
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Anders Göransson

Efficient Android Threading

www.allitebooks.com

http://www.allitebooks.org

Efficient Android Threading
by Anders Göransson

Copyright © 2014 Anders Göransson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Rachel Roumeliotis
Production Editor: Melanie Yarbrough
Copyeditor: Eliahu Sussman
Proofreader: Amanda Kersey

Indexer: Ellen Troutman-Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

May 2014: First Edition

Revision History for the First Edition:

2014-05-21: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449364137 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Efficient Android Threading, the cover image of mahi-mahi, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36413-7

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449364137
http://www.allitebooks.org

To Anna, Fabian, and Ida.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface. xi

1. Android Components and the Need for Multiprocessing. 1
Android Software Stack 1
Application Architecture 2

Application 3
Components 3

Application Execution 5
Linux Process 6
Lifecycle 6

Structuring Applications for Performance 9
Creating Responsive Applications Through Threads 9

Summary 11

Part I. Fundamentals

2. Multithreading in Java. 15
Thread Basics 15

Execution 15
Single-Threaded Application 17
Multithreaded Application 17

Thread Safety 19
Intrinsic Lock and Java Monitor 20
Synchronize Access to Shared Resources 22
Example: Consumer and Producer 24

Task Execution Strategies 26
Concurrent Execution Design 27

v

www.allitebooks.com

http://www.allitebooks.org

Summary 27

3. Threads on Android. 29
Android Application Threads 29

UI Thread 29
Binder Threads 30
Background Threads 30

The Linux Process and Threads 31
Scheduling 34

Summary 37

4. Thread Communication. 39
Pipes 39

Basic Pipe Use 40
Example: Text Processing on a Worker Thread 42

Shared Memory 44
Signaling 45

BlockingQueue 46
Android Message Passing 47

Example: Basic Message Passing 49
Classes Used in Message Passing 51
Message 55
Looper 58
Handler 60
Removing Messages from the Queue 68
Observing the Message Queue 70

Communicating with the UI Thread 73
Summary 74

5. Interprocess Communication. 75
Android RPC 75

Binder 76
AIDL 77

Synchronous RPC 79
Asynchronous RPC 81

Message Passing Using the Binder 83
One-Way Communication 84
Two-Way Communication 86

Summary 87

6. Memory Management. 89
Garbage Collection 89

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Thread-Related Memory Leaks 91
Thread Execution 92
Thread Communication 98

Avoiding Memory Leaks 101
Use Static Inner Classes 101
Use Weak References 101
Stop Worker Thread Execution 102
Retain Worker Threads 102
Clean Up the Message Queue 102

Summary 103

Part II. Asynchronous Techniques

7. Managing the Lifecycle of a Basic Thread. 107
Basics 107

Lifecycle 107
Interruptions 108
Uncaught Exceptions 110

Thread Management 112
Definition and Start 112
Retention 114

Summary 119

8. HandlerThread: A High-Level Queueing Mechanism. 121
Fundamentals 121
Lifecycle 123
Use Cases 124

Repeated Task Execution 125
Related Tasks 125
Task Chaining 128
Conditional Task Insertion 131

Summary 131

9. Control over Thread Execution Through the Executor Framework. 133
Executor 133
Thread Pools 136

Predefined Thread Pools 136
Custom Thread Pools 137
Designing a Thread Pool 138
Lifecycle 142
Shutting Down the Thread Pool 143

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Thread Pool Uses Cases and Pitfalls 145
Task Management 146

Task Representation 146
Submitting Tasks 147
Rejecting Tasks 151

ExecutorCompletionService 152
Summary 154

10. Tying a Background Task to the UI Thread with AsyncTask. 157
Fundamentals 157

Creation and Start 160
Cancellation 161
States 162

Implementing the AsyncTask 163
Example: Downloading Images 164

Background Task Execution 167
Application Global Execution 169
Execution Across Platform Versions 170
Custom Execution 172

AsyncTask Alternatives 173
When an AsyncTask Is Trivially Implemented 173
Background Tasks That Need a Looper 174
Local Service 174
Using execute(Runnable) 174

Summary 175

11. Services. 177
Why Use a Service for Asynchronous Execution? 177
Local, Remote, and Global Services 179
Creation and Execution 181
Lifecycle 181
Started Service 183

Implementing onStartCommand 184
Options for Restarting 184
User-Controlled Service 186
Task-Controlled Service 190

Bound Service 192
Local Binding 194

Choosing an Asynchronous Technique 197
Summary 198

12. IntentService. 199

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Fundamentals 199
Good Ways to Use an IntentService 201

Sequentially Ordered Tasks 201
Asynchronous Execution in BroadcastReceiver 204

IntentService Versus Service 207
Summary 207

13. Access ContentProviders with AsyncQueryHandler. 209
Brief Introduction to ContentProvider 209
Justification for Background Processing of a ContentProvider 211
Using the AsyncQueryHandler 212

Example: Expanding Contact List 214
Understanding the AsyncQueryHandler 217
Limitations 218

Summary 218

14. Automatic Background Execution with Loaders. 219
Loader Framework 220

LoaderManager 221
LoaderCallbacks 224
AsyncTaskLoader 225

Painless Data Loading with CursorLoader 226
Using the CursorLoader 227
Example: Contact list 227
Adding CRUD Support 229

Implementing Custom Loaders 233
Loader Lifecycle 233
Background Loading 234
Content Management 236
Delivering Cached Results 237
Example: Custom File Loader 238
Handling Multiple Loaders 241

Summary 242

15. Summary: Selecting an Asynchronous Technique. 243
Keep It Simple 244
Thread and Resource Management 244
Message Communication for Responsiveness 245
Avoid Unexpected Task Termination 246
Easy Access to ContentProviders 247

A. Bibliography. 249

Table of Contents | ix

Index. 251

x | Table of Contents

Preface

Efficient Android Threading explores how to achieve robust and reliable multithreaded
Android applications. We’ll look at the asynchronous mechanisms that are available in
the Android SDK and determine appropriate implementations to achieve fast, respon‐
sive, and well-structured applications.

Let’s face it: multithreading is required to create applications with a great user experi‐
ence, but it also increases the complexity of the application and the likelihood of runtime
errors. The complexity partly comes from the built-in difficulty of execution on multiple
threads and from applications that aren’t utilizing the Android platform efficiently.

This book aims to guide application developers to selecting an asynchronous mecha‐
nism based on an understanding of its advantages and difficulties. By using the right
asynchronous mechanism at the right time, much of the complexity is transferred from
the application to the platform, making the application code more maintainable and
less error prone. As a rule of thumb, asynchronous execution should not induce more
complexity to the code than necessary, which is achieved through a wise choice from
the palette of asynchronous mechanisms in Android.

Although a high-level asynchronous mechanism can be very convenient to use, it still
needs to be understood—not only used—or the application may suffer from equally
difficult runtime errors, performance degradation, or memory leaks. Therefore, this
book not only contains practical guidelines and examples, but also explores the under‐
lying enablers for asynchronous execution on Android.

Audience
This book is for Java programmers who have learned the basics of Android program‐
ming. The book introduces techniques that are fundamental to writing robust and re‐
sponsive applications, using standard Android libraries.

xi

Contents of This Book
This book contains two main parts: Part I and Part II. The first part describes the foun‐
dation for threads on Android—i.e., Java, Linux, Handlers—and its impact on the ap‐
plication. The second part is more hands-on, looking into the asynchronous mecha‐
nisms that an application has at its disposal.

Part I describes how Java handles threads. As an Android programmer, you will some‐
times use these libraries directly, and understanding their behavior is important for
using the higher-level constructs in Part II correctly.
Chapter 1

Explains how the structure of the Android runtime and how the various compo‐
nents of an Android application affect the use of threads and multiprocessing.

Chapter 2
Covers the fundamentals of concurrent execution in Java.

Chapter 3
Describes how Android handles threads and how the application threads execute
in the Linux OS. It includes important topics like scheduling and control groups,
as well as their impact on responsiveness.

Chapter 4
Covers basic communication between threads, such as shared memory, signals, and
the commonly used Android messages.

Chapter 5
Shows how Android enhances the IPC mechanisms in Linux with mechanisms such
as RPC and messaging.

Chapter 6
Explains how to avoid leaks, which can cause apps to degrade the system and be
uninstalled by users.

Part II covers the higher-level libraries and constructs in Android that make program‐
ming with threads safer and easier.
Chapter 7

Describes the most basic asynchronous construction, i.e, java.lang.Thread, and
how to handle the various states and problems that can occur.

Chapter 8
Shows a convenient way to run tasks sequentially in the background.

Chapter 9
Offers techniques for dealing with scheduling, errors, and other aspects of thread
handling, such as thread pools.

xii | Preface

Chapter 10
Covers the AsyncTask—probably the most popular asynchronous technique—and
how to use it correctly to avoid its pitfalls.

Chapter 11
Covers the essential Service component, which is useful for functionality that you
want to offer to multiple applications or to keep the application alive during back‐
ground execution.

Chapter 12
Builds on the previous chapter with a discussion of a useful technique for executing
off the main UI thread.

Chapter 13
A high-level mechanism that simplifies fast asynchronous access to content pro‐
viders.

Chapter 14
Discover how the UI can be updated with loaders, where new data is delivered
asynchronously whenever the content changes.

Chapter 15
Given all the techniques described throughout this book, how do you choose the
right one for your app? This chapter offers guidelines for making this choice.

Conventions Used in this Book
The following typographical conventions are used in this book:
Italic

Used for emphasis, new terms, URLs, commands and utilities, and file and directory
names.

Constant width

Indicates variables, functions, types, objects, and other programming constructs.
Constant width italic

Indicates place-holders in code or commands that should be replaced by appro‐
priate values.

This element signifies a tip, suggestion, or a general note.

Preface | xiii

This element indicates a trap or pitfall to watch out for, typically
something that isn’t immediately obvious.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/andersgoransson/eatbookexamples.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you are reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate attribution. An attribution usually includes the title, author, publisher,
and ISBN.

If you believe that your use of code examples falls outside of fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Examples will be maintained at: git@github.com:andersgoransson/eatbookexamples.git

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐

xiv | Preface

https://github.com/andersgoransson/eatbookexamples
mailto:permissions@oreilly.com
mailto:git@github.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/efficient-android-threading.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://bit.ly/efficient-android-threading.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgements
The writing of a book may often be seen as a lonely task, but that only holds for the late-
night hours when you just want to get that last paragraph written before you absolutely
have to get some sleep. In truth, the writing is surrounded by people who made the book
possible.

First of all, I would like to thank Rachel Roumeliotis at O’Reilly for approaching me
with an idea to write a book and helping out with all the initial steps in the writing
process. In fact, all the people at O’Reilly whom I’ve had the pleasure to work with have
shown great professionalism and helpfulness throughout the writing of this book, which
made it easy for me to focus on the writing. In particular, I would like to thank editor
Andy Oram, who has played a key role in making this book a reality. He has patiently
worked with me on this project, always challenging my drafts and providing invaluable
feedback.

Preface | xv

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://bit.ly/efficient-android-threading
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://bit.ly/efficient-android-threading
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Just like writing complex software, the writing of a book includes a lot of bugs along the
way, and every chapter undergoes a bugfixing and stabilization period before a final
release. I’ve had the best of help to pinpoint problems in the drafts by technical reviewers
Jeff Six and Ian Darwin, who have provided numerous comments that ranged from
missing commas to coding errors and structural improvements. Thanks a lot!

A book can’t be written without a supportive family. Thanks for putting up with my
late-night working hours. Truth be told, I hold it as unlikely that this book will ever be
read by you; nevertheless, I hope it will be a part of your future bookshelf…

xvi | Preface

CHAPTER 1

Android Components and
the Need for Multiprocessing

Before we immerse ourselves in the world of threading, we will start with an introduc‐
tion to the Android platform, the application architecture, and the application’s execu‐
tion. This chapter provides a baseline of knowledge required for an effective discussion
of threading in the rest of the book, but a complete information on the Android platform
can be found in the official documentation or in most of the numerous Android pro‐
gramming books on the market.

Android Software Stack
Applications run on top of a software stack that is based on a Linux kernel, native C/C++
libraries, and a runtime that executes the application code (Figure 1-1).

Figure 1-1. Android software stack

The major building blocks of the Android software stack are:

1

https://developer.android.com

Applications
Android applications that are implemented in Java. They utilize both Java and An‐
droid framework libraries.

Core Java
The core Java libraries used by applications and the application framework. It is not
a fully compliant Java SE or ME implementation, but a subset of the retired Apache
Harmony implementation, based on Java 5. It provides the fundamental Java
threading mechanisms: the java.lang.Thread class and java.util.concurrent
package.

Application framework
The Android classes that handle the window system, UI toolkit, resources, and so
on—basically everything that is required to write an Android application in Java.
The framework defines and manages the lifecycles of the Android components and
their intercommunication. Furthermore, it defines a set of Android-specific asyn‐
chronous mechanisms that applications can utilize to simplify the thread manage‐
ment: HandlerThread, AsyncTask, IntentService, AsyncQueryHandler, and Load
ers. All these mechanisms will be described in this book.

Native libraries
C/C++ libraries that handle graphics, media, database, fonts, OpenGL, etc. Java
applications normally don’t interact directly with the native libraries because the
Application framework provides Java wrappers for the native code.

Runtime
Sandboxed runtime environment that executes compiled Android application code
in a virtual machine, with an internal byte code representation. Every application
executes in its own runtime, either Dalvik or ART (Android Runtime). The latter
was added in KitKat (API level 19) as an optional runtime that can be enabled by
the user, but Dalvik is the default runtime at the time of writing.

Linux kernel
Underlying operating system that allows applications to use the hardware functions
of the device: sound, network, camera, etc. It also manages processes and threads.
A process is started for every application, and every process holds a runtime with
a running application. Within the process, multiple threads can execute the appli‐
cation code. The kernel splits the available CPU execution time for processes and
their threads through scheduling.

Application Architecture
The cornerstones of an application are the Application object and the Android com‐
ponents: Activity, Service, BroadcastReceiver, and ContentProvider.

2 | Chapter 1: Android Components and the Need for Multiprocessing

http://harmony.apache.org
http://harmony.apache.org

Application
The representation of an executing application in Java is the android.app.Applica
tion object, which is instantiated upon application start and destroyed when the ap‐
plication stops (i.e., an instance of the Application class lasts for the lifetime of the
Linux process of the application). When the process is terminated and restarted, a new
Application instance is created.

Components
The fundamental pieces of an Android application are the components managed by the
runtime: Activity, Service, BroadcastReceiver, and ContentProvider. The config‐
uration and interaction of these components define the application’s behavior. These
entities have different responsibilities and lifecycles, but they all represent application
entry points, where the application can be started. Once a component is started, it can
trigger another component, and so on, throughout the application’s lifecycle. A com‐
ponent is trigged to start with an Intent, either within the application or between ap‐
plications. The Intent specifies actions for the receiver to act upon—for instance,
sending an email or taking a photograph—and can also provide data from the sender
to the receiver. An Intent can be explicit or implicit:
Explicit Intent

Defines the fully classified name of the component, which is known within the
application at compile time.

Implicit Intent
A runtime binding to a component that has defined a set of characteristics in an
IntentFilter. If the Intent matches the characteristics of a component’s Intent
Filter, the component can be started.

Components and their lifecycles are Android-specific terminologies, and they are not
directly matched by the underlying Java objects. A Java object can outlive its component,
and the runtime can contain multiple Java objects related to the same live component.
This is a source of confusion, and as we will see in Chapter 6, it poses a risk for memory
leaks.

An application implements a component by subclassing it, and all components in an
application must be registered in the AndroidManifest.xml file.

Activity

An Activity is a screen—almost always taking up the device’s full screen—shown to
the user. It displays information, handles user input, and so on. It contains the UI com‐
ponents—buttons, texts, images, and so forth—shown on the screen and holds an object

Application Architecture | 3

reference to the view hierarchy with all the View instances. Hence, the memory footprint
of an Activity can grow large.

When the user navigates between screens, Activity instances form a stack. Navigation
to a new screen pushes an Activity to the stack, whereas backward navigation causes
a corresponding pop.

In Figure 1-2, the user has started an initial Activity A and navigated to B while A was
finished, then on to C and D. A, B, and C are full-screen, but D covers only a part of the
display. Thus, A is destroyed, B is totally obscured, C is partly shown, and D is fully
shown at the top of the stack. Hence, D has focus and receives user input. The position
in the stack determines the state of each Activity:

• Active in the foreground: D
• Paused and partly visible: C
• Stopped and invisible: B
• Inactive and destroyed: A

Figure 1-2. Activity stack

The state of an application’s topmost Activity has an impact on the application’s system
priority—also known as process rank—which in turn affects both the chances of ter‐
minating an application (“Application termination” on page 7) and the scheduled exe‐
cution time of the application threads (Chapter 3).

An Activity lifecycle ends either when the user navigates back—for example, presses
the back button—or when the Activity explicitly calls finish().

4 | Chapter 1: Android Components and the Need for Multiprocessing

Service

A Service can execute invisibly in the background without direct user interaction. It is
typically used to offload execution from other components, when the operations can
outlive their lifetime. A Service can be executed in either a started or a bound mode:
Started Service

The Service is started with a call to Context.startService(Intent) with an ex‐
plicit or implicit Intent. It terminates when Context.stopService(Intent) is
called.

Bound Service
Multiple components can bind to a Service through Context.bindService(In
tent, ServiceConnection, int) with explicit or implicit Intent parameters. Af‐
ter the binding, a component can interact with the Service through the Service
Connection interface, and it unbinds from the Service through Context.unbind
Service(ServiceConnection). When the last component unbinds from the Ser
vice, it is destroyed.

ContentProvider
An application that wants to share substantial amounts of data within or between ap‐
plications can utilize a ContentProvider. It can provide access to any data source, but
it is most commonly used in collaboration with SQLite databases, which are always
private to an application. With the help of a ContentProvider, an application can pub‐
lish that data to applications that execute in remote processes.

BroadcastReceiver
This component has a very restricted function: it listens for intents sent from within the
application, remote applications, or the platform. It filters incoming intents to determine
which ones are sent to the BroadcastReceiver. A BroadcastReceiver should be reg‐
istered dynamically when you want to start listening for intents, and unregistered when
it stops listening. If it is statically registered in the AndroidManifest, it listens for intents
while the application is installed. Thus, the BroadcastReceiver can start its associated
application if an Intent matches the filter.

Application Execution
Android is a multiuser, multitasking system that can run multiple applications at the
same time and let the user switch between applications without noticing a significant
delay. The Linux kernel handles the multitasking, and application execution is based on
Linux processes.

Application Execution | 5

Linux Process
Linux assigns every user a unique user ID, basically a number tracked by the OS to keep
the users apart. Every user has access to private resources protected by permissions, and
no user (except root, the super user, which does not concern us here) can access another
user’s private resources. Thus, sandboxes are created to isolate users. In Android, every
application package has a unique user ID; for example, an application in Android cor‐
responds to a unique user in Linux and cannot access other applications’ resources.

What Android adds to each process is a runtime execution environment, such as the
Dalvik virtual machine, for each instance of an application. Figure 1-3 shows the rela‐
tionship between the Linux process model, the VM, and the application.

Figure 1-3. Applications execute in different processes and VMs

By default, applications and processes have a one-to-one relationship, but if required,
it is possible for an application to run in several processes, or for several applications to
run in the same process.

Lifecycle
The application lifecycle is encapsulated within its Linux process, which, in Java, maps
to the android.app.Application class. The Application object for each app starts
when the runtime calls its onCreate() method. Ideally, the app terminates with a call
by the runtime to its onTerminate(), but an application cannot rely upon this. The
underlying Linux process may have been killed before the runtime had a chance to call
onTerminate(). The Application object is the first component to be instantiated in a
process and the last to be destroyed.

Application start
An application is started when one of its components is initiated for execution. Any
component can be the entry point for the application, and once the first component is
triggered to start, a Linux process is started—unless it is already running—leading to
the following startup sequence:

1. Start Linux process.

6 | Chapter 1: Android Components and the Need for Multiprocessing

2. Create runtime.
3. Create Application instance.
4. Create the entry point component for the application.

Setting up a new Linux process and the runtime is not an instantaneous operation. It
can degrade performance and have a noticeable impact on the user experience. Thus,
the system tries to shorten the startup time for Android applications by starting a special
process called Zygote on system boot. Zygote has the entire set of core libraries preloa‐
ded. New application processes are forked from the Zygote process without copying the
core libraries, which are shared across all applications.

Application termination
A process is created at the start of the application and finishes when the system wants
to free up resources. Because a user may request an application at any later time, the
runtime avoids destroying all its resources until the number of live applications leads
to an actual shortage of resources across the system. Hence, an application isn’t auto‐
matically terminated even when all of its components have been destroyed.

When the system is low on resources, it’s up to the runtime to decide which process
should be killed. To make this decision, the system imposes a ranking on each process
depending on the application’s visibility and the components that are currently execut‐
ing. In the following ranking, the bottom-ranked processes are forced to quit before the
higher-ranked ones. With the highest first, the process ranks are:
Foreground

Application has a visible component in front, Service is bound to an Activity in
front in a remote process, or BroadcastReceiver is running.

Visible
Application has a visible component but is partly obscured.

Service
Service is executing in the background and is not tied to a visible component.

Background
A nonvisible Activity. This is the process level that contains most applications.

Empty
A process without active components. Empty processes are kept around to improve
startup times, but they are the first to be terminated when the system reclaims
resources.

In practice, the ranking system ensures that no visible applications will be terminated
by the platform when it runs out of resources.

Application Execution | 7

Lifecycles of Two Interacting Applications
This example illustrates the lifecycles of two processes, P1 and P2, that interact in a
typical way (Figure 1-4). P1 is a client application that invokes a Service in P2, a server
application. The client process, P1, starts when it is triggered by a broadcasted Intent.
At startup, the process starts both a BroadcastReceiver and the Application instance.
After a while, an Activity is started, and during all of this time, P1 has the highest
possible process rank: Foreground.

Figure 1-4. Client application starts Service in other process

The Activity offloads work to a Service that runs in process P2, which starts the
Service and the associated Application instance. Therefore, the application has split
the work into two different processes. The P1 Activity can terminate while the P2
Service keeps running.

Once all components have finished—the user has navigated back from the Activity in
P1, and the Service in P2 is asked by some other process or the runtime to stop—both
processes are ranked as empty, making them plausible candidates for termination by
the system when it requires resources.

A detailed list of the process ranks during the execution appears in Table 1-1.

8 | Chapter 1: Android Components and the Need for Multiprocessing

Table 1-1. Process rank transitions
Application state P1 process rank P2 process rank

P1 starts with BroadcastReceiver entry point Foreground N/A

P1 starts Activity Foreground N/A

P1 starts Service entry point in P2 Foreground Foreground

P1 Activity is destroyed Empty Service

P2 Service is stopped Empty Empty

It should be noted that there is a difference between the actual application lifecycle—
defined by the Linux process—and the perceived application lifecycle. The system can
have multiple application processes running even while the user perceives them as ter‐
minated. The empty processes are lingering—if system resources permit it—to shorten
the startup time on restarts.

Structuring Applications for Performance
Android devices are multiprocessor systems that can run multiple operations simulta‐
neously, but it is up to each application to ensure that operations can be partitioned and
executed concurrently to optimize application performance. If the application doesn’t
enable partitioned operations but prefers to run everything as one long operation, it
can exploit only one CPU, leading to suboptimal performance. Unpartitioned opera‐
tions must run synchronously, whereas partitioned operations can run asynchronous‐
ly. With asynchronous operations, the system can share the execution among multiple
CPUs and therefore increase throughput.

An application with multiple independent tasks should be structured to utilize asyn‐
chronous execution. One approach is to split application execution into several pro‐
cesses, because those can run concurrently. However, every process allocates memory
for its own substantial resources, so the execution of an application in multiple processes
will use more memory than an application in one process. Furthermore, starting and
communicating between processes is slow, and not an efficient way of achieving asyn‐
chronous execution. Multiple processes may still be a valid design, but that decision
should be independent of performance. To achieve higher throughput and better per‐
formance, an application should utilize multiple threads within each process.

Creating Responsive Applications Through Threads
An application can utilize asynchronous execution on multiple CPU’s with high
throughput, but that doesn’t guarantee a responsive application. Responsiveness is the
way the user perceives the application during interaction: that the UI responds quickly
to button clicks, smooth animations, etc. Basically, performance from the perspective

Structuring Applications for Performance | 9

1. Also known as the main thread, but throughout this book we stick to the convention of calling it the “UI
thread.”

of the user experienced is determined by how fast the application can update the UI
components. The responsibility for updating the UI components lies with the UI
thread, which is the only thread the system allows to update UI components.1

To make the application responsive, it should ensure that no long-running tasks are
executed on the UI thread. If they do, all the other execution on that thread will be
delayed. Typically, the first symptom of executing long-running tasks on the UI thread
is that the UI becomes unresponsive because it is not allowed to update the screen or
accept user button presses properly. If the application delays the UI thread too long,
typically 5-10 seconds, the runtime displays an “Application Not Responding” (ANR)
dialog to the user, giving her an option to close the application. Clearly, you want to
avoid this. In fact, the runtime prohibits certain time-consuming operations, such as
network downloads, from running on the UI thread.

So, long operations should be handled on a background thread. Long-running tasks
typically include:

• Network communication
• Reading or writing to a file
• Creating, deleting, and updating elements in databases
• Reading or writing to SharedPreferences
• Image processing
• Text parsing

What Is a Long Task?
There is no fixed definition of a long task or a clear indication when a task should execute
on a background thread, but as soon as a user perceives a lagging UI—for example, slow
button feedback and stuttering animations—it is a signal that the task is too long to run
on the UI thread. Typically, animations are a lot more sensitive to competing tasks on
the UI thread than button clicks, because the human brain is a bit vague about when a
screen touch actually happened. Hence, let us do some coarse reasoning with animations
as the most demanding use case.

Animations are updated in an event loop where every event updates the animation with
one frame, i.e., one drawing cycle. The more drawing cycles that can be executed per
time frame, the better the animation is perceived. If the goal is to do 60 drawing cycles
per second—a.k.a. frames per second (fps)—every frame has to render within 16 ms. If

10 | Chapter 1: Android Components and the Need for Multiprocessing

another task is running on the UI thread simultaneously, both the drawing cycle and
the secondary task have to finish within 16 ms to avoid a stuttering animation. Conse‐
quently, a task may require less than 16 ms execution time and still be considered long.

The example and calculations are coarse and meant as an indication of how an appli‐
cation’s responsiveness can be affected not only by network connections that last for
several seconds, but also tasks that at first glance look harmless. Bottlenecks in your
application can hide anywhere.

Threads in Android applications are as fundamental as any of the component building
blocks. All Android components and system callbacks—unless denoted otherwise—run
on the UI thread and should use background threads when executing longer tasks.

Summary
An Android application runs on top of a Linux OS in a Dalvik runtime, which is con‐
tained in a Linux process. Android applies a process-ranking system that priorities the
importance of each running application to ensure that it is only the least prioritized
applications that are terminated. To increase performance, an application should split
operations among several threads so that the code is executed concurrently. Every Linux
process contains a specific thread that is responsible for updating the UI. All long op‐
erations should be kept off the UI thread and executed on other threads.

Summary | 11

www.allitebooks.com

http://www.allitebooks.org

PART I

Fundamentals

This part of the book covers the building blocks for asynchronous processing provided
by Linux, Java, and Android. You should understand how these work, the trade-offs
involved in using the various techniques, and what risks they introduce. This under‐
standing will give you the basis for using the techniques described in Part II.

CHAPTER 2

Multithreading in Java

Every Android application should adhere to the multithreaded programming model
built in to the Java language. With multithreading comes improvements to performance
and responsiveness that are required for a great user experience, but it is accompanied
by increased complexities:

• Handling the concurrent programming model in Java
• Keeping data consistency in a multithreaded environment
• Setting up task execution strategies

Thread Basics
Software programming is all about instructing the hardware to perform an action (e.g.,
show images on a monitor, store data on the filesystem, etc.). The instructions are de‐
fined by the application code that the CPU processes in an ordered sequence, which is
the high-level definition of a thread. From an application perspective, a thread is exe‐
cution along a code path of Java statements that are performed sequentially. A code path
that is sequentially executed on a thread is referred to as a task, a unit of work that
coherently executes on one thread. A thread can either execute one or multiple tasks in
sequence.

Execution
A thread in an Android application is represented by java.lang.Thread. It is the most
basic execution environment in Android that executes tasks when it starts and termi‐
nates when the task is finished or there are no more tasks to execute; the alive time of
the thread is determined by the length of the task. Thread supports execution of tasks

15

that are implementions of the java.lang.Runnable interface. An implementation de‐
fines the task in the run method:

private class MyTask implements Runnable {
 public void run() {
 int i = 0; // Stored on the thread local stack.
 }
}

All the local variables in the method calls from within a run() method—direct or in‐
direct—will be stored on the local memory stack of the thread. The task’s execution is
started by instantiating and starting a Thread:

Thread myThread = new Thread(new MyTask());
myThread.start();

On the operating system level, the thread has both an instruction and a stack pointer.
The instruction pointer references the next instruction to be processed, and the stack
pointer references a private memory area—not available to other threads—where
thread-local data is stored. Thread local data is typically variable literals that are defined
in the Java methods of the application.

A CPU can process instructions from one thread at a time, but a system normally has
multiple threads that require processing at the same time, such as a system with multiple
simultaneously running applications. For the user to perceive that applications can run
in parallel, the CPU has to share its processing time between the application threads.
The sharing of a CPU’s processing time is handled by a scheduler. That determines what
thread the CPU should process and for how long. The scheduling strategy can be im‐
plemented in various ways, but it is mainly based on the thread priority: a high-priority
thread gets the CPU allocation before a low-priority thread, which gives more execution
time to high-priority threads. Thread priority in Java can be set between 1 (lowest) and
10 (highest), but—unless explicitly set—the normal priority is 5:

myThread.setPriority(8);

If, however, the scheduling is only priority based, the low-priority threads may not get
enough processing time carry out the job it was intended for—known as starvation.
Hence, schedulers also take the processing time of the threads into account when
changing to a new thread. A thread change is known as context switch. A context switch
starts by storing the state of the executing thread so that the execution can be resumed
at a later point, whereafter that thread has to wait. The scheduler then restores another
waiting thread for processing.

Two concurrently running threads—executed by a single processor—are split into ex‐
ecution intervals, as Figure 2-1 shows:

Thread T1 = new Thread(new MyTask());
T1.start();

16 | Chapter 2: Multithreading in Java

Thread T2 = new Thread(new MyTask());
T2.start();

Figure 2-1. Two threads executing on one CPU. The context switch is denoted C.

Every scheduling point includes a context switch, where the operating system has to use
the CPU to carry out the switch. One such context switch is noted as C in the figure.

Single-Threaded Application
Each application has at least one thread that defines the code path of execution. If no
more threads are created, all of the code will be processed along the same code path,
and an instruction has to wait for all preceding intructions to finish before it can be
processed.

The single-threaded execution is a simple programming model with deterministic ex‐
ecution order, but most often it is not a sufficient approach because instructions may
be postponed significantly by preceding instructions, even if the latter instruction is not
depending on the preceeding instructions. For example, a user who presses a button on
the device should get immediate visual feedback that the button is pressed; but in a
single-threaded environment, the UI event can be delayed until preceding instructions
have finished execution, which degrades both performance and responsiveness. To solve
this, an application needs to split the execution into multiple code paths, i.e., threads.

Multithreaded Application
With multiple threads, the application code can be split into several code paths so that
operations are perceived to be executing concurrently. If the number of executing
threads exceeds the number of processors, true concurrency can not be achieved, but
the scheduler switches rapidly between threads to be processed so that every code path
is split into execution intervals that are processed in a sequence.

Thread Basics | 17

Multithreading is a must-have, but the improved performance comes at a cost—in‐
creased complexity, increased memory consumption, nondeterministic order of exe‐
cution—that the application has to manage.

Increased resource consumption
Threads come with an overhead in terms of memory and processor usage. Each thread
allocates a private memory area that is mainly used to store method local variables and
parameters during the execution of the method. The private memory area is allocated
when the thread is created and deallocated once the thread terminates (i.e., as long as
the thread is active, it holds on to system resources—even if it is idle or blocked).

The processor entails overhead for the setup and teardown of threads and to store and
restore threads in context switches. The more threads it executes, the more context
switches may occur and deteriorate performance.

Increased complexity
Analyzing the execution of a single-threaded application is relatively simple because the
order of execution is known. In multithreaded applications, it is a lot more difficult to
analyze how the program is executed and in which order the code is processed. The
execution order is indeterministic between threads, as it is not known beforehand how
the scheduler will allocate execution time to the threads. Hence, multiple threads in‐
troduce uncertainty into execution. Not only does this indeterminacy make it much
harder to debug errors in the code, but the necessity of coordinating threads poses a
risk of introducing new errors.

Data inconsistency
A new set of problems arise in multithreaded programs when the order of resource
access is nondeterministic. If two or more threads use a shared resource, it is not known
in which order the threads will reach and process the resource. For example, if threads
t1 and t2 try to modify the member variable sharedResource, the access order is in‐
determinate—it may either be incremented or decremented first:

public class RaceCondition {

 int sharedResource = 0;

 public void startTwoThreads() {
 Thread t1 = new Thread(new Runnable() {
 @Override
 public void run() {
 sharedResource++;
 }
 });
 t1.start();

18 | Chapter 2: Multithreading in Java

 Thread t2 = new Thread(new Runnable() {
 @Override
 public void run() {
 sharedResource--;
 }
 });
 t2.start();
 }
}

The sharedResource is exposed to a race condition, which can occur because the or‐
dering of the code execution can differ from every execution; it cannot be guaranteed
that thread t1 always comes before thread t2. In this case, it is not only the ordering
that is troublesome, but also the fact that the incrementer and decrementer operations
are multiple byte code instructions—read, modify, and write. Context switches can oc‐
cur between the byte-code instructions, leaving the end result of sharedResource de‐
pendent on the order of execution: it can be either 0, -1 or 1. The first result occurs if
the first thread manages to write the value before the second thread reads it, whereas
the two latter results occur if both threads first read the initial value 0, making the last
written value determine the end result.

Because context switches can occur while one thread is executing a part of the code that
should not be interrupted, it is necessary to create atomic regions of code instructions
that are always executed in sequence without interleaving of other threads. If a thread
executes in an atomic region, other threads will be blocked until no other thread executes
in the atomic region. Hence, an atomic region in Java is said to be mutually exclusive
because it allows access to only one thread. An atomic region can be created in various
ways (see “Intrinsic Lock and Java Monitor” on page 20), but the most fundamental
synchronization mechanism is the synchronized keyword:

synchronized (this) {
 sharedResource++;
}

If every access to the shared resource is synchronized, the data cannot be inconsistent
in spite of multithreaded access. Many of the threading mechanisms discussed in this
book were designed to reduce the risk of such errors.

Thread Safety
Giving multiple threads access to the same object is a great way for threads to commu‐
nicate quickly—one thread writes, another thread reads—but it threatens correctness.
Multiple threads can execute the same instance of an object simultaneously, causing
concurrent access to the state in shared memory. That imposes a risk of threads either
seeing the value of the state before it has been updated or corrupting the value.

Thread Safety | 19

Thread safety is achieved when an object always maintains the correct state when ac‐
cessed by multiple threads. This is achieved by synchronizing the object’s state so that
the access to the state is controlled. Synchronization should be applied to code that reads
or writes any variable that otherwise could be accessed by one thread while being
changed by another thread. Such areas of code are called critical sections and must be
executed atomically—i.e., by only by one thread at the time. Synchronization is achieved
by using a locking mechanism that checks whether there currently is a thread executing
in a critical section. If so, all the other threads trying to enter the critical section will
block until the thread is finished executing the critical section.

If a shared resource is accessible from multiple threads and the state
is mutable—i.e., the value can be changed during the lifetime of the
resource—every access to the resource needs to be guarded by the
same lock.

In short, locks guarantee atomic execution of the regions they lock. Locking mechanisms
in Android include:

• Object intrinsic lock
— The synchronized keyword

• Explicit locks
— java.util.concurrent.locks.ReentrantLock

— java.util.concurrent.locks.ReentrantReadWriteLock

Intrinsic Lock and Java Monitor
The synchronized keyword operates on the intrinsic lock that is implicitly available in
every Java object. The intrinsic lock is mutually exclusive, meaning that thread execution
in the critical section is exclusive to one thread. Other threads that try to access a critical
region—while being occupied—are blocked and cannot continue executing until the
lock has been released. The intrinsic lock acts as a monitor (see Figure 2-2). The Java
monitor can be modeled with three states:
Blocked

Threads that are suspended while they wait for the monitor to be released by another
thread.

Executing
The one and only thread that owns the monitor and is currently running the code
in the critical section.

20 | Chapter 2: Multithreading in Java

Waiting
Threads that have voluntarely given up ownership of the monitor before it has
reached the end of the critical section. The threads are waiting to be signalled before
they can take ownership again.

Figure 2-2. Java monitor

A thread transitions between the monitor states when it reaches and executes a code
block protected by the intrinsic lock:

1. Enter the monitor. A thread tries to access a section that is guarded by an intrinsic
lock. It enters the monitor, but if the lock is already acquired by another thread, it
is suspended.

2. Acquire the lock. If there is no other thread that owns the monitor, a blocked thread
can take ownership and execute in the critical section. If there is more than one
blocked thread, the scheduler selects which thread to execute. There is no FIFO
ordering among the blocked threads; in other words, the first thread to enter the
monitor is not necessarily the first one to be selected for execution.

3. Release the lock and wait. The thread suspends itself through Object.wait() be‐
cause it wants to wait for a condition to be fulfilled before it continues to execute.

4. Acquire the lock after signal. Waiting threads are signalled from another thread
through Object.notify() or Object.notifyAll() and can take ownership of the
monitor again if selected by the scheduler. However, the waiting threads have no
precedence over potentially blocked threads that also want to own the monitor.

5. Release the lock and exit the monitor. At the end of a critical section, the thread exits
the monitor and leaves room for another thread to take ownership.

The transitions map to a synchronized code block accordingly:

synchronized (this) { // (1)
 // Execute code (2)
 wait(); // (3)
 // Execute code (4)
} // (5)

Thread Safety | 21

Synchronize Access to Shared Resources
A shared mutable state that can be accessed and altered by multiple threads requires a
synchronization strategy to keep the data consistent during the concurrent execution.
The strategy involves choosing the right kind of lock for the situation and setting the
scope for the critical section.

Using the intrinsic lock
An intrinsic lock can guard a shared mutable state in different ways, depending on how
the keyword synchronized is used:

• Method level that operates on the intrinsic lock of the enclosing object instance:
synchronized void changeState() {
 sharedResource++;
}

• Block-level that operates on the intrinsic lock of the enclosing object instance:
void changeState() {
 synchronized(this) {
 sharedResource++;
 }
}

• Block-level with other objects intrinsic lock:
private final Object mLock = new Object();

void changeState() {
 synchronized(mLock) {
 sharedResource++;
 }
}

• Method-level that operates on the intrinsic lock of the enclosing class instance:
synchronized static void changeState() {
 staticSharedResource++;
}

• Block-level that operates on the intrinsic lock of the enclosing class instance:
static void changeState() {
 synchronized(this.getClass()) {
 staticSharedResource++;
 }
}

A reference to the this object in block-level synchronization uses the same intrinsic
lock as method-level synchronization. But by using this syntax, you can control the
precise block of code covered by the critical section and therefore reduce it to cover

22 | Chapter 2: Multithreading in Java

only the code that actually concerns the state you want to protect. It’s bad practice to
create larger atomic areas than necessary, since that may block other threads when not
necessary, leading to slower execution across the application.

Synchronizing on other objects’ intrinsic locks enables the use of multiple locks within
a class. An application should strive to protect each independent state with a lock of its
own. Hence, if a class has more than one independent state, performance is improved
by using several locks.

The synchronized keyword can operate in different intrinsic locks.
Keep in mind that synchronization on static methods operates on
the intrinsic lock of the class object and not the instance object.

Using explicit locking mechanisms

If a more advanced locking strategy is needed, ReentrantLock or ReentrantReadWri
teLock classes can be used instead of the synchronized keyword. Critical sections are
protected by explicitly locking and unlocking regions in the code:

int sharedResource;
private ReentrantLock mLock = new ReentrantLock();

public void changeState() {
 mLock.lock();
 try {
 sharedResource++;
 }
 finally {
 mLock.unlock();
 }
}

The synchronized keyword and ReentrantLock have the same semantics: they both
block all threads trying to execute a critical section if another thread has already entered
that region. This is a defensive strategy that assumes that all concurrent accesses are
problematic, but it is not harmful for multiple threads to read a shared variable simul‐
taneously. Hence, synchronized and ReentrantLock can be overprotective.

The ReentrantReadWriteLock lets reading threads execute concurrently but still blocks
readers versus writers and writers versus other writers:

int sharedResource;
private ReentrantReadWriteLock mLock = new ReentrantReadWriteLock();

public void changeState() {
 mLock.writeLock().lock();
 try {
 sharedResource++;

Thread Safety | 23

 }
 finally {
 mLock.writeLock().unlock();
 }
}

public int readState() {
 mLock.readLock().lock();
 try {
 return sharedResource;
 }
 finally {
 mLock.readLock().unlock();
 }
}

The ReentrantReadWriteLock is relatively complex, which leads to a performance
penalty because the evaluation required to determine whether a thread should be al‐
lowed to execute or be blocked is longer than with synchronized and ReentrantLock.
Hence, there is a trade-off between the performance gain from letting multiple threads
read shared resources simultaneously and the performance loss from evaluation com‐
plexity. The typical good use case for ReentrantReadWriteLock is when there are many
reading threads and few writing threads.

Example: Consumer and Producer
A common use case with collaborating threads is the consumer-producer pattern—i.e.,
one thread that produces data and one thread that consumes the data. The threads
collaborate through a list that is shared between them. When the list is not full, the
producer thread adds items to the list, whereas the consumer thread removes items
while the list is not empty. If the list is full, the producing thread should block, and if
the list is empty, the consuming thread is blocked.

The ConsumerProducer class contains a shared resource LinkedList and two methods:
produce() to add items and consume to remove items:

public class ConsumerProducer {

 private LinkedList<Integer> list = new LinkedList<Integer>();
 private final int LIMIT = 10;
 private Object lock = new Object();

 public void produce() throws InterruptedException {

 int value = 0;

 while (true) {
 synchronized (lock) {
 while(list.size() == LIMIT) {

24 | Chapter 2: Multithreading in Java

 lock.wait();
 }
 list.add(value++);
 lock.notify();
 }
 }
 }

 public void consume() throws InterruptedException {

 while (true) {
 synchronized (lock) {
 while(list.size() == 0) {
 lock.wait();
 }
 int value = list.removeFirst();
 lock.notify();
 }
 }
 }
}

Both produce and consume use the same intrinsic lock for guarding the shared list.
Threads that try to access the list are blocked as long another thread owns the monitor,
but producing threads give up execution—i.e., wait() if the list is full—and consuming
threads if the list is empty.

When items are either added or removed from the list, the monitor is signalled—i.e.,
notify() is called—so that waiting threads can execute again. The consumer threads
signal producer threads and vice versa.

The following code shows two threads that execute the producing and consuming op‐
erations:

final ConsumerProducer cp = new ConsumerProducer();

Thread t1 = new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 cp.produce();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}).start();

Thread t2 = new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 cp.consume();

Thread Safety | 25

 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}).start();

Task Execution Strategies
To make sure that multiple threads are used properly to create responsive applications,
applications should be designed with thread creation and task execution in mind. Two
suboptimal designs and extremes are:
One thread for all tasks

All tasks are executed on the same thread. The result is often an unresponsive
application that fails to use available processors.

One thread per task
Tasks are always executed on a new thread that is started and terminated for every
task. If the tasks are frequently created and have short lifetimes, the overhead of
thread creation and teardown can degrade performance.

Although these extremes should be avoided, they both represent variants of sequential
and concurrent execution at the extreme:
Sequential execution

Tasks are executed in a sequence that requires one task to finish before the next is
processed. Thus, the execution interval of the tasks does not overlap. Advantages
of this design are:

• It is inherently thread safe.
• Can be executed on one thread, which consumes less memory than multiple

threads.
Disadvantages include:

• Low throughput.
• The start of each task’s execution depends on previously executed tasks. The

start may either be delayed or possibly not executed at all.

Concurrent execution
Task are executed in parallel and interleaved. The advantage is better CPU utiliza‐
tion, whereas the disadvantage is that the design is not inherently thread-safe, so
synchronization may be required.

An effective multithreaded design utilizes execution environments with both sequential
and concurrent execution; the choice depends on the tasks. Isolated and independent
tasks can execute concurrently to increase throughput, but tasks that require an ordering
or share a common resource without synchronization should be executed sequentially.

26 | Chapter 2: Multithreading in Java

Concurrent Execution Design
Concurrent execution can be implemented in many ways, so design has to consider how
to manage the number of executing threads and their relationships. Basic principles
include:

• Favoring reuse of threads instead of always creating new threads, so that the fre‐
quency of creation and teardown of resources can be reduced.

• Not using more threads than required. The more threads that are used, the more
memory and processor time is consumed.

Summary
Android applications should be multithreaded to improve performance on both single
and multiprocessor platforms. Threads can share execution on a single processor or
utilize true concurrency when multiple processors are available. The increased perfor‐
mance comes at a cost of increased complexity, as well as a responsibility to guard
resources shared among threads and to preserve data consistency.

Summary | 27

CHAPTER 3

Threads on Android

Every Android application is started with numerous threads that are bundled with the
Linux process and the Dalvik VM to manage its internal execution. But the application
is exposed to system threads, like the UI and binder threads, and creates background
threads of its own. In this chapter, we’ll get under the hood of threading on the Android
platform, examining the following:

• Differences and similarities between UI, binder, and background threads
• Linux thread coupling
• How thread scheduling is affected by the application process rank
• Running Linux threads

Android Application Threads
All application threads are based on the native pthreads in Linux with a Thread rep‐
resentation in Java, but the platform still assigns special properties to threads that make
them differ. From an application perspective, the thread types are UI, binder, and back‐
ground threads.

UI Thread
The UI thread is started on application start and stays alive during the lifetime of the
Linux process. The UI thread is the main thread of the application, used for executing
Android components and updating the UI elements on the screen. If the platform de‐
tects that UI updates are attempted from any other thread, it will promptly notify the
application by throwing a CalledFromWrongThreadException. This harsh platform be‐
havior is required because the Android UI Toolkit is not thread safe, so the runtime
allows access to the UI elements from one thread only.

29

UI elements in Android are often defined as instance fields of activ‐
ities, so they constitute a part of the object’s state. However, access to
those elements doesn’t require synchronization because UI elements
can be accessed only from the UI thread. In other words, the run-
time enforces a single-threaded environment for UI elements, so they
are not susceptible to concurrency problems.

The UI thread is a sequential event handler thread that can execute events sent from
any other thread in the platform. The events are handled serially and are queued if the
UI thread is occupied with processing a previous event. Any event can be posted to the
UI thread, but if events are sent that do not explicitly require the UI thread for execution,
the UI-critical events may have to wait in the queue before being processed and before
responsiveness is decreased.

“Android Message Passing” on page 47 describes event handling in detail.

Binder Threads
Binder threads are used for communicating between threads in different processes. Each
process maintains a set of threads, called a thread pool, that is never terminated or
recreated, but can run tasks at the request of another thread in the process. These threads
handle incoming requests from other processes, including system services, intents,
content providers, and services. When needed, a new binder thread will be created to
handle the incoming request. In most cases, an application does not have to be con‐
cerned about binder threads because the platform normally transforms the requests to
use the UI thread first. The exception is when the application offers a Service that can
be bound from other processes via an AIDL interface. Binder threads are discussed more
thoroughly in Chapter 5.

Background Threads
All the threads that an application explicitly creates are background threads. This means
that they have no predefined purpose, but are empty execution environments waiting
to execute any task. The background threads are descendants of the UI thread, so they
inherit the UI thread properties, such as its priority. By default, a newly created process
doesn’t contain any background threads. It is always up to the application itself to create
them when needed.

The second part of this book, Part II, is all about creating back‐
ground threads.

30 | Chapter 3: Threads on Android

A background thread created here in the application would look like this in the ps -t
output. The last field is the name. The thread name, by default, ends with the number
assigned by the runtime to the thread as its ID:

u0_a72 4283 4257 320304 34540 ffffffff 00000000 S Thread-12412

In the application, the use cases for the UI thread and worker threads are quite different,
but in Linux they are both plain native threads and are handled equally. The constraints
on the UI thread—that it should handle all UI updates—are enforced by the Window
Manager in the Application Framework and not by Linux.

The Linux Process and Threads
The execution of long operations on background threads on Android can be handled
in many ways, but no matter how the application implements the execution mechanism,
the threads, in the end, are always the same on the operating system level. The Android
platform is a Linux-based OS, and every application is executed as a Linux application
in the OS. Both the Android application and its threads adhere to the Linux execution
environment. As we will see, knowledge of the Linux environment helps us not only to
grasp and investigate the application execution, but also to improve our applications’
performance.

Each running application has an underlying Linux process, forked from the prestarted
Zygote process, which has the following properties:
User ID (UID)

A process has a unique user identifier that represents a user on a Linux system.
Linux is a multiuser system, and on Android, each application represents a user in
this system. When the application is installed, it is assigned a user ID.

Process identifier (PID)
A unique identifier for the process.

Parent process identifier (PPID)
After system startup, each process is created from another process. The running
system forms a tree hierarchy of the running processes. Hence, each application
process has a parent process. For Android, the parent of all processes is the Zygote.

Stack
Local function pointers and variables.

Heap
The address space allocated to a process. The address space is kept private to a
process and can’t be accessed by other processes.

The Linux Process and Threads | 31

1. I have used the string EAT to create a namespace for applications in this book. The string is an acronym of
the book’s title.

Finding Application Process Information
The process information of a running application is retrieved by the ps (process status)
command, which you can call from the ADB shell. The Android ps command retrieves
process information just as it would on any Linux distribution. However, the set of
options is different than the traditional Linux version of ps:

-t

Shows thread information in the processes.

-x

Shows time spent in user code (utime) and system code (stime) in “jiffies,” which
typically is units of 10 ms.

-p

Shows priorities.

-P

Shows scheduling policy, normally indicating whether the application is executing
in the foreground or background.

-c

Shows which CPU is executing the process.

name|pid
Filter on the application’s name or process ID. Only the last defined value is used.

You can also filter through the grep command. For instance, executing the ps command
for a com.eat application1 process would look like this:

$ adb shell ps | grep com.eat
USER PID PPID VSIZE RSS WCHAN PS NAME
u0_a72 4257 144 320304 34540 ffffffff 00000000 S com.eat

From this output, we can extract the following interesting properties of the com.eat
application:

• UID: u0_a72
• PID: 4257
• PPID: 144 (process number of the parent, which in the case of an Android appli‐

cation is always the Zygote)

32 | Chapter 3: Threads on Android

www.allitebooks.com

http://www.allitebooks.org

2. Dalvik Debug Monitor Service

Another way of retrieving process and thread information is with DDMS2 in the An‐
droid tools.

All the threads that an application creates and starts are native Linux threads, a.k.a.
pthreads, because they were defined in a POSIX standard. The threads belong to the
process where they were created, and the parent of each thread is the process. Threads
and processes are very much alike, with the difference between them coming in the
sharing of resources. The process is an isolated execution of a program in a sandboxed
environment compared to other processes, whereas the threads share the resources
within a process. An important distinction between processes and threads is that pro‐
cesses don’t share address space with each other, but threads share the address space
within a process. This memory sharing makes it a lot faster to communicate between
threads than between processes, which require remote procedure calls that take up more
overhead. Thread communication is covered in Chapter 4 and process communication
in Chapter 5.

When a process starts, a single thread is automatically created for that process. A process
always contains at least one thread to handle its execution. In Android, the thread cre‐
ated automatically in a process is the one we’ve already seen as the UI thread.

Let’s take a look at the threads created in a process for an Android application with the
package name com.eat:

$ adb shell ps -t | grep u0_a72
USER PID PPID VSIZE RSS WCHAN PS NAME
u0_a72 4257 144 320304 34540 ffffffff 00000000 S com.eat
u0_a72 4259 4257 320304 34540 ffffffff 00000000 S GC
u0_a72 4262 4257 320304 34540 ffffffff 00000000 S Signal Catcher
u0_a72 4263 4257 320304 34540 ffffffff 00000000 S JDWP
u0_a72 4264 4257 320304 34540 ffffffff 00000000 S Compiler
u0_a72 4265 4257 320304 34540 ffffffff 00000000 S ReferenceQueueDemon
u0_a72 4266 4257 320304 34540 ffffffff 00000000 S FinalizerDaemon
u0_a72 4267 4257 320304 34540 ffffffff 00000000 S FinalizerWatchdogDaemon
u0_a72 4268 4257 320304 34540 ffffffff 00000000 S Binder_1
u0_a72 4269 4257 320304 34540 ffffffff 00000000 S Binder_2

On application start, no fewer than 10 threads are started in our process. The first thread
—named com.eat—is started by default when the application launches. Hence, that is
the UI thread of the application. All the other threads are spawned from the UI thread,
which is seen on the parent process ID (PPID) of the other threads. Their PPID corre‐
sponds to the process ID (PID) of the UI thread.

The Linux Process and Threads | 33

http://developer.android.com/tools/debugging/ddms.html

3. The CFS calls this the virtual runtime of a thread.

Most of the threads are Dalvik internal threads, and we don’t have to worry about them
from an application perspective. They handle garbage collection, debug connections,
finalizers, etc. Let’s focus on the threads we need to pay attention to:

u0_a72 4257 144 320304 34540 ffffffff 00000000 S com.eat
u0_a72 4268 4257 320304 34540 ffffffff 00000000 S Binder_1
u0_a72 4269 4257 320304 34540 ffffffff 00000000 S Binder_2

Scheduling
Linux treats threads and not processes as the fundamental unit for execution. Hence,
scheduling on Android concerns threads and not processes. Scheduling allocates exe‐
cution time for threads on a processor. Each thread that is executing in an application
is competing with all of the other threads in the application for execution time. The
scheduler decides which thread should execute and for how long it should be allowed
to execute before it picks a new thread to execute and a context switch occurs. A sched‐
uler picks the next thread to execute depending on some thread properties, which are
different for each scheduler type, although the thread priority is the most important
one. In Android, the application threads are scheduled by the standard scheduler in the
Linux kernel and not by the Dalvik virtual machine. In practice, this means that the
threads in our application are competing not only directly with each other for execution
time, but also against all threads in all the other applications.

The Linux kernel scheduler is known as a completely fair scheduler (CFS). It is “fair” in
the sense that it tries to balance the execution of tasks not only based on the priority of
the thread but also by tracking the amount of execution time3 that has been given to a
thread. If a thread has previously had low access to the processor, it will be allowed to
execute before higher-prioritized threads. If a thread doesn’t use the allocated time to
execute, the CFS will ensure that the priority is lowered so that it will get less execution
time in the future.

The platform mainly has two ways of affecting the thread scheduling:
Priority

Change the Linux thread priority.

Control group
Change the Android-specific control group.

Priority
All threads in an application are associated with a priority that indicates to the scheduler
which thread it should allocate execution time to on every context switch. On Linux,
the thread priority is called niceness or nice value, which basically is an indication of

34 | Chapter 3: Threads on Android

how nice a certain thread should behave toward other threads. Hence, a low niceness
corresponds to a high priority. In Android, a Linux thread has niceness values in the
range of -20 (most prioritized) to 19 (least prioritized), with a default niceness of 0. A
thread inherits its priority from the thread where it is started and keeps it unless it’s
explicitly changed by the application.

An application can change priority of threads from two classes:
java.lang.Thread

setPriority(int priority);

Sets the new priority based on the Java priority values from 0 (least prioritized) to
10 (most prioritized).

android.os.Process
Process.setThreadPriority(int priority); // Calling thread.
Process.setThreadPriority(int threadId, int priority); // Thread with
 // specific id.

Sets the new priority using Linux niceness, i.e. -20 to 19.

Java Priority Versus Linux Niceness
Thread.setPriority() is platform independent. It represents an abstraction of the
underlying platform-specific thread priorities. The abstract priority values correspond
to Linux niceness values according to the following table:

Thread.setPriority(int) Linux niceness

1 (Thread.MIN_PRIORITY) 19

2 16

3 13

4 10

5 (Thread.NORM_PRIORITY) 0

6 -2

7 -4

8 -5

9 -6

10 (Thread.MAX_PRIORITY) -8

The mapping of Java priorities is an implementation detail and may vary depending on
platform version. The niceness mapping values in the table are from Jelly Bean.

The Linux Process and Threads | 35

4. cgroups in Linux.

5. The threads in the Background Group can’t get more than ~5-10% execution time altogether.

Control groups
Android not only relies on the regular Linux CFS for thread scheduling, but also imposes
thread control groups4 on all threads. The thread control groups are Linux containers
that are used to manage the allocation of processor time for all threads in one container.
All threads created in an application belong to one of the thread control groups.

Android defines multiple control groups, but the most important ones for applications
are the Foreground Group and Background Group. The Android platform defines ex‐
ecution constraints so that the threads in the different control groups are allocated
different amounts of execution time on the processor. Threads in the Foreground Group
are allocated a lot more execution time than threads in the Background Group,5 and
Android utilizes this to ensure that visible applications on the screen get more processor
allocation than applications that are not visible on the screen. The visibility on the screen
relates to the process levels (see “The Linux Process and Threads” on page 31), as illus‐
trated in Figure 3-1.

Figure 3-1. Thread control groups

If an application runs at the Foreground or Visible process level, the threads created by
that application will belong to the Foreground Group and receive most of the total
processing time, while the remaining time will be divided among the threads in the
other applications. A ps command issued on a foreground thread shows something like
this (note the appearance of the fg group):

$ adb shell ps -P | grep u0_a72
u0_a72 4257 144 320304 34504 fg ffffffff 00000000 S com.eat

If the user moves an application to the background, such as by pressing the Home
button, all the threads in that application will switch the control group to the Back‐
ground Group and will receive less processor allocation. ps shows something like, with
the application in the bg group:

36 | Chapter 3: Threads on Android

$ adb shell ps -P | grep u0_a72
u0_a72 4257 144 318700 32164 bg ffffffff 00000000 S com.eat

When the application is seen on the screen again, the threads move back to the Fore‐
ground Group. This moving of threads between control groups is done as soon as the
application become visible or invisible. The use of control groups increases the perfor‐
mance of the applications seen on the screen and reduces the risk of background ap‐
plications disturbing the applications actually seen by the user, hence improving the
user experience.

Although the control groups ensure that background applications interfere as little as
possible with the performance of visible applications, an application can still create many
threads that compete with the UI thread. The threads created by the application by
default have the same priority and control group membership as the UI thread, so they
compete on equal terms for processor allocation. Hence, an application that creates a
lot of background threads may reduce the performance of the UI thread even though
the intention is the opposite. To solve this, it’s possible to decouple background threads
from the control group where the application threads execute by default. This decou‐
pling is ensured by setting the priority of the background threads low enough so that
they always belong to the Background Group, even though the application is visible.

Lowering the priority of a thread with Process.setThreadPriori
ty(Process.THREAD_PRIORITY_BACKGROUND) will not only reduce the
priority but also ensure that this thread is decoupled from the pro‐
cess level of the application and always put in the Background Group.

Summary
All thread types in Android—UI, binder, and background—are Linux Posix threads.
An application has a UI thread and binder threads when the process is started, but the
application has to create background threads itself. All Android components execute
on the UI thread by default, but long-running tasks should be executed on background
threads to avoid slow UI rendering and the risk for ANRs. The UI thread is the most
important thread, but it gets no special scheduling advantage compared to the other
threads—the scheduler is unaware of which thread is the UI thread. Instead, it is up to
the application to not let the background threads interfere more than necessary with
the UI thread—typically by lowering the priority and letting the less important back‐
ground threads execute in the background control group.

Summary | 37

CHAPTER 4

Thread Communication

In multithreaded appplications, tasks can run in parallel and collaborate to produce a
result. Hence, threads have to be able to communicate to enable true asynchronous
processing. In Android, the importance of thread communication is emphasized in the
platform-specific handler/looper mechanism that is the focus in this chapter, together
with the traditional Java techniques. The chapter covers:

• Passing data through a one-way data pipe
• Shared memory communication
• Implementing a consumer-producer pattern with BlockingQueue
• Operations on message queues
• Sending tasks back to the UI Thread

Pipes
Pipes are a part of the java.io package. That is, they are general Java functionality and
not Android specific. A pipe provides a way for two threads, within the same process,
to connect and establish a one-way data channel. A producer thread writes data to the
pipe, whereas a consumer thread reads data from the pipe.

The Java pipe is comparable to the Unix and Linux pipe operator (the
| shell character) that is used to redirect the output from one com‐
mand to the input for another command. The pipe operator works
across processes in Linux, but Java pipes work across threads in the
virtual machine, for example, within a process.

39

The pipe itself is a circular buffer allocated in memory, available only to the two con‐
nected threads. No other threads can access the data. Hence, thread safety—discussed
in “Thread Safety” on page 19—is ensured. The pipe is also one-directional, permitting
just one thread to write and the other to read (Figure 4-1).

Figure 4-1. Thread communication with pipes

Pipes are typically used when you have two long-running tasks and one has to offload
data to another continuously. Pipes make it easy to decouple tasks to several threads,
instead of having only one thread handle many tasks. When one task has produced a
result on a thread, it pipes the result on to the next thread that processes the data further.
The gain comes from clean code separation and concurrent execution. Pipes can be
used between worker threads and to offload work from the UI thread, which you want
to keep light to preserve a responsive user experience.

A pipe can transfer either binary or character data. Binary data transfer is represented
by PipedOutputStream (in the producer) and PipedInputStream (in the consumer),
whereas character data transfer is represented by PipedWriter (in the producer) and
PipedReader (in the consumer). Apart from the data transfer type, the two pipes have
similar functionality. The lifetime of the pipe starts when either the writer or the reader
thread establishes a connection, and it ends when the connection is closed.

Basic Pipe Use
The fundamental pipe life cycle can be summarized in three steps: setup, data transfer
(which can be repeated as long as the two threads want to exchange data), and discon‐
nection. The following examples are created with PipedWriter/PipedReader, but the
same steps work with PipedOutputStream/PipedInputStream.

1. Set up the connection:
PipedReader r = new PipedReader();
PipedWriter w = new PipedWriter();
w.connect(r);

Here, the connection is established by the writer connecting to the reader. The
connection could just as well be established from the reader. Several constructors
also implicitly set up a pipe. The default buffer size is 1024 but is configurable from
the consumer side of the pipe, as shown later:

40 | Chapter 4: Thread Communication

int BUFFER_SIZE_IN_CHARS = 1024 * 4;
PipedReader r = new PipedReader(BUFFER_SIZE_IN_CHARS);
PipedWriter w = new PipedWriter(r);

2. Pass the reader to a processing thread:
Thread t = new MyReaderThread(r);
t.start();

After the reader thread starts, it is ready to receive data from the writer.
3. Transfer data:

// Producer thread: Write single character or array of characters
w.write('A');

// Consumer thread: Read the data
int result = r.read();

Communication adheres to the consumer-producer pattern with a blocking mech‐
anism. If the pipe is full, the write() method will block until enough data has been
read, and consequently removed from the pipe, to leave room for the data the writer
is trying to add. The read() method blocks whenever there is no data to read from
the pipe. It’s worth noticing that the read() method returns the character as an
integer value to ensure that enough space is available to handle various encoding
with different sizes. You can cast the integer value back to a character.
In practice, a better approach would look like this:

// Producer thread: Flush the pipe after a write.
w.write('A');
w.flush();

// Consumer thread: Read the data in a loop.
int i;
while((i = reader.read()) != -1){
 char c = (char) i;
 // Handle received data
}

Calling flush() after a write to the pipe notifies the consumer thread that new data
is available. This is useful from a performance perspective, because when the buffer
is empty, the PipedReader uses a blocking call to wait() with one-second timeout.
Hence, if the flush() call is omitted, the consumer thread may delay the reading
of data up to one second. By calling flush(), the producer cuts short the wait in
the consumer thread and allows data processing to continue immediately.

4. Close the connection.
When the communication phase is finished, the pipe should be disconnected:

// Producer thread: Close the writer.
w.close();

Pipes | 41

// Consumer thread: Close the reader.
r.close();

If the writer and reader are connected, it’s enough to close only one of them. If the
writer is closed, the pipe is disconnected but the data in the buffer can still be read.
If the reader is closed, the buffer is cleared.

Example: Text Processing on a Worker Thread
This next example illustrates how pipes can process text that a user enters in an Edit
Text. To keep the UI thread responsive, each character entered by the user is passed to
a worker thread, which presumably handles some time-consuming processing:

 public class PipeExampleActivity extends Activity {

 private static final String TAG = "PipeExampleActivity";
 private EditText editText;

 PipedReader r;
 PipedWriter w;

 private Thread workerThread;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 r = new PipedReader();
 w = new PipedWriter();

 try {
 w.connect(r);
 } catch (IOException e) {
 e.printStackTrace();
 }

 setContentView(R.layout.activity_pipe);
 editText = (EditText) findViewById(R.id.edit_text);
 editText.addTextChangedListener(new TextWatcher() {
 @Override
 public void beforeTextChanged(CharSequence charSequence, int start,
 int count, int after) {
 }

 @Override
 public void onTextChanged(CharSequence charSequence, int start,
 int before, int count) {
 try {
 // Only handle addition of characters
 if(count > before) {
 // Write the last entered character to the pipe

42 | Chapter 4: Thread Communication

 w.write(charSequence.subSequence(before, count).
 toString());
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 @Override
 public void afterTextChanged(Editable editable) {
 }
 });

 workerThread = new Thread(new TextHandlerTask(r));
 workerThread.start();
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 workerThread.interrupt();
 try {
 r.close();
 w.close();
 } catch (IOException e) {
 }
 }

 private static class TextHandlerTask implements Runnable {
 private final PipedReader reader;

 public TextHandlerTask(PipedReader reader){
 this.reader = reader;
 }
 @Override
 public void run() {
 while(Thread.currentThread().isInterrupted()){
 try {
 int i;
 while((i = reader.read()) != -1){
 char c = (char) i;
 //ADD TEXT PROCESSING LOGIC HERE
 Log.d(TAG, "char = " + c);
 }

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Pipes | 43

When the PipeExampleActivity is created, it will show an EditText box, which has a
listener (TextWatcher) for changes in the content. Whenever a new character is added
in the EditText, the character will be written to the pipe and read in the TextHandler
Task. The consumer task is an infinite loop that reads a character from the pipe as soon
as there is anything to read. The inner while-loop will block when calling read() if the
pipe is empty.

Be careful when involving the UI thread with pipes, due to the pos‐
sible blocking of calls if the pipe is either full (producer blocks on its
write() call) or empty (consumer blocks on its read() call).

Shared Memory
Shared memory (using the memory area known in programming as the heap) is a com‐
mon way to pass information between threads. All threads in an application can access
the same address space within the process. Hence, if one thread writes a value on a
variable in the shared memory, it can be read by all the other threads, as shown in
Figure 4-2.

Figure 4-2. Thread communication with shared memory

If a thread stores data as a local variable, no other thread can see it. By storing it in shared
memory, it can use the variables for communication and share work with other threads.
Objects are stored in the shared memory if they are scoped as one of the following:

• Instance member variables
• Class member variables
• Objects declared in methods

The reference of an object is stored locally on the thread’s stack, but the object itself is
stored in shared memory. The object is accessible from multiple threads only if the

44 | Chapter 4: Thread Communication

method publishes the reference outside the method scope, for example, by passing the
reference to another object’s method. Threads communicate through shared memory
by defining instance and class fields that are accessible from multiple threads.

Signaling
While threads are communicating through the state variables on the shared memory,
they could poll the state value to fetch changes to the state. But a more efficient mech‐
anism is the Java library’s built-in signaling mechanism that lets a thread notify other
threads of changes in the state. The signaling mechanism varies depending on the syn‐
chronization type (see Table 4-1).

Table 4-1. Thread signaling
synchronized ReentrantLock ReentrantReadWriteLock

Blocking call,
waiting for a state

Object.wait()
Object.wait(timeout)

Condition.await()
Condition.await(timeout)

Condition.await()
Condition.await(timeout)

Signal blocked
threads

Object.notify()
Object.notifyAll()

Condition.signal()
Condition.signalAll()

Condition.signal()
Condition.signalAll()

When a thread cannot continue execution until another thread reaches a specific state,
it calls wait()/wait(timeout) or the equivalents await()/await(timeout), depending
on the synchronization used. The timeout parameters indicate how long the calling
thread should wait before continuing the execution.

When another thread has changed the state, it signals the change with notify()/noti
fyAll() or the equivalents signal()/signalAll(). Upon a signal, the waiting thread
continues execution. The calls thus support two different design patterns that use con‐
ditions: the notify() or signal() version wakes one thread, chosen at random, whereas
the notifyAll() or signalAll() version wakes all threads waiting on the signal.

Because multiple threads could receive the signal and one could enter the critical section
before the others wake, receiving the signal does not guarantee that the correct state is
achieved. A waiting thread should apply a design pattern where it checks that the wanted
condition is fulfilled before executing further. For example, if the shared state is pro‐
tected with synchronization on the intrinsic lock, check the condition before calling
wait():

synchronized(this) {
 while(isConditionFulfilled == false) {
 wait();
 }
 // When the execution reaches this point,
 // the state is correct.
}

Shared Memory | 45

This pattern checks whether the condition predicate is fulfilled. If not, the thread blocks
by calling wait(). When another thread notifies on the monitor and the waiting thread
wakes up, it checks again whether the condition has been fulfilled and, if not, it blocks
again, waiting for a new signal.

A very common Android use case is to create a worker thread from
the UI thread and let the worker thread produce a result to be used
by some UI element, so the UI thread should wait for the result.
However, the UI thread should not wait for a signal from a back‐
ground thread, as it may block the UI thread. Instead, use the An‐
droid message passing mechanism discussed later.

BlockingQueue
Thread signaling is a low-level, highly configurable mechanism that can be adapted to
fit many use cases, but it may also be considered as the most error-prone technique.
Therefore, the Java platform builds high-level abstractions upon the thread signaling
mechanism to solve one-directional handoff of arbitrary objects between threads. The
abstraction is often called “solving the producer-consumer synchronization problem.”
The problem consists of use cases where there can be threads producing content (pro‐
ducer threads) and threads consuming content (consumer threads). The producers
hand off messages for the consumers to process. The intermediator between the threads
is a queue with blocking behavior, i.e., java.util.concurrent.BlockingQueue (see
Figure 4-3).

Figure 4-3. Thread communication with BlockingQueue

The BlockingQueue acts as the coordinator between the producer and consumer
threads, wrapping a list implementation together with thread signaling. The list contains
a configurable number of elements that the producing threads fill with arbitrary data
messages. On the other side, the consumer threads extract the messages in the order
that they were enqueued and then process them. Coordination between the producers

46 | Chapter 4: Thread Communication

and consumers is necessary if they get out of sync, for example, if the producers hand
off more messages than the consumers can handle. So BlockingQueue uses thread con‐
ditions to ensure that producers cannot enqueue new messages if the BlockingQueue
list is full, and that consumers know when there are messages to fetch. Synchronization
between the threads can be achieved with thread signaling, as “Example: Consumer and
Producer” on page 24 shows. But the BlockingQueue both blocks threads and signals
the important state changes—i.e., the list is not full and the list is not empty.

The consumer-producer pattern implemented with the LinkedBlockingQueue-
implementation is easily implemented by adding messages to the queue with put(), and
removing them with take(), where put() blocks the caller if the queue is full, and
take() blocks the caller if the queue is empty:

public class ConsumerProducer {

 private final int LIMIT = 10;
 private BlockingQueue<Integer> blockingQueue =
 new LinkedBlockingQueue<Integer>(LIMIT);

 public void produce() throws InterruptedException {
 int value = 0;

 while (true) {
 blockingQueue.put(value++);
 }
 }

 public void consume() throws InterruptedException {
 while (true) {
 int value = blockingQueue.take();
 }
 }
}

Android Message Passing
So far, the thread communication options discussed have been regular Java, available in
any Java application. The mechanisms—pipes, shared memory, and blocking queues—
apply to Android applications but impose problems for the UI thread because of their
tendency to block. The UI thread responsiveness is at risk when using mechanisms with
blocking behavior, because that may occasionally hang the thread.

The most common thread communication use case in Android is between the UI thread
and worker threads. Hence, the Android platform defines its own message passing
mechanism for communication between threads. The UI thread can offload long tasks
by sending data messages to be processed on background threads. The message passing

Android Message Passing | 47

mechanism is a nonblocking consumer-producer pattern, where neither the producer
thread nor the consumer thread will block during the message handoff.

The message handling mechanism is fundamental in the Android platform and the API
is located in the android.os package, with a set of classes shown in Figure 4-4 that
implement the functionality.

Figure 4-4. API overview

android.os.Looper

A message dispatcher associated with the one and only consumer thread.

android.os.Handler

Consumer thread message processor, and the interface for a producer thread to
insert messages into the queue. A Looper can have many associated handlers, but
they all insert messages into the same queue.

android.os.MessageQueue

Unbounded linked list of messages to be processed on the consumer thread. Every
Looper—and Thread—has at most one MessageQueue.

android.os.Message

Message to be executed on the consumer thread.

Messages are inserted by producer threads and processed by the consumer thread, as
illustrated in Figure 4-5.

1. Insert: The producer thread inserts messages in the queue by using the Handler
connected to the consumer thread, as shown in “Handler” on page 60.

2. Retrieve: The Looper, discussed in “Looper” on page 58, runs in the consumer thread
and retrieves messages from the queue in a sequential order.

3. Dispatch: The handlers are responsible for processing the messages on the con‐
sumer thread. A thread may have multiple Handler instances for processing mes‐
sages; the Looper ensures that messages are dispatched to the correct Handler.

48 | Chapter 4: Thread Communication

Figure 4-5. Overview of the message-passing mechanism between multiple producer
threads and one consumer thread. Every message refers to to the next message in the
queue, here indicated by a left-pointing arrow.

Example: Basic Message Passing
Before we dissect the components in detail, let’s look at a fundamental message passing
example to get us acquainted with the code setup.

The following code implements what is probably one of the most common use cases.
The user presses a button on the screen that could trigger a long operation, such as a
network operation. To avoid stalling the rendering of the UI, the long operation, rep‐
resented here by a dummy doLongRunningOperation() method, has to be executed on
a worker thread. Hence, the setup is merely one producer thread (the UI thread) and
one consumer thread (LooperThread).

Our code sets up a message queue. It handles the button click as usual in the on
Click() callback, which executes on the UI thread. In our implementation, the callback
inserts a dummy message into the message queue. For sake of brevity, layouts and UI
components have been left out of the example code:

public class LooperActivity extends Activity {

 LooperThread mLooperThread;

 private static class LooperThread extends Thread {

 public Handler mHandler;

 public void run() {
 Looper.prepare();
 mHandler = new Handler() {

Android Message Passing | 49

 public void handleMessage(Message msg) {
 if(msg.what == 0) {
 doLongRunningOperation();
 }
 }
 };
 Looper.loop();
 }
 }

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mLooperThread = new LooperThread();
 mLooperThread.start();
 }

 public void onClick(View v) {
 if (mLooperThread.mHandler != null) {
 Message msg = mLooperThread.mHandler.obtainMessage(0);
 mLooperThread.mHandler.sendMessage(msg);
 }
 }

 private void doLongRunningOperation() {
 // Add long running operation here.
 }

 protected void onDestroy() {
 mLooperThread.mHandler.getLooper().quit();
 }
}

Definition of the worker thread, acting as a consumer of the message queue.
Associate a Looper—and implicitly a MessageQueue—with the thread.
Set up a Handler to be used by the producer for inserting messages in the queue.
Here we use the default constructor so it will bind to the Looper of the current
thread. Hence, this Handler can created only after Looper.prepare(), or it will
have nothing to bind to.
Callback that runs when the message has been dispatched to the worker thread.
It checks the what parameter and then executes the long operation.
Start dispatching messages from the message queue to the consumer thread.
This is a blocking call, so the worker thread will not finish.
Start the worker thread, so that it is ready to process messages.
There is race condition between the setup of mHandler on a background thread
and this usage on the UI thread. Hence, validate that mHandler is available.
Initialize a Message-object with the what argument arbitrarily set to 0.

50 | Chapter 4: Thread Communication

Insert the message in the queue.
Terminate the background thread. The call to Looper.quit() stops the
dispatching of messages and releases Looper.loop() from blocking so the run
method can finish, leading to the termination of the thread.

Classes Used in Message Passing
Let’s take a more detailed look now at the specific components of message passing and
their use.

MessageQueue

The message queue is represented by the android.os.MessageQueue class. It is built
with linked messages, constituting an unbound one-directional linked list. Producer
threads insert messages that will later be dispatched to the consumer. The messages are
sorted based on timestamps. The pending message with the lowest timestamp value is
first in line for dispatch to the consumer. However, a message is dispatched only if the
timestamp value is less than the current time. If not, the dispatch will wait until the
current time has passed the timestamp value.

Figure 4-6 illustrates a message queue with three pending messages, sorted with time‐
stamps where t1 < t2 < t3. Only one message has passed the dispatch barrier, which is
the current time. Messages eligible for dispatch have a timestamp value less than the
current time (represented by “Now” in the figure).

Figure 4-6. Pending messages in the queue. The rightmost message is first in queue to be
processed. The message arrows denote references to the next message in the queue.

Android Message Passing | 51

If no message has passed the dispatch barrier when the Looper is ready to retrieve the
next message, the consumer thread blocks. Execution is resumed as soon as a message
passes the dispatch barrier.

The producers can insert new messages in the queue at any time and on any position
in the queue. The insert position in the queue is based on the timestamp value. If a new
message has the lowest timestamp value compared to the pending messages in the
queue, it will occupy the first position in the queue, which is next to be dispatched.
Insertions always conform to the timestamp sorting order. Message insertion is dis‐
cussed further in “Handler” on page 60.

MessageQueue.IdleHandler
If there is no message to process, a consumer thread has some idle time. For instance,
Figure 4-7 illustrates a time slot where the consumer thread is idle. By default, the
consumer thread simply waits for new messages during idle time; but instead of waiting,
the thread can be utilized to execute other tasks during these idle slots. This feature can
be utilized to let noncritical tasks postpone their execution until no other messages are
competing for execution time.

Figure 4-7. If no message has passed the dispatch barrier, there is a time slot that can be
utilized for execution before the next pending message needs to be executed

When a pending message has been dispatched, and no other message has passed the
dispatch barrier, a time slot occurs where the consumer thread can be utilized for exe‐
cution of other tasks. An application gets hold of this time slot with the
android.os.MessageQueue.IdleHandler-interface, a listener that generates callbacks
when the consumer thread is idle. The listener is attached to the MessageQueue and
detached from it through the following calls:

52 | Chapter 4: Thread Communication

// Get the message queue of the current thread.
MessageQueue mq = Looper.myQueue();
// Create and register an idle listener.
MessageQueue.IdleHandler idleHandler = new MessageQueue.IdleHandler();
mq.addIdleHandler(idleHandler)
// Unregister an idle listener.
mq.removeIdleHandler(idleHandler)

The idle handler interface consists of one callback method only:

interface IdleHandler {
 boolean queueIdle();
}

When the message queue detects idle time for the consumer thread, it invokes queueI
dle() on all registered IdleHandler-instances. It is up to the application to implement
the callback responsibly. You should usually avoid long-running tasks because they will
delay pending messages during the time they run.

The implementation of queueIdle() must return a Boolean value with the following
meanings:
true

The idle handler is kept active; it will continue to receive callbacks for successive
idle time slots.

false

The idle handler is inactive; it will not receive anymore callbacks for successive idle
time slots. This is the same thing as removing the listener through Message
Queue.removeIdleHandler().

Example: Using IdleHandler to terminate an unused thread

All registered IdleHandlers to a MessageQueue are invoked when a thread has idle slots,
where it waits for new messages to process. The idle slots can occur before the first
message, between messages, and after the last message. If multiple content producers
should process data sequentially on a consumer thread, the IdleHandler can be used
to terminate the consumer thread when all messages are processed so that the unused
thread does not linger in memory. With the IdleHandler, it is not necessary to keep
track of the last inserted message to know when the thread can be terminated.

This use case applies only when the producing threads insert mes‐
sages in the MessageQueue without delay, so that the consumer
thread is never idle until the last message is inserted.

Android Message Passing | 53

The ConsumeAndQuitThread method shows the structure of a consuming thread with
Looper and MessageQueue that terminates the thread when there are no more messages
to process:

public class ConsumeAndQuitThread extends Thread
 implements MessageQueue.IdleHandler {

 private static final String THREAD_NAME = "ConsumeAndQuitThread";

 public Handler mConsumerHandler;
 private boolean mIsFirstIdle = true;

 public ConsumeAndQuitThread() {
 super(THREAD_NAME);
 }

 @Override
 public void run() {
 Looper.prepare();
 mConsumerHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 // Consume data
 }
 };
 Looper.myQueue().addIdleHandler(this);
 Looper.loop();
 }

 @Override
 public boolean queueIdle() {
 if (mIsFirstIdle) {
 mIsFirstIdle = false;
 return true;
 }
 mConsumerHandler.getLooper().quit();
 return false;
 }

 public void enqueueData(int i) {
 mConsumerHandler.sendEmptyMessage(i);
 }
}

Register the IdleHandler on the background thread when it is started and the
Looper is prepared so that the MessageQueue is set up.
Let the first queueIdle invocation pass, since it occurs before the first message
is received.
Return true on the first invocation so that the IdleHandler still is registered.

54 | Chapter 4: Thread Communication

Terminate the thread.

The message insertion is done from multiple threads concurrently, with a simulated
randomness of the insertion time:

final ConsumeAndQuitThread consumeAndQuitThread = new ConsumeAndQuitThread();
consumeAndQuitThread.start();

for (int i = 0; i < 10; i++) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 for (int i = 0; i < 10; i++) {
 SystemClock.sleep(new Random().nextInt(10));
 consumeAndQuitThread.enqueueData(i);
 }
 }
 }).start();

Message
Each item on the MessageQueue is of the android.os.Message class. This is a container
object carrying either a data item or a task, never both. Data is processed by the consumer
thread, whereas a task is simply executed when it is dequeued and you have no other
processing to do:

The message knows its recipient processor—i.e., Handler—and can
enqueue itself through Message.sendToTarget():

Message m = Message.obtain(handler, runnable);
m.sendToTarget();

As we will see in “Handler” on page 60, the handler is most common‐
ly used for message enqueuing, as it offers more flexibility with re‐
gard to message insertion.

Data message
The data set has multiple parameters that can be handed off to the consumer thread,
as shown in Table 4-2.

Android Message Passing | 55

Table 4-2. Message parameters
Parameter
name

Type Usage

what int Message identifier. Communicates intention of the message.

arg1, arg2 int Simple data values to handle the common use case of handing over integers.
If a maximum of two integer values are to be passed to the consumer, these
parameters are more efficient than allocating a Bundle, as explained under
the data parameter.

obj Object Arbitrary object. If the object is handed off to a thread in another process,
it has to implement Parcelable.

data Bundle Container of arbitrary data values.

replyTo Messen

ger

Reference to Handler in some other process. Enables interprocess message
communication, as described in “Two-Way Communication” on page 86.

callback Runna

ble

Task to execute on a thread. This is an internal instance field that holds the
Runnable object from the Handler.post methods in “Handler” on page
60.

Task message
The task is represented by a java.lang.Runnable object to be executed on the
consumer thread. Task messages cannot contain any data beyond the task itself.

A MessageQueue can contain any combination of data and task messages. The consumer
thread processes them in a sequential manner, independent of the type. If a message is
a data message, the consumer processes the data. Task messages are handled by letting
the Runnable execute on the consumer thread, but the consumer thread does not receive
a message to be processed in Handler.handleMessage(Message), as it does with data
messages.

The lifecycle of a message is simple: the producer creates the message, and eventually
it is processed by the consumer. This description suffices for most use cases, but when
a problem arises, a deeper understanding of message handling is invaluable. Let us take
a look into what actually happens with the message during its lifecycle, which can be
split up into four principal states shown in Figure 4-8. The runtime stores message
objects in an application-wide pool to enable the reuse of previous messages; this avoids
the overhead of creating new instances for every handoff. The message object execution
time is normally very short, and many messages are processed per time unit.

Figure 4-8. Message lifecycle states

56 | Chapter 4: Thread Communication

The state transfers are partly controlled by the application and partly by the platform.
Note that the states are not observable, and an application cannot follow the changes
from one state to another (although there are ways to follow the movement of messages,
explained in “Observing the Message Queue” on page 70). Therefore, an application
should not make any assumptions about the current state when handling a message.

Initialized
In the initialized state, a message object with mutable state has been created and, if it is
a data message, populated with data. The application is responsible for creating the
message object using one of the following calls. They take an object from the object
pool:

• Explicit object construction:
Message m = new Message();

• Factory methods:
— Empty message:

Message m = Message.obtain();

— Data message:
Message m = Message.obtain(Handler h);
Message m = Message.obtain(Handler h, int what);
Message m = Message.obtain(Handler h, int what, Object o);
Message m = Message.obtain(Handler h, int what, int arg1, int arg2);
Message m = Message.obtain(Handler h, int what, int arg1, int arg2,
 Object o);

— Task message:
Message m = Message.obtain(Handler h, Runnable task);

— Copy constructor:
Message m = Message.obtain(Message originalMsg);

Pending
The message has been inserted into the queue by the producer thread, and it is waiting
to be dispatched to the consumer thread.

Dispatched

In this state, the Looper has retrieved and removed the message from the queue. The
message has been dispatched to the consumer thread and is currently being processed.
There is no application API for this operation because the dispatch is controlled by the
Looper , without the influence of the application. When the Looper dispatches a mes‐

Android Message Passing | 57

sage, it checks the delivery information of the message and delivers the message to the
correct recipient. Once dispatched, the message is executed on the consumer thread.

Recycled
At this point in the lifecycle, the message state is cleared and the instance is returned to
the message pool. The Looper handles the recycling of the message when it has finished
executing on the consumer thread. Recycling of messages is handled by the runtime
and should not be done explicitly by the application.

Once a message is inserted in the queue, the content should not be
altered. In theory, it is valid to change the content before the mes‐
sage is dispatched. However, because the state is not observable, the
message may be processed by the consumer thread while the pro‐
ducer tries to change the data, raising thread safety concerns. It would
be even worse if the message has been recycled, because it then has
been returned to the message pool and possibly used by another
producer to pass data in another queue.

Looper
The android.os.Looper class handles the dispatch of messages in the queue to the
associated handler. All messages that have passed the dispatch barrier, as illustrated in
Figure 4-6, are eligible for dispatch by the Looper. As long as the queue has messages
eligible for dispatch, the Looper will ensure that the consumer thread receives the mes‐
sages. When no messages have passed the dispatch barrier, the consumer thread will
block until a message has passed the dispatch barrier.

The consumer thread does not interact with the message queue directly to retrieve the
messages. Instead, a message queue is added to the thread when the Looper has been
attached. The Looper manages the message queue and facilitates the dispatch of mes‐
sages to the consumer thread.

By default, only the UI thread has a Looper; threads created in the application need to
get a Looper associated explicitly. When the Looper is created for a thread, it is connected
to a message queue. The Looper acts as the intermediator between the queue and the
thread. The setup is done in the run method of the thread:

class ConsumerThread extends Thread {
 @Override
 public void run() {
 Looper.prepare();

 // Handler creation omitted.

 Looper.loop();

58 | Chapter 4: Thread Communication

 }
}

The first step is to create the Looper, which is done with the static prepare()
method; it will create a message queue and associate it with the current thread.
At this point, the message queue is ready for insertion of messages, but they are
not dispatched to the consumer thread.
Start handling messages in the message queue. This is a blocking method that
ensures the run() method is not finished; while run() blocks, the Looper
dispatches messages to the consumer thread for processing.

A thread can have only one associated Looper; a runtime error will occur if the appli‐
cation tries to set up a second one. Consequently, a thread can have only one message
queue, meaning that messages sent by multiple producer threads are processed sequen‐
tially on the consumer thread. Hence, the currently executing message will postpone
subsequent messages until it has been processed. Messages with long execution times
shall not be used if they can delay other important tasks in the queue.

Looper termination

The Looper is requested to stop processing messages with either quit or quitSafely:
quit() stops the looper from dispatching any more messages from the queue; all pend‐
ing messages in the queue, including those that have passed the dispatch barrier, will be
discarded. quitSafely, on the other hand, only discards the messages that have not
passed the dispatch barrier. Pending messages that are eligible for dispatch will be pro‐
cessed before the Looper is terminated.

quitSafely was added in API level 18 (Jelly Bean 4.3). Previous API
levels only support quit.

Terminating a Looper does not terminate the thread; it merely exits Looper.loop() and
lets the thread resume running in the method that invoked the loop call. But you cannot
start the old Looper or a new one, so the thread can no longer enqueue or handle
messages. If you call Looper.prepare(), it will throw RuntimeException because the
thread already has an attached Looper. If you call Looper.loop(), it will block, but no
messages will be dispatched from the queue.

Android Message Passing | 59

1. The UI thread is managed by the platform internal class android.app.ActivityThread.

The UI thread Looper

The UI thread is the only thread with an associated Looper by default. It is a regular
thread, like any other thread created by the application itself, but the Looper is associated
with the thread1 before the application components are initialized.

There are a few practical differences between the UI thread Looper and other application
thread loopers:

• It is accessible from everywhere, through the Looper.getMainLooper() method.
• It cannot be terminated. Looper.quit() throws RuntimeException.
• The runtime associates a Looper to the UI thread by Looper.prepareMainLoop
er(). This can be done only once per application. Thus, trying to attach the main
looper to another thread will throw an exception.

Handler
So far, the focus has been on the internals of Android thread communication, but an
application mostly interacts with the android.os.Handler class. It is a two-sided API
that both handles the insertion of messages into the queue and the message processing.
As indicated in Figure 4-5, it is invoked from both the producer and consumer thread
typically used for:

• Creating messages
• Inserting messages into the queue
• Processing messages on the consumer thread
• Managing messages in the queue

Setup

While carrying out its responsibilities, the Handler interacts with the Looper, message
queue, and message. As Figure 4-4 illustrates, the only direct instance relation is to the
Looper, which is used to connect to the MessageQueue. Without a Looper, handlers
cannot function; they cannot couple with a queue to insert messages, and consequently
they will not receive any messages to process. Hence, a Handler instance is already
bound to a Looper instance at construction time:

• Constructors without an explicit Looper bind to the Looper of the current thread:

60 | Chapter 4: Thread Communication

new Handler();
new Handler(Handler.Callback)

• Constructors with an explicit Looper bind to that Looper:
new Handler(Looper);
new Handler(Looper, Handler.Callback);

If the constructors without an explicit Looper are called on a thread without a Looper
(i.e., it has not called Looper.prepare()), there is nothing handlers can bind to, leading
to a RuntimeException. Once a handler is bound to a Looper, the binding is final.

A thread can have multiple handlers; messages from them coexist in the queue but are
dispatched to the correct Handler instance, as shown in Figure 4-9.

Figure 4-9. Multiple handlers using one Looper. The handler inserting a message is the
same handler that processes the message.

Multiple handlers will not enable concurrent execution. The messag‐
es are still in the same queue and are processed sequentially.

Message creation

For simplicity, the Handler class offers wrapper functions for the factory methods shown
in “Initialized” on page 57 to create objects of the Message class:

Message obtainMessage(int what, int arg1, int arg2)
Message obtainMessage()
Message obtainMessage(int what, int arg1, int arg2, Object obj)
Message obtainMessage(int what)
Message obtainMessage(int what, Object obj)

The message obtained from a Handler is retrieved from the message pool and implicitly
connected to the Handler instance that requested it. This connection enables the Loop
er to dispatch each message to the correct Handler.

Android Message Passing | 61

Message insertion

The Handler inserts messages in the message queue in various ways depending on the
message type. Task messages are inserted through methods that are prefixed post,
whereas data insertion methods are prefixed send:

• Add a task to the message queue:
boolean post(Runnable r)f
boolean postAtFrontOfQueue(Runnable r)
boolean postAtTime(Runnable r, Object token, long uptimeMillis)
boolean postAtTime(Runnable r, long uptimeMillis)
boolean postDelayed(Runnable r, long delayMillis)

• Add a data object to the message queue:
boolean sendMessage(Message msg)
boolean sendMessageAtFrontOfQueue(Message msg)
boolean sendMessageAtTime(Message msg, long uptimeMillis)
boolean sendMessageDelayed(Message msg, long delayMillis)

• Add simple data object to the message queue:
boolean sendEmptyMessage(int what)
boolean sendEmptyMessageAtTime(int what, long uptimeMillis)
boolean sendEmptyMessageDelayed(int what, long delayMillis)

All insertion methods put a new Message object in the queue, even though the appli‐
cation does not create the Message object explicitly. The objects, such as Runnable in a
task post and what in a send, are wrapped into Message objects, because those are the
only data types allowed in the queue.

Every message inserted in the queue comes with a time parameter indicating the time
when the message is eligible for dispatch to the consumer thread. The sorting is based
on the time parameter, and it is the only way an application can affect the dispatch order:
default

Immediately eligible for dispatch.

at_front

This message is eligible for dispatch at time 0. Hence, it will be the next dispatched
message, unless another is inserted at the front before this one is processed.

delay

The amount of time after which this message is eligible for dispatch.

uptime

The absolute time at which this message is eligible for dispatch.

62 | Chapter 4: Thread Communication

Even though explicit delays or uptimes can be specified, the time required to process
each message is still indeterminate. It depends both on whatever existing messages need
to be processed first and the operating system scheduling.

Inserting a message in the queue is not failsafe. Some common errors that can occur
are listed in Table 4-3.

Table 4-3. Message insertion errors
Failure Error response Typical application problem

Message has no Handler. RuntimeException Message was created from a Message.obtain() method
without a specified Handler.

Message has already been dispatched
and is being processed.

RuntimeException The same message instance was inserted twice.

Looper has exited. Return false Message is inserted after Looper.quit() has been called.

The dispatchMessage method of the Handler class is used by the
Looper to dispatch messages to the consumer thread. If used by the
application directly, the message will be processed immediately on
the calling thread and not the consumer thread.

Example: Two-way message passing

The HandlerExampleActivity simulates a long-running operation that is started when
the user clicks a button. The long-running task is executed on a background thread;
meanwhile, the UI displays a progress bar that is removed when the background thread
reports the result back to the UI thread.

First, the setup of the Activity:

public class HandlerExampleActivity extends Activity {

 private final static int SHOW_PROGRESS_BAR = 1;
 private final static int HIDE_PROGRESS_BAR = 0;
 private BackgroundThread mBackgroundThread;

 private TextView mText;
 private Button mButton;
 private ProgressBar mProgressBar;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_handler_example);

 mBackgroundThread = new BackgroundThread();
 mBackgroundThread.start();

Android Message Passing | 63

 mText = (TextView) findViewById(R.id.text);
 mProgressBar = (ProgressBar) findViewById(R.id.progress);
 mButton = (Button) findViewById(R.id.button);
 mButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 mBackgroundThread.doWork();
 }
 });
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 mBackgroundThread.exit();
 }

 // ... The rest of the Activity is defined further down

}

A background thread with a message queue is started when the HandlerExam
pleActivity is created. It handles tasks from the UI thread.
When the user clicks a button, a new task is sent to the background thread. As
the tasks will be executed sequentially on the background thread, multiple button
clicks may lead to queueing of tasks before they are processed.
The background thread is stopped when the HandlerExampleActivity is
destroyed.

BackgroundThread is used to offload tasks from the UI thread. It runs—and can receive
messages—during the lifetime of the HandlerExampleActivity. It does not expose its
internal Handler; instead it wraps all accesses to the Handler in public methods doW
ork and exit:

private class BackgroundThread extends Thread {

 private Handler mBackgroundHandler;

 public void run() {
 Looper.prepare();
 mBackgroundHandler = new Handler();
 Looper.loop();
 }

 public void doWork() {
 mBackgroundHandler.post(new Runnable() {
 @Override
 public void run() {
 Message uiMsg = mUiHandler.obtainMessage(

64 | Chapter 4: Thread Communication

 SHOW_PROGRESS_BAR, 0, 0, null);

 mUiHandler.sendMessage(uiMsg);

 Random r = new Random();
 int randomInt = r.nextInt(5000);
 SystemClock.sleep(randomInt);

 uiMsg = mUiHandler.obtainMessage(
 HIDE_PROGRESS_BAR, randomInt, 0, null);
 mUiHandler.sendMessage(uiMsg);
 }
 });
 }

 public void exit() {
 mBackgroundHandler.getLooper().quit();
 }
}

Associate a Looper with the thread.
The Handler processes only Runnables. Hence, it is not required to implement
Handler.handleMessage.
Post a long task to be executed in the background.
Create a Message object that contains only a what argument with a command—
SHOW_PROGRESS_BAR—to the UI thread so that it can show the progress bar.
Send the start message to the UI thread.
Simulate a long task of random length, that produces some data randomInt.
Create a Message object with the result randomInt, that is passed in the arg1
parameter. The what parameter contains a command—HIDE_PROGRESS_BAR—
to remove the progress bar.
The message with the end result that both informs the UI thread that the task
is finished and delivers a result.
Quit the Looper so that the thread can finish.

The UI thread defines its own Handler that can receive commands to control the pro‐
gress bar and update the UI with results from the background thread:

private final Handler mUiHandler = new Handler() {
 public void handleMessage(Message msg) {

 switch(msg.what) {
 case SHOW_PROGRESS_BAR:
 mProgressBar.setVisibility(View.VISIBLE);
 break;
 case HIDE_PROGRESS_BAR:

Android Message Passing | 65

 mText.setText(String.valueOf(msg.arg1));
 mProgressBar.setVisibility(View.INVISIBLE);
 break;
 }
 }
};

Show the progress bar.
Hide the progress bar and update the TextView with the produced result.

Message processing

Messages dispatched by the Looper are processed by the Handler on the consumer
thread. The message type determines the processing:
Task messages

Task messages contain only a Runnable and no data. Hence, the processing to be
executed is defined in the run method of the Runnable, which is executed auto‐
matically on the consumer thread, without invoking Handler.handleMessage().

Data messages
When the message contains data, the Handler is the receiver of the data and is
responsible for its processing. The consumer thread processes the data by overrid‐
ing the Handler.handleMessage(Message msg) method. There are two ways to do
this, described in the text that follows.

One way to define handleMessage is to do it as part of creating a Handler. The method
should be defined as soon as the message queue is available (after Looper.prepare() is
called) but before the message retrieval starts (before Looper.loop() is called).

A template follows for setting up the handling of data messages:

class ConsumerThread extends Thread {
 Handler mHandler;
 @Override
 public void run() {
 Looper.prepare();
 mHandler = new Handler() {
 public void handleMessage(Message msg) {
 // Process data message here
 }
 };)
 Looper.loop();
 }
}

In this code, the Handler is defined as an anonymous inner class, but it could as well
have been defined as a regular or inner class.

66 | Chapter 4: Thread Communication

A convenient alternative to extending the Handler class is to use the Handler.Call
back interface, which defines a handleMessage method with an additional return pa‐
rameter not in Handler.handleMessage():

public interface Callback {
 public boolean handleMessage(Message msg);
}

With the Callback interface, it is not necessary to extend the Handler class. Instead,
the Callback implementation can be passed to the Handler constructor, and it will then
receive the dispatched messages for processing:

public class HandlerCallbackActivity extends Activity implements Handler.Callback {
 Handler mUiHandler;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mUiHandler = new Handler(this);
 }

 @Override
 public boolean handleMessage(Message message) {
 // Process messages
 return true;
 }
}

Callback.handleMessage should return true if the message is handled, which guar‐
antees that no further processing of the message is done. If, however, false is returned,
the message is passed on to the Handler.handleMessage method for further processing.
Note that the Callback does not override Handler.handleMessage. Instead, it adds a
message preprocessor that is invoked before the Handlers own method. The Call
back preprocessor can intercept and change messages before the Handler receives them.
The following code shows the principle for intercepting messages with the Callback:

public class HandlerCallbackActivity extends Activity implements Handler.Callback {

 @Override
 public boolean handleMessage(Message msg) {
 switch (msg.what) {
 case 1:
 msg.what = 11;
 return true;
 default:
 msg.what = 22;
 return false;
 }
 }

 // Invoked on button click

Android Message Passing | 67

 public void onHandlerCallback(View v) {
 Handler handler = new Handler(this) {
 @Override
 public void handleMessage(Message msg) {
 // Process message
 }
 };
 handler.sendEmptyMessage(1);
 handler.sendEmptyMessage(2);
 }
}

The HandlerCallbackActivity implements the Callback interface to intercept
messages.
The Callback implementation intercepts messages. If msg.what is 1, it returns
true—the message is handled. Otherwise, it changes the value of msg.what to
22 and returns false—the message is not handled, so it is passed on to the
Handler implementation of handleMessage.
Process messages in the second Handler.
Insert a message with msg.what == 1. The message is intercepted by the Call
back as it returns true.
Insert a message with msg.what == 2. The message is changed by the Call
back and passed on to the Handler that prints Secondary Handler - msg = 22.

Removing Messages from the Queue
After enqueuing a message, the producer can invoke a method of the Handler class to
remove the message, so long as it has not been dequeued by the Looper. Sometimes an
application may want to clean the message queue by removing all messages, which is
possible, but most often a more fine-grained approach is desired: an application wants
to target only a subset of the messages. For that, it needs to be able to identify the correct
messages. Therefore, messages can be identified from certain properties, as shown in
Table 4-4.

Table 4-4. Message identifiers
Identifier type Description Messages to which it applies

Handler Message receiver Both task and data messages

Object Message tag Both task and data messages

Integer what parameter of message Data messages

Runnable Task to be executed Task messages

The handler identifier is mandatory for every message, because a message always knows
what Handler it will be dispatched to. This requirement implicitly restricts each Han

68 | Chapter 4: Thread Communication

dler to removing only messages belonging to that Handler. It is not possible for a
Handler to remove messages in the queue that were inserted by another Handler.

The methods available in the Handler class for managing the message queue are:

• Remove a task from the message: queue.
removeCallbacks(Runnable r)
removeCallbacks(Runnable r, Object token)

• Remove a data message from the message queue:
removeMessages(int what)
removeMessages(int what, Object object)

• Remove tasks and data messages from the message queue:
removeCallbacksAndMessages(Object token)

The Object identifier is used in both the data and task message. Hence, it can be assigned
to messages as a kind of tag, allowing you later to remove related messages that you have
tagged with the same Object.

For instance, the following excerpt inserts two messages in the queue to make it possible
to remove them later based on the tag:

Object tag = new Object();

Handler handler = new Handler()
 public void handleMessage(Message msg) {
 // Process message
 Log.d("Example", "Processing message");
 }
};

Message message = handler.obtainMessage(0, tag);
handler.sendMessage(message);

handler.postAtTime(new Runnable() {
 public void run() {
 // Left empty for brevity
 }
}, tag, SystemClock.uptimeMillis());

handler.removeCallbacksAndMessages(tag);

The message tag identifier, common to both the task and data message.
The object in a Message instance is used both as data container and implicitly
defined message tag.
Post a task message with an explicitly defined message tag.
Remove all messages with the tag.

Android Message Passing | 69

As indicated before, you have no way to find out whether a message was dispatched and
handled before you issue a call to remove it. Once the message is dispatched, the pro‐
ducer thread that enqueued it cannot stop its task from executing or its data from being
processed.

Observing the Message Queue
It is possible to observe pending messages and the dispatching of messages from a
Looper to the associated handlers. The Android platform offers two observing mecha‐
nisms. Let us take a look at them by example.

The first example shows how it is possible to log the current snapshot of pending mes‐
sages in the queue.

Taking a snapshot of the current message queue

This example creates a worker thread when the Activity is created. When the user
presses a button, causing onClick to be called, six messages are added to the queue in
different ways. Afterward we observe the state of the message queue:

public class MQDebugActivity extends Activity {

 private static final String TAG = "EAT";
 Handler mWorkerHandler;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_mqdebug);

 Thread t = new Thread() {
 @Override
 public void run() {
 Looper.prepare();
 mWorkerHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 Log.d(TAG, "handleMessage - what = " + msg.what);
 }
 };
 Looper.loop();
 }
 };
 t.start();
 }

 // Called on button click, i.e. from the UI thread.
 public void onClick(View v) {
 mWorkerHandler.sendEmptyMessageDelayed(1, 2000);
 mWorkerHandler.sendEmptyMessage(2);
 mWorkerHandler.obtainMessage(3, 0, 0, new Object()).sendToTarget();

70 | Chapter 4: Thread Communication

 mWorkerHandler.sendEmptyMessageDelayed(4, 300);
 mWorkerHandler.postDelayed(new Runnable() {
 @Override
 public void run() {
 Log.d(TAG, "Execute");
 }
 }, 400);
 mWorkerHandler.sendEmptyMessage(5);

 mWorkerHandler.dump(new LogPrinter(Log.DEBUG, TAG), "");
 }
}

Six messages, with the parameters shown in Figure 4-10, are added to the queue.

Figure 4-10. Added messages in the queue

Right after the messages are added to the queue, a snapshot is printed to the log. Only
pending messages are observed. Hence, the number of messages actually observed de‐
pends on how many messages have already been dispatched to the handler. Three of
the messages are added without a delay, which makes them eligible for dispatch at the
time of the snapshot.

A typical run of the preceding code produces the following log:

49.397: handleMessage - what = 2
49.397: handleMessage - what = 3
49.397: handleMessage - what = 5
49.397: Handler (com.eat.MQDebugActivity$1$1) {412cb3d8} @ 5994288
49.407: Looper{412cb070}
49.407: mRun=true
49.407: mThread=Thread[Thread-111,5,main]
49.407: mQueue=android.os.MessageQueue@412cb090
49.407: Message 0: { what=4 when=+293ms }
49.407: Message 1: { what=0 when=+394ms }
49.407: Message 2: { what=1 when=+1s990ms }
49.407: (Total messages: 3)
49.707: handleMessage - what = 4

Android Message Passing | 71

49.808: Execute
51.407: handleMessage - what = 1

The snapshot of the message queue shows that the messages with what parameters (0,
1, and 4) are pending in the queue. These are the messages added to the queue with a
dispatch delay, whereas the others without a dispatch delay apparently have been dis‐
patched already. This is a reasonable result because the handler processing is very short
—just a print to the log.

The snapshot also shows how much time is left before each message in the queue will
pass the dispatch barrier. For instance, the next message to pass the barrier is Message
0 (what= 4) in 293 ms. Messages still pending in the queue but eligible for dispatch will
have a negative time indication in the log—e.g., if when is less than zero.

Tracing the message queue processing
The message processing information can be printed to the log. Message queue logging
is enabled from the Looper class. The following call enables logging on the message
queue of the calling thread:

Looper.myLooper().setMessageLogging(new LogPrinter(Log.DEBUG, TAG));

Let’s look at an example of tracing a message that is posted to the UI thread:

mHandler.post(new Runnable() {
 @Override
 public void run() {
 Log.d(TAG, "Executing Runnable");
 }
});

mHandler.sendEmptyMessage(42);

The example posts two events to the message queue: first a Runnable followed by an
empty message. As expected, with the sequential execution in mind, the Runnable is
processed first, and consequently, is the first to be logged:

>>>>> Dispatching to Handler (android.os.Handler) {4111ef40}
 com.eat.MessageTracingActivity$1@41130820: 0
Executing Runnable
<<<<< Finished to Handler (android.os.Handler) {4111ef40}
 com.eat.MessageTracingActivity$1@41130820

The trace prints the start and end of the event identified by three properties:
Handler instance

android.os.Handler 4111ef40

Task instance
com.eat.MessageTracingActivity$1@41130820

72 | Chapter 4: Thread Communication

The what parameter
0 (Runnable tasks do not carry a what parameter)

Similarly, the trace of an message with the what parameter set to 42 prints the message
argument but not any Runnable instance:

>>>>> Dispatching to Handler (android.os.Handler) {4111ef40} null: 42
<<<<< Finished to Handler (android.os.Handler) {4111ef40} null

Combining the two techniques of message queue snapshots and dispatch tracing allows
the application to observe message passing in detail.

Communicating with the UI Thread
The UI thread is the only thread in an application that has an associated Looper by
default, which is associated on the thread before the first Android component is start‐
ed. The UI thread can be a consumer, to which other threads can pass messages. It’s
important to send only short-lived tasks to the UI thread. The UI thread is application
global and processes both Android component and system messages sequentially.
Hence, long-lived tasks will have a global impact across the application.

Messages are passed to the UI thread through its Looper that is accessible globally in
the application from all threads with Looper.getMainLooper():

Runnable task = new Runnable() {...};
new Handler(Looper.getMainLooper()).post(task);

Independent of the posting thread, the message is inserted in the queue of the UI thread.
If it is the UI thread that posts the message to itself, the message can be processed at the
earliest after the current message is done:

// Method called on UI thread.
private void postFromUiThreadToUiThread() {
 new Handler().post(new Runnable() { ... });

 // The code at this point is part of a message being processed
 // and is executed before the posted message.

}

However, a task message that is posted from the UI thread to itself can bypass the mes‐
sage passing and execute immediately within the currently processed message on the
UI thread with the convenience method Activity.runOnUiThread(Runnable):

// Method called on UI thread.
private void postFromUiThreadToUiThread() {
 runOnUiThread(new Runnable() { ... });

 // The code at this point is executed after the message.

Communicating with the UI Thread | 73

}

If it is called outside the UI thread, the message is inserted in the queue. The runO
nUiThread method can only be executed from an Activity instance, but the same be‐
havior can be implemented by tracking the ID of the UI thread, for example, with a
convenience method customRunOnUiThread in an Application subclass. The custom
RunOnUiThread inserts a message in the queue like the following example:

public class EatApplication extends Application {
 private long mUiThreadId;
 private Handler mUiHandler;

 @Override
 public void onCreate() {
 super.onCreate();
 mUiThreadId = Thread.currentThread().getId();
 mUiHandler = new Handler();
 }

 public void customRunOnUiThread(Runnable action) {
 if (Thread.currentThread().getId() != mUiThreadId) {
 mUiHandler.post(action);
 } else {
 action.run();
 }
 }
}

Summary
Android applications have access to the regular Java thread communication techniques,
which suit worker-thread communication well. However, they rarely fit the use case
when one of the threads is the UI thread, which is the most common case. Android
message passing is used extensively throughout applications, either explicitly or im‐
plicitly, through various wrapping techniques that are discussed in the second part of
this book.

74 | Chapter 4: Thread Communication

1. See the NDK documentation in the ndk/docs/system/libc/SYSV-IPC.html file in your Android SDK directory.

CHAPTER 5

Interprocess Communication

Android application threads most often communicate within a process, sharing the
process’s memory, as discussed in Chapter 4. However, communication across process
boundaries—i.e., interprocess communication (IPC)—is supported by the Android plat‐
form through the binder framework, which manages the data transactions when there
is no shared memory area between the threads.

The most common IPC use cases are handled by high-level components in Android,
such as intents, system services, and content providers. They can be used by an appli‐
cation without it having to know whether it communicates within the process or be‐
tween processes. Sometimes, however, it is necessary for an application to define a more
explicit communication model and be more involved in the actual communication. This
chapter covers how threads communicate across process boundaries, which includes:

• Synchronous and asynchronous remote procedure calls (RPCs)
• Message communication through Messenger
• Returning data with ResultReceiver

Android RPC
IPC is managed by the Linux OS, which supports several IPC techniques: signals, pipes,
message queues, semaphores, and shared memory. In Android’s modified Linux kernel,
the Linux IPC techniques have been replaced1 by the binder framework, which enables
an RPC mechanism between processes; a client process can call remote methods in a
server process as if the methods were executed locally. Hence, data can be passed to the
server process, executed on a thread, and return a result value to the calling thread. The

75

RPC method call itself is trivial, but the underlying RPC mechanism consists of the
following steps:

• Method and data decomposition, also known as marshalling
• Transferring the marshalled information to the remote process
• Recomposing the information in the remote process, also known as unmarshalling
• Transferring return values back to the originating process

The Android application framework and core libraries abstract out the process com‐
munication with the binder framework and the Android Interface Definition Language
(AIDL).

Binder
The binder enables applications to transfer both functions and data—method calls—
between threads running in different processes. The server process defines a remote
interface supported by the android.os.Binder class, and threads in a client process can
access the remote interface through this remote object.

A remote procedure call that transfers both a function and data is called a transaction;
the client process calls the transact method, and the server process receives the call in
the onTransact method (Figure 5-1).

Figure 5-1. IPC through binder

The client thread calling transact is blocked by default until onTransact has finished
executing on the remote thread. Transaction data consists of android.os.Parcel ob‐
jects, which are optimized to be sent across processes via the Binder. Arguments and

76 | Chapter 5: Interprocess Communication

2. The number of threads is a platform implementation detail and may change.

3. See the platform-tools/aidl file in the Android SDK directory for information about the compiler.

return values are transferred as Parcel objects. These can contain literal arguments or
custom objects that implement android.os.Parcelable—an interface that defines
marshalling and unmarshalling of data in a more efficient way than a Serializable.

The onTransact method is executed on a thread from a pool of binder threads, discussed
in “Binder Threads” on page 30. This pool exists only to handle incoming requests from
other processes. It has a maximum of 16 threads,2 so 16 remote calls can be handled
concurrently in every process. This requires the implementations of the calls to ensure
thread safety.

IPC can be bidirectional. The server process can issue a transaction to the client process
and reverse the flow: the former server process becomes the client and executes a trans‐
action on another binder implemented in the former client process, whose own binder
threads handle the processing. Hence, a two-way communication mechanism between
two processes can be established. As we will see, this mechanism is important to enable
asynchronous RPC.

If the server process starts a transaction, calling transact to send
a request to the client process while executing onTransact, the
client process will not receive the incoming request on a binder
thread, but on the thread waiting for the first transaction to finish.

Binders also support asynchronous transactions, which you can specify by setting IBin
der.FLAG_ONEWAY. With that flag set, the client thread will call transact and return
immediately. A binder will continue calling onTransact on the binder thread in the
server process, but cannot return any data synchronously to the client thread.

AIDL
When a process wants to expose functionality for other processes to access, it has to
define the communication contract. Basically, the server defines an interface of methods
that clients can call. The simplest and most common way to describe the interface in
the Android Interface Definition Language (AIDL)—defined in an .aidl.file. Compila‐
tion of the AIDL file generates Java code that supports IPC.3 Android applications in‐
teract with the generated Java code, but the applications only need to be aware of the
interface. The procedure for defining the communication contract is shown in
Figure 5-2.

AIDL | 77

Figure 5-2. Construction of the remote communication interface

The generated Java interface is included in all the client applications and in the server
application. The interface file defines two inner classes, Proxy and Stub, that handle all
the marshalling and unmarshalling of the data, as well as the transaction itself. Hence,
the creation of AIDL automatically generates Java code that wraps the binder framework
and sets up the communication contract.

Figure 5-3. Remote procedure calls over AIDL and the generated Proxy and Stub
classes

As Figure 5-3 shows, the client proxy and the server stub manage the RPC on behalf of
the two applications, allowing clients to invoke methods locally, although executed in
a server process (more precisely, on binder threads belonging to a thread pool in the

78 | Chapter 5: Interprocess Communication

server). The server has to support simultaneous method invocations from multiple cli‐
ent processes and threads—i.e., to ensure that the execution is thread safe.

Synchronous RPC
Although remote method calls are executed concurrently in the server process, the
calling thread in the client process will experience it as a synchronous, or blocking,
call. The calling thread will resume execution when the remote execution on the binder
thread has finished, and possibly has returned a value to the client.

Let us illustrate synchronous RPC, and its implications, with a conceptual code example
that only returns the thread name in the remote process:

The first step is to define the interface—the communication contract—in an .aidl file.
The interface description contains method definitions that a client process can invoke
in a server process:

interface ISynchronous {
 String getThreadNameFast();
 String getThreadNameSlow(long sleep);
 String getThreadNameBlocking();
 String getThreadNameUnblock();
}

The Java interface with Proxy and Stub inner classes is generated from the aidl tool, and
the server process overrides the Stub class to implement the functionality to be sup‐
ported:

private final ISynchronous.Stub mBinder = new ISynchronous.Stub() {

 CountDownLatch mLatch = new CountDownLatch(1);

 @Override
 public String getThreadNameFast() throws RemoteException {
 return Thread.currentThread().getName();
 }

 @Override
 public String getThreadNameSlow(long sleep) throws RemoteException {
 // Simulate a slow call
 SystemClock.sleep(sleep);
 return Thread.currentThread().getName();
 }

 @Override
 public String getThreadNameBlocking() throws RemoteException {
 mLatch.await();
 return Thread.currentThread().getName();
 }

 @Override

AIDL | 79

 public String getThreadNameUnblock() throws RemoteException {
 mLatch.countDown();
 return Thread.currentThread().getName();
 }
};

The method implementations all return the name of the execution thread in the server
process, but after various delays. getThreadNameFast returns immediately, whereas
getThreadNameSlow sleeps for a duration defined by the client, and getThreadName
Blocking blocks by waiting for a CountDownLatch to be decremented. The decrement
has to be done from another thread by calling getThreadNameUnblock.

A client process with access to the binder object of the server process can retrieve the
Proxy implementation and invoke the methods that will be executed remotely:

ISynchronous mISynchronous = ISynchronous.Stub.asInterface(binder);
String remoteThreadName = mISynchronous.getThreadNameFast();
Log.d(TAG, "result = " + remoteThreadName);

The result of the remote call is printed as result = Binder_1; i.e., the execution occured
on a binder thread in the remote process, as expected.

The Proxy, implementing the ISynchronous interface, is used to call the remote meth‐
ods on binder threads. So let us look at a few ways to use RPC:
Invoking short-lived operations remotely

Calls to mISynchronous.getThreadNameFast() return as fast as the runtime can
handle the communication, and the calling client threads will block only briefly.
Concurrent calls from one or multiple clients will utilize multiple binder threads if
necessary, but since the implementation returns quickly, binder threads can be
reused efficiently.

Invoking long-lived operations remotely
Calls to mISynchronous.getThreadNameSlow(long sleep) execute for a configu‐
rable duration before returning a value to the client. The calling client thread will
block for equally long until a return value can be retrieved.

Every client call occupies one binder thread for a long time. Consequently, multiple
calls may strain the binder thread pool so that it runs out of threads. In that case,
the next thread that invokes one of these remote methods will get that transaction
put on a binder queue and has to wait for the execution to start until there is an
available binder thread.

Invoking blocking methods
Blocking binder threads—as mISynchronous.getThreadNameBlocking illustrates
—also block the client threads until the remote method can finish. If multiple client
threads invoke blocking methods in the server process concurrently, the binder
thread pool may run out of threads, preventing other client threads from getting

80 | Chapter 5: Interprocess Communication

results from remote calls. If the server process has no more available binder threads
due to blocking, there are no more binder threads available to wake up the blocked
threads. The server then has to rely on its own internal threads to handle the wake
up; otherwise, the server will never handle any more incoming calls, and all the
client threads that are waiting for the return of the server method will block forever.

Blocked Java threads are usually interruptible, meaning that another thread can
interrupt a currently blocked thread in an attempt to let it finish the execution.
However, threads in a client process have no direct access to the threads in the server
process, so they cannot interrupt the remote threads. Furthermore, client threads
that are waiting for a synchronous RPC to return cannot catch and handle an in‐
terruption.

Invoking methods with shared state
AIDL enables client processes to execute methods in the server process concur‐
rently. The normal rules for concurrent execution apply: thread safety is the re‐
sponsibility of the interface implementation. In the example code shown for our
server, mISynchronous.getThreadNameBlocking and mISynchronous.getThread
NameUnblock share a CountDownLatch, but there is nothing protecting it from being
accessed from multiple threads simultaneously. Hence, a client cannot rely on get
ThreadNameBlocking to remain blocked until it has called getThreadNameUn
block itself. Another client may already have done this call.

A client should not assume that a certain synchronous remote meth‐
od invocation is short-lived, and thus safe to call from the UI thread.
A server process implementation may change over time and have a
negative impact on the UI thread’s responsiveness. Consequently, use
client-worker threads to make remote method calls, unless the re‐
mote method execution is known and under your control.

Asynchronous RPC
The strength of synchronous RPC lies in its simplicity: it is easy both to understand and
to implement. The simplicity, however, comes at a cost, because the calling threads are
blocked. This, of course, also applies to process-local calls, but often the execution of
remote calls is done in code unknown to the client developer. The amount of time that
calling threads spend blocked may differ as the remote implementation changes. Hence,
synchronous remote calls may have unpredictable impacts on your applications’ re‐
sponsiveness. Impacts on the UI thread are commonly avoided by executing all remote
calls in worker threads, running asynchronously with the UI thread. However, if the
server thread is blocked, the client thread will also block indeterminately, keeping the
thread and all its object references alive. This risks memory leaks, as we will see in
Chapter 6.

AIDL | 81

Enter asynchronous RPC! Instead of letting the client implement its own asynchronous
policy, every remote method call can be defined to execute asynchronously. The client
thread initiates a transaction with asynchronous RPC and returns immediately. The
binder gives the transaction to the server process and closes the connection from the
client to the server.

Asynchronous methods must return void, and must not have arguments declared out
or inout. To retrieve results, the implementation will use a callback.

Asynchronous RPC is defined in AIDL with the oneway keyword. It can be applied at
either the interface level or on an individual method:
Asynchronous interface

All methods are executed asynchronously:

oneway interface IAsynchronousInterface {
 void method1();
 void method2();
}

Asynchronous method
The method is executed asynchronously:

interface IAsynchronousInterface {
 oneway void method1();
 void method2();
}

The simplest form of asynchronous RPC defines a callback interface in the method call.
The callback is a reverse RPC, such as a call from the server to the client. Thus, the
callback interface is also defined in AIDL.

The following AIDL shows a simple example of asynchronous RPC, where the remote
interface is defined by one method that contains a callback interface:

interface IAsynchronous1 {
 oneway void getThreadNameSlow(IAsynchronousCallback callback);
}

The implementation of the remote interface in the server process follows. At the end of
the method, the result is returned in the callback method:

IAsynchronous1.Stub mIAsynchronous1 = new IAsynchronous1.Stub() {
 @Override
 public void getThreadNameSlow(IAsynchronousCallback callback)
 throws RemoteException {
 // Simulate a slow call
 String threadName = Thread.currentThread().getName();
 SystemClock.sleep(10000);
 callback.handleResult(threadName);
 }
};

82 | Chapter 5: Interprocess Communication

www.allitebooks.com

http://www.allitebooks.org

The callback interface is declared in AIDL as follows:

interface IAsynchronousCallback {
 void handleResult(String name);
}

And the implementation of the callback interface in the client process handles the result:

private IAsynchronousCallback.Stub mCallback = new IAsynchronousCallback.Stub() {

 @Override
 public void handleResult(String remoteThreadName) throws RemoteException {
 // Handle the callback
 Log.d(TAG, "remoteThreadName = " + name);
 Log.d(TAG, "currentThreadName = " + Thread.currentThread().getName());
 }
}

Note that both thread names—remote and current—are printed as “Binder_1”, but they
belong to different binder threads, from the client and server process, respectively. The
asynchronous callback will be received on a binder thread. Hence, the callback imple‐
mentation should ensure thread safety if it shares data with other threads in the client
process.

Message Passing Using the Binder
As we have seen in “Android Message Passing” on page 47, the Android platform pro‐
vides a flexible kind of interthread communication through message passing. However,
it requires that the threads execute in the same process, because the Message objects are
located in the memory shared by the threads. If the threads execute in different pro‐
cesses, they do not have any common memory for sharing messages; instead, the mes‐
sages have to be passed across process boundaries, using the binder framework. For this
purpose, you can use the android.os.Messenger class to send messages to a dedicated
Handler in a remote process. The Messenger utilizes the binder framework both to pass
a Messenger reference to a client process and to send Message objects. The Handler is
not sent across processes; instead, the Messenger acts as the intermediary.

Figure 5-4 shows the elements of message passing between processes. A Message can
be sent to a thread in another process with the Messenger, but the sending process (the
client) has to retrieve a Messenger reference from the receiving process (server). There
are two steps:

1. Pass a Messenger reference to client processes.
2. Send a message to server process. Once the client has the Messenger reference, this

step can be repeated as often as desired.

Message Passing Using the Binder | 83

Figure 5-4. Interprocess communication with Messenger

One-Way Communication
In the following example, a Service executes in the server process and communicates
with an Activity in the client process. Hence, the Service implements a Messenger
and passes it to the Activity, which in return can pass Message objects to the Ser
vice. First let’s look into the Service:

public class WorkerThreadService extends Service {

 WorkerThread mWorkerThread;
 Messenger mWorkerMessenger;

 @Override
 public void onCreate() {
 super.onCreate();
 mWorkerThread.start();
 }

 /**
 * Worker thread has prepared a looper and handler.
 **/
 private void onWorkerPrepared() {
 mWorkerMessenger = new Messenger(mWorkerThread.mWorkerHandler);
 }

 public IBinder onBind(Intent intent) {
 return mWorkerMessenger.getBinder();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

84 | Chapter 5: Interprocess Communication

 mWorkerThread.quit();
 }

 private class WorkerThread extends Thread {

 Handler mWorkerHandler;

 @Override
 public void run() {
 Looper.prepare();
 mWorkerHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 // Implement message processing
 }
 };
 onWorkerPrepared();
 Looper.loop();
 }

 public void quit() {
 mWorkerHandler.getLooper().quit();
 }
 }
}

The messages are handled on a worker thread, which is started upon Service
creation. All binding clients will use the same worker thread.
A Handler to the worker thread is connected to the Messenger upon
construction. This Handler will process incoming messages from client
processes.
A binding client receives the IBinder object of the Messenger, so that the client
can communicate with the associated Handler in the Service.
Process incoming messages.

On the client side, an Activity binds to the Service in the server process and sends
messages:

public class MessengerOnewayActivity extends Activity {

 private boolean mBound = false;
 private Messenger mRemoteService = null;

 private ServiceConnection mRemoteConnection = new ServiceConnection() {

 public void onServiceConnected(ComponentName className, IBinder service) {
 mRemoteService = new Messenger(service);
 mBound = true;
 }

Message Passing Using the Binder | 85

 public void onServiceDisconnected(ComponentName className) {
 mRemoteService = null;
 mBound = false;
 }
 };

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Intent intent = new Intent("com.wifill.eatservice.ACTION_BIND");
 bindService(intent, mRemoteConnection, Context.BIND_AUTO_CREATE);
 }

 public void onSendClick(View v) {
 if (mBound) {
 mRemoteService.send(Message.obtain(null, 2, 0, 0));
 }
 }
}

Create a Messenger instance from the binder that was passed from the server.
Bind to the remote service.
Send a Message when the button is clicked.

Two-Way Communication
A Message passed across processes keeps a reference to a Messenger in the originating
process in the Message.replyTo argument, which is one of the data types that a Mes
sage can carry (refer back to Table 4-2). This reference can be used to create a two-way
communication mechanism between two threads in different processes.

The following code example illustrates two-way communication between an Activi
ty and a Service executing in different processes. The Activity sends a Message, with
a replyTo argument, to a remote Service:

public void onSendClick(View v) {
 if (mBound) {
 try {
 Message msg = Message.obtain(null, 1, 0, 0);
 msg.replyTo = new Messenger(new Handler() {
 @Override
 public void handleMessage(Message msg) {
 Log.d(TAG, "Message sent back - msg.what = " + msg.what);
 }
 });
 mRemoteService.send(msg);
 } catch (RemoteException e) {
 Log.e(TAG, e.getMessage());
 }

86 | Chapter 5: Interprocess Communication

 }
}

Create a Messenger that is passed to the remote service. The Messenger holds a
Handler reference to the current thread that executes messages from other
processes.

The Service receives the Message and sends a new Message back to the Activity:

public void run() {
 Looper.prepare();
 mWorkerHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case 1:
 try {
 msg.replyTo.send(Message.obtain(null, msg.what, 0, 0));
 } catch (RemoteException e) {
 Log.e(TAG, e.getMessage());
 }
 break;
 }
 }
 };
 onWorkerPrepared();
 Looper.loop();
 }
}

The Messenger is coupled with a Handler that processes messages on
the thread it belongs to. Hence, task execution is sequential by de‐
sign, compared to AIDL that can execute tasks concurrently on bind‐
er threads.

Summary
Most of the interprocess communication in an application is handled behind the scenes
by high-level components. But where needed, you can drop down to the low-level
mechanisms of the binder: RPC and Messenger. RPC is preferred if you want to improve
performance by handling incoming requests concurrently. If not, Messenger is an easier
approach to implement, but its execution is single threaded.

Chapter 11 will go into detail about the Service component that can be accessed through
IPC.

Summary | 87

CHAPTER 6

Memory Management

Memory leaks can be extremely detrimental to your app strategy because they not only
lead to app crashes but also affect the performance of the whole device and will deteri‐
orate performance. A good deal of this chapter is devoted to background, because to
prevent leaks, you need to understand how Android can have them in general, and
specifically how threads and thread communication can cause them. The chapter does,
however, offer strategies for managing the risk of memory leaks involved with threading
through correct design and lifecycle handling.

Memory leaks can occur on different occasions for each of the asynchronous techniques
used on Android and described in Part II. So this chapter takes a general approach, and
specific practical measures will be discussed when each of the asynchronous techniques
is explained in detail.

Garbage Collection
The Dalvik VM is a memory-managed system that frequently reclaims allocated mem‐
ory with the garbage collector (GC) from the shared memory, known as the heap, when
it grows too large. Each process—and consequently each application—has its own VM
and its own garbage collector. In spite of this, an application can fill up the heap with
allocated objects that cannot be reclaimed in time, which causes memory leaks.

A memory leak is sometimes strictly defined as memory allocated by
the application that is not used anymore but never identified by the
GC as memory that can be reclaimed. Hence, the memory is occu‐
pied until the application process is terminated. A wider definition
would also include memory allocated for too long a time, essentially
hogging memory. Throughout this book, we use the wider defini‐
tion of memory leak, because allocating memory longer than re‐
quired may lead to memory exhaustion.

89

1. The default object reference is a strong reference, but references can also have weaker semantics, as mentioned
in “Avoiding Memory Leaks” on page 101. Refer to the java.lang.ref documentation for an overview of reference
types.

An application continuously creates new objects during its lifetime, and the objects are
created on the heap irrespective of the scope—i.e., whether instance fields or local vari‐
ables are allocated. When an object is not used anymore, the GC removes the object
from the heap, freeing up the memory for new allocations. The GC can reclaim the
memory when an object or its parents have no more strong references1 to it. As long as
an object is referenced, it is considered to be reachable and not eligible for garbage
collection. But once it becomes unreachable, the GC can finalize the object and reclaim
the memory. If objects are reachable without being used anymore, the GC cannot re‐
claim the allocated memory. Ultimately, this leakage can lead to the exhaustion of the
application heap, causing termination of the process and a notification to the application
through a java.lang.OutOfMemoryError.

Up until Gingerbread, garbage collection on Android executed sequentially with the
application, such as application execution halted while memory was being reclaimed.
This could lead to sudden hiccups in the UI rendering, reducing the user experience.
As of Honeycomb, the GC executes concurrently on its own thread, not halting the
application threads.

The Dalvik GC uses a very common two-step mechanism called mark and sweep. The
mark step traverses the object trees and marks all objects that are not referenced by any
other objects as unused. Unused objects become eligible for garbage collection, and the
sweep step deallocates all the marked objects. An object is said to be unused if it is
unreachable from any of the application’s garbage collection roots, which are Java objects
acting as starting points for the traversal of the object trees. GC roots themselves are
not considered unused or eligible for garbage collection, even though no other appli‐
cation object references them.

A small example of an object tree appears in Figure 6-1. It leads to the following de‐
pendency chain:

1. GC root A→A1→A2
2. GC root B→B1→B2→B3→B4
3. GC root B→B1→B2→B4

All A and B objects are linked to a GC root and will not be considered unused because
all of them are referenced by other objects and connected to a GC root. Each of the C
objects has a reference to it (from the other C object), but since neither of them connects
to a GC root, they are considered to be an island of objects that can be removed. An
object is unreachable once the last reference to it is removed, or (as in the case of the C

90 | Chapter 6: Memory Management

https://developer.android.com/reference/java/lang/ref/package-summary.html

objects in Figure 6-1) if none of the remaining references have any connection to a GC
root.

Figure 6-1. Objects traversed during the mark step of the garbage collector

Any object that is accessible from outside the heap is considered to be a GC root. This
includes static objects, local objects on the stack, and threads. Thus, objects directly or
indirectly referenced from a thread will be reachable during the execution of the thread.

Thread-Related Memory Leaks
Application threads potentially pose a risk for memory leaks because they can hinder
the garbage collector from reclaiming memory while they execute; it is only when a
thread has finished the execution that its objects can be deallocated from the heap.

The application threads are the UI thread, binder threads, and worker threads, as de‐
scribed in “Android Application Threads” on page 29. The latter two thread types can
be started and terminated during the application’s execution. Consequently, they release
their object references upon termination, making the objects unreachable if they are
not reachable from another GC root. The time during which these threads are alive
determines the risk of a memory leak.

There are two important characteristics of memory leaks in regard to threads:
Potential risk

The risk for a memory leak increases with the time a thread is alive and keeps object
references. Short-lived thread instances are seldom a cause for memory leaks, but
threads that are long-lived due to running long tasks, processing messages, block‐
ing, etc., can keep references to objects that may not be required anymore, as illus‐
trated in “The lifecycle mismatch” on page 95.

Thread-Related Memory Leaks | 91

Leak size
An application that occasionally leaks a small amount of memory will probably
work fine for most of the time and the leakage will pass by unnoticed. But if the
leak size is large—e.g., bitmaps, view hierarchies, etc.—a few leaks may be enough
to exhaust the application’s heap.

In conclusion, an application shall be implemented with a low risk for memory and
with the goal of keeping potential leaks as small as possible. With these two character‐
istics in mind, the next sections will get more into detail about threads and memory
leaks on Android.

Thread Execution
An application that executes a task on a worker thread utilizes Thread and Runnable
instances. As illustrated in Figure 6-2, both are involved in the creation of objects that
obstruct garbage collection.

Figure 6-2. Thread lifecycle and its GC roots

The lifecycle of worker thread execution basically constitutes three steps:

1. Create a thread object.
A Thread object is instantiated.

2. Start thread execution.
The thread is started and the Runnable is executed.

3. Thread terminated.
The Runnable has finished execution.

92 | Chapter 6: Memory Management

When the thread is executing, as during step 2, the Thread object itself becomes a GC
root, and all objects it references are reachable. Similarly, all objects directly referenced
from an executing Runnable are GC roots. Hence, while a thread executes, both the
Thread and the Runnable instance can hold references to other objects that cannot be
reclaimed until the thread terminates.

Objects created in a method are eligible for garbage collection when the method returns,
unless the method returns the object to its caller so that it can be referenced from other
methods.

Threads that execute for a long time or are blocked pose a risk for
memory leaks because they hold on to objects that will be linked to
GC roots. Consequently, those objects cannot be garbage collected.

Let us illustrate the object tree for a couple of simple thread definition examples.

Inner classes
Inner classes are members of the enclosing object, like the outer class, and have access
to all the other members of the outer class. Hence, the inner class implicitly has a ref‐
erence to the outer class (see Figure 6-3). Consequently, threads defined as inner classes
keep references to the outer class, which will never be marked for garbage collection as
long as the thread is executing. In the following example, any objects in the Outer class
must be left in memory, along with objects in the inner SampleThread class, as long as
that thread is running.

Figure 6-3. Object dependency tree with inner class thread

public class Outer {

 public void sampleMethod() {
 SampleThread sampleThread = new SampleThread();

Thread-Related Memory Leaks | 93

 sampleThread.start();
 }

 private class SampleThread extends Thread {
 public void run() {
 Object sampleObject = new Object();
 // Do execution
 }
 }

Threads defined as local classes and anonymous inner classes have the same relations
to the outer class as inner classes, keeping the outer class reachable from a GC root
during execution.

Static inner classes
Static inner classes are members of the class instance of the enclosing object. Threads
defined in a static inner class therefore keep references to the class of the outer object,
but not to the outer object itself (Figure 6-4). Therefore, the outer object can be garbage
collected once other references to it disappear. This rule, applies, for instance, in the
following code.

Figure 6-4. Object dependency tree with static inner class thread

public class Outer {

 public void sampleMethod() {
 SampleThread sampleThread = new SampleThread();
 sampleThread.start();
 }

 private static class SampleThread extends Thread {
 public void run() {
 Object sampleObject = new Object();

 // Do execution

94 | Chapter 6: Memory Management

 }
 }
}

However, on most occasions, the programmer wants to separate the execution envi‐
ronment (Thread) from the task (Runnable). If you create a new Runnable as an inner
class, it will hold a reference to the outer class during the execution, even if it is run by
a static inner class. Code such as the following produces the situation in Figure 6-5.

Figure 6-5. Object dependency tree with static inner class thread executing an external
Runnable

public class Outer {

 public void sampleMethod() {

 SampleThread sampleThread = new SampleThread(new Runnable() {
 @Override
 public void run() {
 Object sampleObject = new Object();
 // Do execution
 }
 });
 sampleThread.start();
 }

 private static class SampleThread extends Thread {
 public SampleThread(Runnable runnable) {
 super(runnable);
 }
 }
}

The lifecycle mismatch
A fundamental reason for leakage on Android is the lifecycle mismatch between com‐
ponents, objects, and threads. Objects are allocated on the heap, can be eligible for

Thread-Related Memory Leaks | 95

garbage collection, and are kept in memory when they are referenced by threads. In
Android, however, it is not only the lifecycle of the object that the application has to
handle, but also the lifecycle of its components. All components—Activity, Service,
BroadcastReceiver, and ContentProvider—have their own lifecycles that do not
comply with their objects’ lifecycles.

Leaking Activity objects is the most serious—and probably the most common—com‐
ponent leak. An Activity holds references, for instance, to the view hierarchy that may
contain a lot of heap allocations. Figure 6-6 illustrates the component and object life‐
cycles of an Activity.

Figure 6-6. Lifecycles of Activity component and instance

The creation of an Activity component—i.e., onCreate() is called—leads to the con‐
struction of an Activity Java object. During the entire lifetime of the Activity com‐
ponent—from onCreate() to onDestroy()—the underlying Java object is of course in
use. When the Activity object is finished or destroyed by the system, the component
lifecycle ends with a call to onDestroy, which can happen for multiple reasons:

• The user presses the back button. This implicitly finishes the Activity.
• The Activity explicitly calls finish().
• The system has determined that the application process, where the Activity exe‐

cutes, can be killed to spare system resources.
• A configuration change occurs, for example, if the device is rotated, which destroys

the Activity component and creates a new one.

When the Activity component has finished, the Activity object may still remain on
the heap. It is the garbage collector that determines when the Activity object can be
removed. If any references to the Activity object linger after the component is de‐
stroyed, the object remains on the heap and is not eligible for garbage collection. As

96 | Chapter 6: Memory Management

Figure 6-6 illustrates, multiple Activity objects for the same Activity component can
coexist on the heap. In the figure, the component runs its course and is destroyed, but
the first Activity object (Activity A) remains in memory for some time longer. In the
meantime, Activity B starts, causing the component’s object to be recreated. Activity B
also remains in memory for some time after the component is destroyed. Activity A
and B are of no use without the component, and can be considered a memory leak if
they remain in memory for a long time.

Worker threads may impose a memory leak in the application, because threads can
continue to execute in the background even after the component is destroyed. Thus,
Figure 6-7 illustrates how an Activity object lingers on the heap long after the com‐
ponent has finished its lifetime. The reason is that Activity A started a worker thread
that is still executing in the background. Having been created by the Activity, the thread
references the Activity object.

During back-and-forth navigation to an Activity, as well as configuration changes,
new component lifecycles are initiated, and thus a new Activity object for every life‐
cycle. If threads are automatically started upon creation, every new lifecycle can create
a thread with a reference to the Activity object—and its view hierarchy, too. This poses
a risk for problematic memory leaks if the Activity recreation cycle is shorter than the
lifetime of the threads.

Automatically started threads pose a higher memory leakage risk than
user started threads, as configuration changes and user navigation can
yield many concurrent threads with Activity object references.

Figure 6-7. Activity lifecycle with executing thread

Thread-Related Memory Leaks | 97

Thread Communication
Thread execution is a potential source for memory leaks, and so is the message passing
mechanism between threads. These leaks can happen whether the executor is the UI
thread or another thread created by the application. For a thread to receive a Message
object from another thread, it needs to have a MessageQueue to hold pending messages,
a Looper to dispatch the messages, and a Handler to execute the messages, as explained
in “Android Message Passing” on page 47. Most of these objects are referenced only
from the producer thread and therefore can be garbage collected when it exits, but
Handler is a candidate for memory leaks because it is referenced from the consumer
thread through a chain of objects, as shown in Figure 6-8. The Handler instance and
the objects it references cannot be deallocated until the thread terminates.

Figure 6-8. A thread that can receive messages, and the referenced objects

While the consumer thread executes, all the direct or indirect referenced objects are still
reachable from a GC root and are ineligible for garbage collection. The Message in‐
stance, passed between the threads, holds references to a Handler and either to data
(Object) or to a task (Runnable) (refer to Table 4-2). From the creation through the
recycling of a Message, it holds a Handler reference to the consumer thread. While the
message is pending in the message queue or executed on the thread, it is ineligible for
garbage collection. Furthermore, the Handler and the Object or Runnable, together
with all their implicit and explicit references, are still reachable from the GC root.

The definition of Thread and Runnable as seen in “Thread Execution” on page 92 can
increase the memory leak, and that also applies to Handler and Runnable during thread
communication. We will look at two code examples to illustrate problems involving
these two objects: when sending a data message and when posting a Runnable.

Sending a data message
Data messages can be passed in various ways; the chosen implementation determines
both the risk for, and the size of, a memory leak. The following code example illustrates

98 | Chapter 6: Memory Management

the implementation pitfalls. The example contains an Outer class with a Handler to
process messages. The Handler is connected to the thread that creates the Outer class:

public class Outer {

 Handler mHandler = new Handler() {
 public void handleMessage(Message msg) {
 // Handle message
 }
 };

 public void doSend() {
 Message message = mHandler.obtainMessage();
 message.obj = new SampleObject();
 mHandler.sendMessageDelayed(message, 60 * 1000);
 }
}

Figure 6-9 illustrates the object reference tree in the executing thread, from the time the
Message has been sent to the message queue till the time it is recycled, i.e., after the
Handler has processed it. The reference chain has been shortened for brevity to cover
just the key objects we want to trace.

Figure 6-9. Object reference tree when sending data message

The code example violates both memory leak characteristics: it lets a thread hold ref‐
erences to more objects than necessary, and it keeps the references reachable for a long
time. We will look shortly at how to avoid these problems.

Posting a task message

Posting a Runnable, to be executed on a consumer Thread with a Looper, raises the same
concerns as sending a Message but with an additional extra Outer class reference to
watch out for:

Thread-Related Memory Leaks | 99

public class Outer {

 Handler mHandler = new Handler() {
 public void handleMessage(Message msg) {
 // Handle message
 }
 };

 public void doPost() {
 mHandler.post(new Runnable() {
 public void run() {
 // Long running task
 }
 });
 }
}

This simple code example posts a Runnable to a thread that calls doPost. Both the
Handler and Runnable instances refer to the Outer class and increase the size of a po‐
tential memory leak, as shown in Figure 6-10.

Figure 6-10. Object reference tree when posting task message

The risk for a memory leak increases with the length of the task. Short-lived tasks are
better in avoiding the risk.

Once a Message object is added to the message queue, the Message is
indirectly referenced from the consumer thread. The longer the Mes
sage is pending, is in the queue, or does a lengthy execution on the
receiving thread, the higher the risk is for a memory leak.

100 | Chapter 6: Memory Management

Avoiding Memory Leaks
As noted earlier, most memory leaks involving threads are caused by objects lingering
in memory longer than required. Threads and handlers can—unintentionally—keep
objects reachable from a thread GC root even when they are not used anymore. Let us
look at how to avoid—or mitigate—these memory leaks.

Use Static Inner Classes
Local classes, inner classes, and anonymous inner classes all hold implicit references to
the outer class they are declared in. Hence, they can leak not only their own objects, but
also those referenced from the outer class. Typically, an Activity and its view hierarchy
can cause a major leak through the outer class reference.

Instead of using nested classes with outer class references, it is preferred to use static
inner classes because they reference only the global class object and not the instance
object. This just mitigates the leak, because all explicit references to other instance ob‐
jects from the static inner class are still live while the thread executes.

Use Weak References
As we have seen, static inner classes do not have access to instance fields of the outer
class. This can be a limitation if an application would like to execute a task on a worker
thread and access or update an instance field of the outer instance. For this need,
java.lang.ref.WeakReference comes to the rescue:

public class Outer {
 private int mField;
 private static class SampleThread extends Thread {

 private final WeakReference<Outer> mOuter;

 SampleThread(Outer outer) {
 mOuter = new WeakReference<Outer>(outer);
 }

 @Override
 public void run() {
 // Do execution and update outer class instance fields.
 // Check for null as the outer instance may have been GC'd.
 if (mOuter.get() != null) {
 mOuter.get().mField = 1;
 }
 }
 }
}

Avoiding Memory Leaks | 101

In the code example, the Outer class is referenced through a weak reference, meaning
that the static inner class holds a reference to the outer class and can access the outer
instance fields. The weak reference is not a part of the garbage collector’s reference
counting, as all strong references, like normal references, are. So if the only remaining
reference to the outer object is the weak reference from the inner class, the garbage
collector sees this object as eligible for garbage collection and may deallocate the outer
instance from the heap.

Stop Worker Thread Execution
Implementing Thread, Runnable, and Handler as static inner classes, nullifying explicit
strong references, or using weak references will mitigate a memory leak but not totally
prevent it. The executing thread may still hold some references that cannot be garbage
collected. So to prevent the thread from delaying object deallocation, it should be ter‐
minated as soon as it is not required anymore.

Retain Worker Threads
Figure 6-7 shows how the lifecycle mismatch between component, activity, and thread
can keep objects live longer than necessary. Typically, the long times are caused by
changing the configurations of activities, where the old object is kept in memory for as
long as the thread executes. By retaining the thread from the old to the new Activity
and removing the thread reference from the old Activity, you can allow the Activi
ty object to be garbage collected. The retention technique in practice differs according
to the threading mechanisms available in the platform, and is explained for each mech‐
anism in the chapters of Part II.

Clean Up the Message Queue
A message sent to a thread may be pending in the message queue either if it is sent with
a long execution delay or if messages with a lower timestamp have not finished execu‐
tion. If a message is pending when it is no longer needed, you should remove it from
the message queue so that all its referenced objects can be deallocated.

Messages sent to a worker thread can be garbage collected once the worker thread fin‐
ishes, but the UI thread cannot finish until the application process terminates. There‐
fore, cleaning up messages sent to the UI thread is a valuable way to avoid memory
leaks. Both Message and Runnable can be removed from the queue:

removeCallbacks(Runnable r)
removeCallbacks(Runnable r, Object token)
removeCallbacksAndMessages(Object token)
removeMessages(int what)
removeMessages(int what, Object object)

102 | Chapter 6: Memory Management

The Runnables shall be removed with a reference to the instance, whereas the Messag
es can be removed with the identifiers what and token (see “Message” on page 55).

Summary
This chapter has summarized the main reasons for memory leaks on Android, and
shown both code design and execution lifecycle considerations you should take to avoid
—or at least reduce—the memory leaks.

In Part II, more practical aspects of avoiding memory leaks for the asynchronous mech‐
anisms in the platform are discussed.

Summary | 103

PART II

Asynchronous Techniques

The simplest form of asynchronous execution on Android is the regular
java.lang.Thread class, which is the basis for asynchronous behavior on Android.
Other mechanisms build upon the Thread class to enable better resource control, mes‐
sage passing, or relief for the UI thread.

CHAPTER 7

Managing the Lifecycle of a Basic Thread

This chapter contains some of the basics of using threads, discusses threads in collab‐
oration with Android components, and finishes with thread management. It covers the
cancellation of tasks, how to retain threads across Activity and Fragment objects, and
other essential techniques.

Basics
The Thread class in Android is no different from the Thread class in regular Java pro‐
gramming. It is the closest representation of the underlying Linux native thread an
application gets. The Thread class creates the execution environment for tasks, repre‐
sented by Runnable. The Thread implements Runnable, so the task to be executed is
either defined by the thread itself or injected during thread creation.

Lifecycle
This section explains the observable states a thread can enter during its existence. These
states are defined in the Thread.State class and are illustrated in Figure 7-1.

Figure 7-1. Lifecycle of a thread

107

New
Before the execution of a thread, a Thread object is created. The instantiation does
not set up the execution environment, so it is no heavier than any other object
instantiation. The default construction assigns the newly created thread to the same
thread group as the thread that is doing the creation, with the same priority. Specif‐
ically, threads created from the UI thread belong to the same thread group, with
the same priority, as the UI thread.

Runnable
When Thread.start() is called, the execution environment is set up and the thread
is ready to be executed. It is now in the Runnable state. When the scheduler selects
the thread for execution, the run method is called and the task is executed.

Blocked/Waiting
Execution can halt when the thread has to wait for a resource that is not directly
accessible—for example, an I/O operation, synchronized resources used by other
threads, blocking API calls, etc. But execution can also be given up explicitly:

1. Thread.sleep(): Let the thread sleep for certain amount of time and then make
it available to be scheduled for execution again.

2. Thread.yield(): Give up execution, and let the scheduler make a new decision
on which thread to execute. The scheduler freely selects which thread to exe‐
cute, and there is no guarantee that the scheduler will choose a different thread.

Terminated
When the run method has finished execution, the thread is terminated and its
resources can be freed up. This is the final state of the thread; no reuse of the Thread
instance or its execution environment is possible. Setting up and tearing down the
execution environment is a heavy operation; doing it over and over again is a sign
that another solution, such as thread pools (see Chapter 9), is preferred.

Interruptions
Occasionally, an application wants to terminate the thread’s execution before it has
finished its task. For instance, if a thread is taking a long time to download a video and
the user presses a button to cancel the download, the UI thread captures the button
press and would like to terminate the downloading thread. There is, however, no way
a thread can be directly terminated. Instead, threads can be interrupted, which is a
request to the thread that is should terminate, but it is the thread itself that determines
whether to oblige or not. Interruptions are invoked on the thread reference:

Thread t = new SimpleThread();
t.start(); // Start the thread
t.interrupt(); // Request interruption

108 | Chapter 7: Managing the Lifecycle of a Basic Thread

Thread interruption is implemented collaboratively: the thread makes itself available to
be interrupted, and other threads issue the call to interrupt it. Issuing an interruption
has no direct impact on the execution of the thread; it merely sets an internal flag on
the thread that marks it as interrupted. The interrupted thread has to check the flag
itself to detect the interruption and terminate gracefully. A thread must implement
cancellation points in order to allow other threads to interrupt it and get it to terminate:

public class SimpleThread extends Thread {

 @Override
 public void run() {
 while (isInterrupted() == false) {
 // Thread is alive
 }
 // Task finished and thread terminates
 }
}

Cancellation points are implemented by checking the interrupt flag with the isInter
rupted() instance method, which returns a Boolean value of true if the thread has been
interrupted, and false otherwise. If it returns true, the thread is informed that it is
requested to terminate. Typically, cancellation points are implemented in loops, or be‐
fore long-running tasks are executed, to enable the thread to skip the next part in the
task execution.

The interrupt flag is also supported by most blocking methods and libraries; a thread
that is currently blocked will throw an InterruptedException upon being interrup‐
ted. Hence, the thread can clean up the state of shared objects in the catch clause before
the thread terminates. When an InterruptedException is thrown, the interrupted flag
is reset—for example, isInterrupted will return false even though the thread has been
interrupted. This may lead to problems further up in the thread callstack because no
one will know that the thread has been interrupted. So if the thread doesn’t have to
perform any cleanup upon interruption, the thread should pass the InterruptedExcep
tion further up in the callstack. If cleanup is required, it should be done in the catch-
clause, after which the thread should interrupt itself again so that callers of the executed
method are aware of the interruption, as shown in the following example:

void myMethod() {
 try {
 // Some blocking call
 } catch (InterruptedException e) {
 // 1. Clean up
 // 2. Interrupt again
 Thread.currentThread().interrupt();
 }
 }

Basics | 109

Interruption state can also be checked with the Thread.interrup
ted() static method, which returns a Boolean value in the same way
as isInterrupted(). However, Thread.interrupted() comes with a
side effect: it clears the interruption flag.

Do not use Thread.stop() to terminate an executing thread, be‐
cause it can leave the shared objects in an inconsistent and unpre‐
dictable state. It has been deprecated since API Level 1.

Uncaught Exceptions
A running Java thread terminates normally when the code path reaches the end and
there is no more code to execute—i.e., at the end of the Runnable.run() method. If,
somewhere along the code path, an unexpected error occurs, the result may be that an
unchecked exception is thrown. Unchecked exceptions are descendants of RuntimeEx
ception and they do not require mandatory handling in a try/catch clause, so they can
propagate along the callstack of the thread. When the starting point of the thread is
reached, the thread terminates. To avoid unexpected errors from going unnoticed, a
thread can be attached with an UncaughtExceptionHandler that is called before the
thread is terminated. This handler offers a chance for the application to finish the thread
gracefully, or at least make a note of the error to a network or file resource.

The UncaughtExceptionHandler interface is used by implementing the method un
caughtException and attaching it to a thread. If thread is terminated due to an unexc‐
pected error, the implementation is invoked on the terminating thread before it termi‐
nates. The UncaughtExceptionHandler is attached to either all threads or a specific
thread in the Thread class:
Thread global handler

static void setDefaultUncaughtExceptionHandler(
Thread.UncaughtExceptionHandler handler);

Thread local handler
void setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler handler);

If a thread has both a global and a local handler set, the local handler has precedence
over the global handler, which will not be called.

A local UncaughtExceptionHandler can be attached to the thread instance, either with
Thread.currentThread() in the executing task or—as the code listing shows–by using
the thread reference itself:

Thread t = new Thread(new Runnable() {
 @Override

110 | Chapter 7: Managing the Lifecycle of a Basic Thread

1. http://bit.ly/1iR1tU3

 public void run() {
 throw new RuntimeException("Unexpected error occurred");
 }
});

t.setUncaughtExceptionHandler(new Thread.UncaughtExceptionHandler() {
 @Override
 public void uncaughtException(Thread thread, Throwable throwable) {
 // A basic logging of the message.
 // Could be replaced by log to file or a network post.
 Log.d(TAG, throwable.toString());
 }
});

t.start();

Unhandled Exceptions on the UI Thread
The Android runtime attaches a process global UncaughtExceptionHandler when an
application is started.1 Thus, the exception handler is attached to all threads in the ap‐
plication, and it treats unhandled exceptions equally for all threads: the process is killed.

The default behavior can be overriden either globally for all threads—including the UI
thread—or locally for specific threads. Typically, the overriden behavior should only
add functionality to the default runtime behavior, which is achieved by redirecting the
exception to the runtime handler:

// Set new global handler
Thread.setDefaultUncaughtExceptionHandler(new ErrorReportExceptionHandler());

// Error handler that redirects exception to the system default handler.
public class ErrorReportExceptionHandler
 implements Thread.UncaughtExceptionHandler {

 private final Thread.UncaughtExceptionHandler defaultHandler;

 public ErrorReportExceptionHandler() {
 this.defaultHandler = Thread.getDefaultUncaughtExceptionHandler();
 }

 @Override
 public void uncaughtException(Thread thread, Throwable throwable) {
 reportErrorToFile(throwable);
 defaultHandler.uncaughtException(thread, throwable);
 }
}

Basics | 111

http://bit.ly/1iR1tU3

Thread Management
Each application is responsible for the threads it uses and how they are managed. An
application should decide on the number of threads to use, how to reuse them, when
to interrupt them, and if they should be retained during a rotation change.

You can implement these qualities throughout the lifecycle of the thread, particularly
at three phases: definition and start, retention, and cancellation.

Definition and Start
The lifecycles of threads, components, and their respective object do not match up (see
“The lifecycle mismatch” on page 95). The thread can outlive several component life‐
cycles and keep old component objects in memory even if they are never reused. The
way threads are defined and started has an impact on the both the risk and the size of
a memory leak. We will now look into the most common ways of defining and starting
worker threads on Android and observe the implications of each one.

The examples are based on generalized and simplified code, with an outer class (AnyOb
ject) and threads that are started from a method (anyMethod) called in the UI thread.

Anonymous inner class
First, we will look at the properties of an inner class. The code example utilizes an
anonymous inner class, because that is the syntactically shortest form, but the same
principles apply to all nested and local classes as well:

public class AnyObject {
 @UiThread
 public void anyMethod() {
 new Thread() {
 public void run() {
 doLongRunningTask();
 }
 }.start();
 }
}

The anonymous inner class is simple to implement in the context of where it is used but
it holds references to the outer class.

Public thread
A thread can be defined as a standalone class, not directly defined by the class that runs
it:

class MyThread extends Thread {
 public void run() {
 doLongRunningTask();

112 | Chapter 7: Managing the Lifecycle of a Basic Thread

 }
}

public class AnyObject {
 private MyThread mMyThread;

 @UiThread
 public void anyMethod() {
 mMyThread = new MyThread();
 mMyThread.start();
 }
}

A standalone class holds no reference to the outer class, but the number of classes that
needs to be defined can grow large.

Static inner class thread definition
Instead of defining the thread as an inner class, it can be defined as a static inner class,
i.e., defined in the class object instead of the instance:

public class AnyObject {
 static class MyThread extends Thread() {
 public void run() {
 doLongRunningTask();
 }
 };

 private MyThread mMyThread;

 @UiThread
 public void anyMethod() {
 mMyThread = new MyThread();
 mMyThread.start();
 }
}

A static inner class only holds a reference to the class object of the outer class, and not
the instance class. Hence, the memory allocated by instance object can’t be leaked due
to the thread reference.

Summary of options for thread definition
Inner classes have outer references that may leak larger memory chunks, a weakness
avoided in both public classes and static inner classes. The anonymous inner class does
not store any reference to the thread instance, which leaves the thread out of control. If
there is no thread reference stored, the thread cannot be influenced by the application.

All the code examples have a problem with uncontrolled thread creation. If anyMe
thod can be called often, for example following a button click, the number of threads
cannot be controlled. New threads will be created over and over again, using up more

Thread Management | 113

2. The default behavior can be overridden by android:configChanges in the AndroidManifest.xml file.

memory with every creation. Also, the thread reference stored in the mMyThread member
variable, for the public class and the static inner class, is overwritten on every execution
and not usable anymore. The application can apply logic to store thread references in
lists or make sure to start new threads only if the previously started thread is not alive
anymore, but Thread may require some additional logic to constrain the number of
concurrent tasks.

Thread pools (Chapter 9) or HandlerThread (Chapter 8) offer constraints on the num‐
ber of executing threads.

Retention
A thread does not follow the lifecycle of an Android component that has started it or
its underlying objects (see “The lifecycle mismatch” on page 95). Once a thread is started,
it will execute until either its run method finishes or the whole application process
terminates. Therefore, the thread lifetime can outlive the component lifetime.

When the thread finishes, it may have produced a result that was meant to be used by
the component, but there is no receiver available. Typically, this situation occurs on
configuration changes in Activity components. The default behavior is to restart the
component when its configuration has changed, meaning that the original Activity
object is replaced by a new one without any knowledge of the executing background
thread.2 Only the Activity object that started the thread knows that the thread was
started, so the new Activity cannot utilize the thread’s result; it has to restart the thread
over again to collect the data.

This can lead to unnecessary work. For example, if a worker thread is set to download
a large chunk of data, and a configuration change occurs during the download, it is a
waste to throw the partial result away. Instead, a better approach is to retain the thread
during the configuration change and let the new Activity object handle the thread
started by the old Activity object.

Retaining threads is done differently depending on the platform version. Before API
level 13 (Honeycomb), the retention is handled in the Activity but was simplified with
the introduction of fragments. With the Support Library, Fragment is backported to
older platform versions and the previous Activity retention methods are deprecated.
We will now look into both methods, starting with the older Activity variant.

Retaining a thread in an Activity

The Activity class contains two methods for handling thread retention:

114 | Chapter 7: Managing the Lifecycle of a Basic Thread

http://bit.ly/R7r7Jk

public Object onRetainNonConfigurationInstance()

Called by the platform before a configuration change occurs, which causes the cur‐
rent Activity object to be destroyed and replaced by another instance. The im‐
plementation should return any object that you want to be retained across a con‐
figuration change (e.g., a thread) and passed to the new Activity object.

public Object getLastNonConfigurationInstance()

Called in the new Activity object to retrieve the retained object returned in onRe
tainNonConfigurationInstance() after a configuration change has been made. It
can be called in onCreate or onStart and returns null if the Activity is started
for another reason than a configuration change.

As the ThreadRetainActivity listing shows, an alive thread can be passed across Ac
tivity objects during a configuration change. The example is simplified for brevity, so,
for example, it doesn’t show the preservation of UI state, network operation, etc.:

public class ThreadRetainActivity extends Activity {

 private static class MyThread extends Thread {
 private ThreadRetainActivity mActivity;

 public MyThread(ThreadRetainActivity activity) {
 mActivity = activity;
 }

 private void attach(ThreadRetainActivity activity) {
 mActivity = activity;
 }

 @Override
 public void run() {
 final String text = getTextFromNetwork();
 mActivity.setText(text);

 }

 // Long operation
 private String getTextFromNetwork() {
 // Simulate network operation
 SystemClock.sleep(5000);
 return "Text from network";
 }
 }

 private static MyThread t;
 private TextView textView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

Thread Management | 115

 setContentView(R.layout.activity_retain_thread);
 textView = (TextView) findViewById(R.id.text_retain);

 Object retainedObject = getLastNonConfigurationInstance();
 if (retainedObject != null) {
 t = (MyThread) retainedObject;
 t.attach(this);
 }
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 if (t != null && t.isAlive()) {
 return t;
 }
 return null;
 }

 public void onClickStartThread(View v) {
 t = new MyThread(this);
 t.start();
 }

 private void setText(final String text) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 textView.setText(text);
 }
 });
 }
}

Worker thread declared as a static inner class to avoid outer class references. The
thread contains a reference to an Activity instance. The attach method is used
to set the Activity reference to the currently executing object.
If there is a retained thread object, it is restored. The new Activity instance is
registered to the thread.
Retains an executing thread before any configuration change occurs.
Button click method.

Retained objects—e.g., threads—bring their references over to the
next Activity. Threads declared with references to the outer class
—i.e., the Activity—will stop the garbage collector from reclaim‐
ing the old Activity and its view tree, although it will never be used
anymore.

116 | Chapter 7: Managing the Lifecycle of a Basic Thread

Retaining a thread in a Fragment

A Fragment normally implements part of the user interface in an Activity, but since
instance retention is easier with a Fragment, the responsibility to retain Thread instances
can be moved from an Activity to a Fragment. The Fragment can be added to an
Activity just to handle thread retention, without containing any UI elements. In a
Fragment, all that is required to retain a thread, or any other state, is to call setRetai
nInstance(true) in Fragment.onCreate(). The Fragment is then retained during a
configuration change. The actual Fragment lifecycle is changed so that it does not get
destroyed during configuration changes. Worker threads remain in the same Frag
ment instance while the platform handles the retention between the Activity and
Fragment.

Let’s take a look how a Fragment changes thread retainment compared to the Threa
dRetainActivity listing. The Activity now refers to a Fragment instead of the worker
thread:

public class ThreadRetainWithFragmentActivity extends Activity {
 private ThreadFragment mThreadFragment;
 private TextView mTextView;

 public void onCreate(Bundle savedInstanceState) {
 setContentView(R.layout.activity_retain_thread);
 mTextView = (TextView) findViewById(R.id.text_retain);

 FragmentManager manager = getFragmentManager();
 mThreadFragment =
 (ThreadFragment) manager.findFragmentByTag("threadfragment");
 if (mThreadFragment == null) {
 FragmentTransaction transaction = manager.beginTransaction();
 mThreadFragment = new ThreadFragment();
 transaction.add(mThreadFragment, "threadfragment");
 transaction.commit();
 }
 }

 // Method called to start a worker thread
 public void onStartThread(View v) {
 mThreadFragment.execute();
 }

 public void setText(final String text) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 mTextView.setText(text);
 }
 });
 }
}

Thread Management | 117

Create the Fragment if this is the first time the Activity is started.
Execution of the worker thread is delegated to the Fragment.
Published method for the Fragment to set the produced worker thread result.

The Fragment defines the worker thread and starts it:

public class ThreadFragment extends Fragment {
 private ThreadRetainWithFragmentActivity mActivity;
 private MyThread t;

 private class MyThread extends Thread {
 @Override
 public void run() {
 final String text = getTextFromNetwork();
 mActivity.setText(text);
 }

 // Long operation
 private String getTextFromNetwork() {
 // Simulate network operation
 SystemClock.sleep(5000);
 return "Text from network";
 }
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 }

 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 mActivity = (ThreadRetainWithFragmentActivity) activity;
 }

 @Override
 public void onDetach() {
 super.onDetach();
 mActivity = null;
 }

 public void execute() {
 t = new MyThread();
 t.start();
 }
}

Reference to the parent Activity.

118 | Chapter 7: Managing the Lifecycle of a Basic Thread

Retain the platform handle on configuration changes.
Interface for the Activity to start the worker thread.

Worker threads that execute across the lifecycle of multiple activi‐
ties are better handled with services (see Chapter 11 and Chapter 12).

Summary
A java.lang.Thread object represents the most fundamental abstraction in Android’s
underlying thread execution environment. Every started worker thread corresponds to
a native Linux thread. A thread is started explicitly and terminates when the task has
finished the execution. Interrupts are the only explicit way for an outsider to terminate
a thread, but it is up to the thread itself to implement an interruption policy. An appli‐
cation should manage threads to reduce the risk and size of memory leaks and to control
the starting and termination of threads. The Android platform contains many other
asynchronous mechanisms built upon Thread, but application developers may still
consider using simple worker threads for tasks that simply spawn worker threads to
offload tasks, such as network communication.

Summary | 119

CHAPTER 8

HandlerThread: A High-Level Queueing
Mechanism

“Android Message Passing” on page 47 described background execution on a thread
using a message queue and dispatch mechanism. The application explicitly coupled the
message queue and the dispatch mechanism to a thread. Instead, you can use a Han
dlerThread, a convenient wrapper that automatically sets up the internal message pass‐
ing mechanisms.

This chapter covers:

• How to use the HandlerThread
• The advantages of HandlerThread compared to manually setting up the message

passing mechanism
• Use cases for the HandlerThread

Fundamentals
HandlerThread is a thread with a message queue that incorporates a Thread, a Looper,
and a MessageQueue. It is constructed and started in the same way as a Thread. Once it
is started, HandlerThread sets up queuing through a Looper and MessageQueue and
then waits for incoming messages to process:

HandlerThread handlerThread = new HandlerThread("HandlerThread");
handlerThread.start();

mHandler = new Handler(handlerThread.getLooper()) {
 @Override
 public void handleMessage(Message msg) {
 super.handleMessage(msg);

121

 // Process messages here
 }
};

There is only one queue to store messages, so execution is guaranteed to be sequential
—and therefore thread safe—but with potentially low throughput, because tasks can be
delayed in the queue.

The HandlerThread sets up the Looper internally and prepares the thread for receiving
messages. The internal setup gurantees that there is no race condition between creating
the Looper and sending messages, which can occur in the manual setup (see “Example:
Basic Message Passing” on page 49). The platform solves the race condition problem by
making handlerThread.getLooper() a blocking call until the HandlerThread is ready
to receive messages.

If additional setup is required on the HandlerThread before it starts to process messages,
the application should override HandlerThread.onLooperPrepared(), which is in‐
voked on the background thread when the Looper is prepared. The application can
define any initialization code in onLooperPrepared, such as creating a Handler that will
be associated with the HandlerThread.

Limit Access to HandlerThread
A Handler can be used to pass any data message or task to the HandlerThread, but the
access to the Handler can be limited by keeping it private in a subclass implementation
—MyHandlerThread, in the following example—and ensuring that the Looper is not
accessible. The subclass defines public methods for clients to use so that the thread itself
defines the communication contract for how it should be accessed:

public class MyHandlerThread extends HandlerThread {

 private Handler mHandler;

 public MyHandlerThread() {
 super("MyHandlerThread", Process.THREAD_PRIORITY_BACKGROUND);
 }

 @Override
 protected void onLooperPrepared() {
 super.onLooperPrepared();
 mHandler = new Handler(getLooper()) {
 @Override
 public void handleMessage(Message msg) {
 switch(msg.what) {
 case 1:
 // Handle message
 break;
 case 2:

122 | Chapter 8: HandlerThread: A High-Level Queueing Mechanism

 // Handle message
 break;
 }
 }
 };
 }

 public void publishedMethod1() {
 mHandler.sendEmptyMessage(1);
 }
 public void publishedMethod2() {
 mHandler.sendEmptyMessage(2);
 }
}

Lifecycle
A running HandlerThread instance processes messages that it receives until it is ter‐
minated. A terminated HandlerThread can not be reused. To process more messages
after termination, create a new instance of HandlerThread. The lifecycle can be de‐
scribed in a set of states:

1. Creation: The constructor for HandlerThread takes a mandatory name argument
and an optional priority for the thread:

HandlerThread(String name)
HandlerThread(String name, int priority)

The name argument simplifies debugging, because the thread can be found more
easily in both thread analysis and logging. The priority argument is optional and
should be set with the same Linux thread priority values used in Process.set
ThreadPriority (see “Priority” on page 34). The default priority is Pro
cess.THREAD_PRIORITY_DEFAULT—the same priority as the UI thread—and can be
lowered to Process.THREAD_PRIORITY_BACKGROUND to execute noncritical tasks.

2. Execution: The HandlerThread is active while it can process messages; i.e., as long
as the Looper can dispatch messages to the thread. The dispatch mechanism is set
up when the thread is started through HandlerThread.start and is ready when
either HandlerThread.getLooper returns or on the onLooperPrepared callback. A
HandlerThread is always ready to receive messages when the Handler can be cre‐
ated, as getLooper blocks until the Looper is prepared.

3. Reset: The message queue can be reset so that no more of the queued messages will
be processed, but the thread remains alive and can process new messages. The reset
will remove all pending messages in the queue, but not affect a message that has
been dispatched and is executing on the thread:

Lifecycle | 123

public void resetHandlerThread() {
 mHandler.removeCallbacksAndMessages(null);
}

The argument to removeCallbacksAndMessages removes the message with that
specific identifier. null, shown here, removes all the messages in the queue. Further
details on message removal are described in “Removing Messages from the
Queue” on page 68.

4. Termination: A HandlerThread is terminated either with quit or quitSafely,
which corresponds to the termination of the Looper (“Looper termination” on page
59). With quit, no further messages will be dispatched to the HandlerThread,
whereas quitSafely ensures that messages that have passed the dispatch barrier
are processed before the thread is terminated. You can also send an interrupt to the
HandlerThread to cancel the currently executing message, as explained in “Inter‐
ruptions” on page 108:

public void stopHandlerThread(HandlerThread handlerThread) {
 handlerThread.quit();
 handlerThread.interrupt();
}

A terminated HandlerThread instance has reached its final state and cannot be
restarted.
A HandlerThread can also be terminated by sending a finalization task to the Han
dler that quits the Looper, and consequently the HandlerThread:

handler.post(new Runnable() {
 @Override
 public void run() {
 Looper.myLooper().quit();
 }
});

The finalization task ensures that this will be the last executed task on this thread,
once it has been dispatched by the Looper. There is, however, no guarantee that
other tasks will not move ahead of the finalization task by being posted to the front
of the queue through Handler.postAtFrontOfQueue (see “Message insertion” on
page 62).

Use Cases
A HandlerThread is applicable to many background execution use cases, where se‐
quential execution and control of the message queue is desired. This section shows a
range of use cases where HandlerThread comes in handy.

124 | Chapter 8: HandlerThread: A High-Level Queueing Mechanism

Repeated Task Execution
Many Android components relieve the UI thread by executing tasks on background
threads. If it is not necessary to have concurrent execution in several threads—for ex‐
ample, multiple independent network requests—the HandlerThread provides a simple
and efficient way to define tasks to be executed sequentially in the background. Hence,
the execution setup for this situation is the UI thread—available by default—and a
HandlerThread with a lifecycle that follows that of the component. Thus, Handler
Thread.start is called upon at the start of a component and HandlerThread.quit upon
the termination of the component. In between, there is a background thread available
for offloading the UI thread.

The tasks to execute can be either predefined Runnable or Message instances. Both types
can be configured with input data as follows:
Runnable

Provide input data through shared member variables. (Requires synchronization
to ensure correct data.)

Message

Pass data using the types shown Table 4-2.

Don’t mix long or blocking tasks with shorter tasks, because the
shorter ones may be postponed unnecessarily. Instead, split execu‐
tion among several HandlerThread or use an Executor (Chapter 9).

Related Tasks
Interdependent tasks—e.g., those that access shared resources, such as the file system
—can be executed concurrently, but they normally require synchronization to render
them thread safe and ensure uncorrupted data. The sequential execution of Handler
Thread guarantees thread safety, task ordering, and lower resource consumption than
the creation of multiple threads. Therefore, it is useful for executing nonindependent
tasks.

Example: Data persistence with SharedPreferences

SharedPreferences is persistent storage for user preferences on the file system. Con‐
sequently, it should only be accessed from background threads. But file system access
is not thread safe, so a HandlerThread—with sequential execution—makes the access
thread safe without adding synchronization, which is normally a simpler approach. The
following example shows how a HandlerThread can carry out the job:

Use Cases | 125

public class SharedPreferencesActivity extends Activity {

 TextView mTextValue;

 /**
 * Show read value in a TextView.
 */
 private Handler mUiHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 super.handleMessage(msg);
 if (msg.what == 0) {
 Integer i = (Integer)msg.obj;
 mTextValue.setText(Integer.toString(i));
 }
 }
 };

 private class SharedPreferenceThread extends HandlerThread {

 private static final String KEY = "key";
 private SharedPreferences mPrefs;
 private static final int READ = 1;
 private static final int WRITE = 2;

 private Handler mHandler;

 public SharedPreferenceThread() {
 super("SharedPreferenceThread", Process.THREAD_PRIORITY_BACKGROUND);
 mPrefs = getSharedPreferences("LocalPrefs", MODE_PRIVATE);
 }

 @Override
 protected void onLooperPrepared() {
 super.onLooperPrepared();
 mHandler = new Handler(getLooper()) {
 @Override
 public void handleMessage(Message msg) {
 switch(msg.what) {
 case READ:
 mUiHandler.sendMessage(mUiHandler.obtainMessage(0,
 mPrefs.getInt(KEY, 0)));
 break;
 case WRITE:
 SharedPreferences.Editor editor = mPrefs.edit();
 editor.putInt(KEY, (Integer)msg.obj);
 editor.commit();
 break;
 }
 }
 };
 }

126 | Chapter 8: HandlerThread: A High-Level Queueing Mechanism

 public void read() {
 mHandler.sendEmptyMessage(READ);
 }
 public void write(int i) {
 mHandler.sendMessage(Message.obtain(Message.obtain(mHandler,
 WRITE, i)));
 }
 }

 private int mCount;
 private SharedPreferenceThread mThread;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_shared_preferences);
 mTextValue = (TextView) findViewById(R.id.text_value);
 mThread = new SharedPreferenceThread();
 mThread.start();
 }

 /**
 * Write dummy value from the UI thread.
 */
 public void onButtonClickWrite(View v) {
 mThread.write(mCount++);
 }

 /**
 * Initiate a read from the UI thread.
 */
 public void onButtonClickRead(View v) {
 mThread.read();
 }

 /**
 * Ensure that the background thread is terminated with the Activity.
 */
 @Override
 protected void onDestroy() {
 super.onDestroy();
 mThread.quit();
 }
}

Handler to the UI thread, used by the background thread to communicate with
the UI thread.
Background thread that reads and writes values to SharedPreferences.
Start background thread when the Activity is created.

Use Cases | 127

Task Chaining
A well-designed task executes a single contextual operation independently of other
tasks. Contextual operations that should be executed on background threads in Android
include retrieval of a network resource, data persistence, and image processing. Quite
often, these types of operations are used in combination: download and persist, network
data mashup, and so on. HandlerThread provides an infrastructure for task chaining
with some favorable properties:

• Easy setup
• Independent, reusable tasks that may be chained
• Sequential execution
• Natural decision points, where you determine whether to continue with the next

task in the chain or not
• Reporting the current state
• Easy passing of data from one task to another in the task chain

The task-chaining pattern is implemented in the Handler by defining tasks that are
decoupled and reusable in handleMessage. The execution is controlled by the Mes
sage.what parameter; any of the tasks can be reached individually, for isolated execu‐
tion, or executed consecutively through internal message passing within the Handler.
Once a background task has finished, it can report the status to the UI thread, stop the
task chain, or initiate a new task in the chain. Basically, every task has a natural decision
point where the chain can stop or continue the execution.

Example: Chained network calls
Network-intensive applications commonly utilize the result from one network resource
as input to a second network resource. When the first network operation finishes suc‐
cessfully, the call to the second network resource is made. Upon failure, the application
stops the chain and terminates the background thread. During the execution, the user
sees a progress dialog that can be controlled from every step in the chain: dismissed,
updated, or just continuously shown until the chain has completed. This example has
a HandlerThread with two chained tasks, where only the first task is exposed to the
Activity. The second task can’t be executed standalone; it only starts after a successful
execution of the first task. The background thread communicates with the UI thread
through a Handler that controls the dialog seen by the user:

public class ChainedNetworkActivity extends Activity {

 private static final int DIALOG_LOADING = 0;

 private static final int SHOW_LOADING = 1;

128 | Chapter 8: HandlerThread: A High-Level Queueing Mechanism

 private static final int DISMISS_LOADING = 2;

 Handler dialogHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 super.handleMessage(msg);
 switch (msg.what) {
 case SHOW_LOADING:
 showDialog(DIALOG_LOADING);
 break;
 case DISMISS_LOADING:
 dismissDialog(DIALOG_LOADING);
 }
 }
 };

 private class NetworkHandlerThread extends HandlerThread {
 private static final int STATE_A = 1;
 private static final int STATE_B = 2;
 private Handler mHandler;

 public NetworkHandlerThread() {
 super("NetworkHandlerThread", Process.THREAD_PRIORITY_BACKGROUND);
 }

 @Override
 protected void onLooperPrepared() {
 super.onLooperPrepared();
 mHandler = new Handler(getLooper()) {
 @Override
 public void handleMessage(Message msg) {
 super.handleMessage(msg);
 switch (msg.what) {
 case STATE_A:
 dialogHandler.sendEmptyMessage(SHOW_LOADING);
 String result = networkOperation1();
 if (result != null) {
 sendMessage(obtainMessage(STATE_B, result));
 } else {
 dialogHandler.sendEmptyMessage(DISMISS_LOADING);
 }
 break;
 case STATE_B:
 networkOperation2((String) msg.obj);
 dialogHandler.sendEmptyMessage(DISMISS_LOADING);
 break;
 }
 }
 };
 fetchDataFromNetwork();
 }

Use Cases | 129

 private String networkOperation1() {
 SystemClock.sleep(2000); // Dummy
 return "A string";
 }

 private void networkOperation2(String data) {
 // Pass data to network, e.g. with HttpPost.
 SystemClock.sleep(2000); // Dummy
 }

 /**
 * Publically exposed network operation
 */
 public void fetchDataFromNetwork() {
 mHandler.sendEmptyMessage(STATE_A);
 }
 }

 private NetworkHandlerThread mThread;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mThread = new NetworkHandlerThread();
 mThread.start();
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 Dialog dialog = null;
 switch (id) {
 case DIALOG_LOADING:
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setMessage("Loading...");
 dialog = builder.create();
 break;
 }
 return dialog;
 }

 /**
 * Ensure that the background thread is terminated with the Activity.
 */
 @Override
 protected void onDestroy() {
 super.onDestroy();
 mThread.quit();
 }
}

DialogHandler that processes messages on the UI thread. It is used to control
the dialogs shown to the user.

130 | Chapter 8: HandlerThread: A High-Level Queueing Mechanism

The first network call, which is initiated in the onCreate method. It passes a
message to the UI thread that initiates a progress dialog. When the network
operation is done, the successful result is either passed on to the second task—
STATE_B—or the progress dialog is dismissed.
Execution of the second network operation.
Initiate a network call when the background thread is started.

Conditional Task Insertion
HandlerThread offers great control over the Message instances in the queue and op‐
portunites to observe their state. These features can be used to optionally insert new
tasks in the queue, depending on the pending tasks in the queue when the message is
sent. Message insertion control can be fine-grained, based on identifying messages in
the queue by the what parameter and an optional tag:

handler.hasMessages(int what)
handler.hasMessages(int what, Object tag)

Conditional task insertion can be used in various ways, depending on the problem. A
common use case is to ensure that your program does not send a message of a type that
is already in the queue, because the queue should never contain more than one message
of the same type at any time:

if (handler.hasMessages(MESSAGE_WHAT) == false) {
 handler.sendEmptyMessage(MESSAGE_WHAT);
}

Summary
HandlerThread provides a single-threaded, sequential task executor with fine-grained
message control. It is the most fundamental form of message passing to a background
thread, and it can be kept alive during a component lifecycle to provide low-resource
background execution. The flexibility of message passing makes the HandlerThread a
strong candidate for customizable sequential executors.

Message passing provides a powerful asynchronous mechanism, but is not always the
most straightforward way to provide data to tasks. As we will see in the next chapters,
the platform contains higher-level components that abstract message passing to make
life easier for application developers and solve common asynchronous problems. How‐
ever, when it comes to having full control of the background execution, Handler
Thread and message passing are there to assist you!

Summary | 131

CHAPTER 9

Control over Thread Execution Through the
Executor Framework

Java’s Executor framework opens up new dimensions of control over threads and the
resources they use on the system. Sometimes you want to launch as many threads as the
system can handle to resolve tasks quickly; other times you want to let the system man‐
age the number of threads; and sometimes you want to cancel threads because they are
no longer needed. The Executor framework, along with related classes, allows you to:

• Set up pools of worker threads and queues to control the number of tasks that can
wait to be executed on these threads

• Check the errors that caused threads to terminate abnormally
• Wait for threads to finish and retrieve results from them
• Execute batches of threads and retrieve their results in a fixed order
• Launch background threads at convenient times so that results are available to the

user faster

Executor
The fundamental component of the Executor framework is the simple Executor inter‐
face. Its main goal is to separate the creation of a task (such as a Runnable) from its
execution, thus enabling the sorts of application behaviors listed at the beginning of the
chapter. The interface includes just one method:

public interface Executor {
 void execute(Runnable command);
}

133

Despite its simplicity, the Executor is the foundation of a powerful execution environ‐
ment, and is used more often than the basic Thread interface because it provides a better
separation between submitting a task and its actual execution. The Executor does not
execute any tasks by itself—it is merely an interface—so your implementations provide
the actual execution and define how tasks will be executed. Normally, you only imple‐
ment an Executor if there are special requirements. Instead—as we will soon see—there
are provided Executor implementations in the platform, but first let’s take a look at a
custom implementation to grasp the concepts.

An Executor implementation in its simplest form creates a thread for every task
(Example 9-1).

Example 9-1. One thread per task executor
public class SimpleExecutor implements Executor {
 @Override
 public void execute(Runnable runnable) {
 new Thread(runnable).start();
 }
}

The SimpleExecutor provides no more functionality than creating threads as anony‐
mous inner classes directly, so it may look superfluous, but it provides advantages nev‐
ertheless: decoupling, scalability, and reduced memory references. You can alter the
implementation in the Executor without affecting the code that submits the task
through execute(Runnable), and scale the number of threads that handle the tasks.
Furthermore, the SimpleExecutor holds no reference to the outer class, as an anony‐
mous inner class does, and hence reduces the memory referenced by the thread.

In short, if you consider using the Thread class directly, but you don’t know if the exe‐
cution may change in the future, an Executor implementation can serve you well to
simplify the change.

Other execution behaviors that can be controlled are:

• Task queueing
• Task execution order
• Task execution type (serial or concurrent)

An example of a more elaborate Executor is shown in Example 9-2. It implements a
serial task executor, which is then used in the AsyncTask. (Chapter 10 explains the
implications of this executor). The SerialExecutor implements a producer-consumer
pattern, where producer threads create Runnable tasks and place them in a queue.
Meanwhile, consumer threads remove and process the tasks off the queue.

134 | Chapter 9: Control over Thread Execution Through the Executor Framework

Example 9-2. Serial executor
private static class SerialExecutor implements Executor {
 final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
 Runnable mActive;

 public synchronized void execute(final Runnable r) {
 mTasks.offer(new Runnable() {
 public void run() {
 try {
 r.run();
 } finally {
 scheduleNext();
 }
 }
 });
 if (mActive == null) {
 scheduleNext();
 }
 }

 protected synchronized void scheduleNext() {
 if ((mActive = mTasks.poll()) != null) {
 THREAD_POOL_EXECUTOR.execute(mActive);
 }
 }
 }

The executor applies the following execution behavior:
Task queueing

An ArrayDeque—i.e., a double-ended queue—holds all submitted tasks until they
are processed by a thread.

Task execution order
All tasks are put at the end of the double-ended queue through mTasks.offer(),
so the result is a FIFO ordering of the submitted tasks.

Task execution type
Tasks are executed serially but not necessarily on the same thread. Whenever a task
has finished executing—i.e., r.run() has finished—scheduleNext() is invoked. It
takes the next task from the queue and submits it to another Executor in the thread
pool, where any thread can execute the task.

In short, SerialExecutor constitutes an execution environment that guarantees serial
execution with the the ability to process tasks on different threads.

Executor | 135

Changing task execution type from serial to concurrent may give the
application increased performance, but it raises thread safety con‐
cerns for the tasks that must be thread safe relative to each other.

As seen, the Executor is useful for asynchronous execution, but we seldom want to
implement execution behavior from scratch. The most useful executor implementation
is the thread pool, which we will look at next.

Thread Pools
A thread pool is the combination of a task queue and a set of worker threads that forms
a producer-consumer setup (see “Pipes” on page 39). Producers add tasks to the queue
and worker threads consume them whenever there is an idle thread ready to perform
a new background execution. So, the worker thread pool can contain both active threads
executing tasks, and idle threads waiting for tasks to execute.

There are several advantages with thread pools over executing every task on a new thread
(thread-per-task pattern):

• The worker threads can be kept alive to wait for new tasks to execute. This means
that threads don’t have to be created and destroyed for every task, which compro‐
mises performance.

• The thread pool is defined with a maximum number of threads so that the platform
isn’t overloaded with background threads—that consume application memory—
due to many background tasks.

• The lifecycle of all worker threads are controlled by the thread-pool lifecycle.

“ExecutorCompletionService” on page 152 contains a complete example showing a thread
pool, along with other features discussed in this chapter.

Predefined Thread Pools
The Executor framework contains predefined types of thread pools, created from the
factory class Executors:
Fixed size

The fixed-size thread pool maintains a user defined number of worker threads.
Terminated threads are replaced by new threads to keep the number of worker
threads constant. This type of pool is created with Executors.newFixedThread
Pool(n), where n is the number of threads.

136 | Chapter 9: Control over Thread Execution Through the Executor Framework

1. Actually, the upper limit is Integer.MAX, which, in practice, can be considered indefinite.

This type of thread pool uses an unbounded task queue, meaning that the queue is
allowed to grow freely as new tasks are added. Therefore, a producer will not fail
at inserting a task.1

Dynamic size
The dynamic-size—-a.k.a. cached—thread pool creates a new thread if necessary
when there is a task to process. Idle threads wait for 60 seconds for new tasks to
execute and are then terminated if the task queue remains empty. Consequently,
the thread pool grows and shrinks with the number of tasks to execute. This type
of pool is created with Executors.newCachedThreadPool().

Single-thread executor
This has only one worker thread to process the tasks from the queue. The tasks are
executed serially and thread safety cannot be violated. This type of pool is created
with Executors.newSingleThreadExecutor().

Executors.newSingleExecutor() and Executors.newFixedThread
Pool(1) both have one worker thread to process tasks. The differ‐
ence is that a single executor always has only one worker thread,
whereas a fixed thread pool actually can reconfigure the number of
worker threads after creation, for example, from one to four:

ExecutorService executor = Executors.newFixedThreadPool(1);
((ThreadPoolExecutor)executor).setCorePoolSize(4);

The reconfiguration API is accessible through the ThreadPoolExecu
tor class, which can be used for customizing thread pools.

Custom Thread Pools
The predefined thread pool types from Executors cover the most common scenarios,
but applications can create customized thread pools. The predefined Executors thread
pools are based on the ThreadPoolExecutor class, which can be used directly to create
thread pool behavior in detail. This section will go into more into the details of thread
pools and their customization, including configuration and extension.

ThreadPoolExecutor configuration
A thread pool’s behavior is based on a set of properties concerning the threads and the
task queue, which you can set to control the pool. The properties are used by the
ThreadPoolExecutor to define thread creation and termination as well as the queuing
of tasks. The configuration is done in the constructor:

Thread Pools | 137

ThreadPoolExecutor executor = new ThreadPoolExecutor(
 int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue);

Core pool size
The lower limit of threads that are contained in the thread pool. Actually, the thread
pool starts with zero threads, but once the core pool size is reached, the number of
threads does not fall below this lower limit. If a task is added to the queue when the
number of worker threads in the pool is lower than the core pool size, a new thread
will be created even if there are idle threads waiting for tasks. Once the number of
worker threads is equal to or higher than the core pool size, new worker threads
are only created if the queue is full—i.e., queuing gets precedence over thread cre‐
ation.

Maximum pool size
The maximum number of threads that can be executed concurrently. Tasks that are
added to the queue when the maximum pool size is reached will wait in the queue
until there is an idle thread available to process the task.

Maximum idle time (keep-alive time)
Idle threads are kept alive in the thread pool to be prepared for incoming tasks to
process, but if the alive time is set, the system can reclaim noncore pool threads.
The alive time is configured in TimeUnits, the unit the time is measured in.

Task queue type
An implementation of BlockingQueue (“BlockingQueue” on page 46) that holds
tasks added by the consumer until they can be processed by a worker thread. De‐
pending on the requirements, the queuing policy can vary.

Designing a Thread Pool
Thread pools help you manage the threads that should execute background tasks con‐
currently, but you should still configure it wisely to get high throughput with limited
resource consumption. Basically, the goal is to create a thread pool that processes tasks
at the highest speed allowed by the hardware, without consuming more memory than
necessary.

Sizing
First, and most important, define the maximum size of the thread pool. If the maximum
number of threads is too low, tasks may not be pulled from the queue at sufficient speed
to not compromise performance. For example, if all threads are occupied by executing
long I/O operations, there may be short-lived tasks waiting in the queue that don’t get

138 | Chapter 9: Control over Thread Execution Through the Executor Framework

execution time until the IO operation has finished. On the other hand, too many threads
can have a negative performance impact, as the scheduler has to switch threads more
often, which leads to more time gaps where the CPU is occupied by thread management
instead of execution.

It’s good practice to base the thread pool size on the underlying hardware, more exactly
the number of available CPUs. Android can retrieve the number of CPUs, referred to
as N, from the Runtime class:

int N = Runtime.getRuntime().availableProcessors()

N is the maximum number of tasks that can be executed truly concurrently. Hence, a
thread pool size of N can be sufficient for independent and nonblocking tasks, such as
computation-intensive tasks. However, in reality, all threads can be stopped by the
hardware for various reasons, so extra threads are needed to reach full CPU utilization.

It is not an exact science to find the optimal number of threads, and fortunately you
don’t have to be that exact. It’s enough if you can roughly avoid too few and too many
threads most of the time. There exist both theoretical and empirical suggestions of the
thread pool size in the literature: for example, N+1 threads in Java Concurrency in
Practice by Brian Goetz et al. (Addison-Wesley) for compute-intensive tasks, whereas
Kirk Pepperdine suggests that a sizing of 2*N threads performs well. These values should
serve Android applications well as a lower bound. However, the lower bound should
not exceed the maximum number of concurrent tasks, as that may only lead to idle
threads in the pool, without any tasks to execute.

When tasks that depend on each other execute in the same thread pool, it may not suffice
to base the number of threads only on the underlying hardware. The executing threads
can be occupied by tasks that—for some reason—aren’t executing due to dependencies
on other threads. Tasks can, for example, be dependent when they share a common state
or rely upon a specific execution order. If so, some executing tasks may have depen‐
dencies on other tasks waiting in the queue, which in turn can’t execute because the
threads are occupied. Consequently, too few threads can lead to a deadlock situation
for dependent tasks.

Likewise, tasks that block can delay other tasks in the queue if there are no idle threads
available in the pool, which can lead to task starvation and low throughput. Conse‐
quently, a thread pool that you know is executing dependent or blocking tasks should
be sized with a number of threads based not only on the number of CPUs, but also the
number of dependent tasks.

Dynamics
Unless you define a fixed-sized thread pool, the number of threads changes during the
thread pool lifetime. New threads may be created when needed and threads can be

Thread Pools | 139

http://bit.ly/1g5mefe

destroyed when unused. These dynamics are created with core threads and a keep-alive
time.

The thread pool defines a set of core threads that the pool keeps alive, waiting for tasks
to be submitted in the queue. The number of core threads ranges between 0 and the
maximum number of threads. By default, the total number of threads in the pool changes
dynamically between the number of core threads and the maximum number of threads.
Therefore, if the core and maximum sizes are close, the pool becomes more static.

The keep-alive time of a thread pool defines how long idle threads should be kept in
the pool before the system can start reclaiming memory by shutting down threads. Idle
threads are available to execute new tasks that are added to the queue, which eliminates
the overhead of destroying the old thread and creating a new one. Hence, a long idle
time can give a slight performance improvement at the cost of using more memory.

For an Android application that normally has a limited number of worker threads, the
performance gain from fine-tuning the idle time is small and rarely required. If the
number of maximum threads are in the same order of magnitude as the number of
CPUs, the memory held by the idle threads can be considered negligible and the idle
time can be long—e.g., minutes. If you set the idle time to zero, the unused threads aren’t
terminated until the thread pool shuts down.

Bounded or unbounded task queue
A thread pool is normally used in combination with a bounded or unbounded task
queue. An unbounded queue allows memory exhaustion because it can grow indefi‐
nitely, whereas the resource consumption of bounded queues is more manageable. On
the other hand, bounded queues have to be tuned with both a size and a saturation
policy, i.e., how the producer should handle rejected tasks. The rejection handling op‐
tions are described in “Rejecting Tasks” on page 151.

The bounded and unbounded queue implementations are LinkedBlockingQueue, Pri
orityBlockingQueue, and ArrayBlockingQueue. The two latter queues are bounded,
whereas the first one is unbounded by default but can be configured to be bounded. See
the details of the blocking queue implementations in the official documentation.

Thread configuration

The ThreadPoolExecutor defines not only the number of worker threads—and the
pool’s creation and termination—but also the properties of every thread. One common
application behavior is to lower thread priorities so they don’t compete with the UI
thread.

Worker threads are configured through implementations of the ThreadFactory inter‐
face. Thread pools can define properties on the worker threads, such as priority, name,
and exception handler. An example appears in Example 9-3.

140 | Chapter 9: Control over Thread Execution Through the Executor Framework

https://developer.android.com/reference/java/util/concurrent/BlockingQueue.html

Example 9-3. Fixed thread pool with customized thread properties
class LowPriorityThreadFactory implements ThreadFactory {
 private static int count = 1;

 public Thread newThread(Runnable r) {
 Thread t = new Thread(r);
 t.setName("LowPrio " + count++);
 t.setPriority(4);
 t.setUncaughtExceptionHandler(new Thread.UncaughtExceptionHandler()
 {
 @Override
 public void uncaughtException(Thread t, Throwable e)
 {
 Log.d(TAG, "Thread = " + t.getName() + ", error = " +
 e.getMessage());
 }
 });
 return t;
 }
}

Executors.newFixedThreadPool(10, new LowPriorityThreadFactory());

Because thread pools often have many threads and they compete with the UI thread for
execution time, it is normally a good idea to assign the worker threads a lower priority
than the UI thread. (Priorities are described in “Priority” on page 34.) If the priority is
not lowered by a custom ThreadFactory, the worker threads, by default, get the same
priority as the UI thread.

Extending ThreadPoolExecutor

The ThreadPoolExecutor is commonly used standalone, but it can be extended to let
the program track the executor or its tasks. An application can define the following
methods to add actions taken each time a thread is executed:
void beforeExecute(Thread t, Runnable r)

Executed by the runtime library just before executing a thread

void afterExecute(Runnable r, Throwable t)

Executed by the runtime library after a thread terminates, whether normally or
through an exception

void terminated()

Executed by the runtime library after the thread pool is shut down and there are
no more tasks executing or waiting to be executed

Thread Pools | 141

The Thread and Runnable objects are passed to the first two methods; note that the
order is reversed in the two methods. Example 9-4 illustrates a basic custom thread pool
that tracks how many tasks are currently executing in the thread pool.

Example 9-4. Track the number of ongoing tasks in the thread pool
public class TaskTrackingThreadPool extends ThreadPoolExecutor{

 private AtomicInteger mTaskCount = new AtomicInteger(0);

 public TaskTrackingThreadPool() {
 super(3, 3, 0L, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>());
 }

 @Override
 protected void beforeExecute(Thread t, Runnable r) {
 super.beforeExecute(t, r);
 mTaskCount.getAndIncrement();
 }

 @Override
 protected void afterExecute(Runnable r, Throwable t) {
 super.afterExecute(r, t);
 mTaskCount.getAndDecrement();
 }

 public int getNbrOfTasks() {
 return mTaskCount.get();
 }
}

beforeExecute increments the mTaskCounter before task execution, and afterExe
cute decrements the counter after execution. At any point, an external observer can
request the number of tasks currently executing through getNbrOfTasks. The worker
threads and external observer threads can access the shared member variable concur‐
rently. Hence, it is defined as an AtomicInteger to ensure thread safety.

Lifecycle
The lifecycle of a thread pool ranges from its creation to the termination of all its worker
threads. The lifecycle is managed and observed through the ExecutorService interface
that extends Executor and is implemented by ThreadPoolExecutor. The internal thread
pool states are shown in Figure 9-1.

142 | Chapter 9: Control over Thread Execution Through the Executor Framework

Figure 9-1. Thread pool lifecycle

Running
The initial state of the thread pool when it is created. It accepts incoming tasks and
executes them on worker threads.

Shutdown
The state after ExecutorService.shutdown is called. The thread pool continues to
process the currently executing tasks and the tasks in the queue, but new tasks are
rejected.

Stop
The state after ExecutorService.shutdownNow is called. The worker threads are
interrupted and tasks in the queue are removed.

Tidying
Internal cleaning.

Terminated
Final state. There are no remaining tasks or worker threads. ExecutorSer
vice.awaitTermination stops blocking, and ThreadPoolExecutor.terminated is
called. After the threads finish, all data structures related to the pool are freed.

The lifecycle states are irreversible; once a thread pool has left the Running state, it has
initiated the path towards termination and it can not be reused again. The only con‐
trollable transitions at that point are to the Shutdown and Stop states. The subsequent
transitions depend on the processing of the tasks and occur internally in the thread pool.
Consequently, the actual termination of the threads and reclaiming of memory cannot
be controlled without a cancellation policy—i.e., interrupt-handling—in the tasks.

Shutting Down the Thread Pool
Executors should not process tasks for longer than necessary; doing so can potentially
leave a lot of active threads executing in the background for no good reason, holding
on to memory that is not eligible for garbage collection. Typically, a fixed-size thread
pool can keep a lot of threads alive in the background. Explicit termination is required
to make the executor finish. Two methods—with somewhat different impacts—are
available:

Thread Pools | 143

void shutdown()
List<Runnable> shutdownNow()

Table 9-1 explains the different impacts of the two calls on tasks in various states. Refer
to Figure 9-2 for the numbers in the table.

Table 9-1. How tasks are affected by shutdown
Figure reference shutdown() shutdownNow()

1. Newly added tasks. New tasks are rejected. New tasks are rejected.

2. Tasks pending in the queue. Pending tasks will be
executed.

Pending tasks are not executed, but returned instead to a
List<Runnable> so that they potentially can be executed
on other threads.

3. Tasks being processed. Processing continues. Threads are interrupted.

Figure 9-2. Executor shutdown

Consequently, shutdown() is considered to be a graceful termination of the executor,
where both the executing and queued tasks are allowed to finish. shutdownNow() returns
the queued tasks to the caller and tries to terminate currently executing tasks through
interrupts. Hence, tasks should implement a cancellation policy to make them man‐
ageable. Without a cancellation policy, the tasks in the executor will terminate no earlier
with shutdownNow() than with shutdown().

If the thread pool is not manually shut down, it will automatically do so when it has no
remaining threads and is no longer referenced by the application. However, threads will
remain in an idle state unless the keep-alive time is set. Consequently, the automatic
shutdown applies only to thread pools where all threads have a keep-alive time set so
that they terminate after a certain time. Automatic shutdown cannot occur earlier than
the defined keep-alive time, as threads can still linger in the pool until the timeout
occurs.

Once the thread pool has initiated a shutdown, it cannot be reused
for tasks. The application will have to create a new thread pool for
subsequent tasks or to execute tasks returned by shutdownNow().

144 | Chapter 9: Control over Thread Execution Through the Executor Framework

Thread Pool Uses Cases and Pitfalls
In this section, we’ll take a look at a couple of unusual ways to treat thread pools, as well
as pitfalls that can occur when defining a custom thread pool.

Favoring thread creation over queuing

By default, the alive time does not apply to core pool threads, but allowCoreThreadTi
meOut(true) allows the system to also reclaim idle core pool threads. Hence, a thread
pool can be defined to always favor thread creation over queueing:

int N = Runtime.getRuntime().availableProcessors();
ThreadPoolExecutor executor = new ThreadPoolExecutor(
 N*2,
 N*2,
 60L, TimeUnit.SECONDS,
 new LinkedBlockingQueue<Runnable>());
executor.allowCoreThreadTimeOut(true);

Handling preloaded task queues
A thread pool starts with zero worker threads and creates them when needed. Thread
creation is triggered when tasks are submitted to the thread pool, but if no tasks are
submitted, no worker threads are created even though there are tasks in the queue.
Under those conditions, no tasks will be executed until a submission is done.

Preloaded task queues can be executed directly by prestarting the core threads with
either prestartAllCoreThreads() or prestartCoreThread() on the ThreadPoolExe
cutor instance. As the names suggest, the first method starts all the core threads you
have configured in the pool, while the second starts a single thread to handle preloaded
tasks. In either case, the preloaded tasks in the queue are processed:

BlockingQueue<Runnable> preloadedQueue = new LinkedBlockingQueue<Runnable>();
final String[] alphabet = {"Alpha","Beta", "Gamma","Delta","Epsilon","Zeta"};
for(int i = 0; i < alphabet.length; i++){
 final int j = i;
 preloadedQueue.add(new Runnable() {
 @Override
 public void run() {
 // Do long running operation
 // that uses "alphabet" variable.
 }
 });
}
ThreadPoolExecutor executor = new ThreadPoolExecutor(
 5, 10, 1, TimeUnit.SECONDS, preloadedQueue);
executor.prestartAllCoreThreads();

Thread Pools | 145

The danger of zero core threads
As described in “ThreadPoolExecutor configuration” on page 137, the core pool size
determines how many threads will be started before queueing takes precedence over
thread creation. As soon as the core pool size is reached, tasks are queued instead of
being executed on a newly created thread:

int N = Runtime.getRuntime().availableProcessors();
ThreadPoolExecutor executor = new ThreadPoolExecutor(
 0,
 N*2,
 60L, TimeUnit.SECONDS,
 new ArrayBlockingQueue<Runnable>(10));

With zero-core threads and a bounded queue that can hold 10 tasks, no tasks actually
run until the 11th task is inserted, triggering the creation of a thread.

Task Management
The execution environment running tasks can also be managed. In this section, we will
look into the individual task and how we manage them.

Task Representation
A task is a unit of work that needs to be executed somewhere, at some point in time. It
can be executed once or repeatedly, but the task itself should be independent of how it
is executed; i.e., the task and the execution environment are separate entities. We have
seen tasks represented by the Runnable interface; this section introduces the more pow‐
erful Callable interface, which can manage tasks and retrieve their results with the help
of the Future interface.

The Runnable interface has been around since the first version of Java. It provides a
simple interface that contains one method named run, which is called when the task is
processed in an execution environment:

public interface Runnable {
 public void run();
}

Callable offers a much larger set of functionalities that you need to carry out the be‐
haviors shown in this chapter. Among these functionalities are a way to cancel a thread
(if it implements a cancellation policy) and to retrieve results from a thread, including
the error from a thread that terminates abnormally.

Callable defines a call method that can return a value—defined as a generic type—
and throw an exception:

146 | Chapter 9: Control over Thread Execution Through the Executor Framework

public interface Callable<V> {
 public <V> call() throws Exception;
}

A Callable task cannot be directly executed by Thread instances because it was intro‐
duced first in Java 5. Instead, the execution environment should be based on Executor
Service implementations—e.g., thread pools—to process the tasks. Once a Callable
task is processed by the ExecutorService, it can be observed and controlled through
the Future interface, which is available after task submission (“Submitting Tasks” on
page 147).

Methods provided by Future are:

boolean cancel(boolean mayInterruptIfRunning)
V get()
V get(long timeout, TimeUnit unit)
boolean isCancelled()
boolean isDone()

The result from an asynchronous computation is retrieved with the blocking get meth‐
ods. It retrieves the result as a generic type, V, as declared in the task (e.g., Calla
ble<V>). If the task does not end successfully by returning a result, it may have thrown
a checked exception, ExecutionException, which can be caught by the caller of get.

get with no arguments blocks until the task exits, with no time limit. The two-argument
version waits a limited amount of time, using the same timeout and unit shown in
“Extending ThreadPoolExecutor” on page 141. If the task does not finish within the
specified time, the calling thread stops waiting and continues to execute. The returned
result is null.

A submitted task can be cancelled, in which case the executor tries to avoid executing
it. If the task is still in the queue, it will be removed and is never executed. If it is currently
executing, cancel(false) will not affect it, but cancel(true) interrupts the thread
executing the task, and the task can terminate prematurely if it has implemented a
cancellation policy.

isCancelled checks to see whether the task has been cancelled, but a return value true
does not mean that the task will not execute—it just means someone wants this task to
be cancelled. isDone returns true if the task is actually cancelled, has finished success‐
fully, or has thrown an exception.

Submitting Tasks
Before a task is submitted to a thread pool, it is by default an empty queue without
threads. The state of the thread pool and queue of waiting threads determine how a
thread pool can respond to a new task:

Task Management | 147

• If the core pool size has not been reached yet, a new thread can be created so the
task can start immediately.

• If the core pool size has been reached but the queue has open slots, the task can be
added to the queue.

• If the core pool size has been reached and the queue is full, the task must be rejected.

There are numerous ways of submitting tasks to a thread pool, both individually and
batched. When there are multiple tasks to execute concurrently, they can be submitted
one-by-one with the execute or submit methods. But the platform provides conve‐
nience methods that handle common use cases for batched submissions: invokeAll and
invokeAny.

Individual submission
The most fundamental way to add a task to the thread pool is to build on its imple‐
mentation of Executor and call the execute method:

ExecutorService executor = Executors.newSingleThreadExecutor();
executor.execute(new Runnable() {
 public void run() {
 doLongRunningOperation();
 }
});

The Executor interface can handle only Runnable tasks, but the ExecutorService
extension contains more general methods allowing tasks to be submitted as instances
of either Runnable or Callable. Every submitted task is represented by a Future to
manage and observe the task, but only the Callable can be used for retrieving a result:
Callable

ExecutorService executor = Executors.newSingleThreadExecutor();
Future<Object> future = executor.submit(new Callable<Object>() {
 public Object call() throws Exception {
 Object object = doLongRunningOperation();
 return object;
 }
});

// Blocking call - Returns 'object' from the Callable
Object result = future.get();

Runnable without result
ExecutorService executor = Executors.newSingleThreadExecutor();
Future<?> future = executor.submit(new Runnable() {
 public void run() {
 doLongRunningOperation();
 }
});

148 | Chapter 9: Control over Thread Execution Through the Executor Framework

// Blocking call - Always return null
Object result = future.get();

invokeAll

ExecutorService.InvokeAll executes mutiple independent tasks concurrently and
lets the application wait for all tasks to finish by blocking the calling thread until all
asynchronous computations are done or a timeout has expired:

List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
 long timeout, TimeUnit unit)

The call adds its collection of tasks to the thread pool in an ordered fashion. Depending
on the thread pool definition, each added task may result in thread creation, task queu‐
ing or task rejection, similar to submit and execute. A timeout can be defined to expire
when invokeAll should stop waiting for the background tasks to finish. If the timeout
expires, the unfinished tasks are cancelled.

Once all tasks have finished, the results are stored in a list of futures, in the same order
as the input tasks; i.e., the result is in the same position in the returned list as the task
was in the input collection. After a task finishes, a call to Future.isDone returns true,
and Future.get returns the task’s result without blocking.

Example 9-5 utilizes invokeAll to execute two independent tasks concurrently on
worker threads and combine the results when both have finished. It is typically used for
retrieving network data from two different locations, where the results are mashed to‐
gether before being used.

The data retrieval is initiated from a button click in an Activity—i.e., on the UI thread
—but because invokeAll is a blocking call, it is executed from a SimpleExecutor
(Example 9-1).

Example 9-5. Mashing data together from two network resources
public class InvokeActivity extends Activity {

 @UiThread
 public void onButtonClick(View v) {

 SimpleExecutor simpleExecutor = new SimpleExecutor();
 simpleExecutor.execute(new Runnable() {
 @Override
 public void run() {
 List<Callable<String>> tasks = new ArrayList<Callable<String>>();
 tasks.add(new Callable<String>() {
 public String call() throws Exception {
 return getFirstDataFromNetwork();
 }

Task Management | 149

 });
 tasks.add(new Callable<String>() {
 public String call() throws Exception {
 return getSecondDataFromNetwork();
 }
 });

 ExecutorService executor = Executors.newFixedThreadPool(2);
 try {
 List<Future<String>> futures = executor.invokeAll(tasks);
 String mashedData = mashupResult(futures);

 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 }

 executor.shutdown();
 }
 });
 }

 private String getFirstDataFromNetwork() { /* Network call omitted */ }

 private String getSecondDataFromNetwork() { /* Network call omitted */ }

 private String mashupResult(List<Future<String>> futures)
 throws ExecutionException, InterruptedException {
 for (Future<String> future : futures) {
 /* Get asynchronous computation result from future.get() */
 /* Mash data */
 }
 return /* Mashed data */
 }

Executor that offloads invokeAll from the UI thread.
Collection that holds two long-running tasks, here simulated network calls.
Execute the tasks on a fixed thread pool with two threads, because the example
has only two tasks.
Add the tasks in a batch to the thread pool. The call will block the simpleExe
cutor thread, but not the UI thread.
The result from the two asynchronous tasks are retrieved from the respective
Future instances.
Shut down the thread pool to terminate the worker threads.
Presumably one would issue get calls with no arguments, so each would block
until the thread it is tracking ends.

150 | Chapter 9: Control over Thread Execution Through the Executor Framework

invokeAny

ExecutorService.invokeAny adds a collection of tasks to an executor, returns the result
from the first finished task, and disregards the rest of the tasks. This can be useful in
situations where you are doing a search through many different data sets and want to
stop as soon as the item is found, or any similar situation where you need results from
just one of the tasks you are running in parallel:

<T> invokeAny(Collection<? extends Callable<T>> tasks)
<T> invokeAny(Collection<? extends Callable<T>> tasks, long timeout,
 TimeUnit unit)

invokeAny blocks until one of the tasks has returned a result, and then cancels the
remaining tasks in the executor by issuing future.cancel(true) on each. If, however,
the remaining tasks do not respond to interruption, the tasks will continue to execute
on worker threads in the background without reporting a result. Hence, lingering tasks
may have side effects—e.g., changing a shared variable—even after invokeAll has re‐
turned. If the execution times out, invokeAll stops blocking, but no result is returned.

Tasks added with invokeAll should normally utilize a thread pool
with a number of threads that can allow for concurrent execution of
all tasks, without queuing. Delaying any of the tasks defeats the val‐
ue of running them all to get the fastest possible result. So the mini‐
mum core pool size should not be lower than the number of tasks.

Rejecting Tasks
Task addition can fail for two reasons: because both the number of worker threads and
the queue are saturated, or because the executor has initiated a shutdown.The applica‐
tion can customize rejection handling by providing an implementation of RejectedEx
ecutionHandler to the thread pool. RejectedExecutionHandler is an interface with a
single method that is called upon task rejection:

void rejectedExecution(Runnable r, ThreadPoolExecutor executor)

The platform provides four predefined handlers for rejected tasks, implemented as inner
classes of the ThreadPoolExecutor:
AbortPolicy

Rejects the task by throwing a RejectedExecutionException. Unless another re‐
jection policy is defined for the thread pool, this is the default behavior.

CallerRunsPolicy

Executes the task in the caller’s thread—i.e., synchronously. This is not an alterna‐
tive when long tasks are added from the UI thread.

Task Management | 151

DiscardOldestPolicy

Removes the oldest task in the queue and inserts the rejected task again. Hence, the
task first in the queue is removed, and the added task is placed last in the queue.

DiscardPolicy

Silently ignores the rejection of the task.

ExecutorCompletionService
A thread pool manages a task queue and the worker threads, but does not manage the
results of the finished task. That is done by the ExecutorCompletionService. It holds
a completion queue (based on a BlockingQueue) of finished tasks, as shown in
Figure 9-3. When a task finishes, a Future object is placed in the queue, which is available
to consumer threads so they can process the results in the order that the tasks have
finished.

Figure 9-3. ExecutorCompletionService

Displaying multiple downloaded images in an Activity is a common use case. The UI
is populated asynchronously, and a downloaded image should be displayed as soon as
it is available, independently of the other image downloads. This is a job that fits well
with an ExecutorCompletionService, because downladed images can be put in the
completion queue and processed as soon as they are available.

The following example illustrates the use of an ExecutorCompletionService to display
downloaded images in an Activity. The image download is done with a dynamic sized
thread pool of worker threads, when the Activity is created. The downloaded images
are held in the completion queue and processed by a consumer thread:

public class ECSImageDownloaderActivity extends Activity {
 private LinearLayout layoutImages;

 private class ImageDownloadTask implements Callable<Bitmap> {

 @Override
 public Bitmap call() throws Exception {
 return downloadRemoteImage();
 }

 private Bitmap downloadRemoteImage() {
 /* Do image download */

152 | Chapter 9: Control over Thread Execution Through the Executor Framework

 }
 }

 private class DownloadCompletionService extends ExecutorCompletionService {

 private ExecutorService mExecutor;

 public DownloadCompletionService(ExecutorService executor) {
 super(executor);
 mExecutor = executor;
 }

 public void shutdown() {
 mExecutor.shutdown();
 }

 public boolean isTerminated() {
 return mExecutor.isTerminated();
 }
 }

 private class ConsumerThread extends Thread {

 private DownloadCompletionService mEcs;

 private ConsumerThread(DownloadCompletionService ecs) {
 this.mEcs = ecs;
 }

 @Override
 public void run() {
 super.run();
 try {
 while(!mEcs.isTerminated()) {
 Future<Bitmap> future = mEcs.poll(1, TimeUnit.SECONDS);
 if (future != null) {
 addImage(future.get());
 }
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 }
 }
 }

 public void onCreate(Bundle savedInstanceState) {
 DownloadCompletionService ecs =
 new DownloadCompletionService(Executors.newCachedThreadPool());
 new ConsumerThread(ecs).start();

ExecutorCompletionService | 153

 for (int i = 0; i < 5; i++) {
 ecs.submit(new ImageDownloadTask());
 }

 ecs.shutdown();
 }

 private void addImage(final Bitmap image) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 ImageView iv = new ImageView(ECSImageDownloaderActivity.this);
 iv.setImageBitmap(image);
 layoutImages.addView(iv);
 }
 });
 }
}

A Callable instance that represents a task producing a result. It returns a bitmap
image when downloaded over a network connection.
A ExecutorCompletionService that holds the Executor and exposes lifecycle
methods—shutdown and isTerminated—to control the executor.
A consumer thread that polls the completion queue for results from finished
tasks.
If the executor is terminated, all tasks have finished and it is safe to stop polling
the completion queue for more tasks. The consumer thread will finish once the
executor is terminated.
Polling mechanism: the consumer thread waits for one second, in every iteration,
for finished tasks. After that it continues execution to check again if the executor
has terminated, as described in the previous item.
Create the Activity that initiates DownloadCompletionService with a cached
thread pool and a ConsumerThread. Five download tasks are submitted.
Shut down the executor gently; let the submitted tasks finish before the worker
threads terminate.

Summary
The Executor framework provides a cornerstone in the Android-specific asynchronous
techniques. It is often used with message passing (“Android Message Passing” on page
47) to create application-specific asynchronous execution behaviors. If the Android-
specific techniques seem limiting, the Executor framework provides the developer with
full control of the asynchronous execution. It separates tasks from their execution en‐

154 | Chapter 9: Control over Thread Execution Through the Executor Framework

vironment, providing greater flexibility and simplifying future change to execution.
Tasks designed with independence in mind can be executed in any execution environ‐
ment, and if the Executor interface abstracts the actual execution, it can be easily altered
without concerning the tasks. The platform’s concrete implementations of Executor—
thread pools—provide applications with better thread management and ways to manage
concurrency in sophisticated ways. Queues and rejection policies help maintain a bal‐
ance between CPU resources and tasks that need to be executed.

Summary | 155

CHAPTER 10

Tying a Background Task to the UI Thread
with AsyncTask

The most important role for asynchronous tasks on Android, as we’ve discussed, is to
relieve the UI thread from long-running operations. This calls for defining an execution
environment, creating the task to do the long operation, and finally determining how
the UI thread and the background threads communicate. All of these properties are
encapsulated in an AsyncTask to make asynchronous execution as easy as it gets.

This chapter gets into the details of AsyncTask class and shows how smoothly it can
handle background task execution, but also raises concerns about the pitfalls you need
to watch for.

Fundamentals
As the name indicates, an AsyncTask is an asynchronous task that is executed on a
background thread. The only method you need to override in the class is doInBack
ground(). Hence, a minimal implementation of an AsyncTask looks like this:

public class MinimalTask extends AsyncTask {
 @Override
 protected Object doInBackground(Object... objects) {
 // Implement task to execute on background thread.
 }
}

The task is executed by calling the execute method, which triggers a callback to doIn
Background on a background thread:

new MinimalTask().execute(Object... objects);

157

When an AsyncTask finishes executing, it cannot be executed again—i.e., execute is a
one-shot operation and can be called only once per AsyncTask instance, the same be‐
havior as a Thread.

In addition to background execution, AsyncTask offers a data passing mechanism from
execute to doInBackground. Objects of any type can be passed from the initiating thread
to the background thread. This is like HandlerThread (Chapter 8), but with Asyn
cTask you do not have to be concerned about sending and processing Message instances
with a Handler.

The data passed in execute to doInBackground is shared by both
threads and needs to be accessed in a mutually exclusive way. In other
words, synchronization is required to protect the data from corrup‐
tion.

In the common case we discussed at the beginning of the chapter, where you want to
execute a task in the background and deliver a result back to the UI thread, Asyn
cTask shines; it is all about handling the flow of preparing the UI before executing a
long task, executing the task, reporting progress of the task, and finally returning the
result. All of this is available as optional callbacks to subclasses of the AsyncTask, which
look like this:

public class FullTask extends AsyncTask<Params, Progress, Result> {
 @Override
 protected void onPreExecute() { ... }

 @Override
 protected Result doInBackground(Params... params) { ... }

 @Override
 protected void onProgressUpdate(Progress... progress) { ... }

 @Override
 protected void onPostExecute(Result result) { ... }

 @Override
 protected void onCancelled(Result result) { ... }
}

This implementation extends the AsyncTask and defines the arguments of the objects
that are passed between threads:
Params

Input data to the task executed in the background.

158 | Chapter 10: Tying a Background Task to the UI Thread with AsyncTask

Progress

Progress data reported from the background thread—i.e., from doInBackground—
to the UI thread in onProgressUpdate.

Result

The result produced from the background thread and sent to the UI thread.

All callback methods are executed sequentially, except onProgressUpdate, which is in‐
itiated by and runs concurrently with doInBackground. Figure 10-1 shows the lifecycle
of an AsyncTask and its callback sequence.

Figure 10-1. AsyncTask overview

The steps in the figure are:

1. Create the AsyncTask instance.
2. Start execution of the task.
3. First callback on the UI thread: onPreExecute. This usually prepares the UI for the

long operation—e.g., by displaying a progress indicator on the screen.
4. Callback on a background thread: doInBackground. This executes the long-running

task.
5. Report progress updates from the publishProgress method on the background

thread. These trigger the onProgressUpdate callback on the UI thread, which typ‐

Fundamentals | 159

ically handles the update by changing a progress indicator on the screen. The pro‐
gress is defined by the Progress parameter.

6. The background execution is done and is followed by running a callback on the UI
thread to report the result. There are two possible callbacks: onPostExecute is called
by default, but if the AsyncTask has been cancelled, the callback onCancelled gets
the result instead. It is guaranteed that only one of the callbacks can occur.

The progress update mechanism solves two use cases:

• Displaying to the user how the long-running operation is progressing, by contin‐
uously reporting how many of the total tasks are executed.

• Delivering the result in portions, instead of delivering everything at the end in
onPostExecute. For example, if the task downloads multiple images over the net‐
work, the AsyncTask does not have to wait and deliver all images to the UI thread
when they are all downloaded; it can utilize publishProgress to send one image
at the time to the UI thread. In that way, the user gets a continuous update of the
UI.

Creation and Start
AsyncTask implementations are created with the default constructor, which should be
called from the UI thread. If another thread creates the AsyncTask—on platforms prior
to the Jelly Bean release—the callbacks may not occur on the correct thread. The thread
where the AsyncTask is created decides what thread runs the callbacks to onProgres
sUpdate, onPostExecute, and onCancelled.

Actually, the first created AsyncTask in the application process controls the callback
threads for all consecutive AsyncTask implementations in the application. The callback
thread is set only once per application lifetime. Starting with Jelly Bean, an AsyncTask
is class-loaded at application start on the UI thread, so that the callbacks are guaranteed
to occur on the UI thread.

No configuration parameters are offered by the constructor. Instead, arguments are
passed to the start of the task:

execute(Object... objects);

The input consists of a variable-sized object list that can receive any number of objects
of arbitrary type. The input arguments are retrieved in the doInBackground callback.
In this way, data is shared between the UI thread and the background thread, and is
always available to both.

160 | Chapter 10: Tying a Background Task to the UI Thread with AsyncTask

The execute method should be called from the UI thread; otherwise, the onPreExe
cute callback will not occur on the UI thread. Execution is a one-shot task; calling it
more than once generates an IllegalStateException error.

Cancellation
If the UI thread decides not to use the results of an AsyncTask (perhaps because the user
indicated that she changed her mind or put the app in the background), it can send a
termination request through a call to cancel(boolean):

// Start the task
AsyncTask task = new MyAsyncTask().execute(/* Omitted */);
// Cancel the task
task.cancel(true);

If the argument to the call is false, the call merely sets a flag that the background thread
can check through isCancelled(). If the argument is true, an interrupt is also sent
(“Interruptions” on page 108). Sending the interrupt is a stronger message because
blocking methods calls are released, and the background thread can catch the Inter
ruptedException or check the Thread.isInterrupted() flag.

As usual with background tasks, it is best to terminate as early as possible if the result
of the background execution cannot be used anymore. Termination releases allocated
resources and reduces the risk of memory leaks. Just like a Thread, an AsyncTask cannot
be forced to terminate, but requires a cancellation strategy (“Interruptions” on page
108) to end the execution gracefully.

When it receives a cancellation request, the task skips the call to onPostExecute and
calls one of the cancel callbacks—onCancelled() or onCancelled(Result)—instead.
You can use the cancel callbacks to update the UI with a different result or a different
message to the user from the ones that take place when the asynchronous task finishes
successfully. A cancelled task does not necessarily finish earlier than it would without
cancellation, because cancellation only ensures that the onCancelled callback is called
after the background task execution.

A cancellation policy involves two parts: Finish doInBackground when a blocking
method throws InterruptedException, and use checkpoints in the code to see whether
the task has been cancelled before starting any long operation. Checkpoints can be
inserted anywhere in the code, but it becomes impractical to add them everywhere, so
they are best used as a condition in a loop or between two long operations. The check‐
point condition can be determined either by checking AsyncTask.isCancelled or
catching an interrupt. But the two checkpoint conditions responds differently to the
cancel method, as shown in Table 10-1.

Fundamentals | 161

Table 10-1. Difference between cancellation and interruption check
cancel(boolean) isCancelled() returns Thread.currentThread().isInterrupted() returns

false true false

true true true

The strongest checkpoint condition is isCancelled, because it observes the actual call
to cancel and not the interruption. Hence, the strongest cancellation policy is to com‐
bine checkpoints and interrupt-handling as follows:

public class InterruptionTask extends AsyncTask<String, Void, Void> {
 @Override
 protected Void doInBackground(String... s) {
 try {
 while (!isCancelled()) {
 doLongInterruptibleOperation(s[0]);
 }
 } catch (InterruptedException iex) {
 // Do nothing. Let's just finish.
 }
 return null;
 }
}

States
An AsyncTask has the following possible states: PENDING, RUNNING and FINISHED, in that
order:
PENDING

The AsyncTask instance is created, but execute has not been called on it.

RUNNING

Execution has started; i.e., execute is called. The task remains in this state when it
finishes, as long as its final method (such as onPostExecute) is still running.

FINISHED

Both the background execution and the optional final operation—onPostExe

cute or onCancelled—is done.

Backward transitions are not possible, and once the task is in RUNNING state, it is not
possible to start any new executions. FINISH is a terminal state; a new AsyncTask in‐
stance must be created for every execution.

The state of the AsyncTask can be observed with AsyncTask.getStatus(), and it is
useful for determining whether a task is currently executing, as shown in the following
example.

162 | Chapter 10: Tying a Background Task to the UI Thread with AsyncTask

Example: Limiting an AsyncTask execution to one at the time

If an AsyncTask should not be allowed to execute while another task is executing, you
can store a reference to the task and check the task’s status before a new execution is
allowed. In the AsyncTaskStatusActivity, the AsyncTask is started from the onExe
cute method, which could be called from anywhere on the UI thread—e.g., from the
onClick() method triggered by a button click:

public class AsyncTaskStatusActivity extends Activity {

 private AsyncTask mMyAsyncTask;

 // Activity lifecycle code omitted.

 public void onExecute(View v) {
 if (mMyAsyncTask != null && mMyAsyncTask.getStatus() !=
 AsyncTask.Status.RUNNING) {
 mMyAsyncTask = new MyAsyncTask().execute();
 }
 }

 private static class MyAsyncTask extends AsyncTask<String, Void, Void> {
 @Override
 protected Void doInBackground(String... s) {
 // Details omitted.
 return null;
 }
 }
}

Implementing the AsyncTask
Implementing an AsyncTask is straightforward: create a subclass, override doInBack
ground for background execution, and add helper methods for any desired UI updates
before, during, and after the background execution. Despite its simplicity, there are a
few more things to consider:
Avoid memory leaks

As long as the worker thread is alive, all of its referenced objects are held in memory,
as explained in “Thread-Related Memory Leaks” on page 91. The AsyncTask should
therefore be declared as a standalone or static inner class so that the worker thread
avoids implicit references to outer classes.

Coupling with a Context and its lifecycle
An AsyncTask usually issues updates to the UI thread that may reference the Con
text, typically an Activity with a view hierarchy. But you should avoid referencing
the view hierarchy so that the views won’t be kept in memory when they are not
needed. Hence, the AsyncTask should be declared as a static inner class that holds

Implementing the AsyncTask | 163

a reference to the associated Context. The reference is removed by setting it to null
when it is not needed anymore.

Cancellation policy
Allow tasks to be interrupted and cancelled, as explained in “Cancellation” on page
161 and “Interruptions” on page 108.

Example: Downloading Images
This example shows the implementation of an Activity that displays four images that
are downloaded from the network with an AsyncTask. The UI consists of a determinate
progress bar—an mProgressBar—that shows the number of downloaded images) and
a layout—using mLayoutImages—whose children constitute the downloaded images.
The download starts upon Activity creation and is cancelled on destruction:

public class FileDownloadActivity extends Activity {

 private static final String[] DOWNLOAD_URLS = {
 "http://developer.android.com/design/media/
 devices_displays_density@2x.png",
 "http://developer.android.com/design/media/
 iconography_launcher_example2.png",
 "http://developer.android.com/design/media/
 iconography_actionbar_focal.png",
 "http://developer.android.com/design/media/
 iconography_actionbar_colors.png"
 };

 DownloadTask mFileDownloaderTask;

 // Views from layout file
 ProgressBar mProgressBar;
 LinearLayout mLayoutImages;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_file_download);
 mProgressBar = (ProgressBar) findViewById(R.id.progress_bar);
 mProgressBar.setMax(DOWNLOAD_URLS.length);
 mLayoutImages = (LinearLayout) findViewById(R.id.layout_images);

 mFileDownloaderTask = new DownloadTask(this);
 mFileDownloaderTask.execute(DOWNLOAD_URLS);
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();

164 | Chapter 10: Tying a Background Task to the UI Thread with AsyncTask

 mFileDownloaderTask.setActivity(null);
 mFileDownloaderTask.cancel(true);
 }

 private static class DownloadTask extends AsyncTask<String, Bitmap, Void> {

 private FileDownloadActivity mActivity;
 private int mCount = 0;

 public DownloadTask(FileDownloadActivity activity) {
 mActivity = activity;
 }

 public void setActivity(FileDownloadActivity activity) {
 mActivity = activity;
 }

 @Override
 protected void onPreExecute() {
 super.onPreExecute();
 mActivity.mProgressBar.setVisibility(View.VISIBLE);
 mActivity.mProgressBar.setProgress(0);
 }

 @Override
 protected Void doInBackground(String... urls) {
 for (String url : urls) {
 if (!isCancelled()) {
 Bitmap bitmap = downloadFile(url);
 publishProgress(bitmap);
 }
 }
 return null;
 }

 @Override
 protected void onProgressUpdate(Bitmap... bitmaps) {
 super.onProgressUpdate(bitmaps);
 if (mActivity != null) {
 mActivity.mProgressBar.setProgress(++mCount);
 ImageView iv = new ImageView(mActivity);
 iv.setImageBitmap(bitmaps[0]);
 mActivity.mLayoutImages.addView(iv);
 }
 }

 @Override
 protected void onPostExecute(Void aVoid) {
 super.onPostExecute(aVoid);
 if (mActivity != null) {
 mActivity.mProgressBar.setVisibility(View.GONE);
 }

Implementing the AsyncTask | 165

 }

 @Override
 protected void onCancelled() {
 super.onCancelled();
 if (mActivity != null) {
 mActivity.mProgressBar.setVisibility(View.GONE);
 }
 }

 private Bitmap downloadFile(String url) {
 Bitmap bitmap = null;
 try {
 bitmap = BitmapFactory
 .decodeStream((InputStream) new URL(url)
 .getContent());
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return bitmap;
 }

 }
}

URLs of the images.
Pass the URLs to doInBackground.
When the Activity is destroyed, the AsyncTask is cancelled and its reference
to the destroyed Activity is nullified so that it can be garbage collected, although
the worker thread is alive.
Definition of AsyncTask: An array of String objects is passed to doInBack
ground, and Bitmap objects are returned during background execution. The
background thread does not pass a result to the UI thread, so the last parameter
is declared Void.
The Activity is referenced for updates on the UI thread.
Setter for changing or nullifying the Activity reference. The Activity is
changed upon task retention during a configuration change.
Show the progress bar before the background task executes.
Check whether the task is cancelled before starting the download of the next
image, so that the task can terminate as early as possible.
Download the image over the network and assign it to the Bitmap argument
passed to the AsyncTask.

166 | Chapter 10: Tying a Background Task to the UI Thread with AsyncTask

Send the image to the UI thread.
Respond to the progress update sent by the background thread by updating the
progress bar and displaying the new image.

 Remove the progress bar.

Background Task Execution
Because AsyncTask executes its tasks asynchronously, multiple tasks can be executed
either sequentially or concurrently. The execution environment can be defined explicitly
in the application; otherwise, it is set implicitly by the platform. The method that starts
the execution determines how the task is executed. Table 10-2 shows the possibilities.

Table 10-2. Overview of task execution
Execution method Lowest

API level
Return value Executor Background task Execution type

execute(Params…) 3 The started
AsyncTask

Defined in
AsyncTask

doInBack

ground

Sequential or
concurrent

(static) exe

cute(Runnable)

11 None Defined in
AsyncTask

Runnable Sequential only

executeOnExecu

tor(Executor, Par

ams…)

11 The started
AsyncTask

Customizable doInBack

ground

Customizable

Before API level 11, only the first option in the table is available. From API level 11
onward, the AsyncTask offers three methods for task execution, with different proper‐
ties:
execute(Params…)

The version described above and the only method available on all platform versions.
It utilizes the AsyncTask internal execution environment, but this has changed
during platform evolution. See “Execution Across Platform Versions” on page 170.

execute(Runnable)

Added in API level 11 for executing Runnable tasks instead of overriding doIn
Background. The Runnable is processed in the AsyncTask internal execution envi‐
ronment but does not use message passing to communicate between threads. on
PreExecute, onPostExecute, and onCancelled are not called and progress can not
be published. This use case should probably be replaced with a different solution
(see “Using execute(Runnable)” on page 174).

Background Task Execution | 167

executeOnExecutor(Executor, Params…)

Added in API level 11 for configuring the actual execution environment on which
the task is processed. It can utilize internal execution environments or use a custom
Executor.

The Executor argument executeOnExecutor can be one of the following execution
environments:
AsyncTask.THREAD_POOL_EXECUTOR

Tasks are processed concurrently in a pool of threads. In KitKat, the thread pool
sizing is based on the number of available CPU cores: N+1 core threads and a
maximum of 2*N+1 threads, and the work queue can hold 128 tasks. Hence, a device
with four available cores can hold a maximum of 137 tasks.

AsyncTask.SERIAL_EXECUTOR

A sequential task scheduler that ensures thread-safe task execution. It contains no
threads of its own, relying instead on THREAD_POOL_EXECUTOR for execution. It
stores the tasks in an unbounded queue and passes each one to the THREAD_POOL_EX
ECUTOR to be executed in sequence. The tasks can be executed in different threads
of the thread pool, but the SERIAL_EXECUTOR guarantees that consecutive tasks are
not added to the thread pool until the previous task has finished, so thread safety
is preserved.

Figure 10-2 summarizes how these two execution environments operate and use the
thread pool.

Figure 10-2. AsyncTask execution

Both execution environments use the AsyncTask worker threads for the doInBack
ground callbacks. The threads have no Looper attached, so the AsyncTask cannot receive
messages from other threads. Furthermore, the threads’ priority is lowered to Pro
cess.THREAD_PRIORITY_BACKGROUND so that it will interfere less with the UI thread
(priorities are described in “Priority” on page 34).

168 | Chapter 10: Tying a Background Task to the UI Thread with AsyncTask

Application Global Execution
AsyncTask implementations can be defined and executed from any component in the
application, and several instances in the RUNNING state can coexist. However, all Asyn
cTask instances shared an application-wide, global execution property (Figure 10-3).
That means that even if two different threads launch two different tasks (as in the fol‐
lowing example) at the same time, they will be executed sequentially. Whichever hap‐
pens to be executed first by the runtime environment will keep the other from executing
until it terminates:

new FirstLongTask().execute();
...
new SecondLongTask().execute();

Figure 10-3. AsyncTask application global behavior

It does not matter whether the AsyncTask implementations are executed from an Ac
tivity, a Service, or any other part of the application—they still use the same appli‐
cation global execution environment and run sequentially

The application global execution of AsyncTask instances poses a risk
that the execution environment gets saturated and that back‐
ground tasks get delayed, or worse still, not executed at all.

Because all AsyncTask instances share this global execution, they all can have an impact
on each other, which depends on the execution environment:
Sequential execution (SERIAL_EXECUTOR)

Tasks that are executed sequentially will not be processed on a worker thread until
all the preceding tasks in the application have been processed. This applies to any
tasks launched through executeOnExecutor(AsyncTask.SERIAL_EXECUTOR) or
through execute() on API level 13 or higher.

Background Task Execution | 169

Concurrent execution (THREAD_POOL_EXECUTOR)
A quad-core device with all cores available can handle five AsyncTasks concurrently.
When a sixth task is started, it will be placed in the waiting queue until one of the
first five tasks has finished and left a worker thread idle. This may seem odd, because
I previously stated that the THREAD_POOL_EXECUTOR can hold 137 tasks, but the rea‐
son lies in the implementation of the ThreadPoolExecutor with five core pool
threads. When the core pool threads are all occupied, the implementation chooses
queuing over the creation of new threads (see “ThreadPoolExecutor configura‐
tion” on page 137).

Execution Across Platform Versions
It may be important to know whether tasks are being executed sequentially or concur‐
rently if they depend on the guaranteeed ordering or thread safety of sequential execu‐
tion. Tasks launched through execute run sequentially, whereas executeOnExecutor
can be run with a concurrent Executor. However, executeOnExecutor was added first
in API level 11 (Honeycomb). This section explains what you need to know to handle
the AsyncTask across platform versions. The differences in execution are summarized
in Table 10-3.

Table 10-3. Execution differences depending on platform version
API level execute executeOnExecutor

1 - 3 Sequential Not available

4 - 10 Concurrent Not available

11 - 12 Concurrent Sequential/concurrent (customizable)

13+ Sequential Sequential/concurrent (customizable)

At first, execution was always sequential, but to gain performance, the execute method
was changed in API level 4 to process tasks concurrently. Unfortunately, tasks that de‐
pended on ordered or thread-safe execution could fail when they were exposed to a
nonordered and non-thread–safe enviroment. So in API level 11, the API was extended
with the executeOnExecutor method; and in API level 13, the execute method was
reverted to sequential execution to restore the previous safe behavior. The executeO
nExecutor method supports custom Executor implementations, which can be used for
concurrent execution.

Also in API level 13, the platform added a check to the targetSdkVersion in the ap‐
plications’ AndroidManifest.xml file to avoid unexpected behavior for existing applica‐
tions:
targetSdkVersion<13

execute keeps concurrent execution, even on platforms with API level 13 or higher.

170 | Chapter 10: Tying a Background Task to the UI Thread with AsyncTask

1. API levels 1-3 are considered to be obsolete, and are therefore omitted.

targetSdkVersion>=13
execute causes sequential execution on platforms with API level 13 or higher.

The execution behavior of execute is dependent both on the API
level of the platform and the targetSdkVersion in the application’s
Manifest.

An application that needs consistent execution behavior on all platform versions has to
handle this itself by setting targetSdkVersion.

Until API level 13, it is not possible to achieve sequential execution across all platform
versions with an AsyncTask.1 Concurrent execution across platform versions is achieved
either by setting targetSdkVersion < 13+ or by changing the actual executor, depend‐
ing on the platform version:
Consistent sequential execution

Sequential execution of AsyncTask instances cannot be guaranteed on API levels
4-10 because execute is concurrent and executeOnExecutor is not available until
API level 11. Instead, background tasks that require consistent sequential execution
should utilize either Executors.newSingleThreadExecutor (Chapter 9) or Han
dlerThread (Chapter 8).

Consistent concurrent execution
The targetSdkVersion setting determines how concurrent execution can be con‐
sistently achieved across platform versions. For API levels lower than 13, the exe
cute method suffices, but for higher API levels, the application has to vary the
execution call depending on the build:

if (Build.VERSION.SDK_INT <= Build.VERSION_CODES.HONEYCOMB_MR1) {
 new MyAsyncTask().execute();
} else {
 new MyAsyncTask().executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR);
}

Because checking the API for every execution is tedious, you can define a wrapper class
that can be implemented to handle the platform check:

public class ConcurrentAsyncTask {
 public static void execute(AsyncTask as) {
 if (Build.VERSION.SDK_INT < Build.VERSION_CODES.HONEYCOMB_MR2) {
 as.execute(...);
 } else {
 as.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, ...);

Background Task Execution | 171

 }
 }
}

The caller passes AsyncTask it wants executed to the wrapper class:

ConcurrentAsyncTask.execute(new MyAsyncTask());

Custom Execution
The predefined executors—SERIAL_EXECUTOR and THREAD_POOL_EXECUTOR—in the
AsyncTask are application global, which risks a performance penalty when the appli‐
cation executes a lot of tasks. To circumvent global execution, tasks should be processed
in a custom Executor:

new AsyncTask().executeOnExecutor(Params, MyCustomExecutor);

The custom executor replaces the execution environment in the AsyncTask but pre‐
serves the communication between threads for progress updating: the overridden
methods are called in the same way as they would have been with a predefined executor.

Sequential execution can be handled better by using a customized—nonglobal—exec‐
utor in combination with the AsyncTask; e.g., the single threaded executor described in
Chapter 9.

Example: Nonglobal sequential execution
Sequential execution that is shared globally in an application may cause unexpected
execution delays if a task from one component has to wait for a task from another
component to finish. Hence, to utilize sequential execution—but avoid the application
global behavior—a custom executor should be shared between the tasks.

The following, very bare-bones example shows the use of a sequential executor, Execu
tors.newSingleThreadExecutor, in both an Activity and a Service. Because the tasks
are executed in different components–but still require the same executor—the executor
instance is held in the Application instance:

public class EatApplication extends Application {
 private Executor customSequentialExecutor;

 public Executor getCustomSequentialExecutor() {
 if (customSequentialExecutor == null) {
 customSequentialExecutor = Executors.newSingleThreadExecutor();
 }
 return customSequentialExecutor;
 }
}

public class MyActivity extends Activity {
 private void executeTaskSequentially() {

172 | Chapter 10: Tying a Background Task to the UI Thread with AsyncTask

 new MyActivityAsyncTask().executeOnExecutor(
 ((EatApplication)getApplication).getCustomSequentialExecutor());
}

public class MyService extends Service {
 private void executeTaskSequentially() {
 new MyServiceAsyncTask().executeOnExecutor(
 ((EatApplication)getApplication).getCustomSequentialExecutor());
}

AsyncTask Alternatives
Due to its simplicity, the AsyncTask is a popular asynchronous technique. It allows
background task execution in combination with thread communication, offering a
generic and adaptable asynchronous technique that can be applied on many use cases
—the AsyncTask itself does not impose any constraints. However, as we have seen in
this chapter, it has a couple of concerns you need to consider:

• Because AsyncTask has a global execution environment, the more tasks you execute
with an AsyncTask, the higher the risk that tasks will not be processed as expected
because there are other tasks in the application that hold the execution environment.

• Inconsistency in execution environments over different platform versions makes
it more difficult to either optimize execution for performance (concurrent execu‐
tion) or thread safety (sequential execution).

The AsyncTask is often overused in applications, due to its simplicity. It is not a silver-
bullet solution for asynchronous execution on Android. For many use cases, you should
look into alternative techniques, for reasons of architecture, program design, or just
because they are less error prone.

When an AsyncTask Is Trivially Implemented
Two trivial use cases where the AsyncTask can cause more complexity than the alter‐
natives are:
Running the task without parameters (AsyncTask<Void, Void, Void>)

An AsyncTask that does not define any parameters cannot pass data between the
UI thread and the background thread. Data cannot be entered into the background
thread, no progress can be reported, and no result is passed from the background
thread to the UI thread.

Implementing only the doInBackground method
Without the callbacks that give progress updates or report results, the AsyncTask
is merely a background task.

In either of these cases, use a Thread (Chapter 7) or HandlerThread (Chapter 8) instead.

AsyncTask Alternatives | 173

Background Tasks That Need a Looper
The worker thread that executes the background task under AsyncTask has no associ‐
ated Looper or MessageQueue, so message passing is unfeasible. In theory, it is possible
to associate a Looper with the worker thread in either doInBackground or an executed
Runnable, but this will block the used worker thread until the Looper finishes. When
sequential execution is in effect, it will block all other AsyncTask executions in the
application.

Even if the Looper is just prepared—but does not loop through the message queue—it
will not be removed from the worker thread so that the thread can be used by other task
executions. If a second task tries to prepare another Looper on that thread, a Runti
meException will be thrown.

If your application wants a Looper, use a HandlerThread (Chapter 8) instead of an
AsyncTask.

Local Service
A local Service executes in parallel with other components in an application, typically
to handle execution of long operations. The Service executes in the UI thread of the
hosting application and requires additional background threads to execute the long
operations. The AsyncTask is a candidate, but the application of global execution of
tasks allows other components to utilize the execution environment simultaneously,
and interfere with each other.

Services, therefore, should use one of these alternative solutions:

• Thread (Chapter 7)
• The Executor framework (Chapter 9)
• HandlerThread (Chapter 8)
• An AsyncTask with a custom executor

Using execute(Runnable)
Executing tasks as Runnable instances eliminates the major advantages of the Asyn
cTask; it merely puts the Runnable in the working queue and runs it when an idle thread
is available in the thread pool. Because message passing is not enabled, the UI thread
will receive no callbacks. Hence, this use case is like execution with a regular Thread,
but with two main differences:

• Advantage: The task is executed in the AsyncTask internal thread pool that may
already exist, which makes it resource-efficient.

174 | Chapter 10: Tying a Background Task to the UI Thread with AsyncTask

• Disadvantage: The task always executes in the application global execution envi‐
ronment and can interfere with other tasks.

Alternative solutions include Thread (Chapter 7) and the Executor framework (Chap‐
ter 9).

Summary
This chapter looked into the—probably—most popular asynchronous technique in
Android. It is easily understood, because it abstracts away many of the underlying com‐
plexities of background execution and thread communication. For clean use cases—
e.g., executing a background task in an Activity in which the UI should be updated
before, during, and after the execution—it is a great option. It is less desirable if execu‐
tion is done in a Service or if it is necessary to tweak the AsyncTask to something it is
not—e.g., a background thread with a Looper.

Summary | 175

CHAPTER 11

Services

Android provides the Service component to run operations that are invisible to the
user or that should be exposed to other applications. This chapter focuses on asynchro‐
nous execution with Service, although it is not an asynchronous execution environ‐
ment by itself. The Service runs in the UI thread, so it can degrade responsiveness and
cause ANRs, even though it does not interact directly with the UI. Still, the Service in
combination with an asynchronous executor is a powerful tool for background task
execution.

Why Use a Service for Asynchronous Execution?
Two risks are inherent in using regular threads instead of services for background op‐
eration:
Decouple lifecycles of components and threads

The thread lifecycle is independent of the Android components and their under‐
lying Java object lifecycles. A thread continues to run until the task either finishes
or the process is killed, even after the component that started the thread finishes
itself. Threads may keep references to Java objects so that they cannot be garbage
collected until the thread terminates, as described in Chapter 6.

Lifecycles of the hosting processes
If the runtime terminates the process, all of its threads are terminated. Thus, back‐
ground tasks are terminated and not restarted by default when the process is re‐
stored. The runtime terminates processes depending on their process rank—as de‐
scribed in “Application termination” on page 7—and a process with no active com‐
ponents has a low ranking and is likely to be eligible for termination. This may cause
unexpected termination of background tasks that should be allowed to finish. For
example, an Activity that stores user data to a database in a background thread
while the user navigates back leaves an empty process if there are no other com‐

177

ponents running. This increases the risk of process termination, aborting the back‐
ground thread before it can persist the data.

A Service can mitigate both the risk for memory leaks and the risk of having tasks
terminated prematurely. The Service has a lifecycle that can be controlled from back‐
ground threads: it couples the component lifecycle with the thread’s lifetime. Hence, the
Service component can be active while the background thread runs and be destroyed
when it finishes, which enables better lifecycle control. As Figure 11-1 illustrates, the
BroadcastReceiver and Activity lifecycles are decoupled from the background
thread’s execution, whereas the Service lifecycle can end when the background task is
done. Consequently, the process contains a Service component throughout the back‐
ground thread’s execution. The details of starting and stopping Services are explained
later in this chapter.

Figure 11-1. Background thread execution in BroadcastReceiver and Activity compared
to Service; both can execute in the same process as other components or in separate pro‐
cesses

To offload background execution, a BroadcastReceiver or Activity should start a
Service that then starts a thread, as shown in Figure 11-2.

178 | Chapter 11: Services

Figure 11-2. Offloading background tasks to Service

Local, Remote, and Global Services
A Service is started through intents that are sent from other components, referred to
as client components. The invocation can occur either local to the process or across
process boundaries, depending on where the Service runs with respect to the client
component. If the Service is used within the same process as the client, it is local,
whereas a Service used from external processes is remote. Figure 11-3 shows the pos‐
sibilities.

Figure 11-3. Service execution

Local service
The Service runs in the same process as the invoking component; i.e., the com‐
ponents run on the same UI thread and share the same heap memory area. Hence,

Local, Remote, and Global Services | 179

the Service can share Java objects with clients so that the shared objects run on the
calling thread in the client.

Private remote service
The Service runs in a remote process but is accessible only to client components
that belong to the application. The remote process has its own UI thread. Thus, the
Service UI thread does not delay the execution of the UI threads of the client
components. The remote Service cannot expose objects directly to the clients, as
they do not share the the same heap memory area. Instead, clients call the Ser
vice through the binder mechanism in Android—see Chapter 5—which contains
a pool of binder threads used to invoke the remote methods. Thus, method invo‐
cations can be invoked concurrently on different threads from the binder thread
pool, although the clients call the methods sequentially. The Service has to ensure
thread safety during remote access from binder threads.

Global remote service
The Service is exposed to other applications. It has the same properties as the
private remote service with its own UI thread, heap memory, and execution on
binder threads, but it cannot be referred to by the Service class name because that
is not known to external applications. Instead, external access is provided through
intent filters.

By far the most common use case is to run the Service in the local process, where it
executes background tasks deployed by client components—e.g., a music player service.
The advantage of the local service are simplicity and saving memory. The possibility of
sharing Java objects within the process avoids the complexities of IPC and AIDL. Fur‐
thermore, the Service is part of an already running process—i.e., you don’t need to run
another process that consumes memory. Each process consumes several megabytes of
RAM, even if it only hosts a Service component. Applications should be good Android
citizens in the ecosystem and not start processes unless needed.

In short, the advantages with running in the local process are:

• Easier and faster communication through shared Java objects instead of IPC
• Control over Service task execution from client threads
• Less memory consumption

Although local services are normally preferred and sufficient, there may be require‐
ments that call for remote execution. Typically, that’s when multiple applications require
the same functionality that is independent enough to be shared across the applications
—e.g., a GPS or music service. Another advantage of remote execution is that errors
that stop the Service are contained in the remote process and do not affect the processes
run by the client components.

180 | Chapter 11: Services

1. See the documentation for the <service> element for the full list of attributes and elements.

Creation and Execution
Services are defined as extensions of the Service class and must be defined in the An‐
droid Manifest. The <name> attribute contains a fully qualified classname, which points
to an implementation class that extends Service in the application:1

<service
 android:name="com.wifill.eat.EatService"/>

By default, the Service component runs locally in the application process where it is
defined and shares the same UI thread with all other components in that process. But
just as with all Android components, the Service can be assigned to run in a remote
process, in which case it is not executing on the same UI thread as the other application
components. The assigned process is defined by the android:process attribute, which
declares the name of the process and the access rights. A private remote process has an
attribute value that starts with a colon (“:”):

<service
 android:name="com.wifill.eat.EatService"
 android:process=":com.wifill.eat.PrivateProcess"/>

Execution in a global remote process—accessible from other applications with the right
permissions—is defined by leading off the process name with a capital letter:

<service
 android:name="com.wifill.eat.EatService"
 android:process="Com.wifill.eat.PrivateProcess">
 <intent-filter>
 <action android:name="..." />
 <category android:name="..." />
 </intent-filter>
</service>

As the Service class name is not visible to other applications, it defines an IntentFil
ter that external applications have to match against.

Lifecycle
A Service component is active between the callbacks to onCreate and onDestroy—
both are called once per lifecycle—where the implementation can initialize and clean
up data, respectively:

public class EatService extends Service {

 @Override
 public void onCreate() { /* Initialize component */ }

Creation and Execution | 181

http://bit.ly/1i68xHa
http://bit.ly/R7NNJn
http://bit.ly/1iH6oYC
http://bit.ly/1iH6oYC

 @Override
 public void onDestroy() { /* Clean up used resources */ }

 @Override
 public IBinder onBind(Intent intent) { /* Return communication interface */ }
}

The only mandatory method is onBind, which returns a communication interface to
clients that bind to the Service. Through this interface, clients can invoke methods
defined in the Service either in the local process or remotely.

There are two types of services:
Started Service

Created by the first start request and destroyed by the first stop request. In between,
start requests only pass data to the Service.

Bound Service
Created when the first component binds to the Service and destroyed when all
components have unbound from it. In other words, a bounded Service lifecycle is
based on the number of binding components. As long at least one component is
bound to the Service, it stays active.

The Service component is created by client components that either start it through
Context.startService or bind to it through Context.bindService. These are two
fundamentally different approaches with different access methods and communication
mechanisms, summarized in Table 11-1.

Table 11-1. Started versus bound Service
Started Bound

Create Context.startService(Intent) Context.bindService

Destroy Context.stopService(Intent) from a client
component or Service.stopSelf() from itself.

Occurs when all bound components have unbound
from the Service with Context.unbind
Service().

Communication Data is passed in the Intent of the start request. Binding component receives a communication
interface.

If some process starts a Service component, the component lasts until it stops itself or
is stopped externally. If processes bind to a Service component, it starts when the first
remote process binds to it, and lasts until all processes that have bound to it unbind
from it. If one process starts the component and others bind to it, it lasts as long as both
conditions hold: it will not be terminated until it is explicitly stopped and all processes
have unbound from it. The various cases are shown in Figure 11-4.

182 | Chapter 11: Services

Figure 11-4. Service lifecycle

Started Service
Components invoke Context.startService(Intent) to send start requests to a Ser
vice, which can be invoked by multiple components and multiple times from every
component during a lifecycle. The first start request creates and starts the Service,
whereas consecutive start requests just pass on the Intent to the started Service so that
the data conveyed in the Intent can be processed.

Services always have to implement onBind, but started services—which do not support
binding—should provide a trivial implementation that just return null:

public class StartedEatService extends Service {

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) { ... }

 @Override
 public IBinder onBind(Intent intent) { return null; }

}

Started services must implement an onStartCommand method that handles start re‐
quests. The method is invoked each time a start request (Context.startService) from
a client component is ready to be processed. Start requests are delivered sequentially to
onStartCommand and remain pending in the runtime until preceding start requests are
processed or offloaded from the UI thread. In spite of the sequential processing of start
requests, calls to startService do not block even if they have to wait to be processed

Started Service | 183

in the Service. A start request supplies an Intent that conveys data that can be pro‐
cessed in the Service.

onStartCommand is executed on the UI thread, so you should spawn background threads
within the method to execute long-running operations, not only to preserve respon‐
siveness but also to enable concurrent execution of multiple start requests.

The sequential processing of onStartCommand on the UI thread guarantees thread safety.
No synchronization is required unless the tasks are processed concurrently on back‐
ground threads spawned from the UI thread.

Implementing onStartCommand
onStartCommand is the key method for implementing started Services and initiating
asynchronous task execution. Tasks should be offloaded to an asynchronous executor
that can be either sequential or concurrent. Because the Service process, along with all
its background threads, can be terminated by the runtime, onStartCommand includes a
flag that defines how start requests—both pending and processed—should be handled
after process termination.

The arguments are:
Intent

Data to be used for the asynchronous execution; e.g., a URL to a network resource
that shall be retrieved.

Delivery method
A flag reflecting the history of the start request. This argument may contain other
flags in future versions of Android. Possible values are currently 0, START_FLAG_RE
DELIVERY (value of 1), or START_FLAG_RETRY (value of 2). The following section will
explain this argument.

Start ID
A unique identifier provided by the runtime for this start request. If the process is
terminated and restarted, onStartCommand is called with the same start ID.

The return value tells the runtime whether to restart the Service and resubmit the
Intent argument, in case the runtime has to terminate the process for lack of resources
and then restart it. This will be explained in the following section.

Options for Restarting
Like any Android application, your Service may be terminated by the runtime if there
are too many processes running on the device. In fact, as a background process, your
Service has a greater chance of being killed than many other processes (“Application
termination” on page 7). A client can also terminate your Service through a Con

184 | Chapter 11: Services

text.stopService call. Finally, a Service can terminate itself through Service.stop
Self. This section covers termination by either the runtime or a client, not a clean
termination through Service.stopSelf.

The return value of onStartCommand and the second argument (the delivery method
flag) let you control what happens after your Service is terminated. You may want to
restart the same request, which you can do by asking the runtime to resubmit the Intent
that you received in this onStartCommand call. Or you may abandon that Intent. If you
abandon the current Intent, you have another choice:

• You can ask the runtime to restart your Service only if other requests are pending,
and if there are none, to restart the Service when a new request comes from a client.

• You can ask the runtime to restart your Service as soon as it can, even if there are
no requests.

If a Service is terminated while the onStartCommand method is run‐
ning, the Intent that was submitted never gets a chance to start.
Therefore, it is still considered a pending request, not a started re‐
quest.

All of these options are enabled by the return value from the call, which is called the
operational mode:
START_STICKY

The Service will be restarted in a new process whether or not there are any requests
pending. The Intent of the request that was terminated will not be resubmitted.
However, the Service will receive any pending start requests that remained unde‐
livered when the previous Service process was terminated. The pending start re‐
quests are delivered with the START_FLAG_RETRY flag set in the call’s second argu‐
ment. If there are no pending start requests, onStartCommand is invoked with a null
value for the Intent argument.

START_NOT_STICKY

Like START_STICKY, except that the Service will be restarted only if there were
pending start requests when the process was terminated. An Intent will always be
passed.

START_REDELIVER_INTENT

The Service will be restarted and receives both pending requests and requests that
were previously started and had no chance to finish. The pending requests are
delivered with the START_FLAG_RETRY flag set in the second argument, whereas the
previously started requests are redelivered with the START_FLAG_REDELIVERY set.

Started Service | 185

Value 0
Default value, used when a new request is submitted. A new process is started
to run the Service.

START_FLAG_REDELIVERY (value 1)
Indicates that the Intent is one that was previously submitted to the Service.

START_FLAG_RETRY (value 2)
Indicates that the Intent was not previously submitted or never had a chance
to start, but was pending when the Service was terminated and restarted.

Here are sample use cases for the return value:
Restart a single background task

In this scenario, you want the Service to execute a background task that should be
controlled from the client components. The Service should not finish until one
component has invoked stopService. Return START_STICKY so that the Service
is always restarted and the background task can be restarted.

Ignore background tasks
In this scenario, the Service executes a task that should not be resumed after pro‐
cess termination. An example might be a periodic task that can wait until its next
scheduled execution. Return START_NOT_STICKY so that the Service will not be
automatically restarted.

Restart unfinished background tasks
In this scenario, the Service executes background tasks that you want to be re‐
sumed. Return START_REDELIVER_INTENT so that all the Intents are redelivered,
and the tasks can be restarted on new threads. Furthermore, the tasks can be con‐
figured with the same data from the Intent as the original task.

User-Controlled Service
User-controlled services may be used for operations that should be running until in‐
structed by other Android components that they should terminate. The termination is
typically triggered by a user action. Applications that should continue to execute oper‐
ations and handle events without a visible UI are candidates for extracting functionality
to a Service: for instance, playing music, managing location, tracking updates from a
network resource, or setting up a Bluetooth connection, as “Example: Bluetooth con‐
nection” on page 187 illustrates.

Long-running or blocking operations need to be executed asynchronously on back‐
ground threads created by the Service. But the Service lifecycle does not control the
lifetime of background threads: they continue to run after the component has been
destroyed. In other words, the threads are asynchronous tasks that run after a client has
called stopService. As Chapter 6 showed, the lingering threads pose a risk for leaking

186 | Chapter 11: Services

2. Like activities, a new Service object is created for every lifecycle of the Service component.

the memory of the objects they reference. A Service that is started and stopped re‐
peatedly can leave more threads lingering for every lifecycle, each one referencing a
different Service instance and forcing it to be retained in memory.2 To reduce the risk
for memory leaks and performance issues caused by many lingering threads, the Ser
vice should not be restarted repeatedly, if possible. It is better to let the Service stay
alive as long as needed in order to limit the number of lingering threads and the memory
leakage.

Example: Bluetooth connection
A Bluetooth connection is generally initialized by the user when pairing with another
device. The pairing can take a long time, and while waiting, the user may navigate away
from the application. Therefore, to ensure that the pairing process can continue inde‐
pendently of the user navigation, the pairing should be done in a Service. The Bluetooth
pairing API is synchronous and cannot be called from the UI thread methods, so the
Service requires additional asynchronous pairing in a background thread.

The following example contains a user-controlled BluetoothService to set up and
cancel the pairing, and a basic BluetoothActivity with two buttons that control the
Service lifecycle. When the BluetoothService is started—i.e., onStartCommand is
called—it initiates a Thread to handle the pairing and keeps a state variable—mListen

ing—to ensure that only one pairing operation is active. Consequently, only one thread
at the time will be alive. The pairing task defined in a Runnable executes until a con‐
nection is set up or cancelled, after which the background thread terminates.

The BluetoothService shares an entry point–COMMAND_START_LISTENING–to start the
pairing process, but no method for stopping it. Instead, the pairing process is terminated
when the BluetoothService stops itself, and its onDestroy method cancels the pairing
so that the background thread can terminate. Hence, there are no lingering background
threads after the Service is destroyed:

public class BluetoothService extends Service {

 public static final String COMMAND_KEY = "command_key";
 public static final String COMMAND_START_LISTENING =
 "command_start_discovery";

 private static final UUID MY_UUID = ...;
 private static final String SDP_NAME = ...;

 private BluetoothAdapter mAdapter;
 private BluetoothServerSocket mServerSocket;
 private boolean mListening = false;
 private Thread listeningThread;

Started Service | 187

 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public void onCreate() {
 super.onCreate();
 mAdapter = BluetoothAdapter.getDefaultAdapter();
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 if (mAdapter != null) {
 if (intent.getStringExtra(COMMAND_KEY).equals
 (COMMAND_START_LISTENING)
 && mListening == false) {
 startListening();
 }
 }
 return START_REDELIVER_INTENT;
 }

 private void startListening() {
 mListening = true;
 listeningThread = new Thread(new Runnable() {

 @Override
 public void run() {
 BluetoothSocket socket = null;
 try {
 mServerSocket =
 mAdapter.listenUsingInsecureRfcommWithServiceRecord(
 SDP_NAME, MY_UUID);
 socket = mServerSocket.accept();

 if (socket != null) {
 // Handle BT connection
 }

 } catch (IOException e) {
 Log.d(TAG, "Server socket closed");
 }
 }
 });
 listeningThread.start();
 }

 private void stopListening() {
 mListening = false;
 try {
 if (mServerSocket != null) {

188 | Chapter 11: Services

 mServerSocket.close();
 }
 } catch (IOException e) {
 // Handle error
 }
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 stopListening();
 }
}

Control the number of threads so that only one pairing at the time can be done.
If the process is shut down, the Intent will be redelivered so that we can resume
the pairing.
Blocking call.
Release the blocking call.
The Service is destroyed and stops the pairing so that the background thread
can finish.

The BluetoothActivity controls the Service lifecycle with a start command that in‐
itiates the pairing and then stops the pairing by destroying the BluetoothService that
manages the background thread:

public class BluetoothActivity extends Activity {

 public void onCreate(Bundle savedInstanceState) {
 ...
 }

 public void onClickStartListening(View v) {
 Intent intent = new Intent(this, BluetoothService.class);
 intent.putExtra(BluetoothService.COMMAND_KEY,
 BluetoothService.COMMAND_START_LISTENING);
 startService(intent);
 }

 public void onClickStopListening(View v) {
 Intent intent = new Intent(this, BluetoothService.class);
 stopService(intent);
 }
}

Started Service | 189

Task-Controlled Service
Task-controlled services are typically used to ensure that background threads can be
allowed to finish execution with reduced risk of being stopped due to process termi‐
nation. When the Service stops itself with stopSelf, control over the Service com‐
ponent’s lifecycle lies with the processed task. In other words, the task determines when
the component will be destroyed.

The lifetime of the background thread determines the lifetime of the Service, as shown
earlier in Figure 11-2. Therefore, the component is always active while the task is run‐
ning on the background thread, which raises its chances of being kept alive. (As “Ap‐
plication termination” on page 7 explained, an empty process is among the first to be
terminated by the runtime.) So task-controlled services allow applications to utilize a
Service for long-running operations on background threads.

Example: Concurrent download
This example illustrates the use of a concurrent file download executor running in a
Service. The time it takes to download a file over the network is nondeterministic—
and often very long—because it depends on both the file size and the network connec‐
tion quality. Therefore, we want to avoid downloading the files from an Activity
because the user can navigate away from the application during download, leaving an
empty process that can be terminated by the runtime before the download has finished.
Instead, we let the download be handled by a task-controlled Service that is independ‐
ent of user navigation and reduces the probability that the runtime terminates the pro‐
cess during the download.

The implementation fulfills some requirements:

• Concurrent downloads improve performance.
• The Service can resume downloading of unfinished files if the process is termi‐

nated by the runtime.
• The Service stops when there are no more download requests to handle so that its

process can be terminated, freeing up resources once it is no longer needed. In this
example, the Service runs in the application process, but it can easily be configured
to run in a separate process (“Creation and Execution” on page 181).

The DownloadService is registered in the Android Manifest with an action and a
scheme:

<service android:name=".DownloadService">
 <intent-filter>
 <action android:name="com.wifill.eat.ACTION_DOWNLOAD"/>
 <data android:scheme="http" />

190 | Chapter 11: Services

 </intent-filter>
</service>

The file download can be triggered from any application component by issuing an
Intent with an ACTION_DOWNLOAD action, as shown in the following code from the
DownloadActivity. Typically, the intent would be started by a button click that triggers
the onStartDownload callback:

public class DownloadActivity extends Activity {

 String mUrl = ...; // url details omitted

 public void onStartDownload(View v) {
 Intent intent = new Intent("com.wifill.eat.ACTION_DOWNLOAD");
 intent.setData(Uri.parse(mUrl));
 startService(intent);
 }
}

The DownloadService is defined to be started and not bound to, and it stops once all
the start requests have been processed. Concurrent execution is done in a thread pool
with a fixed size of four worker threads. The long-operating requests are submitted to
the thread pool to offload them from the UI thread and to make the Service available
to receive new start requests:

public class DownloadService extends Service {

 private ExecutorService mDownloadExecutor;
 private int mCommandCount;

 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public void onCreate() {
 super.onCreate();
 mDownloadExecutor = Executors.newFixedThreadPool(4);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 mDownloadExecutor.shutdownNow();
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 synchronized (this) {
 mCommandCount++;
 }
 if (intent != null) {

Started Service | 191

 downloadFile(intent.getData(), startId);
 }
 return START_REDELIVER_INTENT;
 }

 private void downloadFile(final Uri uri) {
 mDownloadExecutor.submit(new Runnable() {
 @Override
 public void run() {

 // The file download code is omitted

 synchronized (this) {
 if (--mCommandCount <= 0) {
 stopSelf();
 }
 }
 }
 });

Track the number of ongoing file downloads. The variable is incremented when
a start request is received and decremented when the background task is finished.
The interface requires an onBind method to be implemented, but because this
is a started—and not a bound—Service, we do not have to return an IBinder
implementation; instead return null.
If the process is terminated by the runtime, we want the Service to be restarted
with the intents from the start requests that hold the URLs to download so that
the downloads can be resumed. Hence, we return START_REDELIVER_INTENT.
When a download has finished, the task checks whether it is time to stop the
Service. If it is the last start request, indicated when mCommandCount <= 0, we
stop the Service.

Bound Service
A bound Service defines a communication interface that the binding components—
referred to as client components—can utilize to invoke methods in the Service. The
communication interface is defined as a set of methods that the Service implements
and executes in the Service process. The client components can bind to a Service
through Context.bindService. Multiple client components can bind to a Service—
and invoke methods in it—simultaneously.

The Service is created when the first binding is set up, and is destroyed when there are
no more client components keeping the binding alive. Internally, the Service keeps a
reference counter on the number of bound components, and when the reference counter
is decremented to zero, the Service is destroyed. A client component can terminate a

192 | Chapter 11: Services

binding explicitly with Context.unbindService, but the binding is also terminated by
the runtime if the client component lifecycle ends.

The outline for a bound Service is:

public class EatService extends Service {

 @Override
 public IBinder onBind(Intent intent) { /* Return communication interface */ }

 @Override
 public boolean onUnbind(Intent intent) { /* Last component has unbound */ }
}

onBind

Called when a client binds to a Service the first time through Context.bindSer
vice. The invocation supplies an Intent and the method returns an IBinder im‐
plementation that the client can use to interact with the Service.

onUnbind

Called when all bindings are unbound.

Components bind to services and retrieve a communication interface for sending re‐
quests and receiving responses, either within the process or across processes, as in IPC
through a Binder. The communication interface consists of methods to be invoked by
the client component, but the execution is implemented in the Service component.

A bound Service returns an IBinder implementation from onBind that the client can
use as a communication channel. The IBinder is returned to the client through the
ServiceConnection interface that the binding client supplies when invoking bindSer
vice:

boolean bindService (Intent service, ServiceConnection conn, int flags)

The Intent identifies the Service to bind to, but it cannot pass on any Extra parameters
to the Service. The binding is observed by the ServiceConnection, and the binding
client component provides an implementation to get notified when the binding is es‐
tablished:

private class EatServiceConnection implements ServiceConnection {

 @Override
 public void onServiceConnected(ComponentName componentName,
 IBinder iBinder) {
 /* Connection established.
 Retrieve communication interface from the IBinder */
 }

 @Override
 public void onServiceDisconnected(ComponentName componentName) {
 /* Service not available.

Bound Service | 193

 Remote service process is probably terminated. */
 }

The flags argument can be either 0 or a collection of allowed arguments. Options for
this argument can adjust the rank of the Service’s process or determine the strategy for
restarting the Service. The most commonly used flag is BIND_AUTO_CREATE, which
recreates the Service if it is destroyed, as long as a client component is bound to it.

From a client perspective, the fundamental binding to the Service is the same regardless
of which process the Service runs in. However, if the Service runs in the local process,
communication is easier than with remote processes. Also, the behavior and manage‐
ment of asynchronous execution differ between the three communication types:

• Local binding, covered in the following section
• Remote binding with Messenger, covered in “Message Passing Using the Binder”

on page 83
• Remote binding with AIDL, covered in “AIDL” on page 77

Local Binding
Local binding to a Service is the most common type. A client component that binds
to a Service in the same application and process can benefit because both components
run in the same VM and share the same heap memory. There is no need to be concerned
with the complexities of IPC. Instead, the Service can define the communication in‐
terface as a Java class and send it to the client wrapped in a Binder object. The following
example provides itself as a communication interface (through return BoundLocal
Service.this), but it could just as well define the interface as an internal class:

public class BoundLocalService extends Service {
 private final ServiceBinder mBinder = new ServiceBinder();

 public IBinder onBind(Intent intent) {
 return mBinder;
 }

 public class ServiceBinder extends Binder {
 public BoundLocalService getService() {
 return BoundLocalService.this;
 }
 }

 // Methods published to clients.
 public void publishedMethod1() { ... }
 public void publishedMethod2() { ... }

}

194 | Chapter 11: Services

http://bit.ly/1i6d1O2

The BoundLocalService creates a Binder subclass called ServiceBinder, which wraps
the Java object of the Service and returns it to the binding client components. The
Service implements methods that can be invoked by bound clients.

The clients retrieve the Binder implementation in the ServiceConnection.onService
Connected() callback, which contains the communication interface.

The client BoundLocalActivity retrieves the communication interface—i.e., the Bound
LocalService object itself—from the ServiceBinder and stores it as a member variable
for later reference:

public class BoundLocalActivity extends Activity {
 private LocalServiceConnection mLocalServiceConnection =
 new LocalServiceConnection();
 private BoundLocalService mBoundLocalService;
 private boolean mIsBound;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 bindService(new Intent(BoundLocalActivity.this, BoundLocalService.class),
 mLocalServiceConnection, Service.BIND_AUTO_CREATE);
 mIsBound = true;
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 if (mIsBound) {
 try {
 unbindService(mLocalServiceConnection);
 mIsBound = false;
 } catch (IllegalArgumentException e) {
 // No bound service
 }
 }
 }

 private class LocalServiceConnection implements ServiceConnection {

 @Override
 public void onServiceConnected(ComponentName componentName,
 IBinder iBinder) {
 mBoundLocalService = ((BoundLocalService.ServiceBinder)iBinder)
 .getService();

 // At this point clients can invoke methods in the Service,
 // i.e. publishedMethod1 and publishedMethod2.

 }

 @Override

Bound Service | 195

 public void onServiceDisconnected(ComponentName componentName) {
 mBoundLocalService = null;
 }
 }
}

When the client has bound to the local Service, it can invoke the methods that were
published in its communication interface. The invocations are done directly to the Java
object created in the Service, and they are executed on the thread of the calling client.
Thus, long operations that require execution off the UI thread can utilize asynchronous
behavior implemented either in the client or in the Service.

Our BoundLocalService executes tasks on a new background thread for every invoca‐
tion of the published method in the communication interface:

public class BoundLocalService extends Service {

 public interface OperationListener {
 public void onOperationDone(int i);
 }

 public void doLongAsyncOperation(final int i,
 final OperationListener listener) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 int result = longOperation(i);
 listener.onOperationDone(result);
 }
 }).start();
 }

 private int longOperation(int i) {
 // Return a result from the long operation.
 }
}

Callback listener to report the result to the client.
Communication interface published to the client.
The thread holds a reference to the listener that is defined in the binding client
component. This poses a risk for a memory leak of the object tree that the listener
references in the client.

A BoundLocalActivity, which invokes BoundLocalService and its executor, defines
an implementation of the OperationListener to retrieve the result from the back‐
ground execution and use it on the UI thread, which is a common use case. In the
BoundLocalService, the background thread references the listener; anything refer‐
enced in the listener cannot be garbage collected while the thread is running (see Chap‐

196 | Chapter 11: Services

ter 6). Hence, our BoundLocalActivity defines a static inner class ServiceListener
with weak references to the Activity:

public class BoundLocalActivity extends Activity {

 // Activity creation and Service binding omitted.
 // See previous BoundLocalService listing.

 private static class ServiceListener implements
 BoundLocalService.OperationListener {

 private WeakReference<BoundLocalActivity> mWeakActivity;

 public ServiceListener(BoundLocalActivity activity) {
 this.mWeakActivity =
 new WeakReference<BoundLocalActivity1>(activity);
 }

 @Override
 public void onOperationDone(final int someResult) {
 final BoundLocalActivity localReferenceActivity =
 mWeakActivity.get();
 if (localReferenceActivity != null) {
 localReferenceActivity.runOnUiThread(new Runnable(){
 @Override
 public void run() {

 // Update on the UI thread

 }
 });
 }
 }
 }

 public void onClickExecuteOnClientUIThread(View v) {
 if (mBoundLocalService != null) {
 mBoundLocalService.doLongAsyncOperation(new ServiceListener(this));
 }
 }
}

Choosing an Asynchronous Technique
Asynchronous task execution in Services can be sequential or concurrent, and can
utilize any of the techniques described in this book. However, for two use cases, alter‐
natives may be considered:

Choosing an Asynchronous Technique | 197

Sequential execution for a task-controlled service
A task controlled Service can execute tasks concurrently or sequentially, depend‐
ing on used asynchrounous technique. When the tasks are executed sequentially—
e.g., with a HandlerThread, Executors.newSingleThreadExecutor, or any cus‐
tomized Executor—it is better to use an IntentService (Chapter 12) because it
has built-in support for sequential task execution that terminates the Service when
there are no more tasks to execute.

AsyncTask with global executor in local process
The Service component runs independently of—and often simultaneously with—
other components in the same process. Hence, background tasks are likely to exe‐
cute at the same time as background tasks of other components in the process. The
AsyncTask risks delaying tasks because it has a process global executor, as described
in Chapter 10, and the same executor is shared for all tasks. Hence, AsyncTasks that
execute in the same process as other components should use a custom executor—
i.e., a nonglobal executor—or an alternative technique, such as a thread pool.

Summary
A Service runs in the background on the UI thread and it is of great use to offload tasks
to background threads. The lifecycle of the Service component can be better controlled
to fit background threads without letting user interaction interfere with the destruction
of the component, as with an Activity. The Service can be active until all background
tasks have finished.

198 | Chapter 11: Services

CHAPTER 12

IntentService

In Chapter 11 we discussed how the Service lifecycle can handle asynchronous exe‐
cution while increasing the process rank and avoiding termination of the background
threads by the runtime. The Service, however, is not an asynchronous technique by
itself, because it executes on the UI thread. This shortcoming is addressed in the In
tentService, which extends the Service class. The IntentService has the properties
of the Service lifecycle but also adds built-in task processing on a background thread.

Fundamentals
The IntentService executes tasks on a single background thread—i.e., all tasks are
executed sequentially. Users of the IntentService trigger the asynchronous execution
by passing an Intent with Context.startService. If the IntentService is running,
the Intent is queued until the background thread is ready to process it. If the Intent
Service is not running, a new component lifecycle is initiated and finishes when there
are no more Intents to process. Hence, the IntentService runs only while there are
tasks to execute.

Like a task-controlled Service (“Task-Controlled Service” on page 190), an IntentSer
vice always has an active component, reducing the risk of terminating the task prema‐
turely.

The background task executor in the IntentService is a Handler
Thread. Unlike the default executor in AsyncTask, the IntentSer
vice executor is per instance and not per application. So an applica‐
tion can have multiple IntentService instances, where every in‐
stance executes tasks sequentially but independent of other Intent
Service instances.

199

To use the IntentService, override it with an application-specific implementation,
declaring it in the AndroidManifest.xml as a Service component:

<service android:name=".SimpleIntentService"/>

IntentService subclasses only have to implement the onHandleIntent method, as the
following SimpleIntentService shows:

public class SimpleIntentService extends IntentService {
 public SimpleIntentService() {
 super(SimpleIntentService.class.getName());
 setIntentRedelivery(true);
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 // Called on a background thread
 }
}

The constructor has to call the superclass with a string that names the background thread
—for debugging purposes. Here is also where to specify whether the IntentService
shall be restored if the process is killed. By default, the IntentService is restored only
if there are pending start requests, but an invocation of setIntentRedelivery(true)
will redeliver the last delivered intent.

The IntentService internally handles the two start types
START_NOT_STICKY and START_REDELIVER_INTENT described in “Op‐
tions for Restarting” on page 184. The first is default, so the latter
needs to be set with setIntentRedelivery(true).

Clients that want to use the IntentService create a start request with Context.start
Service and pass an Intent with data that the service should handle:

public class SimpleActivity extends Activity {

 public void onButtonClick(View v) {
 Intent intent = new Intent(this, SimpleIntentService.class);
 intent.putExtra("data", data);
 startService(intent);
 }
}

There is no need to stop the IntentService with stopSelf, because
that is done internally.

200 | Chapter 12: IntentService

1. This is the basis of a REST interface.

Good Ways to Use an IntentService
The IntentService is suitable for when you want to offload tasks easily from the UI
thread to a background thread with sequential task processing, giving the task a com‐
ponent that is always active in order to raise the process rank.

Sequentially Ordered Tasks
Tasks that should be executed sequentially and independently of the originating com‐
ponent can use an IntentService to ensure that all submitted tasks are queued in the
active IntentService component.

Example: Web service communication
Communication with network resources, such as web services, are often done in a se‐
quential manner—i.e., one resource is retrieved that contains future instructions on
how to interact with other resources.1 The HTTP protocol interacts with the network
resources using the GET, POST, PUT and DELETE request types. The request can orig‐
inate in a user interaction or a scheduled system operation, but can be processed by an
IntentService.

In this example, the request originates from an Activity, typically initialized by a user
action. For simplicity’s sake, only the most common types of requests are handled: GET
for retrieving data and POST for sending it. Both are offloaded to an IntentService.
The responses from the requests are returned in a ResultReceiver:

public class WebServiceActivity extends Activity {

 private final static String getUrl = "...";
 private final static String postUrl = "...";

 private ResultReceiver mReceiver;

 public WebServiceActivity() {
 mReceiver = new ResultReceiver(new Handler()) {
 @Override
 protected void onReceiveResult(int resultCode, Bundle resultData) {
 int httpStatus = resultCode;
 String jsonResult = null;
 if (httpStatus == 200) { // OK
 if (resultData != null) {
 jsonResult= resultData.getString(
 WebService.BUNDLE_KEY_REQUEST_RESULT);
 // Omitted: Handle response
 }

Good Ways to Use an IntentService | 201

 }
 else {
 // Omitted: Handle error
 }
 }

 };
 }

 private void doPost() {
 Intent intent = new Intent(this, WebService.class);
 intent.setData(Uri.parse(postUrl));
 intent.putExtra(WebService.INTENT_KEY_JSON, "{\"foo\":\"bar\"}");
 intent.putExtra(WebService.INTENT_KEY_RECEIVER, mReceiver);
 startService(intent);
 }

 private void doGet() {
 Intent intent = new Intent(this, WebService.class);
 intent.setData(Uri.parse(getUrl));
 intent.putExtra(WebService.INTENT_KEY_RECEIVER, mReceiver);
 startService(intent);
 }

}

Create the ResultReceiver that is passed to the IntentService so that the result
of the operation can be returned.
Issue a POST request with JSON-formatted content.
Issue a GET request.

The IntentService receives the requests in onHandleIntent and processes them se‐
quentially. The data from the WebServiceActivity determines the request type, URL,
ResultReceiver, and possibly the data to be sent:

public class WebService extends IntentService {
 private static final String TAG = WebService.class.getName();
 public static final int GET = 1;
 public static final int POST = 2;

 public static final String INTENT_KEY_REQUEST_TYPE =
 "com.eat.INTENT_KEY_REQUEST_TYPE";
 public static final String INTENT_KEY_JSON =
 "com.eat.INTENT_KEY_JSON";
 public static final String INTENT_KEY_RECEIVER =
 "com.eat.INTENT_KEY_RECEIVER";
 public static final String BUNDLE_KEY_REQUEST_RESULT =
 "com.eat.BUNDLE_KEY_REQUEST_RESULT";

 public WebService() {

202 | Chapter 12: IntentService

 super(TAG);
 }

 @Override
 protected void onHandleIntent(Intent intent) {

 Uri uri = intent.getData();
 int requestType = intent.getIntExtra(INTENT_KEY_REQUEST_TYPE, 0);
 String json = (String)intent.getSerializableExtra(INTENT_KEY_JSON);
 ResultReceiver receiver = intent.getParcelableExtra(INTENT_KEY_RECEIVER);

 try {
 HttpRequestBase request = null;
 switch (requestType) {
 case GET: {
 request = new HttpGet();
 // Request setup omitted
 break;
 }
 case POST: {
 request = new HttpPost();
 if (json != null) {
 ((HttpPost)request).setEntity(new StringEntity(json));
 }
 // Request setup omitted
 break;
 }
 }

 if (request != null) {
 request.setURI(new URI(uri.toString()));
 HttpResponse response = doRequest(request);
 HttpEntity httpEntity = response.getEntity();
 StatusLine responseStatus = response.getStatusLine();
 int statusCode = responseStatus != null ?
 responseStatus.getStatusCode() : 0;

 if (httpEntity != null) {
 Bundle resultBundle = new Bundle();
 resultBundle.putString(BUNDLE_KEY_REQUEST_RESULT,
 EntityUtils.toString(httpEntity));
 receiver.send(statusCode, resultBundle);
 }
 else {
 receiver.send(statusCode, null);
 }
 }
 else {
 receiver.send(0, null);

 }
 }

Good Ways to Use an IntentService | 203

 catch (IOException e) {
 receiver.send(0, null);
 } catch (URISyntaxException e) {
 e.printStackTrace();
 }
 }

 private HttpResponse doRequest(HttpRequestBase request) throws IOException {
 HttpClient client = new DefaultHttpClient();

 // HttpClient configuration omitted

 return client.execute(request);
 }
}

Retrieve the necessary data from the Intent.
Create request type depending on Intent data.
Do the network request.
Return the successful result to the WebServiceActivity.

Asynchronous Execution in BroadcastReceiver
A BroadcastReceiver is an application entry point—i.e., it can be the first Android
component to be started in the process. The start can be triggered from other applica‐
tions or system services. Either way, the BroadcastReceiver receives an Intent in the
onReceive callback, which is invoked on the UI thread. Hence, asynchronous execution
is required if any long-running operations shall be executed.

However, the BroadcastReceiver component is active only during the execution of
onReceive. Thus, an asynchronous task may be left executing after the component is
destroyed—leaving the process empty if the BroadcastReceiver was the entry point—
which potentially makes the runtime kill the process before the task is finished. The
result of the task is then lost.

To circumvent the problem of an empty process, the IntentService is an ideal candidate
for asynchronous execution from a BroadcastReceiver. Once a start request is sent
from the BroadcastReceiver, it is not a problem that onReceive finishes because a new
component is active during the background execution.

Prolonged Lifetime with goAsync
As of API level 11, the BroadcastReceiver.goAsync() method is available to simplify
asynchronous execution. It keeps the state of the asynchronous result in a Broadcas
tReceiver.PendingResult and extends the lifetime of the broadcast until the Broad

204 | Chapter 12: IntentService

2. Use Google Cloud Messaging, if applicable, before implementing your own mechanism.

castReceiver.PendingResult is explicitly terminated with finish, which can be called
after the asynchronous execution is done.

A minimalistic asynchronous receiver is shown in AsyncReceiver, where the Broad
castReceiver is kept alive until the PendingResult is finished:

public class AsyncReceiver extends BroadcastReceiver {
 public void onReceive(Context context, Intent intent) {
 final PendingResult result = goAsync();

 new Thread() {
 public void run() {

 // Do background work

 result.finish();
 }
 }.start();
 }
}

Example: Periodical long operations
Applications that should trigger periodical tasks even when the applications themselves
are not executing can utilize the AlarmManager system service in the platform. This can
be configured with a periodic interval when it will send an Intent to a BroadcastRe
ceiver in the application. Thus, if the application is not running, the BroadcastRe
ceiver is the entry point of the application, and long-running operations should be
executed in another component, typically an IntentService.

This example checks a network resource to see whether any updates have been made
since the last time the IntentService ran.2 If so, a notification is added to the status
bar.

The BroadcastReceiver and AlarmManager are set up in an Activity:

public class AlarmBroadcastActivity extends Activity {
 private static final long ONE_HOUR = 60 * 60 * 1000;

 AlarmManager am;
 AlarmReceiver alarmReceiver;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 alarmReceiver = new AlarmReceiver();

Good Ways to Use an IntentService | 205

http://bit.ly/1iRxMSA

 registerReceiver(alarmReceiver, new IntentFilter(
 "com.eat.alarmreceiver"));

 PendingIntent pendingIntent = PendingIntent.getBroadcast(this, 0,
 new Intent("com.eat.alarmreceiver"),
 PendingIntent.FLAG_UPDATE_CURRENT);

 am = (AlarmManager)(this.getSystemService(Context.ALARM_SERVICE));
 am.setRepeating(AlarmManager.ELAPSED_REALTIME,
 SystemClock.elapsedRealtime() + ONE_HOUR, ONE_HOUR, pendingIntent);
 }
}

Register the BroadcastReceiver that will receive Intent from the AlarmManag
er.
Configure the AlarmManager so that it starts the application every hour.

The AlarmReceiver is started every hour and redirects the invocation to an IntentSer
vice that can handle the network operation:

public class AlarmReceiver extends BroadcastReceiver {
 public void onReceive(Context context, Intent intent) {
 context.startService(new Intent(context,
 NetworkCheckerIntentService.class));
 }
}

The NetworkCheckerIntentService receives the start request in onHandleIntent,
makes a network call, and possibly updates the status bar:

public class NetworkCheckerIntentService extends IntentService {

 public NetworkCheckerIntentService() {
 super("NetworkCheckerThread");
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 if (isNewNetworkDataAvailable()) {
 addStatusBarNotification();
 }
 }

 private boolean isNewNetworkDataAvailable() {
 // Network request code omitted. Return dummy result.
 return true;
 }

 private void addStatusBarNotification() {
 Notification.Builder mBuilder =
 new Notification.Builder(this)

206 | Chapter 12: IntentService

 .setSmallIcon(R.drawable.new_data_available)
 .setContentTitle("New network data")
 .setContentText("New data can be downloaded.");

 NotificationManager mNotificationManager =
 (NotificationManager) getSystemService(
 Context.NOTIFICATION_SERVICE);
 mNotificationManager.notify(1, mBuilder.build());
 }
}

Contains the network call.

IntentService Versus Service
The IntentService inherits its character from the Service: same declaration, same
impact on process rank, and same start request procedure for clients. It implements the
start request handling semantics of the Service so that an application that uses Intent
Service just has to implement onHandleIntent. Thus, the use of IntentService
matches the commonly used task-controlled Service (“Task-Controlled Service” on
page 190), but with built-in support for asynchronous execution and component life‐
cycle management.

The IntentService is appealingly simple to use and is often the perfect solution for the
right use case, such as the one just described. However, the simplicity comes with lim‐
itations, and a Service may be preferred:
Control by clients

When you want the lifecycle of the component to be controlled by other compo‐
nents, choose a user-controlled Service (“User-Controlled Service” on page 186).
This goes for both started and bound services.

Concurrent task execution
To execute tasks concurrently, starting multiple threads in Service.

Sequential and rearrangeable tasks
Tasks can be prioritized so that the task queue can be bypassed. For example, a
music service that is controlled by buttons—play, pause, rewind, fast forward, stop,
etc.—would typically prioritize a stop request so that it is executed prior to any
other tasks in the queue. This requires a Service.

Summary
The IntentService is an easy-to-use, sequential task processor that is very useful for
offloading operations not only from the UI thread, but also from other originating
components. Other sequential task processors discussed in this book, such as Handler

IntentService Versus Service | 207

Thread, Executors.newSingleThreadExecutor, and to some extent AsyncTask, can be
compared to the IntentService, but IntentService has the advantage of running as
an independent component, which the others do not.

208 | Chapter 12: IntentService

CHAPTER 13

Access ContentProviders with
AsyncQueryHandler

AsyncQueryHandler is a utility class that specializes in handling CRUD (Create, Read,
Update, and Delete) operations on a ContentProvider asynchronously. The operations
are executed on a separate thread, and when the result is available, callbacks are invoked
on the initiating thread. Most commonly, the class is used to offload the ContentPro
vider operations from the UI thread, which receives the result once the background
task has finished.

This chapter covers:

• ContentProvider basics and concurrent access
• How to implement and use the AsyncQueryHandler
• Understanding the background execution

Brief Introduction to ContentProvider
This section contains some basic information on content providers. For more details,
see the official documentation. A ContentProvider is an abstraction of a data source
that can be accessed uniformly within the application or from other applications run‐
ning in separate processes. The ContentProvider exposes an interface where data can
be read, added, changed, or deleted through a database-centric CRUD approach with
four access methods, as the skeleton code for EatContentProvider—a custom provider
—shows:

public class EatContentProvider extends ContentProvider {

 private final static String STRING_URI=

209

https://developer.android.com/guide/topics/providers/content-providers.html

 "content://com.eat.provider/resource";
 public final static Uri CONTENT_URI= Uri.parse(STRING_URI);

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 // Read data source
 return null;
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 // Add data
 return null;
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 // Remove data
 return 0;
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 // Change data
 return 0;
 }
}

The access methods originate from the most common use case for providers: to expose
data stored in a SQLite database across application boundaries. SQLite databases are
private to applications but can be exposed to other applications through the Content
Provider class, providing application entry points that are registered at application
installation. The definition is done in the AndroidManifest, with an authority that
identifies the provider and an exported attribute that determines whether it is accessible
to other applications:

<provider
 android:name="EatContentProvider"
 android:authorities="com.eat.provider"
 android:exported="true"/>

The access methods are defined by the implementation and can be invoked through the
ContentResolver class, which identifies the ContentProvider through a unique Uri
that it defines in a syntax like content://com.eat.provider/resource. The ContentResolv
er contains the same range of data access methods as the provider: query, insert,
delete, and update:

final Cursor query (Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder)

210 | Chapter 13: Access ContentProviders with AsyncQueryHandler

http://bit.ly/1n5NpJ0

final Uri insert (Uri url, ContentValues values)
final int delete (Uri url, String where, String[] selectionArgs)
final int update (Uri uri, ContentValues values, String where,
 String[] selectionArgs)

When called, these methods invoke the corresponding provider methods. For example,
EatContentProvider.query(…) is invoked when the query method of a resolver with
the correct Uri is called:

public final static Uri CONTENT_URI= Uri.parse(
"content://com.eat.provider/resource");

ContentResolver cr = getContentResolver();
Cursor c = cr.query(CONTENT_URI, null, null, null, null);

The platform defines a range of providers of its own that are acces‐
sible to all applications, so that common content—e.g., contacts, cal‐
ender appointments, bookmarks, etc.—can be stored in one place.

Justification for Background Processing of a
ContentProvider
A ContentProvider cannot control how many clients will access the data or if it can
happen simultaneously. The encapsulated data of a provider can be accessed concur‐
rently from multiple threads, which can both read and write to the data set. Conse‐
quently, concurrent access to a provider can lead to data inconsistencies (see “Data
inconsistency” on page 18) unless the provider is thread safe. Thread safety can be
achieved by applying synchronization to the query, insert, update, and delete data
access methods, but it is required only if the data source needs it. SQLite database access,
for example, is thread safe in itself because the transaction model of the database is
sequential, so that the data can not be corrupted by concurrent accesses.

Faster Database Access with Write-Ahead Logging
SQLite databases are sequential by default, which can lead to low throughput when
reading and writing data intensively from multiple threads. To improve concurrent
throughput, the database offers a technique called Write-Ahead Logging (WAL) that
can be enabled explicitly:

SQLiteDatabase db = SQLiteDatabase.openDatabase(...);
db.enableWriteAheadLogging();

Once enabled, the database can handle multiple transactions in parallel and allows si‐
multaneous read transactions to access the database concurrently because multiple

Justification for Background Processing of a ContentProvider | 211

http://bit.ly/1oaakQE
http://sqlite.org/wal.html

readers cannot cause data inconsistency. WAL still ensures that read and write transac‐
tions cannot occur concurrently on the same data set: a write is done on a copy of the
database and is not written to the original database until there are no active read trans‐
actions.

Access to a ContentProvider commonly involves interaction with persistant storage—
database or file—so it should not be executed on the UI thread because it may become
a long task that can delay UI rendering. Instead, background threads should handle the
provider execution. The background threads should be created by the user of the pro‐
vider, such as the application that invokes the ContentResolver. The provider imple‐
mentation is invoked on the same thread as the caller of the ContentResolver if the call
originates from a component in the same application process. If, however, the Content
Provider is called from another process, the provider implementation is invoked on
binder threads instead.

Spawning new threads in the ContentProvider implementation is a
viable asynchronous solution only if the callers of the provider do
not care about the result of the calls. This may be the case for in
sert, delete, or update, but not for query, where the purpose of the
call is to retrieve a data set. If data needs to be returned, the back‐
ground thread would have to block in the provider until the result
is ready. Consequently, the call is not asynchronous and will not
relieve the thread that uses the provider.

The data stored in a ContentProvider is most often handled from the UI thread—e.g.,
data reads are shown in view components and data writes are initiated on button clicks.
But because providers should not be accessed directly from the UI thread, asynchronous
mechanisms are required. Execution must be processed on a background thread and
the result must be communicated back to the UI thread. This is the most common use
case and can be carried out with any of the general concurrent constructs previously
discussed in this book, in combination with message passing between the threads.
However, the platform contains two special purpose mechanisms for providers: Asyn
cQueryHandler and CursorLoader. This chapter discusses the first, and Chapter 14
describes the second.

Using the AsyncQueryHandler
AsyncQueryHandler is an abstract class that simplifies asynchronous access to Content
Providers by handling the ContentResolver, background execution, and the message
passing between threads. Applications subclass the AsyncQueryHandler and implement
a set of callback methods that contain the result of a provider operation. The Asyn

212 | Chapter 13: Access ContentProviders with AsyncQueryHandler

cQueryHandler contains four methods that wrap the provider operations of a Conten
tResolver:

final void startDelete(int token, Object cookie, Uri uri, String selection,
 String[] selectionArgs)
final void startInsert(int token, Object cookie, Uri uri,
 ContentValues initialValues)
final void startQuery(int token, Object cookie, Uri uri, String[] projection,
 String selection, String[] selectionArgs, String orderBy)
final void startUpdate(int token, Object cookie, Uri uri, ContentValues values,
 String selection, String[] selectionArgs)

Each method wraps the equivalent ContentResolver method and executes the request
on a background thread. When the provider operation finishes, it reports the result back
to the AsyncQueryHandler, which invokes the following callbacks that the implemen‐
tation should override. The token and cookie objects permit communication between
the caller, the background thread, and the callback, which we’ll look at momentarily:

public class EatAsyncQueryHandler extends AsyncQueryHandler{

 public EatAsyncQueryHandler(ContentResolver cr) {
 super(cr);
 }

 @Override
 protected void onDeleteComplete(int token, Object cookie, int result) { ... }

 @Override
 protected void onUpdateComplete(int token, Object cookie, int result) { ... }

 @Override
 protected void onInsertComplete(int token, Object cookie, Uri result) { ... }

 @Override
 protected void onQueryComplete(int token, Object cookie, Cursor result) { }
}

The type of the provider result depends on the request; it corresponds to the result type
of the underlying ContentResolver method. Thus, the result arguments of the onDe
leteComplete and onUpdateComplete methods contain the number of records affected;
whereas the onInsertComplete result contains a URI pointing to the added record, and
the onQueryComplete result contains a cursor with the results of the query.

The first two arguments of the calls and callbacks are used as follows:
Cookie

Request identifier and data container of any object type. It is passed with the pro‐
vider request and returned in the callback so that data can be passed from the request
to the response and individual requests can be identified if necessary.

Using the AsyncQueryHandler | 213

1. android_sdk_install_dir/samples/platform_version/ApiDemos/src/com/example/android/

apis/view/ExpandableList2

Token
Request type, which defines the kind if requests that can be made (see “Example:
Expanding Contact List” on page 214). It also identifies the requests so that unpro‐
cessed requests can be cancelled. Thus, if the caller issues cancelOperation(to
ken), unprocessed requests that were submitted with that token will not start pro‐
cessing. However, the cancellation will not affect requests that already started.

The AsyncQueryHandler can be created and invoke provider operations on any thread,
but it is most commonly used in the UI thread. The callbacks are, however, always called
on the thread that created the AsyncQueryHandler.

AsyncQueryHandler cannot be used for asynchronous interaction
with the SQLite database directly. Instead, the database should be
wrapped in a ContentProvider that can be accessed through a Con
tentResolver

Example: Expanding Contact List
The contacts stored on a device are exposed through a system provider so that all ap‐
plications on a device can share the same contacts. The contact provider is exposed
through the nontrivial ContactsContract interface. This example shows how to list all
the available contacts in the contact book with the help of an AsyncQueryHandler. The
list items display the contact name, and the list is expandable so that the phone numbers
of the contact are shown when the list item is clicked. The example originates from the
Android SDK sample applications,1 with some minor modifications.

The contacts list is backed by a SimpleCursorTreeAdapter that can expose data from
multiple cursors. The contact list is populated asynchronously with the custom Query
Handler when the Activity is created. The QueryHandler queries the contact database
both for display names as well as phone numbers, but as they belong to different database
tables, two queries are made: first, one for the display names, followed by a query for
the phone numbers.

public class ExpandableContactListActivity extends ExpandableListActivity {

 private static final String[] CONTACTS_PROJECTION = new String[] {
 Contacts._ID,
 Contacts.DISPLAY_NAME
 };

 private static final int GROUP_ID_COLUMN_INDEX = 0;

214 | Chapter 13: Access ContentProviders with AsyncQueryHandler

http://bit.ly/1mldz6S

 private static final String[] PHONE_NUMBER_PROJECTION = new String[] {
 Phone._ID,
 Phone.NUMBER
 };

 private static final int TOKEN_GROUP = 0;
 private static final int TOKEN_CHILD = 1;

 private QueryHandler mQueryHandler;
 private CursorTreeAdapter mAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Set up our adapter
 mAdapter = new MyExpandableListAdapter(
 this,
 android.R.layout.simple_expandable_list_item_1,
 android.R.layout.simple_expandable_list_item_1,
 new String[] { Contacts.DISPLAY_NAME }, // Name for group layouts
 new int[] { android.R.id.text1 },
 new String[] { Phone.NUMBER }, // Number for child layouts
 new int[] { android.R.id.text1 });

 setListAdapter(mAdapter);

 mQueryHandler = new QueryHandler(this, mAdapter);

 // Query for people
 mQueryHandler.startQuery(TOKEN_GROUP,
 null,
 Contacts.CONTENT_URI,
 CONTACTS_PROJECTION,
 Contacts.HAS_PHONE_NUMBER,
 null,
 Contacts.DISPLAY_NAME + " ASC");
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 mQueryHandler.cancelOperation(TOKEN_GROUP);
 mQueryHandler.cancelOperation(TOKEN_CHILD);
 mAdapter.changeCursor(null);
 mAdapter = null;
 }

 private static final class QueryHandler extends AsyncQueryHandler {
 private CursorTreeAdapter mAdapter;

Using the AsyncQueryHandler | 215

 public QueryHandler(Context context, CursorTreeAdapter adapter) {
 super(context.getContentResolver());
 this.mAdapter = adapter;
 }

 @Override
 protected void onQueryComplete(int token, Object cookie, Cursor cursor) {
 switch (token) {
 case TOKEN_GROUP:
 mAdapter.setGroupCursor(cursor);
 break;

 case TOKEN_CHILD:
 int groupPosition = (Integer) cookie;
 mAdapter.setChildrenCursor(groupPosition, cursor);
 break;
 }
 }
 }

 public class MyExpandableListAdapter extends SimpleCursorTreeAdapter {

 // Note that the constructor does not take a Cursor.
 // This is done to avoid querying the database on the main thread.
 public MyExpandableListAdapter(Context context, int groupLayout,
 int childLayout, String[] groupFrom,
 int[] groupTo, String[] childrenFrom,
 int[] childrenTo) {

 super(context, null, groupLayout, groupFrom, groupTo, childLayout,
 childrenFrom, childrenTo);
 }

 @Override
 protected Cursor getChildrenCursor(Cursor groupCursor) {
 // Given the group, we return a cursor for all the children
 // within that group

 // Return a cursor that points to this contact's phone numbers
 Uri.Builder builder = Contacts.CONTENT_URI.buildUpon();
 ContentUris.appendId(builder, groupCursor.getLong(
 GROUP_ID_COLUMN_INDEX));
 builder.appendEncodedPath(Contacts.Data.CONTENT_DIRECTORY);
 Uri phoneNumbersUri = builder.build();

 mQueryHandler.startQuery(TOKEN_CHILD,
 groupCursor.getPosition(),
 phoneNumbersUri,
 PHONE_NUMBER_PROJECTION,
 Phone.MIMETYPE + "=?",
 new String[] { Phone.CONTENT_ITEM_TYPE },
 null);

216 | Chapter 13: Access ContentProviders with AsyncQueryHandler

 return null;
 }
 }
}

Define tokens that represent request types that the QueryHandler handles: one
for contact name requests and one for phone number requests.
Start an asynchronous query for contact names.
Cancel pending provider operations if the Activity is destroyed.
Receive the result for the contact name requested in mQueryHandler.start
Query. The adapter initiates a consecutive query on the child cursor—i.e., the
phone numbers.
Receive result for the phone number query, with a cookie that identifies the
contact it belongs to.
Start asynchronous query for phone numbers that belong to the contacts.

Understanding the AsyncQueryHandler
The AsyncQueryHandler holds a ContentResolver, an execution environment for
background processing, and handles the thread communication to and from the back‐
ground thread. When one of the provider requests (startQuery, startInsert, start
Delete or startUpdate) is invoked, a Message with the request is added to a Message
Queue processed by one background thread. Figure 13-1 shows the elements of the
exchange.

Figure 13-1. Application global execution

Using the AsyncQueryHandler | 217

The message is populated with ContentResolver arguments, the cookie object, and the
token argument, which becomes a what parameter in the Message. Hence, the token
can be used to remove requests from the queue (“Removing Messages from the
Queue” on page 68) with cancelOperation(token).

The background thread processes the provider requests sequentially and passes the
result back in a Message to the calling AsyncQueryHandler instance. The processing on
the background thread is application global—i.e., all AsyncQueryHandler instances
within an application add provider requests to the same queue. The application-global
behavior is similar to the execution environment in an AsyncTask (described in “Ap‐
plication Global Execution” on page 169), but is not as inherently problematic because
the AsyncQueryHandler is used only to access providers and not longer tasks, as network
connections do.

Limitations
The simplicity of an AsyncQueryHandler is an advantage, but it has been around since
API level 1, without being updated for later additions to the Android platform. Hence,
there are some newer functions that require a more general asynchronous handling,
using one of the previously discussed techniques in this book:
Batch operations

API level 5 added ContentProviderOperation to support batch operations on
providers—a set of insertions that can be executed atomically in one transaction to
avoid multiple transactions for a larger data set.

CancellationSignal

API level 16 added the possibility of cancelling ContentResolver queries with the
help of CancellationSignal, but it’s not supported by the AsyncQueryHandler, so
it should still use cancelOperation(token).

Summary
The AsyncQueryHandler constitutes an easy-to-use asynchronous mechanism for ac‐
cessing the full set of CRUD operations on a ContentProvider. It handles the execution
on a background thread and the message passing between the invoking and background
thread. It does not, however, support a couple more recent features that have been added
in later versions of the platform. As we will see in the next chapter, it can—advanta‐
geously—be used in conjunction with a CursorLoader, where the data query is handled
by the CursorLoader and insertions, updates, and deletions are handled by the Asyn
cQueryHandler (“Example: Use CursorLoader with AsyncQueryHandler” on page 229).

218 | Chapter 13: Access ContentProviders with AsyncQueryHandler

http://bit.ly/1udXULU
http://bit.ly/R7Wrrj

CHAPTER 14

Automatic Background Execution
with Loaders

The Loader framework offers a robust way to run asynchronous operations with content
providers or other data sources. The framework can load data asynchronously and
deliver it to your application when content changes or is added to the data source. The
Loader framework was added to the Android platform in Honeycomb (API level 11),
along with the compatibility package.

You can connect to the Loader framework from an Activity or a Fragment. When you
create the Loader object, you request a loader that manages your connection with the
data source. (Note that I’m using uppercase for the framework and lowercase for the
object you connect.)

When you connect with a content provider, the framework contains a loader named
CursorLoader that you can hook into. For other data sources, you can code up a custom
loader. For any loader type, you have to define three callbacks: one that creates a new
loader, one that runs whenever the loader delivers new data, and one that runs when
the loader is reset—i.e., the loader stops delivering data.

Some of the features offered by the Loader framework are:
Asynchronous data management

The loader reacts in the background to the data source and triggers a callback in
your app when the data source has new data.

Lifecycle management
When your Activity or Fragment stops, its loader stops as well. Furthermore,
loaders that are running in the background continue to do their work after config‐
uration changes, such as an orientation change.

219

Cached data
If the result of an asynchronous data load can’t be delivered, it is cached so that it
can be delivered when there is a recipient ready—e.g., when an Activity is recre‐
ated due to a configuration change.

Leak protection
If an Activity undergoes a configuration change, the Loader framework ensures
that the Context object is not lost to a leak. The framework operates only on the
Application context so that major thread-related leaks don’t occur (see “The life‐
cycle mismatch” on page 95).

As we have seen, loaders that are running when the Activity un‐
dergoes a configuration change are kept alive so they can run again
with a new Activity. Because the loaders are preserved, they could
cause a memory leak.

All callbacks—most importantly, the delivery of data—are reported on the UI thread.

Because a loader can work with either an Activity or a Fragment, I’ll use the term client
in this chapter to refer to the Activity or Fragment.

This chapter breaks down into two major sections: using a loader offered by a content
provider and creating a custom loader for another data source.

Loader Framework
The Loader framework is an API in the android.app-package that contains the Loa
derManager, Loader, AsyncTaskLoader, and CursorLoader classes. Figure 14-1 shows
how the relate to one another. The API is rather comprehensive, but most of it is required
only for custom loaders and not when using loaders from a client. Hence, I’ll focus on
how to use loaders from a client in this section, and postpone other parts of the frame‐
work to “Implementing Custom Loaders” on page 233.

220 | Chapter 14: Automatic Background Execution with Loaders

Figure 14-1. Framework core classes

The LoaderManager is responsible for handling the loaders in a client. A loader is a
concrete implementation based on the Loader and AsyncTaskLoader classes. The only
concrete loader in the platform is the CursorLoader, whereas customized loaders can
be implemented by extending the AsyncTaskLoader and adhere to the Loader lifecycle.

LoaderManager
The LoaderManager is an abstract class that manages all loaders used by an Activity
or a Fragment. The LoaderManager acts as an intermediary between a client and its
loaders. A client holds one LoaderManager instance, which is accessible through the
Activity or Fragment class:

LoaderManager getLoaderManager();

The LoaderManager API primarily consists of four methods:

Loader<D> initLoader(int id, Bundle args, LoaderCallbacks<D> callback)
Loader<D> restartLoader(int id, Bundle args, LoaderCallbacks<D> callback)
Loader<D> getLoader(int id)
void destroyLoader(int id)

All methods contain an identifier that represents the loader that the LoaderManager
should interact with. Every loader should have a unique identifier. Typically, an appli‐
cation only has to call initLoader or restartLoader to start the loader.

Clients interact with the LoaderManager via the LoaderManager.LoaderCallbacks in‐
terface, which must be implemented by the client.

A skeleton example follows of a typical loader setup with callbacks in an Activity
(Example 14-1).

Loader Framework | 221

Example 14-1. Skeleton example of a typical loader setup with callbacks
public class SkeletonActivity extends Activity implements
LoaderManager.LoaderCallbacks<D> {

 private static final int LOADER_ID = 0;

 public void onCreate(Bundle savedInstanceState) {
 getLoaderManager().initLoader(LOADER_ID, null, this);
 }

 // LoaderCallback methods
 public Loader<D> onCreateLoader(int id, Bundle args) {
 /* TODO: Create the loader. */
 }

 public void onLoadFinished(Loader<D> loader, D data) {
 /* TODO: Use the delivered data. */
 }
 public void onLoaderReset(Loader<D> loader) {
 /* TODO: The loader data is invalid, stop using it. */
 }
}

SkeletonActivity initializes the loader in onCreate, which tells the framework to in‐
voke the first callback in the code, onCreateLoader(). In that callback, the client should
return a loader implementation that will be managed by the platform. Once the loader
is created, it initiates data loading. The result is returned in onLoadFinished() on the
UI thread so that the client can use the result to update the UI components with the
latest data. When a previously created loader is no longer available, onLoadReset() is
invoked, after which the data set being handled by the loader is invalidated and shouldn’t
be used anymore.

When a client changes state—through Activity.onStart(), Activity.onStop(), etc.
—the LoaderManager is triggered internally so that the application doesn’t have to man‐
age any loaders’ lifecycles itself. For example, an Activity that starts will initiate a data
load and listen for content changes. When the Activity stops, all the loaders are stopped
as well, so that no more data loading or delivery is done.

The client can explicitly destroy a loader through destroyLoader(id) if it wants to stay
active but doesn’t need the data set any more.

initLoader vs restartLoader

The LoaderManager initializes a loader with either initLoader() or restartLoad
er(), which have the same argument list:

222 | Chapter 14: Automatic Background Execution with Loaders

id

A loader identifier, which must be unique for all loaders within the same client.
Loaders for two different clients—each a separate Activity or Fragment—can use
the same numbers to identify their loaders without interference.

args

A set of input data to the loader, packaged in a Bundle. This parameter can be null
if the client has no input data. The arguments are passed to LoaderCallbacks.on
CreateLoader(). Typically, the arguments contain a set of query parameters.

callback

A mandatory implementation of the LoaderCallback interface, which contains
callback methods to be invoked by the framework.

Even though they look similar, there are important differences between the two method
calls:

• initLoader() reuses an available loader if the identifier matches. If no loader exists
with the specified identifier, onCreateLoader first requests a new loader, after which
a data load is initiated and the result is delivered in onLoadFinished. If the loader
identifier already exists, the latest data load result is delivered directly in onLoad
Finished. initLoader() is typically called when the client is created so that you
can either create a new loader or retrieve the result of an already existing loader.
This means that a loader is reused after a configuration change and no new data
load has to be made: the cached result in the loader can be delivered immediately.

• restartLoader() does not reuse loaders. If there is an existing loader with the
specified identifier, restartLoader() destroys it—and its data—and then creates
a new Loader by calling onCreateLoader. This then launches a new data load. Be‐
cause previous loader instances are destroyed, their cached data is removed.

initLoader should be chosen when the underlying data source is the same throughout
a client lifecycle; e.g., an Activity that observes the same Cursor data from a content
provider. The advantage is that initLoader can deliver a cached result if data from a
previous load is available, which is useful after configuration changes. The fundamental
setup is shown in Example 14-1.

If, however, the underlying data source can vary during a client lifecycle, restartLoad
er should be used. A typical variation would be to change the query to a database, in
which case previously loaded Cursor instances are obsolete, and a new data load that
can return a new Cursor should be initiatied.

Loader Framework | 223

https://developer.android.com/reference/android/os/Bundle.html

LoaderCallbacks
These are mandatory interfaces that set up or tear down communication between the
LoaderManager and the client. The interface consists of three methods:

public Loader<D> onCreateLoader(int id, Bundle args)
public void onLoadFinished(Loader<D> loader, D data)
public void onLoaderReset(Loader<D> loader)

The implementation of the interface is adapted to the content to be loaded. The loader
is defined as Loader<D>, where <D> is a generic parameter corresponding to the data
type that the loader returns; for example, <D> is a Cursor if the loader is a content
provider.

The callbacks are triggered depending on the loader events that occur, as Figure 14-2
shows.

The normal sequence of events is:
Loader initialization

Typically, the client initializes the loader when creating it so that it can start the
background data loading as soon as possible. Loader initialization is triggered
through LoaderManager.initLoader(), passing a unique identifier for the loader
to be initialized. If there is no loader available with the requested identifier, the
onCreateLoader—callback is invoked so that the client can create a new loader and
return it to the LoaderManager. The LoaderManager now starts to manage the life‐
cycle and data loading from the loader.

If the client requests initialization on an existing loader identifier, there is no need
to create a new loader. Instead, the existing loader will deliver the last loaded result
by invoking the client’s onLoadFinished callback.

Data loading
The framework can initiate new data loading when the data source has updated its
content or when the client becomes ready for it. The client itself can also force a
new data load by calling Loader.forceLoad(). In any case, the result is delivered
to the LoaderManager, which passes on the result by calling the client’s onLoadFin
ished callback.

Clients can also cancel initiated loads with Loader.cancelLoad(). If this is issued
before the load starts, the load request is simply canceled. If the load has started,
the results are discarded and not delivered to the client.

Loader reset
A loader is destroyed when the client is destroyed or when it calls LoaderManag
er.destroyLoader(id). The client is notified of the destruction through the on

224 | Chapter 14: Automatic Background Execution with Loaders

LoaderReset(Loader) callback. At this point, the client may want to free up the
data that was previously loaded if it should’t be used anymore.

Figure 14-2. Sequence diagram of the loader callbacks

AsyncTaskLoader
The loader asynchronous execution environment is provided by the AsyncTaskLoad
er, which extends the Loader class. The class contains an AsyncTask to process the
background loading, and relies on the AsyncTask.executeOnExecutor() method for
background execution. Hence, it does not suffer from the variations between behavior
on different versions of Android (described in “Background Task Execution” on page
167).

Loader Framework | 225

The AsyncTaskLoader in the compatibility package does not rely on
the public AsyncTask in the platform, because that may execute se‐
quentially. Instead, the compatibility package is bundled with an in‐
ternal ModernAsyncTask implementation that processes the data loads
concurrently.

The AsyncTaskLoader tries to keep the number of simultaneous tasks—i.e., active
threads—to a minimum. For example, clients that force consecutive loads with force
Load() may be surprised to see that not every invocation will deliver a result. The reason
is that AsyncTaskLoader cancels previous loads before it initiates a new one. In practice,
this means that calling forceLoad() repeatedly before previous loads are finished will
postpone the delivery of the result until the last invoked load is done.

Loads can also be triggered by content changes, and if the underlying data set triggers
many change notifications—e.g., many inserts in a content provider—the UI thread
may receive many onLoadFinished invocations on the UI thread, where the UI com‐
ponents are updated and redrawn. Hence, the UI thread may loose responsiveness due
to the many updates. If you think this will be a problem, you can throttle the data delivery
from the AsyncTaskLoader so that consecutive data loads only occur after a certain
delay. Set the throttling delay through setUpdateThrottle(long delayMs).

The AsyncTaskLoader is not affected by the execution differences of
the AsyncTask, as described in “Execution Across Platform Ver‐
sions” on page 170, although it is made available through the sup‐
port package from API level 4. The support package implements its
own ModernAsyncTask, which keeps the execution consistent across
API levels.

Painless Data Loading with CursorLoader
Data loading from loaders is handled by the abstract Loader class, which should be
subclassed and connected to a data source. Out of the box, the framework currently
supports only ContentProvider data sources, using the CursorLoader. The greatness
of the CursorLoader arises from the design choice that has been made: it does not try
to provide a general asynchronous technique that can be adapted to many different
situations. Instead, it is a special-purpose functionality that focuses on data loading from
content providers, and simplifies that use case only.

226 | Chapter 14: Automatic Background Execution with Loaders

The CursorLoader can be used only with Cursor objects delivered
from content providers, not those that come from SQLite databases.

Using the CursorLoader
The CursorLoader is an extension of the abstract AsyncTaskLoader class that imple‐
ments the asynchronous execution (“AsyncTaskLoader” on page 225). CursorLoader
monitors Cursor objects that can be queried from a content provider. In other words,
it is a loader with a Cursor data type and is passed to the LoaderManager through calls
such as Loader<Cursor>. The CursorLoader registers a ContentObserver on the Cur
sor to detect changes in the data set.

The content provider is identified through a URI that identifies the data set to query.
The Cursor to monitor is defined with the query parameters that are normally used for
providers and that can all be defined in the constructor:

CursorLoader(Context context, Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder)

The Cursor lifecycle is managed by the CursorLoader: it replaces the managedQuery and
startManagingCursor methods that were deprecated in the Activity class after the
CursorLoader was introduced. Consequently, clients should not interfere with this in‐
ternal lifecycle management and try to close the Cursor themselves.

Example: Contact list
Before we get into the details of the framework, let us peek at an example that illustrates
the power and simplicity a Loader can provide.

The following example lists the contacts in the contact provider by using the concrete
CursorLoader loader implementation class that is available in the platform. The concept
is to set up the CursorLoader with an Activity or Fragment and implement the methods
in LoaderCallback:

public class ContactActivity extends ListActivity implements
LoaderManager.LoaderCallbacks<Cursor>{

 private static final int CONTACT_NAME_LOADER_ID = 0;

 // Projection that defines just the contact display name
 static final String[] CONTACTS_SUMMARY_PROJECTION = new String[] {
 ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME
 };

Painless Data Loading with CursorLoader | 227

http://bit.ly/1pWSPbo

 SimpleCursorAdapter mAdapter;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 initAdapter();
 getLoaderManager().initLoader(CONTACT_NAME_LOADER_ID, null, this);
 }

 private void initAdapter() {
 mAdapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1, null,
 new String[] { ContactsContract.Contacts.DISPLAY_NAME },
 new int[] { android.R.id.text1}, 0);
 setListAdapter(mAdapter);
 }

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 return new CursorLoader(this, ContactsContract.Contacts.CONTENT_URI,
 CONTACTS_SUMMARY_PROJECTION, null, null,
 ContactsContract.Contacts.DISPLAY_NAME + " ASC");
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor c) {
 ou mAdapter.swapCursor(c);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 mAdapter.swapCursor(null);
 }
}

The loader only queries the display name of the contacts.
Initiate a loader with the LoaderManager, which is followed by a callback to
onCreateLoader.
The first callback. The Activity creates a loader and hands it over to the
platform.
Whenever data has finished loading on a background thread, the data is served
on the UI thread.
When the loader is reset, the last callback is invoked and the Activity releases
the references to the loader data.

228 | Chapter 14: Automatic Background Execution with Loaders

CursorLoader closes the old Cursor after a new data set is loaded.
Hence, use swapCursor in onLoadFinished and not the changeCur
sor alternative, as that also closes the old Cursor.

Adding CRUD Support
Loaders are intended to read data, but for content providers, it is often a requirement
to also create, update, and delete data, which isn’t what the CursorLoader supports. Still,
the content observation and automatic background loading also brings simplicity to a
full CRUD solution. You do, however, need a supplemantary mechanism for handling
the writing to the provider, such as an AsyncQueryHandler, as the following example
shows.

Example: Use CursorLoader with AsyncQueryHandler
In this example, we create a basic manager for the Chrome browser bookmarks stored
in the content provider. The example consists of an Activity that shows the list of stored
bookmarks and a button that opens a Fragment where new bookmarks can be added.
If the user long-clicks on an item, it is directly deleted from the list.

Consequently, the bookmark manager invokes three provider operations that should
be handled asynchronously:
List bookmarks

Use CursorLoader to query the provider, so that we can utilize the feature of content
observation and automatic data loading.

Add or delete a bookmark
Use AsyncQueryHandler to insert new bookmarks from the fragment and delete
bookmarks when list items are long clicked.

Much of the example carries out display and cursor handling activities common to many
Android applications. The comments will focus on what’s special about using a Cursor
Loader. In the example, the bookmark list is shown in the ChromeBookmarkActivity:

public class ChromeBookmarkActivity extends Activity implements
 LoaderManager.LoaderCallbacks<Cursor> {

 // Definition of bookmark access information.
 public interface ChromeBookmark {
 final static int ID = 1;
 final static Uri URI= Uri.parse(
 "content://com.android.chrome.browser/bookmarks");
 final static String[] PROJECTION = {
 Browser.BookmarkColumns._ID,
 Browser.BookmarkColumns.TITLE,

Painless Data Loading with CursorLoader | 229

 Browser.BookmarkColumns.URL
 };
 }

 // AsyncQueryHandler with convenience methods for
 // insertion and deletion of bookmarks.
 public static class ChromeBookmarkAsyncHandler extends AsyncQueryHandler {

 public ChromeBookmarkAsyncHandler(ContentResolver cr) {
 super(cr);
 }

 public void insert(String name, String url) {
 ContentValues cv = new ContentValues();
 cv.put(Browser.BookmarkColumns.BOOKMARK, 1);
 cv.put(Browser.BookmarkColumns.TITLE, name);
 cv.put(Browser.BookmarkColumns.URL, url);
 startInsert(0, null, ChromeBookmark.URI, cv);
 }

 public void delete(String name) {
 String where = Browser.BookmarkColumns.TITLE + "=?";
 String[] args = new String[] { name };
 startDelete(0, null, ChromeBookmark.URI, where, args);
 }
 }

 ListView mListBookmarks;
 SimpleCursorAdapter mAdapter;
 ChromeBookmarkAsyncHandler mChromeBookmarkAsyncHandler;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_bookmarks);
 mListBookmarks = (ListView) findViewById(R.id.list_bookmarks);

 mChromeBookmarkAsyncHandler =
 new ChromeBookmarkAsyncHandler(getContentResolver());

 initAdapter();

 getLoaderManager().initLoader(ChromeBookmark.ID, null, this);
 }

 private void initAdapter() {
 mAdapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1, null,
 new String[] { Browser.BookmarkColumns.TITLE },
 new int[] { android.R.id.text1}, 0);
 mListBookmarks.setAdapter(mAdapter);
 mListBookmarks.setOnItemLongClickListener(
 new AdapterView.OnItemLongClickListener() {

230 | Chapter 14: Automatic Background Execution with Loaders

 @Override
 public boolean onItemLongClick(AdapterView<?> adapterView, View view,
 int pos, long id) {

 Cursor c =
 ((SimpleCursorAdapter) adapterView.getAdapter()).getCursor();
 c.moveToPosition(pos);
 int i = c.getColumnIndex(Browser.BookmarkColumns.TITLE);

 mChromeBookmarkAsyncHandler.delete(c.getString(i));

 return true;
 }
 });
 }

 @Override
 public Loader<Cursor> onCreateLoader(int i, Bundle bundle) {
 return new CursorLoader(this, ChromeBookmark.URI,
 ChromeBookmark.PROJECTION, null, null,
 Browser.BookmarkColumns.TITLE + " ASC");
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor newCursor) {
 mAdapter.swapCursor(newCursor);
 }

 @Override
 public void onLoaderReset(Loader loader) {
 mAdapter.swapCursor(null);
 }

 public void onAddBookmark(View v) {
 FragmentTransaction ft = getFragmentManager().beginTransaction();
 Fragment prev = getFragmentManager().findFragmentByTag("dialog");
 if (prev != null) {
 ft.remove(prev);
 }
 ft.addToBackStack(null);
 // Create and show the dialog.
 DialogFragment newFragment = EditBookmarkDialog.
 newInstance(mChromeBookmarkAsyncHandler);
 newFragment.show(ft, "dialog");
 }
}

Provider Uri for the Chrome browser bookmarks.
Asynchronous deletion of bookmarks.
Use a CursorLoader for asynchronous data retrieval.

Painless Data Loading with CursorLoader | 231

New bookmarks are added via an EditBookmarkDialog that contains a button and two
input fields: one for the bookmark name and one for the bookmark URL. When the
button is pressed, the bookmark name and URL are inserted in the provider and the
dialog is dismissed:

public class EditBookmarkDialog extends DialogFragment {

 static EditBookmarkDialog newInstance(
 ChromeBookmarkActivity.ChromeBookmarkAsyncHandler asyncQueryHandler) {

 EditBookmarkDialog dialog = new EditBookmarkDialog(asyncQueryHandler);
 return dialog;
 }

 ChromeBookmarkActivity.ChromeBookmarkAsyncHandler mAsyncQueryHandler;

 public EditBookmarkDialog(
 mChromeBookmarkActivity.ChromeBookmarkAsyncHandler asyncQueryHandler) {
 mAsyncQueryHandler = asyncQueryHandler;
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.dialog_edit_bookmark, container,
 false);
 final EditText editName = (EditText) v.findViewById(R.id.edit_name);
 final EditText editUrl = (EditText) v.findViewById(R.id.edit_url);
 Button buttonSave = (Button) v.findViewById(R.id.button_save);

 buttonSave.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 String name = editName.getText().toString();
 String url = editUrl.getText().toString();
 mAsyncQueryHandler.insert(name, url);
 dismiss();
 }
 });

 return v;
 }
}

Insert the bookmark asynchronously in the provider.

Once a bookmark has been inserted or deleted via the ChromeBookmarkAsyncHandler,
the content changes and the CursorLoader automatically requeries the Cursor. Hence,
insertions and deletions are automatically updated in the list.

232 | Chapter 14: Automatic Background Execution with Loaders

Implementing Custom Loaders
Loaders are most commonly used with content providers because they are already sup‐
ported by the platform, but other data sources can be handled with custom loaders. Of
course, this requires both more work and a deeper insight into the framework. Custom
loaders should be implemented so that they behave as expected from a client’s point of
view. A fully fledged loader should support a range of features:

• Loader lifecycle
• Background loading
• Content management
• Deliver cached result

To avoid leaking outer class objects referenced from inner classes—
typically Activity and Fragment—a custom loader has to be de‐
clared as a static or external class. If you don’t do this, a RuntimeEx
ception is thrown when the loader is returned from onCreateLoader.

Loader Lifecycle
The base class for a loader is the Loader. It holds the state of the loader, which defines
whether data should be delivered to the client or not. The loader contains a set of state
transition methods that invoke methods that a custom loader may implement:

void startLoading() -> void onStartLoading()
void stopLoading() -> void onStopLoading()
void reset() -> void onReset()
void abandon() -> void onAbandon()

The loader delivers data only in the started state—i.e., after Loader.startLoading()
has been invoked, which changes the state and initiates a data load.

The transitions between states, and the role of these methods, are shown in
Figure 14-3. States are:
Reset

The initial and final state of a loader, where it has released any cached data.

Started
Starts an asynchronous data load and delivers the result through a callback invo‐
cation of LoaderCallback.onLoadFinished.

Implementing Custom Loaders | 233

Stopped
The loader stops delivering data to the client. It may still load data in the background
on content change, but the data is cached in the loader so that the latest data can be
retrieved easily without initiating a new data load.

Abandoned
Intermediate state before reset, where data is stored until a new loader is connected
to the data source. This is rarely used; the LoaderManager abandons loaders on
restart so that the data is available while the restart is underway.

Figure 14-3. Loader states

The lifecycle of a loader is controlled by the LoaderManager, and clients normally
shouldn’t modify the state directly with the Loader methods. Instead, the client should
issue initLoader and restartLoader to ensure that there is a started loader and leave
it up to the LoaderManager to interact with the loader.

Data loading can be explicitly initiated by forcing an update:

void forceLoad ()

forceLoad() differs from startLoading() in that it only forces a new data load, but it
does not change the state of the loader. Forceload should be called only in the started
state; otherwise, the result will not delivered to the client.

Background Loading
Data should be loaded asynchronously on a background thread, and it’s up to the loader
to choose execution environment. Normally, the choice is not difficult; the platform
provides the AsyncTaskLoader, which can be extended by custom loaders to facilitate
the offloading from the UI thread. An implementation of AsyncTaskLoader must only
override one method:

public D loadInBackground() {
 ...
}

234 | Chapter 14: Automatic Background Execution with Loaders

loadInBackground is called on a background thread and should execute the long task
of the loader and return content from the load. The return type is generic, so the D must
be replaced by the data type of the underlying content and the callback should return
data in that data type.

Example: Simple custom loader

The following is a basic loader that extends AsyncTaskLoader to load an integer value
from a dummy data source. It simulates a long loading time to reflect the environment
for real loaders:

public class BasicLoader extends AsyncTaskLoader<Integer>{

 public BasicLoader(Context context) {
 super(context);
 }

 @Override
 protected void onStartLoading() {
 super.onStartLoading();
 forceLoad();
 }

 @Override
 public Integer loadInBackground() {
 return loadDummyData();
 }

 private int loadDummyData() {
 SystemClock.sleep(1000);
 Random rand = new Random();
 return rand.nextInt(50);
 }
}

When the client calls startLoading(), the loader changes state to started and
invokes the onStartLoading(), where the custom loader should trigger a new
load—i.e., calling forceLoad().
Load a long-running task on the background thread and return the result.

BasicActivity is a client that uses BasicLoader to load integer values and display them:

public class BasicActivity extends Activity implements
LoaderManager.LoaderCallbacks<Integer>{

 private static final int BASIC_LOADER_ID = 0;

 TextView tvResult;

 public void onCreate(Bundle savedInstanceState) {

Implementing Custom Loaders | 235

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_basic);
 tvResult = (TextView) findViewById(R.id.text_result);
 getLoaderManager().initLoader(BASIC_LOADER_ID, null, this);
 }

 @Override
 public Loader<Integer> onCreateLoader(int id, Bundle args) {
 return new BasicLoader(this);
 }

 @Override
 public void onLoadFinished(Loader<Integer> loader, Integer data) {
 tvResult.setText(Integer.toString(data));
 }

 @Override
 public void onLoaderReset(Loader<Integer> loader) {
 // Empty, the integer value is shown in a TextView
 // and should not be removed.
 }
}

The BasicLoader executes the long task on the background thread and will be attached
to the client lifecycle, but apart from that, it lacks most of the nice features expected
from a loader. There is no data cache, for example, so the loader will reload the same
data every time the client is recreated instead of returning a cached value.

Content Management
When the underlying data set changes, the loader should automatically initiate new
background data loads. Consequently, the underlying data set has to be observable, in
the same way as the CursorLoader utilizes a ContentObserver to get notified about
updates in the content provider. The observer mechanism depends on the underlying
data set, but typical mechanisms are:
Observable and Observer

An in-memory data model of Java objects can be monitored by implementing the
model as an Observable that reports changes to an Observer class. Both classes
reside in the java.util-package.

Broadcasted intent to a BroadcastReceiver
A content-independent content notifier, this can be used locally within an appli‐
cation or across process boundaries.

FileObserver

Observes file system changes with an android.os.FileObserver that monitors a
path in the file system and sends events when changes occur. The events that are
reported can be configured with an event filter, which can limit the observations,

236 | Chapter 14: Automatic Background Execution with Loaders

such as addition, deletion, and move. The usage of the FileObserver is shown in
“Example: Custom File Loader” on page 238.

When the observer receives an update notification, it is up to the loader to load the new
data asynchronously, which should be done either with forceLoad or onContentCh
anged. forceLoad triggers a background execution independent of the loader’s state,
whereas onContentChanged initiates data loading only if the state is started. Otherwise,
it will mark the content as changed so that when the loader is restarted, it can check
whether there is a content change that should be loaded and delivered to the client. A
custom loader should check whether there is content to load with takeContentCh
anged() when the loader is started:

@Override
protected void onStartLoading() {
 super.onStartLoading();

 // Note: There are other interesting things to
 // implement here as well.

 if (takeContentChanged()) {
 forceLoad();
 }
 }

Once takeContentChanged() is called, the content is no longer
marked as changed, and consecutive calls will not return true un‐
til a new content change has been reported with onContentChanged.

Content observation should be active from the time the loader is started until it’s
reset, so that it can continue to do background loading even in the stopped state and
deliver new data from the cache, as described in the next section.

Delivering Cached Results
When you subclass AsyncTaskLoader, it delivers results after new data has been re‐
turned from loadInBackground(). But triggering a new background task—i.e., calling
loadInBackground—when there is no new data is a waste of resources. Instead, you
should implement the loader so that it can speed up the result delivery to the clients.
For example, if the loader has delivered a result and no content change has been re‐
ported, there is no point in starting a new background task. It’s faster to return the
previous result directly. Consequently, the loader should cache loaded data—i.e., keep
the result of the last successful load. The delivery control is implemented with a result
cache. You also override Loader.deliverResult(<D>), which delivers data to the clients
when it is invoked if the loader is started, as shown in the following example.

Implementing Custom Loaders | 237

Example: Custom File Loader
The file system should be accessed asynchronously and the loader framework can be
used to load new data as soon as any changes occur. In this example, we create a File
Loader that delivers the names of the files in the application directory. It observes the
directory for changes, and if a file is added or deleted, an asynchronous load will be
initiated that will deliver a list of file names to the client on the UI thread.

The FileLoader uses the AsyncTaskLoader as background executor and it is configured
to handle a data source of file names, like List<String>:

public class FileLoader extends AsyncTaskLoader<List<String>> {

 // Cache the list of file names.
 private List<String> mFileNames;

 private class SdCardObserver extends FileObserver {

 public SdCardObserver(String path) {
 super(path, FileObserver.CREATE|FileObserver.DELETE);
 }

 @Override
 public void onEvent(int event, String path) {
 // This call will force a new asynchronous data load
 // if the loader is started otherwise it will keep
 // a reference that the data has changed for future loads.
 onContentChanged();
 }
 }

 private SdCardObserver mSdCardObserver;

 public FileLoader(Context context) {
 super(context);
 String path = context.getFilesDir().getPath();
 mSdCardObserver = new SdCardObserver(path);
 }

 @Override
 protected void onStartLoading() {
 super.onStartLoading();
 // Start observing the content.
 mSdCardObserver.startWatching();

 if (mFileNames != null) {
 // Return the cache
 deliverResult(mFileNames);
 }

 if (fileNames == null || takeContentChanged()) {

238 | Chapter 14: Automatic Background Execution with Loaders

 forceLoad();
 }
 }

 @Override
 public List<String> loadInBackground() {
 File directory = getContext().getFilesDir();
 return Arrays.asList(directory.list());
 }

 @Override
 public void deliverResult(List<String> data) {
 if (isReset()) {
 return;
 }

 // Cache the data
 mFileNames = data;

 // Only deliver result if the loader is started.
 if (isStarted()) {
 super.deliverResult(data);
 }
 }

 @Override
 protected void onStopLoading() {
 super.onStopLoading();
 cancelLoad();
 }

 @Override
 protected void onReset() {
 super.onReset();
 mSdCardObserver.stopWatching();
 clearResources();
 }

 private void clearResources() {
 mFileNames = null;
 }
}

Define a filesystem observer for the addition and removal of files. The
constructor of the FileLoader configures it to observe the application file
directory—retrieved with getContext().getFilesDir(). When changes are
detected, the onEvent method will be invoked. The file observation is handled
by the android specific android.os.FileObserver class.

Implementing Custom Loaders | 239

The FileLoader is told to start loading data, typically when the Activity or
Fragment is started and is ready to display the data. At this point, the loader is
started and the FileLoader is expected to observe the underlying data set—
i.e., the filesystem—so startWatching is invoked.
If a previously delivered data set is cached in the loader, we deliver that to the
client so that we don’t need to do another asynchronous load.
Force a data load if there is no previous data or if the content has been marked
as changed earlier but not delivered.
Try to cancel an ongoing load, because the result will not be delivered anyway.
Stop content observation when the loader is reset, because content changes
should not be loaded or cached.
When the loader is reset, it is not expected to be used any more, so remove the
reference to the cache.

The FileLoader is used to populate a list of file names that is displayed in a Fragment:

public class FileListFragment extends ListFragment implements
 LoaderManager.LoaderCallbacks<List<String>>{

 private static final int FILE_LOADER_ID = 1;

 private ArrayAdapter<String> mFileAdapter;
 private List<String> mFileNames = new ArrayList<String>();

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 getLoaderManager().initLoader(FILE_LOADER_ID, null, this);
 setEmptyText("No files in directory");
 setListShown(false);

 mFileAdapter = new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_1, android.R.id.text1, mFileNames);
 mFileAdapter.setNotifyOnChange(true);
 setListAdapter(mFileAdapter);
 }

 @Override
 public Loader<List<String>> onCreateLoader(int i, Bundle bundle) {
 return new FileLoader(getActivity());
 }

 @Override
 public void onLoadFinished(Loader<List<String>> fileLoader,
 List<String> fileNames) {
 mFileAdapter.clear();
 mFileAdapter.addAll(fileNames);

240 | Chapter 14: Automatic Background Execution with Loaders

 setListShown(true);
 }

 @Override
 public void onLoaderReset(Loader<List<String>> fileLoader) {
 mFileNames = null;
 mFileAdapter.clear();
 }
}

Add the loaded file names to the list and update the UI.

Handling Multiple Loaders
Most commonly, a LoaderManager only manages one loader, in which case the callbacks
are invoked from a known loader: only one exists. If you create multiple loaders, the
callbacks should check the identifier—i.e., invoke Loader.getId()—to verify which
loader has generated the callback. A code skeleton that serves as a template for multiple
loaders is:

public class SkeletonActivity extends Activity implements
LoaderManager.LoaderCallbacks<D> {

 private static final int LOADER_ID_ONE = 1;
 private static final int LOADER_ID_TWO = 2;

 public void onCreate(Bundle savedInstanceState) {
 getLoaderManager().initLoader(LOADER_ID_ONE, null, this);
 getLoaderManager().initLoader(LOADER_ID_TWO, null, this);
 }

 // LoaderCallback methods
 public Loader<D> onCreateLoader(int id, Bundle args) {
 switch(id) {
 case LOADER_ID_ONE:
 /* TODO: Create the loader. */
 return ...;
 case LOADER_ID_TWO:
 /* TODO: Create the loader. */
 return ...;
 }
 }

 public void onLoadFinished(Loader<D> loader, D data) {
 switch(loader.getId()) {
 case LOADER_ID_ONE:
 /* TODO: Use the delivered data. */
 break;
 case LOADER_ID_TWO:
 /* TODO: Use the delivered data. */
 break;

Implementing Custom Loaders | 241

 }
 }
 public void onLoaderReset(Loader<D> loader) {
 switch(loader.getId()) {
 case LOADER_ID_ONE:
 /* TODO: The loader data is invalid, stop using it. */
 break;
 case LOADER_ID_TWO:
 /* TODO: The loader data is invalid, stop using it. */
 break;
 }
 }
}

Summary
The Loader framework is the latest asynchronous techniques to be added to the Android
platform. It is a framework for asynchronous execution that shines when it comes to
the CursorLoader, as it encapsulates the difficulties of a specific use case—i.e., content
providers—and solves it efficiently. The framework also offers flexibility by allowing
custom loader implementations, but that requires more effort from the application, and
it may be better to consider other asynchronous techniques.

242 | Chapter 14: Automatic Background Execution with Loaders

CHAPTER 15

Summary: Selecting an
Asynchronous Technique

As we’ve seen, the Android platform provides us with many asynchronous techniques
to help us run tasks both concurrently and off the UI thread. Without these techniques,
it wouldn’t be possible to implement a fast and responsive application, so they become
part of the core functionality. The range of techniques are there to assist us and make
life easier, but we always have to make choices about which techniques to use. Sometimes
the choice is easy—e.g., CursorLoader when reading data from a provider—but often
we face situations where several mechanisms could solve the problem. In those situa‐
tions, it’s a natural habit to fall back on a mechanism we know and have used before.
This may, however, be a suboptimal choice, and we should aim for something better,
based on a set of conditions about each technique:

• It uses the fewest system resources—i.e., CPU cycle and memory—as necessary.
• It provides the application with maximum performance and responsiveness.
• It allows low implementation effort.
• It provides a good code design, making it easy to understand and maintain.

This chapter summarizes the asynchronous techniques and how to choose between
them. First, let’s take a look at the relationships among the mechanisms, shown in
Figure 15-1. The Thread is the fundamental entity of all mechanisms. Features sup‐
porting the asynchronous execution are added further up in the hierarchy, each invoking
the following features.

243

Figure 15-1. The asynchronous mechanisms in the Android platform

When selecting the proper asynchronous mechanism, the rule of thumb is to move as
high up in the hierarchy as possible to utilize the added platform functionality. When
you need to give more execution control to the application, you can move to a lower
level, where that control is provided.

Keep It Simple
The Android platform contains a range of powerful asynchronous techniques that are
all based on the java.lang.Thread class. The techniques are there to make life easier
for us so that we don’t have to manage all the threading ourselves. Nevertheless, the
simplicity of a single thread can be a good choice for occassional one-shot tasks. For
example:

• Initializing an Activity with data from a network resource
• Storing data on the file system when Activity is destroyed

However, execution with Thread doesn’t scale well. If there are many tasks to execute,
a thread-per-task pattern can cause equally as many threads as there are tasks to run
simultaneously, which in turn can cause memory exhaustion and reduced performance.
Instead, it’s better to use a thread pool that easily can constrain the number of threads.

Thread and Resource Management
Thread pools are a part of Java’s Executor framework that helps us with thread execution
and resource management. Each pool holds and manages a set of worker threads, mak‐
ing their number of threads and dynamics configurable. Threads that have finished
executing a task can remain idle in the pool, waiting for the next task to execute. Hence,
the thread pool can keep required memory usage within bounds. The thread pool ach‐

244 | Chapter 15: Summary: Selecting an Asynchronous Technique

ieves this by queuing the tasks that are added while all threads in the pool are occupied
by other tasks.

Thread pools are powerful asynchronous processors with a flexible setup. They are
typically used when the application should execute multiple tasks concurrently while
limiting the number of threads—for example, when the application uses multiple HTTP
connections that should have an upper limit. In combination with a Service, the pool
creates an asynchronous executor that can receive tasks from multiple clients and avoid
system termination.

Message Communication for Responsiveness
Both the Thread and the Executor framework are Java mechanisms and have no built-
in support for Android message passing, which has to be implemented in the applica‐
tion. The most common use cases for asynchronous execution involve message passing
so that data can be passed between the UI thread and background threads.

The HandlerThread combines the execution of a Thread with the possibility of receiving
and processing messages sequentially. Hence, you need somewhat less coding to use
HandlerThread directly than to decorate a Thread with a Handler.

Messages are processed sequentially. This makes the HandlerThread a good alternative
for thread-safe execution of dependent tasks, which would require synchronization in
a concurrent environment. It’s also a very flexible sequential environment that makes it
easy to implement state-machine behavior, where the thread passes messages to itself
to change state or chain background tasks, as we saw in “Task Chaining” on page 128.

The sequential execution limitation of the HandlerThread is solved by AsyncTask, a
popular asynchronous technique. The AsyncTask allows background task execution in
combination with thread communication, offering a generic and adaptable asynchro‐
nous technique that can be applied on many use cases—the AsyncTask itself does not
impose any constraints. It has occasionally—and incorrectly—been given the epithet
“Android’s thread,” as it hides the message passing between threads.

A fully utilized AsyncTask passes data to the background thread, reports progress up‐
dates, and sends the result back to the UI thread. That also serves as a good use case.
However, as we saw in Chapter 10, it has a couple of concerns you need to consider:

• Global execution environment
• Differences between execution types depending on platform versions

The AsyncTask is often overused in applications due to its simplicity. It isn’t a silver-
bullet solution for asynchronous execution on Android. For many use cases, you should

Message Communication for Responsiveness | 245

look into alternative techniques, for reasons of architecture, program design, or just
because they are less error prone.

Avoid Unexpected Task Termination
The system doesn’t take running threads into consideration when shutting down ap‐
plications to reclaim system resources. Therefore, background tasks can be unexpect‐
edly terminated when the application process is killed. The application termination is
based on process rank, and a running Service raises the application process rank—e.g.,
how likely an Activity is to be stopped when the application isn’t visible on the screen.
Use of a Service helps by reducing the risk that the application and its threads are
terminated when the system is low on resources.

There is no asynchronous executor in the Service; it’s a collaborator rather than a
competitor with other asynchronous mechanisms. By moving the asynchronous exe‐
cution to a Service, you can achieve several advantages:

• Critical background tasks execute independently of the application’s visibility on
the screen—i.e., the user’s interaction will be less likely to interfere with the lifetime
of the tasks.

• The asynchronous execution can easily be shared between multiple clients, such as
Activities.

• The asynchronous execution can be triggered both via Intents and through meth‐
od calls, or even across processes via IPC.

For services that should execute tasks sequentially, you can use IntentService, an ex‐
tension to Service containing a HandlerThread. It has the lifecycle and process rank
advantages of a Service combined with a handoff mechanism. The strength of the
IntentService is its simplicity: clients only have to send an Intent with data to be
processed.

The IntentService is a great candidate for sequential background execution for mul‐
tiple reasons:

• Simple usage.
• The process rank reduces the risk of background tasks being terminated prema‐

turely.
• It is reachable from all other Android components.

When asynchronous execution is required from a BroadcastReceiver, the IntentSer
vice should be the first mechanism you consider.

246 | Chapter 15: Summary: Selecting an Asynchronous Technique

Easy Access to ContentProviders
The AsyncQueryHandler is an asynchronous ContentProvider accessor with a built-in
HandlerThread, which guarantees that the provider accesses the thread safely. It exists
specifically to handle a full set of CRUD operations on a provider and isn’t useful other‐
wise.

Another—more capable—reader of provider data is the CursorLoader. It is both simple
and powerful, not requiring much effort to implement. It connects to a provider and
observes the content so that new data can be loaded asynchronously to an Activity or
Fragment, enabling it to easily update the UI.

For other data sources—where you have to implement a custom loader—a loader isn’t
necessarily the best choice. It’s often more complex to implement a custom loader than
to adopt another asynchronous mechanism. As a rule of thumb, custom loaders can be
a good choice when the following conditions are fulfilled:

• The underlying content is easily observable.
• There should be an easy way to use a data cache.
• Started tasks don’t need to be finished, because the tight coupling of the loader with

the Activity and Fragment lifecycles will destroy the attached Loader objects and
lose the result.

Thus, it isn’t advisable, for example, to use loaders for network requests; they are not
easily observed and they will be interrupted based on the client lifecycle. Data loading
that should execute until completion should use a Service or IntentService instead.

The array of options in this book can be intimidating. One of the reasons for the variety
of asynchronous options is the wide range of considerations that go into different ap‐
plications: memory use, number of concurrent tasks, needs to access data stores, latency
issues, and so on. By studying the issues I’ve presented in the book and how they pertain
to your particular app, you can find the best technique to suit your needs.

Easy Access to ContentProviders | 247

APPENDIX A

Bibliography

Books
• Brian Goetz et al. Java Concurrency in Practice. Addison-Wesley, 2006.

Articles
• Schreiber, Thorsten. “Android Binder: Android Interprocess Communication.”

Thesis, Ruhr-Universitat Bochum, 2011. http://bit.ly/1jgw0ui.
• Pepperdine, Kirk. “Tuning the Size of Your Thread Pool,” InfoQ. 2013. http://bit.ly/

1g5mefe.

Presentations
• Morrill, Dan. “Inside the Android Application Framework.” Google I/O, 2008.
• Bornstein, Dan. “Dalvik Virtual Machine Internals.” Google I/O, 2008.
• Dubroy, Patrick. “Memory Management for Android Apps.” Google I/O, 2011.

249

http://bit.ly/1jgw0ui
http://bit.ly/1g5mefe
http://bit.ly/1g5mefe

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
| (pipe operator), 39

A
activities

Activity implementing LoaderManager.Loa‐
derCallbacks, 221

Activity object, 3
BluetoothActivity (example), 189
BoundLocalActivity (example), 197
configuration changes on Activity objects,

114
DownloadActivity (example), 191
implementation of Activity displaying im‐

ages downloaded with AsyncTask, 164
loaders working with, 220
memory leaks from Activity objects, 96
one-way communication between Service

and Activity in different processes, 84
retaining worker threads from old to new

Activity components, 102
thread retention in an Activity, 114
two-way communication between Activity

and Service in different processes, 86
Activity.runOnUiThread() method, 73
ActivityThread class, 60

Android Interface Definition Language (AIDL),
76, 77
asynchronous RPC, 81
synchronous RPC, 79

Android platform, 1
asynchronous mechanisms in, 243
software stack, 1

android.os.FileObserver class, 236
anonymous inner class, 112
Application Framework, 2
Application Not Responding (ANR) dialog, 10
Application object, 3
application threads, 29

background threads, 30
binder threads, 30
memory leaks from, 91
UI thread, 29

applications, 2
Activities, 3
architecture, 2

components, 3
BroadcastReceiver, 5
ContentProvider, 5
execution, 5

lifecycle, 6
Linux process, 6

execution of AsyncTask instances, 169
Services, 5
structuring for performance, 9

251

ArrayBlockingQueue class, 140
ART (Android Runtime), 2
asynchronous operations, 9

asynchronous execution in BroadcastReceiv‐
er, 204–207

Remote Procedure Calls (RPC), 81
selecting an ansynchronous technique, 243

avoiding unexpected task termination,
246

easy access to ContentProviders, 247
message communication for responsive‐

ness, 245
thread and resource management, 244

using a Service for asynchronous execution,
177

asynchronous programming, 105–119
choosing an asynchronous technique for

Services, 197
lifecycle of a thread, 107
managing threads, 112

definition and start, 112
retention, 114

thread basics, 107
thread interruptions, 108
uncaught exceptions during thread execu‐

tion, 110
AsyncQueryHandler class, 209, 212–218

asynchronous access to ContentProviders,
212
example, expanding contact list, 214

easy access to ContentProviders, 247
limitations, 218
methods wrapping provider operations of

ContentResolver, 213
AsyncTask class, 157–175, 226, 245

alternatives to, 173
background tasks needing a Looper, 174
local Service, 174
using execute(Runnable), 174
when AsyncTask is trivially implemented,

173
background task execution, 167

application global execution, 169
custom execution, 172
execution across platform versions, 170

cancellation of the task, 161
creating and starting implementations, 160
data passing from execute() to doInBack‐

ground(), 158

example, downloading images, 164
example, limiting execution to one task at a

time, 163
execute() method, triggering callback to

doInBackground(), 157
executing task in background and delivering

result to UI thread, 158
implementing, 163
Services and, 198
states, 162

AsyncTask.getStatus() method, 162
AsyncTask.isCancelled, 161
AsyncTaskLoader class, 220, 225

extension by custom loaders, 234
atomic regions, 19

B
background processes, 7
background task execution (AsyncTask), 167

application global execution, 169
custom execution, 172
execution across platform versions, 170

background tasks, in Service restarts, 186
background threads, 30
binder class, 76
Binder class

ServiceBinder subclass (example), 194
binder framework, 75

message passing with, 83
one-way communication, 84
two-way communication, 86

binder threads, 30, 91
blocked threads, 20, 108

causing memory leaks, 93
BlockingQueue class, 46
Bluetooth connection (user-controlled Service

example), 187
bound services, 5, 182, 192

local binding, 194
bounded task queues, 140
BroadcastReceiver, 5

asynchronous execution in, 204–207
example, periodical long operations, 205

use in content management, 236
BroadcastReceiver.goAsync() method, 204
BroadcastReceiver.PendingResult, 205

252 | Index

C
cached thread pools, 137
Callable interface, 146

retrieving a result, 148
CalledFromWrongThreadException, 29
cancellation points, 109
cancellation requests to AsyncTask, 161
CancellationSignal, 218
CFS (completely fair scheduler), 34
cgroups (see control groups)
completely fair scheduler (CFS), 34
components, 3

independence of thread lifecycle from, 177
lifecycle mismatch between components, ob‐

jects, and threads, 96
Service, creation of, 182

concurrent execution of tasks, 26
AsyncTask implementations, 167

across platform versions, 170
concurrent file download executor running

in a Service, 190
consumer-producer pattern (example), 24
ContentObserver, 236
ContentProvider, 5, 209–218

asynchronous access with AsyncQueryHan‐
dler, 212–218
examplel, expanding a contact list, 214

easy access to, 247
introduction to, 209
justification for background processing of,

211
ContentProviderOperation class, 218
ContentResolver class, 210, 217

AsyncQueryHandler methods wrapping
provider operations, 213

context switch, 16
Context.bindService() method, 5, 182, 192
Context.startService() method, 5, 182
Context.stopService() method, 5, 185
Context.unbindService() method, 193
control groups (thread), 36
core threads, 140
critical sections (of code), 20
CursorLoader class, 220, 226

adding CRUD support, 229
reader of provider data, 247
using, 227

example, contact list, 227

D
Dalvik Debug Monitor Service (DDMS), 33
Dalvik runtime, 2
data inconsistency in multithreaded applica‐

tions, 18
data messages

processing, 66
sending, memory leaks from, 98

DDMS (Dalvik Debug Monitor Service), 33
definition and start, threads, 112

defining a thread as a public class, 112
defining a thread as a static inner class, 113
summary of options for thread definition,

113
using anonymous inner class, 112

dispatch time for messages, 62
dispatched state (messages), 57
DownloadService (example), 191
dynamic-size thread pools, 137, 139

E
empty processes, 7
exceptions, uncaught, during thead execution,

110
ExecutionException, 147
Executor framework, 133–155

custom Executor for AsyncTask implemen‐
tations, 172

execution behaviors controlled by, 134
Executor interface, 133

simple implementation, 134
ExecutorCompletionService, 152
SerialExecutor implementation (example),

134
task management, 146

rejecting tasks, 151
submitting tasks, 147
task representation, 146

thread pools, 244
advantages of using, 136
custom, 137
designing, 138
predefined, 136
use cases and pitfalls, 145

ExecutorCompletionService, 152
Executors class, 136
Executors.newCachedThreadPool() method,

137

Index | 253

Executors.newFixedThreadPool() method, 136,
141

Executors.newSingleThreadExecutor() method,
137

ExecutorService interface, 147
ExecutorService.invokeAll() method, 149
ExecutorService.invokeAny() method, 151
explicit intents, 3
explicit locks, 23

F
FileLoader class (example), 238
FileObserver class, 236, 239
fixed-size thread pools, 136
foreground processes, 7
Fragment

FileListFragment (example), 240
loaders working with, 220
retaining a thread in, 117

Future interface, 147

G
garbage collection, 89

garbage collection roots, 90
stopped by retained threads, 116
thread lifecycle and its GC roots, 92

garbage collector (GC), 89
global services, 180
grep command, 32

H
Handler class, 48, 60–68

inserting messages in message queue, 62
message creation, 61
message processing, 66
methods for managing the message queue,

69
removing messages from the queue, 68
setup of handlers, 60
using Handler and Runnable in thread com‐

munication, memory leaks from, 98
using with Messenger, 87

HandlerThread, 121–131, 245
background task executor in IntentService,

199
fundamentals, 121
lifecycle, 123

limiting access to, 122
use cases, 124

conditional task insertion, 131
data persistence with SharedPreferences,

125
related tasks, 125
repeated task execution, 125
task chaining, 128

using instead of AsyncTask, 174
heap, 44, 89
HTTP requests, 201

I
IBinder interface, 193
IBinder.FLAG_ONEWAY, 77
idle time for threads in thead pool, 138
IdleHandler interface, 52

using to terminate an unused thread, 53
implicit intents, 3
inner classes, 93

anonymous, 112
static, 94, 113

using to avoid memory leaks, 101
IntentFilter, 3, 181
Intents, 3, 179

identifying Service to bind to, 193
terminated Services and, 185

IntentService class, 199–208, 246
client creating start request, 200
good ways to use, 201

asynchronous execution in BroadcastRe‐
ceiver, 204–207

sequentially ordered tasks, 201
overriding with application specific imple‐

mentation, 200
restoring IntentService if process is killed,

200
Service class versus, 207

interfaces
asynchronous RPC, 82
remote communication, construction of, 77

interprocess communication (IPC), 75–87
Android Interface Definition Language

(AIDL), 77
asynchronous RPC, 81
synchronous RPC, 79

Android RPC, 75
binder class, 76

254 | Index

message passing using the binder, 83
one-way communication, 84
two-way communication, 86

InterruptedException, 109
interruptions, thread, 108, 161
intrinsic locks, 20

in producer-consumer pattern example, 25
using to synchronize access to shared re‐

sources, 22

J
Java

core libraries used in Android applications, 2
multithreading in, 15–27
pipes, 39
priority values for threads, 35

java.lang.Runnable interface, 16
java.lang.Thread class, 2, 15, 105, 244
java.util.concurrent package, 2
java.util.concurrent.BlockingQueue class, 46

K
keep alive time (thread pools), 140

L
lifecycle

application, 6
mismatch between components, objects, and

threads, 95, 177
of a HandlerThread, 123
of a thread, 107
of a thread pool, 142
of Loaders, 233
of messages in Android, 56
of processes hosting threads, 177
of Services, 181

LinkedBlockingQueue class, 140
Linux kernel, 2

scheduling of application threads in An‐
droid, 34

Linux processes, 6
(see also processes)
and threads, 31–37

finding application process information,
32

application execution in, 6

lifecycle of, and unexpected termination of
background tasks, 177

Loader class, 220
Loader framework, 219–242

asynchronous data management, 219
AsyncTaskLoader class, 225
cached data with, 220
core classes, 220
CursorLoader class, 226, 247

example, contact list, 227
example, using with AsyncQueryHan‐

dler, 229
implementing custom loaders, 233, 247

background loading, 234
content management, 236
delivering cached results, 237
example, custom file loader, 238
handling multiple loaders, 241
Loader lifecycle, 233

lifecycle management with, 219
LoaderManager class, 221

initLoader() versus restartLoader(), 222
LoaderCallbacks interface, 224

LoaderManager class, 221
(see also Loader framework)
control of Loader lifecycle, 234
typical setup with callbacks in an Activity,

221
LoaderManager.LoaderCallbacks interface, 221,

224
sequence of loader callbacks, 224

local services, 179
bound local service, 194

locks
intrinsic lock and Java monitor, 20
locking mechanisms in Android, 20
using explicit locking mechanisms, 23
using to synchronize access to shared re‐

sources, 22
long-running tasks, 10
Looper class, 48, 58

background tasks that need a Looper, 174
enabling message queue logging, 72
in a HandlerThread, 121
Looper for handlers, 60
Looper for UI thread, 60, 73
termination of the Looper, 59

Index | 255

M
mark and sweep, 90
marshalling, 76
memory management, 89–103

avoiding memory leaks, 101
cleaning up the message queue, 102
in AsyncTask implementations, 163
retaining worker threads, 102
starting and stopping Services, 187
stopping worker thread execution, 102
using Services instead of threads for

background tasks, 177
using static inner classes, 101
using weak references, 101

garbage collection, 89
memory leaks, defined, 89
protection against memory leaks with Load‐

ers, 220
thread definition and start, 112
thread-related memory leaks, 91

thread communication, 98
thread execution, 92

memory, shared, passing information between
threads, 44

Message class, 48, 55
Handler class wrapper functions for message

creation, 61
memory leaks from Message objects, 100
Message object insertion into queue by Han‐

dler, 62
repeated task execution with Handler‐

Thread, 125
message insertion errors, 63
message passing in Android, 47–74

API overview, 48
AsyncQueryHandler and ContentResolver,

217
between producer threads and consumer

thread, overview of, 48
classes used, 51
cleaning up the message queue, 102
communicating with the UI thread, 73
example, basic message passing, 49
example, two-way message passing, 63
Handler class, 60–68
HandlerThread, 121–131
Looper class, 58
memory leaks from thread communication,

98

Message class, 55
message communication for responsiveness,

245
MessageQueue class, 51
observing the message queue, 70

tracing message queue processing, 72
removing messages from the queue, 68
using the binder framework, 83

one-way communication, 84
two-way communication, 86

MessageQueue class, 48, 51
in a HandlerThread, 121

MessageQueue.IdleHandler interface, 52
Messenger class, 83

using Handler with, 87
ModernAsyncTask class, 226
monitors, 20
multithreading in Java, 15–27

task execution strategies, 26
thread basics, 15

execution, 15
multithreaded applications, 17
single-threaded applications, 17

thread safety, 19–26
example, consumer-producer pattern, 24
intrinsic lock and Java monitor, 20
synchronizing access to shared resources,

22
mutually exclusive atomic regions in Java, 19

N
native libraries in Android platform, 2
network calls, chained, using HandlerThread,

128
NetworkCheckerIntentService (example), 206
nice value (see niceness)
niceness, 34

Java priority versus, 35

O
Object identifier (messages), 69
objects, 90

(see also references, object)
created in methods, garbage collection of, 93
GC root, 91
lifecycle mismatch between components, ob‐

jects, and threads, 95
marked as unused, 90

256 | Index

object dependency tree with static inner
class thread executing external Runnable,
95

removal from heap by GC, 90
Observable class, 236
Observer class, 236
oneway keyword, 82
operational modes, 185

P
Parcel object, 76
Parcelable interface, 77
parent process identifier (PPID), 31
pending state (messages), 57
PID (process identifier), 31
pipes, 39

basic use of, 40
example, text processing on a worker thread,

42
PPID (parent process identifier), 31
priority (threads), 16, 34

changing, 35
HandlerThread, 123
Java priority versus Linux niceness, 35
lowering with Process.setThreadPriority(),

37
PriorityBlockingQueue class, 140
process identifier (PID), 31
process rank, 4
Process.setThreadPriority() method, 37
processes

ranking for termination, 7
threads versus, 33

producer-consumer synchronization problem,
46

progress updates, using AsyncTask, 160
Proxy class, 78
ps (process status) command, 32

thread control group information from, 36
pthreads, 33

Q
queues

blocking queue, 46
bounded or unbounded task queues, 140
message queue (android.os.MessageQueue),

51
task queue type for thread pools, 138

thread pools handling preloaded task
queues, 145

queuing, favoring thread creation over, 145

R
race conditions, 19
reachable and unreachable objects, 90
recycled state (messages), 58
ReentrantLock class, 23
ReentrantReadWriteLock class, 23
references, object, 90

inner and outer classes, 93
object reference tree when posting task mes‐

sage, 100
object reference tree when sending data

message, 99
static inner classes, 101
threads defined in static inner classes, 94
weak references, 101

RejectedExecutionHandler interface, 151
Remote Procedure Calls (RPC), 75

asynchronous RPC, 81
binder class, 76
synchronous, 79

remote services, 180
resource consumption, increased, for multi‐

threaded applications, 18
responsive applications, creating through

threads, 9
restarting services, 184
retaining threads, 114

in a Fragment, 117
in an Activity, 114

RPC (see Remote Procedure Calls)
Runnable interface, 16, 107

repeated task execution with Handler‐
Thread, 125

using execute(Runnable) with AsyncTask,
174

Runnable object, 92, 98
posting Runnable to execute on consumer

Thread with a Looper, 99
static inner class thread executing external

Runnable, 95
Runnable state (threads), 108
Runnable.run() method, 146

Index | 257

S
saturation policy, 140
schedulers, 16

Linux kernel scheduler, 34
scheduling threads on Android, 34
sequential execution of tasks, 26

AsyncTask implementations, 167
across platform versions, 170

for a task-controlled service, 198
using IntentService, 201

web service communication (example),
201

service processes, 7
Service.onBind() method, 182
Service.stopSelf() method, 185
ServiceConnection interface, 193
ServiceConnection.onServiceConnected()

method, 195
ServiceListener class, 197
services, 177–198

bound, 192
local binding, 194

choosing an asynchronous technique, 197
creation and execution, 181
IntentService, 199–208

versus Service, 207
lifecycle, 181
local Service, alternatives to AsyncTask, 174
local, remote, and global, 179
one-way communication between Service

and Activity in different processes, 84
Service object, 5
started, 183

implementing onStartCommand(), 184
onBind() method, 183
options for restarting, 184
task-controlled Service, 190
user-controlled Service, 186

two-way communication between Activity
and Service in different processes, 86

using a Service for asynchronous execution,
177

using a Service to avoid unexpected task ter‐
mination, 246

using for data loading, 247
signaling, 45
single thread executor thread pools, 137
single-threaded applications, thread execution,

17

size of thread pools, 138
SQLite databases

ContentProvider exposing data in, 210
faster access by write-ahead logging, 211

stack property, 31
started services, 5, 182, 186

(see also services)
onStartCommand() method, 183

implementing, 184
starting applications, 6
START_FLAG_REDELIVERY, 186
START_FLAG_RETRY, 186
START_NOT_STICKY (Services), 185

IntentService, 200
START_REDELIVER_INTENT (Services), 185

IntentService, 200
START_STICKY (Services), 185
starvation, 16
static inner classes, 94

defining threads as, 113
using to avoid memory leaks, 101

Stub class, 78
synchronization

synchronized keyword in Java, 19
synchronizing access to shared resources, 22
thread signaling and, 45

synchronous operations, 9
RPC (Remote Procedure Calls), 79

T
targetSdkVersion, manifest file, 170
task management with Executor framework,

146
rejecting tasks, 151
submitting tasks, 147

individual submission, 148
task representation, 146
task submission

invokeAll() method, 149
invokeAny() method, 151

task messages
posting, memory leaks from, 99
processing, 66

task-controlled Services, 190
concurrent download (example), 190
sequential execution for, 198

tasks
avoiding unexpected termination, 246

258 | Index

background task execution with AsyncTask,
167

chaining, using HandlerThread, 128
example, chained network calls, 128

conditional task insertion using Handler‐
Thread, 131

custom thread pool tracking number of tasks
currently executing, 142

defined, 15
execution behaviors controlled by Executor

implementation, 134
execution strategies, 26
premature termination of, 177
queue type, 138

bounded or unbounded, 140
related, executing with HandlerThread, 125
repeated execution with HandlerThread, 125
task messages, 56

terminated threads, 108
HandlerThread, 124

terminating applications, 7
text processing on a worker thread (pipes exam‐

ple), 42
Thread class, 2, 15, 92, 105, 107, 244

(see also threads)
thread pools, 30, 136, 244

custom, creating using Executor framework,
137

designing, 138
dynamics, 139
extending ThreadPoolExecutor, 141
size, 138
thread configuration, 140

lifecycle, 142
predefined, in Executor framework, 136
shutting down, 143
use cases and pitfalls, 145

danger of zero core threads, 146
favoring thread creation over queuing,

145
handling preloaded task queues, 145

thread safety, 19–26
example, consumer-producer pattern, 24
intrinsic locks and Java monitor, 20
synchronizing access to shared resources, 22

Thread.setPriority() method, 35
Thread.State class, 107
ThreadFactory interface, 140

threading, 15
(see also multithreading in Java)
creating responsive applications through

threads, 9
fundamental Java mechanisms, 2

ThreadPoolExecutor class, 137
configuration of thread pool behavior, 137
extending, 141
predefined handlers for rejected tasks, 151
thread configuration, 140

ThreadPoolExecutor.prestartAllCoreThreads()
method, 145

ThreadPoolExecutor.prestartCoreThread()
method, 145

threads
basics of, 107
communication, 39–74

pipes, 39
shared memory, 44
signaling, 45
using Android message passing, 47–74
using BlockingQueue, 46

defined, 15
execution, controlling with Executor frame‐

work, 133–155
interruptions, 108
lifecycle, 107
managing, 112

definition and start, 112
retention, 114

memory leaks from, 91
cleaning up the message queue, 102
lifecycle mismatch, 95
thread communication, 98
thread execution, 92

on Android, 29–37
application threads, 29
Linux process and threads, 31–37

processes versus, 33
thread creation and task execution strategies,

26
uncaught exceptions, 110

tokens, 214
transactions, 76

asynchronous, 77

U
UI thread, 10, 29, 91

communicating with, 73

Index | 259

involving with pipes, caution with, 44
Looper, 60
problems with mechanisms using blocking

behavior, 47
tying a background task to, using AsyncTask,

157–175
uncaught exceptions on, 111

UID (user id), 31
unbounded task queues, 140
UncaughtExceptionHandler interface, 110
unmarshalling, 76
unreachable objects, 90
unused objects, 90
user id (UID), 31
user-controlled Services, 186

Bluetooth connection (example), 187

V
virtual machines (VMs), 89

application execution in, 6

virtual runtime of a thread, 34
visible processes, 7

W
waiting threads, 20
WAL (write-ahead logging), 211
weak references, 101
worker threads, 31, 91

continuing to execute after component is de‐
stroyed, 97

defining and starting, 112
retaining from old to new Activity compo‐

nents, 102
stopping execution to avoid memory leaks,

102
write-ahead logging (WAL), 211

Z
Zygote process, 7

260 | Index

About the Author
Anders Göransson is a software architect, developer, trainer, and international speaker.
Having earned a M.Sc. in Engineering Physics, he has spent his entire career in the
software industry. Anders started with industrial automation systems, but since 2005,
he has focused on software for handheld devices, specializing in the Android platform
since 2009.

Colophon
The animal on the cover of Efficient Android Threading is mahi-mahi, or the common
dolphinfish (Coryphaena hippurus). This ray-finned fish is a surface-dweller that is
found in temperate, tropical, and subtropical waters. The name mahi-mahi translates
to “very strong” in Hawaiian. Despite its alternate name of “dolphinfish,” mahi-mahi
are not related to the marine mammals. There are two species of dolphinfish: the com‐
mon dolphinfish and the pompano dolphin. Along the English speaking coast of South
Africa, these fish are often called by the Spanish name, Dorado.

Mahi-mahi can grow up to 15–29 lb, seldom exceeding 33 lb. They can live up to five
years, but average around four years. The mahi-mahi’s compressed bodies have long
dorsal fins that extend almost the entire body length. Mahi-mahi are characterized by
their brilliant colors: broad golden flank with bright blues and greens on the side and
back, and three diagonal black stripes on each side of the fish. These colors change after
the fish is caught; out of water, mahi-mahi cycle through several colors before fading to
a yellow-grey when it dies.

Males and females are distinguished by their head shapes: males have prominent fore‐
heads that stick out past the body, whereas females have rounded heads. Within the first
year, both males and females are sexually mature, around 4–5 months. Females can
spawn two to three times a year, producing 80,000–1,000,000 eggs per spawn.

Mahi-mahi is primarily consumed in the US and Caribbean countries, though many
European countries are increasing their consumption. Organizations such as the Mon‐
terey Bay Aquarium discourages consuming mahi-mahi imported and harvested by
long line, which can injure or kill seabirds, sea turtles, and sharks as a bycatch. Mahi-
mahi caught in the US Atlantic is classed as “Eco-Best” by the Environmental Defense
Fund (EDF).

The cover image is from Braukhaus Lexicon. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Audience
	Contents of This Book
	Conventions Used in this Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgements

	Chapter 1. Android Components and the Need for Multiprocessing
	Android Software Stack
	Application Architecture
	Application
	Components

	Application Execution
	Linux Process
	Lifecycle

	Structuring Applications for Performance
	Creating Responsive Applications Through Threads

	Summary

	Part I. Fundamentals
	Chapter 2. Multithreading in Java
	Thread Basics
	Execution
	Single-Threaded Application
	Multithreaded Application

	Thread Safety
	Intrinsic Lock and Java Monitor
	Synchronize Access to Shared Resources
	Example: Consumer and Producer

	Task Execution Strategies
	Concurrent Execution Design

	Summary

	Chapter 3. Threads on Android
	Android Application Threads
	UI Thread
	Binder Threads
	Background Threads

	The Linux Process and Threads
	Scheduling

	Summary

	Chapter 4. Thread Communication
	Pipes
	Basic Pipe Use
	Example: Text Processing on a Worker Thread

	Shared Memory
	Signaling

	BlockingQueue
	Android Message Passing
	Example: Basic Message Passing
	Classes Used in Message Passing
	Message
	Looper
	Handler
	Removing Messages from the Queue
	Observing the Message Queue

	Communicating with the UI Thread
	Summary

	Chapter 5. Interprocess Communication
	Android RPC
	Binder

	AIDL
	Synchronous RPC
	Asynchronous RPC

	Message Passing Using the Binder
	One-Way Communication
	Two-Way Communication

	Summary

	Chapter 6. Memory Management
	Garbage Collection
	Thread-Related Memory Leaks
	Thread Execution
	Thread Communication

	Avoiding Memory Leaks
	Use Static Inner Classes
	Use Weak References
	Stop Worker Thread Execution
	Retain Worker Threads
	Clean Up the Message Queue

	Summary

	Part II. Asynchronous Techniques
	Chapter 7. Managing the Lifecycle of a Basic Thread
	Basics
	Lifecycle
	Interruptions
	Uncaught Exceptions

	Thread Management
	Definition and Start
	Retention

	Summary

	Chapter 8. HandlerThread: A High-Level Queueing Mechanism
	Fundamentals
	Lifecycle
	Use Cases
	Repeated Task Execution
	Related Tasks
	Task Chaining
	Conditional Task Insertion

	Summary

	Chapter 9. Control over Thread Execution Through the Executor Framework
	Executor
	Thread Pools
	Predefined Thread Pools
	Custom Thread Pools
	Designing a Thread Pool
	Lifecycle
	Shutting Down the Thread Pool
	Thread Pool Uses Cases and Pitfalls

	Task Management
	Task Representation
	Submitting Tasks
	Rejecting Tasks

	ExecutorCompletionService
	Summary

	Chapter 10. Tying a Background Task to the UI Thread with AsyncTask
	Fundamentals
	Creation and Start
	Cancellation
	States

	Implementing the AsyncTask
	Example: Downloading Images

	Background Task Execution
	Application Global Execution
	Execution Across Platform Versions
	Custom Execution

	AsyncTask Alternatives
	When an AsyncTask Is Trivially Implemented
	Background Tasks That Need a Looper
	Local Service
	Using execute(Runnable)

	Summary

	Chapter 11. Services
	Why Use a Service for Asynchronous Execution?
	Local, Remote, and Global Services
	Creation and Execution
	Lifecycle
	Started Service
	Implementing onStartCommand
	Options for Restarting
	User-Controlled Service
	Task-Controlled Service

	Bound Service
	Local Binding

	Choosing an Asynchronous Technique
	Summary

	Chapter 12. IntentService
	Fundamentals
	Good Ways to Use an IntentService
	Sequentially Ordered Tasks
	Asynchronous Execution in BroadcastReceiver

	IntentService Versus Service
	Summary

	Chapter 13. Access ContentProviders with AsyncQueryHandler
	Brief Introduction to ContentProvider
	Justification for Background Processing of a ContentProvider
	Using the AsyncQueryHandler
	Example: Expanding Contact List
	Understanding the AsyncQueryHandler
	Limitations

	Summary

	Chapter 14. Automatic Background Execution with Loaders
	Loader Framework
	LoaderManager
	LoaderCallbacks
	AsyncTaskLoader

	Painless Data Loading with CursorLoader
	Using the CursorLoader
	Example: Contact list
	Adding CRUD Support

	Implementing Custom Loaders
	Loader Lifecycle
	Background Loading
	Content Management
	Delivering Cached Results
	Example: Custom File Loader
	Handling Multiple Loaders

	Summary

	Chapter 15. Summary: Selecting an Asynchronous Technique
	Keep It Simple
	Thread and Resource Management
	Message Communication for Responsiveness
	Avoid Unexpected Task Termination
	Easy Access to ContentProviders

	Appendix A. Bibliography
	Books
	Articles
	Presentations

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

