
www.allitebooks.com

http://www.allitebooks.org

Cloud Development and
Deployment with CloudBees

Develop and deploy your Java application onto the
Cloud using CloudBees

Nicolas De loof

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Cloud Development and Deployment with CloudBees

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1171213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-163-3

www.packtpub.com

Cover Image by Romain Guy (romainguy@curious-creature.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Nicolas De loof

Reviewers
Cyrille Le Clerc

Saeed Afzal

Rémi Goyard

Michael Neale

Mark Prichard

Harpeet

Spike

Aaron

Acquisition Editor
Joanne Fitzpatrick

Commissioning Editors
Poonam Jain

Nikhil Chinnari

Sharvari Tawde

Copy Editors
Alisha Aranha

Roshni Banerjee

Sarang Chari

Dipti Kapadia

Gladson Monteiro

Karuna Narayanan

Lavina Pereira

Technical Editors
Veena Pagare

Shali Sasidharan

Project Coordinator
Michelle Quadros

Proofreader
Ameesha Green

Indexer
Mehreen Deshmukh

Graphics
Yuvraj Mannari

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Nicolas De loof has been a Java Architect for 14 years in French IT Services
companies. Being a techno-addict and an open source developer, he joined the
Apache Maven team in 2007, focusing on the Google Web Toolkit plugin, and later
the Jenkins community.

With many relations in the French Java community, he created BreizhJUG in 2008,
which is a Java User Group in Rennes, France. Later, he founded the BreizhCamp, a
two-day conference.

He joined CloudBees to contribute to an awesome project: running Java in the Cloud,
from source code to production.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Cyrille Le Clerc is a senior software engineer at CloudBees with more than 12
years of experience in Java technologies. He came to CloudBees from Xebia, where
he was CTO and Architect. He was an early adopter of the "You Build It, You Run It"
model that he had put in place for a number of high volume websites. He naturally
embraced the DevOps culture as well as Cloud computing which he implements for
his customers. Cyrille is very active in the Java community, as the creator of the open
source project embedded-jmxtrans, and as a speaker at various conferences.

Saeed Afzal, also known as Smac Afzal, is a young software engineer with more
than six years of solid hands-on experience, specializing in solution architect and
implementing scalable high performance applications.

He joined the IT field and started his career at a very early age. He is purely
self-trained, and has moved forward with an entrepreneur spirit in different
technologies in timely manners.

More detailed information about his skills and experience can be found at
http://sirsmac.com. He can be contacted at sirsmac@gmail.com.

I would like to thank the Allah Almighty, my parents, my twin
brother, and my life partner, Hafiza Zara Javed, for encouraging me.

Thank you to Packt Publishing for selecting me as one of the technical
reviewers for this wonderful book. It is my honor to be a part of it.

www.allitebooks.com

http://www.allitebooks.org

Rémi Goyard started his career in 1998. Initially, he worked as a network
technician (MCSE), then as a network consultant, he started his own Web agency
(programming in PHP, HTML, JavaScript, and Hosting websites) in 2004. Today,
he is a web architect at Sqli (Bordeaux), a French IT services company.

Rémi is passionate about Internet technologies, and keeps reading and learning
to improve his skills. He likes teaching others (developers, marketers, project
managers, and so on) to share his passion and help people to understand the
Internet ecosystem better.

Being involved in the local developer communities such as Java User Groups, PHP
User Groups, or JavaScript User Groups, Rémi likes to share his experiences, news,
or business with others.

Rémi is also a blogger who writes about his tests and gives feedback on new
web solutions.

Michael Neale has been developing software that goes in boxes and now to the
Cloud for the past 20 years. He is a long-time contributor to various open source
projects. He became a fan of PaaS Clouds from the minute he first heard
about them.

In 2010, Michael along with others helped to start CloudBees. He didn't set out
to build this, but only to use it! Since then, he has seen things grow in popularity
as PaaS Clouds matured.

Prior to CloudBees, he worked at Red Hat on the Drools rule engine project and
the Deltacloud API project.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: What's a PaaS and Why CloudBees? 7

Infrastructure as a Service 7
Software as a Service 8
Platform as a Service 9
So, which platform? 9
Cloud and clustering 10
Private versus public Clouds 11
Security 12
CloudBees – embrace the development stack 12
Summary 14

Chapter 2: Getting Started Quickly 15
Subscribing to services 17
Keys and authorizations 17
Accessing services 19
Setting up an application using ClickStart 19
Getting the code 21
Making changes and updating the application 22
PaaS versus self-managed infrastructure 23
Summary 24

Chapter 3: Users, Domains, and Services 25
Users and roles 25
Services 26
Integrated partner services 27
Validated partner services 30
Summary 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 4: ClickStart in Depth 33
What's a ClickStart? 33
Getting the code 35
Building the project 36
Managing the deployed application 37
The ClickStart ecosytem 38
Writing your own ClickStart 40
Summary 43

Chapter 5: Managing Your Build 45
Jenkins 45

Continuous Integration 45
Automation 46
Extensibility 46
Scalability 46

DEV@cloud 46
Customization 48
Plugins 49
On-demand slaves 50

Continuous delivery 50
Full chain automation – continuous deployment 51
Job chain 52
Promotion 53

Summary 55
Chapter 6: Running Your Applications 57

Scalability 57
Horizontal scalability 58

Clustering constraints 59
State 59

The HttpSession servlet 60
Sticky session 60
The client-side state 60

The ephemeral filesystem 61
Customizing the domain 62

Mapping your domain name 62
SSL encryption 63
The private mode 64

Monitoring 64
ClickStack 65
Summary 66

Table of Contents

[iii]

Chapter 7: Tools 67
CloudBees SDK 67

Installation 67
Basic usage 68
Runtime parameters 70

Customizing your application 70
Application parameters 71
Resource management and binding 72
Plugins 73
Blue-green deployment 73

IDE integration 75
Eclipse plugin 75

Installation 75
The CloudBees view 77
ClickStart integration 77

IntelliJ Idea support 78
GitHub integration 79
Full cloud-based toolbox 80
Summary 81

Chapter 8: Using ClickStack to Extend the Platform 83
The RUN@cloud architecture 84

Metadata 86
The directory structure 87
Plugins 88

ClickStack by sample 88
A simple ClickStack plugin 89
Community and contributions 90

Advanced ClickStack 90
Sharing the code 90
Complex setup 91

Testing 92
The local GenApp installation 92
Automated tests 93

Summary 93
Index 95

Preface
All technology evangelists talk about revolutions. Even they just have a classic
product to demonstrate. So, if I tell you that the Cloud will change the IT industry,
you may consider that I'm biased, being a CloudBees employee. Anyway, I'm
convinced that a huge shift has been introduced by the Cloud technologies and the
way in which we develop a software and use it to host the application will enter
a new age. To demonstrate my point of view, let's compare with another major
revolution that changed the industry all around the world.

In the late 19th century, industry development discovered the flexibility of using
electric engines compared to traditional steam ones. This was a huge improvement
and was adopted for most of the activities. At this time, every manufactory has its
own generator, sized to produce power for the engines they used internally.

2,170 Watts dynamo generator (Credit: Wikipedia)

With the adoption of electricity, sharing resources and concentrating on the
generation of electricity was a natural shift from dedicated on-premise generators.
This was a major improvement to reduce costs and to improve reliability and
flexibility. First, power plants were created by large manufactories for their internal
needs but quickly, a dedicated industry emerged, specializing in large-scale
electricity generators.

Preface

[2]

From manufactories, electricity gradually began to be used for general purposes, and
power plants became bigger and much more advanced to become the nuclear plants
and giant hydroelectric generators we use today.

Three Gorges Dam hydroelectric power plant, China (Credit: Wikipedia)

Such a shift from on-premises generators has been possible thanks to specialization
and standardization. Some incompatible standards still exist for power plugs and
voltages, as some of you may have experienced while travelling around the world,
but that's nothing compared to the early electric age.

In 1900, Paris was split into six regions, each of them with a distinct company to
produce electricity for public lighting. Some of them used a direct current of 110 V,
some others used a high voltage, as much as 3000 V. Some used two, three, or five
wires to transport power to users. With power plants to concentrate into bigger
companies, standardization helped to make electricity something that you don't
actually have to worry about. If you don't have to travel to another continent—not
considering myself traveling to London—you can use exactly the same electric
device, without even thinking this could be an issue.

Nowadays, electricity is used as a service and you don't know from where it gets
produced. You just rely on some standards to plug in your toaster and get it to
work. You pay a bill per month, based on your actual use of electricity. You don't
mind, when you buy a new washing machine, the amount of electricity it will
require—maybe you should anyway—because you know your electricity producer
will give you more when needed.

Preface

[3]

Automated computing is such a revolution and is getting even quicker. First, the
computer replaced human beings for repetitive computational tasks. They were
huge, complex, and dedicated mainframe machines. With large acceptance, some
standards emerged, such as Unix/Posix compatible systems, and helped to reduce
the dependency you had as a computer user on a specific hardware.

First, datacenters could be considered as equivalent to power plants; users didn't
actually know where the computer was located physically and where they were
connected to, on a vt100 terminal. They were just sharing resources, concentrating
in a specialized location, with dedicated engineers and technicians.

Cloud is the next step. When Amazon creates a datacenter, it's about hundreds of
thousands of computers that will be available for consumption using an API to rent
them. You don't need to have a dedicated server anymore; you don't even have to
estimate how large it has to be. You only rent one for your actual use and you can
change your mind at any time.

The major shift with the traditional datacenter is that it's not just about grouping the
resource in the same building, rather it's about sharing the resources for the whole
world, without worrying about who is actually using them, and making it available
using the 21st century power plugs, APIs—either de facto standard Amazon Web
Services or open source OpenStack.

Cloud is such a big change that it completely changes our industry. There is no need
to spend hours estimating our hardware requirements when a project is just a bunch
of ideas that need to be prototyped. You'll have the adequate hardware available and
can stop anything at anytime without any extra costs.

This book is a great opportunity for me to share my knowledge about the CloudBees
platform on which I'm working as a support engineer. I'll guide you on how to
discover the platform and show you its benefits for software projects, as well as
the changes it allows you to make your development process more efficient.

What this book covers
Chapter 1, What's a PaaS and Why CloudBees?, introduces the concept of Platform as
a Service (PaaS) and why this is the best place for a developer to start using Cloud
services. We will also introduce CloudBees high-level vision of PaaS.

Chapter 2, Getting Started Quickly, covers setting up your CloudBees account and
using ClickStart to get an application ready to develop within a minute. Also, it
explores the services provided by the CloudBees platform.

Preface

[4]

Chapter 3, Users, Domains, and Services, explores the CloudBees platform from a user
management point of view. It also covers the service ecosystem that makes the
CloudBees platform extensible to match your requirements.

Chapter 4, ClickStart in Depth, gets deeper into the concepts of ClickStart and
demonstrates how to use it in order to improve your own efficiency.

Chapter 5, Managing Your Build, demonstrates the use of the DEV@cloud platform
to drive your project build and development workflow.

Chapter 6, Running Your Applications, explores the application-hosting service and
options to manage your application scalability and security.

Chapter 7, Tools, demonstrates the advanced use of the CloudBees platform using the
SDK, as well as other development tool integrations.

Chapter 8, Using ClickStack to Extend the Platform, gets deeper in to the RUN platform
and its extensibility capabilities. It demonstrates how to select an alternate stack,
customize, or create your own ClickStack.

Who this book is for
If you are a Java developer and want to explore the world of the Cloud, this book
is ideal for you. This book will guide you through the process of developing and
deploying an application on the Cloud. Prior knowledge of Java is essential.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: "The project skeleton is basically a Maven
pom.xml file and comprises few classes."

A block of code is set as follows:

"build-with-jenkins": {
 "template": {
 "type": "https://raw.github.com/CloudBees-community/play2-
 clickstart/master/jenkins.xml"
 }
}

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 "app-variables":{

 "proxyBuffering":false,

 "http_version":"1.1"

 }

Any command-line input or output is written as follows:

git push heroku master

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, for example, appear in the text like this: "To create
an account, www.cloudbees.com provides a SIGN UP link."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

What's a PaaS and
Why CloudBees?

Cloud being the new buzzword, getting a correct definition is complex, and you can
be lost trying to choose the best Cloud offers available on the Internet for [put your
favorite stuff here]-vendors. Even talking about actual cloud implementations is
difficult since there are multiple levels of them.

The concept of the Cloud is about the ability to get resources on demand without
limits, but with the related cost, and without delays or human operation. Amazon
Web Services is one of the most popular Cloud services, and with an adequate
account set, anyone can get an EC2 (Elastic Compute Cloud) instance running to
host applications or use an S3 (Simple Storage Service) bucket to store files.

Cloud services are commonly organized into three categories namely, Infrastructure
as a Service (IaaS), Software as a Service (SaaS), and Platform as a Service (PaaS).

Infrastructure as a Service
Amazon EC2 is a typical IaaS. This service lets users lean using simple API calls,
servers to deploy applications, storage, or network routers. It only gives you the
hardware, which you then have to manage to get your whole technical stack up
and running. You have to select (or build) a virtual machine image (such as AMI)
with your preferred operating system, configure network and routing, attach disks
for persistent data, and so on. It looks like going to your favorite broker to buy PC
components and build your own computer. The main benefit is that you only pay
for what you actually use, so you can change your mind and get a bigger or smaller
server, or just drop everything at anytime.

What's a PaaS and Why CloudBees?

[8]

IaaS was a required, but low-level step in Cloud revolution. The flexibility it gives
you is huge as compared to the bare-metal hardware, even with existing rent
options. You can get dozens of servers available in few clicks, with ridiculous cost
that only relates to the duration for which you actually use them.

The main drawback is that you only get the hardware. Operating system setup,
low-level configuration, middleware installation, security, monitoring, and
maintenance are your responsibilities. This makes sense if you have some very
specialized software that you want to run, but for common technical stacks that
are the concerned standards, this doesn't make much sense. If you need your own
patched version of Linux kernel, IaaS is for you. If you want to run a Java application
under the latest version of Tomcat, you will end up spending hours of engineering
time just to set up and maintain the basic runtime that your developers are expecting.

Software as a Service
Another well-known actor in the Cloud ecosystem is Google Mail. Such software
doesn't require installation; you access it with a standard browser using a secure
HTTP transporter on the Internet. You can create a new Gmail address using a fully
automated subscription process. Such services are called Software as a Service
(SaaS) since they provide a fully running product, with some options to customize
them, but are focused on a specific use case. You can customize Gmail's style for your
company and set some default filters for all the users, but you can't convert Gmail
into a CMS—it's a mailbox service, period.

SaaS is based on another standardization: web-based applications that run on
modern, JavaScript-powered browsers. They can compare with the installed
applications for user experience (at least, for those of us who don't run Internet
Explorer), but don't suffer the same installation and maintenance overweight. SaaS
users need not worry about installation of security fixes, backups, and maintenance.

If the project you're working on matches with SaaS offer, don't look any further; just
use it. The time that you'll gain can be invested in lots of useful things to make your
business successful. If your business is successful, and you really hit a technical limit,
you will be able to switch to a custom solution, but don't try to implement your own
general-purpose service if you don't have highly specialized requirements. Gmail
users would never consider writing their own mailing system.

The drawback of SaaS is that you have limited options to customize the software.
They all expose API so that you can programmatically interact with the service to
integrate with the third-party tools and extend it to your own need, but you can't
change the general service spirit.

Chapter 1

[9]

Platform as a Service
Platform as a Service (PaaS) is a crossover between IaaS and SaaS. This is a fuzzy
definition, but it defines well the existing actors in this industry well and possible
confusions. A general presentation of PaaS uses a pyramid. Depending on what the
graphics try to demonstrate, the pyramid can be drawn upside down, as shown in
the following diagram:

End Users

Application
Developers

Infrastructure
Architects

Thousands of
Applications

A Dozen
Platforms

Few World-scale
Providers

SaaS

PaaS

IaaS

SaaS

PaaS

IaaS

Cloud pyramids

The pyramid on the left-hand side shows XaaS platforms based on the target users'
profiles. It demonstrates that IaaS is the basis for all Cloud services. It provides the
required flexibility for PaaS to support applications that are exposed as SaaS to the
end users. Some SaaS actually don't use a PaaS and directly rely on IaaS, but that
doesn't really matter here.

The pyramid on the right-hand side represents the providers and the three levels
suggests the number of providers in each category. IaaS only makes sense for highly
concentrated, large-scale providers. PaaS can have more actors, probably focused
on some ecosystem, but the need is to have a neutral and standard platform that is
actually attractive for developers. SaaS is about all the possible applications running
in Cloud. The top-level shape should then be far larger than what the graphic shows.

So, which platform?
With the previous definition of platform, you just have a faint idea; your
understanding about PaaS is more than IaaS and less than SaaS. The missing
definition is to know what the platform is about.

What's a PaaS and Why CloudBees?

[10]

A platform is a standardization of the runtime for which a developer is waiting to
do his/her job. This depends on the software ecosystem you're considering. For a
Java EE developer, a platform means having at least a servlet container, managing
DataSource to access the database, and having few comparable resources wrapped
as standard Java EE APIs. A Play! framework developer will consider this as
overweight and only ask for a JVM with web socket's support. A PHP developer will
expect a Linux/Apache/MySQL/PHP (LAMP) stack, similar to the one he/she has
been using for years, with a traditional server hosting service.

So, depending on the development ecosystem you're considering, platforms don't
have the exact same meaning, but they all share a common principle. A platform is
the common denominator for a software language ecosystem, where the application
is all that a specific developer will write or choose on their own. Java EE developers
will ask for a container, and Ruby developers will ask for an RVM environment.
What they run on top is their own choice.

With this definition, you understand that a platform is about the standardization
of runtime for a software ecosystem. Maybe some of you have patched OpenJDK to
enable some magic features in the JVM (really?), but most of us just use the standard
Oracle Java distribution. Such a standardization makes it possible to share resources
and engineering skills on a large scale, to reduce cost, and provide a reliable runtime.

Cloud and clustering
Another consideration for a platform is clustering. Cloud is based on slicing
resources into small virtual elements and letting the users select as many as they
need. In most cases, this requires the application to support a clustering mode, as
using more resources will require you to scale out on multiple hosts.

Clustering has never been a trivial thing, and many developers aren't familiar with
the related constraints. The platform can help them by providing specialized services
to distribute the load around the cluster's nodes. Some PaaS such as CloudBees
or Google App Engine provide such features, while some don't. This is the major
difference between PaaS offers. Some are IaaS-like preinstalled middleware services,
while some offer a highly integrated platform.

A typical issue faced is that of state management. Java EE developers rely on
HttpSession to store user's data and retrieve them on subsequent interaction.
Modern frameworks tend to be stateless, but the state needs to be managed anyway.
PaaS has to provide options to developers, so that they can choose the best strategy
to match their own business requirements. This is a typical clustering issue that
is well addressed by PaaS because the technical solutions (sticky session, session
replication, distributed storage engines, and so on) have been implemented once
with all the required skills to do it right, and can be used by all platform users.

Chapter 1

[11]

Thanks to a PaaS, you don't need to be a clustering guru. This doesn't mean that it
will magically let your legacy application scale out, but it gives you adequate tools
to design the application for scalability.

Private versus public Clouds
Many companies are interested in Cloud, thanks to the press for publishing all
product announcements as the new revolution, and would like to benefit from
them but as a private resource.

If you go back to the comparison in the Preface with an electricity production, this
may make sense if you're well established. Amazon or Google should have private
power plants to supply giant data centers can make sense—anyway it doesn't seems
that they do but as backends. For most of companies, this would be a surprising
company choice.

The main reason is that the principle of the Cloud relies on the last letter of XaaS
(S) that stands for Service. You can install an OpenStack or VMware farm on your
data center, but then you won't have an IaaS. You will have some virtualization and
flexibility that probably is far better than traditional dedicated hardware, but you
miss the major change. You still will have to hire operators to administer the servers
and software stack. You will even have a more complex software stack (search for an
OpenStack administrator and you'll understand). Using Cloud makes sense because
there are thousands of users all around the world sharing the same lower-level
resources, and a centralized, highly specialized team to manage them all.

Building your own, private PaaS is yet another challenge. This is not a simple
middleware stack. This is not about providing virtual machine images with a
preinstalled Tomcat server. What about maintenance, application scalability,
deployment APIs, clustering, backup, data replication, high availability,
 monitoring, and support?

Support is a major added value of cloud services—I'm not just saying this because
I'm a support engineer—but because when something fails, you need someone to
help. You can't just wait with the promise for a patch provided by the community.
The guy who's running your application needs to have significant knowledge of the
platform. That's one reason that CloudBees is focusing on Java first, as this is the
ecosystem and environment we know best (even we have some Erlang and Ruby
engineers whose preferred game is to troll on this displeasing language).

With a private Cloud, you probably can have level-one support with an internal
support team, but you can't handle all the issues. As for resource concentration,
working in support with thousands of customers allows a public platform to build
an impressive knowledge base.

What's a PaaS and Why CloudBees?

[12]

All those topics are ignored in most cases as people only focus on the app:deploy
automation, as opposed to the old-style deployments to dedicated hardware. If this
is what you're looking for, you should know that Maven was able to do this for
years on all the Java EE containers using cargo. You can check the same at http://
cargo.codehaus.org. Cloud isn't just about abstracting the runtime behind an API;
it's about changing the way in which developers manage and access runtime so
that it becomes a service they can consume without any need to worry about what's
happening behind the scene.

Security
The reason that companies claim to prefer a private cloud solution is security.

Amazon datacenters are far more secure than any private datacenter, due to both
strong security policy and anonymous user data. Security is not about exploiting
encryption algorithms, like in Hollywood movies, but about social attacks that are
far more fragile. Few companies take care of administrative, financial, familial, or
personal safety.

Thanks to the combination of VPN, HTTPS, fixed IPs, and firewall filters, you
can safely deploy an application on Amazon Cloud as an extension to your own
network, to access data from your legacy Oracle or SAP mainframe hosted in
your datacenter. As a mobile application demonstrates, your data is already going
out from your private network. There's no concrete reason why your backend
application can't be hosted outside your walls.

CloudBees – embrace the development
stack
CloudBees PaaS has something special in its DNA that you won't find in other
PaaS; focusing on the Java ecosystem first, even with polyglot support, CloudBees
understands well the Java ecosystem's complexity and its underlying practices.

Heroku was one of the first successful PaaS, focusing on Ruby runtime. Deployment
of a Ruby application is just about sending source code to the
platform using the following command:

git push heroku master

Ruby is a pleasant ecosystem because there are no such long debates on building
and provisioning tools that we know of, unlike in JavaWorld, GemFile, and
Rake, period.

Chapter 1

[13]

In the Java ecosystem, there is a need to generate, compile the source code, and
then sometime post the process classes, hence a large set of build tools are required.
There's also a need to provision runtime with dozens of dependencies, so a set of
dependency management tools, inter-project relations, and so on are required. With
Agile development practices, automated testing has introduced a huge set of test
frameworks that developers want to integrate into the deployment process.

The Java platform is not just about hosting a JVM or a servlet container, it's about
managing Ant, Maven, SBT, or Gradle builds, as well as Grails-, Play-, Clojure-, and
Scala-specific tooling. It's about hosting dependency repositories. It's about handling
complex build processes to include multiple levels of testing and code analysis.

The CloudBees platform has two major components:

• RUN@cloud is a PaaS, as described earlier, to host applications and provide
high-level runtime services

• DEV@cloud is a continuous integration and deployment SaaS based
on Jenkins

Jenkins is not the subject of this book, but it is the de facto standard for but not limited
to continuous integration in the Java ecosystem. With a large set of plugins, it can be
extended to support a large set of tools, processes, and views about your project.

The CloudBees team includes major Jenkins committers (including myself
#selfpromotion), and so it has a deep knowledge on Jenkins ecosystem and is
best placed to offer it as a Cloud service. We also can help you to diagnose your
project workflow by applying the best continuous integration and deployment
practices. This also helps you to get more efficient and focused results on your
actual business development.

The following screenshot displays the continuous Cloud delivery concept
in CloudBees:

What's a PaaS and Why CloudBees?

[14]

With some CloudBees-specific plugins to help, DEV@cloud Jenkins creates a smooth
code-build-deploy pipeline, comparable to Heroku's Git push, but with full control
over the intermediary process to convert your source code to a runnable application.
This is such a significant component to build a full stack for Java developers that
CloudBees is the official provider for the continuous integration service for Google
App Engine (http://googleappengine.blogspot.fr/2012/10/jenkins-meet-
google-app-engine.html), Cloud Foundry (http://blog.cloudfoundry.
com/2013/02/28/continuous-integration-to-cloud-foundry-com-using-
jenkins-in-the-cloud/), and Amazon Beanstalk (to be announced as I'm writing
this chapter).

Summary
This chapter introduced Cloud principles and benefits and compared CloudBees
to its competitors.

We will cover the CloudBees platform in detail in the next chapters. Hope that
you will like it as we do and give it a try. If you prefer another PaaS, never mind;
experiment with Cloud and let competitors give you the best service they can.

Getting Started Quickly
To avail all services, you need to set up a CloudBees account. This process requires
some registration steps and an initial setup before you are ready to do something
productive. This chapter demonstrates how the CloudBees platform has been
designed to lower this barrier and bring you to active application development as
soon as possible.

To create an account, www.cloudbees.com provides a SIGN UP link. Registration
is a simple process as the base services are free, so you only have to provide a valid
e-mail address and some personal information.

A user on a CloudBees platform is identified by their e-mail address. Once you sign
in, you create a user and domain to host your resources. This domain is sometimes
called account in documentation, but is not tied to the user, because the user can
access multiple domains, and a domain can be shared between a set of users with
distinct roles. When you select a domain/account name, note that it will be used
in all your service URLs and is immutable. So choose an appropriate name—for
example, your company or project name.

Getting Started Quickly

[16]

The following screenshot shows the account creation form:

Account creation form

The domain creation form also asks you to enter a name in the Forge Username
field. This username will be used to access forge services for HTTP-based resources
(webdev, subversion, and so on). Read the terms of service carefully (as you always
do in such circumstances, don't you?) and validate the form.

You are then redirected to http://grandcentral.cloudbees.com, where all
CloudBees services and users cross, just like trains and travelers do at New York
station. This probably could have been named services.cloudbees.com or
something similar, but you know how engineers are.

Chapter 2

[17]

The following picture displays New York's Grand Central Terminal:

New York Grand Central Terminal, credit: Wikipedia

Your CloudBees account is now successfully created. But you can't do much on the
platform because the account is distributed among dedicated services that you need
to enable. So, let's start getting some actual services from the platform.

Subscribing to services
The GrandCentral services menu lets you manage your subscriptions. You can add
new services to your domain or change the subscription plan. For this quick setup
guide, we will subscribe to the DEV@cloud and RUN@cloud services. The former
covers the forge repositories and a Jenkins instance to manage your project build,
deployment, and continuous integration, and the latter hosts our applications.

Provisioning these services, especially getting Jenkins up and running, can take few
minutes, so let's explore the GrandCentral UI in the meantime.

Keys and authorizations
As part of user settings (a small gear icon at the top right of the window), an API key
and a secret key have been generated for you as a CloudBees user. You will need
them to use the SDK. We will discuss this in Chapter 7, Tools.

www.allitebooks.com

http://www.allitebooks.org

Getting Started Quickly

[18]

User settings also allow you to register your SSH public keys. We will use these keys
to access Git repositories hosted on the CloudBees forge later in this chapter. If you
don't have one, don't know what it is, and don't want to spend time on this, never
mind; just jump to the next section and use HTTPS.

If you don't have an SSH key yet, you can generate one using ssh-keygen on Linux
and Mac OS X or by using PuTTY on Windows. Be careful, CloudBees requires a
key in OpenSSH format, so export your keys in an appropriate format. While using
PuTTY on Windows, you need to use the export menu, as shown in the following
screenshot:

Generating a SSH key pair using PuTTY

Save the generated private key (by navigating to Conversions | Export in PuTTY,
you should get the OpenSSH key) under $HOME/.ssh/id_rsa; Windows users will
hit the stupid Explorer restriction that doesn't let them create a .ssh directory, even
this is fully supported by the operating system. Sorry guys, you will have to run the
cmd.exe console to create this one using the mkdir command.

Chapter 2

[19]

Paste the public key pair on the CloudBees web UI. Windows PuTTY users will copy
and paste it from the key generator text area. This key will be validated to ensure
whether the format is correct.

As we talk about the SSH key and authentication, you will see that such
a key has also been generated for your account. We will use it from the
DEV@cloud Jenkins to authorize the build service to access your own
resources.

Accessing services
After subscribing to few services, if you let your mouse pointer hover over the
Services menu without clicking on it, a pop up will show you all active services
with links to access them. You'll use these links to navigate through the CloudBees
services. The format for these URLs is https://grandcentral.cloudbees.com/
services/goto/<service>, as GrandCentral will act as an SSO service to integrate
both CloudBees and third-party services for a smooth user experience.

Let's check whether Jenkins is ready to handle our project by accessing the Jenkins
link at https://grandcentral.cloudbees.com/services/goto/dev-at-cloud.
The Jenkins instance is configured but has no job defined, so let's create a
project now.

Hey, we already are in the middle of this QuickStart section, so it's time to accelerate
and get some actual application running, don't you think so? We could spend some
time here explaining how to create a code repository, set up a Jenkins job, and deploy
our application, but let's get started and use a wizard-style automation to set up a
new application—CloudBees ClickStart.

Setting up an application using ClickStart
On the GrandCentral welcome page, you probably noticed the big black ClickStart
button.

This option gives you a list of available wizards to create typical applications based
on a set of popular frameworks. From the list of available ClickStart options, you
will notice that CloudBees is not just Java-specific, but we will discuss this further
in later chapters.

Getting Started Quickly

[20]

So let's choose a classic Tomcat 7 ClickStart option for this guide as shown in the
following screenshot:

ClickStart to get application set up in few clicks

ClickStart asks you for the application name and handles all the resource
initializations to prepare a development pipeline for the requested framework.
This means the following:

• Git repository, hosted on CloudBees forge, with initial code source
is committed

• Jenkins build to compile, test, and package the application
• Jenkins deployer is configured to deploy the resulting artifact on

RUN@cloud up on build success
• The RUN@cloud application is set with the appropriate runtime

configuration and container type
• Database is bound to the application

Chapter 2

[21]

The ClickStart wizard gives you status links to the generated resources so that you
can explore all of them.

ClickStart status screen

Depending on the ClickStart option you select, the Jenkins build may use distinct
plugins, build tools, and configuration options. Some ClickStart options don't use a
database or do not rely on other services, but the general idea is always the same: set
up the application as a continuous deployment pipeline, from source code to hosted
application, with an initial working state. When the ClickStart operation is complete,
an initial Jenkins build is run to confirm whether the pipeline is ready to support
your own developments.

As we explained in the previous chapter, the CloudBees vision of a PaaS is about
hosting the full development cycle, not just application hosting. With ClickStart,
you can be ready to develop your own application from a validated skeleton in just
a few minutes.

After ClickStart has successfully generated and configured all resources, you can
see the app running on your RUN@cloud subdomain at http://<app>.<account>.
cloudbees.net.

Getting the code
Let's now edit the generated ClickStart application to customize it according to our
needs. The first thing to do is to get the source code to amend it with our own stuff.

Getting Started Quickly

[22]

We assume you have a Git client installed on your computer or use an appropriate
IDE integration.

ClickStart always uses Git for repositories. The CloudBees forge
also supports subversion, and maybe you prefer another SCM,
such as Mercurial. There is no enforcement to use Git, and you
can switch to your favorite SCM just by changing the Jenkins job
SCM configuration. CloudBees just doesn't provide this option in
ClickStart. If you don't want to use Git, you'll need to export the
skeleton project and commit code into your own repository.

The ClickStart wizard gives us the forge repository URL. Pick it up and use it to
clone your project. To use SSH, you need to have a key generated and registered on
the CloudBees user settings page as discussed earlier. If you don't have one, you can
use HTTPS with your CloudBees forge credentials; but beware that your login is
your forge login credential and not your e-mail address.

git clone <repository URL>

Making changes and updating the
application
Let's edit the application sources and add our own stuff to customize it to our needs.
On a basic Tomcat web application, customization is not the adequate term as the
code skeleton doesn't provide much, and we have to configure our favorite web
framework and utility classes; but at least, we have a base project structure to get
started quickly. If you're familiar with Maven archetype, this is mostly comparable
at this stage.

After making some changes to our app, let's commit and push it to CloudBees:

git.add
git commit -m "I made some changes"
git push origin master

If you are not familiar with a distributed SCM such as Git, you just
need to know that sending changes to a CloudBees-hosted repository
is a two-step process:

• Commit the repository to group file changes into an atomic
commit object

• Push it to send pending local commits to the remote repository

Chapter 2

[23]

Now, let's have a look at our DEV@cloudJenkins instance. You'll notice that the build
queue has immediately triggered a build, just as the forge received our commit. Such
a post-commit hook allows Jenkins to be very efficient for continuous integration
and build automation, since there is absolutely no delay in waiting after a commit is
pushed and a build is run to validate it. Jenkins can also poll SCM, but for whatever
repository you use, whether it's being hosted on the CloudBees platform or not,
please consider using a commit hook for efficiency.

The build runs to integrate our commit, and the Jenkins deployer plugin deploys
the resulting application onto RUN@cloud. We can check whether the application
has been updated just few seconds after we've committed it, without any complex
configuration to set up this process. We will discuss in Chapter 5, Managing Your
Build, how to review this continuous deployment process to adapt to developer
teams, multiple environments, and release processes.

PaaS versus self-managed infrastructure
Something you probably noticed during the introduction to the CloudBees platform
is that you never interacted with a human to get resources provisioned or tools
setup. Everything is automated and managed by APIs, therefore, full-platform
automation, such as ClickStart, is possible.

Creating new resources on demand, like we did by creating an application and
database on RUN@cloud, is possible—thanks to Cloud elasticity—and relies on the
mostly unlimited resources that IaaS has to offer.

As compared to self-managed infrastructure built on an IaaS, the main benefit of a
PaaS is the time you save by not handling low-level stuff. Your engineering team
probably could set up a Tomcat server on an EC2 instance as well as a Git server on
a Jenkins instance. They even can have this scripted some way, so this can be quickly
set up.

But this is only the emerged part of the PaaS iceberg, and does not even considering
the time spent to set up such an infrastructure. This won't include time and money
invested in monitoring, maintenance, backups, upgrades, and support for the whole
platform. They aren't as visible as the application you just deployed so are easily
ignored when trying to compare with another solution. If you include all those topics
in your self-managed infrastructure costs, it probably will be unacceptable. A secret
with PaaS is that these costs only apply once and are shared across all users.

Getting Started Quickly

[24]

This also won't manage scalability. Your self-managed Jenkins instance may run on a
m1.micro instance initially, then the growing team will require to migrate to a larger
box. You will probably never get an adequate resources size, and at same time, will
pay for unused resources. A PaaS that shares resources to multiple tenants lowers
the costs as it enforces the best use of resources by sharing them, and adapts to your
load with minimal cost.

An Amazon m1.micro instance, the cheaper one, cost 0.2 cents per hour. Thanks
to resources sharing for a larger box with multiple users, a base RUN@cloud
app-cell cost is 0.19 cents per hour, with all managed infrastructure benefits.
So, a PaaS instance is cheaper than the equivalent infrastructure it offers!

For specific software stack requirement, a dedicated infrastructure can make sense
sometimes, but sharing a common infrastructure allows us to reduce costs to a great
extent and helps in better service. It also offers higher order automation, and the
ClickStart options demonstrate this by providing a one-click way to set up a full
project in few minutes.

Summary
This chapter demonstrated how simple it is to set up a project on the CloudBees
platform. Using ClickStart is recommended to get started, even if you have existing
code, as it will prepare a complete and working pipeline that you just have to adapt
to your own project.

Users, Domains,
and Services

As we have seen in the previous chapter, the CloudBees platform distinguishes users
from the domain (also known as account, but we will avoid this confusing term).

Users and roles
The domain is created by a user and shared with other team members. You can,
for example, have a domain created for your company or maybe just for a project
depending on your organization. Users can then be added to the account, and the
maximum user count depends on the subscription plan.

Users can have the following roles on a domain:

• Administrators: They can manage users and services, subscribe to services,
change the subscription plan, change other users' permissions, and configure
the domain to allow new users or to revoke them. There's no need to be a
single administrator as there is no such notion as an owner of the domain.

• Users: They can access services but cannot change subscriptions or manage
other users.

Users, Domains, and Services

[26]

On RUN@cloud, all users can access applications and databases on the domain.
Both users and administrators can create new RUN resources, application
containers, or databases.

For this reason, some companies prefer to have a distinct RUN-only
production domain to host production applications and insulate
the development team to a development-specific domain that can
use the RUN infrastructure for testing. They then use some Jenkins-
specific plugins to securely share the artifacts between accounts.

DEV@CloudForge has the same simple model. All the users can access all the
resources. Repositories can be switched to public if you want to expose some
open source code or distribute the artifacts via a public Maven repository.

DEV@cloud Jenkins is an exception to this minimalist role model. Thanks to the
CloudBees Jenkins Enterprise plugin, Role-based Access Control (RBAC), you
can set up fine-grained access rules for the users on your Jenkins instance.

You can also make your Jenkins server partially public if you want to expose some
build state to anonymous user, or include the build status in a wiki for sample.
RBAC will then filter permissions for anonymous users compared to the official
domain users.

Services
The DEV@cloud and RUN@cloud service subscriptions are managed by the Grand
Central application like other services available on the CloudBees platform. Let's
have a look at the Services management page.

This page lists the subscribed services with a link to the service and the options
to change the subscription. The Add service button lets us explore the available
services on the platform.

Chapter 3

[27]

The following screenshot depicts the available services:

Available services

Each card on this deck shows a minimal resume of the provided service with the
subscription plan fees. As you can see, most services offer a free plan, so you can
test them before you consider if they actually match your requirements.

Integrated partner services
We have set up the continuous deployment in Chapter 2, Getting Started Quickly.
Using a ClickStart application only uses the basic DEV and RUN services, but the
CloudBees platform offers a larger set of services. They all are SaaS services that
are integrated in the CloudBees platform, offering you the ability to extend your
Cloud experience with additional features.

Users, Domains, and Services

[28]

Most of them are third-party types of SaaS. CloudBees could surely host PostgreSQL
or MongoDB by itself and offer it as an add-on; we actually have some of them for
internal use, but as we really think of the service as a key for the Cloud adoption and
not just for software automation, we prefer to let the advanced and specialized team
handle them and provide all the required monitoring, maintenance, and support.

Why does service matter so much? Cloud is generally presented
from a technical perspective, but the actual paradigm shift is about
switching from technology to service. When you have an issue with
your Mongo database, you don't have to call a certified consultant.
You can directly contact the CloudBees support, who will act as level
one support and handle your issue with the MongoDB experts.

Our Jenkins instance builds our project to deploy every commit to RUN@cloud but
Jenkins can do more. With Sonar, we can run code analysis on a periodic basis and
measure the code's quality. Sonar being packaged as a SaaS and fully integrated in
to the CloudBees platform, we only have to subscribe to this service (all it takes is a
click), wait for the Sonar instance to be provisioned on Cloud servers, and then use
it. CloudBees service integration manages the SSO integration, account creation on
partner SaaS, and enables single billing. Subscribing to such a service is really just a
one-click operation—as this is the first paying subscription we use, it will actually be
more than one click as we have to enter the payment details.

Such a service integration is called "an integrated partner" in the CloudBees
documentation. Integration means you don't really have to worry that the partner
service is managed by a third-party company. Subscription is a one-click process
that will:

• Automatically create the partner account
• Set up your CloudBees resources, install the Jenkins plugin, and

declare the credentials
• Configure the billing integration so that you only get a CloudBees bill and

can pay using the payment information you declared on CloudBees

Chapter 3

[29]

The following screenshot displays the simplified subscription to an integrated
partner service:

Simplified subscription to an integrated partner service

As well, we can improve our continuous integration process by running some web
tests based on Selenium using real browsers provided by the SauceLabs partner.
As for Sonar, CloudBees's ability to integrate will automatically manage the SaaS
account creation and consolidate billing and SSO. It will also install the appropriate
plugin on the Jenkins instance account and set up the credentials, so that we
can set up a selenium/saucelabs build without having to worry about the
configuration details.

There are few other services that we can use in order to improve our DEV toolbox.
The JFrog'sArtifactoryMaven repository manager lets us control libraries that we can
include in our application and/or release process to promote binaries. XWiki allows
us to manage the development team's documentation with a very extensible wiki
platform. Blazemeter can be used to run load tests on a periodic basis, so that we
can detect performance regressions and fix them as soon a possible. The same
model applies to RUN@cloud.

Users, Domains, and Services

[30]

NewRelic is a monitoring and diagnostic service. It uses some application
instrumentation and a runtime agent to collect metrics and provide health statistics.
Thanks to the CloudBees integration, you don't have to worry about those technical
details but just subscribe to this third-party service and then enable it on your
application just by checking a checkbox on RUN@cloud web console. The integration
service fully handles the role of setting up the appropriate agent on your application
container.

PaperTrail, a SaaS log collector service, offers a comparable simplified setup
experience. Just by selecting the appropriate checkbox, your application will be able
to send logs to this service that will aggregate them and provide consolidation with
a search interface similar to Google Search.

SendGrid offers mail services so that your application can send mails to notify your
users. CloudBees integration then, in addition to consolidated authentication and
billing, is used to inject the related resources into your application container. For
a Java EE container, this means you'll get a JavaMail session bound into the JNDI
container that you can retrieve at runtime without any extra configuration.

For data storage, MongoDB or CloudAnt can be used as NoSQL engines.

All these services are part of the so-called CloudBees ecosystem. But this one is larger
than the integrated partners that we quickly listed here.

Validated partner services
The CloudBees ecosystem, mentioned in detail at http://www.cloudbees.com/
platform/ecosystem/tech-partners.cb, includes a larger set of third-party
services. Most of them aren't available on the services subscription page as they
are validated partner services.

Such third-party services aren't as integrated to the CloudBees platform as Sonar
or SendGrid are. CloudBees worked with such partners to agree about the
commercial relations, to check whether both the services can smoothly work
together, and documented the integration steps in wiki, but there is no subscription
or billing integration between them.

Even the user experience is not as smooth in such integrations. The main benefit is
that adding new partners to the ecosystem doesn't require any lengthy integration
work. So there are more opportunities for you to get adequate services for your own
use. The services that are very popular could later evolve into integrated partners.

Chapter 3

[31]

Thanks to this model, the CloudBees ecosystem has been rapidly growing since
last year. The following screenshot demonstrates the verified partner ecosystem:

Quickly growing verified partner ecosystem

An example of why to use such a partner is for the use of database. As we've
seen, CloudBees offers MySQL databases as a service on the RUN platform, but
the platform users have to accept the multitenancy constraints (lack of control on
advanced configuration), and are limited in the schema size up to 5 GB. For a larger
database or for customization, CloudBees recommends using Amazon RDS.

The RUN team of CloudBees focuses on making the platform the best place to host
the applications and doesn't want to have dedicated engineering energy focused on
a Database-as-a-Service offer even if it makes sense to offer a simple MySQL cluster
for prototyping, testing, or small general purpose databases. In actual production
situations, a dedicated third-party offer makes more sense as the service provided
will benefit a more specialized level of expertise, advanced configuration options,
and support.

Consider the CloudBees ecosystem as a SaaS marketplace where CloudBees offers
the generic platform and SaaS partners add services to it. Depending on your
own use, design, development language, and practices; some of them won't make
sense to you whereas some will be a requirement. Thanks to this extensibility and
modularity, you can select the adequate environment for your development team
and application.

Users, Domains, and Services

[32]

Summary
This chapter demonstrated how the CloudBees platform integrates with a larger
ecosystem that lets you select the adequate components to match your own
requirements. This extensibility makes the platform an attractive place for software
developers as they can quickly test the technologies with expert partners to manage
infrastructure and services.

ClickStart in Depth
In Chapter 2, Getting Started Quickly, we used ClickStart to get an application deployed
on the CloudBees platform without spending much time on the details. Let's now look
further into ClickStart and learn how to use them for our own projects.

What's a ClickStart?
As you log in to the CloudBees platform, you can see a set of links on the CloudBees
toolbar. The ClickStart link is next to the Home button. ClickStarts are a major
component of the CloudBees platform, as they provide the glue between services
to provide a smooth user experience.

Let's use a concrete example. Click on the ClickStart button to get a list of the
available ClickStarts. The following screenshot shows the ClickStart selection wizard:

ClickStart in Depth

[34]

As you can see in the preceding screenshot, the CloudBees platform doesn't just
support Java, but also a large set of runtimes. You will find the following in this list:

• Some JavaEE containers such as Tomcat, JBoss, Glassfish, and Jetty
• Some alternative languages and web frameworks such as Grails, Scala and

Lift, and Play! Framework
• Some non-Java stacks such as Node.js, Google Go, Dart, and Erlang

Webmachine
• Some more specific ClickStarts such as the iOS mobile web application and

the Facebook application

Some ClickStarts such as PetClinic are pure demonstrations for the purpose of
implementing the framework's blueprint on CloudBees. You can use them as an
educational ClickStart to check how the configuration is set and mimic it in your own
projects. Other ClickStarts are actual application skeletons to start a new project.

Let's use a Play2 ClickStart as an example in this chapter. The parameters required to
launch a ClickStart are limited to giving a name to the application, as shown in the
following screenshot. Everything else is managed by ClickStart. This one also checks
for platform prerequisites, for example, there will be a warning if you don't have a
DEV@cloud Jenkins subscription. The following screenshot displays ClickStart–a
single parameter to set up a full application:

Chapter 4

[35]

This ClickStart created the following:

• An application skeleton code, stored in a Git repository
• A Jenkins job to build and deploy the application
• An application container for the application (a Java container for a Play2

application)
• A database to store data according to the application skeleton (some

ClickStarts don't use a database)

Getting the code
You can retrieve the code as you can for any other Git repository. This is just a basic
application skeleton source code committed as an initial commit, as shown in the
following screenshot:

ClickStart in Depth

[36]

You may not be experienced in using Git as the source code management tool,
but don't worry too much. Using your favorite IDE, you can make the best use
of the assistance wizard to access the repository and retrieve the code. Anyway,
this may be a good opportunity for you to learn using Git, and then you'll hardly
use another tool.

The application generated by ClickStart is very basic and doesn't offer an
advanced UI design but just demonstrates a working codebase, as shown
in the following screenshot:

You can now customize the skeleton source code to demonstrate your developer's
skill and convert this basic application into an awesome UI with great features
and services.

Building the project
Depending on the ClickStart you choose, the created project may use various tools.
Play2 uses Scala SBT. A Jenkins job has been generated to match this requirement.
You can customize your Jenkins job, if required, to tweak the build and match your
own requirements.

Chapter 4

[37]

The following screenshot demonstrates Jenkins job configured by ClickStart:

The things to note in the generated Jenkins job are as follows:

• A forge trigger will be set to start a build when you commit some changes.
Thanks to this trigger, you'll get continuous feedback on integration few
minutes after a commit is pushed to the forge repository and can retrieve
the built binaries.

• The CloudBees deployer will be set to deploy the built application to
RUN@cloud when the build is successful. If your commit is valid, you'll get
the associated application up and running on your PaaS in a few minutes.

Jenkins is very flexible and provides a bunch of plugins so you can customize
your build in many ways. We will look into those options later in Chapter 5,
Managing Your Build.

Managing the deployed application
The RUN@cloud web UI lets you manage your application by selecting the
deployment options. Many advanced options are only available with the
CloudBees SDK, which will be covered in Chapter 7, Tools.

www.allitebooks.com

http://www.allitebooks.org

ClickStart in Depth

[38]

The RUN@cloud web UI also lets you access the application logs (both the system
output stream and the access logs), as shown in the following screenshot. They will
be your best friends if you have to diagnose a deployment error. So, remember to
instrument your application with debug logs and metrics.

The ClickStart ecosytem
Most ClickStarts you can see on the CloudBees UI are developed in the CloudBees-
community GitHub account. This account has been set so you can contribute your
fixes/improvements, just fork a repo, make a change, give it a try, and create a
pull request.

A ClickStart, technically speaking, is a simple JSON file. Let's have a look
at one of the CloudBees' ClickStarts, for example, Play2. The following screenshot
demonstrates ClickStart hosted on GitHub:

Chapter 4

[39]

The README.md file is common in GitHub repositories, but it makes more sense here
as it's the simplest way to let another user test your ClickStart, as the Deploy Instantly
on CloudBees button suggests. All the ClickStart mechanisms are based on calling
a Grand Central specific URL with a path to the ClickStart's JSON file: https://
grandcentral.cloudbees.com/?CB_clickstart=<clickstart.json-URL>

The Clickstart.json file describes the requirements and resources to be generated,
as shown in the following code snippet:

{
 "id": "play2",
 "name": "Play! Framework 2",
 "source": "github",
 "description" : "Get started with the Play Framework, version
 2, hosted natively",

ClickStart in Depth

[40]

 "icon" : "https://d3ko533tu1ozfq.cloudfront.net/
 clickstart/play2_icon.png",
 "supported-by" : "cloudbees",
 "order" : 1,
 "runtime": {
 "type": "play2",
 "app-parameters" : {
 "runtime.java_version": "1.7"
 }
 "app-variables":{
 "proxyBuffering":false,
 "http_version":"1.1"
 }
},
"build-with-jenkins": {
 "template": {
 "type": "https://raw.github.com/CloudBees-community/play2-
 clickstart/master/jenkins.xml"
 }
}

The first part describes the ClickStart and its integration in the CloudBees UI (icon,
documentation, and so on).

The runtime section describes the generated application on RUN@cloud. The
container type is set to play2; refer to Chapter 6, Running Your Applications, and Chapter
8, Using ClickStack to Extend the Platform, for more details on runtime containers.

Build is defined as a Jenkins job based on a Jenkins config.xml export file.
Some tokens are used to replace the fragments with the information provided
when the ClickStart is executed, such as a Git repository URL and an application,
and the account name.

Nothing more! It is very simple, and you can quickly build your own ClickStart.

Writing your own ClickStart
ClickStart is such a simple way to set up a project but you will probably have to write
few of them for your own projects. You can use them to prepare a project skeleton,
enforcing all the best practices in development stage when the project is bootstrapped.

Chapter 4

[41]

Let's create a ClickStart from scratch. We'll illustrate this by setting up a ClickStart
for SimpleWeb4J, a lightweight REST-based web framework, which was recently
created by my friend, Yan.

First, create a new GitHub repository to host our ClickStart. For simplicity, this
one will also host the codebase for the app to be deployed. The project skeleton is
basically a maven pom.xml file and comprises few classes.

Let's then create an adequate Jenkins job to build this project and produce a jar file
with the application ready to be deployed, including all of its dependencies. In the
next chapter, we will cover how to use Jenkins to set up a job in more detail; anyway,
this isn't a complex task. Now we need to perform the following:

• Create a Maven job
• Configure an adequate Git repository and some Maven goals
• Configure the post-build deployment to RUN@cloud

ClickStart in Depth

[42]

Now let's export this job as an XML file using the JOB_URL/config.xml URL.
We just need to replace the Git repository URL with ${repositoryUrl}; similarly,
for ${account} and ${application} to get the jenkins.xml template added to
our ClickStart repository.

Last but not least, we have to write the clickstart.json file for this new ClickStart,
as shown in the following code snippet:

{
 "id": "simpleweb4j-clickstart",
 "name": "SimpleWeb4j",
 "source": "github",
 "description" : "SimpleWeb4j application in continuous
 deployment",
 "icon" : "https://raw.github.com/ndeloof/simpleweb4j-
 clickstart/master/icon.png",
 "supported-by" : "community",
 "runtime": {
 "type": "java",
 "app-parameters" : {
 "runtime.class": "com.mycompany.Main"
 }
 },
 "build-with-jenkins": {
 "template": {
 "type": "https://raw.github.com/ndeloof/simpleweb4j-
 clickstart/master/jenkins.xml",
 }
 }
}

Chapter 4

[43]

Just add a README.md file with an adequate link and push the resulting project
to GitHub. We're done! We can now test our new ClickStart (shown screenshot
available at https://github.com/ndeloof/simpleweb4j-clickstart) and
share the link with our friends. The following screenshot demonstrates how to use
ClickStart to promote your own projects:

Summary
This chapter demonstrated how CloudBees' ClickStart lets you bootstrap a project
in few seconds, and how you can easily set up your own ClickStart for your own
frameworks, development rules, and practices. We expect the ClickStart ecosystem
to quickly grow and provide a large set of templates for various frameworks and
application architectures.

Managing Your Build
The ClickStart application generated a build job, so we didn't look further into
the Jenkins Continuous Integration (CI) server and the way it has been tweaked
as a Cloud-hosted service called DEV@cloud. Let's get into the details now.

Jenkins
Formerly known as Hudson, Jenkins is the de facto standard for the CI server in the
Java ecosystem, and is also becoming popular in other communities. Its primary task
is continuous integration. It checks project health on a regular basis using automated
build and test scripts. Jenkins offers an extensible design and is based on the plugin,
so that it can offer a simplified UI or specialized features for some specific use cases.

Continuous Integration
Integration used to be a project management phase, which gets started after the code
development has been completed, to put the software components together and pass
some tests to ensure that the project goals are achieved. This used to be complex,
time consuming, and used to reveal bugs that had a huge impact on codebase
because they had been detected late.

As an Agile software development evangelist said, "If it hurts too much, do it more,
on smaller assets", so Extreme Programming has promoted CI. The principle of CI is
to run the integration phase as much as possible (at least once a day) so that you can
have a quick feedback on the code change impacts and revert or fix them quickly at
limited costs.

Managing Your Build

[46]

Automation
Running the integration phase during all the development process can't be achieved
by a human test team, as this would not only be a huge effort and a high cost, but
it will also be a repetitive. This means that doing it manually is not the best option.
Automating the build, test, and packaging process is the basis for continuous
practices. Thanks to the advanced build tools, test frameworks, embeddable
application containers, and advanced deployment managers, software development
project can fully automate the integration process nowadays. Jenkins offers to run
it on a regular basis (this can be for every commit) and produce reports for the
developers to have a constant feedback on project health.

Jenkins is not restricted to continuous integration. Being based on a high-level
abstraction and relying on plugins for all specific tasks, it can be used to manage a
large set of automations, software development and management tasks, reporting,
and more.

Extensibility
Jenkins architecture is specifically designed for extensibility and to define a set of
extension points. This allows features of Jenkins to be segregated into dedicated
plugins, each of them hosted on a dedicated repository in GitHub. This divide and
conquer strategy lets the Jenkins open source community grow quickly, with the
contributors being focused on small subsets.

Jenkins open source community maintains more than 650 plugins. They cover all
the aspects of software development and automation such as SCM support, build
and test tool integration, deployment management, reporting and notification,
and build orchestration.

Scalability
Jenkins runs as a monolithic web application, but it can control a set of servers that are
known as build slaves. Jenkins can distribute its job's execution on those slaves to limit
the master load, by handling only the Web UI. This allows a Jenkins installation to be
scalable up to thousands of jobs, driving hundreds of slave machines.

DEV@cloud
CloudBees, DEV@cloud offers Jenkins as a Service that is hosted in the Cloud.
This can be used as a standalone SaaS; but as ClickStart demonstrated, it also
fits well in the CloudBees integrated development chain.

Chapter 5

[47]

The following screenshot shows a Jenkins instance that has been set for our
CloudBees account. The ClickStart we used generated a build job, but we can define
many more and even organize them into views or group them into folders. A Jenkins
instance for a large company can handle thousands of jobs!

Each job defines what should be done as an automated task, and also tells when it
should be done. Jenkins UI is fully web-based and offers lots of options (depending
on the installed plugins), which are grouped into sections. All of them can grow
depending on the installed plugins. The sections defined in the Builds menu are
as follows:

• The main section defines the job name, parameters, and the Jenkins execution
constraints (where to build and when to purge data).

• The Source Code Management section lets you define from where you can
get the code. This reveals that Jenkins was initially designed for CI, but you
can select None if you wish to run some periodic tasks.

• The Build Triggers section lets you define when to run this job. It can be
based on a periodic cron (checking for SCM changes using polling, which
depends on other job execution), or it can get automatically triggered when
code is pushed to SCM. The latter one is the better option as you won't have
any delay and you'll get a quick feedback.

Managing Your Build

[48]

• The Build Environment section lets you define how to set up the build before
it actually starts. It can be used, for example, to expose environment variables.

• The Build section is used to define the actual build. Various build steps are
declared here to provide the full build process. They will be run sequentially,
and the sequence will stop on the first failure.

• The Post-build Actions section is used to collect reporting data, archive build
results, and to the notify the team on build status.

The following screenshot shows the Build Environment, Build, and Post-build
Actions sections:

Customization
Jenkins top-level Manage link lets you customize your Jenkins instance. The global
configuration can be used, for example, to manage the installation of tools that will
be exposed to job configuration. The initial configuration includes all the preinstalled
JDKs available on DEV@cloud slaves, but you might not have to care about JDK 5
and might want to remove it in order to avoid the UI getting confused or software
being built using this JDK by mistake. In that case, you can remove it or configure
your own versions.

Chapter 5

[49]

CloudBees provides a large set of preinstalled tools, and an autoinstaller can be used
to extend the available toolset.

Plugins
DEV@cloud has a set of preinstalled plugins that allow Jenkins to run most use cases.
For your own project, you will probably search for some missing features.

Also, you can access the Plugin Manager (Jenkins | Manage | Plugins) to select
plugins that will be installed on your instance. The CloudBees update center doesn't
expose the 650 plugins available in the Jenkins community, for usage simplification.
It provides the most requested plugins only. If you miss a specific plugin and want it
to be installed, just refer to the support process. Installing a plugin requires Jenkins
to restart (UI lets you think this is optional, but I recommend you to restart Jenkins
for an Eclipse plugin installation).

Managing Your Build

[50]

On-demand slaves
DEV@cloud is designed to let you benefit from Cloud-based hosting. So, your
Jenkins master won't run any build on the master's host. CloudBees manages a slave
pool, provisioning new slave instances when the global service load grows, based
on the Amazon Web Services IaaS elasticity. As a new build starts on your Jenkins
instance, the CloudBees slave pool assigns you an available slave for running
your build.

CloudBees provides both m1.small (default) and m1.large build
slaves. The latter is more or less two times faster. If your project
requires significant build resources (m1.small only has 2 GB memory)
or you want to speed up a few a classic builds, you can set the Restrict
where this project can run option to m1.large.

With Amazon Cloud as the sole limit to your slave allocation, you can trigger a
dozen concurrent builds when required. That's a significant change in the way you
consider your software factory. Now there's no reason for not triggering a build on
every commit, or for not computing QA metrics on the code on a regular basis. The
cost of build minutes is so low (10 cents per hour) that an on-demand build slave can
be used for a large set of tasks to improve your development process.

Continuous delivery
Continuous delivery a typical improvement to CI. Applying the principle of Agile
software practices, it's based on the definition of done for a software developer. A
task is done when there's no more manual or untested steps involved in getting
the related code pushed to production.

When you tell your Project Lead that you have completed development on item
#987; in many cases, you may mean that you have done the following things:

• Developed the item
• Ran some tests
• Maybe wrote some automated tests
• Possibly asked a colleague to review your code

Is your code actually ready for production? Did you do the following:

• Compute the QA metrics to ensure that the code follows team conventions
and make application look better than it was before you contributed (known
as boy scoots principle)

• Run the deployment process in a production equivalent environment

Chapter 5

[51]

• Run acceptance and performance tests on the application to check its impact
• Give the production team enough information so that they don't need any

manual or untested process to be run

I won't blame you since the ability to embrace the whole development process up
to production isn't easy, and it often hits some organization barriers. Anyway, just
consider how this changes in a Cloud-based environment.

Our CI allows us as many computer resources as we need. Our server is a PaaS. We
will get into more details in Chapter 6, Running Your Applications, but by nature, this
is a fully automated, on-demand service for hosting our application.

Full chain automation – continuous
deployment
The first step is to introduce you to the continuous deployment process, which you
already know—thanks to ClickStart! Every commit is built, tested, and deployed to the
PaaS on successful testing. Thanks to the full API-based automation in PaaS, there's no
manual process involved in getting the last commit available as a running application.

For a production server, this is probably a little risky for most of us. But for a
development team, this is just awesome.

• Do you need to show product owner how his/her new widget will look?
Just use continuous delivery to a demo application. Discussion with product
management, designers, and user experience experts will be far easier.

• Do you want to perform some acceptance or functional tests? Deploy to a test
instance on PaaS using a production equivalent setup and run your tests. Kill
the application after test consumption. Even for a large application, such a
test will only cost few cents.

• Do you want to diagnose a bug? Deploy the last tagged version to your own
test instance on the PaaS.

• Do you want to release your application to production? This is the exact
same deployment process that you used for the demo app! It is just another
target environment.

PaaS is a dream environment for continuous delivery evangelists. By nature, all
deployments use exactly the same fully automated process. On-demand resources
allow the replication of the environment for different uses, and production is just
one of them—from a platform and process point of view.

Managing Your Build

[52]

Implementing this on DEV@cloud Jenkins is easy. You only need to clone the job
definition and application container. Jenkins even offers a Copy from option, as
shown in the following screenshot, while creating a new job that will make this trivial.

We now just have to configure the production job to monitor a distinct production
branch, and configure our demo job to monitor the master branch. With such a setup,
deploying to production is just a Git merge operation.

Job chain
Maybe you don't like the option of getting the production deployment process to
be based on a Git merge. This is well accepted by the developers who don't use
a compiled language, as the deployed artifact is more or less just the source code
packaged in some way. As such, Java developers are not confident with the build
process for generating a reproducible binary.

If you prefer the production deployment to use the exact same binary package that
you deployed for development, you can chain the Jenkins job together. As some
phone device company would say, "There's a plugin for this."

When Jenkins runs a job, the resulting artifact(s) can be archived on Jenkins master
for later use. This is controlled by a post-build action. Maven jobs automatically
archive the produced Maven artifacts, so this is even simpler.

Chapter 5

[53]

After a job has been completed, you can trigger another one automatically as a
downstream job using the Build another project post-build action. This can be useful
if you want your CI job to report compilation and unit test failure quickly, and trigger
a longer functional testing suite on success. The job to manage this test suite will
reuse the previously built artifact; deploy it to a test server on the PaaS, run the tests,
and shut down the resources. For this purpose, the Copy Artifact plugin can be used,
which is configured to retrieve an artifact from the upstream build that triggered this
job. The following screenshot depicts the options in the Builds window:

With such a setup, every commit will be tested by the on-commit job; and then all
successful commits will be tested by the functional test suite. We can then follow up
with the other jobs to run performance tests, compute QA metrics, and so on.

Promotion
Jenkins' promoted builds plugin is another plugin that can help in this scenario.
This plugin allows the tagging of a build based on some criteria and gets some
actions executed when this promotion occurs.

Managing Your Build

[54]

A typical use of this plugin is to have a nightly performance job to stress test the
application, and ensure that the latest development didn't introduce performance
regressions. This job needs artifacts from the previous day that passed all the test
chains successfully. So, we need some way to know which on-commit builds were
both successful and passed the functional test suite.

Promotion can be used here to tag a build when downstream functional suite is
successful as well. It will detect the success of downstream job and add a visual flag
on the build history. We can re-use this information from another performance job to
make the Copy Artifact plugin use the last promoted build as the source for artifact.
The following screenshot shows the Promotion process window:

Promotion plugin can also run some actions when the promotion occurs. We can use
this to create a manual promotion. Compared to the one we've seen so far, this one
has no criteria but just waits for some approved user to click on the Approve button.
The associated action will use the same deployment process that we used a dozen
times during development, but it will be configured for the production environment.

Chapter 5

[55]

Summary
This chapter demonstrated how the extensible Jenkins server lets us define a
simple but powerful job chain. We quickly demonstrated two plugins, but the large
ecosystem offers incredible options to improve the Jenkins' capability in order to
embrace your own development process. Combined with the PaaS deployment, API
simplicity, and flexibility, Jenkins with the Cloud-based unlimited resources offers
great opportunities for your development team to introduce new testing tools and
implement the best development practices.

Running Your Applications
In the previous chapter, we set up Jenkins to deploy our application for various
development and production scenarios. Let's now get deeper into the RUN@cloud
platform and its features.

Scalability
Talking about Cloud to host your application, we're comparing to classic hardware.
Such servers are large memory—high-CPU computers in a self-hosted datacenter.
Many applications, even the high-load ones, running in such a context are
monolithic, single-server applications. The Cloud is based on smaller low-cost
machines, which are available by dozen when necessary.

Vertical scalability is the option to scale up the application to a larger server when it
requires more resources. This makes sense in the Cloud context as the on-demand
resources and automated APIs let you restart your application on a new server
within minutes. So, you can use a larger server as your application load grows,
but keep in mind that there's a limit. Let's consider the features of Amazon EC2
m1.large computer:

• 64 bits CPU 4 compute unit (this is equivalent to a 4 Intel Xeon 2007 1
GHz CPU)

• 7.5 GB memory
• 800 GB ephemeral disk
• Moderate network performance

Such a large server is comparable to the MacBook pro I'm using to write this chapter.
For sure, EC2 provides larger virtual instances, but you have to remember that you
can't keep a monolithic application model in mind, or you will hit a wall when the
application will have to serve a larger traffic.

Running Your Applications

[58]

On CloudBees' RUN@cloud application server, you can select the application to use
from one up to eight app-cells, app-cell being a server slice. Depending on your
application usage, you can then adjust to the exact resource consumption and lower
costs, as you can see in the following screenshot:

Application container selection

Horizontal scalability
You can't get a super-large server, but you can get a dozen of them if required.
Clustering is a solution for scalability issues, which the software architects
have known for a while. With small low-cost machines, the Cloud offers you an
opportunity to adjust your resources to the actual application load, as long as your
application has been well designed for a clustered environment. This has some
architectural constraints, which we will explore further in this chapter.

On the RUN@cloud web UI, you can select the number of nodes you want your
application to be deployed to. So you can, for example, get the application running
on three servers using two app-cells on each of them. The ability to adjust resources
is nice, but it would be even better if you don't have to manage it by yourself! The
Automatic Scaling option, as shown in the following screenshot, lets you define
some metrics for the platform, to add a node to your cluster or to remove one:

Chapter 6

[59]

Application autoscaling configuration

You just have to define the boundaries for auto-scaling, and accordingly the platform
will adjust the resources to your actual application load.

Clustering constraints
Running your application in a clustered mode introduces some constraints. They
aren't cloud-specific, but developers may not be familiar with them.

State
The main issue with clustering is state. As your application runs on a set of nodes,
and you have subsequent requests from user to build a conversation, a distinct
node may handle some of them. How can node B access the shopping cart that the
customer has populated when server A handled his first request?

Cloud evangelists suggest the idea of being stateless. A stateless world would be
cool for software architects as this would make distributed software far simpler.
There are many ways the state can be managed in an application.

Running Your Applications

[60]

The HttpSession servlet
Using the API HttpSession servlet is a common implementation in the Java
ecosystem, relying on the JavaEE container to manage the replication of the session
on the cluster. The specification doesn't detail anything about the implementation,
and lets the vendor provide innovative solutions. The sole requirement is that the
session data should be serializable.

By using the session store option to set up a distributed cache for storing session
data, you can use HttpSession on CloudBees as well. The session store is a dedicated
memcache bound to your application's node on the cluster. Compared to serializing
data on disk or a database, a memcache is pretty quick to distribute data, and
offers a nice solution to migrate existing applications to the cloud and benefit
from immediate scalability.

Sticky session
The session store sometime isn't enough, and you need to degrade cluster elasticity by
using sticky sessions (session affinity).

SDK offers the stickySession=true option when deploying an application, such
that a user will always use the exact same server. The drawback is that the load can't
be fully distributed on the cluster, and when a node is removed, the associated users
will lose their session.

The use of a sticky session versus a session store is a question of the application's
business model. If you don't care about the few users who might experience
slowness or have to create a new session when an application is redeployed, a sticky
session will let you migrate your good old servlet-based application to CloudBees
without the extra cost of a session store. This can also be a temporary solution,
waiting for some architectural improvement.

Beware of your frameworks! Sometimes your code is perfectly stateless
and may not require a sticky session, but the frameworks you're using
can introduce some obstacles. A typical example is grails, security
plugin. This one uses spring security with default settings which relies
on HttpSession. This can be fixed by some advanced configurations, but
a developer to enable the plugin as a one-liner security solution probably
don't expect this.

The client-side state
Play framework and a few other stateless web frameworks use HTTP cookies so
that the user maintains the state in his browser. The server doesn't manage any
state between requests and only relies on cookies to get the current conversation.

Chapter 6

[61]

This seems a good option, but be careful with state weight. If you need a dozen
kilobytes of cookies to maintain the state, all your application requests, including
static resources and AJAX calls will include these cookies, and this will lower the
application's performance from a user's point of view, but the server doesn't suffer
from traffic load.

So, the common recommendation is to just set the minimal state, transferring
only IDs, and not details. Then you have to pay for the underlying extra cost to
retrieve data on every request, and it will need caching. After this, you will need
synchronization and then some sort of state management.

Things are easier with an immutable domain model, as there's no need for cache
synchronization anymore, but you pay for more write operations.

As a resume, the full client-side state is probably the cleaner architecture, but has
some significant architecture impacts for a high-load application.

"Be stateless as much as you can."

I used to say this as it is a question of compromise between stateless services, HTTP
weight, data immutability, and adequate cache management. Some web frameworks
and data store engines help you to implement this.

The ephemeral filesystem
The filesystem is some sort of state you have to worry about in a clustered or Cloud
environment. By nature, a filesystem is local to the node that is partially running an
application on the cluster group. If you use a filesystem to store user uploads and
then compute into an internal application model, everything is fine, but if you use it
for persistent data, you will loose some data.

You know that every request can be handled by a distinct node on the cluster, but
you also have to know that the application redeployment will start on a fresh set of
nodes, so previously stored data on the filesystem will be lost. This is known as an
ephemeral filesystem—the opposite to a persistent filesystem.

The Cloud provider, Google App Engine, just forbids the access to the Java File API.
CloudBees doesn't consider the filesystem to be evil, but it just has to be used in the
appropriate way.

Running Your Applications

[62]

A persistent filesystem has major drawbacks, both with performance and locking
constraints. When required by application model, CloudBees provides an optional
add-on to use Amazon S3 as a persistent file store, mounted as a local directory. This
isn't a silver bullet solution as performances and delayed write behavior on S3 to a
local filesystem. Anyway, this can help you migrate your application to the Cloud.

As a long-term solution, using a file store explicitly is the best option. The benefit
is that you'll have to consider the filesystem use case—is the data temporary or
really persistent? Does it make sense for it to be stored in a database, as a BLOB? For
actual file store access, I recommend the JClouds API, which offers a neutral frontend
on file store service, and a local filesystem option that you can enable during
development or debugging.

So far, we've mostly seen constraints introduced by cloud-based application hosting,
and with a proposed workaround and solution, now you may consider scalability as
a limited added value for you to pay all required refactoring. So, let's see some more
pleasant features.

Customizing the domain
Your deployed application is available as http://<appId>.<accountName>.
cloudbees.net. This is fine for prototyping or test application, but you probably
want to display your website to users with a better URL.

Mapping your domain name
For mapping your domain name, the first thing to do is to buy a domain name.
Although CloudBees doesn't provide this service, there are dozens of registrars
available. To select one, just consider that you don't need any hosting option, as this is
a common value-added service they offer, and instead need fine-grained control over
your DNS.

As you get a domain name, you just have to configure your DNS settings (the way
to do this depends on your registrar) to declare www.yourdomain.com as a CNAME
to appId.accountName.cloudbees.net.

Maybe you want to use a naked domain, that is, let the user access
your web application without the www. prefix? Some registrars offer
an auto-redirect option to www. Another solution is to define an A DNS
entry to point to an HTTP router IP. To know the IP to be used ,run the
command ping <appId>.<accountName>.cloudbees.net.

Chapter 6

[63]

Please note that DNS propagation may take some hours (up to a day), so you may
not see your application responding to the expected URL, but other users can see
this—including CloudBees support agents. You only need to wait for the DNS
servers to sync around the world.

SSL encryption
To improve application security, using HTTPS is a minimal improvement to introduce
into your application. Please note that you need a dedicated domain for this option.

You first need to buy an SSL certificate for your domain. If possible,
select a wildcard certificate that will cover all subdomains of
.yourcompany.com, so that you can use the same for all deployed
applications on CloudBees without extra cost.

On CloudBees RUN@cloud, this is about setting up a dedicated SSL router to serve
HTTP traffic to your application. This one will act as a reverse proxy, handling
the secured SSL connection with a browser and translating into a standard HTTP
connection to your application container.

You have to use the CloudBees SDK to set up the SSL router as there's no UI for this
advanced operation. We will further describe the SDK in Chapter 7, Tools.

The certificate file has to use a Nginx format and should include all the certificates
up to the root certificate, in child-parent order. As a text file, this is just about
concatenating the certificate files together. SDK lets you validate your certificate
to ensure everything is ok by using the following command:

beesapp:cert:validate -a ACCOUNT -cert FILE -pkPRIVATE_KEY

After validation, you can create a dedicated router using the following:

beesapp:router:create -a ACCOUNT/APP -cert FILE -pk PRIVATE_KEY myrouter

Resource: account/myrouter

config:

 SSL=true

 ROUTER_SERVICE=account-abcdef99.revproxy

 ROUTER_URL=https://99.99.192.123

Router is now ready to handle incoming HTTPS traffic for your application. You
now have to configure your DNS to translate the application domain into your
dedicated router IP as an A record. Due to the DNS propagation delay, this will take
few hours, so we recommend you set up SSL and the domain name together if you
plan to deliver a public service.

Running Your Applications

[64]

Your router will serve both HTTP and HTTPS traffic. For web
resources that require secure access, your application has
to check the X-Forwarded-Proto HTTP header for incoming
requests to be set to HTTPS. Modern security frameworks
support this de-facto standard header.

The private mode
Your application may not be designed for public use, and by nature, a Cloud
platform is accessible from any Internet connection. This is also the case for your
development and test instances that you only want the team members to have
access to.

The private mode is a platform option that you can enable to inject a security filter
in the HTTP traffic chain. The actual implementation depends on the runtime you
selected for your application and this option may even not be available (see later in this
chapter). Using the private mode protects your application with a credentials-based
authentication, without any requirement to tweak your own code or configuration.

As we've seen in Chapter 5, Managing Your Build, continuous delivery only makes
sense if the production deployment is the exact same process that developers use on
a daily basis for (automated) testing. With the private mode, your application is safe
from external users, but can be deployed to production as is for public service.

Monitoring
Most Java developers don't have a DevOps culture. Anyway, when your core service
application is running, you need its health to be checked.

As a Platform as a Service (PaaS), CloudBees monitors the infrastructure and platform
runtime, but can't get into the specific details for your application. CloudBees' platform
automation will detect memory overconsumption and kill the server, starting a new
one, but it can't diagnose the cause of the problem.

The CloudBees ecosystem includes a set of production services to instrument your
application. NewRelic and AppDynamics will inject probes into your application and
extract the internal state into a monitoring dashboard. With some customizations,
you can improve data extraction to get a relevant health report for your application.

PaperTrail is a distributed logging aggregator. In a clustered context, as all nodes
have their own log, it allows you to sync all of them in a single console and have a
consolidated view on application state.

Chapter 6

[65]

Those services will offer runtime-level metrics, but you can also instrument your
application to generate business metrics, and export them from your application into
a dedicated dashboard. HostedGraphite hosts a Graphite graph and query engine for
you. With adequate business data exported, you can compute useful graphs for your
business management on real-time application metrics.

ClickStack
CloudBees claims to be the Java PaaS company, and even RUN@cloud focuses on
providing a first-class Java Cloud service first, though it can host other runtimes.

The RUN@cloud application runtime is defined by a ClickStack (don't confuse
with the ClickStart options). The RUN@cloud core service GenApp is an Erlang
execution engine that starts ClickStacks, and displays application metadata and
configuration parameters. ClickStack is responsible for installing and setting up the
runtime environment, preparing the application, and starting the runtime process.

We will discuss ClickStack in detail in Chapter 8, Using ClickStack to Extend the Platform,
you just have to know they aren't limited to running a JVM. The CloudBees community
GitHub account offers a large set of runtime ClickStacks contributed both by
CloudBees engineering staff and customers, as you can see in the following screenshot:

ClickStacks on GitHub. Feel free to contribute your own!

Running Your Applications

[66]

Most of these ClickStacks offer various Java containers, but there's also PHP, Node.
js, or Dart ClickStack, which you can use. Thanks to ClickStack, if you have some
custom requirement, running on a PaaS isn't a limitation, and you can fork the
official one to add your own tweaks.

You just have to be aware that the features we've seen in this chapter are only
fully available on few ClickStacks (Tomcat 6 and JBoss 7 at this time, Tomcat 7
is about to be completed).

Summary
This chapter demonstrated the RUN@cloud PaaS capability to host the application
with advanced scalability and features to help in migrating to the Cloud. We had a
quick overview on ClickStack, which will be discussed further in Chapter 8, Using
ClickStack to Extend the Platform, but you already understand how flexible the
RUN@cloud platform is, thanks to this extensible model.

Tools
The preceding chapters were mostly based on CloudBees web UI, but for actual
development you need more flexible tools and integrating it in your developer's
toolbox. CloudBees provides a set of tools for this purpose:

• A Software Development Kit (SDK) that you can use to control your
RUN@cloud applications

• An Eclipse plugin for full integration with the most used IDE (considering
the best one is another debate)

CloudBees SDK
CloudBees SDK is an extensible command-line tool to manage CloudBees resources
and services. Compared to web UI, it lets you manage all the advanced features
for the CloudBees services, so it will quickly be necessary for you to manage your
CloudBees applications.

Installation
You can download CloudBees SDK from http://wiki.cloudbees.com/bin/view/
RUN/BeesSDK. This is a simple multiplatform ZIP file you can uncompress and then
add the exploded path to your system path.

Mac users can also install CloudBees as a homebrew package using the command
brew install cloudbees-sdk.

Tools

[68]

Then, run the bees init command and provide user credentials for SDK to set
up your $HOME/.bees directory, and install the initial plugins as shown in the
following screenshot:

CloudBees SDK uses plugins to provide commands. This extensible
architecture allows engineering to provide additional features, such as
the blue-green plugin we will experiment with later in this chapter,
as well as technology partners that provide specific commands that
will fully integrate within SDK.

Basic usage
SDK provides commands to list and manage your resources. It runs bees without
parameters for a list of available commands. Let's illustrate this with some samples.

The following commands give you a list of deployed applications:

➜ ~ bees app:list

Application Status URL Instance(s)

packt/packt active packt.packt.cloudbees.net 1

packt/packt-play hibernate packt-play.packt.cloudbees.net 1

Chapter 7

[69]

The previous commands display all applications for our accounts (as set initially by
the bees init command) with the current status and number of nodes on a cluster.
The Packt/packt-play application was hibernated and automatically stopped as this
is a free application that was inactive for hours.

Let's retrieve more information on the packt application:

➜ ~ bees app:info -a packt/packt

Application : packt/packt

Title : packt/packt

Created : Thu May 16 14:50:52 CEST 2013

Status : active

URL : packt.packt.cloudbees.net

clusterSize : 1

container : java_tiny

containerType : tomcat7

idleTimeout : -1

maxMemory : 128

proxyBuffering : false

securityMode : PUBLIC

serverPool : stax-global (Stax Global Pool)

Let's distribute this application over three nodes:

➜ ~ bees app:scale -a packt/packt -up 2

application - packt/packt: scaled up to 3

Then stop the app as follows:

➜ ~ bees app:stop -a packt/packt

Are you sure you want to stop this application [packt/packt]: (y/n) y

application stopped - packt/packt

The application has been stopped, not deleted. If we use SDK
to restart the application now, it will start on three nodes on the
cluster as previously configured. Remember this principle: a
configuration set by SDK is for an application, not for a specific
instance running on the cluster, and will survive a restart.

Tools

[70]

Runtime parameters
SDK lets you customize the container running your application. For this purpose,
you use either the app:deploy command or the app:update command. The
former creates and deploys a new application, while the latter updates an existing
application, but both accept the same parameters as explained in the following list:

• containerSize lets you control the size (app-cells) for the container to host
your application. The default value is free, and you can configure the size
across small (one app-cell), medium, large, and extra large (eight app-cells).

• jvmPermSize lets you control the XX:MaxPermSize option, which is required
for some web frameworks to generate many dynamic classes, such as Grails.

• httpVersion lets you configure the protocol used to connect reverse proxy
to your application. It has to be set at 1.1 to support WebSockets.

• jvmTimeZone and jvmFileEncoding let you tweak the JVM localization
parameters. They default to GMT/UTC and UTF-8.

As you can see, some of these parameters are generic while others are specific to
JVM-based runtime. Setting jvmPermSize won't have any impact on a Node.js
application. As Java was the first runtime implemented by CloudBees, SDK does
include some JVM-specific parameters, but with the ClickStack extensible architecture,
stack-specific parameters are now set by runtime parameters using the -R option.

For example, we can change the JRE used to run application to Java 8 (early access
as I'm writing this book; it will be very useful to check if your application is
compliant with Java 8 and possible regressions):

➜ ~ bees app:update -R java_version=1.8 -a packt/packt

This command will restart your application, are you sure you want to
update this application [packt/packt]: (y/n) y

application - packt/packt updated: ok - restarted

Customizing your application
If you are familiar with the JavaEE model, you will know that JNDI was designed for
application customization, assuming that the container would provide some way to
configure injected parameters (strings) and resources. However, this never proved
to be a good model, and most developers used to have some external properties file,
system properties, or a comparable hack to inject values into the application and
manage values at runtime depending on the environment.

Generally speaking, all frameworks used to offer some configuration facilities based
on environment variables or system properties (in the Java ecosystem).

Chapter 7

[71]

Application parameters
Application parameters are the CloudBees mechanism to customize the runtime of
an application without changing the deployed artifact. As you use SDK to define
an application parameter, this one is tied to the application ID and injected as an
environment variable and/or a system property.

Application parameters are managed using the config:* command group
config:set lets you define a parameter and value; while config:list lets you
review the actual values. We can, for example, set the publication date for the
application to 2014:

➜ ~ bees config:set -a packt/packt -P publication=2014

Application config parameters for packt/packt: saved

Application Parameters:

publication=2014

Runtime Parameters:

 java_version=1.8

From the preceding application code, I can retrieve this value as a Java system
property:

System.getProperty("publication")

The value will change depending on whether we redeploy the application or
change the configuration. I also can deploy the same WAR archive using a distinct
application ID and set another value for exactly the same parameter:

➜ ~ bees app:deploy -P publication=2013 -a packt/packt-optimistic
packt.war

Deploying application packt/packt-optimistic (environment:): packt.war

Config parameters: {publication=2013}

...

A common usage of this is to define application's configuration as system
properties (most frameworks do support the replacement of system properties in
configuration files), and deploy exactly the same application in distinct environments
(development, test, staging, or production) with a distinct value set.

Tools

[72]

Resource management and binding
Injecting system properties is nice, but real-world applications rely not just on string
parameters, but also on external resources. You can for sure inject the database URL
and credentials and manage the connection within your own code, but for a Java EE
application, you might probably prefer using a connection pool injected as a javax.
jdbc.DataSource feature.

Resource binding is the mechanism used on CloudBees to tie other resources on
your account to your application and let the container expose them using the
appropriate API.

Let's first create a database. We used to browse the web UI for such operations, but
we can use SDK to get exactly the same result:

➜ ~ bees db:create -a packt packt-db

Database Username (must be unique): packt-db

Database Password: packt-db

database created: packt-db

Let's now bind this (newly created) database to our application. This is a simple
SDK command:

bees app:bind -a packt/packt -db packt/packt-db -as PacktDB

After restart or redeployment, the application will have a PacktDb (as defined by
alias) DataSource available in JNDI. With appropriate <resource-ref> objects
declared in WEB-INF/web.xml, we can retrieve it from our application code as we
would for any other Java EE compliant container:

<resource-ref>
 <description>DataSource for CloudBees DB</description>
 <res-ref-name>jdbc/PacktDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

InitialContext ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup("java:/comp/env/jdbc/
PacktDB");

Chapter 7

[73]

Plugins
So far, we only have seen some app:*, db:*, and config:* commands, but running
bees without parameters to get an available command list confirms that there is a
lot more. The commands are grouped and distributed into plugins you can manage
using the plugin:* commands:

➜ ~ bees plugin:list

CloudBees SDK version: 1.5.0

CloudBees Driver version: 1.3.6

Name GroupId Version

ant-plugin org.cloudbees.sdk.plugins 1.3.0

app-plugin org.cloudbees.sdk.plugins 1.5.2

config-plugin org.cloudbees.sdk.plugins 1.3.2

db-plugin org.cloudbees.sdk.plugins 1.3.2

service-plugin com.cloudbees.sdk.plugins 1.2.2

Plugins allow SDK to be extended with higher-level features or service-specific
commands. This book is not a technical guide to writing plugins, so we won't go
further into the details, just demonstrate how extensibility provides valuable features.

Blue-green deployment
When you redeploy your application, the router switches traffic to the new
application, as it's ready to accept HTTP requests. This zero-downtime deployment
is useful but may not fulfill all use cases. Even with a conscientious development
and test process, you may want to manually validate new instances of health and
behavior and then switch traffic. You may also want to switch traffic only at a
specific time or keep previous version up and running as a backup in case some
unexpected issue occurs. This can also be useful for applications that take time to set
up, so if they can't actually serve the users' requests even when the servlet container
is up-and-running, the HTTP traffic is switched.

Blue-green deployment, as documented by Martin Fowler (http://martinfowler.
com/bliki/BlueGreenDeployment.html), suggests that we keep versions N and N
+ 1 for an application running concurrently and manage the version upgrade from
the frontend reverse proxy. With this setup, the new version of the application can be
tested and validated, after which the administrator can switch traffic and roll back
if needed.

Tools

[74]

Such a hot reverse-proxy reconfiguration can be implemented on CloudBees using
the sdk app:router:update command, but requires some logic to determine the
blue-green application and provide the appropriate parameters.

CloudBees engineer Fabian Donze created an SDK plugin to support this
deployment scenario, and contributed it as bg-plugin (https://github.com/
CloudBees-community/bees-cli-bg-plugin).

With this plugin, setting up a blue-green deployment process can be fully automated
from a Jenkins build. We first need to set up SDK and bg-plugin:

bees plugin:install com.cloudbees.sdk.plugins:bg-plugin

Then we run the actual application deployment but using the app:bg:deploy
command:

DEPLOY

bees app:bg:deploy -n packt target/web-webapp.war

This command is comparable to app:deploy, by uses the -n option to select a
blue-green application group.

The DNS is configured for packt.loof.fr that is, my own personal domain) to
resolve the HTTP requests, and packt-offline.loof.fr to resolve the inactive
application. We can use this to wait for the new app to be up and running
(as initialization may be a long process) and then switch the HTTP traffic:

WARM NEW SERVERS

echo "Preparing new servers for router switch over..."

for i in {1..50}

do

 curl -s "http://packt-offline.loof.fr/" > /dev/null

 sleep 5

done

SWITCH ROUTER

echo "Switching router over to new servers..."

bees app:bg:switch -n packt -f

SHUTDOWN OLD SERVERS

echo "Shutting down old servers..."

bees app:bg:stop -n packt -f

Chapter 7

[75]

In this script, we ran some simple SDK commands but actually implemented an
advanced deployment scenario, thanks to the SDK plugin that manages most of
the complexity.

Let's stop talking about the command line. This one gives you advanced options, but
for daily application development you will probably use a graphical IDE and expect
CloudBees tooling to be available here as well.

IDE integration
We'll now have a look at the two most common IDEs in Java and how they are
integrated with CloudBees.

Eclipse plugin
Eclipse is the most used IDE for Java development, with a large plugin ecosystem to
adapt to various use cases. CloudBees has developed its own plugin, so you don't need
to leave the comfortable graphical environment in order to integrate with the services.

Installation
The CloudBees plugin is available in Eclipse Marketplace. You can search for
cloudbees or just open https://marketplace.eclipse.org/content/cloudbees-
toolkit-eclipse and drag the install link into your Eclipse workspace. This will
automatically open the installer component selection, which looks like this:

Tools

[76]

The CloudBees plugin has multiple optional components to integrate with various
Eclipse technologies:

• Data Tools Integration : This adds support to CloudBees-hosted MySQL from
Eclipse DTP, so you can manage the database schema and data from the IDE

• Maven integration : This extends M2Eclipse with CloudBees-specific goals
• Subversion Support : This is split into two optional components, as Eclipse

has two of them, so you have to choose one (sic)
• Web Tools Integration : This adds support to CloudBees apps in WTP, so

you can deploy the application in one click and check the health from the IDE

The optional component prerequisites must be installed
prior to running this installation wizard.

After installation and the usual Eclipse restart, the Eclipse preference lets you log in
to CloudBees using your account credentials. Please note, if you created an account
using Google or GitHub integration, you have to define a password on GrandCentral
and validate your account as shown in the following screenshot:

Chapter 7

[77]

The CloudBees view
The Eclipse plugin CloudBees view offers a dashboard of your CloudBees services.
This dashboard has the following components:

• Builds lets you monitor your DEV@cloud Jenkins instance. Local Builds can
also be used to monitor a classic Jenkins instance running on premises.

• Applications shows you deployed applications on RUN@cloud with status,
and right-clicking on it lets you run the base commands and access logs.

• DataBases shows you the hosted database and an option to connect to it
using Eclipse DTP.

• Repositories shows you Git and the subversion repositories on the
CloudBees forge, with the option to check out. Please note, if you run behind
a corporate proxy, you might have to select http as protocol to access the Git
repositories in the Eclipse CloudBees configuration.

Let's select the packt repository in the forge section and check out. The Eclipse Git
wizard assists us to select the check out location and branch and then import the
project option.

ClickStart integration
The CloudBees Eclipse plugin also provides integration for ClickStart, so you can
benefit from the quick experience of setting up a project without leaving the editor.
Eclipse UI is not as radical as the web ClickStart wizard, but has a comparable result,
as you can see in the following screenshot:

Tools

[78]

The CloudBees plugin will then run ClickStart behind the scenes, clone the Git
repository locally, and import project into the workspace. Wait for the famous
Eclipse progress bar pop up to show the process to be completed. Then you're
ready to code.

You can see a demonstration of using the CloudBees Eclipse plugin thanks to the
video by Mark: http://www.youtube.com/watch?v=ZWLqdQKpmbA

IntelliJ Idea support
JetBrains Intellij Idea is the second most used Java IDE, with a large community of fans
to claim its evident superiority compared to Eclipse (I'm one of them).

Idea provides within default installation a CloudBees-dedicated plugin (developed
by JetBrains) to support deployment to PaaS. CloudBees is available as a target
application server from the IDE, and lets you configure the account and application
as well as the action to perform after deployment. We typically open the browser in
the JavaScript debug mode to give the deployed application a try and diagnose the
possible issues:

Chapter 7

[79]

For sure the JetBrain CloudBees plugin has far less features compared to Eclipse one,
but with the continuous deployment setup by ClickStart, you don't really need more
than a git push command.

Read more about this plugin in the JetBrains official documentation at
http://confluence.jetbrains.com/display/IntelliJIDEA/CloudBees.

GitHub integration
GitHub is the de facto reference for open source Git hosting and a highly valuable
service for collaborative development. CloudBees developed a dedicated
DEV@cloud simplified clone for GitHub users called BuildHive.

BuildHive is a hosted Continuous Integration (CI) service dedicated to GitHub.
You just need to log in within BuildHive from your GitHub account and select
repositories you want CI to be enabled on. BuildHive will detect the project type, set
up a job for you, and configure commit hooks to trigger a build as you push changes
in the repository as shown in the following screenshot:

Tools

[80]

As a bonus feature, BuildHive will also monitor pull requests and provide the build
status to the pull-request UI as shown in the following screenshot, so you don't need
to spend much time reviewing when a pull request fails to validate:

Full cloud-based toolbox
Software development evolves quickly, and we see more and more developers
using lightweight languages and frameworks, developing pure JavaScript/HTML5
applications without the requirement for a heavy-load desktop computer. Some of
them would even like to develop using a tablet or ChromeBook, as they just need to
edit some simple script files.

Those developers are fans of GitHub, CloudBees, and comparable providers as
they don't have to install anything on the local computer; they can manage only
using online services. There are interesting efforts to provide a comparable online
experience for the IDE. GitHub even provides an online editor, which is useful
when you only need to edit a file, but it quickly hits limitations.

Chapter 7

[81]

CodeEnvy mimics Eclipse IDE's look and feel for Java developers to comfortably
migrate to the Cloud-based service. After adding a private SSH key to the account, you
can check out the project from the CloudBees Git repository. After few seconds, the
online IDE displays the project structure and lets you edit code, prepare a commit, and
then push for the change to CloudBees as shown in the following screenshot:

Summary
This chapter demonstrated the use of SDK and IDE integration as daily tools to
provide a convenient experience as a CloudBees application developer. SDK wasn't
covered in detail, as this would require a whole book by itself, but you'll discover
the available features by giving it a try yourself and adapting to your own
development process.

Using ClickStack to Extend
the Platform

CloudBees claims to be The Java PaaS company, focusing on creating a full featured
as a service platform for Java developers. Even with this in mind, the platform is
flexible enough to cover a larger set of runtimes and frameworks.

DEV@cloud Jenkins is the de facto continuous integration server for Java developers,
but it is being adopted by other ecosystems as well. With a plugin-based architecture,
it can be adapted to build in PHP, Ruby, Python, or any other language.

RUN@cloud gets inspired by this design and evolves to offer a modular architecture,
letting developers provide customization on a base system so that they can extend
the platform to cover alternate runtimes.

By looking at the ClickStart official wizard, you can see the extent to which this
principle was successful. CloudBees can host the Play Framework, Grails, a large set
of Java EE/Servlet containers, and also non-JVM based runtimes such as Node.js,
PHP, Go, Dart, and Erlang.

Using ClickStack to Extend the Platform

[84]

The following screenshot demonstrates the various stack available on CloudBees,
both JVM and non JVM-based stacks:

The RUN@cloud architecture
RUN@cloud uses a layered and extensible architecture. A low-level, infrastructure-
aware layer is written in Erlang, which manages server allocation and resource
sharing. It's a general purpose layer, which is not tied to a specific runtime.
ClickStack runs on top of it and provides runtime specialization. A typical ClickStack
will handle the preparation of a Java EE application server, but it could set up a
non-JVM-based runtime as well. An application is installed on this runtime.
Metadata provides all the required information for each layer to provide adequate
resources, and exposes them to the upper layer.

The lower level of the architecture includes GenApp, a low-level process orchestrator
written in Erlang. It receives deployment API application commands with metadata
on the application to be deployed. Read more about it at http://genapp-docs.
cloudbees.com/.

ClickStack executes on top of GenApp. ClickStack is responsible for setting up the
runtime environment, installing the application, and providing the Bootstrap script.

Chapter 8

[85]

The application is packaged as a ZIP or WAR archive and runs on a ClickStack-
provisioned runtime. The following diagram represents the RUN@cloud architecture:

ClickStack from the point of view of GenApp is very simple. Being packaged as a
ZIP archive available on a public URL, ClickStack must expose a setup executable
file (in most cases, a shell script) that GenApp will call during runtime initialization.
As a part of initialization, ClickStack is responsible for creating a control/Start
executable script that GenApp will execute to run the application.

GenApp defines few other optional control scripts to produce application states
(displayed in the RUN@cloud web console), invoke administrative commands, or
gracefully shut down the stack.

With such a simple contact, you can understand the flexibility of the platform. Node.
js ClickStack (https://github.com/CloudBees-community/nodejs-clickstack)
just has to download the adequate runtime and expand the archive, unzip the
application package, and then create a control/start shell script to execute
the main.js node.

Most ClickStacks share a common pattern as follows:

1. Create the application skeleton including applications, controls, libraries,
and directories.

2. Install the runtime after being downloaded from a public URL, usually
from Amazon S3 to avoid deployment delays.

3. Create a configuration file for the installed runtime based on the
application's metadata.

Using ClickStack to Extend the Platform

[86]

4. Install the deployed application.
5. Create control scripts.

A complex ClickStack such as JBoss has to download the JBoss distribution archive,
expand and remove unnecessary default applications, expand the application's WAR
archive as a sole webapp, generate a standalone.xml configuration file based on
the application metadata, and then provide the control/start script with preset
adequate system properties. This requires significant code and usually can't be
addressed within a pure shell script.

The following schema summarizes the ClickStack architecture and its responsibilities.
The GenApp agent sets up server resources, creates a dedicated application folder,
and copyies both the deployed application ZIP file and the configured ClickStack. It
then executes the setup script and lets the ClickStack handle runtime preparation.
This agent has to manage the possible complexity of this task on its own. GenApp
then executes the control/start script and monitors the associated process.

Metadata
The deployed applications are configured with the CloudBees resources such as
Database, SendGrid mail service, and application parameters. ClickStack has to
manage this by generating the adequate runtime configuration and the control/
start script so that the application has the expected resources included.

Chapter 8

[87]

By invoking GenApp to set up an application during deployment, the CloudBees
RUN@cloud service provides the application's metadata as a JSON file. The
metadata.json file contains all the account information, configured resources,
and application parameters.

Here is an excerpt for such a metadata file:

{
 "sendgrid": {
 "__resource_type__": "email",
 "SENDGRID_SMTP_HOST": "smtp.sendgrid.net",
 "__resource_name__": "mail\/SendGrid",
 "SENDGRID_USERNAME": "cloudbees_packt",
 "SENDGRID_PASSWORD": "abcdef1234"
 },
 "saucelabs": {
 "id": "packt",
 "__resource_type__": "saucelabs",
 "minutes": "200",
 "__resource_name__": "saucelabs",
 "access_key": "c7b7d7e7-1234-abcd-5678-3c4c5c6c7c8c"
 },
 "cloudant": {
 "server_address": https:\/\/packt.cloudbees.cloudant.com",
 "__resource_type__": "cloudant",
 "username": "nicolas.cloudbees",
 "__resource_name__": "cloudant",
 "password": "abcdef1234567890abcdef1234567890"
 },
...

The metadata file displays access URLs, credentials, and other subscription
parameters for all the CloudBees services so that your application can retrieve
them at runtime or simply get ClickStack to display them in a convenient way.

The directory structure
The application deployed on RUN@cloud gets a dedicated directory, which
is exposed as a $app_dir environment variable. GenApp is responsible for the
isolation of the application and creates the application. It also creates a .genapp
($genapp_dir) subfolder to store the control scripts, metadata, and logs.

The deployed application archive (WAR, EAR, or ZIP, depending on ClickStack) is
copied into $pkg_dir.

www.allitebooks.com

http://www.allitebooks.org

Using ClickStack to Extend the Platform

[88]

Plugins are copied into a $plugin_dir folder to prepare the setup execution. As the
setup is run, the plugin's setup output is logged under $log_dir (.genapp/log) for
diagnostic purposes.

GenApp allocates a port for the deployed application and configures a router to
route the HTTP traffic to this port for the incoming request to match the application
hostname. The selected port is displayed as an $app_port environment variable. It
also displays the application identifier $app_id and the $app_user Unix user to run
the application.

As parsing JSON from a Bash script isn't trivial, GenApp also displays the metadata
as environment variables. It uses a keyword style algorithm so that the nested
elements of JSON are prefixed by the parent with an underscore separator. So,
the following will be displayed as a logging_file environment variable:

 "logging": {
 "file": "server.log"
 }

Plugins
The previous examples explained how ClickStack sets up the runtime for an
application, but you can have more than one active ClickStack for an application. You
can't mix anything together, but some ClickStacks are just plugins and don't try to
change the control/start script. They only provide some additional configuration
files and libraries. This allows, for example, the NewRelic CloudBees partner to plug
into a Java application, providing a JVM agent and container configuration.

From the point of view of GenApp, all ClickStacks are plugins as long as running the
setup script for each of them produces the expected control/start script. It's all up
to the ClickStacks to operate together nicely. In some cases, this script is required to
display some hooks for other ClickStacks in order to contribute additional features.

ClickStack by sample
Based on the existing samples in the CloudBees-community GitHub organization,
you can quickly create your own ClickStack. Let's introduce you to ClickStack
development.

Chapter 8

[89]

A simple ClickStack plugin
We will create a very basic ClickStack plugin as an introductory tutorial. This one
doesn't need to set up runtime; it is just a plugin, but gives you the base for later
development.

The RUN@cloud servers provide a minimalistic, stable Linux environment. To
enforce tenant isolation, both your application and ClickStack run without root
permissions. Java developers use ClickStack to embed a dozen utility libraries into
WAR, but sometimes you need to use native code. For example, you may need to
process video streams using the ffmpeg library.

You can retrieve this sample stack from https://github.com/ndeloof/ffmpeg-
clickstack. This ClickStack has only one significant file. The first file is the setup
script that will be used as it is by GenApp. This is a trivial shell script:

echo "Installing ffmpeg"
cp $plugin_dir/ffmpeg $app_dir

You might notice the use of an environment variable for the current plugin directory
when the setup script is executed which targets the application directory.

Other files to consider are the Makefile and plugin.mk files used to package and
deploy the ClickStack. The setup based on MakeFile is not a requirement; use
your preferred build tool to pack your ClickStacks as long as it fulfills the GenApp
expectations. Makefile and plugin.mk are just a convenient way used by CloudBees
engineering on most ClickStacks to avoid repetition.

If you look at Makefile, you'll notice that the actual preparation is as follows:

ffmpeg_url=http://ffmpeg.gusari.org/static/64bit/ffmpeg.
static.64bit.2013-08-25.tar.gz
lib/ffmpeg:
 mkdir -p lib
 curl -fLo lib/ffmpeg.tar.gz "$(ffmpeg_url)"
 (cd lib; tar -xzf ffmpeg.tar.gz)

Indeed, this ClickStack role is to provide the ffmpeg binaries with a runtime
environment, but it has to work around two major constraints:

• To avoid application deployment delays, plugin should embed all the
required resources. Downloading from an external URL will slow down
the GenApp setup.

• As ClickStack and the application don't grant root permissions, you need to
provide statically compiled binaries. Most Linux software is only distributed
as system packages, so you may have to compile them from the sources.

Using ClickStack to Extend the Platform

[90]

After being packaged as a ZIP file, your ClickStack has to be uploaded to a public
URL for GenApp to retrieve it. For your convenience, you can use https://
clickstack-repository.cloudbees.com/ to upload your ClickStack, and test it
using the following code:

bees app:deploy -a appid -t yourstack -RPLUGIN.SRC.yourstack=url

Community and contributions
Some ClickStacks are classified as curated. These stacks offer all the CloudBees'
features (resource introduction, auto-scaling, private mode, and so on) and are
fully supported. This includes Tomcat 6, JBoss 7, and Java standalone ClickStacks.

Other ClickStacks are managed by CloudBees, which means that engineering
actively improves them and supports customers, but some CloudBees' features
may not be implemented. This includes Play2, Node.js, or Tomcat 7 ClickStacks.

The community supports the remaining ClickStacks. If you look at committers on
the CloudBees-community GitHub repository, where all the ClickStacks are hosted,
you'll notice that CloudBees engineering has created most of them, providing
samples for contributors. Some are pure community contributions, such as Dart.

All ClickStacks are open source, so you can fork one to improve or adapt to the
custom needs and maybe contribute back, so it can benefit other users. You can
join cloudbees-dev@googlegroups.com to discuss directly with engineers on
implementation details or ask for assistance on deployment issues.

Advanced ClickStack

Sharing the code
As I have described the JBoss ClickStack setup as a complex setup process, you
may have noticed that I omitted a major step: I didn't talk about installing JVM
to run Tomcat.

CloudBees has a Java ClickStack for general purpose Java applications used to
deploy non Servlet-based applications. But the JBoss ClickStack (https://github.
com/CloudBees-community/java-clickstack) can't be used in combination with
Java ClickStack (two-active GenApp plugins) as both of them will try to create the
control/start script.

Chapter 8

[91]

As a workaround, JBoss directly embeds the Java ClickStack plugin. Similar to most
of the ClickStacks, this one's setup script only invokes the lower-level functions,
and this lets JBoss ClickStack to re-use them for setting up both the Java runtime
and JBoss container.

Sharing code within ClickStack is not homogeneous and depends on the developer's
habits. Tomcat 7 uses Git submodules to include Java ClickStack and invoke its
setup functions. Some include a git clone command in Makefile. Use your
preferred approach.

Complex setup
Some ClickStacks have to support a complex setup process. Most Java EE application
container ClickStacks have to tweak the container to add some additional libraries
and generate configuration files. This is sometimes difficult to address within a shell
script, so they rely on invoking the Java setup code to parse metadata.json and
manipulate the container's XML configuration files.

Tomcat 8 ClickStack (https://github.com/CloudBees-community/tomcat8-
clickstack) went deep into this approach. Tomcat 8 ClickStack is a pure Java
project built with Gradle. The Setup.java file provides a main method to be
invoked by GenApp that fully handles the preparation of the application runtime.
Thanks to the Java object-oriented language and helper libraries that made it easy
to parse metadata.json, create a container skeleton, and tweak the context.xml
configuration file.

 public static void main(String[] args) throws Exception {
 //...
 Path metadataPath = genappDir.resolve("metadata.json");
 Metadata metadata = Metadata.Builder.fromFile(metadataPath);
 Setup setup = new Setup(appDir, clickstackDir, packageDir);
 setup.installSkeleton();
 Path catalinaBase = setup.installCatalinaBase();
 setup.installCatalinaHome();
 setup.installCloudBeesJavaAgent();
 setup.installJmxTransAgent();
 setup.writeJavaOpts(metadata);
 setup.writeConfig(metadata, appPort);
 setup.installControlScripts();
 setup.installTomcatJavaOpts();
 ContextXmlBuilder contextXmlBuilder = new
 ContextXmlBuilder(metadata);
 contextXmlBuilder.
 buildTomcatConfigurationFiles(catalinaBase);

Using ClickStack to Extend the Platform

[92]

Gradle is used to build this ClickStack as it allows a fine control on the dependencies
to add the required libraries in to the container depending on the bound resources.
For example, if you bind a PostgreSQL database to a Tomcat 8 application,
ClickStack will create a DataSource object, and will add the required JDBC driver
to the container's common classes.

Using the Java ecosystem, build tools and helper libraries demonstrate a significant
improvement in ClickStack's flexibility to address more complex runtime constraints.
Depending on your goal of writing a ClickStack, for runtime customization needs
and you favorite development language, you can choose to either use a simple shell
script or a higher-level development language.

Testing
Writing a trivial ffmpeg ClickStack is easy, and testing it directly on RUN@cloud
with a demo application is fine. For more complex stacks, you'll need some way
to test and diagnose them.

The local GenApp installation
GenApp is an open source framework and is well documented at http://genapp-
docs.cloudbees.com/. You can install a local GenApp to test your ClickStack
plugins. As RUN@cloud's target environment is Arch Linux, it won't make much
sense to give it a try if you don't use a Linux or an OS X system. Running on
Windows using Cygwin may work, but it is not the best option.

Follow the Quick Start guide (http://genapp-docs.cloudbees.com/quickstart.
html) to get an overview of the use of GenApp and ensure that everything is
working fine in your environment.

GenApp uses Erlang and Python; so, as a prerequisite, associated runtime must be
installed. You don't have to worry as you don't need to write much Erlang code to
test a ClickStack. Deploying an application on a local GenApp is all about typing
a basic command in the Erlang interactive shell as follows:

> genapp:deploy("HOME_DIR/genapp/sample-app")

If everything is fine, you'll get an application prepared under ~/genapp/apps/APP_
ID/ and can manually run the control/start script.

Chapter 8

[93]

Automated tests
Tomcat 8 ClickStack follows a full-Java approach; it uses Gradle as a build tool and
fully implements the setup within Java code. This allows writing unit tests, especially
checking the metadata of container-specific configuration files so that you don't need
to actually deploy the ClickStack to discover a regression—not a promise that you
will never discover a regression, but you will avoid some of them.

Another option is to rely on integration tests; configuring a Jenkins job to build the
ClickStack, deploying a RUN@cloud sample application to use it, and running some
smoke tests to ensure that the application behaves as expected with the adequate
runtime that is set.

Summary
This chapter demonstrated the flexibility of the CloudBees platform to support
various runtimes and adapt to the customer's needs. ClickStack lets you take control
of the lower-level infrastructure details, configuring your runtime and middleware.
Once this is done for all the applications, a ClickStack can be improved by adding
support for various use cases and integrating it with the CloudBees advanced
services and options.

This chapter concludes our exploration of the CloudBees platform. ClickStack,
ClickStart, and ecosystem partners offer a complimentary set of tools for you to
create your own toolbox. This is how CloudBees considers the PaaS paradigm
shift. You don't have to manage infrastructure and you also don't have to manage
middleware. You can now focus on application logic and service integration without
loosing the option to fine-tune your runtime when required. This flexibility is the
key to modern application development.

Index
Symbols
$app_dir variable 87
$app_port variable 88

A
account creation form 16, 17
Add service button 26
Advanced ClickStack

code, sharing 90, 91
complex setup process 91, 92

app:bg:deploy command 74
app:deploy automation 12
app:deploy command 70
application

blue-green deployment 73-75
editing 22, 23
parameters 71
setting up, ClickStart used 19-21
updating 22, 23

application customization
about 70
application parameters 71
plugins 73
resource, binding 72
resource, managing 72

app:router:update command 74
Approve button 54
app:update command 70
authorizations 18, 19
automated tests 93
automation 46

B
bees init command 68, 69
blue-green deployment 73-75
boy scoots principle 50
BuildHive 79
build slaves 46
Builds window 53

C
CI server 45
ClickStack

about 84, 85
pattern 85, 86
sample 88, 89
testing 92, 93
used, for RUN@cloud runtime defining 65,

66
ClickStack plugin

constraints 89, 90
creating 89

ClickStack sample
ClickStack plugin, creating 89
community 90
contributions 90

ClickStack, testing
automated tests 93
local GenApp installation 92

ClickStart
about 33, 34
example, Play2 ClickStart 34, 35
used, for application setting up 19-21
writing 40-43

[96]

ClickStart application
editing 21

ClickStart button 19, 33
ClickStart ecosytem 38-40
Cloud

about 7
clustering 10
private Cloud 11
public Cloud 11, 12
security 12

cloud-based toolbox 80, 81
CloudBees

about 12
Cloud delivery concept 13
components 13

CloudBees clickstart 19
CloudBees-community Github account 38
CloudBees components

DEV@cloud 13
RUN@cloud 13

CloudBees dashboard components
Applications 77
Builds 77
DataBases 77
Repositories 77

CloudBees SDK
about 67
basic usage 68, 69
installing 67
runtime parameters 70

Cloud Foundry
URL 14

Cloud pyramid 9
clustering 10
clustering constraints

ephemeral filesystem 61, 62
state 59

code
retrieving 22, 35, 36

community
ClickStacks, supporting 90
contributions 90

containerSize parameter 70
continuous delivery

about 50, 51
continuous deployment process 51, 52

job chain 52, 53
promotion plugin 54

continuous deployment process
about 51
implementing 52

Continuous Integration server. See CI server

D
DataSource object 92
deployed application

managing 37, 38
Deploy Instantly on CloudBees button 39
DEV@cloud

about 46-48
customization 48, 49
on-demand slaves 50
plugins 49

DEV@cloudForge 26
DEV@cloud jenkins instance 23
DEV@cloud plugins 49
domain

about 25
customizing 62-64
user roles 25

domain creation form. See account creation
form

domain, customizing
domain name, mapping 62, 63
private mode 64
SSL encryption 63

domain name
mapping 62, 63

E
Eclipse plugin

about 75
ClickStart, integrating 77, 78
CloudBees view 77
installing 75, 76

ephemeral filesystem 61
Erlang execution engine 65
extensibility 46

F
flatten algorithm 88

[97]

G
genapp 65
GitHub

integrating 79, 80
Google App Engine

URL 14
Google Mail 8

H
HttpSession servlet

using 60
httpVersion parameter 70

I
IaaS

about 7
benefit 7
drawback 8

IDE
integrating 75-79

IDE integration
Eclipse plugin 75-78
IntelliJ Idea 78, 79

Infrastructure as a Service. See IaaS
integrated partners services

about 27
NewRelic service 30
PaperTrail service 30
SendGrid service 30
subscription 28

J
javax.jdbc.DataSource feature 72
Jenkins

about 45
automation 46
CI 45
extensibility 46
scalability 46

Jenkins customization 48, 49
Jenkins job

chaining 52, 53
JetBrains Intellij Idea

about 78

features 79
URL 79

jvmFileEncoding parameter 70
jvmPermSize parameter 70
jvmTimeZone parameter 70

L
local GenApp

installing, to test ClickStack plugins 92
logging_file variable 88

M
m1.micro instance 24
Maven archetype 22
monitoring 64

O
on-demand slaves 50

P
PaaS

about 9
versus, self-managed infrastructure 23, 24

persistent filesystem 62
platform 10
Platform as a Service. See PaaS
private Cloud

versus, public Cloud 11
project

building 36, 37
promotion plugin 53
Promotion process window 54
public Cloud

versus, private Cloud 11, 12
PuTTY

used, for SSH key generating 18, 19

R
RBAC 26
resource

binding 72
managing 72

[98]

Role-based Access Control. See RBAC
RUN@cloud architecture

about 84, 85
ClickStack 84-86
ClickStack plugins 88
directory structure 87, 88
GenApp 84
metadata 87

RUN@cloud features
ClickStack 65, 66
clustering constraints 59-62
customizing domain 62-64
horizontal scalability 58, 59
monitoring 64, 65
scalability 57

runtime parameters
about 70
containerSize parameter 70
httpVersion parameter 70
jvmFileEncoding parameter 70
jvmPermSize parameter 70
jvmTimeZone parameter 70

S
SaaS

about 8
drawback 8

scalability
about 46, 57, 58
horizontal scalability 58, 59

Scala SBT 36
SDK

about 67
CloudBees SDK 67-70

self-managed infrastructure
versus, PaaS 23, 24

services
about 26
accessing 19
DEV@cloud services 26

integrated partners services 27-30
RUN@cloud services 26, 27
subscribing to 17
validated partners services 30, 31

session affinity. See sticky sessions
Software as a Service. See SaaS
Software Development Kit. See SDK
SSH key

generating, PuTTY used 18, 19
SSL encryption 63
state

about 59
client-side state 61
managing, HttpSession servlet used 60
managing, sticky sessions used 60

sticky sessions
using 60

T
Tomcat 8 ClickStack

URL 91

U
user roles

about 26
administrators 25
users 25

users
about 25, 26
roles 25

V
validated partners services

about 30, 31
example 31

X
XX:MaxPermSize option 70

Thank you for buying
Cloud Development and Deployment with CloudBees

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Play! Framework 2
ISBN: 978-1-78216-012-0 Paperback: 290 pages

Start developing awesome web applications with this
friendly, practical guide to the Play! Framework

1. While driving in Java, tasks are also presented
in Scala – a great way to be introduced to this
amazing language

2. Create a fully-fledged, collaborative web
application – starting from ground zero; all
layers are presented in a pragmatic way

3. Gain the advantages associated with
developing a fully integrated web framework

Instant Play Framework Starter
ISBN: 978-1-78216-290-2 Paperback: 70 pages

Build your web applications from the ground up with
the Play Framework for Java and Scala

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2. Get started with Play 2.1

3. Build your own web application with Java
and Scala

4. Handle user input with forms and access data
with Ebean, Anorm, and Slick

Please check www.PacktPub.com for information on our titles

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow receipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1. Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style

2. From creating forms to theming your
interface, you will learn the building blocks for
developing the perfect web application

3. Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips

Akka Essentials
ISBN: 978-1-84951-828-4 Paperback: 334 pages

A practical, step-by-step guide to learn and build
Akka's actor-based, distributed, concurrent, and
scalable Java applications

1. Build large, distributed, concurrent,
and scalable applications using the Akka's
Actor model

2. Simple and clear analogy to Java/JEE
application development world to explain
the concepts

3. Each chapter will teach you a concept by
explaining it with clear and lucid examples–
each chapter can be read independently

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What's a PaaS and
why CloudBees?
	Infrastructure as a Service
	Software as a Service
	Platform as a Service
	So, which platform?
	Cloud and clustering
	Private versus public Clouds
	Security
	CloudBees – embrace the development stack
	Summary

	Chapter 2: Getting Started Quickly
	Subscribing to services
	Keys and authorizations
	Accessing services
	Setting up an application using ClickStart
	Getting the code
	Making changes and updating the application
	PaaS versus self-managed infrastructure
	Summary

	Chapter 3: Users, Domains,
and Services
	Users and roles
	Services
	Integrated partner services
	Validated partner services
	Summary

	Chapter 4: ClickStart in Depth
	What's a ClickStart?
	Getting the code
	Building the project
	Managing the deployed application
	The ClickStart ecosytem
	Writing your own ClickStart
	Summary

	Chapter 5: Managing Your Build
	Jenkins
	Continuous Integration
	Automation
	Extensibility
	Scalability

	DEV@cloud
	Customization
	Plugins
	On-demand slaves

	Continuous delivery
	Full chain automation – continuous deployment
	Job chain
	Promotion

	Summary

	Chapter 6: Running Your Applications
	Scalability
	Horizontal scalability

	Clustering constraints
	State
	The HttpSession servlet
	Sticky session
	The client-side state

	The ephemeral filesystem

	Customizing the domain
	Mapping your domain name
	SSL encryption
	The private mode

	Monitoring
	ClickStack
	Summary

	Chapter 7: Tools
	CloudBees SDK
	Installation
	Basic usage
	Runtime parameters

	Customizing your application
	Application parameters
	Resource management and binding
	Plugins
	Blue-green deployment

	IDE integration
	Eclipse plugin
	Installation
	The CloudBees view
	ClickStart integration

	IntelliJ Idea support

	GitHub integration
	Full cloud-based toolbox
	Summary

	Chapter 8: Using ClickStack to Extend the Platform
	The RUN@cloud architecture
	Metadata
	The directory structure
	Plugins

	ClickStack by sample
	A simple ClickStack plugin
	Community and contributions

	Advanced ClickStack
	Sharing the code
	Complex setup

	Testing
	The local GenApp installation
	Automated tests

	Summary

	Index

