
DevOps, DBAs,
and DBaaS

Managing Data Platforms to
Support Continuous Integration
—
Michael S. Cuppett

www.allitebooks.com

http://www.allitebooks.org

DEVOPS, DBAS, AND DBAAS

MANAGING DATA PLATFORMS TO SUPPORT
CONTINUOUS INTEGRATION

Michael S. Cuppett

www.allitebooks.com

http://www.allitebooks.org

DevOps, DBAs, and DBaaS: Managing Data Platforms to Support Continuous
Integration

Michael S. Cuppett
Arlington, Tennessee
USA

ISBN-13 (pbk): 978-1-4842-2207-2 ISBN-13 (electronic): 978-1-4842-2208-9
DOI 10.1007/978-1-4842-2208-9

Library of Congress Control Number: 2016960738

Copyright © 2016 by Michael S. Cuppett

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dis-
similar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Robert Hutchinson
Developmental Editor: Laura Berendson
Editorial Board: Steve Anglin, Pramila Balen, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Rita Fernando
Copy Editor: Nancy Sixsmith
Compositor: SPi Global
Indexer: SPi Global
Cover Image: Designed by Davidzydd / Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

Apress Business: The Unbiased Source of Business Information

Apress business books provide essential information and practical advice, each
written for practitioners by recognized experts. Busy managers and profes-
sionals in all areas of the business world—and at all levels of technical sophis-
tication—look to our books for the actionable ideas and tools they need to
solve problems, update and enhance their professional skills, make their work
lives easier, and capitalize on opportunity.

Whatever the topic on the business spectrum—entrepreneurship, finance,
sales, marketing, management, regulation, information technology, among oth-
ers—Apress has been praised for providing the objective information and
unbiased advice you need to excel in your daily work life. Our authors have no
axes to grind; they understand they have one job only—to deliver up-to-date,
accurate information simply, concisely, and with deep insight that addresses
the real needs of our readers.

It is increasingly hard to find information—whether in the news media, on the
Internet, and now all too often in books—that is even-handed and has your
best interests at heart. We therefore hope that you enjoy this book, which has
been carefully crafted to meet our standards of quality and unbiased coverage.

We are always interested in your feedback or ideas for new titles. Perhaps
you’d even like to write a book yourself. Whatever the case, reach out to us
at editorial@apress.com and an editor will respond swiftly. Incidentally, at
the back of this book, you will find a list of useful related titles. Please visit
us at www.apress.com to sign up for newsletters and discounts on future
purchases.

The Apress Business Team

www.allitebooks.com

http://mailto:editorial@apress.com/
http://www.apress.com/
http://www.allitebooks.org

I wish to dedicate this book to
JoAnn, my wife of 25 years. Thank you

for making me a better person, and
for doing a fantastic job raising and

educating our children.

Your capacity for loving, caring, and
encouraging emboldens me to explore

opportunities—like authoring a
book—far outside of my comfort zone.

www.allitebooks.com

http://www.allitebooks.org

Contents
About the Author � ix

About the Technical Reviewer � xi

Acknowledgments � xiii

Introduction � xv

Chapter 1: DevOps for DBAs � 1

Chapter 2: DBAs for DevOps � 15

Chapter 3: Integrating DBA and DevOps Processes� � � � � � � � � � � � � � � 25

Chapter 4: Integrating Database Technologies and DevOps Tools � � � � 41

Chapter 5: Stateful Data, Stateless Database Schema, and Code � � � � 57

Chapter 6: Optimizing Application Performance with Change
Management Improvements �73

Chapter 7: Measuring DBA Inputs to End-User Experience and
Business Value � 87

Chapter 8: Automation and Code Control � 107

Chapter 9: DBaaS, IaaS, and PaaS � 123

Chapter 10: Overcoming Language and Cultural Barriers
Between DBAs and DevOps � 139

Index � 155

www.allitebooks.com

http://www.allitebooks.org

About the Author
Michael S� Cuppett is a Business Resiliency
Architect for a Fortune 25 healthcare organiza-
tion, where he currently strives to apply DevOps
methodologies to disaster recovery programs.
He was previously charged with application and
infrastructure reliability, availability, recoverabil-
ity, and performance as a Solutions Engineer.
Cuppett draws on three decades of experience
as a DBA and IT engineer in the U.S. Army and
the private sector, culminating in a succession of
management and senior technology positions
at large companies in database administration,
solutions engineering, and disaster recovery.
Cuppett writes frequent articles on Oracle DBA
issues and the business dimension of DevOps
for LogicalRead, Oracle Technology Network,
and APM Digest. He received a B.S. degree in
Management and Computer Information Systems
from Park University. Mike lives in Arlington, TN
with his wife JoAnn, son John, and daughter Ava.

www.allitebooks.com

http://www.allitebooks.org

About the Technical
Reviewer

Arup Nanda has been an Oracle DBA since 1993,
dealing with everything from modeling to secu-
rity, and he has a lot of gray hairs to prove it.
He has coauthored 5 books, written 500+
published articles, presented 300+ sessions,
delivered training sessions in 22 countries, and
actively blogs at arup.blogspot.com. Nanda is
an Oracle ACE Director, a member of Oak Table
Network, an editor for SELECT Journal (the
IOUG publication), and a member of Board for
Exadata SIG. Oracle awarded him the DBA of the
Year in 2003 and Architect of the Year in 2012.
He lives in Danbury, CT with his wife, Anu and
son, Anish.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments
I want to express my sincere appreciation to two extremely supportive and
dedicated leaders: Sharyn Lemmons and Gene Weber. Your excitement and
reassurance deepened my resolve to complete this project.

Thank you, Arup Nanda, for accepting technical reviewer responsibility to
ensure the technical accuracy of the content. Your candid advice made this
book better.

To my editors, Robert Hutchinson, Rita Fernando, Laura Berendson, and
Matthew Moodie, thank you for offering me this challenging opportunity. I
was a first-time book author, and your willingness to guide me through this
project sustained my motivation. The Apress process relieved me from having
to worry about how to submit or format the manuscript because the clear,
step-by-step procedure made managing the work flow simple.

To my many friends with whom I have toiled “in the trenches” for years, know
that each of you taught me how to be better at this profession. Thank you for
your friendship.

www.allitebooks.com

http://www.allitebooks.org

Introduction
DevOps pioneers responded to the need for IT infrastructure and operations
(IO) teams to join the Agile movement, a movement guided by principles that
focused on delivering business value more quickly; improving customer expe-
rience with software products having superior application functionality and
stability; and transforming product delivery to iterative, frequent releases to
minimize implementation risk. What was initially dubbed Agile infrastructure
transformed how IO teams deliver services and manage changes: as partners
with development. To shore up DevOps teams, DBAs should be invited to
the table. DBAs bridge the development and IO gap with application, database,
security, audit, infrastructure, and operations experience by offering new capa-
bilities for expanded DevOps coverage.

The intention of this book is twofold: 1) help DBAs understand the DevOps
movement cultural shift and what it means to do DevOps from a process per-
spective and 2) provide insights to DevOps team members of the value DBAs
offer and a view into why DBAs diligently protect the database and operations
environment from instability and performance challenges. As DBAs assimilate
as DevOps team members, the movement advances and benefits customers,
businesses, the IT industry, and (most importantly) the professional involved.

I am humbled that Apress recruited me to write this book. This dissertative
volume provides perspectives on core deliverables from different angles. If you,
the reader, begin to understand the value of adding DBAs to DevOps teams,
no matter your current role, it is a win. And if DBAs perceive the cultural
dynamic, get excited about transitioning database tasks into the Agile pipeline,
start to explore ways to implement the right database for the job (whether
on- or off-premise), and understand that the world remains safe even when
developers can spin up databases, Apress’s vision for this book was realized.

www.allitebooks.com

http://www.allitebooks.org

© Michael S. Cuppett 2016
M. S. Cuppett, DevOps, DBAs, and DBaaS, DOI 10.1007/978-1-4842-2208-9_1

 C H A P T E R

 DevOps for
DBAs
 Organizational demand for agility—adapting the business to meet customer
demands and speed—and fulfilling customer demands expediently with an
earlier return on investment (ROI) realization continually drive the expanding
and maturing cultural paradigm of DevOps. These business-mandated edicts
have forced information technology teams, including database administrators
(DBAs), to incorporate rapid development, continuous integration, automated
testing, and release management. Combined with immediate feedback loops,
the result is a shift from monolithic applications to object- or services-defined
applications.

 This chapter demonstrates how DBA responsibilities are moving from infra-
structure builders to infrastructure enablers, from vendor-specific database
managers to “best database for the job” proponents; from technology silo
experts to technical advisors; from unintentional database metrics isolation-
ists to “metrics for all to see” facilitators; from the “database is green” to
the customer experience performance protectors. This disruptive movement
looks to adopt more DBAs now that DevOps teams are seeking to strengthen
themselves by including DBAs.

 To date, DevOps primarily incorporates development (aka programming or
software engineering), quality assurance (QA), release management, produc-
tion operations support, and business team members united in streamlin-
ing the software development life cycle (SDLC). Involving DBAs seems to be

1

Chapter 1 | DevOps for DBAs2

an afterthought; as Pete Pickerill wrote on http://devops.com , “This over-
sight is unfortunate. DBAs have a lot to offer when it comes to correlating
the development of technology with the management of the environment in
which it’s hosted. In a sense, DBAs have been DevOps all along.” 1 It is a costly
oversight.

 A viable SDLC model no longer consists of sequential, isolated hand-offs from
a business analyst to a programmer to a QA tester to a change coordinator,
and finally to the last toss over the wall to operations. Instead, each team
 member performs a shift left , shown in Figure 1-1 , which describes an earlier
involvement in the process, being pulled upstream to learn about business
drivers and other reasons why the software being requested is needed, and
(perhaps more importantly) learning how the business uses the software.

 QA shifts left to begin building test cases to be used in develo pment and
integration; the application DBA shifts left to learn directly from the business
what functionality is needed, making the application DBA a more valuable
contributor to the solution. The operations DBA, instead of being ill-informed
about changes heading toward production, now learns exactly what is in the
pipeline, can recommend performance and other operational advice for inclu-
sion in the solution, and can adjust database server templates early in the
SDLC.

 Teams build better products when each team member understands the pur-
pose for and intended use of the application. When developers hear directly
from business team members the features and functionality needed instead

 Figure 1-1. Shift-left illustration

 1 http://devops.com/2015/05/28/where-is-the-dba-in-the-devops-conversation/

http://devops.com/
http://devops.com/2015/05/28/where-is-the-dba-in-the-devops-conversation/

DevOps, DBAs, and DBaaS 3

of receiving a requirements document with second-hand information trans-
lated by a business analyst (BA) —even a very competent BA—the likelihood
increases that the software will actually look and perform as requested. In
many organizations, BAs are a myth because it is difficult to bridge business
language, process, and technical perspective to IT language, process, and
 technical perspective. Much can be lost in translation, resulting in less efficient
use of technology. Whether an application DBA works side by side with the
programming team to improve data access code or determine index require-
ments, or whether an operations DBA toils with release management to
ensure the software or service gets moved into production without disrupt-
ing the business or degrading application performance, the value-add is clear.
Much of this alignment happens by using increased and improved communica-
tions, both in person and through specialized tools. DBAs bring tremendous
value to the DevOps proposition by contributing deep technical skills and
varied experiences that are ready to be leveraged by existing DevOps teams.

 Infrastructure Enablers
 Database as a Service (DBaaS) empowers anyone—everyone—who needs a
database to quickly provision one, without concern for the underlying infra-
structure or software in stallation. Realizing the ease and immediate gratifica-
tion that DBaaS provides, business and development team members expect
DBAs to deliver a near-equal service. Although these teams understand that
corporate database provisioning requires proper governance, their delivery
expectations are still much sooner than pre-DevOps capabilities. Fortunately,
perceived best practices, security requirements, and extended project and
purchase approval processes are all realigning to deliver on the promises of
DevOps.

 DBAs need to exercise judicious discipline, mixed with flexibility and what
may feel like overcommunicating, to adapt from silo-ed processes involving
receiving hand-offs from an upstream team, sprinkling on a bit of DBA magic,
and then passing the package to a downstream team. To work effectively
within the DevOps model, DBAs need to manage databases across a variety of
platforms: physical or virtual hosts, and internal or external cloud implementa-
tions that are likely using database software that is not relational. For DBAs,
ensuring secure access and robust access times may be where traditional
responsibilities end. New responsibilities include assisting with rapid deploy-
ment process (continuous integration and continuous deployment) creation,
managing code and scripts using software versioning tools, and building infra-
structure as code. Although data remains stateful, the schema, the database
software, and the host platform are stateless. DBAs need to bec ome agents
of change, supporters of the DevOps methodology, and tactical consultants

Chapter 1 | DevOps for DBAs4

driven to improve all aspects of the SDLC. DBAs need to become platform
and database agnostic. There is more to come on these topics.

 Relational databases have been the preferred (best understood) environment
for the storage and retrieval of data for several decades. As petabytes of
unstructured data have been introduced into the mix, relational databases
have struggled to manage the data while staying true to traditional relationship
precepts. To fill the gap, NoSQL databases such as Cassandra and MongoDB
introduced ecosystems built to store and retrieve data outside of the rela-
tional model. (Database specifics are discussed in a later chapter.)

 DevOps involves DBAs creating database build templates that developers, yes
developers, use to spawn databases on demand, which is simply one step in
the automated server provisioning process. Test data loads are automatically
consumed, tested, and measured without direct DBA action. DBAs instead
help define how the test data is selected and staged for consumption. Learning
to accelerate work using automation and source code control for all scripts
and code further reduces the development cycle time.

 DBAs must aggressively an d proactively accelerate product delivery to match the
velocity of the release cadence, and be determined to never be the bottleneck.

 “Best Database for the Job” Proponents
 Particularly for new pro jects, DBAs need to weigh the impact of force-feeding
data into the relational model versus introducing a new database model that
is more aligned to the application’s expected data use pattern. Structured and
unstructured data may best live in separate databases, with applications calling
multiple services to read, modify, or delete data. Code is evolving to be more
dynamic to leverage multiple back-end databases (see Chapter 5).

 Legacy databases will not disappear soon because many still act as the data-
bases of record and contain valuable data. Also, audit and governance require-
ments have to be satisfied, many by just keeping the data in place until the
mandated retention window expires.

 Organizations may decide to decouple monolithic application functions into
services that fit agile development and DevOps more readily. Segments of data
thus may need to be copied or moved into a different database, which is work
that DBAs perform regularly. Advantage DBAs: new resume entry!

 Technical Advisors
 Transforming to align with a business partner’s need for scalable, well-per-
forming, and resilient systems, at a lower cost, is much easier when leverag-
ing an established methodology. This methodology has been proven feasible

http://dx.doi.org/10.1007/978-1-4842-2208-9_5

DevOps, DBAs, and DBaaS 5

by Netflix, Facebook, Flickr, and Etsy; and DevOps has matured to the point
at which even risk-averse organizations should feel comfortable adopting it.
Lean processes, obsessive automation, faster time to market, cost reductions,
rapid cycle times, controlled failures and recoveries, and robust tool suites
empower this ambitious transformation. DevOps DBAs must adapt to this
new way of building software products while driving infrastructure stability,
resiliency, and availability, eclipsed only by extreme application performance.

 DBAs are persistently ostracized for being inflexible, slow to deliver, and gen-
erally uncooperative. DBA processes, along with many Operations’ processes,
remain serialized and burdened by outdated policies and delivery expecta-
tions. Shifting to DevOps aligns (absorbs) DBA tasks into combined process
flows that began during the agile development transformation. DBAs need to
purposefully engage their development peers to communicate a willingness
to adopt DevOps practices, manage the infrastructure as code using source
control, and learn the implemented tool suite.

 DevOps brings many new opportunities for IT teams to deliver superior soft-
ware products that fulfill business initiatives that lead to excellent customer
experiences. On the flip side, challenges arise when integrating processes,
increasing release momentum, reducing cycle time, managing infrastructure as
code, and implementing change requests. Many DBAs were left behind during
the initial DevOps wave; however, current landscape changes include drawing
in a variety of IT technicians to further expand capabilities, extend collabora-
tion, reduce waste, and abate SDLC costs.

 The inclusion of DBAs into DevOps is not without risk because, as with any
process, adding another step, variable, or person increases the possibility for
errors or other disruptions. Fortunately, DevOps is supported by e ver-evolv-
ing powerful tools purposed to assist with collaboration, code management,
quality assurance testing, and task automation (some of which are discussed
as you progress through this book).

 Converting from technology silo experts to technical advisors instills a new
sense of purpose and resets our mindset so that we are willing to partner
with teams once deemed “nemeses” for the good of the business and the
customer.

 “Metrics for All to See” Facilitators
 DBAs (at least good DBAs) constantly assess the production database envi-
ronment (code base; database; host operating system [OS]; load; capacity; and,
less often, network throughput) and seek opportunities to improve application
performance. Whether by identifying poor performing queries, needed indexes,
or expanded buffer cache, performance matters to DBAs. The misstep has
often been unintentional isolation of performance metrics by not purposefully,
holistically, or frequently sharing with network and system administrator (SA),

Chapter 1 | DevOps for DBAs6

or development team members, although doing so may further improve appli-
cation performance. More importantly, it provides an exceptional value to
customers. Sharing performance metrics enables disparate teams to aggregate
their combined experiences and skills, producing opportunities for better
solutions than are possible individually. (Chapter 6 delves into a few nondata-
base examples of measuring customer experience and how to expand change
management to be a DevOps tool for application performance improvement.)

 DevOps Success Metrics
 Extending metrics beyond customer experience performance management,
DevOps introduces measures for software delivery efficiency, release cadence,
and success rate. Continuous code integration, automated testing, and con-
tinuous delivery have to be measured to determine success. Continuous inte-
gration checks how well newly introduced code operates with existing code,
measured by defects. Automated testing checks whether new or modified code
function is as defined in the use case and whether the code passes regres-
sion testing Continuous delivery/deployment checks how often code is released
into production (release cadence) and whether the code causes disruption,
tracked by incidents.

 Customer Experience Performance Protectors
 Holistically under standing the infrastructure and application architecture
provides opportunities to decrease cumulative degradation , which improves
customer experience (see Table 1-1). Even for a basic transaction flow, the
delivery level drops rapidly.

 Table 1-1. Cumulative Degradation

 Cumulative Degradation

 Component Success %

 Network 99.9%

 Web server 99.7%

 App server 98%

 Database 97%

 App server 98%

 Web server 99.7%

 Network 99%

 Customer Experience: 91.58%

http://dx.doi.org/10.1007/978-1-4842-2208-9_6

DevOps, DBAs, and DBaaS 7

 Cumulative degradation rev eals why the IT five 9’s availability goal falls short
when measuring customer experience.

 Application performance management (APM) can provide transactional perspec-
tives of customer experience, transaction times, and frequency, which provide a
framework to fully understand application performance across the infrastructure.
DBAs with this transparency level can shift to predictive analysis, allowing cor-
rections to be implemented before the customer notices. Even troubleshooting
becomes less problematic and faster because baseline variances can be repo rted
if predetermined thresholds are violated. Additionally, preproduction APM appli-
cation monitoring can identify code or infrastructure performance deficiencies
before release, preventing problems from getting into production.

 CAMS
 The acronym CAMS 2 , originally coined by Damon Edwards and John Willis in
2010, has been used by many authors to describe four essential elements nec-
essary for DevOps success, each in their own words. I intend also to describe
these facets within the CAMS framework.

 Culture
 Internationally recognized management guru Peter Drucker famously pro-
nounced, “Culture eats strategy for breakfast.” Culture presents a perplexing
challenge to DevOps implementation. Wanting to do DevOps by investing
in DevOps tools, training staff, and hiring expert consultants, all without a
transferal of mindset, behaviors, and incentives, only suppresses the status
quo, which lies quietly below the waves seeking an opportunity to re-emerge.

 During a recent client call, a team brought forward a build request for two
virtual hosts, including software installs for several products from a popular
Agile tool suite. The conversation went something like this:

 Requester: “We need two VMs with tool A and tool B installed for a
project starting in 10 days.”

 SA: “Once approved, it takes 6 weeks to provision a VM.”

 Requester: “This project has been approved by SVP what’s-her-name
and VP so-and-so as a fast-track project.”

 SA: “Our process takes 6 weeks. Then someone still needs to install
the tools because that’s not what we do.”

 2 HYPERLINK “ http://devops.com/2015/05/28/where

http://devops.com/2015/05/28/where

Chapter 1 | DevOps for DBAs8

 By this time, I am “cryaughing”—trying not to cry or laugh, but really wanting
to do both. But I digress.

 Requester: “We are trying to be agile and need to move fast.”

 SA: “Our process is fast! It used to take 3 months to get a host
provisioned.”

 And so forth. Sadly, this is not a fictional story for book demonstration
purposes.

 As this unfortunate yet emblematic example shows, existing processes create
cultures ingrained with supp ositions of how well teams are pe rforming, what
people believe are expected from them, and a “don’t rock the boat” mindset,
all of which present tremendous hurdles to be surmounted. DevOps requires
processes to be rethought, leaned out, sped up, and extraordinarily stable.
Pulling together strong and patient leaders, complemented by charismatic
and uber-respected technical subject matter experts (SMEs) such as DBAs
or senior DevOps engineers, to challenge the status quo by instigating a new
culture focused on DevOps best practices must be the movement’s heart
and soul. An organization’s culture must transform into a more collaborative,
process-defined, and people-centric entity to successfully drive continuous
improvement, automation, and integrated testing.

 To change the culture, people must at least accept the new direction, even if
reluctantly. The best-case scenario includes people being only too happy to
scrap the old model and excited to move on to better methods. Both types
of people encountered need to be coached differently to effectively ensure
the movement’s success. The reluctantly accepting group drags its feet, in no
hurry to reach the new destination. Coaching increases the pace, improves
buy-in, and develops needed attitudes. The excited group (probably the ones
who have been telling each other for years that management is a cast of
morons and constantly bloviating about how everything would be awesome
if only they were in charge) can be more dangerous to the cause than those
who may be flat-out resisting the change. Failing to control the ascent w ith
planned and well-communicated phases that include needed staff training,
concrete process definitions, and general good change practices may result in
a catastrophic crash and burn.

 Change is an interesting beast. A team member once asked his manager why
the manager had not pushed for a large change that needed to happen. The
manager responded that change done gradually over time usually receives
better acceptance. The manager’s example was for the team member to imag-
ine coming to work the next morning to find a full-grown tree in his cube.
The manager explained tha t even if the employee loved trees, the tree would
be bothersome because it had invaded his space unexpectedly. But if the team
member arrived to find a potted sapling on his desk, he might think it is cool.

DevOps, DBAs, and DBaaS 9

Over time, as he would nurture the sapling (even though he had to repot the
now small tree and place it on the floor), the team member would remain
comfortable with its presence. After a few years passed, when people would
ask him about the full-grown tree in his cube, he would proudly share that he
was able to transform a weak sapling into a mighty tree. The employee would
accept the change because he was involved (nurturing), and the change came
about slowly but consistently.

 Driving the new DevOps culture requires introducing a “sapling” and nur-
t uring its growth until the “tree” is well rooted. The more people who are
involved in the nurturing process improves the odds of a positive outcome.
Leaving the tree-nurturing responsibility in the hands of only the core team
likely leads to a brown and wilted sapling.

 Automation
 It is odd to think that one of th e primary benefits unleashed at the dawn
of the computer era was the ability to reduce costs and processing time by
automating routine tasks. Yet today, when CIOs and their teams are under
pressure to drive strategic growth initiatives needed to increase revenue or
introduce new products for customers, much of the behind-the-scenes effort
is still completed manually. IT professionals (I, too, have been guilty of this)
love working with shiny new toys—often at the expense of reducing effort or
costs through automation.

 DevOps is about speed, flexibility, resiliency, and continuous improvement.
People need to understand the processes, build and test the software, imple-
ment the automation, and then step back and let the computers do the work.
For DBAs, this means relinquishing control of the scripts and surrender-
ing them to source code control. The scripts now become included in the
release package instead of being manual executions listed as a task in a plan
spreadsheet.

 Automation applies to server builds, database software installs and configura-
tions, network settings, storage allocations, schema builds, code compiles, job
scheduling, and more. Anything and everything should be automated. Security
programs should automatically scan hosts for vulnerabilitie s. Auto mation is the
way resiliency can be gained, reducing human error risks. The automation itself
needs to be monitored and measured to ensure it is delivering expected benefits.

 Measurement
 People live by measurements. O ur day (a measure) is an accumulation of
events segmented by the measure of time. The value of our contribution to
the organization comes periodically (a rhythm of measures): the a mount of

Chapter 1 | DevOps for DBAs10

our paycheck. Hence, measurements must be important. Yet too many IT
shops still focus on binary checks, such as a server being up or down instead
of business measures such as end-user experience and transaction capability;
or for DevOps: cycle time, failure and resolution rates, release momentum,
feature time to market, and reduced SDLC costs.

 For DevOps to succeed, a consistent whittling away at inefficiencies, avoidable
steps, and pointless multilevel approvals must occur. The burden of CYA and
sometimes ego boosting for less-mature executives (e.g., requiring ten people
to approve a change) has been known to be one of the most consuming yet
valueless requirements related to the SDLC. After all, the business made the
request and IT agreed to complete the work, which sounds like approvals. Yes,
other oversight is needed, but surely a few approvals would not be missed.
Applying lean and Kanban techniques trim inefficiencies that should return
value from reduced waste and improved speed. Process mapping, or value
stream mapping, should be don e to cap ture the delivery process, see how long
each step takes, and evaluate the need for each step. Decisions can then be
made to remove impediments, smooth out the workflow, and drop unneeded
steps and approvals to produce a streamlined SDLC process.

 Sharing
 “Knowledge is power.” That sa ying has been around for years, but has been
distorted; many people hoard information to be used only for personal gain
versus benefiting others. Someone who knows how to cure cancer does
not hav e power by selfishly retaining the solution; instead, the power comes
from releasing the information and then watching how the knowledge, when
applied, impacts people around the world.

 DevOps breathes by sharing information. Business, development, and opera-
tions (including DBAs) must communicate in full-duplex. Messages need to
be sent and received simultaneously upstream and downstream. Each team
member must understand why the business needs the function and how the
business plans to use the function. Addressing operational challenges earlier
in the process leads to better-performing and resilient production systems. As
DevOps expounds continuous testing across the SDLC, all environments must
match the planned end-point state. Operational knowledge from team mem-
bers’ vast experience, aggregated into manageable bundles driven upstream to
improve the infrastructure, creates consistent and stable platforms.

 Do you remember the grade school exercise in which the teacher would
share a sentence with one student that was then passed from student to stu-
dent until the last student relayed the sentence back to the teacher? Whether
it was changed intentionally for malice or fun, or changed because students
couldn’t remember the exact statement, the final message was usually so dis-
similar to the original sentence that it was humorous. Unfortunately, this is

DevOps, DBAs, and DBaaS 11

the exact process IT has used for decades: it receives requirements from the
business and then passes the details, which are distorted incrementally, along
the supply chain so that (as witnessed far too many times) the business cannot
reconcile the final product to the requested functional requirements.

 DevOps must have a continuous feedback mechanism that constantly relays
information concerning code and infrastructure decisions that seamlessly
apply to production, and which decisions disrupt or degrade the customer
experience by degrading application performance or availability.

 Figure 1-2 shows a continuous loopback system underlying the code-progres-
sion process.

 Thinking Differently
 Earlier involvement in the SDLC introduces challenges, maybe even opposi-
tion, to traditional responsibilities. Customary DBA tasks seem often to be
outliers concerning the SDLC. Although analysis, development, QA testing,
releases, and initial operations support efforts stream as a continuous flow,
DBA tasks have a tendency to abruptly change the flow, disrupting progress.
As DevOps database frameworks mature, DBA task inclusion becomes seam-
less to the process, supporting continuous integration and automation.

 Core DBA work shifts from being a significant Gantt chart bar to barely a blip
on the timeline. Imagine not being constantly asked, “When will the database

 Figure 1-2. F eedback loops

Chapter 1 | DevOps for DBAs12

be ready?”; instead not even being a part of the build and release cycle. How?
Infrastructure as code, which involves predefining database configurations that
can be built on virtual resources, initiated by developers on demand. Also
shifting to DevOps, SAs can purchase, rack and stack, power up, and net-
work attach computing resources as an internal cloud, ready for consumption.
Optionally, provisioning platforms may simply mean consuming external cloud
resources (an example is DBaaS). Either way, SAs can create templates for
standard server builds: database, app server, web server, and so on. DBAs can
then extend the database server build templates to include database software
installation and database creation. Including test data loads for preproduction
databases for testing can also be automated. All scripts used in the build pro-
cess must be managed as code, including versioning and source code control.
DBAs need to manage their code just like their development partners.

 Security , everyone’s concern, has at least three tasks: 1) scan and approve
template-driven server builds; 2) dictate access methods and privileges for the
operating system, database, web services, and more; and 3) periodically scan
active servers for vulnerabilities. DBAs must provide continual feedback to
the security team to ensure risk mitigation.

 With this automation, the SDLC pi peline no longer includes long duration
bars for purchasing and building servers and databases; instead, developers
can provision on demand. Yes, the hairs on my neck are standing up, too.
Remember that although you still control the installation, build, and configura-
tion of the database, you can turn your focus to performance and customer
experience improvements once you have automated provisioning.

 Now that servers are provisioned from predefined templates with or without
using a DevOps tool, platform consistency begins to evolve. As code pro-
gresses toward production, needed environments are spun up using the same
template as the initial development server. In some cases, even the production
ecosystem is built exactly like every server involved in the code release pro-
cess. Appreciating that production web and app server builds from templates
can be a successful model is one thing, but accepting that idea for production
database servers needs more consideration. Agreeing that only data is stateful
allows the inference that the data could be loaded and unloaded, even trans-
formed to meet business requirements. Consequentially, it is unlikely that a
multiterabyte relational database would undergo that much manipulation. In
these cases, DBAs may choose to derive the preproduction database configu-
ration from the production setup, maintaining platform consistency. Mike Fal
writes in the simple talk blog posting, DevOps and the DBA , “The reality is that
chaos, instability, and downtime are not the result of speed, but the result of
variance.” 3

 3 -is-the-dba-in-the-devops-conversation/” http://devops.com/2015/05/28/wh

http://devops.com/2015/05/28/wh

DevOps, DBAs, and DBaaS 13

 Inconsistencies between nonproduction and production environments have
always undermined production releases (it worked in development), extended
outages (change ABC implemented 2 months ago was never removed from
production, which caused this release to fail), and degraded performance
(it was fast in QA) because the solution could not scale to the production load.

 Marching forward, DBAs have the opportunity to improve platform stability,
remove build bottlenecks, and increase production resiliency by collaborat-
ing toward on–demand provisioning capabilities, reducing failures caused by
inconsistency, and most importantly, being cultural change warriors. Many of
you are already doing DevOps work—now there is a name to help facilitate
conversations.

 Summary
 DevOps presents exciting opportunities for DBAs to make the improvements
that many of you have wanted for years. As the culture shifts to align with
the agile and DevOps movements, and DevOps teams understand the valu-
able contribution that DBAs bring to DevOps, DBAs can more directly influ-
ence application performance and infrastructure stability while being able to
provide better–fitting database solutions with the incorporation of NoSQL
environments and DBaaS offerings.

 DBAs need to become automation experts to create and maintain database
build templates, integrate with server build templates, and let others do the
actual builds. They check in database change code for absorption into the
continuous integration pipeline, build numerous tests to expose all possible
defects to prevent them from progressing toward product delivery, and intend
to never allow a defect to be deployed into production.

 The following chapters expose DBAs to DevOps, provide insights into “why”
and “how” to do DevOps; discuss the value proposition; and present easily
explainable examples of platform usage, database selection, and points where
DBA can be inserted in the pipeline. No programming experience is needed
to understand the stateful and stateless code examples.

 Welcome DBAs to DevOps!

© Michael S. Cuppett 2016
M. S. Cuppett, DevOps, DBAs, and DBaaS, DOI 10.1007/978-1-4842-2208-9_2

 C H A P T E R

 DBAs for
DevOps
 Experienced DevOps professionals have the responsibility to assimilate new
people into the movement. DBAs coming on board need to understand (and
possibly be convinced) that DevOps is about improving and quickening a con-
tinuous flow of software or web service improvements designed to provide
a richer customer experience, abounding with excellent performance and
extreme availability. DBAs need to change many habits to blend traditional
work into the DevOps model.

 DBA “Undersight”
 DBA work has been a “black box” for too long. In C hapter 1, I mentioned
“magic” as a DBA tool. I was joking, of course, but reality shows that DBA
scripts, database performance configuration changes, login triggers, and other
DBA outputs are not scrutinized enough nor managed properly. The change
advisory board (CAB) team may ask a question or two about why the change is
needed, but many CAB members probably do not have the required knowledge
to question the change enough to understand the potential harm. I hear what
you are thinking, “The CAB does not have the technical experience to inter-
rogate most changes.” I agree, but I also maintain the position that the CAB
members see fewer database changes (compared with application changes) and
fail to realize that database change mistakes tend to lean toward catastrophic.
I believe it’s because the CAB should not be evaluating changes. The product

2

Chapter 2 | DBAs for DevOps16

owner and DevOps team members should know when to deploy because
they intimately know the readiness of the code, understand the consequences
of failure, and are working the backlog based on value. DevOps protects the
teams from consequences if the tea ms abide by the mandates to excessively
test to code and never allow a defect to be deployed into production. DBAs
and DevOps team members surely agree to this value proposition, not need-
ing oversight for releases. You’ll have to persistently engage the DBAs to shift
expectations in order to incorporate their work into the release cycle.

 “Bridg-ers”
 Although DBAs fortunately have the rare ability to bridge the gap between
development and operations, they have been detrimentally overlooked in many
companies that deploy DevOps practices. A DBA’s ability to interrogate code
and construct a resilient, well–performing database environment uniquely
defines the capabilities needed for DevOps. DevOps requires transformation
from organizational silos defined by a technology skill set to process-driven,
continuous flowing work streams that are empowered by collaboration and
automation . DevOps is about speed, delivery time, continuous integration and
deployment, release cadence, and superior customer experience. Although
metrics are critical for measuring customer experiences such as application
responsiveness, they are also needed to measure release success rate, soft-
ware defects, test data problems, work, and more.

 DBAs tend to be strong technical leaders who provide insight into coding best
practices, host platform configurations, database performance improvements,
data security and protection. To be successful, DBAs have to communicate, col-
laborate, teach, and learn while continuously improving database performance
and availability. The job often includes having to meet with development to
discuss poor performing code, index requirements, or execution plans to rec-
ommend code remediation. These “normal” interactions are imperative to the
success of DevOps, leaving me perplexed about why DBAs were not one of the
first operations team members asked to join the DevOps movement.

 Transition
 Understanding that DBAs are “built” in significantly different ways should help
with the approach. Many DBAs were once developers, others came from vari-
ous infrastruct ure roles, and still others have always been DBAs. Determining
which DBA type is easier to bring into the fold is a fool’s game. DBAs are peo-
ple, and people are surprisingly unpredictable. One ex-developer DBA may
be excited to finally be able to use both skill sets to help advance DevOps,
whereas another may be perturbed by having to dig up old skills she had
hoped were long dead and buried. Individually interviewing and evaluating

DevOps, DBAs, and DBaaS 17

each DBA may be necessary. Much like interviewing potential employees, dis-
cernment is needed to assess fit, training needs, and potential disruptive fac-
tors that may impact the existing DevOps team members. As mentioned in
Chapter 1 , the right leaders and SMEs need to be involved and dedicated to
the time and effort needed to integrate DBAs. Rest easy; the good news is
that even if some DBAs may resist, they all want to provide value by improving
the environment.

 Besides, as you start to expand participation in DevOps, you already have a
handful of people in mind to make the voyage smoother. You know who I’m
talking about. Yes, the ones you see talking to the development teams on a
regular basis, checking in to see how things are going, seeing what changes are
coming down the pipe, asking what the application users are saying about per-
formance, and even offering to assist as needed. These people should be your
initial picks to join the DevOps team. Specifically, you should find DBAs who
are already engaged, bring them on board, and then let them help you select
and onboard other DBAs when needed.

 Having a trusted and re spected DBA doing the team’s bidding for additional
DBA talent is likely to result in volunteers. People want to work with people
with whom they have an established relationship. Leverage previous successful
working relationships to resourcefully construct the DevOps team.

 Reciprocal Teaching
 Whether through forma l methods such as classroom or virtual training, job
shadowing, and mentoring; or through informal methods such as team discus-
sions or presentations, teaching needs to be a frequent element of team inte-
gration. It is a given that IT and business teams have difficulty understanding
each other without a common taxonomy. Even teams within IT often fail to
understand each other. A developer discussing encapsulation or inheritance
may totally perplex a DBA unfamiliar with object-oriented programming ter-
minology. Never mind if you start talking about Agile, which is very new to
many IT professionals. Likewise, a DBA ranting about developers “thrashing”
the buffer cache is likely to see the “deer in the headlights” stare. While inves-
tigating a performance issue specific to a screen, a developer shared with a
DBA that the drop-down window would display ten data elements from which
the application user could select. As they looked at the code and then tested
the code in a n onprod environment, they learned that the result set was mil-
lions of records. The million records would move from the database to the
middle tier, and then the needed to rows would be pushed to the client appli-
cation screen. When asking why millions of rows were being returned, the
developer said that was a standard practice. After looking into other queries,
the DBA soon found herself ranting to several development managers about
the developers thrashing the buffer cache and the performance impact. After
realizing that these managers did not understand DBA “technical” jargon, she

http://dx.doi.org/10.1007/978-1-4842-2208-9_1

Chapter 2 | DBAs for DevOps18

determined that there was a better way to communicate the message. She
scheduled a meeting a few days later, in which she put together a presentation
deck outlining basic buffer cache concepts with visuals (see Figure 2-1) that
demonstrated how large result sets can negatively impact not only the query
requesting the data but also every aspect of the database performance.

 After the DBA spent an hour walking the developers through the presenta-
tion and answering questions, these developers understood the impact of
less-selective queries. As days and weeks passed, and often when the DBA
was visiting the developer realm, developers would jokingly remind each other
to not thrash that buffer cache unless they wanted the DBA to get after them.
Although the training was succinct and simplified, it closed the language gap,
resulting in improved query selection criteria, smaller result sets, and less
buffer cache “thrashing.” The point is that even people in the same industry
do not necessarily speak the same language. DevOps introduces another lan-
guage gap that requires purposeful de finition to keep all members of the team
aligned. This book presumes that readers are technically savvy and already
familiar with DevOps and the core terminology, but it may not be true as they
begin working with DBAs. Accelerating DBA engagement requires DBAs to
understand the DevOps principles and foundational constructs.

 Experienced DevOps team members need to educate DBAs on pro-
cesses, continuous integration and delivery, and the implemented tool set.
Demonstrating how code is built, tested, integrated, and released helps DBAs
determine where best to interject changes supporting the code cycle. DBAs
also need early notification when system changes are necessary, allowing time
for the reconfiguration to be completed, tested, security approved, and auto-
mated for pipeline consumption.

 Figure 2-1. Buffer cache thrashing

DevOps, DBAs, and DBaaS 19

 Processes Anew
 Differentiating which DBA inputs to put forth for absorption into existing
agile and DevOps processes demands collaborative effort between existing
team members and newly assigned DBAs. Cohesive integration to advance
the undertaking of capturing additional value at decreased costs lengthens the
backbone—the code generation process definitions from start to finish—of
the movement, triggering existing processes to be rehashed, or repurposed,
and then reacclimated within the SDLC cycle.

 Together, DBAs and DevOps team members make old things new again
as processes throughout the development, testing, release, and operations
support pathway are refined to incorporate DBA tools, change meth-
ods, and metrics. The critical goal is to not disrupt the code delivery
schedule while reaffirming the automation and process sequence precise-
ness. Sanctioning a parallel environment that initially mirrors the primary
build-to-release architecture onto which the DBA components get added
enables a side-by-side comparison to ensure that updated processes work
correctly. Of course, automation oversees the execution, examination, and
effects reporting.

 Quick to Value, Delight the Customer
 Excitement for DevOps, besides the “it’s the cool thing now” factor, stems
from years of frustration as IT professionals have been viewed as money-
wasting, unresponsive, slow to deliver, and second-rate business citizens.
One of my pet peeves has been the “IT alignment to the business” language.
Viewing IT as an “outside” entity having to blend in plans to support or
conform to the rest of the business accounts for much disillusion and poor
 esprit de corps .

 When agile development (and DevOps in close pursuit) exploded in popu-
larity, IT folks finally envisioned a promising future in which product delivery
proficiencies incessantly eliminate time, process, approval, and implementa-
tion waste, and then rocket delivery to the customer. One Lean principle is
 establish pull . Customers establish pull inherently when reporting problems
or requesting new product functionality. IT’s capability to deliver has never
been this radically empowered, in which demand (pull) can be satisfied within
a customer’s time expectations.

 As consolidated teams, call them agile or DevOps, build new or decouple
established services from monolithic applications, change footprints become
much smaller (think microservices), making it possible to deploy code quickly
with minimal risk. With speed united with smaller code chunks, a failed release
becomes no more than a temporary blip on the radar.

Chapter 2 | DBAs for DevOps20

 Fail Forward, Fail Fast
 Application programming interfaces (APIs), microservices, web services,
and objects have all been “invented” to eliminate complexity, unreadability,
tremendous testing r equirements, and massive release risk associated with
applications containing thousands, hundreds of thousands, or more lines of
code. Even “package” applications can require multiple objects (packages) to
be modified for a single functional change. Each touch point increases risk.
Dissecting large code segments into services, for example, decreases the time
needed to find the code to be modified, which reduces testing time. With
DevOps, the duration is decreased further by using automated testing and
minimizes the potential release impact on the production environment.

 Compiling, packaging, and deploying large applications at once into production
are some of the major reasons for disgruntlement between development and
operations. The release causes huge problems for the business and custom-
ers, with operations under the gun to find and rectify the failure—often with
no development assistance. That division ends with DevOps. Now that devel-
opment and operations work together during the coding, testing, release, and
production support phases, true partnerships develop that provide significant
business value and team harmony.

 Services mimic real-life situations, increasing focus. Here’s a bank analogy:
when you step up to the teller to make a deposit, you expect a quick and
problem-free transaction to occur. Really, you care about little else. The teller
does not need to know how you got the money, where you came from, or
how you got to the bank (whether you drove or had someone drive you).
This information doesn’t matter for the transaction to be completed. For you,
knowing how the bank checks to make sure you are a customer with an active
account, how the money flows from the teller to the safe, how the transac-
tion is audited internally, or which bank industry best practice for deposit
transactions are being applied means little. You simply want to hand the teller
your cash and/or checks and a deposit slip, and receive a receipt verifying the
deposit into your account. Managing code as services or APIs, for example,
supports real-life conditions by reducing code to the smallest number of lines
or functions needed to carry out its purpose.

 Code that expects and accepts only a few “requests,” which then performs
one or two discrete actions and finally returns the “response,” makes it pos-
sible to accept the “fail fast, fail forward” model. Being able to deploy distinct
code elements quickly, matched with the ability to deploy the next release ver-
sion or the previous version, facilitates moving forward, even on failure. The
small program unit minimizes the production impact upon failure—maybe
only a few people experience the problem instead of a large set of applica-
tion users when large code deployments go wrong. Instead of back ing out a
massive change because it would take too long to find the root cause for the

DevOps, DBAs, and DBaaS 21

failure, the small footprint can be overlaid quickly, rectifying the problem while
potentially advancing the code. This model makes sense, although years of
“backing out” have incorrectly indoctrinated our perception. Think about it;
have you even fallen backward when you trip while walking or running? No,
most likely you recover without falling, or momentum keeps you moving for-
ward even if you do fall. DevOps leverages momentum to maintain forward
progression. Remember, though, failing forward cuts across the grain for DBAs
who are used to protecting operational stability at all costs, making not rolling
back failures a seemingly unnatural act. Experiencing only frequent successful
fail forwards brings DBAs fully onboard.

 Continuous Integration, Continuous Testing
 Besides implementing small code segments, there are two additional reasons
 w hy fail forward has proven successful: continuous integration and testing. For
DBAs whom you mentor, that means shifting direction from isolated inlands
of specific tasks to inclusion directly into the code-producing effort. Code,
schema changes, and even job scheduling tasks have to assimilate into the
software code process, including the way DBA code is built, tested, version
controlled, and packaged for release. In Chapter 1 , you learned that server
clones, each built from the same script, eliminate platform variability, making
application systems more resilient. For this reason, all software has to be man-
aged without variability from start to finish. The only exceptions are new or
modified code requested by the business or customers.

 The continuous flow of code into production may initially disorient DBAs
because the release and postrelease support model has been a brutalizing
cultural norm for decades. It is patterned like this: deployment night = pull an
all-nighter and then get a little sleep before being called back into the office
because the business is about to implode on itself (a total distortion of reality)
if the problem is not fixed promptly. After hours of troubleshooting, someone
discovers that the C++ library was not updated on the production system,
causing updated code to run incorrectly with the older library files. In this
case, the production system obviously was a huge variable, requiring separate
work to upgrade the compiler that was missed as the release progressed.
Variability burns you nearly every time.

 Repeating from Chapter 1 : when the production system has to remain, the
best move is to clone the nonprod environments from the production server.
Once the first nonprod server is built, the process can be automated to man-
age additional server builds. When something like an upgrade to the C++
libraries is needed, test for backward compatibility; if successful, upgrade pro-
du ction, clone production, and start the nonprod builds. When older code fails
(perhaps due to deprecated commands or libraries) and forces the upgrade to
be included in a larger release of all code needing to be modified for the new

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2208-9_1
http://dx.doi.org/10.1007/978-1-4842-2208-9_1
http://www.allitebooks.org

Chapter 2 | DBAs for DevOps22

libraries, very stringent change management processes must be adhered to.
This scenario is becoming more rare because agile development and database
management tools have been built to overcome these legacy challenges.

 Tools of the Trade
 Agile development and DevOps have not only changed how code is built,
tested, released, and supported, and changed how teams collaborate to be
successful, but new suites of tools were also specifically built to transform the
SDLC. There is a movement away from waterfall project management—seri-
alized code progression starting with development and then proceeding to
testing, integration, quality assurance, and production.

 New opportunities to create applications in weeks or even days has led to
products being produced and then held for release until the company can
be officially formed and readied for business operations. That reality did not
seem possible a short 10 years ago. Powerful tools have enabled businesses to
move from “scrape together a little money, spend most of the money forming
the company, start coding, go hungry, sleep in the car, beg for more money
from family and friends, visit Mom and Dad to get laundry done and consume
real food, and release version 1 in desperation, hoping to generate enough
revenue to fix numerous bugs to be released as version 2” to an early-capture
revenue model in which the application is built and readied to release and
generate revenue, possibly even while the paperwork to form the company is
underway. Imagine releasing an application on the day the company comes into
existence, possibly even recognizing revenue on day 1. Today, if the product
is conservatively successful, the continuously growing revenue stream allows
focus toward new products instead of figuring out where the next meal comes
from. Tools empower possibilities.

 Best time ever for software startups!

 Years of experience looking at performance metrics, CPU, memory and disk
space utilization, hit ratios, and SQL execution times translates easily into
other tool sets. Even process building, test automation, regression, and release
automation tool sets fail to challenge any but the most-junior DBAs. Working
with tools comes easily for DBAs. Logically developing process flows to incor-
porate database administrative tasks accelerates the SDLC. The biggest chal-
lenge may be selecting which tools are needed from among the plethora of
popular DevOps tools.

 As DBAs progress through the stages necessary to transition, become edu-
cated and share knowledge, learn that small failures are a part of the plan,
morph their tasks into the mainstream workflow, and become tool experts,
DevOps teams become stronger by sharing experiences, technical skills,
improved collaboration, and (most importantly) trust.

DevOps, DBAs, and DBaaS 23

 Molding DBAs
 Adding DBAs to Dev Ops teams gives the DevOps team members the oppor-
tunity to “mold” the DBAs. Previous challenges of getting a DBA to even
consider a nonrelational database solution becomes an opportunity for the
DBA to learn new database technologies. Just climbing over the fence gives
new perspective. Once DBAs buy into DevOps, learn the processes, and
fully understand how database work can benefit the business, instead of the
development team (the previous customer), the pipeline expands from data-
base change introduction, growing the code base as DBAs check in database
changes and infrastructure as code templates and scripts. Cycle time shrinks
from database changes no longer being an outlier to the process. Deployments
smooth out and complete faster as DBA work is automated.

 DBA Value Proposition
 DBA participation in DevOps draws in a critical application availability and
performance contributor: the database. Involving DBAs means that applica-
tion code is evaluated from a different perspective, especially calls to the
database. Database changes become integrated code for continuous integra-
tion and exhaustive testing. DBAs can identify poorly executing queries and
transactions and baseline production performance. They can get ahead of
forthcoming code changes or new functionality by understanding the impact
on the preprod environments, which gives DBAs time to analyze and imple-
ment performance-tuning enhancements before the additional load is present.

 Problems become challenges for a larger team, compiling more experiences
and skills into the pool of contributors to determine root cause and deploy
mitigation. DBAs’ experiences in other infrastructure areas add another layer
of value by being able to assess the application and database by looking under
the covers at the operating systems, storage, and network. Further discussion
is ahead.

 Closer and constant DBA and DevOps team collaboration improves product
outcomes, stability, security, and performance, which lead to happier custom-
ers and improved business results. As DBAs better understand the business
team’s use of the product, building a disaster recovery solution or recovery
from backup strategy can be customized

 Giving developers the fre edom to fire up virtual hosts with different database
options enables consideration of risk early in the process. A developer want-
ing to test a new data access service can test, retry, and destroy the virtual
host to start over with a fresh host if necessary. DBAs scripting different
template options applicable to different data platforms shifts experimentation
from production too early in the pipeline.

Chapter 2 | DBAs for DevOps24

 Summary
 DBAs are a good match for DevOps. Driven to improve performance, reli-
ability, and system stability; and matched with the skills to adapt, analyze, and
execute process improvements, DBAs can expand the DevOps team’s capa-
bilities; reduce cycle time by pulling database changes into the continuous
integration process; contribute new test cases for improved bug detection;
and get ahead of performance, load, and other operational challenges before
production impact.

 By investing in DBAs joining DevOps teams, DevOps leaders and engineers
increase influence and impact on the business. Applying proven DevOps pro-
cesses to database changes, build templates, database selections, and broader
platform considerations presents new opportunities that may have been pre-
viously resisted by the same DBAs. DBAs get excited when their contribution
can grow, they can grow, and the business can grow.

© Michael S. Cuppett 2016
M. S. Cuppett, DevOps, DBAs, and DBaaS, DOI 10.1007/978-1-4842-2208-9_3

 C H A P T E R

 Integrating DBA
and DevOps
Processes
 Shifting the culture and aligning team members mark progress toward short-
ening the virtual to-do list for bringing DBAs into the DevOps fold. Early stage
buy-in for DBAs and existing DevOps staff may not be a full commitment, and
constructing the process integration methodology becomes key to completing
the transformation to the desired future state. Months, even years, of planning,
investing, growing, battling, losing, and winning committed to Agile develop-
ment now comes face to face with the biggest threat: more people and more
work. Expanding to include the delivery of database changes into and through
the pipeline introduces risk, risk creates anxiety, and anxiety causes apprehen-
siveness, which may lead to aloofness. However, seasoned Agile developers
have learned from an agile prime directive—change is welcomed.

 As a DBA, you will start hearing some odd terminology: branches and trunk,
recipes, cookbooks, sprints, iterations, backlogs, Kanban, product owners,
extreme programming, value streaming, and more, depending on the mix of
Agile and DevOps tools, and the project methodologies established within
your organization. This book, along with Google, Bing, and vendor product
web sites, should be a go-to resource for the duration of your learning curve.

3

Chapter 3 | Integrating DBA and DevOps Processes26

 Disruptors (in this case, the DBAs) realize that being tasked to drive fur-
ther development and overall IT costs down, increase release frequency, and
reduce production problems by implanting automated database changes into
a refined process built by others demands finesse. In principle, most people
agree that the logical evolution b eyond agile development is DevOps; data-
base changes and DBAs are a single representation from many infrastructure
and operations elements, albeit the potentially most intrusive and destructive
force. Figure 3-1 speaks volumes, showing why database changes hold court
more often than other I/O functions.

 Whether this scenario occurs in nonproduction or production environments,
the results are disruptive more times than not. What used to be a series of
software releases mixed with large, risky application and database big bang
releases (see Figure 3-2) morphs into a smoother, risk-minimizing pipeline
(see Figure 3-3).

 Figure 3-1. Big bang release driven by code changes needing to match database changes

 Figure 3-2. Disruptive release adding risk to agile pipeline

DevOps, DBAs, and DBaaS 27

 Implementing code that can be toggled to activate or revert versions matched
with well-planned deployment scheduling allows for much smoother and less-
complicated application and database releases. Code adaptations for multiple
schema versions lessen release disruption. Let’s use different SQL statements
based on code version to describe a simple application toggling example. As
shown in Figure 3-3 , code versions 3a and 3b are implemented together, with
version 3a as the active code. When the database change is implemented, the
code version, a metadata update, has to be toggled to version 3b. Here’s how
the events play out:

 Normal application work by users

 Release 1

• Deploy code versions 3a and 3b

• Update mymetadatatable to set application version at 3a

 Normal application work by users

 Release 2

• Deploy schema change that adds a column to a table

• Update mymetadatatable to set application version to 3b

 Normal application work by users

 As for the code difference, the SQL statement in version 3a does not include
the new column, which the SQL statement in version 3b does include. Prior
to SQL statement execution, a simple query is made to the mymetadatatable to

 Figure 3-3. Cohesive pipeline minus large risk DB/App releases ; application gets toggled

Chapter 3 | Integrating DBA and DevOps Processes28

get the current application version followed by an IF statement that chooses
the path matching the code version.

 Release 1 was an application change, and release 2 was a database change,
done with code toggling to simplify the process. In the days before DevOps, it
would have been one release, including the application and database changes
and many more code and database changes, introducing significant change-
driven risk.

 DevOps changes the game by working to implement the smallest change pos-
sible to minimize risk. There may be 1,000 changes per day, but each is minis-
cule and easy to roll back or forward with the next version. Containerization
is a perfect example of “containing” changes to the smallest possible footprint
because a container can be built and destroyed with very little impact on the
user experience.

 Although not every database change can be absorbed this way, past prac-
tices of piling up database changes should be demolished, just as the walls
between development, infrastructure, and operations are demolished by
DevOps. Complexity is the nemesis of smart people. Simplicity empowers
smart people working collaboratively toward common goals and incentives to
better control risk while completing more deployments at smaller intervals,
and getting enhancements to the customer more quickly, which meets busi-
ness demand better than monthly or quarterly releases.

 Code Handling Pre- and Postdatabase Change
 Database changes have always been part of the software development life-
cycle for applications that need to store and retrieve information. Being incor-
porated formally into the agile environment expansion (DevOps), database
change release timing now needs to be more precise. Under waterfall, data-
base changes and application changes tended to be two different threads run-
ning in parallel, with the DBAs planning a release and potential outage prior
to or in conjunction with the software product release dependent on the
database change. Risks escalate from the dependency and larger implemen-
tation. Even if the dual release may have occurred in several nonproduction
environments, production is where many unnoticed or unfound complications
like to reveal themselves.

 Pulling database changes onto the application thread, singularizing the release
flow, allows small iterative releases to continue, mitigating the risk with flex-
ible code adaptations. Building code that works for both the prerelease and
postrelease database versions mitigates the all-in release risk.

 Notice that prior to each database change, the code has been constructed to
function with or without the database change, making it possible to abstract

DevOps, DBAs, and DBaaS 29

the software release from the database release—the dependency driving the
larger, riskier release has been remediated.

 The search function in Microsoft Excel does not require modification as the
column and row counts increase or decrease, or when a column data type
changes. The search function reads all the data, looking only for required
matches and ignoring the rest of the data. Similarly, building code that is agnos-
tic or adaptive to database changes minimizes release size risk. For example,
NoSQL database tables, called documents , do not have declarations for the
data types stored in the document, whereas tables in a relational database
require the columns to be defined before data can be inserted. When insert-
ing data into a relational database table, the programmer must order the data
by column sequence or explicitly name each column; for a document, the
sequence is not important. For example, XML files have been around for some
time, so data contained in an XML file has a tag that identifies the data, making
the order inconsequential.

 DBAs and developers work tog ether to sequence releases and build test cases
designed to discover potential code failure specific to the database modifica-
tion, flushing out problems prior to production. DBAs with programming skills
may even be able to produce the code needed to interact with the database
changes, alleviating developer load while tightening team bonds.

 Release Considerations
 Agile development code automation starts at the source code repository,
whether the continuous integration server is triggered by each code com-
mit or scheduled for a daily run to c onsume new or modified code branches
into the main trunk through to deployment. Although the work may be fully
automated, the sequence might include deliberate stops. For instance, a com-
pany that produces software for other companies probably wants to ensure
that the software product is always deliverable—fully tested and ready for
deployment. But because the company has to be able to support released
versions, software releases to customers are balanced between being able to
deliver customer requested or needed functionality with the company’s capa-
bility to support all released product versions. Even this control is subsiding
because mobile applications update frequently, sometimes without notifica-
tion. Understanding DevOps processes makes you aware that mobile apps
are not likely to roll back and impact thousands or even millions of people.
Instead, a fix gets developed and deployed quickly to roll over the problematic
version.

 Organizations that build software for internal consumption can remain flexi-
ble in release planning. Enhancements to the corporate informational web site
can be fully automated through deployment because the risk from content

Chapter 3 | Integrating DBA and DevOps Processes30

updates is minimal and they can be quickly corrected. In contrast, a major
rewrite of the company’s market differentiating application has significant
downside considerations. Additional internal testing, key customer testing,
and dark or canary release management may be necessary to prove applica-
tion readiness.

 Canary Releases
 Canary releases are based on the dated and unreliable use of canaries in coal
mines to prevent asphyxiation. The premise was that the canary falling over
dead from dissipated oxygen levels served as a warning for the miners to
vacate the mine. Unlike alpha or beta releases, canary releases occur in pro-
duction using production-ready code that is managed to impact a small group
of customers.

 A software canary release is simply a purposeful implementation strategy to
limit the number of customers using and being potentially impacted by the
new release. As Figure 3-4 shows, the new software is released onto only
one of the four application servers in the load balanced pool. Whether a
fourth server is added to an existing three servers or an existing server was
repurposed matters not. Configured as shown, only 10% of the company’s
customers are testing the new product version, thereby not risking upsetting
the entire customer base. If complaints hit the help desk specific to the new
software product, the one a pplication node can quickly be removed from the
load balanced pool, making the new software unavailable. If the new product
proves to be a success with the small group of customers, implementation can
proceed slowly (a node can be updated each day until fully deployed) or the
product can be deployed as quickly as possible to every application server.
There are plenty of options.

DevOps, DBAs, and DBaaS 31

 As shown in Figure 3-4 , ro lling implementations obviously become an option.
Having the agility to keep operations running while deploying software is a
paradigm shift for many corporations. Large releases during dark windows
when the application environment is unavailable are quickly becoming an
unacceptable practice, especially for global participators. Imagine Amazon or
Netflix shutting down once a month for a code release; it is unthinkable!

 Figure 3-4. A canary server with limited traffic

Chapter 3 | Integrating DBA and DevOps Processes32

 Rolling Upgrades
 In a load-balanced, ten- node application server example, a rolling deployment
would consist of removing one node from the load balancer (certain load
balancers can support automated node management), applying the new code
to the defected node, and then returning the node into the available pool.
The process then repeats until all the nodes are running the new code, which
completes the release. Having 90% of the application capacity online during
the release should serve the customer base without notice, except maybe
during peak loads. For peak load implementations, the online capacity could
be expanded beyond 100% before rolling the upgrade.

 Node Migration
 Another option, temporar il y adding nodes for the duration of the release,
could mean having more than normal capacity online. Figure 3-5 shows the
replacement of all the current app servers with a new set of app servers with
the newer software deployed.

DevOps, DBAs, and DBaaS 33

 Dark Releases
 Software execution that the user is unaware of is a dark release . Forthcoming
application functionality testing that is hidden from the user interface is an
effective way to vet software in production without customer knowledge.
Think about a web mail application that includes a chat window. Through
settings, you should be able to select whether to see the chat window. The
process of loading your people connections with their online status fits the
dark release model, in which the application builder can validate that the chat

 Figure 3-5. Replacing existing appli cation servers with up dated application servers

Chapter 3 | Integrating DBA and DevOps Processes34

application functions properly and then expose the chat window through the
user interface. The same code that allows you to select whether to make the
chat window visible was likely used to control the dark release testing, with
the toggle also being added to the user interface.

 The next time you notice that you are waiting for a web page to load, yet the
screen is not changing, ask yourself, “Could dark release code be executing?”
And just in case, update your virus and malware software! There are few
things more disconcerting than your computer doing a whole bunch of work
when you think it should be idle.

 Database Release
 Not all database code can or should be integrated into the application release
automation. Changes being made to a legacy database of record may not be
compatible or executable through DevOps automation. Still, a primary edict
of DevOps is to automate as much as possible, including configuration files,
connection files, and, of course, associated validation test scripts. As code is
decoupled from the database, database changes become less risky and they
better fit DevOps automation.

 Landscape Evolution
 A fair estimate is that the majo rity of currently practicing corporate DBAs cut
their teeth on relational dat abases. From a data access perspective, SQL calls
over JDBC, ODBC, a lower-level call interface, or a vendor-provided client-
server communication protocol are expected. Sure, there are plenty of DBAs
who work in “born on the cloud” organizations that may not be able to spell
 relational because their experience has primarily been with NoSQL databases.
These DBAs may have a DevOps head start over the former, but the lead is
not insurmountable. Bottom line: data is still data. The way data is stored and
accessed may be di fferent, but DBAs remain responsible for data security,
availability, consistency, access, performance, recoverability, and more. More on
NoSQL databases is coming. Here, microservices and containerization need
delving into to help understand landscape evolution.

 Microservices
 Microservices , just the next evolution of web services, further disassembles
code to make smaller, function-oriented code modules. One benefit of web
services that corporate DBAs see is the transformation in which monolithic
applications are being deconstructed (pulling out specific functions) to increase
code manageability, isolate release dependencies, and improve business agility

DevOps, DBAs, and DBaaS 35

by delivering products faster with less risk. Expect it to take years for a huge
application to become fully dismantled, and that is only if the organization acts
purposely and aggressively.

 Web services are now being looked at from an integration and deployment
perspective, in which even these smaller code units are too large to release
on the fly, so breaking down web services into microservices enables faster,
less risky software updates. For DBAs, how does that impact database access?
For instance, the monolithic application may have started out as a client-
server implementation that was transformed into a three-tier architecture
with connection pools between the application tier and database maintaining
live, reusable connections that grew and shrank based on load demand. Then
web services entered the picture, with requests hitting the database very fre-
quently, hopefully reusing existing connections.

 Containerization
 Physical servers started out running a single OS. As resource use efficiency
needed to increase to reduce server costs, virtualization caught hold, allowing
multiple guest host servers to exist simultaneously. Containerization provides
the next level of separation, in which a full OS is not required, and resource
provisioning is lightweight. Microservices can run inside containers, but not
vice versa. One problem with single OS environments is the risk of processes
encroaching on one another, causing instability and failures. Virtualizing guests
provides separation between processes, minimizing encroachment. Containers
take granularity to another level—a single function running in its very own OS
space. Figure 3-6 shows the evolution from a single OS with multiple Java vir-
tual machines (JVMs) (A), to one JVM per OS (B), and to many small contain-
ers with the OS and JVM (C).

 Figure 3-6. Evolution toward cont ainers

Chapter 3 | Integrating DBA and DevOps Processes36

 Manual to Automatic
 Although speed improves pipeline efficiency, initial process changes may be
easier to control and evaluate when performed manually. Manually introduc-
ing database change s into the agile pipeline provides the time needed to verify
the proper sequencing and expected execution, and that follow-on execution
steps continue as expected. As confidence builds in the automation and pro-
cess, and as you learn what the execution looks like (which outputs, errors,
and success messages may occur), tuning the process for better error check-
ing, improved execution speed, and sequencing provides opportunities for bet-
ter craftsmanship for the long haul. Experts are those who have built, tested,
failed, rebuilt, resequenced, learned, adjusted, and adapted to the point where
they build new products with fewer defects—faster, optimally, and confidently.
This leads to higher rates of success because experts know how to avoid pit-
falls. Failures seem to reconfigure the brain toward success.

 Template Integration
 Changes imp acting the platform must roll into the build template to main-
tain consistency. If your organiz ation allows team members to spin-up virtual
hosts at will, the base template or database-specific template or add-on needs
to quickly evolve to include database changes. Reduced cycle time means
that as you are implementing database changes, the pipeline may already be
constructed for active backlog work. If the database change has not been
incorporated into the build templates, release testing may be occurring with
out-of-date database specifications.

 Template versioning and source control allows the database infrastructure as
code to be synchronized appropriately, which is the evidence for DBAs using
 source code control . Maintaining database change code in the code reposi-
tory allows the continuous integration server automation to be configured
for database version selection. If the continuous integration server knows
that all software releases above version 4.8 require database version 3.9, the
code and database can be matched for launch. And if automated template
builds know to pull database versi on 4.1 for software releases 5.2 and greater,
it means that hosts spin-ups contain the code and database versions needed
for that sprint cycle.

 Performance Testing
 Performance degradation becomes nearly preventable with excessive testing
across consistent platforms. Although many database changes are binary in
result (success or failure) and require little time for correction, performance
problems enlist us for repetitive, controlled, and prescriptive testing. DevOps’

DevOps, DBAs, and DBaaS 37

supposition that problems are to be prevented from impacting production—
actually ever being pushed into production or the next environment—means
that DBAs get the opportunity to correct performance without the added
pressure of production impact. The troubleshooting time is not without some
pressure because the faster release cycles likely mean that the application
change dependent on the problematic database change is quickly approaching
release time. Although schedules might adjust to allow time for resolution,
not being the bottleneck in product delivery is a matter of pride.

 Performance testing becomes “interesting” when the end-state platform is a
persistent environment built pre-Agile and pre-DevOps, with all its “quirks”
and nonstandard implementations. Of course, adjustments can be made to
bring the environment closer in compliance over time by allowing the drift
management process to help keep the platform aligned, with fewer and fewer
exceptions as time passes. The luxury of building and tearing down virtual
hosts as you constantly toil toward implementation perfection is the crash
into a brick wall called “the legacy production environment .” With that chal-
lenge, performance in the pipeline does not, and probably cannot, mirror
expectations for production. Working backward from the production imple-
mentation to build the nonproduction hosts allows for closer performance
results while unfortunately inheriting many noncompliant settings. Production
capacity also might not be achievable for the nonprod guests, again presenting
risk to be corralled. In other words, the advantages and opportunities pre-
sented by DevOps require DBAs to understand that the goal may take years
to reach, after persistent and iterative modifications.

 Agnostic to the environment, perfor mance problems have to be resolved.
Additionally, last month’s acceptable performance may not cut it next month.
DBAs doing DevOps should now be plugged in to the process earlier, allow-
ing more time to ready the database for the software product changes being
driven by the product owner’s prioritization of the backlog. Before DevOps,
DBAs might have not been aware of changes until nearly release time or
worse: postimplementation.

 New product search criteria or onboarding a new client representing a 20%
increase in business transaction volume are very different performance attri-
butes. The coinciding DBA response must neutralize the potential impact.
The response also depends on the database implementation; a new index may
be needed for a relational database to meet the new product search criteria
performance expectations, whereas a NoSQL database may not require any
adjustment because the new search is just another traversing of a data file.
Transaction volume increases compute and storage consumption, which may
require DBA preparation work; or for a more dynamic environment, auto-
mated adjustments may occur as the load increases. Be sure to understand
whether or how the environment reacts to load changes, and leverage vir-
tual capabilities for load response and performance management as much as

Chapter 3 | Integrating DBA and DevOps Processes38

 possible. Virtual environment flexibility and adaptability to workload increases
and decreases, and performance management using predefined thresholds
drive the ROI and total cost of ownership (TCO) numbers that CIOs, and
especially CFOs, like to see.

 Ascribing to the database vendor’s performance investigation recommenda-
tions, boosted by years of personal experience, offers substantial performance
mitigating and remediation prospects. However, do not forget that the orga-
nization has invested in support, not because the company does not think
you are capable of maintaining the database; rather, in line with what shoul d
be your objective, it provides another path to engage experts to help reduce
impact duration. Sure, you want to be the hero by resolving the problem your-
self , but if it takes you 12 hours, and engaging the vendor reduces the problem
duration to 3 hours, hero becomes a zero. Leverage the support investment
to minimize impact; be an availability hero instead of a problem-solving hero.

 Test Data
 Test data needs to fulfill two purposes: 1) validate the application or database
change; and 2) attempt to cause the change to fail. The first data set should be
“clean,” with each data element fitting properly to the scope of the change.
Variety serves only to ensure that each possible data type will process prop-
erly in the change context. The second data set is likely to be considered
garbage. Every noncompliant data type should be run against the modification
that is trying to cause failure. Proper vetting of the data before use should
result in an exception or error that could be a true failure; more prosperous
would be notification that the data is bad and cannot be used, thus protecting
data integrity.

 Specific to database data testing , insertions and updates should challenge the
column data type. For instance, insert a good value in a column and then try
to update the column with a bad value that tests for proper constraint checks
or referential integrity where applicable. For code, feeding bad data into a
variable, API, or web service call should result in proper error handling, not
process failure or data corruption.

 Demonstrating sufficient data testing means providing an audit trail that can
be communicated and retained as an artifact. If a production problem is caused
by malformed data, being able to check test results for missed failures that
need to be corrected prior to the next test, or to prove that due diligence
was completed yet additional tests are needed, serves team transparency and
cooperation rather than finger pointing.

 Automated testing creates an efficient data testing capability—being able
to process large data sets repetitivel y, quickly assessing the integrity of the
change against data variance.

DevOps, DBAs, and DBaaS 39

 Summary
 DBAs who integrate database changes into existing pipelines should not dis-
rupt the flow or cause cycle times to increase dramatically. Iterative actions
that grow the database change automation capability provide time to assess
execution and audit the results.

 DevOps team members provide the foundational pipeline process and tools
that DBAs must learn and ascribe to in order to become an effective DevOps
team member. Giving DBAs advice and time to introduce database change
automation and infrastructure as code database templates advances the
DevOps methodology, which is a win for the organization and its customers.

 There are many ways to introduce changes, and this chapter has only scratched
the surface. Keep in mind that smaller and more frequent changes minimize
risk and allow new features to be implemented faster. Incremental descaling
of code segments toward microservices living in containers meets the small
change requirement, with a minimal bleed over possibility that may impact
other code containers.

 Availability and stability are byproducts of the DevOps ideas of excessing test-
ing and small but frequent changes.

© Michael S. Cuppett 2016
M. S. Cuppett, DevOps, DBAs, and DBaaS, DOI 10.1007/978-1-4842-2208-9_4

 C H A P T E R

 Integrating
Database
Technologies
and DevOps
Tools
 Database technology integration simply involves injecting database automa-
tion and database infrastructure as code into the continuous delivery pipeline.
The challenge is “where,” “when,” and “how.” Database tool selection crite-
ria must balance database change capability and integration ease with tools
already used in pipeline management.

4

Chapter 4 | Integrating Database Technologies and DevOps Tools42

 Rotate Toward Development
 Recalling Figure 1-1, you can se e that now the App DBA, whether a function
or role, must not only shift left to become involved earlier in the process but
must also “rotate” toward development to become just another “developer”
adding or updating the product code base. Figure 4-1 is Figure 1-1 edited to
include the rotate.

 App DBA work can no longer be a divergent step outside of the SDLC. DBAs
initially have much ground to cover before catching up to the automation level
attained by development teams using Agile methodologies and early DevOps
work, sometimes for years before the DBAs were added (or are to be added)
to the De vOps mix. Automating database changes and database installs and
configurations takes time and a tremendous testing effort to blend these new
DevOps capabilities into the continuous integration (CI) pipeline. The primary
measures of progress are the percentage of database work being done using
automation and the defect rate. As the percentage of database automation work
increases, the defect rate should decrease. Figure 4-2 shows the CI measures.

 Figure 4-1. Rotating toward development

www.allitebooks.com

http://www.allitebooks.org

DevOps, DBAs, and DBaaS 43

 These two measures should show an inverse correlation. Defect rates may
spike early in the automation process as DBAs learn to perfect the code and
optimize testing to cover more code and catch additional errors. DevOps
team members can expedite DBA progress by communicating lessons learned
and best practices for code checking and automation building.

 Two key functions, infrastructure as code and source code control, are proba-
bly new ideas or processes for many DBAs. Prior to DevOps, a project would
be approved and funded, development would start coding, and Operations
would get to work “spec-ing” hardware, software, tools, and licensing for the
platform. A problem is immediately apparent: Are the developers developing
on the target platform? Many times the answer is no, which indicates a high
probability of future rework being done to align the software product to the
platform, as Figure 4-3 demonstrates.

 Figure 4-2. CI measures

Chapter 4 | Integrating Database Technologies and DevOps Tools44

 DevOps turns that model around and has multiple virtual platforms ready for
consumption, allowing developers to immediately code with the parameters
of the execution platform.

 Continuing down the pre-Agile project model path, eventually the pieces
needed for the platform are onsite and ready for installation and configura-
tion. Toward the end of this cycle, the DBAs are granted access to the servers
for the database software installation. The DBAs have to trust that the build
to this point is correct and meets the design specifications for a database host.
DBAs start installing the database software, registering the licenses, and pre-
paring a database with proper access control. Tools for managing and monitor-
ing may also be installed during this phase. If multiple servers are built with
production, testing, QA, and so on, there is much hope that the builds were
completed in the exactly the same way. Variance morphs into disruption too
often, causing extended outages and burdensome troubleshooting.

 Depending on the amount of code being developed, the development team
may have to wait for the platform to be ready for code deployment and test-
ing. In this situation, the business capability is ready for prime time, only to be
delayed by cumbersome acquisition and build processes. As mentioned earlier,
code issues pertaining to platform incompatibility may come to light, causing
rework and further delay (refer to Figure 4-3). The old process has failed and
continues to fail the business.

 The business was negativel y impacted from lost revenue, reduced costs, or
improved customer experience; and IT’s reputation was tarnished for not
understanding the business needs and for slow delivery. DevOps and Agile are
rearranging the model.

Project Run Time

Development designing, coding
application software

Spec-ing Platform build

Compile and Test on
Prod Platform

Project
Funded

QA, UAT, PROD
Releases

 Figure 4-3. Pre-DevOps project example

DevOps, DBAs, and DBaaS 45

 Resources at the Ready
 Whether internally or as a DBaaS, DevOps prepares and provides platforms
before projects are start ed. Once a project (or, more precisely, product work)
is ready to begin, development provisions development environments that
match the planned production platform (see Figure 4-4).

 Virtualization has influenced and empowered this capability. As code develop-
ment proceeds, additional hosts can be provisioned for testing, again match-
ing the production environment and development environment, which nearly
eliminates platform variances that may introduce problems. DBAs play a criti-
cal role in platform readiness.

 Platform Readiness
 Preparing platforms for development and production means that DBAs are
doing “infrastructure as code.” Moving from physical servers with software
installs to leveraging available compute and storage capacity to produce virtual
hosts on demand flips the previous model upside down (or, better said, upside
right). Key template build steps include verifying prerequisites, building, and
auditing for exceptions.

Product Build Cycle

Development designing, coding
application software

Spec-ing

Compile and Test on
Prod Platform

Product
Investment CI Testing

Resources
Proactively

Made
Available

Private or
Public Cloud

or DBaaS

Could include
compute,

storage, OS,
database, etc.

Commit to
code

repository

Platform Build
(from templates)

 Figure 4-4. Improved and leaner process using virtualization (code repository and CI server

added to expand flow)

Chapter 4 | Integrating Database Technologies and DevOps Tools46

 Prerequisites
 Determining that all required dependencies are in place before the build exe-
cution leads to cleaner builds. Database installs likely require additional and/
or different OS components and network configurations than web or applica-
tion servers do. Process maturity also determines which progressions need to
occur before the database build. For instance, SAs may have only base Linux
and Windows templates ready for consumption. Alternatively, SAs may have
templates covering a broader set of technologies—for example, Windows
base, Linux base, Linux Oracle, Windows SQL Server, Windows IIS, and Linux
Websphere. This list tells us that the organization’s primary or preferred plat-
forms are based on Windows and Linux for the OSs, Oracle and SQL Server
for databases, and IIS and Websphere for web/app servers. The expectation is
that the delta between the OS base template and the OS database template is
that the required packages, compilers, and configuration settings are installed
to support the database environment. Figure 4-5 shows a sample template
selection interface.

 Licensing, or license availability, should be a precheck. Whether creating a text
file containing a license key or using a software package for reserving and
issuing licenses, the “how” matters less than planning for and having a license
available for the build process.

 Whether for internal consumption, customer product inclusion, or as a
Platform as a Service (PaaS) solution, the templates should look very similar. If
the templates are tried and true, DBAs may decide to trust the templates and
move directly to the build process. For less-mature templates, DBAs should
script checks to ensure that the supporti ng template builds meet database
requirements. The database vendor’s install process likely includes preinstall
and/or prebuild checks that can be leveraged. There is no reason to duplicate
effort. After proving that the platform has been built correctly from the tem-
plate, DBAs can expand the database template.

 Figure 4-5. Sample template selection interface

DevOps, DBAs, and DBaaS 47

 Build
 Having already selected the template intended for the target database eco-
system and spinning up a virtual host, the DBA begins to build the install and
database build procedur es needed for a template. The first install and build can
be done manually by recording the information feed into the process to be
included in the script. For an Oracle install, a response file can be created to
be read by the install process, which may be a technique incorporated into the
template. DBAs may first build a secondary template that includes the data-
base software install and initial database build. After testing and refining the
template, the secondary template should be absorbed into the initial template,
reducing the build steps.

 The build part of the template needs to be flexible to support planned use
cases. There may be a need to have small, medium, and large offerings; or sup-
port for single node and clustered nodes needs to be included. Remember
that the DBA may not be the person executing the build, so assumptions need
to be eliminated. Presenting options to the consumer may be in the form of
a GUI interface or having the requestor create a text file containing needed
information saved to a specific location.

 Build information includes all the information inputted during the manual pro-
cess, plus information specific to this particular build. Here are some expected
inputs: database name; file location; memory size based on small, medium, or
large; license key; logging/archiving; clustering; network port; backup method
and retention; and more. As a DBaaS offering, the number of customer inputs
should be limited to reduce complexity and template maintenance effort.
With internal offerings for which the consumer is likely to be an IT person,
the inputs can be increased to be very granular—with the caution that these
environments need to be supported, making every difference a potential prob-
lem area to be considered during troubleshooting. Leaning toward simplicity is
a smart move. Besides, in the virtual world, changing a database from small to
larger (or doing the inverse) equates to a few clicks to change the resources
made available to the guest host.

 Log File
 Just as important as it is for the DBA to make sure the prerequisites are in
place to support the database software install and initial database build is to
make sure that the build completes correctly. The build script should create
an extensive log that records everything , including customer inputs. Where
possible, the logs should be built for easy parsing based on key words such
as SUCCESS , FAILED , and so on. Of course, the final steps in the script are
automated log checks to report exceptions needing attention. DevOps drives
automating as much as possible to reduce variances from human error.

Chapter 4 | Integrating Database Technologies and DevOps Tools48

 Additionally, the audit log may be needed when responding to internal and/or
external governing bodies to check compliance for SOX, PCI-DSS, HIPAA, and
so on. Be sure to archive the audit logs aligned with organizational or govern-
ing body data retention requirements.

 The effort expended in building and testing everything needed to implement
the templates is designing infrastructure as code. Infrastructure is no longer
a physical server with rigid controls; instead, servers are virtual hosts that
can be built and destroyed repeatedly. Developers, DevOps engineers, and
DBAs can easily experiment (take risks) with new code approaches and alter-
nate configurations to test performance, stability, and more by building “infra-
structure” using code—executing the appropriate template. Having a pool of
resources at the ready elimin ates the wait time most likely to stall a project,
preventing new functionality from getting to the customer, and delaying the
business’ ROI.

 Source Code Control
 All scripts included in the database templates must be managed using the same
source code control software as the software product code (see Figure 4-6).

 DBAs need to check code in and out just like the developers do, and database
changes need to be managed in the same manner. The build templates may not be
part of the CI process because these builds pertain to hosts, not the software
product. People needing a new database host execute the needed template

 Figure 4-6. Source code repository for application and database code

DevOps, DBAs, and DBaaS 49

and they are in business. Database changes, such as stored procedures, index
creates or drops, and schema object changes should be part of the CI process.

 The primary difference in the CI process for database changes is when the
database changes are introduc ed. CI is simply an automated process that
checks to make sure that new, modified, or removed (which seems coun-
terintuitive, but can have impact) code can play nice with all the other code
comprising the product. Developers should always be working on the more
important backlog priorities, being able to commit code immediately upon
completion. For DBAs, adding an index to correct a known performance issue
that can be included in any version of the software product can be tested
immediately during the next CI run once the index code is committed. In
contrast, changing a table or modifying a collection requires delicate timing
for inclusion in the product, in conjunction with the supporting code change.
Recall from the last chapter that Figure 3-3 provided an example of database
change timing mixed with application updates.

 Database changes can be introduced in a dormant state, ready for activation
once the supporting code is in place. Toggling the code base allows multiple
code versions to be in place, ready to go live with the database changes. Let’s
say you have promised your customers new functionality that involves new
columns or attributes that need to be stored in the database to be live on
October 23. Previously, an outage was probably planned for the evening of
October 22 to implement needed changes so that the new features could
come online at 12:00 a.m. on October 23. However, for this application, you
are required to have the system available 24x7x365, no exceptions. How do
you implement changes? The reality is that making database changes without
at least a short outage is nearly impossible without significant investment, but
durations can be shortened using automation.

 Availability also needs to be defined. Does having a read-only database avail-
able for queries fit the requirement? If writes are required, could all changes
be captured on the secondary database for inclusion in the primary database
once it is available?

 Metadata changes—–whether a switch or key field text—are frequently used
for application settings. Metadata changes can also manage other configura-
tion settings. Fo r example, one entry could simply be the code version to
be executed. With that, somewhere in the code a read of the metadata to
determine how to execute based on the defined code version. As shown in
the example, at 12:00 a.m. on October 23 an update (automated hopefully)
to the metadata to change the code version activated the expected customer
features. That takes care of the code, but what steps need to be taken to acti-
vate the database changes?

Chapter 4 | Integrating Database Technologies and DevOps Tools50

 Database changes may be as simple as changing a column or attribute from
 null to not null , making the new data element mandatory. Trickier changes
such as a table reorganization—maybe the lead column is new—require much
more work to i mplement. Creating a new table, pulling in the data from the
old table version with the lead column data added (see Figure 4-7) and then
renaming the old table to .old and renaming the new table to be the produc-
tion table name can all be done with automation.

 The larger challenge is table size, which is one reason why DBAs should make
sure that a good archive process is in place to keep the table row count
manageable.

 New tables that may have been implemented months ago but left dormant
until needed are also manageable in conjunction with code activation. Now
as the new code v ersion is being implemented, the dormant table starts being
used. The orchestration must be precise, ensuring that the code and table
activations are synced. If the new table is just new and needed for a new
functional requirement, the work is complete. However, if the new table exists
to replace a table or tables, the data transfer is included in the orchestration
automation. Be very careful to identify and resolve all dependencies and code
references, or use aliases where feasible.

 Tables that had been active could also be excluded from the new code version,
going dormant pending archiving and destruction decisions.

 Today’s always-on customer expectations require new thinking to drive “live”
implementations models, even for legacy systems that might need to be dis-
mantled—pulling out functions that can be replaced by API calls or services.
As the legacy code base shrinks, implementations begin to shrink as fewer and
fewer changes are needed for the code release.

 Figure 4-7. Table change example

DevOps, DBAs, and DBaaS 51

 Understanding Change Failures
 Although this section discusses production specifically, the lessons apply to
all environments in the rele ase process. In a perfect DevOps world, environ-
ments always remain true to the release version, anticipating the next version
deployment. In the real world of production, things can get skewed as teams
react to business-impacting events and make changes outside of the deploy-
ment cycle. From the DevOps perspective, “surprise” production problems
equal failure. Depending on the deployment method, these changes are at risk
of repeating failures. If deployments include building the hosts from infrastruc-
ture as code templates followed by an application release, the modifications
made to production to keep the business running get excluded, meaning that
the new deployment immediately risks operations.

 Preventing this scenario comes in at least three flavors. First, production
changes outside of the release process are never made, period. This requires
a mature deployment process that allows high-priority changes to be tested
and deployed very quickly. This process may be considered an exception path
in the deployment mechanism, having a modified and probably shortened
process flow that expedites changes necessary to correct the production
problem or performance issue. Because the code associated with the correc-
tive action was released through the deployment pipeline, the code has been
captured for inclusion in the next release.

 Second, changes made to production must be communicated back to devel-
opment for inclusion in the code base, with full testing to finish vetting the
change. This process requires a formal change request that tracks the problem,
the cause, the corrective action, and the name of the person who made the
change. The change request can then be managed from the back log, ensuring
inclusion in the code trunk.

 Third is the best-suited scenario for this situation and for general releases:
the build process needs to compare the source (new version), the target
(environment to be deployed to), and the baseline code version (last release).
For example, if deploying code version 5, it is necessary to ensure that the
deployed-to environment does not lose code that may have been put into
place to correct a problem. The best case is that the code base equals ver-
sion 4 perfectly. When a difference is discovered, questions need to be raised
to determine why the difference exists and how the difference needs to be
handled.

Chapter 4 | Integrating Database Technologies and DevOps Tools52

 You should be able to rectify every difference for the version 4 and 5 code
bases, hopefully so that each change is expected and has been tracked through
the change process. This is expected. We also expect that comparing ver-
sion 5 to the environment to be deployed to will reveal differences. What is
not expected is comparing version 4 to the environment to be deployed to
and finding differences. The differences can vary. For instance, version 4 may
not have a foreign key that is in the deployed environment. Findi ng out why
should be easy enough if the change request process is being used to track all
changes. If the foreign key was added to solve a problem, it needs to remain in
place. The next question should be, “Does version 5 include the foreign key?”
Proper change management should have driven this change into version 5. If
not, the foreign key code needs to be merged into version 5 before deploy-
ment. Consider this requirement when vetting tools or be sure to script or
manually perform these checks.

 Finally, Tools and Databases
 Tools enable DevOps (and Agile) to increase productivity, decrease errors,
lean out non-value-added steps, maintain an audit trail, and (most importantly
from my performance-obsessed perspective) do everything really fast! Let’s
delve into a variety of popular nonrelational databases, followed by a few
DevOps tools. Be sure to visit each product’s web site for full details.

 Nonrelational Databases
 NoSQL gets in terpreted as “No SQL” and “Not Only SQL,” depending on an
author's experience or perspective. The latter appears to be more accurate.

 Relational databases remain the “entrée” on the table for companies that are
heavily invested in larger server platforms, database software, and licensing.
The shift in these companies are NoSQL databases going from hors d'oeuvres
to becoming hearty side dishes, a signal of gaining prominence. One primary
circumstance requires looking no further than the DevOps movement. The
speed and accuracy encompassing DevOps create the opportunity to con-
sider different database types when searching for optimal performance and
agility. Nonrelational data storage is less stringent than relational storage,
making schemas more malleable in the former.

 Key information covering four relatively popular NoSQL databases follows.

 MongoDB (www.mongodb.com)

 MongoDB is an aggregate-oriented, key-value database that actually leverages
the maturity of relational database technology combined with NoSQL capa-
bilities to have the best of both worlds, referred to as the Nexus Architecture.

http://www.mongodb.com/

DevOps, DBAs, and DBaaS 53

Data is stored as collections (tables) that contain documents (rows) with each
data element in a field (columns). Fields can be added to documents without
having to first declare the structure, a process known as self-describing . It is
not required to include the same fields, so it makes the “schema” flexible.
MongoDB s upports document create, read, update, delete (CRUD) opera-
tions and stores the data as binary JavaScript Object Notation (JSON), a data
interchange format.

 MongoDB comes in several distributions, each offering a different set of tools
and capabilities: security, management and operations, encryption, auditing,
and auto-sharding to scale linearly.

 ■ Note Sharding entails dividing a database into smaller partitions (shards) for faster and easier

management. It is a method to horizontally scale a database across multiple host servers.

 Couchbase (www.couchbase.com)

 Couchbase is an aggregate-oriented NoSQL, distributed architecture, JSON
document database that improves developer transitions from relational data-
bases through the use of SQL, the syntax being very closely aligned. Features
include flexible data modeling, indexing, SQL migration to leverage existing
relational database queries, security, and monitoring deployment and adminis-
tration. Couchbase has buckets at its top- lev el namespace.

 Cassandra (cassandra.apache.org)

 An aggregate-oriented, NoSQL wide-column, distributed data store featur-
ing fault tolerance (no single point-of-failure for 100% availability), scalability,
and high performance using distributed identical nodes. Tools, the Cassandra
Query Language (CQL), data modeling, security, compression, and change data
capture round out this database. Cassandra's top-level namespace is a key-
space used to hold tables or column families.

 Neo4J (www.neo4j.com)

 Unlike the previous three examples, Neo4j stands out as a product specifically
designed as a graph database in which data relationships are valued over the
data itself. Nodes (e.g., people, places, or things) and the relationships between
nodes can be used to model patterns or scenarios. For instance, a data pat-
tern can be identified to help detect fraud. If two people (nodes) in different
locations use the same Social Security number to open new credit accounts,
something is amiss. Social networks can make friend or group recommenda-
tions by look ing at similarities in what you “like,” where you live, the college
you attended, people you are already connect with, and your hobby—matched
to other people with nearly the same data points.

http://www.couchbase.com/
http://www.neo4j.com/

Chapter 4 | Integrating Database Technologies and DevOps Tools54

 Neo4j uses the atomic, consistent, isolated, durable (ACID) consistency model
common for relational databases, and it supports CRUD. Features include
native graph storing and processing, data import, flexible schema, a full suite of
drivers, tools, and the Cypher query language.

 ■ Note These databases and other competing products offer many overlapping capabilities that

were purposely not included. Please take time to evaluate many products. These products tend to

use different names for the same objects; for example, containers , buckets , and keyspace describe

top-level namespaces.

 Tools
 Tools are booster rockets strapped to DevOps. DevOps is changing culture
and processing to create better software products and platforms. To help do
that really, really fast, tools make it possible to automate and orchestrate pipe-
line work and flow.

 Key information covering three relatively popular tools follows.

 Jenkins (https://jenkins.io/)

 Jenkins is an automation server for CI though continuous delivery. Extendible
by using plug-ins, the architecture supports integration to most tools, work
can be distributed across nodes, and there is an easy setup and configuration
using a web interface.

 Once Jenkins is running, a pipeline (workflow) can be created to build, test,
and deliver products. Jenkins CI kicks in after code has been committed to
the repository. Jenkins can be used to check out software; grab dependent
code; build/compile/launch code segments (it works with Docker); run testing
from individual modules to end-to-end testing; and, if warranted, deploy the
new code version into the different environments. A full reportable audit is
produced as the code progresses through the pipeline.

 Jenkins supports pipeline as code, which enables the workflow definition
to be managed by the code repository, allowing changes to be tracked and
implemented.

 Chef (www.chef.io/)

 Chef is also an automation server. Full DevOps automation can be achieved to
process application code from source control, through testing, and to deploy-
ment with a full audit trail from which to report. Chef promises transfor-
mation to a software-driven organization using extensive collaboration and
automation.

https://jenkins.io/
http://www.chef.io/

DevOps, DBAs, and DBaaS 55

 InSpec provides a framework for security and compliance inclusion, ensuring
that the software meets the requirements. Habitat delivers the ability for apps
to run anywhere by “traveling” with the software to make it capable of run-
ning on bare metal, PaaS, VMs, and containers.

 TeamCity (www.jetbrains.com/teamcity/)

 TeamCity , which uses the moniker “Your 24/7 Build Engineer,” is a CI platform.
TeamCity is extendible via plug-ins (or you can create your own plug-ins using
the provided API), so it is a flexible environment. Supporting many program-
ming languages fits most integration and deployment needs.

 Covering CI, delivery, and deployment, TeamCity provides a scalable architec-
ture to progress the work efficiently.

 ■ Note As mentioned for the databases, these and competing products offer many overlapping

features, which are not discussed here. Investigate many products in light of your requirements.

Terminology varies, so be sure you understand what the terms represent.

 When selecting DevOps tools and nonrelational databases, be sure that each
supports the planned programming language. The production combination
selection is as important as the individual product selections.

 Databases and Tools—So Happy Together
 Because there is a plethora of nonrelational databases, an organization’s exist-
ing relational databases, and plenty of automation and orchestration platform
offerings, matching products well can decrease the learning curve and speed
up the integration process, allo wing for quicker wins and financial returns.
Many (probably most) DBAs and DevOps team members have worked with
a variety of tools throughout their careers, which makes adapting to DevOps
tools relatively easy. Even command-line commandos can quickly increase tool
use proficiency while providing the extra capability of reviewing, understand-
ing, and editing scripts directly.

 Doing DevOps
 One of the coolest things about DevOps is that with automation and orches-
tration you can literally build, test, and destroy any combination of database,
fully testing the application code against each database in the search for the
most optimal product teaming. You may need to install APIs for the CI servers,
but that is still a small effort for a large reward.

http://www.jetbrains.com/teamcity/

Chapter 4 | Integrating Database Technologies and DevOps Tools56

 Another test is to extract data from a relational database into a NoSQL
database to determine whether read times can be increased for certain que-
ries, especially when the reads result in few writes. For example, if a report
needs to read “tons” of data from a relational database, it might be worth a
look at redesigning the report to extract data from a new document NoSQL
database. The NoSQL database could be populated over time by forwarding
transactions from the relational database, spreading the load across hours,
for the report to access—potentially on a different server than the relational
database.

 I say it again: DevOps allows you to do really cool testing on the quest for the
best solution. A pilot becomes an exponentially more comprehensive evalua-
tion because automation and orchestration can be leveraged to perform build,
conduct testing, and move on to the next configuration.

 Summary
 DevOps has a slew of database and tools options that are all purposed to build,
automate, and orchestrate the code pipeline. DBAs need to evaluate options
for integrating database builds and changes into the code repository and pipe-
line work flow. The challenge is to not disrupt code progression, introduce
database changes and testing, and improve the cycle time. As database changes
become automated and orchestrated, cycle time should decrease, making it
possible to deliver products faster.

© Michael S. Cuppett 2016
M. S. Cuppett, DevOps, DBAs, and DBaaS, DOI 10.1007/978-1-4842-2208-9_5

 C H A P T E R

 Stateful Data,
Stateless
Database
Schema, and
Code
 Stateful and stateless programming can be defined as software code that main-
tains a state or data element, or sees each interaction without previous con-
text. Stateful programming is the dominate sibling because any time a variable is
set (i =1), a data element is captured (for example, capturing customer order
information on an e-commerce site), a variable in a loop is incremented, or
an array is used, a state is present. In and of itself, stateful is not a problem
because state is needed for many transactional interactions. DevOps does
not mandate that all code must become stateless, but there are times when
stateless brings opportunity.

5

Chapter 5 | Stateful Data, Stateless Database Schema, and Code58

 Stateless programming is growing as containerization, microservices, and
DevOps are growing because code segments need to execute in parallel with-
out dependency on another code segment. Because code can execute without
dependency, it becomes easier to update the code without impacting other
pieces of the system. If each container is autonomous, then creation, change,
or the destruction of it or surrounding containers has zero effect on the rest.

 To maintain transaction progress information, a stateful object (such as a
cookie for a web interaction) may be used to keep track of the interaction.
An API or microservices call made within a transaction flow, in which the
requested data is not required for recall later in the program, should be state-
less because there is no reason to maintain a state. Doing a search from a
browser is stateless because the search engine finds matching information
and sends it to the requester. The search engine then waits for the next
instruction without referencing the previous query. NoSQL database imple-
mentations are growing as organizations need agility and speed in response
to customer demands. Delivering and capturing data without the stringent
relational database normalization and predefined scheme object definitions,
NoSQL databases are answering the call with simpler and faster implementa-
tions, lower costs, and “schemas” that are adaptable in real time.

 All this flexibility helps DevOps improve implementations by removing depen-
dencies (stateless objects do not care about others) and eliminating or mini-
mizing deployment outages.

 Network “States”
 Discussions about stateful and stateless application code are relatively new.
Fortunately, stateful and stateless network protocols have existed for decades,
allowing us to better understand this newer topic by building on information
that is already understood. Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) have many differences, but for our context the
focus is on the concepts of connection-oriented and connectionless-oriented.

 TCP establishes a session between two computers that is maintained until
the conversation completes. For instance, when you execute “ftp < server
name > , the connection between your client computer and the host identi-
fied in < server name > is established using TCP. File Transfer Protocol (FTP)
establishes a session over the connection for the duration of the file transfer
until the session is closed. TCP is connection-oriented, or stateful, because
the protocol keeps the information needed to maintain and reestablish the
connection.

 UDP was also used in the FTP exa mple, but indirectly. When the FTP com-
mand executes, a call was made to a Domain Name Server (DNS) to translate
the < server name > into an IP address. The request was sent in the hope that

DevOps, DBAs, and DBaaS 59

an answer would be provided. UDP is stateless because it does not require a
connection; once it executes, it does not wait for a response.

 The FTP example shows stateful and stateless in the context of network con-
nectivity, which constructs a foundation on which you can build.

 Live Implementations
 Keeping an application available while making database changes can be tricky,
but not undoable. Some environments are more complicated, perhaps com-
plex enough to warrant not doing live implementations. A monolithic legacy
application or vendor enterprise resource planning (ERP) system may not be
worth the effort to make live implementations palatable. Complexity impedes
DevOps; therefore, it is imperative that simplification become a mandate as
the organization pushes forward with DevOps.

 Smaller, Agile-developed, and uncomplicated applications provide reason-
able opportunities for live implementations , stemming from the initial
database design consideration for continuous availability. Application seg-
mentation—API calls, web services, containerization, and microservices—
sanctions application updates to be done in real time; and operating an
application while doing software updates is becoming the standard, which
stirs companies to accelerate simplification and application segmenta-
tion. Reaching the same point for making database changes “live” requires
rethinking database availability, the database model, and (most importantly)
the database. Whether graph or document, a database may be a better fit
than a relational database, so determining the best database for the job is
important for availability.

 Redefining Availability
 Many IT professi onals still view application and database availability as a single
event. The application and database are so tightly coupled that customers
cannot use the environment without each running. Agile development and
DevOps are working to change the perception that it has to be that way
by providing methods to reduce application and database dependencies. The
path forward is rethinking how to store data distributively and how to seg-
ment applications into more manageable parts.

 From a business perspective, an application is available when the application
can be used—data can be viewed, edited, and submitted—to perform busi-
ness functions. Monolithic applications are assigned uptime and performance
requirements that are determined by the more critical functions. As applica-
tions are deconstructed, the individual parts have different uptime and perfor-
mance requirements.

Chapter 5 | Stateful Data, Stateless Database Schema, and Code60

 Understanding how the data is used, which data is involved, and integration
dependencies allows application work to be broken down into functional pur-
poses, making it possible to draw a line in the sand for availability. Again, this
segregation may not be feasible for monolithic applications with single-schema
databases and vendor ERP systems.

 As organizations decouple applications from databases, options become avail-
able to better manage data and availability. Migrating data from a relational
database into a NoSQL database to decrease customer query times is a good
move. Product queries are made faster by searching denormalized data in
a NoSQL database; when the interaction moves to purchase, the relational
database can be used to record the transaction.

 Content management applications or in-memory databases share a goal:
provide informatio n quickly. However, each product is backed by a master
data source or single point of truth database, which requires the applications
to check for changes before delivering the result. If a change has occurred,
the updated information has to be copied to refresh the local data before
being delivered to the requester. The performance improvement for 99.9% of
inquires accounts for the fact that the information is relatively static.

 Here’s another example: the first time you visit a web site, it is likely to be
slower than an immediate reload because the initial request has to down-
load images, Java scripts, and so on. On the reload, the browser is aware of
the images stored locally, it makes a quick call to see whether the image has
changed; if not, it loads the image from the local cache instead of pulling the
image across the network.

 Instead of depending on a single database, architectures can adapt to busi-
ness demand by considering the idea that data can be positioned strategi-
cally to improve application performance. The caveat is to make sure you
have planned how to maintain data integrity. A master database management
repository can be used to “correct” data in other databases.

 Everything mentioned here requires extensive planning, automation build-
ing, and testing because it is not easy. IT shops have been taking outages for
decades to impl ement database and code changes, so do not expect overnight
miracles.

 Functional Data Requirements
 Let’s use a product–ordering web site as a n example. The primary data ele-
ments are customer, product, order, and payment. Unless this is the only appli-
cation for your company, there are probably several databases supporting
this application. For this example, each data element is stored in a separate
database: customer database, product database, order database, and payment
database. When a customer visits the web site, the application has to know

DevOps, DBAs, and DBaaS 61

about the customer or be able to register the customer and product inven-
tory needs to be available for the customer to browse. Of course, the order
has to be anticipated and generated, and payment needs to be taken.

 Stateful Data
 Data integrity remains a mandate, no matter how a database change is imple-
mented. Keeping with our example, it seems straightforward that the relational
database presents the least risk to modify, while the product database keeps
the application available. Maintaining the data does not mean that the data can
be only in its “home” database. If the application architecture includes a data-
caching layer, caching the data may be an option. For the duration of a database
update, product update loads can be suspended, and the cache can be allowed
to become stale. The code would have to support providing data to the cus-
tomer while the source data cannot be checked for newer information,

 Loading data into a NoSQL database may also be an option. The application
must already be configured to use the alternate database, which means that
the database connection code needs to be in place and “toggle-able.” Steps
for this change include loading the product data into the NoSQL database and
toggling the application to use the NoSQL database for product queries. Code
abstraction and dynamic queries make this easier.

 Additionally, you may have chosen at some point to maintain a copy to the
product database in a DBaaS solution. Updates made to the primary database
would be sent to the secondary database. In this case, the application could
be pointed to the secondary database while the primary database is being
updated, followed by the application being directed back the primary database
for the secondary database to be modified.

 No matter the reason, when the opportunity to use a NoSQL database arises
and you decide to execute, be sure to consider the pros and cons for stay-
ing on NoSQL. A product database seems like an excellent fit for a NoSQL
implementation.

 ■ Note Agreed, the data can also be loaded into another relational database, but because the

intent of this book is to discuss managing a variety of data platforms, I went with the NoSQL route.

 Code Abstraction
 Although DBAs frequently work with code abstraction , they may not look at
it as code abstraction. Code abstraction reduces the need to understand every-
thing about a function or other capabilities. An application needing a print

Chapter 5 | Stateful Data, Stateless Database Schema, and Code62

option does not require the developer to write a print function; instead, the
programming language includes a library of common functions that provides
the code behind the scenes. The developer needs to code only the print func-
tion name and variable: print (x) , for example. Most development languages
offer a print() function.

 Software libraries are a great example of code abstraction. For the next exam-
ple, let’s use an Oracle TNS connection setup. The DBA configures and starts
the LISTENER on the database server without seeing what the LISTENER
code looks like. The LISTENER function does not need to be understood by
the DBA for the DBA to be able to activate it. On the client side, a tnsnames.
ora file is constructed with connection information needed to reach the
 LISTENER on the database server. Whether Oracle SQLPlus or an application
riding on an ODBC or JDBC connection is used, the underlying software initi-
ates the connection to the database without the DBA seeing the code.

 DBAs can look at application code and support the database, all while know-
ing little about the datab ase software. Yes, you can do a trace on an OS pro-
cess ID to see read and write calls, but not the actual code.

 Code abstraction makes it possible to develop APIs and services for custom-
ers or partners to interact with an organization without exposing an appli-
cation that might include intellectual property. All the customer or partner
needs to know is what to expect from the interface and how to “speak” to
the API or service. We interface with these types of transactions more than
we realize.

 When you pay for your snack using your cell phone, you can surmise what is
happening, but you cannot see behind the scenes. All you know or probably
care about is that once the total charge is revealed, your phone talks to the
magic box attached to the register for purchase approval.

 Even nonautomated interchanges can be used as analogies. For example, as
you are moving into your new house or leased apartment, you contact util-
ity, phone, cable, satellite (for us old-schoolers), and security system compa-
nies to have the services installed or activated. As far as your API or service
interaction—a phone call or web site submission—is concerned, all you care
about is having services turned on within a few days at most. How the elec-
tricity, gas, water, television signal, and the rest get to your place is likely not
your concern.

 API and web service usage come with the same expectation: a request is made
and the expecte d outcome happens. DevOps wants to break interactions into
even smaller elements so that services can be updated immediately without
impacting ongoing transactions.

DevOps, DBAs, and DBaaS 63

 Dynamic Queries
 A simple SQL query is just a request for data (select < data >) from a spe-
cific data location (from < tablename >), usually with a filter to reduce the
return data set (where < filters >); for example, select product_name
from product where product_id = 100 . Assuming that this data exists,
the product name with matching product ID is returned for the requester
to view. This simple query can perhaps be “hard-coded” into the applica-
tion when there is no concern that the database may change. The need for
dynamic queries is driven by the possibility that the database containing the
data may change. The data may be stored in a relational database that is then
loaded into a NoSQL database to be used by the same application. Two code
versions could be included in the application, with a precheck that determines
which code to use, based on a metadata setting defining the database or data-
base connection information. What if a third database comes into play? Does
a code version need to be built for each possible database, or does having a
SQL code version and a document code version provide everything needed?
Maybe these questions do not need to be answered because that goes against
the need to simplify.

 Building dynamic queries is just code that builds code for execution. The
application has to interrogate the database to determine how to build the
query. Previously, a query to get the product name from the product table hav-
ing a specific product ID was shown. What happens when the product data is
pulled into a different database that has different data properties? Maybe the
data is stored in a MongoDB database in which collections equal tables and
documents equal rows. MongoDB’s “select” looks like a programming lan-
guage function call: db.products.find() . MongoDB’s find() method equals
 select in SQL. Knowing that there are many differences in terminology, mak-
ing the application code use the correct query format is a matter of knowing
the data source and data element needed.

 ■ Note Consider these code examples pseudo code because it is presumed that each reader

knows how to formulate queries and or is capable of searching for examples. The $ sign is used to

identify a variable; be sure to use the correct syntax for your programming language.

 The SQL que ry we used:

 select product_name
 from product
 where product_id = 100;

Chapter 5 | Stateful Data, Stateless Database Schema, and Code64

 The NoSQL query would be something like:

 db.products.find(
 { product_id: 100}
 {product_name: 1, _id: 0}
)

 For this example, a metadata setting is used to define the database that is cur-
rently active.

 Database = MongoDB (the metadata cannot be stored in the database)

 The user has already provided the needed input by entering the product ID in
the web site search window: $product_id = 100 . At this point, the applica-
tion knows what information is needed and from which database.

 Variable in play:

 $product_name = null
 $product_id = 100 (user inputted)
 $object_name = product (location in code execution for product query)
 $Database = MongoDB

 The code builds a query statement variable using this general syntax:

 $statement = db.$object_name.find(
 { product_id: $product_id}
 {product_name: 1, _id: 0}

 Changing the metadata to use a SQL database: Database = SQL

 The code builds a query statement variable using this general syntax:

 $statement = Select product_name
 from $object_name
 where product_id = $product_id;

 The application then executes the statement execute $statement return
$product_name , expecting the product name to be returned for display to
the user.

 Many code variatio ns can be created to build dynamic code to execute against
different databases or non–database data sources to not limit the possibilities.

 Stateless Database Schema
 Stateless database schema is a misnomer in that NoSQL databases do not
always use the term schema (instead, it uses collections). However, because
most DBAs becoming involved in DevOps are coming from relational database

DevOps, DBAs, and DBaaS 65

management environments, schema is used to reflect and communicate how
dynamic “schemas” can be used in DevOps.

 As discussed, data must be stateful, protected, and not inadvertently manipu-
lated as it is moved between databases and other formats. Just like copy-
ing data between Microsoft Office products, the data has to remain exactly
the same—only the presentation layer changes. Taking a snapshot of Excel
spreadsheet data for inclusion in a PowerPoint deck demonstrates stateless
environments for stateful data.

 Examples of stateless database schema include extract, transform, load (ETL)
and analytic data grabs. Data is pulled out of one schema and loaded into a new
schema—transformed as needed for the new environment. The data values
remain the same; they are being used as the base data that can be transformed
and aggregated for analysis. Transactional data is a recording of events that has
to be transformed to identify patterns and trends needed to understand how
products, customers, locations, and other markers compare with peers.

 In DevOps, data needs to be in the best database or container befitting the
work at hand. Speed and agility need to be the primary drivers for data retrieval
and manipulation. Customers—internal or external—expect applications to
perform without noticeable delays. Waiting for screens to change and watch-
ing the cursor “spin” frustrates users. Preventing data retrieval or manipulation
from being part of the delay demands selecting and implementing the best
database fo r the job. Over the years, relational databases were abused, with
square data being forced into circular holes. This process has never worked
well; instead, it met the cost side of the equation—not wanting to invest where
millions already had been. That unfit use of relational databases for unstruc-
tured data management is now being unwound, shifting unstructured data into
databases designed specifically for nonrelational data models.

 The schema limitation and the response are succinctly defined by the
MongoDB team:

 Schema design determines the way an application handles its data. With
traditional relational databases, you must define your schema before
you can add any data. This inflexibility means you can’t change your
schema as your data, application requirements or business evolves. In
today’s world hyper-competitive, global business environment, this can
hamper your efforts to innovate and stay on top of the competition.
NoSQL databases arose to address this limitation by allowing you to insert
data without a predefined schema. Because of this, you can easily make
changes to an application without interruption. The result is more reliable
code integration, faster development, and database administration time. 1

 1 https://www.mongodb.com/scale/dynamic-schema-design

https://www.mongodb.com/scale/dynamic-schema-design

Chapter 5 | Stateful Data, Stateless Database Schema, and Code66

 Relational database tables are created with the essential data attributes
included in the definition. To add or change a column definition requires alter-
ing the table to set a new data type. NoSQL documents are not required to
have the same data, data type, or data size in every document within a collec-
tion, which results in documents not containing all the data that might be in
other documents. Let’s compare a relation table to a NoSQL document.

 Relational Table Column Names

 HOBBIST_ID
 HOB_FIRST_NAME
 HOB_LAST_NAME
 FAV_HOBBY_ONE
 FAV_HOBBY_TWO
 FAV_HOBBY_THREE

 All the previous colum ns accept character data; the first four columns are
required, and the last two columns are optional. In a relational database, a
 CREATE TABLE statement is executed to define the table as described. A DBA
can quickly look at the table definition to know that each record includes an
ID, first and last name, and up to three listed hobbies.

 To create a NoSQL document, the data is just entered using the field :
value construct. You can also create the document and then add it to a col-
lection or you can add a document directly into a collection:

 Example document

 {
 “HOBBIST_ID” : “1”,
 “HOB_FIRST_NAME” : “Super”,
 “HOB_LAST_NAME” : “Nerd”
 “FAV_HOBBY_ONE” : “NoSQL”
 }

 Documents in a collection are not required to contain the same or all fields. A
query searching for a value in FAV_HOBBY_TWO or FAV_HOBBY_THREE would not
find a value in the previous document. Also, a DBA looking at one document
cannot conclude that every document contains the same data because there
is no requirement to maintain a placeholder for the additional information.

 Developers have typically had to add application-side code to enforce data
quality controls, such as mandating the presence of specific fields, data types
or permissible values. More sophisticated NoSQL databases allow validation
rules to be applied within the database, allowing users to enforce governance
across data, while maintaining the agility benefits of a dynamic schema. 2

 2 https://www.mongodb.com/nosql-explained

https://www.mongodb.com/nosql-explained

DevOps, DBAs, and DBaaS 67

 As quoted, the relational database schema definition benefits of data validation
and required data elements are not lost when deploying a NoSQL database
solution.

 Being able to add a field and value , which dynamically changes the schema,
is why NoSQL databases provide the flexibility needed in DevOps environ-
ments. Adding a document with a new field (column) into a collection looks
like this:

 db.hobbist.insert({“HOBBIST_ID” : “10”,
 “HOB_FIRST_NAME” : “Uber”,
 “HOB_LAST_NAME” : “Geek”
 “FAV_HOBBY_ONE” : “Writing”,
 “NEW_FIELD” : “NEW_VALUE”
 })

 Adding a column to a relational database table requires an ALTER TABLE com-
mand that would cause a temporary locking of the table until the change is
completed, which would be noticed by application users. This type of change
is usually done during a planned outage or designated change window.

 Stateful Code
 Code that remembers values, state, or previous interactions is considered
stateful, leaving stateless code to be defined as code that does not remember
values, maintain state, or remember processing history. Functions make excel-
lent examples for showing the difference between different coding practices,
even stateful versus stateless. Most programming languages define functions
as code that performs discrete instructions, as opposed to procedures that
may include decisions, keep variable information, or complete multiple tasks.
Functions execute in isolation and independently, making them easy to include
in programs when specific work needs to be completed. Although not every
function is stateless, discerning the state is not as difficult as determining state
for larger code segments.

 Programming languages and even desktop productivity tools provide common
functions. In Excel, you can use the AVERAGE() function to get the average
value for a set of numbers, as shown in Figure 5-1 .

Chapter 5 | Stateful Data, Stateless Database Schema, and Code68

 Figure 5-2 shows a different number of inputs, yet the function still returns
the average value.

 Figure 5-2 makes it apparent that the AVERAGE() function in Excel allows a
variable number of inputs without code modification. The AVERAGE() func-
tion executes each time with no memory of past executions—it is an example
of stateless code.

 Returning to the Excel example shown in Figure 5-2 , the number of values
to be used comes from countin g the number of cells in the range D1:D7 that
equal 7; the values to be averaged are the content in each cell (1,2,3,4,5,6,7).

 Variable assignments reflect stateful code because the variable could be refer-
enced again, producing an output value.

 Figure 5-1. Excel AVERAGE() function example

 Figure 5-2. Excel AVERAGE() function example with a larger data set

DevOps, DBAs, and DBaaS 69

 Stateful code makes it difficult to change the environment without interrupt-
ing in-progress transactions.

 Stateless Code
 The independency of stateless code, especially running in a container, relieves
the change burden. Let’s start with the back end being a NoSQL document
database. Because documents do not have fixed structures like tables and do
not need to contain the same data element, new documents can be added to
a collection without any change to the database.

 Starting simply, here is a simple stateless function to print the input value
passed to the function:

 ■ Note Pseudo code only.

 function print_input (parameter)
 print (parameter)
 end

 A stateless function to print a random value follows:

 function print_random ()
 print(rand())
 end

 Notice that both examples lack variable assignments. Each function performs
one task with no context of what happened in a previous execution or con-
cern with the next execution. Also, the function does not contain a session
reference.

 The first function allows a single input and produces a single output. If the
functions code was not contained within a function, instead entangled in a
larger program, making a change to print two values would cause the entire
program to be implemented as a change.

 The second function prints a random value. Again, when embedded in a larger
program, making a change involves the larger program. Fortunately, the func-
tion is containerized.

 Continuing with the containerized code scenario, an audit record is created
and written to the database near the end of the application process flow. So
far, stateful. However, a random number must be appended to the record to
meet a new security requirement.

Chapter 5 | Stateful Data, Stateless Database Schema, and Code70

 The record written to the file is compiled from data known the application
(stateful) and a random number that is generated from using the rand() func-
tion (stateless). Here is the print statement:

 print (value 1, value 2, value 3, rand())

 As mentioned, this data is written to a document in a NoSQL database. A
requirement change comes from the legal department, requiring a more
impressive random value to replace the current random value. Because the
function is containerized, and there are many containers running with the func-
tion, the change ca n be made without an outage or customers even noticing.

 Change the function by replacing rand() with moreimpressiverand()
and deploy the code in a container for testing. Once testing concludes and
the results are as expected and aligned to the requirement, the production
deployment can begin. If there is space server capacity, you can add a new con-
tainer and then monitor the outcome. The document in the NoSQL database
should contain different-looking values compared with the previous function
version—for this container’s output. The rest of the containers are still using
the previous function version.

 Once the production check for the container with the new function passes,
full deployment occurs by destroying an old container and adding a new con-
tainer. This process is then repeated until all the containers have the updated
function. The change should be seamless to customers—with no interrupted
transactions, the change was implemented without an outage, and no change
was made to the database concerning the new value.

 Yes, stateful code can be implemented in this manner; I intertwined stateless
code and live deployment examples to maintain the scenario and the book
flow.

 Stateless SQL
 Querying an Oracle table using the SELECT statement also represents state-
less code because the data returned is not stored for use by future state-
ments. To see the data again, the SQL statement has to be executed once
more:

 SELECT emp_id, emp_first_name, emp_last_name from employee where
emp_id = 10;

 In contrast, using the SELECT INTO construct in which returned values are
retained in variables represents stateful code:

 SELECT emp_id, emp_first_name, emp_last_name INTO empid, empfirstname,
emplastname from employee where emp_id = 10;

DevOps, DBAs, and DBaaS 71

 The application can reference empid , empfirsname , and emplastname for fur-
ther processing.

 Stateless Web
 Static Http pages are stateless; they are returned as-is upon request. When
programmers add code to capture values or maintain session information,
the Http pages become stateful. Using the hobbyist example already shown, a
simple Http document that collects information from a person who wants to
join the Hobbyist Guild needs the person’s first and last name and at least one
hobby (why join if you have no hobby?). Once the data is collected, the code
derives the ID, maybe from a sequence generator, to complete the required
values for insertion into a table or document. As guild membership expands,
many of the most active hobbyists want to provide more information that can
be shared between members—the first is an e-mail address.

 The application code needs a few new lines to include a request for an e-mail
address on the new member form. Using a NoSQL document database, the
new data—e-mail address—can be included in the document within the same
collection; no database change is required. For a relational database, the table
has to be altered to add the new column before the data can be inserted. The
same is true for updates. Existing hobbyists can add an e-mail address requir-
ing a small amount of code on the update profile web page for the e-mail
address entry. The e-mail address can be added to that person’s document
without defining a structure change. The relational table still requires the col-
umn to be added before the update occurs.

 Stateless schemas should make much more sense now.

 Relational databases with stateful schemas will not be completely replaced
anytime soon because a need still exists for data to be captured in a relational
model. Organizations have invested much time and effort into building and
maintaining relational data stores. Relational databases continue to be single
sources of truth for many critical data elements.

 NoSQL databases serve a different purpose where availability and dynamic
data collection is needed. Being able to add data to a document (record) with-
out first having to define the new data element makes it possible to deploy
code changes without database schema changes. DevOps teams (DBAs are
team members) can focus on reducing cycle times, which gets software to
market quickly. D ecomposing monolithic applications and deconstructing por-
tions of the relation data model expand the possibilities for Agile applications,
stateless schemas and code while maintaining stateful data.

Chapter 5 | Stateful Data, Stateless Database Schema, and Code72

 Summary
 Stateless schemas and code undergird capabilities such as parallel code execu-
tion and dynamic data storage. NoSQL databases store data without predefined
data types, accepting data that vary dramatically within a collection. Deploying
changes to a production environment with little or no risk improves reliability
while delivering new application functionality to customers. Parallel code exe-
cution accelerates application performance, which translates into improved
customer experience. DevOps leverages these methods for improving appli-
cation execution and deployment and for stabilizing infrastructure.

 Finally, no matter what method, database, or process is leveraged to progress
DevOps, remember that the data is stateful. Data integrity must be preserved.

© Michael S. Cuppett 2016
M. S. Cuppett, DevOps, DBAs, and DBaaS, DOI 10.1007/978-1-4842-2208-9_6

 C H A P T E R

 Optimizing
Application
Performance
with Change
Management
Improvements
 Yes, the chapter title sounds intriguing—incomprehensible, but intriguing
just the same. Application performance and change management seem to fit
together like oil and water. For IT folks, the first thing that comes to mind when
hearing change management is the ITIL ITSM process designed to minimize

6

Chapter 6 | Optimizing Application Performance with Change
 Management Improvements

74

risks when changes are made to the production application environment. The
change management process involves designing the change, testing the change,
determining what impacts could occur, determining how the change can be
backed out if it fails, testing the back-out, and then explaining the change and
getting approval from the CAB to execute the change. A week has likely passed
at this point, only to arrive at the place where the change is scheduled to
occur. Change management must be accelerated to fit the DevOps methodol-
ogy while keeping risk minimized. The DevOps approach requires extensive
testing and the mandate to stop defects from progressing; the process is similar
to workers on the manufacturing floor having the power to stop the line when
problems occur that could impact safety or quality.

 Optimizing application performance brings thoughts of code rewrites and
database tuning to mind; change management usually does not make the to-do
list for improving application performance. Instead, change management is a
“mechanism” or “checkpoint” before the improvements are implemented into
production. Viewed too often as an impediment, especially when a quick turn-
around is needed, change management forces teams to assess changes and
potential impacts to the production environment. Post–change production
problems still occur too often, perhaps because change management occurs
too late in the process and misses the discovery of nonproduction findings
handled as issues without thought given to the same issue soon to be ham-
pering production. When nonproduction and production environments are
not exactly the same, it is easy for teams to consider issues to be relevant to
a specific environment. No matter; the suitability of change management and
application performance improvement is not obvious.

 Melding application performance improvement and change management
requires thinking about change management as more than simple risk man-
agement, covering everyone’s butt, and a mere paperwork drill. How can value
be mined from change management that can be applied toward improved
application performance?

 Change Analysis
 Change analysis is the missing link. Not change analysis because something
failed and the root cause needs to be determined—a process that still needs
to exist, hopefully less frequently as DevOps takes hold—but rather assessing
the performance impact of each change to understand where investments in
performance improvements are making a difference for customers and the
bottom line. Most changes are measured using a binary indicator : success
or failure. That should be the starting point when implementing a change
management process, but for many organizations it is also the ending point.
Stopping there dramatically reduces the impact change management offers.
Change analysis, which takes the premise of the chapter title at face value,

DevOps, DBAs, and DBaaS 75

appears to offer the opportunity for change management to optimize applica-
tion performance. Data (the same type of data collected to analyze produc-
tion performance problems) is needed for change analysis, but it is collected
in each nonproduction instance prior to production to prevent performance
problems making it to production.

 Let’s demonstrate change analysis using a theoretical internal application per-
formance problem for a corporation. First, I will describe the problem and
discuss how to get a handle on the true issue before getting to the analysis.

 Call center representatives are reporting slowness when searching a cus-
tomer’s order history. The problem tickets record wait times in the range
of 5 to 30 seconds. The infrastructure includes the user’s desktop computer
connected to the local area network (LAN) at 1Gbps, running an updated
browser. The glass house environment hosts the virtual web, application, and
database host tiers in a private cloud running a Linux OS and Oracle database
as the primary transactional system. Additionally, the decision was made to
maintain customer order history in a public cloud to keep the transactional
database lean.

 A web services call reaches out over a T3 45Mbps wide area network (WAN)
to a cloud provider’s data center that hosts the organization’s data in a DBaaS
solution involving the Linux OS hosting MongoDB (see Figure 6-1).

 Figure 6-1. Example of an application infras tructure

Chapter 6 | Optimizing Application Performance with Change
 Management Improvements

76

 The order history data pushed from the Oracle database tables is transformed
into documents for an order history collection.

 The application footprint, minus a small percentage of code for the web inter-
face, is distributed 85–90% at the application tier; the remaining code is stored
within the database as PLSQL packages, functions, triggers, and stored proce-
dures. The web service call code is included with the code at the application
layer, as shown in Figure 6-2 .

 Understanding User-Reported Problems
 The challenge with user–reported application slowness is the subjectivity of
each person’s perception of time. What feels like 10 seconds to one person
may feel like 30 seconds to a less patient person like me. I have to admit that
waiting more than a few seconds for a response from anything on the Internet
makes me want to check the news to find out whether the Internet is down.
Yes, the whole Internet. Some users make the effort to get a wall clock time of
the wait, but that also does not provide the accuracy needed. Without totally
disregarding the user’s subjectivity (because obviously there is a problem), get-
ting objective data is key to understanding the user experience.

 Figure 6-2. Example of an application code distribution

DevOps, DBAs, and DBaaS 77

 Objective Timings
 There are many ways t o collect detailed information for capturing exact tim-
ings from a user perspective. If possible, test from several workstations of users
who are experiencing the problem and several workstations for users who
are not experiencing the problem, given that each is doing similar work. If pos-
sible, test from your workstation or other location workstations. If a problem
exists, the users need to know that you understand their concerns—show-
ing empathy goes a long way toward good will, which is something IT teams
need desperately. Sitting with users or talking on the phone with users while
remotely accessing the computer makes a more personal connection; emailing
or texting misses this important customer service opportunity. Remember,
DevOps is about understanding the business and working with the business
team more closely, so verbal communications are critical.

 End-to-End Response Time
 Network packet collectors such as Netmon or Wireshark capture net-
work traffic and provide informati on about when a request was sent until
the response was received—from the network perspective as the capture is
taken at the computer’s network interface. The gap is the presentation layer,
the processing that happens between the browser and the network on the
computer. For that, using a product such as Fiddler, HttpWatch, or the Inspect
function in certain browsers provide the truest timings.

 Combining a packet capture and a browser-level timing makes determining
slowness on the user’s computer relatively easy, although only a very minute
percentage of application performance problems happen at the local com-
puter. But just because multiple users have reported slowness, you should not
disregard the client infrastructure. Many companies distribute the same image
to many computers, which allows for the possibility that a client-side change
has caused a problem. Figure 6-3 demonstrates a packet capture, showing
packet sequence, time elements, and packet descriptions.

Chapter 6 | Optimizing Application Performance with Change
 Management Improvements

78

 ■ Note The packet capture can be analyzed further to determine transaction times (a process

not covered in this book).

 Figure 6-4 shows a proxy capture using HttpWatch . Notice the http calls,
execution duration bars, and time data.

 Figure 6-3. Example of a network packet capture

 Figure 6-4. Example of an HttpWatch browse r proxy capture

DevOps, DBAs, and DBaaS 79

 The duration bars make it easy to see which calls take the most time. Imagine
the example data being from your application with timings ten times as high.
Improving application performance with just this information is possible by
investigating each long bar http call.

 Figure 6-5 was captured using the browser’s Inspect tool , which is accessed by
right-clicking the web page in a location without links (a blank space).

 Figure 6-5. Example of a browser Inspect capture

 ■ Note Again, the long statement durations have to be investigated further for potential

performance enhancements.

 Similar analysis should be done as part of the DevOps pipeline to hunt and
kill performance-draining beast s. As code is tested in the pipeline against the
development and integration ecosystems, collecting performance data sets
enables a deep analysis of each code statement’s impact on performance.
Obviously, statements found violating predetermined baseline performance
values must be tuned prior to production release.

Chapter 6 | Optimizing Application Performance with Change
 Management Improvements

80

 Although I simply collected data using a browser call to www.oracle.com to
provide simple examples, code performance analysis may require including
code within the application that captures performance information or start
and stop times for each execution. By now, you may realize that the types and
count of the possible checks are vast; your goal is to determine which checks,
done where, bring the best results. The infrastructure example exists in real
life because customers visiting the company web site expect great response
times. What happens behind the curtain is the DevOps team’s responsibility
to deliver. If the application reaches out for credit card authorization or to
validate the visitor’s member ship needed for a discount, that time needs to be
analyzed before and after changes are made.

 As shown, digging out exact timings provides a much better understanding
of the application performance—broken into manageable chunks for analysis
and correction.

 Yes, There Really Is a Problem
 It is not that we do not believe user-reported information; it is just that expe-
rience tells us that other factors can be in play that make it necessary to
get the full representation of the problem. One user would complain sev-
eral times a week about application slowness, which was causing the per-
son’s performance metrics to drop. Upon investigation using a packet capture
tool , it was determined that the live video streaming to the user’s computer
was causing the application slowness. This person was advised to stop the
streaming and given the heads up that the company could “see” everything.
Nothing illegal was happening, but complaining about self-inflicted impaired
performance caused by news/entertainment traffic does not boost careers if
that information is shared.

 Continuing with our hypothetical problem: the user-side investigations
recorded slowness consistently in the 5–17 seconds range, with very few out-
liers, which narrows the actual slowness impact significantly. If you are lucky,
the captures you already have point to a single call that represents the major-
ity of the slowness, allowing immediate focus on what is likely the root cause.

 As member of a DevOps IT shop, you know that software releases occur
nightly. Unfortunately, the users did not report the problem immediately, mak-
ing it difficult to establish when the problem was introduced, (except that
everything seemed to be good a few weeks ago; and, by the way, the problem
occurs at different times of the day; otherwise, performance is acceptable). The
release report shows at least five changes that may have impacted this func-
tionality: four were implemented successfully, and one had to be rolled back
with no root cause documented. Here, the binary release check has failed the
organization. Release success or failure does not communicate information

http://www.oracle.com/

DevOps, DBAs, and DBaaS 81

needed by the business or IT. Code that is successfully deployed with func-
tionality validated by a tester does not tell the entire story (for example, per-
formance degradation being introduced). DevOps testing purposely initiates
more comprehensive answers. Excessive testing vets the software thoroughly
and automatically, making it feasible to include tests designed to measure per-
formance. It gives the green light only on performance that matches or is
faster than a predefined value or the previous code version timing.

 As DevOps teams “shift-left” and work in conjunction with business lead-
ers as product managers, IT (now DevOps) truly becomes partners with the
business. The “IT alignment to the business” goal included in the annual IT
strategy deck for the last decade becomes obsolete. The perceived (or actual)
misalignment was not only because the business teams did not understand
what IT really did, other than spending offensively huge chunks of money
to drive business operations, IT also wholly failed to come to the table as a
business partner; instead remaining aloof and detached from everything but
technology.

 Thirty years ago, IT, MIS, or data processing (whatever the name) was given
the mission of finding ways to complete work faster than teams of people
could by having computers do mundane, repeatable tasks. Ironically, DevOps
in many ways reaches back 40 years to repeat the tactical execution of hav-
ing computers do mundane tasks: repetitive code testing , deployments , infra-
structure as code, and more. Between then and now, far too many manual
steps were added to processes that now need to be remediated. Forty years
ago, computer work likely resulted in teams of people losing their jobs, but
DevOps does not have the same mandate as in the data processing years.
Instead, highly skilled engineers and programmers are freed from repetitive
tasks and allowed to partner with the business to generate and implement
game-changing technologies and applications.

 DevOps wants and needs to shift talented, intelligent, experienced staff into
roles that deliver measurable benefits for the company. Repeatable tasks can
be done much faster by computers, but computers do not generate ideas.
Computers running data analytics programs churn through data millions of
times faster than humans, but computers still do not have the capability to
find answers in the data, interpret the data, or act on the data like people do.
People assimilate varying data points to produce value in new ways. DevOps
needs people to create opportunities to help the business leapfrog competi-
tors. It is not intended to get rid of people; instead, it wants to make people
more effective and focused on executing business strategies, not hampered by
mundane tasks. Accomplishments have moved from “Designed a new algorithm
for . . .” to “Improved customer experience . . . reduced costs . . . implemented
a new revenue channel . . .”

 DBAs and DevOps teams should take a positive stance and attitude toward
the goals of Agile and DevOps, knowing that each person’s impact on the

Chapter 6 | Optimizing Application Performance with Change
 Management Improvements

82

organization can make tremendous strides to create better customer experi-
ences and software products, and continually improve business processes, all
with prospective top- and bottom-line impacts.

 DevOps Answers
 Change management analysis in DevOps extends beyond binary conclusions
to business impact statements. Reporting successful or failed statuses alone
shifts to informative, customer-centric statuses such as the following:

• “Change 123 implementing function A successfully
reduced execution time 40%; now averaging 7 millisec-
onds per call.”

• “The change to reorganize table ABC successfully
reduced report execution time, allowing the business to
meet contractual requirements.”

• “Change 456 failed and was rolled over successfully with
change 512. Testing for change 456 did not include a
critical data test; later found and tested for change 512,
which allowed the failure to advance. Teams had recti-
fied, tested, and implemented the needed test earlier this
week, having change 512 already in the pipeline. The 512
push completed successfully within the change window,
eliminating the risk.”

 DevOps’ fail fast edict can really benefit the company by progressing soft-
ware products continuously and without having laborious rollbacks, rework,
retests, and reimplementation. In the previous third scenario, the DevOps
team knows that a communication was missed because change 456 should
have never made it to the release stage, let alone production.

 So as change management communications pivot from mundane status
updates to business impact updates, opportunities to improve application per-
formance become more apparent. Moving from a message that the code was
implemented successfully to a message that the code decreased customer
query time by 67% tells a better story. There is a large chasm between code
that works and code that works and executes expectantly fast while generat-
ing an audit trail. Adding a new feature that performs poorly is not really a
feature—it is a bug and a frustration for customers. Adding a feature that is
expected to increase mobile app usage 400% without increasing infrastruc-
ture resources is not a feature, but a colossal failure. The DevOps movement
provides the needed tactical response with infrastructure as code. When traf-
fic is expected to spike, adding resources to existing virtual hosts or spinning

DevOps, DBAs, and DBaaS 83

up additional hosts with a button click or two simplifies infrastructure readi-
ness and resiliency.

 Performance Isolation
 Several previous examples showed end-to-end, customer experience transac-
tional times. Next, timings need to be gathered for each tier involved in the
processing of the order history transaction. It is expected that the findings
correlate with the end-to-end times: 5–17 seconds, minus outliers. Timings
for workstation to web server, web server to app server, app server to data-
base server, and the web service processing time provide clear transaction
breakpoints . Look at the data in Table 6-1 .

 Table 6-1. Example Performance Data at Transaction Breakpoints

 Response Times
(in Milliseconds)

 Test 1 Test 2 Test 3 Test 4 Avg.

 Client to Web 21 34 27 31 28.25

 Web to App 62 54 87 68 67.75

 App to DB 3763 3841 4639 2049 3573 a

 API Call 5218 2567 9497 2817 5024.75 b

 Total: 9064 6496 14250 4965 8693.75 c

 Immediately, two parts of the transaction register as extremely slow, with the
average execution times shown by a and b. All four tests had total execu-
tion times within the 5–17 second range, with the average time shown at c.
Ignoring the client-to-web-to-app segments and discovering the root cause
for the slow execution times from the app server to the database server and
for the API call should lead to significant decreases in response time.

 DBAs can execute session traces to find which SQL statements are involved
and how long each statement takes to return the result set. In this case, the
excessive time is being spent in the database, caused by the query having to
do a full table scan of the order table to get the order numbers to be pulled
from the order history collection. A trigger is also in place that writes an audit
record to a table that shows high insert contention. The DevOps team agrees
that an index is needed for the order table and that the audit table contention,
although not good, is not critical enough to address right now because the
contention accounts for only a few milliseconds. The contention issue is not
a priority in the backlog. The index add is a priority fix to be implemented
immediately after testing, bypassing the standard backlog process.

Chapter 6 | Optimizing Application Performance with Change
 Management Improvements

84

 A DBA writes the Create Index statement and checks the code into the
repository for the CI server to incorporate into the main code branch and
to test. In parallel, a developer punches out a new test that would specifi-
cally execute the query with the new index, reporting the execution time in
an e-mail to the entire DevOps team. The e-mailed results show an average
execution time of less than 100 milliseconds; the team then releases the code
for deployment. After the deployment, the product manager reaches out to
a subset of the users who reported the problem, with feedback similar to “It
seems faster, but it is still too slow.” Understanding that less than 50% of the
transaction time has been addressed so far, the team begins to investigate the
API call slowness. The cloud provider’s hourly transaction time report con-
sistently shows response times under 300 milliseconds, leaving the network in
question. Initial checks show excellent round-trip response times.

 Leaving only the WAN segment as the possible culprit, the DevOps team
requests that the network team monitor the WAN. After several days, the net-
work team reports that three times daily, at different times, a large volume of
data was sent from the Oracle database server to the cloud provider, result-
ing in substantial packet losses, retransmissions, and connection timeouts. The
teams quickly conclude that the job responsible for uploading order history
data could be causing the problem. Comparing the network saturation times
with user reported slowness times confirms a correlation within the business
day. Network saturations during the night did not conflict with user transac-
tions. Further investigation found that the upload jobs were not running at the
same time daily, as planned a year prior during the implementation. Instead of
the job starting at a specific time during the night, the job start time was being
set to when the job completed, causing the start time to drift until eventually
running during the business day. Separately, what was supposed to be a single
daily upload turned into three daily uploads. The upload job was inadvertently
scheduled three times, and each job loaded the same data set for the day because
record selection included all records older than 180 days. To complicate things
further, the same job was failing to remove the order history records, causing
the upload record count to increase daily. Further investigation revealed that
the MongoDB database had significant numbers of duplicate records.

 The DevOps team developed a plan to first empty the MongoDB database ,
followed by uploading all the order history records in scope, purging the same
records from the Oracle database, fixing the job code to make sure that
records are deleted daily, and finally removing two of three scheduled jobs.
The much smaller data set being uploaded during the night resulted in the
user reporting excellent application performance, better than ever. It turns
out that the upload issue pushed users past what they were willing to consider
acceptable application performance: less than 5 seconds. Additional response
time improvement came from the Oracle query fix that was responsible for
the preupload problem average times of nearly 5 seconds. With both issues
resolved, response times were subsecond.

DevOps, DBAs, and DBaaS 85

 The two changes that made application usage very acceptable for the users
could be reported as successful or a failure, except now you know that the
change management report needs to include details about how the change
made an impact on the users and the business. Not recording the benefits in
the change record seems irresponsible in light of DevOps practices.

 Maturing change management from infancy with the limited vocabulary of
success or fail evolves change management into a business-empowering func-
tion . DevOps speeds change delivery, but only after excessive testing that is
purposed to not allow defects to proceed. It is important to note that change
management must shift-left several steps from being a production release pro-
cess to become a milestone starting at code check-in through deployments;
change management is not a production-only tool. Changes identified as suc-
cessful by developers testing on their workstations must include performance
considerations, which must be rectified as needed before being introduced
into the full product code base. Additionally, CI testing must include load and
stress testing to ensure that the code performs just as quickly when compet-
ing with peak load times during the business day.

 Manually troubleshooting a performance problem is time-consuming , as
demonstrated here. Investments in APM or similar tools with different acro-
nyms set the business up with the capability to proactively monitor applica-
tions, allowing performance corrections to be implemented before users are
impacted. Reacting to real-time performance trends sure beats reacting to
user complaints.

 Change management seems an unlikely candidate for application performance
improvement. DevOps again dispels the status quo by morphing a dreaded
paperwork exercise into an effective communications tool. Reporting business
improvements to customer experience or company financials, the DevOps
team becomes a business partner known for speed to market, agility, and the
willingness to accept business changes as routine, not scope-expanding chal-
lenges. Establishing DevOps principles as the cultural norm shifts the business’
perception of IT, which is a much-needed good thing.

 Summary
 Change management to improve application performance can be done, as
demonstrated in this chapter. Two significant shifts must occur. First, change
management has to move backward from production implementations to
all implementations as the code and database changes progress the pipeline.
Second, purposeful performance data collections need to undergo a thorough
analysis to disallow performance degrading changes to progress. DevOps
advocates not allowing defects to progress, insisting on immediate mitigation.
DBAs and DevOps teams need to consider performance killers as defects
requiring immediate remediation.

© Michael S. Cuppett 2016
M. S. Cuppett, DevOps, DBAs, and DBaaS, DOI 10.1007/978-1-4842-2208-9_7

C H A P T E R

Measuring DBA
Inputs to End-
User Experience
and Business
Value
People want to be recognized for work well done; it is just human nature. The
challenge for IT folks is being able to quantify how application, infrastructure,
and operational changes improve the business by making customers happier,
leaning processes, or contributing to revenue increases or cost decreases.
Cumulative degradation mathematically reveals what IT leaders have struggled
against when defining metrics to prove IT’s value to the business (refer to Table
1-1 in Chapter 1). Imagine the CIO sharing uptime metrics with other CXOs,
knowing that the CXOs are hearing daily from their teams that the applica-
tion systems are unstable and slow. A CIO stating 99.9% uptime undoubtedly

7

http://dx.doi.org/10.1007/978-1-4842-2208-9_1

88 Chapter 7 | Measuring DBA Inputs to End-User
 Experience and Business Value

receives flak from the other chiefs. Uptime, which means that the computer is
running and the application works, is much different from a measure showing
productive use of the application to meet business and consumer demands.

The trick is converting technical outcomes into financial or customer benefit
measurements. For each of the examples in this chapter, take time to consider
how to communicate the value message. For example, reducing overall database
server load may delay capital outlay or reduce monthly DBaaS costs. Decreasing
transaction times leads to improved customer satisfaction, which may be reflected
in the company’s net promoter score, reduced complaints, or increased revenue.
Transform the technical measure into financial- or customer-impacting news.

Customer Experience
Time is everything for IT when measuring customer experience, which cumula-
tive degradation does not measure. Cumulative degradation does not account for
transaction times, which is the determinate that customers observe. Marketing
analyzes the number of clicks to purchase, cross-selling, conversions, and more
under the customer experience management (CEM) umbrella. Marketing man-
ages the unique needs of customers, while IT needs to make sure transactions
are fast! All marketing metrics suffer when transaction performance degrades:
response times lengthen and the expectations of every unique customer are
not met. Although it may not be intuitive to see how clicks to purchase and
cross-selling are impacted by performance, consider the likelihood of customer
abandonment. Customers can become impatient and discard slow transactions,
quickly jumping to competitor sites or waiting to try again in the future.

Although systems performing poorly are technically “up” or “available,” cus-
tomer frustration reveals a different sentiment. Applications not performing to
the service level agreement (SLA) or to other expectations should be labeled
degraded. When performance worsens, the applications should be considered
unavailable. Patience is a virtue, but it is a character attribute not exercised by
most people who are waiting for an application to respond.

Fortunately, the industry has recognized this disconnect and has moved to
customer experience—internal and external—as a measure of application
delivery success. Online retailers design infrastructure and applications with
the intent that a customer never leaves the site due to application unrespon-
siveness. The goal is to deliver an experience in which the customer finds,
reviews, decides, and purchases items quickly and effortlessly. Beyond perfor-
mance, cumbersome navigation, slowness, or ambiguous checkout form fields
can also drive customers to competing sites. Now that DBAs are DevOps
team members, issues such as navigation and poorly performing web forms
become areas of concern because each team member is responsible for every
component contributing to the product. The opportunity to push responsibil-
ity to another team—finger pointing—does not exist in Agile and DevOps.

DevOps, DBAs, and DBaaS 89

DBAs need to contribute and report contributions to customer experience
improvements. Measuring customer experience by using the cumulative model
provides paths forward in determining where to invest time, money, and peo-
ple. Upping the availability for any segment decreases degradation, leading to
improved customer experience. DBA participation traditionally involved data-
base tuning first, operating OSs and storage improvements second, and the full
IT supply chain serving the application third.

Measuring customer experience by transaction times tells a better story.
Delivering 99% of transactions at 10 seconds versus delivering 95% of transac-
tions at 1 second are two very different customer experience stories. All 99% of
the transactions in the first scenario reflect a poor customer experience when
matched against the industry standard of 3 seconds. The second scenario rep-
resents excellent customer experience from very fast response times, but the
caveat is that 5% of the transactions were too slow, which is an unacceptable
number. For both, unavailability is never good, but my observations show that
customers are more gracious when a site is not available—they know that prob-
lems can occur—than they are when a site is slow. As mentioned before, it may
be a wiser move to take a site down to perform a fix rather than trying to push
through the performance problem. When the site is available, the site needs to
perform excellently to maintain acceptable customer experience levels.

Good News: DevOps and Virtualization
The very good news comes in two flavors, DevOps and virtualization, which
are tremendously exciting options for addressing performance degradation.
Dynamic resource management is one reason why virtualization became
popular. Adding CPU or memory to a struggling guest provides a quick and
easy solution for performance problems, at least in many cases. Depending on
the database and version, improved performance depends on the database
implementation being able to dynamically consume additional resources. If the
database supports dynamic memory expansion, the database should be able
to consume an additional memory outlay.

As explained here, DevOps presents the opportunity to spin up additional
servers to increase capacity, especially at the application tier. Templates can be
used to build servers for new projects or to build servers to expand capacity
to resolve performance challenges.

Application and infrastructure play different roles, depending on where your
customer is in the application process. The application presentation and func-
tionality in which customers step through different selections is driven more
by the application than the infrastructure. In contrast, once a customer initi-
ates a transaction, infrastructure delivery capability increases in importance.

90

Customer experience during screen navigation depends on the compute
environment (phone, tablet, laptop, kiosk, etc.) and the client–side interface
application code. If the application makes frequent service calls to back-end
systems to populate fields as the consumer progresses through the screen, the
infrastructure contributes to the experience—good or bad. For demonstra-
tion purposes, let’s have the application be a simple registration form with no
back-end calls. The user experience depends on the application flow from one
input field to the next and to the user’s smartphone or computer. User frus-
tration might come from unexampled data entry formatting, but it is not likely
relative to performance. Once the user clicks Submit, response time becomes
everything, making the infrastructure and database germane to the customer
experience. As newly anointed DevOps team members, DBAs must ensure
that the customer data inserts quickly and securely into the database, and must
work with other infrastructure teams to drive network and server speediness.

First, it is necessary to measure customer experience holistically and at each
technical entrance-exit to understand which technologies impact customer
experience.

Holistic End-User Experience
Pulling together a quick list of technologies that contribute to the customer
experience is not as simple as it sounds. Network, web, app, and database serv-
ers come to mind quickly; then authentication for secure access, and, of course,
the customer compute platform. What about transaction auditing, acquiring a
security certificate, encryption, proxies or reverse proxies, DNS, load balanc-
ers, secure connectivity, firewalls, security scans, and more? Depending on the
architectural complexity, much more could be added to this list. Oh, I almost
forgot the application code, which could include client-side, web, app, and data-
base code. The application may hook into the phone system or offer a live-chat
feature, all impacting experience and performance, good or bad.

During a recent client engagement—a disaster recovery exercise—dependencies
continued to be revealed during the exercise, even after months of preparation
with application, infrastructure, and architecture teams. Systems are complex,
uniquely built, and supported by silo-ed teams, making sure that no one fully
grasps the environment. Plan, build, run organizations divide work, which impedes
understanding. People designing the system likely never see the end product or
may not recognize the end solution. Application builds require thought continuity,
ensuring that design drives the build and the build runs sustainably.

DevOps marries a plethora of skilled engineers into a team that together
knows every piece and part of the system, all reinforced by cross-working born
from skill overlap. Extreme programming generates code faster and cleaner
by using two developers working in tandem and providing each other with
ideas, syntax checks, and alternative coding techniques from past experiences.

Chapter 7 | Measuring DBA Inputs to End-User
 Experience and Business Value

DevOps, DBAs, and DBaaS 91

DevOps team blending provides comparable wins, reinforced through team
knowledge sharing, and transference to new team members when needed.
Single point-of-failure staffers are detrimental to organizational resiliency, yet
they exist more than is admitted. When projects have to pause because an
engineer leaves the company, it indicates that knowledge gaps exist relative to
the application or technology served by the lost team member.

“See” the Application Ecosystem
Reviewing an application architecture or infrastructure diagram, such as the
one shown in Figure 7-1, and intending to identify every technology involved
and the contribution of each to response time can be telling and challenging.

Although a senior IT engineer friend of mine does a great job keeping the
(scrubbed by author) document updated, when she shares the diagram, she
still deliberately qualifies that the architecture shows the known environment
because she has been enlightened to many additional puzzle pieces during
overnight triage calls. She expects additional findings.

Figure 7-1. Core application with extensive integration dependencies

92

Too many of us have experienced long triage calls in which everything seems
to be okay, but the system is failing. Then a voice interrupts the call, saying,
“You know, about 3 years ago we implemented code that was supposed to
send e-mail to people, but it never worked. But we left the code in place
because the failure occurred very quickly and did not impact the users.” After
a few more hours of investigation, it is determined that the e-mail server the
“broken” code was reaching out to had been shut down in preparation for
decommissioning. The result: the failing code that had been able to reach and
fail in 20 milliseconds extended to 2 minutes when the e-mail server was
downed—the 2-minute mark was a timeout that was reached.

Real-time Application Monitoring
Match what was learned about the ecosystem with real-time data from an
APM tool or a combination of network packet captures, application logs, and
database traces, and the intricate details start being exposed. If you have ever
wondered why “the application is slow” triages take time, the answer lies
in finding the performance outlier (or outliers) across a complex environ-
ment that accounts for the time causing the degradation. Server or database
crashes, down network segments, or failed authentication servers do not
require 40-person triage calls. Properly positioned monitoring, logging, and
synthetic transactions ease and shorten triage time, yet still retard achieving
optimal performance, availability, and reliability.

Metrics must be defined thoroughly and explicitly, including start and finish
points. Define this SLA statement: “Every database transaction must complete
in less than .5 seconds.” DBAs might reason that the database must complete
each call in one-half second, the start time is when the call gets to the data-
base, and the stop time is when the result set exits the database. A call center
associate likely expects the half second to cover the time starting with Submit
until the screen refresh. Definitive verbiage rectifies this disparity.

Measures that Matter
Submit to screen refresh that is broken down by transaction function or type
demonstrates the end-user perspective. This data gathering could be done
with a stopwatch, but additional accuracy is gained with browser metrics or
proxy tool metrics, as explained in Chapter 6.

Knowing the total average time for different transactions starts the metrics
communications and trending processes. Discerning where each time seg-
ment—milliseconds to minutes—specifically occurs divides the transaction
into investigable pieces (see Figure 7-2) that equal the total transaction time
when summed.

Chapter 7 | Measuring DBA Inputs to End-User
 Experience and Business Value

http://dx.doi.org/10.1007/978-1-4842-2208-9_6

DevOps, DBAs, and DBaaS 93

Once the transaction has been divided, look for low-hanging fruit, such as a
5-second slot from when the transaction enters the database server until it
departs the database server. Five seconds is a significant chunk of time on a data-
base server, especially if it represents the majority of the total transaction time.

Further measures are needed to determine how the 5 seconds accumulates
on the server. Once on the server, determining database time is key. If the
database time represents most of the 5 seconds, more digging should lead to
an outlier: long storage read time, a full scan of an object that needs an index,
an implicit data conversion, or a bad execution plan.

Correcting the slowness and reducing the 5 seconds to .5 seconds is a win
that senior management needs to hear about to know that the DevOps team
makes a difference for the customer and company.

Pivoting from triage impact to DevOps impact calls for a perspective change.
As DBAs get closer to the design phase, opportunities to prevent issues and
to instill best practices are presented. As mentioned in Chapter 2, some DBAs
historically have made the effort to find out what changes or new functionality
are in the software build pipeline. If the DevOps team includes this DBA type,
the pivot is not of concern. For DBAs that, by choice or organizational culture,
do not become aware of changes until it is really too late to alter the design,
this pivot is essential.

DevOps’ mandate to not allow failures to progress, including performance non-
conformers, swings the problem finding and resolution efforts away from produc-
tion. Being okay with a few functional tests, a small regression, and no stress or
load testing is no longer an acceptable practice. When reading or discussing Agile,
you see that the code first, build test sequence is reversed. Building a test to vali-
date that the business function requirement is met before coding is a common
recommendation. Additionally, a slew of other automated tests should be used to
basically ensure that no defect could ever occur. If a defect ever does make it into
production, tests are built immediately to stop reoccurrence and are applied to as
many other products as possible. Shared learning across products is encouraged.

Think about the pivot as moving all the effort used to triage problems in produc-
tion to proactively preventing problems from being released into production.

Figure 7-2. Simple transaction time breakdown across the infrastructure

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2208-9_2
http://www.allitebooks.org

94

Optimal
Supply chains, manufacturing processes, and end-to-end application transac-
tions all have optimal timings. Optimal, defined as the fastest sustainable run
time, scores high points on the efficiency scale. A knowledge of the capability
of each component involved in the process aligns expectations. A five-step
manufacturing process involving machines with different throughputs cannot
be expected to produce products based on the machine with the highest
throughput rating. Figure 7-3 displays five “machines” operating sequentially
with defined maximum throughput ratings.

As shown in Figure 7-3, the maximum throughput for the 5-step process is
800 units per hour, the rating of machine 1. The other four machines have to
be dialed back to not to starve for work. The maximum rate, although achiev-
able, is usually not the sustainable rate. If 700 units per hour for machine 1 is
the recommended rate (100 less than maximum), the productivity loss on the
other four machines is significant. If sales are good and there is a demand for
more product more quickly, replacing machine 1 with a machine capable of
1,000 units per hour makes sense. To go higher than 1,000 units per hour is
not warranted because machines 2 and 5 cannot support the higher output
level. The new sustainable rate of 900 units per hour boosts production by
more than 25%. To go higher, the three 1,000-units-per-hour machines would
have to be replaced with 1,200-units-per-hour machines, upping the output to
1,100 units per hour.

Figure 7-3. Manufacturing process example

Chapter 7 | Measuring DBA Inputs to End-User
 Experience and Business Value

DevOps, DBAs, and DBaaS 95

Cumulative Degradation
Table 1-1 in Chapter 1 showed the impact of cumulative degradation. Using
that data, investments to improve app server and database availability should
provide the highest ROI. For instance, Table 7-1 shows the app server and
database being improved to 99%, bringing the customer experience to 96.23%.

Jumping from 92.41% to 96.23% should reduce the number of complaints
received. Incremental improvements moving the needle from the middle
90s to the high 90s are reasonable investments; moving beyond 99% gets
extremely pricey.

Optimal processing may be a percentage of the lowest throughput value because
feeding and caring can reduce total throughput. Optimization stems from long
run times interrupted only for required maintenance. For instance, a drink can–
filling operation is optimized when cans are filled constantly from line startup,
after the last cleaning or maintenance, until the line must be shut down for
the next cleaning or maintenance. Short-run products must provide a margin
high enough to cover the indirect costs of line changes, cleaning, and missed
opportunity for other products. One client could run several products flat out
for days, stopping only for mandated cleaning or product exhaustion. Inversely,
the client would also stop long product runs for short-run stock keeping units
(SKUs). Not only did the short runs stop efficient product runs but they also
required 8 hours of line change work and cleaning before and after. The product
sold at a premium, which covered the direct costs of materials and production
expenses, but with the 16 hours of cutover labor and lost productivity—16
hours of no product being produced on that line—the product was being sold
at a net loss. Companies sell products at a loss to gain good will, new customers,
and for other strategic reasons, but without these possibilities, losing money on
a product must end. The client stopped producing the short-run product on
demand, choosing to limit production to longer runs with associated marketing
campaigns to increase customer desire for the “special run” product.

Table 7-1. Cumulative Degradation After Investment

Component Success %

Network 99.9%

Web Server 99.7%

App Server 99%

Database 99%

App Server 99%

Web Server 99.7%

Network 99.9%

Customer Experience: 96.23%

http://dx.doi.org/10.1007/978-1-4842-2208-9_1

96

Application throughput also has a calculable minimal processing time. Each
hop across the infrastructure adds time; ignoring that truth does not mitigate
the performance impact. Balancing architecture design to performance impact
challenges everyone; being aware of the need to do so is a head start. Public
DBaaS solutions come with inherent network latency, making application tier
placement a critical decision because most multitier solutions transport more
data between the database and app tier (in contrast with all other infrastruc-
ture hops).

Network latency must be applied to each packet. For a 20-millisecond net-
work hop, 5 network packets containing database data would transfer in 100
milliseconds. Many database payloads require more than five packets. The
amount of data being transferred directly impacts transaction duration.

Simply Overlooked
When complexity is an understated description of the application ecosystem,
foundational or simple troubleshooting techniques are overlooked in lieu of
the search for complicated problems or a reaction to past events directing
where to seek fault.

A few years ago, when I was working as an Oracle DBA, an application slow-
ness issue showed up: the application users were complaining about screen
changes consistently taking 5 to 6 seconds. Of course, the database was the
initial suspect, but fortunately it was easy enough to prove that the database
was responding very quickly and that the performance trends had not spiked
or dropped. The business had taken action with notable adverse consequences.
First, they told the call center associates to track call details in Word when
speaking with customers. Once finished with the call, the associates were to
make themselves unavailable for calls long enough to enter the data into the
application. From the customer’s perspective, calls took about the same time
as before the slowness was introduced. From a productivity perspective, it
was unfortunate. Not only was it slow entering that data into the application
but the impact also now included recording the details in Word—a double
whammy!

In the end, the root cause was a 500-millisecond delay at the app server’s
network interface card (NIC). Five to 6 seconds of delays required only 10–12
packets to process through the NIC. By simply pinging the loopback address
(127.0.0.1) and then the router to corroborate the timing (it was hard to
believe), the problem was discovered. Aligned to an initiative to move from
physical to virtual servers, an engineer performed a physical-to-virtual (P2V)
migration that resolved the problem. Never forget the simple.

Chapter 7 | Measuring DBA Inputs to End-User
 Experience and Business Value

DevOps, DBAs, and DBaaS 97

RRPs/IRP
Rapid response plans (RRPs) and/or incident response plans (IRPs) are great
troubleshooting process documents. The idea is for each team in a silo-ed
IT shop or for the DevOps team to be able to access infrastructure health
rapidly—15 to 20 minutes, tops. Whether executed manually, with automa-
tion, or in a combination, the purpose was to isolate root cause or eliminate
95% or more of the infrastructure as not being contributors to the problem.
Extensive monitoring and APM tools reduce the effort and bring a proactive
posture to operations.

Preplanning how to respond to failures or performance degradations mini-
mizes triage time, increasing system availability. All the effort and people-hour
costs to build RRPs or IRPs pay for themselves after just a few calls that last
one-half or one-quarter of the time of earlier average triage call durations.

The Fix Should Not Cost More Than the Problem
Network packet size can be modified to reduce the total packets needed,
but that leads to other concerns that may create unmanageable maintenance
tasks. Unless you are working with a private network link that is specific
to multidatabase replication, network packet size changes offer little benefit.
Having to invest more time and effort to maintain the fix when it “costs” more
than the problem does not compute. (For example, do you really think the
U.S. Internal Revenue System [IRS] collects enough money from chasing down
and fining tax evaders to pay for its operation?)

Refrain from adding complexity or maintenance overhead without a strong
justification or easily quantifiable returns.

Pragmatic
Understanding optimal rates leads to real-world, or pragmatic, rates. Machines
may initially run at an optimal rate, but inefficiencies creep in as time passes
and diminish the rate very unnoticeably. This reality also affects applications
and infrastructure: bloated code, a less selective SQL where clause, an extra
network hop, server security scans, and dozens if not hundreds of other
opportunities allow performance to dwindle from optimal to acceptable to
customer-irritating.

98

The other side of the coin is the bad start that needs to be brought up to
optimal before falling off slowly over time. I was helping a client with a perfor-
mance problem after an 8TB Oracle database was replatformed. Prior to the
replatforming, I had often helped the client tune the database, which had been
running at a very acceptable pace. Oracle support was also involved in the
triage. I have forgotten exactly what the Oracle engineer found that headed
us toward resolution, but the bottom line was that new servers had a new
Oracle software install that included minimal database configuration informa-
tion. The configuration file (spfile/init) had been updated to show the
correct database name, and other parameters to coincide with the existing
database. What was missed were all the tuning-related parameters that had
been adjusted to maintain performance. After an outage or two, the param-
eter settings from the configuration file still on the old database server were
implemented, restoring performance to expectations.

Proximity Matters
Strict data movement design principles affect infrastructure strategy. Large
data sets that travel long distances degrade performance, causing customer
frustration. DBAs, developers, and DevOps teams have learned that applica-
tions running on application servers in close proximity to the source data-
base outperform applications with greater distance between the database and
application servers. Once the data volume is decreased—when a large data
set is reduced to the minimally needed data for presentation to the cus-
tomer—distance matters less. Proximity does matter; keeping that in mind
serves the organization well.

A discussion that starts with the primary areas that DBAs control or have a
high degree of influence upon (the database, OS, storage system, and applica-
tion code) seems reasonable at this juncture.

Direct DBA Impact
DBAs are usually well versed in technologies that are tightly knitted to the
database. For instance, a DBA may have more experience with UNIX kernel
changes than a SA who has little experience managing database host sys-
tems. DBAs also find themselves defending the database because many people
who report application problems like to call out database failures or slow-
ness without evidence. After ensuring that the database is operating properly,
DBAs, particularly those on DevOps teams, should continue to help trouble-
shoot the problem to make sure the database does not get a bad rap.

Chapter 7 | Measuring DBA Inputs to End-User
 Experience and Business Value

DevOps, DBAs, and DBaaS 99

Database
Fast and reliable data delivery, combined with fast and secure data storage,
obviously rank high on DBAs’ top ten critical deliverables, whether internally
hosted or externally hosted as a DBaaS solution. Specific controls pose a
challenge. Internally hosted databases can be manipulated and tuned by using
all available configuration parameters; DBaaS offerings include the ability to
increase compute power, expand memory, and grow storage while enforcing
restrictions that increase maintenance efforts and/or introduce risk that could
impact other hosted customers. The level of configuration and tuning might
vary, but expecting total control leads to disillusionment.

One of the most painstaking and often difficult problems to isolate and resolve
is transaction locking. As data is changed, there is the chance that another
process needs that data but cannot be granted access until the process that
changed the data performs a commit. There can be several reasons for the
delay between the data change and the transaction commit: the application
code might have overlooked the need to commit before performing the next
actions or the commit itself could be slow due to a foreign key constraint
check in which the index is missing on the key column.

Locking can cause what appears to be a slowness issue; in reality, however,
transactions that need the data have stopped processing. As the number of
processes that need the data stack up, it becomes increasingly difficult to
pinpoint the lock-holding process. As teams work through the problem by
fixing code or implementing indexes on foreign keys, problem reports and
other performance impacts should decrease, providing another opportunity
to share the positive impact with leaders.

Operating System
Database performance and stability depend mightily on the underlying OS
configuration and tuning. As mentioned earlier, out-of-the-box installs seem
to fit smaller capacity loads. Scaling up the OS to support an e-commerce
database load necessitates forethought and experience. DBAs reaching out to
the cloud realize that scale can be addressed with virtual hosts and can use
the opportunity to distribute load and manage capacity globally.

OS tuning in the cloud depends on the offering. IaaS solutions grant agility in
OS building because you control the virtual OS and hosted applications or
databases. PaaS solutions offer prebuilt OS flavors on which DBAs construct
databases. DBaaS presents predefined database configurations for selection,
which makes maintaining abstraction from the application necessary.

100

DBAs who consider these solutions to drive end-user experience improve-
ments can moreover strengthen application resiliency and load distribution.
Alternative database solutions, whether relational, flat file, network, indexed,
key-value, or blockchain all require diligent analysis and piloting. Being able to
construct and deconstruct virtually hosted databases brings about improved
decisions based on data-backed results. Organizational inefficiencies that
result in server builds taking weeks are impairments to progress.

DevOps team members should be able to interrogate the OS processing to
determine what may be contributing to slowness. Tracing a sessions process
reveals read and write calls, but can also identify latency caused by a shortage
of semaphores. A lot can be learned by tracing process IDs, a learning task that
can be done before a situation requires interrogation in real-time.

For best performance, the Oracle System Global Area (SGA) should consume
a single memory segment. Using the interprocess communication facility com-
mand ‘ipcs’ with different flags details memory allocations, message queues,
semaphores, and more.

Make sure you and the SA coordinate all changes to the database host.

Storage System
Highly redundant storage is now the expectation rather than an upgrade
choice. Enterprise data not only performs within a transactional context but
also drives customer–driven business decisions. Understanding customer
behavior well enough to adjust product offerings, cross-sell, or offer “bolt-on”
products for additional sales comes from data analytics.

DBAs act as guardians of the data to ensure availability and security. Data
encryption is necessary not only to meet various governance requirements
(PCI-DSS, HIPAA, Sarbanes-Oxley) but also to guard the company’s reputa-
tion against data breaches and theft.

Storage systems with hardware encryption supply exceptional performance
with little overhead. Leveraging proven vendor solutions takes storage off the
table as a major concern because even basic storage arrays fit database read and
write demands. High-end vendor solutions with multipathed, switched, fiber-
connected solid-state drives (SSDs) or cache fronted mechanical drives offer
read times that fit enterprise database prerequisites. Specialized databases that
support financial exchanges or telecommunications move data into memory
for nanosecond response times, subjugating storage to recording changes that
are then immediately updated to memory for near-instantaneous access.

Chapter 7 | Measuring DBA Inputs to End-User
 Experience and Business Value

DevOps, DBAs, and DBaaS 101

Measuring and communicating storage system value can be as simple as track-
ing a 30% response time reduction after increasing memory or adding an
index and then sharing that information up the food chain. Contradictorily,
millisecond improvements are harder for people to understand. “Oh wow,
you decreased physical read time by a whole millisecond; aren’t you special.”
Demonstrating that win demands context: 1 billion reads multiplied by 1 mil-
lisecond equals 1 million seconds or 16,666.66 minutes of reduced read time.
Reducing read time from 6 milliseconds to 4 milliseconds is a 33% percent
decrease. Framing milliseconds saved as a decrease percentage helps tell the
story. Faster reads translate into more reads per time interval, which is an
inverse correlation between the two measures (see Figure 7-4).

Transaction durations decline and customer experience improves, benefiting
from the load shift. Reports, analytics, and batch job run times should also
shrink noticeably.

Although a millisecond is an eye blink for humans, it is a significant processing
window for a computer

Application Code
Programmers work toward the primary objective of meeting the required
data result that matches the business requirement. Performance and efficiency
may not be considered initially—unless it is a DevOps team, of course. DBAs
who spend time advocating for more selective query predicates and strategic
data use can transform developer behavior toward mitigating performance
degradation and other less-optimal practices.

Figure 7-4. Read time reduction increases reads per second

102

Result Set
Too often, the data volume returned from a database query exceeds what is
needed or should be managed. An application populating a pull-down window
holding 5 selections has no need to return 1,000 rows from the database.
Maintaining reasonable result sets minimizes compute, memory, storage, and
network bandwidth waste.

Minimal Data Touch
Unnecessary data access wastes resources. A query selecting 1 million rows
or documents when 10 are needed generates overhead detrimental to per-
formance, not only for the calling query but also for all other work occur-
ring in the database. DBAs can help developers construct code that reduces
data access, thus improving performance. Where possible, imposing limita-
tions on CPU and memory consumption by process or account can protect
against runaway or inefficient code. Preventing “abuse” improves resiliency by
mitigating system-wide impacts. Drawing on experience, DBAs can calibrate
database and session controls to smooth database load and to thwart harm-
ful resource spikes. NASCAR drivers are not constantly stomping the gas
pedal and crushing the brake pedal to win races; instead, drivers maintain
velocity and momentum at the highest speed possible to generate smooth,
consistently fast laps. DBAs skilled in load management delve into operational
processes to optimize resource consumption, dealing the same winning hand.

Code Reuse
Database optimizers make use of already loaded execution plans for matching
statements to improve execution times and minimize cached SQL. Oracle cre-
ates a hash value for each SQL statement. It checks for that exact hash value
in the library cache (LC). If the hash exists in the LC, Oracle uses the stored
execution plan to execute the SQL. If the hash does not exist in the LC, the
optimizer considers multiple execution plans by using different indexes, joins,
and more to come up with the “best” plan, which takes time. This overhead
measures in nanoseconds or very low milliseconds, a drop of water in the
ocean of execution time. The multiplication factor for producing the hash and
execution plan unnecessarily consumes CPU.

For example, consider these statements, hash values, and timings as a sequence
of events:

Chapter 7 | Measuring DBA Inputs to End-User
 Experience and Business Value

DevOps, DBAs, and DBaaS 103

Library cache (LC) empty.

 1. select EMP_name from emp; hash 13579 1ms added to
LC

 2. select EMP_name from emp; hash 24680 1ms added to
LC

 3. select EMP_name from emp; hash 13579 70ns found in
LC

The third SQL statement exactly matches statement 1, so the library LC
already has the execution plan, and the time is reduced to 70 nanoseconds.

When it makes sense, using syntax-equivalent statements repeatedly means less
database engine work (staying with the Oracle example). Oracle has bind vari-
ables that stand in for the actual value to maintain the same hash value, making
it highly likely to find the execution plan in the LC. No matter the database ven-
dor or technology, when SQL statements are understood, DBAs, developers,
and DevOps engineers can reduce system load and improve response times.

Peripheral DBA Influence
Trusted and involved DBAs get invited to more nondatabase discussions 1) to
make sure decisions and technologies do not harm the database environment;
2) as technical pros capable of assessing technologies and platforms; and 3) to
influence others. DBAs may not be able to make the adjustments, but they can
surely influence decisions and direction.

DBAs bridge the divide between development, infrastructure, and operations
better than most IT roles. Knowing how to trace and improve code; being
capable of defining infrastructure; and understanding load management, per-
formance tuning, security, and recoverability formulate a technical resource
that is capable of adding tremendous value to most strategic and tactical deci-
sions. That value has been overlooked by DevOps until now.

Network
DBAs who are satisfied that the database is up and running without giving
thought to the customer experience or end-to-end transactional performance
may struggle integrating with a DevOps team. Being a DevOps team member
means that DBAs accept responsibility for all aspects of product delivery,
making singularly focused DBAs a hindrance to DevOps teams. Expanding
contribution to solve system-wide problems, a DBA injects another perspec-
tive and set of experiences on which the team can capitalize.

104

Network influence on data delivery tops the charts of latency introducers.
Each hop represents additional latency, continuously building as distance
expands. Using the techniques described in Chapter 6, DBAs can dig deeply
to mine the gold nuggets of improved performance. Partnering and building
rapport with network engineers to collaborate in solving stability or perfor-
mance challenges provides another channel to communicate wins.

End-User Devices
The type and suitability of end-user devices swings high to “gamer” PCs, smart-
watches, and other Internet of Things (IoT) devices, making design decisions
lean toward executing processes at the seat of power (i.e., processing power).
Expecting to create an excellent customer experience with code executing
on less-CPU-capable end devices does not make sense. Limiting data manage-
ment and processing on the end-user device cuts to the bone, leaving only
presentation concerns.

If end-user devices need to manage data infeed and code processing, keep
expectations low by striving to keep processing close to the back end. As
mentioned previously, tuning network packet size usually creates a mainte-
nance headache with little return, so use it sparingly.

Abstracting the presentation layer from the code makes it easier to deliver
information to end points. Having to create and maintain code for a multi-
tude of device OSs and platforms becomes increasingly cost prohibitive as the
number of versions increase.

Capacity
Beyond the operational aspects of database management, DBAs provide input
concerning database growth based on business estimates. Although initial
scope may be limited to storage and compute adjustments, DBAs must insist
that other capacity considerations be assessed.

As storage increases, backups take longer and consume more storage media.
If the database is being replicated to another site, the data volume increase
consumes more replication circuit bandwidth and end-point storage.

An increase in users and or sessions may need to be offset with additional
server memory and CPU to maintain acceptable or SLA–defined response
times. Internal customers may be connected via terminal services that may
respond more slowly under additional load, causing people to assume data-
base slowness. DBAs who proactively address capacity holistically might save
themselves from future headaches.

Chapter 7 | Measuring DBA Inputs to End-User
 Experience and Business Value

http://dx.doi.org/10.1007/978-1-4842-2208-9_6

DevOps, DBAs, and DBaaS 105

Recoverability
Database growth combined with increased user count means frequent recov-
erability reassessments. The database may now support an application con-
sidered critical, requiring a different recovery time objective (RTO). Reducing
the application RTO means that the database recovery strategy may need to
change. Asking “How should the database be backed up?” is the wrong ques-
tion. Instead, ask this: “My database recovery requirement is N hours/days;
how can that be done?” Recovery requirements drive backup solutions.

A database that previously backed up to tape in 8 hours may need to be
backed up to virtual tape (disk) or disk storage that takes 1 hour, which means
that the recovery time has been reduced from a minimum of 8 hours to about
1 hour. An application RTO of 24 hours does not mean that DBAs have 24
hours to recover the database. The database recovery must complete with
enough time remaining for the application, services, and checkouts to occur
before allowing full access for business operations.

A recovery point objective (RPO) sets expectations for acceptable data loss.
For example, the business may request data loss to be less than 4 hours: RPO
< 4 hours. DBAs can shrink the data loss with proper transaction logging and
archiving.

DRaaS
Disaster Recovery as a Service (DRaaS) is an infant in the “as a service” world.
It promises to reduce costs and complexity, so it will be exciting to watch this
technology mature. Imagine not having to purchase and maintain duplicate
data centers and equipment. DevOps teams need to track the growth and
opportunity trajectories of this service.

Bringing It All Together
Plenty of value-adding opportunities exist, according to DevOps DBAs who
have had opportunities to contribute beyond the general care and feeding of
the database. Striving relentlessly to iteratively refine the application ecosys-
tem while implementing database enhancements creates documentable case
studies and fantastic “war story” material to share with leaders, team mem-
bers, and peers.

106

Being able to communicate effectively to CIOs, CFOs, and other chiefs
involves discerning which buttons to push for each. CFOs like to hear about
cost decreases or revenue generation, but they could also be sponsoring a
process improvement initiative to push new software features to customers
more quickly. In that case, work done to reduce cycle time, incorporate data-
base changes into the Agile pipeline, or remove wasted steps from the process
gives the CFO great story material to share with customers.

Summary
Each of the touchpoints mentioned in this chapter generates detailed statis-
tics that can be captured before and after problem events, changes, or proac-
tive tuning of the database and supporting infrastructure. Massage the data for
easy reading and clear communication of the facts to prove the team’s worth.

DBAs who actively broaden their technical skill sets eventually and effectively
transform the application and infrastructure landscape, within the context of
DevOps, to improve performance, slim down processes, and improve cus-
tomer experience.

Do not just solve technical problems or make technology work better; trans-
late technical outcomes that can be advertised as solutions to business chal-
lenges that improved the organization and/or positively impacted people.

Chapter 7 | Measuring DBA Inputs to End-User
 Experience and Business Value

© Michael S. Cuppett 2016
M. S. Cuppett, DevOps, DBAs, and DBaaS, DOI 10.1007/978-1-4842-2208-9_8

C H A P T E R

Automation and
Code Control
DevOps is drawing a line in the sand: it is taking a stand for software product
delivery excellence. As agile teams produce less-defective code more quickly,
DevOps teams need to solidify the infrastructure foundation supporting the
application. Both pieces are required to deliver software superbly and (more
importantly) gain customer confidence in an organization’s capability to oper-
ate well.

Customers and internal business teams demand and deserve applications
that are available, reliable, fast, secure, and functionally precise, but also deliv-
ered nearly on demand. For decades, too many opportunities were missed or
delayed because IT delivered software more slowly than the business need
required. DevOps, along with Agile, refactors the software delivery process
specifically to deliver faster, more accurately, and more highly resilient.

Company leaders need to see that technology investments are doing things
to benefit the company. Revenue growth, a new sales channel, and reduced
“lights-on” data center costs represent the tip of the iceberg of which the
technology organization can gauge success. Automation accelerates product
delivery, and code control reduces change coordination chaos while providing
a recovery path.

8

Chapter 8 | Automation and Code Control108

Craftsmanship
IT teams, whether marching as DevOps, plan, build, run, or technology-divided
soldiers, understand that the mission of delivering software requires more
than brute force implementations; instead, it is what one CIO calls it: “crafts-
manship.” The product quality difference between a metal works craftsman,
or “Meister,” and me wielding a 4-pound hammer and a few wrought iron
bars does not require a rocket scientist to see. Yet “acceptable” has been the
software building bar height for too long (decades) across the industry. Setting
the bar much higher to rate software as “excellent” challenges project, devel-
opment, testing, validation, and implementation methods, and also people’s
tried-and-true abilities.

As the culture and organization shift gears and accelerate, the goal is to com-
plete software delivery without losing control and crashing head-on into a
wall. Two mechanisms contributing directly to software delivery excellence
are automation and code control. Ironically, they have existed for decades, yet
are now being releveraged to push a change within companies and across the
IT industry.

Human versus Computer
The human element introduces much of the imbalance (risk) that wreaks
havoc on software delivery, especially when code release frequency slams into
operational control. Two human perspectives—developers delivering code
and operations teams protecting the ecosystem—tend to ignite all-night
firefighting.

As mentioned in an earlier chapter, computers were first used to automate
repetitive and mundane tasks, yet today many steps in the code build, test,
release, deploy, operate, and support value stream are completed manually.
DBAs may script a set of commands to keep from having to be command-
line commandos during the release, but the overall process is very choppy
and inefficient. And that DBA script is not likely to be in the source code
repository.

Computers can repeat tasks repetitively and without errors far faster than
humans, so it is surprising how often humans choose to repeat tasks. Changes
moving from development to production include intermediate environments,
sometimes requiring the change to be executed a handful or more times.
Each manual change introduces the risk of a mistake, especially when the time
elapsed since the last change is long enough to make recall fuzzy. Whether
a step is overlooked or a few steps are completed in a different order, the
environment may be different, and for sure the release process changed.
Automating and validating the process removes the risk and improves execu-
tion time.

DevOps, DBAs, and DBaaS 109

Getting Lean
DevOps, which derives many of its principles from lean manufacturing quality
programs, rests a chunk of its success on eliminating waste (any task that does
not create value) and shrinking cycle time. Figure 8-1 provides an example in
which waste—extensive design, elaborate project management, and hardware
acquisition on the front end and long documentation creation and release
management on the back end—do not add enough value to the actual soft-
ware development process, measured as cycle time, to justify the added time
and cost.

In contrast, DevOps shrinks the no value-add work to bare bones by hav-
ing capacity in place to spin up virtual servers quickly, accepting the agile
idea of frequent small releases that require much less release and operational
readiness, and choosing to produce working software over documentation.
Figure 8-2 reveals the leaner model.

As agile development practices continue to expand globally throughout the
industry, Operations potentially becomes the bottleneck, which is never a

Figure 8-1. Example of no value-add work surrounding the development cycle

Figure 8-2. Example of a lean delivery schedule in which the actual work, cycle time,
accounts for most of the time

Chapter 8 | Automation and Code Control110

good reputation characteristic. Rising DevOps acceptance and matura-
tion affords a systemic approach to operational efficiency and process lean-
ing, making Operations a facilitator of fantastic software delivery. Iterative
improvements of operational processes bring the same value model as itera-
tive software releases.

Conflicting Interests
Developers want to get new products, enhancements, and bug fixes through
the pipeline quickly because they are incentivized to complete projects on
time, budget, and schedule. Operations, including DBAs, want to preserve
control, if for no other reason than not wanting to be on the phone over-
night or all weekend, explaining why the company’s most critical application is
metaphorically a smoking heap of elephant dung. Control—change control or
change management—provides the perception of stabilization or risk reduc-
tion while deceiving us all because most of us have experienced the opposite
effect. Even with extra prerelease diligence performed, large releases still rat-
tle business operations when the code “rubber” meets the production “road.”

DBAs embracing DevOps have the occasion and obligation to offer better
and faster ways to make and process database changes. When the SDLC road
trip has to divert onto an old country road to pick up schema changes, only
to backtrack down that same old country road, inefficiency (read that as time
lost) breeds. DevOps tools facilitate schema change automation that can be
inducted into the automated change management process. Being confident in
the automated build process allows DBAs to deliver consistent deployments
while staying aligned with the progressing code necessitating the database
change.

Automation Benefits
Benefits stack up quickly with automation incorporation: shortening the soft-
ware release cycle, reducing defects, integration evidence, exhaustive test-
ing, repeatability, auditability, performance scrutiny, and documented results.
DevOps DBAs produce value and reduce effort through automation.

I remember one Oracle shop in which a DBA would manually check all the
production databases every day. The process took 4 to 5 hours every work-
day. A new DBA joined the team, and, as the newbie, was given the honor
of taking over the daily checks. Day 1: the newbie watched the DBA most
recently charged with performing the check complete the checks. Day 2:
manually completed the checks with oversight from the other DBA. Day 3:
manually performed the checks and built scripts to automate the checks. Day
4: ran the scripts and double-checked the results manually. Once verified, the

DevOps, DBAs, and DBaaS 111

DBA scheduled the checks to execute the next morning, with the outcomes
e-mailed to the DBA team and director. Day 5: the DBA read the e-mail and
was recognized by the director for being “innovative.” That sounds like a great
first week!

Release Cycle Shrink
Retail shrink usually means that employees and/or customers are stealing
from a store. This kind of shrink is bad. Reducing the period of time needed
to code, promote, test, and validate included infrastructure and application
changes that are needed to ready the next release by “stealing” back time—
time available but not leveraged—helps shrink the duration needed for each
release. There are at least three “times” that need to be refactored.

Testing
Do not do it . . . manually. Developers produce abundant amounts of usable
(bug-free) code if they are allowed to focus. Unfortunately, developer effi-
ciency degrades when testing, documentation, project scheduling, and meet-
ings divert time and energy. DBAs incur these same distractors, plus they
spend time doing operational support. The easiest distraction to gain back
time for punching code comes from minimizing manual testing. DBAs have the
same opportunity to achieve maximum output over time. DBAs who assert
themselves as DevOps team members need to start thinking like developers
for database changes.

You should understand that Agile development practices include guidelines
to reduce meeting duration while increasing communication. Agile frame-
works Scrum, Kanban, and XP (Extreme Programming) focus developer effort
on producing code. The Agile Manifesto (http://agilemanifesto.org)
includes “Working software over comprehensive documentation”1 as a value
statement. Further, the manifesto states one of its 12 principles as “Working
software is the primary measure of progress.”2

Testing beyond compile and simple function execution belongs in the automa-
tion realm. Leveraging virtualization automation enables DBAs to recur test-
ing until an acceptable product persists. Spinning up a database server from
an infrastructure as code template, replicating the current production foot-
print to which proposed database schema changes, performing tuning tweaks,
or applying and testing access privilege grants are doing DevOps. First-time
execution may reveal object invalidations triggered by the schema change due

1http://agilemanifesto.org
2http://agilemanifesto.org/principles.html

http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/principles.html

Chapter 8 | Automation and Code Control112

to dependency references. Changing a table column referenced by an index
that uses that table column may cause the index to be invalidated. The index
fix has to be incorporated into the schema change code. Testing the data-
base changes until perfecting implementation eases staff deployment tensions
and mitigates change-related errors. Although this cycle seems tedious, tools
make the process easier. Anything and everything that can be automated to
excessively test builds, changes, code, configurations, or anything testable is a
win for product delivery.

As changes are checked into the repository, the CI server is ready to pounce.
The CI server may react on every change commit or be configured to run at
a scheduled time (the industry suggests at least once daily). Check-in occurs
after developers build code and run simple functional testing to prove that
the expected results did happen. The CI server has responsibility for ensur-
ing that the objects representing the delta between the previous run and the
new run are tested and proved to work as designed in the context of the
whole application in the planned infrastructure environment. Once the code
branches pass all testing, a new product version is created as the code trunk.
User acceptance testing, or product owner assessment, still plays a valuable
role in the SDLC. Here is one aspect for which iterative development helps
to ensure product success. The user interface (UI) significantly defines the
user experience (UX). You may make the best curry chicken on the planet,
but your now unhappy customer will not try it if it is served in a plastic bucket.
Poor presentation has plagued software development: your customer may
decide to not use the application, or efficiency suffers if an employee must use
the company’s application to fulfill job requirements. Overcoming this typically
late stage mess means gathering immediate feedback from the customer or
product owner early in the development process.

Iterative development includes producing an early model or prototype of the
UI. Although there might not be a single line of code behind the storefront,
the product owner still sees the interface and has the opportunity to recom-
mend moving forward, make a few adjustments, or give the team the oppor-
tunity for a “do over.” No matter the outcome, timely feedback at this point
does not result in expensive rework.

Scrum uses sprints, predetermined time allocations, to manage work demand.
Daily sprints are designed for developers to select a unit of work that can
be completed that day, making iteration a good fit. The team’s day 2 UI pre-
sentation has the benefit of the product owner’s feedback from the previous
day, which improves the UI to better imitate the requested look and feel.
Henceforth, daily refinements and cosmetic enhancements further improve
the UI. Scrum also uses sprints to define the duration for when production-
ready software can be deployed (2 weeks is a common interval). As the
2-week sprint ends, the UI is fully developed and fully vetted.

DevOps, DBAs, and DBaaS 113

Parallelism
Getting work done without actually doing the work is awesome. Granted,
you had to do something smart upfront, with repeatability as the goal. Testing
was a step traditionally performed by a QA team after the software devel-
opment completed. Two distinct phases, coding and testing, extended the
release cycle. Agile and DevOps are adamant that automated testing should
occur early in the code process. Many recommend that unit tests be created
before the code unit is written, making the programming goal meeting the
expected test results. Once the unit is written and checked in to the source
code repository, the CI process begins testing the code: testing the code inte-
grated with the rest of the programs, including checking for performance and
security gaps. This process allows people to do other work in parallel. No,
QA testers are not out of a job; instead, they focus on ensuring that defects
are discovered by creating extensive, deep-diving test code to hunt down
software flaws. The act of testing is automated, and the test creation can be
supplemented by redirected QA team members.

As DBA changes are injected into the workflow as just more code, testing
needs to broaden in scope to include the database code. DBAs and QA team
members should follow the same advice as often as feasible: build the test and
then the code. Interrogating database schema changes may include verifying
the metadata definition. Inserting or updating data in that modified column
seems to be a reasonable test. Again, test for invalidations caused by a change
to append the corrective action to the deployment script. This could be the
process flow:

 1. Capture current settings

 2. Make changes

 3. Verify changes

 4. Check for invalidations

 5. Fix invalidations

 6. Record changes for audit

 7. Recheck for invalidations

Whether the fix is a call to another script or a dynamic SQL statement build
matters not. The critical element is not leaving a broken object in place.

As people work in parallel while testing, the testing itself should also execute
in parallel. Crunching the CI cycle into the tiniest possible time slot posi-
tions testing in several ways: if a problem occurs, retesting can be completed
without interfering with post-testing efforts or running into the business day;
testing can be repeated to validate results; and additional testing can be per-
formed without extending the test window, so additional test cycles can occur.

Chapter 8 | Automation and Code Control114

Moving from once daily to twice daily testing is not possible if testing take
15 hours running serially. Many threads that run in parallel may complete the
testing in 4 hours, so testing can occur twice or even four times per day.

Not Working Does Not Mean Not Working
Just because you have finished working for the day—after checking in your
code to let the CI servers start chugging through automated testing—the
work has not finished. So making something happen during your “down” win-
dow seems like a smart way to prepare for the next day while you complete
other tasks.

Time and money are the finite resources that prevent IT shops from maintain-
ing the perfect infrastructure and delivering every value-add business request.
Managing to best outcome, effective IT leaders set priorities by giving staff the
flexibility and tools to produce the best product. That practice has become
easier as DevOps and its associated tool products have matured. DevOps
team members know that product delivery cycles must contract; DBAs have
to be able to meet the same timelines. Being able to get work done while not
actually working benefits all.

Identifying distinct units of work that can be completed automatically and
without human overwatch is not new. IT pros have for years executed back-
ups, index builds or rebuilds, ETL processes, data scrubs, and other work
during off-hours. DevOps expands the type of work that can be included. For
instance, a DBA may spend the day perfecting (or at least attempting to per-
fect) a database-provisioning process. To validate, the DBA may construct a
series of test builds scheduled to run overnight. Although the DBA is relaxing,
maybe writing a book, testing hacks, or building a gaming computer, the work
gets done, builds an audit log, and awaits review the next morning. Repeating
this cycle for a few days should be enough time to consider the build process
viable.

Not leveraging nonwork hours would be wrong, just plain wrong. DBAs tend
to never be wrong; just ask one of us! (Just a joke, my developer friends.)

Automating Out Errors
DBAs who repeatedly execute command sequences or scripts contribute to
error origin, bottlenecks, and inefficiency. Agile development accelerates the
software build process, leading to rapid code deployment readiness with proven
error reduction. If the monthly production rollout involves 15 minutes of code
errorless deployment and 6 hours of error-prone database work, DBAs surely
realize that the database deployment process expounds what “being out of kil-

DevOps, DBAs, and DBaaS 115

ter” means. Inconsistency results in problems; automation instills consistency.
Even if the automation produces the wrong outcome, it returns a consistently
incorrect outcome, which can be easily isolated and rectified.

DevOps mandates extensive testing for each element within the value propo-
sition of better software faster. Thoroughly testing each foundational applica-
tion component (program function, procedure, API, microservice, container,
database call, or audit service) represents the starting point for error elimi-
nation because an error is never allowed to progress. DevOps teams should
continuously assert the mantra “never progress errors.” As the code advances
from singular functional purpose to an integrated form, intense testing must
examine every attainable execution derivative to ensure code compatibility
and expected outcomes, without error. As code travels from the branch to
the trunk, automated regression testing provides the final vetting of the soft-
ware before it is considered release- or deployment ready, again 100% error
free. Taking advantage of every minute of the day to perform work without
your participation increases your overall effectiveness and contribution to the
organization.

Zero Defects!
DevOps shifts the “defects can be worked around” cultural acceptance to
“no bug lives past today” diligence. “Today” sounds aggressive, albeit improb-
able in infantile DevOps shops; however, team members begin to value quality
out of respect for the customer, leading to the latter mantra. As DevOps
matures in the organization, the improbable becomes routine. By not having
to plan according to a monthly release schedule, DBAs have the flexibility and
empowerment to correct defects quickly if the need arises. Remember that
excessive testing spawns flawless releases. Maintaining zero defects across the
IT supply chain challenges existing infrastructure and deployment paradigms,
making DevOps the release hero. The effort spent on prerelease testing pro-
vides a better return than the effort spent troubleshooting and determining
root cause and plausible remediation of the production system.

Broadening the concept to include the infrastructure as code is not limited
to server or database provisioning. The right devices combined with the right
tools means that load balancers can be automatically updated during rolling
releases. Moving away from sequential team efforts (team A completes task 1,
team B completes task 2, team A completes task 3, and so forth) decimates
error opportunity through excessive automation that is not used until it runs
correctly and efficiently, leaving behind a comprehensive audit trail. Not intro-
ducing errors from manual sequential change steps is a great step toward
maintaining a zero-defect posture.

Chapter 8 | Automation and Code Control116

Death by Workaround
Workarounds have a nasty habit of sticking around longer than expected,
and for sure until there is a chance to cause further disruption or grief.
Imagine “softening” application access to deliver a large-revenue customer’s
demanded application enhancement. Great, the customer is happy, so that
gets registered as a win for the team. Six months later, your company is being
sued by the same customer who blames your squishy access security for
a major data breach. Internal workarounds create similar problems, mainly
because the production workaround never gets applied to the preproduction
or development environments. New features rolling toward production then
pass all testing but fail when released. After hours of multiteam investigations,
the forgotten workaround is rediscovered as the culprit.

Platform consistency must include workarounds introduced into production.
DBAs implementing workarounds must incorporate the workaround into
the build automation to ensure consistency in the nonprod environments to
eliminate production surprises. This obligation includes positive workarounds,
such as adding an index to improve query performance. Adding an index
seems innocuous until another query that performed well in development
and testing runs ten times more slowly in production. The availability of the
workaround index caused the optimizer to select an execution plan that was
not previously obtainable.

Two equally important mandates—to drive out defects before the produc-
tion release and, when a production defect is discovered, to redirect energy
toward its elimination—amp up software quality so that customers notice,
providing you with a competitive edge through customer loyalty.

Orchestration
Evolving from automation to orchestration includes threading together indi-
vidual automations to build an efficient workflow. After meticulously building,
testing, and validating various automation packages used to construct web,
app, and database servers; test data loads; and finally verification scripts, step-
ping through a logical process makes sense. Although each automation can be
executed in isolation, the true power of automation comes from purposefully
designed workflows that meet expected build demand. A developer needing
a new application environment would appreciate and benefit from a stringed
set of automations. An easy click or two starts a cascading progression of
web, app, and database server builds; test data loading; and validation. This
list is simplistic, but the positive results are nearly unlimited. Orchestration
is illustrated by security patching and scanning; code compilation; firewall and
load balancer configurations; monitoring agent installs; synthetic transactions;
auditing log transmission; backup configuration; encryption; certificates, meta-
data loads; and everything else that needs to be built, configured, or reported

DevOps, DBAs, and DBaaS 117

combining to provide the needed infrastructure and application, which enables
further code development or production deployment.

Orchestration offers amiable outcomes. DevOps engineers produce auto-
mation designed to allow the consumer—DBA or developer—to custom-
ize changes, whether allowing the selection of different database products or
digesting a spreadsheet of access requests. Pieces from here, there, and over
there align to produce an expected product. KISS (keep it simple, stupid) bru-
tally challenges us to not do what we tend to do too often: overengineer. To
summarize Einstein, “If you can’t explain it simply, you do not understand it.”
The general challenge for IT team members is to not overcomplicate things
from a lack of understanding. Simple, elegant, and effective solutions take much
more brilliance to implement. Making it possible for DevOps team members
to hit the “easy” button to produce needed environments requires significant
behind-the-scenes orchestration, during which design and performance are
critical, complexity is unwelcomed, and the results are astonishing.

Automated testing provides a means to complete 99% of the testing needed
before product launch, leaving the final most critical 1% to be done manu-
ally: user acceptance testing or (for Agile) product owner acceptance. Sitting
down with the customer, walking through the product to determine usability,
cosmetics, workflow, understandability, and general awesomeness can be a
disillusioning experience. Many application products have died on release after
millions of dollars were invested because the product was unusable for the
customer. Iterative building, revealing, product owner feedback, and realign-
ment using agile practices intends to stop product DOA scenarios. Although
having frequent face time with the product owner to demonstrate the product
and accept feedback favors final product acceptance, surprises can happen, so
user acceptance is a critical path approval. Because of the recurrent product
display and owner feedback, user acceptance may take 15 minutes, whereas a
waterfall user acceptance test could take days or even weeks (remember that
waterfall projects are relatively larger in scope per release).

Great testing requires an aggressive posture: DevOps team members openly
challenge each other, including those who say, “My tests will crush your code!”
Keeping score can add to the friendly competiveness.

Performance
Although developers and DBAs never sit down to discuss how to introduce slow-
ness into an application environment, not proactively working to ensure that per-
formance meets expectations does not sound much different. Purposefully setting
performance expectations for code execution seems like a responsible act.

Modified code should execute at least as fast as the previous version, given that
no functional elements have been added. Based on how other code performs,
extrapolating base performance expectations is possible. For instance, if most

Chapter 8 | Automation and Code Control118

production searches, regardless of the search criteria, complete in .1 second
on average, you can state that all search code must execute and return the
result set in .1 second or less. As you mature the performance standards,
searches may get divided into search groupings: simple versus complex or
structured data versus unstructured data. As experience grows among the
team, and analytics provide undisputable evidence for performance, metrics
selection that include data inserts, updates, and deletes also needs to have
defined performance expectations. It astonishes me how many times I have
heard, “The update took only half a second.” I like to remind that person that
half a second is “like forever” in computer time. DevOps has also brought
about the mindset that not only does code (application or database) have to
produce the correct outcome; it also has to produce it without negatively
impacting performance.

Code Control
Gaining control over DBA code first requires the code to be managed like the
application code, by using a source code repository. Versioning, check-in, and
check-out provide an audit trail, making it much easier to determine when an
error was introduced, or perhaps a change proceeded or did not get applied
with the matching code change. The CI test executions should catch these
problems, allowing DBAs to adjust the code and resubmit. This additional
accountability is good for DBAs. Whether implementing infrastructure as
code for a database install or schema build, a data load for testing, or a simple
create index script, all the code needs to be pulled by version from the source
code repository for execution.

Check-in Snowballs
CI servers anxiously await source code check-ins because that is when CI
servers get to shine. Remember that everything is considered code. As DBAs,
developers and other team members commit changes to the source code
repository, the CI server goes to work by testing each autonomous code ele-
ment. If hundreds of people commit changes before the daily trunk integration,
the CI server work snowballs quickly into a significant workload. Fortunately,
the automated testing progresses proficiently through the test sequence lead-
ing to a deploy-ready state.

Continuous Delivery (CD)
DBAs participate in CD by uniting with DevOps team members to deliver
the promise of always–ready database server deployment and database appli-
cation code. Unlike developers who focus primarily on application delivery,

DevOps, DBAs, and DBaaS 119

DBAs contribute to infrastructure database builds and application elements.
DBA infrastructure as code assimilates with the OS build package to facilitate
automated database server provisioning. Additionally, DBA schema, stored
procedure, trigger, auditing, and data loading code aids application delivery.

Easy to Roll Back or Roll Over
By design, extensive CI testing should discover and report bugs. DBAs impli-
cating code defects need to resolve them quickly because it is imperative that
the application always be in a deployable state. DBAs can refer to the source
code repository to determine whether the defective code should be rolled
back to a known working version or to roll over the defective code with
a newer version. Perhaps a needed schema change was overlooked, causing
a mismatch between the database and the application code. A DBA could
quickly build a new version containing the schema change, commit into the
source code repository, and allow the CI server to execute the test sequence
again, successfully this time. DevOps truly leans toward advancing code rather
than rolling back to code that obviously needed to be replaced.

Auditable
Version control provides a very beneficial change: an audit trail. Auditing serves
many purposes, whether providing responses to external governing bodies or
internal security or audit team inquiries, the electronic paper trail tells the
necessary story. For DevOps continuous delivery, the versioning supports
the bug-free, application-readiness premise. Code failing the “shock-and-awe”
quantity of functional and regression testing demands immediate remediation.
Interrogating the code versions makes it easy to determine where the defect
was introduced.

Managing Chaos
IT shops continue to struggle managing large and complex infrastructures.
DBAs struggle with the database subset of infrastructure, not to mention the
application demand on the databases. Scale introduces variability risk. A DBA
team that manages a handful of databases may be able to manually maintain
the databases, keeping deployments consistent, and maintaining performance
and security while assuring recoverability. Amping up the number of databases
to 1,000 with few staff additions makes the scale and scope unmanageable.

Drift management software helps keep basic infrastructure configuration
inline, leaving change management to the DBAs. Determining the lowest
common denominator pertaining to database configuration becomes the

Chapter 8 | Automation and Code Control120

base build template to be applied for every build. Being confident that every
deployed database has the same attributes allows DBAs to focus elsewhere.
The next level may be scale, where a development deployment configuration
includes less compute and memory consumption. For builds, having a size
option prevents resource waste while still helping with overall environment
control. Exceptions, aka special features, become the last frontier in which
significant deployment variation can be introduced.

Minimizing database variation while empowering application and business
capabilities can be balanced. Forward-thinking and well-planned builds shrink
the scale risk by limiting the number of possible database gestations deployed.
Variable consistency seems oxymoronic; no wonder so many companies have
successfully leveraged it. Car makers have worked diligently to maintain parts
consistency—working to use the same parts in as many models as possible
while still being able to offer a variety of models to customers. Printer manu-
facturers separated power and language component from the core printer
product, making printers consistent and offering variation by customer geog-
raphy. A base printer, to which the needed power module and cord and lan-
guage set is added, can be shipped anywhere in the world, making the printer
function for the local environment. The cost savings and product maintenance
savings have validated the variable consistency idea.

Bare Bones Disaster Recovery
Having an application data backup and the source code repository means that
you can recover the environment, period. Infrastructure as code can be used to
provision host servers—anywhere you can find the resources, deployment auto-
mation can configure the application, and the data recovery completes readiness
for business operations. That is the power of Agile and DevOps pertaining to
disaster recovery. Sure, that is an unlikely recovery strategy for many organiza-
tions, but having the capability reveals program maturity. After all, fully automated
server provisioning, application code deployment, and data recovery are founda-
tional DevOps goals. This capability can also be leveraged to disperse the applica-
tion for geographical separation and multivendor cloud redundancy.

 ■ Note For context, disaster recovery pertains to the catastrophic loss of a data center requiring

production processing to be recovered at an alternate, geographically separated data center.

Disaster recovery can be done in many ways. Personally, I like the 5 Rs:

 1. Replicate: disk replication for the most critical systems

 2. Recover: secondary systems can be recovered from virtual
tape backups

DevOps, DBAs, and DBaaS 121

 3. Redirect: DRaaS makes it possible to redirect connec-
tions to the secondary system

 4. Rebuild: use infrastructure as code templates to spin up
virtual hosts

 5. Retire: it may make more sense to not invest in noncriti-
cal and/or antiquated systems recoveries

Tribal Knowledge Retained
Staff turnover happens, but when the source code repository contains all
the database-related code, you are much less likely to hear the just-hired
DBA say, “I have no idea how the previous DBA implemented that change.”
Being able to check the source code repository, change management logs, and
deployment logs provides the details needed to understand how a change was
implemented. The automation also allows code to continue progressing with-
out having to wait for the new DBA to “get up to speed.” Sure, the new DBA
needs to quickly understand the database automation and be ready to modify
the code as needed, but as DevOps preaches, no one person should be the
only resource capable of doing a specific task. Other team members should
be able to handle code modifications and even simple database changes if a
DBA is not available. Speed and control are benefits driven by excellent code-
progressing automation, not by more and more people talking about risk.

Summary
Application code, various configuration settings, database startup parameters,
test scripts, and infrastructure as a code templates are but a few of the system
elements managed in the source code repository. The CI server needs to be
able to access versions required for testing, which leads to ready-to-deliver
software.

Automation allows for more testing in less time, making it possible to execute
an ever-expanding suite of tests to truly strip the code of defects. Designing
scripts for testing, data loads, host and database builds, and app and web server
builds facilitates on-demand host builds, allowing DevOps teams to test new
coding techniques or server configurations without being penalized for tak-
ing risks. Failed attempts exist only until the host can be destroyed, soon to
be replaced by another virtual host ready for more experimentations. Teams
that are no longer bound by week- or month-long server build and database
install processes are freed up to take time to optimize host and database
configuration.

© Michael S. Cuppett 2016
M. S. Cuppett, DevOps, DBAs, and DBaaS, DOI 10.1007/978-1-4842-2208-9_9

C H A P T E R

DBaaS, IaaS,
and PaaS
Proper orientation, or level-setting ourselves, allows us to leverage the knowl-
edge foundation we already have to gain additional knowledge. Software as a
Service (SaaS) is an acknowledged winner in the “as a Service” product realm,
so let’s start there before engaging with our chapter title offerings.

SaaS
Software as a Service (SaaS) offerings have successfully penetrated organiza-
tions across industries, continuingly growing market share while embedding
the term as a Service into our language:

…worldwide SaaS and cloud software performance by vendor in 2014
and anticipated performance through 2019. The cloud software market
reached $48.8 billion in revenue in 2014, representing a 24.4% YoY
growth rate. IDC expects cloud software will grow to surpass $112.8
billion by 2019 at a compound annual growth rate (CAGR) of 18.3%.
SaaS delivery will significantly outpace traditional software product
delivery, growing nearly five times faster than the traditional software
market and becoming a significant growth driver to all functional software
markets. By 2019, the cloud software model will account for $1 of every
$4.59 spent on software.”1

9

1https://www.idc.com/getdoc.jsp?containerId=257397

https://www.idc.com/getdoc.jsp?containerId=257397

Chapter 9 | DBaaS, IaaS, and PaaS124

SaaS is simply the delivery of an application that is supported by infrastructure
(and includes a database if needed) that is offered to individuals or companies
that need the functionality of the application but do not want to develop, host,
or support the environment. I very recently watched a television advertise-
ment for Namely, a provider of human resources management software. An
e-mail was in my inbox this week from FreshBooks, a small business account-
ing software provider. The big dogs such as Microsoft, Oracle, CA, salesforce,
and more are still positioning for market dominance.

SaaS is the pinnacle of the “as a Service” offerings because the provider does
the care and feeding of the solution. You need only to connect to the provid-
er’s site, log in, and then start doing business (after you make the agreed-upon
payments, of course). SaaS offerings can scale to support large organizations
while allowing small businesses to use the same application because costs are
driven by consumption.

SaaS Ecosystem
SaaS combines the full infrastructure stack (physical hardware with compute
and memory resources, network connectivity, attached storage, OSs, database,
and a well-designed application) hosted in an industry best-in-class data cen-
ter with exceptional redundancies for power, network ingress and egress, and
environmental controls (see Figure 9-1).

The SaaS delivery model simplifies business and IT operations for companies.
To leverage SaaS, organizations need to connect to the product portal, usually
with a web browser, to begin using the application. In some cases, the com-

DevOps, DBAs, and DBaaS 125

pany may load an initial data set, possibly customer or product information.
Smartphones, tablets, or workstations connected through an Internet service
provider are easily attainable and manageable.

Businesses of all sizes can easily evolve from desktop, in-house, or commercial
off the shelf (COTS) applications, in which software installation and occasional
software upgrades are troublesome and backups are not done (or not done
properly or frequently enough), to SaaS. Relieved from the IT administrative
burden, organizations execute on strategic drivers to grow revenue and mar-
ket share. SaaS adds value such that the customer’s only concern becomes
application availability, although confident the provider has the capability to
keep the application available. SaaS offerings range from simple to complex
applications, at least from the customer’s functional capabilities perspective.
E-mail provides limited capabilities compared with a customer relationship
management (CRM) application. For the developers creating the products,
the complexity may be similar: the customer perceives the products dif-
ferently. People approach e-mail expectantly, but they may approach CRM
apprehensively.

Figure 9-1. Example of a technology stack

Chapter 9 | DBaaS, IaaS, and PaaS126

“as a Service”
Service offerings come in many flavors, each with an affinity toward specific
customers who need particular capabilities. These offerings relieve IT depart-
ments from the drudgery and costs surrounding asset procurement, installa-
tion, maintenance, and ongoing support while delivering very functional, highly
available, and well-performing environments. “as a Service” produces a strate-
gic opportunity for organizations. For example, organizations are unlikely to
invest in developing or operating a human resources, accounts payable, or pro-
curement application if they are currently searching for a solution. Software
development and hosting companies provide applications and infrastructure,
allowing organizations to pay for these applications as a service.

Executable functions common to organizations are not where companies
look for competitive advantages. Therefore, “as a Service” products are expe-
ditious and frugal selections recognized for ease of use, competitive pricing,
and corporate financial prudence. Predictable cash flow (knowing how much
is being paid monthly as opposed to large, periodic capital outlays) combined
with hands-off administration redirects staff focus and purpose to pursue stra-
tegic opportunities. IT can energize business growth, eliminate waste, manage
the value stream, and deliver on customer expectations to create competitive
advantages.

Because “as a Service” offerings are consumption based, pricing scales in cor-
relation to business growth. For instance, if your company is growing and hir-
ing more people, expect the human resources SaaS provider to increase fees
based on an agreed–upon pricing scale.

“as a Service” opportunities break down complexity to simplify investment
and operating decisions: which layers of the technology stack should or can
others manage better than us? Let them do it. Or strategically, which layers
of the stack must we manage for competitive advantage or data security? We
should turn everything else over to a provider.

IaaS
Infrastructure as a Service (IaaS), also known as utility computing, includes
the physical infrastructure: for example, CPU, memory, storage, network, and
power. It also has an IaaS virtualization layer, also called a data center OS.
Here, the customer consumes resources to execute and manage the rest of
the stack.

Virtual host migrations between IaaS environments, on-premise to cloud,
cloud to cloud, and cloud to on-premise are the same tasks across a variety of
host configurations and locations. Physical server migrations are tougher but

DevOps, DBAs, and DBaaS 127

doable because you have to convert the physical server into a virtual server;
if possible, I recommend virtualizing locally before migrating. Technically, IaaS
migration work is not much different from the effort needed to move from
an existing server to a new server; the primary difference is the distance
between the source and target computers when using a provider’s offering.

Figure 9-2 compares the purposes for IaaS, PaaS (discussed in the next section),
and SaaS.

IaaS offerings provide the “shortest” stack, leaving customers with design flex-
ibility. Google Cloud Platform, AWS, and Azure are a few IaaS offerings.

PaaS
Platform as a Service (PaaS) really appeals to the software development
crowd. Focusing on building great software products without the distractions
of building and operating infrastructure increases developer productivity and
probably morale. By offering a variety of OSs, programming environments,
containers, and middleware technologies, PaaS enables the software develop-
ment company to provision environments and quickly start developing and
testing products. Whether the company plans to make the software available
for organizations to run internally or in the cloud, the software should be able
to run on multiple OSs without specific configuration changes. Not wanting to
build guests with OSs or middleware software, the company simply provisions
the environment needed.

Figure 9-2. Purpose comparison between IaaS, PaaS, and SaaS

Chapter 9 | DBaaS, IaaS, and PaaS128

Businesses can also take advantage of the PaaS solution, whether for devel-
opment or production, because the environment provides flexible configu-
rations. One business I am familiar with has been porting web services to
an on-premise PaaS environment, including containerization. The company is
basically consolidating web services on disparate platforms written in several
programming languages to the PaaS environment using a single programming
language.

Off-premise PaaS means that the provider’s automation performs the builds
and makes the environment available to the customer. Relegating to custom-
ers the power to select the best platform based on their development strat-
egy delivers value while allowing the consumer to serve a broader customer
base without having to own every potential customer configuration on which
the software may be deployed.

“Born on the web” companies (those that build applications in the cloud)
can leverage PaaS. Imagine going to a PaaS provider site and provisioning a
Windows Server environment with IIS, a SQL Server database guest, and
another Windows server. You then add your preferred development tool
onto it and let the developers have at it. A new app could be available for
sale in days, if not sooner. Within a week, the company can generate revenue.
Next app!

SaaS, IaaS, and PaaS fit a unique base customer requirement: SaaS meets
application needs; PaaS meets development, web and app tier, services, and
container deployment requirements; and IaaS allows full data center server
compliment without having to invest in building a data center.

Although there are other interesting “as a Service” offerings such as
Communications as a Service (CaaS), DBaaS needs to be our principal focus
for the rest of the chapter.

DBaaS
DBaaS sits between PaaS and SaaS, at least in my eyes (see Figure 9-3).

DevOps, DBAs, and DBaaS 129

The crucial differences between them are that you pay for everything needed
to use an application with SaaS (you configure nothing); PaaS solutions may be
web or application servers, containers with microservices, or a combination;
and DBaaS allows you to select which database you need and is more likely to
be implemented as the only technology in the environment.

You won’t be doing much beyond selecting the database product and a few
sizing options because the provider’s automation builds the environment and
database based on a few selections you made concerning usage. As with SaaS,
the DBaaS provider manages the technology; the customer provides the data.
CRM SaaS offerings obviously include a database for data storage, but realize
that the back end could be a DBaaS environment. It makes sense that a SaaS
provider would use a DBaaS solution for the data.

For a DBA, fulfilling the demand for a data store needs to be a flexible,
business-driven, and cost-conscious act. For example, using DBaaS to pro-
vide development and testing environments that can be spun up and then
destroyed provides the necessary flexibility to keep a project moving without
having to purchase additional servers or database licenses. Along that same
line, the company may have an internal homogenous development infrastruc-
ture used to produce application software. To then certify the application
against other databases, DBaaS facilitates the need at a reasonable price with
technical simplicity.

DBaaS also allows DBAs to provide the best-fitting database for the job. The
type of data to be stored, how the data is retrieved, and how often the data is
modified or replaced drive the database selection.

Figure 9-3. DBaaS fits between PaaS and SaaS

Chapter 9 | DBaaS, IaaS, and PaaS130

DBaaS fits especially well when the company’s data repositories are separated
from the application, creating the amiability of using different databases as
business requirements change.

If your business is data, you want to be able to manage it while making it
available to customers. Customers paying to look at or retrieve your data
need simple methods (APIs or services) for the access. Google provides data.
Google stores and indexes data for people to access by using the search
engine. DBAs understand that the volume and types of data make using a
single vendor’s product challenging, so having the flexibility to select different
databases to fit specific needs leads to better solutions and (very likely) sig-
nificant performance improvements.

Leveraging DBaaS for DevOps
DevOps requires speed and agility based on a foundation of lean practices and
simplicity. New projects, whether for new functionality or improving existing
code, no longer require DBAs to figure out how to fit new data require-
ments into existing relational databases. Although relational databases have
served us well and continue to be excellent transaction recorders and sys-
tems of record, not every data requirement fits into the relational model.
Unfortunately, DBAs have had to figure out how to make various-shaped data
fit into the relational model, which is not necessarily the best performing
or manageable situation. Companies that have made sizeable investments in
database technologies may be reluctant to spend additional money on DBaaS;
but not doing so may unfortunately limit competiveness, the flexibility needed
to meet customers’ demands, and application functionality and performance.

Architecture
The design processes for a database in the cloud (DBaaS) and for an on-prem-
ise cloud are very similar. Two aspects demand additional scrutiny: latency
and configuration flexibility. Otherwise, architecture decisions for DBaaS are
typical of what you have been doing for years, which makes the learning curve
short.

Latency
Network packet travel time becomes a design challenge when the database is
hosted in a location that is geographically distant from other components sup-
porting the application. Even 20 milliseconds of ping time between an applica-
tion server and a database server results in 40 milliseconds of latency for each
network send and acknowledge pairing. Transactions involve many packets,

DevOps, DBAs, and DBaaS 131

so (doing basic math) we know that 100 packets would result in 4,000 mil-
liseconds, or 4 seconds, of latency, not including the database processing time.
Four seconds, in most instances, is already an unacceptable response time;
customers may abandon your application to find an alternative. The 4-second
example is a bit extreme, but it does demonstrate how quickly latency can
impact business operations and customer experience.

Some protocols address latency better than others, such as acknowledging
only every tenth packet. However, for design purposes, using the worst-case
scenario (40 milliseconds per send and receive in this example) is recom-
mended, primarily because it can be applied to every database product talk-
ing to every middleware product. If the implemented solution keeps latency
under the design value, the better-than-expected application response time is
a win for the design team.

Configuration Inflexibility
Experienced DBAs—not necessarily old DBAs—are used to being able to
finely tune the database. They then work with the OS administrator to tune
the kernel, optimizing I/O and storage throughput, and possibly even work-
ing with the network and client support teams to boost network and client
performance by rightsizing the packet MTU and client buffer, which can also
be a latency factor. With DBaaS, DBAs generally have limited ability to tune
for performance. Available selections, some as simple as small, medium, and
large, can be very limiting. If the environment is based on database product
and size, careful planning is needed to prevent capacity problems too soon
in the lifecycle. Fortunately, virtualized environments include the advantage
of adding capacity with a few mouse clicks, but DBAs would still rather not
have to explain why the business has to absorb unplanned costs so early in
the product lifespan.

When it is considered, simplification is the saving aspect for configuration
inflexibility. Although being able to fine tune a database may be needed, the
effort becomes non-value-adding when it is really not necessary. If the applica-
tion can run well using a very simple database implementation, consider that
a good thing. For products that rely on extreme performance or synchronous
writes, the inability to properly engineer the database implementation may be
problematic; fortunately, that applies to a small percentage of databases run-
ning in our world.

Scalability
A database does not often shrink, and it could be stated that customers have
never provided feedback saying the an application is too fast, or even that it
would be acceptable for response times to be 1.5 seconds instead of 1 second.

Chapter 9 | DBaaS, IaaS, and PaaS132

So based on experience, DBAs know that performance must be maintained or
improved to keep both the business and customers happy.

As mentioned earlier, DBaaS, or a virtualized database solution, includes the ben-
efit of being able to scale solutions by adding CPU and memory resources on
the fly. The preferred method is an automatic resource increase based on trig-
gers. For instance, memory can be increased by N% if free memory falls below
5%. Or .25 virtual CPU can be added when CPU usage exceeds 98% for more
than 5 minutes. Consider also the decision to be on a shared environment, in
which growth applies to each entity hosted, compared with selecting a dedicated
implementation. The latter comes at premium costs, but provides segregation.

Recoverability
Three primary risks need to have mitigation plans: data corruption, failures
that cause the database to be unavailable, and data center disasters that
destroy the complete computing environment. Each risk must be described
and the mitigation detailed in the agreement, along with any expenses or
other expectations negotiated.

Data Corruption
Data corruption happens very rarely these days because of the available
advanced storage technology protections and database level checks, but no
one can provide a 100% guarantee against corruption occurring. Corruption
is a nasty bugger, probably the worst event for DBAs. Coordinating with the
DBaaS vendor for recovery must be defined ahead of time, including each
party’s responsibilities.

Disk–level database replication for disaster recovery protection is great; for
corruption, it quickly propagates the problem to the recovery site. Backups
may include the corruption if detection was delayed. Point-in-time recovery
means data loss, but hopefully not more than SLA-agreed loss.

Although the DBaaS provider may offer solutions, you are ultimately responsi-
ble for the recovery. Consider periodic disk snapshots or using a product such
as Oracle’s Data Guard to have a standby database in place that is protected
by block-level integrity checks before the log is applied to the database. Once
the corruption is discovered, a cutover to the standby database restores ser-
vice for your customers.

Failure: DB Down
After recovery, the primary consideration when a DBaaS database crashes
is to determine the root cause. Without access to the OS and lower stack,
the provider has to perform the root cause analysis. That requirement needs

DevOps, DBAs, and DBaaS 133

to be included in the arrangement, along with an availability and/or return to
service SLA inclusion.

Catastrophic Data Center Event
Even the most well-built data centers are susceptible to disaster, whether
natural, accidental, or intentional. Companies spend a lot of money to have a
secondary data center that is geographically separated from the primary data
center and populated with a large or equal percentage of equipment ready to
become the primary data center.

If you are using DBaaS to keep from managing a data center and maintaining
infrastructure, you will certainly want to also use DBaaS for disaster recovery.
Therefore, ensure that the provider’s disaster recovery plan clearly defines
the recovery process, and is required to exercise and report on at least an
annual disaster recovery test.

Encryption
Data protection, whether required by PCI-DSS, HIPAA, or any of the many
other governance controls, becomes more necessary when a DBaaS solution
is deployed. DBaaS solutions need to include encryption, which can be a hard-
ware or software solution covering database data and data at rest. Storing and
transmitting data outside of the corporate walls increase risk, so protecting all
data with encryption is smart.

The DBaaS vendor may offer an encrypted storage solution option that makes
implementing encryption much easier. Otherwise, encryption may need to be
implemented within the database if it is an option, or a third-party package
may work but have performance implications.

Access Control and Auditing
Criminal or accidental access to a database continues to be a huge organiza-
tional risk. Likewise, many (too many) governing bodies require audits for vari-
ous reasons. Auditing may require DBAs to not choose the best database for
their needs; instead, they select a good database match that includes auditing,
although custom auditing can be built without too much pain. Work with the
DBaaS provider to understand auditing controls—remember that it is in the
vendors best interest to make sure that your data is protected, including the
way violations or intrusions are reported. The provider wants to protect you
as much as you want to protect your company.

Leveraging single sign-on provides internal clients access to local and external
applications, relieving them from having to remember another password or

Chapter 9 | DBaaS, IaaS, and PaaS134

dealing with two-factor authentication protocols. Build in security with sim-
plicity for your customers.

Data Archiving
Multitiered storage and/or data archiving products help manage aging data,
preventing performance and space management problems introduced as the
data volume increases. Be sure to consider an archiving solution when work-
ing with the DBaaS provider. If the provider can make data archiving easier by
offering the right archiving tools, it is probably worth investigating. For data
archiving, be sure to define how and where it will be done.

Other Customers’ Problem Impact
Experience has taught many of us that a problem with one system within a
data center can (and probably will) impact other systems. That same conse-
quence must be addressed for DBaaS environments. If the DBaaS solution you
plan to use is offered by a provider that would be considered a co-location
provider (having many customers within the same data center), understanding
the data center infrastructure is essential. Knowing whether another cus-
tomer’s problem, maybe a rogue batch job sending terabytes of data out of
the data center, could potentially harm your applications leads to an exercise
showing that this provider does not have enough isolation between customer
systems. It matters not to the CEO or the Board that the reason why your
customers could not spend money on your products or that the business
teams were late closing the monthly financials by 4 hours is because company
XYZ’s batch job consumed all the network bandwidth. Instead, the feedback
may be quite pointed: “You should have known that was a risk and managed it.”

Fortunately, data center providers have learned much over the past decades,
prompting highly modular data center design solutions. Today, customers may
still be considered as co-located—primarily geographical nearness only, but
also supported by isolated power, network, telecommunications, and so on.
Imagine rows and columns of stacked shipping containers, each with direct
and independent power, environment, data and voice transmission networks,
and compute and storage, surrounded by a building shell in which the hallways
on each floor lead to the container doors for physical access. This data center
model is not imaginary; it actually exists in several flavors.

Modular separation greatly diminishes the risk of another customer’s issue
becoming your own. Translating the data center isolation need to DBaaS
separation challenges DBAs. Here, co-location is not a building-level consid-
eration, but instead a compute and storage concern. Providers are leveraging
virtual capabilities, which means running many virtual guests on the underlying

DevOps, DBAs, and DBaaS 135

physical servers. Therefore, many customers could have guest hosts shar-
ing the same physical server on which your database is hosted. Be sure that
the database resources assigned to your implementation cannot be “borrowed”
by other guests. Virtual systems can be overprovisioned, meaning that guests
can “borrow” unused compute and memory resources from other guests.
Databases do not like having their resources borrowed. Nothing delivers per-
formance degradation faster than having the database cache suddenly forced
into swapping due to another guest “borrowing” what was believed to be
unused memory. Verify with the vendor that the guest resources can be
“locked” to prevent other guests from stealing resources.

Monitoring and Synthetic Transactions
When searching for a DBaaS solution, monitoring and synthetic transactions
may be a critical add-on service offering from the provider, which should be
leveraged. Too often, companies invest tens of millions of dollars building
or acquiring, and implementing and supporting applications and infrastruc-
ture, only to chintz out by not investing in the right support tools. Fighter
jet designers and engineers include navigation and threat warning systems to
help pilots “see” where they are going and to avoid risks. It’s perplexing how
many IT “pilots” are “flying” blind in the application cockpit, unable to detect
business-disrupting threats. Implement great systems and implement the tools
needed to keep the systems great!

When DBaaS is the best solution for your organization, keeping vigilant
becomes imperative. Work with the provider to determine how tools can be
implemented, what monitoring the vendor provides, and how you are noti-
fied of failures or looming performance degradations. I mention this based on
outsourcing experiences in which the outsourcing company did not include
monitoring in the bid, and the customer assumed that monitoring was foun-
dational. The miscommunication then came to light in the middle of the night
when a major failure occurred. Small details matter, hence my intended inclu-
sion in this book.

As just mentioned, tossing the database into the cloud does not relieve DBAs
from oversight responsibility. Does the provider offer a monitoring solution?
Will the solution integrate with an existing tool suite? Does the solution
include the ability to create and monitor synthetic transactions to baseline
and alert threshold variances for critical transactions? DBAs must have per-
formance data visibility.

Performance between the database and the client, whether the client is an
application server or a person’s workstation, also has to be monitored. If it’s
reported that the database is causing application slowness, DBAs must be able
to identify where the slowness is being introduced. Even if you can prove that

Chapter 9 | DBaaS, IaaS, and PaaS136

the database is responding well, you remain on the hook until the root cause
is identified. Many DBAs, myself included, worked to become infrastructure
“experts” from necessity because it became a requisite to absolutely prove
that the database was not at fault. You have experienced the calls that ask, “Is
the database is down/slow?” Even when logic disagrees: 20 people report the
database being down (the other 10,000 users are silent), and someone at the
help desk escalates to the DBA team and carbon copies the entire IT leader-
ship team that the world is about to implode due to this perceived catastro-
phe. Even before you get a chance to access the database to try to determine
why 20 people could be having a problem—DBAs must always check their
own backyard before complaining about someone else’s—your bosses’ boss
is already texting you and asking when the database will be back up. OK, that
is a bit extreme because most of my bosses have never been so quick to panic,
but you get the idea. DBAs must be able to prove that the database is not the
culprit and then work with others to determine the root cause.

Having the right monitoring tools and specific synthetic transactions in play
minimizes the time needed to find and correct the problem. Otherwise, con-
sider yourself to be much like a fighter jet pilot without a navigation system
who is trying to locate an aircraft carrier in an ocean.

Network Configuration Matters
Whether they are a cloud provider’s or your company’s, shared environments
require us to systematically assess all components to ensure that even at peak
demand—every customer using every system at full capacity—the business
and its customers are not negatively impacted by degraded performance.

Total network bandwidth (and, more importantly, the way the total is actu-
ally amassed) needs to be understood and then matched to predicted traffic
patterns. DBaaS via a cloud provider means that data read or written to the
database must travel some distance (refer to the earlier latency discussion).
Forecasting data usage and architecting the infrastructure and application
wisely to allow DBaaS to be leveraged without harming application perfor-
mance or customer expectations becomes a critical task.

Bandwidth and bandwidth configuration need to be considered for peak load
and unexpected load caused by failures or irregular traffic. Because the con-
nection to the DBaaS provider is over some form of WAN, not over a LAN,
there may be less bandwidth available to absorb the lost capacity. If your loca-
tion happens to be geographically close to the provider, a metropolitan area
network (MAN) or other form of “wired city” network may provide plenty of
bandwidth with little distance-caused latency.

When I was asked to investigate repeated reports of slowness at a small site
(about 16 people), I discovered that the site had two 1.54 megabits frame

DevOps, DBAs, and DBaaS 137

relay connections. One of the connections became saturated almost every day
during the lunch window. A quick traffic capture revealed significant streaming
video traffic, which turned out to be company-mandated training. The root
problem was not that the streaming video caused slowness for the applica-
tions because team members were obligated to watch the training; instead,
there was a failure to communicate between the training and IT departments.
Had the infrastructure been considered, it would have been transparent
immediately that the company’s smaller sites did not have enough bandwidth
to conduct normal operations and watch the mandatory training as streaming
video. Other arrangements could have been considered, keeping the business
from experiencing a disruption.

Scale that problem into a DBaaS provider’s infrastructure with many custom-
ers, each reading and writing varied data types. Sufficient bandwidth construc-
tion becomes a key performance protector.

A gigabit of bandwidth can be designed either as a single connection or as a com-
bination of several smaller connections. They might seem to be equal, but we
know that it’s much more complicated than that. Never mind the single point-of-
failure because vendors know better; focus instead on the delivery capability of
the two solutions. DBAs, although probably not network gurus, can easily trans-
late network configuration into database configuration, knowing that multiple
read/write connections to a storage array distributes the load, which results in
overall better response times. They can apply the same principles, understanding
that thousands of customers who reach out to the database from many loca-
tions, doing a mixture of work, can benefit from many I/O (network) paths.

DBaaS and Continuous Integration
Fortunately, DBaaS and CI does not look much different from on-premise
database and CI when it comes to database changes. DBAs still need to auto-
mate database changes to integrate with application changes, maintain all code
in the source code repository, and provide tests to thoroughly vet the changes.

Database template builds and execution may no longer be something DBAs
need to manage because the provider probably controls and provides the
DBaaS platform.

Summary
Considering DBaaS leads down an exciting and challenging path of leveraging
“old school” DBA skills: design, access control, recoverability, scalability, per-
formance, and more; combined with ensuring that the shiny new cloud model
does not introduce unacceptable latency, shared database or data center risks,
or problems when you are not fully in control of the build configuration.

Chapter 9 | DBaaS, IaaS, and PaaS138

Costs can be leveled out, changing only as capacity increments or decrements;
performance and scalability are easily managed given the virtualization mode;
database selection varies so that the best database can be selected, instead of
forcing square data into a round database.

Each “as a Service” offering provides IT shops, including DBAs, the prerogative
to select the right database for the job. Matching team capabilities to specific
technology stack layers encourages smart decisions in which the provider’s
expertise and the company’s expertise meld together for an optimal business
operations solution.

Final thought: if DBaaS offerings are too restrictive, going with a PaaS solution
provides the opportunity to build databases per your specifications.

© Michael S. Cuppett 2016
M. S. Cuppett, DevOps, DBAs, and DBaaS, DOI 10.1007/978-1-4842-2208-9_10

 C H A P T E R

 Overcoming
Language and
Cultural Barriers
Between DBAs
and DevOps
 The collaborative foundation of DevOps decrees positive and well-inten-
tioned communications. Defining rules of engagement that satisfy this expec-
tation equips each team member for success. Knowing that communication
underlies and perpetuates all aspects of DevOps encourages team members
toward effective communications.

 IT people—nerds, geeks, techies, or whatever stereotypical or imaginable
name you can recall—are very effective communicators, but only when
discussing programming, gaming, cryptology, infrastructure, cloud technolo-
gies, multiplayer role games, Star Wars versus Star Trek, the existence of

10

Chapter 10 | Overcoming Language and Cultural Barriers
 Between DBAs and DevOps

140

extraterrestrial life, space and/or time travel, and many other fascinating
topics. However, geek communication does not translate beyond the tech
world. Yes, I just stereotyped myself and many of you in jest; in my expe-
rience, it is not that stereotypical because many of us communicate well
beyond the cubicles.

 Sadly, the exact same translation problem can impede conversations between
DBAs and DevOps team members. Patience and effort together blend tax-
onomies and process methodologies for the betterment of DevOps. Each
entity, DBA, or DevOps team member must take personal responsibility for
the success of this talent merger. Years of resentment and uncooperativeness
has brought team division to new heights. The cultural position of DevOps
brings opportunities to bridge the divide for true team partnerships.

 Because DevOps continues to achieve emergent momentum, DBAs might
need to come around a bit further than the already engaged DevOps play-
ers. As with any movement or incipient technology framework, new nomen-
clature develops that takes time to learn and understand. Existing DevOps
team members need to educate DBAs on terminology as much as practical
DevOps techniques and tools.

 After becoming familiar with the DevOps approach and pertinent processes
and tools, DBAs introduce database practice experience to expand percep-
tions of data protection, schema management, data transformation, and data-
base build best practices. DBAs who meld database management approaches
into DevOps practices that are aligned with shared goals are successful only if
the DevOps team members understand DBA methods and can see the value
brought to the overall DevOps model.

 Rules of Engagement
 Guidelines are important for communicating and working effectively because
differing collaborative terms pop up every few years with different names and
different bullet points. They all have the same purpose: to respect each person
and the value he or she offers. As a United States Army veteran, a term such
as rules of engagement resonates. Aligned with the DevOps principles, here is
an easily understandable set of guardrails to keep us all communicating and
operating efficiently:

• Goal alignment: Have a collaborative approach among
team members who agree on common goals and incen-
tives: strive to harvest excellent software products hosted
on sustainable and stable infrastructures while continu-
ously improving processes, automation, and cycle time.

DevOps, DBAs, and DBaaS 141

• Deliverable coresponsibility: No single actor should be
allowed to dominate or distort the principles, direc-
tion, or team accountability and actions, thus safeguard-
ing DevOps guidelines and the Agile self-forming team
concept.

• Speak to the outcomes: Require constant and consistent
verbal communications for expeditious task coordination
and execution, matched by effective and timely decisions
to drive expected outcomes.

• Change adaptation: Accept business and customer fluidity
as product requirement drivers while slaying traditional
project management strategies better guarantees project
success.

• Give the benefit of the doubt: Grant people grace, and
trust that their intentions are good and intended for the
team’s benefit. Embrace the possibility that you may be
the person causing team tension and then stop doing so.

 DevOps Speak
 Continuous may be the most frequently heard word in DevOps conversations.
Here’s why:

 Continuous…

• flow : Work is always progressing and driven by automa-
tion, having value deliberately built in at a sustainable
pace. Several Agile methods specifically limit the amount
of work that can be in process at the same time. Limiting
work-in-progress grants focus and time to properly con-
struct the product and product testing, which lead to bet-
ter outcomes without overpressuring the staff.

• build: Build tests and code, preferably in that order. With
QA shifting to the development stage, code with fewer
defects can be created at lower total cost of ownership.

• integration : Combine new or changed application code
with the core product through extensive functional and
performance testing, and correct defects immediately to
produce the next product version.

• delivery : Ensure that the software product is positioned
at all times for production release or deployment, encap-
sulating the building, testing, and integration processes.

Chapter 10 | Overcoming Language and Cultural Barriers
 Between DBAs and DevOps

142

Successful integration produces the deliverable, making
continuous delivery a product state, not a process.

• deployment : Where applicable, production deploy-
ments should occur as soon as the product is ready
for release after integration (this is less likely for legacy
environments).

• feedback : There should be persistent communications
concerning the product quality, performance, and func-
tionality intending to find, report, and fix bugs faster or to
correct performance earlier in the pipeline. Commit to
the “shift-left” concept.

• improvement : Apply lean principles to eliminate waste,
build in value, reduce defects, and shorten cycle time to
improve product quality. Team members should take time
to reflect on completed projects or sprints to increase
productivity by staking claim to value-adding tasks and
shedding inefficiencies and unproductive steps.

 Depending on the tools used, product themes abound. There are chefs with
recipes, cookbooks, kitchens, and supermarkets; a butler, puppets, blowfish,
broccoli, maven, ant, and many other strange yet fun product names. Check
out XebiaLabs’ Periodic Table of DevOps Tools .

 Automation and Orchestration
 Automation focuses on executing tasks quickly. Building a script to run a set of
database change commands is automation. Orchestration focuses on process
or work flow. Building a series of steps to execute tasks in a defined order to
produce an outcome is orchestration.

 Spinning up a virtual database host combines automation (the set of com-
mands for each task) and orchestration to run the tasks logically.

 DBA “Speak”
 Languages vary among DBAs. For example, application DBAs talk code execu-
tion efficiency, logical DBAs (aka data architects) talk about normal forms, and
operational DBAs talk about performance. DBAs also know plenty of ways to
skin a cat. *No animals were harmed in the making of this book.* Yet DBAs
manage to keep databases humming along—most of the time. Although there
are differences in DBA roles and responsibilities, the end game is database
stability, performance, availability, security, and recoverability (to name just a

https://xebialabs.com/periodic-table-of-devops-tools/

DevOps, DBAs, and DBaaS 143

handful). DevOps team members must understand the DBAs’ database pro-
tectiveness and self-preservation tendencies. After spending long nights and
weekends recovering from code deployments that took months to build and
test, it makes less sense on the surface to reduce the time spent building and
testing the software.

 DevOps team members are challenged to shine a light on the new para-
digm and emphasize that the speed is offset by fewer code changes, which
improves the odds for a successful deployment. Also let the DBAs know
that as a DevOps team, failures cause all team members—including develop-
ers—to be all hands on deck. Now that it is in everyone’s best interest to
implement change correctly, DBAs are no longer the only people pursuing
self-preservation.

 Language and Culture: More than the Spoken
 Tongue and Traditions
 The IT world is diverse on many levels, which is great! I have learned much
from working with people in the United States, but also in South Korea, West
Germany (I still make the distinction because I was serving in West Germany
when the Berlin Wall fell), and for about a week in Brazil. I have also learned
things from people in other states because diversity is needed.

 As DBAs and DevOps team members come together, the differences add the
value. Think about it; if everyone on the team knows the same things, all but
a single person are redundant. People speaking different languages figure out
how to communicate effectively, so DBAs and DevOps team members can do
the same. The difference is often perspective, which I have mentioned before:
repetition reinforces ideas. DevOps is more a cultural shift for IT than a pro-
cess shift. Sure, the tools and schedules are different, but those elements are
easy to learn or adapt to; a culture shift requires time to digest the idea and
bring everyone along.

 Let’s take a look at the world of IT from different perspectives to begin to
understand where DevOps is taking us all.

 Resiliency versus Complexity
 Resiliency describes the ability to sustain operations or to quickly restore
operations when failure occurs. For application systems with data stores, data-
base clustering provides resiliency—the failure of one node does not reduce
transactional throughput. That happens when the cluster is built to withstand
a single node failure, with the remaining nodes sized to maintain 100% capacity
at mandated response times. A pool of web or application servers distributes

Chapter 10 | Overcoming Language and Cultural Barriers
 Between DBAs and DevOps

144

the workload while improving resiliency because surviving nodes maintain
operations when a node fails.

 Resiliency can be scaled to meet financial considerations. Under the plan
using the clustered database example, a single node loss could result in a 30%
decrease in load capacity; mitigation must be preplanned to stop or depriori-
tize enough load to not impact critical operations. For example, batch pro-
cessing or reporting can be suspended until the system is at full capacity.

 DevOps provides an answer to the capacity problem if the database cluster-
ing can benefit from the host build template scripts. The loss of one node
can be quickly offset by an automated build of a new node that can be intro-
duced into the cluster. Furthermore, additional capacity can be activated when
demand exceeds capability.

 Resiliency from clustering and other high-availability solutions does have a
drawback: complexity . Be sure to not increase complexity to an unsustainable
level when designing critical systems. Overly complex systems with tricky
interdependencies that create situations in which maintenance and upgrades
are postponed defeats the purpose of resiliency. Being resilient requires keep-
ing pace with database upgrades and security patching to increase stability and
prevent breaches or data theft.

 Rolling upgrades and patches signal resiliency by demonstrating the capability
to maintain continuous operations while simultaneously improving the plat-
form. Extending this capability to be able to completely replace the database
environment with an upgraded or different database altogether, and with a
fallback plan in place to return to the previous platform, exemplifies resiliency.

 DevOps brings about the opportunity to maintain resiliency with less com-
plexity because web, app, or database servers can be built in minutes or hours
instead of the weeks or months it used to take to acquire and build servers.
Virtualization is a major enabler of DevOps.

 Building Simplicity
 Simplifying architecture and application code runs counterintuitive to real–life
IT solutions design, yet it is still a smart move for the long run. True solu-
tions design not only leads to the best possible product but it also restrains
from adding anything distracting to the product. As DBAs and DevOps team
members unite, they resolve to fight complexity with design eloquence and
minimalist tendencies, and prevent complexity from entangling DBA pro-
cesses that may harm pipeline efficiency. Excitement builds as expectations for
simple, precise, and demonstratively improved business systems are realized
from this joining of forces.

DevOps, DBAs, and DBaaS 145

 Packaging and Propagation
 Thoughtful and well-planned database software build packaging and propa-
gation can be used to maintain resiliency, as described previously, but it can
also be used for on-demand capacity, multisite distributive processing, and
maintenance of pipeline database consistency. Packaging versioned releases
for upgrade simplification must include database owner and other account
privileges needed for distribution. Database installs in which an OS hook must
be executed by an administrator account need to be scripted to pull needed
credentials during execution. The scripting must also ensure that password
information does not get written to the installation or audit logs.

 The shift goes from lengthy and tedious manual installs or lightly automated
installs to a completely automated build that can be done fast enough that IT
has the agility to immediately respond to demand, not after weeks of strug-
gling to keep a system running in overload mode.

 Structured and Unstructured
 For decades, the relational database has been the database of choice, and
large companies have invested millions in licensing and platforms. Without
viable options, project data storage requirements landed in a relational data-
base management system (RDBMS) , regardless of the data structure or even
the content. More recently, many newer, viable database options are becom-
ing mainstream, but it is still a hard sell to convince the upper echelon that
additional investment is needed for another database ecosystem. Even open-
source databases come with staff support and hardware costs, or monthly
DBaaS payments. Forcing data models into unsuitable databases deoptimizes
solutions. From the start, performance is less than it could be than when a
better–fitting database engine manages the data.

 Maturing DevOps organizations lean toward optimized solutions, making
force-feeding data into a database unthinkable. Relational databases remain
“top dogs” as databases of record for transactional data. As applications shift
toward multiple database back ends, services or APIs provide data call abstrac-
tion to maintain flow.

 Unicorn companies start with very little cash flow, limiting the affordable
scope of databases. Open-source databases enable individuals and small teams
to build application software with a data store. As these companies grew, the
databases scaled to the point at which other companies took notice. When
CIOs drive down IT costs, looking at alternative databases becomes a viable
(and street-proven) option. DevOps leverages this learning, making it possible
to store data in the database best suited for the content, pulling along cost-
cutting options.

Chapter 10 | Overcoming Language and Cultural Barriers
 Between DBAs and DevOps

146

 Audit Trail
 Audit reviews are a necessity when build automation replaces human control.
DBAs who install software pay attention to the screen messages, responding
to configuration questions and noting errors that need attention. The risk is
that the same person might do a second install that is not exactly like the first.
Vendors have included automation scripts for years, but platform differences
still happen. DevOps automation is meant to build the complete platform
without a person making decisions because the decisions are built in to the
automation or gathered before automation execution.

 A developer requesting a new web server should need to provide only
primitive inputs up front—OS, web server brand, and a few sizing param-
eters—before the automation kicks off. There are legitimate reasons to pause
automation, but asking for more information should not be one of them. As
mentioned, automation is task based, so stopping the orchestration is more
likely. The automation and orchestration need to generate audit trails.

 True to DevOps, audit log checkout should be automated because no DBA or
DevOps team member wants to review pages and pages of audit information.
Learning which error codes or other failures to search for tightens the noose
around inconsistency. More importantly, governing bodies require documenta-
tion for application changes, which makes the audit log that evidence.

 Repeatability
 Repeatability of tests or builds improves the efficiency of code, and infra-
structure as code, along the full continuous delivery pipeline. Being able to
build servers quickly allows developers to experiment with different code
techniques or operations to build capacity on demand. DBAs are used to
being responsible for database builds, so it may take a little time for them to
get used to the idea of developers building and destroying databases at will.

 DBAs can instead create templates for the way databases are built, which
seems like a better deal. Limiting the numbers of unique database software
installs and database builds has advantages. Code should execute exactly the
same within a version. Troubleshooting narrows from having fewer possible
variables. Once a problem is found, knowing where to apply the fix is easy.
When testing a change, the way the database executes with the change should
be consistent on like architectures. As much as possible, the nonproduction
environment should mirror production, decreasing the chance of change fail-
ure caused by underlying configuration differences.

 Build repeatability is a win for developers, DBAs, and DevOps team members.

DevOps, DBAs, and DBaaS 147

 Security
 Nothing causes a puckering posture more than a potential data breach. On
the scale of security threat mitigation, preventing data breaches sits at or near
the top. Partnering with the information security team, DBAs play an inher-
ent role in data protection. DBAs, as custodians of the corporate data assets,
consider security a key deliverable.

 Although database access comes in many forms, in all cases access should
be granted only after authentication, and each access needs to meet audit
requirements. Authentication can be granted by the database, application,
or single sign-on protocol. Each authentication must be logged for auditing.
Each access, whether as a user request, job initiation, or integration interface,
should be uniquely identifiable for auditing. How the auditing is performed is
less important than the auditing being done. The auditing may be controlled
within the database by using a built-in feature or with application code that
writes the audit information to a table or file. Importantly, DBAs should not
be able to alter the data once the audit record is created, which protects the
information from less-scrupulous DBAs.

 Data encryption protects data at rest, including data stored in the database
or stored as files. Many database products offer encryption, though it may be
easier to use storage-based encryption, which covers the database and file
data. At a minimum, Social Security numbers (SSNs), credit card numbers, per-
sonal health information, and other sensitive data elements must be protected,
which should already be done where compliance with governance require-
ments such as SOX, HIPAA, PCI-DSS, and more are enforced and audited.

 Secure SSL protects data in transit, to and from the database to the appli-
cation tier or end-user device. Preventing “on the wire” breaches is nearly
impossible, but at least it should be challenging for the data to be interpreted.

 Developers do consider security and at times write code to implement data
protection or data hiding; for example, not allowing application users to see
full SSNs (just the last four digits) when the user’s role does not require know-
ing the full SSN. Developers may also code in calls to encryption functions or
packages to obfuscate data elements. Storage encryption solutions are usually
easier to manage and provide full data coverage, but not all organizations scale
to the level at which the cost can be justified.

 DevOps automation and orchestration should include security implementa-
tions. Configuring SSL and installing certificates should be automated. Creating
service accounts needed for application access to the database should be
automated. Disabling FTP and Telnet on the host should be automated. Each
of these automation pieces are collected for orchestration.

Chapter 10 | Overcoming Language and Cultural Barriers
 Between DBAs and DevOps

148

 Performance
 Computers continue to increase in processing power (more importantly, in
transactional throughput), which allows more work to be done in less time.
No matter how fast computers become, overhead work always reduces the
optimal ceiling. Work minimization improves optimization. Lean methodolo-
gies drive out unnecessary work to improve process times and reduce waste
and cost. IT shops are learning from lean methodologies, DevOps being one
representative model.

 Execution plans define how the database engine decides to retrieve, sort, and
present the requested information or how to modify the data per instruction.
Optimizers do a terrific job building execution plans, although misses still
occur. If a query is performing poorly, the execution plan should be an early
check in the troubleshooting process. DBAs must interrogate the execution
plan to determine appropriateness, which requires experience. Developers
make great partners when checking execution plans; they are capable of inter-
preting the plan in light of what the code was built to do.

 Code consistency matters for some database engine implementations. During
the process of building execution plans, these databases interpret uppercase
and lowercase letters as different, making a simple one-character difference
appear to be a completely different statement. Keeping code consistent
increases the reusability of plans already stored in the cache. Using replace-
able variables may also help optimize cached statement use. As DBAs inte-
grate into DevOps teams, ensuring that solid code practices are in place to
ease the database load is a step in the right direction.

 “Hidden” predicates can make evaluating code and execution plans more
challenging; just consider the possibility when the execution plan seems rea-
sonable while performance lags. Security implementations may be the culprit,
and one might expect the “secrets” to not be revealed. An easy test to deter-
mine whether hidden predicates used by Oracle’s Virtual Private Database
(VPD) are in play is simply to run the statement using an account with more
authority. Improved performance indicates the need to check for additional
predicates. You may have to use a tool from a performance products vendor
to find the predicates. Once discovered, improving performance may be as
easy as elevating account privileges or executing with an account with more
authority. Sometimes reworking the code does not lead to enough perfor-
mance improvement, making the privileges decision the fix. Also, if you know
that something like VPD is implemented; jobs and reports suddenly take a dive
in performance by two-, three-, or four-fold (or more); and the database was
not changed, check account security because it is not beyond the realm of
possibility that a security job was run to correct perceived audit discrepancies.

 Optimized code sheds unneeded work and data touches (the latter is critical
to result set size) and reporting and ETL processes in the context of batch.

DevOps, DBAs, and DBaaS 149

Selective predicates—the where clause statements—reduce execution effort
and time while also lessening the burden on the database as a whole. DBAs
understand, and developers and DevOps team members need to learn, that
each segment of work contributes to the overall database load. Therefore,
anything that can be done to reduce work at the statement level benefits all
database transactions.

 Leverage indexes for improved performance. Performance drags when large
data scans are performed unnecessarily, making index selection critical.
Whether an index was not considered as the code was built and implemented,
or the statement was written so the optimizer decided that no existing index
met the execution needs, performance suffers. Today’s computing power and
high-performing database engines contribute to response times in the low
milliseconds for simple transactional reads and writes, meaning that DBAs
should seriously question response times that take a second or longer.

 Kernel configuration undergirds databases and applications, ensuring resource
availability. DBAs who lack kernel-tuning experiences are missing an oppor-
tunity to truly take full advantage of the underlying hardware and OS. DBaaS
solutions being preconfigured leaves kernel configuration and tuning in the
hands of the provider. Otherwise, DBAs should work in tandem with SAs to
monitor and tweak the kernel for better performance or go with a PaaS solu-
tion for more control over the database configuration, at the cost of increased
maintenance overhead.

 Network configuration is usually not a high-priority performance differentia-
tor; it becomes a concern only when huge data sets have to be transferred
over the network. Even then, the primary focus is outside of the databases,
requiring OS and/or network configuration tuning. Common modifications
include increasing the maximum transmission unit (MTU) to pack more data
into each network packet, or (when available) using “jumbo” packets that are
dependent on platform options. Either way, the change needs to be done at
both endpoints.

 Data movement impacts performance based on volume. Remember that
networks cannot get faster, only bigger. They are capable of moving more
data at the same speed, but the amount of data that needs to be moved
directly impacts the time needed for the move. The larger data sets tend to
be between the database and the application servers. Latency increases as
distance between point A and B increases, extending the time needed to move
the data. An easy test: place one application server in the data center that
hosts the database and another application server in a location geographically
distanced from the database location. Test data pulls of increasing size until
the data move duration becomes apparent. Then consider that impact spread
across thousands of customers. Even if distance is not a concern, it remains a
wise decision to limit the data volume because client machines possess vary-
ing network–traffic processing capabilities.

Chapter 10 | Overcoming Language and Cultural Barriers
 Between DBAs and DevOps

150

 Virtualization has improved server resource usage and facilitated data center
consolidation from increased compute density per floor tile. DBAs need to
ensure that the assigned virtual resources are “locked” so other guests can-
not “steal” resources. Resource reallocation generally helps to balance loads,
and it produces excellent results in most cases. Databases are one exception
because they do not play well with other kids in the same sandbox. Just for
fun, test the scenario in which a guest steals memory from the database guest.
Nothing says “horrendous performance” faster than the database cache being
swapped in and out of memory!

 Teaching
 Being able to transfer information in your head to someone else’s head should
be a required skill for all team members because one Agile precept (extended
to DevOps) states that each team member should be able to perform all
the team’s functions. For DBAs, that implies that you are unlikely to be the
only person creating automated database change scripts. Instead, you could
be reviewing code and looking at audit files to improve automation execution.
Your DevOps teammates have the responsibility of making you a full-fledged
team member. On the flipside, DBAs must teach DevOps team members
how to manage database changes to support the development pipeline. This
knowledge sharing is a great thing, especially if you want to ever take an unin-
terrupted vacation.

 Teaching can and should be done formally and informally. Formal teaching
requires planning, topic definition, and preparation to ensure that the informa-
tion to be conveyed happens successfully. Informal teaching can be done by
sitting next to a team member (similar to extreme programming paired pro-
gramming) and working through a database change or writing an automation
script. Informal teaching includes talking with teammates while having lunch
together or when gathered at the team’s favorite after-work watering hole.

 Sharing knowledge within teams is step 1. Self-forming teams are a key Agile
and DevOps element, but self-forming teams do not imply forever teams. As
products and demands change, teams eventually disperse and re-form differ-
ently, ready to complete new work. Team redistribution leads to knowledge
distribution. Something you taught to one team can now be shared within
other teams, extending your impact and making teams more effective, while
expanding the organizational knowledge base.

 Personal development should not be replaced by team training; instead, per-
sonal development should inject fresh ideas and skills. Too often, people
attend training specific only to their primary technology skill: Java program-
mers take an advanced Java class, or DBAs take a backup and recovery class
for the database platform they support. My approach has always considered
three perspectives that I believe fit the DevOps model of shared work.

DevOps, DBAs, and DBaaS 151

 Tridirectional Training
 Core technology or skill: deepening your core skill and intending to become
an “expert.”

 Aligned technology or skill: expanding your sphere of impact by adding com-
plementary skills such as surrounding technologies. General or soft skills:
communications, leadership, time management, and business understanding.

 Operationalization
 After the code has been implemented, the final step in the pre-DevOps model
is usually Operations team members figuring out how to implement backups,
monitoring, batch processing, reporting, and more. DevOps makes it feasible
to gather the operational information earlier in the process, which allows
automation to handle much of the operationalization. For example:

• Backups: Backup software or agents can be installed and
configured during the server build, including setting the
schedule.

• Monitoring : Like backups, software or agents can be
installed and configured, and registered to the adminis-
trative or master console, including baseline performance
settings.

• Scheduling batch and report jobs : Load management
pertains to distributing background work across the day
interval to not impact transactional systems while com-
pleting batch and report work. Scheduling can be auto-
mated, even with load protections to delay execution for
a prescribed time if the system load is high.

• Capacity management : Not the annual growth predica-
tions, but real-time activity, monitoring provides opportu-
nities to take proactive steps to add capacity on demand,
or at least to plan for capacity to be added soon. Adding
a fifth application server in real time to a four-node app
server farm quickly provides 25% more capacity, provided
you have the needed server build automation in place.
Once the server is built and ready for traffic, a quick
update to the load balancer can be made to start direct-
ing traffic to the expansion server. Imagine being able to
upgrade the entire farm by building replacement serv-
ers with higher transaction throughput and then making

Chapter 10 | Overcoming Language and Cultural Barriers
 Between DBAs and DevOps

152

changes at the load balancer to insert the new servers
and delete the old servers. DevOps automation opens
new windows to improve operational performance and
resiliency with real-time capacity management. Capacity
management needs to consider more than database
growth; instead it should encompass the full IT supply
chain, up- and downstream.

 Availability
 Resiliency is the capability of a system to continue to function or recover
quickly from failure. Being designed and baked into an application architecture
that results in a high-availability infrastructure implementation able to tolerate
single device failures affords strong continuous business capability. A three-
node server cluster built with enough horsepower that a single node failure
can be absorbed by the two remaining servers without performance degrada-
tion demonstrates resiliency.

 Failover is a methodology for moving a failed or significantly impaired produc-
tion environment onto another similar system, usually located near or in close
proximity to the primary system. One caution comes in the form of the state-
ment “failover to DR,” which may not mean exactly what is stated.

 Cost and complexity decisions weighed against business needs may lead to
investments in like systems or smaller investments to provide a portion of
the transactional capability of the primary systems as a stopgap until the main
production platform can be operationally restored. The transition involves
redirecting all computers communicating to the failed system, which may sim-
ply be updating a few entries in a load balancer or be a complicated and
tedious effort to manually point each interfacing system to the temporary
production environment, having to repeat the same effort to fall back to nor-
mal operations.

 Recoverability
 Recovery dictates backup requirements. Many DBAs ask, “How should I back
up an X TB database?” The question should actually be this: “How should
I back up an X TB database when the business demands a 2-hour recov-
ery window?” Understand that the recovery requirements drives the backup
solution. With DBaaS, the recovery requirement needs to be settled as a
deliverable in the SLA. An in-house backup may be to disk or to a virtual tape
solution (disk) that is capable of recovering an X TB database in under 2 hours.
Because the business wants the recovery to take no longer than 2 hours, the

DevOps, DBAs, and DBaaS 153

recovery must allow time to start the database and reconnect dependent
systems before access is granted.

 Server failures without the aforementioned resiliency models in place to
maintain operations are more complicated to recover. The whole system may
have be to be recovered from backup, or with DevOps automation the host
environment could be rebuilt new from a template package, followed by the
database restore.

 Disaster recovery is a program designed to protect the business from a
catastrophic failure, most likely the destruction of a data center. This form
of recovery must be specifically planned and exercised, with predetermined
executives authorized to declare the event and open the checkbook to cover
the costs of people, vendors, and computing resources needed to recover
automated business operations in a geographically distanced data center.
DRaaS options are relatively new, albeit gaining respect and maturing quickly.

 Business continuity is the business-side recovery process when disaster
strikes, including an event requiring the disaster recovery program to be
activated. Business continuity is more likely to be activated due to a natural
disaster or civil unrest than failure of the company’s data center. Planning and
exercising options lead to success. Knowing how to operate the business dur-
ing crisis—civil, natural disaster, or technology unavailability—covers a much
broader scope than the disaster recovery program.

 DevOps automation, mentioned briefly here, brings a new and exciting option
to the world of recovery. The capability to generate new virtual hosts or full
application host environments on demand quickly presents the opportunity
to improve recovery times. Database hosts can be rebuilt, but the database
must be recovered. More apparently, web and application servers built from
predefined templates and install packages should be considered and tested
for recovery-time comparison. Having the ability to build systems quickly as
a recovery process frees traditional resources for other work. If the current
disaster recovery program includes replication between the primary and DR
site, consider stopping the replication of web and app servers; for example,
instead opt to build these servers on demand, potentially saving bandwidth
costs. Ensure that the DR location has available resources for the automated
build restores.

Chapter 10 | Overcoming Language and Cultural Barriers
 Between DBAs and DevOps

154

 Summary
 DevOps is opportunity. Bringing together talented professionals to complete
new missions by using new methods and tools facilitates business agility and
growth while improving customer experience and developing IT team mem-
bers. Two obstacles—language and culture—can be easily overcome with
frequent communication, the willingness to share experiences, and selfless
knowledge sharing. The end game is to build great DevOps teams that are
capable of delivery software and infrastructure better and faster than ever.

 Adding DBAs to DevOps teams amps up team capabilities while making it
possible to reduce risk by incorporating database builds, configurations, and
changes into the Agile pipeline. This addition also removes a long sidelined
process outlier to just another automation to be included in the orchestration.

I

A
Application performance

management (APM), 7

Automation and code control
auditable, 119
automating out errors, 114–115
bare bones disaster recovery, 120
benefits, 110–111
Chaos management, 119
check-in snowballs, 118
code control, 118
conflicting interests, 110
continuous delivery, 118
Craftsmanship, 108
human vs. computer, 108
leaner model, 109–110
no value-add work, 109
orchestration, 116
performance, 117
release cycle shrink

distinct units of work, 114
parallelism, 113–114
testing, 111–112

roll back/roll over, 119
tribal knowledge, 121
workarounds, 116
zero defects!, 115

AVERAGE() function, 67–68

B
Browser’s Inspect tool, 79

Buffer cache thrashing, 17–18

Business analyst (BA), 3

C
Canary releases, 30

Change advisory board (CAB), 15–16

Chef tool, 54

Code abstraction, 61–62

Containerization, 35

Continuous delivery (CD), 6, 118

Continuous integration, 21

Continuous loopback system, 11

Continuous testing, 21

Couchbase, 53

Create Index statement, 84

Culture, automation, measurement,
sharing (CAMS), 7–11

Cumulative degradation, 6–7

D, E
Dark release, 33

Database administrators (DBAs).
See also DevOps

bridg-ers
collaboration and automation, 16
continuous integration, 21
continuous testing, 21
customer delight, 19
“fail fast, fail forward”model, 20
processes, 19
reciprocal teaching, 17–18
tools of trade, 22
transition, 16–17

Index

© Michael S. Cuppett 2016
M. S. Cuppett, DevOps, DBAs, and DBaaS, DOI 10.1007/978-1-4842-2208-9

156 Index

CAB, 15
integration (see Integrating process)
language and cultural barriers (see

Language and cultural barriers)
molding, 23
value proposition, 23

Database as a Service (DBaaS), 3
access control and auditing, 133
APIs/services methods, 130
architecture

configuration inflexibility, 131
latency, 130

company’s data repositories, 130
continuous integration, 137
customers’ problem impact, 134
for DevOps, 130
encryption, 133
implementation, 129
monitoring and synthetic

transactions, 135
multitiered storage and data

archiving products, 134
network configuration matters, 136
recoverability

catastrophic data center event, 133
data corruption, 132
failures, 132

scalability, 131

Database technology integration
change failures, 51–52
nonrelational databases, 52–53, 56
resources

build information, 47
log file, 47–48
platform readiness, 45
prerequisites, 46
virtualization, 45

rotating toward development, 42–44
source code control

application and database code, 48
availability, 49
CI process, 49
database changes, 50
metadata changes, 49

tools, 54–55

data testing, 38

DevOps
automated testing, 6
business analyst, 3
CAMS, 7–11
continuous delivery, 6
continuous integration, 6
customer experience performance

protectors, 6–7
database selection, 4
infrastructure enablers, 3–4
integrating process

(see Integrating process)
language and cultural barriers (see

Language and cultural barriers)
nonproduction and production

environments, 13
quality assurance, 1–2
SDLC, 11–12
security, 12
sharing performance metrics, 5
Shift-left illustration, 2
technical advisors, 4–5

Disaster Recovery as a
Service (DRaaS), 105

F, G
Fail fast, fail forward model, 20

H
HttpWatch browser proxy capture, 78

I
Input measurement, DBA

core application, with extensive
integration dependencies, 91

customer experience, 88–89
DevOps and virtualization, 89
direct DBA impact

application code, 101
code reuse, 102
database, 99
minimal data touch, 102
operating system, 99
result set, 102
storage system, 100

holistic end-user experience, 90

Database administrators (DBAs) (cont.)

157Index

online retailers design infrastructure and
applications, 88

optimal
application ecosystem, 96
costs, 97
cumulative degradation, 95
foundational/simple troubleshooting

techniques, 96
manufacturing process, 94
NIC, 96
RRPs/IRP, 97

peripheral DBA influence
capacity, 104
DRaaS, 105
end-user devices, 104
network, 103
recoverability, 105

pragmatic, 97
proximity matters, 98
real-time application monitoring, 92
scenarios, 89
transaction time, 93

Integrating processes, 5
canary releases, 30–31
code handling pre-and

postdatabase change, 28–29
containerization, 35
dark release, 33
database changes, 26
database release, 34
data testing, 38
DB/App releases, 27
disruptive release, 26
disruptors, 26
landscape evolution, 34
manual to automatic process, 36
microservices, 34
node migration, 32–33
performance testing, 36–38
release considerations, 29
rolling upgrades, 32
template integration, 36

Incident response plans (IRPs), 97

Infrastructure as a Service (IaaS), 126

J, K
Java virtual machines (JVMs), 35

Jenkins tool, 54

L
Landscape evolution, 34

Language and cultural barriers
audit trail, 146
automation, 142
availability, 152
delivery, 141
deployment, 142
engagement rules, 140
feedback, 142
flow, 141
improvement, 142
integration, 141
operationalization

backup software or agents, 151
capacity management, 151
monitoring, 151
scheduling batch and

report jobs, 151
orchestration, 142
packaging and propagation, 145
performance

code consistency matters, 148
code optimization, 148
data movement impacts, 149
execution plans, 148
kernel configuration, 149
leverage indexes, 149
network configuration, 149
teaching, 150
virtualization, 150
VPD, 148

recoverability, 152
repeatability, 146
resiliency vs. complexity, 143
security, 147
speak, 142
structured and unstructured, 145
tongue and traditions, 143
tridirectional training, 151

Legacy production environment, 37

M
Maximum transmission

unit (MTU), 149

Microservices, 34

MongoDB database, 52, 63

158 Index

N
Neo4j, 53–54

Network interface card (NIC), 96

Node migration, 32–33

Nonrelational databases, 52–53

O
Operationalization

backup software/agents, 151
capacity management, 151
monitoring, 151
scheduling batch and report jobs, 151

Optimizing application performance
binary indicator, 74
call center representatives, 75
code distribution, 76
customer-centric statuses, 82
deployments, 81
excessive testing vets, 81
infrastructure, 75
ITIL ITSM process, 73
melding application performance, 74
packet capture tool, 80
performance isolation

business-empowering function, 85
CI testing, 85
Create Index statement, 84
customer experience, 85
MongoDB database, 84
time-consuming, 85
transaction breakpoints, 83
WAN segment, 84

repeatable tasks, 81
repetitive code testing, 81
shift-left and work, 81
user–reported application

end-to-end response time, 77–80
objective timings, 77

Oracle’s Virtual Private Database (VPD), 148

P
Performance testing, 36–38

Platform as a Service (PaaS), 127

Q
Quality assurance (QA), 1–2

R
Rapid response plans (RRPs), 97

Reciprocal teaching, 17–18

Recovery point objective (RPO), 105

Recovery time objective (RTO), 105

Relational database management
system (RDBMS), 145

S
Sharing performance metrics, 6

Software as a Service (SaaS)
“as a Service” offerings, 126
“as a Service” products, 126
ecosystem, 124

Software development life
cycle (SDLC), 1, 2, 4, 5,
10–12, 19, 22, 42, 110, 112

Source code control, 36
application and database code, 48
availability, 49
CI process, 49
database changes, 50
metadata changes, 49

Stateful and stateless programming
API/microservices, 58
code abstraction, 61–62
coding, 67–70
database schema, 64–67
data integrity, 61
definition, 57
functional data requirements, 60
live implementations, 59
NoSQL database, 61
NoSQL query, 64
redefining availability, 59–60
SQL query, 63, 70
TCP, 58
UDP, 58
web page, 71

159Index

T
TeamCity tool, 55

Template integration, 36

Template versioning, 36

Transmission Control Protocol (TCP), 58

U, V, W, X, Y, Z
User Datagram Protocol (UDP), 58

User interface (UI), 112

Utility computing. See Infrastructure as
a Service (IaaS)

	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: DevOps for DBAs
	Infrastructure Enablers
	“Best Database for the Job” Proponents
	Technical Advisors
	“Metrics for All to See” Facilitators
	DevOps Success Metrics

	Customer Experience Performance Protectors
	CAMS
	Culture
	Automation
	Measurement
	Sharing

	Thinking Differently
	Summary

	Chapter 2: DBAs for DevOps
	DBA “Undersight”
	“Bridg-ers”
	Transition
	Reciprocal Teaching
	Processes Anew
	Quick to Value, Delight the Customer
	Fail Forward, Fail Fast
	Continuous Integration, Continuous Testing
	Tools of the Trade

	Molding DBAs
	DBA Value Proposition
	Summary

	Chapter 3: Integrating DBA and DevOps Processes
	Code Handling Pre- and Postdatabase Change
	Release Considerations
	Canary Releases
	Rolling Upgrades
	Node Migration
	Dark Releases
	Database Release
	Landscape Evolution
	Microservices
	Containerization
	Manual to Automatic
	Template Integration
	Performance Testing
	Test Data
	Summary

	Chapter 4: Integrating Database Technologies and DevOps Tools
	Rotate Toward Development
	Resources at the Ready
	Platform Readiness
	Prerequisites
	Build
	Log File

	Source Code Control
	Understanding Change Failures
	Finally, Tools and Databases
	Nonrelational Databases
	Tools

	Databases and Tools—So Happy Together
	Doing DevOps
	Summary

	Chapter 5: Stateful Data, Stateless Database Schema, and Code
	Network “States”
	Live Implementations
	Redefining Availability
	Functional Data Requirements
	Stateful Data
	Code Abstraction
	Dynamic Queries
	Stateless Database Schema
	Stateful Code
	Stateless Code
	Stateless SQL
	Stateless Web
	Summary

	Chapter 6: Optimizing Application Performance with Change Management Improvements
	Change Analysis
	Understanding User-Reported Problems
	Objective Timings
	End-to-End Response Time

	Yes, There Really Is a Problem
	DevOps Answers
	Performance Isolation
	Summary

	Chapter 7: Measuring DBA Inputs to End-User Experience and Business Value
	Customer Experience
	Good News: DevOps and Virtualization
	Holistic End-User Experience
	“See” the Application Ecosystem
	Real-time Application Monitoring
	Measures that Matter
	Optimal
	Cumulative Degradation
	Simply Overlooked
	RRPs/IRP
	The Fix Should Not Cost More Than the Problem

	Pragmatic

	Proximity Matters
	Direct DBA Impact
	Database
	Operating System
	Storage System
	Application Code
	Result Set
	Minimal Data Touch
	Code Reuse

	Peripheral DBA Influence
	Network
	End-User Devices
	Capacity

	Recoverability
	DRaaS

	Bringing It All Together
	Summary

	Chapter 8: Automation and Code Control
	Craftsmanship
	Human versus Computer
	Getting Lean
	Conflicting Interests
	Automation Benefits
	Release Cycle Shrink
	Testing
	Parallelism
	Not Working Does Not Mean Not Working

	Automating Out Errors
	Zero Defects!
	Death by Workaround
	Orchestration
	Performance
	Code Control
	Check-in Snowballs
	Continuous Delivery (CD)
	Easy to Roll Back or Roll Over
	Auditable
	Managing Chaos
	Bare Bones Disaster Recovery
	Tribal Knowledge Retained
	Summary

	Chapter 9: DBaaS, IaaS, and PaaS
	SaaS
	SaaS Ecosystem
	“as a Service”
	IaaS
	PaaS
	DBaaS
	Leveraging DBaaS for DevOps
	Architecture
	Latency
	Configuration Inflexibility

	Scalability
	Recoverability
	Data Corruption
	Failure: DB Down
	Catastrophic Data Center Event

	Encryption
	Access Control and Auditing
	Data Archiving
	Other Customers’ Problem Impact
	Monitoring and Synthetic Transactions
	Network Configuration Matters
	DBaaS and Continuous Integration
	Summary

	Chapter 10: Overcoming Language and Cultural Barriers Between DBAs and DevOps
	Rules of Engagement
	DevOps Speak
	Automation and Orchestration

	DBA “Speak”
	Language and Culture: More than the Spoken Tongue and Traditions
	Resiliency versus Complexity
	Building Simplicity

	Packaging and Propagation
	Structured and Unstructured
	Audit Trail
	Repeatability
	Security
	Performance
	Teaching
	Tridirectional Training
	Operationalization
	Availability
	Recoverability
	Summary

	Index

