really easy.

Getting ready
There is nothing you specifically need to prepare to use this recipe.

How to do it…
1. Add the following code to your Program.cs file. We are simply creating a list of integers

and looping through that list:

List<int> myList = new List<int>() { 1, 4, 6, 9, 11 };
foreach(int num in myList)
{
 Console.WriteLine(num);
}
Console.ReadLine();

2. Next, place a breakpoint on the Console.WriteLine(num) line of code inside the loop:

3. Right-click on the breakpoint and select Conditions… from the context menu:

4. You will now see that Visual Studio opens a Breakpoint Settings window. Here we
specify that the breakpoint needs to be hit only when the value of num is 9. You can add
several conditions and specify different conditions. The condition logic is really flexible:

5. Debug your console application. You will see that when the breakpoint is hit, the value
of num is 9:

How it works…
The condition is evaluated on every loop. When the condition is true, the breakpoint will be
hit. In the example illustrated in this recipe, the true benefit of a conditional breakpoint is
somewhat lost because it is a very small list. Consider this though. You are binding a data
grid. Items on the grid are given specific icons based on the status of the item. Your grid
contains hundreds of items, because this is a hierarchical grid. You identify the primary ID
of the item which is bound to the grid. This primary ID is then passed to other code logic to
determine the status, which determines the icon displayed.

To debug and press the F10 key through hundreds of loops is not productive in any event.
With conditional breakpoints, you can specify a value for the primary ID, and only break
when the loop hits that value. You can then go straight to the item that is being displayed
incorrectly.

Using PerfTips to identify bottlenecks in
code
PerfTips are definitely one of my favorite features of Visual Studio 2015. Explaining what
they do doesn't do them justice. You have to see them in action.

Getting ready
Do not confuse PerfTips with CodeLens. PerfTips is a separate option from CodeLens in
Visual Studio.

How to do it…
1. PerfTips are enabled by default. But just in case you are not seeing any PerfTips, go to

Tools | Options, and expand the Debugging node. Under General, to the bottom of
the settings page, you will see an option called Show elapsed time PerfTip while
debugging. Ensure that this option is checked:

2. We will create a few simple methods that mimic long-running tasks. To do this, we will
just sleep the thread for a couple of seconds. In the Recipes.cs file, add the following
code:

public static void RunFastTask()
{
 RunLongerTask();
}

private static void RunLongerTask()
{
 Thread.Sleep(3000);
 BottleNeck();
}

private static void BottleNeck()
{
 Thread.Sleep(8000);
}

3. In your console application, call the static method RunFastTask() and place a
breakpoint on this line of code:

RunFastTask();
Thread.Sleep(1000);

4. Start debugging your console application. Your breakpoint will stop on the
RunFastTask() method. Hit F10 to step over this method:

5. You will notice that 11 seconds later, the next line will be highlighted and the PerfTip
will be displayed. The PerfTip displays the time it took for the previous line of code to
execute. So the debugger that now sits on the Thread.Sleep, shows that the
RunFastTask() method took 11 seconds to complete. The task is clearly not very fast:

6. Stepping in to the RunFastTask() method, you can place further breakpoints and step
over them one by one to find the method that is causing the longest delay. As you can
see, PerfTips allow developers to quickly and easily identify bottlenecks in code:

How it works…
There are many tools on the market that do this and much more, allowing developers to
view all sorts of code metrics. PerfTips, however, allow you to see issues on the fly while
you are stepping through your code as per your normal debugging tasks. It is, in my
opinion, an indispensable debugging tool.

Chapter 13. Creating a Web Application in
Azure
This chapter will introduce you to Azure. If you have never worked with Azure before, the
interface might seem a bit daunting. Azure, however, is actually not all that complicated and
is a tremendous benefit to any developer. In this chapter, we will have a look at doing the
following:

Creating a database in Azure for testing
Creating a web application and hosting on Azure
Using virtual machines on Azure

Introduction
Azure allows developers to be more productive. It is a series of cloud services that
developers can use to build apps, protect data, and provide high availability to your
applications irrespective of what you are building. Mobile apps, enterprise apps, web,
internet of things (IoT)… all are welcome on Azure.

You can create apps with .NET, JavaScript, PHP, Node.js, Python, and even run Linux
containers. Azure also allows you to only pay for what you actually use, allowing you to
easily scale as your needs grow.

Creating a database in Azure for testing
Creating a database in Azure is really a straightforward process. A lot of work has gone
into making the process really streamlined with an all-too-familiar wizard-type interface.

Getting ready
To start working with Azure, you will need to have an Azure account. You can create a free
trial account. For more information on Azure pricing, have a look at the following URL:
https://azure.microsoft.com/en-us/pricing/.

How to do it…
1. After you have logged in to your Azure account, you will be taken to your Dashboard.

From here you can see any items you may have pinned. To the left, you will see the
menu. We just want to create a SQL database, so click on the SQL databases menu
item:

https://azure.microsoft.com/en-us/pricing/

2. If this is the first time you are using Azure, you will not have any databases available in
the Default Directory. Click on Add to create a new database:

3. You will now be presented with a form that you can use to specify the database
details. As you can see, you will probably not have a server selected. This is because
you probably don't have one yet. Click on Server Configure required setting:

4. You will be given the option to create a new server. This is where you will also create
the Server admin login:

5. When you have created your server, you will be taken back to the database setup

screen. The server you created is now selected for you:

6. When you click the Create button, Azure will start deploying your database to the
server you created:

7. This process can take a couple of minutes, so be patient while it completes. When the
database deployment is completed, you will see a notification in the notifications tab at
the top of the Azure portal:

8. You might need to refresh your SQL databases screen to see the newly deployed
database. In order to complete the next steps, click on the created database in the
databases list:

9. The properties and settings for the created database are then displayed. Here you can
see the Resource group you selected, along with the Server name and other
properties. Of particular interest is the Connection strings property:

10. Clicking on the Connection strings will display the connection strings for the different
providers for the database you created. Make a note of the ADO.NET(SQL
authentication) string:

11. Going back to the previous screen, click on the Server name property. It is here that

you will find the Firewall settings. You need to add a rule to the firewall to allow your
computer to connect to this database:

12. Clicking on the Show firewall settings, you will see that you can add a client IP. By
default, the machine's IP address you are accessing the Firewall settings from is
displayed in the Client IP address field. Click on the Add client IP to add your current
machine's IP address to allow it through the firewall. You can change the RULE NAME
to something more user friendly:

Note
You can also define a different IP address here to give a colleague access to this
database from their machine.

13. After you have added your firewall rules, open up SQL Server Management Studio on
your local development machine. In the Object Explorer, click on the Connect Object
Explorer button:

14. Have a look at the connection string you made a note of earlier. After the server
portion in the connection string, I copied the server name as
tcp:srvcookbook.database.windows.net. Paste that in the Server name field in the
Connect to Server screen. Lastly, enter the Login and Password you defined when
creating the server on Azure. Click on the Connect button:

15. SQL Server Management Studio will now connect to the CookbookDb database on
Azure:

How it works…
Azure is the perfect place to store your database. It is secure and accessible to only those
developers you choose. You need to be aware that if your IP address changes, you might
need to reconfigure the firewall rule on your Azure database. This does, however, bode well
for security, because you can be assured that your data is secure. For more information on
databases in Azure, have a look at the following documentation:
https://azure.microsoft.com/en-us/documentation/services/sql-database/.

https://azure.microsoft.com/en-us/documentation/services/sql-database/

Creating a web application and hosting on
Azure
One of the things a web developer does more often than not is to deploy a web application
for (user acceptance testing) UAT or developer testing purposes. Azure makes this
process very convenient for you by providing a seamless publishing experience from within
Visual Studio. To publish a web application or website to Azure, you first need to create a
web application on Azure to publish your website to.

Getting ready
To start working with Azure, you will need to have an Azure account. You can create a free
trial account. For more information on Azure pricing, have a look at the following URL:
https://azure.microsoft.com/en-us/pricing/.

How to do it…
1. After you have logged in to your Azure account, you will be taken to your Dashboard.

From here you can see any items you may have pinned. To the left, you will see the
menu. We want to create a website, so click on the App Services menu item:

https://azure.microsoft.com/en-us/pricing/

2. If this is your first time using Azure, you probably will not have any app services to
display. Click on Add to create a new one:

3. Give the app service a name and select or create a Resource Group:

4. When you click the Create button, Azure starts the deployment. This process can take
several minutes to complete, so go grab a cup of coffee while you wait:

5. When the deployment is finished, you will receive a notification in the notifications
menu:

6. Refreshing the App Services section, you will see the cookbookdemo web app that
we have just created. You might need to click on the Refresh button before the
cookbookdemo web app becomes visible:

7. Clicking on the cookbookdemo web app will display the properties. Take special
notice of the URL in the upper-right corner:

8. If you click on this URL, you will be taken to the default placeholder site for your web
application. It is time to publish our website to Azure:

9. Start Visual Studio and create or open a website you want to publish. I have created a
simple website that I want to publish:

10. Right-click on your website project and click on Publish Web App from the context
menu:

11. The Publish Web screen is displayed. Here you can see various publish targets
available to you. We simply want to publish our application to Azure. Select Microsoft
Azure Web Apps as a publish target:

12. Clicking on Next will either ask you to connect to Azure or, if you have previously
connected, select your Subscription from the drop-down selection. Any existing web
apps are displayed in the Existing Web Apps list. The cookbookdemo web app we
created earlier is displayed:

13. Selecting the cookbookdemo web app, you now have to define your web app
connection and Publish method. For now, we will just select Web Deploy as our
method for publishing our web application to Azure:

14. You can also click on the Validate Connection button to make sure everything is in
order before continuing:

15. Clicking Next takes you to the Settings screen. Here you can select a Configuration
to deploy, as well as define a database connection:

Note
As you will notice, the database connection I am using is the connection to the
database we created in the first recipe of this chapter, Creating a database in Azure
for testing.

16. When you click Next, you will see that you can preview the files that are to be
published to the web application on Azure. The initial publish will obviously contain the
most files, as nothing exists on the web application yet:

17. When you are ready, clicking on the Publish button will start the process of publishing
your website to Azure. This can also take a few minutes to complete. When the publish
has completed, Visual Studio will automatically open the published website:

18. Back in Azure, you will see the Monitoring window spring to life. You can also add
other sections here that will provide more information about the state of your web
application:

How it works…
Azure puts a lot of power into the hands of the developer when deploying to Azure. You can
add additional sections that assist in the management of your web application. These are
displayed to you as tiles. Some of the sections available are:

Process Explorer
WebJobs
Traffic routing
Requests and errors
Http 4xx
Http 5xx
Filesystem storage
Web tests
Users and roles
Performance tests
Even your estimated Azure spend

Azure is truly a very versatile cloud solution for developers, no matter what your individual
needs.

Using virtual machines on Azure
A virtual machine (VM) is indispensable to developers. I have a few myself that I use for
my personal use and to try out new software. The technology behind it is quite incredible as
it virtualizes a specific environment for you to accurately test your applications against. At
my previous employer, we would create VMs of certain client environments in order to test
application deployment and basically to see whether the application works correctly.

With Azure, developers have so many choices when deciding on a specific VM platform.
You can spin up virtually (pun intended) any type of VM you need. If you want to test out
the new Visual Studio, you can. A new version of Windows? You can bet there will be a VM
on Azure for that. Want to play around with Linux and WordPress a bit? No problem. Azure
does it all and it is incredibly easy to set up.

Consider the alternative. If VMs weren't there and you wanted to test an application on an
OS such as Windows 10, you would probably have to set aside a specific machine just for
testing different OS versions. That's one machine not available to you anymore for other
work. Then you need to spend an hour or two setting up that PC with the correct OS. You
then need to set the PC up to be available over the local network at your office. What about
if you wanted to access that test machine from a remote location (at home for example)?
You would need to configure it to be accessible remotely while still maintaining security. So
then you set up a VPN to access the machine remotely on the off chance that the
developers need to work after hours. This has to be done for a single instance of an
application in development. If you have servers to spare, sure, this might not be a problem.
If, however, you are a small-to-medium-sized company with limited resources, chances are
you'll be reinstalling that machine soon with a different client's setup for testing.

This is where Azure is brilliant at making a difference. The setup process takes a few
minutes, a moment compared to the setup required for a PC at your office. Remote
access, security, event monitoring, alerts, and a whole bunch of other features are
immediately available to all the developers in your team.

Getting ready
To start working with Azure, you will need to have an Azure account. You can create a free
trial account. For more information on Azure pricing, have a look at the following URL:
https://azure.microsoft.com/en-us/pricing/.

How to do it…
1. After you have logged in to your Azure account, you will be taken to your Dashboard.

From here you can see any items you may have pinned. To the left you will see the

https://azure.microsoft.com/en-us/pricing/

menu. Click on the Virtual machines menu item:

2. You will then be taken to the default directory for the virtual machines on your Azure
subscription. We need to create a new virtual machine by clicking on the Add button:

3. Azure then displays all the types of virtual machine available to you. There are quite a
lot of types of machine to choose from. From Service Fabric, to Linux, to Ubuntu, the
choice is vast:

4. For our purposes, we will just create a Windows virtual machine:

5. Clicking on the Windows group, you can see that we have a choice of Windows 10
Enterprise or Windows 8.1 Enterprise 64-bit VMs. We will simply select the Windows
10 VM to get started:

6. You will now be asked to enter various settings to configure your Windows 10 VMs.
Give your VM a name and define a login user and password. The Resource group will
allow you to select an existing one or create a new one:

7. On the next configuration screen, you will be presented with recommended VM sizes,
each with their different pricing option displayed in your local currency. Choose the
option that is most suitable for you, your requirements, and/or budget.

8. The next screen allows you to configure optional features. The features available to
you are the following:

Storage account is where the disks for the VM are created.
Virtual network acts much like a traditional network. Any VMs in the same virtual
network will be able to access each other, and this is configured by default.
Subnet allows you to isolate VM from other VMs or the Internet.
Public IP address allows you to communicate with a machine outside the virtual
network defined previously.
Network security group is a collection of rules defined on your firewall that controls
who can access your Windows 10 virtual machine.
Extensions are quite nice. These are additional add-ons, such as antivirus

packages.
Monitoring is on by default and allows you to gather information about your VM
and define alerts based on the information monitored. This keeps you in control
and informed at all times.
The diagnostics storage account is where the monitoring metrics are stored. You
can then analyze these with any of your own tools if needed.
The availability setting allows you to cluster two or more VMs together to provide
a failover if one of the VMs needs to be taken offline for maintenance. This need
to be configured at this step because the availability setting can't be changed after
the VM is created:

9. Once you have configured the VM, you will be presented with a summary of the
configuration options you selected during setup:

10. When you are satisfied that the VM is set up correctly, Azure will then start the
deployment process:

11. The progress of the deployment process is also visible on the Dashboard and takes a
few minutes to complete:

12. After a few minutes, the VM is available and ready. You will be taken to the virtual
machine page for your cookbookvm:

13. To connect to your VM, click on the Connect button:

14. An .rdp file is then downloaded. You can click on the file directly to start the Remote
Desktop Connection session:

15. You will probably be asked whether you trust the publisher of the remote connection.
Obviously you do, so just click on the Connect button:

16. You will now be able to enter your login credentials, as defined earlier during the VM
setup:

17. You will now be connected to the Windows 10 virtual machine via Remote Desktop
Connection:

18. Back in Azure, if you selected the Monitoring option during the VM setup, you will see
that you have a default Monitoring tile for CPU percentage. Azure allows you to add
more monitoring events and create alerts for each event:

How it works…
Virtual machines are accessible via remote connections. You can use the good old Remote
Desktop Connection, or something more exotic such as mRemoteNG if you have several
remote machines that you need to access. The reason that Azure is so well suited for
development testing is because the resource does not have to live on your own network at
all. That means the overhead involved in maintaining backups of development VMs is largely
avoided.

I remember the network administrator at my previous employer regularly asking what VMs
we still used. Some of these VMs were used perhaps once or twice a year, so they couldn't
be deleted. Having several developers access these VMs also meant that there was a lot of
junk on these VMs, which made backing those up a painful process (usually run over
weekends).

Azure solves many issues and problems for IT professionals. In this chapter, we have
looked at only three solutions available to you as a developer. Do not be fooled, Azure is
much more powerful than just being able to provide a robust testing platform for

developers. Going into detail about Azure would probably require a separate book on its
own.

Index
A

abstract class

creating / Creating and implementing an abstract class, How to do it…, How it
works…
implementing / Creating and implementing an abstract class, Getting ready, How
to do it…, How it works…

abstract classes

code contracts, using / Using code contracts on abstract classes, How to do it…
abstraction

using / Using abstraction, How to do it…, How it works…
Android Visual Studio project

creating, with Apache Cordova / Creating an Android Visual Studio project using
Apache Cordova, How to do it…, How it works…

Apache Cordova

used, for creating Android Visual Studio project / Creating an Android Visual Studio
project using Apache Cordova, How to do it…, How it works…

App.config/web.config

sensitive parts, securing / Securing sensitive parts of App.config/web.config, How
to do it…

Assert method, code contract

creating / Creating code contract Assert and Assume methods, How to do it…
Assume method, code contract

creating / Creating code contract Assert and Assume methods, How to do it…
asynchronous functions

return types / Return types of asynchronous functions, Getting ready, How to do
it…, How it works…

asynchronous programming

about / Introduction
tasks, handling / Handling tasks in asynchronous programming, How to do it…
exception handling / Exception handling in asynchronous programming, How to do

it…
auto-implemented properties

initializing / Initializers for auto-implemented properties and getter-only auto
properties, How to do it…, How it works…

await keyword

using, in catch blocks / Using await operator in catch and finally blocks, How to do
it…, How it works…
using, in finally blocks / Using await operator in catch and finally blocks, How to do
it…, How it works…

Azure

database, creating for test / Creating a database in Azure for testing, How to do
it…
pricing, reference link / Getting ready, Getting ready, Getting ready
database, reference link / How it works…
web application, creating / Creating a web application and hosting on Azure,
Getting ready, How to do it…, How it works…
web application, hosting / Creating a web application and hosting on Azure, How
to do it…, How it works…
virtual machine (VM), using / Using virtual machines on Azure, How to do it…, How
it works…

B
bottlenecks, in code

identifying, with PerfTips / Using PerfTips to identify bottlenecks in code, How to
do it…, How it works…

C
C#

inheritance, using / Using inheritance in C#, How to do it…, How it works…
C-like Object Oriented Language (Cool) / Introduction
code

checking, for first time / Setting up Visual Studio GitHub integration, checking in
code for the first time, and checking in changes, Getting ready, How to do it...,
How it works...
changes, checking / Setting up Visual Studio GitHub integration, checking in code

for the first time, and checking in changes, Getting ready, How to do it...
SecureString, using / Using SecureString in code, Getting ready, How to do it…,
How it works…

code contract

Assert method, creating / Creating code contract Assert and Assume methods,
How to do it…
Assume method, creating / Creating code contract Assert and Assume methods,
How to do it…
ForAll, creating / Creating code contract ForAll method, How to do it…
ValueAtReturn, creating / Creating code contract ValueAtReturn method, How to
do it…, How it works…
Result, creating / Creating code contract Result method, How to do it…, How it
works…
using, on abstract classes / Using code contracts on abstract classes, How to do
it…, How it works…

code contract invariant

creating / Creating code contract invariant, How to do it…, How it works…
code contracts

about / Introduction
downloading / Downloading, installing, and integrating code contracts into Visual
Studio, How to do it…, How it works…
installing / Downloading, installing, and integrating code contracts into Visual Studio
integrating, into Visual Studio / Downloading, installing, and integrating code
contracts into Visual Studio, How to do it…, How it works…
preconditions, creating / Creating code contract preconditions, How to do it…
postconditions, creating / Creating code contract postconditions, How it works…
using, in extension methods / Using code contracts in extension methods, Getting
ready, How to do it…, How it works…

conditional breakpoints

about / Setting conditional breakpoints
setting / Setting conditional breakpoints, How to do it…, How it works…

conflicts, in code

handling / Working as a team using GitHub, and handling and resolving conflicts in
code, Getting ready, How to do it..., How it works...
resolving / Working as a team using GitHub, and handling and resolving conflicts in
code, Getting ready, How to do it..., How it works...

contract abbreviator methods

using / Using contract abbreviator methods, How to do it…, How it works…

D
database

creating, in Azure for test / Creating a database in Azure for testing, How to do
it…, How it works…

Diagnostic Tools

using / Using Diagnostic Tools and Historical Debugging, How to do it…, How it
works…

Don't Repeat Yourself (DRY) principle / How it works…
dynamic link libraries (DLLs) / How to do it…
dynamic regex matching

about / Dynamic regex matching, Getting ready
performing / How to do it…
working / How it works…

E
Electronic Data Systems (EDS) / Using Diagnostic Tools and Historical Debugging
encapsulation

leveraging / Leveraging encapsulation, How to do it…, How it works…
errors

catching, in parallel foreach loops / Getting ready, How to do it…, How it works…
events

versus observables / Events versus observables, How to do it…, How it works…
Event Tracing for Windows (ETW) / How to do it…
exception filters

about / Exception filters, How to do it…
working / How it works…

exception handling

in asynchronous programming / Exception handling in asynchronous programming,
How to do it…

expression-bodied functions and properties

about / Expression-bodied functions and properties, How to do it…
working / How it works…

extension methods

code contracts, using / Using code contracts in extension methods, How to do it…,
How it works…

F
ForAll, code contract

creating / Creating code contract ForAll method, How to do it…

G
generic class

creating / Creating and using a generic class or method, How to do it…
using / Creating and using a generic class or method, How to do it…

generic interface

creating / Creating and using a generic interface, How to do it…, How it works…
using / Creating and using a generic interface, How to do it…, How it works…

generic method

using / Creating and using a generic class or method, How to do it…
creating / Creating and using a generic class or method, How to do it…

getter-only auto properties

initializing / Initializers for auto-implemented properties and getter-only auto
properties, How to do it…, How it works…

GitHub

reference link / Getting ready
used, for working as team / Working as a team using GitHub, and handling and
resolving conflicts in code, How to do it..., How it works...

GitHub.VisualStudio.vsix

reference link / How to do it...
GitHub Help

reference link / How to do it...

H
Historical Debugging

using / Using Diagnostic Tools and Historical Debugging, How to do it…, How it
works…

I
index initializers

about / Index initializers
using / Getting ready, How to do it…, How it works…

inheritance

using, in C# / Using inheritance in C#, How to do it…
input

sanitizing / Sanitizing input, How to do it…, How it works…
installation

Xamarin / Installing Xamarin and other required components, How to do it…, How
it works…

installing

Rx / Installing Rx, How to do it…, How it works…
IntelliTest

used, for creating tests / Creating tests using IntelliTest, How to do it…, How it
works…

interface

implementing / Creating and implementing an interface, How to do it…, How it
works…
creating / Creating and implementing an interface, How to do it…, How it works…

internet of things (IoT) / Introduction
invariant, code contract

creating / Creating code contract invariant, How to do it…, How it works…
iOS application

creating, with Xamarin Forms / Creating an iOS application using Xamarin Forms,
How to do it…, How it works…

L
lambda expressions

debugging / Debugging lambda expressions, How to do it…, How it works…
LINQ

used, for performing queries / Using LINQ to perform queries, How to do it…, How
it works…

Liskov substitution principle (LSP) / Introduction
lock keyword / Locking one thread until the contended resources are available
low priority background thread

creating / Creating and aborting a low-priority background thread, How to do it…,
How it works…
aborting / Creating and aborting a low-priority background thread, How to do it…,
How it works…

M
maximum thread pool size

increasing / Increasing maximum thread pool size, Getting ready, How to do it…,
How it works…

microservices

about / Introduction
disadvantage / Introduction

multiple threads

creating / Creating multiple threads, How to do it…, How it works…
debugging / Debugging multiple threads, How to do it…, How it works…

N
nameof expressions

about / The nameof expressions
using / Getting ready, How to do it…
working / How it works…

NetBean / Introduction
null-conditional operator

about / Null-conditional operator, How to do it…
using / Getting ready, How to do it…, How it works…

O

open/closed principle

about / Open/closed principle, How to do it…
working / How it works…

P
Parallel.Invoke

used, for invoking parallel calls to methods / Invoking parallel calls to methods
using Parallel.Invoke, How to do it…, How it works…

parallel foreach loops

using / Using a parallel foreach loop to run multiple threads, How to do it…
cancelling / Cancelling a parallel foreach loop, How to do it…, How it works…
errors, catching / Catching errors in parallel foreach loops, How to do it…, How it
works…

passwords

encrypting / Encrypting and storing passwords correctly, Getting ready, How to do
it…, How it works…
storing / Encrypting and storing passwords correctly, How to do it…, How it
works…

PerfTips

used, for identifying bottlenecks in code / Using PerfTips to identify bottlenecks in
code, How to do it…, How it works…

Platform as a Service (PaaS) / Introduction
polymorphism

about / Implementing polymorphism
implementing / Getting ready, How to do it…

postconditions, code contract

creating / Creating code contract postconditions, How to do it…
preconditions, code contract

creating / Creating code contract preconditions, How to do it…, How it works…

Q
queries

performing, with LINQ / Using LINQ to perform queries, How to do it…, How it

works…
question-dot operator / Null-conditional operator

R
regex

about / Introduction
starting with / Getting started with regex, How to do it…
conditional OR / How it works…
year portion / How it works…
valid separator character set / How it works…
valid digits for months and days / How it works…
start and end of string / How it works…

Reliable Actors / Creating a Service Fabric application with a stateless actor service
Reliable Services / Creating a Service Fabric application with a stateless actor service
Result, code contract

creating / Creating code contract Result method, How to do it…, How it works…
return types, asynchronous functions

void / Return types of asynchronous functions, Getting ready, How to do it…
task / Return types of asynchronous functions, Getting ready
Task<TResult> / Return types of asynchronous functions, How it works…

Rx

observables / Introduction, Using LINQ to perform queries
Language-Integrated Query (LINQ / Introduction, Using LINQ to perform queries
schedulers / Introduction, Using LINQ to perform queries
uses / Introduction
reference link / Introduction
installing / Installing Rx, How to do it…, How it works…
schedulers, using / Using schedulers in Rx, How to do it…, How it works…

S
schedulers

using, in Rx / Using schedulers in Rx, How to do it…, How it works…
reference link / Getting ready

scopes, C#

public / How it works…

private / How it works…
protected / How it works…
friend / How it works…
protected friend / How it works…

SecureString

securing, in code / Using SecureString in code, Getting ready, How to do it…, How
it works…

Service Fabric

downloading / Downloading and installing Service Fabric, How to do it…, How it
works…
installing / Downloading and installing Service Fabric, How to do it…, How it
works…
learning path, reference link / How to do it…

Service Fabric application

creating, with stateless actor service / Creating a Service Fabric application with a
stateless actor service, How to do it…, How it works…

Service Fabric Explorer

about / Using Service Fabric Explorer
using / Getting ready, How to do it…, How it works…

single responsibility principle (SRP)

about / Introduction, Single responsibility principle, Getting ready
using / How to do it…, How it works…

software development kit (SDK) / Getting ready
source control

selecting / Setting up Visual Studio account management and determining which
source control solution is best for you, Getting ready, How to do it...

SQL injection attacks

preventing / Preventing SQL injection attacks, Getting ready, How to do it…, How
it works…

stateless actor service

used, for creating Service Fabric application / Creating a Service Fabric
application with a stateless actor service, How to do it…, How it works…

static class

about / Using static
using / How to do it…, How it works…

string interpolation

about / String interpolation, How to do it…
working / How it works…

T
Task-Based Asynchronous Pattern (TAP) / Handling tasks in asynchronous
programming
tasks

handling, in asynchronous programming / Handling tasks in asynchronous
programming, How to do it…

Team Services

reference link / How to do it...
tests

creating, with IntelliTest / Creating tests using IntelliTest, How to do it…, How it
works…

thread

locking, until availability of contended resources / Locking one thread until the
contended resources are available, How to do it…, How it works…

thrust to weight ratio (TWR) / Getting ready

U
user acceptance testing (UAT) / Creating a web application and hosting on Azure

V
valid date

matching / Matching a valid date, How to do it…, How it works…
ValueAtReturn, code contract

creating / Creating code contract ValueAtReturn method, How to do it…, How it
works…

Virtual Actor pattern

reference link / Creating a Service Fabric application with a stateless actor service
virtual machine (VM)

using, on Azure / Using virtual machines on Azure, How to do it…, How it works…

Visual Basic.NET (VB.NET) / Exception filters
Visual Studio

code contracts, integrating into / Downloading, installing, and integrating code
contracts into Visual Studio, How to do it…, How it works…

Visual Studio 2015

reference link / Getting ready
Visual Studio 2015 Community edition

reference link / Getting ready
Visual Studio account management

setting up / Setting up Visual Studio account management and determining which
source control solution is best for you, Getting ready, How to do it..., How it
works...

Visual Studio GitHub integration

setting up / Setting up Visual Studio GitHub integration, checking in code for the
first time, and checking in changes, Getting ready, How to do it..., How it works...

Visual Studio project

about / Creating your Visual Studio project
creating / Getting ready, How to do it…

W
web application

hosting, on Azure / Creating a web application and hosting on Azure, Getting
ready, How to do it…, How it works…
creating, in Azure / Creating a web application and hosting on Azure, Getting
ready, How to do it…, How it works…

X
Xamarin

installing / Installing Xamarin and other required components, How to do it…, How
it works…
reference link / How to do it…

Xamarin Forms

used, for creating iOS application / Creating an iOS application using Xamarin

Forms, How to do it…, How it works…
Xcode / Introduction

	C# Programming Cookbook
	Table of Contents
	C# Programming Cookbook
	Credits
	About the Author
	Acknowledgements
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why Subscribe?

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	1. New Features in C# 6.0
	Introduction
	Creating your Visual Studio project
	Getting ready
	How to do it…
	How it works…

	String interpolation
	Getting ready
	How to do it…
	How it works…

	Null-conditional operator
	Getting ready
	How to do it…
	How it works…

	Initializers for auto-implemented properties and getter-only auto properties
	Getting ready
	How to do it…
	How it works…

	Index initializers
	Getting ready
	How to do it…
	How it works…

	The nameof expressions
	Getting ready
	How to do it…
	How it works…

	Expression-bodied functions and properties
	Getting ready
	How to do it…
	How it works…

	Using static
	Getting ready
	How to do it…
	How it works…

	Exception filters
	Getting ready
	How to do it…
	How it works…

	Using await operator in catch and finally blocks
	Getting ready
	How to do it…
	How it works…

	2. Classes and Generics
	Introduction
	Creating and implementing an abstract class
	Getting ready
	How to do it…
	How it works…

	Creating and implementing an interface
	Getting ready
	How to do it…
	How it works…

	Creating and using a generic class or method
	Getting ready
	How to do it…
	How it works…

	Creating and using a generic interface
	Getting ready
	How to do it…
	How it works…

	3. Object-Oriented Programming in C#
	Introduction
	Using inheritance in C#
	Getting ready
	How to do it…
	How it works…

	Using abstraction
	Getting ready
	How to do it…
	How it works…

	Leveraging encapsulation
	Getting ready
	How to do it…
	How it works…

	Implementing polymorphism
	Getting ready
	How to do it…
	How it works…

	Single responsibility principle
	Getting ready
	How to do it…
	How it works…

	Open/closed principle
	Getting ready
	How to do it…
	How it works…

	4. Composing Event-Based Programs Using Reactive Extensions
	Introduction
	Installing Rx
	Getting ready
	How to do it…
	How it works…

	Events versus observables
	Getting ready
	How to do it…
	How it works…

	Using LINQ to perform queries
	Getting ready
	How to do it…
	How it works…

	Using schedulers in Rx
	Getting ready
	How to do it…
	How it works…

	Debugging lambda expressions
	Getting ready
	How to do it…
	How it works…

	5. Create Microservices on Azure Service Fabric
	Introduction
	Downloading and installing Service Fabric
	Getting ready
	How to do it…
	How it works…

	Creating a Service Fabric application with a stateless actor service
	Getting ready
	How to do it…
	How it works…

	Using Service Fabric Explorer
	Getting ready
	How to do it…
	How it works…

	6. Making Apps Responsive with Asynchronous Programming
	Introduction
	Return types of asynchronous functions
	Getting ready
	How to do it…
	How it works…

	Handling tasks in asynchronous programming
	Getting ready
	How to do it…
	How it works…

	Exception handling in asynchronous programming
	Getting ready
	How to do it…
	How it works…

	7. High Performance Programming Using Parallel and Multithreading in C#
	Introduction
	Creating and aborting a low-priority background thread
	Getting ready
	How to do it…
	How it works…

	Increasing maximum thread pool size
	Getting ready
	How to do it…
	How it works…

	Creating multiple threads
	Getting ready
	How to do it…
	How it works…

	Locking one thread until the contended resources are available
	Getting ready
	How to do it…
	How it works…

	Invoking parallel calls to methods using Parallel.Invoke
	Getting ready
	How to do it…
	How it works…

	Using a parallel foreach loop to run multiple threads
	Getting ready
	How to do it…
	How it works…

	Cancelling a parallel foreach loop
	Getting ready
	How to do it…
	How it works…

	Catching errors in parallel foreach loops
	Getting ready
	How to do it…
	How it works…

	Debugging multiple threads
	Getting ready
	How to do it…
	How it works…

	8. Code Contracts
	Introduction
	Downloading, installing, and integrating code contracts into Visual Studio
	Getting ready
	How to do it…
	How it works…

	Creating code contract preconditions
	Getting ready
	How to do it…
	How it works…

	Creating code contract postconditions
	Getting ready
	How to do it…
	How it works…

	Creating code contract invariant
	Getting ready
	How to do it…
	How it works…

	Creating code contract Assert and Assume methods
	Getting ready
	How to do it…
	How it works…

	Creating code contract ForAll method
	Getting ready
	How to do it…
	How it works…

	Creating code contract ValueAtReturn method
	Getting ready
	How to do it…
	How it works…

	Creating code contract Result method
	How to do it…
	How it works…

	Using code contracts on abstract classes
	Getting ready
	How to do it…
	How it works…

	Using contract abbreviator methods
	Getting ready
	How to do it…
	How it works…

	Creating tests using IntelliTest
	Getting ready
	How to do it…
	How it works…

	Using code contracts in extension methods
	Getting ready
	How to do it…
	How it works…

	9. Regular Expressions
	Introduction
	Getting started with regex
	Getting ready
	How to do it…
	How it works…

	Matching a valid date
	Getting ready
	How to do it…
	How it works…

	Sanitizing input
	Getting ready
	How to do it…
	How it works…

	Dynamic regex matching
	Getting ready
	How to do it…
	How it works…

	10. Choosing and Using a Source Control Strategy
	Introduction
	Setting up Visual Studio account management and determining which source control solution is best for you
	Getting ready
	How to do it...
	How it works...

	Setting up Visual Studio GitHub integration, checking in code for the first time, and checking in changes
	Getting ready
	How to do it...
	How it works...

	Working as a team using GitHub, and handling and resolving conflicts in code
	Getting ready
	How to do it...
	How it works...

	11. Creating a Mobile Application in Visual Studio
	Introduction
	Installing Xamarin and other required components
	Getting ready
	How to do it…
	How it works…

	Creating an Android Visual Studio project using Apache Cordova
	Getting ready
	How to do it…
	How it works…

	Creating an iOS application using Xamarin Forms
	Getting ready
	How to do it…
	How it works…

	12. Writing Secure Code and Debugging in Visual Studio
	Introduction
	Encrypting and storing passwords correctly
	Getting ready
	How to do it…
	How it works…

	Using SecureString in code
	Getting ready
	How to do it…
	How it works…

	Securing sensitive parts of App.config/web.config
	Getting ready
	How to do it…
	How it works…

	Preventing SQL injection attacks
	Getting ready
	How to do it…
	How it works…

	Using Diagnostic Tools and Historical Debugging
	Getting ready
	How to do it…
	How it works…

	Setting conditional breakpoints
	Getting ready
	How to do it…
	How it works…

	Using PerfTips to identify bottlenecks in code
	Getting ready
	How to do it…
	How it works…

	13. Creating a Web Application in Azure
	Introduction
	Creating a database in Azure for testing
	Getting ready
	How to do it…
	How it works…

	Creating a web application and hosting on Azure
	Getting ready
	How to do it…
	How it works…

	Using virtual machines on Azure
	Getting ready
	How to do it…
	How it works…

	Index

