

Exam Ref 70-762 Developing SQL
Databases

Louis Davidson
Stacia Varga

2

Exam Ref 70-762 Developing SQL Databases

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2017 by Pearson Education Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms, and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.
No patent liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.
ISBN-13: 978-1-5093-0491-2
ISBN-10: 1-5093-0491-6

Library of Congress Control Number: 2016962647

First Printing January 2017

Trademarks
Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks”
webpage are trademarks of the Microsoft group of companies. All other marks are property
of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis. The
authors, the publisher, and Microsoft Corporation shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the
information contained in this book or programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact governmentsales@pearsoned.com.

3

http://www.pearsoned.com/permissions/
https://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief
Greg Wiegand

Acquisitions Editor
Trina MacDonald

Development Editor
Rick Kughen

Managing Editor
Sandra Schroeder

Senior Project Editor
Tracey Croom

Editorial Production
Backstop Media

Copy Editor
Jordan Severns

Indexer
Julie Grady

Proofreader
Christina Rudloff

Technical Editor
Christopher Ford

Cover Designer
Twist Creative, Seattle

4

mailto:intlcs@pearson.com

Contents at a glance

Introduction

Preparing for the exam

CHAPTER 1 Design and implement database objects

CHAPTER 2 Implement programmability objects

CHAPTER 3 Manage database concurrency

CHAPTER 4 Optimize database objects and SQL infrastructure

Index

5

Contents

Introduction

Organization of this book
Microsoft certifications
Acknowledgments
Free ebooks from Microsoft Press
Microsoft Virtual Academy
Quick access to online references
Errata, updates, & book support
We want to hear from you
Stay in touch
Preparing for the exam

Chapter 1 Design and implement database objects
Skill 1.1: Design and implement a relational database schema

Designing tables and schemas based on business requirements
Improving the design of tables by using normalization
Writing table create statements
Determining the most efficient data types to use

Skill 1.2: Design and implement indexes
Design new indexes based on provided tables, queries, or plans
Distinguish between indexed columns and included columns
Implement clustered index columns by using best practices

Recommend new indexes based on query plans
Skill 1.3: Design and implement views

Design a view structure to select data based on user or business requirements
Identify the steps necessary to design an updateable view
Implement partitioned views
Implement indexed views

Skill 1.4: Implement columnstore indexes
Determine use cases that support the use of columnstore indexes
Identify proper usage of clustered and non-clustered columnstore indexes

6

Design standard non-clustered indexes in conjunction with clustered
columnstore indexes

Implement columnstore index maintenance
Summary
Thought experiment
Thought experiment answer

Chapter 2 Implement programmability objects
Skill 2.1 Ensure data integrity with constraints

Define table and foreign-key constraints to enforce business rules
Write Transact-SQL statements to add constraints to tables
Identify results of Data Manipulation Language (DML) statements given existing

tables and constraints
Identify proper usage of PRIMARY KEY constraints

Skill 2.2 Create stored procedures
Design stored procedure components and structure based on business

requirements
Implement input and output parameters
Implement table-valued parameters
Implement return codes
Streamline existing stored procedure logic
Implement error handling and transaction control logic within stored procedures

Skill 2.3 Create triggers and user-defined functions
Design trigger logic based on business requirements
Determine when to use Data Manipulation Language (DML) triggers, Data

Definition Language (DDL) triggers, or logon triggers
Recognize results based on execution of AFTER or INSTEAD OF triggers
Design scalar-valued and table-valued user-defined functions based on business

requirements
Identify differences between deterministic and non-deterministic functions
Summary

Thought Experiment
Though Experiment Answer

Chapter 3 Manage database concurrency

7

Skill 3.1: Implement transactions
Identify DML statement results based on transaction behavior
Recognize differences between and identify usage of explicit and implicit

transactions
Implement savepoints within transactions
Determine the role of transactions in high-concurrency databases

Skill 3.2: Manage isolation levels
Identify differences between isolation levels
Define results of concurrent queries based on isolation level
Identify the resource and performance impact of given isolation levels

Skill 3.3: Optimize concurrency and locking behavior
Troubleshoot locking issues
Identify lock escalation behaviors
Capture and analyze deadlock graphs
Identify ways to remediate deadlocks

Skill 3.4: Implement memory-optimized tables and native stored procedures
Define use cases for memory-optimized tables
Optimize performance of in-memory tables
Determine best case usage scenarios for natively compiled stored procedures
Enable collection of execution statistics for natively compiled stored

procedures
Summary

Thought experiment
Thought experiment answers

Chapter 4 Optimize database objects and SQL infrastructure
Skill 4.1: Optimize statistics and indexes

Determine the accuracy of statistics and the associated impact to query plans
and performance

Design statistics maintenance tasks
Use dynamic management objects to review current index usage and identify

missing indexes
Consolidate overlapping indexes

Skill 4.2: Analyze and troubleshoot query plans
Capture query plans using extended events and traces

8

Identify poorly performing query plan operators
Compare estimated and actual query plans and related metadata
Configure Azure SQL Database Performance Insight

Skill 4.3: Manage performance for database instances
Manage database workload in SQL Server
Design and implement Elastic Scale for Azure SQL Database
Select an appropriate service tier or edition
Optimize database file and tempdb configuration
Optimize memory configuration
Monitor and diagnose schedule and wait statistics using dynamic management

objects
Troubleshoot and analyze storage, IO, and cache issues
Monitor Azure SQL Database query plans

Skill 4.4: Monitor and trace SQL Server baseline performance metrics
Monitor operating system and SQL Server performance metrics
Compare baseline metrics to observed metrics while troubleshooting

performance issues
Identify differences between performance monitoring and logging tools
Monitor Azure SQL Database performance
Determine best practice use cases for extended events
Distinguish between Extended Events targets
Compare the impact of Extended Events and SQL Trace
Define differences between Extended Events Packages, Targets, Actions, and

Sessions
Chapter summary

Thought experiment
Thought experiment answer

Index

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please
visit:

https://aka.ms/tellpress

9

https://aka.ms/tellpress

Introduction

The 70-762 exam tests your knowledge about developing databases in Microsoft SQL
Server 2016. To successfully pass this exam, you should know how to create various types
of database objects, such as disk-based and memory-optimized tables, indexes, views, and
stored procedures, to name a few. Not only must you know how and why to develop
specific types of database objects, but you must understand how to manage database
concurrency by correctly using transactions, assigning isolation levels, and troubleshooting
locking behavior. Furthermore, you must demonstrate familiarity with techniques to
optimize database performance by reviewing statistics and index usage, using tools to
troubleshoot and optimize query plans, optimizing the configuration of SQL Server and
server resources, and monitoring SQL Server performance metrics. You must also
understand the similarities and differences between working with databases with SQL
Server on-premises and Windows Azure SQL Database in the cloud.

The 70-762 exam is focused on measuring skills of database professionals, such as
developers or administrators, who are responsible for designing, implementing, or
optimizing relational databases by using SQL Server 2016 or SQL Database. In addition to
reinforcing your existing skills, it measures what you know about new features and
capabilities in SQL Server and SQL Database.

To help you prepare for this exam and reinforce the concepts that it tests, we provide
many different examples that you can try for yourself. Some of these examples require only
that you have installed SQL Server 2016 or have created a Windows Azure subscription.
Other examples require that you download and restore a backup of the Wide World
Importers sample database for SQL Server 2016 from https://github.com/Microsoft/sql-
server-samples/releases/tag/wide-world-importers-v1.0. The file to download from this
page is WideWorldImporters-Full.bak. You can find documentation about this sample
database at Wide World Importers documentation,
https://msdn.microsoft.com/library/mt734199(v=sql.1).aspx.

This book covers every major topic area found on the exam, but it does not cover every
exam question. Only the Microsoft exam team has access to the exam questions, and
Microsoft regularly adds new questions to the exam, making it impossible to cover specific
questions. You should consider this book a supplement to your relevant real-world
experience and other study materials. If you encounter a topic in this book that you do not
feel completely comfortable with, use the “Need more review?” links you’ll find in the text
to find more information and take the time to research and study the topic. Great
information is available on MSDN, TechNet, and in blogs and forums.

Organization of this book
This book is organized by the “Skills measured” list published for the exam. The “Skills

10

https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://msdn.microsoft.com/library/mt734199(v=sql.1).aspx

measured” list is available for each exam on the Microsoft Learning website:
https://aka.ms/examlist. Each chapter in this book corresponds to a major topic area in the
list, and the technical tasks in each topic area determine a chapter’s organization. If an
exam covers six major topic areas, for example, the book will contain six chapters.

Microsoft certifications
Microsoft certifications distinguish you by proving your command of a broad set of skills
and experience with current Microsoft products and technologies. The exams and
corresponding certifications are developed to validate your mastery of critical
competencies as you design and develop, or implement and support, solutions with
Microsoft products and technologies both on-premises and in the cloud. Certification
brings a variety of benefits to the individual and to employers and organizations.

More Info All Microsoft certifications
For information about Microsoft certifications, including a full list of
available certifications, go to https://www.microsoft.com/learning.

Acknowledgments
Louis Davidson I would like to dedicate my half of this book to my wife Valerie, who

put up with me writing my half of this book (a few times) while simultaneously finishing
my Database Design book.

Technically speaking, I would like to thank my colleagues in the MVP community and
program at Microsoft. I have learned so much from them for the many years I have been an
awardee and would never have accomplished so much without them. Far more than one is
referenced for additional material.

Thank you, Stacia, for your work on the book. I appreciate your involvement more than
you can imagine.
Stacia Varga I am grateful to have a community of SQL Server professionals that are
always ready to share their experience and insights related with me, whether through
informal conversations or more extensive reviews of any content that I write. The number
of people with whom I have had informal conversations are too numerous to mention, but
they know who they are. I would like to thank a few people in particular for the more in-
depth help they provided: Joseph D’Antoni, Grant Fritchey, and Brandon Leach. And
thanks to Louis as well. We have been on stage together, we have worked together, and
now we have written together!

Behind the scenes of the publishing process, there are many other people involved that
help us bring this book to fruition. I’d like to thank Trina McDonald for her role as the
acquisitions editor and Troy Mott as the managing editor for his incredible patience with us
and his efforts to make the process as easy as possible. I also appreciate the copyediting by

11

https://aka.ms/examlist
https://www.microsoft.com/learning

Christina Rudloff and technical editing by Christopher Ford to ensure that the information
we provide in this book is communicated as clearly as possible and technically accurate.

Last, I want to thank my husband, Dean Varga, not only for tolerating my crazy work
hours during the writing of this book, but also for doing his best to create an environment
conducive to writing on many different levels.

Free ebooks from Microsoft Press
From technical overviews to in-depth information on special topics, the free ebooks from
Microsoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB,
and Mobi for Kindle formats, ready for you to download at:

https://aka.ms/mspressfree
Check back often to see what is new!

Microsoft Virtual Academy
Build your knowledge of Microsoft technologies with free expert-led online training from
Microsoft Virtual Academy (MVA). MVA offers a comprehensive library of videos, live
events, and more to help you learn the latest technologies and prepare for certification
exams. You’ll find what you need here:

https://www.microsoftvirtualacademy.com

Quick access to online references
Throughout this book are addresses to webpages that the author has recommended you visit
for more information. Some of these addresses (also known as URLs) can be painstaking to
type into a web browser, so we’ve compiled all of them into a single list that readers of the
print edition can refer to while they read.

Download the list at https://aka.ms/examref762/downloads.
The URLs are organized by chapter and heading. Every time you come across a URL in

the book, find the hyperlink in the list to go directly to the webpage.

Errata, updates, & book support
We’ve made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at:

https://aka.ms/examref762/detail
If you discover an error that is not already listed, please submit it to us at the same page.
If you need additional support, email Microsoft Press Book Support at

mspinput@microsoft.com.
Please note that product support for Microsoft software and hardware is not offered

12

https://aka.ms/mspressfree
https://www.microsoftvirtualacademy.com
https://aka.ms/examref762/downloads
https://aka.ms/examref762/detail
mailto:mspinput@microsoft.com

through the previous addresses. For help with Microsoft software or hardware, go to
https://support.microsoft.com.

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

https://aka.ms/tellpress
We know you’re busy, so we’ve kept it short with just a few questions. Your answers go

directly to the editors at Microsoft Press. (No personal information will be requested.)
Thanks in advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

Important: How to use this book to study for the exam
Certification exams validate your on-the-job experience and product knowledge. To gauge
your readiness to take an exam, use this Exam Ref to help you check your understanding of
the skills tested by the exam. Determine the topics you know well and the areas in which
you need more experience. To help you refresh your skills in specific areas, we have also
provided “Need more review?” pointers, which direct you to more in-depth information
outside the book.

The Exam Ref is not a substitute for hands-on experience. This book is not designed to
teach you new skills.

We recommend that you round out your exam preparation by using a combination of
available study materials and courses. Learn more about available classroom training at
https://www.microsoft.com/learning. Microsoft Official Practice Tests are available for
many exams at https://aka.ms/practicetests. You can also find free online courses and live
events from Microsoft Virtual Academy at https://www.microsoftvirtualacademy.com.

This book is organized by the “Skills measured” list published for the exam. The “Skills
measured” list for each exam is available on the Microsoft Learning website:
https://aka.ms/examlist.

Note that this Exam Ref is based on this publicly available information and the author’s
experience. To safeguard the integrity of the exam, authors do not have access to the exam
questions.

13

https://support.microsoft.com
https://aka.ms/tellpress
http://twitter.com/MicrosoftPress
https://www.microsoft.com/learning
https://aka.ms/practicetests
https://www.microsoftvirtualacademy.com
https://aka.ms/examlist

Chapter 1. Design and implement database objects

Developing and implementing a database for SQL Server starts with understanding both the
process of designing a database and the basic structures that make up a database. A firm
grip on those fundamentals is a must for an SQL Server developer, and is even more
important for taking this exam.

Important Have you read page xv?
It contains valuable information regarding the skills you need to pass the
exam.

We begin with the fundamentals of a typical database meant to store information about a
business. This is generally referred to as online transaction processing (OLTP), where the
goal is to store data that accurately reflects what happens in the business in a manner that
works well for the applications. For this pattern, we review the relational database design
pattern, which is covered in Skill 1.1. OLTP databases can be used to store more than
business transactions, including the ability to store any data about your business, such as
customer details, appointments, and so on.

Skills 1.2 and 1.3 cover some of the basic constructs, including indexes and views, that
go into forming the physical database structures (Transact-SQL code) that applications use
to create the foundational objects your applications use to do business.

In Skill 1.4 we explore columnstore indexes that focus strictly on analytics. While
discussing analytics, we look at the de facto standard for building reporting structures
called dimensional design. In dimensional design, the goal is to format the data in a form
that makes it easier to extract results from large sets of data without touching a lot of
different structures.
Skills in this chapter:

 Design and implement a relational database schema
 Design and implement indexes
 Design and implement views
 Implement columnstore indexes

Skill 1.1: Design and implement a relational database schema
In this section, we review some of the factors that go into creating the base tables that make
up a relational database. The process of creating a relational database is not tremendously
difficult. People build similar structures using Microsoft Excel every day. In this section,
we are going to look at the basic steps that are needed to get started creating a database in

14

a professional manner.

This section covers how to:
 Design tables and schemas based on business requirements
 Improve the design of tables by using normalization
 Write create table statements
 Determine the most efficient data types to use

Designing tables and schemas based on business requirements
A very difficult part of any project is taking the time to gather business requirements. Not
because it is particularly difficult in terms of technical skills, but because it takes lots of
time and attention to detail. This exam that you are studying for is about developing the
database, and the vast majority of topics center on the mechanical processes around the
creation of objects to store and manipulate data via Transact-SQL code. However, the first
few sections of this skill focus on required skills prior to actually writing Transact-SQL.

Most of the examples in this book, and likely on the exam, are abstract, contrived, and
targeted to a single example; either using a sample database from Microsoft, or using
examples that include only the minimal details for the particular concept being reviewed.
There are, however, a few topics that require a more detailed narrative. To review the
topic of designing a database, we need to start out with some basic requirements, using
them to design a database that demonstrates database design concepts and normalization.

We have a scenario that defines a database need, including some very basic
requirements. Questions on the exam can easily follow this pattern of giving you a small set
of requirements and table structures that you need to match to the requirements. This
scenario will be used as the basis for the first two sections of this chapter.

Imagine that you are trying to write a system to manage an inventory of computers and
computer peripherals for a large organization. Someone has created a document similar in
scope to the following scenario (realistic requirements are often hundreds or even
thousands of pages long, but you can learn a lot from a single paragraph):

We have 1,000 computers, comprised of laptops, workstations, and tablets. Each
computer has items associated with it, which we will list as mouse, keyboard,
etc. Each computer has a tag number associated with it, and is tagged on each
device with a tag graphic that can be read by tag readers manufactured by
“Trey Research” (http://www.treyresearch.net/) or “Litware, Inc”
(http://www.litwareinc.com/). Of course tag numbers are unique across tag
readers. We don’t know which employees are assigned which computers, but all
computers that cost more than $300 are inventoried for the first three years
after purchase using a different software system. Finally, employees need to

15

http://www.treyresearch.net/
http://www.litwareinc.com/

have their names recorded, along with their employee number in this system.

Let’s look for the tables and columns that match the needs of the requirements. We won’t
actually create any tables yet, because this is just the first step in the process of database
design. In the next section, we spend time looking at specific tests that we apply to our
design, followed by two sections on creating the table structures of a database.

The process of database design involves scanning requirements, looking for key types of
words and phrases. For tables, you look for the nouns such as “computers” or “employee.”
These can be tables in your final database. Some of these nouns you discover in the
requirements are simply subsets of one another: “computer” and “laptop.” For example,
laptop is not necessarily its own table at all, but instead may be just a type of computer.
Whether or not you need a specific table for laptops, workstations, or tablets isn’t likely to
be important. The point is to match a possible solution with a set of requirements.

After scanning for nouns, you have your list of likely objects on which to save data.
These will typically become tables after we complete our design, but still need to be
refined by the normalization process that we will cover in the next section:

1. Computer
2. Employee

The next step is to look for attributes of each object. You do this by scanning the text
looking for bits of information that might be stored about each object. For the Computer
object, you see that there is a Type of Computer (laptop, workstation, or tablet), an
Associated Item List, a Tag, a Tag Company, and a Tag Company URL, along with the Cost
of the computer and employee that the computer is assigned to. Additionally, in the
requirements, we also have the fact that they keep the computer inventoried for the first
three years after purchase if it is > $300, so we need to record the Purchase Date. For the
Employee object we are required to capture their Name and Employee Number.

Now we have the basic table structures to extract from the requirements, (though we still
require some refinement in the following section on normalization) and we also define
schemas, which are security/organizational groupings of tables and code for our
implemented database. In our case, we define two schemas: Equipment and
HumanResources.

Our design consists of the following possible tables and columns:
1. Equipment.Computer: (ComputerType, AssociatedItemList, Tag, TagCompany,

TagCompanyURL, ComputerCost, PurchaseDate, AssignedEmployee)
2. HumanResources.Employee: (Name, EmployeeNumber)

The next step in the process is to look for how you would uniquely identify a row in your
potential database. For example, how do you tell one computer from another. In the
requirements, we are told that, “Each computer has a tag number,” so we will identify that
the Tag attribute must be unique for each Computer.

16

This process of designing the database requires you to work through the requirements
until you have a set of tables that match the requirements you’ve been given.

In the real world, you don’t alter the design from the provided requirements unless you
discuss it with the customer. And in an exam question, you do whatever is written,
regardless of whether it makes perfect sense. Do you need the URL of the TagCompany, for
instance? If so, why? For the purposes of this exam, we will focus on the process of
translating words into tables.

Note Logical Database Model
Our progress so far in designing this sample database is similar to what is
referred to as a logical database model. For brevity, we have skipped some of
the steps in a realistic design process. We continue to refine this example in
upcoming sections.

Improving the design of tables by using normalization
Normalization is a set of “rules” that cover some of the most fundamental structural issues
with relational database designs (there are other issues beyond normalization—for
example, naming—that we do not talk about.) All of the rules are very simple at their core
and each will deal with eliminating some issue that is problematic to the users of a
database when trying to store data with the least redundancy and highest potential for
performance using SQL Server 2016’s relational engine.

The typical approach in database design is to work instinctively and then use the
principles of normalization as a test to your design. You can expect questions on
normalization to be similar, asking questions like, “is this a well-designed table to meet
some requirement?” and any of the normal forms that might apply.

However, in this section, we review the normal forms individually, just to make the
review process more straightforward. The rules are stated in terms of forms, some of
which are numbered, and some which are named for the creators of the rule. The rules form
a progression, with each rule becoming more and more strict. To be in a stricter normal
form, you need to also conform to the lesser form, though none of these rules are ever
followed one hundred percent of the time.

The most important thing to understand will be the concepts of normalization, and
particularly how to verify that a design is normalized. In the following sections, we will
review two families of normalization concepts:

 Rules covering the shape of a table
 Rules covering the relationship of non-key attributes to key attributes

Rules covering the shape of a table
A table’s structure—based on what SQL Server (and most relational database management

17

systems, or RDBMSs) allow—is a very loose structure. Tables consist of rows and
columns. You can put anything you want in the table, and you can have millions, even
billions of rows. However, just because you can do something, doesn’t mean it is correct.

The first part of these rules is defined by the mathematical definition of a relation (which
is more or less synonymous with the proper structure of a table). Relations require that you
have no duplicated rows. In database terminology, a column or set of columns that are used
to uniquely identify one row from another is called a key. There are several types of keys
we discuss in the following section, and they are all columns to identify a row (other than
what is called a foreign key, which are columns in a table that reference another table’s key
attributes). Continuing with the example we started in the previous section, we have one
such example in our design so far with: HumanResources.Employee: (Name,
EmployeeNumber).

Using the Employee table definition that we started with back in the first section of this
chapter, it would be allowable to have the following two rows of data represented:
Click here to view code image

Name EmployeeNumber
--------------------------------- ---------------
Harmetz, Adam 000010012
Harmetz, Adam 000010012

This would not be a proper table, since you cannot tell one row from another. Many
people try to fix this by adding some random bit of data (commonly called an artificial key
value), like some auto generated number. This then provides a structure with data like the
following, with some more data that is even more messed up, but still legal as the structure
allows:
Click here to view code image

EmployeeId Name EmployeeNumber
----------- ------------------------------ --------------------

 1 Harmetz, Adam 000010012
 2 Harmetz, Adam 000010012
 3 Popkova, Darya 000000012
 4 Popkova, Darya 000000013

In the next section on creating tables, we begin the review of ways we can enforce the
uniqueness on data in column(s), but for now, let’s keep it strictly in design mode. While
this seems to make the table better, unless the EmployeeId column actually has some
meaning to the user, all that has been done is to make the problem worse because someone
looking for Adam’s information can get one row or the other. What we really want is some
sort of data in the table that makes the data unique based on data the user chooses. Name is
not the correct choice, because two people can have the same name, but EmployeeNumber

18

is data that the user knows, and is used in an organization to identify an employee. A key
like this is commonly known as a natural key. When your table is created, the artificial key
is referred to as a surrogate key, which means it is a stand-in for the natural key for
performance reasons. We talk more about these concepts in the “Determining the most
efficient data types to use” section and again in Chapter 2, Skill 2.1 when choosing
UNIQUE and PRIMARY KEY constraints.

After defining that EmployeeNumber must be unique, our table of data looks like the
following:
Click here to view code image

EmployeeId Name EmployeeNumber
---------- --------------------------------- ------------------

 1 Harmetz, Adam 000010012
 2 Popkova, Darya 000000013

The next two criteria concerning row shape are defined in the First Normal Form. It has
two primary requirements that your table design must adhere to:

1. All columns must be atomic—that is, each column should represent one value
2. All rows of a table must contain the same number of values—no arrays

Starting with atomic column values, consider that we have a column in the Employee
table we are working on that probably has a non-atomic value (probably because it is
based on the requirements). Be sure to read the questions carefully to make sure you are not
assuming things. The name column has values that contain a delimiter between what turns
out to be the last name and first name of the person. If this is always the case then you need
to record the first and last name of the person seperately. So in our table design, we will
break ‘Harmetz, Adam’ into first name: ‘Adam’ and last name: ‘Harmetz’. This is
represented here:
Click here to view code image

EmployeeId LastName FirstName EmployeeNumber
---------- --------------- ----------------- ---------------
 1 Harmetz Adam 000010012
 2 Popkova Darya 000000013

For our design, let’s leave off the EmployeeId column for clarity in the design. So the
structure looks like:
Click here to view code image

HumanResources.Employee (EmployeeNumber [key], LastName,
FirstName)

Obviously the value here is that when you need to search for someone named ‘Adam,’

19

you don’t need to search on a partial value. Queries on partial values, particularly when
the partial value does not include the leftmost character of a string, are not ideal for SQL
Server’s indexing strategies. So, the desire is that every column represents just a single
value. In reality, names are always more complex than just last name and first name,
because people have suffixes and titles that they really want to see beside their name (for
example, if it was Dr. Darya Popkova, feelings could be hurt if the Dr. was dropped in
correspondence with them.)

The second criteria for the first normal form is the rule about no repeating groups/arrays.
A lot of times, the data that doesn’t fit the atomic criteria is not different items, such as
parts of a name, but rather it’s a list of items that are the same types of things. For example,
in our requirements, there is a column in the Computer table that is a list of items named
AssociatedItemList and the example: ‘mouse, keyboard.’ Looking at this data, a row might
look like the following:
Click here to view code image

Tag AssociatedItemList
------ ------------------------------------
 s344 mouse, keyboard

From here, there are a few choices. If there are always two items associated to a
computer, you might add a column for the first item, and again for a second item to the
structure. But that is not what we are told in the requirements. They state: “Each computer
has items associated with it.” This can be any number of items. Since the goal is to make
sure that column values are atomic, we definitely want to get rid of the column containing
the delimited list. So the next inclination is to make a repeating group of column values,
like:
Click here to view code image

Tag AssociatedItem1 AssociatedItem2 ... AssociatedItemN
------ --------------- --------------- ... -----------------
 s344 mouse keyboard ... not applicable

This however, is not the desired outcome, because now you have created a fixed array of
associated items with an index in the column name. It is very inflexible, and is limited to
the number of columns you want to add. Even worse is that if you need to add something
like a tag to the associated items, you end up with a structure that is very complex to work
with:
Click here to view code image

Tag AssociatedItem1 AssociatedItem1Tag AssociatedItem2
AssociatedItem2Tag
------ --------------- ------------------ --------------- -----

 s344 mouse r232 keyboard q472

20

Instead of this structure, create a new table that has a reference back to the original table,
and the attributes that are desired:

Tag AssociatedItem
------ -----------------
 s344 mouse
 s344 keyboard

So our object is: Equipment.ComputerAssociatedItem (Tag [Reference to Computer],
AssociatedItem, [key Tag, AssociatedItem).

Now, if you need to search for computers that have keyboards associated, you don’t need
to either pick it out of a comma delimited list, nor do you need to look in multiple columns.
Assuming you are reviewing for this exam, and already know a good deal about how
indexes and queries work, you should see that everything we have done in this first section
on normalization is going to be great for performance. The entire desire is to make scalar
values that index well and can be searched for. It is never wrong to do a partial value
search (if you can’t remember how keyboard is spelled, for example, looking for
associated items LIKE ‘%k%’ isn’t a violation of any moral laws, it just isn’t a design goal
that you are be trying to attain.

Rules covering the relationship of non-key attributes to key attributes
Once your data is shaped in a form that works best for the engine, you need to look at the
relationship between attributes, looking for redundant data being stored that can get out of
sync. In the first normalization section covering the shape of attributes, the tables were
formed to ensure that each row in the structure was unique by choosing keys. For our two
primary objects so far, we have:
Click here to view code image

HumanResources.Employee (EmployeeNumber)

Equipment.Computer (Tag)

In this section, we are going to look at how the other columns in the table relate to the
key attributes. There are three normal forms that are related to this discussion:

 Second Normal Form All attributes must be a fact about the entire primary key and
not a subset of the primary key.
 Third Normal Form All attributes must be a fact about the entire primary key, and
not any non-primary key attributes
For the second normal form to be a concern, you must have a table with multiple
columns in the primary key. For example, say you have a table that defines a car
parked in a parking space. This table can have the following columns:
 CarLicenseTag (Key Column1)

21

 SpaceNumber (Key Column2)
 ParkedTime
 CarColor
 CarModel
 CarManufacturer
 CarManufacturerHeadquarters

Each of the nonkey attributes should say something about the combination of the two
key attributes. The ParkedTime column is the time when the car was parked. This
attribute makes sense. The others are all specifically about the car itself. So you need
another table that looks like the following where all of the columns are moved to (the
CarLicenseTag column stays as a reference to this new table. Now you have a
table that represents the details about a car with the following columns:
 CarLicenseTag (Key Column)
 CarColor
 CarModel
 CarManufacturer
 CarManufacturerHeadquarters

Since there is a single key column, this must be in second normal form (like how the
table we left behind with the CarLicenseTag, SpaceNumber and
ParkedTime since ParkedTime references the entire key.) Now we turn our
attention to the third normal form. Here we make sure that each attribute is solely
focused on the primary key column. A car has a color, a model, and a manufacturer.
But does it have a CarManufacturerHeadquarters? No, the manufacturer
does. So you would create another table for that attribute and the key
CarManufacturer. Progress through the design making more tables until you
have eliminated redundancy.
The redundancy is troublesome because if you were to change the headquarter
location for a manufacturer, you might need to do so for more than the one row or end
up with mismatched data. Raymond Boyce and Edgar Codd (the original author of the
normalization forms), refined these two normal forms into the following normal form,
named after them:
 Boyce-Codd Normal Form Every candidate key is identified, all attributes are fully
dependent on a key, and all columns must identify a fact about a key and nothing but a
key.

All of these forms are stating that once you have set what columns uniquely define a row
in a table, the rest of the columns should refer to what the key value represents. Continuing
with the design based on the scenario/requirement we have used so far in the chapter,

22

consider the Equipment.Computer table. We have the following columns defined (Note that
AssociatedItemList was removed from the table in the previous section):
Click here to view code image

Tag (key attribute), ComputerType, TagCompany, TagCompanyURL,
ComputerCost,
PurchaseDate, AssignedEmployee

In this list of columns for the Computer table, your job is to decide which of these
columns describes what the Tag attribute is identifying, which is a computer. The Tag
column value itself does not seem to describe the computer, and that’s fine. It is a number
that has been associated with a computer by the business in order to be able to tell two
physical devices apart. However, for each of the other attributes, it’s important to decide if
the attribute describes something about the computer, or something else entirely. It is a
good idea to take each column independently and think about what it means.

 ComputerType Describes the type of computer that is being inventoried.
 TagCompany The tag has a tag company, and since we defined that the tag number
was unique across companies, this attribute is violating the Boyce-Codd Normal
Form and must be moved to a different table.
 TagCompanyURL Much like TagCompany, the URL for the company is definitely
not describing the computer.
 ComputerCost Describes how much the computer cost when purchased.
 PurchaseDate Indicates when the computer was purchased.
 AssignedEmployee This is a reference to the Employee structure. So while a
computer doesn’t really have an assigned employee in the real world, it does make
sense in the overall design as it describes an attribute of the computer as it stands in
the business.

Now, our design for these two tables looks like the following:
Click here to view code image

Equipment.Computer (Tag [key, ref to Tag], ComputerType,
ComputerCost, PurchaseDate,
AssignedEmployee [Reference to Employee]

Equipment.Tag (Tag [key], TagCompany, TagCompanyURL)

If the tables have the same key columns, do we need two tables? This depends on your
requirements, but it is not out of the ordinary that you have two tables that are related to
one another with a cardinality of one-to-one. In this case, you have a pool of tags that get
created, and then assigned, to a device, or tags could have more than one use. Make sure to
always take your time and understand the requirements that you are given with your
question.

23

So we now have:
Click here to view code image

Equipment.Computer (Tag [key, Ref to Tag], ComputerType,
ComputerCost, PurchaseDate,
AssignedEmployee [Reference to Employee]
Equipment.TagCompany (TagCompany [key], TagCompanyURL)
Equipment.Tag (Tag [key], TagCompany [Reference to TagCompany])

And we have this, in addition to the objects we previously specified:
Click here to view code image

Equipment.ComputerAssociatedItem (Tag [Reference to Computer],
AssociatedItem, [key
Tag, AssociatedItem)

HumanResources.Employee (EmployeeNumber [key], LastName,
FirstName)

Generally speaking, the third normal form is referred to as the most important normal
form, and for the exam it is important to understand that each table has one meaning, and
each scalar attribute refers to the entire natural key of the final objects. Good practice can
be had by working through tables in your own databases, or in our examples, such as the
WideWorldImporters (the newest example database they have created), AdventureWorks,
Northwind, or even Pubs. None of these databases are perfect, because doing an excellent
job designing a database sometimes makes for really complex examples. Note that we
don’t have the detailed requirements for these sample databases. Don’t be tricked by
thinking you know what a system should look like by experience. The only thing worse than
having no knowledge of your customer’s business is having too much knowledge of their
business.

Need More Review? Database Design and Normalization
What has been covered in this book is a very small patterns and techniques for
database design that exist in the real world, and does not represent all of the
normal forms that have been defined. Boyce-Codd/Third normal form is
generally the limit of most writers. For more information on the complete
process of database design, check out “Pro SQL Server Relational Database
Design and Implementation,” written by Louis Davidson for Apress in 2016.
Or, for a more academic look at the process, get the latest edition of “An
Introduction to Database Systems” by Chris Date with Pearson Press.

One last term needs to be defined: denormalization. After you have normalized your
database, and have tested it out, there can be reasons to undo some of the things you have

24

done for performance. For example, later in the chapter, we add a formatted version of an
employee’s name. To do this, it duplicates the data in the LastName and FirstName columns
of the table (in order to show a few concepts in implementation). A poor design for this is
to have another column that the user can edit, because they might not get the name right.
Better implementations are available in the implementation of a database.

Writing table create statements
The hard work in creating a database is done at this point of the process, and the process
now is to simply translate a design into a physical database. In this section, we’ll review
the basic syntax of creating tables. In Chapter 2 we delve a bit deeper into the discussion
about how to choose proper uniqueness constraints but we cover the mechanics of
including such objects here.

Before we move onto CREATE TABLE statements, a brief discussion on object naming
is useful. You sometimes see names like the following used to name a table that contain
rows of purchase orders:

 PurchaseOrder
 PURCHASEORDER
 PO
 purchase_orders
 tbl_PurchaseOrder
 A12
 [Purchase Order] or “Purchase Order”

Of these naming styles, there are a few that are typically considered sub-optimal:
 PO Using abbreviations, unless universally acceptable tend to make a design more
complex for newcomers and long-term users alike.
 PURCHASEORDER All capitals tends to make your design like it is 1970, which
can hide some of your great work to make a modern computer system.
 tbl_PurchaseOrder Using a clunky prefix to say that this is a table reduces the
documentation value of the name by making users ask what tbl means (admittedly this
could show up in exam questions as it is not universally disliked).
 A12 This indicates that this is a database where the designer is trying to hide the
details of the database from the user.
 [Purchase Order] or “Purchase Order” Names that require delimiters, [brackets],
or “double-quotes” are terribly hard to work with. Of the delimiter types, double-
quotes are more standards-oriented, while the brackets are more typical SQL Server
coding. Between the delimiters you can use any Unicode characters.

The more normal, programmer friendly naming standards are using Pascal-casing

25

(Leading character capitalized, words concatenated: PurchaseOrder), Camel Casing
(leading character lower case: purchaseOrder), or using underscores as delimiters
(purchase_order).

Need More Review? Database Naming Rules
This is a very brief review of naming objects. Object names must fall in the
guidelines of a database identifier, which has a few additional rules. You can
read more about database identifiers here in this MSDN article:
https://msdn.microsoft.com/en-us/library/ms175874.aspx.

Sometimes names are plural, and sometimes singular, and consistency is the general key.
For the exam, there are likely to be names of any format, plural, singular, or both. Other
than interpreting the meaning of the name, naming is not listed as a skill.

To start with, create a schema to put objects in. Schemas allow you to group together
objects for security and logical ordering. By default, there is a schema in every database
called dbo, which is there for the database owner. For most example code in this chapter,
we use a schema named Examples located in a database named ExamBook762Ch1, which
you see referenced in some error messages.
Click here to view code image

CREATE SCHEMA Examples;
GO --CREATE SCHEMA must be the only statement in the batch

The CREATE SCHEMA statement is terminated with a semicolon at the end of the
statement. All statements in Transact-SQL can be terminated with a semicolon. While not
all statements must end with a semicolon in SQL Server 2016, not terminating statements
with a semicolon is a deprecated feature, so it is a good habit to get into. GO is not a
statement in Transact-SQL it is a batch separator that splits your queries into multiple
server communications, so it does not need (or allow) termination.

To create our first table, start with a simple structure that’s defined to hold the name of a
widget, with attributes for name and a code:
Click here to view code image

CREATE TABLE Examples.Widget
(
 WidgetCode varchar(10) NOT NULL
 CONSTRAINT PKWidget PRIMARY KEY,
 WidgetName varchar(100) NULL
);

Let’s break down this statement into parts:
Click here to view code image

26

https://msdn.microsoft.com/en-us/library/ms175874.aspx

CREATE TABLE Examples.Widget

Here we are naming the table to be created. The name of the table must be unique from
all other object names, including tables, views, constraints, procedures, etc. Note that it is
a best practice to reference all objects explicitly by at least their two-part names, which
includes the name of the object prefixed with a schema name, so most of the code in this
book will use two-part names. In addition, object names that a user may reference directly
such as tables, views, stored procedures, etc. have a total of four possible parts. For
example, Server.Database.Schema.Object has the following parts:

 Server The local server, or a linked server name that has been configured. By
default, the local server from which you are executing the query.
 Database The database where the object you are addressing resides. By default, this
is the database that to which you have set your context.
 Schema The name of the schema where the object you are accessing resides within
the database. Every login has a default schema which defaults to dbo. If the schema is
not specified, the default schema will be searched for a matching name.
 Object The name of the object you are accessing, which is not optional.

In the CREATE TABLE statement, if you omit the schema, it is created in the default
schema. So the CREATE TABLE Widget would, by default, create the table dbo.Widget in
the database of context. You can create the table in a different database by specifying the
database name: CREATE TABLE Tempdb..Widget or Tempdb.dbo.Widget. There is an
article here: (https://technet.microsoft.com/en-us/library/ms187879.aspx.) from an older
version of books online that show you the many different forms of addressing an object.

The next line:
Click here to view code image

 WidgetCode varchar(10) NOT NULL

This specifies the name of the column, then the data type of that column. There are many
different data types, and we examine their use and how to make the best choice in the next
section. For now, just leave it as this determines the format of the data that is stored in this
column. NOT NULL indicates that you must have a known value for the column. If it simply
said NULL, then it indicates the value of the column is allowed to be NULL.

NULL is a special value that mathematically means UKNOWN. A few simple equations
that can help clarify NULL is that: UNKNOWN + any value = UNKNOWN, and
NOT(UNKNOWN) = UNKNOWN. If you don’t know a value, adding any other value to it
is still unknown. And if you don’t know if a value is TRUE or FALSE, the opposite of that
is still not known. In comparisons, A NULL expression is never equivalent to a NULL
expression. So if you have the following conditional: IF (NULL = NULL); the expression
would not be TRUE, so it would not succeed.

27

https://technet.microsoft.com/en-us/library/ms187879.aspx

If you leave off the NULL specification, whether or not the column allows NULL values
is based on a couple of things. If the column is part of a PRIMARY KEY constraint that is
being added in the CREATE TABLE statement (like in the next line of code), or the setting:
SET ANSI_NULL_DFLT_ON, then NULL values are allowed.

Note NULL Specification
For details on the SET ANSI_NULL_DFLT_ON setting, go to
https://msdn.microsoft.com/en-us/library/ms187375.aspx.). It is considered
a best practice to always specify a NULL specification for columns in your
CREATE and ALTER table statements.

The following line of code is a continuation of the previous line of code, since it was not
terminated with a comma (broken out to make it easier to explain):
Click here to view code image

 CONSTRAINT PKWidget PRIMARY KEY,

This is how you add a constraint to a single column. In this case, we are defining that the
WidgetCode column is the only column that makes up the primary key of the table. The
CONSTRAINT PKWidget names the constraint. The constraint name must be unique within
the schema, just like the table name. If you leave the name off and just code it as PRIMARY
KEY, SQL Server provides a name that is guaranteed unique, such as
PK__Widget__1E5F7A7F7A139099. Such a name changes every time you create the
constraint, so it’s really only suited to temporary tables (named either with # or ## as a
prefix for local or global temporary objects, respectively).

Alternatively, this PRIMARY KEY constraint could have been defined independently of
the column definition as (with the leading comma there for emphasis):
Click here to view code image

 ,CONSTRAINT PKWidget PRIMARY KEY
(WidgetCode),

This form is needed when you have more than one column in the PRIMARY KEY
constraint, like if both the WidgetCode and WidgetName made up the primary key value:
Click here to view code image

 ,CONSTRAINT PKWidget PRIMARY KEY
(WidgetCode, WidgetName),

This covers the simple version of the CREATE TABLE statement, but there are a few
additional settings to be aware of. First, if you want to put your table on a file group other
than the default one, you use the ON clause:
Click here to view code image

28

https://msdn.microsoft.com/en-us/library/ms187375.aspx

CREATE TABLE Examples.Widget
(
 WidgetCode varchar(10) NOT NULL
 CONSTRAINT PKWidget PRIMARY KEY,
 WidgetName varchar(100) NULL
) ON FileGroupName;

There are also table options for using temporal extensions, as well as partitioning. These
are not a part of this exam, so we do not cover them in any detail, other than to note their
existence.

In addition to being able to use the CREATE TABLE statement to create a table, it is not
uncommon to encounter the ALTER TABLE statement on the exam to add or remove a
constraint. The ALTER TABLE statement allows you to add columns to a table and make
changes to some settings.

For example, you can add a column using:
Click here to view code image

ALTER TABLE Examples.Widget
 ADD NullableColumn int NULL;

If there is data in the table, you either have to create the column to allow NULL values,
or create a DEFAULT constraint along with the column (which is covered in greater detail
in Chapter 2, Skill 2.1).
Click here to view code image

ALTER TABLE Examples.Widget
 ADD NotNullableColumn int NOT NULL
 CONSTRAINT DFLTWidget_NotNullableColumn DEFAULT ('Some
Value');
To drop the column, you need to drop referencing constraints,
which you also do with the
ALTER TABLE statement:

ALTER TABLE Examples.Widget
 DROP DFLTWidget_NotNullableColumn;

Finally, we will drop this column (because it would be against the normalization rules
we have discussed to have this duplicated data) using:
Click here to view code image

ALTER TABLE Examples.Widget
 DROP COLUMN NotNullableColumn;

Need More Review? Creating and Altering Tables
We don’t touch on everything about the CREATE TABLE or ALTER TABLE

29

statement, but you can read more about the various additional settings you can
see in Books Online in the CREATE TABLE (https://msdn.microsoft.com/en-
us/library/ms174979.aspx) and ALTER TABLE
(https://msdn.microsoft.com/en-us/library/ms190273.aspx) topics.

Determining the most efficient data types to use
Every column in a database has a data type, which is the first in a series of choices to limit
what data can be stored. There are data types for storing numbers, characters, dates, times,
etc., and it’s your job to make sure you have picked the very best data type for the need.
Choosing the best type has immense value for the systems implemented using the database.

 It serves as the first limitation of domain of data values that the columns can
store. If the range of data desired is the name of the days of the week, having a
column that allows only integers is completely useless. If you need the values in a
column to be between 0 and 350, a tinyint won’t work because it has a maximum of
256, so a better choice is smallint, that goes between –32,768 and 32,767, In Chapter
2, we look at several techniques using CONSTRAINT and TRIGGER objects to
limit a column’s value even further.
 It is important for performance Take a value that represents the 12th of July, 1999.
You could store it in a char(30) as ‘12th of July, 1999’, or in a char(8) as
‘19990712’. Searching for one value in either case requires knowledge of the format,
and doing ranges of date values is complex, and even very costly, performance-wise.
Using a date data type makes the coding natural for the developer and the query
processor.

When handled improperly, data types are frequently a source of interesting issues for
users. Don’t limit data enough, and you end up with incorrect, wildly formatted data. Limit
too much, like only allowing 35 letters for a last name, and Janice “Lokelani”
Keihanaikukauakahihuliheekahaunaele has to have her name truncated on her driver’s
license (true story, as you can see in the following article on USA Today
http://www.usatoday.com/story/news/nation/2013/12/30/hawaii-long-name/4256063/).

SQL Server has an extensive set of data types that you can choose from to match almost
any need. The following list contains the data types along with notes about storage and
purpose where needed.

 Precise Numeric Stores number-based data with loss of precision in how it stored.
 bit Has a domain of 1, 0, or NULL; Usually used as a pseudo-Boolean by using 1 =
True, 0 = False, NULL = Unknown. Note that some typical integer operations, like
basic math, cannot be performed. (1 byte for up to 8 values)
 tinyint Integers between 0 and 255 (1 byte).
 smallint Integers between –32,768 and 32,767 (2 bytes).

30

https://msdn.microsoft.com/en-us/library/ms174979.aspx
https://msdn.microsoft.com/en-us/library/ms190273.aspx
http://www.usatoday.com/story/news/nation/2013/12/30/hawaii-long-name/4256063/

 int Integers between 2,147,483,648 to 2,147,483,647 (–2^31 to 2^31 – 1) (4
bytes).
 bigint Integers between 9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
(-2^63 to 2^63 – 1) (8 bytes).
 decimal (or numeric which are functionally the same, with decimal the more
standard type): All numbers between –10^38 – 1 and 10^38 – 1, with a fixed set
of digits up to 38. decimal(3,2) would be a number between -9.99 and 9.99. And
decimal(38,37), with be a number with one digit before the decimal point, and 37
places after it. Uses between 5 and 17 bytes, depending on precision.
 money Monetary values from –922,337,203,685,477.5808 through
922,337,203,685,477.5807 (8 bytes).
 smallmoney Money values from –214,748.3648 through 214,748.3647 (4 bytes).

 Approximate numeric data Stores approximations of numbers based on IEEE 754
standard, typically for scientific usage. Allows a large range of values with a high
amount of precision but you lose precision of very large or very small numbers.
 float(N) Values in the range from –1.79E + 308 through 1.79E + 308 (storage
varies from 4 bytes for N between 1 and 24, and 8 bytes for N between 25 and 53).
 real Values in the range from –3.40E + 38 through 3.40E + 38. real is an ISO
synonym for a float(24) data type, and hence equivalent (4 bytes).

 Date and time values Stores values that deal storing a point in time.
 date Date-only values from January 1, 0001, to December 31, 9999 (3 bytes).
 time(N) Time-of-day-only values with N representing the fractional parts of a
second that can be stored. time(7) is down to HH:MM:SS.0000001 (3 to 5 bytes).
 datetime2(N) This type stores a point in time from January 1, 0001, to December
31, 9999, with accuracy just like the time type for seconds (6 to 8 bytes).
 datetimeoffset Same as datetime2, plus includes an offset for time zone offset
(does not deal with daylight saving time) (8 to 10 bytes).
 smalldatetime A point in time from January 1, 1900, through June 6, 2079, with
accuracy to 1 minute (4 bytes).
 datetime Points in time from January 1, 1753, to December 31, 9999, with
accuracy to 3.33 milliseconds (so the series of fractional seconds starts as: .003,
.007, .010, .013, .017 and so on) (8 bytes).

 Binary data Strings of bits used for storing things like files, encrypted values, etc.
Storage for these data types is based on the size of the data stored in bytes, plus any
overhead for variable length data.
 binary(N) Fixed-length binary data with a maximum value of N of 8000, for an
8,000 byte long binary value.

31

 varbinary(N) Variable-length binary data with maximum value of N of 8,000.
 varbinary(max) Variable-length binary data up to (2^31) – 1 bytes (2GB) long.
Values are often stored using filestream filegroups, which allow you to access files
directly via the Windows API, and directly from the Windows File Explorer using
filetables.

 Character (or string) data String values, used to store text values. Storage is
specified in number of characters in the string.
 char(N) Fixed-length character data up to 8,000 characters long. When using fixed
length data types, it is best if most of the values in the column are the same, or at
least use most of the column.
 varchar(N) Variable-length character data up to 8,000 characters long.
 varchar(max) Variable-length character data up to (2^31) – 1 bytes (2GB) long.
This is a very long string of characters, and should be used with caution as
returning rows with 2GB per row can be hard on your network connection.
 nchar, nvarchar, nvarchar(max) Unicode equivalents of char, varchar, and
varchar(max). Unicode is a double (and in some cases triple) byte character set that
allows for more than the 256 characters at a time that the ASCII characters do.
Support for Unicode is covered in detail in this article:
https://msdn.microsoft.com/en-us/library/ms143726.aspx. It is generally accepted
that it is best to use Unicode when storing any data where you have no control over
the data that is entered. For example, object names in SQL Server allow Unicode
names, to support most any characters that a person might want to use for names. It
is very common that columns for people’s names are stored in Unicode to allow for
a full range of characters to be stored.

 Other data types Here are a few more data types:
 sql_variant Stores nearly any data type, other than CLR based ones like
hierarchyId, spatial types, and types with a maximum length of over 8016 bytes.
Infrequently used for patterns where the data type of a value is unknown before
design time.
 rowversion (timestamp is a synonym) Used for optimistic locking to version-
stamp in a row. The value in the rowversion data type-based column changes on
every modification of the row. The name of this type was timestamp in all SQL
Server versions before 2000, but in the ANSI SQL standards, the timestamp type is
equivalent to the datetime data type. Stored as a 16-byte binary value.
 uniqueidentifier Stores a globally unique identifier (GUID) value. A GUID is a
commonly used data type for an artificial key, because a GUID can be generated by
many different clients and be almost 100 percent assuredly unique. It has
downsides of being somewhat random when being sorted in generated order, which

32

https://msdn.microsoft.com/en-us/library/ms143726.aspx

can make it more difficult to index. We discuss indexing in Skill 1.2. Represented
as a 36-character string, but is stored as a 16-byte binary value.
 XML Allows you to store an XML document in a column value. The XML type
gives you a rich set of functionality when dealing with structured data that cannot be
easily managed using typical relational tables.
 Spatial types (geometry, geography, circularString, compoundCurve, and
curvePolygon) Used for storing spatial data, like for shapes, maps, lines, etc.
 heirarchyId Used to store data about a hierarchy, along with providing methods for
manipulating the hierarchy.

Need More Review Data type Overview
This is just an overview of the data types. For more reading on the types in the
SQL Server Language Reference, visit the following URL:
https://msdn.microsoft.com/en-us/library/ms187752.aspx.

The difficultly in choosing the data type is that you often need to consider not just the
requirements given, but real life needs. For example, say we had a table that represents a
company and all we had was the company name. You might logically think that the
following makes sense:
Click here to view code image

CREATE TABLE Examples.Company
(
 CompanyName varchar(50) NOT NULL
 CONSTRAINT PKCompany PRIMARY KEY
);

There are a few concerns with this choice of data type. First let’s consider the length of
a company name. Almost every company name will be shorter than 50 characters. But there
are definitely companies that exist with much larger names than this, even if they are rare.
In choosing data types, it is important to understand that you have to design your objects to
allow the maximum size of data possible. If you could ever come across a company name
that is greater than 50 characters and need to store it completely, this will not do. The
second concern is character set. Using ASCII characters is great when all characters will
be from A-Z (upper or lower case), and numbers. As you use more special characters, it
becomes very difficult because there are only 256 ASCII characters per code page.

In an exam question, if the question was along the lines of “the 99.9 percent of the data
that goes into the CompanyName column is 20 ASCII characters or less, but there is one
row that has 2000 characters with Russian and Japanese characters, what data type would
you use?” the answer would be nvarchar(2000). varchar(2000) would not have the right
character set, nchar(2000) would be wasteful, and integer would be just plain silly.

33

https://msdn.microsoft.com/en-us/library/ms187752.aspx

Note Column Details
For the exam, expect more questions along the lines of whether a column
should be one version of a type or another, like varchar or nvarchar. Most any
column where you are not completely in control of the values for the data (like
a person’s name, or external company names) should use Unicode to give the
most flexibility regarding what data can go into the column.

There are several groups of data types to learn in order to achieve a deep understanding.
For example, consider a column named Amount in a table of payments that holds the
amount of a payment:
Click here to view code image

CREATE TABLE Examples.Payment
(
 PaymentNumber char(10) NOT NULL
 CONSTRAINT PKPayment PRIMARY KEY,
 Amount int NOT NULL
);

Does the integer hold an amount? Definitely. But in most countries, monetary units are
stored with a fractional part, and while you could shift the decimal point in the client, that
is not the best design. What about a real data type? Real types are meant for scientific
amounts where you have an extremely wide amount of values that could meet your needs,
not for money where fractional parts, or even more, could be lost in precision. Would
decimal(30,20) be better? Clearly. But it isn’t likely that most organizations are dealing
with 20 decimal places for monetary values. There is also a money data type that has 4
decimal places, and something like decimal(10,2) also works for most monetary cases.
Actually, it works for any decimal or numeric types with a scale of 2 (in decimal(10,2), the
10 is the precision or number of digits in the number; and 2 is the scale, or number of
places after the decimal point).

The biggest difficulty with choosing a data type goes back to the requirements. If there
are given requirements that say to store a company name in 10 characters, you use 10
characters. The obvious realization is that a string like ‘Blue Yonder Airlines’ takes more
than 10 characters (even if it is fictitious, you know real company names that won’t fit in
10 characters). You should default to what the requirements state (and in the non-exam
world verify it with the customer.) All of the topics in this Skill 1.1 section, and on the
exam should be taken from the requirements/question text. If the client gives you specific
specifications to follow, you follow them. If the client says “store a company name” and
gives you no specific limits, then you use the best data type. The exam is multiple choice,
so unlike a job interview where you might be asked to give your reasoning, you just choose
a best answer.

34

In Chapter 2, the first of the skills covered largely focuses on refining the choices in this
section. For example, say the specification was to store a whole number between -20 and
2,000,000,000. The int data type stores all of those values, but also stores far more value.
The goal is to make sure that 100 percent of the values that are stored meet the required
range. Often we need to limit a value to a set of values in the same or a different table.
Data type alone doesn’t do it, but it gets you started on the right path, something you could
be asked.

Beyond the basic data type, there are a couple of additional constructs that extend the
concept of a data type. They are:

 Computed Columns These are columns that are based on an expression. This allows
you to use any columns in the table to form a new value that combines/reformats one
or more columns.
 Dynamic Data Masking Allows you to mask the data in a column from users,
allowing data to be stored that is private in ways that can show a user parts of the
data.

Computed columns
Computed columns let you manifest an expression as a column for usage (particularly so
that the engine maintains values for you that do not meet the normalization rules we
discussed earlier). For example, say you have a table with columns FirstName and
LastName, and want to include a column named FullName. If FullName was a column, it
would be duplicated data that we would need to manage and maintain, and the values could
get out of sync. But adding it as a computed column means that the data is either be
instantiated at query time or, if you specify it and the expression is deterministic, persisted.
(A deterministic calculation is one that returns the same value for every execution. For
example, the COALESCE() function, which returns the first non-NULL value in the
parameter list, is deterministic, but the GETDATE() function is not, as every time you
perform it, you could get a different value.)

So we can create the following:
Click here to view code image

CREATE TABLE Examples.ComputedColumn
(
 FirstName nvarchar(50) NULL,
 LastName nvarchar(50) NOT NULL,
 FullName AS CONCAT(LastName,',' + FirstName)
);

Now, in the FullName column, we see either the LastName or LastName, FirstName for
each person in our table. If you added PERSISTED to the end of the declaration, as in:
Click here to view code image

35

ALTER TABLE Examples.ComputedColumn DROP COLUMN FullName;

ALTER TABLE Examples.ComputedColumn
 ADD FullName AS CONCAT(LastName,', ' + FirstName) PERSISTED;

Now the expression be evaluated during access in a statement, but is saved in the
physical table storage structure along with the rest of the data. It is read only to the
programmer’s touch, and it’s maintained by the engine. Throughout this book, one of the
most important tasks for you as an exam taker is to be able to predict the output of a query,
based on structures and code. Hence, when we create an object, we provide a small
example explaining it. This does not replace having actually attempted everything in the
book on your own (many of which you will have done professionally, but certainly not all.)
These examples should give you reproducible examples to start from. In this case, consider
you insert the following two rows:
Click here to view code image

INSERT INTO Examples.ComputedColumn
VALUES (NULL,'Harris'),('Waleed','Heloo');

Then query the data to see what it looks like with the following SELECT statement.
Click here to view code image

SELECT *
FROM Examples.ComputedColumn;

You should be able to determine that the output of the statement has one name for Harris,
but two comma delimited names for Waleed Heloo.
Click here to view code image

FirstName LastName FullName
------------ ------------- ---------------------
NULL Harris Harris
Waleed Heloo Heloo, Waleed

Dynamic data masking
Dynamic data masking lets you mask data in a column from the view of the user. So while
the user may have all rights to a column, (INSERT, UPDATE, DELETE, SELECT), when
they use the column in a SELECT statement, instead of showing them the actual data, it
masks it from their view. For example, if you have a table that has email addresses, you
might want to mask the data so most users can’t see the actual data when they are querying
the data. In Books Online, the topic of Dynamic Data Masking falls under security
(https://msdn.microsoft.com/en-us/library/mt130841.aspx), but as we will see, it doesn’t
behave like classic security features, as you will be adding some code to the DDL of the
table, and there isn’t much fine tuning of the who can access the unmasked value.

36

https://msdn.microsoft.com/en-us/library/mt130841.aspx

As an example, consider the following table structure, with three rows to use to show
the feature in action:
Click here to view code image

CREATE TABLE Examples.DataMasking
(
 FirstName nvarchar(50) NULL,
 LastName nvarchar(50) NOT NULL,
 PersonNumber char(10) NOT NULL,
 Status varchar(10), --domain of values
('Active','Inactive','New')
 EmailAddress nvarchar(50) NULL, --(real email address ought
to be longer)
 BirthDate date NOT NULL, --Time we first saw this person.
 CarCount tinyint NOT NULL --just a count we can mask
);

INSERT INTO
Examples.DataMasking(FirstName,LastName,PersonNumber, Status,
 EmailAddress, BirthDate,
CarCount)
VALUES('Jay','Hamlin','0000000014','Active','jay@litwareinc.com','1979-
01-12',0),
 ('Darya','Popkova','0000000032','Active','darya.p@proseware.net','1980-
05-22', 1),
 ('Tomasz','Bochenek','0000000102','Active',NULL, '1959-03-
30', 1);

There are four types of data mask functions that we can apply:
 Default Takes the default mask of the data type (not of the DEFAULT constraint of
the column, but the data type).
 Email Masks the email so you only see a few meaningful characters.
 Random Masks any of the numeric data types (int, smallint, decimal, etc) with a
random value within a range.
 Partial Allows you to take values from the front and back of a value, replacing the
center with a fixed string value.

Once applied, the masking function emits a masked value unless the column value is
NULL, in which case the output is NULL.

Who can see the data masked or unmasked is controlled by a database level permission
called UNMASK. The dbo user always has this right, so to test this, we create a different
user to use after applying the masking. The user must have rights to SELECT data from the
table:
Click here to view code image

37

CREATE USER MaskedView WITHOUT LOGIN;
GRANT SELECT ON Examples.DataMasking TO MaskedView;

The first masking type we apply is default. This masks the data with the default for the
particular data type (not the default of the column itself from any DEFAULT constraint if
one exists). It is applied using the ALTER TABLE...ALTER COLUMN statement, using the
following syntax:
Click here to view code image

ALTER TABLE Examples.DataMasking ALTER COLUMN FirstName
 ADD MASKED WITH (FUNCTION = 'default()');
ALTER TABLE Examples.DataMasking ALTER COLUMN BirthDate
 ADD MASKED WITH (FUNCTION = 'default()');

Now, when someone without the UNMASK database right views this data, it will make
the FirstName column value look like the default for string types which is ‘XXXX’, and the
date value will appear to all be ‘1900-01-01’. Note that care should be taken that when
you use a default that the default value isn’t used for calculations. Otherwise you could
send a birthday card to every customer on Jan 1, congratulating them on being over 116
years old.

Note The MASKED WITH Clause
To add masking to a column in the CREATE TABLE statement, the MASKED
WITH clause goes between the data type and NULL specification. For
example: LastName nvarchar(50) MASKED WITH (FUNCTION =
‘default()’) NOT NULL

Next, we add masking to the EmailAddress column. The email filter has no
configuration, just like default(). The email() function uses fixed formatting to show the
first letter of an email address, always ending in the extension .com:
Click here to view code image

ALTER TABLE Examples.DataMasking ALTER COLUMN EmailAddress
 ADD MASKED WITH (FUNCTION = 'email()');

Now the email address: darya.p@proseware.net will appear as dXXX@XXXX.com. If
you wanted to mask the email address in a different manner, you could also use the
following masking function.

The partial() function is by far the most powerful. It let’s you take the number of
characters from the front and the back of the string. For example, in the following data
mask, we make the PersonNumber show the first and last characters. This column is of a
fixed width, so the values will show up as the same size as previously.
Click here to view code image

38

mailto:darya.p@proseware.net

--Note that it uses double quotes in the function call
ALTER TABLE Examples.DataMasking ALTER COLUMN PersonNumber
 ADD MASKED WITH (FUNCTION = 'partial(2,"*******",1)');

The size of the mask is up to you. If you put fourteen asterisks, the value would look
fourteen wide. Now, PersonNumber: ‘0000000102’ looks like ‘00*******2’, as does:
‘0000000032’. Apply the same sort of mask to a non-fixed length column, the output will
be fixed width if there is enough data for it to be:
Click here to view code image

ALTER TABLE Examples.DataMasking ALTER COLUMN LastName
 ADD MASKED WITH (FUNCTION = 'partial(3,"_____",2)');

Now ‘Hamlin’ shows up as ‘Ham_____n’. Partial can be used to default the entire value
as well, as if you want to make a value appear as unknown. The partial function can be
used to default the entire value as well. In our example, you default the Status value to
‘Unknown’:
Click here to view code image

ALTER TABLE Examples.DataMasking ALTER COLUMN Status
 ADD MASKED WITH (Function = 'partial(0,"Unknown",0)');

Finally, to the CarCount column, we will add the random() masking function. It will put
a random number of the data type of the column between the start and end value
parameters:
Click here to view code image

ALTER TABLE Examples.DataMasking ALTER COLUMN CarCount
 ADD MASKED WITH (FUNCTION = 'random(1,3)');

Viewing the data as dbo (which you typically will have when designing and building a
database):
Click here to view code image

SELECT *
FROM Examples.DataMasking;

There is no apparent change:
Click here to view code image

FirstName LastName PersonNumber
Status EmailAddress BirthDate CarCount
--------- --------- ------------ ---------- -------------------
--- ---------- --------
Jay Hamlin 0000000014 Active jay@litwareinc.com 1979-
01-12 0

39

Darya Popkova 0000000032 Active darya.p@proseware.net 1980-
05-22 1
Tomasz Bochenek 0000000102 Active NULL 1959-
03-30 1

Now, using the EXECUTE AS statement to impersonate this MaskedView user, run the
following statement:
Click here to view code image

EXECUTE AS USER = 'MaskedView';
SELECT *
FROM Examples.DataMasking;

FirstName LastName PersonNumber
Status EmailAddress BirthDate CarCount
--------- ------------ ------------ ------- -------------------
----- ---------- --------
xxxx Hamlin 00****14 Unknown
jXXX@XXXX.com 1900-01-01 2
xxxx Popkova 00****32 Unknown
dXXX@XXXX.com 1900-01-01 1
xxxx Bochenek 00****02 Unknown
NULL 1900-01-01 1

Run the statement multiple times and you will see the CarCount value changing multiple
times. Use the REVERT statement to go back to your normal user context, and check the
output of USER_NAME() to make sure you are in the correct context, which should be dbo
for these examples:

REVERT; SELECT USER_NAME();

Skill 1.2: Design and implement indexes
In this section, we examine SQL Server’s B-Tree indexes on on-disk tables. In SQL Server
2016, we have two additional indexing topics, covered later in the book, those being
columnstore indexes (Skill 1.4) and indexes on memory optimized tables (Skill 3.4). A
term that will be used for the B-Tree based indexes is rowstore, in that their structures are
designed to contain related data for a row together. Indexes are used to speed access to
rows using a scan of the values in a table or index, or a seek for specific row(s) in an
index.

Indexing is a very complex topic, and a decent understanding of the internal structures
makes understanding when to and when not to use an index easier. Rowstore indexes on the
on-disk tables are based on the concept of a B-Tree structure, consisting of index nodes
that sort the data to speed finding one value. Figure 1-1 shows the basic structure of all of
these types of indexes.

40

FIGURE 1-1 The base structure of a B-Tree Index
In the index shown in Figure 1-1, when you search for an item, if it is between A and Q,

you follow the pointer to the first intermediate node of the tree. This structure is repeated
for as many levels as there are in the index. When you reach the last intermediate node
(which may be the root node for smaller indexes), you go to the leaf node.

There are two types of indexes in SQL Server: clustered and non-clustered. Clustered
indexes are indexes where the leaf node in the tree contains the actual data in the table (A
table without a clustered index is a heap which is made up of non-sequential, 8K pages of
data.) A non-clustered index is a separate structure that has a copy of data in the leaf node
that is in the keys, along with a pointer to the heap or clustered index.

The structure of the non-clustered leaf pages depends on whether the table is a heap or a

41

clustered table. For a heap, it contains a pointer to the physical structure where the data
resides. For a clustered table, it contains the value of the clustered index keys (referred to
as the clustering key.) Last, for a clustered columnstore index, it is the position in the
columnstore index (covered in Skill 1.4).

When the index key is a single column, it is referred to as a simple index, and when
there are multiple columns, it is called a composite index. The index nodes (and leaf
pages) will be sorted in the order of the leading column first, then the second column, etc.
For a composite index it is best to choose the column that is the most selective for the lead
column, which is to say, it has the most unique values amongst the rows of the table.

The limit on the size of index key (for the data in all of the columns declared for the
index) is based on the type of the index. The maximum key size for a non-clustered index is
1700 bytes, and 900 for a clustered index. Note that the smaller the index key size, the
more that fits on each index level, and the fewer index levels, the fewer reads per
operation. A page contains a maximum of 8060 bytes, and there is some overhead when
storing variable length column values. If your index key values are 1700 bytes, which
means you could only have 4 rows per page. In a million row table, you can imagine this
would become quite a large index structure.

Need More Review? Indexing
For more details on indexes that we will use in this skill, and some that we
will cover later in the book, MSDN has a set of articles on indexes lined to
from this page: https://msdn.microsoft.com/en-us/library/ms175049.aspx.

This section covers how to:
 Design new indexes based on provided tables, queries, or plans
 Distinguish between indexed columns and included columns
 Implement clustered index columns by using best practices
 Recommend new indexes based on query plans

Design new indexes based on provided tables, queries, or plans
There are two phases of a project where you typically add indexes during the
implementation process:

 During the database design phase
 During the coding phase, continuing throughout the lifecycle of your implementation

The primary difference between the two phases is need. During the design phase, there
are constraints that create indexes as part of their creation, and a few situations where it is
essential to create an index without even executing a query. After you have configured your

42

https://msdn.microsoft.com/en-us/library/ms175049.aspx

tables, the goal of indexes is almost completely aligned to how well your queries work,
and you must add indexes where the need arises, and not just because it seems like a good
idea.

Note Concurrency Concepts
Chapter 3 reviews the concepts of concurrency, and the first step to building
highly concurrent database systems is to get the design right, and match the
indexing of the database to the user’s queries, so queries only access the
minimum amount of data needed to answer queries.

Indexing during the database design phase
Indexing during the design phase of a database project generally fits a very small range of
needs. There is only so much guesswork about user behavior that you can make. There are
specifically two situations where it is essential to define indexes in your design:

 Uniqueness Constraints PRIMARY KEY and UNIQUE constraints automatically
create an index.
 Foreign Key Columns Columns that reference a FOREIGN KEY constraint are
often, but not always a likely target for an index.

Let’s explore these two situations.

Uniqueness Constraints
In Skill 1.1, we created PRIMARY KEY constraints on all of the tables in our design.
PRIMARY KEY constraints are enforced by creating a unique index on the columns to
speed the search for the duplicated value, plus a unique index does not allow duplicated
data. By default, they create a unique clustered index (where the leaf pages of the B-Tree
structure are the actual data pages as opposed to just pointers to the data pages), but there
are situations where the clustered index is best served on a different column (This will be
covered later in “Implement clustered index columns by using best practices”).

As an example, consider the following table structure:
Click here to view code image

CREATE TABLE Examples.UniquenessConstraint
(
 PrimaryUniqueValue int NOT NULL,
 AlternateUniqueValue1 int NULL,
 AlternateUniqueValue2 int NULL
);

When you have a value that you need to be the primary key value, you can use a
PRIMARY KEY constraint. So, using ALTER TABLE (or inline as part of the initial

43

CREATE TABLE statement) you can add:
Click here to view code image

ALTER TABLE Examples.UniquenessConstraint
 ADD CONSTRAINT PKUniquenessContraint PRIMARY KEY
(PrimaryUniqueValue);

A PRIMARY KEY constraint cannot be placed on a column that allows NULL values,
and you get an error if you try (or in a CREATE TABLE statement it sets the column to not
allow NULL values). In cases where you have alternate columns that are used to identify a
row (typical when you use an artificial surrogate value like a meaningless integer for a
primary key, which is covered in Chapter 2 in more detail, you can add a UNIQUE
constraint that can be placed on columns that allow NULL values, something demonstrated
later in this section):
Click here to view code image

ALTER TABLE Examples.UniquenessConstraint
 ADD CONSTRAINT AKUniquenessContraint UNIQUE
 (AlternateUniqueValue1, AlternateUniqueValue2);

The uniqueness constraints created indexes with the same name as the constraints behind
the scenes, which you can see in sys.indexes:
Click here to view code image

SELECT type_desc, is_primary_key, is_unique,
is_unique_constraint
FROM sys.indexes
WHERE OBJECT_ID('Examples.UniquenessConstraint') =
object_id;

This shows you that the index is clustered, and is unique.
Click here to view code image

name type_desc is_primary_key
is_unique is_unique_constraint
--------------------- --------------- -------------- -------
-- -------------------
PKUniquenessContraint
CLUSTERED 1 1 0
AKUniquenessContraint
NONCLUSTERED 0 1 1

When you have constraints on all of the data that needs to be unique for an OLTP
database, you often have a large percentage of the indexes you need. OLTP databases are
generally characterized by short transactions and simple queries, usually looking for one
row (even if the query sometimes looks for a range of data because the user doesn’t know

44

how to spell a given value.)
In Chapter 4, Skill 4.1, we discuss optimizing indexes, including how to determine if

indexes are being used. However, indexes that are created by uniqueness constraints should
not be considered for removal. Even if the index is never used to improve the performance
of a query, it is essential to your data integrity to make sure that if a value is supposed to be
unique, that a constraint ensures that values are unique. NULL values behave differently in
UNIQUE indexes than in almost any other place in SQL Server. A PRIMARY KEY
constraint does not allow any NULL values in columns, but a UNIQUE constraint and a
unique index does. So, using the table we created, if we try creating the following rows:
Click here to view code image

INSERT INTO Examples.UniquenessConstraint
 (PrimaryUniqueValue, AlternateUniqueValue1,
AlternateUniqueValue2)
VALUES (1, NULL, NULL), (2, NULL, NULL);

We then receive the following error message:
Click here to view code image

Msg 2627, Level 14, State 1, Line 95
Violation of UNIQUE KEY constraint 'AKUniquenessContraint'.
Cannot insert duplicate key
in object 'Examples.UniquenessConstraint'. The duplicate key
value is (<NULL>, <NULL>)

What is initially confusing about this is that we said earlier that NULL never was equal
to NULL. This is still true, but in the index keys, two NULL values are treated as duplicate
missing values.

Foreign Key Columns
When implementing a FOREIGN KEY constraint, it is generally a good idea to index the
key columns in the referencing tables. For example, consider the following three tables:
Click here to view code image

--Represents an order a person makes, there are 10,000,000 +
rows in this table
CREATE TABLE Examples.Invoice
(
 InvoiceId int NOT NULL CONSTRAINT PKInvoice PRIMARY KEY,
 --Other Columns Omitted
);
--Represents a type of discount the office gives a customer,
--there are 200 rows in this table
CREATE TABLE Examples.DiscountType
(

45

 DiscountTypeId int NOT NULL CONSTRAINT PKDiscountType
PRIMARY KEY,
 --Other Columns Omitted
)
--Represents the individual items that a customer has ordered,
There is an average of
--3 items ordered per invoice, so there are over 30,000,000
rows in this table
CREATE TABLE Examples.InvoiceLineItem
(
 InvoiceLineItemId int NOT NULL CONSTRAINT PKInvoiceLineItem
PRIMARY KEY,
 InvoiceId int NOT NULL
 CONSTRAINT FKInvoiceLineItemRefInvoice
 REFERENCES Examples.Invoice (InvoiceId),
 DiscountTypeId int NOT NULL
 CONSTRAINT FKInvoiceLineItemRefDiscountType
 REFERENCES Examples.DiscountType
(DiscountTypeId)
 --Other Columns Omitted
);

There are two foreign key columns in the InvoiceLineItem table to cover. The InvoiceId
column has mostly unique values, with an average of 3 rows per invoice. It is also a typical
thing a user might do; grabbing all of the invoice items for an invoice. Hence, that is a
column that almost certainly benefits from an index (and as we discuss later in the section
“Implement clustered index columns by using best practices”, perhaps even a clustered
index if the reference is used frequently enough.) Create that index as a non-clustered index
for now as:
Click here to view code image

CREATE INDEX InvoiceId ON Examples.InvoiceLineItem (InvoiceId);

When creating an index on a not-very selective column, like perhaps the DiscountTypeId,
where out of 30 million rows, there are just 20 distinct values in 100000 rows. This
column could benefit from a filtered index, which is an index that has a WHERE clause. So
if almost all rows were NULL, it could be that searching for a row with the value of NULL
in the index would be useless. However, a search for other values actually could use the
index. So you could create a filtered index as:
Click here to view code image

CREATE INDEX DiscountTypeId ON
Examples.InvoiceLineItem(DiscountTypeId)
 WHERE DiscountTypeId
IS NOT NULL;

46

Filtered indexes can have any columns in the WHERE clause, even if not represented in
the index keys or included columns (which we use later in this chapter in the section:
“Distinguish between indexed columns and included columns”).

When creating an INDEX, if the data in the key columns is always unique (such as if the
columns of the index are a superset of a UNIQUE and/or PRIMARY KEY constraint
columns,) declare the index as UNIQUE, as in:
Click here to view code image

CREATE UNIQUE INDEX InvoiceColumns ON
Examples.InvoiceLineItem(InvoiceId,
 InvoiceLineItemId);

It is typically desirable to have indexes that enforce uniqueness to be based on a
constraint, but this is not a requirement. Any UNIQUE index, even a filtered one, can be
declared as only allowing unique values which will disallow duplicated index key values.

Need More Review The CREATE INDEX Statement
There are many other settings in the CREATE INDEX statement that is useful
to understand, that are covered in more detail on the MSDN site:
https://msdn.microsoft.com/en-us/library/ms188783.aspx.

In the WideWorldImporters database, there are indexes on all of the foreign keys that
were generated when creating that database. Beyond guessing what one can do to decide
whether an index would be useful, it is essential to understand a query plan. Most of the
figures in this chapter are query plans to demonstrate what is going on in the query
optimizer and query processor. As an example, use one of the relationships in the
WideWorldImporters database, between the Sales.CustomerTransactions and
Application.PaymentMethods tables.

Note Accessing the Sample Database
To follow along with the examples in this chapter, and later ones that use the
Microsoft sample database: WideWorldImporters, you can get this
database at the following address: https://github.com/Microsoft/sql-server-
samples/releases/tag/wide-world-importers-v1.0. It will be used throughout
the book when we need a database that is pre-loaded with data.

In the Sales.CustomerTransactions table, there are 97147 rows. The index on the foreign
key column is non-clustered, so every use of the non-clustered index requires a probe of
the clustered index to fetch the data (referred to as a bookmark lookup), so it is very
unlikely the index is used for a predicate. Take a look at the data in the PaymentMethodId
column:

47

https://msdn.microsoft.com/en-us/library/ms188783.aspx
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0

Click here to view code image

SELECT PaymentMethodId, COUNT(*) AS NumRows
FROM Sales.CustomerTransactions
GROUP BY PaymentMethodID;

You can see that there are just two values in use:
Click here to view code image

PaymentMethodId NumRows
--------------- -----------
4 26637
NULL 70510

Take a look at the plan of the following query that the system might perform, searching
for CustomerTransactions rows where the PaymentMethodId = 4:
Click here to view code image

SELECT *
FROM Sales.CustomerTransactions
WHERE PaymentMethodID = 4;

This returns the expected 26637 rows, and has the actual plan shown in Figure 1-2. The
Compute Scalar operator is there because we returned all columns, and there is a computed
column in the table named IsFinalized.

FIGURE 1-2 The plan from the query for PaymentMethodId = 4

There are three ways using the GUI to get the query plan. From the Query Menu, select:
1. Display Estimated Plan This shows you the plan that is likely to be used to perform

the query. The plan can change when the query is performed, due to many factors
such as query load, memory available, etc. All row counts and costs are guesses
based on the statistics of the index, and it does not require the query to be performed.
Whether or not parallelism can be used is determined during execution based on
system settings (such as the sp_configure setting ‘cost threshold for parallelism’ and
‘max degree of parallelism’) and the load on the system at execution time.

2. Include Actual Execution Plan This represents the plan that is used, including

48

actual row counts, use of parallelism, etc. You get the actual plan after the query has
completed in its entirety.

3. Include Live Query Statistics When you are working with a complex, long-running
query, you can see data moving through the actual query plan operators live. It can
help you diagnose issues with a large query by letting you see the problem spots in
real time.

Note Textual plan Options
Additionally, there are several ways to get a textual plan when you need it.
Two examples are SET SHOWPLAN_TEXT to get the estimated plan, and
SET STATISTICS PROFILE to get the actual query plan.

For now, we ignore the Missing Index listed in the plan (and for future cases edit them
out until we get to the section on “Included Columns”), but the point here is that the index
was not used. However, it is important to note that while an index is not generally useful,
there are scenarios where the index actually turns out to be useful:

 If the only column that was returned from the query was the PaymentMethodId since
all of the data is there in the index, then it is useful.
 An index is also useful when you are searching for a value that does not exist in the
table. The statistics of the index do not tell the optimizer that no rows are returned
from the query, only that very few are returned, so using the index should be fast
enough. We review managing statistics in more detail in Chapter 4, but they are
basically structures that help the optimizer to guess how many rows are returned by a
given query based on a sampling of the data at a given point in time.

These scenarios are why foreign key indexes are often applied to all foreign key
columns, even if the indexes applied are not generally useful.

Need More Review? Deeper dive into indexing
Indexing is a complex topic that we only review in some of the primary
scenarios. For more information, a great resource is “Expert Performance
Indexes in SQL Server” from Apress by Grant Fritchey and Jason Strate
(http://www.apress.com/9781484211199).

Indexing once data is in your tables
Although the indexing you might do to your tables before adding data is essentially part of
the structure, and the rest of the indexes are strictly intended to improve performance. In
this section, we cover several scenarios to consider when adding indexes to tables. Some
of these scenarios crop up during development, even when you have very little data in your
tables. Some do not show up until the data grows during performance testing or production

49

http://www.apress.com/9781484211199

loads. All of Chapter 4 delves more into the ongoing tuning of your system, but for now we
look at some common query types to tune, no matter how you discover the need.

 Common search paths
 Joins
 Sorting data

Unless you have very simplistic needs, it is hard to know exactly how queries behave in
a real scenario, so in most cases it is better to test out your expectations rather than guess
about performance.

 Exam Tip

While tuning a real database should generally be done with real data, seeing
real needs, this is not the case for the exam. The situations more likely follow
a very deliberate pattern similar to the ones we discuss in the next sections.
The upcoming examples are not exhaustive as there are many different
scenarios that can use an index to improve performance.

Common search paths discovered during development
The process of adding indexes starts during the development phase of the project. Even
with smaller amounts of data in a table, there are given access paths that do not correspond
exactly to the indexes the uniqueness constraints you have started with added. For example,
in the WideWorldImporters database, in the Sales.Orders table, the
CustomerPurchaseOrderNumber is not a key value (there do exist duplicated values,
because the purchase order number can be duplicated for different, or even the same
customer in this design). During design, it was not a foreign key, nor was it a key in a
uniqueness constraint. When the application was created, it included the following query:
Click here to view code image

SELECT CustomerID, OrderID, OrderDate, ExpectedDeliveryDate
FROM Sales.Orders
WHERE CustomerPurchaseOrderNumber = '16374';

In the base set of rows here in the WideWorldImporters database (there are methods
included for adding more data to give you more data to work with), the query runs very
fast, returning just 6 rows. In order to see just how well it performs, you can use two
commands in Transact-SQL to see some very important statistics, that along with the query
plan, give you the important information on how the query is operating.
Click here to view code image

SET STATISTICS TIME ON;
SET STATISTICS IO ON;

50

SELECT CustomerID, OrderId, OrderDate, ExpectedDeliveryDate
FROM Sales.Orders
WHERE CustomerPurchaseOrderNumber = '16374';

SET STATISTICS TIME OFF;
SET STATISTICS IO OFF;

The plan returns what is shown in Figure 1-3.

FIGURE 1-3 Query plan that does not use an index
Along with the query results, there are a few additional messages. We are reducing to the

pertinent ones here in our output, but you can see the compile and parse times, and the
overall execution time in addition to the following:
Click here to view code image

Table 'Orders'. Scan count 1, logical reads 692, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0, lob read-ahead reads
0.

 SQL Server Execution Times:
 CPU time = 15 ms, elapsed time = 20 ms.:

The query only takes around 20 milliseconds (ms) on a VM on a Surface Pro 4 with 8
GB of RAM for the VM (and 8GB for the host), scanning the table, touching all 692 pages
of the table which has 73595 rows. All of the pages were in RAM already, so there are no
physical reads (very common when testing individual queries and there is no memory
pressure. You can clear the cache using DBCC DROPCLEANBUFFERS, but the most
important number for indexing is the logical reads. Consistent readings of a large number
of physical reads are more indicative of not enough RAM to cache data). However, if this
is a table to which data is being actively written, scanning those 692 pages means that
every single row is touched, and therefore locked in on-disk tables at some point in time,
causing concurrency issues that are covered in more detail in Chapter 3, “Manage
Database Concurrency.”

Next, add an index to the Sales.Orders table on the CustomerPurchaseOrderNumber
column, to attempt to speed the query:

51

Click here to view code image

CREATE INDEX CustomerPurchaseOrderNumber ON
Sales.Orders(CustomerPurchaseOrderNumber);

Note Our sample database
The examples use tables from the WideWorldImporters database to
review different types of indexing utilization. If you desire to try the queries
yourself to make the same changes, make sure that you are working on your
own copy of this database before making changes that affect other users.

Now, perform the same query on CustomerPurchaseOrderNumber = ‘16374’, and the
following query plan is used, as shown in Figure 1-4.

FIGURE 1-4 Query plan after adding an index on the
CustomerPurchaseOrderNumber

The query plan looks more complex. There is a join, even though the query uses a single
table. SQL Server now uses the index-seek operation to find the six matching rows, but all
it has are the CustomerID and the OrderID from the index keys. So it needs to use a JOIN
operator to join to the clustered index to get the rest of the data. While the plan is more
complex, the results are a lot better statistically, as you can see:
Click here to view code image

Table 'Orders'. Scan count 1, logical reads 20, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0, lob read-ahead reads
0.
 SQL Server Execution Times:
 CPU time = 0 ms, elapsed time = 0 ms.

It took only 20 logical reads, and less than 1 millisecond to perform. The reduction in
672 reads, means 672 less physical resources touched, and locked by default. As a result,

52

it is very useful to check out all of the queries that are used by your applications, either
(ideally) from stored procedures, or as ad-hoc queries performed from your external
interfaces.

Note that you can index a computed column as long as it is deterministic. You can tell if
a column can be indexed, even if it is computed by using the COLUMNPROPERTYEX()
function:
Click here to view code image

SELECT CONCAT(OBJECT_SCHEMA_NAME(object_id), '.',
OBJECT_NAME(object_id)) AS TableName,
 name AS ColumnName, COLUMNPROPERTYEX(object_id, name,
'IsIndexable') AS Indexable
FROM sys.columns
WHERE is_computed = 1;

Search conditions are typically the most obvious to index because the affect people
directly. When a user searches on an unindexed column in a large table (relative to
hardware capabilities), you may see locking, blocking, or using some settings (such as the
database setting READ COMMITTED SNAPSHOT), high tempdb utilization. The needs
are more random that in the following situation we will cover.

Joins
While simple index needs often manifest themselves as table scans, when joining data in
two tables, the need for an index instead may show up as a different join operator than a
nested-loops join. Nested loops work best when one set is very small, or the cost of
seeking for a row in that set is inexpensive. It works by going row by row in one of the
inputs, and seeking for a matching value in the other. When the cost of seeking in both sets
is too costly, a Hash Match operator is used. This operator makes a pseudo hash index by
segmenting values into buckets of values that can be easier to scan using a hash function. It
does not need any order to the operation, so it can work to join two really large sets
together.

As an example, drop the foreign key index from the Sales.Orders table named
FK_Sales_Orders_ContactPersonID using the following command:
Click here to view code image

DROP INDEX FK_Sales_Orders_ContactPersonID ON Sales.Orders;

Now, search for the Sales.Orders rows for any person with a preferred name of
‘Aakriti:’
Click here to view code image

SELECT OrderId, OrderDate, ExpectedDeliveryDate,
People.FullName

53

FROM Sales.Orders
 JOIN Application.People
 ON People.PersonID = Orders.ContactPersonID
WHERE People.PreferredName = 'Aakriti';

The PreferredName column is not indexed. Figure 1-5 shows the actual query plan,
along with the typical query stats output.

FIGURE 1-5 Query plan and statistic output for unindexed foreign key index in join
Figure 1-5 has the following output:

Click here to view code image

Table 'Workfile'. Scan count 0, logical reads 0, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0, lob read-ahead reads
0.

Table 'Worktable'. Scan count 0, logical reads 0, physical
reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'Orders'. Scan count 1, logical reads 692, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'People'. Scan count 1, logical reads 80, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

54

CPU time = 15 ms, elapsed time = 53 ms.

Hovering your mouse over the Clustered Index Scan operator for the
PK_Application_People index (the clustered index on the table), you see (as depicted in
Figure 1-6) the costs, but also that the predicate of PreferredName = ‘Aakriti’ is handled as
part of this scan.

FIGURE 1-6 Operator costs for the Clustered Index Scan operator for the

55

PK_Application_People index

As you can see, the query optimizer scans the two indexes, and the Hash Match operator
builds a hash index structure, and then matches the rows together. Adding back the index on
the foreign key columns:
Click here to view code image

CREATE INDEX FK_Sales_Orders_ContactPersonID ON Sales.Orders
--Note that USERDATA is a filegroup where the index was
originally
 (ContactPersonID ASC) ON USERDATA;

Executing the query again shows a better result, though not tremendously, as shown in
Figure 1-7.

FIGURE 1-7 Query plan after adding back the foreign key index
Figure 1-7 has the following output:

Click here to view code image

Table 'Orders'. Scan count 2, logical reads 695, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'People'. Scan count 1, logical reads 80, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

CPU time = 0 ms, elapsed time = 17 ms.

The big cost here is the Key Lookup operator to fetch the rest of the Sales.Orders
columns in our query. This cost is what the missing index hint has been suggesting for
nearly every query, and is the topic of the next section of this chapter. The query can be

56

improved upon one more time by indexing the PreferredName column, so the query
processor doesn’t have to test every single row in the Application.People table to see if it
matches PreferredName = ‘Aakriti’.
Click here to view code image

CREATE INDEX PreferredName ON Application.People
(PreferredName) ON USERDATA;

Finally, perform the query again to see the plan and statistics shown in Figure 1-8.

FIGURE 1-8 Query plan after adding index on
Application.People.PreferredName

Figure 1-8 has the following output:
Click here to view code image

Table 'Orders'. Scan count 2, logical reads 695, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'People'. Scan count 1, logical reads 6, physical reads
0, read-ahead reads 0, lob
logical reads 0, lob physical reads 0, lob read-ahead reads 0.

CPU time = 0 ms, elapsed time = 19 ms.

This is not a tremendous improvement, and is just 74 less accessed pages, and execution
times are typically the same. Generally speaking though, the fewer pages read in the
process of executing the query, the better, particularly as the number of queries increase in
an active system.

Note the Key Lookup operator that is 97 percent of the cost of this query. In a following
section on included columns, we review how to erase that cost, and lower the logical reads
to very few.

57

Sorts
The final query situation we look at is sorts. When you need to sort data, either for an
ORDER BY clause or for some operation in the query where sorting data would make
query operation quicker (the last join operator that we haven’t mentioned yet, called the
Merge Join operator, requires sorted inputs to match rows from one large input set to
another large set, in a quicker manner than using the Hash Merge algorithm previously
mentioned).

Note Indexing and sorting
The examples in this section use only columns that show up in the operation in
order to show how indexing and sorting work together, and it eliminates some
of the costs of the bookmark lookup. The next section examines this
phenomenon in more detail.

A part of the CREATE INDEX statement we have not yet looked at is sorting of the
index keys, particularly useful with composite index keys. By default, the data in the index
is sorted in ascending order, so the indexes created so far have been ascending by default.
The query processor can scan the index in either direction, so for a simple index (one with
a single key column), this is generally not a problem. For composite indexes (those with
greater than a single key column) it can be an issue.

As an example, consider the following query of the entire Sales.Orders table, sorted in
SalespersonPersonID and OrderDate order. Both are explicitly spelled out as ASC,
meaning ascending, which is the default. Note too that we only return the columns that are
being sorted on to make the example simpler.
Click here to view code image

SELECT SalespersonPersonId, OrderDate
FROM Sales.Orders
ORDER BY SalespersonPersonId ASC, OrderDate ASC;

Figure 1-9 shows the plan, which includes a scan through the data, a sort, and it even
shows that the query used parallelism, since we’re running on a VM with 2 CPUs
allocated. In other words, this was not a trivial query.

FIGURE 1-9 Sorting results prior to adding index

Figure 1-9 has the following output:

58

Click here to view code image

Table 'Worktable'. Scan count 0, logical reads 0, physical
reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'Orders'. Scan count 3, logical reads 758, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

CPU time = 94 ms, elapsed time = 367 ms.

Now, add an index to support this query, as we know that this query is performed very
often in our enterprise. Add a composite index, and explicitly show that we are sorting the
keys in ascending order, for the query:
Click here to view code image

CREATE INDEX SalespersonPersonID_OrderDate ON Sales.Orders
 (SalespersonPersonID ASC,
OrderDate ASC);

Perform the query just as we did in the first attempt. Figure 1-10, shows that the plan has
changed, as now it can get the data in a pre-sorted manner, with the primary cost of the
query now embedded in the bookmark lookup.

FIGURE 1-10 Query plan after adding the index to the table
Figure 1-10 has the following output:

Click here to view code image

Table 'Orders'. Scan count 1, logical reads 157, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0, lob read-ahead reads
0.

CPU time = 47 ms, elapsed time = 217 ms.

If the order you request is completely opposite of how the index is sorted, you will find

59

that nothing in the plan will change:
Click here to view code image

SELECT SalespersonPersonId, OrderDate
FROM Sales.Orders
ORDER BY SalespersonPersonId DESC, OrderDate DESC;

If your sorting needs don’t match the index exactly, it’s still useful to the query, but only
until there is a mismatch. For example, change the ORDER BY to either of the following
(DESC is descending):

 ORDER BY SalespersonPersonId DESC, OrderDate ASC;
 ORDER BY SalespersonPersonId ASC, OrderDate DESC;

And you see the plan changes to what is shown in Figure 1-11.

FIGURE 1-11 Query plan when the sort order does not match

The query processor was able to skip sorting the data based on the first column by using
the index, but then it had to sort the second column using a separate operator, rather than
just scanning the data in order. As such, it is important to note the order of the columns in
the ORDER BY clause, if you were given a question matching the index with the ORDER
BY clause.

One place where sorting often is helped by indexes is when joining two large sets. The
query plan can use a Merge Join operator to join two sorted sets together, by matching item
after item, since they are in sorted order. As an example, take a join of two tables, the
Sales.Orders and the Application.People, returning all of the rows in the tables, but just
their key values:
Click here to view code image

SELECT Orders.ContactPersonID, People.PersonID
FROM Sales.Orders
 INNER JOIN Application.People
 ON Orders.ContactPersonID = People.PersonID;

Executing this, you see that since there is an index on the foreign key column in
Sales.Orders, and the PRIMARY KEY constraint on the Application.People table, the data
is sorted, so it can use a Merge Join operator, as seen in Figure 1-12.

60

FIGURE 1-12 Merge Join operator due to large output and sorted inputs
To be entirely fair, the output of this query is nonsensical because it returns two columns

that are equivalent in all 72,595 rows. However, when you are doing joins between
multiple tables, you often see a Merge Join operator appear in plans when nothing but
indexed columns are accessed from the tables that are being joined.

Carefully consider how you use non-clustered indexes to support sorts, as the cost of the
bookmark lookup often tips the plan towards using a scan of the base structure.

Distinguish between indexed columns and included columns
When fetching only a few rows (as you generally do when you are querying an OLTP
database), the overhead of this lookup is not terribly costly. It requires reading two or three
extra pages in the clustered index, but this cost is extremely minimal compared to reading
every physical page of data for an entire table.

However, as the number of rows you return grows, the bookmark lookup operations
become more and more of a drag on performance. When you need to run a query that
returns a lot of rows, but doesn’t need all of the data in the table, there is a feature known
as included columns that allows you to use an index to cover the entire needs of the query.
When an index has all of the data that is needed to return the results of a query, either in the
key columns, or included columns, it is referred to as a covering index for a query.

As an example, take a look back at this query we have used previously:
Click here to view code image

SELECT OrderId, OrderDate, ExpectedDeliveryDate,
People.FullName
FROM Sales.Orders
 JOIN Application.People
 ON People.PersonID = Orders.ContactPersonID
WHERE People.PreferredName = 'Aakriti';

Remember back in Figure 1-11, this query was very efficient in terms of finding the rows

61

that needed to be returned in the Sales.Orders table, but had one operator that was 97
percent of the cost of execution, and required 695 pages to be read in the Sales.Orders
table.

Now perform the query, and see the plan that is output. In the plan shown in Figure 1-13,
the Key Lookup operator is 97% of the overall cost of the query. There are two Key
Lookup operators in the plan, so remove both of them in the simplest case.

FIGURE 1-13 Query plan with a very high costs for the Key Lookup operators of 98%
Figure 1-13 has the following output:

Click here to view code image

Table 'Orders'. Scan count 2, logical reads 695, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'People'. Scan count 1, logical reads 6, physical reads
0, read-ahead reads 0, lob
logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

CPU time = 0 ms, elapsed time = 141 ms.

As a first step, if we simplify our query to just use the columns that are indexed, the
Sales.Orders.ContactPersonID column from the foreign key index that was created by the
database designer, and the Application.People.PreferredName column (which also
includes the PersonId since it is the clustering key), you see that all of the data you need for
your query (for all clauses, SELECT, FROM, WHERE, etc) can be found in the index keys.
Executing the query:
Click here to view code image

SELECT Orders.ContactPersonId, People.PreferredName

62

FROM Sales.Orders
 JOIN Application.People
 ON People.PersonID = Orders.ContactPersonID
WHERE People.PreferredName = 'Aakriti';

Now the query plan looks wonderful, and the number of logical reads are down
dramatically, as you can see in Figure 1-14. The indexes that are being sought are covering
the query processor’s needs. There is only one small problem. The query results are not
even vaguely what the customer needs.

FIGURE 1-14 The Key Lookup operators have been eliminated from the plan
Figure 1-14 has the following output:

Click here to view code image

Table 'Orders'. Scan count 2, logical reads 4, physical reads
0, read-ahead reads 0, lob
logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'People'. Scan count 1, logical reads 2, physical reads
0, read-ahead reads 0, lob
logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

CPU time = 0 ms, elapsed time = 38 ms.

In order to keep this performance with the minimum overhead, but providing results that
were requested, you can use what is referred to as a covering index. The leaf nodes of a
non-clustered index contains the value being indexed, along with a row locator. A covering
index uses the INCLUDE keyword on the CREATE INDEX statement to include additional
information on the leaf nodes. You can include any data type (even the large types like
nvarchar(max), though the larger the data type, the less fits on a page, or it could even
overflow to multiple pages.

For our two queries, we add another index to the Sales.Orders table (since the foreign

63

key index came as part of the base installation) and replace the PreferredName index that is
part of the original WideWorldImporters database.
Click here to view code image

CREATE NONCLUSTERED INDEX
ContactPersonID_Include_OrderDate_ExpectedDeliveryDate
ON Sales.Orders (ContactPersonID)
INCLUDE (OrderDate,ExpectedDeliveryDate)
ON USERDATA;
GO

And to the PreferredName index we include the column the customer wanted, the
FullName column.
Click here to view code image

DROP INDEX PreferredName ON Application.People;
GO
CREATE NONCLUSTERED INDEX PreferredName_Include_FullName
ON Application.People (PreferredName)
INCLUDE (FullName)
ON USERDATA;

Now, perform the query:
Click here to view code image

SELECT OrderId, OrderDate, ExpectedDeliveryDate,
People.FullName
FROM Sales.Orders
 JOIN Application.People
 ON People.PersonID = Orders.ContactPersonID
WHERE People.PreferredName = 'Aakriti';

And the plan now looks great, and returns what the customer needs. You can see the plan
in Figure 1-15.

FIGURE 1-15 The query plan of the query execution after adding the covering index

Figire 1-15 has the following output:

64

Click here to view code image

Table 'Orders'. Scan count 2, logical reads 6, physical reads
0, read-ahead reads 0, lob
logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'People'. Scan count 1, logical reads 2, physical reads
0, read-ahead reads 0, lob
logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

CPU time = 0 ms, elapsed time = 79 ms.

Covering indexes are fantastic tools for tuning queries where you are dealing with costly
Key Lookup operators. However, restraint should be taken when considering whether or
not to apply them. When checking the plan of a query, you are frequently given a missing
index hint that encourages you to add an index with a long list of included columns. Figure
1-5 showed the plan of the following query:

SELECT *

Click here to view code image

FROM Sales.CustomerTransactions
WHERE PaymentMethodID = 4;

When looking at the plan, there was a missing index hint as shown in Figure 1-16.

FIGURE 1-16 Showing the Missing Index hint on query plan

Hovering your cursor over the missing index shows you details in a tool-tip, or right
click the plan and choose “Missing Index Details...” and you see the following index:
Click here to view code image

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
ON [Sales].[CustomerTransactions] ([PaymentMethodID])
INCLUDE ([CustomerTransactionID],[CustomerID],
[TransactionTypeID], [InvoiceID],[Transact
ionDate],[AmountExcludingTax],[TaxAmount],[TransactionAmount],

65

[OutstandingBalance],[FinalizationDate],[IsFinalized],
[LastEditedBy],[LastEditedWhen])

Adding this index definitely increases the performance of your query. It reduces logical
reads from 1126 to 312. This is not a tremendous savings, and likely doesn’t merit adding
in a strict OLTP system, as for every change to the Sales.CustomerTransactions table, all of
these column values are copied again to the index pages. For a reporting database, missing
indexes can be great things to add, but you always need to take caution.

The Missing Indexes tip is basically where the optimizer was working through what it
was looking for to perform the query the fastest, and an index that would have helped was
discovered. In Chapter 4, “Optimize database objects and SQL infrastructure,” we explore
the missing indexes dynamic management view (DMV) where you can see indexes that
SQL Server would like to have had for the queries that have been optimized over time.
Many of them overlap with other indexes that it has suggested. If you added all of the
indexes that it suggested to a busy system, it would be brought to its knees maintaining
indexes.

One last property of included columns is important to understand. Included columns in
an index can never be used to seek for rows or for ordered scans (since they are not
ordered at all), but they can be used to cover a query even if the key columns are not
involved. For example, consider the following query that uses the columns that we indexed
in the index named ContactPersonID_Include_OrderDate_ExpectedDeliveryDate. If we
only reference the OrderDate and ExpectedDeliveryDate in a query, even as a predicate,
the index can be scanned instead of the (typically) much larger data in the base table. Take
the following query:
Click here to view code image

SELECT OrderDate, ExpectedDeliveryDate
FROM Sales.Orders
WHERE OrderDate > '2015-01-01';

Figure 1-17 shows that it uses the index with included columns:

FIGURE 1-17 Query plan showing an index scan of the included columns of the index

Of course, this is not the optimum index for the query, so the query plan suggests the
following index, which orders the data on the OrderDate, and includes the
ExpectedDeliveryDate as an included column:

66

Click here to view code image

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
ON [Sales].[Orders] ([OrderDate])
INCLUDE ([ExpectedDeliveryDate]);

Take caution when using the missing index hints (or missing indexes DMV that are
reviewed in Chapter 4.) They are not the best for your system’s overall performance,
which certainly could be a topic on the exam. Still, covering queries using the INCLUDE
feature is a great way to improve situations where a read-intensive workload is using scans
to resolve queries because of a few columns that could be added to the index leaf nodes.

Implement clustered index columns by using best practices
The choice of the clustered index can be a complex one as you consider the possibilities.
As we have seen throughout the chapter, for various reasons the clustered index is the most
important index on your objects. The following are a few characteristics that we need to
consider when choosing the clustered index:

 The clustered index contains all of the data of the table on the leaf index pages (or at
least the base structures, as data can overflow onto multiple pages for very large
rows), so when the clustered index optimally satisfies the query’s needs, the
performance of the query is going to be better than otherwise.
 The clustering key (the term used for the key column(s) of the clustered index)
affects the other row store indexes in the table. Picking a larger clustering key could
be terrible for performance of all of the other indexes since every non-clustered
index key carries this value around.
 If the clustered index is not created as unique, when a duplicate key value is created,
it has a four-byte uniqueifier attached to duplicated values to make it unique so it
makes a proper row locator.
 If you change the value of the clustering key, you change the data on every non-
clustered rowstore index.
 The best clustering key is an increasing value, as it is inserted at the end of the
structure that is sorted, leading to minimized page splits. When a new row is created
in the middle of the clustering key sequence, a large row causes the page split.
 There is also a clustered columnstore index that we cover in Skill 1.4.

Need More Review? More information about Clustered Indexes
An excellent, if slightly older, resource to study more about clustered indexes
is Kimberly Tripp’s blog series here:
http://www.sqlskills.com/blogs/kimberly/category/clustering-key/.

67

http://www.sqlskills.com/blogs/kimberly/category/clustering-key/

So with all of these limitations, what should you choose for the clustered index? There
are a few key scenarios to look for:

 The column(s) that are used for single row fetches, often for modifications Many
OLTP databases operate by fetching a set of rows to a client, and then updating the
rows, one at a time. Watching the patterns of usage can help, but almost all of the time
the primary key fits this usage, whether the database is using a natural key as primary
key, or an artificial surrogate key. An IDENTITY or SEQUENCE based artificial key
meets all of the points we started out with, so when implementing a system with
artificial keys, it is often the best choice.
 Range queries Having all the data in a particular order can be essential to
performance when the data that you often need to get a range. Even a range of 1
distinct value makes sense, for a situation like a child row, such as Invoice and
InvoiceLineItem where you are constantly fetching InvoiceLineItem rows by the
InvoiceId for the invoice.
 Queries that return large result sets If you have a situation where a particular
query (or set of queries) is run frequently and returns a lot of rows, performing these
searches by clustered index can be beneficial.

The typical default that most designers use is to use the clustered index on columns of the
primary key. It is always unique, and is almost certainly where the largest percentage of
rows are fetched or the PRIMARY KEY constraint is likely misused. In a real database,
this requires testing to see how it affects overall performance.

Instinctively, it seems that you want to use the value that the user does most searches on,
but the reason that the index that backs the PRIMARY KEY constraint is chosen is because
beyond searches, you see lots of fetches by the primary key since singleton SELECTs,
UPDATEs, and DELETEs all typically use the primary key for access. Add to that how
JOIN operations are done using the primary key, and there needs to be a very compelling
case to use something other than the primary key.

 Exam Tip

On the exam, you should think about the exact usage of indexes that is being
described to make sure what particular need is being emphasized. Questions
won’t be tricky, but they don’t telegraph the answer, so you need to understand
the structure of indexes and the usage that the question writer has in mind.

What data type you choose for the clustering key is a matter of opinion and tooling. For
the exam, it is good to understand the different possibilities and some of the characteristics
of each, particularly when creating an artificial value for a key. Two choices stand out as
very common approaches:

68

 Integer Data types
 GUIDs

It isn’t impossible to use different approaches to these, but these are very common in
almost any database. In the WideWorldImporters database, all of the primary keys are
based on integers. Integers are generally the favored method because they are very small,
and are easy to create in a monotonically increasing sequence using the IDENTITY
property on a column, or using a SEQUENCE object applied using a DEFAULT constraint.

While integer-based data types generally fit the pattern of a great clustering key, there is
another possibility that is very common. Using the uniqueidentifier data type, you can store
a standard GUID (Globally Unique Identifier). A major advantage of these values are that
they can be generated outside of the database server by any client, unlike an integer value,
due to concurrency concerns. However, a major downside is indexing them. They have a
16-byte binary value with a 36-character representation (which can be needed if you have
a client that can’t handle a GUID), and they are random in nature in terms of sorting. This
leads to data being spread around the indexing structures, causing fragmentation, which can
reduce the system’s ability to scan the data (though this is a bit less of a concern when you
have fast SSD drives). You can generate GUID values in the database using NEWID(), or,
if you almost never have new values coming from the client, you can use
NEWSEQUENTIALID() to generate GUID values that are always increasing, making it a
slightly better clustering key than a normal GUID. (However, NEWSEQUENTIALID()
even can’t be trusted completely because the sequence of GUIDs is not guaranteed to be
sequential with other GUIDs created after a reboot.)

In the end, the question of clustering key is very much centered on performance of your
queries. Using a natural key can be difficult due to the size of many natural keys, but at the
same time, a lot matters about how the application works, and how it turns out that data is
used.

Need More Review? The CREATE INDEX Statement
Indexes are a complex topic, and there are a lot of settings that we do not
touch on or even mention. It would be very good to review the many settings
of the CREATE INDEX statement here in the MSDN library:
https://msdn.microsoft.com/en-us/library/ms188783.aspx.

Recommend new indexes based on query plans
In the preceding sections on indexing, we used query plans to show that an index made a
difference in the performance of one or more queries. The process of reviewing a query
plan to determine what the optimizer is doing, or planning to do to optimize a query, is an
important one. In this section, we review some of the factors you need to look for in a
query plan.

69

https://msdn.microsoft.com/en-us/library/ms188783.aspx

In the code shown in Listing 1-1, we make a copy of a couple of tables from the
WideWorldImporters database, with limited indexes to serve as an example.

LISTING 1-1 Setting up a scenario for demonstrating query plans and indexes

Click here to view code image

--2074 Rows
SELECT *
INTO Examples.PurchaseOrders
FROM WideWorldImporters.Purchasing.PurchaseOrders;

ALTER TABLE Examples.PurchaseOrders
 ADD CONSTRAINT PKPurchaseOrders PRIMARY KEY
(PurchaseOrderId);

--8367 Rows
SELECT *
INTO Examples.PurchaseOrderLines
FROM WideWorldImporters.Purchasing.PurchaseOrderLines;

ALTER TABLE Examples.PurchaseOrderLines
 ADD CONSTRAINT PKPurchaseOrderLines PRIMARY KEY
(PurchaseOrderLineID);

ALTER TABLE Examples.PurchaseOrderLines
 ADD CONSTRAINT
FKPurchaseOrderLines_Ref_Examples_PurchaseOrderLines
 FOREIGN KEY (PurchaseOrderId) REFERENCES
 Examples.PurchaseOrders(PurchaseOrderId);

Then we execute the following two queries:
Click here to view code image

SELECT *
FROM Examples.PurchaseOrders
WHERE PurchaseOrders.OrderDate BETWEEN '2016-03-10' AND '2016-
03-14';

SELECT PurchaseOrderId, ExpectedDeliveryDate
FROM Examples.PurchaseOrders
WHERE EXISTS (SELECT *
 FROM Examples.PurchaseOrderLines
 WHERE PurchaseOrderLines.PurchaseOrderId =
 PurchaseOrders.PurchaseOrderID)
 AND PurchaseOrders.OrderDate BETWEEN '2016-03-10' AND '2016-

70

03-14' ;

Executing these queries returns two sets of 5 rows each, and will probably take much
less than a second on any computer as there are not very many rows in these tables at all.
Since the query executes so quickly, the developer may get the idea that the query’s
performance is optimum, even though there will be many users, and much more data in the
production version. Using the Query; Display Estimated Query Plan menu in SQL Server
Management Studio, we view the estimated plan in Figure 1-18 for this query, to help
determine if the query is optimum.

FIGURE 1-18 Query plan for the untuned query on the pair of tables

Note An estimated plan
Earlier in the “Indexing once data is in your tables” section, we covered the
multiple ways to see the query plan for a query. For this section we simply
look at the estimated plan for the queries.

Even though the first query would have appeared to be the costliest from looking at the
results (or at least the equivalent amount of cost, it returned all of the data in the table,
while the other just two small columns, all from the same rows), we can see that the first
query was considerably less costly. Note how there are hidden costs, such as using user-
defined functions that may not show up in a query plan.

For an exam question, you might be asked what you can tell about the indexes on the
table from the plan given. We can tell that both queries are scanning the entire physical
structures they reference due to the Clustered Index Scan operators. This certainly means
that no index is available on the OrderDate column of the Examples.PurchaseOrders table

71

that can help make this query execute faster. Knowing the row counts, there must be
statistics on the OrderDate column that tells the optimizer how many rows will likely
match the predicate because the line from PKPurchaseOrders is much smaller than that
from PKPurchaseOrderLines. You can see the row counts by hovering over the lines, as
shown in Figure 1-19, which is a composite from both lines. (Statistics, their meaning, and
how they can be incorrect at times is covered in Skill 4.1).

FIGURE 1-19 Query plan for the untuned pair of tables showing number of rows for each
operator

Even though it was estimated that approximately 9 rows met the criteria, the optimizer
still chose to scan the Examples.PurchaseOrderLines table and use a Hash Match join
operator. This is an indication that there is no index on the
PurchaseOrderLines.PurchaseOrderId column. Notice that the Hash Match operator is a
Left Semi Join. A semi join means that data is returned from the left input, and not the right.
This tells you that the Hash Match operator is most likely implementing a filter via a
subquery, and not a JOIN in the FROM clause of the query.

Another question you might be asked is what index or indexes are useful to optimize a
query based on the plan. From the evidence presented in our example, we can possibly add
two indexes. One of them is simple:
Click here to view code image

CREATE INDEX PurchaseOrderId ON Examples.PurchaseOrderLines
(PurchaseOrderId);

This index is definite since the only data that is used in the
Examples.PurchaseOrderLines table is the PurchaseOrderId. What is more complex is
whether the following index would be valuable on OrderDate in
Examples.PurchaseOrders.:
Click here to view code image

72

CREATE INDEX OrderDate ON Examples.PurchaseOrders (OrderDate);

Because of the bookmark lookup factor, and the smaller table, this index is not used for
this query, and even more importantly for taking the exam. Without executing the query we
could not accurately predict this. However, a better index that will be useful on any size
table will include the ExpectedDeliveryDate column along with the OrderDate:
Click here to view code image

CREATE INDEX OrderDate_Incl_ExpectedDeliveryDate
 ON Examples.PurchaseOrders (OrderDate) INCLUDE
(ExpectedDeliveryDate);

This is because it covers all of the data needed to answer the conditions of the query. On
the exam, it will be important to watch for conditions like this, where you are looking for
the best answer that is always correct.

Reading a query plan is an essential developer skill, and should be expected on the exam
since it is called out specifically in the indexes skill, and skill 4.2 is entitled “Analyze and
troubleshoot query plans.” All throughout this chapter you will find query plans to
demonstrate multiple scenarios you can see from the query plan. It is the primary way that
we can tell how well a query is tuned.

Note Query plans
For deep detail on query plans, one of the best resources is “SQL Server
Execution Plans, Second Edition” by Grant Fritchey: https://www.simple-
talk.com/books/sql-books/sql-server-execution-plans,-second-edition,-by-
grant-fritchey/.

73

https://www.simple-talk.com/books/sql-books/sql-server-execution-plans,-second-edition,-by-grant-fritchey/

Skill 1.3: Design and implement views
A view is a single SELECT statement that is compiled into a reusable object. Views can be
used in a variety of situations, for a variety of purposes. To the user, views more or less
appear the same as tables, and have the same security characteristics as tables. They are
objects just like tables (and procedure, sequences, etc.) and as such cannot have the same
name as any other object. The query can be very complex, or very simple. Just like a table,
it does not have parameters. Also like a table, there is no guaranteed order of the data in a
view, even if you have an ORDER BY clause in the view to support the TOP phrase on the
SELECT clause.

The basic form of a view is very straightforward:
Click here to view code image

CREATE VIEW SchemaName.ViewName
[WITH OPTIONS]
AS SELECT statement
[WITH CHECK OPTION]

The SELECT statement can be as complex as you desire, and can use CTEs, set
operators like UNION and EXCEPT, and any other constructs you can use in a single
statement.

The options you can specify are:
 SCHEMABINDING Protects the view from changes to the objects used in the
SELECT statement. For example, if you reference Table1.Column1, the properties of
that Column1 cannot be changed, nor can Table1 be dropped. Columns, not
references can be removed, or new columns added.
 VIEW_METADATA Alters how an application that accesses the VIEW sees the
metadata. Typically, the metadata is based on the base tables, but
VIEW_METADATA returns the definition from the VIEW object. This can be useful
when trying to use a view like a table in an application.
 ENCRYPTION Encrypts the entry in sys.syscomments that contains the text of the
VIEW create statement. Has the side effect of preventing the view from being
published as part of replication.

THE WITH CHECK OPTION will be covered in more detail later in this skill, but it
basically limits what can be modified in the VIEW to what could be returned by the VIEW
object.

This section covers how to:
 Design a view structure to select data based on user or business
requirements

74

 Identify the steps necessary to design an updateable view
 Implement partitioned views
 Implement indexed views

Design a view structure to select data based on user or business
requirements
There are a variety of reasons for using a view to meet user requirements, though some
reasons have changed in SQL Server 2016 with the new Row-Level Security feature (such
as hiding data from a user, which is better done using the Row-Level Security feature,
which is not discussed in this book as it is not part of the objectives of the exam.)

For the most part, views are used for one specific need: to query simplification to
encapsulate some query, or part of query, into a reusable structure. As long as they are not
layered too deeply and complexly, this is a great usage. The following are a few specific
scenarios to consider views for:

 Hiding data for a particular purpose A view can be used to present a projection of
the data in a table that limits the rows that can be seen with a WHERE clause, or by
only returning certain columns from a table (or both).
 Reformatting data In some cases, there is data in the source system that is used
frequently, but doesn’t match the need as it stands. Instead of dealing with this
situation in every usage, a view can provide an object that looks like the customer
needs.
 Reporting Often to encapsulate a complex query that needs to perform occasionally,
and even some queries that aren’t exactly complicated, but they are performed
repeatedly. This can be for use with a reporting tool, or simply for ad-hoc usage.
 Providing a table-like interface for an application that can only use tables
Sometimes a stored procedure makes more sense, but views are a lot more general
purpose than are stored procedures. Almost any tool that can ingest and work with
tables can use a view.

Let’s examine these scenarios for using a VIEW object, except the last one. That
particular utilization is shown in the next section on updatable views. Of course, all of
these scenarios can sometimes be implemented in the very same VIEW, as you might just
want to see sales for the current year, with backordered and not shipped products grouped
together for a report, and you might even want to be able to edit some of the data using that
view. While this might be possible, we look at them as individual examples in the
following sections.

Using views to hide data for a particular purpose
One use for views is to provide access to certain data stored in a table (or multiple tables).

75

For example, say you have a customer requirement that states: “We need to be able to
provide access to orders made in the last 12 months (to the day), where there were more
than one-line items in that order. They only need to see the Line items, Customer,
SalesPerson, Date of Order, and when it was likely to be delivered by.”

A view might be created as shown in Listing 1-2.

LISTING 1-2 Creating a view that meets the user requirements

Click here to view code image

CREATE VIEW Sales.Orders12MonthsMultipleItems
AS
SELECT OrderId, CustomerID, SalespersonPersonID, OrderDate,
ExpectedDeliveryDate
FROM Sales.Orders
WHERE OrderDate >= DATEADD(Month,-12,SYSDATETIME())
 AND (SELECT COUNT(*)
 FROM Sales.OrderLines
 WHERE OrderLines.OrderID = Orders.OrderID) > 1;

Now the user can simply query the data using this view, just like a table:
Click here to view code image

SELECT TOP 5 *
FROM Sales.Orders12MonthsMultipleItems
ORDER BY ExpectedDeliveryDate desc;

Using TOP this returns 5 rows from the table:
Click here to view code image

OrderId CustomerID SalespersonPersonID
OrderDate ExpectedDeliveryDate
----------- ----------- ------------------- ---------- --------

73550 967 15 2016-05-31 2016-06-
01
73549 856 16 2016-05-31 2016-06-
01
73548 840 3 2016-05-31 2016-06-
01
73547 6 14 2016-05-31 2016-06-
01
73546 810 3 2016-05-31 2016-06-
01

Note that this particular usage of views is not limited to security like using row-level

76

security might be. A user who has access to all of the rows in the table can still have a
perfectly valid reason to see a specific type of data for a purpose.

Using a view to reformatting data in the output
Database designers are an interesting bunch. They often try to store data in the best
possible format for space and some forms of internal performance that can be gotten away
with. Consider this subsection of the Application.People table in WideWorldImporters
database.
Click here to view code image

SELECT PersonId, IsPermittedToLogon, IsEmployee, IsSalesPerson
FROM Application.People;

What you see is 1111 rows of kind of cryptic data to look at (showing the first four
rows):
Click here to view code image

PersonId IsPermittedToLogon IsEmployee IsSalesPerson
----------- ------------------ ---------- -------------
1 0 0 0
2 1 1 1
3 1 1 1
4 1 1 0

A common request from a user that needs to look at this data using Transact-SQL could
be: “I would like to see the data in the People table in a more user friendly manner. If the
user can logon to the system, have a textual value that says ‘Can Logon’, or ‘Can’t Logon’
otherwise. I would like to see employees typed as ‘SalesPerson’ if they are, then as
‘Regular’ if they are an employee, or ‘Not Employee’ if they are not an employee.”

In Listing 1-3 is a VIEW object that meets these requirements.

LISTING 1-3 Creating the view reformat some columns in the Application.People table

Click here to view code image

CREATE VIEW Application.PeopleEmployeeStatus
AS
SELECT PersonId, FullName,
 IsPermittedToLogon, IsEmployee, IsSalesPerson,
 CASE WHEN IsPermittedToLogon = 1 THEN 'Can Logon'
 ELSE 'Can''t Logon' END AS LogonRights,
 CASE WHEN IsEmployee = 1 and IsSalesPerson = 1
 THEN 'Sales Person'
 WHEN IsEmployee = 1

77

 THEN 'Regular'
 ELSE 'Not Employee' END AS EmployeeType
FROM Application.People;

Now, querying the data in the same manner (leaving off names), you see something more
pleasant to work with:
Click here to view code image

SELECT PersonId, LogonRights, EmployeeType
FROM Application.PeopleEmployeeStatus;

Which returns:
Click here to view code image

PersonId LogonRights EmployeeType
----------- ----------- -------------
1 Can't Logon Not Employee
2 Can Logon Sales Person
3 Can Logon Sales Person
4 Can Logon Regular

There is one serious downside to this method of reformatting. While this looks better,
and is easier to see, queries that use the reformatted values to filter on the new columns
never use an index since the data does not match what is in the index. For a smaller table,
this isn’t an issue, but it is a concern. We included the columns in the view that had the
original data for that reason.

A final concern is not to use views as layers of encapsulation in your application code
for that same reason. The more layers of views you have, the less likely you get a great
plan of execution. Views are definitely useful to have for morphing a set for many reasons,
particularly when a user is repeatedly doing the same kinds of transformations in their
code.

Using a view to provide a reporting interface
A very useful pattern to apply with a view is building a reporting interface, to format some
data for a reporting tool.

Requirements might be given to “Build a simple reporting interface that allows us to see
sales profit or net income broken down by city, state, or territory customer category for the
current week, up to the most current data”. If the system is normalized, there are quite a few
tables involved in the query. Note that an important part of these requirements is that it be
up to the most current data. If it did not include the most recent data, a data warehousing
solution with a separate database would likely be more efficient.

In Listing 1-4, the code for the view that gives you a structure that can easily be used for
providing these answers is included. The object is in a new schema named Reports to

78

segregate it from other bits of code, and the view is suffixed “Basis” because this view
could be the basis of several reports.

There are not any locking or isolation hints, and it is generally not a good practice to do
so in your code unless using the SNAPSHOT isolation level in your database. Chapter 3
covers concurrency, isolation levels, in more detail.

LISTING 1-4 Creating the view that is the basis of an Invoice Summary report

Click here to view code image

CREATE SCHEMA Reports;
GO
CREATE VIEW Reports.InvoiceSummaryBasis
AS
SELECT Invoices.InvoiceId,
CustomerCategories.CustomerCategoryName,
 Cities.CityName, StateProvinces.StateProvinceName,
 StateProvinces.SalesTerritory,
 Invoices.InvoiceDate,
 --the grain of the report is at the invoice, so total
 --the amounts for invoice
 SUM(InvoiceLines.LineProfit) as InvoiceProfit,
 SUM(InvoiceLines.ExtendedPrice) as InvoiceExtendedPrice
FROM Sales.Invoices
 JOIN Sales.InvoiceLines
 ON Invoices.InvoiceID = InvoiceLines.InvoiceID
 JOIN Sales.Customers
 ON Customers.CustomerID = Invoices.CustomerID
 JOIN Sales.CustomerCategories
 ON Customers.CustomerCategoryID =
 CustomerCategories.CustomerCategoryID
 JOIN Application.Cities
 ON Customers.DeliveryCityID = Cities.CityID
 JOIN Application.StateProvinces
 ON StateProvinces.StateProvinceID =
Cities.StateProvinceID
GROUP BY Invoices.InvoiceId,
CustomerCategories.CustomerCategoryName,
 Cities.CityName, StateProvinces.StateProvinceName,
 StateProvinces.SalesTerritory,
 Invoices.InvoiceDate;

Now you can create a report of the top 5 Sales by SalesTerritory pretty simply:
Click here to view code image

79

SELECT TOP 5 SalesTerritory, SUM(InvoiceProfit) AS
InvoiceProfitTotal
FROM Reports.InvoiceSummaryBasis
WHERE InvoiceDate > '2016-05-01'
GROUP BY SalesTerritory
ORDER BY InvoiceProfitTotal DESC;

This returns:
Click here to view code image

SalesTerritory InvoiceProfitTotal
------------------------ ---------------------
Southeast 536367.60
Great Lakes 366182.65
Mideast 344703.00
Southwest 344386.95
Plains 288766.20

Or, using the same structure, the top five sales by state and customer category:
Click here to view code image

SELECT TOP 5 StateProvinceName, CustomerCategoryName,
 SUM(InvoiceExtendedPrice) AS InvoiceExtendedPriceTotal
FROM Reports.InvoiceSummaryBasis
WHERE InvoiceDate > '2016-05-01'
GROUP BY StateProvinceName, CustomerCategoryName
ORDER BY InvoiceExtendedPriceTotal DESC;

This returns:
Click here to view code image

StateProvinceName CustomerCategoryName InvoiceExtendedPriceTotal
-------------------- ---------------------- -------------------

Texas Novelty Shop 229966.31
Pennsylvania Novelty Shop 210254.62
Ohio Novelty Shop 201242.59
New York Novelty Shop 197664.32
California Novelty Shop 178698.48

Clearly, novelty shops are a big business for WideWorldImporters. Looking at the plans
of both queries, you should notice a couple of things. The plans are pretty large, not
surprising since we joined a lot of tables. Nothing stands out as too terrible, and both plans
suggest the same index:
Click here to view code image

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]

80

 ON [Sales].[Invoices] ([InvoiceDate]) INCLUDE
([InvoiceID],[CustomerID]);

There is no need to actually apply the index, but as we have discussed frequently, having
a covering index for almost every query is a very common desire of the optimizer, and is
not always a bad idea when you are doing ranges queries on the table (which was one of
the strengths of the clustered index, because it had all of the data sorted for the range.
Covering the data needs of queries make a non-clustered index with included columns
behave like a clustered index for queries such as this.)

Identify the steps necessary to design an updateable view
In the previous section, we identified four scenarios where views are frequently useful (not
an exhaustive list). The fourth scenario (providing a table-like interface for an application
that can only use tables) was put off until this section because for the most part, the goal is
to make objects that behave exactly like tables in regards to SELECT, INSERT, UPDATE,
and DELETE statements with no special modifications.

To provide interfaces with views there are some special configurations that you need to
know. We look at the following scenarios for using views to modify tables.

 Modifying views that reference one table
 Limiting what data can be added to a table through a view through DDL
 Modifying data in views with more than one table

Modifying views that reference one table
Generally speaking, any view that references a single table is going to be editable. For
example, create a VIEW on the HumanResources.Employee table. To keep it simple, say
the requirements are: “The user needs a view to allow the interface to only be able to
modify rows where the type of gadget is ‘Electronic’, but not any other value.” The table is
shown in Listing 1-5.

LISTING 1-5 Creating the table and some data that is the basis of the updatable view
example

Click here to view code image

CREATE TABLE Examples.Gadget
(
 GadgetId int NOT NULL CONSTRAINT PKGadget PRIMARY KEY,
 GadgetNumber char(8) NOT NULL CONSTRAINT AKGadget UNIQUE,
 GadgetType varchar(10) NOT NULL
);
INSERT INTO Examples.Gadget(GadgetId, GadgetNumber, GadgetType)
VALUES (1,'00000001','Electronic'),

81

 (2,'00000002','Manual'),
 (3,'00000003','Manual');

When building a view to be editable, the simpler the view, the easier it is when you’re
working with it. In the code that you see in Listing 1-6, there is a column that is the
uppercase version of the gadget type to show how a non-executable column behaves.

LISTING 1-6 Creating the view that is the basis of an Invoice Summary report

Click here to view code image

CREATE VIEW Examples.ElectronicGadget
AS
 SELECT GadgetId, GadgetNumber, GadgetType,
 UPPER(GadgetType) AS UpperGadgedType
 FROM Examples.Gadget
 WHERE GadgetType = 'Electronic';

Note Using VIEW_METADATA
When using views to provide an interface for an application, you can use the
VIEW_METADATA to alter how an application that accesses the view sees
the metadata. Typically, the metadata is based on the base tables, but
VIEW_METADATA returns the definition from the VIEW object. This can be
useful when trying to use a view like a table in an application.

Now, any user who is granted access to this view can only see rows that meet the
WHERE clause of GadgetType = ‘Electronic’.

 Exam Tip

It‘s very useful to know all of the comparison operators that are used in SQL,
such as LIKE, IN, =, <,>,<> (or !=), etc. While there aren’t necessarily
questions on how to use LIKE, base knowledge of logical and comparison
operators is necessary to get a question correct.

Next, perform the following query that shows you the data in the table, seeing what data
the user sees:
Click here to view code image

SELECT ElectronicGadget.GadgetNumber AS FromView,
Gadget.GadgetNumber AS FromTable,

82

 Gadget.GadgetType, ElectronicGadget.UpperGadgetType
FROM Examples.ElectronicGadget
 FULL OUTER JOIN Examples.Gadget
 ON ElectronicGadget.GadgetId = Gadget.GadgetId;

You can see that for rows where the GadgetType <> ‘Electronic’:
Click here to view code image

FromView FromTable GadgetType UpperGadgetType
-------- --------- ---------- ---------------
00000001 00000001 Electronic ELECTRONIC
NULL 00000002 Manual NULL
NULL 00000003 Manual NULL

Now we run three statements to create some new rows, delete two rows, and update two
rows in the table. In the comments on the code, include details of what you’re doing. First,
try creating two new rows, referencing the derived column:
Click here to view code image

INSERT INTO Examples.ElectronicGadget(GadgetId, GadgetNumber,
 GadgetType,
UpperGadgetType)
VALUES (4,'00000004','Electronic','XXXXXXXXXX'), --row we can
see in view
 (5,'00000005','Manual','YYYYYYYYYY'); --row we cannot
see in view

This fails, as you would expect:
Click here to view code image

Msg 4406, Level 16, State 1, Line 433
Update or insert of view or function
'Examples.ElectronicGadget' failed because
it contains a derived or constant field.

 Exam Tip

As you are studying for the exam, it is a great idea to try different syntaxes and
scenarios everything to see what happens. While the question writers are not
writing tricky questions, they can test you on scenarios that are atypical based
on your experience. By pushing the boundaries of what you might normally try,
you learn new concepts.

Now, try again, not referencing the calculated column:
Click here to view code image

83

INSERT INTO Examples.ElectronicGadget(GadgetId, GadgetNumber,
GadgetType)
VALUES (4,'00000004','Electronic'),
 (5,'00000005','Manual');

This succeeds, so now use the query with the FULL OUTER JOIN from before, but limit
it to the rows you created.
Click here to view code image

SELECT ElectronicGadget.GadgetNumber as FromView,
Gadget.GadgetNumber as FromTable,
 Gadget.GadgetType, ElectronicGadget.UpperGadgetType
FROM Examples.ElectronicGadget
 FULL OUTER JOIN Examples.Gadget
 ON ElectronicGadget.GadgetId = Gadget.GadgetId;

WHERE Gadget.GadgetId in (4,5);

Both rows were created, even though you cannot see the row in
the view after the
operation:

FromView FromTable GadgetType UpperGadgetType
-------- --------- ---------- ---------------
00000004 00000004 Electronic ELECTRONIC
NULL 00000005 Manual NULL

Next, update two rows:
Click here to view code image

--Update the row we could see to values that could not be seen
UPDATE Examples.ElectronicGadget
SET GadgetType = 'Manual'
WHERE GadgetNumber = '00000004';

--Update the row we could see to values that could actually see
UPDATE Examples.ElectronicGadget
SET GadgetType = 'Electronic'
WHERE GadgetNumber = '00000005';

When looking at the data (using the same query as before,) see that the row you could
see has change to be not visible from the view, but the row we could not see was not
updated:
Click here to view code image

FromView FromTable GadgetType UpperGadgetType
-------- --------- ---------- ---------------

84

NULL 00000004 Manual NULL
NULL 00000005 Manual NULL

Since you cannot see the row in the results of a query of the view, you cannot update the
row either. Hence, the same would be true of the DELETE operation. The FROM clause of
the SELECT, DELETE, and UPDATE all work the same, and only give us access to the
rows that are visible through the view. What is interesting though is that you are able to
update a row from a name you could see, to a name you could not. The following section
demonstrates how to make that not the case using DDL. Change the E1111111 row back to
the original value:
Click here to view code image

UPDATE Examples.Gadget
SET GadgetType = 'Electronic'
WHERE GadgetNumber = '00000004';

 Exam Tip

Note that any constraints on tables that views represent are enforced. We have
applied PRIMARY KEY, UNIQUE, and FOREIGN KEY constraints as part of
the database design skill earlier. In Chapter 2 we look at all of the constraint
types in greater detail.

Limiting what data can be added to a table through a view through DDL
When using a view as an interface like we are doing in this section, one of the things that
you generally don’t want to occur is to have a DML statement affect the view of the data
that is not visible to the user of the view, as we saw in the previous section.

In order to stop this from occurring, there is a clause on the creation of the view called
WITH CHECK OPTION that checks to make sure that the result of the INSERT or
UPDATE statement is still visible to the user of the view. In Listing 1-7, modify the
Examples.ElectronicGadget view to include this clause:

LISTING 1-7 Altering the view to use the WITH CHECK OPTION

Click here to view code image

ALTER VIEW Examples.ElectronicGadget
AS
 SELECT GadgetId, GadgetNumber, GadgetType,
 UPPER(GadgetType) AS UpperGadgetType
 FROM Examples.Gadget
 WHERE GadgetType = 'Electronic'

85

 WITH CHECK OPTION;

 Exam Tip

To change the definition of a coded object like a view, stored procedure, etc.
you can use the ALTER command, with new code for the object. Another
method is to drop the object and recreate it. Dropping the object loses all of
the related security, and simply executing DROP VIEW viewName; fails if the
view does not exist. In SQL Server 2016, a new version of the DROP
command was added: DROP [objectType] IF EXISTS drops the object if it
exists. For our current view, it would be DROP VIEW IF EXISTS
Examples.ElectronicGadget.

Now, when you attempt to create a new row that would not be visible, you get an error.
As an example, try the following:
Click here to view code image

INSERT INTO Examples.ElectronicGadget(GadgetId, GadgetNumber,
GadgetType)
VALUES (6,'00000006','Manual');

This returns the following error now:
Click here to view code image

Msg 550, Level 16, State 1, Line 482
The attempted insert or update failed because the target view
either specifies
WITH CHECK OPTION or spans a view that specifies WITH CHECK
OPTION and one or more
rows resulting from the operation did not qualify under the
CHECK OPTION constraint.

This UPDATE worked earlier, but it shouldn’t because it does not match the view
definition and it gives you back the same error message as the previous one.
Click here to view code image

UPDATE Examples.ElectronicGadget
SET GadgetType = 'Manual'
WHERE GadgetNumber = '00000004';

While this is definitely different than a normal table, it usually makes more sense
because the view has carved out a slice of an object’s domain, and it is generally illogical
that a change to a row in a table should be able to move data out of the table’s domain (be
it a table or a view, which is commonly referred to as a virtual table).

86

Modifying data in views with more than one table
So far, the view we have worked with only contained one table. In this section we look at
how things are affected when you have greater than one table in the view. Listing 1-8 adds
a table to the Examples.Gadget table we have been using in this section on modifying data
in views, including data, and a foreign key constraint.

LISTING 1-8 Adding a table to go with the Examples.Gadget table to show a view with
more than one table

Click here to view code image

CREATE TABLE Examples.GadgetType
(
 GadgetType varchar(10) NOT NULL CONSTRAINT PKGadgetType
PRIMARY KEY,
 Description varchar(200) NOT NULL
)
INSERT INTO Examples.GadgetType(GadgetType, Description)
VALUES ('Manual','No batteries'),
 ('Electronic','Lots of bats');

ALTER TABLE Examples.Gadget
 ADD CONSTRAINT FKGadgetrefExamples_GadgetType
 FOREIGN KEY (GadgetType) REFERENCES Examples.GadgetType
(GadgetType);

In Listing 1-9 is the code for a view that references both of the tables we have created,
with no WHERE clause to limit the rows returned. Note that we have duplicated the
GadgetType column from both tables to allow access to both columns.

LISTING 1-9 View that references multiple tables

Click here to view code image

CREATE VIEW Examples.GadgetExtension
AS
 SELECT Gadget.GadgetId, Gadget.GadgetNumber,
 Gadget.GadgetType, GadgetType.GadgetType As
DomainGadgetType,
 GadgetType.Description as GadgetTypeDescription
 FROM Examples.Gadget
 JOIN Examples.GadgetType
 ON Gadget.GadgetType = GadgetType.GadgetType;

87

Now try to insert a new gadget and gadget type simultaneously:
Click here to view code image

INSERT INTO Examples.GadgetExtension(GadgetId, GadgetNumber,
GadgetType,
 DomainGadgetType, GadgetTypeDescription)
VALUES(7,'00000007','Acoustic','Acoustic','Sound');

This ends with the following message:
Click here to view code image

Msg 4405, Level 16, State 1, Line 512
View or function 'Examples.GadgetExtension' is not updatable
because the modification
affects multiple base tables.

However, if you know the internals of the view, and know which columns go with which
tables, you can break this up into two statements:
Click here to view code image

INSERT INTO Examples.GadgetExtension(DomainGadgetType,
GadgetTypeDescription)
VALUES('Acoustic','Sound');

INSERT INTO Examples.GadgetExtension(GadgetId, GadgetNumber,
GadgetType)
VALUES(7,'00000007','Acoustic');

See that it works and, looking at the data, see that both rows have been created. Now, to
see the UPDATE work, we update the description of one of the types. There are two rows
where the GadgetType = ‘Electronic’.
Click here to view code image

SELECT *
FROM Examples.Gadget
 JOIN Examples.GadgetType
 ON Gadget.GadgetType = GadgetType.GadgetType
WHERE Gadget.GadgetType = 'Electronic';

Two rows are returned:
Click here to view code image

GadgetId GadgetNumber GadgetType GadgetType Description
----------- ------------ ---------- ---------- --------------
1 00000001 Electronic Electronic Lots of bats
4 00000004 Electronic Electronic Lots of bats

88

Update one of these rows, using the primary key column, and setting the description:
Click here to view code image

UPDATE Examples.GadgetExtension
SET GadgetTypeDescription = 'Uses Batteries'
WHERE GadgetId = 1;

Look at the data again and see that both rows have changed:
Click here to view code image

GadgetId GadgetNumber GadgetType GadgetType Description
----------- ------------ ---------- ---------- ---------------
1 00000001 Electronic Electronic Uses Batteries
4 00000004 Electronic Electronic Uses Batteries

There is no way to specify that a DELETE statement affects any certain columns, so
DELETE from a view that touches multiple tables doesn’t work by simply affecting a
DELETE against the view.

Note The INSTEAD OF TRIGGER object
In Skill 2.3 we introduce another very important method of making any view
modifiable using an INSTEAD OF TRIGGER object that will allow any view
to be editable, even if the view doesn’t reference any TABLE objects in the
database. We defer that until introducing the concept of building a TRIGGER
object.

Implement partitioned views
A partitioned view is a view that is based on a query that uses a UNION ALL set operator
to treat multiple tables as one. Before the feature of partitioning tables and indexes was
created, it was the primary way to give an administrator the ability to manage multiple
“slices” of a table as different physical resources.

The feature still exists, both for backward compatibility (since partitioning is the typical
best way to implement partitioning since 2005), and to enable a VIEW object to work
across multiple independent federated SQL Servers. Generally, the place where this
feature is still the best practice is a case such as having two or more servers located in
different corporate locations. Each location might have a copy of their data, and then a
view is created that lets you treat the table as one on the local server.

Our example is located on a single server, but we will point out where you would
address and configure the references to an external server. Listing 1-10 creates two tables
and loads them from the Sales.Invoices table in the WideWordImporters database to build a
local version of a partitioned view.

89

LISTING 1-10 Tables and data to use as the basis of a Partitioned View

Click here to view code image

CREATE TABLE Examples.Invoices_Region1
(
 InvoiceId int NOT NULL
 CONSTRAINT PKInvoices_Region1 PRIMARY KEY,
 CONSTRAINT CHKInvoices_Region1_PartKey
 CHECK (InvoiceId BETWEEN 1 and
10000),
 CustomerId int NOT NULL,
 InvoiceDate date NOT NULL
);
CREATE TABLE Examples.Invoices_Region2
(
 InvoiceId int NOT NULL
 CONSTRAINT PKInvoices_Region2 PRIMARY KEY,
 CONSTRAINT CHKInvoices_Region2_PartKey
 CHECK (InvoiceId BETWEEN 10001 and
20000),

 CustomerId int NOT NULL,
 InvoiceDate date NOT NULL

);

 INSERT INTO Examples.Invoices_Region1 (InvoiceId,
CustomerId, InvoiceDate)
 SELECT InvoiceId, CustomerId, InvoiceDate
 FROM WideWorldImporters.Sales.Invoices
 WHERE InvoiceId BETWEEN 1 and 10000;

 INSERT INTO Examples.Invoices_Region2 (InvoiceId,
CustomerId, InvoiceDate)
 SELECT InvoiceId, CustomerId, InvoiceDate
 FROM WideWorldImporters.Sales.Invoices
 WHERE InvoiceId BETWEEN 10001 and 20000;

The PRIMARY KEY constraint of this table must be involved in the partitioning for this
to work. In our case, we use a range of InvoiceId values, which is the primary key of both
tables. You could use a SEQUENCE object with a pre-defined range to create your data,
but the partitioning column cannot be a column with the IDENTITY property, and it cannot
be loaded from a DEFAULT constraint. The partitioning range must be enforced with a
CHECK constraint, and must be for a mutually-exclusive range of values.

90

There are several criteria beyond what you have seen thus far that you should
understand, but note that not every source table needs the exact same shape, even if that is
the more typical application.

Need More Review? Configuring Partitioned Views
There is a complete list and more complete reading on the subject on the
MSDN site here: https://msdn.microsoft.com/en-us/library/ms187956.aspx.
There are several rules that make configuring a partitioned a complex
operation that cannot be done with any set of similarly configured tables.

In Listing 1-11, we create a very simple, locally-partitioned view.

LISTING 1-11 Partitioned View created from the tables in Listing 1-10

Click here to view code image

CREATE VIEW Examples.InvoicesPartitioned
AS
 SELECT InvoiceId, CustomerId, InvoiceDate
 FROM Examples.Invoices_Region1
 UNION ALL
 SELECT InvoiceId, CustomerId, InvoiceDate
 FROM Examples.Invoices_Region2;

Using this VIEW object, and requesting data from only one of the TABLE objects by
partitioning key only needs to fetch data from one of the partitions. As an example, fetch the
row where InvoiceId = 1:
Click here to view code image

SELECT *
FROM Examples.InvoicesPartitioned
WHERE InvoiceId = 1;

See the following plan in figure 1-20 that only references the one index.

FIGURE 1-20 Plan from query that accesses data in one partition.

91

https://msdn.microsoft.com/en-us/library/ms187956.aspx

Even if you made the query access all 10000 rows in the Sales.Invoices_Region1 table
by making the WHERE predicate BETWEEN 1 AND 10000, it would only access the one
table. A predicate of IN (1,10001) however, accesses both tables.

More difficult for the user is that all queries need to specify the partitioning key(s)
values(s) or the partitioning does not work. For the following query, use the InvoiceDate in
the predicate:
Click here to view code image

SELECT InvoiceId
FROM Examples.InvoicesPartitioned
WHERE InvoiceDate = '2013-01-01';

The range of values in the results shows that only include data from the
Sales.Invoices_Region1 table is returned.

InvoiceId

1
2
...
40
41

Looking at the plan shows the query accessed both physical tables, as seen in Figure 1-
21. The Concatenation operator represents the UNION ALL in the query, as it is
concatenating the two sets together. You can see from the size of the lines that the optimizer
was expecting very few rows, but it still had to perform the scan.

FIGURE 1-21 Plan from query that accesses data in both partitions, yet only returns data
from one

When doing this on a local table, much like in a partitioned table, this is generally not so
terrible. You could get some performance benefit by locating the tables being in different
physical structures, or even different file groups. But what if this was on a different server?
If the query that the VIEW object was based upon was changed:

92

Click here to view code image

SELECT InvoiceId, CustomerId, InvoiceDate
FROM Sales.Invoices_Region1
UNION ALL
SELECT InvoiceId, CustomerId, InvoiceDate
FROM ServerName.DatabaseName.Sales.Invoices_Region2;

And now that the database is on a linked server, this is more costly than local and could
be very costly to execute the query. A linked server is a server that is registered in SQL
Server’s metadata with security to access data that is not located on the local server. An
indication that a query is using a linked server is when you see the object referenced by a
four-part name.

Need More Review? Linked servers
Read more about linked servers here on MSDN:
https://msdn.microsoft.com/en-us/library/ms188279.aspx)

Implement indexed views
An indexed view (sometimes referred to as a materialized view), is a view that has been
made into more than just a simple stored query by creating a clustered index on it. By doing
this, it basically makes it into a copy of data in a physical structure much like a table.

The first benefit of using an indexed view is that when you use it Enterprise Edition of
SQL Server, it uses the stored data in the index structure. For Standard Edition, it uses the
code of the query unless you use a NOEXPAND table hint, in which case it uses the
clustered index representation.

A second benefit, which is very important, is that it is recalculated for every
modification of the underlying data. If you need up to the second aggregations extremely
fast, it is better than managing copying data using a trigger. This can also be a detriment,
depending on how busy the server is as the aggregations are done synchronously, meaning
other users may need to wait for locks to be released.

Finally, and the benefit that can be the biggest help is that, when using Enterprise
Edition, SQL Server considers using the aggregates that are stored in your view for queries
that look like the query, but doesn’t reference the view directly. Getting this to work
depends on the needs being fairly limited. The limitations are pretty stiff. For example, a
few common bits of coding syntax that are not allowed:

 SELECT * syntax—columns must be explicitly named
 UNION, EXCEPT, or INTERSECT
 Subqueries
 Outer joins or recursive join back to the same table

93

https://msdn.microsoft.com/en-us/library/ms188279.aspx

 TOP in the SELECT clause
 DISTINCT
 SUM() function referencing more than one column
 Almost any aggregate function against an expression that can return NULL
 Reference any other views, or use CTEs or derived tables
 Reference any nondeterministic functions
 Reference data outside the database.
 COUNT(*) – Must use COUNT_BIG(*)
 View not specifying SCHEMABINDING

Need More Review? More on indexed reviews
For more information about indexed views, and a complete list of limitations,
read this article in MSDN: https://msdn.microsoft.com/en-
us/library/ms191432.aspx.

In Listing 1-12, we create a view in the WideWorldImporters database that a customer
needed. It is pretty typical, and gives the sum of the cost of what they have purchased, the
profit, and the number of line items.

LISTING 1-12 Typical VIEW object a customer may want to view some data

Click here to view code image

CREATE VIEW Sales.InvoiceCustomerInvoiceAggregates
WITH SCHEMABINDING
AS
SELECT Invoices.CustomerId,
 SUM(ExtendedPrice * Quantity) AS SumCost,
 SUM(LineProfit) AS SumProfit,
 COUNT_BIG(*) AS TotalItemCount
FROM Sales.Invoices
 JOIN Sales.InvoiceLines
 ON Invoices.InvoiceID =
InvoiceLines.InvoiceID
GROUP BY Invoices.CustomerID;

Run the following statement:
Click here to view code image

SELECT *
FROM Sales.InvoiceCustomerInvoiceAggregates;

94

https://msdn.microsoft.com/en-us/library/ms191432.aspx

And, checking the plan, you see the plan as shown in Figure 1-22.

FIGURE 1-22 Query plan from using the Sales.InvoiceCustomerInvoiceAggregates view
before indexing

Add the following unique clustered index. It doesn’t have to be unique, but if the data
allows it, it should be. If duplicated data occurs in the source you receive an error (this is a
way to bolt on a uniqueness constraint without changing the DML of a table).
Click here to view code image

CREATE UNIQUE CLUSTERED INDEX
XPKInvoiceCustomerInvoiceAggregates on
 Sales.InvoiceCustomerInvoiceAggregates(CustomerID);

Then perform the same query of all data, and the plan changes to what is shown in Figure
1-23. You should also notice the query runs much faster, even with such a small data set.

FIGURE 1-23 Query plan from using the Sales.InvoiceCustomerInvoiceAggregates view
after adding index

As an example of how this feature can be used to speed up a system without changing the
data, look at the plan of the following query:
Click here to view code image

SELECT Invoices.CustomerId,
 SUM(ExtendedPrice * Quantity) / SUM(LineProfit),
 COUNT(*) AS TotalItemCount
FROM Sales.Invoices
 JOIN Sales.InvoiceLines

95

 ON Invoices.InvoiceID =
InvoiceLines.InvoiceID
GROUP BY Invoices.CustomerID;

It uses the view that we created, because the building blocks used SUM(LineProfit),
COUNT(*), and SUM(ExtendedPrice * Quantity) exist in the indexed view. In the plan, you
see the same Clustered Index Scan operator, with two Compute Scalars, for the columns
that are being output. Indexed views can be a useful tool to apply when you are dealing
with a view that is costly and all or some of it can be put into an indexed view. Using
indexed views in this manner is a niche use, but it is definitely possible and very powerful
when needed. The typical use of indexed views is for reporting, and typically reporting in
a reporting database where lots of data modifications are not taking place.

Skill 1.4: Implement columnstore indexes
This final topic is different than what we have covered so far, but it will certainly be on the
exam. We have focused primarily on OLTP table design and optimization using the
technologies in SQL Server that have been around, in some fashion, since the early
versions of the product. Most SQL Server professional developers and DBAs have created
tables and applied indexes to them, clustered and non-clustered.

However, our focus now will be centered squarely on reporting, using this new
technology in columnstore indexes. Columnstore indexes have changed considerably in
each edition of SQL Server since they were introduced. While the basic internal structures
are very similar to what was in SQL Server 2012 or 2014, their usage patterns have
changed considerably.

 Exam Tip

Be sure that if you have used columnstore indexes in earlier editions of the
product that you review this topic in detail.

This section covers how to:
 Determine use cases that support the use of columnstore indexes
 Identify proper usage of clustered and non-clustered columnstore indexes
 Design standard non-clustered indexes in conjunction with clustered
columnstore indexes
 Implement columnstore index maintenance

Determine use cases that support the use of columnstore indexes
Columnstore indexes are purpose built for reporting scenarios, particularly when dealing

96

with large quantities of data. Columnstore indexes are based on the concept of a columnar
database, of which the concept is not a new one (if you would like a deeper explanation of
columnar databases, the following paper provides as much and more than you may want:
http://db.csail.mit.edu/pubs/abadi-column-stores.pdf). The base idea is that instead of
storing all of the data for a row together, you store all of the data for a column together, as
shown conceptually in Figure 1-24. Each column is stored independently, but the rows of
the table are kept in the same order in each segment.

FIGURE 1-24 Conceptual format of a columnar database

This format is particularly apt when you only need a small percentage of the columns
from the table, particularly when you need a large percentage of the rows of the table. For
example, a query of the format SELECT SUM(Col1) FROM TableName; would only need
to scan the structure for Col1, and would never need to touch Col2, Col3, or Col4.

Column-oriented indexes, because they are not ordered, are not useful for picking only a
few rows out of a table, so the implementation of columnstore indexes before SQL Server
2016 was not tremendously flexible in how it might be applied. Another limitation is that
there are several data types that are not supported:

 varchar(max) and nvarchar(max)
 rowversion (also known as timestamp)
 sql_variant
 CLR based types (hierarchyid and spatial types)
 xml
 ntext, text, and image (though rightfully so as these data types have been deprecated
for some time)

In SQL Server 2016, you can apply these indexes not only to tables that are only for
strictly for reporting, but also to tables in your live OLTP database for real-time analytics.

97

http://db.csail.mit.edu/pubs/abadi-column-stores.pdf

While the maintenance of these indexes is more costly and complex than rowstore indexes,
one columnstore index can replace almost all of the indexes you may have applied for
analytics.

Figure 1-25 is a conceptual drawing of the structure of a columnstore index as
implemented by SQL Server. Each row group contains up to 1,048,576 rows each, broken
down into segments that are all ordered physically the same, though in no logical order.

FIGURE 1-25 Conceptual format of a columnstore index
In each row group, there is a set of column segments, that store the data for one single

column. In Figure 1-25, note that the column segments are drawn as differently sized,
because each of the segments is compressed, using similar constructs like can be done with
page compression on classic row oriented structures, but instead of an 8K page,
compression can take place over the single row group, or even all row groups for far
greater compression. At the structure and segment, data is compressed using a process like
normalization, where values that are duplicated over and over are replaced by a smaller
value to look up the actual value.

Each of the segments have information stored about the values to let the query processor
know if the segment can be skipped in processing, so if you have a WHERE clause that is
looking for Col1 > 100, and the max value is 50, the segment can be skipped.

The deltastore structure comes into play when you are modifying the data in a table with
a columnstore index. New rows are placed into the deltastore in a heap structure until the
rows in the deltastore are compressed, and moved into a compressed row group in column
segments. DELETE operations simply mark the row as removed from the column segment,
telling the query processor to ignore the row. UPDATE operations in the columnstore index
are a delete from the columnstore index, and then the row is added to the deltastore like a
normal INSERT operation.

The process that moves rows from the deltastore to compressed rowgroups is called the
tuple mover. It is a background process that runs periodically and does most of the
management of your columnstore index maintenance. However, depending on how you use
the table with the columnstore index, you need to do some maintenance as well (this is
covered in the last section of the chapter: “Implement Columnstore Index Maintenance”).

98

Need More Review? More Information about columnstore indexes
The introduction to columnstore indexes that is provided in this section has
been strictly as a review of key concepts about how the indexes work. There
is much more useful information in the MSDN: Columnstore Indexes Guide
https://msdn.microsoft.com/en-us/library/gg492088.aspx. It contains links
and references to a lot of really great information, far more than we are able
to provide in this chapter.

Note More on CREATECOLUMNSTOREINDX
Another good resource to read over is the CREATE COLUMNSTORE
INDEX documentation here: https://msdn.microsoft.com/en-
us/library/gg492153.aspx as it contains any other limitations that you should
familiar yourself with.

Identify proper usage of clustered and non-clustered columnstore indexes
Much like rowstore indexes, the distinction between clustered and non-clustered indexes is
whether it is a separate structure, or if it changes the physical structure of the table. A
clustered columnstore index compresses the base rows, removing the row based storage
altogether. The non-clustered columnstore leaves the heap or clustered rowstore index and
adds a separate compressed structure. At a high level, columnstore indexes support two
scenarios, one of which works with each type of index:

 Dimensional formatted data warehouses (Clustered Columnstore Indexes)
Different than relational databases we have covered so far, we look at the pattern of
how dimensional databases are structured, and how these indexes work well with
them
 Analytics on OLTP tables (Nonclustered Columnstore Indexes) Due to how these
indexes are maintained, it can be that when operational reporting is needed, a
columnstore index performs better overall than a B-Tree index, particularly if
multiple complex B-Tree indexes are needed, as the query processor only needs to
synchronously maintain one analytical index.

These indexes are not used to improve performance of small row by row operations, but
rather when one needs to work through large sets of data, touching most of the rows. In this
section, we review how this need applies to the two identified scenarios, and how they
differ calling for the different type of index.

One important thing about any use case for columnstore indexes is that they should have
a large amount of data. As we have noted, the optimum amount of data in a row group is
1,048,576. If your tables only have a few thousand rows (or even a few hundred thousand

99

https://msdn.microsoft.com/en-us/library/gg492088.aspx
https://msdn.microsoft.com/en-us/library/gg492153.aspx

rows) in them, columnstore indexes may not be what you need, though they can still be
applied and used.

Using clustered columnstore indexes on dimensional data warehouse structures
A data warehouse can mean many things to people, but one of the primary meanings is
based on the pattern of a star schema. The following is a brief review of a star schema
from the WideWordImportersDW sample database that is a companion to the
WideWorldImporters sample database that we have been using so far for performance
examples. The name star schema comes from the way a data model looks when the
structure is implemented as shown in Figure 1-26.

FIGURE 1-26 Conceptual format of star schema
In some cases, a dimension links to other dimensions forming what is referred to as a

snowflake schema, though ideally there is one join between fact and dimension. The
concept of a star schema is that there is one central table that contains measurements
(called a fact table) that needs to be reported on (typically the goal is to perform some
aggregate), and a set of foreign key values that link to tables of values that the data can be
summarized by (called dimensions). One such example in the WideWorldImportersDW is
the Fact.[Order] table, shown in Listing 1-13.

LISTING 1-13 Columns in the Fact.Order table in WideWorldImportersDW

Click here to view code image

CREATE TABLE Fact.[Order]
(

100

 [Order Key] bigint IDENTITY(1,1) NOT NULL,
 [City Key] int NOT NULL,
 [Customer Key] int NOT NULL,
 [Stock Item Key] int NOT NULL,
 [Order Date Key] date NOT NULL,
 [Picked Date Key] date NULL,
 [Salesperson Key] int NOT NULL,
 [Picker Key] int NULL,
 [WWI Order ID] int NOT NULL,
 [WWI Backorder ID] int NULL,
 [Description] nvarchar(100) NOT NULL,
 [Package] nvarchar(50) NOT NULL,
 [Quantity] int NOT NULL,
 [Unit Price] decimal(18, 2) NOT NULL,
 [Tax Rate] decimal(18, 3) NOT NULL,
 [Total Excluding Tax] decimal(18, 2) NOT NULL,
 [Tax Amount] decimal(18, 2) NOT NULL,
 [Total Including Tax] decimal(18, 2) NOT NULL,
 [Lineage Key] int NOT NULL
);

Breaking this table down, the [Order Key] column is a surrogate key. Column: [City
Key] down to [Picker Key] are dimension keys, or dimension foreign key references. The
cardinality of the dimension compared to the fact table is generally very low. You could
have millions of fact rows, but as few as 2 dimension rows. There are techniques used to
combine dimensions, but the most germane point to our discussion of columnstore indexes
is that dimensions are lower cardinality tables with factors that one might group the data.
Sometimes in data warehouses, FOREIGN KEY constraints are implemented, and
sometimes not. Having them in the database when querying can be helpful, because they
provide guidance to tools and the optimizer. Having them on during loading can hinder load
performance.

Columns from [WWI BackorderID] to [Package] are referred to as degenerate
dimensions, which means they are at, or are nearly at, the cardinality of the row and are
more often used for finding a row in the table, rather than for grouping data.

Columns from [Quantity] down to [Total Including Tax] as called measures. These are
the values that a person writing a query applies math to. Many measures are additive,
meaning you can sum the values (such as [Quantity] in this example, and others are not,
such as [Tax Rate]. If you add a 10 percent tax rate to a 10 percent tax rate, you don’t get
20 percent, no matter your political affiliations.

The [Lineage Key] is used to track details of where data comes from during loads. The
table Integration.Lineage contains information about what was loaded and when. In Listing
1-14, is the basic code for two dimensions that relate to the Fact.Orders table.

101

LISTING 1-14 Columns in the Customer and Date dimensions in WideWorldImportersDW

Click here to view code image

CREATE TABLE Dimension.Customer
(
 [Customer Key] int NOT NULL,
 [WWI Customer ID] int NOT NULL,
 [Customer] nvarchar(100) NOT NULL,
 [Bill To Customer] nvarchar(100) NOT NULL,
 [Category] nvarchar(50) NOT NULL,
 [Buying Group] nvarchar(50) NOT NULL,
 [Primary Contact] nvarchar(50) NOT NULL,
 [Postal Code] nvarchar(10) NOT NULL,
 [Valid From] datetime2(7) NOT NULL,
 [Valid To] datetime2(7) NOT NULL,
 [Lineage Key] int NOT NULL
);
CREATE TABLE Dimension.Date(
 Date date NOT NULL,
 [Day Number] int NOT NULL,
 [Day] nvarchar(10) NOT NULL,
 [Month] nvarchar(10) NOT NULL,
 [Short Month] nvarchar(3) NOT NULL,
 [Calendar Month Number] int NOT NULL,
 [Calendar Month Label] nvarchar(20) NOT NULL,
 [Calendar Year] int NOT NULL,
 [Calendar Year Label] nvarchar(10) NOT NULL,
 [Fiscal Month Number] int NOT NULL,
 [Fiscal Month Label] nvarchar(20) NOT NULL,
 [Fiscal Year] int NOT NULL,
 [Fiscal Year Label] nvarchar(10) NOT NULL,
 [ISO Week Number] int NOT NULL
);

We won’t go into too much detail about all of these columns in the tables. But, the
[Customer Key] and the Date columns are the columns that are referenced from the fact
table. In the Dimensions.Customer table, the [Valid From] and [Valid To] columns set up a
slowly changing dimension, where you could have multiple copies of the same customer
over time, as attributes change. There are no examples of having multiple versions of a
customer in the sample database, and it would not change our indexing example either.

Note More on fact tables
Fact tables are generally designed to be of a minimal width, using integer
types for foreign key values, and very few degenerate dimensions if at all

102

possible. For demos, the cost savings you see could be fairly small. However,
in a real fact table, the number of rows can be very large, in the billions or
more, and the calculations attempted more complex than just straightforward
aggregations.

All of the other columns in the dimensions (other than [Lineage Key], which provides the
same sort of information as for the fact) can be used to group data in queries. Because the
WideWorldImporterDW database starts out configured for examples, we can begin by
dropping the columnstore index that is initially on all of the fact tables.
Click here to view code image

DROP INDEX [CCX_Fact_Order] ON [Fact].[Order];

The table starts out with indexes on all of the foreign keys, as well as primary keys on
the dimension keys that the query uses. Perform the following query (there are 231,412
rows in the Fact.[Order] table), which you likely note runs pretty quickly without the
columnstore index):
Click here to view code image

SELECT Customer.Category, Date.[Calendar Month Number],
 COUNT(*) AS SalesCount,
 SUM([Total Excluding Tax]) as SalesTotal
FROM Fact.[Order]
 JOIN Dimension.Date
 ON Date.Date = [Order].[Order Date Key]
 JOIN Dimension.Customer
 ON Customer.[Customer Key] = [Order].[Customer Key]
GROUP BY Customer.Category, Date.[Calendar Month Number]
ORDER BY Category, Date.[Calendar Month Number], SalesCount,
SalesTotal;

The plan for this query, shown in Figure 1-27 is complicated by the cost of scanning the
table, which pushes the query to use parallelism, even on my VM. The largest cost is the
table scan of the heap structure that was left after removing the clustered columnstore
index.

103

FIGURE 1-27 Plan of the basic data warehousing style query, without a columnstore
index

Figure 1-27 has the following output:
Click here to view code image

Table 'Customer'. Scan count 3, logical reads 40, physical
reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'Date'. Scan count 3, logical reads 79, physical reads 0,
read-ahead reads 0, lob
logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'Order'. Scan count 7, logical reads 5908, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'Workfile'. Scan count 0, logical reads 0, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical
reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

104

CPU time = 344 ms, elapsed time = 276 ms.

Most of the plan is typical, as you often see Hash Match operators when joining two
larger sets of data, which could not realistically be ordered in the same order as one
another. Even with the smallish table structure for the fact table, there are 5908 logical
reads (which is the same number of reads if it scanned the entire table once).

Prior to columnstore indexes, a suggested index to help this query would have been to
use a covering index to cover the needs of this query so you didn’t have to touch any data
other than the query needed. The optimizer suggested such an index for our query:
Click here to view code image

CREATE NONCLUSTERED INDEX SpecificQuery ON [Fact].[Order]
([Customer Key])
INCLUDE ([Order Date Key],[Total Excluding Tax]);

After adding this suggested index, the plan for this query is very similar, without the
parallelism, and instead of a Table Scan operator that is 60 percent of the cost, there is an
index scan that is 23 percent. The logical reads are reduced to 871 instead of 5908. The
processing still takes around 300 ms, and actually took a bit longer than the full table scan
versions at times. The problem with indexes that are tailored to specific queries is, if you
want to add another column to your query, this index stops being of value. Columnstore
indexes basically give you great aggregate and scan performance for most of the
combinations of attributes you might consider without custom pre-planning.

Now, add the clustered columnstore index back to the table.
Click here to view code image

CREATE CLUSTERED COLUMNSTORE INDEX [CCX_Fact_Order] ON [Fact].
[Order];

As the name clustered implies, this changes the internal structure of the table to be the
columnar structures. We did not remove any of the rowstore indexes, and we review why
you would or would not want to use both in tandem in section later in this chapter entitled
“Design standard non-clustered indexes in conjunction with clustered columnstore
indexes”.

The row locator for the rowstore indexes has been changed from the physical location in
the heap, to the position in the columnstore structure (the row group, and the position in the
row group). It is a bit more complex than this, and if you want more information, Niko
Neugebauer has a great article about it here:
http://www.nikoport.com/2015/09/06/columnstore-indexes-part-65-clustered-
columnstore-improvements-in-sql-server-2016/.

For nearly all data warehousing applications, the clustered columnstore is a useful
structure for fact tables when the table is large enough. Since the main copy of the data is
compressed, you can see very large space savings, even having the table be 10 percent of

105

http://www.nikoport.com/2015/09/06/columnstore-indexes-part-65-clustered-columnstore-improvements-in-sql-server-2016/

the original size. Couple this with the usual stability of data in a data warehouse, with
minimal changes to historical data, make the clustered columnstore typically ideal. Only
cases where something does not work, like one of the data types that were mentioned in the
introductory section (varchar(max) or nvarchar(max), for example) would you likely want
to consider using a non-clustered columnstore index.

Whether or not a clustered columnstore index will be useful with a dimension will come
down to how it is used. If the joins in your queries do not use a Nested Loop operator,
there is a good chance it could be useful.

Perform the query again, and check the plan shown in Figure 1-28, which shows a
tremendous difference:

FIGURE 1-28 Plan of the basic data warehousing style query, after adding a columnstore
index

Figure 1-28 has the following output:
Click here to view code image

Table 'Order'. Scan count 1, logical reads 0, physical reads 0,
read-ahead reads 0, lob
logical reads 256, lob physical reads 0,

lob read-ahead reads 0.

Table 'Order'. Segment reads 4, segment skipped 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical
reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'Customer'. Scan count 1, logical reads 15, physical
reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

106

lob read-ahead reads 0.

Table 'Date'. Scan count 1, logical reads 28, physical reads 0,
read-ahead reads 0, lob
logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

CPU time = 15 ms, elapsed time = 65 ms.

The logical reads are down to 256 in the lob reads for the segments, since the column
segments are stored in a form of large varbinary storage. Note, too, that it took just 68ms
rather than 286.

One thing that makes columnstore indexes better for queries such as those found in data
warehouses is batch execution mode. When the query processor is scanning data in the
columnstore index, it is possible for it to process rows in chunks of 900 rows at a time,
rather than one row at a time in the typical row execution mode. Figure 1-29 displays the
tool tip from hovering over the Columnstore Index Scan operator from Figure 1-28. The
third and fourth lines down show you the estimated and actual execution mode. Batch
execution mode can provide great performance improvements.

107

FIGURE 1-29 Tooltip showing Columnstore Index Scan operator using Batch Execution
Mode

Finally, just for comparison, let us drop the clustered columnstore index, and add a non-
clustered columnstore index. When you are unable to use a clustered one due to some
limitation, non-clustered columnstore indexes are just as useful to your queries, but the
base table data is not compressed, giving you less overall value.

108

In our demo, include all of the columns except for [Lineage ID] and [Description], which
have no real analytic value to our user:
Click here to view code image

CREATE NONCLUSTERED COLUMNSTORE INDEX [NCCX_Fact_Order] ON
[Fact].[Order] (
 [Order Key] ,[City Key] ,[Customer Key] ,[Stock Item
Key]
 ,[Order Date Key] ,[Picked Date Key] ,[Salesperson Key] ,
[Picker Key]
 ,[WWI Order ID],[WWI Backorder ID],[Package]
 ,[Quantity],[Unit Price],[Tax Rate],[Total Excluding Tax]
 ,[Tax Amount],[Total Including Tax]);

Executing the query one more time, the plan looks exactly like the query did previously,
other than it is using a non-clustered columnstore operator rather than a clustered one. The
number of reads go up slightly in comparison to the clustered example, but not
tremendously. The beauty of the columnstore indexes however is how well they adapt to
the queries you are executing. Check the plan and IO/time statistics for the following query,
that adds in a new grouping criteria, and a few additional aggregates:
Click here to view code image

SELECT Customer.Category, Date.[Calendar Year],
 Date.[Calendar Month Number],
 COUNT(*) as SalesCount,
 SUM([Total Excluding Tax]) AS SalesTotal,
 AVG([Total Including Tax]) AS AvgWithTaxTotal,
 MAX(Date.Date) AS MaxOrderDate
FROM Fact.[Order]
 JOIN Dimension.Date
 ON Date.Date = [Order].[Order Date Key]
 JOIN Dimension.Customer
 ON Customer.[Customer Key] = [Order].[Customer Key]
GROUP BY Customer.Category, Date.[Calendar Year], Date.
[Calendar Month Number]
ORDER BY Category, Date.[Calendar Month Number], SalesCount,
SalesTotal;

You should see very little change, including the time required to perform the query. This
ability to cover many analytical indexing needs is what truly makes the columnstore
indexes a major difference when building data warehouse applications. Hence, both the
clustered and non-clustered columnstore indexes can be used to greatly improve your data
warehouse loads, and in a later section, we review some of the differences.

Need More Review? Using columnstore indexes in data warehousing

109

For more information about using columnstore indexes for data warehousing
scenarios, the following page in MSDN’s Columnstore Indexes Guide has
more information: https://msdn.microsoft.com/en-us/library/dn913734.aspx.

Using non-clustered columnstore indexes on OLTP tables for advanced analytics
The typical data warehouse is refreshed daily, as the goal of most analytics is to take some
amount of past performance and try to replicate and prepare for it. “We sold 1000 lunches
on average on Tuesdays following a big game downtown, and we have 500 plates, so as a
company, we need to plan to have more in stock.” However, there are definitely reports
that need very up to date data. “How many lunches have we sold in the past 10 minutes?
There are 100 people in line.” At which point, queries are crafted to use the OLTP
database.

By applying a non-clustered columnstore index to the table you wish to do real-time
analytics on, you can enable tremendous performances with little additional query tuning.
And depending on your concurrency needs, you can apply a few settings to tune how the
columnstore index is maintained.

Note Memory optimized tables
Memory optimized tables, which is covered in Skill 3.4, can also use
columnstore indexes. While they are called clustered, and they must have all
of the columns of the table; they are more similar in purpose and usage to non-
clustered columnstore indexes because they do not change the physical storage
of the table.

Columnstore indexes can be used to help greatly enhance reporting that accesses an
OLTP database directly, certainly when paired with concurrency techniques that we cover
in Chapter 3. Generally speaking, a few questions need to be considered: “How many
reporting queries do you need to support?” and “How flexible does the reporting need to
be?”

If, for example, the report is one, fairly rigid report that uses an index with included
columns to cover the needs of that specific query could be better. But if the same table
supports multiple reports, and particularly if there needs to be multiple indexes to support
analytics, a columnstore index is a better tool.

In the WideWorldImporters database, there are a few examples of tables that have a non-
clustered columnstore index, such as the OrderLines table, the abbreviated DDL of which
is shown in Listing 1-15.

LISTING 1-15 Abbreviated structure of the WideWorldImporters.Sales.InvoiceLines table
with non-clustered columnstore index

110

https://msdn.microsoft.com/en-us/library/dn913734.aspx

Click here to view code image

CREATE TABLE Sales.InvoiceLines
(
 InvoiceLineID int NOT NULL,
 InvoiceID int NOT NULL,
 StockItemID int NOT NULL,
 Description nvarchar(100) NOT NULL,
 PackageTypeID int NOT NULL,
 Quantity int NOT NULL,
 UnitPrice decimal(18, 2) NULL,
 TaxRate decimal(18, 3) NOT NULL,
 TaxAmount decimal(18, 2) NOT NULL,
 LineProfit decimal(18, 2) NOT NULL,
 ExtendedPrice decimal(18, 2) NOT NULL,
 LastEditedBy int NOT NULL,
 LastEditedWhen datetime2(7) NOT NULL,
 CONSTRAINT PK_Sales_InvoiceLines PRIMARY KEY
 CLUSTERED (InvoiceLineID)
);
--Not shown: FOREIGN KEY constraints, indexes other than the PK

CREATE NONCLUSTERED COLUMNSTORE INDEX NCCX_Sales_OrderLines ON
Sales.OrderLines
(
 OrderID,
 StockItemID,
 Description,
 Quantity,
 UnitPrice,
 PickedQuantity
) ON USERDATA;

Now, if you are reporting on the columns that are included in the columnstore index, only
the columnstore index is used. The needs of the OLTP (generally finding and operating on
just a few rows), are served from the typical rowstore indexes. There are a few additional
ways to improve the utilization and impact of the columnstore index on the overall
performance of the table, which we examine in the following sections:

 Targeting analytically valuable columns only in columnstore
 Delaying adding rows to compressed rowgroups
 Using filtered non-clustered columnstore indexes to target hot data

Need More Review? Using columnstore indexes for real-time analytics
In addition to the tips covered in the text, there is more detail in the following

111

MSDN Article called “Get Started with Columnstore for real time operational
analytics:” https://msdn.microsoft.com/en-us/library/dn817827.aspx.

Targeting analytically valuable columns only in columnstore
As shown with the columnstore index that was created in the Sales.OrderLines table, only
certain columns were part of the non-clustered columnstore index. This can reduce the
amount of data duplicated in the index (much like you would usually not want to create a
rowstore index with every column in the table as included columns), reducing the required
amount of maintenance.

Delaying adding rows to compressed rowgroups
Columnstore indexes have to be maintained in the same transaction with the modification
statement, just like normal indexes. However, modifications are done in a multi-step
process that is optimized for the loading of the data. As described earlier, all modifications
are done as an insert into the delta store, a delete from a column segment or the delta store,
or both for an update to a row. The data is organized into compressed segments over time,
which is a burden in a very busy system. Note that many rows in an OLTP system can be
updated multiple times soon after rows are created, but in many systems are relatively
static as time passes.

Hence there is a setting that lets you control the amount of time the data stays in the
deltastore. The setting is: COMPRESSION_DELAY, and the units are minutes. This says
that the data stays in the delta rowgroup for at least a certain number of minutes. The setting
is added to the CREATE COLUMNSTORE INDEX statement, as seen in Listing 1-16.

LISTING 1-16 Changing the non-clustered columnstore index to have
COMPRESSION_DELAY = 5 minutes

Click here to view code image

CREATE NONCLUSTERED COLUMNSTORE INDEX NCCX_Sales_OrderLines ON
Sales.OrderLines
(
 OrderID,
 StockItemID,
 Description,
 Quantity,
 UnitPrice,
 PickedQuantity
) WITH (DROP_EXISTING = ON, COMPRESSION_DELAY = 5) ON USERDATA;

Now, in this case, say the PickedQuantity is important to the analytics you are trying to

112

https://msdn.microsoft.com/en-us/library/dn817827.aspx

perform, but it is updated several times in the first 5 minutes (on average) after the row has
been created. This ensures that the modifications happens in the deltastore, and as such
does not end up wasting space in a compressed rowgroup being deleted and added over
and over.

Using filtered non-clustered columnstore indexes to target colder data
Similar to filtered rowstore indexes, non-clustered columnstore indexes have filter clauses
that allow you to target only data that is of a certain status. For example, Listing 1-17 is the
structure of the Sales.Orders table. Say that there is a business rule that once the items have
been picked by a person, it is going to be shipped. Up until then, the order could change in
several ways. The user needs to be able to write some reports on the orders that have been
picked.

LISTING 1-17 Base structure of the Sales.Orders Table

Click here to view code image

CREATE TABLE Sales.Orders
(
 OrderID int NOT NULL,
 CustomerID int NOT NULL,
 SalespersonPersonID int NOT NULL,
 PickedByPersonID int NULL,
 ContactPersonID int NOT NULL,
 BackorderOrderID int NULL,
 OrderDate date NOT NULL,
 ExpectedDeliveryDate date NOT NULL,
 CustomerPurchaseOrderNumber nvarchar(20) NULL,
 IsUndersupplyBackordered bit NOT NULL,
 Comments nvarchar(max) NULL,
 DeliveryInstructions nvarchar(max) NULL,
 InternalComments nvarchar(max) NULL,
 PickingCompletedWhen datetime2(7) NULL,
 LastEditedBy int NOT NULL,
 LastEditedWhen datetime2(7) NOT NULL,
 CONSTRAINT PK_Sales_Orders PRIMARY KEY CLUSTERED
 (
 OrderID ASC
)
);

One could then, applying a few of the principles we have mentioned in these sections,
choose only the columns we are interested in, though we should not need to add a
compression delay for this particular case since once the PickedByPersonID is set, we are

113

saying the data is complete.
So we might set up:

Click here to view code image

CREATE NONCLUSTERED COLUMNSTORE INDEX NCCI_Orders ON
Sales.Orders
(
 PickedByPersonId,
 SalespersonPersonID,
 OrderDate,
 PickingCompletedWhen
)
WHERE PickedByPersonId IS NOT NULL;

One additional thing you can do, if you need your reporting to span the cold and hot data,
and that is to cluster your data on the key that is use for the filtering. So in this case, if you
clustered your table by PickedByPersonId, the optimizer would easily be able to split the
set for your queries. This could seem counter to the advice given earlier about clustering
keys and it generally is. However, in some cases this could make a big difference if the
reporting is critical. It is covered in more detail by Sunil Agarwal in his blog here
(https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/03/06/real-time-
operational-analytics-filtered-nonclustered-columnstore-index-ncci/) when he suggested
using the a column with a domain of order status values in his example to cluster on, even
though it has only 6 values and the table itself has millions.

Design standard non-clustered indexes in conjunction with clustered
columnstore indexes
When using columnstore indexes in your database solution, it is important to know what
their values and detriments are. To review, here are some of the attributes we have
discussed so far:

 Columnstore Indexes Great for working with large data sets, particularly for
aggregation. Not great for looking up a single row, as the index is not ordered
 Clustered Compresses the table to greatly reduce memory and disk footprint of
data.
 Nonclustered Addition to typical table structure, ideal when the columns included
cover the needs of the query.

 Rowstore Indexes Best used for seeking a row, or a set of rows in order.
 Clustered Physically reorders table’s data in an order that is helpful. Useful for the
primary access path where you fetch rows along with the rest of the row data, or
for scanning data in a given order.
 Nonclustered Structure best used for finding a single row. Not great for scanning

114

https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/03/06/real-time-operational-analytics-filtered-nonclustered-columnstore-index-ncci/

unless all of the data needed is in the index keys, or is in included in the leaf pages
of the index.

If you have worked with columnstore indexes in SQL Server 2012 or 2014, it is
necessary to change how you think about using these indexes. In 2012, SQL Server only had
read only non-clustered columnstore indexes, and to modify the data in the index (and any
of the rows in the table), the index needed to be dropped and completely rebuilt. In 2014,
read/write clustered columnstore indexes were added, but there was no way to have a
rowstore index on the same table with them. When you needed to fetch a single row, the
query processor needed to scan the entire table. If your ETL did many updates or deletes,
the operation was costly. So for many applications, sticking with the drop and recreating a
non-clustered index made sense.

In SQL Server 2016, the version that you are studying for in this exam, both types of
columnstore indexes are read/write, and both allow you to have complimentary rowstore
indexes. In this section, we focus on adding non-clustered indexes to your clustered
columnstore indexes, which in the previous section we have established as generally the
best practice for data warehousing situations, mostly fact tables, and possibly very large
dimensions. The columnstore indexes are there to aid in analytical queries, but there are a
few other needs to consider.

To demonstrate, begin by making a copy of the Fact.Sale table in the
WideWorldImportersDW database, and adding a clustered columnstore index.
Click here to view code image

SELECT *
INTO Fact.SaleBase
FROM Fact.Sale;

CREATE CLUSTERED COLUMNSTORE INDEX CColumnsStore ON
Fact.SaleBase;

You see that if you perform an aggregation query, the columnstore index is used, and the
performance is stellar:
Click here to view code image

SELECT Date.[Fiscal Year], Customer.Category, Sum(Quantity) as
NumSales
FROM Fact.SaleBase
 JOIN Dimension.Customer
 on Customer.[Customer Key] = SaleBase.[Customer
Key]
 JOIN Dimension.Date
 ON Date.Date = SaleBase.[Invoice Date Key]
GROUP BY Date.[Fiscal Year], Customer.Category
ORDER BY Date.[Fiscal Year], Customer.Category;

115

And the plan is shown in Figure 1-30.

FIGURE 1-30 The plan with the query aggregating data from the fact

Figure 1-30 has the following output:
Click here to view code image

Table 'Worktable'. Scan count 0, logical reads 0, physical
reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'Customer'. Scan count 1, logical reads 15, physical
reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'Date'. Scan count 1, logical reads 28, physical reads 0,
read-ahead reads 0, lob
logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

CPU time = 15 ms, elapsed time = 22 ms.

What is likely unexpected is what happens when filtering on a single value in a column
not yet referenced by adding to the statement the following WHERE clause (a common
operation when doing ETL where data can change):
Click here to view code image

WHERE SaleBase.[Sale Key] = 26974

The plan changes to something that looks better, but actually takes more time and
considerably more IO as seen in Figure 1-31.

116

FIGURE 1-31 The plan with the query aggregating one row based on the [Sale Key]
Figure 1-31 has the following output:

Click here to view code image

Table 'SaleBase'. Scan count 1, logical reads 0, physical reads
0, read-ahead reads 0,
lob logical reads 347, lob physical reads 0,

lob read-ahead reads 0.

Table 'SaleBase'. Segment reads 1, segment skipped 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical
reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'Date'. Scan count 0, logical reads 2, physical reads 0,
read-ahead reads 0, lob
logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'Customer'. Scan count 0, logical reads 2, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

CPU time = 0 ms, elapsed time = 40 ms.

Note that now the major cost is spent in the Columnstore Scan operator, which isn’t
surprising since the query processor has to touch all of the rows in the table; for the column

117

segment for the [Sale Key] in any case. This cost isn’t too much in this very small fact table
(less than 300,000 rows), but it is very telling that you have an issue if you’re needing to
fetch rows one at a time for some reason, either to update data, or delete a row.

So next we add indexes to the table for any cases where you want to access rows one at
a time. Examples in the Fact.SaleBase table are columns like the surrogate key: [Sale Key],
and the degenerate key: [WWI Invoice ID]. Other uses of indexes might be for filtering date
ranges, or foreign key indexes when you want to get all rows of a given related dimension,
depending on the cardinality of the relationship. For example, let’s add two indexes:
Click here to view code image

CREATE UNIQUE INDEX [Sale Key] ON Fact.SaleBase ([Sale Key]);
CREATE INDEX [WWI Invoice ID] ON Fact.SaleBase ([WWI Invoice
ID]);

The [Sale Key] index is the surrogate key for the fact table, so it is unique, while the
[WWI Invoice ID] is for the entire order, and the grain of the table is one row per invoice
line item.

Now perform the query with the WHERE clause and you see the plan has changed to
what you would desire for a single-row lookup, as you can see in Figure 1-32.

FIGURE 1-32 The plan with the query aggregating one row based on the [Sale Key] after
adding a non-clustered rowstore index to the column

Figure 1-32 has the following output:
Click here to view code image

Table 'Date'. Scan count 0, logical reads 2, physical reads 0,
read-ahead reads 0, lob
logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

118

Table 'Customer'. Scan count 0, logical reads 2, physical reads
0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table 'SaleBase'. Scan count 1, logical reads 3, physical reads
0, read-ahead reads 0,
lob logical reads 186, lob physical reads 0,

lob read-ahead reads 0.

Table 'SaleBase'. Segment reads 1, segment skipped 0.

CPU time = 0 ms, elapsed time = 30 ms.

Now, while you never aggregate just a row at a time, other than perhaps in development,
when you go to update a single row in the table during ETL, the operation of finding the
rows is not cost prohibitive.

Implement columnstore index maintenance
In this section we look at what maintenance you need to do with your columnstore indexes
as you load them in various ways. To do the index maintenance, use the ALTER INDEX
command, either using the REORGANIZE or REBUILD settings. REORGANIZE basically
starts the tuple mover immediately rather than running it in the background, slowly.
REORGANIZE is, like the tuple mover running natively, an ONLINE operation. REBUILD
on the other hand, is just like creating a new clean index, and compresses all of the data,
but it is an offline process.

You need to decide whether to wait for the tuple mover to handle your structure, force
the tuple mover to perform, or just rebuild your indexes, depending on the urgency of your
needs. If this is a nightly-loaded data warehouse and you have the time, you want to just use
REBUILD, but if it is a more active system, you want to check the configuration of the
index and do a REORGANIZE. We look at a few examples in this section.

There are a few ways that data is loaded into a columnstore:
 Bulk Load Into a Clustered Columnstore Different from bulk loading data into a
rowstore table, you can load bulk amounts of data into a clustered columnstore index
by using an INSERT...SELECT ... FROM <TableName> WITH (TABLOCK)
statement.
 Other Batch Operations Loading data where you don’t meet the requirements of the
Bulk Load pattern.

For each of the examples, use a pared-down version of the Fact.Sale table named
Fact.SaleLimited, as shown in Listing 1-18

119

LISTING 1-18 Fact table code to be used for this section

Click here to view code image

.CREATE TABLE [Fact].[SaleLimited](
 [City Key] [int] NOT NULL,
 [Customer Key] [int] NOT NULL,
 [Bill To Customer Key] [int] NOT NULL,
 [Stock Item Key] [int] NOT NULL,
 [Invoice Date Key] [date] NOT NULL,
 [Delivery Date Key] [date] NULL,
 [Salesperson Key] [int] NOT NULL,
 [WWI Invoice ID] [int] NOT NULL,
 [Description] [nvarchar](100) NOT NULL,
 [Package] [nvarchar](50) NOT NULL,
 [Quantity] [int] NOT NULL
);

Need More Review? ALTER INDEX review
Reviewing the more complex settings in the ALTER INDEX statement is a
good thing to do. There are many settings that we are not able to review in this
book: https://msdn.microsoft.com/en-us/library/ms188388.aspx.

Bulk loading data into a clustered columnstore
To start with, add a clustered columnstore index to the Fact.SaleLimited table:
Click here to view code image

CREATE CLUSTERED COLUMNSTORE INDEX [CColumnStore] ON [Fact].
[SaleLimited];

Next, load some data. The WITH (TABLOCK) allows this statement to run in parallel
(for more information, the following blog has more details:
https://blogs.msdn.microsoft.com/sqlcat/2016/07/21/real-world-parallel-insert-what-
else-you-need-to-know/), so you could end up with more or less deltastores on your
system:
Click here to view code image

INSERT INTO [Fact].[SaleLimited] WITH (TABLOCK)
 ([City Key], [Customer Key], [Bill To Customer Key],
[Stock Item Key],
 [Invoice Date Key], [Delivery Date Key],[Salesperson
Key],
 [WWI Invoice ID], [Description], [Package], [Quantity])

120

https://msdn.microsoft.com/en-us/library/ms188388.aspx
https://blogs.msdn.microsoft.com/sqlcat/2016/07/21/real-world-parallel-insert-what-else-you-need-to-know/

SELECT TOP (100000) [City Key], [Customer Key], [Bill To
Customer Key],
 [Stock Item Key], [Invoice Date Key], [Delivery Date
Key],[Salesperson Key],
 [WWI Invoice ID], [Description], [Package],
[Quantity]
FROM Fact.Sale
GO 3 --run this statement 3 times

Next, go and look at the information from the DMV
sys.dm_db_column_store_row_group_physical_stats, which gives you information about
the physical characteristics of the rowgroups in your columnstore index. The query in
Listing 1-19 is used throughout these maintenance sections to view the physical state of the
columnstore indexes.

LISTING 1-19 Query on sys.dm_db_column_store_row_group_physical_stats to see state of
columnstore indexes

Click here to view code image

SELECT state_desc, total_rows, deleted_rows,
 transition_to_compressed_state_desc as transition
FROM sys.dm_db_column_store_row_group_physical_stats
WHERE object_id = OBJECT_ID('Fact.SaleLimited');

The output of this query, right after execution is:
Click here to view code image

state_desc total_rows deleted_rows transition
--------------- ---------- ------------ -----------------------

OPEN 150000 0 NULL
OPEN 150000 0 NULL

Two deltastore rowgroups were created, since there are two processors in my VM, and
the bulk insert performs in parallel. If the VM had 8 processors, there could have been as
many as 8 groups created. Since the total_rows column value is less than the 1048576
rows that is optimum, executing simple ALTER INDEX REORGANIZE does not change
anything. The transition column tells you what triggered the row group to transition to a
compressed state. There are other good bits of information not shown here, like the
trim_reason that tells you why less than the expected maximum number of rows are in the
rowgroup.

However, if you are not going to be adding any additional rows, you can force the tuple
mover to compress these rowgroups by executing:

121

Click here to view code image

ALTER INDEX CColumnStore ON Fact.SaleLimited REORGANIZE
 WITH (COMPRESS_ALL_ROW_GROUPS =
ON);

Then you see:
Click here to view code image

state_desc total_rows deleted_rows transition
--------------- ---------- ------------ -----------------------

COMPRESSED 150000 0 REORG_FORCED
COMPRESSED 150000 0 REORG_FORCED
TOMBSTONE 150000 0 NULL
TOMBSTONE 150000 0 NULL

The two deltastore rowgroups have been compressed, and have then been tombstoned.
When and whether you want to do these tasks largely depends on the type of table. For an
OLTP table, where data is being loaded constantly, it may not be advantageous to
reorganize the table, particularly if you are rapidly reaching the million row point. Of
course, it is possible that you want to run the reorganize prior to a large reporting task. For
a data warehouse table that is loaded periodically, you want to either rebuild or
reorganize, depending on time allotted, and how many UPDATE and DELETE operations
have occurred. Once you have compressed filegroups, things happen automatically.

Forcing the tuple mover to start by running REORGANIZE has the process combine the
two compressed row groups, as the larger the number of rows in the rowgroup, up to the
maximum, is better.
Click here to view code image

ALTER INDEX CColumnStore ON Fact.SaleLimited REORGANIZE;

Now check the structure of the columnstore index:
Click here to view code image

state_desc total_rows deleted_rows transition
--------------- ---------- ------------ -----------------------

COMPRESSED 300000 0 MERGE
TOMBSTONE 150000 0 NULL
TOMBSTONE 150000 0 NULL

Note, if you directly bulk insert 102400 or more rows, the data goes directly into
compressed rowgroups as rows are being added. To show what happens when you bulk
load at least the minimum number of rows, perform:
Click here to view code image

122

TRUNCATE TABLE Fact.SaleLimited;
GO
INSERT INTO [Fact].[SaleLimited] WITH (TABLOCK)
 ([City Key], [Customer Key], [Bill To Customer Key],
[Stock Item Key],
 [Invoice Date Key], [Delivery Date Key],[Salesperson
Key],
 [WWI Invoice ID], [Description], [Package], [Quantity])
SELECT TOP (102400) [City Key], [Customer Key], [Bill To
Customer Key],
 [Stock Item Key], [Invoice Date Key], [Delivery Date
Key],[Salesperson Key],
 [WWI Invoice ID], [Description], [Package],
[Quantity]
FROM Fact.Sale
OPTION (MAXDOP 1); --not in parallel
GO 3

You now see three compressed rowgroups in the output of the Listing 1-19 query. This is
better for actually using the row groups immediately, but not as efficient as having them all
in the same rowgroup:
Click here to view code image

state_desc total_rows deleted_rows transition
--------------- ---------- ------------ -----------------------

COMPRESSED 102400 0 BULKLOAD
COMPRESSED 102400 0 BULKLOAD
COMPRESSED 102400 0 BULKLOAD

Perform ALTER INDEX REORGANIZE, and these three rowgroups are combined into
just 1.
Click here to view code image

state_desc total_rows deleted_rows transition
--------------- ---------- ------------ -----------------------

COMPRESSED 307200 0 MERGE
TOMBSTONE 102400 0 NULL
TOMBSTONE 102400 0 NULL
TOMBSTONE 102400 0 NULL

Using ALTER INDEX...REBUILD skips directly to having all of the rowgroups
compressed in the best fashion possible, much like dropping and recreating the index, but it
is an offline process just like initially recreating the index. This is true, even a minimal
number of rows, as in this example:

123

Click here to view code image

TRUNCATE TABLE Fact.SaleLimited;
INSERT INTO [Fact].[SaleLimited] WITH (TABLOCK)
([City Key], [Customer Key],
 [Bill To Customer Key], [Stock Item Key],
 [Invoice Date Key], [Delivery Date Key],
[Salesperson Key],
 [WWI Invoice ID], [Description], [Package],
[Quantity])

SELECT TOP (5000) [City Key], [Customer Key],
 [Bill To Customer Key], [Stock Item Key],
 [Invoice Date Key], [Delivery Date Key],
[Salesperson Key],
 [WWI Invoice ID], [Description], [Package],
[Quantity]

FROM Fact.Sale;

Then rebuild the index:
Click here to view code image

ALTER INDEX [CColumnStore] ON [Fact].[SaleLimited] REBUILD;

And there is a compressed rowgroup with only 5000 rows:
Click here to view code image

state_desc total_rows deleted_rows transition
--------------- ---------- ------------ -----------------------

COMPRESSED 5000 0 INDEX_BUILD

Non-bulk operations on a columnstore
For any columnstore index, when you load data and never reach the 1048576 rows to get
the tuple mover to compress the data, you can do the exact same tasks as we looked at in
the previous section. The following code demonstrates how the other, non-bulk operations
show up, and what maintenance steps that one can take to clear things up. Using the same
table we had in the previous section, load 100000 rows, and use ALTER INDEX
REBUILD to set the index up in pristine shape.
Click here to view code image

TRUNCATE TABLE Fact.SaleLimited;
INSERT INTO [Fact].[SaleLimited]
([City Key], [Customer Key],
 [Bill To Customer Key], [Stock Item Key],

124

 [Invoice Date Key], [Delivery Date Key],
[Salesperson Key],
 [WWI Invoice ID], [Description], [Package],
[Quantity])

SELECT TOP (100000) [City Key], [Customer Key],
 [Bill To Customer Key], [Stock Item Key],
 [Invoice Date Key], [Delivery Date Key],
[Salesperson Key],
 [WWI Invoice ID], [Description], [Package],
[Quantity]

FROM Fact.Sale;
ALTER INDEX [CColumnStore] ON [Fact].[SaleLimited] REBUILD;

Now the structure looks like:
Click here to view code image

state_desc total_rows deleted_rows transition
--------------- ---------- ------------ -----------------------

COMPRESSED 100000 0 INDEX_BUILD

Then delete some data:
Click here to view code image

DELETE FROM Fact.SaleLimited
WHERE [Customer Key] = 21;

You now see what is sometimes thought of as fragmentation showing up. There are still
100000 rows in the rowgroup, but 135 rows are marked as deleted. As this number grows,
the rowgroup becomes less and less useful:
Click here to view code image

state_desc total_rows deleted_rows transition
--------------- ---------- ------------ -----------------------

COMPRESSED 100000 135 INDEX_BUILD

Next, update some data:

UPDATE Fact.SaleLimited
SET [Customer Key] = 35
WHERE [Customer Key] = 22;

Looking at the structure, you can now see that we have more deleted rows, and a new
delta rowgroup for the inserted versions of the updated rows.
Click here to view code image

125

state_desc total_rows deleted_rows transition
--------------- ---------- ------------ -----------------------

OPEN 98 0 NULL
COMPRESSED 100000 233 INDEX_BUILD

From here, there are three choices. Wait for the tuple mover to deal with this situation,
though maybe not if more data isn’t loaded. REBUILD, or REORGANIZE using the
COMPRESS_ALL_ROW_GROUPS option as done in the previous section.

The steps done here are the same for non-clustered and clustered columnstore indexes,
but the non-clustered version does not update the deleted_rows column, whereas the
clustered does. Columnstore indexes are wonderful for many things, but they are definitely
tuned for large quantities of data, particularly when the automated processes work after
more than a million rows are inserted. This, plus the fact that they can get fragmented from
just simple INSERT, UPDATE, and DELETE statements means you certainly want to keep
up with how the load from your processes is affecting the rowgroups.

Need More Review? Columnstore index maintenance resources
There are a lot of resources about maintaining columnstore indexes, and a few
of the more useful ones that are definitely worth reviewing are:

 Columnstore Indexes Defragmentation https://msdn.microsoft.com/en-
us/library/dn935013.aspx. Details on what fragments columnstore indexes, and links
to Sunil Agarwal’s blogs on the topics as well.
 Part 36 of Niko Neugebauer’s blog series on clustered columnstore indexes
http://www.nikoport.com/2014/07/29/clustered-columnstore-indexes-part-36-
maintenance-solutions-for-columnstore/. Of course, the other many sections of his
series on columnstore indexes are useful reading as well.
 An excellent blog on the Tuple Mover on the Rusanu Consulting Blog, mentioned
by Sunil Agarwal http://rusanu.com/2013/12/02/sql-server-clustered-columnstore-
tuple-mover/.
 Columnstore Data Loading https://msdn.microsoft.com/en-
us/library/dn935008.aspx Covers how data is loaded into the columnstore index,
and how this affects the need to maintain your indexes.

Chapter summary
 Designing your database objects starts with requirements and understanding them. On
the exam, if you are presented with a set of requirements to match to a table set, make
sure you comprehend and match requirements precisely to the objects given.
 Understanding what normalization means is essential to the process of matching the

126

https://msdn.microsoft.com/en-us/library/dn935013.aspx
http://www.nikoport.com/2014/07/29/clustered-columnstore-indexes-part-36-maintenance-solutions-for-columnstore/
http://rusanu.com/2013/12/02/sql-server-clustered-columnstore-tuple-mover/
https://msdn.microsoft.com/en-us/library/dn935008.aspx

needs of the user to the needs of the query optimizer and processor. The normal forms
are very much about eliminated duplication in your structures to enhance data
integrity,
 SQL Server provides you as a user with a tremendous number of data types, not all
of which you need for any given design. Match the data type you need to the
requirements the user provides or, if no prescribed size is provided, to a size that is
large enough to handle any reasonable value, but not so large as to allow
unnecessarily large values. For example: nvarchar(3) for a person’s name, too small,
nvarchar(max) far too large. nvarchar(50) is probably more than you ever need, but
not so large that it is ridiculous.
 Dynamic Data Masking can be added to the declaration for a column in the table
create statement to mask data from database principals that do not have the
UNMASK privilege in the database. There are several functions you can use to mask
data.
 The clustered index of a table is a very important choice, as the key columns are used
in all other rowstore indexes. The greater percentage of your queries can use the
clustered index for seek operations to answer queries the better. The best clustered
indexes are small in size, never changing, and monotonically increasing. A small
clustering key size reduces the size of all nonclustered indexes; never changing
values eliminates updates to non-clustered indexes; and monotonically increasing lets
data be inserted at the end of the physical structures.
 An essential tool for designing indexes is the query plan. Use the graphical versions
from the UI, or one of the SET SHOWPLAN commands to get a textual version of the
estimated plan, or SET STATISTICS PROFILE ON for a textual version of the actual
plan. Adding indexes without any real knowledge of how they are used often ends up
creating useless indexes (something that is touched on in Chapter 4.)
 Index key columns can total 900 bytes or less for a clustered index, and up to 1700
bytes for a non-clustered index.
 There is only one clustered index, which makes it very important to choose what to
put in the clustered index wisely for two reasons:
 The data pages of the table are ordered by the clustering key
 All non-clustered indexes use the clustering key for their row locators

 Providing summarized/denormalized data to the client by DML based automated
means can be achieved using an indexed view.
 Columnstore indexes are specifically built for analytic purposes and typically need
to be coupled with rowstore indexes to allow searches on a single row, unless you
extremely rarely need to fetch a single row.
 Clustered columnstore indexes change your table’s storage and compress your data
considerably, reducing the amount of IO needed to perform queries on very large data

127

sets. Nonclustered columnstore indexes can be added to a rowstore table to allow
real-time analytics.
 In columnstore indexes, DELETE operations just mark compressed rows as deleted,
and UPDATE operations mark the row to be updated deleted and perform and
INSERT. Both INSERT operations add rows to a deltastore rowgroup. Unless your
table is very active, you need to perform maintenance on your table using ALTER
INDEX REORGANIZE or ALTER INDEX REBUILD to get the most out of your
columnstore indexes, as the background tuple mover moves rows when there are
1048576 rows in the deltastore rowgroup.

Thought experiment
In this thought experiment, demonstrate your skills and knowledge of the topics covered in
this chapter. You can find the answer to this thought experiment in the next section.

You are taking over the table design for the invoicing system for a toy shop. The
requirements state “Wingtip Toys want to track their customer’s basic information, the
orders they have placed for one or more products, and how much they have paid for each
product on the order. The price of a toy can change for every order.”

In the database, you see the following tables, with accompanying definitions:
 Customer People and companies that have purchase toys from the shop
 CustomerOwnedToys Toys that we know a customer owns
 InvoiceItem The bill for the toys that a customer has purchased
 Product The list of products that Wingtip Toys sells.

What are the potential issues with the design, based solely on the table names?
The original designer had created a column in the Customer table named: nickname,

allowing you to store a name a person would prefer to be called. For example, a person
named William might prefer to be called Bill, and Mariusz Wolodzko could prefer to be
called “Captain Awesome.” The data type for this column is int, and you realize that int is
not really a desirable data type for storing a text value. You have the following five
different data types that you are deciding from:

1. varchar (100)
2. nvarchar(50)
3. nvarchar(Max)
4. char(120)
5. varbinary(100)

For each type, evaluate in terms of A. Ability to store the data B. Appropriateness of the
data type to meet the specified requirements.

Once the database has been created, the following query is written:

128

Click here to view code image

SELECT StockItemID, StockItemName, SupplierID, ColorID,
UnitPackageID,
 OuterPackageID, Brand, Size
FROM Examples.Product
WHERE UnitPackageId = 9;

And the plan for this query is shown in Figure 1-33:

FIGURE 1-33 The plan for a simple query

From the information given, can you decide if adding either of the following indexes
improves the query?

 CREATE INDEX UnitPackageId ON Examples.Product (UnitPackageId);
 CREATE INDEX UnitPackageIdPlus ON Examples.Product (UnitPackageId)
INCLUDE (StockItemID, StockItemName, SupplierID, ColorID, OuterPackageID,
Brand, Size);

Finally, in your review, you see the following table with over 5 million rows in it:
Click here to view code image

CREATE TABLE Sales.InvoiceItemFact
(
 InvoiceItemFactId int NOT NULL
 IDENTITY CONSTRAINT PKInvoiceItemFact PRIMARY KEY,
 ProductDimId int NOT NULL,
 CustomerDimId int NOT NULL,
 DateDimId int NOT NULL,
 SalesAmount money NOT NULL,
 SalesQuantity decimal(10,4)

);

There is also a table named Sales.ProductDim and Sales.CustomerDim, that contain data
about the customer and product associated with the sale. Do all of the indexes work with
the existing PRIMARY KEY constraint’s index? For queries that aggregate a lot of data in
the table, do the indexes help?

 CREATE INDEX ProductDimId ON Sales.InvoiceItemFact (ProductDimId);
 CREATE NONCLUSTERED COLUMNSTORE INDEX NCColumnstore ON

129

Sales.InvoiceItemFact (InvoiceItemFactId, ProductDimId, CustomerDimId,
DateDimId, SalesAmount, SalesQuantity);
 CREATE CLUSTERED COLUMNSTORE INDEX CColumnstore ON
Sales.InvoiceItemFact;

Thought experiment answer
This section contains the solution to the thought experiment. Each answer explains why the
answer choice is correct. Users provide an email address when they sign up. However,
sometimes the same person creates multiple accounts with the same email address, causing
issues with the validity of a research results set.

There are several concerns in the design as given, both in terms of meeting the
requirements given and basic normalization considerations. In terms of requirements, there
is a table named CustomerOwnedToys, specifying a feature that was not requested by the
customer. The normalization problem comes with just having an InvoiceItem table without
a table named Invoice. This causes the columns to need to repeat information about the
order that was placed. There was one answer included to possibly throw you off. “The
price of a toy can change for every order” seems to indicate that we need a ProductPrice
table. However, the requirements strictly ask “how much they have paid for each product
on the order”.

A column for a person’s nickname is a typical need, and clearly int is not the proper
solution. Let’s look at each type mentioned, in terms of A. Ability to store the data, and B.
Appropriateness of the data type to meet the specified requirements.

1. varchar (100)
A. Since this is an ASCII type, it is acceptable for storing simple character data.

However, real names contain special characters. It is best to use a Unicode type
for names

B. 100 characters of string data is likely too long of a string for name data, the width
of text on this page is approximately 80 characters wide. If you are going to allow
100 characters in a column, usage should never cut it off. Since it is variably
sized, it does not waste space, making it efficient enough.

2. nvarchar(50)
A. This is a Unicode type, and as such it should handle any text.
B. 50 characters is a typical length that people set names to be. Since it is variably

sized, it does not waste space, making it efficient enough.
3. nvarchar(Max)

A. This is a Unicode type, and as such it should handle any text.
B. Much like other larger strings, this is too large of a string for a name at over 1

million characters. Some designers simply use nvarchar(max) because it is easy,

130

and since it is variably sized, technically no less efficient than any other nvarchar
type. However, this is generally not the best practice that is desirable.

4. char(120)
A. Since this is an ASCII type, it is acceptable for storing simple character data.

However, real names contain special characters. It is best to use a Unicode type
for names.

B. 120 characters is too long, and in this case, since it is not variable sized, space is
typically wasted when storing a short string. Even if using a compression setting
(not covered in this exam), the string appears padded in all uses, which is not
optimal.

5. varbinary(100)
A. If you assumed that this would not work, you were incorrect. While it is definitely

not the most efficient way to store a string, the following CAST expression results
in a Unicode string of N’Bill’: CAST (0x420069006C006C00 as nvarchar(100)).

B. Clearly this is not optimum way of storing a string. However, this is something
that could have been done in very old systems to give binary comparisons. Using a
binary collation provides the same properties in modern versions of SQL Server.

Given the query we have been provided on the Examples.Product table, without any data
to look at, it is not possible to be sure that either index that we are provided with gives any
benefit (for example, what if the table had 1 row? The size of the line from the Clustered
Index Scan to the SELECT operator is very thin. It also isn’t stated if an index already
exists on the UnitPackage column.) However, so this isn’t just a trick question, let’s assume
that there is data in the table, there is not an index on UnitPackageId, and some data was
returned from the query.

 CREATE INDEX UnitPackageId ON Examples.Product (UnitPackageId); This
index has the least likelihood between the two to provide benefit. For it to be useful,
there needs to be a lot of rows that don’t match, and just a few that do, based on the
statistics of the table. Because of the necessity of a Key Lookup operator to fetch
additional columns that are not in the index, the value of this index has to be great to
outweigh the costs.
 CREATE INDEX UnitPackageIdPlus ON Examples.Product (UnitPackageId)
INCLUDE (StockItemID, StockItemName, SupplierID, ColorID,
OuterPackageID, Brand, Size); There is no guarantee that this index tremendously
improves the query, since we are not sure if there are columns in the table that are not
included but the index, but since the index key matches the WHERE clause, and the
INCLUDE columns match the SELECT clause, it can almost certainly be of some
value to the query.

Finally, there were a few indexes that were to be applied to a fact table in a dimensional

131

design.
All indexes listed work with the existing PRIMARY KEY constraint index.

 CREATE INDEX ProductDimId ON Sales.InvoiceItemFact (ProductDimId);
This index is generally only be useful for queries only return a ProductDimId, such as
counting the number of orders per ProductDimId. Generally, this is not a great,
general-purpose index.
 CREATE NONCLUSTERED COLUMNSTORE INDEX NCColumnstore ON
Sales.InvoiceItemFact (InvoiceItemFactId, ProductDimId, CustomerDimId,
DateDimId, SalesAmount, SalesQuantity); Almost all queries that do analytical
queries on the Sales.InvoiceItemFact table can benefit from this index. However, the
non-clustered columnstore index is generally more appropriate for OLTP tables,
where you want a minimal overhead for the OLTP users, and no change to the base
table structures.
 CREATE CLUSTERED COLUMNSTORE INDEX CColumnstore ON
Sales.InvoiceItemFact; This is the best choice of index from the list. It compresses
the base data in the table to make the IO impact the smallest for all queries. It works
nicely with the PRIMARY KEY constraint index to allow singleton updates/seeks as
needed for ETL and simple queries also.

132

Chapter 2. Implement programmability objects

In the previous chapter, we reviewed the basic data structure of a SQL Server database.
First, we designed the structures of the database from requirements, and then we built a set
of tables and views to access the data, with indexes to make the queries using these objects
perform well. In this chapter, we further enhance this database by using more of the tools
that SQL Server provides to enhance data integrity through constraints and Transact-SQL
coded objects.

Skill 2.1 starts with constraints, a topic we brushed upon in Chapter 1, but we dive
deeper into their use and configuration. Constraints help shape the data that can be placed
in your tables in a few ways, such as keeping data unique, limiting the domain of columns
to certain formats or lengths that can’t be done with data type alone, and enforcing foreign
key relationships. Using constraints, you take databases from simple data storage, to
intelligent data filters that eliminate most data issues with very little performance impact.

In Skill 2.2 we cover stored procedures, which allow you as a programmer to bundle the
execution of code together in a way that is generally much more convenient to use than ad-
hoc Transact-SQL statements from the middle layer of an application. Almost any code can
be performed from a stored procedure, and we cover several of the most useful scenarios.

In Skill 2.3, the final skill section of this chapter, there are two types of objects we deal
with: triggers and User-Defined Functions (UDFs). TRIGGER objects are used to react to
certain types of actions, such as a DML operation like an INSERT, a DDL operation like
ALTER INDEX, CREATE TABLE, etc., or a user logging into the server. The most
common use of triggers is to use a DML trigger to extend data integrity where constraints
are not sufficient.

UDFs allow you to create modules of code that can be used as the building blocks of
SQL statements. While Transact-SQL is not generally great at producing very modular
code, UDFs allow you to build code that works much like SQL Server’s system functions
where it makes sense.

Note Transact-SQL solutions
This chapter focuses primarily on on-disk tables and interpreted Transact-
SQL solutions exclusively. Skill 3.4 highlights the differences between these
solutions and the memory-optimized tables and natively-compiled modules.

Skills in this chapter:
 Ensure data integrity with constraints
 Create stored procedures
 Create triggers and user-defined functions

133

Skill 2.1 Ensure data integrity with constraints
In Chapter 1, the first skill that we explored was designing a database. In that exercise, we
designed a database that met some basic requirements. Many of the data integrity
requirements for a database are covered by the table design and the physical
implementation, but not all of them. In this skill section, we look at the declarative tools
that are available to further constrain data to meet a set of requirements.

This section covers how to:
 Define table and foreign-key constraints to enforce business rules
 Write Transact-SQL statements to add constraints to tables
 Identify results of Data Manipulation Language (DML) statements given
existing tables and constraints
 Identify proper usage of PRIMARY KEY constraints

Define table and foreign-key constraints to enforce business rules
PRIMARY KEY constraints are almost always used by even novice database
implementers, but for the exam (and for implementing a proper database), the other types of
constraints that are available are extremely important as well. Constraints can either be for
a single column (referred to as column constraints), or for multiple columns (referred to as
table constraints.) In this section, we review the following constraint types that you should
be familiar with:

 DEFAULT Used to provide a value for a column when no value is provided by the
user.
 UNIQUE Used to implement any uniqueness criteria (alternate/candidate keys) that
are not chosen as the primary key.
 CHECK Used to apply a simple predicate check to the values in an INSERT or
UPDATE operation.
 FOREIGN KEY Used to enforce foreign key relationships between tables, so that
referenced data is always in existence for rows that reference it.

In addition to reviewing each of these types of constraint individually, we also examine
a section on limiting a column value to a set of values, which makes use of a few of these
items simultaneously.

Using DEFAULT constraints to guide the user’s input
DEFAULT constraints, at first look, don’t seem like they have much value for enforcing
business rules, and that is somewhat true. However, they are useful to give the user an idea
of what value to put in a column. For example, say you have a column in a table that is

134

called DisabledFlag, with a domain of 1, if what the row represents has been disabled, and
0 when not. More than likely, the typical value of this column is 0. So in the table
definition, you might specify:
Click here to view code image

DisabledFlag bit NOT NULL CONSTRAINT DFTLTableName_DisabledFlag
DEFAULT (0);

Now, if a user doesn’t specify this value in the INSERT, it is automatically 0.
Applications can access the metadata of the default value as well, so it can be useful that
way as well (this can be accessed in sys.default_constraints). There are a few system uses
of DEFAULT constraints as well that are commonly used. One is to make it easier to set
columns that are used to denote when a row was modified, created, etc. such as
RowLastModifiedTime (RowCreatedTime, RowCreatedByLogin, and others). For
example, consider the following table, with just a simple integer primary key, and a column
that is used to capture the last time the row was modified:
Click here to view code image

CREATE SCHEMA Examples;
GO
CREATE TABLE Examples.Widget
(
 WidgetId int CONSTRAINT PKWidget PRIMARY KEY,
 RowLastModifiedTime datetime2(0) NOT NULL
);

Add the DEFAULT constraint as the default value for the column:

ALTER TABLE Examples.Widget
 ADD CONSTRAINT DFLTWidget_RowLastModifiedTime
 DEFAULT (SYSDATETIME()) FOR RowLastModifiedTime;

So if you insert a row, you can do one of two things. Either don’t include the column in
the INSERT statement, or use the DEFAULT keyword to have the value default itself, as in
the following two statements:
Click here to view code image

INSERT INTO Examples.Widget(WidgetId)
VALUES (1),(2);
INSERT INTO Examples.Widget(WidgetId, RowLastModifiedTime)
VALUES (3,DEFAULT), (4,DEFAULT);

Checking the data that has been inserted:

SELECT *
FROM Examples.Widget;

135

The values are all the same, as the statements were executed within the same second:
Click here to view code image

WidgetId RowLastModifiedTime
----------- ---------------------------
1 2016-09-14 18:08:28
2 2016-09-14 18:08:28
3 2016-09-14 18:08:28
4 2016-09-14 18:08:28

You can also use the DEFAULT keyword on an UPDATE operation. The following query
would change every row’s RowLastModifiedTime to the default value, which is the current
time:
Click here to view code image

UPDATE Examples.Widget
SET RowLastModifiedTime = DEFAULT;

DEFAULT constraints are also useful for adding a new NOT NULL column to a table
that already has data in it. As the column is being added to the table, it uses the DEFAULT
constraints value. If you are adding a DEFAULT to an existing column, use the following
syntax:
Click here to view code image

ALTER TABLE Examples.Widget
 ADD EnabledFlag BIT NOT NULL
 CONSTRAINT DFLTWidget_EnabledFlag DEFAULT (1);

Note NULL columns
If the column is defined as NULL when creating it, all of the values are NULL
in the column when you create the column even if you attach a DEFAULT
constraint. When you are creating a NULL column and want to default all of
the values in the new column regardless, use WITH VALUES after the
DEFAULT specification DEFAULT (value) WITH VALUES.

One last interesting thing you should know about using DEFAULT constraints is that if
every column either has the IDENTITY property or has a DEFAULT constraint, you can use
DEFAULT VALUES to skip the entire VALUES clause. For example, consider the
following table:
Click here to view code image

CREATE TABLE Examples.AllDefaulted
(
 AllDefaultedId int IDENTITY(1,1) NOT NULL,

136

 RowCreatedTime datetime2(0) NOT NULL
 CONSTRAINT DFLTAllDefaulted_RowCreatedTime DEFAULT
(SYSDATETIME()),
 RowModifiedTime datetime2(0) NOT NULL
 CONSTRAINT DFLTAllDefaulted_RowModifiedTime DEFAULT
(SYSDATETIME())
);

Now you can create a new row with all default values, by using DEFAULT VALUES:
Click here to view code image

INSERT INTO Examples.AllDefaulted
DEFAULT VALUES;

You can specify any of the columns in the table in the INSERT INTO clause that have a
DEFAULT constraint:
Click here to view code image

INSERT INTO Examples.AllDefaulted(RowModifiedTime,
RowCreatedTime)
DEFAULT VALUES;
INSERT INTO Examples.AllDefaulted(RowCreatedTime)
DEFAULT VALUES;

And the values are defaulted:
Click here to view code image

SELECT *
FROM Examples.AllDefaulted;

This returns:
Click here to view code image

AllDefaultedId RowCreatedTime RowModifiedTime
-------------- --------------------------- --------------------

1 2016-09-14 18:19:30 2016-09-14 18:19:30
2 2016-09-14 18:19:30 2016-09-14 18:19:30
3 2016-09-14 18:19:30 2016-09-14 18:19:30

As we mentioned previously, this does not work with the column with the IDENTITY
property set. So if you were to include the column in the INSERT column list, you will get
an error:
Click here to view code image

INSERT INTO Examples.AllDefaulted(AllDefaultedId)
DEFAULT VALUES;

137

This gets you an error message:
Click here to view code image

Msg 339, Level 16, State 1, Line 69
DEFAULT or NULL are not allowed as explicit identity values.

This is because not including the column in the INSERT list is telling the query
processor to use DEFAULT constraint values, not to use the IDENTITY property.

Using UNIQUE constraints to enforce secondary uniqueness criteria
A particularly important constraint to use when using surrogate keys for your primary keys
is the UNIQUE constraint. We discuss choosing a PRIMARY KEY later in the chapter, but
the purpose of the UNIQUE constraint is pretty straightforward: protect the uniqueness
characteristics of column sets that need to be unique but were not chosen as the PRIMARY
KEY.

Consider the following table that has two key columns, the GadgetId, and the
GadgetCode. Say that GadgetId has been chosen as the PRIMARY KEY:
Click here to view code image

CREATE TABLE Examples.Gadget
(
 GadgetId int IDENTITY(1,1) NOT NULL CONSTRAINT PKGadget
PRIMARY KEY,
 GadgetCode varchar(10) NOT NULL
);

Now the following set of data is inserted:
Click here to view code image

INSERT INTO Examples.Gadget(GadgetCode)
VALUES ('Gadget'), ('Gadget'), ('Gadget');

The data in the table now looks like the following:

GadgetId GadgetCode
----------- ----------
1 Gadget
2 Gadget
3 Gadget

It is not possible to tell one row from another except using a value that was system-
generated, so we need to add a constraint to the table to make sure that this cannot happen.
The UNIQUE constraint works very much like a PRIMARY KEY constraint, in that it
enforces uniqueness and is implemented with an UNIQUE INDEX. There are a few subtle
differences however:

138

 The index that is created to back the constraint is nonclustered by default.
 The columns of the key allow NULL values (NULL values are treated as distinct
values, as was covered in Chapter 1, Skill 2.1, Indexing during the database design
phase, where we first mentioned uniqueness constraints).

On the GadgetCode column of the Examples.Gadget table, create a UNIQUE constraint,
after deleting the logically duplicated data:
Click here to view code image

DELETE FROM Examples.Gadget WHERE GadgetId in (2,3);

ALTER TABLE Examples.Gadget
 ADD CONSTRAINT AKGadget UNIQUE (GadgetCode);

Now, an attempt to insert a row with the duplicated tag value of G001:
Click here to view code image

INSERT INTO Equipment.Tag(Tag, TagCompanyId)
VALUES ('G001',1);

Instead of creating duplicated data in the column, this results in the following error:
Click here to view code image

Msg 2627, Level 14, State 1, Line 100
Violation of UNIQUE KEY constraint 'AKGadget'. Cannot insert
duplicate key in object
'Examples.Gadget'. The duplicate key value is (Gadget).

Back in Chapter 1, when talking about indexes, we previously covered the concerns with
having NULL columns in your UNIQUE constraints. UNIQUE (and PRIMARY KEY)
constraints are objects that have properties of data integrity protection, which this skill
section is about, as well as indexes.

Need More Review? Creating UNIQUE contstraints
See the following article on MSDN for more details about creating UNIQUE
constraints: https://msdn.microsoft.com/en-us/library/ms190024.aspx.

Using CHECK constraints to limit data input
The CHECK constraint is used to apply an expression predicate to data as it is inserted or
updated. When evaluating the predicate of a CHECK constraint, the expression must
evaluate to FALSE before the new or changed data is rejected. If a column allows NULL,
and the expression does not explicitly reject NULL values, then if you need the constraint to
fail on any condition, you must explicitly check for NULL.

139

https://msdn.microsoft.com/en-us/library/ms190024.aspx

Typical uses of CHECK constraints are to validate the format of a piece of data, limit the
domain of data stricter than a data type, ensure data is in a valid range, and to coordinate
multiple values make sense together (the last section of this skill review uses CHECK
constraints as one method of choosing an explicit domain of values). The constraint can use
a simple expression, and even use a user-defined function that accesses other tables, though
that is not a typical use.

Using our sample database, there are several places where we need to limit the data that
can be put into the tables. We look at:

 Limiting data more than a data type For example, the int data type is arguably the
most common data type, but usually the desired range of a columns’ value is not
between approximately -2 billion to 2 billion. A CHECK constrain can limit the data
in a column to a desired range.
 Enforcing a format for data in a column Some values, usually character data, needs
to meet a predefined format. For example, an American Social Security Number is
formatted NNN-NN-NNNN where N is a whole number.
 Coordinate multiple values together In some cases, multiple columns need to make
logical sense together. For example, a composite foreign key reference that allows
NULL values.

While the concept of a CHECK constraint is very simple, in practice there is one major
thing to remember: in building a database (and possibly answering an exam question), if
the requirement says “always” or “must” (as in “the maximum price of a widget must
always be less than or equal to 100”) this is a candidate for a constraint. If the requirement
is less strict, (as in “the typical maximum price of a widget is 100”), a constraint cannot be
used. This particular sort of constraint is more tailored to a user interface message box that
asks: “Are you sure that they paid 200 for that widget?”

Need More Review? CHECK Constraints
For more information about CHECK constraints than we can cover, check out
this article on MSDN about UNIQUE Constraints and CHECK constraints:
https://msdn.microsoft.com/en-us/library/ms187550.aspx#Check.

Limiting data more than a data type
When creating initial database objects, a goal from Chapter 1, Skill 1.1 was to choose the
best data type possible. If, for example, you need a data type that holds values between 1
and 10, you almost certainly choose a tinyint data type. The tinyint data type has a domain
of 0 to 255, which is the data type with the best performance characteristics that is the
smallest in range. You can use a decimal(2,0) to get to a domain of 0-99, but any integer
type is better than a type that is implemented in the software of SQL Server rather than
using the hardware as an integer would. In order to limit the values to between 1 and 10,

140

https://msdn.microsoft.com/en-us/library/ms187550.aspx#Check

we will use a CHECK constraint.
For example, let’s say you have a table that captures the cost of a product in a grocery

store. You can use the smallmoney data type, but the smallmoney data type has a range of -
214,748.3648 to 214,748.3647. There are concerns at the top and the bottom of the range.
First, a product would not cost a negative amount, so the bottom limit should be at least 0.
At the top you don’t want to accidentally charge 200 thousand for a can of corn. For this
example, we limit the cost to a range of greater than 0 to 999,9999.
Click here to view code image

CREATE TABLE Examples.GroceryItem
(
 ItemCost smallmoney NULL,
 CONSTRAINT CHKGroceryItem_ItemCostRange
 CHECK (ItemCost > 0 AND ItemCost < 1000)
);

Note Checking a constraint
You can determine if a constraint is a table or column level constraint by
checking the parent_column_id in the sys.check_constraints system catalog
view. If it is NULL, then it is a table constraint.

Now, any attempt to put a value outside of the range in the predicate:
Click here to view code image

INSERT INTO Examples.GroceryItem
VALUES (3000.95);

This causes an error:
Click here to view code image

Msg 547, Level 16, State 0, Line 286
The INSERT statement conflicted with the CHECK constraint
"CHKGroceryItem_ItemCostRange". The conflict occurred in
database "ExamBook762Ch2",
table "Examples.GroceryItem", column 'ItemCost'.

But values in the allowable range are accepted:
Click here to view code image

INSERT INTO Examples.GroceryItem
VALUES (100.95);

Finally, note that since the column allows NULL values, an INSERT with a NULL for the
ItemCost is allowed, even though the predicate was: ItemCost > 0 and ItemCost < 1000.

141

Click here to view code image

INSERT INTO Examples.GroceryItem
VALUES (NULL);

If, for some reason, you want this column to reject NULL values even though it is
declared NULL, you can add AND ItemCost IS NOT NULL to the predicate.

Enforcing a format for data in a column
Datatypes can be used to limit data to a maximum length, but they cannot limit data to a
minimum length or a certain format (though XML and uniqueidentifier are examples where
they have some formatting control). For example, it is a common desire to disallow a user
from inputting only space characters for a value in a column, or to make sure that a
corporate-standard-formatted value is input for a value.

As an example, consider the following table:
Click here to view code image

CREATE TABLE Examples.Message
(
 MessageTag char(5) NOT NULL,
 Comment nvarchar(max) NULL
);

For these tables, we want to check the format of the two values. For the MessageTag, we
want to make sure the format of the data is Alpha-NumberNumberNumber. For the
Comment column, the requirement is to make sure that the value is either NULL, or a
character string of 1 or more characters.
Click here to view code image

ALTER TABLE Examples.Message
 ADD CONSTRAINT CHKMessage_MessageTagFormat
 CHECK (MessageTag LIKE '[A-Z]-[0-9][0-9][0-9]');

ALTER TABLE Examples.Message
 ADD CONSTRAINT CHKMessage_CommentNotEmpty
 CHECK (LEN(Comment) > 0);

One of the primary difficulties regarding constraints (and really any of the declarative
forms of data integrity checks we are reviewing) is that you only get one error, no matter
how many errors are found. For example, say you break both rules in your statement:
Click here to view code image

INSERT INTO Examples.Message(MessageTag, Comment)
VALUES ('Bad','');

The only message you get back is for the MessageTag being poorly formatted (the order

142

of error checking is not guaranteed or controllable.):
Click here to view code image

Msg 547, Level 16, State 0, Line 312
The INSERT statement conflicted with the CHECK constraint
"CHKMessage_MessageTagFormat".
The conflict occurred in database "ExamBook762Ch2", table
"Examples.Message",
column 'MessageTag'.

Coordinate multiple values together
As one last example, consider a case where two column values can influence the legal
value for another. For example, say you have a Customer table, and it has a set of status
flags. Two of them are ForcedDisabledFlag, manually saying that the customer has been
disabled, and a ForcedEnabledFlag, manually saying that the customer has been enabled,
likely overriding the normal business rules in each case. Typically, there might be a few
other columns for the user to explain why they are overriding the rules, but for simplicity,
just these two columns are needed for the example.

The following table implements these two columns and a CHECK constraint that makes
sure the offending scenario does not occur:
Click here to view code image

CREATE TABLE Examples.Customer
(
 ForcedDisabledFlag bit NOT NULL,
 ForcedEnabledFlag bit NOT NULL,
 CONSTRAINT CHKCustomer_ForcedStatusFlagCheck
 CHECK (NOT (ForcedDisabledFlag = 1 AND ForcedEnabledFlag
= 1))
);

Using FOREIGN KEY constraints to enforce relationships
FOREIGN KEY constraints are used to ensure that when you set up a foreign key link
between tables (by placing the key value of one table in another table as a reference), the
values remain in sync. They are generally quite simple to set up, though there are a number
of options you can use to control what occurs when a reference exists, and when you are
changing one side to not exist. In the next sections, we cover:

 Creating a simple FOREIGN KEY constraint on a table with data in it
 Cascading Operations
 Relating a table to itself to form a hierarchy
 FOREIGN KEY constraints relating to a UNIQUE constraint instead of a PRIMARY
KEY constraint

143

Need More Review? FOREIGN KEY constraints
For more information about FOREIGN KEY constraints and their relationship
to PRIMARY KEY constraints beyond what we can cover here, see the
following article on MSDN: https://msdn.microsoft.com/en-
us/library/ms179610.aspx.

Creating a simple FOREIGN KEY constraint on a table with data in it
Most FOREIGN KEY constraints that are implemented are of the straightforward variety.
We need to make sure the data in one column in a table matches the data in the primary of
another. In later sections, we cover some more breadth of configurations, but in this first
section we keep it very simple.

For example, consider the following two tables, named after the common names for their
position in the relationship (the Child table in a relationship references the Parent table).
Click here to view code image

CREATE TABLE Examples.Parent
(
 ParentId int NOT NULL CONSTRAINT PKParent PRIMARY KEY
);
CREATE TABLE Examples.Child
(
 ChildId int NOT NULL CONSTRAINT PKChild PRIMARY KEY,
 ParentId int NULL
);

At this point, the user can put any value into the ParentId column of the Child table,
which makes using the data complicated. To make sure that the data is always in sync, we
can add the following constraint:
Click here to view code image

ALTER TABLE Examples.Child
 ADD CONSTRAINT FKChild_Ref_ExamplesParent
 FOREIGN KEY (ParentId) REFERENCES
Examples.Parent(ParentId);

In the declaration, you specify the column that references a given column in a table.
While almost every FOREIGN KEY constraint references a PRIMARY KEY constraint, it
can actually reference a UNIQUE constraint or even a UNIQUE index in the rare cases
where that makes sense (more on that later in the section).

Now, after inserting a few rows into the Examples.Parent table:
Click here to view code image

144

https://msdn.microsoft.com/en-us/library/ms179610.aspx

INSERT INTO Examples.Parent(ParentId)
VALUES (1),(2),(3);

You are able to insert a row into Child where the ParentId does match:
Click here to view code image

INSERT INTO Examples.Child (ChildId, ParentId)
VALUES (1,1);

But if you try to use a ParentId that is not in the table:
Click here to view code image

INSERT INTO Examples.Child (ChildId, ParentId)
VALUES (2,100);

The following error is then thrown:
Click here to view code image

Msg 547, Level 16, State 0, Line 124
The INSERT statement conflicted with the FOREIGN KEY constraint
"FKChild_Ref_ExamplesParent". The conflict occurred in database
"ExamBook762Ch2",
table "Examples.Parent", column 'ParentId'.

Finally, note that the ParentId column in the Child table was created to allow NULL
values. The referenced PRIMARY KEY constraint does not allow NULL values by
definition, so this could never have a match. This brings up an important point about
constraints. Much like CHECK constraints, they fail only when the comparison is FALSE,
and any comparison to NULL return UNKNOWN. Hence the following INSERT statement
works:
Click here to view code image

INSERT INTO Examples.Child (ChildId, ParentId)
VALUES (3,NULL);

So far, we have dealt with simple keys only, but PRIMARY KEY constraints can easily
have a composite key. For required, NOT NULL child table references, this is not a
concern. However, where the referencing table’s columns do allow NULL values,
something more complex occurs. Consider the following tables, and a single row in the
table that the FOREIGN KEY constraint is referencing:
Click here to view code image

CREATE TABLE Examples.TwoPartKey
(
 KeyColumn1 int NOT NULL,
 KeyColumn2 int NOT NULL,

145

 CONSTRAINT PKTwoPartKey PRIMARY KEY (KeyColumn1,
KeyColumn2)
);

INSERT INTO Examples.TwoPartKey (KeyColumn1, KeyColumn2)

VALUES (1, 1);
CREATE TABLE Examples.TwoPartKeyReference
(
 KeyColumn1 int NULL,
 KeyColumn2 int NULL,
 CONSTRAINT FKTwoPartKeyReference_Ref_ExamplesTwoPartKey
 FOREIGN KEY (KeyColumn1, KeyColumn2)
 REFERENCES Examples.TwoPartKey (KeyColumn1,
KeyColumn2)
);

Here you put in a row with 1,1 for the Examples.TwoPartKeyReference table or NULL,
NULL:
Click here to view code image

INSERT INTO Examples.TwoPartKeyReference (KeyColumn1,
KeyColumn2)
VALUES (1, 1), (NULL, NULL);

It is successful. If you try to put in 2,2, which is not in the referenced table:
Click here to view code image

INSERT INTO Examples.TwoPartKeyReference (KeyColumn1,
KeyColumn2)
VALUES (2, 2);

This does not work, as expected:
Click here to view code image

 Msg 547, Level 16, State 0, Line 157
The INSERT statement conflicted with the FOREIGN KEY constraint
"FKTwoPartKeyReference_
Ref_ExamplesTwoPartKey". The conflict occurred in database
"ExamBook762Ch2", table "Examples.TwoPartKey".

However, what about 6 million (a value most certainly not in the parent table) and
NULL?
Click here to view code image

INSERT INTO Examples.TwoPartKeyReference (KeyColumn1,
KeyColumn2)

146

VALUES (6000000, NULL);

This actually works because the NULL is allowed by the column, and any column
comparison that returns UNKNOWN (NULL) is accepted. To prevent this condition from
occurring, you can use a CHECK constraint to make sure both columns are either NULL or
NOT NULL. In this case, we could add the following CHECK constraint to correct this:
Click here to view code image

ALTER TABLE Alt.TwoPartKeyReference
 ADD CONSTRAINT CHKTwoPartKeyReference_FKNULLs
 CHECK ((KeyColumn1 IS NULL and KeyColumn2 IS NULL)
 OR
 (KeyColumn1 IS NOT NULL and KeyColumn2 IS
NOT NULL));

Now, the entire reference is NULL or NOT NULL, not one or the other, eliminating the
concept that a KeyColumn1 or KeyColumn2 value might not exist in the referenced table.

Cascading Operations
We have seen already that a FOREIGN KEY constraint can be used to prevent rows being
deleted from a table with referring data, or inserting or updating data into the referring
table that doesn’t match the referenced table. However, sometimes it is desirable to allow
changes at the parent table to be reflected in the referencing child table. The following
settings can be chosen when the row is deleted, or when the key columns in the parent are
updated.

 NO ACTION Prevent any updates or deletions where the end result would leave the
data invalid. This behaves as seen in the previous section, as this is the default
action.
 CASCADE Repeat on the referencing table what occurs in the referenced. If the key
column is changed, change it in the referencing table. If the row is deleted, remove it
from the referencing table as well.
 SET (NULL or DEFAULT) In these cases, if the referenced row is deleted or the
key value is changed, the referencing data is set to either NULL or to the value from a
DEFAULT constraint, respectively.

The most common use of this feature is to cascade a DELETE operation to remove all
related rows from one table to a related table that is, in essence, part of the referenced
table. This is usually the case when one table logically owns the rows in the second table.
For example, an invoice and invoice line item. You would never need an invoice line item
without the invoice.
Click here to view code image

CREATE TABLE Examples.Invoice

147

(
 InvoiceId int NOT NULL CONSTRAINT PKInvoice PRIMARY KEY
);
CREATE TABLE Examples.InvoiceLineItem
(
 InvoiceLineItemId int NOT NULL CONSTRAINT PKInvoiceLineItem
PRIMARY KEY,
 InvoiceLineNumber smallint NOT NULL,
 InvoiceId int NOT NULL
 CONSTRAINT FKInvoiceLineItem_Ref_ExamplesInvoice
 REFERENCES Examples.Invoice(InvoiceId)
 ON DELETE CASCADE
 ON UPDATE NO ACTION,
 CONSTRAINT AKInvoiceLineItem UNIQUE (InvoiceId,
InvoiceLineNumber)
);

Now create a few rows of data in both tables:
Click here to view code image

INSERT INTO Examples.Invoice(InvoiceId)
VALUES (1),(2),(3);
INSERT INTO Examples.InvoiceLineItem(InvoiceLineItemId,
InvoiceId,InvoiceLineNumber)
VALUES (1,1,1),(2,1,2), (3,2,1);

View the data using the following query, which shows you the key of both tables (and the
FULL OUTER JOIN insures that if we had a row in InvoiceLineItem without a referenced
Invoice, it would still show up. This, however, is not possible, but if you were testing your
code, this is the safest way to check the data.):
Click here to view code image

SELECT Invoice.InvoiceId, InvoiceLineItem.InvoiceLineItemId
FROM Examples.Invoice
 FULL OUTER JOIN Examples.InvoiceLineItem
 ON Invoice.InvoiceId = InvoiceLineItem.InvoiceId;

This returns:
Click here to view code image

InvoiceId InvoiceLineItemId
----------- -----------------
1 1
1 2
2 3
3 NULL

148

Now delete InvoiceId number 1:

DELETE Examples.Invoice
WHERE InvoiceId = 1;

Repeat the query of the data, and you see that the Invoice and InvoiceLineItem rows have
gone away.
Click here to view code image

InvoiceId InvoiceLineItemId
----------- -----------------
2 3
3 NULL

When using surrogate keys for your primary key values (as we did with InvoiceId and
InvoiceLineItemId), there are only a few scenarios for cascading update operations.
Surrogate key values should never be updated. Sometimes this is technically possible, such
as using a GUID for the key, but not needing to change the value is one of the main reasons
why we use a surrogate key in the first place. However, if you choose to use natural keys
for the primary key value, occasionally a value needs to be changed, either because of
something like a company changing name, or perhaps because a misspelled value caught
after the value was used in multiple places.

As an example, consider the following tables. The second table is an example of
creating a FOREIGN KEY constraint in the table declaration, where the Example.Code
table sets up a domain of code values, and Example.CodedItem simulates a row that needs
that code (though the only column in the table is the Code column to keep things very
simple).
Click here to view code image

CREATE TABLE Examples.Code
(
 Code varchar(10) NOT NULL CONSTRAINT PKCode PRIMARY KEY
);
CREATE TABLE Examples.CodedItem
(
 Code varchar(10) NOT NULL
 CONSTRAINT FKCodedItem_Ref_ExampleCode
 REFERENCES Examples.Code (Code)
 ON UPDATE CASCADE
);

Now, create a row in each table, with a misspelled code value of ‘Blacke’:
Click here to view code image

INSERT INTO Examples.Code (Code)
VALUES ('Blacke');

149

INSERT INTO Examples.CodedItem (Code)
VALUES ('Blacke');

Now, looking at the data, you can see that the data in both tables are spelled incorrectly:
Click here to view code image

SELECT Code.Code, CodedItem.Code AS CodedItemCode
FROM Examples.Code
 FULL OUTER JOIN Examples.CodedItem
 ON Code.Code = CodedItem.Code;

This returns:

Code CodedItemCode
---------- -------------
Blacke Blacke

Now, update the Alt.Code row with the proper spelling of Black:

UPDATE Examples.Code
SET Code = 'Black';

Check the data again, and see that both items say Black, as the UPDATE operation
cascaded.

Code CodedItemCode
---------- -------------
Black Black

Relating a table to itself to form a hierarchy
In many databases, there is need to define a hierarchy of items. A common example is an
employee-to-manager relationship, where everyone in a company except for one (the CEO
or President) has a simple manager relationship. In the next example, we create a table
named Examples.Employee that includes the relationship structure that one might create for
an employee hierarchy. In the table, note that the ManagerId FOREIGN KEY constraint
references the EmployeeId column in this same table:
Click here to view code image

CREATE TABLE Examples.Employee
(
 EmployeeId int NOT NULL CONSTRAINT PKEmployee PRIMARY
KEY,
 EmployeeNumber char(8) NOT NULL,
 ManagerId int NULL
 CONSTRAINT FKEmployee_Ref_ExamplesEmployee
 REFERENCES Examples.Employee (EmployeeId);

150

);

Now you can add some data to the table, and add four rows, including the top level
manager, and two persons that work for the top-level manager. Finally, one person works
for one of those two employees:
Click here to view code image

INSERT INTO Examples.Employee(EmployeeId, EmployeeNumber,
ManagerId)
VALUES (1,'00000001',NULL), (2,'10000001',1),(3,'10000002',1),
(4,'20000001',3);

Now, check the contents of the table:

SELECT *
FROM Examples.Employee;

By following the relationships in the data, you can see that EmployeeId = 1 is the main
manager, and EmployeeId in (2,3) reports to number 1, and EmployeeId = 4 reports to
EmployeeId = 3.
Click here to view code image

EmployeeId EmployeeNumber ManagerId
----------- -------------- -----------
1 00000001 NULL
2 10000001 1
3 10000002 1
4 20000001 3

There’s no need to go into any detail since this is not a Transact-SQL focused exam, but
note that this sort of structure is typically queried via a recursive common table expression
(CTE) such as the following:
Click here to view code image

WITH EmployeeHierarchy AS
(
 SELECT EmployeeID, CAST(CONCAT('\',EmployeeId,'\') AS
varchar(1500)) AS Hierarchy
 FROM HumanResources.Employee
 WHERE ManagedByEmployeeId IS NULL
 UNION ALL
 SELECT Employee.EmployeeID,
CAST(CONCAT(Hierarchy,Employee.EmployeeId,'\')
 AS
varchar(1500)) AS Hierarchy
 FROM HumanResources.Employee
 INNER JOIN EmployeeHierarchy

151

 ON Employee.ManagedByEmployeeId =
EmployeeHierarchy.EmployeeId
)
SELECT *
FROM EmployeeHierarchy;

This returns:

EmployeeID Hierarchy
----------- ---------------
1 \1\
2 \1\2\
3 \1\3\
4 \1\3\4\

The Hierarchy column is a delimited display of the path from the row with NULL for
ManagerId to the EmployeeId in the row.

Need More Review Common Table Expressions
If you would like to read more about CTEs, the following article by Robert
Shelton on Simple-Talk gives a very easy-to-follow description of using them,
including recursive CTEs: https://www.simple-talk.com/sql/t-sql-
programming/sql-server-cte-basics/.

FOREIGN KEY constraints relating to a UNIQUE constraint instead of a PRIMARY
KEY constraint
Though it is definitely a fringe case, it is allowable for a FOREIGN KEY constraint to
reference the columns in a UNIQUE constraint as well as a PRIMARY KEY one. This is
often done for a code of some sort, which legitimately would have made a reasonable
primary key, and you want to validate the code’s value in a table.

As an example, consider a table of colors for products:
Click here to view code image

CREATE TABLE Examples.Color
(
 ColorId int NOT NULL CONSTRAINT PKColor PRIMARY KEY,
 ColorName varchar(30) NOT NULL CONSTRAINT AKColor UNIQUE
);
INSERT INTO Examples.Color(ColorId, ColorName)
VALUES (1,'Orange'),(2,'White');

Now, a table is created that needs to use the natural key value:
Click here to view code image

152

https://www.simple-talk.com/sql/t-sql-programming/sql-server-cte-basics/

CREATE TABLE Examples.Product
(
 ProductId int NOT NULL CONSTRAINT PKProduct PRIMARY KEY,
 ColorName varchar(30) NOT NULL
 CONSTRAINT FKProduct_Ref_ExamplesColor
 REFERENCES Examples.Color (ColorName)
);

Demonstrate now that everything works as expected:
Click here to view code image

INSERT INTO Examples.Product(ProductId,ColorName)
VALUES (1,'Orange');

That INSERT statement worked, but the following fails:
Click here to view code image

INSERT INTO Examples.Product(ProductId,ColorName)
VALUES (2,'Crimson');

This returns the following error:
Click here to view code image

Msg 547, Level 16, State 0, Line 266
The INSERT statement conflicted with the FOREIGN KEY constraint
"FKProduct_Ref_ExamplesColor". The conflict occurred in
database "ExamBook762Ch2",
table "Examples.Color", column 'ColorName'.

Note that since you can reference a UNIQUE constraint, which can contain NULL
column(s), the concerns noted in the previous section with composite indexes and NULL
values goes both for the referenced and referencing key values in this case. No parent row
with NULL is able to be referenced, and no child row with NULL ever fails.

Limiting a column to a set of values
The one last scenario we cover in terms of using constraints is to implement a domain of a
set of columns to a set of values. As our example, consider a column that has the size of
shirt for a conference attendee. The values for this column would likely be something like
S, M, L, XL, and XXL. There are two common methods of implementing this domain of
values:
Click here to view code image

CREATE TABLE Examples.Attendee
(
 ShirtSize varchar(8) NULL
);

153

The first is using a simple CHECK constraint:
Click here to view code image

ALTER TABLE Examples. Attendee
 ADD CONSTRAINT CHKAttendee_ShirtSizeDomain
 CHECK (ShirtSize in ('S', 'M','L','XL','XXL'));

Now, the value is checked on the INSERT or UPDATE operations, so if the user
misspells ‘XL’ as ‘LX:’
Click here to view code image

INSERT INTO Examples.Attendee(ShirtSize)
VALUES ('LX');

They are denied:
Click here to view code image

 Msg 547, Level 16, State 0, Line 346
The INSERT statement conflicted with the CHECK constraint
"CHKAttendee_ShirtSizeDo-
main".
The conflict occurred in database "ExamBook762Ch2", table
"Examples.Attendee",
column 'ShirtSize'.

The problem is, how do you know what the legitimate values are? For many CHECK
constraint conditions, this is not too big a deal as the goal is to limit really outlandish
values. However, for a domain of values, it can be helpful to coordinate the domain of
values with another table.

The second solution is to use a table of values. So you can create:
Click here to view code image

CREATE TABLE Examples.ShirtSize
(
 ShirtSize varchar(10) NOT NULL CONSTRAINT PKShirtSize
PRIMARY KEY
);
INSERT INTO Examples.ShirtSize(ShirtSize)
VALUES ('S'),('M'),('L'),('XL'),('XXL');

Now drop the CHECK constraint and replace with a FOREIGN KEY constraint:
Click here to view code image

ALTER TABLE Examples.Attendee
 DROP CONSTRAINT CHKAttendee_ShirtSizeDomain;
ALTER TABLE Examples.Attendee

154

 ADD CONSTRAINT FKAttendee_Ref_ExamplesShirtSize
 FOREIGN KEY (ShirtSize) REFERENCES
Examples.ShirtSize(ShirtSize);

Though the error message has changed, the result is the same:
Click here to view code image

INSERT INTO Examples.Attendee(ShirtSize)
VALUES ('LX');

It fails:
Click here to view code image

Msg 547, Level 16, State 0, Line 364
The INSERT statement conflicted with the FOREIGN KEY constraint
"FKAttendee_Ref_ExamplesShirtSize". The conflict occurred in
database "ExamBook762Ch2",
table "Examples.ShirtSize", column 'ShirtSize'.

Even in systems that use surrogate keys for primary keys, it isn’t atypical to use a natural
key for a domain table, depending on how the tools used interact with the data. Using a
foreign key gives you easy expandability (such as adding descriptive information to the
values by adding additional columns to your domain table), as well as the ability to add
new values to the domain without any coding changes.

Write Transact-SQL statements to add constraints to tables
So far in the chapter, we have added many constraints to tables. In this section we review
the basics of this process briefly, and then cover a few more advanced aspects of creating
and managing constraints.

When creating a table, there are two ways to add a constraint: on the same line with a
column declaration, denoting that the constraint pertains to that column, or delimited by a
comma, meaning it could reference any of the columns in the table. As an example of the
many ways you can add constraints in the declaration, consider the following:
Click here to view code image

CREATE TABLE Examples.CreateTableExample
(
 --Uniqueness constraint referencing single column
 SingleColumnKey int NOT NULL CONSTRAINT
PKCreateTableExample PRIMARY KEY,

 --Uniqueness constraint in separate line
 TwoColumnKey1 int NOT NULL,
 TwoColumnKey2 int NOT NULL,
 CONSTRAINT AKCreateTableExample UNIQUE (TwoColumnKey1,

155

TwoColumnKey2),

 --CHECK constraint declare as column constraint
 PositiveInteger int NOT NULL
 CONSTRAINT CHKCreateTableExample_PostiveInteger CHECK
(PositiveInteger > 0),

 --CHECK constraint that could reference multiple columns
 NegativeInteger int NOT NULL,
 CONSTRAINT CHKCreateTableExample_NegativeInteger CHECK
(NegativeInteger > 0),

 --FOREIGN KEY constraint inline with column
 FKColumn1 int NULL CONSTRAINT FKColumn1_ref_Table
REFERENCES Tbl (TblId),

 --FOREIGN KEY constraint... Could reference more than one
columns
 FKColumn2 int NULL,
 CONSTRAINT FKColumn2_ref_Table FOREIGN KEY (FKColumn2)
REFERENCES Tbl (TblId)
);

In addition, every constraint has the ability to be dropped and added after the table has
been created. With this table, we can drop and recreate the PRIMARY KEY constraint
with:
Click here to view code image

ALTER TABLE Examples.CreateTableExample
 DROP PKCreateTableExample;
ALTER TABLE Examples.CreateTableExample
 ADD CONSTRAINT PKCreateTableExample PRIMARY KEY
(SingleColumnKey);

You can do this for every one of the constraint types. However, for the ALTER TABLE
commands for CHECK and FOREIGN KEY constraints, you have a few additional choices
to deal with data that doesn’t match the constraint. UNIQUE and PRIMARY KEY
constraints behave like indexes when being enabled, so you can’t violate the uniqueness
characteristics. Disabling uniqueness constraints will remove the index.

Consider the following table and data:
Click here to view code image

CREATE TABLE Examples.BadData
(
 PositiveValue int NOT NULL
);

156

INSERT INTO Examples.BadData(PositiveValue)
VALUES (-1),(-2),(-3),(-4);

You want to add the following constraint:
Click here to view code image

ALTER TABLE Examples.BadData
 ADD CONSTRAINT CHKBadData_PostiveValue CHECK(PositiveValue >
0);

But you are greeted with the following message:
Click here to view code image

Msg 547, Level 16, State 0, Line 414
The ALTER TABLE statement conflicted with the CHECK constraint
CHKBadData_PostiveValue". The conflict occurred in database
ExamBook762Ch2", table "Examples.BadData", column
'PositiveValue'.

From here, you have two choices. You can (ideally) fix the data, or you can create the
constraint and leave the bad data. This can be done by specifying WITH NOCHECK which
bypasses the data check:
Click here to view code image

ALTER TABLE Examples.BadData WITH NOCHECK
 ADD CONSTRAINT CHKBadData_PostiveValue CHECK(PositiveValue >
0);

The problem with this approach is twofold. First, you have bad data in the table. So if
you run the following statement that sets the value to an existing value, you get something
that seems silly as a statement, but is technically done in user code all of the time:
Click here to view code image

UPDATE Examples.BadData
SET PositiveValue = PositiveValue;

The data isn’t granted immunity, even though it already exists in the table:
Click here to view code image

Msg 547, Level 16, State 0, Line 420
The UPDATE statement conflicted with the CHECK constraint
"CHKBadData_PostiveValue".
The conflict occurred in database "ExamBook762Ch2", table
"Examples.BadData",
column 'PositiveValue'.

It seems that if you just delete the data that would violate the constraint, and everything

157

would be great:
Click here to view code image

DELETE FROM Examples.BadData
WHERE PositiveValue <= 0;

And from a certain perspective, it is. If you try to insert a non-positive value, it fails.
However, even though the constraint now does everything that you expect it to, because the
data wasn’t checked when you created the constraint, it is considered not trusted, which
means that SQL Server has never checked to see that the data is correct. You can see if a
CHECK constraint is trusted using the following query (note that CHECK constraints are
owned by a schema, just like a table, even though you rarely reference them as such):
Click here to view code image

SELECT is_not_trusted, is_disabled
FROM sys.check_constraints --for a FOREIGN KEY, use
sys.foreign_keys
WHERE OBJECT_SCHEMA_NAME(object_id) = 'Examples'
 and OBJECT_NAME(object_id) = 'CHKBadData_PostiveValue';

Which returns:

is_not_trusted is_disabled
-------------- -----------
1 0

This shows you how the constraint is not trusted, but it is enabled. Now that you know
the data in the table is correct, you can tell the constraint to check the data in the table using
the following command:
Click here to view code image

ALTER TABLE Examples.BadData WITH CHECK CHECK
 CONSTRAINT CHKBadData_PostiveValue;

If you check the constraint now to see if it is trusted, it is. If you want to disable (turn
off) a CHECK or FOREIGN KEY constraint, you can use NOCHECK in the ALTER
TABLE command:
Click here to view code image

ALTER TABLE Examples.BadData
 NOCHECK CONSTRAINT CHKBadData_PostiveValue;

After running this, you can see that the constraint has been disabled.
Having a trusted CHECK constraint can be useful for performance. The Query Optimizer

can use a trusted constraint in optimizing queries. If a value that is searched for would be
illegal for the CHECK constraint predicate, it does not need to even check the physical

158

data (assuming there is enough data in the table to make it worth optimizing more than just a
simple plan). For an example with a reasonable amount of data, we a table in the
WideWorldImporters database. Consider that the domain of the OrderId column of the
Sales.Invoices table should be 0 to 1,000,000. We might add a constraint such as the
following:
Click here to view code image

ALTER TABLE Sales.Invoices
 ADD CONSTRAINT CHKInvoices_OrderIdBetween0and1000000
 CHECK (OrderId BETWEEN 0 AND 1000000);

Now, consider the following two queries are performed:

SELECT *
FROM Sales.Invoices
WHERE OrderID = -100;

SELECT *
FROM Sales.Invoices
WHERE OrderID = 100;

Notice that, despite how similar the queries appear, their query plans are quite different;
as seen in Figure 2-1. The first query sees that the value is outside of the legal domain and
returns immediately, while the other needs to look at the data.

FIGURE 2-1 Comparison of plans, where the first value is eliminated by the CHECK
predicate, and the second is not

159

Need More Review? Altering a Table’s Constraints
FOREIGN KEY constraints also have trusted and disabled status with you can
find in sys.foreign_keys, and the same syntax that sets CHECK constraints
trusted works the same way. There are many settings and uses of the ALTER
TABLE command. For more information for review, check the MSDN article
here: https://msdn.microsoft.com/en-us/library/ms190273.aspx.

Identify results of Data Manipulation Language (DML) statements given
existing tables and constraints
An important task for almost any database programmer is to be able to predict the outcome
given some Transact-SQL Data Definition Language (DDL) code that sets up a scenario,
followed by some DML (Data Manipulation Language) that you need to determine the
outcome of. Every time we set up some new concept, the next thing to do is to show it
working (one of the great things about working with a declarative interactive language like
Transact-SQL).

In this example, we highlight the process of working through a given scenario.
Fortunately, when you are taking the exam, questions are all multiple choice, and there is
always one answer that is correct for a question of this variety. Imagine you have the
following table structure.
Click here to view code image

CREATE TABLE Examples.ScenarioTestType
(
 ScenarioTestType varchar(10) NOT NULL CONSTRAINT
PKScenarioTestType PRIMARY KEY
);
CREATE TABLE Examples.ScenarioTest
(
 ScenarioTestId int NOT NULL PRIMARY KEY,
 ScenarioTestType varchar(10) NULL CONSTRAINT
CHKScenarioTest_ScenarioTestType
 CHECK ScenarioTestType
IN ('Type1','Type2'))

);
ALTER TABLE Examples.ScenarioTest
 ADD CONSTRAINT FKScenarioTest_Ref_ExamplesScenarioTestType
 FOREIGN KEY (ScenarioTestType) REFERENCES
Examples.ScenarioTestType;

Now, after contemplating what is going on in the DDL, you need to work through
something like the following DML. As an exercise, consider how many rows are inserted
into Examples.ScenarioTest when these statements are performed in a single batch:

160

https://msdn.microsoft.com/en-us/library/ms190273.aspx

Click here to view code image

INSERT INTO Examples.ScenarioTest(ScenarioTestId,
ScenarioTestType)
VALUES (1,'Type1');
INSERT INTO Examples.ScenarioTestType(ScenarioTestType)
VALUES ('Type1');
INSERT INTO Examples.ScenarioTest(ScenarioTestId,
ScenarioTestType)
VALUES (1,'Type1');
INSERT INTO Examples.ScenarioTest(ScenarioTestId,
ScenarioTestType)
VALUES (1,'Type2');
INSERT INTO Examples.ScenarioTest(ScenarioTestId,
ScenarioTestType)
VALUES (2,'Type1');
INSERT INTO Examples.ScenarioTests(ScenarioTestId,
ScenarioTestType)
VALUES (3,'Type1');

Anything is possible, and while questions aren’t created to trick you, they are tricky if
you do not have a grasp on some of the finer details of the topics covered, and are set up to
make you think and pay attention to details. In this batch, first you need to know that a
CHECK or FOREIGN KEY constraint error does not stop the batch, so the answer is not
just simply zero.

Next, you need to consider each statement in order. The first statement violates the
FOREIGN KEY constraint, but not the CHECK constraint.
Click here to view code image

INSERT INTO Examples.ScenarioTest(ScenarioTestId,
ScenarioTestType)
VALUES (1,'Type1');

The next line adds a row to the domain table, so doesn’t change the number of rows in
the ScenarioTest table.
Click here to view code image

INSERT INTO Examples.ScenarioTestType(ScenarioTestType)
VALUES ('Type 1')

The next INSERT statement now succeeds, as it passes the test of the FOREIGN KEY
and the CHECK constraints, and the primary key value is not duplicate (since it is the first
row). So you have 1 row in the table.
Click here to view code image

INSERT INTO Examples.ScenarioTest(ScenarioTestId,

161

ScenarioTestType)
VALUES (1,'Type1');

The next INSERT statement violates the domain table’s FOREIGN KEY constraint.
Click here to view code image

INSERT INTO Examples.ScenarioTest(ScenarioTestId,
ScenarioTestType)
VALUES (1,'Type2');

The next insert is the same ScenarioTestType that worked prior, and the new
ScenarioTestId does not violate the PRIMARY KEY constraint. So there are 2 rows in the
table.
Click here to view code image

INSERT INTO Examples.ScenarioTest(ScenarioTestId,
ScenarioTestType)
VALUES (2,'Type1');

The last INSERT statement looks like it works, but the table name is ScenarioTests
(plural) in the INSERT statement, so it fails (or at least does not insert into the table that
the question is about if there is a table by that name in the database):
Click here to view code image

INSERT INTO Examples.ScenarioTests(ScenarioTestId,
ScenarioTestType)
VALUES (3,'Type1');

So, there are 2 rows that are returned from the DML. Admittedly, it is much easier when
you can use Management Studio to test your expectations than under the stress of the exam
timer.

Identify proper usage of PRIMARY KEY constraints
Choosing a primary key during the design phase of a project is generally pretty
straightforward. Many designers use the simplest candidate key chosen during design. For
example, consider you have a table that defines companies that you do business with:
Click here to view code image

CREATE SCHEMA Examples;
GO
CREATE TABLE Examples.Company
(
 CompanyName nvarchar(50) NOT NULL CONSTRAINT PKCompany
PRIMARY KEY,
 CompanyURL nvarchar(max) NOT NULL
);

162

Insert a few rows into the table to show that the table works. This example is very
straightforward, but as this section progresses and we start to alter the table to do
interesting things, it becomes more and more interesting to test a few rows.
Click here to view code image

INSERT INTO Examples.Company(CompanyName, CompanyURL)
VALUES ('Blue Yonder
Airlines','http://www.blueyonderairlines.com/'),
 ('Tailspin Toys','http://www.tailspintoys.com/');

Now, check out the data that has been created.

SELECT *
FROM Examples.Company;

You see the rows you expected from the INSERT statement.
Click here to view code image

CompanyName CompanyURL
----------------------- --------------------------------------
Blue Yonder Airlines http://www.blueyonderairlines.com/
Tailspin Toys http://www.tailspintoys.com/

Note that this, by default, makes the CompanyName the clustered index of the table. But
is a value that has an upper limit on data size of 100 bytes (50 characters * 2 bytes per
character for typical Unicode characters) really the best choice? This limits the number of
index keys on a page for all indexes you add as well. And if this key is used as a foreign
key, if this value needed changing, it would require changes to any child tables as well.
The choice of how to use the PRIMARY KEY constraint is as much about performance as it
is about the integrity of the data.

Another choice you might consider is a more derived key value, such as: CompanyCode
that is either a strictly formatted value (such as char(3) and a domain of numbers or letters,
like for a company named “Fourth Coffee” it might be “4CF”, much like the stock exchange
ticker code is for a company), or even a 10-20 character string value that is kept very short,
like “4Coffee”, or something similar). Of course while this solves the length issue, if the
name of the company changes to “Tailspin Toys” you still need to change the value or end
up with a confusing CompanyCode value.

In typical practice, most people tend to use something like an ever increasing integer
type for their primary key, using this as a stand-in for the natural key (commonly referred to
as a surrogate key.) This is generally great because what makes a great surrogate key
overlaps nicely with what makes a great clustering key (monotonically increasing, never
needs changing, small data size), works great for foreign keys references, and always ends
up with a single key column.

So where CompanyName was the key of the PRIMARY KEY constraint before, we now

163

make an integer-valued column named CompanyId. Using an integer surrogate key, it is
typical to use either a column with the IDENTITY property, or a DEFAULT constraint that
uses the result of a SEQUENCE object. For the Examples.Company table, first, use an
IDENTITY column which you specify in the following manner:
Click here to view code image

DROP TABLE IF EXISTS Examples.Company;
CREATE TABLE Examples.Company
(
 CompanyId int NOT NULL IDENTITY(1,1) CONSTRAINT
PKCompany PRIMARY KEY,
 CompanyName nvarchar(50) NOT NULL CONSTRAINT AKCompany
UNIQUE,
 CompanyURL nvarchar(max) NOT NULL
);

The IDENTITY setting has two parameters, the first being the seed value, or the starting
point when the values start generating. The second is the step value, which indicates the
difference between the previous value and the next value. Now, let’s create some sample
data:
Click here to view code image

INSERT INTO Examples.Company(CompanyName, CompanyURL)
VALUES ('Blue Yonder
Airlines','http://www.blueyonderairlines.com/'),
 ('Tailspin Toys','http://www.tailspintoys.com/');

Before we look at the data, let’s take a look at what happens if a row fails to be created.
So we violate the alternate key UNIQUE constraint.
Click here to view code image

INSERT INTO Examples.Company(CompanyName, CompanyURL)
VALUES ('Blue Yonder
Airlines','http://www.blueyonderairlines.com/');

This gives the following error:
Click here to view code image

Msg 2627, Level 14, State 1, Line 53
Violation of UNIQUE KEY constraint 'AKCompany'. Cannot insert
duplicate key in object
'Examples.Company'. The duplicate key value is (Blue Yonder
Airlines).

Now insert another row that is not in violation:
Click here to view code image

164

INSERT INTO Examples.Company(CompanyName, CompanyURL)
VALUES ('Northwind
Traders','http://www.northwindtraders.com/');

Looking at the rows in the table, you see that there is a value missing from the expected
sequence of values. The IDENTITY value is generated before the value fails, and for
concurrency purposes, the value is not returned to be reused.

If you need to get the value of the IDENTITY value after the insert, you can use
SCOPE_IDENTITY() to get the value in the current scope, or @@IDENTITY to get the
last value for the connection. SCOPE_IDENTITY() is generally preferred.

SELECT *
FROM Examples.Company;

Which returns:
Click here to view code image

CompanyId CompanyName CompanyURL
----------- --------------------- -----------------------------

1 Blue Yonder
Airlines http://www.blueyonderairlines.com/
2 Tailspin Toys http://www.tailspintoys.com/
4 Northwind
Traders http://www.northwindtraders.com/

You cannot specify values for an IDENTITY column without using SET IDENTITY
INSERT <tableName> ON first, then doing your INSERT and turning it off. So, you can go
back and add CompanyId = 3, but the general goal of using a surrogate key is to not care
about the value of the keys. You cannot modify the value in a column that has the
IDENTITY property.

Note that you can add a column with the IDENTITY property, but you cannot control the
data being inserted into the new column. If the value matters to you (typically because you
are replacing another surrogate value), the typical method is to duplicate the table by
renaming the table (using the sp_rename system stored procedure) and making a copy of the
table and loading existing data.

A second method of generating a numeric surrogate key is to use a SEQUENCE object.
Using the same base table structure, we use a DEFAULT constraint to get the next value for
the SEQUENCE object.
Click here to view code image

DROP TABLE IF EXISTS Examples.Company;
DROP SEQUENCE IF EXISTS Examples.Company_SEQUENCE;

CREATE SEQUENCE Examples.Company_SEQUENCE AS INT START WITH 1;

165

CREATE TABLE Examples.Company
(
 CompanyId int NOT NULL CONSTRAINT PKCompany PRIMARY KEY
 CONSTRAINT DFLTCompany_CompanyId
DEFAULT
 (NEXT VALUE FOR
Examples.Company_SEQUENCE),
 CompanyName nvarchar(50) NOT NULL CONSTRAINT AKCompany
UNIQUE,
 CompanyURL nvarchar(max) NOT NULL
);

The same INSERT statement from before works great:
Click here to view code image

INSERT INTO Examples.Company(CompanyName, CompanyURL)
VALUES ('Blue Yonder
Airlines','http://www.blueyonderairlines.com/'),
 ('Tailspin Toys','http://www.tailspintoys.com/');

But now you can insert your own value into the CompanyId column, ideally after fetching
the value from the SEQUENCE object.
Click here to view code image

DECLARE @CompanyId INT = NEXT VALUE FOR
Examples.Company_SEQUENCE;

INSERT INTO Examples.Company(CompanyId, CompanyName,
CompanyURL)
VALUES (@CompanyId, 'Northwind
Traders','http://www.northwindtraders.com/');

Using a SEQUENCE object to create surrogate key values has advantages over
IDENTITY columns, but it does require some discipline around values. While IDENTITY
values don’t guarantee uniqueness, once you create the IDENTITY column, you only end up
with duplicates by inserting the duplicate values or using DBCC CHECKIDENT to reseed
the value. This method using a SEQUENCE object requires that you fetch the value using
NEXT VALUE FOR, or use sp_sequence_get_range to get a range of values that you can
work with.

A final alternative method of creating a surrogate primary key value is using a Globally
Unique Identifier (GUID) using a uniqueidentier column. GUIDs are great surrogate key
values in terms of programmability, but do have a couple of issues when used as a
clustering key. First GUID values are fairly large, using 16 bytes of storage (and they are
36 characters when needing to type). They are not monotonically increasing, so they can
tend to increase page splits (there is a NEWSEQUENTIALID() function you can use to

166

generate sequential GUIDs, but they are not necessarily sequential with existing data after a
server reboot). The code looks very much like the SEQUENCE example with a DEFAULT
constraint:
Click here to view code image

DROP TABLE IF EXISTS Examples.Company;
CREATE TABLE Examples.Company
(
 CompanyId uniqueidentifier NOT NULL CONSTRAINT
PKCompany PRIMARY KEY
 CONSTRAINT DFLTCompany_CompanyId
DEFAULT (NEWID()),
 CompanyName nvarchar(50) NOT NULL CONSTRAINT AKCompany
UNIQUE,
 CompanyURL nvarchar(max) NOT NULL
);

Now you can use the DEFAULT constraint, create your own GUID, or let the client
generate the GUID value.

The primary reason for using a surrogate key for your primary key is to make
implementation simpler for tooling, and in some cases to make the database easier to
follow. For example, say you had a table of driver’s licenses:
Click here to view code image

CREATE TABLE Examples.DriversLicense
(
 Locality char(10) NOT NULL,
 LicenseNumber varchar(40) NOT NULL,
 CONSTRAINT PKDriversLicense PRIMARY KEY (Locality,
LicenseNumber)

);

If you use this as a FOREIGN KEY reference, like in a table of employee driver licenses
table:
Click here to view code image

CREATE TABLE Examples.EmployeeDriverLicense
(
 EmployeeNumber char(10) NOT NULL, --Ref to Employee
table
 Locality char(10) NOT NULL, --Ref to DriversLicense
table
 LicenseNumber varchar(40) NOT NULL, --Ref to
DriversLicense table
 CONSTRAINT PKEmployeeDriversLicense PRIMARY KEY

167

 (EmployeeNumber, Locality, LicenseNumber)
);

Now, say you need to use this key in the key of another table, which has three key
columns also. Not only is this messy, but it begins to get rather confusing. While some
manner of role-naming helps (changing Locality to DriversLicenceLocality, for example),
using a surrogate key changes the table to something easier to follow:
Click here to view code image

CREATE TABLE Examples.DriversLicense
(
 DriversLicenseId int CONSTRAINT PKDriversLicense
PRIMARY KEY,
 Locality char(10) NOT NULL,
 LicenseNumber varchar(40) NOT NULL,
 CONSTRAINT AKDriversLicense UNIQUE (Locality,
LicenseNumber)
);
CREATE TABLE Examples.EmployeeDriverLicense
(
 EmployeeDriverLicenseId int NOT NULL
 CONSTRAINT PKEmployeeDriverLicense PRIMARY
KEY,
 EmployeeId int NOT NULL, --Ref to Employee table
 DriversLicenseId int NOT NULL, --Ref to DriversLicense
table
 CONSTRAINT AKEmployeeDriverLicense UNIQUE (EmployeeId,
DriversLicenseId)
);

It’s easier to read, and easier to understand where the key columns come from at a
glance. It is important to realize that the DriversLicenseId actually represents the Locality
and LicenseNumber in the EmployeeDriverLicense table. The meaning of the table doesn’t
change, it is just implemented differently.

Need More Review? Primary Key Constraints
See the following article on MSDN for more details about creating PRIMARY
KEY constraints https://msdn.microsoft.com/en-us/library/ms189039.aspx.

Skill 2.2 Create stored procedures
Stored procedures are coded objects that are used to bundle together Transact-SQL calls
into one simple call from a client. There are, in SQL Server 2016, three versions of stored
procedures. All of them are compiled and stored on the server, but each have different
coding and execution limitations:

168

https://msdn.microsoft.com/en-us/library/ms189039.aspx

 Interpreted SQL These objects are compiled into a format that are then interpreted,
one line at a time, by the execution engine. This is the classic version of a stored
procedure that has been around since version 1.0.
 CLR (Common Language Runtime) These are procedures that are written in a
.NET language and have a Transact-SQL calling mechanism.
 Natively Compiled SQL These stored procedures are written in Transact-SQL, but
are compiled into a C language module. They can only access memory optimized
TABLE objects and other natively compiled objects. Natively compiled objects are
similar to interpreted SQL stored procedures in appearance, but have many
limitations.

While each of the types of STORED PROCEDURE (and all coded object type) are
different, they all look to Transact-SQL the same. You can run the code, or use the objects
in queries in the same manner with few limitations.

This chapter is focused on interpreted SQL stored procedures, but it is important to
understand what the CLR objects are. Using managed, .NET code you can create STORED
PROCEDURE objects that behave and are called exactly like ones created in interpreted
SQL. The .NET code used has access to everything that the interpreted code does as well.
These objects are not created using Management Studio in Transact-SQL, but are built in
Visual Studio like other .NET programs.

Natively compiled objects are reviewed in Skill 3.4, but many of the topics in this
section apply.

We also limit our focus to user-managed stored procedures in a user database. There are
system stored procedures in the master database, and in the resource database, which is a
special, hidden read-only database with additional system objects.

This section covers how to:
 Design stored procedure components and structure based on business
requirements
 Implement input and output parameters
 Implement table-valued parameters
 Implement return codes
 Streamline existing stored procedure logic
 Implement error handling and transaction control logic within stored
procedures

Design stored procedure components and structure based on business
requirements

169

As this section moves forward, we cover several of the most important details about using
stored procedures, parameters, and error handling. However, in this section, the focus is on
why to use stored procedures, and a few examples that include one or more of the concepts
that are covered in the rest of this section in more detail.

There are two common philosophies regarding the use of STORED PROCEDURE
objects:

 Using stored procedures as a complete encapsulation layer between the user and the
database. This is a prevalent way of thinking for many architects (and a smoother
path to using the new natively compiled stored procedures).
 Using stored procedures only to encapsulate complex calls. This utilization is typical
for people who use tools to generate their access layer, and only use stored
procedures when it is impossible to do from the user interface. Other uses are in
building a report interface when simple ad-hoc queries do not suffice.

The biggest difference between the philosophies is that in the complete encapsulation
version, you end up with a mix of very simple and very complex stored procedures. Hence
we look at some simple procedures as well as an example of a complex one.

The form of a stored procedure is generally quite straightforward. The basic structure is:
Click here to view code image

CREATE PROCEDURE SchemaName.ObjectName

[WITH options]
[FOR REPLICATION]
 @Parameter1 datatype,
 @Parameter2 datatype = 'Optional Default',
 @Parameter3 datatype = NULL
AS
 1 or more Transact-SQL statements;

STORED PROCEDURE objects are schema-bound, just like TABLE objects, and all of
the constraint types, Hence they follow the same rules for naming objects and name space,
with the addition that STORED PROCEDURE object names should not be prefixed with
SP, as this denotes a system-stored procedure that SQL Server checks for in the master
database first.

Parameters are for sending data to, and receiving data from, a stored procedure. Any
data type can be used for a parameter, and only very few have limitations (table-valued
parameters must be read-only, and cursors can only be output parameters.) Parameters
behave for the most part just like variables do in the body of the procedure, with values
provided either by the caller or the default, including being changeable by the code of the
stored procedure. If no default is provided, the parameter must be specified.

There are very few limitations on what Transact-SQL can be used in a stored procedure.

170

One example are statements that need to be the first statement in a batch, like CREATE
SCHEMA, CREATE PROCEDURE, CREATE VIEW, etc. (and the ALTER versions of the
same). You cannot use the USE command to change database context, and there are a few
SET commands pertaining to query execution. However, using dynamic SQL (putting your
query into a string variable and using EXECUTE or sp_executesql to run the code) allows
you to run any code at all.

The options you can specify are:
 WITH ENCRYPTION Encrypts the entry in sys.syscomments that contains the text
of the STORED PROCEDURE create statement.
 WITH RECOMPILE Specifies that a plan is not cached for the procedure, so it is
recompiled for every execution.
 WITH EXECUTE AS Let’s you change the security context that the procedure is
executed under.
 FOR REPLICATION Indicates that this is a procedure that is specifically created
for replication.

Note The CREATE PROCEDURE statement
For more details about the CREATE PROCEDURE statement, check here on
the MSDN site: https://msdn.microsoft.com/en-us/library/ms187926.aspx.
While we will not user the WITH EXECUTE AS clause in the stored
procedure examples, it will be used when triggers are created in Skill 2.4.

In the first example, consider the business requirement that the user needs to be able to
create, and remove rows from a simple table. If the table is defined as:
Click here to view code image

CREATE TABLE Examples.SimpleTable
(
 SimpleTableId int NOT NULL IDENTITY(1,1)
 CONSTRAINT PKSimpleTable PRIMARY KEY,
 Value1 varchar(20) NOT NULL,
 Value2 varchar(20) NOT NULL
);

Then we could create the three stored procedures shown in Listing 2-1:

LISTING 2-1 Three simple stored procedures to insert, update, and delete data

Click here to view code image

CREATE PROCEDURE Examples.SimpleTable_Insert

171

https://msdn.microsoft.com/en-us/library/ms187926.aspx

 @SimpleTableId int,
 @Value1 varchar(20),
 @Value2 varchar(20)
AS
 INSERT INTO Examples.SimpleTable(Value1, Value2)
 VALUES (@Value1, @Value2);
GO

CREATE PROCEDURE Examples.SimpleTable_Update
 @SimpleTableId int,
 @Value1 varchar(20),
 @Value2 varchar(20)
AS
 UPDATE Examples.SimpleTable
 SET Value1 = @Value1,
 Value2 = @Value2
 WHERE SimpleTableId = @SimpleTableId;
GO
CREATE PROCEDURE Examples.SimpleTable_Delete
 @SimpleTableId int,
 @Value varchar(20)
AS
 DELETE Examples.SimpleTable
 WHERE SimpleTableId = @SimpleTableId
GO

As you can see, the body of code for each STORED PROCEDURE is just one simple
Transact-SQL query. The power of STORED PROCEDURE objects we are applying here
is providing a strict user interface that you have complete control over.

There are three ways you can return data to a user from a stored procedure. Output
parameters and return codes are covered later, but the first and most common is by using
one or more result sets (Generally one result set is desirable. You can get the metadata of
the first result set using the system stored procedure: sp_describe_first_result_set).

For example, you could create a stored procedure to return all of the data in the
Examples.SimpleTable, ordered by Value1:
Click here to view code image

CREATE PROCEDURE Examples.SimpleTable_Select
AS
 SELECT SimpleTableId, Value1, Value2
 FROM Examples.SimpleTable
 ORDER BY Value1;

You can also return multiple result sets to the client, though again, it is generally
desirable to return a single result set:

172

Click here to view code image

CREATE PROCEDURE Examples.SimpleTable_SelectValue1StartWithQorZ
AS
 SELECT SimpleTableId, Value1, Value2
 FROM Examples.SimpleTable
 WHERE Value1 LIKE 'Q%'
 ORDER BY Value1;

 SELECT SimpleTableId, Value1, Value2
 FROM Examples.SimpleTable
 WHERE Value1 LIKE 'Z%'
 ORDER BY Value1 DESC;

Another ability is to return a variable number of result sets. For example, say the
requirement is to allow a user to search the table for rows where Value1 starts with ‘Q’ or
‘Z’ and the query is performed on a weekday. Whereas we could have done the INSERT or
UPDATE statements from Listing 2-1, without the stored procedure you could not fulfill the
business requirement in Transact-SQL code. For this (obviously contrived) requirement,
you could write the following stored procedure which returns either 1 or 0 result sets:
Click here to view code image

CREATE PROCEDURE Examples.SimpleTable_SelectValue1StartWithQorZ
AS
 IF DATENAME(weekday,getdate()) NOT IN ('Saturday','Sunday')
 SELECT SimpleTableId, Value1, Value2
 FROM Examples.SimpleTable
 WHERE Value1 LIKE '[QZ]%';

There are more elegant ways of accomplishing this requirement, particularly by
throwing an error to alert the user why nothing is returned, but we cover this later in this
section. In the following sections covering the specific skills of writing a STORED
PROCEDURE, the examples get more and more complex.

One interesting characteristic of STORED PROCEDURE code is that it can reference
objects that do not exist. For example, you could code:
Click here to view code image

CREATE PROCEDURE Examples.ProcedureName
AS
SELECT ColumnName From Bogus.TableName;

This compiles, regardless of the existence of Bogus.TableName. The compilation
process of creating the procedure stores the reference by name and by internal id values
when available. When it doesn’t have the internal id values, it tries to fetch them at
execution time. If the object does not exist at runtime, you get an error telling you “Invalid
object name ‘Bogus.TableName’.”

173

One last fundamental about developing STORED PROCEDURE objects to understand.
Configurations you set on the connection using the SET command in the body of the
STORED PROCEDURE only pertains to the statements in the STORED PROCEDURE.
The most common example is the SET NOCOUNT ON setting that suppresses the “Rows
Affected” messages, but others such as ANSI WARNINGS can definitely be useful. So in
the following procedure:
Click here to view code image

CREATE PROCEDURE Examples.SimpleTable_Select
AS
 SET NOCOUNT ON;
 SELECT SimpleTableId, Value1, Value2
 FROM Examples.SimpleTable
 ORDER BY Value1;

If you perform this procedure, no “Rows Affected” would be returned, but if you did an
INSERT statement in the same connection it would show the messages, unless you turned
them off in the connection. However, silencing the messages from the calling connection
silences them in STORED PROCEDURE calls. Because of this, you need to make sure and
set any SET options that you rely on in the body of the object.

In this initial section, the main aspect of stored procedure writing we wanted to review
was that stored procedures are just compiled batches of Transact-SQL code that you can
use to do almost anything, allow you as the database developer to build a set of stored
procedures to do almost any task.

Implement input and output parameters
Parameters allow you to pass data in and out of a STORED PROCEDURE object. To the
code, they are very similar to variables, and can have their values changed as needed.
Whether or not you see the changes to the value of the parameters after running the
procedure is based on how you declare, and then call, the STORED PROCEDURE.

The following examples use this table as reference.
Click here to view code image

CREATE TABLE Examples.Parameter
(
 ParameterId int NOT NULL IDENTITY(1,1) CONSTRAINT
PKParameter PRIMARY KEY,
 Value1 varchar(20) NOT NULL,
 Value2 varchar(20) NOT NULL,
)

In the first iteration, it is simple input parameters for the two value columns:
Click here to view code image

174

CREATE PROCEDURE Examples.Parameter_Insert
 @Value1 varchar(20) = 'No entry given',
 @Value2 varchar(20) = 'No entry given'
AS
 SET NOCOUNT ON;
 INSERT INTO Examples.Parameter(Value1,Value2)
 VALUES (@Value1, @Value2);

Now, in the following code block, we show the various ways you can run this code in
Transact-SQL:
Click here to view code image

--using all defaults
EXECUTE Examples.Parameter_Insert;

--by position, @Value1 parameter only
EXECUTE Examples.Parameter_Insert 'Some Entry';

--both columns by position
EXECUTE Examples.Parameter_Insert 'More Entry','More Entry';

-- using the name of the parameter (could also include
@Value2);
EXECUTE Examples.Parameter_Insert @Value1 = 'Other Entry';

--starting positionally, but finishing by name
EXECUTE Examples.Parameter_Insert 'Mixed Entry', @Value2 =
'Mixed Entry';

Once you start filling in parameters by name, you must continue to or you will receive an
error. For example, if you attempt:
Click here to view code image

EXECUTE Examples.Parameter_Insert @Value1 = 'Remixed Entry',
'Remixed Entry';

It causes the following error:
Click here to view code image

Msg 119, Level 15, State 1, Line 736
Must pass parameter number 2 and subsequent parameters as
'@name = value'. After the
form '@name = value' has been used, all subsequent parameters
must be passed in the form
'@name = value'.

If you want to get the value of a parameter after it has been modified in the STORED

175

PROCEDURE, you define the parameter as OUTPUT. In the alteration of the
Examples.Parameter_Insert stored procedure, use the UPPER and LOWER functions to
modify the two @Value parameters, and then retrieve the value of SCOPE_IDENTITY()
system function to get the key value of the ParameterId column that has been created:
Click here to view code image

ALTER PROCEDURE Examples.Parameter_Insert
 @Value1 varchar(20) = 'No entry given',
 @Value2 varchar(20) = 'No entry given' OUTPUT,
 @NewParameterId int = NULL OUTPUT
AS
 SET NOCOUNT ON;
 SET @Value1 = UPPER(@Value1);
 SET @Value2 = LOWER(@Value2);

 INSERT INTO Examples.Parameter(Value1,Value2)
 VALUES (@Value1, @Value2);

 SET @NewParameterId = SCOPE_IDENTITY();

Next we call the procedure using the variables as the parameter value. Set the
@NewParameterId value to a value that could not be returned. Note that the parameter is
configured as OUTPUT on the EXECUTE statement as well (and if you try to declare a
non-OUTPUT parameter as OUTPUT, it gives you an error telling you that the parameter is
not an OUTPUT parameter).
Click here to view code image

DECLARE @Value1 varchar(20) = 'Test',
 @Value2 varchar(20) = 'Test',
 @NewParameterId int = -200;

EXECUTE Examples.Parameter_Insert @Value1 = @Value1,
 @Value2 = @Value2 OUTPUT,
 @NewParameterId =
@NewParameterId OUTPUT;

SELECT @Value1 as Value1, @Value2 as Value2, @NewParameterId as
NewParameterId;

SELECT *
FROM Examples.Parameter
WHERE ParameterId = @newParameterId;

This returns the following, showing that the @Value2 parameters values did change, as
the row inserted has an all uppercase, and all lowercase versions of the parameter values.
However, the variable values did not change, unlike the @Value2 and @NewParameterId

176

values.
Click here to view code image

Value1 Value2 NewParameterId
-------------------- -------------------- --------------
Test test 7

ParameterId Value1 Value2
----------- -------------------- --------------------
7 TEST test

Using output parameters is the only way to return data to a variable that is not an integer,
and is the only way to return more than one value to a variable, no matter the type.

Implement table-valued parameters
Table-valued parameters allow you need to pass more than a simple scalar value to a
procedure. The reasons to do this generally fall into two categories:

 The user wants to pick a set of rows to filter a set that could not easily be done using
scalar valued parameters.
 To create a procedure interface that allows you to create more than a single row in
the table in a natural way.

For our example, we use a small table that has a few columns, and start with a few rows
as well.
Click here to view code image

CREATE TABLE Examples.Machine
(
 MachineId int NOT NULL CONSTRAINT PKMachine PRIMARY KEY,
 MachineNumber char(3) NOT NULL CONSTRAINT AKMachine UNIQUE,
 Description varchar(50) NOT NULL
);
INSERT INTO Examples.Machine(MachineId, MachineNumber,
Description)
VALUES (1,'001','Thing1'),(2,'002','Thing2'),
(3,'003','Thing3');

Now, consider the case where the user wants to target a few rows. One method that was
used for many years was to pass in a comma-delimited list. There were many ways of
splitting the string, but SQL Server 2016 added a new system function STRING_SPLIT().
So we could pass a variable value such as ‘1,3’ to get three specific rows in the table.
Click here to view code image

CREATE PROCEDURE Examples.Machine_MultiSelect
 @MachineList varchar(200)

177

AS
 SET NOCOUNT ON;
 SELECT Machine.MachineId, Machine.MachineNumber
 FROM Examples.Machine
 JOIN STRING_SPLIT(@MachineList,',') AS StringList
 ON StringList.value = Machine.MachineId;

While this works, and it still a very useful way of passing a pseudo-table valued
parameter in cases where the caller is not able to use a table-valued parameter, the more
efficient method of passing in a table of values is to pass a table object.

Note The SQL Server 2016 database engine
It is great to be up to date about the latest improvements in SQL Server 2016
database engine, particularly Transact-SQL, so if you see STRING_SPLIT(),
you won’t be confused as to whether it is a trick question or not. The entire
list of improvements in the database engine is located here:
https://msdn.microsoft.com/en-us/library/bb510411.aspx.

To use a table-valued parameter that is actually a true table object, we start by creating a
USER DEFINED TYPE with the table data type. We use a generic structure, because this is
a fairly generic usage to fetch a specific set of rows. Note that types are schema-owned,
but they are not objects, so their names need not be different from the pool of objects.:
Click here to view code image

CREATE TYPE Examples.SurrogateKeyList AS table
(
 SurrogateKeyId int PRIMARY KEY --note you cannot name
constraints for table types

);

Now you can use this table type as a parameter to the STORED PROCEDURE. You
must define it as READONLY, which means that the rows in the table are static. Hence,
unlike other parameter values, if you try to INSERT, UPDATE, or DELETE rows you
receive an error. In the following procedure, join the TABLE variable to the permanent
TABLE object for the output.
Click here to view code image

ALTER PROCEDURE Examples.Machine_MultiSelect
 @MachineList Examples.SurrogateKeyList READONLY
AS
 SET NOCOUNT ON;
 SELECT Machine.MachineId, Machine.MachineNumber
 FROM Examples.Machine

178

https://msdn.microsoft.com/en-us/library/bb510411.aspx

 JOIN @MachineList AS MachineList
 ON MachineList.SurrogateKeyId =
Machine.MachineId;

Calling this procedure is a bit more complex than using a string, but the code is far more
straightforward. For parameter sets that are a little larger, you can even include PRIMARY
KEY and UNIQUE constraints when defining the table USER DEFINED TYPE, so using
the table in a JOIN will have a better chance of using an index.
Click here to view code image

DECLARE @MachineList Examples.SurrogateKeyList;
INSERT INTO @MachineList (SurrogateKeyId)
VALUES (1),(3);

EXECUTE Examples.Machine_MultiSelect @MachineList =
@MachineList;

Beyond the ability to return a specific set of rows, passing a table of values can be used
to create multiple rows in a single call. It is technically possible to do without a table, as
you could either use multiple sets of parameters (@MachineId1, @MachineNumber1,
@MachineId2, etc), or a complex parameter such as an XML type, but neither is as
straightforward as using a table-valued parameter. As with our previous example, we start
by creating a table USER DEFINED TYPE, but this time it is defined in a specific manner.
We named this USER DEFINED TYPE the same as the TABLE object to reinforce that they
are different name spaces, which could be something confusing in an exam question.
Click here to view code image

CREATE TYPE Examples.Machine AS TABLE
(
 MachineId int NOT NULL PRIMARY KEY,
 MachineNumber char(3) NOT NULL UNIQUE,
 Description varchar(50) NOT NULL
);

Now, create the STORED PROCEDURE to insert rows by using this table type for the
parameter:
Click here to view code image

CREATE PROCEDURE Examples.Machine_MultiInsert
 @MachineList Examples.Machine READONLY
AS
 SET NOCOUNT ON;
 INSERT INTO Examples.Machine(MachineId, MachineNumber,
Description)
 SELECT MachineId, MachineNumber, Description
 FROM @MachineList;

179

Now you can call this STORED PROCEDURE after inserting rows into a table variable
that works in a very natural manner:
Click here to view code image

DECLARE @NewMachineRows Examples.Machine;
INSERT INTO @NewMachineRows (MachineId, MachineNumber,
Description)
VALUES (4,'004','NewThing4'), (5, '005','NewThing5');

EXECUTE Examples.Machine_MultiInsert @MachineList =
@NewMachineRows;

Implement return codes
When you run a STORED PROCEDURE object, there is a value returned to the caller if it
requests it, and is called a return code (or sometimes, a return value). By default, the return
value is 0, but you can change the value using the RETURN statement, which also ends the
running of the procedure.

As an example, consider this very simple STORED PROCEDURE object that makes no
mention of any return value:
Click here to view code image

CREATE PROCEDURE SimpleReturnValue
AS
 DECLARE @NoOp int;

Running this procedure, you can access the return code from the EXECUTE statement.
Click here to view code image

DECLARE @ReturnCode int;
EXECUTE @ReturnCode = SimpleReturnValue;
SELECT @ReturnCode as ReturnCode;

You see the output as:

0

You can use the RETURN statement to stop execution and send the return code to the
caller to know what has occurred. Return codes can be used in addition to outputting an
error (as seen in our example), or in conjunction with error handling, as you use in the final
section of this section.

As an example, consider the following STORED PROCEDURE object. In the design of
the procedure, the procedure creator, when needed, defines a set of return codes. A typical
set of return codes that is common is to use positive vales to mean a positive outcome with
some additional information. A negative value is an error, and 0 simply means the

180

procedure ran successfully with no additional information, since that is what you get
performing a procedure that has not set the value itself.
Click here to view code image

CREATE PROCEDURE DoOperation
(
 @Value int
)
--Procedure returns via return code:
-- 1 - successful execution, with 0 entered
-- 0 - successful execution
-- -1 - invalid, NULL input
AS
 IF @Value = 0
 RETURN 1;
 ELSE IF @Value IS NULL
 RETURN -1;
 ElSE RETURN 0;

Performing this procedure always looks like a success, as there is not any code to throw
an error, but the caller can check the return code to determine what has occurred. As an
example, if the value is NULL:
Click here to view code image

DECLARE @ReturnCode int;
EXECUTE @ReturnCode = DoOperation @Value = NULL;
SELECT @ReturnCode,
 CASE @ReturnCode WHEN 1 THEN 'Success, 0 Entered'
 WHEN -1 THEN 'Invalid Input'
 WHEN 0 THEN 'Success'
 END as ReturnMeaning;

You receive the following output:
Click here to view code image

 ReturnMeaning
----------- ------------------
-1 Invalid Input

Using the return code as the primary way to represent an error to the caller is not the
typical pattern for implementation, but it is available when needed.

Streamline existing stored procedure logic
One of the primary values of using STORED PROCEDURE objects as your interface to
your data is that you can fix poorly-written code without changing compiled code of the
interface. The biggest win is that often it is non-trivial code that generates the Transact-

181

SQL in the procedural programming language.
For example, say you have the following table and seed data:

Click here to view code image

CREATE TABLE Examples.Player
(
 PlayerId int NOT NULL CONSTRAINT PKPlayer PRIMARY KEY,
 TeamId int NOT NULL, --not implemented reference to
Team Table
 PlayerNumber char(2) NOT NULL,
 CONSTRAINT AKPlayer UNIQUE (TeamId, PlayerNumber)
)
INSERT INTO Examples.Player(PlayerId, TeamId, PlayerNumber)
VALUES (1,1,'18'),(2,1,'45'),(3,1,'40');

A programmer has written the following procedure shown in Listing 2-2 to fetch a player
with a given number on any team, but did not understand how to write a set-based query.

LISTING 2-2 Overly complex stored procedure to fetch rows based on a simple filter

Click here to view code image

CREATE PROCEDURE Examples.Player_GetByPlayerNumber
(
 @PlayerNumber char(2)
) AS
 SET NOCOUNT ON;
 DECLARE @PlayerList TABLE (PlayerId int NOT NULL);

 DECLARE @Cursor cursor,
 @Loop_PlayerId int,
 @Loop_PlayerNumber char(2)

 SET @cursor = CURSOR FAST_FORWARD FOR (SELECT PlayerId,
PlayerNumber
 FROM Examples.Player);

 OPEN @cursor;
 WHILE (1=1)
 BEGIN
 FETCH NEXT FROM @Cursor INTO @Loop_PlayerId,
@Loop_PlayerNumber
 IF @@FETCH_STATUS <> 0
 BREAK;

 IF @PlayerNumber = @Loop_PlayerNumber

182

 INSERT INTO @PlayerList(PlayerId)
 VALUES (@Loop_PlayerId);

 END;

 SELECT Player.PlayerId, Player.TeamId
 FROM Examples.Player
 JOIN @PlayerList AS PlayerList
 on PlayerList.PlayerId = Player.PlayerId;

The EXECUTE statement for this STORED PROCEDURE is exactly what the
requirements ask for:
Click here to view code image

EXECUTE Examples.Player_Get @PlayerNumber = '18';

As is the output:

PlayerId TeamId
----------- -----------
1 1

The only problem is that code is way more complex than it needs to be. Understanding
the basics of writing code using proper Transact-SQL constructs, the procedure can be
written far more simply:
Click here to view code image

ALTER PROCEDURE Examples.Player_GetByPlayerNumber
(
 @PlayerNumber char(2)
) AS
 SET NOCOUNT ON

 SELECT Player.PlayerId, Player.TeamId
 FROM Examples.Player
 WHERE PlayerNumber = @PlayerNumber;

The EXECUTE statement you use to run this STORED PROCEDURE is the same:
Click here to view code image

EXECUTE Examples.Player_GetByPlayerNumber @PlayerNumber =
'18';

As is the output:

PlayerId TeamId
----------- -----------
1 1

183

Both procedures return the same amount of data, and for a development server with a
few, to a few hundred, rows perform in imperceptibly similar times. However, once you
get a realistic amount of data in the table, the performance for the original is very
unsatisfactory.

While this is obviously an example of very egregious performance coding issues, things
aren’t always so obvious. There are many different ways one could create STORED
PROCEDURE objects filled with Transact-SQL that is not efficient that are obvious (lots
of branching, returning a variable number of result sets based on parameter values), but
there are a few that are not quite so obvious with which you should be concerned:

 Parameter type mismatch with data in referenced tables
 Invalid use of functions on search arguments in queries

In the next two sections we take a look at these two considerations in a bit more detail.

Invalid use of functions on search arguments
It is often useful to use system functions to get the current time, to format some data, etc.
However, sometimes doing something in a way that seems natural can be bad for
performance. For example, consider a stored procedure designed to fetch a list of the
games on the current day (showing only the parts of the script that are pertinent):
Click here to view code image

CREATE TABLE Game
...
GameStartTime datetime2(0)
...
CREATE PROCEDURE Game_GetForDate
(
 @SearchDate date
...
 FROM Game
 WHERE CAST(GameTime AS DATE) = @SearchDate;

This is definitely the easiest way to code this, as the CAST expression strips off the time
in the GameTime column values and let you compare to the @SearchDate. However, every
row that is output from the FROM clause (in this case all rows in the Game table) has to
have the GameTime column value converted and checked for each row. If there is an index
on the GameTime column, it is not usable.

To fix this, you can change the code to something that looks more complex, such as:
Click here to view code image

FROM GAME
WHERE GameTime >= @SearchDate
 AND GameTime < DATEADD(Day, 1, @SearchDate);

184

But now, the two scalar expressions of @SearchDate and DATEADD(Day, 1,
@SearchDate) can be calculated once and used to probe an index to see if it matches for
the GameTime column.

Parameter type mismatch
Matching the parameter (or really any variable) to how you are using it is very important. If
the sizes don’t match, you can lose data. If the types don’t match, queries can have to
implicitly convert the data type in a query, eliminating the use of an index. The problem is
very similar to the problem in the previous section on using functions on search arguments,
but at its worst it happens silently in code that looks otherwise correct.

For example, say you have a STORED PROCEDURE object that includes the following
(again showing only the parts of the script that are pertinent):
Click here to view code image

CREATE TABLE Order
...
 OrderNumber nvarchar(10)

...

CREATE PROCEDURE Order_Search
@OrderNumber int --because a "number" is an integer, one
surmises
...
WHERE OrderNumber = @OrderNumber;

Several problems can frequently occur. First, if any order numbers have data that cannot
be implicitly converted to an integer (such as ‘Order#20’), when that row is reached as
rows are being returned, it gives you an error and stop sending back data. It works this way
because the integer data type is higher in precedence than nvarchar. In this case, had the
OrderNumber column been an integer, the query processor would convert the value in the
parameter variable before performing the query. In cases like the Order_Search STORED
PROCEDURE object, no index would be used in the search, even if a suitable one existed.

Second, if the data types are incompatible, you can get an immediate error. For example,
a datatime2 parameter and an integer column provides an operand-type clash.

Need More Review? Datatype conversion and precedence
Datatype conversion and precedence are important topics to understand. The
following two articles on MSDN cover conversion and precedence,
respectively: https://msdn.microsoft.com/en-us/library/ms191530.aspx and
https://msdn.microsoft.com/en-us/library/ms190309.aspx.

185

https://msdn.microsoft.com/en-us/library/ms191530.aspx
https://msdn.microsoft.com/en-us/library/ms190309.aspx

Implement error handling and transaction control logic within stored
procedures
Now we are going to pull the concept of creating a STORED PROCEDURE object
together and look at what needs to go into a production worthy stored procedure. So far, the
topics have catered to single statement procedures showing one simple concept, but now
we are going to get into dealing with multiple statements that modify data. When we start to
bundle together multiple modification statements, it becomes important that we are able to
make sure that the first statement performed properly before continuing to the next
statement.

What makes this difficult is that different types of errors behave differently when
performed in different ways, from typical constraints to errors that are thrown by triggers.
When an error is caused by a constraint, the batch continues, but if the transaction is rolled
back in a TRIGGER object, the batch stops. By building in the proper error handling layer,
all errors are treated the same way, which allows you to make sure that one statement has
completed successfully.

There are several topics in the process of error handling and transaction control logic
that we review in this section:

 Throwing an error It is often useful to be able to throw our own error messages to
cause the stored procedure code (or really any code) to stop, telling the caller why.
 Handling an error In order to manage the code flow after an error has occurred, you
need to be able to capture the error and act accordingly.
 Transaction control logic in your error handling Transactions are used to control
grouping statements together to ensure that multiple statements complete or fail as an
atomic unit.

Exam Tip Pay special attention to Error Handling
Like in real life, error handling can be mixed in with other topics. Having
knowledge of how different statements may react to error handling, and how
to undo work that has been done can be a part of more than just questions
about error handling itself.

Throwing an error
In your stored procedure, it is often necessary to tell the caller that there is an issue. Earlier
in the chapter, we had a procedure that used return codes to indicate to the caller that there
was an issue with the parameter value. There are two methods of throwing an error in
Transact-SQL. First is using the THROW statement. THROW lets you specify an error
number (50000 or greater, as 49999 and under are system reserved values); a user defined
message in plain, Unicode text; and a state value which can be used to send additional

186

information to the client.
For example, you can perform:

Click here to view code image

THROW 50000, 'This is an error message',1;

And you get the following output:
Click here to view code image

Msg 50000, Level 16, State 1, Line 1115
This is an error message

There is another command, RAISERROR, which seemingly does the same thing, with a
few subtle differences. First, when specifying an error message, you can only return error
number 50000 using RAISERROR. Second, you can change the error level using
RAISERROR. There are a few formatting methods you can use with RAISERROR, along
with a syntax form that we won’t review using custom system error messages. For more
information on various forms of using RAISERROR, MSDN has an article that covers this
in detail here: https://msdn.microsoft.com/en-us/library/ms178592.aspx.) Using typical
RAISERROR usage, you can run the following statement:
Click here to view code image

RAISERROR ('This is an error message',16,1);

You get the same output as with the THROW statement. The big difference between
THROW and RAISERROR is how they affect the batch you are running in. THROW stops
the batch, and RAISERROR does not. For example, run the following:
Click here to view code image

THROW 50000, 'This is an error message',1;
SELECT 'Batch continued'

The output is:
Click here to view code image

Msg 50000, Level 16, State 1, Line 1117
This is an error message

But then run the following:
Click here to view code image

RAISERROR ('This is an error message',16,1);
SELECT 'Batch continued'

And the output is:
Click here to view code image

187

https://msdn.microsoft.com/en-us/library/ms178592.aspx

Msg 50000, Level 16, State 1, Line 1119
This is an error message

Batch continued

So, going to the simple STORED PROCEDURE we had created earlier, you might
change it to include a THROW call instead of using a return code for a negative outcome,
but it is important to understand what this means to the control of flow. As an example that
could easily be an exam question, consider the following stored procedure:
Click here to view code image

CREATE PROCEDURE DoOperation
(
 @Value int
)
AS
 SET NOCOUNT ON;
 IF @Value = 0
 RETURN 1;
 ELSE IF @Value IS NULL
 BEGIN
 THROW 50000, 'The @value parameter should not be
NULL',1;
 SELECT 'Continued to here';
 RETURN -1;
 END
 ELSE RETURN 0;

If the following batch is run, what is the output?
Click here to view code image

DECLARE @ReturnCode int
EXECUTE @ReturnCode = DoOperation @Value = NULL;
SELECT @ReturnCode AS ReturnCode;

The question is having choices asking if you see the @ReturnCode output, the output
‘Contintued to here’, or just the error message. It turns out that the output is just the error
message:
Click here to view code image

Msg 50000, Level 16, State 1, Procedure DoOperation, Line 10
The @value parameter should not be NULL

If you swap out the THROW statement for the following RAISERROR statement:
Click here to view code image

188

RAISERROR ('The @value parameter should not be NULL',16,1);

The output changes to show all three:
Click here to view code image

Msg 50000, Level 16, State 1, Procedure DoOperation, Line 11
The @value parameter should not be NULL

Continued to here

-1

Need More Review? THROW and RAISERROR
For a more complete coverage of the differences between THROW and
RAISERROR, the following article on MSDN is very helpful
https://msdn.microsoft.com/en-us/library/ee677615.aspx.

Handling an error
Now that we have established how to throw our own error messages, we now need to look
at how to handle an error occurring. What makes this difficult is that most errors do not
stop processing (an unhandled error from a TRIGGER object is an example of one that
ends a batch, as does executing the statement: SET XACT_ABORT ON before your
queries that may cause an error, which we discuss in the next section), so when you have a
group of modification statements running in a batch without any error handling, they keep
running. For example, consider the following table set up to allow you to easily cause an
error:
Click here to view code image

CREATE TABLE Examples.ErrorTesting
(
 ErrorTestingId int NOT NULL CONSTRAINT PKErrorTesting
PRIMARY KEY,
 PositiveInteger int NOT NULL
 CONSTRAINT CHKErrorTesting_PositiveInteger CHECK
PositiveInteger > 0)
);

Now, perform the following five statements, all as a batch:
Click here to view code image

INSERT INTO Examples.ErrorTesting(ErrorTestingId,
PositiveInteger)

189

https://msdn.microsoft.com/en-us/library/ee677615.aspx

VALUES (1,1); --Succeed
INSERT INTO Examples.ErrorTesting(ErrorTestingId,
PositiveInteger)
VALUES (1,1); --Fail PRIMARY KEY violation
INSERT INTO Examples.ErrorTesting(ErrorTestingId,
PositiveInteger)
VALUES (2,-1); --Fail CHECK constraint violation
INSERT INTO Examples.ErrorTesting(ErrorTestingId,
PositiveInteger)
VALUES (2,2); --Succeed
SELECT *
FROM Examples.ErrorTesting;

This returns several error messages, and the two rows that were successfully inserted:
Click here to view code image

Msg 2627, Level 14, State 1, Line 1113
Violation of PRIMARY KEY constraint 'PKErrorTesting'. Cannot
insert duplicate key
in object 'Examples.ErrorTesting'. The duplicate key value is
(1).

Msg 547, Level 16, State 0, Line 1116
The INSERT statement conflicted with the CHECK constraint
"CHKErrorTesting_PositiveInteger". The conflict occurred in
database
"ExamBook762Ch2", table "Examples.ErrorTesting", column
'PositiveInteger'.

ErrorTestingId PositiveInteger
-------------- ---------------
1 1
2 2

There are two prevalent methods of dealing with these errors to stop the execution. First,
use the @@ERROR system function to check the error level after each statement, exiting if
so. Second, use the TRY...CATCH construct. TRY...CATCH is by far the easiest and most
powerful and modern method, but there are places where checking the error level is still a
valid and useful thing to do.

Note Undoing changes
In the following section after we cover the ways to divert the code on an
error, we review how the batch that we performed with errors could have all
its changes undone.

190

Using @@ERROR to deal with errors
The @@ERROR system function (also referred to as a global variable, because it is
prefixed with @@, though it is technically a system function), tells you the error level of
the previous statement.
So, you have to either use it in a Boolean expression, or capture the value immediately
after a statement that you are concerned about. You can check how the value changes when
you successfully view the value the function returns.

Using the TABLE object we started with in the previous section, consider the following
stored procedure. Use @@ERROR after every INSERT statement to see if the statement
has completed successfully, shown in Listing 2-3.

LISTING 2-3 Procedure to show error checking with @@ERROR

Click here to view code image

CREATE PROCEDURE Examples.ErrorTesting_InsertTwo
AS
 SET NOCOUNT ON;
 INSERT INTO Examples.ErrorTesting(ErrorTestingId,
PositiveInteger)
 VALUES (3,3); --Succeeds

 IF @@ERROR <> 0
 BEGIN
 THROW 50000, 'First statement failed', 1;
 RETURN -1;
 END;

 INSERT INTO Examples.ErrorTesting(ErrorTestingId,
PositiveInteger)
 VALUES (4,-1); --Fail Constraint

 IF @@ERROR <> 0
 BEGIN
 THROW 50000, 'Second statement failed', 1;
 RETURN -1;
 END;

 INSERT INTO Examples.ErrorTesting(ErrorTestingId,
PositiveInteger)
 VALUES (5,1); --Will succeed if statement executes
 IF @@ERROR <> 0
 BEGIN
 THROW 50000, 'Third statement failed', 1;
 RETURN -1;

191

 END;

Then run this procedure:
Click here to view code image

EXECUTE Examples.ErrorTesting_InsertTwo;

This gives you the following output (if following along, you can truncate the data if you
want to run it multiple times):
Click here to view code image

Msg 547, Level 16, State 0, Procedure ErrorTesting_InsertTwo,
Line 12
The INSERT statement conflicted with the CHECK constraint
"CHKErrorTesting_PositiveInteger". The conflict occurred in
database
"ExamBook762Ch2", table "Examples.ErrorTesting", column
'PositiveInteger'.

Msg 50000, Level 16, State 1, Procedure ErrorTesting_InsertTwo,
Line 17
Second statement failed

You get both error messages, but you are able to stop the rest of the stored procedure
execution, since the error message that was thrown was for the second insert statement.

Using TRY...CATCH
Using the TRY...CATCH construct is both far more powerful, and far easier to code with
than using @@ERROR. The syntax is:
Click here to view code image

BEGIN TRY
 --Code you want to execute
END TRY
BEGIN CATCH
 --What to do if the code fails
END CATCH;

In the TRY section, you write your code as you normally would without error handling.
If an error occurs, nothing is returned to the client immediately. Control is transferred to the
CATCH section, and there you are able to decide what to do. You have access to
information about the error through a set of system functions which are not cleared until the
next error occurs, unlike @@ERROR. They are not scoped to the procedure or batch being
run. If one procedure calls another, the called procedure can still see the error status
information until an error occurs.

192

 ERROR_NUMBER Gives you the number of the error that caused you to be
transferred to the CATCH section.
 ERROR_MESSAGE This is the text of the error message that was thrown.
 ERROR_PROCEDURE If the error occurred in a coded object, this contains the
name of that object, otherwise it is NULL.
 ERROR_LINE This is the line of the batch or module where the error occurred.
 ERROR_SEVERITY The severity of the error. 16 is the normal error severity,
higher are generally system errors.
 ERROR_STATE The extended error state value that an error message can include.

Note More on error states
For more information about error severities, the following article on MSDN
has an explanation of all of them: https://msdn.microsoft.com/en-
us/library/ms164086.aspx. For more information about error states, consult
https://msdn.microsoft.com/en-us/library/ms180031.aspx.

In Listing 2-4 we have written a much simpler bit of code. None of it should be too
surprising, but note the THROW statement to end the CATCH section. Using THROW in
this manner works in a CATCH block to send the error message to the caller that caused the
CATCH to be called (typically referred to as rethrowing an error). This allows you to
write code to deal with the error, undo changes, log the error message, etc., and then
present the error message to the client as it would have looked without being caught.

LISTING 2-4 Procedure to show error checking with TRY...CATCH

Click here to view code image

ALTER PROCEDURE Examples.ErrorTesting_InsertTwo
AS
 SET NOCOUNT ON;
 DECLARE @Location nvarchar(30);

 BEGIN TRY
 SET @Location = 'First statement';
 INSERT INTO Examples.ErrorTesting(ErrorTestingId,
PositiveInteger)
 VALUES (6,3); --Succeeds

 SET @Location = 'Second statement';
 INSERT INTO Examples.ErrorTesting(ErrorTestingId,
PositiveInteger)

193

https://msdn.microsoft.com/en-us/library/ms164086.aspx
https://msdn.microsoft.com/en-us/library/ms180031.aspx

 VALUES (7,-1); --Fail Constraint

 SET @Location = 'First statement';
 INSERT INTO Examples.ErrorTesting(ErrorTestingId,
PositiveInteger)
 VALUES (8,1); --Will succeed if statement executes
 END TRY
 BEGIN CATCH
 SELECT ERROR_PROCEDURE() AS ErrorProcedure, @Location
AS ErrorLocation
 SELECT ERROR_MESSAGE() as ErrorMessage;
 SELECT ERROR_NUMBER() AS ErrorNumber, ERROR_SEVERITY()
as ErrorSeverity,
 ERROR_LINE() As ErrorLine;

 THROW;

 END CATCH;

The major part of the configuration is just coding the TRY...CATCH blocks. The only
manual bits of code you may optionally wish to use in the TRY section is to save off the
location into a variable. You can use the line number, but this is quite confusing as errors
can be bubbled up from other stored procedures, triggers, etc.

Run this procedure:
Click here to view code image

EXECUTE Examples.ErrorTesting_InsertTwo;

The output tells you all of the details, including the data we selected out, and the error
message that was rethrown.
Click here to view code image

ErrorProcedure ErrorLocation
-------------------------------- ------------------------------
ErrorTesting_InsertTwo Second statement

ErrorMessage

The INSERT statement conflicted with the CHECK constraint
"CHKErrorTesting_PositiveInteger". The conflict occurred in
database "ExamBook762Ch2",
table "Examples.ErrorTesting", column 'PositiveInteger'.

ErrorNumber ErrorSeverity ErrorLine
----------- ------------- -----------

194

547 16 12

Msg 547, Level 16, State 0, Procedure ErrorTesting_InsertTwo,
Line 12
The INSERT statement conflicted with the CHECK constraint
"CHKErrorTesting_PositiveInteger". The conflict occurred in
database "ExamBook762Ch2",
table "Examples.ErrorTesting", column 'PositiveInteger'.

Transaction Control Logic in Your Error Handling
In this final section on error handling, we combine all of the concepts we have discussed,
along with an initial review of transactions (Chapter 3 will go much deeper into the
various forms of transaction handling that you may need, but transactions are essential to a
discussion of transactions). Every statement in SQL Server, DDL and DML alike, are
performed as a transaction. By default, they are all considered autocommit transactions.
When you want to run multiple statements together, making sure that they all complete, you
use explicit transactions. Do this by using the BEGIN TRANSACTION statement to start a
transaction, and COMMIT TRANSACTION to save the changes, or ROLLBACK
TRANSACTION to undo the changes that have been made.

Transactions can be nested, as in:

BEGIN TRANSACTION;
BEGIN TRANSACTION;

You can tell how many transactions have been nested by using the @@TRANCOUNT
system function.

SELECT @@TRANCOUNT

After running the two BEGIN TRANSACTION statements, the result of this query is 2.
To save the changes made after the BEGIN TRANSACTION statements, you need an equal
number of COMMIT TRANSACTION calls to save the changes. While syntactically there
are two nested transactions, there is technically just a single transaction internally. To undo
your changes, you only need a solitary ROLLBACK TRANSACTION call to undo the
changes.

For example, run the following batch of statements:
Click here to view code image

BEGIN TRANSACTION;
INSERT INTO Examples.ErrorTesting(ErrorTestingId,
PositiveInteger)
VALUES (9,1);

BEGIN TRANSACTION;
SELECT * FROM Examples.ErrorTesting WHERE ErrorTestingId = 9;

195

ROLLBACK TRANSACTION;
SELECT * FROM Examples.ErrorTesting WHERE ErrorTestingId = 9;

The statement succeeds, as no error is returned, and then the first SELECT statement
returns data, but the second does not. One final system function that we need for the error
handler is XACT_STATE(). You use this function to determine the current status of a
transaction if one is in effect. There are three possible values: 1-There is an active
transaction that can be committed; 0-There is no active transaction; -1-There is an active
transaction that cannot be committed, also referred to as an uncommitable transaction, or
a doomed transaction. An uncommitable transaction is caused by a few rare situations that
can occur in complex code such as using XACT_ABORT with an error handler.
(XACT_ABORT is a SET options that ends the batch on a transaction that we show later in
this section. It is typically not used with any other error handling).

In the next three code listings, there are three possible transaction and error handling
schemes that make sure that either all statements succeed, or they all fail. Our scenario uses
the following two tables (note the CHECK constraint on the CompanyName column so we
can force an error on the second table):
Click here to view code image

CREATE TABLE Examples.Worker
(
 WorkerId int NOT NULL IDENTITY(1,1) CONSTRAINT PKWorker
PRIMARY KEY,
 WorkerName nvarchar(50) NOT NULL CONSTRAINT AKWorker UNIQUE
);
CREATE TABLE Examples.WorkerAssignment
(
 WorkerAssignmentId int IDENTITY(1,1) CONSTRAINT
PKWorkerAssignment PRIMARY KEY,
 WorkerId int NOT NULL,
 CompanyName nvarchar(50) NOT NULL
 CONSTRAINT CHKWorkerAssignment_CompanyName
 CHECK (CompanyName <> 'Contoso, Ltd.'),
 CONSTRAINT AKWorkerAssignment UNIQUE (WorkerId,
CompanyName)
);

To keep the processing very simple, the requirements for the STORED PROCEDURE
object we are creating is to create one Worker row and one WorkerAssignment row in a
single call to the STORED PROCEDURE. Hence, the basic part of the code is to perform:
Click here to view code image

INSERT INTO Examples.Worker...
INSERT INTO Examples.WorkerAssignment...

196

If either of the statements fails, the goal is to capture the error, return the error telling the
user where in the code the error occurred, and end the batch. In Listing 2.5, we start by
implementing this with a TRY...CATCH construct. The code include comments that explain
anything new, and to clarify what is being accomplished.

LISTING 2-5 Procedure to show realistic error checking with TRY...CATCH

Click here to view code image

CREATE PROCEDURE Examples.Worker_AddWithAssignment
 @WorkerName nvarchar(50),
 @CompanyName nvarchar(50)
AS
 SET NOCOUNT ON;
 --do any non-data testing before starting the transaction
 IF @WorkerName IS NULL or @CompanyName IS NULL
 THROW 50000,'Both parameters must be not null',1;

 DECLARE @Location nvarchar(30), @NewWorkerId int;
 BEGIN TRY
 BEGIN TRANSACTION;

 SET @Location = 'Creating Worker Row';
 INSERT INTO Examples.Worker(WorkerName)
 VALUES (@WorkerName);

 SELECT @NewWorkerId = SCOPE_IDENTITY(),
 @Location = 'Creating WorkAssignment Row';

 INSERT INTO Examples.WorkerAssignment(WorkerId,
CompanyName)
 VALUES (@NewWorkerId, @CompanyName);

 COMMIT TRANSACTION;
 END TRY
 BEGIN CATCH
 --at the end of the call, we want the transaction
rolled back
 --rollback the transaction first, so it definitely
occurs as the THROW
 --statement would keep it from happening.
 IF XACT_STATE() <> 0 --if there is a transaction in
effect
 --commitable or not
 ROLLBACK TRANSACTION;

197

 --format a message that tells the error and then THROW
it.
 DECLARE @ErrorMessage nvarchar(4000);
 SET @ErrorMessage = CONCAT('Error occurred during:
''',@Location,'''',
 ' System Error: ',
 ERROR_NUMBER(),':',ERROR_MESSAGE());
 THROW 50000, @ErrorMessage, 1;
 END CATCH;

Showing how the code works, first try NULL parameter values.
Click here to view code image

EXEC Examples.Worker_AddWithAssignment @WorkerName = NULL,
@CompanyName = NULL;

This returns the following error, which happens even before the explicit transaction is
started, which would have given an error. In some cases, it can be advantageous to check
for certain types of errors before modifying data.
Click here to view code image

Msg 50000, Level 16, State 1, Procedure
Worker_AddWithAssignment, Line 7
Both parameters must be not null

Next, insert a set of rows that succeed:
Click here to view code image

EXEC Examples.Worker_AddWithAssignment
 @WorkerName='David So',
@CompanyName='Margie''s Travel';

You can see what happens when there is an error by running the following statement with
the same @WorkerName parameter value:
Click here to view code image

EXEC Examples.Worker_AddWithAssignment
 @WorkerName='David So',
@CompanyName='Margie''s Travel';

This results in the following error:
Click here to view code image

Msg 50000, Level 16, State 1, Procedure
Worker_AddWithAssignment, Line 38
Error occurred during: 'Creating Worker Row' System Error:
2627:Violation of UNIQUE KEY

198

constraint 'AKWorker'. Cannot insert duplicate key in object
'Examples.Worker'. The
duplicate key value is (David So).

Now, show that a failure when an error occurs with the second table being referenced:
Click here to view code image

EXEC Examples.Worker_AddWithAssignment
 @WorkerName='Ian Palangio',
@CompanyName='Contoso, Ltd.';

This returns the following:
Click here to view code image

Msg 50000, Level 16, State 1, Procedure
Worker_AddWithAssignment, Line 38
Error occurred during: 'Creating WorkAssignment Row' System
Error: 547:The INSERT
statement conflicted with the CHECK constraint
"CHKWorkerAssignment_CompanyName". The
conflict occurred in database "ExamBook762Ch2", table
"Examples.WorkerAssignment",
column 'CompanyName'.

Then you can make sure it works by changing the @CompanyName parameter value.
Click here to view code image

EXEC Examples.Worker_AddWithAssignment
 @WorkerName='Ian Palangio',
@CompanyName='Humongous Insurance';

In Listing 2-6, we have the same goals for the stored procedure, but instead use
@@error to determine if an error has occurred.

LISTING 2-6 Procedure to show realistic error checking with @@ERROR

Click here to view code image

ALTER PROCEDURE Examples.Worker_AddWithAssignment
 @WorkerName nvarchar(50),
 @CompanyName nvarchar(50)
AS
 SET NOCOUNT ON;
 DECLARE @NewWorkerId int;
 --still check the parameter values first
 IF @WorkerName IS NULL or @CompanyName IS NULL
 THROW 50000,'Both parameters must be not null',1;

199

 --Start a transaction
 BEGIN TRANSACTION
 INSERT INTO Examples.Worker(WorkerName)
 VALUES (@WorkerName);
 --check the value of the @@error system function
 IF @@ERROR <> 0
 BEGIN
 --rollback the transaction before the THROW (or RETURN
if using), because
 --otherwise the THROW will end the batch and
transaction stay open
 ROLLBACK TRANSACTION;
 THROW 50000,'Error occurred inserting data into
Examples.Worker table',1;
 END;
 SELECT @NewWorkerId = SCOPE_IDENTITY()

 INSERT INTO Examples.WorkerAssignment(WorkerId,
CompanyName)
 VALUES (@NewWorkerId, @CompanyName);
 IF @@ERROR <> 0
 BEGIN
 ROLLBACK TRANSACTION;
 THROW 50000,
 'Error occurred inserting data into
Examples.WorkerAssignment table',1;
 END;
 --if you get this far in the batch, you can commit the
transaction
 COMMIT TRANSACTION;

Now, run the following two commands. GO is a batch separator that splits the two
executions into two independent communications with the server, so the second runs no
matter what happens with the first, unless something drastic happens and the connection to
the server is lost:
Click here to view code image

EXEC Examples.Worker_AddWithAssignment @WorkerName='Seth
Grossman', @
CompanyName='Margie''s Travel';

GO
--Cause an error due to duplicating all of the data from
previous call
EXEC Examples.Worker_AddWithAssignment @WorkerName='Seth
Grossman', @

200

CompanyName='Margie''s Travel';

The second call returns 2 errors, the first being the error from the command, and the
second coming from the THROW statement:
Click here to view code image

Msg 2627, Level 14, State 1, Procedure
Worker_AddWithAssignment, Line 14
Violation of UNIQUE KEY constraint 'AKWorker'. Cannot insert
duplicate key in object
'Examples.Worker'. The duplicate key value is (Seth Grossman).

Msg 50000, Level 16, State 1, Procedure
Worker_AddWithAssignment, Line 21
Error occurred inserting data into Examples.Worker table

Finally, in Listing 2-7, we demonstrate the final method of error-handling in a stored
procedure using XACT_ABORT ON. The way this works is that when running, if an error
occurs, the batch stops and the transaction is stopped. It is effective, but gives you no real
control over what happens in an error. Since the batch ends immediately, to know what
statement you are executing you need to print messages constantly. Hence this method is
more used for system tasks, but it is an effective tool for dealing with rolling back a
transaction on an error.

LISTING 2-7 Procedure to show stopping transaction and batch using SET XACT_ABORT
ON

Click here to view code image

ALTER PROCEDURE Examples.Worker_AddWithAssignment
 @WorkerName nvarchar(50),
 @CompanyName nvarchar(50)
AS
 SET NOCOUNT ON;
 --will cause batch to end on any error
 SET XACT_ABORT ON;

 DECLARE @NewWorkerId int;

 --Same parameter check as other cases
 IF @WorkerName IS NULL or @CompanyName IS NULL
 THROW 50000,'Both parameters must be not null',1;

 --start the transaction
 BEGIN TRANSACTION;
 -- Execute the code as normal

201

 INSERT INTO Examples.Worker(WorkerName)
 VALUES (@WorkerName);

 SELECT @NewWorkerId = SCOPE_IDENTITY()

 INSERT INTO Examples.WorkerAssignment(WorkerId,
CompanyName)
 VALUES (@NewWorkerId, @CompanyName);

 COMMIT TRANSACTION;

Now all you get is just the system error message returned, as you see from the following:
Click here to view code image

EXEC Examples.Worker_AddWithAssignment
 @WorkerName='Stig Panduro', @CompanyName='Margie''s
Travel';

GO
--Cause an error due to duplicating all of the data from
previous call
EXEC Examples.Worker_AddWithAssignment
 @WorkerName='Stig Panduro', @CompanyName='Margie''s
Travel';

This returns:
Click here to view code image

Msg 2627, Level 14, State 1, Procedure
Worker_AddWithAssignment, Line 12
Violation of UNIQUE KEY constraint 'AKWorker'. Cannot insert
duplicate key in object
'Examples.Worker'. The duplicate key value is (Stig Panduro).

A consideration to note when building your error handling is that a STORED
PROCEDURE cannot change the transaction count from when it starts to when it finishes.
For example, consider the following STORED PROCEDURE object:
Click here to view code image

CREATE PROCEDURE ChangeTransactionLevel
AS
 BEGIN TRANSACTION;
 ROLLBACK TRANSACTION;

If you perform this outside of the context of a transaction, everything works fine with no
errors. But if place this in a transaction:

202

BEGIN TRANSACTION;
EXEC ChangeTransactionLevel;
ROLLBACK TRANSACTION;

You receive the following error messages:
Click here to view code image

Msg 266, Level 16, State 2, Procedure ChangeTransactionLevel,
Line 0
Transaction count after EXECUTE indicates a mismatching number
of BEGIN and COMMIT
statements. Previous count = 1, current count = 0.
Msg 3903, Level 16, State 1, Line 1434
The ROLLBACK TRANSACTION request has no corresponding BEGIN
TRANSACTION.

The second message is not critical, unless you expect to be in a transaction at the time
and keep modifying data or structure. There are two very standard steps to mitigate this
issue. First, as we have done in the TRY...CATCH example previously, end your error
handler with a THROW statement, which ends the batch:
Click here to view code image

ALTER PROCEDURE ChangeTransactionLevel
AS
 BEGIN TRANSACTION;
 ROLLBACK TRANSACTION;
 THROW 50000,'Error After Rollback',1;

Now, perform this in the same transaction:

BEGIN TRANSACTION;
EXEC ChangeTransactionLevel;
ROLLBACK TRANSACTION;

You see just the one error message:
Click here to view code image

Msg 50000, Level 16, State 1, Procedure ChangeTransactionLevel,
Line 5
Error After Rollback

The alternative is to use what are called savepoints. Savepoints allow you to roll back
part of a transaction, and is covered in Skill 3.1. Prior to THROW, savepoints were
common for use in error handling, but now are used primarily for more specific purposes.
Generally, using THROW after making sure that you have ended all transactions is the
cleanest method of execution.

For the most part, anytime you have complex stored procedures, you should be using

203

TRY...CATCH and THROW. These commands simplify dealing with errors. This is
particularly true when you have a procedure that is called by another procedure that can
cause errors (which is pretty much any statement in Transact-SQL).

For example, consider the following procedure that is used to call the example
procedure we just created that changed the transaction level. Use the same error handler
that we used earlier in the TRY...CATCH example, as seen in Listing 2-8.

LISTING 2-8 Procedure to what happens when you change the transaction level in a
procedure

Click here to view code image

ALTER PROCEDURE dbo.CallChangeTransactionLevel
AS
 BEGIN TRY
 BEGIN TRANSACTION

 DECLARE @Location nvarchar(30) = 'Execute Procedure';
 EXECUTE ChangeTransactionLevel; --This will cause an
error by design

 COMMIT TRANSACTION
 END TRY
 BEGIN CATCH
 IF XACT_STATE() <> 0
 ROLLBACK;
 DECLARE @ErrorMessage nvarchar(4000)
 SET @ErrorMessage = CONCAT('Error occurred during:
''',@Location,'''',
 ' System Error:
',ERROR_NUMBER(),':',
 ERROR_MESSAGE());
 THROW 50000, @ErrorMessage, 1;
 END CATCH;

Now, perform the calling procedure:
Click here to view code image

EXECUTE dbo.CallChangeTransactionLevel;

This gives you the error from the procedure that said Error After Rollback:
Click here to view code image

Msg 50000, Level 16, State 1, Procedure
CallChangeTransactionLevel, Line 19

204

Error occurred during: 'Execute Procedure' System Error:
50000:Error After Rollback

Now you can see the error from all of the calling procedures, in a stack as each CATCH
block appends the message from the previous call. You could add an
ERROR_PROCEDURE() function call to the CONCAT expression for the error message to
make the entire stack more obvious, or even use RAISERROR to return a message at each
level, and a THROW command to stop the batch when you have reached the top level. You
can tell this using the @@nestlevel system function, but usually this is enough of error
handler for the typical need, particularly keeping it simple enough for this review of error
handling.

Need More Review? The complexities of error handling
To be certain, error handling is a complex topic that cannot be given a
complete review in a book of this size and purpose. One of the best resources
on Error and Transaction Handling is from Erland Sommarskog, here on his
website: http://sommarskog.se/error_handling/Part1.html.

205

http://sommarskog.se/error_handling/Part1.html

Skill 2.3 Create triggers and user-defined functions
In this final skill of the chapter, we cover two very different, and somewhat lesser-used
features of Transact-SQL, with very little overlap between them.

First we look at TRIGGER objects, which in itself is a very large topic, particularly
because there are three different types of triggers that you can work with, but equally
because they are quite a bit more complex than STORED PROCEDURE objects. You use
them to react to some event, either a DML operation such as an INSERT, UPDATE or
DELETE statement execution; someone changing a setting or object on the server; or even
someone logging into a server.

Then we cover the details of User-Defined Functions (or UDFs) that allow you to create
code that is called in the same way that a system function might. UDFs are very powerful
tools, but are also very dangerous for performance when used poorly.

Note TRIGGER objects
This chapter focuses on interpreted Transact-SQL objects. You can create
TRIGGER objects in managed code. Skill 3.4 highlights the differences
between these solutions and the memory-optimized tables and natively-
compiled modules.

This section covers how to:
 Design trigger logic based on business requirements
 Determine when to use Data Manipulation Language (DML) triggers, Data
Definition Language (DDL) triggers, or logon triggers
 Recognize results based on execution of AFTER or INSTEAD OF triggers
 Design scalar-valued and table-valued user-defined functions based on
business requirements
 Identify differences between deterministic and non-deterministic functions

Design trigger logic based on business requirements
Triggers are coded objects, similar to stored procedures, which allow you to run code in
response to events that occur in SQL Server. The most common types of triggers fire on a
DML operation such as an INSERT, UPDATE or DELETE statement execution.
Additionally, there are triggers that fire when someone changes something in SQL Server
(DDL triggers), a setting or object on the server, or even someone logging into a server
(login triggers).

In this section, we focus on DML triggers, because they are the ones that are generally

206

used for business requirements. In the next section we review the other types of triggers,
which are mostly focused on administration needs. DML TRIGGER objects are schema
owned, database contained objects, like STORED PROCEDURE, VIEW, and
CONSTRAINT objects, so their names must not collide with other objects in the database.

DML TRIGGER objects are typically used for a couple of purposes that are hard to do
in the declarative configuration of tables. The logic often could be placed in a STORED
PROCEDURE object, but by using a TRIGGER object, you can limit duplication of code:

 Complex data integrity CHECK constraints can only see data in the same row. If
you need to check data across multiple rows, only triggers can do this automatically.
 Running code in response to some action For example, if an order comes in past a
threshold (like a $3,000,000 order for lattes from Fourth Coffee), you could write a
row to a table to have the row checked for validity.
 Ensuring columnar data is modified If you want to make sure that data is modified,
like a column that tells you when a row was last modified, triggers can ensure that
the user does not put in invalid data.
 Making a view editable If a VIEW references more than one table, it becomes
complicated to modify it using simple DML operations.

There are two different types of DML Trigger objects that work for INSERT, UPDATE,
and DELETE operations that you should familiarize yourself with:

 AFTER These triggers perform after a DML operation. They are typically used for
doing data validations, as you can see the data as it is after the operation has
occurred.
 INSTEAD OF These triggers perform instead of the DML operation, so if you want
the operation to occur, you need repeat the DML in the code.

The following subsections contain an example of each of the scenarios that are listed,
along with some commentary on the major pitfalls you encounter. This is not by any means
an exhaustive list of ways that triggers can be used, but a simple overview of how they are
be created to implement given needs.

Need More Review? More on the CREATE TRIGGER statement
Triggers are not a simple topic that we can cover in any real depth, not even to
the light depth we have reviewed other topics. If you need to study more about
the many details of writing triggers, a good start is the MSDN page on
CREATE TRIGGER here: https://msdn.microsoft.com/en-
us/library/ms189799.aspx.

Complex data integrity
The automatic data-integrity enforcement we have covered so far has been of the

207

https://msdn.microsoft.com/en-us/library/ms189799.aspx

declarative variety. You state a predicate in the form of a column declaration/data type and
possibly a constraint. A major limitation of constraints is how much they can see. For
example, CHECK constraints can only see data in the same row. FOREIGN KEY
constraints can only see the current row and see if another row exists.

While this covers a great percentage of needs, if you need to check data across a group
of rows, triggers can do this (technically CHECK constraints can use a USER DEFINED
FUNCTION, but TRIGGER objects are considered the best method). For this example,
consider you have the following table (just including columns that we need for the
example):
Click here to view code image

CREATE TABLE Examples.AccountContact
(
 AccountContactId int NOT NULL CONSTRAINT PKAccountContact
PRIMARY KEY,
 AccountId char(4) NOT NULL,
 PrimaryContactFlag bit NOT NULL
);

You are given the business requirement to ensure there is always one primary contact for
an account, if a contact does exist. A first step is to identify the query that shows you rows
that do not match this rule. In this case:
Click here to view code image

SELECT AccountId, SUM(CASE WHEN PrimaryContactFlag = 1 THEN 1
ELSE 0 END)
FROM Examples.AccountContact
GROUP BY AccountId
HAVING SUM(CASE WHEN PrimaryContactFlag = 1 THEN 1 ELSE 0 END)
<> 1;

If that query returns data, then you know something is wrong. This query is the basis of
the data check. We can put this into a trigger as seen in Listing 2-9, which checks on any
INSERT or UPDATE operation.

LISTING 2-9 Trigger to stop multiple PrimaryContacts for an Account during an UPDATE
or INSERT operation

Click here to view code image

CREATE TRIGGER Examples.AccountContact_TriggerAfterInsertUpdate
ON Examples.AccountContact
AFTER INSERT, UPDATE AS
BEGIN
 SET NOCOUNT ON;

208

 SET ROWCOUNT 0; --in case the client has modified the
rowcount
 BEGIN TRY
 --check to see if data is returned by the query from
previously
 IF EXISTS (SELECT AccountId
 FROM Examples.AccountContact
 --correlates the changed rows in inserted
to the other rows
 --for the account, so we can check if the
rows have changed
 WHERE EXISTS (SELECT *
 FROM inserted
 WHERE inserted.AccountId =
 AccountContact.AccountId

 UNION ALL
 SELECT *
 FROM deleted
 WHERE deleted.AccountId =
 AccountContact.AccountId)
 GROUP BY AccountId
 HAVING SUM(CASE WHEN PrimaryContactFlag = 1 then
1 ELSE 0 END) <> 1)

 THROW 50000, 'Account(s) do not have only one
primary contact.', 1;
 END TRY
 BEGIN CATCH
 IF XACT_STATE() <> 0
 ROLLBACK TRANSACTION;
 THROW;
 END CATCH
END;

Note Multiple AFTER triggers
It is possible to have multiple AFTER triggers on the same operation.
However, you have minimal control over the order in which they run. For
more information, see the MSDN article on sp_settriggerorder system stored
procedure: https://msdn.microsoft.com/en-us/library/ms186762.aspx.

For the most part, this is pretty straightforward. We give the TRIGGER a name, tell it the
TABLE it is for, and then that this fires AFTER an INSERT or UPDATE operation. Then it
is just like a stored procedure for the most part. There are two virtual tables inserted and

209

https://msdn.microsoft.com/en-us/library/ms186762.aspx

deleted that instantiated when the trigger performs. Inserted shows you how the data looks
after the operation, and deleted shows you how the data looks before the operation. Both
tables only have data during an UPDATE operation, showing you the before and the after
versions. In some cases, both tables are empty, such as an UPDATE statement where the
WHERE clause matched no rows, or a MERGE statement where one of the operations had
no matches.

The most important part of writing such a trigger is that you must be prepared for more
than one row to be modified. In the EXISTS block, we have the query we started from, and
added the WHERE EXISTS condition to limit the scope of the query to just rows that have
been modified based on their AccountId. You have to use both inserted and deleted table
rows because there is nothing stopping the AccountId from changing:
Click here to view code image

SELECT AccountId
FROM Examples.AccountContact
--correlates the changed rows in inserted to the other rows
--for the account, so we can check if the rows have changed

WHERE EXISTS (SELECT *
 FROM inserted
 WHERE inserted.AccountId =
AccountContact.AccountId
 UNION ALL
 SELECT *
 FROM deleted
 WHERE deleted.AccountId =
AccountContact.AccountId)

GROUP BY AccountId
HAVING SUM(CASE WHEN PrimaryContactFlag = 1 then 1 ELSE 0 END;

Many trigger writers make the mistake of writing variable declaration statements to grab
values from the inserted/deleted virtual table like the following:
Click here to view code image

SELECT @AccountId = AccountId FROM inserted;

Using that AccountId to check for issues misses all but the one row. You must, though,
test all of the cases with single and multiple rows. For this trigger, consider running at least
the following simple tests:
Click here to view code image

--Success, 1 row
INSERT INTO Examples.AccountContact(AccountContactId,
AccountId, PrimaryContactFlag)

210

VALUES (1,1,1);
--Success, two rows
INSERT INTO Examples.AccountContact(AccountContactId,
AccountId, PrimaryContactFlag)
VALUES (2,2,1),(3,3,1);
--Two rows, same account
INSERT INTO Examples.AccountContact(AccountContactId,
AccountId, PrimaryContactFlag)
VALUES (4,4,1),(5,4,0);
--Invalid, two accounts with primary
INSERT INTO Examples.AccountContact(AccountContactId,
AccountId, PrimaryContactFlag)
VALUES (6,5,1),(7,5,1);

This returns:
Click here to view code image

Msg 50000, Level 16, State 1, Procedure
AccountContact_TriggerAfterInsert, Line 29
One or more Accounts does not have one and only one primary
contact.

Then, without showing messages:
Click here to view code image

--Invalid, no primary
INSERT INTO Examples.AccountContact(AccountContactId,
AccountId, PrimaryContactFlag)
VALUES (8,6,0),(9,6,0);
--Won't work, because AccountId is new, and this row is not
primary
UPDATE Examples.AccountContact
SET AccountId = 6
WHERE AccountContactId = 5;

Triggers can be tricky to get right, and logically tracing through the code and testing is
important. On the exam, if presented with a trigger, it is important to be very careful to be
able to trace through the single-row and multi-row operations that are needed.

The requirements for our problem stated that we are to make sure every account has a
primary contact, if a contact exists. As it stands now, while the user can’t create or modify
rows to violate the requirement, a user can delete the primary row. So, creating a DELETE
TRIGGER works very similar to the INSERT/UPDATE one, except now you use the
deleted virtual table, as you can see in Listing 2-10.

LISTING 2-10 Trigger to stop multiple PrimaryContacts for an Account during a DELETE
operation

211

Click here to view code image

CREATE TRIGGER Examples.AccountContact_TriggerAfterDelete
ON Examples.AccountContact
AFTER DELETE AS
BEGIN
 SET NOCOUNT ON;
 SET ROWCOUNT 0; --in case the client has modified the
rowcount
 BEGIN TRY
 IF EXISTS (SELECT AccountId
 FROM Examples.AccountContact
 WHERE EXISTS (SELECT *
 FROM deleted
 WHERE deleted.AccountId =
 AccountContact.AccountId)
 GROUP BY AccountId
 HAVING SUM(CASE WHEN PrimaryContactFlag = 1 then 1
ELSE 0 END) > 1)
 THROW 50000, 'One or more Accounts did not have one
primary contact.', 1;
 END TRY
 BEGIN CATCH
 IF XACT_STATE() <> 0
 ROLLBACK TRANSACTION;
 THROW;
 END CATCH;
END;

The basic structure of the TRIGGER for data integrity is to see if there is an issue, either
by checking data in the inserted/deleted tables, the primary table, or any tables, and if there
is an issue, run a THROW statement and let the ROLLBACK TRANSACTION undo the
statement’s effect and any other activity done within the context of the transaction. If the
caller has a TRY...CATCH block, they get the error captured. If not, the batch ends due to
the THROW statement. If you use RAISERROR, things are trickier because the batch
continues after the transaction ends.

Running code in response to some action
There are many situations where a modification is made to a row that you want to affect a
change of some sort in another table. For example, consider a table that captures promises
to a charity. The table might look something like the following, including only columns
pertinent to the example:
Click here to view code image

212

CREATE TABLE Examples.Promise
(
 PromiseId int NOT NULL CONSTRAINT PKPromise PRIMARY KEY,
 PromiseAmount money NOT NULL
);

No matter the charity, there are a few levels of promises that can be received. For
simplicity, let’s define two: Normal and Extranormal. A Normal promise is in a typical
range that a person promises if they are normal and sincere. Extranormal promises are
outside of the Normal and need verification. Extranormal promises for this scenario are
those over $10,000.00. The requirements are to create a log of promises to verify when
rows are created or updated.

So, you design a table that has the Promise rows to be verified, which looks like this
(without the details of the row being verified):
Click here to view code image

CREATE TABLE Examples.VerifyPromise
(
 VerifyPromiseId int NOT NULL CONSTRAINT PKVerifyPromise
PRIMARY KEY,
 PromiseId int NOT NULL CONSTRAINT AKVerifyPromise UNIQUE
 --FK not included for simplicity
);

In Listing 2-11 the TRIGGER object fulfills this requirement.

LISTING 2-11 Trigger to create rows in another table

Click here to view code image

CREATE TRIGGER Examples.Promise_TriggerInsertUpdate
ON Examples.Promise
AFTER INSERT, UPDATE AS
BEGIN
 SET NOCOUNT ON;
 SET ROWCOUNT 0; --in case the client has modified the
rowcount
 BEGIN TRY
 INSERT INTO Examples.VerifyPromise(PromiseId)
 SELECT PromiseId
 FROM inserted
 WHERE PromiseAmount > 10000.00
 AND NOT EXISTS (SELECT * --keep from inserting
duplicates
 FROM VerifyPromise
 WHERE VerifyPromise.PromiseId =

213

inserted.PromiseId)
 END TRY
 BEGIN CATCH
 IF XACT_STATE() <> 0
 ROLLBACK TRANSACTION;
 THROW; --will halt the batch or be caught by the
caller's catch block
 END CATCH
END;

The biggest thing to note in this TRIGGER is how you need to do very little error
handling. Just use the TRY...CATCH block to see if there is an error with the statement, and
if so, run the ROLLBACK TRANSACTION statement that rethrows the error message.

Note Triggers modifying data
When a trigger modifies data in the same or different table, there can be
triggers that also get fired. Discussion of this is beyond the scope of this
review, but there is an article on MSDN that covers this in detail:
https://msdn.microsoft.com/en-us/library/ms190739.aspx.

Ensuring columnar data is modified
In this example, we make use of INSTEAD OF TRIGGER objects, which are excellent
tools for making sure some operation occurs in a statement. For example, if you want to
make sure that a column tells you when a row was last modified, an INSTEAD OF
TRIGGER object can be used to determine if the user inputs data that does not make sense.

Consider the following TABLE:
Click here to view code image

CREATE TABLE Examples.Lamp
(
 LampId int IDENTITY(1,1) CONSTRAINT PKLamp PRIMARY
KEY,
 Value varchar(10) NOT NULL,
 RowCreatedTime datetime2(0) NOT NULL
 CONSTRAINT DFLTLamp_RowCreatedTime
DEFAULT(SYSDATETIME()),
 RowLastModifiedTime datetime2(0) NOT NULL
 CONSTRAINT DFLTLamp_RowLastModifiedTime
DEFAULT(SYSDATETIME())
);

While we specified a DEFAULT constraint, the user can put anything at all in the table.
Instead, let’s use two TRIGGER objects. The first is an INSTEAD OF INSERT TRIGGER

214

https://msdn.microsoft.com/en-us/library/ms190739.aspx

object as seen in Listing 2-12.

LISTING 2-12 INSTEAD OF TRIGGER to automatically set RowCreated and
RowLastModified time columns

Click here to view code image

CREATE TRIGGER Examples.Lamp_TriggerInsteadOfInsert
ON Examples.Lamp
INSTEAD OF INSERT AS
BEGIN
 SET NOCOUNT ON;
 SET ROWCOUNT 0; --in case the client has modified the
rowcount
 BEGIN TRY
 --skip columns to automatically set
 INSERT INTO Examples.Lamp(Value)
 SELECT Value
 FROM inserted
 END TRY
 BEGIN CATCH
 IF XACT_STATE() <> 0
 ROLLBACK TRANSACTION;
 THROW; --will halt the batch or be caught by the
caller's catch block
 END CATCH
END;

Note More on INSTEAD OF triggers
You can only have one INSTEAD OF trigger per operation on a table. While
you can have one INSTEAD OF TRIGGER object that does multiple
operations, like INSERT, UPDATE, and DELETE, it is not typically as useful
as it can be for AFTER TRIGGER objects. One use case is to make a trigger
not do the actual operation.

This trigger is very similar to the one in previous sections. The biggest difference is that
the INSERT statement is doing the operation that the user expected it was doing, but
skipping the columns that use a defaulted value. You can use this step in the process to do
any formatting that you don’t want the user to have control over. After inserting a row and
viewing it, you see the following:
Click here to view code image

INSERT INTO Examples.Lamp(Value, RowCreatedTime,

215

RowLastModifiedTime)
VALUES ('Original','1900-01-01','1900-01-01');

SELECT *
FROM Examples.Lamp;

Here are the two columns:
Click here to view code image

LampId Value RowCreatedTime RowLastModifiedTime
----------- ---------- --------------------------- ------------

1 Original 2016-09-20 21:03:54 2016-09-20
21:03:54

Next, create the INSTEAD OF UPDATE TRIGGER that makes sure that the
RowLastModifiedTime is modified, and the RowCreatedTime is never modified.
Click here to view code image

CREATE TRIGGER Examples.Lamp_TriggerInsteadOfUpdate
ON Examples.Lamp
INSTEAD OF UPDATE AS
BEGIN
 SET NOCOUNT ON;
 SET ROWCOUNT 0; --in case the client has modified the
rowcount
 BEGIN TRY
 UPDATE Lamp
 SET Value = inserted.Value,
 RowLastModifiedTime = DEFAULT --use default
constraint
 FROM Examples.Lamp
 JOIN inserted
 ON Lamp.LampId = inserted.LampId;
 END TRY
 BEGIN CATCH
 IF XACT_STATE() <> 0
 ROLLBACK TRANSACTION;
 THROW; --will halt the batch or be caught by the
caller's catch block
 END CATCH;
END;

This is similar to the INSERT trigger, but we do the UPDATE instead of the INSERT.
This time, skip the RowCreatedTime column because the time the row was created doesn’t
change, but the modified time does. Update and view the row previously created:
Click here to view code image

216

UPDATE Examples.Lamp
SET Value = 'Modified',
 RowCreatedTime = '1900-01-01',
 RowLastModifiedTime = '1900-01-01'
WHERE LampId = 1;

SELECT *
FROM Examples.Lamp;

The RowLastModifiedTime is different than the first call, and different now from the
RowCreatedTime:
Click here to view code image

LampId Value RowCreatedTime RowLastModifiedTime
----------- ---------- --------------------------- ------------

1 Modified 2016-09-20 21:07:07 2016-09-20
21:10:26

Making any view modifiable using INSTEAD OF triggers
A final example of DML triggers is to apply an INSTEAD OF TRIGGER to a VIEW
object, making it editable. It can even be editable if the view isn’t based on a table. No
matter what the data that is returned from a SELECT statement on the view, as long as the
INSERT statement references the columns by name, you can, using the INSERTED and/or
DELETED virtual table in the INSTEAD OF trigger.

For example, create the following TABLE and VIEW objects as seen in Listing 2-13.

LISTING 2-13 Setting up a scenario for demonstrating using TRIGGER to make any view
editable

Click here to view code image

CREATE TABLE Examples.KeyTable1
(
 KeyValue int NOT NULL CONSTRAINT PKKeyTable1 PRIMARY KEY,
 Value1 varchar(10) NULL
);
CREATE TABLE Examples.KeyTable2
(
 KeyValue int NOT NULL CONSTRAINT PKKeyTable2 PRIMARY KEY,
 Value2 varchar(10) NULL
);
GO
CREATE VIEW Examples.KeyTable
AS

217

 SELECT COALESCE(KeyTable1.KeyValue, KeyTable2.KeyValue) as
KeyValue,
 KeyTable1.Value1, KeyTable2.Value2
 FROM Examples.KeyTable1
 FULL OUTER JOIN Examples.KeyTable2
 ON KeyTable1.KeyValue = KeyTable2.KeyValue;

Note that in the view, there is no way that you can insert data using this view, because
the actual KeyValue columns are not exposed in the view, so the following attempt is to
insert into the table:
Click here to view code image

INSERT INTO Examples.KeyTable (KeyValue, Value1, Value2)
VALUES (1,'Value1','Value2');

This gives you the following error:
Click here to view code image

Msg 4406, Level 16, State 1, Line 21
Update or insert of view or function 'Examples.KeyTable' failed
because it contains
a derived or constant field.

Next, add an INSTEAD OF INSERT TRIGGER to the table. In the TRIGGER, we get
the inserted and deleted virtual tables that are the shape of the VIEW objects structure,
which we will use to do the INSERT operations as seen in Listing 2-14.

LISTING 2-14 INSTEAD OF TRIGGER to make view editable

Click here to view code image

CREATE TRIGGER Examples.KeyTable_InsteadOfInsertTrigger
ON Examples.KeyTable
INSTEAD OF INSERT
AS
BEGIN
 SET NOCOUNT ON;
 SET ROWCOUNT 0; --in case the client has modified the
rowcount
 BEGIN TRY
 --Insert data into one of the tables
 INSERT INTO Examples.KeyTable1(KeyValue, Value1)
 SELECT KeyValue, Value1
 FROM Inserted;
 --and then the other
 INSERT INTO Examples.KeyTable2(KeyValue, Value2)

218

 SELECT KeyValue, Value2
 FROM Inserted;
 END TRY
 BEGIN CATCH
 IF XACT_STATE() <> 0
 ROLLBACK TRANSACTION;
 THROW; --will halt the batch or be caught by the
caller's catch block
 END CATCH;
END;

Now, if you try to insert into the view, using the same statement as before:
Click here to view code image

INSERT INTO Examples.KeyTable (KeyValue, Value1, Value2)
VALUES (1,'Value1','Value2');

It will succeed. And to view the data:

SELECT *
FROM Examples.KeyTable;

It looks just like any other table:
Click here to view code image

KeyValue Value1 Value2
----------- ---------- ----------
1 Value1 Value2

This is a very simple version of what this TRIGGER may need to be for a production
worthy version. When you have more than one table to be concerned with, there is a
question of what happens if one row already exists, and another doesn’t. If you build the
UPDATE trigger, an UPDATE can either be an UPDATE or an INSERT for one of the
tables. But you should make sure that one of the table’s rows exists.

Determine when to use Data Manipulation Language (DML) triggers, Data
Definition Language (DDL) triggers, or logon triggers
As has been stated a few times already in this trigger skill (and in the name of this section
itself) there are three types of triggers that activate upon the occurrence of a type of event.
You have already seen that DML TRIGGER objects are schema bound database objects
that let you react to, and even morph the results of, an INSERT, UPDATE or DELETE
statement.

In this section, we review the other two types of TRIGGER objects:
 DDL triggers Used to react to DDL operations at the server or database level. For

219

example, you can capture the DDL of every CREATE TABLE and ALTER TABLE
statement and log the results in a table, or even stop them from occurring.
 Logon triggers Used to react to someone logging into the server. For example, you
could state that login LOGIN1 (also referred to as a server principal) could not log
in from 8PM – 7AM. These triggers just stop the login action, so if the user is
already connected during this time period, it does not end their connection.

Need More Review? DLL triggers
This section contains a high-level overview and a few example triggers for
review. If you want the complete breadth of coverage on DDL triggers, here
are some recommended resources. The following article by Aaron Bertrand:
SQL Server DDL Triggers to Track All Database Changes:
https://www.mssqltips.com/sqlservertip/2085/sql-server-ddl-triggers-to-
track-all-database-changes/ and this Technet article on DDL Triggers:
https://technet.microsoft.com/en-us/library/ms190989.aspx.

DDL Triggers
There are two kinds of DDL Triggers that you can use to react to DDL statements. One is at
the database level, where you can react to DDL only in the database where the trigger is
located. For example, the trigger can fire on CREATE TABLE, DROP INDEX, ALTER
VIEW, etc. The other is at the server level. Server triggers can react to actions that occur in
any database, as well as things that occur strictly at the server scope, such as CREATE
DATABASE, DROP LOGIN, etc.

In the next two sections, we cover examples of DDL triggers at the server, and then the
database level. There is not that much difference to the syntax, but there are a few
differences to understand about how they work, and where they reside.

Server
For the server scoped example, a TRIGGER object logs whenever a database is created,
dropped, or altered. In this example, the location of the database of the log table is
important, because a SERVER DDL TRIGGER object is stored at the server level in the
master database. So the trigger needs to address the table by three-part name.

Create the following TABLE object that contains the time, statement, and the login name
of the user that made the change to the database.
Click here to view code image

USE ExamBook762Ch2;
GO
CREATE TABLE Examples.DDLDatabaseChangeLog
(

220

https://www.mssqltips.com/sqlservertip/2085/sql-server-ddl-triggers-to-track-all-database-changes/
https://technet.microsoft.com/en-us/library/ms190989.aspx

 DDLDatabaseChangeLogId int NOT NULL IDENTITY
 CONSTRAINT PKDDLDatabaseChangeLog PRIMARY KEY,
 LogTime datetime2(0) NOT NULL,
 DDLStatement nvarchar(max) NOT NULL,
 LoginName sysname NOT NULL
);

Note Using the code
If you are trying out the code in this chapter yourself, be aware that making a
mistake in the configuration of a DDL trigger can cause typical operations to
fail.

Next, since the log table is in a different database, but the trigger is not scoped to that
database, we need to create security principals. Security is not on the exam, but to make the
example somewhat realistic, this is needed because security chaining does not pertain to
this non-schema owned object. Instead use the EXECUTE AS clause on the CREATE
TRIGGER statement to dictate security principals. We start by creating a server principal,
a user in the ExamBook762Ch2 database.
Click here to view code image

--Names used to make it clear where you have used examples from
this book outside
--of primary database
CREATE LOGIN Exam762Examples_DDLTriggerLogging WITH PASSWORD =
'PASSWORD$1';
CREATE USER Exam762Examples_DDLTriggerLogging
 FOR LOGIN
Exam762Examples_DDLTriggerLogging;
GRANT INSERT ON Examples.DDLDatabaseChangeLog TO
 Exam762Examples_DDLTriggerLogging;

We use just three events to cover the database events listed in our requirements, but there
are many more. For a full list, check this link to DDL Events on Technet:
https://technet.microsoft.com/en-us/library/bb522542.aspx.

The trigger itself is fairly simple. The interesting part is the EVENTDATA() function. It
returns an XML string value that contains information about the DDL operation that caused
the trigger to fire. Unlike a DML TRIGGER object, a DDL TRIGGER fires once per
statement. We use just a single value from the statement, the CommandText value. Note that
the DDL TRIGGER object is not a schema-owned object.
Click here to view code image

CREATE TRIGGER DatabaseCreations_ServerDDLTrigger
ON ALL SERVER

221

https://technet.microsoft.com/en-us/library/bb522542.aspx

WITH EXECUTE AS 'Exam762Examples_DDLTriggerLogging'
FOR CREATE_DATABASE, ALTER_DATABASE, DROP_DATABASE
AS
 SET NOCOUNT ON;
 --trigger is stored in master db, so must
 INSERT INTO
ExamBook762Ch2.Examples.DDLDatabaseChangeLog(LogTime,
DDLStatement,
 LoginName)
 SELECT SYSDATETIME(),EVENTDATA().value(
 '(/EVENT_INSTANCE/TSQLCommand/CommandText)
[1]','nvarchar(max)'),
 ORIGINAL_LOGIN(); --Original login gives you the
user that is connected.
 --Otherwise we would get the
EXECUTE AS user.

To test this trigger, create a LOGIN and give it rights to create and alter a database,
assuming your server allows SQL Standard logins. If not, the same information is captured
if you use any login.
Click here to view code image

CREATE LOGIN Exam762Examples_DatabaseCreator WITH PASSWORD =
'PASSWORD$1';
GRANT CREATE ANY DATABASE TO Exam762Examples_DatabaseCreator;
GRANT ALTER ANY DATABASE TO Exam762Examples_DatabaseCreator;

Now, login as Exam762Examples_DatabaseCreator, and run the following set of
batches:
Click here to view code image

CREATE DATABASE Example
GO
ALTER DATABASE Example SET RECOVERY SIMPLE;
GO
DROP DATABASE Example;

And the database owner that you have been using:
Click here to view code image

SELECT LogTime, DDLStatement, LoginName
FROM Examples.DDLDatabaseChangeLog;

You receive a log of changes:
Click here to view code image

LogTime DDLStatement LoginName

222

--------------------------- -----------------------------------
--------- -------------
2016-09-21 16:55:09 CREATE DATABASE
Example Exam762Examp...
2016-09-21 16:55:19 ALTER DATABASE Example SET RECOVERY
SIMPLE Exam762Examp...
2016-09-21 16:55:27 DROP DATABASE
Example Exam762Examp...

While mostly an administration function, this provides functionality that can be very
useful. Something you can do in a DDL TRIGGER is ROLLBACK to disallow an action
(no need for special security here):
Click here to view code image

CREATE TRIGGER DatabaseCreations_StopThemAll
ON ALL SERVER
FOR CREATE_DATABASE, ALTER_DATABASE, DROP_DATABASE
AS
 SET NOCOUNT ON;
 ROLLBACK TRANSACTION;
 THROW 50000,'No more databases created please',1;

Now, everyone (even system administrators), is disallowed to change a database.
Something is commonly done with DDL Triggers of this type is to disable them. You can
disable a TRIGGER using the DISABLE TRIGGER statement:
Click here to view code image

DISABLE TRIGGER DatabaseCreations_StopThemAll ON ALL SERVER;

It is a very good idea to clean up your objects unless you want to keep them, as they span
outside of the single database:
Click here to view code image

DROP TRIGGER DatabaseCreations_ServerDDLTrigger ON ALL SERVER;
DROP USER Exam762Examples_DDLTriggerLogging;
DROP LOGIN Exam762Examples_DDLTriggerLogging;
DROP LOGIN Exam762Examples_DatabaseCreator;

Database
There is very little difference between the DDL TRIGGER objects at the database scope
versus the server scope. Pretty much the exact same syntax works, but there are fewer
events to react to. In this example, we demonstrate another use for DDL TRIGGERS, and
that is stopping an event, while logging it.

We start with a table that is very much the same as the one for database changes:
Click here to view code image

223

CREATE TABLE Examples.DDLChangeLog
(
 DDLChangeLogId int NOT NULL IDENTITY
 CONSTRAINT PKDDLChangeLog PRIMARY KEY,
 LogTime datetime2(0) NOT NULL,
 DDLStatement nvarchar(max) NOT NULL,
 LoginName sysname NOT NULL
);

We again need to configure some security so the user can perform an INSERT statement
into the table, but this time strictly in the context of the database:
Click here to view code image

CREATE USER Exam762Examples_DDLTriggerLogging WITHOUT LOGIN;
GRANT INSERT ON Examples.DDLChangeLog TO
Exam762Examples_DDLTriggerLogging;

Now we create the DDL TRIGGER on the database scope. Just like the server version,
this is not a schema-scoped object. In this version of the trigger we are going to save off
the DDL into a variable, do the ROLLBACK TRANSACTION, and then log the change
(note that if the DDL statement is in an external transaction, the change is still logged
because of the ROLLBACK TRANSACTION).
Click here to view code image

CREATE TRIGGER DatabaseChanges_DDLTrigger
ON DATABASE
WITH EXECUTE AS 'Exam762Examples_DDLTriggerLogging'
FOR CREATE_TABLE, ALTER_TABLE, DROP_TABLE
AS
 SET NOCOUNT ON;
 DECLARE @eventdata XML = EVENTDATA();
 ROLLBACK; --Make sure the event doesn't occur
 INSERT INTO Examples.DDLChangeLog(LogTime, DDLStatement,
LoginName)
 SELECT SYSDATETIME(),
 @EventData.value('(/EVENT_INSTANCE/TSQLCommand/CommandText)
[1]',
 'nvarchar(max)'),
 ORIGINAL_LOGIN();
 THROW 50000,'Denied!',1;

Now, when any user in the database (even a system administrator) tries to CREATE,
ALTER, or DROP a TABLE object:
Click here to view code image

CREATE TABLE Examples.Test
(

224

 TestId int NOT NULL
);
GO
DROP TABLE Examples.DDLChangeLog;

You receive the following error message (or in this case, you would get two of the same
error message):
Click here to view code image

Msg 50000, Level 16, State 1, Procedure
DatabaseChanges_DDLTrigger, Line 25
Denied!

Then, viewing the data in the log table:
Click here to view code image

SELECT LogTime, DDLStatement, LoginName
FROM Examples.DDLChangeLog;

You see the following statements were attempted:
Click here to view code image

LogTime DDLStatement LoginName
--------------------------- -----------------------------------
- -----------------------
2016-09-21 19:16:06 CREATE TABLE
Examples.Test DomainName\louis
 (
 TestId int NOT NULL
)
2016-09-21 19:16:51 DROP TABLE
Examples.DDLChangeLog; DomainName\louis

Again, clean up your code or future examples do not work:
Click here to view code image

DROP TRIGGER DatabaseChanges_DDLTrigger ON DATABASE;
DROP USER Exam762Examples_DDLTriggerLogging;

Logon Triggers
The last type of TRIGGER objects to introduce are LOGIN TRIGGER modules. A LOGIN
TRIGGER fires whenever a server principal connects to your server. In our example, it
implements the following requirements: disallow a server principal named:
Login_NotAllowed from connecting to the server, and log all other connections in a log
table.

For this example, create the following table, which can capture the name of the login, the

225

time of login, and the application that the login comes from:
Click here to view code image

CREATE TABLE Examples.LoginLog
(
 LoginLogId int NOT NULL IDENTITY(1,1)
 CONSTRAINT PKLoginLog PRIMARY KEY,
 LoginName sysname NOT NULL,
 LoginTime datetime2(0) NOT NULL ,
 ApplicationName sysname NOT NULL
);

Similar to the DDL trigger, there is very little to the LOGIN TRIGGER. The trigger fires
once per logon operation, and there is no data it provides by a function or virtual table. All
data you need comes from system functions. In order to log on to a table, just like the DDL
triggers, we need to provide security information, as this is a non-schema bound object
with no database context.
Click here to view code image

CREATE LOGIN Exam762Examples_LogonTriggerLogging WITH PASSWORD
= 'PASSWORD$1';
CREATE USER Exam762Examples_LogonTriggerLogging
 FOR LOGIN
Exam762Examples_LogonTriggerLogging;
GRANT INSERT ON Examples.LoginLog TO
Exam762Examples_LogonTriggerLogging;

Now create the trigger. It uses the ORIGINAL_LOGIN() function to get the security
context from the principal that connected, as the EXECUTE AS clause changes the context
inside the trigger. Then, if the user is not Login_NotAllowed, it logs the data:
Click here to view code image

CREATE TRIGGER Exam762ExampleLogonTrigger
ON ALL SERVER
WITH EXECUTE AS 'Exam762Examples_LogonTriggerLogging'
FOR LOGON
AS
 IF ORIGINAL_LOGIN() = 'Login_NotAllowed'
 THROW 50000,'Unauthorized Access',1;
 ELSE
 INSERT INTO ExamBook762Ch2.Examples.LoginLog(LoginName,
LoginTime,
 ApplicationName)
 VALUES (ORIGINAL_LOGIN(),SYSDATETIME(),APP_NAME());

Note LOGON TRIGGER errors

226

If you have errors in your LOGON TRIGGER (such as inserting into a table
that the security context of the trigger creator cannot access), you can lock out
every user, including members of the sysadmin role. You can bypass the
LOGON TRIGGER by starting SQL Server in a minimal configuration (a
startup parameter of -f, as described in the MSDN article: Database Engine
Service Startup Options: https://msdn.microsoft.com/en-
us/library/ms190737.aspx).

To test the LOGIN TRIGGER, create the LOGIN:
Click here to view code image

CREATE LOGIN Login_NotAllowed WITH PASS

WORD = 'PASSWORD$1';

Try to log in (see Figure 2-2), using any tool, such as Management Studio.

FIGURE 2-2 Connection dialog for SQL Server Management Studio

After clicking connect, you see the dialog in Figure 2-3.

227

https://msdn.microsoft.com/en-us/library/ms190737.aspx

FIGURE 2-3 Failed connection dialog from SQL Server Management Studio when
LOGON TRIGGER has prevented connection

To be sure that your LOGON TRIGGER actually works before disconnecting all of your
connections, connect to a new window using your typical security rights. Don’t be terribly
surprised when you find this log has more rows than you initially expect:
Click here to view code image

 LoginName LoginTime ApplicationName
------------------------ -------------------- -----------------

WIN-8F59BO5AP7D\louis 2016-09-21 21:26:50 Microsoft SQL
Se..IntelliSense
WIN-8F59BO5AP7D\louis 2016-09-21 21:26:50 Microsoft SQL
Se..IntelliSense
WIN-8F59BO5AP7D\louis 2016-09-21 21:27:06 Microsoft SQL
Se..Query
WIN-8F59BO5AP7D\louis 2016-09-21 21:27:06 Microsoft SQL
Se..Query

As with the previous examples, be sure to clean this up if you are doing this on your
server, because if the ExamBook762Ch2 database is later dropped with this trigger
enabled, no one will be able to logon to the server:
Click here to view code image

DROP TRIGGER Exam762ExampleLogonTrigger ON ALL SERVER;
DROP USER Exam762Examples_LogonTriggerLogging;
DROP LOGIN Exam762Examples_LogonTriggerLogging;

228

Need More Review? LOGON TRIGGERS
For more details on Logon Triggers, the following MSDN article covers this:
https://msdn.microsoft.com/en-us/library/bb326598.aspx.

Recognize results based on execution of AFTER or INSTEAD OF triggers
It is important to be able to trace through code and understand how it works and what it
does based on particular inputs. Here in the trigger section of the book it is no different,
except that triggers are quite a bit more complex than any code we have tried before. In the
following two examples, we present you with a couple of less realistic TABLE and DML
TRIGGER object combinations, with a DML statement that performs some action. Your
task is to determine what occurs as data passes through the TRIGGER object (before
reading on to see the solution directly after the example, naturally).

The first example, uses an AFTER TRIGGER object. Start with the following table:
Click here to view code image

CREATE TABLE Examples.UpdateRows
(
 UpdateRowsId int NOT NULL IDENTITY(1,1)
 CONSTRAINT PKUpdateRows PRIMARY KEY,
 Value varchar(20) NOT NULL
);
INSERT INTO Examples.UpdateRows (Value)
VALUES ('Original'),('Original'),('Original');

This has the following data:
Click here to view code image

UpdateRowsId Value
------------ --------------------
1 Original
2 Original
3 Original

And the AFTER UPDATE TRIGGER object in Listing 2-15 is added to the table.

LISTING 2-15 Trigger for the AFTER TRIGGER example

Click here to view code image

CREATE TRIGGER Examples.UpdateRows_TriggerInsert
ON Examples.UpdateRows
AFTER UPDATE AS
BEGIN

229

https://msdn.microsoft.com/en-us/library/bb326598.aspx

 SET NOCOUNT ON;
 SET ROWCOUNT 0;
 BEGIN TRY
 DECLARE @UpdateRowsId int
 SELECT @UpdateRowsId = UpdateRowsId
 FROM inserted
 ORDER BY UpdateRowsId;

 UPDATE Examples.UpdateRows
 SET Value = UPPER(Value)
 WHERE UpdateRowsId = @UpdateRowsId;
 END TRY
 BEGIN CATCH
 IF XACT_STATE() <> 0
 ROLLBACK TRANSACTION;
 THROW; --will halt the batch or be caught by the
caller's catch block
 END CATCH;

END;

Now, a user runs the following UPDATE statement:
Click here to view code image

UPDATE Examples.UpdateRows
SET Value = 'Modified';

And receives the following output:

(3 row(s) affected)

What are the contents of the table? Either:
Click here to view code image

UpdateRowsId Value
------------ --------------------
1 Modified
2 Modified
3 MODIFIED

UpdateRowsId Value
------------ --------------------
1 Original
2 Original
3 Original
UpdateRowsId Value
------------ --------------------

230

1 MODIFIED
2 MODIFIED
3 MODIFIED

UpdateRowsId Value
------------ --------------------
1 MODIFIED
2 Modified
3 Modified

Or can you actually tell?
In this case, the fourth set of outputs match the table contents. Because of the way the

TRIGGER is coded, only a single row is modified. So, it would be the first or the last set
of results, or how you can’t tell. You are guaranteed to get the first row in the set because
of the ORDER BY clause on this statement (and it is necessary for you to realize that
ORDER BY would order in ascending order by default):
Click here to view code image

SELECT @UpdateRowsId = UpdateRowsId
FROM inserted
ORDER BY UpdateRowsId;

Without the ORDER BY clause, the order is not guaranteed, so you might get a different
result (even though the fourth result would still be extremely likely).

This second example uses an INSTEAD OF TRIGGER object. Previous examples of
triggers have made sure that the primary key column value was not changeable by using a
column with the IDENTITY property or that it did not matter. The table we use is very
simple, and the PRIMARY KEY constraint is on a column that can be changed:
Click here to view code image

CREATE TABLE Examples.KeyModify
(
 KeyModifyId int CONSTRAINT PKKeyModify PRIMARY KEY,
 Value varchar(20)
);
INSERT INTO Examples.KeyModify(KeyModifyId, Value)
VALUES (1,'Original'), (2,'Original'),(3,'Original');

Now, the trigger in Listing 2-16 is added to the table.

LISTING 2-16 Trigger for the INSTEAD OF TRIGGER example

Click here to view code image

CREATE TRIGGER Examples.KeyModify_TriggerInsteadOfInsert

231

ON Examples.KeyModify
INSTEAD OF UPDATE AS
BEGIN
 SET NOCOUNT ON;
 SET ROWCOUNT 0;
 BEGIN TRY
 UPDATE Examples.KeyModify
 SET Value = UPPER(inserted.Value)
 FROM Examples.KeyModify
 JOIN inserted
 ON KeyModify.KeyModifyId =
inserted.KeyModifyId
 END TRY
 BEGIN CATCH
 IF XACT_STATE() <> 0
 ROLLBACK TRANSACTION;
 THROW;
 END CATCH
END;

Now, a user runs the following statement:
Click here to view code image

UPDATE Examples.KeyModify
SET KeyModifyId = KeyModifyId + 10, --Change Primary Key
Value
 Value = 'Modified';

After performing this statement, the user gets the following message:

(3 row(s) affected)

Did anything change in the table? Are the KeyModifyId column values 11, 12, and 13?
Does the Value column say Original, ORIGINAL, Modified, or MODIFIED? The key to the
answer is the JOIN on the inserted virtual table. The inserted virtual table looks like:
Click here to view code image

KeyModifyId Value
----------- --------------------
11 Modified
12 Modified
13 Modified

This is just what your statement told it to do. However, the TABLE still has the
following row values, since this is an INSTEAD OF TRIGGER object:
Click here to view code image

232

KeyModifyId Value
----------- --------------------
1 Original
2 Original
3 Original

At the point of the UPDATE. When you try to join these two sets together, zero rows
match, so the final table looks like:
Click here to view code image

KeyModifyId Value
----------- --------------------
1 Original
2 Original
3 Original

The message from the UPDATE statement execution: (3 row(s) affected) is actually
returned even if you leave off the UPDATE altogether. So nothing is changed. If it seems
tricky, perhaps it is. However, they are real tables, and the code does work without error.
You just have to work through the solution, regardless of whether it is realistic or not.

Design scalar-valued and table-valued user-defined functions based on
business requirements
User-defined functions are schema-owned objects (in the same name space as tables,
procedures, triggers, etc.) that can be used to encapsulate code in ways that can be used
very naturally in Transact-SQL calls. There are two major kinds of user defined functions:

 Scalar Used to create code that returns a single value of a data type (more than just
integers like STORED PROCEDURES could).
 Table To the user, it appears to be essentially a view that allows you to predefine
parameters that can be used to filter or alter the output.

Each function has different uses, so let’s review them independently.

Need More Review?
Beyond the review in this book, there is excellent information in the MSDN
articles: User-Defined Functions (https://msdn.microsoft.com/en-
us/library/ms191007.aspx and Create User-defined Functions (Database
Engine) (https://msdn.microsoft.com/en-us/library/ms191320.aspx).

Scalar-Valued user-defined functions
Scalar UDFs allow you to encapsulate small amounts of code into a module that can be
called inside of other statements. As a very simple example, the following scalar function

233

https://msdn.microsoft.com/en-us/library/ms191007.aspx
https://msdn.microsoft.com/en-us/library/ms191320.aspx

takes a single value as a parameter and returns it.
Click here to view code image

CREATE FUNCTION Examples.ReturnIntValue
(
 @Value int
)
RETURNS int
AS
 BEGIN
 RETURN @Value
 END;

This can be called in a very similar manner to any system function we have used
previously, for example:
Click here to view code image

SELECT Functions.ReturnIntValue(1) as IntValue;

You can access data in the function code, and they are very similar in structure to
STORED PROCEDURE objects. The code in the FUNCTION has two primary limitations
that make them complex to use.

First, there is no error handling that you can provide. There are runtime errors, such as
those that stop a query from returning rows to occur that can’t be caught during the compile
process. One such example is the divide-by-zero errors. Perform the following query in the
WideWorldImporters database:
Click here to view code image

SELECT OrderId, 1/ (4732-OrderId)
FROM Sales.Orders;

You then see multiple rows returned and a divide-by-zero error. The same sort of issues
occur with a scalar UDF, in that the errors come as data is being returned, not like you saw
when creating STORED PROCEDURE objects. You cannot perform a THROW or
RAISERROR statement to cause an error message to occur. Any error handling that you
implement needs to be an understanding with the user of the function of the illegal value,
like a negative, or NULL value.

Second, you may not make any side effects from the function. So you have no INSERT,
UPDATE, or SELECT statements that modify tables other than a table variable (Of the
form: DECLARE @table table(column datatype), which we use later in the table valued
function code. They are available in scalar UDFs, but arern’t typical, nor do any use of
system functions change data.

Note that we did not use SET NOCOUNT ON, because that is considered a side-
effecting function, even if it is simply for the scope of the object. BEGIN and END are

234

required around the body of the code, and you must have a RETURN statement that returns
a value of the data type that matches the RETURNS clause.

It is allowable to access a table in your scalar functions. For example, still in the
WideWorldImporters database, if you have a business requirement to implement a scalar
UDF, the user can give them the number of orders for a Customer. Optionally, for a specific
OrderDate, you can write the function shown in Listing 2-17.

LISTING 2-17 Scalar function that accesses a table

Click here to view code image

CREATE FUNCTION Sales.Customers_ReturnOrderCount
(
 @CustomerID int,
 @OrderDate date = NULL
)
RETURNS INT
WITH RETURNS NULL ON NULL INPUT, --if all parameters NULL,
return NULL immediately
 SCHEMABINDING --make certain that the tables/columns
referenced cannot change
AS
 BEGIN
 DECLARE @OutputValue int

 SELECT @OutputValue = COUNT(*)
 FROM Sales.Orders
 WHERE CustomerID = @CustomerID
 AND (OrderDate = @OrderDate
 OR @OrderDate IS NULL);

 RETURN @OutputValue
 END;

Using parameters of a FUNCTION object differs from using a STORED PROCEDURE,
in that you can’t use named parameters, and you can’t skip parameters that have defaults.
For example, to use this function you might code the following:
Click here to view code image

SELECT Sales.Customers_ReturnOrderCount(905, '2013-01-01');

This tells you that this customer has two orders for that day. To use the default parameter,
you need to use the DEFAULT keyword:
Click here to view code image

235

SELECT Sales.Customers_ReturnOrderCount(905, DEFAULT);

While this can be quite useful, using functions in a query tends to cost more to perform
over more direct manners. Consider the following two queries:
Click here to view code image

SELECT CustomerID, Sales.Customers_ReturnOrderCount(905,
DEFAULT)
FROM Sales.Customers;

SELECT CustomerID, COUNT(*)
FROM Sales.Orders
GROUP BY CustomerID;

If you compare the plans, the first plan (which looks very complex graphically) is 3
percent of the cost of the two queries. The second query’s plan is very simple-looking, but
at 97 percent of the cost, it seems the hands down winner is the FUNCTION. But using
SET STATISTICS ON you discover why.

Query using the FUNCTION:
Click here to view code image

Table 'Worktable'. Scan count 0, logical reads 0, physical
reads
Table 'Customers'. Scan count 1, logical reads 4, physical
reads
 SQL Server Execution Times:
 CPU time = 375 ms, elapsed time = 439 ms.

Query using the SELECT with the GROUP BY:
Click here to view code image

Table 'Orders'. Scan count 1, logical reads 191, physical reads
0
SQL Server Execution Times:
 CPU time = 16 ms, elapsed time = 34 ms.

The GROUP BY query looks far worse, but performs over 10 times faster. However, we
know that the function is accessing the Orders table, and that information is missing. The
same is true in the plan. The code in the scalar UDF is not represented in a straightforward
manner in the plan either.

The most common use case for scalar UDFs is to format some data in a common manner.
For example, say you have a business need to format a value, such as the
CustomerPurchaseOrderNumber in the Sales.Orders table in WideWorldImporters in a
given way, and in multiple locations. In this case we just right pad the data to eight
characters, and prepend ‘CPO’ to the number. For this you can write an expression in the

236

SELECT clause:
Click here to view code image

SELECT N'CPO' + RIGHT(N'00000000' +
CustomerPurchaseOrderNumber,8)
FROM WideWorldImporters.Sales.Orders;

Now, if you need to use this in multiple places, you can fold that expression into a scalar
USER DEFINED FUNCTION object, like so:
Click here to view code image

CREATE FUNCTION Sales.Orders_ReturnFormattedCPO
(
 @CustomerPurchaseOrderNumber nvarchar(20)
)
RETURNS nvarchar(20)
WITH RETURNS NULL ON NULL INPUT,
 SCHEMABINDING
AS
 BEGIN
 RETURN (N'CPO' + RIGHT(N'00000000' +
@CustomerPurchaseOrderNumber,8));
 END;

Now you can write:
Click here to view code image

SELECT Sales.Orders_ReturnFormattedCPO('12345') as
CustomerPurchaseOrderNumber;

This then returns:

CustomerPurchaseOrderNumber

CPO00012345

Note that this, too, has performance implications that are not quite as obvious as the
function that accesses a table. First, you never want to use this to format a column in a
WHERE clause:
Click here to view code image

SELECT OrderId
FROM Sales.Orders
WHERE Sales.Orders_ReturnFormattedCPO(CustomerPurchaseOrderNumber)
= 'CPO00019998';

In the best case, this scans an index that contains CustomerPurchaseOrder, but in the
worst case it scans the entire base table structure. Note that this is true of any system

237

function as well, so it is not really just a general rule of thumb that any column values that
are formatted in any clause other than the SELECT clause may be cause for concern with
performance.

However, even in the SELECT clause, there is some overhead with using a scalar UDF:
Click here to view code image

SET STATISTICS TIME ON;
SELECT
Sales.Orders_ReturnFormattedCPO(CustomerPurchaseOrderNumber)
FROM Sales.Orders;

SELECT N'CPO' + RIGHT(N'00000000' +
[CustomerPurchaseOrderNumber],8)
FROM WideWorldImporters.Sales.Orders;

In this test, the function version took 188 ms of CPU time, and the expression only 15ms.
So whether or not it is worth it to use a scalar UDF is a personal preference. So, an exam
question about scalar functions can be about what you include in the function, or it can ask
you to predict the better-performing statement and/or why it might be the case.

Table-Valued user-defined functions
Table-Valued UDFs are used to present a set of data as a table, much like a view. In fact,
they are generally thought of as views with parameters (or parameterized views.) There
are two kinds of table-valued UDFs:

 Simple Consisting of a single Transact-SQL query, simple table-valued UDFs work
very much like a VIEW.
 Multi-Statement Consists of as many statements as you need, allowing you to build
a set of data using the same logic as you had in scalar UDFs, but returning a table
instead of a scalar variable.

For these examples, use the same requirements used in our scalar example, returning the
number of sales for a given customer, and optionally on a given day. In addition, add a
requirement to determine if they have any backorders on that day.

Starting with the simple table-valued UDF, the basics of the object is, just like a VIEW, a
single SELECT query. As such, there is not a performance penalty in using a table-valued
USER DEFINED FUNCTION versus a VIEW, depending on how you use it (which can
also be said about how VIEW objects are used.):
Click here to view code image

CREATE FUNCTION Sales.Customers_ReturnOrderCountSetSimple
(
 @CustomerID int,
 @OrderDate date = NULL

238

)
RETURNS TABLE
AS
RETURN (SELECT COUNT(*) AS SalesCount,
 CASE WHEN MAX(BackorderOrderId) IS NOT NULL
 THEN 1 ElSE 0 END AS HasBackorderFlag
 FROM Sales.Orders
 WHERE CustomerID = @CustomerID
 AND (OrderDate = @OrderDate
 OR @OrderDate IS NULL));

The syntax is pretty self-explanatory, you just declare that you are returning a table, and
in the RETURN clause (no BEGIN and END), you put the query with the parameters used
as you desire. Usage is much like a view, only you have parameters you need to include:
Click here to view code image

SELECT *
FROM Sales.Customers_ReturnOrderCountSetSimple(905,'2013-01-
01');

This returns the following set:
Click here to view code image

SalesCount HasBackorderFlag
----------- ----------------
2 1

And to default a parameter, you use the DEFAULT keyword as before:
Click here to view code image

SELECT *
FROM Sales.Customers_ReturnOrderCountSetSimple(905,DEFAULT);

This returns:
Click here to view code image

SalesCount HasBackorderFlag
----------- ----------------
125 1

Now you can use it in a query to get both calculated values by joining using the OUTER
APPLY join operator, which applies column values from the left input as parameters into
the right (you can also use literals):
Click here to view code image

SELECT CustomerId, FirstDaySales.SalesCount,
FirstDaySales.HasBackorderFlag

239

FROM Sales.Customers
 OUTER APPLY Sales.Customers_ReturnOrderCountSetSimple
 (CustomerId, AcountOpenedDate) as
FirstDaySales
WHERE FirstDaySales.SalesCount > 0;

There are two APPLY operator versions. OUTER APPLY returns every row from the
left input, while CROSS APPLY only returns rows where there is a match in the right input.
Performing this query returns the following abridged output:
Click here to view code image

CustomerId SalesCount HasBackorderFlag
----------- ----------- ----------------
10 2 1
57 1 0
...
995 2 1
1000 2 1

For a multi-statement table-valued UDF, the syntax is quite different. You define the
output specifically by declaring a table variable, and then by loading it. The following
code in Listing 2-18 returns the exact same base query used in the simple version of the
function.

LISTING 2-18 Multi-statement table-valued function that accesses a table

Click here to view code image

CREATE FUNCTION Sales.Customers_ReturnOrderCountSetMulti
(
 @CustomerID int,
 @OrderDate date = NULL
)
RETURNS @OutputValue TABLE (SalesCount int NOT NULL,
 HasBackorderFlag bit NOT NULL)
AS
 BEGIN
 INSERT INTO @OutputValue (SalesCount, HasBackorderFlag)
 SELECT COUNT(*) as SalesCount,
 CASE WHEN MAX(BackorderOrderId) IS NOT NULL
 THEN 1 ElSE 0 END AS
HasBackorderFlag
 FROM Sales.Orders
 WHERE CustomerID = @CustomerID
 AND (OrderDate = @OrderDate
 OR @OrderDate IS NULL)

240

 RETURN;
END;

Multi-statement table-valued UDFs are always slower than equivalent simple ones. If
you compare the plan and STATISTICS TIME output of the two queries, you see very
similar issues with multi-statement table-valued UDFs, as there was with scalar UDFs that
accessed tables. Compare the following two calls
Click here to view code image

SET STATISTICS TIME ON;
SELECT CustomerId, FirstDaySales.SalesCount,
FirstDaySales.HasBackorderFlag
FROM Sales.Customers
 OUTER APPLY Sales.Customers_ReturnOrderCountSetSimple
 (CustomerId, AccountOpenedDate) as
FirstDaySales
WHERE FirstDaySales.SalesCount > 0;

SELECT CustomerId, FirstDaySales.SalesCount,
FirstDaySales.HasBackorderFlag
FROM Sales.Customers
 OUTER APPLY Sales.Customers_ReturnOrderCountSetMulti
 (CustomerId, AccountOpenedDate) as
FirstDaySales
WHERE FirstDaySales.SalesCount > 0;

Note that the first plan that uses the simple form, is considered 89 percent of the cost.
Yet when you look at the execution time, it takes twice as long. This is because the simple
form is optimized like a VIEW object, incorporating the DDL of the object into the query
plan, but the multi-statement form hides the costs of the coded object.

Identify differences between deterministic and non-deterministic functions
The term deterministic is a mathematics term that indicates that a system or equation that
always returns the same value. This is important when building a FUNCTION, because the
query optimizer can know that if one use of FUNCTION(1) returns 2, then the second
performance of FUNCTION(1) returns 2.

In the system functions, some examples of deterministic functions are ABS, which
returns the absolute value of a number, and YEAR, which returns the year from a date
value. Functions that are not deterministic include SYSDATETIME(), which returns the
current date and time, and NEWID(), which returns a new GUID value. For more
information about deterministic and non-deterministic functions, the following MSDN
article provides more details and functions https://msdn.microsoft.com/en-
us/library/ms178091.aspx. The basic criteria is that the USER DEFINED FUNCTION is

241

https://msdn.microsoft.com/en-us/library/ms178091.aspx

declared as WITH SCHEMABINDING, accesses no external data, and uses no non-
deterministic system functions.

One place this is important is when you are using a value in an index, either in a VIEW
object or computed column in a TABLE object. So, when building functions, it is generally
important to make your function deterministic. For example, consider the requirement you
might have to build a function that proper cases a value by making the first letter in every
word uppercase. Listing 2-19 includes a version of a function that does this.

LISTING 2-19 Slightly complex scalar function to demonstrate determinism

Click here to view code image

CREATE FUNCTION Examples.UpperCaseFirstLetter
(
 @Value varchar(50)
)
RETURNS nvarchar(50)
WITH SCHEMABINDING
AS
BEGIN
 --start at position 2, as 1 will always be uppercase if it
exists
 DECLARE @OutputValue nvarchar(50), @position int = 2,
@previousPosition int
 IF LEN(@Value) = 0 RETURN @OutputValue;
 --remove leading spaces, uppercase the
first character
 SET @OutputValue =
(LTRIM(CONCAT(UPPER(SUBSTRING(@Value,1,1)),
 LOWER(SUBSTRING(@Value,2,99)))));
 --if no space characters, exit
 IF CHARINDEX(' ',@OutputValue,1) = 0 RETURN @OutputValue;
 WHILE 1=1
 BEGIN
 SET @position = CHARINDEX(' ',@outputValue,@position) +
1
 IF @position < @previousPosition or @position = 0
 BREAK;
 SELECT @OutputValue =
CONCAT(SUBSTRING(@OutputValue,1,@position - 1),
 UPPER(SUBSTRING(@OutputValue,@position,1)),
 SUBSTRING(@OutputValue,@position
+ 1,50)),
 @PreviousPosition = @Position
 END
 RETURN @OutputValue

242

END;

You can run it as:
Click here to view code image

SELECT Examples.UpperCaseOnlyFirstLetter(N'NO MORE YELLING') as
Name;

This returns:
Click here to view code image

Name
--
No More Yelling

To determine if the FUNCTION is deterministic, use the OBJECTPROPERTY()
function:
Click here to view code image

SELECT
OBJECTPROPERTY(OBJECT_ID('Examples.UpperCaseFirstLetter'),
'IsDeterministic')
 AS
IsDeterministic

No matter how complex it appears, since we did not use external data or non-
deterministic system functions, and used WITH SCHEMABINDING, we discover it is
deterministic:

IsDeterministic

1

For a non-deterministic example, consider the following function that gives you the start
of the current month. It does this by using the SYSDATETIME() system function, which is
non-deterministic:
Click here to view code image

CREATE FUNCTION Examples.StartOfCurrentMonth
()
RETURNS date
WITH SCHEMABINDING
AS
 BEGIN
 RETURN (DATEADD(day, 0, DATEDIFF(day, 0, SYSDATETIME()) -
 DATEPART(DAY,SYSDATETIME())
+ 1));

243

 END;

And, we test if it is deterministic:
Click here to view code image

SELECT
OBJECTPROPERTY(OBJECT_ID('Examples.StartOfCurrentMonth'),
'IsDeterministic')
 AS
IsDeterministic

As expected, this function is not deterministic. While it might seem the case,
determinism is not limited to scalar UDFs. Table-valued functions can be deterministic as
well. Consider the following multi-statement table-valued UDF. It declares a table, loads it
from a simple row constructor of 10 values, and returns the following:
Click here to view code image

CREATE FUNCTION Examples.ReturnOneToTenSet
()
RETURNS @OutputTable TABLE (I int)
WITH SCHEMABINDING
AS
 BEGIN
 INSERT INTO @OutputTable(I)
 VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10);

 RETURN;
 END;

Checking this function, you see that it is deterministic :
Click here to view code image

SELECT OBJECTPROPERTY(OBJECT_ID('Examples.ReturnOneToTenSet'),
'IsDeterministic')
 AS
IsDeterministic;

Chapter summary
 There are several types of constraints that you can use to help ensure data integrity in
a database:
 PRIMARY KEY Used to specify the primary uniqueness criteria for a table.
 UNIQUE Used to enforce any additional uniqueness criteria other than the
PRIMARY KEY constraint
 FOREIGN KEY Enforces relationships between tables, making sure references
exist. Usually references the PRIMARY KEY constraint, but can reference a

244

UNIQUE constraint as well.
 CHECK Allows you to declaratively specify Boolean predicates that must not be
FALSE.
 DEFAULT Guides the user’s input when there isn’t necessary a simple choice for a
value.

 NULL values are complicated with constraints. In UNIQUE constraints, they are
treated as unique values. In CHECK constraints, they always pass the test unless
explicitly tested for. For FOREIGN KEY constraints, they are always allowed, even
if it is only one NULL column value in a composite key.
 There are two main ways to pick which columns to place a PRIMARY KEY
constraint. Using a natural key, or a value from the logical group of attributes is one
way. A very typical implementation is to use a surrogate key, usually some artificial
value like an auto-generated value.
 STORED PROCEDURE objects are modules that allow you to create custom code
that is performed together. A query plan is saved off with the stored procedure that is
parameterized much easier than an ad-hoc batch of Transact-SQL.
 Using STORED PROCEDURE objects for building a coded interface to Transact-
SQL objects allows programmers to do simple tasks in a manner similar to
procedural programming languages.
 Use table-valued parameters to send a STORED PROCEDURE object many rows at
a time, allowing you to create complex objects in single STORED PROCEDURE
calls.
 For error handling, using the TRY...CATCH construct allows you to capture errors
thrown by Transact-SQL statements. You can use THROW and RAISERROR to
throw your own error messages. Unhandled THROW statements stop the batch from
running, RAISERROR does not.
 TRIGGER objects can be used to react to different actions on the server. There are
three kinds of triggers:
 DML Used to enhance data integrity with access to more data than CHECK
constraints, cascade modifications with more control than FOREIGN KEY
constraints, and manipulate the data that is being inserted and updated into a table.
There are INSTEAD OF triggers where you have to redo the action, and AFTER
triggers that fire after the operation.
 DDL Used to capture and react to server or database level DDL statements.
 Logon Used to take some action when a server principal accesses the server.

 USER DEFINED FUNCTION objects allow you to build modules that are used in
other Transact-SQL statement in the same way a table or a system function is. There
are two kinds: table-valued and scalar.

245

Thought Experiment
In this thought experiment, demonstrate your skills and knowledge of the topics covered in
this chapter. You can find answers in the next section. You have been assigned to implement
a database for Trey Research, capturing details of the subjects they use in their research.
The following list is a set of tasks that needs to be completed in the implementation.
Determine what tool you can use from all of the ones we have discussed here in this
chapter, and consider writing an example to make sure you understand the concepts.

 Users provide an email address when they sign up. However, sometimes the same
person creates multiple accounts with the same email address, causing issues with
the validity of a research results set.
 You have a stored procedure that needs to run three INSERT statements, the first two
of which should all complete or all not complete. The fifth should run no matter what,
succeeding/failing independently. How would you code this?
 In the RecipientType column in the Recipient table, there have been values entered
like “Dunno” and “Whatever,” which are not valid types of recipients. How can you
make sure that the column does not include values that it should not?
 You need to make sure that a column that contains an offer code is always five
characters long and uppercase. What tool (or tools) will you use to make sure that the
string value is all uppercase letters, and how?
 You have given users rights to add indexes to a certain database, but you want to
make sure that no indexes are added from 8:00AM to 10:00AM.
 You are building a complex stored procedure that can take 10-20 seconds for each
execution, and much longer if the @checkAll parameter has a NULL value, a value it
should never have.

Though Experiment Answer
This section contains the solution to the thought experiment. Each answer explains why the
answer choice is correct. Users provide an email address when they sign up. However,
sometimes the same person creates multiple accounts with the same email address, causing
issues with the validity of a research results set.

 For this need, you want to use a UNIQUE constraint on an EmailAddress column
of the table where you define a participant for the survey questions. For example,
the partial table was originally created:

Click here to view code image

CREATE TABLE Examples.Respondent
(

 RespondentId int NOT NULL CONSTRAINT PKRespondent
PRIMARY KEY,

246

 EmailAddress nvarchar(500) NOT NULL
);

 Adding the following constraint prevents the issue with duplicated data:
Click here to view code image

ALTER TABLE Examples.Respondent
 ADD CONSTRAINT AKRespondent UNIQUE (EmailAddress);

 You have a stored procedure that needs to run three INSERT statements, the first two
of which should all complete or all not complete. The third INSERT should run no
matter what, succeeding/failing independently. How do you code this?
Say you have the following simple table:

Click here to view code image

CREATE TABLE Examples.ThreeInsert
(
 ThreeInsertId int CONSTRAINT PKThreeInsert PRIMARY
KEY
);

 You can code something like the following. In code destined for production work,
you likely want to code nested TRY...CATCH blocks, and save the error messages
from the first two INSERT statements in variables to throw at the end.

Click here to view code image

CREATE PROCEDURE Examples.ThreeInsert_Create
 @SecondValue int = 2 --Pass in 1 to and no data
is inserted

AS
 SET NOCOUNT ON;
 BEGIN TRY
 BEGIN TRANSACTION;
 INSERT INTO Examples.ThreeInsert (ThreeInsertId)
 VALUES (1);
 INSERT INTO Examples.ThreeInsert (ThreeInsertId)
 VALUES (@SecondValue);
 COMMIT TRANSACTION;
 END TRY
 BEGIN CATCH
 IF XACT_STATE() <> 0
 ROLLBACK TRANSACTION;
 --No THROW will mean no reporting of message
 END CATCH;

 INSERT INTO Examples.ThreeInsert (ThreeInsertId)

247

 VALUES (3);

 In the RecipientType column in the Recipient table, there have been values entered
like “Dunno” and “Whatever,” which are not valid types of recipients. How can you
make sure that the column does not include values that it should not?
 This was a bit of a tricky question, but the true answer to the question as written is
that you can’t defend against an unknown entry, without a specific domain of legal
values. It would be possible to create a CHECK constraint that has a predicate of
(RecipientType NOT IN (‘Dunno’,’Whatever’)) and you have stopped two values,
but not all of them.
 After defining the legal values, say: ‘Regular,’ ‘Special Handling;’ you can then
handle this in one of two ways. Consider the following partial table:

Click here to view code image

CREATE TABLE Examples.Recipient
(
 RecipientType varchar(30) NOT NULL
);

 You can add a CHECK constraint such as:
Click here to view code image

ALTER TABLE Examples.Recipient
 ADD CONSTRAINT CHKRecipient_RecipientType
 CHECK (RecipientType IN ('Regular','Special
Handling'));

 An alternate solution is to use a domain TABLE object with a FOREIGN KEY
constraint, such as:

Click here to view code image

CREATE TABLE Examples.RecipientType
(
 RecipientType varchar(30) NOT NULL CONSTRAINT
PKRecipientType PRIMARY KEY
);

INSERT INTO Examples.RecipientType(RecipientType)
VALUES ('Regular'),('Special Handling');

ALTER TABLE Examples.Recipient
 ADD CONSTRAINT FKRecipient_Ref_ExamplesRecipientType
 FOREIGN KEY (RecipientType) REFERENCES Examples.
RecipientType(RecipientType);

 You need to make sure that the offer code column is always uppercase, what tool (or

248

tools) would you use to make sure that the string value is all uppercase letters, and
how?
 For this question, there are two answers that would equally achieve the goal of
making sure the string value is all uppercase letters. For example, consider the
following table:

Click here to view code image

CREATE TABLE Examples.Offer
(
 OfferCode char(5) NOT NULL
);

 Consider using an INSTEAD OF TRIGGER object. When you are doing the
INSERT and UPDATE operations, you force the value to be uppercase; after
making sure all of the characters are letters. The following is the INSERT trigger.

Click here to view code image

CREATE TRIGGER Examples.Offer_TriggerInsteadOfInsert
ON Examples.Offer
INSTEAD OF INSERT AS
BEGIN
 SET NOCOUNT ON;
 SET ROWCOUNT 0; --in case the client has modified the
rowcount
 BEGIN TRY
 IF EXISTS (SELECT *
 FROM inserted
 WHERE OfferCode NOT LIKE '[A-Z][A-Z][A-
Z][A-Z][A-Z]')
 THROW 50000,'An OfferCode is not all alpha
characters',1;

 --skip columns to automatically set
 INSERT INTO Examples.Offer (OfferCode)
 SELECT UPPER(OfferCode)
 FROM inserted
 END TRY
 BEGIN CATCH
 IF XACT_STATE() <> 0
 ROLLBACK TRANSACTION;
 THROW; --will halt the batch or be caught by the
caller's catch block
 END CATCH
END;

 Another method is actually to use a CHECK constraint. The requirement is to make

249

sure the string is all uppercase coming from the user. You can do this by using an
expression with a case sensitive or binary collation. To determine the collation of
your database, you can check sys.databases:

Click here to view code image

SELECT collation_name
FROM sys.databases
WHERE database_id = DB_ID();

 This returns:

collation_name

Latin1_General_100_CI_AS

 Change it to CS for the case sensitive version of Latin1_General_100 and use this
in the CHECK constraint:

Click here to view code image

ALTER TABLE Examples.Offer
 ADD CONSTRAINT CHKOffer_OfferCode
 CHECK (OfferCode LIKE '[A-Z][A-Z][A-Z][A-Z][A-Z]'
 COLLATE
Latin1_General_100_CS_AS);

 You have given user rights to add indexes to a certain database, but you want to make
sure that no indexes are added from 8:00AM to 10:00AM.
 Use a DDL Trigger, such as the following. Casting SYSDATETIME() as time gives
us the time of day:

Click here to view code image

CREATE TRIGGER DatabaseChanges_DDLTrigger
ON DATABASE
WITH EXECUTE AS 'Exam762Examples_DDLTriggerLogging'
FOR CREATE_INDEX
AS
 SET NOCOUNT ON;
 IF CAST(SYSDATETIME() AS time) >= '08:00:00'
 AND CAST(SYSDATETIME() AS time) < '10:00:00'

 THROW 50000,'No indexes may be added between 8 and 10
AM',1;

 You are building a complex stored procedure that can take 10-20 seconds for each
execution, and much longer if the @checkAll parameter has a NULL value, a value it
should never have.

250

 For this, in the body of your STORED PROCEDURE, you would include a check
for the parameter:

Click here to view code image

IF @checkAll IS NULL
 THROW 50000,'The value of @checkAll may not be
NULL',1;

251

Chapter 3. Manage database concurrency

In a typical environment, a database receives multiple requests to perform an operation and
often these requests can occur concurrently. As an administrator, you must understand how
SQL Server handles these requests by default and the available options for changing this
default behavior. Your overarching goal is to prevent unexpected results, while enabling as
many processes as possible.

The 70-762 exam tests your skills related to this goal of managing database concurrency.
Here in Skill 3.1, we review the basic properties and behaviors of transactions in SQL
Server and the role of transactions in high-concurrency databases. Skill 3.2 addresses the
available options for managing concurrency in SQL Server by using isolation levels and
explores in detail the differences between isolation levels as well as the effect each
isolation level has on concurrent transactions, system resources, and overall performance.
Then in Skill 3.3 we explore the tools at your disposal to better understand locking
behavior in SQL Server and the steps you can take to remediate deadlocks. Skill 3.4
introduces memory-optimized tables as another option for improving concurrency by
explaining the use cases for which this approach is best, how to optimize performance
when tables are held in memory instead of on disk, and considerations for using and
analyzing performance of natively compiled stored procedures.
Skills in this chapter:

 Implement transactions
 Manage isolation levels
 Optimize concurrency and locking behavior
 Implement memory-optimized tables and native stored procedures

Skill 3.1: Implement transactions
SQL Server protects data integrity by using transactions to control how, when, or even
whether data changes in a database. A transaction is a unit of work consisting of one or
more read and write commands that SQL Server executes completely or not at all. In the
exam, you must be able to recognize scenarios in which transactions can complete
successfully or not, and know how to use T-SQL statements to manage transaction behavior.
You must also understand potential problems with transactions executing concurrently and
how SQL Server uses locks to mitigate these problems.

This section covers how to:
 Identify DML statement results based on transaction behavior
 Recognize differences between and identify usage of explicit and implicit
transactions

252

 Implement savepoints within transactions
 Determine the role of transactions in high-concurrency databases

Identify DML statement results based on transaction behavior
The results of a DML statement depends on transaction behavior. If the transaction
succeeds, then the inserts, the updates, or the deletes that SQL Server executes as part of
that transaction are committed to the database and permanently change the data in the
affected tables. If the transaction fails for any reason, you can cancel or rollback the
transaction to reverse any changes made to the database by the transaction prior to the
failure. SQL Server has various methods for managing transaction behavior, but you also
have options for changing this behavior when writing code to execute transactions.

In this section, we explore the ways that SQL Server supports the following set of
properties collectively known in database theory as ACID to ensure data is protected in
case of system or hardware failure:

 Atomicity An atomic transaction is a set of events that cannot be separated from one
another and must be handled as a single unit of work. A common example is a bank
transaction in which you transfer money from your checking account to your savings
account. A successful atomic transaction not only correctly deducts the amount of the
transfer from one account, but also adds it to the other account. If the transaction
cannot complete all of its steps successfully, it must fail, and the database is
unchanged.
 Consistency When a transaction is consistent, any changes that it makes to the data
conform to the rules defined in the database by constraints, cascades, and triggers
and thereby leave the database in a valid state. To continue the previous example, the
amount removed from your checking account must be the same amount added to your
savings account when the transaction is consistent.
 Isolation An isolated transaction behaves as if it were the only transaction
interacting with the database for its duration. Isolation ensures that the effect on the
database is the same whether two transactions run at the same time or one after the
other. Similarly, your transfer to the savings account has the same net effect on your
overall bank balances whether you were the only customer performing a banking
transaction at that time, or there were many other customers withdrawing, depositing,
or transferring funds simultaneously.
 Durability A durable transaction is one that permanently changes the database and
persists even if the database is shut down unexpectedly. Therefore, if you receive a
confirmation that your transfer is complete, your bank balances remain correct even
if your bank experienced a power outage immediately after the transaction
completed.

253

Note ACID property support
By default, SQL Server guarantees all four ACID properties, although you can
request an alternate isolation level if necessary. We explain isolation levels in
detail in Skill 3.2.

Before we start exploring transaction behavior, let’s set up a new database, add some
tables, and insert some data to establish a test environment as shown in Listing 3-1.

LISTING 3-1 Create a test environment for exploring transaction behavior

Click here to view code image

CREATE DATABASE ExamBook762Ch3;
GO
USE ExamBook762Ch3;
GO
CREATE SCHEMA Examples;
GO
CREATE TABLE Examples.TestParent
(
 ParentId int NOT NULL
 CONSTRAINT PKTestParent PRIMARY KEY,
 ParentName varchar(100) NULL
);

CREATE TABLE Examples.TestChild
(
 ChildId int NOT NULL
 CONSTRAINT PKTestChild PRIMARY KEY,
 ParentId int NOT NULL,
 ChildName varchar(100) NULL
);

ALTER TABLE Examples.TestChild
 ADD CONSTRAINT FKTestChild_Ref_TestParent
 FOREIGN KEY (ParentId) REFERENCES
Examples.TestParent(ParentId);

INSERT INTO Examples.TestParent(ParentId, ParentName)
VALUES (1, 'Dean'),(2, 'Michael'),(3, 'Robert');

INSERT INTO Examples.TestChild (ChildId, ParentId, ChildName)
VALUES (1,1, 'Daniel'), (2, 1, 'Alex'), (3, 2, 'Matthew'), (4,
3, 'Jason');

254

Even a single statement to change data in a table is a transaction (as is each individual
INSERT statement in Listing 3-1). Consider this example:

UPDATE Examples.TestParent
SET ParentName = 'Bob'
WHERE ParentName = 'Robert';

When you execute this statement, if the system doesn’t crash before SQL Server lets you
know that the statement completed successfully, the new value is committed. That is, the
change to the data resulting from the UPDATE statement is permanently stored in the
database. You can confirm the successful change by running the following SELECT
statement.
Click here to view code image

SELECT ParentId, ParentName
FROM Examples.TestParent;

The result of the UPDATE statement properly completed as you can see in the SELECT
statement results.

ParentId ParentName
---------- ------------
1 Dean
2 Michael
3 Bob

Atomicity
The execution of one statement at a time as a transaction does not clearly demonstrate the
SQL Server support for the other ACID properties. Instead, you need a transaction with
multiple statements. To do this, use the BEGIN TRANSACTION (or BEGIN TRAN) and
COMMIT TRANSACTION (or COMMIT TRAN) statements (unless you implement
implicit transactions as we describe in the next section).

You can test atomicity by attempting to update two different tables in the same
transaction like this:
Click here to view code image

BEGIN TRANSACTION;
 UPDATE Examples.TestParent
 SET ParentName = 'Mike'
 WHERE ParentName = 'Michael';

 UPDATE Examples.TestChild
 SET ChildName = 'Matt'
 WHERE ChildName = 'Matthew';
COMMIT TRANSACTION;

255

When the transaction commits, the changes to both tables become permanent. Check the
results with this query:
Click here to view code image

SELECT TestParent.ParentId, ParentName, ChildId, ChildName
FROM Examples.TestParent
 FULL OUTER JOIN Examples.TestChild ON TestParent.ParentId =
TestChild.ParentId;

The transaction updated both tables as you can see in the query results:
Click here to view code image

ParentId ParentName ChildId ChildName
---------- ------------ --------- -----------
1 Dean 1 Daniel
1 Dean 2 Alex
2 Michael 3 Matt
3 Bob 4 Jason

On the other hand, if any one of the statements in a transaction fails, the behavior
depends on the way in which you construct the transaction statements and whether you
change the SQL Server default settings. A common misconception is that using BEGIN
TRANSACTION and COMMIT TRANSACTION are sufficient for ensuring the atomicity
of a transaction. You can test the SQL Server default behavior by adding or changing data
in one statement and then trying to delete a row having a foreign key constraint in another
statement like this:
Click here to view code image

 BEGIN TRANSACTION;
 INSERT INTO Examples.TestParent(ParentId,
ParentName)
 VALUES (4, 'Linda');

 DELETE Examples.TestParent
 WHERE ParentName = 'Bob';
COMMIT TRANSACTION;

In this case, the deletion fails, but the insertion succeeds as you can see by the messages
that SQL Server returns.
Click here to view code image

(1 row(s) affected)
Msg 547, Level 16, State 0, Line 24
The DELETE statement conflicted with the REFERENCE constraint
"FKTestChild_Ref_
TestParent". The conflict occurred in database

256

"ExamBook762Ch3", table "Examples.
TestChild", column 'ParentId'.

The statement has been terminated.

When you check the data again, you see a total of four rows in the Examples.TestParent
table:

ParentId ParentName
---------- ------------
1 Dean
2 Michael
3 Bob
4 Linda

If you want SQL Server to roll back the entire transaction and thereby guarantee
atomicity, one option is to use the SET XACT_ABORT option to ON prior to executing the
transaction like this:
Click here to view code image

 SET XACT_ABORT ON;
 BEGIN TRANSACTION;
 INSERT INTO Examples.TestParent(ParentId, ParentName)
 VALUES (5, 'Isabelle');

 DELETE Examples.TestParent
 WHERE ParentName = 'Bob';
COMMIT TRANSACTION;

In this case, SQL Server rolls back all successfully completed statements in the
transaction and returns the database to its state at the start of the transaction in which only
four rows exist in the Examples.TestParent table as shown in the previous example. The
SET XACT_ABORT option is set to OFF by default, therefore you must enable the option
when you want to ensure that SQL Server rolls back a failed transaction.

What if the error raised is not a constraint violation, but a syntax error? Execute the
following code that first disables the SET XACT_ABORT option (to prove the roll back
works correctly with the default SQL Server setting) and then attempts an INSERT and a
DELETE containing a deliberate syntax error:
Click here to view code image

 SET XACT_ABORT OFF;
 BEGIN TRANSACTION;
 INSERT INTO Examples.TestParent(ParentId, ParentName)
 VALUES (5, 'Isabelle');

 DELETE Examples.TestParent

257

 WHEN ParentName = 'Bob';
COMMIT TRANSACTION;

Although the INSERT is successful and would commit if the subsequent error were a
constraint violation, SQL Server does not commit the insertion, and the database remains in
its original state when it encounters a syntax error in a transaction.

Another option to consider is to explicitly include a roll back instruction in your
transaction by enclosing it in a TRY block and adding a ROLLBACK TRANSACTION (or
ROLLBACK TRAN) statement in a CATCH block:
Click here to view code image

BEGIN TRY
 BEGIN TRANSACTION;
 INSERT INTO Examples.TestParent(ParentId, ParentName)
 VALUES (5, 'Isabelle');

 DELETE Examples.TestParent
 WHERE ParentName = 'Bob';
 COMMIT TRANSACTION;
END TRY
BEGIN CATCH
 IF @@TRANCOUNT > 0 ROLLBACK TRANSACTION;
END CATCH

Because the transaction includes a DELETE statement that fails due to a constraint
violation, the CATCH block is invoked and the transaction rolls back. Therefore, the
Examples.Parent table still contains only four rows.

Notice also in the previous example that the execution of the ROLLBACK
TRANSACTION requires the current status of the transaction (obtained by the
@@TRANCOUNT variable) to be greater than 0, which means that a transaction is active.
We explore the use of this variable in more detail in the section covering implicit and
explicit transactions.

 Exam Tip

For the exam, you should understand how nested transactions interact and how
transactions roll back in the event of failure.

Need More Review? ROLLBACK TRANSACTION statement
For more in-depth information about the ROLLBACK TRANSACTION
statement, see https://msdn.microsoft.com/en-us/library/ms181299.aspx.

258

https://msdn.microsoft.com/en-us/library/ms181299.aspx

Consistency
These last two examples not only demonstrate atomicity compliance in SQL Server, but
also consistency. Another commonly used term for consistency is data integrity. To
preserve data integrity in a database, you cannot remove a row from a table when there is
an existing dependency on that row. Similarly, you cannot add a row to a table having
foreign key constraints without providing a valid foreign key value in the new row. Any
rule that you add to the database as we described in Chapter 2, “Implement
programmability objects,” is enforced by SQL Server to guarantee consistency.

Isolation
Now let’s take a look at how SQL Server handles isolation by default. We explore your
options for managing isolation in detail in Skill 3.2, but for Skill 3.1 you must understand
what happens if you rely on the behavior of READ COMMITTED, the SQL Server default
isolation level. To observe this behavior, set up two separate sessions in SQL Server
Management Studio.

In one session, execute the following statement:
Click here to view code image

BEGIN TRANSACTION;
 INSERT INTO Examples.TestParent(ParentId, ParentName)
 VALUES (5, 'Isabelle');

The omission of the COMMIT statement in this example is deliberate. At this point, the
transaction is still active, but it is not yet committed. Furthermore, the uncommitted
transaction continues to hold a lock on the table preventing any other access to the table as
long as the transaction remains uncommitted.

In the second session, execute the following statement:

SELECT ParentId, ParentName
FROM Examples.TestParent;

When you attempt to read rows from the locked table, the query continues to execute
indefinitely because it is waiting for the transaction in the first session to complete. This
behavior is an example of a write operation blocking a read operation. By default, SQL
Server uses the READ COMMITTED isolation level to protect the transaction by
preventing other operations from returning potentially incorrect results as a result of
reading uncommitted inserts that could later be rolled back. It also insulates the transaction
from premature changes to the values of those inserts by another transaction’s update
operation.

In the first session, end the transaction like this:

COMMIT TRANSACTION;

259

As soon as you commit the transaction, the query in the second session returns five rows
and includes the newly inserted row:

ParentId ParentName
---------- ------------
1 Dean
2 Michael
3 Bob
4 Linda
5 Isabelle

Durability
SQL Server guarantees full transaction durability by default. If the system crashes for some
reason after SQL Server confirms a successful commit, the changes made by the transaction
are visible after the system returns to an operable status even if the transaction operations
had not been written to disk prior to the system failure.

To make this possible, SQL Server uses write-ahead logging to first hold data changes in
a log buffer and then writes the changes to the transaction log on disk when the transaction
commits or if the log buffer becomes full. The transaction log contains not only changes to
data, but also page allocations and de-allocations, and changes to indexes. Each log record
includes a unique log sequence number (LSN) to that every record change that belongs to
the same transaction can be rolled back if necessary.

Once the transaction commits, the log buffer flushes the transaction log and writes the
modifications first to the data cache, and then permanently to the database on disk. A
change is never made to the database without confirming that it already exists in the
transaction log. At that point, SQL Server reports a successful commit and the transaction
cannot be rolled back.

What if a failure occurs after the change is written to the transaction log, but before SQL
Server writes the change to the database? In this case, the data changes are uncommitted.
Nonetheless, the transaction is still durable because you can recreate the change from the
transaction log if necessary.

SQL Server also supports delayed durable transactions, also known as lazy commits. By
using this approach, SQL Server can process more concurrent transactions with less
contention for log IO, thereby increasing throughput. Once the transaction is written to the
transaction log, SQL Server reports a successful transaction and any changes that it made
are visible to other transactions. However, all transaction logs remain in the log buffer
until the buffer is full or a buffer flush event occurs, at which point the transaction is
written to disk and becomes durable. A buffer flush occurs when a fully durable transaction
in the same database commits or a manual request to execute sp_flush_log is successful.

Delayed durability is useful when you are willing to trade potential data loss for
reduced latency in transaction log writes and reduced contention between transactions.

260

Such a trade-off is acceptable in a data warehouse workload that runs batches frequently
enough to pick up rows lost in a previous batch. The eventual resolution of data loss is
acceptable alternative to durability only because the data warehouse is not the system of
record. Delayed durability is rarely acceptable in an online transaction processing (OLTP)
system.

Need More Review? Delayed transaction durability
You can enable a database to support delayed transaction durability and then
force or disable delayed transaction durability at the transaction level as an
option of the COMMIT statement. Although you should understand the concept
and use cases for delayed durability for the exam, you do not need to identify
all the possible options and interactions between database and transaction
settings. However, if you would like more in-depth information about delayed
transaction durability, refer to the MSDN description at
https://msdn.microsoft.com/en-us/library/ms181299.aspx.
For an in-depth assessment of the performance and data loss implications of
delayed transaction durability, see “Delayed Durability in SQL Server 2014”
by Aaron Bertrand at https://sqlperformance.com/2014/04/io-
subsystem/delayed-durability-in-sql-server-2014. Although the article was
written for SQL Server 2014, the principles continue to apply to SQL Server
2016.

Recognize differences between and identify usage of explicit and implicit
transactions
An important aspect of transaction management is knowing which commands are in scope.
That is, you must know which commands are grouped together for execution as a single
transaction. SQL Server supports the following methods for transaction control:

 Auto-commit Any single statement that changes data and executes by itself is
automatically an atomic transaction. Whether the change affects one row or thousands
of rows, it must complete successfully for each row to be committed. You cannot
manually rollback an auto-commit transaction, although SQL Server performs a
rollback if a system failure occurs before the transaction completes.
 Implicit An implicit transaction automatically starts when you execute certain DML
statements and ends only when you use COMMIT TRANSACTION or ROLLBACK
TRANSACTION. However, you must first configure a session to run in implicit
transaction mode by first executing the SET IMPLICIT_TRANSACTIONS ON
statement. After you do this, any of the following statements begin a new transaction:
ALTER TABLE, BEGIN TRANSACTION, CREATE, DELETE, DROP, FETCH,
GRANT, INSERT, OPEN, REVOKE, SELECT (only if selecting from a table),

261

https://msdn.microsoft.com/en-us/library/ms181299.aspx
https://sqlperformance.com/2014/04/io-subsystem/delayed-durability-in-sql-server-2014

TRUNCATE TABLE, and UPDATE.
 Explicit An explicit transaction has a specific structure that you define by using the
BEGIN TRANSACTION at the beginning of the transaction and the COMMIT
TRANSACTION or ROLLBACK TRANSACTION at the end of the transaction.

Need More Review? Batch-scoped transactions
QL Server also supports batch-scoped transactions when Multiple Active
Result Sets (or MARS) is enabled, but you do not need to be familiar with this
topic for the exam. If you would like to learn more about batch-scoped
transactions, see https://msdn.microsoft.com/en-us/library/ms131686.aspx.

Implicit transactions
Let’s examine the behavior of implicit transactions by executing a series of statements
incrementally. First, enable the implicit transaction mode like this:
Click here to view code image

SET IMPLICIT_TRANSACTIONS ON;

Next, execute an INSERT statement and then check the status of open transactions:
Click here to view code image

INSERT INTO Examples.TestParent(ParentId, ParentName)
VALUES (6, 'Lukas');
SELECT @@TRANCOUNT;

The SELECT statement returns a 1 because SQL Server starts a new transaction when
implicit transactions are enabled and the INSERT statement is executed. At this point, the
transaction remains uncommitted and blocks any readers of the Examples.TestParent table.

Now you can end the transaction, check the status of open transactions, and check the
change to the table by executing the following statements:

COMMIT TRANSACTION;
SELECT @@TRANCOUNT;
SELECT ParentId, ParentName
FROM Examples.TestParent;

The results of the SELECT statements show that the COMMIT statement both ended the
transaction and decremented the @@TRANCOUNT variable and that a new row appears
in the Examples.Parent table:

(No column name)

0

262

https://msdn.microsoft.com/en-us/library/ms131686.aspx

ParentId ParentName
---------- ------------
1 Dean
2 Michael
3 Bob
4 Linda
5 Isabelle
6 Lukas

Important Transaction commitment by SQL Server
It is important to note that the transaction commits not only because the
COMMIT statement is executed, but also because the value of
@@TRANCOUNT is decremented to zero. Only at that time does SQL Server
write log records and commit the transaction.

Now disable the implicit transaction mode:
Click here to view code image

SET IMPLICIT_TRANSACTIONS OFF;

Just as you can see in many of the transaction examples in the previous section, an
implicit transaction can contain one or more statements and ends with an explicit execution
of a COMMIT TRANSACTION or ROLLBACK TRANSACTION statement. Apart from
the absence of a BEGIN TRANSACTION statement, an implicit transaction resembles an
explicit transaction and behaves in the same way as well.

You might use implicit transactions when migrating an application from a different
database platform or when you need to run your application across multiple database
platforms because fewer code changes are required. In most cases, however, best practice
dictates avoiding the use of implicit transactions. When you rely on auto-commit or explicit
transactions instead, changes are committed as quickly as possible and performance is less
likely to be adversely affected.

 Exam Tip

For the exam, it is important to understand the impact of using implicit
transactions. Be sure to review the remarks at “SET
IMPLICIT_TRANSACTIONS (Transact-SQL),”
https://msdn.microsoft.com/en-us/library/ms187807.aspx.

Explicit transactions
When you want complete control over transaction behavior, use an explicit transaction.

263

https://msdn.microsoft.com/en-us/library/ms187807.aspx

You have nothing to configure at the server or database level to enable explicit
transactions. Simply enclose your transaction statements in the BEGIN TRANSACTION
and COMMIT TRANSACTION statements. Furthermore, you should include logic to
handle errors, such as a TRY/CATCH block, as shown in an example in the “Atomicity”
section, or an IF/ELSE construct like this:
Click here to view code image

BEGIN TRANSACTION;
 INSERT INTO Examples.TestParent(ParentId, ParentName)
 VALUES (7, 'Mary');
 DELETE Examples.TestParent
 WHERE ParentName = 'Bob';
IF @@ERROR != 0
 BEGIN
 ROLLBACK TRANSACTION;
 RETURN
END
COMMIT TRANSACTION;

The following commands cannot be used in an explicit transaction:
 ALTER DATABASE
 ALTER FULLTEXT CATALOG
 ALTER FULLTEXT INDEX
 BACKUP
 CREATE DATABASE
 CREATE FULLTEXT CATALOG
 CREATE FULLTEXT INDEX
 DROP DATABASE
 DROP FULLTEXT CATALOG
 DROP FULLTEXT INDEX
 RECONFIGURE
 RESTORE

You can nest explicit transactions, although this capability is not ANSI-standard
transaction behavior. As one example, consider a situation in which you have a set of
statements in a transaction and one of the statements calls a stored procedure that starts its
own transaction. Remember that each BEGIN TRANSACTION increments the
@@TRANCOUNT variable and each COMMIT TRANSACTION decrements it. The
ROLLBACK TRANSACTION resets the variable to zero and rolls back every statement to
the beginning of the first transaction, but does not abort the stored procedure. When
@@TRANCOUNT is zero, SQL Server writes to the transaction log. If the session ends

264

before @@TRANCOUNT returns to zero, SQL Server automatically rolls back the
transaction.

Let’s test this behavior by creating a stored procedure and calling it in a transaction as
shown in Listing 3-2.

LISTING 3-2 Create and execute a stored procedure to test an explicit transaction

Click here to view code image

CREATE PROCEDURE Examples.DeleteParent
 @ParentId INT
AS
 BEGIN TRANSACTION;
 DELETE Examples.TestParent
 WHERE ParentId = @ParentId;
 IF @@ERROR != 0
 BEGIN
 ROLLBACK TRANSACTION;
 RETURN;
 END
 COMMIT TRANSACTION;
GO
BEGIN TRANSACTION;
 INSERT INTO Examples.TestParent(ParentId, ParentName)
 VALUES (7, 'Mary');
 EXEC Examples.DeleteParent @ParentId=3;
IF @@ERROR != 0
 BEGIN
 ROLLBACK TRANSACTION;
 RETURN
END
COMMIT TRANSACTION;
GO

When you execute these statements, several error messages display:
Click here to view code image

(1 row(s) affected)
Msg 547, Level 16, State 0, Procedure DeleteParent, Line 6
[Batch Start Line 16]
The DELETE statement conflicted with the REFERENCE constraint
"FKTestChild_Ref_TestParent". The conflict occurred in database
"ExamBook762Ch3", table
"Examples.TestChild", column 'ParentId'.
The statement has been terminated.

265

Msg 266, Level 16, State 2, Procedure DeleteParent, Line 0
[Batch Start Line 16]
Transaction count after EXECUTE indicates a mismatching number
of BEGIN and COMMIT
statements. Previous count = 1, current count = 0.
Msg 3903, Level 16, State 1, Line 25
The ROLLBACK TRANSACTION request has no corresponding BEGIN
TRANSACTION.

The first transaction begins with an INSERT statement at which point
@@TRANCOUNT is 1. Then the call to the stored procedure results in the start of a
second transaction and increments @@TRANCOUNT to 2. The constraint violation causes
an error that then calls the ROLLBACK TRANSACTION statement, which in turn resets
@@TRANCOUNT to 0 and rolls back the INSERT. The error message regarding the
mismatching transaction count occurs because the @@TRANCOUNT value when the
stored procedure ends no longer matches its value when the stored procedure started. That
error leads to the ROLLBACK TRANSACTION statement in the first transaction.
However, because @@TRANCOUNT is still 0, effectively there is no open transaction
and therefore the message about no corresponding BEGIN TRANSACTION displays.

This situation highlights a potential problem with nested transactions in stored
procedures. If you want each stored procedure to roll back only its own work if it
encounters an error, you should test for an existing transaction, skip the step to begin a new
transaction if one exists, and use a savepoint to roll back the to the start of the current
transaction if an error occurs in the stored procedure. (We discuss savepoints in more
detail in the next section.) Furthermore, the COMMIT statement in the stored procedure
should execute only if the stored procedure starts its own transaction. By storing the
@@TRANCOUNT value in a variable before you execute the remaining stored
procedure’s statements, you can later test whether a transaction existed at the start. If it did
not, the variable’s value is 0 and you can then safely commit the transaction that the stored
procedure started. If a transaction did exist, no further action is required in the stored
procedure.

We can revise the previous example to avoid nesting transactions as shown in Listing 3-
3.

LISTING 3-3 Create a stored procedure that avoids a nested transaction

Click here to view code image

CREATE PROCEDURE Examples.DeleteParentNoNest
 @ParentId INT
AS
 DECLARE @CurrentTranCount INT;
 SELECT @CurrentTranCount = @@TRANCOUNT;

266

 IF (@CurrentTranCount = 0)
 BEGIN TRANSACTION DeleteTran;
 ELSE
 SAVE TRANSACTION DeleteTran;
 DELETE Examples.TestParent
 WHERE ParentId = @ParentId;
 IF @@ERROR != 0
 BEGIN
 ROLLBACK TRANSACTION DeleteTran;
 RETURN;
 END
 IF (@CurrentTranCount = 0)
 COMMIT TRANSACTION;
GO
BEGIN TRANSACTION;
 INSERT INTO Examples.TestParent(ParentId, ParentName)
 VALUES (7, 'Mary');
 EXEC Examples.DeleteParentNoNest @ParentId=3;
IF @@ERROR != 0
 BEGIN
 ROLLBACK TRANSACTION;
 RETURN
END
COMMIT TRANSACTION;
GO

When you execute the statements in Listing 3-3 and then check the table, you find that the
new row is committed in the table and the row with the ParentId value of 3 remains in the
table because the foreign key constraint caused SQL Server to roll back that transaction.

ParentId ParentName
---------- ------------
1 Dean
2 Michael
3 Bob
4 Linda
5 Isabelle
6 Lukas
7 Mary

 Exam Tip

Be sure that you understand when SQL Server increments and decrements
@@TRANCOUNT and how to implement error handling for transactions.

267

The explicit transactions described to this point are all local transactions. Another
option is to execute a distributed transaction when you need to execute statements on more
than one server. To do this, start the transaction with the BEGIN DISTRIBUTED
TRANSACTION and then end it with either COMMIT TRANSACTION or ROLLBACK
TRANSACTION statements. The server on which you execute the distributed transaction
controls the completion of the transaction.

Implement savepoints within transactions
A savepoint is a named location from which a transaction can restart if part of it is
conditionally canceled. That means you can rollback a transaction to a specific savepoint if
a statement does not complete successfully, as shown in the previous example.

When you assign a savepoint name, you should use 32 characters or less. SQL Server
allows you to assign a longer name, but the statement uses only the first 32 characters. Bear
in mind that the savepoint name is case-sensitive even if SQL Server is not configured for
case sensitivity. Another option is to use a variable in the SAVE TRANSACTION
statement, but the data type must be char, varchar, nchar, or nvarchar. If you use the same
savepoint name multiple times in the same transaction, the ROLLBACK TRANSACTION
statement rolls back to the most recent savepoint.

Normally, a ROLLBACK TRANSACTION resets the value of @@TRANCOUNT to 0.
However, when a transaction rolls back to a savepoint, @@TRANCOUNT is not reset.
The SAVE TRANSACTION statement also has no effect on @@TRANCOUNT.

In Listing 3-4, the transaction has multiple savepoints and SELECT statements illustrate
the effect of modifying data, and then rolling back to a specific savepoint.

Listing 3-4 Create a transaction with multiple savepoints

Click here to view code image

BEGIN TRANSACTION;
 INSERT INTO Examples.TestParent(ParentId, ParentName)
 VALUES (8, 'Ed');
 SAVE TRANSACTION StartTran;

 SELECT 'StartTran' AS Status, ParentId, ParentName
 FROM Examples.TestParent;

 DELETE Examples.TestParent
 WHERE ParentId = 7;
 SAVE TRANSACTION DeleteTran;

 SELECT 'Delete 1' AS Status, ParentId, ParentName
 FROM Examples.TestParent;

268

 DELETE Examples.TestParent
 WHERE ParentId = 6;
 SELECT 'Delete 2' AS Status, ParentId, ParentName
 FROM Examples.TestParent;

 ROLLBACK TRANSACTION DeleteTran;
 SELECT 'RollbackDelete2' AS Status, ParentId, ParentName
 FROM Examples.TestParent;

 ROLLBACK TRANSACTION StartTran;
 SELECT @@TRANCOUNT AS 'TranCount';
 SELECT 'RollbackStart' AS Status, ParentId, ParentName
 FROM Examples.TestParent;
COMMIT TRANSACTION;
GO

The queries interspersed throughout this transaction give us visibility into the behavior
of the savepoint and roll back operations:
Click here to view code image

Status ParentId ParentName
--------- ----------- ---

StartTran 1 Dean
StartTran 2 Mike
StartTran 3 Bob
StartTran 4 Linda
StartTran 5 Isabelle
StartTran 6 Lukas
StartTran 7 Mary
StartTran 8 Ed

Status ParentId ParentName
-------- ----------- --

Delete 1 1 Dean
Delete 1 2 Mike
Delete 1 3 Bob
Delete 1 4 Linda
Delete 1 5 Isabelle
Delete 1 6 Lukas
Delete 1 8 Ed

Status ParentId ParentName
-------- ----------- --

269

Delete 2 1 Dean
Delete 2 2 Mike
Delete 2 3 Bob
Delete 2 4 Linda
Delete 2 5 Isabelle
Delete 2 8 Ed

Status ParentId ParentName
--------------- ----------- -----------------------------------

RollbackDelete2 1 Dean
RollbackDelete2 2 Mike
RollbackDelete2 3 Bob
RollbackDelete2 4 Linda
RollbackDelete2 5 Isabelle
RollbackDelete2 6 Lukas
RollbackDelete2 8 Ed

TranCount

1

Status ParentId ParentName
------------- ----------- -------------------------------------

RollbackStart 1 Dean
RollbackStart 2 Mike
RollbackStart 3 Bob
RollbackStart 4 Linda
RollbackStart 5 Isabelle
RollbackStart 6 Lukas
RollbackStart 7 Mary
RollbackStart 8 Ed

The eight rows in the query with status StartTran show the condition of the table after the
INSERT operation and reflects the state of the data for the StartTran savepoint. Next, the
seven rows in the query with status Delete 1 include one less row due to the DELETE
operation. The DeleteTran savepoint includes this version of the table. After another
DELETE operation executes, the query with status Delete 2 returns six rows. The first
ROLLBACK TRANSACTION statement restores the version of data for the DeleteTran
savepoint, and the query with status RollbackDelete2 correctly shows the seven rows prior
to the second DELETE operation. Next, we can see that the @@TRANCOUNT variable at
this point is still 1 because the ROLLBACK TRANSACTION statement did not reset it to
0. Last, another ROLLBACK TRANSACTION returns the table to its earlier state, which
is committed at the end of the transaction.

270

Note Savepoints in distributed transactions
You cannot use savepoints in a distributed transaction beginning from an
explicit BEGIN DISTRIBUTED TRANSACTION statement or a local
transaction escalation.

Determine the role of transactions in high-concurrency databases
A high concurrency database should support a high number of simultaneous processes that
do not interfere with one another while preserving the consistency of the data affected by
those processes. Processes modifying data can potentially adversely affect processes trying
to read or change the same data at the same time. To prevent simultaneous attempts to
change the same data, SQL Server acquires locks for the current transaction, thereby
blocking all other transactions.

Potential problems with concurrent processes
A failure to control concurrency in database can result in a variety of side effects.
Typically, you want to design applications that avoid these problems. In some cases, your
business requirements might allow a behavior. For now, let’s focus on which potential
problems might arise. In Skill 3.2, we explain how to use isolation levels to manage the
behavior of concurrent transactions.

Dirty reads
A dirty read, also known as an uncommitted dependency, can occur when an uncommitted
transaction updates a row at the same time that another transaction reads that row with its
new value. Because the writing transaction is not committed, the row could revert to its
original state and consequently the reading transaction has data that is not valid.

SQL Server does not allow dirty reads by default. However, by controlling the isolation
level of the reading transaction, you can specify whether it reads both uncommitted and
committed data or committed data only.

Non-repeatable reads
A non-repeatable read can occur when data is read more than once within the same
transaction while another transaction updates the same data between read operations. Let’s
say that a transaction reads the current in-stock quantity of a widget from an inventory table
as 5 and continues to perform other operations, which leaves the transaction in an
uncommitted state. During this time, another transaction changes the in-stock quantity of the
widget to 3. Then the first transaction reads the in-stock quantity of the widget again, which
is now inconsistent with the initial value read.

Phantom reads

271

Closely related to a non-repeatable read is a phantom read. This potential problem can
occur when one transaction reads the same data multiple times while another transaction
inserts or updates a row between read operations. As an example, consider a transaction in
which a SELECT statement reads rows having in-stock quantities less than 5 from the
inventory table and remains uncommitted while a second transaction inserts a row with an
in-stock quantity of 1. When the first transaction reads the inventory table again, the number
of rows increases by one. In this case, the additional row is considered to be a phantom
row. This situation occurs only when the query uses a predicate.

Lost updates
Another potential problem can occur when two processes read the same row and then
update that data with different values. This might happen if a transaction first reads a value
into a variable and then uses the variable in an update statement in a later step. When this
update executes, another transaction updates the same data. Whichever of these transactions
is committed first becomes a lost update because it was replaced by the update in the other
transaction. You cannot use isolation levels to change this behavior, but you can write an
application that specifically allows lost updates.

Resource locks
SQL Server locks the minimum number of resources required to complete a transaction. It
uses different types of locks to support as much concurrency as possible while maintaining
data consistency and transaction isolation. The SQL Server Lock Manager chooses the lock
mode and resources to lock based on the operation to be performed, the amount of data to
be affected by the operation, and the isolation level type (described in Skill 3.2). It also
manages the compatibility of locks on the same resources, resolves deadlocks when
possible, and escalates locks when necessary (as described in Skill 3.3).

SQL Server takes locks on resources at several levels to provide the necessary
protection for a transaction. This group of locks at varying levels of granularity is known
as a lock hierarchy and consists of one or more of the following lock modes:

 Shared (S) This lock mode, also known as a read lock, is used for SELECT,
INSERT, UPDATE, and DELETE operations and is released as soon as data has
been read from the locked resource. While the resource is locked, other transactions
cannot change its data. However, in theory, an unlimited number of shared (s) locks
can exist on a resource simultaneously. You can force SQL Server to hold the lock for
the duration of the transaction by adding the HOLDLOCK table hint like this:

Click here to view code image

BEGIN TRANSACTION;
SELECT ParentId, ParentName
FROM Examples.TestParent WITH (HOLDLOCK);
WAITFOR DELAY '00:00:15';

272

ROLLBACK TRANSACTION;

Another way to change the lock’s duration is to set the REPEATABLE_READ or
SERIALIZABLE transaction isolation levels, which we explain in more detail in
Skill 3.2.
 Update (U) SQL Server takes this lock on a resource that might be updated in order
to prevent a common type of deadlocking, which we describe further in Skill 3.3.
Only one update (U) lock can exist on a resource at a time. When a transaction
modifies the resource, SQL Server converts the update (U) lock to an exclusive (X)
lock.
 Exclusive (X) This lock mode protects a resource during INSERT, UPDATE, or
DELETE operations to prevent that resource from multiple concurrent changes.
While the lock is held, no other transaction can read or modify the data, unless a
statement uses the NOLOCK hint or a transaction runs under the read uncommitted
isolation level as we describe in Skill 3.2
 Intent An intent lock establishes a lock hierarchy to protect a resource at a lower
level from getting a shared (S) lock or exclusive (X) lock. Technically speaking,
intent locks are not true locks, but rather serve as an indicator that actual locks exist
at a lower level. That way, another transaction cannot try to acquire a lock at the
higher level that is incompatible with the existing lock at the lower level. There are
six types of intent locks:
 Intent shared (IS) With this lock mode, SQL Server protects requested or
acquired shared (S) locks on some resources lower in the lock hierarchy.
 Intent exclusive (IX) This lock mode is a superset of intent shared (IS) locks that
not only protects locks on resources lower in the hierarchy, but also protects
requested or acquired exclusive (X) locks on some resources lower in the
hierarchy.
 Shared with intent exclusive (SIX) This lock mode protects requested or acquired
shared (S) locks on all resources lower in the hierarchy and intent exclusive (IX)
locks on some resources lower in the hierarchy. Only one shared with intent
exclusive (SIX) lock can exist at a time for a resource to prevent other transactions
from modifying it. However, lower level resources can have intent shared (IS)
locks and can be read by other transactions.
 Intent update (IU) SQL Server uses this lock mode on page resources only to
protect requested or acquired update (U) locks on all lower-level resources and
converts it to an intent exclusive (IX) lock if a transaction performs an update
operation.
 Shared intent update (SIU) This lock mode is a combination of shared (S) and
intent update (IU) locks and occurs when a transaction acquires each lock
separately but holds them at the same time.

273

 Update intent exclusive (UIX) This lock mode results from a combination of
update (U) and intent exclusive (IX) locks that a transaction acquires separately but
holds at the same time.

 Schema SQL Server acquires this lock when an operation depends the table’s
schema. There are two types of schema locks:
 Schema modification (Sch-M) This lock mode prevents other transactions from
reading from or writing to a table during a Data Definition Language (DDL)
operation, such as removing a column. Some Data Manipulation Language (DML)
operations, such as truncating a table, also require a schema modification (Sch-M)
lock.
 Schema stability (Sch-S) SQL Server uses this lock mode during query
compilation and execution to block concurrent DDL operations and concurrent
DML operations requiring a schema modification (Sch-M) lock from accessing a
table.

 Bulk Update (BU) This lock mode is used for bulk copy operations to allow
multiple threads to bulk load data into the same table at the same time and to prevent
other transactions that are not bulk loading data from accessing the table. SQL Server
acquires it when the table lock on bulk load table option is set by using
sp_tableoption or when you use a TABLOCK hint like this:

Click here to view code image

INSERT INTO Examples.TestParent WITH (TABLOCK)
SELECT <columns> FROM <table>;

 Key-range A key-range lock is applied to a range of rows that is read by a query
with the SERIALIZABLE isolation level to prevent other transactions from inserting
rows that would be returned in the serializable transaction if the same query executes
again. In other words, this lock mode prevents phantom reads within the set of rows
that the transaction reads.
 RangeS-S This lock mode is a shared range, shared resource lock used for a
serializable range scan.
 RangeS-U This lock mode is a shared range, update resource lock used for a
serializable update scan.
 RangeI-N This lock mode is an insert range, null resource lock that SQL Server
acquires to test a range before inserting a new key into an index.
 RangeX-X This lock mode is an exclusive range, exclusive resource lock used
when updating a key in a range.

While many locks are compatible with each other, some locks prevent other transactions
from acquiring locks on the same resource, as shown in Table 3-1. Let’s consider a
situation in which one transaction has a shared (S) lock on a row and another transaction is

274

requesting an exclusive (X) lock. In this case, the request is blocked until the first
transaction releases its lock.

TABLE 3-1 Lock compatibility for commonly encountered lock modes

Need More Review? Lock compatibility
For a complete matrix of lock compatibility, see “Lock Compatibility
(Database Engine)” at https://technet.microsoft.com/en-
us/library/ms186396(v=sql.105).aspx.

SQL Server can acquire a lock on any of the following resources to ensure that the user
of that resource has a consistent view of the data throughout a transaction:

 RID A row identifier for the single row to lock within a heap and is acquired when
possible to provide the highest possible concurrency.
 KEY A key or range of keys in an index for a serializable transaction can be locked
in one of two ways depending on the isolation level. If a transaction runs in the
READ COMMITTED or REPEATABLE READ isolation level, the index keys of the
accessed rows are locked. If the table has a clustered index, SQL Server acquires
key locks instead of row locks because the data rows are the leaf-level of the index.
If a transaction runs in the SERIALIZABLE isolation mode, SQL Server acquires
key-range locks to prevent phantom reads.
 PAGE An 8-kilobyte (KB) data or index page gets locked when a transaction reads
all rows on a page or when page-level maintenance, such as updating page pointers
after a page-split, is performed.
 EXTENT A contiguous block of eight data or index pages gets a shared (S) or
exclusive (X) locks typically during space allocation and de-allocation.
 HoBT A heap or B-Tree lock can be an entire index or all data pages of a heap.
 Table An entire table, including both data and indexes, can be locked for SELECT,
UPDATE, or DELETE operations.

275

https://technet.microsoft.com/en-us/library/ms186396(v=sql.105).aspx

 File A database file can be locked individually.
 Application A resource defined by your application can be locked by using
sp_getapplock so that you can lock any resource you want with a specified lock
mode.
 Metadata Any system metadata can be locked to protect system catalog information.
 Allocation unit An database allocation unit used for storage of data can be locked.
 Database An entire database gets a shared (S) lock to indicate it is currently in use
so that another process cannot drop it, take it offline, or restore it.

To increase concurrency, SQL Server uses dynamic lock management. That is, in a large
table for which many row locks are required (as determined by the query optimizer), SQL
Server might instead take a page or table lock at the beginning of a transaction. SQL Server
can also escalate lock modes dynamically during a transaction. For example, if the
transaction initially has a set of row locks, and later requests more row locks, SQL Server
releases the row locks and takes a table lock. This behavior simplifies lock management,
but reduces concurrency.

 Exam Tip

Locks and lock escalation in SQL Server are important concepts covered in
the exam that you should understand thoroughly.

Note Implicit transaction locks
Be aware that when you use implicit transactions, SQL Server holds locks
until you commit the transaction. This behavior can reduce concurrency and
interfere with truncation of the transaction log.

Skill 3.2: Manage isolation levels
SQL Server uses isolation levels to manage conflict between two transactions attempting to
use or change the same data at the same time. Furthermore, because the way in which you
implement transactions impacts database performance, you need to understand the
differences between isolation levels and be familiar with the scenarios with which each is
best suited. Given a scenario in which an isolation level and a set of concurrent queries are
specified, you should be able to predict the outcome of the queries. In addition, you should
understand the types of locks that SQL Server acquires for each isolation level, if
applicable, as well as the effect on other resources, such as tempdb, and the resulting
potential performance impact of using a specific isolation level.

This section covers how to:

276

 Identify differences between isolation levels
 Define results of concurrent queries based on isolation level
 Identify the resource and performance impact of given isolation levels

Identify differences between isolation levels
At one end of the spectrum, SQL Server can protect data completely to prevent one
transaction from seeing the effects of another transaction, while at the other end of the
spectrum, it can give all transactions full access to the data. It does this by using isolation
levels to control whether a lock is acquired during a read, the type of lock, and the duration
of the lock. Isolation levels also determine whether a read operation can access rows that
have been changed by another transaction and whether it can access uncommitted rows.
Additionally, isolation levels block transactions requiring access to a resource with an
exclusive lock.

It is important to note that setting an isolation level does not change the way in which
SQL Server acquires locks. If a transaction modifies data, SQL Server always acquires an
exclusive (X) lock on the data to change, and holds the lock for the duration of the
transaction. The purpose of the isolation levels is to specify how read operations should
behave when other concurrent transactions are changing data.

If you lower the isolation level, you can increase the number of concurrent transactions
that SQL Server processes, but you also increase the risk of dirty reads and other problems
associated with concurrent processes as we described in Skill 3.1. If you raise the
isolation level, you minimize these concurrency problems, but transactions are more likely
to block one another and performance is more likely to suffer. Therefore, you must find the
appropriate balance between protecting data and the effect of each isolation level.

SQL Server supports both pessimistic and optimistic isolation levels for concurrency
management. Pessimistic isolation levels use blocking to avoid conflicts whereas
optimistic isolation levels use snapshots of the data to enable higher concurrency.
Pessimistic isolation levels rely on locks to prevent changes to data during read operations
and to block read operations on data that is being changed by another operation. Optimistic
isolation levels make a copy of data for read operations so that write operations can
proceed unhindered. If SQL Server detects two write operations attempting to modify the
same data at the same time, it returns a message to the application in which there should be
appropriate logic for resolving this conflict.

 Exam Tip

It is important to understand the differences between SQL Server isolation
levels and scenarios for which each is appropriate.

277

Read Committed
READ COMMITTED is the default isolation level for SQL Server. It uses pessimistic
locking to protect data. With this isolation level set, a transaction cannot read uncommitted
data that is being added or changed by another transaction. A transaction attempting to read
data that is currently being changed is blocked until the transaction changing the data
releases the lock. A transaction running under this isolation level issues shared locks, but
releases row or page locks after reading a row. If your query scans an index while another
transactions changes the index key column of a row, that row could appear twice in the
query results if that key change moved the row to a new position ahead of the scan. Another
option is that it might not appear at all if the row moved to a position already read by the
scan.

Read Uncommitted
The READ UNCOMMITTED isolation level is the least restrictive setting. It allows a
transaction to read data that has not yet been committed by other transactions. SQL Server
ignores any locks and reads data from memory. Furthermore, transactions running under
this isolation level do not acquire shared (S) locks to prevent other transactions from
changing the data being read. Last, if a transaction is reading rows using an allocation
order scan when another transaction causes a page split, your query can miss rows. For
these reasons, READ UNCOMMITTED is never a good choice for line of business
applications where accuracy matters most, but might be acceptable for a reporting
application where the performance benefit outweighs the need for a precise value.

Repeatable Read
When you set the REPEATABLE READ isolation level, you ensure that any data read by
one transaction is not changed by another transaction. That way, the transaction can repeat a
query and get identical results each time. In this case, the data is protected by shared (S)
locks. It is important to note that the only data protected is the existing data that has been
read. If another transaction inserts a new row, the first transaction’s repeat of its query
could return this row as a phantom read.

Serializable
The most pessimistic isolation level is SERIALIZABLE, which uses range locks on the
data to not only prevent changes but also insertions. Therefore, phantom reads are not
possible when you set this isolation level. Each transaction is completely isolated from one
another even when they execute in parallel or overlap.

Snapshot
The SNAPSHOT isolation level is optimistic and allows read and write operations to run
concurrently without blocking one another. Unlike the other isolation levels, you must first

278

configure the database to allow it, and then you can set the isolation level for a transaction.
As long as a transaction is open, SQL Server preserves the state of committed data at the
start of the transaction and stores any changes to the data by other transactions in tempdb. It
increases concurrency by eliminating the need for locks for read operations.

Note SNAPSHOT isolation and distributed transactions
You cannot use SNAPSHOT isolation with distributed transactions. In
addition, you cannot use enable it in the following databases: master, msdb,
and tempdb.

Read Committed Snapshot
The READ_COMMITTED_SNAPSHOT isolation level is an optimistic alternative to
READ COMMITTED. Like the SNAPSHOT isolation level, you must first enable it at the
database level before setting it for a transaction. Unlike SNAPSHOT isolation, you can use
the READ_COMMITTED_SNAPSHOT isolation level with distributed transactions. The
key difference between the two isolation levels is the ability with
READ_COMMITTED_SNAPSHOT for a transaction to repeatedly read data as it was at
the start of the read statement rather than at the start of the transaction. When each statement
executes within a transaction, SQL Server takes a new snapshot that remains consistent
until the next statement executes.

You use this isolation level when your application executes a long-running, multi-
statement query and requires the data to be consistent to the point in time that the query
starts. You should also consider using this isolation level when enough read and write
blocking occurs that the resource overhead of maintaining row snapshots is preferable and
there is little likelihood of a transaction rolling back due to an update conflict.

Define results of concurrent queries based on isolation level
To better appreciate the effect of concurrent queries, let’s consider a scenario that involves
two users that are operating on the same data. One user starts executing a query that results
in a full table scan and normally takes several minutes to complete. Meanwhile, a minute
after the read operation begins, the other user updates and commits row in the same table
that has not yet been read by the first user’s query. The rows returned by the first user’s
query depend on the isolation levels set for that user.

Before we look at each isolation level’s effect on this scenario, let’s create a table and
add some data as shown in Listing 3-5.

LISTING 3-5 Create a test environment for testing isolation levels

Click here to view code image

279

CREATE TABLE Examples.IsolationLevels
(
 RowId int NOT NULL
 CONSTRAINT PKRowId PRIMARY KEY,
 ColumnText varchar(100) NOT NULL
);

INSERT INTO Examples.IsolationLevels(RowId, ColumnText)
VALUES (1, 'Row 1'), (2, 'Row 2'), (3, 'Row 3'), (4, 'Row 4');

You use the SET TRANSACTION ISOLATION LEVEL statement when you want to
override the default isolation level and thereby change the way a SELECT statement
behaves with respect to other concurrent operations. It is important to know that this
statement changes the isolation level for the user session. If you want to change the
isolation level for a single statement only, use a table hint instead.

Read Committed
Because this isolation level only reads committed data, dirty reads are prevented.
However, if query reads the same data multiple times, non-repeatable reads or phantom
reads are possible.

Because the READ COMMITTED isolation level is the default, you do not need to
explicitly set the isolation level. However, if you had previously changed the isolation
level for the user session or the database, you can revert it to the default isolation level by
executing the following statement:
Click here to view code image

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

To test the behavior of the READ COMMITTED isolation level, execute the following
statements:
Click here to view code image

BEGIN TRANSACTION;
 UPDATE Examples.IsolationLevels
 SET ColumnText = 'Row 1 Updated'
 WHERE RowId = 1;

In a new session, read the table that you just updated:
Click here to view code image

SELECT RowId, ColumnText
FROM Examples.IsolationLevels;

In this case, the update operation blocks the read operations. Return to the first session

280

and restore the data by rolling back the transaction:

ROLLBACK TRANSACTION;

Now the second session’s read request completes successfully, and the results do not
include the updated row because it was never committed.

RowId ColumnText
------- ------------
1 Row 1
2 Row 2
3 Row 3
4 Row 4

Read Uncommitted
This isolation level allows dirty reads, non-repeatable reads, and phantom reads. On the
other hand, a transaction set to this isolation level executes quickly because locks and
validations are ignored.

Let’s observe this behavior by starting a transaction without committing it:
Click here to view code image

BEGIN TRANSACTION;
 UPDATE Examples.IsolationLevels
 SET ColumnText = 'Row 1 Updated'
 WHERE RowId = 1;

Now open a new session, change the isolation level, and read the table that you just
updated:
Click here to view code image

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT RowId, ColumnText
FROM Examples.IsolationLevels;

The results include the updated row:

RowId ColumnText
------- ------------
1 Row 1 Updated
2 Row 2
3 Row 3
4 Row 4

Return to the first session and roll back the transaction:

ROLLBACK TRANSACTION;

Then in the second session, read the table again:

281

Click here to view code image

SELECT RowId, ColumnText
FROM Examples.IsolationLevels;

Now the results show the data in its state prior to the update that rolled back:

RowId ColumnText
------- ------------
1 Row 1
2 Row 2
3 Row 3
4 Row 4

Rather than change the isolation level at the session level, you can force the read
uncommitted isolation level by using the NOLOCK hint. Repeat the previous example by
using two new sessions to revert to the default isolation level and replacing the statements
in the second session with the following statement:
Click here to view code image

SELECT RowId, ColumnText
FROM Examples.IsolationLevels
WITH (NOLOCK);

Repeatable Read
The behavior of the REPEATABLE READ isolation level is much like that of READ
COMMITTED, except that it ensures that multiple reads of the same data within a
transaction is consistent. Dirty reads and non-repeatable reads are prevented, although
phantom reads are a possible side effect because range locks are not used.

We can see the effects of using REPEATABLE READ by running statements in separate
sessions. Start by adding the following statements in one new session:
Click here to view code image

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN TRANSACTION;
 SELECT RowId, ColumnText
 FROM Examples.IsolationLevels;
 WAITFOR DELAY '00:00:15';
 SELECT RowId, ColumnText
 FROM Examples.IsolationLevels;
ROLLBACK TRANSACTION;

In the second session, add the following statements and then with both sessions visible,
execute both sessions:
Click here to view code image

282

UPDATE Examples.IsolationLevels
 SET ColumnText = 'Row 1 Updated'
 WHERE RowId = 1;

In this case, the first read operations blocks the update operation, which executes when
the first read’s locks are released, the update commits the data change, but the second query
returns the same rows as the first query due to the isolation level of the transaction:

RowId ColumnText
------- ------------
1 Row 1
2 Row 2
3 Row 3
4 Row 4

RowId ColumnText
------- ------------
1 Row 1
2 Row 2
3 Row 3
4 Row 4

If you check the table values again, you can see that the updated row appears in the query
results:

RowId ColumnText
------- ------------
1 Row 1 Updated
2 Row 2
3 Row 3
4 Row 4

Serializable
The SERIALIZABLE isolation level behaves like REPEATABLE READ, but goes one step
further by ensuring new rows added after the start of the transaction are not visible to the
transaction’s statement. Therefore, dirty reads, non-repeatable reads, and phantom reads
are prevented.

Before we see how the SERIALIZABLE isolation level works, let’s look at an example
that produces a phantom read. In one new session, add the following statements:
Click here to view code image

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN TRANSACTION;
 SELECT RowId, ColumnText
 FROM Examples.IsolationLevels;
 WAITFOR DELAY '00:00:15';

283

 SELECT RowId, ColumnText
 FROM Examples.IsolationLevels;
ROLLBACK TRANSACTION;

As in the previous examples, start a new session to insert a row into the same table, and
execute both sessions:
Click here to view code image

INSERT INTO Examples.IsolationLevels(RowId, ColumnText)
VALUES (5, 'Row 5');

In this case, the transaction starts with a read operation and returns four rows, but does
not block the insert operation. The REPEATABLE READ isolation level only prevents
changes to data that has been read, but does not prevent the transaction from seeing the new
row, which is returned by the second query as shown here:

RowId ColumnText
------- ------------
1 Row 1 Updated
2 Row 2
3 Row 3
4 Row 4

RowId ColumnText
------- ------------
1 Row 1 Updated
2 Row 2
3 Row 3
4 Row 4
5 Row 5

Replace the isolation level statement in the first session with this statement to change the
isolation level:
Click here to view code image

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Then create a new session to insert another row:
Click here to view code image

INSERT INTO Examples.IsolationLevels(RowId, ColumnText)
VALUES (6, 'Row 6');

This time because the INSERT operation is blocked by the transaction, both queries
return the same results without the new row.

RowId ColumnText
------- ------------

284

1 Row 1
2 Row 2
3 Row 3
4 Row 4
5 Row 5

RowId ColumnText
------- ------------
1 Row 1
2 Row 2
3 Row 3
4 Row 4
5 Row 5

After the transaction ends, any subsequent queries to the table return six rows. The trade-
off for this consistency during the transaction is the blocking of write operations.

Snapshot
Snapshot Isolation gives you the same data for the duration of the transaction. This level of
protection prevents dirty reads, non-repeatable reads, and phantom reads. As other
transactions update or delete rows, a copy of the modified row is inserted into tempdb.
This row also includes a transaction sequence number so that SQL Server can determine
which version to use for a new transaction’s snapshot. When the new transaction executes a
read request, SQL Server scans the version chain to find the latest committed row having a
transaction sequence number lower than the current transaction. Periodically, SQL Server
deletes row versions for transactions that are no longer open.

To use the SNAPSHOT isolation level, you must first enable it at the database level by
using the following statement:
Click here to view code image

ALTER DATABASE ExamBook762Ch3
SET ALLOW_SNAPSHOT_ISOLATION ON;

Now set the isolation level for the session and start a transaction:
Click here to view code image

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;
 SELECT RowId, ColumnText
 FROM Examples.IsolationLevels;
 WAITFOR DELAY '00:00:15';
 SELECT RowId, ColumnText
 FROM Examples.IsolationLevels;
ROLLBACK TRANSACTION;

285

Then set up a write operation in a new second session:
Click here to view code image

INSERT INTO Examples.IsolationLevels(RowId, ColumnText)
VALUES (7, 'Row 7');

The write operation runs immediately because it is no longer blocked by the read
operations, yet the query results return only the six rows that existed prior to the insertion.

Note SNAPSHOT isolation and tempdb
If you access global temp tables within a transaction set to SNAPSHOT
isolation, you must first enable the ALLOW_SNAPSHOT_ISOLATION
database option for tempdb. As an alternative, you can use a hint to change the
isolation level for the statement.

If you have a transaction that reads from a database that is enabled for SNAPSHOT
isolation and another database that is not enabled, the transaction fails. To execute
successfully, the transaction must include a table hint for the database without SNAPSHOT
isolation level enabled.

Let’s set up another database and a new table as shown in Listing 3-6.

LISTING 3-6 Create a separate for testing isolation levels

Click here to view code image

CREATE DATABASE ExamBook762Ch3_IsolationTest;
GO
USE ExamBook762Ch3_IsolationTest;
GO
CREATE SCHEMA Examples;
GO
CREATE TABLE Examples.IsolationLevelsTest
(RowId INT NOT NULL
 CONSTRAINT PKRowId PRIMARY KEY,
 ColumnText varchar(100) NOT NULL
);
INSERT INTO Examples.IsolationLevelsTest(RowId, ColumnText)
VALUES (1, 'Row 1'), (2, 'Row 2'), (3, 'Row 3'), (4, 'Row 4');

Now try to execute the following transaction that joins the data from the snapshot-
enabled database with data from the other database:
Click here to view code image

286

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;
 SELECT t1.RowId, t2.ColumnText
 FROM Examples.IsolationLevels AS t1
 INNER JOIN
ExamBook762Ch3_IsolationTest.Examples.IsolationLevelsTest AS t2
 ON t1.RowId = t2.RowId;
END TRANSACTION;

SQL Server returns the following error:
Click here to view code image

Msg 3952, Level 16, State 1, Line 5
Snapshot isolation transaction failed accessing database
'ExamBook762Ch3_IsolationTest'
because snapshot isolation is not allowed in this database. Use
ALTER DATABASE to allow
snapshot isolation.

You might not always have the option to alter the other database to enable Snapshot
isolation. Instead, you can change the isolation level of the transaction’s statement to
READ COMMITTED, which allows the transaction to execute successfully:
Click here to view code image

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;
 SELECT t1.RowId, t2.ColumnText
 FROM Examples.IsolationLevels AS t1
 INNER JOIN
ExamBook762Ch3_IsolationTest.Examples.IsolationLevelsTest AS t2
 WITH (READCOMMITTED)
 ON t1.RowId = t2.RowId;
END TRANSACTION;

Another problem that you might encounter when using this isolation level is an update
conflict, which causes the transaction to terminate and roll back. This situation can occur
when one transaction using the SNAPSHOT isolation level reads data that another
transaction modifies and then the first transaction attempts to update the same data. (This
situation does not occur when a transaction runs using the
READ_COMMITTED_SNAPSHOT isolation level.)

A problem can also arise when the state of the database changes during the transaction.
As one example, a transaction set to SNAPSHOT isolation fails when the database is
changed to read-only after the transaction starts, but before it accesses the database.
Likewise, a failure occurs if a database recovery occurred in that same interval. A
database recovery can be caused when the database is set to OFFLINE and then to
ONLINE, when it auto-closes and re-opens, or when an operation detaches and attaches the

287

database.
It is important to know that row versioning applies only to data and not to system

metadata. If a statement changes metadata of an object while a transaction using the
SNAPSHOT isolation level is open and the transaction subsequently references the
modified object, the transaction fails. Be aware that BULK INSERT operations can change
a table’s metadata and cause transaction failures as a result. (This behavior does not occur
when using the READ_COMMITTED_SNAPSHOT isolation level.)

One way to see this behavior is to change an index on a table while a transaction is
open. Let’s first add an index to a table:
Click here to view code image

CREATE INDEX Ix_RowId ON Examples.IsolationLevels (RowId);

Next set up a new transaction:
Click here to view code image

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;
 SELECT RowId, ColumnText
 FROM Examples.IsolationLevels;
 WAITFOR DELAY '00:00:15';
 SELECT RowId, ColumnText
 FROM Examples.IsolationLevels;
ROLLBACK TRANSACTION;

Then set up a second session to change the index by using the following statement and
execute both sessions:
Click here to view code image

ALTER INDEX Ix_RowId
 ON Examples.IsolationLevels REBUILD;

SQL Server returns the following error due to the metadata change:
Click here to view code image

Msg 3961, Level 16, State 1, Line 6
Snapshot isolation transaction failed in database
'ExamBook762Ch3' because the object
accessed by the statement has been modified by a DDL statement
in another concurrent
transaction since the start of this transaction. It is
disallowed because the metadata
is not versioned. A concurrent update to metadata can lead to
inconsistency if mixed
with snapshot isolation.

288

Be sure to disable snapshot isolation after completing the examples in this section:
Click here to view code image

ALTER DATABASE ExamBook762Ch3
SET ALLOW_SNAPSHOT_ISOLATION OFF;

Read Committed snapshot
To use the READ_COMMITTED_SNAPSHOT isolation level, you need only enable it at
the database level by using the following statement:
Click here to view code image

ALTER DATABASE ExamBook762Ch3
SET READ_COMMITTED_SNAPSHOT ON;

With this setting enabled, all queries that normally execute using the READ
COMMITTED isolation level switch to using the READ_COMMITTED_SNAPSHOT
isolation level without requiring you to change the query code. SQL Server creates a
snapshot of committed data when each statement starts. Consequently, read operations at
different points in a transaction might return different results.

During the transaction, SQL Server copies rows modified by other transactions into a
collection of pages in tempdb known as the version store. When a row is updated multiple
times, a copy of each change is in the version store. This set of row versions is called a
version chain.

Let’s see how this isolation level differs from the SNAPSHOT isolation level by setting
up a new session:
Click here to view code image

BEGIN TRANSACTION;
 SELECT RowId, ColumnText
 FROM Examples.IsolationLevels;
 WAITFOR DELAY '00:00:15';
 SELECT RowId, ColumnText
 FROM Examples.IsolationLevels;
ROLLBACK TRANSACTION;

Next, set up a write operation in a new second session, and then execute both sessions:
Click here to view code image

INSERT INTO Examples.IsolationLevels(RowId, ColumnText)
VALUES (8, 'Row 8');

Just as with the SNAPSHOT isolation level, the write operation runs immediately
because read operations are not blocking it. However, each query returns different results
because the statements read different versions of the data.

289

RowId ColumnText
------- ------------
1 Row 1
2 Row 2
3 Row 3
4 Row 4
5 Row 5
6 Row 6
7 Row 7

RowId ColumnText
------- ------------
1 Row 1
2 Row 2
3 Row 3
4 Row 4
5 Row 5
6 Row 6
7 Row 7
8 Row 8

Last, disable the READ_COMMITTED_SNAPSHOT isolation level after completing
this example:
Click here to view code image

ALTER DATABASE Examples
SET READ_COMMITTED_SNAPSHOT OFF;

Identify the resource and performance impact of given isolation levels
The goal of isolation levels is to ensure that queries return complete and consistent results
while other concurrent processes are running. To avoid locking contention and improve
overall performance, you should keep each transaction short and concise so it can execute
quickly while holding the fewest and smallest possible locks.

Read Committed
With this isolation level, SQL Server holds two types of locks. A shared (S) lock is
acquired for read operations and is held only for the duration of that single operation. On
the other hand, an exclusive (X) lock is acquired for a write operation. Any changes to the
data are not visible to other operations for the duration of the write operation’s transaction.

Read Uncommitted
SQL Server ignores existing locks and reads both committed and uncommitted data.
Furthermore, it does not acquire shared locks for read operations. However, schema
modification locks can still block reads.

290

Repeatable Read
SQL Server places Shared (S) locks on the data (and up the lock hierarchy) for the duration
of the transaction. Therefore, reads block write operations in other transactions.
Consequently, SQL Server cannot manage as many concurrent processes and performance
can be adversely impacted as deadlocks can become more frequent.

Serializable
SQL Server locks data for a read operation and also uses key-range locks to prevent any
other transactions from inserting or modifying the data for the duration of a transaction.
This high level of locking reduces concurrency and potentially slows performance due to
locking contention.

Snapshot
No locks are acquired for this isolation level. Consequently, deadlocks and lock
escalations occur less frequently, performance is faster, and concurrency is higher. Read
operations are not blocked by write operations, and write operations are not blocked by
read operations.

On the other hand, these benefits come with an overhead cost. More space is required in
tempdb for row version storage and more CPU and memory is required by SQL Server to
manage row versioning. Update operations might run slower as a result of the extra steps
required to manage row versions. Furthermore, long running read operations can run
slower if many updates or deletes are occurring and increasing the length of the version
chains that SQL Server must scan. You can improve performance by placing tempdb on a
dedicated, high-performance disk drive.

Note SNAPSHOT isolation and tempdb disk space
When using this isolation level, it is important to make sure there is enough
disk space for tempdb. If it runs out of space, update operations can complete
successfully, but the read operations relying on row version might fail.

Read Committed Snapshot
When a new transaction using the READ_COMMITTED_SNAPSHOT isolation level
requests locked data, SQL Server provides a copy of the data. It does not acquire shared
page or row locks. As a consequence, reads do not block write operations and writes do
not block read operations, although writes do require exclusive locks and continue to block
other writes until the end of the transaction. However, because SQL Server removes row
versions from tempdb when a transaction is over, it is possible to experience some
concurrency side effects.

291

Note READ_COMMITTED_SNAPSHOT isolation and tempdb disk space
READ_COMMITTED_SNAPSHOT uses less tempdb space than snapshot
isolation, but it is still important to ensure tempdb has enough space for both
normal operations and row versioning. Note that both
READ_COMMITTED_SNAPSHOT and SNAPSHOT isolation levels can be
enabled at the same time, but there is only one copy of data in the version
store.

Skill 3.3: Optimize concurrency and locking behavior
SQL Server uses locks to control the effect of concurrent transactions on one another. Part
of your job as an administrator is to improve concurrency by properly managing locking
behavior. That means you need to understand how to uncover performance problems
related to locks and lock escalations. Additionally, you must know how to use the tools
available to you for identifying when and why deadlocks happen and the possible steps you
can take to prevent deadlocks from arising.

This section covers how to:
 Troubleshoot locking issues
 Identify lock escalation behaviors
 Capture and analyze deadlock graphs
 Identify ways to remediate deadlocks

Troubleshoot locking issues
Before you can troubleshoot locking issues, you must understand how SQL Server uses
locks, which we describe in detail in Skill 3.1. As part of the troubleshooting process, you
need to determine which resources are locked, why they are locked, and the lock type in
effect.

You can use the following dynamic management views (DMVs) to view information
about locks:

 sys.dm_tran_locks Use this DMV to view all current locks, the lock resources, lock
mode, and other related information.
 sys.dm_os_waiting_tasks Use this DMV to see which tasks are waiting for a
resource.
 sys.dm_os_wait_stats Use this DMV to see how often processes are waiting while
locks are taken.

Before we look at these DMVs in detail, let’s set up our environment as shown in Listing
3-7 so that we can establish some context for locking behavior.

292

LISTING 3-7 Create a test environment for testing locking behavior

Click here to view code image

CREATE TABLE Examples.LockingA
(
 RowId int NOT NULL
 CONSTRAINT PKLockingARowId PRIMARY KEY,
 ColumnText varchar(100) NOT NULL
);

INSERT INTO Examples.LockingA(RowId, ColumnText)
VALUES (1, 'Row 1'), (2, 'Row 2'), (3, 'Row 3'), (4, 'Row 4');
CREATE TABLE Examples.LockingB
(
 RowId int NOT NULL
 CONSTRAINT PKLockingBRowId PRIMARY KEY,
 ColumnText varchar(100) NOT NULL
);

INSERT INTO Examples.LockingB(RowId, ColumnText)
VALUES (1, 'Row 1'), (2, 'Row 2'), (3, 'Row 3'), (4, 'Row 4');

sys.dm_tran_locks
The sys.dm_tran_locks DMV provides you with information about existing locks and locks
that have been requested but not yet granted in addition to details about the resource for
which the lock is requested. You can use this DMV only to view information at the current
point in time. It does not provide access to historical information about locks. Table 3-2
describes each column in sys.dm_tran_locks.

293

TABLE 3-2 sys.dm_tran_locks

294

Note Sys.dm_tran_locks resource type subtypes
For a full list of subtypes for each resource type, refer to the
sys.dm_tran_locks documentation at https://msdn.microsoft.com/en-
us/library/ms190345.aspx.

Let’s start some transactions to observe the locks that SQL Server acquires. In one
session, execute the following statements:
Click here to view code image

BEGIN TRANSACTION;
 SELECT RowId, ColumnText
 FROM Examples.LockingA
 WITH (HOLDLOCK, ROWLOCK);

In a separate session, start another transaction:
Click here to view code image

BEGIN TRANSACTION;
 UPDATE Examples.LockingA
 SET ColumnText = 'Row 2 Updated'
 WHERE RowId = 2;

Now let’s use the sys.dm_tran_locks DMV to view some details about the current locks:
Click here to view code image

SELECT
 request_session_id as s_id,
 resource_type,
 resource_associated_entity_id,
 request_status,
 request_mode
FROM sys.dm_tran_locks
WHERE resource_database_id = db_id('ExamBook762Ch3');

Although your results might vary, especially with regard to identifiers, the DMV returns
results similar to the example below. Notice the wait for the exclusive lock for session 2. It
must wait until session 1 releases its shared range (RangeS-S) locks that SQL Server takes
due to the HOLDLOCK table hint. This table hint is equivalent to setting the isolation level
to SERIALIZABLE. SQL Server also takes intent locks on the table (which appears on the
OBJECT rows of the results) and the page, with session 1 taking intent shared (IS) locks
and session 2 taking intent exclusive (IX) locks.
Click here to view code image

s_id resource_type resource_associated_entity_id
request_status request_mode

295

https://msdn.microsoft.com/en-us/library/ms190345.aspx

---- ------------- ----------------------------- -------------
- --------------
1 DATABASE 0 GRANT S
2 DATABASE 0 GRANT S
1 PAGE 72057594041729024 GRANT IS
2 PAGE 72057594041729024 GRANT IX
1 KEY 72057594041729024 GRANT RangeS-
S
1 KEY 72057594041729024 GRANT RangeS-
S
1 KEY 72057594041729024 GRANT RangeS-
S
1 KEY 72057594041729024 GRANT RangeS-
S
1 KEY 72057594041729024 GRANT RangeS-
S
2 KEY 72057594041729024 WAIT X
1 OBJECT 933578364 GRANT IS
2 OBJECT 933578364 GRANT IX

Connect to the ExamBook762Ch3 database containing the resource and use one of the
resource_associated_entity_id values from the previous query in the WHERE clause to see
which object is locked, like this:
Click here to view code image

SELECT
 object_name(object_id) as Resource,
 object_id,
 hobt_id
FROM sys.partitions
WHERE hobt_id=72057594041729024;

When you view the results of this latter query, you can see the name of the resource that
is locked, like this:
Click here to view code image

Resource object_id hobt_id
-------- ---------- -------------------
LockingA 933578364 72057594041729024

In the previous example, you can also see the object_id returned from sys.partitions
corresponds to the resource_associated_entity_id associated with the OBJECT
resource_type in the DMV.

When troubleshooting blocking situations, look for CONVERT in the request_status
column in this DMV. This value indicates the request was granted a lock mode earlier, but
now needs to upgrade to a different lock mode and is currently blocked.

296

sys.dm_os_waiting_tasks
Another useful DMV is sys.dm_os_waiting_tasks. Whenever a user asks you why a query
is taking longer to run than usual, a review of this DMV should be one of your standard
troubleshooting steps. You can find a description of each column in this DMV in Table 3-3.

TABLE 3-3 sys.dm_os_waiting_tasks
In particular, you can use the sys.dm_trans_locks DMV in conjunction with the

sys.dm_os_waiting_tasks DMV to find blocked sessions, as shown in Listing 3-8.

LISTING 3-8 Use system DMV sys.dm_tran_locks and sys.dm_os_waiting_tasks to display
blocked sessions

Click here to view code image

SELECT
 t1.resource_type AS res_typ,
 t1.resource_database_id AS res_dbid,
 t1.resource_associated_entity_id AS res_entid,
 t1.request_mode AS mode,
 t1.request_session_id AS s_id,
 t2.blocking_session_id AS blocking_s_id
FROM sys.dm_tran_locks as t1
INNER JOIN sys.dm_os_waiting_tasks as t2

297

 ON t1.lock_owner_address = t2.resource_address;

Whereas the earlier query showing existing locks is helpful for learning how SQL
Server acquires locks, the query in Listing 3-8 returns information that is more useful on a
day-to-day basis for uncovering blocking chains. In the query results shown below, you can
see that session 2 is blocked by session 1.
Click here to view code image

res_typ res_dbid res_entid mode s_id blocking_s_id
------- -------- ------------------ ---- ------ --------

KEY 27 72057594041729024 X 2 1

Execute the following statement in both sessions to release the locks:

ROLLBACK TRANSACTION;

sys.dm_os_wait_stats
The sys.dm_os_wait_stats DMV is an aggregate view of all waits that occur when a
requested resource is not available, a worker thread is idle typically due to background
tasks, or an external event must complete first. Table 3-4 explains the columns in
sys.dm_os_wait_stats.

TABLE 3-4 sys.dm_os_wait_stats

There are many wait types unrelated to locks, so when using the sys.dm_os_wait_stats
DMV, you should apply a filter to focus on lock waits only, like this:
Click here to view code image

SELECT
 wait_type as wait,
 waiting_tasks_count as wt_cnt,
 wait_time_ms as wt_ms,
 max_wait_time_ms as max_wt_ms,

298

 signal_wait_time_ms as signal_ms
FROM sys.dm_os_wait_stats
WHERE wait_type LIKE 'LCK%'
ORDER BY wait_time_ms DESC;

Note Wait types
For a full list of wait types, refer to the sys.dm_os_wait_stats documentation
at https://msdn.microsoft.com/en-us/library/ms179984.aspx.

The partial results of this query on our computer shown in the following example
indicate that our SQL Server instance have the longest waits when threads are waiting for
an exclusive (X) lock. On the other hand, the greatest number of waits is a result of waiting
for a schema modification (SCH-M) lock. In both cases, the waits are caused because SQL
Server has already granted an incompatible lock to the resource on another thread. This
information is useful for identifying long-term trends, but does not show you details about
the locked resources.
Click here to view code image

wait wt_cnt wt_ms max_wt_ms signal_ms
------------- ------- -------- ---------- ----------
LCK_M_X 6 1170670 712261 114
LCK_M_S 28 19398 2034 43
LCK_M_SCH_M 449 92 28 46
LCK_M_SCH_S 1 72 72 0

Note Wait type troubleshooting library
Your SQL Server instance undoubtedly yields different results for this DMV.
You can find a comprehensive library of SQL Server wait types compiled by
SQLSkills available at https://www.sqlskills.com/help/waits. This library
includes a description of wait types, general guidance for troubleshooting lock
waits, and specific guidance for individual lock waits.

You can reset the cumulative values in the sys.dm_os_wait_stats DMV by executing the
following statement: DBCC SQLPERF (N’sys.dm_os_wait_stats’, CLEAR);. Otherwise,
these values are reset each time that the SQL Server service restarts.

 Exam Tip

For the exam, you should know which DMVs you can reset manually as
compared to the DMVs that require a SQL Server service restart to be reset.

299

https://msdn.microsoft.com/en-us/library/ms179984.aspx
https://www.sqlskills.com/help/waits

Identify lock escalation behaviors
Lock escalation occurs when SQL Server detects too much memory, or too many system
resources are required for a query’s locks. It then converts one set of locks to another set of
locks applied to resources higher in the lock hierarchy. In other words, SQL Server tries to
use fewer locks to cover more resources. As an example, SQL Server might choose to
escalate a high number of row locks to a table lock. This capability can reduce overhead
on the one hand, but can impact performance on the other hand because more data is
locked. As a result, there is greater potential for blocking.

Lock escalation occurs when more than 40 percent of the available database engine
memory pool is required by lock resources, or at least 5,000 locks are taken in a single T-
SQL statement for a single resource. SQL Server converts an intent lock to a full lock, as
long as the full lock is compatible with existing locks on the resource. It then releases
system resources and locks on the lower level of the lock hierarchy. If the new lock is
taken on a row or a page, SQL Server adds an intent lock on the object at the next higher
level. However, if other locks prevent lock escalation, SQL Server continues attempting to
perform the escalation for each new 1,250 locks it takes.

In most cases, you should let SQL Server manage the locks. If you implement a
monitoring system, take note of Lock:Escalation events to establish a benchmark. When the
number of Lock:Escalation events exceeds the benchmark, you can take action at the table
level or at the query level.

Another option for monitoring lock escalation is to benchmark the percentage of time that
intent lock waits (LCK_M_I*) occur relative to regular locks in the sys.dm_os_wait_stats
DMV by using a query like this:
Click here to view code image

SELECT
 wait_type as wait,
 wait_time_ms as wt_ms,
 CONVERT(decimal(9,2), 100.0 * wait_time_ms /
 SUM(wait_time_ms) OVER ()) as wait_pct
FROM sys.dm_os_wait_stats
WHERE wait_type LIKE 'LCK%'
ORDER BY wait_time_ms DESC;

Capture and analyze deadlock graphs
Usually the process of locking and unlocking SQL Server is fast enough to allow many
users to read and write data with the appearance that it occurs simultaneously. However,
sometimes two sessions block each other and neither can complete, which is a situation
known as deadlocking. Normally, the database engine terminates a thread of a deadlocked
transaction with error 1205 and suggests a remedy, such as running the transaction again.

Let’s deliberately create a deadlock between two transactions. Start two sessions and

300

add the following statements to the first session:
Click here to view code image

BEGIN TRANSACTION;
 UPDATE Examples.LockingA
 SET ColumnText = 'Row 1 Updated'
 WHERE RowId = 1;
 WAITFOR DELAY '00:00:05';
 UPDATE Examples.LockingB;
 SET ColumnText = 'Row 1 Updated Again'
 WHERE RowId = 1;

Next, in the second session, add the following statements:
Click here to view code image

BEGIN TRANSACTION;
 UPDATE Examples.LockingB
 SET ColumnText = 'Row 1 Updated'
 WHERE RowId = 1;
 WAITFOR DELAY '00:00:05';
 UPDATE Examples.LockingA;
 SET ColumnText = 'Row 1 Updated Again'
 WHERE RowId = 1;

Now execute the statements in the first session, and then, within five seconds, execute
the second session’s statements. Only one of the transaction completes and the other was
terminated with a rollback by SQL Server as shown by the following message:
Click here to view code image

Msg 1205, Level 13, State 51, Line 6
Transaction (Process ID 70) was deadlocked on lock resources
with another process and
has been chosen as the deadlock victim. Rerun the transaction.

In this example, both transactions need the same table resources. Both transactions can
successfully update a row without conflict and have an exclusive lock on the updated data.
Then they each try to update data in the table that the other transaction had updated, but
each transaction is blocked while waiting for the other transaction’s exclusive lock to be
released. Neither transaction can ever complete and release its lock, thereby causing a
deadlock. When SQL Server recognizes this condition, it terminates one of the transactions
and rolls it back. It usually chooses the transaction that is least expensive to rollback based
on the number of transaction log records. At that point, the aborted transaction’s locks are
released and the remaining open transaction can continue.

Of course, deadlocks are not typically going to happen while you watch, so how can you
know when and why they occur? You can use either SQL Server Profiler or Extended

301

Events to capture a deadlock graph, an XML description of a deadlock.

 Exam Tip

The exam also tests your knowledge about capturing deadlocks without a
graph by using Trace Flags 1204 and 1222. You can enable these trace flags
by using the following syntax: DBCC TRACEON(1204,1222,-1). Whenever a
deadlock occurs, the deadlock victim and the other transaction involved in the
deadlock appear in the SQL Server log. See “Detecting and Ending
Deadlocks” at https://technet.microsoft.com/en-us/library/ms178104.aspx to
review this topic in more depth.

SQL Server Profiler deadlock graph
If you use SQL Server Profiler to capture a deadlock graph, you must configure the trace
before deadlocks occur. Start by creating a new trace, and connect to your SQL Server
instance. In the Trace Properties dialog box, select the Events Selection tab, select the
Show All Events check box, expand Locks, and then select the following events:

 Deadlock graph
 Lock:Deadlock
 Lock:Deadlock Chain

On the Events Extraction Settings tab, select the Save Deadlock XML Events Separately
option, navigate to a directory into which SQL Server Profiler saves deadlock graphs, and
supply a name for the graph. You can choose whether to save all deadlock graphs in a
single .xdl file or save multiple deadlock graphs as a separate .xdl file.

Note Viewing a deadlock graph saved as an .xdl file
Whenever you can save a deadlock graph as an .xdl file, you can later open
that file in SQL Server Management Studio to view it.

Now set up the deadlock scenario again to generate the deadlock graph. In one session,
add the following statements:
Click here to view code image

BEGIN TRANSACTION;
 UPDATE Examples.LockingA
 SET ColumnText = 'Row 2 Updated'
 WHERE RowId = 2;
 WAITFOR DELAY '00:00:05';
 UPDATE Examples.LockingB
 SET ColumnText = 'Row 2 Updated Again'

302

https://technet.microsoft.com/en-us/library/ms178104.aspx

 WHERE RowId = 2;

Next, in the second session, add the following statements:
Click here to view code image

BEGIN TRANSACTION;
 UPDATE Examples.LockingB
 SET ColumnText = 'Row 2 Updated'
 WHERE RowId = 2;
 WAITFOR DELAY '00:00:05';
 UPDATE Examples.LockingA
 SET ColumnText = 'Row 2 Updated Again'
 WHERE RowId = 2;

When a deadlock occurs, you can see the deadlock graph as an event in SQL Server
Profiler, as shown in Figure 3-1. In the deadlock graph, you see the tables and queries
involved in the deadlock, which process was terminated, and which locks led to the
deadlock. The ovals at each end of the deadlock graph contain information about the
processes running the deadlocked queries. The terminated process displays in the graph
with an x superimposed on it. Hover your mouse over the process to view the statement
associated with it. The rectangles labeled Key Lock identify the database object and index
associated with the locking. Lines in the deadlock graph show the relationship between
processes and database objects. A request relationship displays when a process waits for a
resource while an owner relationship displays when a resource waits for a process.

FIGURE 3-1 A deadlock graph

Extended Events deadlock graph
In Extended Events, you can use the continuously running system_health session to discover
past deadlocks. As an alternative, you can set up a new session dedicated to capturing
deadlock information. The system_health session automatically captures detected
deadlocks without requiring special configuration. That means you can analyze a deadlock
after it has occurred.

To find deadlock information in the Extended Events viewer, open SQL Server
Management Studio, connect to the database engine, expand the Management node in
Object Explorer, expand the Extended Events node, expand the Sessions node, and then
expand the System_health node. Right-click Package0.event_file, and select View Target
Data. In the Extended Events toolbar, click the Filters button. In the Filters dialog box,

303

select Name in the Field drop-down list, type xml_deadlock_report in the Value text box,
as shown in Figure 3-2, and then click OK. Select Xml_deadlock_report in the filtered list
of events, and then click the Deadlock tab below it to view the deadlock graph.

FIGURE 3-2 An Extended Events filter for xml_deadlock_report

Identify ways to remediate deadlocks
Deadlocks are less likely to occur if transactions can release resources as quickly as
possible. You can also lock up additional resources to avoid contention between multiple
transactions. For example, you can use a hint to lock a table although this action can also
cause blocking.

Usually the best way to resolve a deadlock is to rerun the transaction. For this reason,
you should enclose a transaction in a TRY/CATCH block and add retry logic. Let’s revise
the previous example to prevent the deadlock. Start two new sessions and add the
statements in Listing 3-9 to both sessions.

LISTING 3-9 Add retry logic to avoid deadlock

Click here to view code image

DECLARE @Tries tinyint
SET @Tries = 1

304

WHILE @Tries <= 3
BEGIN

 BEGIN TRANSACTION
 BEGIN TRY
 UPDATE Examples.LockingB
 SET ColumnText = 'Row 3 Updated'
 WHERE RowId = 3;
 WAITFOR DELAY '00:00:05';
 UPDATE Examples.LockingA
 SET ColumnText = 'Row 3 Updated Again'
 WHERE RowId = 3;
 COMMIT TRANSACTION;
 END TRY
 BEGIN CATCH
 SELECT ERROR_NUMBER() AS ErrorNumber;
 ROLLBACK TRANSACTION;
 SET @Tries = @Tries + 1;
 CONTINUE;
 END CATCH
END

Next, execute each session. This time the deadlock occurs again, but the CATCH block
captured the deadlock. SQL Server does not automatically roll back the transaction when
you use this method, so you should include a ROLLBACK TRANSACTION in the CATCH
block. The @@TRANCOUNT variable resets to zero in both transactions. As a result,
SQL Server no longer cancels one of the transactions and you can also see the error number
generated for the deadlock victim:

ErrorNumber

1205

Re-execution of the transaction might not be possible if the cause of the deadlock is still
locking resources. To handle those situations, you could need to consider the following
methods as alternatives for resolving deadlocks.

 Use SNAPSHOT or READ_COMMITTED_SNAPSHOT isolation levels. Either of
these options avoid most blocking problems without the risk of dirty reads. However,
both of these options require plenty of space in tempdb.
 Use the NOLOCK query hint if one of the transactions is a SELECT statement, but
only use this method if the trade-off of a deadlock for dirty reads is acceptable.
 Add a new covering nonclustered index to provide another way for SQL Server to
read data without requiring access to the underlying table. This approach works only
if the other transaction participating in the deadlock does not use any of the covering

305

index keys. The trade-off is the additional overhead required to maintain the index.
 Proactively prevent a transaction from locking a resource that eventually gets locked
by another transaction by using the HOLDLOCK or UPDLOCK query hints.

Skill 3.4: Implement memory-optimized tables and native stored
procedures
The In-Memory OLTP feature built into SQL Server 2016 adds a new memory-optimized
relational data management engine and a native stored procedure compiler to the platform
that you can use to run transactional workloads with higher concurrency. A memory-
optimized table is a highly optimized data structure that SQL Server uses to store data
completely in memory without paging to disk. It uses hash and nonclustered ordered
indexes to support faster data access from memory than traditional B-tree indexes. SQL
Server maintains a copy of the data on disk to guarantee transaction durability and to
reload tables during database recovery.

To further optimize query performance, you can implement natively compiled stored
procedures as long as the stored procedure accesses memory-optimized tables only. A
natively compiled stored procedure is a stored procedure compiled into machine language
for faster execution, lower latency, and lower CPU utilization.

This section covers how to:
 Define use cases for memory-optimized tables
 Optimize performance of in-memory tables
 Determine best case usage scenarios for natively compiled stored
procedures
 Enable collection of execution statistics for natively compiled stored
procedures

Define use cases for memory-optimized tables
You use memory-optimized tables when you need to improve the performance and
scalability of existing tables, or when you have frequent bottlenecks caused by locking and
latching or code execution. SQL Server uses optimistic concurrency management for
memory-optimized tables, which eliminates the need for locks and latches and in results in
faster operations. In addition, SQL Server uses algorithms that are specifically optimized
to access data from memory and natively compiled stored procedures to execute code
faster. Depending on the type of workload you run, you can achieve five to 20 times
performance gains with higher throughput and lower latency after migrating an existing
disk-based table to a memory-optimized table.

In general, OLTP workloads with the following characteristics benefit most from

306

migration to memory-optimized tables: short transactions with fast response times, queries
accessing a limited number of tables that contain small data sets, and high concurrency
requirements. This type of workload could also require high transaction throughput and
low latency at scale. In the exam, you must be able to recognize the following use cases for
which memory-optimized tables are best suited:

 High data ingestion rate The database engine must process a high number of inserts,
either as a steady stream or in bursts. Bottlenecks from locking and latching are a
common problem in this scenario. Furthermore, last-page contention can occur when
many threads attempt to access the same page in a standard B-tree and indexes
intended to improve query performance add overhead time to insert operations.
Performance is often measured in terms of throughput rate or the number of rows
loaded per second. A common scenario for this workload is the Internet of Things in
which multiple sensors are sending data to SQL Server. Other examples include of
applications producing data at a high rate include financial trading, manufacturing,
telemetry, and security monitoring. Whereas disk-based tables can have difficulty
managing the rate of inserts, memory-optimized tables can eliminate resource
contention and reduce logging. In some cases, requirements permitting, you can
further reduce transaction execution time by implementing delayed durability, which
we describe in greater detail in the next section.
 High volume, high performance data reads Bottlenecks from latching and locking,
or from CPU utilization can occur when there are multiple concurrent read requests
competing with periodic inserts and updates, particularly when small regions of data
within a large table are accessed frequently. In addition, query execution time carries
overhead related to parsing, optimizing, and compiling statements. Performance in
this case often requires the overall time to complete a set of steps for a business
transaction to be measured in milliseconds or a smaller unit of time. Industries with
these requirements include retail, online banking, and online gaming, to name a few.
The use of memory-optimized tables in this scenario eliminates contention between
read and write operations and retrieves data with lower latency, while the use of
natively compiled stored procedures enables code to execute faster.
 Complex business logic in stored procedures When an application requires
intensive data processing routines and performs high volume inserts, updates, and
deletes, the database can experience significant read-write contention. In some
scenarios, the workload must process and transform data before writing it to a table,
as is common in Extract-Transform-Load (ETL) operations, which can be a time-
consuming operation. In other scenarios, the workload must perform point lookups or
minimal joins before performing update operations on a small number of rows.
Industries with these types of high-volume, complex logic workloads include
manufacturing supply chains and retailers maintaining online, real-time product
catalogs. Memory-optimized tables can eliminate lock and latch contention and

307

natively compiled stored procedures can reduce the execution time to enable higher
throughput and lower latency. Another possibility is to use delayed durability to
reduce transaction execution time, but only if the application requirements permit
some potential data loss.
 Real-time data access Several factors contribute to latency when accessing data in
traditional disk-based tables, including the time required to parse, optimize, compile,
and execute a statement, the time to write a transaction to the transaction log, and
CPU utilization when the database is experiencing heavy workloads. Examples of
industries requiring low latency execution include financial trading and online
gaming. With memory-optimized tables, the database engine retrieves data more
efficiently with reduced contention and natively compiled stored procedures execute
code more efficiently and faster. In addition, point lookup queries execute faster due
to the use of non-clustered hash indexes and minimal logging reduces overall
transaction execution time. Altogether, these capabilities of memory-optimized tables
enable significantly lower latency than disk-based tables.
 Session state management Applications that require the storage of state information
for stateless protocols, such as HTTP, often use a database to persist this information
across multiple requests from a client. This type of workload is characterized by
frequent inserts, updates, and point lookups. When running at scale with load
balanced web servers, multiple servers can update data for the same session or
perform point lookups, which results in increased contention for the same resources.
This type of workload is characterized by frequently changes to a small amount of
data and incurs a significant amount of locking and latching. Memory-optimized
tables reduce contention, retrieve data effectively, and reduce or eliminate IO when
using non-durable (SCHEMA_ONLY) tables, which we describe in the next section.
On the other hand, the database engine does not resolve conflicts resulting from
attempts by separate concurrent transactions to modify the same row, which is
relatively rare in session state management. Nonetheless, the application should
include logic to retry an operation if a transaction fails due to a write conflict.
 Applications relying heavily on temporary tables, table variables, and table-
valued parameters Many times an application needs a way to store intermediate
results in a temporary location before applying additional logic to transform the data
into its final state for loading into a target table. Temporary tables and table variables
are different ways to fulfill this need. As an alternative, an application might use
table-valued parameters to send multiple rows of data to a stored procedure or
function and avoid the need for temporary tables or table variables. All three of these
methods require writes to tempdb and potentially incur additional execution time due
to the IO overhead. You can instead use memory-optimized temporary tables, table
variables, and table-valued parameters to take advantage of the same optimizations
available for memory-optimized tables. By doing so, you can eliminate both the

308

tempdb contention and the IO overhead. You can achieve faster execution time when
using these objects in a natively compiled stored procedure.
 ETL operations ETL operations typically require the use of staging tables to copy
data from source systems as a starting point, and might also use staging tables for
intermediate steps necessary to transform data prior to loading the processed data
into a target table. Although this workload does not usually suffer from bottlenecks
related to concurrency problems, it can experience delays due to IO operations and
the overhead associated with query processing. For applications requiring low
latency in the target database, consider using memory-optimized tables for faster,
more efficient access to data. To reduce or eliminate IO, use non-durable tables as
we describe in the next section.

Need More Review? Memory-optimized table use cases and
implementation strategies

For a more in-depth review of use cases and implementation strategies for
memory-optimized tables, download the “In-Memory OLTP – Common
Workload Patterns and Migration Considerations” whitepaper from
https://msdn.microsoft.com/library/dn673538.aspx. Be aware that memory-
optimized tables in SQL Server 2016 support more features than described in
the whitepaper, which was written about SQL Server 2014. For a complete
list of the newly supported features see https://msdn.microsoft.com/en-
us/library/bb510411.aspx#InMemory.

Optimize performance of in-memory tables
As we described in the previous section, there are many use cases for which migrating
disk-based tables to memory-optimized tables improves overall performance. However, to
ensure you get optimal performance, there are several tasks that you can perform.

Important SQL Server editions supporting memory-optimized tables
To use memory-optimized tables, you must use the SQL Server 2016
Enterprise, Developer, or Evaluation edition. In this latest version, the
maximum size of an optimized table is 2 terabytes (TB).

Before we look at these tasks, let’s start by creating the data directory on the root drive
to hold a new database, and then enabling in-memory OLTP in a new database as shown in
Listing 3-10. Enabling a database for memory-optimized tables requires you to define the
filegroup by using the CONTAINS MEMORY_OPTIMIZED_DATA option. SQL Server
uses this filegroup container to store checkpoint files necessary for recovering memory-
optimized tables.

309

https://msdn.microsoft.com/library/dn673538.aspx
https://msdn.microsoft.com/en-us/library/bb510411.aspx#InMemory

Important Manually create a data directory for the memory-optimized
table examples

You must manually create the data directory on the C drive before you execute
the statements shown in Listing 3-10. If the directory does not exist, the
statement execution fails.

LISTING 3-10 Enable in-memory OLTP in a new database

Click here to view code image

CREATE DATABASE ExamBook762Ch3_IMOLTP
ON PRIMARY (
 NAME = ExamBook762Ch3_IMOLTP_data,
 FILENAME = 'C:\data\ExamBook762Ch3_IMOLTP.mdf', size=500MB
),
FILEGROUP ExamBook762Ch3_IMOLTP_FG CONTAINS
MEMORY_OPTIMIZED_DATA (
 NAME = ExamBook762Ch3_IMOLTP_FG_Container,
 FILENAME = 'C:\data\ExamBook762Ch3_IMOLTP_FG_Container'
)
LOG ON (
 NAME = ExamBook762Ch3_IMOLTP_log,
 FILENAME = 'C:\data\ExamBook762Ch3_IMOLTP_log.ldf',
size=500MB
);
GO

Now let’s create the Examples schema, and then add one memory-optimized table and
one disk-based table for comparison, as shown in Listing 3-11. Notice the addition of the
MEMORY_OPTIMIZED = ON clause, which instructs the database engine to create a
table dynamic link library (DLL) file and load the table into memory. The database engine
also generates and compiles DML routines for accessing data in the table and saves the
routines as DLLs, which are called when data manipulation is requested. Unless you
specify otherwise, as we describe later in the “Durabiity options” section, a memory-
optimized table is durable in which case it must have a primary key defined. Furthermore,
it must also contain at least one index, which is satisfied below by the specification of
NONCLUSTERED on the primary key column. We discuss indexing options in greater
detail later in the “Indexes” section.

LISTING 3-11 Create a new schema and add tables to the memory-optimized database

Click here to view code image

310

USE ExamBook762Ch3_IMOLTP;
GO
CREATE SCHEMA Examples;
GO
CREATE TABLE Examples.Order_Disk (
 OrderId INT NOT NULL PRIMARY KEY NONCLUSTERED,
 OrderDate DATETIME NOT NULL,
 CustomerCode NVARCHAR(5) NOT NULL
);
GO
CREATE TABLE Examples.Order_IM (
 OrderID INT NOT NULL PRIMARY KEY NONCLUSTERED,
 OrderDate DATETIME NOT NULL,
 CustomerCode NVARCHAR(5) NOT NULL
)
WITH (MEMORY_OPTIMIZED = ON);
GO

Note Memory-optimized table row size considerations and unsupported
data types

SQL Server 2016 supports a row size greater than 8,060 bytes, even without a
LOB column, in a memory-optimized table. However, for better performance,
you should create as narrow a table as possible.
You should be aware that SQL Server 2016 does not support the following
data types in memory-optimized tables: datetimeoffset, geography, geometry,
hierarchyid, rowversion, xml, sql_variant, and user-defined types.

Natively compiled stored procedures
The first optimization task to perform is to create a natively compile stored procedure.
Natively compiled stored procedures are compiled at the time of creation, unlike
interpreted stored procedures that compile at first execution. Furthermore, natively
compiled stored procedures can access memory-optimized tables only. Native compilation
translates the stored procedure code first into C code, and then into machine language,
which enables the business logic to both execute and access data faster and more
efficiently. The machine language version of the code is stored as a dynamic link library
(DLL) in the default data directory for your SQL Server instance.

Many of the limitations that existed in SQL Server 2014 for natively compiled stored
procedures have been removed. However, the following limitations still remain in SQL
Server 2016:

 tempdb access You cannot create or access temporary tables, table variables, or
table-valued functions in tempdb. Instead, you can create a non-durable memory-

311

optimized table (described later in this section) or memory-optimized table types or
table variables.

Need More Review? Memory optimization of temporary tables
For more information about replacing temporary tables with memory-
optimized objects, see “Faster temp table and table variable by using memory
optimization” at https://msdn.microsoft.com/en-us/library/mt718711.aspx.

 Cursors As an alternative, you can use set-based logic or a WHILE loop.
 CASE statement To work around lack of support for the CASE statement, you can
use a table variable to store the result set. The table variable includes a column to
serve as a condition flag that you can then use as a filter.

Note workaround for a CASE statement in a natively compiled stored
procedure

You can see an example of code implementing a workaround for the
conditional logic of a CASE statement in “Implementing a CASE Expression
in a Natively Compiled Stored Procedure” at https://msdn.microsoft.com/en-
us/library/dn629453.aspx.

 MERGE statement You cannot use a memory-optimized table as the target of a
MERGE statement. Therefore, you must use explicit INSERT, UPDATE, or DELETE
statements instead.
 SELECT INTO clause You cannot use an INTO clause with a SELECT statement.
As an alternative, use INSERT INTO <table> SELECT syntax.
 FROM clause You cannot use a FROM clause or subqueries in an UPDATE
statement.

Note Workaround for a FROM clause in a natively compiled stored
procedure.

As a workaround, you can use a memory-optimized type and a trigger as
described in “Implementing UPDATE with FROM or Subqueries” at
https://msdn.microsoft.com/en-us/library/mt757375.aspx.

 PERCENT or WITH TIES in TOP clause There are no alternatives for using these
options in a natively compiled stored procedure.
 DISTINCT with aggregate functions There is no alternative for using this option in
a natively compiled stored procedure.

312

https://msdn.microsoft.com/en-us/library/mt718711.aspx
https://msdn.microsoft.com/en-us/library/dn629453.aspx
https://msdn.microsoft.com/en-us/library/mt757375.aspx

 Operators: INTERSECT, EXCEPT, APPLY, PIVOT, UNPIVOT, LIKE,
CONTAINS There are no alternatives for using these operators in a natively
compiled stored procedure.
 Common table expressions (CTEs) You must rewrite your query to reproduce the
functionality of a CTE in a natively compiled stored procedure.
 Multi-row INSERT statements You must instead use separate INSERT statements
in a natively compiled stored procedure.
 EXECUTE WITH RECOMPILE There is no alternative for using this option in a
natively compiled stored procedure.
 View You cannot reference a view in a natively compiled stored procedure. You
must define your desired SELECT statement explicitly in the procedure code.

Note Unsupported T-SQL constructs for natively compiled stored
procedures

The list of limitations for natively compiled stored procedures highlights the
main features that remain unsupported. You can find a complete list of
constructs, features, operators, and so on for natively compiled stored
procedures at “Transact-SQL Constructs Not Supported by In-Memory OLTP”
at https://msdn.microsoft.com/en-us/library/dn246937.aspx.
If you want to migrate an existing stored procedure to a natively compiled
stored procedure, you can use the Stored Procedure Native Compilation
Advisor in SQL Server Management Studio to evaluate whether your stored
procedure contains elements that are not supported. You can learn more about
this tool by reading “Native Compilation Advisor” at
https://msdn.microsoft.com/en-us/library/dn358355.aspx.

 Exam Tip

For the exam, it is important that you are able to identify the limitations of
natively compiled stored procedures.

To observe the performance difference between an interpreted stored procedure and a
natively compiled stored procedure, create two stored procedures as shown in Listing 3-
12. In this example, the following portions of the code are specific to native compilation:

 WITH NATIVE_COMPILATION This clause is required to create a natively
compiled stored procedure.
 SCHEMABINDING This option is required to bind the natively compiled stored
procedure to the object that it references. Consequently, you cannot drop tables

313

https://msdn.microsoft.com/en-us/library/dn246937.aspx
https://msdn.microsoft.com/en-us/library/dn358355.aspx

referenced in the procedure code. Furthermore, you cannot use the wildcard (*)
operator, and instead must reference column names explicitly in a SELECT
statement.
 BEGIN ATOMIC...END You use this option to create an atomic block, which is a
block of T-SQL statements that succeed or fail together. A natively compiled stored
procedure can have only one atomic block. Starting an atomic block creates a
transaction if one does not yet exist or creates a savepoint if there is an existing
transaction. An atomic block must include options defining the isolation level and
language like this: WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT,
LANGUAGE = N’English’).

LISTING 3-12 Create stored procedures to test execution performance

Click here to view code image

USE ExamBook762Ch3_IMOLTP;
GO
-- Create natively compiled stored procedure
CREATE PROCEDURE Examples.OrderInsert_NC
 @OrderID INT,
 @CustomerCode NVARCHAR(10)
WITH NATIVE_COMPILATION, SCHEMABINDING
AS
BEGIN ATOMIC
WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE =
N'English')
 DECLARE @OrderDate DATETIME = getdate();
 INSERT INTO Examples.Order_IM (OrderId, OrderDate,
CustomerCode)
 VALUES (@OrderID, @OrderDate, @CustomerCode);
END;
GO
-- Create interpreted stored procedure
CREATE PROCEDURE Examples.OrderInsert_Interpreted
 @OrderID INT,
 @CustomerCode NVARCHAR(10),
 @TargetTable NVARCHAR(20)
AS
 DECLARE @OrderDate DATETIME = getdate();
 DECLARE @SQLQuery NVARCHAR(MAX);
 SET @SQLQuery = 'INSERT INTO ' +
 @TargetTable +
 ' (OrderId, OrderDate, CustomerCode) VALUES (' +
 CAST(@OrderID AS NVARCHAR(6)) +
 ',''' + CONVERT(NVARCHAR(20), @OrderDate, 101)+

314

 ''',''' + @CustomerCode +
 ''')';
 EXEC (@SQLQuery);
GO

Next, run the statements at least twice in Listing 3-13 to compare the performance of
each type of stored procedure. Ignore the results from the first execution because the
duration is skewed due to memory allocation and other operations that SQL Server
performs one time only. The code in Listing 3-13 first inserts 100,000 rows into a disk-
based table using an interpreted stored procedure and measures the time required to
perform the INSERT operation. Then the code inserts rows into a memory-optimized table
using the same interpreted stored procedure and measures the processing time. Last, the
code deletes rows from the memory-optimized table, resets the time measurement
variables, and then inserts rows into the table by using a natively compiled stored
procedure.

LISTING 3-13 Execute each stored procedure to compare performance

Click here to view code image

SET STATISTICS TIME OFF;
SET NOCOUNT ON;

DECLARE @starttime DATETIME = sysdatetime();
DECLARE @timems INT;
DECLARE @i INT = 1;
DECLARE @rowcount INT = 100000;
DECLARE @CustomerCode NVARCHAR(10);

--Reset disk-based table
TRUNCATE TABLE Examples.Order_Disk;

-- Disk-based table and interpreted stored procedure
BEGIN TRAN;
 WHILE @i <= @rowcount
 BEGIN;
 SET @CustomerCode = 'cust' + CAST(@i as NVARCHAR(6));
 EXEC Examples.OrderInsert_Interpreted @i,
@CustomerCode, 'Examples.Order_Disk';
 SET @i += 1;
 END;
COMMIT;

SET @timems = datediff(ms, @starttime, sysdatetime());
SELECT 'Disk-based table and interpreted stored procedure: ' AS

315

[Description],
 CAST(@timems AS NVARCHAR(10)) + ' ms' AS Duration;
-- Memory-based table and interpreted stored procedure
SET @i = 1;
SET @starttime = sysdatetime();

BEGIN TRAN;
 WHILE @i <= @rowcount
 BEGIN;
 SET @CustomerCode = 'cust' + CAST(@i AS NVARCHAR(6));
 EXEC Examples.OrderInsert_Interpreted @i,
@CustomerCode, 'Examples.Order_IM';
 SET @i += 1;
 END;
COMMIT;

SET @timems = datediff(ms, @starttime, sysdatetime());
SELECT 'Memory-optimized table and interpreted stored
procedure: ' AS [Description],
 CAST(@timems AS NVARCHAR(10)) + ' ms' AS Duration;

-- Reset memory-optimized table
DELETE FROM Examples.Order_IM;
SET @i = 1;
SET @starttime = sysdatetime();

BEGIN TRAN;
 WHILE @i <= @rowcount
 BEGIN;
 SET @CustomerCode = 'cust' + CAST(@i AS NVARCHAR(6));
 EXEC Examples.OrderInsert_NC @i, @CustomerCode;
 SET @i += 1;
 END;
COMMIT;

SET @timems = datediff(ms, @starttime, sysdatetime());
SELECT 'Memory-optimized table and natively compiled stored
procedure:'
 AS [Description],
 CAST(@timems AS NVARCHAR(10)) + ' ms' AS Duration;
GO

Your results vary from the results shown in the following example due to differences in
hardware and memory configuration. However, your results should similarly reflect a
variance in duration between the types of tables and stored procedures such that the
memory-optimized table and natively compiled stored procedure performing inserts is

316

considerably faster than the other two options:
Click here to view code image

Description Duration
--- ---------
Disk-based table and interpreted stored procedure: 10440 ms

Description Duration
--- -----

Memory-optimized table and interpreted stored procedure: 10041
ms

Description Duration

Memory-optimized table and natively compiled stored
procedure: 1885 ms

Need More Review? Natively-compiled user-defined functions and inline
table-valued functions

You can also natively compile scalar user-defined functions (UDFs) and
inline table-valued functions (TVFs) in SQL Server 2016 for more efficient
data access. You can learn more by reviewing “Scalar User-Defined
Functions for In-Memory OLTP” at https://msdn.microsoft.com/en-
us/library/dn935012.aspx.

Indexes
A memory-optimized table can have up to eight non-clustered indexes, all of which are
covering indexes. That is, they include all columns in the table. Unlike a traditional B-tree
index for a disk-based table, an index for a memory-optimized table exists only in memory
and does not contain data. Instead, an index points to a row in memory and is recreated
during database recovery. In addition, updates to an indexed memory-optimized table do
not get logged.

An index for a memory-optimized table can be one of the following three types:
 Hash You use a nonclustered hash index when you have many queries that perform
point lookups, also known as equi-joins. When you specify the index type, as shown
below, you must include a bucket count. The bucket count value should be between
one to two times the expected number of distinct values in the indexed column. It is
better to have a bucket count that is too high rather than set it too low because it is
more likely to retrieve data faster, although it consumes more memory.

317

https://msdn.microsoft.com/en-us/library/dn935012.aspx

Click here to view code image

CREATE TABLE Examples.Order_IM_Hash (
 OrderID INT NOT NULL PRIMARY KEY
 NONCLUSTERED HASH WITH (BUCKET_COUNT = 1000000),
 OrderDate DATETIME NOT NULL,
 CustomerCode NVARCHAR(5) NOT NULL
 INDEX ix_CustomerCode HASH WITH (BUCKET_COUNT =
1000000)
)
WITH (MEMORY_OPTIMIZED = ON);

 Columnstore A new feature in SQL Server 2016 is the ability to add a columnstore
index to a memory-optimized table. This type of index, which we cover in greater
detail in Chapter 1, “Design and implement database objects,” is best when your
queries perform large scans of a table because it can process data by using batch
execution mode. Rather than read data row by row, it can process chunks of data in
batches and thereby reduce query execution time and CPU utilization. Consider this
type of index for single-threaded queries, sort operations (such as ORDER BY), and
T-SQL window functions.

Click here to view code image

CREATE TABLE Examples.Order_IM_CCI (
 OrderID INT NOT NULL PRIMARY KEY NONCLUSTERED,
 OrderDate DATETIME NOT NULL,
 CustomerCode NVARCHAR(5) NOT NULL,
 INDEX ix_CustomerCode_cci CLUSTERED COLUMNSTORE)
WITH (MEMORY_OPTIMIZED = ON);

 Nonclustered B-tree You use a memory-optimized nonclustered B-tree index when
your queries have an ORDER BY clause on an indexed column, or when your queries
return a few records by performing range selections against an index column using
the greater than (>) or less than (<) operators, or testing an indexed column for
inequality. You also can consider using a nonclustered index in combination with a
columnstore index when your queries perform point lookups or need to join together
two fact tables in a data warehouse.

Click here to view code image

CREATE TABLE Examples.Order_IM_NC (
 OrderID INT NOT NULL PRIMARY KEY NONCLUSTERED,
 OrderDate DATETIME NOT NULL,
 CustomerCode NVARCHAR(5) NOT NULL INDEX ix_CustomerCode
NONCLUSTERED
)
WITH (MEMORY_OPTIMIZED = ON);

318

A new feature in SQL Server 2016 is the ability to add or drop indexes, or change the
bucket count for an index in a memory-optimized table. To do this, you use the ALTER
TABLE statement only, as shown in Listing 3-14. The CREATE INDEX, DROP INDEX,
and ALTER INDEX statements are invalid for memory-optimized tables.

LISTING 3-14 Use the ALTER TABLE statement to add, modify, or drop an index

Click here to view code image

USE ExamBook762Ch3_IMOLTP;
GO
-- Add a column and an index
ALTER TABLE Examples.Order_IM
 ADD Quantity INT NULL,
 INDEX ix_OrderDate(OrderDate);
-- Alter an index by changing the bucket count
ALTER TABLE Examples.Order_IM_Hash
 ALTER INDEX ix_CustomerCode
 REBUILD WITH (BUCKET_COUNT = 2000000);
-- Drop an index
ALTER TABLE Examples.Order_IM
 DROP INDEX ix_OrderDate;

Offlload analytics to readable secondary
The ability to use both columnstore and nonclustered indexes in memory-optimized tables
makes it much easier to support both OLTP and analytics workloads in the same database.
However, sometimes analytics queries require considerable CPU, IO, and memory
resources that might have an adverse impact on OLTP performance. If you need to support
both OLTP and analytics workloads, consider an Always On configuration to offload
analytics workloads to a readable secondary.

Durability options
When you create a memory-optimized table, you must decide how SQL Server should
manage durability of the data. You can choose one of the following two types:

 Durable With this type, SQL Server guarantees full durability just as if the table
were disk-based. If you do not specify the durability option explicitly when you
create a memory-optimized table, it is durable by default. To explicitly define a
durable table, use the SCHEMA_AND_DATA durability option like this:

Click here to view code image

CREATE TABLE Examples.Order_IM_Durable (
 OrderID INT NOT NULL PRIMARY KEY NONCLUSTERED,

319

 OrderDate DATETIME NOT NULL,
 CustomerCode NVARCHAR(5) NOT NULL
)
WITH (MEMORY_OPTIMIZED = ON, DURABILITY=SCHEMA_AND_DATA);
GO

 Non-durable By choosing this type of durability, you instruct SQL Server to persist
only the table schema, but not the data. This option is most appropriate for use cases
in which data is transient, such as an application’s session state management, or ETL
staging. SQL Server never writes a non-durable table’s data changes to the
transaction log. To define a non-durable table, use the SCHEMA_ONLY durability
option like this:

Click here to view code image

CREATE TABLE Examples.Order_IM_Nondurable (
 OrderID INT NOT NULL PRIMARY KEY NONCLUSTERED,
 OrderDate DATETIME NOT NULL,
 CustomerCode NVARCHAR(5) NOT NULL
)
WITH (MEMORY_OPTIMIZED = ON, DURABILITY=SCHEMA_ONLY);
GO

Because non-durable memory-optimized tables do not incur logging overhead,
transactions writing to them run faster than write operations on durable tables. However, to
optimize performance of durable memory-optimized tables, configure delayed durability at
the database or transaction level. Just as with disk-based tables, delayed durability for a
memory-optimized table reduces the frequency with which SQL Server flushes log records
to disk and enables SQL Server to commit transactions before writing log records to disk.

Note Delayed durability usage
Use delayed durability with care. You can lose some transactions if a system
failure occurs.

If you set delayed durability at the database level, every transaction that commits on the
database is delayed durable by default, although you can override this behavior at the
transaction level. Similarly, if the database is durable, you can configure the database to
allow delayed durable transactions and then explicit define a transaction as delayed
durable. If you prefer, you can disable delayed durability and prevent delayed durable
transactions entirely regardless of the transaction’s commit level. You can also specify
delayed durability for a natively compiled stored procedure. Listing 3-15 includes
examples of these various settings.

LISTING 3-15 Configure delayed durability

320

Click here to view code image

--Set at database level only, all transactions commit as
delayed durable
ALTER DATABASE ExamBook762Ch3_IMOLTP
 SET DELAYED_DURABILITY = FORCED;
--Override database delayed durability at commit for durable
transaction
BEGIN TRANSACTION;
 INSERT INTO Examples.Order_IM_Hash
 (OrderId, OrderDate, CustomerCode)
 VALUES (1, getdate(), 'cust1');
COMMIT TRANSACTION WITH (DELAYED_DURABILITY = OFF);
GO

--Set at transaction level only
ALTER DATABASE ExamBook762Ch3_IMOLTP
 SET DELAYED_DURABILITY = ALLOWED;
BEGIN TRANSACTION;
 INSERT INTO Examples.Order_IM_Hash
 (OrderId, OrderDate, CustomerCode)
 VALUES (2, getdate(), 'cust2');
COMMIT TRANSACTION WITH (DELAYED_DURABILITY = ON);

--Set within a natively compiled stored procedure
CREATE PROCEDURE Examples.OrderInsert_NC_DD
 @OrderID INT,
 @CustomerCode NVARCHAR(10)
WITH NATIVE_COMPILATION, SCHEMABINDING
AS
BEGIN ATOMIC
WITH (DELAYED_DURABILITY = ON,
 TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE =
N'English')
 DECLARE @OrderDate DATETIME = getdate();
 INSERT INTO Examples.Order_IM (OrderId, OrderDate,
CustomerCode)
 VALUES (@OrderID, @OrderDate, @CustomerCode);
END;
GO
--Disable delayed durability completely for all transactions
-- and natively compiled stored procedures
ALTER DATABASE ExamBook762Ch3_IMOLTP
 SET DELAYED_DURABILITY = DISABLED;

Determine best case usage scenarios for natively compiled stored procedures

321

In SQL Server 2016, you can use natively compiled stored procedures to get better
performance when operating on memory-optimized tables. You use them for:

 Applications for which obtaining the best possible performance is a requirement
 Queries that execute frequently
 Tasks that must perform as fast as possible

If you have a lot of rows to process and a lot of logic to apply, the natively compiled
stored procedure performs faster than an interpreted stored procedure. It is also good when
you need to perform any of the following tasks:

 Aggregation
 Nested loop join
 Multi-statement SELECT, INSERT, UPDATE, or DELETE operations
 Complex expressions
 Procedural logic, such as conditional statements and loops

It is not typically the best option when you need to process only a single row.

Enable collection of execution statistics for natively compiled stored
procedures
The goal of using memory-optimized tables is to execute processes as quickly as possible.
Consequently, you could be surprised that some statistics, such as worker_time and
elapsed_time, do not get collected by DMVs such as sys.dm_exec_query_stats and
sys.dm_exec_procedure_stats. In fact, these DMVs include no information about natively
compiled stored procedures.

Instead, you need to specifically enable the collection of execution statistics by using
one of the following system stored procedures:

 sys.sp_xtp_control_proc_exec_stats Use this system stored procedure to enable
statistics collection for your SQL Server instance at the procedure level.
 sys.sp_xtp_control_query_exec_stats Use this system stored procedure to enable
statistics collection at the query level for selected natively compiled stored
procedures.

Note Execution statistics collection
Keep in mind that enabling the collection of execution statistics can have an
adverse effect on the performance of natively compiled stored procedures.
Rather than collect statistics globally for an instance, you should collect
statistics for selected natively compiled stored procedures only to reduce this
impact.

322

sys.sp_xtp_control_proc_exec_stats
Use the sys.sp_xtp_control_proc_exec_stats system stored procedure to enable and disable
procedure-level statistics collection on your SQL Server instance, as shown in Listing 3-
16. When SQL Server or a database starts, statistics collection is automatically disabled.
Note that you must be a member of the sysadmin role to execute this stored procedure.

LISTING 3-16 Enable and disable statistics collection at the procedure level

Click here to view code image

--Enable statistics collection at the procedure level
EXEC sys.sp_xtp_control_proc_exec_stats @new_collection_value =
1;

--Check the current status of procedure-level statistics
collection
DECLARE @c BIT;
EXEC sys.sp_xtp_control_proc_exec_stats
@old_collection_value=@c output
SELECT @c AS 'Current collection status';

--Disable statistics collection at the procedure level
EXEC sys.sp_xtp_control_proc_exec_stats @new_collection_value =
0;

sys.sp_xtp_control_query_exec_stats
Listing 3-17 shows an example of using the sys.sp_xtp_control_query_exec_stats system
procedure to enable and disable query-level statistics collection. You can even use it to
enable statistics collection for a specific natively compiled stored procedure, but it must
have been executed at least once before you enable statistics collection. When SQL Server
starts, query-level statistics collection is automatically disabled. Note that disabling
statistics collection at the procedure level does not disable any statistics collection that you
have configured at the query level. As with the previous system stored procedure, you must
be a member of the sysadmin role to execute sys.sp_xtp_control_query_exec_stats.

LISTING 3-17 Enable and disable statistics collection at the query level

Click here to view code image

--Enable statistics collection at the query level
EXEC sys.sp_xtp_control_query_exec_stats @new_collection_value
= 1;

323

--Check the current status of query-level statistics collection
DECLARE @c BIT;
EXEC sys.sp_xtp_control_query_exec_stats
@old_collection_value=@c output;
SELECT @c AS 'Current collection status';

--Disable statistics collection at the query level
EXEC sys.sp_xtp_control_query_exec_stats @new_collection_value
= 0;

--Enable statistics collection at the query level for a
specific
--natively compiled stored procedure
DECLARE @ncspid int;
DECLARE @dbid int;
SET @ncspid = OBJECT_ID(N'Examples.OrderInsert_NC');
SET @dbid = DB_ID(N'ExamBook762Ch3_IMOLTP')
EXEC [sys].[sp_xtp_control_query_exec_stats]
@new_collection_value = 1,
 @database_id = @dbid, @xtp_object_id = @ncspid;

--Check the current status of query-level statistics collection
for a specific
--natively compiled stored procedure
DECLARE @c bit;
DECLARE @ncspid int;
DECLARE @dbid int;
SET @ncspid = OBJECT_ID(N'Examples.OrderInsert_NC');
SET @dbid = DB_ID(N'ExamBook762Ch3_IMOLTP')
EXEC sp_xtp_control_query_exec_stats @database_id = @dbid,
 @xtp_object_id = @ncspid, @old_collection_value=@c output;
SELECT @c AS 'Current collection status';

--Disable statistics collection at the query level for a
specific
--natively compiled stored procedure
DECLARE @ncspid int;
DECLARE @dbid int;
EXEC sys.sp_xtp_control_query_exec_stats @new_collection_value
= 0,
 @database_id = @dbid, @xtp_object_id = @ncspid;

Statistics collection queries
After enabling statistics collections at the procedure level, you can query the
sys.dm_exec_procedure_stats DMV to review the results. Listing 3-19 illustrates an
example query that filters for natively compiled stored procedures. This query returns

324

results for the time during which statistics collection was enabled and remains available
after you disable statistics collection at the procedure level.

Important Run Natively Compiled Stored Procedures Before Getting
Procedure-Level Statistics

Be sure to execute the statements in Listing 3-13 after enabling statistics
collection. Otherwise, the statement in Listing 3-18 will not return results.

LISTING 3-18 Get procedure-level statistics

Click here to view code image

SELECT
 OBJECT_NAME(PS.object_id) AS obj_name,
 cached_time as cached_tm,
 last_execution_time as last_exec_tm,
 execution_count as ex_cnt,
 total_worker_time as wrkr_tm,
 total_elapsed_time as elpsd_tm
FROM sys.dm_exec_procedure_stats PS
INNER JOIN sys.all_sql_modules SM
 ON SM.object_id = PS.object_id
WHERE SM.uses_native_compilation = 1;

Here is an example of the results from the query in Listing 3-18:
Click here to view code image

obj_name cached_tm last_exec_tm ex_cnt
wrkr_tm elpsd_tm
--------- ----------------------- -----------------------
------ -------- --------
OrderInsert_NC 2016-10-15 20:44:33.917 2016-10-15 20:44:35.273
100000 376987 383365

You can also review the statistics collection at the query level by executing a query
against the sys.dm_exec_query_stats DMV, as shown in Listing 3-19.

Important Run Natively Compiled Stored Procedures Before Getting
Query-Level Statistics

You must execute the statements in Listing 3-13 after enabling statistics
collection to see results from executing the statement in Listing 3-19.

325

LISTING 3-19 Get query-level statistics

Click here to view code image

SELECT
 st.objectid as obj_id,
 OBJECT_NAME(st.objectid) AS obj_nm,
 SUBSTRING(st.text,
 (QS.statement_start_offset / 2) + 1,
 ((QS.statement_end_offset - QS.statement_start_offset)
/ 2) + 1)
 AS 'Query',
 QS.last_execution_time as last_exec_tm,
 QS.execution_count as ex_cnt
FROM sys.dm_exec_query_stats QS
CROSS APPLY sys.dm_exec_sql_text(sql_handle) st
INNER JOIN sys.all_sql_modules SM
 ON SM.object_id = st.objectid
WHERE SM.uses_native_compilation = 1

The information available in the query results from Listing 3-19 is similar to the
procedure-level statistics, but includes a row for each statement in the natively compiled
stored procedure and includes the query text for each statement. Note that
total_worker_time and total_elapsed_time were excluded from this example to restrict the
width of the query results.
Click here to view code image

obj_id obj_name Query last_exec_tm ex_cnt
------- -------------- ---------------------- ---------------
-------- -------
981578535 OrderInsert_NC INSERT INTO 2016-10-15
21:09:25.877 100000
 Examples.Order_IM
 (OrderId, OrderDate,
 CustomerCode)
 VALUES (@OrderID,
 @OrderDate,
 @CustomerCode)

Chapter summary
 Transaction management is the key to the SQL Server support of ACID. ACID
properties determine whether a set of statements are handled individually or as an
indivisible unit of work, whether a transaction violates database rules, whether one
transaction can see the effects of other transactions, and whether a statement persists

326

after an unexpected shutdown.
 SQL Server guarantees ACID by managing the effects of a transaction’s success or
failure through committing or rolling back a transaction, using a default isolation to
prevent changes made by one transaction from impacting other transactions, and
relying on a transaction log for durability.
 Implicit transactions start automatically for specific DML statements, but require an
explicit COMMIT TRANSACTION or ROLLBACK TRANSACTION statement to
end. Before using implicit transactions, you must enable the implicit transaction
mode.
 Explicit transactions require a BEGIN TRANSACTION statement to start and a
COMMIT TRANSACTION or ROLLBACK TRANSACTION to end. You should
incorporate error handling and include logic to avoid nesting transactions for more
complete control over transaction behavior.
 Savepoints allow you to partially rollback a transaction to a named location. Neither
the SAVE TRANSACTION nor the ROLLBACK TRANSACTION statements have
an effect on the @@TRANCOUNT variable (as long as the transaction rolls back to
a specific savepoint rather than completely).
 A high concurrency database can suffer from data integrity issues when a process
attempts to modify data while other simultaneous processes are trying to read or
modify the data. Potential side effects include dirty reads, non-repeatable reads,
phantom reads, and lost updates.
 SQL Server uses resource locks to enable high-concurrency while maintaining ACID
properties for a transaction. SQL Server uses a lock hierarchy on resources to protect
transactions and the types of locks that SQL Server can acquire on resources. SQL
Server’s response to a request for a new lock when a lock already exists depends on
the compatibility between the requested and existing lock modes.
 SQL Server uses isolation levels to control the degree to which one transaction has
visibility into the changes made by other transactions. Each of the following isolation
levels has potential side effects on data integrity and on concurrency: READ
COMMITTED, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE,
SNAPSHOT, and READ_COMMITTED_SNAPSHOT.
 You can change the isolation level at the session level by using the SET
TRANSACTION ISOLATION LEVEL statement or at statement level by using a
table hint to raise concurrency at the risk of introducing potential side effects.
 Because SQL Server acquires different types of locks for each isolation level,
raising or lowering isolation levels have varying effects on transaction performance.
 The SNAPSHOT and READ_COMMITTED_SNAPSHOT isolation levels both
create copies of data and require more CPU and memory than other isolation levels.
In addition, they both require adequate space in tempdb, although of the two isolation

327

levels, READ_COMMITTED_SNAPSHOT requires less space.
 Use the system DMVs sys.dm_tran_locks and sys.dm_os_wait_stats to find locked
resources, understand why they are locked, and identify the lock mode acquired for
the locked resources.
 SQL Server uses lock escalation to more effectively manage locks, but as a result can
result in more blocking of transactions. Use the sys.dm_os_wait_stats DMV to
monitor lock escalation events and look for ways to tune queries if performance
begins to degrade due to more blocking issues.
 A deadlock graph provides you with insight into the objects involved in a deadlock
and identifies the terminated process. You can capture a deadlock graph by using
either SQL Server Profiler to later review deadlock events that have yet to occur or
by using Extended Events to review deadlock events that have already occurred.
 Enclosing a transaction in a TRY/CATCH block to retry it is usually the best way to
resolve a deadlock. Alternative methods have varying trade-offs and include using
the SNAPSHOT or READ_COMMITTED_SNAPSHOT isolation levels, using the
NOLOCK, HOLDLOCK, or UPDLOCK query hints, or adding a new covering
nonclustered index.
 Memory-optimized tables are well-suited for specific OLTP scenarios: high data
ingestion rate; high volume, high performance data reads; complex business logic in
stored procedures; real-time data access; session state management; applications
relying heavily on temporary tables, table variables, and table-valued parameters;
and ETL operations.
 Besides implementing memory-optimized tables to improve an application’s
performance, you can also consider the following techniques to optimize
performance even more: natively compiled stored procedures, the addition of
indexes to the memory-optimized tables, the use of a readable secondary in an
Always On configuration to which you can offload analytics workloads, non-durable
tables, or delayed durability for transactions.
 Natively compiled stored procedures typically execute faster and are best suited for
applications requiring high performance, queries that execute frequently, and tasks
that must perform extremely fast. You experience better performance gains over an
interpreted stored procedure when a natively compiled stored procedure must
process many rows of data and apply complex logic.
 Use the system stored procedures sys.sp_xtp_control_proc_exec_stats and
sys.sp_xtp_control_query_exec_stats to enable or disable the collection of execution
statistics for natively compiled stored procedures at the procedure level or query
level, respectively. After enabling statistics collection, use the
sys.dm_exec_procedure_stats and sys.dm_exec_query_stats DMVs to review the
statistics.

328

Thought experiment
In this thought experiment, demonstrate your skills and knowledge of the topics covered in
this chapter. You can find answers to this thought experiment in the next section.

You are a database administrator at Coho Winery. Your manager has asked you to
troubleshoot and resolve a number of concurrency problems in the OLTP system running on
SQL Server 2016. Your manager has presented you with the following issues that users of
the system are experiencing:

1. Two users ran the same report within seconds of one another. When they meet to
review the results, they notice that the totals in the reports do not match. One report
has more detail rows than the other report. You examine the stored procedure code
that produces the report.

Click here to view code image

SELECT
 so.OrderID,
 OrderDate,
 ExpectedDeliveryDate,
 CustomerID,
 CustomerPurchaseOrderNumber,
 StockItemID,
 Quantity,
 UnitPrice
FROM Sales.Orders so
 WITH (NOLOCK)
INNER JOIN Sales.OrderLines sol
 WITH (NOLOCK)
 ON so.OrderID = sol.OrderID

What step do you recommend to ensure greater consistency in the report and what are
the ramifications of making this change?

2. Users are reporting a process to update the order system is running slowly right now.
Which DMVs do you use to identify the blocking process and why?

3. A new application developer is asking for help diagnosing transaction behavior. The
transaction in the following code never gets committed:

Click here to view code image

BEGIN TRANSACTION;
 UPDATE <do something>;
 BEGIN TRANSACTION;
 UPDATE <DO SOMETHING>;
 BEGIN TRANSACTION;
 UPDATE <DO SOMETHING>;
COMMIT TRANSACTION;

329

What recommendation can you give the developer to achieve the desired result and
commit all update operations?

4. An internal application captures performance and logging data from thousands of
devices through a web API. Seasonally, the incoming rate of data shifts from 3,000
transactions/sec to 30,000 transactions/sec and overwhelms the database. What
implementation strategy do you recommend?

5. Which indexing strategy should be used for a memory-optimized table for which the
common query pattern is shown below?

Click here to view code image

SELECT CustomerName FROM Customer
WHERE StartDate > DateAdd(day, -7, GetUtcDate());

Thought experiment answers
This section contains the solutions to the thought experiment. Each answer explains the
resolution to each of the issues identified in the OLTP system.

1. The use of the NOLOCK table hint is common in reporting applications against OLTP
systems in which lack of consistency is a trade-off for faster query performance.
However, when users are dissatisfied with inconsistent results, you can recommend
removing this table hint and allow the default isolation in SQL Server to manage
transaction isolation. Long write operations can block the report from executing.
Similarly, if the report takes a long time to execute, the read operation can block
write operations.

2. Start with a query that returns sys.dm_os_waiting_tasks where blocking_session_id
<> 0 and session_id equals the ID for the user’s session to see if anything is blocking
the user’s request. The following columns will give you details about the blocking
situation: blocking_session_id, wait_type, and wait_duration_ms. You can join this
information to sys.dm_tran_locks to discover the current locks involved by including
the request_mode and resource_type columns. The request_status column provides
information about the locks. A value of CONVERT in this column is an indicator that
a request is blocked. You can also use the value in the resource_associated_entity_id
column to find the associated object’s name in sys.partitions.

3. In explicit transaction mode with nested transactions, each BEGIN TRANSACTION
must correspond to a COMMIT TRANSACTION. As each new transaction starts
with BEGIN TRANSACTION, the @@TRANCOUNT variable increments by 1 and
each COMMIT TRANSACTION decrements it by 1. The complete transaction does
not get written to disk and committed completely until @@TRANCOUNT is 0.
While this solution is correct, a better solution is not to use nested transactions.

4. For this type of scenario, you recommend migrating the application to memory-
optimized tables. The use of memory-optimized tables is well-suited for the ingestion

330

of high-volume inserts because it prevents the bottlenecks commonly resulting from
locking and eliminates logging. Consequently, the throughput rate (number of rows
loaded per second) can substantially increase.

5. You should recommend a nonclustered B-tree index for this query pattern. It works
best for range selections in contrast to a hash index which works best for point
lookups or a columnstore index which works best for large table scans.

331

Chapter 4. Optimize database objects and SQL
infrastructure

In the previous chapter, we considered how to optimize database performance by managing
concurrency. Database optimization also requires you not only to understand how SQL
Server runs queries efficiently and uses its resources effectively, but also how to recognize
problems that prevent it from doing so. Given this, you must know how to use the tools that
help you find those problems and the steps that you can take to tune the SQL Server
infrastructure for better performance.

Often the first step you take to improve your SQL Server query performance is to add
indexes to tables, as we described in Chapter 1, “Design and implement database objects.”
In Skill 4.1, we review the tasks you should perform periodically to ensure that the indexes
you have are in fact helpful, and also to identify and resolve index issues. We then delve
deeper into query performance optimization by exploring how to capture and analyze query
plans in Skill 4.2. Then we shift our attention to the SQL Server infrastructure in Skill 4.3
to consider its impact on performance and understand how to use built-in tools to manage
and troubleshoot the database engine’s use of resources. We close the chapter with Skill
4.4 in which we review the tools at your disposal for ongoing monitoring of your database
infrastructure so that you are able to recognize when performance begins to deviate from
normal and can take proactive action to keep SQL Server running at its best.
Skills in this chapter:

 Optimize statistics and indexes
 Analyze and troubleshoot query plans
 Manage performance for database instances
 Monitor and trace SQL Server baseline performance metrics

Skill 4.1: Optimize statistics and indexes
One way to significantly improve the performance of queries is to add one or more indexes
to a table. When you create an index, SQL Server creates statistics, a database object in
which statistical information about the distribution of values in a column or index is stored.
An index improves query performance only if it is up-to-date and selected by SQL Server
to resolve queries. Therefore, you should periodically review and optimize indexes as part
of your regular routine.

This section covers how to:
 Determine the accuracy of statistics and associated impact to query plans
and performance

332

 Design statistics maintenance tasks
 Use dynamic management objects to review current index usage and
identify missing indexes
 Consolidate overlapping indexes

Determine the accuracy of statistics and the associated impact to query plans
and performance
SQL Server uses statistics to determine a column’s cardinality, which is the number of
rows containing a specific value in a column. For example, when a value is unique in a
column, such as a primary key, the cardinality is 1. When a column is highly unique like
this, it is commonly characterized as having high selectivity or high cardinality.
Conversely, when the number of unique values in a column are fewer or non-existent, the
column has low selectivity and low cardinality. This information influences the query
optimizer’s selection of an appropriate index as well as an efficient query plan. If the
wrong index or query plan is selected, or if an index is missing, a query might not execute
as optimally as possible. Therefore, the accuracy of the statistics is critical to query
performance.

There are several ways that you can manage statistics. First, you can review the current
statistics to determine whether the distribution of the data and the cardinality of data
accessed by an index is likely to be helpful. In addition, you can control whether SQL
Server updates statistics automatically. Last, you can check which objects have statistics
managed by SQL Server and when they were last updated.

Review data distribution and cardinality
To see statistics for a table, use the DBCC SHOW_STATISTICS command to return the
following information:

 Metadata about the statistics including date and time of the last update of the
statistics, number of rows in the table, number of rows sampled, number of steps in
the histogram, index density, average key length, whether the index contains string
summary statistics, filtered predicate for statistics if applicable, and number of rows
before applying the filter.
 Index densities for the combination of columns in the index.
 A histogram of up to 200 sample values in the first key column in the index.

Let’s create a simple index for the Purchasing.Suppliers table in the
WideWorldImporters database and view its statistics, as shown in Listing 4-1, to explore
the output of the DBCC SHOW_STATISTICS command.

LISTING 4-1 Create an index and show its statistics

333

Click here to view code image

USE WideWorldImporters;
GO
CREATE NONCLUSTERED INDEX
IX_Purchasing_Suppliers_ExamBook762Ch4
 ON Purchasing.Suppliers
(
 SupplierCategoryID,
 SupplierID
)
INCLUDE (SupplierName);
GO

DBCC SHOW_STATISTICS ('Purchasing.Suppliers',
 IX_Purchasing_Suppliers_ExamBook762Ch4);

/* Output
Name Updated Rows Rows
Sampled Steps Density
Average key length String Index Filter Expression
Unfiltered Rows
------------------------------ ---------------------- ---- ----

IX_Purchasing_Suppliers_ExamBook762Ch4 Nov 7 2016 6:40AM
13 13 5 1
8 NO NULL 13
(1 row(s) affected)

All density Average Length Columns
----------------- ------------ -------------------------------

0.125 4 SupplierCategoryID
0.07692308 8 SupplierCategoryID,
SupplierID
(2 row(s) affected)

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS
--------------------- -------------------- ---------------- ---

2 0 6 0 1
4 1 1 1 1
6 1 1 1 1
8 1 1 1 1
9 0 1 0 1
(5 row(s) affected)
DBCC execution completed. If DBCC printed error messages,

334

contact your system
administrator.
 */

The first result set is the statistics header that shows the name of the object for which
statistics exist. In this case, the object is the IX_Purchasing_Suppliers_ExamBook762Ch4
index. You can see when the statistics were last updated, the number of rows in the index,
the number of rows sampled for the statistics calculations, and the number of rows in the
table without a filter. You also see a value for density in the statistics header. However,
this density calculation is no longer used by the query optimizer in SQL Server 2016. Last,
the average key length is 8 bytes, there are no string summary statistics, and no filter
applied.

The second result set shows the densities of each combination of columns in the index.
Density is calculated by dividing one by the count of distinct values in the column (or
columns when you have a compound key). In Listing 4-1, the first row with
SupplierCategoryID has higher density than the second row with SupplierCategoryID,
SupplierID which means it has lower selectivity and is less helpful as an index.
Conversely, the lower density of the second row indicates higher selectivity.

The last result set is the statistics histogram, which contains up to 200 sample values for
the first column of the index. Each sample value is called a step and is listed in the
RANGE_HI_KEY column. In Listing 4-1, there are only 5 sample values: 2, 4, 6, 8, and 9.
For each step, SQL Server stores the following four values:

 RANGE_ROWS The number of rows inside the range between the current step and
the previous step, but does not include the step values themselves.
 EQ_ROWS The number of rows having the same value as the sample value.
 DISTINCT_RANGE_ROWS The number of distinct values between the current
step and the previous step, but does not include the step values themselves.
 AVG_RANGE_ROWS The average number of rows for each distinct value with the
step range.

Note DBCC SHOW_STATISTICS
For more details about the DBCC SHOW_STATISTICS output, see
https://msdn.microsoft.com/en-us/library/ms174384.aspx.

When creating an estimated query plan (described in more detail in Skill 4.2), SQL
Server looks at the histogram to estimate the number of rows that match a WHERE clause
in a query as long as the condition in the clause is a single constant expression, such as
WHERE SupplierCategoryID = 3. When the expression uses two columns, as in WHERE
SupplierCategoryID = 3 AND SupplierID = 10, SQL Server uses the index densities to

335

https://msdn.microsoft.com/en-us/library/ms174384.aspx

estimate rows.
Let’s look at an example of how inaccurate statistics can affect a query plan. First, create

a test database with automatic statistics updates disabled, load the table, add an index, and
then review the statistics, as shown in Listing 4-2.

LISTING 4-2 Create test environment with automatic statistics disabled

Click here to view code image

CREATE DATABASE ExamBook762Ch4_Statistics;
GO
ALTER DATABASE ExamBook762Ch4_Statistics
 SET AUTO_CREATE_STATISTICS OFF;
ALTER DATABASE ExamBook762Ch4_Statistics
 SET AUTO_UPDATE_STATISTICS OFF;
ALTER DATABASE ExamBook762Ch4_Statistics
 SET AUTO_UPDATE_STATISTICS_ASYNC OFF;
GO
USE ExamBook762Ch4_Statistics;
GO
CREATE SCHEMA Examples;
GO
CREATE TABLE Examples.OrderLines (
 OrderLineID int NOT NULL,
 OrderID int NOT NULL,
 StockItemID int NOT NULL,
 Description nvarchar(100) NOT NULL,
 PackageTypeID int NOT NULL,
 Quantity int NOT NULL,
 UnitPrice decimal(18, 2) NULL,
 TaxRate decimal(18, 3) NOT NULL,
 PickedQuantity int NOT NULL,
 PickingCompletedWhen datetime2(7) NULL,
 LastEditedBy int NOT NULL,
 LastEditedWhen datetime2(7) NOT NULL);
GO
INSERT INTO Examples.OrderLines
SELECT *
FROM WideWorldImporters.Sales.OrderLines;
GO
CREATE INDEX ix_OrderLines_StockItemID
 ON Examples.OrderLines (StockItemID);
GO
DBCC SHOW_STATISTICS ('Examples.OrderLines',
 ix_OrderLines_StockItemID);
GO

336

/* Partial Output
RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS
------------------ --------------- ----------- ----------------
-------- ---
1 0 1048 0 1
2 0 1078 0 1
4 1022 1066 1 1022
*/

When the index is added to the table, its statistics are also created. However, a
significant number of inserts or updates to the table can render these statistics obsolete.
Execute the statements in Listing 4-3 to update rows and check the statistics afterwards to
confirm there has been no change.

LISTING 4-3 Update table rows and check statistics

Click here to view code image

UPDATE Examples.OrderLines
 SET StockItemID = 1
 WHERE OrderLineID < 45000;
DBCC SHOW_STATISTICS ('Examples.OrderLines',
 ix_OrderLines_StockItemID);
GO
/* Partial Output
RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS
-------------- ------------- -------- --------------- ---------

1 0 1048 0 1
2 0 1078 0 1
4 1022 1066 1 1022
*/

Next, click the Include Actual Execution Plan button in the toolbar, and then execute the
following query:

SELECT StockItemID

FROM Examples.OrderLines

WHERE StockItemID = 1;

When you hover the cursor over the Index Seek (NonClustered) in the query plan, notice
the difference between Actual Number Of Rows and Estimated Number Of Rows in the
tooltip, shown in Figure 4-1. Because the statistics are out-of-date, the estimated row count

337

is 1048, which is the value currently in the histogram for rows having StockItemID = 1.
Because this value is relatively low, the query optimizer generated a plan using an index
seek, which could be less optimal than performing a scan when data volumes are high.

FIGURE 4-1 Variance between estimated and actual rows in query plan

Review automatic statistics updates
Statistics are generated when you add an index to a table that contains data or when you run
the UPDATE STATISTICS command. In most cases, as illustrated by the previous example,
you should allow SQL Server to create and update statistics automatically by setting one of
the following database options, each of which is enabled by default:

 AUTO_UPDATE_STATISTICS SQL Server updates statistics automatically as
needed. It determines an update is necessary by using a counter on modifications to
column values. This counter is incremented when a row is inserted or deleted or
when an indexed column is updated. The counter is reset to 0 when the statistics are
generated. When it does this, it acquires compile locks and query plans might require
recompilation. You can disable this option by using the sp_autostats system stored
procedure.
 AUTO_UPDATE_STATISTICS_ASYNC When it is enabled, SQL Server updates

338

statistics asynchronously. That is, SQL Server uses a background thread so as not to
block query execution. In this case, the query optimizer might choose a less than
optimal query execution plan until the statistics are updated. Use the ALTER
DATABASE T-SQL command to disable this option.
 AUTO_CREATE_STATISTICS During query execution, SQL Server creates
statistics on individual columns in query predicates to help the query optimizer
improve query plans. Use the ALTER DATABASE T-SQL command to disable this
option.

Even when statistics are set to update automatically, SQL Server does not update
statistics unless one of the following thresholds is met:

 One or more rows is added to an empty table.
 More than 500 rows are added to a table having fewer than 500 rows.
 More than 500 rows are added to a table having more than 500 rows and the number
of rows added is more than a dynamic percentage of total rows. With a small table
under 25,000 rows, this percentage is around 20 percent. As the number of rows in
the table increases, the percentage rate that triggers a statistics update is lower. For
example, SQL Server updates statistics for a table with 1 billion rows when more
than 1 million changes occur, or 0.1 percent. Prior to SQL Server 2016, this
threshold was fixed at 20 percent of the original total number of rows in the table
which means that 200 million rows were required to trigger an update of statistics.

You can check to see if SQL Server automatically created statistics in a database by
checking the value of the auto_created column in the sys.stats catalog view, as shown in
Listing 4-4.

LISTING 4-4 Check auto-created statistics in a database

Click here to view code image

Use WideWorldImporters;
GO
SELECT
 OBJECT_NAME(object_id) AS ObjectName,
 name,
 auto_created
FROM sys.stats
WHERE auto_created = 1 AND
 object_id IN
 (SELECT object_id FROM sys.objects WHERE type = 'U');

/* Partial Output
ObjectName name auto_created
--- -------------------

339

-
Colors_Archive _WA_Sys_00000001_04E4BC85 1
OrderLines _WA_Sys_00000006_05A3D694 1
OrderLines _WA_Sys_0000000C_05A3D694 1
plan_persist_runtime_stats _WA_Sys_00000006_0CBAE877 1
StockGroups_Archive _WA_Sys_00000001_10566F31 1
StateProvinces _WA_Sys_00000002_114A936A 1
StateProvinces _WA_Sys_00000009_114A936A 1
CustomerTransactions _WA_Sys_0000000B_15DA3E5D 1
*/

To check the last time the statistics were updated for each statistics object in a table, you
can use the STATS_DATE system function as shown in Listing 4-5. As an alternative, you
can use the sys.dm_db_stats_properties DMV to get row counts and modifications
occurring since the last statistics update in addition to the last update date.

LISTING 4-5 Check last update of statistics for an object

Click here to view code image

SELECT
 name AS ObjectName,
 STATS_DATE(object_id, stats_id) AS UpdateDate
FROM sys.stats
WHERE object_id = OBJECT_ID('Sales.Customers');

/* Output
ObjectName UpdateDate
------------------------------- -------------------------------

PK_Sales_Customers 2016-06-02
10:07:35.170
UQ_Sales_Customers_CustomerName 2016-06-02
10:07:35.240
FK_Sales_Customers_CustomerCategoryID 2016-06-02
10:08:13.080
FK_Sales_Customers_BuyingGroupID 2016-06-02
10:07:38.010
FK_Sales_Customers_PrimaryContactPersonID 2016-06-02
10:07:43.027
FK_Sales_Customers_AlternateContactPersonID 2016-06-02
10:07:48.040
FK_Sales_Customers_DeliveryMethodID 2016-06-02
10:07:53.043
FK_Sales_Customers_DeliveryCityID 2016-06-02
10:07:58.060

340

FK_Sales_Customers_PostalCityID 2016-06-02
10:08:03.060
IX_Sales_Customers_Perf_20160301_06 2016-06-02
10:08:08.067
_WA_Sys_00000003_2FCF1A8A 2016-06-02
10:10:11.130
_WA_Sys_0000000B_2FCF1A8A 2016-06-02
10:10:11.623
_WA_Sys_0000001E_2FCF1A8A 2016-06-02
10:54:31.173
*/

Design statistics maintenance tasks
SQL Server creates and updates statistics automatically for all indexes and for columns
used in a WHERE or JOIN ON clause. At one extreme, the automatic statistics update
process might run when the database is busy and adversely affects performance or, at the
other extreme, it might not run frequently enough for a table that is subject to high-volume
data changes. For these situations, you can disable the automatic statistics update options
for the database and then implement a maintenance plan to update statistics on demand or
on a schedule.

Note Enabling SQL Server Agent extended stored procedures
Before you can create a maintenance plan, you must enable SQL Server Agent
extended stored procedures. You can do this by starting the SQL Server Agent
service in SQL Server Management Studio or by executing the following
code:

Click here to view code image

EXEC sp_configure 'show advanced options', 1;
GO
RECONFIGURE;
GO
EXEC sp_configure 'Agent XPs', 1;
GO
RECONFIGURE;
GO

To create a maintenance plan, open SQL Server Management Studio. and then, in Object
Explorer, expand the Management node, right click the Maintenance Plans folder, and then
select either New Maintenance Plan or Maintenance Plan Wizard. If you select New
Maintenance Plan, type a name for the maintenance plan. Then drag the Update Statistics
Task from the Toolbox to the plan designer surface, as shown in Figure 4-2.

341

FIGURE 4-2 The Update Statistics Task in the maintenance plan designer
Double click the task to open the Update Statistics Task dialog box, shown in Figure 4-3.

342

FIGURE 4-3 The Update Statistics Task dialog box
In the Databases drop-down list, you can select one of the following options:

 All Databases All SQL Server databases, except tempdb.
 System Databases All SQL Server system databases, except tempdb.
 All User Databases (Excluding Master, Model, Msdb, Tempdb) All user databases
and none of the SQL Server system databases.
 These Databases A list of user and SQL Server system databases (except tempdb)
from which you must select at least one database. If you select this option, you must
also specify whether to update statistics for tables, views, or both tables and views.
If you select Tables or Views, you must also select one or more tables or views from
the respective list.

Then you specify one of the following options for the update:
 All Existing Statistics Statistics for both columns and indexes.
 Column Statistics Only Statistics for columns only.
 Index Statistics Only Statistics for indexes only.

Last, you select one of the following options for scan type:

343

 Full Scan Update statistics by reading all rows in a table or view.
 Sample By Update statistics based on a specified percentage or specified number of
rows. This is a better option when updating statistics for a large table or view.

You can click the View T-SQL button at the bottom of the Update Statistics Task dialog
box to generate the T-SQL script for the new maintenance task. Then you can use this script
as a template to create additional maintenance plans for updating statistics. Listing 4-6
shows a portion of the script generated for the WideWorldImporters database:

LISTING 4-6 Script to update statistics for a specific table

Click here to view code image

USE WideWorldImporters;
GO
UPDATE STATISTICS [Application].[Cities]
WITH FULLSCAN
GO

Note UPDATE STATISTICS options
You can add any of the following options when using the UPDATE
STATISTICS statement.

 No FULLSCAN or SAMPLE option If you omit the FULLSCAN or
SAMPLE option, SQL Server calculates statistics by computing an
appropriate sample size and performing a sample scan.
 FULLSCAN SQL Server performs a full scan of the table data or the index
to generate more accurate statistics, although this option takes more time
and more IO.
 SAMPLE With this option, you specify the number or percentage of rows
that SQL Server samples when generating the statistics.
 RESAMPLE SQL Server generates the statistics using the same sampling
ratio that was defined during the previous statistics generation.

The maintenance task should be scheduled at a time that interferes least with regular
database operations. On the Maintenance Plan designer, click the Subplan Schedule button
to open the New Job Schedule dialog box. Here you can specify whether the maintenance
plan is a recurring schedule, whether it runs only when SQL Server starts or when the CPU
is idle, or one time only. If you choose the Recurring option, you specify a frequency, and a
start and optional end date. If you instead choose the One Time option, you specify the date
and time to execute the maintenance plan. When you save the schedule, a SQL Server Agent

344

job is created and the job executes as a SQL Server Integration Services (SSIS) package.
You can also execute a maintenance plan without waiting for the scheduled SQL Server

Agent job. To do this, expand the Management node, expand the Maintenance Plan node,
right click the maintenance plan, and then select Execute. When you use this method, the
SSIS package is launched and you can observe the execution status in the Execute
Maintenance Plan dialog box.

Use dynamic management objects to review current index usage and identify
missing indexes
SQL Server uses indexes to speed up data access. In Chapter 1, we covered many of the
considerations affecting the design of tables. Over time, you might find that some indexes
are not as helpful as expected due to changes in the distribution of the data or in the query
patterns. Furthermore, the existence of an index that SQL Server never uses adds overhead
to write operations. Therefore, it’s important to periodically review indexes not only to
determine whether existing indexes are still useful, but also whether any are ignored or
missing.

In this section, we review several dynamic management objects (DMOs) that are useful
for this review process. We focus on how to perform specific review tasks that are
important for index management without delving into all the possible information that you
can derive from using these DMOs.

Need More Review? Resources for managing indexes with DMOs
You can find more detail about each DMO by accessing the respective topic in
Books Online. For deeper coverage of index management by using DMOs,
download the free ebook “Performance Tuning with Dynamic Management
Views” by Tim Ford and Louis Davidson available at https://www.simple-
talk.com/books/sql-books/performance-tuning-with-sql-server-dynamic-
management-views---ebook-download.

Review current index usage
The following DMOs provide information about whether and how indexes are used:

 sys.dm_db_index_usage_stats Use this DMV to review the use of indexes to
resolve queries.
 sys.dm_db_index_physical_stats Use this dynamic management function (DMF) to
check the overall status of indexes in a database.

sys.dm_db_index_usage_stats
To get a quick overview of which indexes are being used, you can use the
sys.dm_db_index_usage_stats DMV as shown in Listing 4-7. To appear in this DMV’s

345

https://www.simple-talk.com/books/sql-books/performance-tuning-with-sql-server-dynamic-management-views---ebook-download

output, an index must be read or written to at least once by a user or system operation. In
this example, the count of user seeks, scans, and lookups are aggregated as user_reads and
sorted in descending order to make it clear which indexes are used more frequently than
others. Counts in this DMV are reset when the server restarts or when an index is dropped
and recreated.

LISTING 4-7 Review current index usage

Click here to view code image

SELECT
 OBJECT_NAME(ixu.object_id, DB_ID('WideWorldImporters')) AS
[object_name] ,
 ix.[name] AS index_name ,
 ixu.user_seeks + ixu.user_scans + ixu.user_lookups AS
user_reads,
 ixu.user_updates AS user_writes
FROM sys.dm_db_index_usage_stats ixu
INNER JOIN WideWorldImporters.sys.indexes ix ON
 ixu.[object_id] = ix.[object_id] AND
 ixu.index_id = ix.index_id
WHERE ixu.database_id = DB_ID('WideWorldImporters')
ORDER BY user_reads DESC;
/*Partial Output
object_name index_name user_reads
user_writes
--- --------------- ---

StockGroups PK_Warehouse_StockGroups 19 0
Suppliers PK_Purchasing_Suppliers 13 0
ColdRoomTemperatures_Archive ix_ColdRoomTemperatures_Archive 0 1959
StockItems FK_Warehouse_StockItems_SupplierID 0 0
*/

Just as important as knowing which indexes are being accessed is knowing which
indexes are never used. To find these indexes, you must start by retrieving all tables and
indexes in a database and then filter out those appearing in sys.dm_db_index_usage_stats
as shown in Listing 4-8.

LISTING 4-8 Find unused indexes

Click here to view code image

USE WideWorldImporters;
GO

346

SELECT
 OBJECT_NAME(ix.object_id) AS ObjectName ,
 ix.name
FROM sys.indexes AS ix
INNER JOIN sys.objects AS o ON
 ix.object_id = o.object_id
WHERE ix.index_id NOT IN (
 SELECT ixu.index_id
 FROM sys.dm_db_index_usage_stats AS ixu
 WHERE
 ixu.object_id = ix.object_id AND
 ixu.index_id = ix.index_id AND
 database_id = DB_ID()
) AND
 o.[type] = 'U'
ORDER BY OBJECT_NAME(ix.object_id) ASC ;

/* Partial Output
ObjectName name

BuyingGroups UQ_Sales_BuyingGroups_BuyingGroupName
BuyingGroups_Archive ix_BuyingGroups_Archive
Cities_Archive ix_Cities_Archive
ColdRoomTemperatures NULL
ColdRoomTemperatures PK_Warehouse_ColdRoomTemperatures
ColdRoomTemperatures IX_Warehouse_ColdRoomTemperatures_ColdRoomSensorNumber
*/

Whereas the previous example helps you find indexes for which there is no read or write
activity, Listing 4-9 helps you find indexes that SQL Server maintains but never uses to
retrieve data for a query. These indexes are consuming resources without helping query
performance. You should consider dropping these indexes if further investigation reveals
that there is no need to continue to maintain them.

LISTING 4-9 Find indexes that are updated but never used

Click here to view code image

USE WideWorldImporters;
GO
SELECT
 o.name AS ObjectName ,
 ix.name AS IndexName ,
 ixu.user_seeks + ixu.user_scans + ixu.user_lookups AS
user_reads ,

347

 ixu.user_updates AS user_writes ,
 SUM(p.rows) AS total_rows
FROM sys.dm_db_index_usage_stats ixu
INNER JOIN sys.indexes ix ON
 ixu.object_id = ix.object_id AND
 ixu.index_id = ix.index_id
INNER JOIN sys.partitions p ON
 ixu.object_id = p.object_id AND
 ixu.index_id = p.index_id
INNER JOIN sys.objects o ON
 ixu.object_id = o.object_id
WHERE
 ixu.database_id = DB_ID() AND
 OBJECTPROPERTY(ixu.object_id, 'IsUserTable') = 1 AND
 ixu.index_id > 0
GROUP BY
 o.name ,
 ix.name ,
 ixu.user_seeks + ixu.user_scans + ixu.user_lookups ,
 ixu.user_updates
HAVING ixu.user_seeks + ixu.user_scans + ixu.user_lookups = 0
ORDER BY
 ixu.user_updates DESC,
 o.name ,
 ix.name ;

/* Output
ObjectName IndexName user_reads user_writes total_rows
-------------------------- ---------------- ---------------- --

ColdRoomTemperatures_Archive
ix_ColdRoomTemperatures_Archive 0 2016 3654736
StockItems FK_Warehouse_StockItems_SupplierID
0 0 227
*/

sys.dm_db_index_physical_stats
In addition to reviewing usage of indexes, you should also review index health by using the
sys.dm_db_index_physical_stats DMF. As inserts, updates, and deletes occur, an index
becomes increasingly fragmented and IO increases as data is no longer efficiently stored on
disk. Listing 4-10 shows how to review fragmentation. In general, you should focus on
indexes for which fragmentation is greater than 15percent and the page count is greater than
500. When fragmentation is between 15 percent and 30 percent, you should reorganize the
index, and when its greater, you should rebuild it.

348

LISTING 4-10 Review index fragmentation

Click here to view code image

DECLARE @db_id SMALLINT, @object_id INT;
SET @db_id = DB_ID(N'WideWorldImporters');
SET @object_id = OBJECT_ID(N'WideWorldImporters.Sales.Orders');
SELECT
 ixs.index_id AS idx_id,
 ix.name AS ObjectName,
 index_type_desc,
 page_count,
 avg_page_space_used_in_percent AS AvgPageSpacePct,
 fragment_count AS frag_ct,
 avg_fragmentation_in_percent AS AvgFragPct
FROM sys.dm_db_index_physical_stats
 (@db_id, @object_id, NULL, NULL , 'Detailed') ixs
INNER JOIN sys.indexes ix ON
 ixs.index_id = ix.index_id AND
 ixs.object_id = ix.object_id
ORDER BY avg_fragmentation_in_percent DESC;

/* Output
idx_id ObjectName index_type_desc pg_ct
AvgPageSpacePct frag_ct AvgFragPct
-------- ---------------------------------- ---------- --------

4 FK_Sales_Orders_PickedByPersonID NONCLUSTERED
INDEX 237 53.6864838151717 237
 99.57805907173
2 FK_Sales_Orders_CustomerID NONCLUSTERED INDEX 189
67.3274277242402 189
 97.8835978835979
5 FK_Sales_Orders_ContactPersonID NONCLUSTERED
INDEX 189 67.3274277242402 189
 97.8835978835979
3 FK_Sales_Orders_SalespersonPersonID NONCLUSTERED INDEX 136
93.5749444032617 136
 97.0588235294118
1 PK_Sales_Orders CLUSTERED INDEX 688
99.0945268099827 88
 0.290697674418605
1 PK_Sales_Orders CLUSTERED
INDEX 2 55.2260934025204 2 0
1 PK_Sales_Orders CLUSTERED INDEX 1
0.296515937731653 1 0
2 FK_Sales_Orders_CustomerID NONCLUSTERED INDEX 1

349

39.6713615023474 1 0
3 FK_Sales_Orders_SalespersonPersonID NONCLUSTERED INDEX 1
28.5396590066716 1 0
4 FK_Sales_Orders_PickedByPersonID NONCLUSTERED INDEX 1
58.5001235483074 1 0
5 FK_Sales_Orders_ContactPersonID NONCLUSTERED INDEX 1
39.6713615023474 1 0
*/

Identify missing indexes
When the query optimizer compiles a T-SQL statement, it also tracks up to 500 indexes that
could have been used if they had existed. The following DMVs help you review these
missing indexes:

 sys.dm_db_missing_index_details Use this DMV to identify the columns used for
equality and inequality predicates.
 sys.dm_db_missing_index_groups Use this DMV as an intermediary between
sys.dm_db_index_details and sys.dm_db_missing_group_stats.
 sys.dm_db_missing_index_group_stats Use this DMV to retrieve metrics on a
group of missing indexes.

Note SQL Server restart clears information from DMOs
The information in these DMOs is cleared when SQL Server restarts and
reflects only information accumulated since the last restart.

You use the three DMVs as a group, as shown in Listing 4-11. The output, which will
vary on your computer, will list each database, schema, and table that is missing an index
in descending order of the overall improvement expected by adding an index. The
improvement is derived by multiplying the sum of the seeks and scans that the index helps
by the average cost of the user queries that could be reduced by the index and by the
average percent decrease in cost resulting from implementing the index. The
equality_columns column lists one or more columns in the table that are good candidates
for the new index. The inequality_columns column lists columns that are useful for queries
that include the <> operator that you might consider adding to the index. Last, the
included_columns column lists the columns that are suggested for addition to the index in
the INCLUDE clause.

LISTING 4-11 Review missing indexes

Click here to view code image

350

SELECT
 (user_seeks + user_scans) * avg_total_user_cost *
(avg_user_impact * 0.01) AS
IndexImprovement,
 id.statement,
 id.equality_columns,
 id.inequality_columns,
 id.included_columns
FROM sys.dm_db_missing_index_group_stats AS igs
INNER JOIN sys.dm_db_missing_index_groups AS ig
 ON igs.group_handle = ig.index_group_handle
INNER JOIN sys.dm_db_missing_index_details AS id
 ON ig.index_handle = id.index_handle
ORDER BY IndexImprovement DESC;

/* Output
IndexImprovmeent statement
equality_columns inequality_columns included_columns
-------------------------- ------------------------------ -----

79.89008274829 [AdventureWorksDW].[dbo].[FactInternetSales]
[ProductKey] NULL
 [CustomerKey]
*/

Consolidate overlapping indexes
Consider a situation in which two indexes include similar indexes such as those shown in
Listing 4-12. In this example, the two indexes are the same except one index contains an
additional column. When SQL Server processes a query that needs the columns in the
smaller index, it uses the smaller index. Conversely, when processing a query that uses all
columns in the larger index, then SQL Server uses that index.

LISTING 4-12 Create overlapping indexes

Click here to view code image

USE [WideWorldImporters];
GO
CREATE NONCLUSTERED INDEX [IX_Sales_Invoices_ExamBook762Ch4_A]
 ON [Sales].[Invoices]
(
 [CustomerID],
 [InvoiceDate]
)
INCLUDE ([TotalDryItems]);

351

GO
CREATE NONCLUSTERED INDEX [IX_Sales_Invoices_ExamBook762Ch4_B]
 ON [Sales].[Invoices]
(
 [CustomerID],
 [InvoiceDate],
 [CustomerPurchaseOrderNumber]
)
INCLUDE ([TotalDryItems]);
GO

With regard to query performance, all is well. However, SQL Server has an additional
index to manage and requires more disk space for the database when similar indexes exist.
This situation can occur when you create new indexes based on the DMVs for missing
indexes or follow the recommendations from the Database Engine Tuning Advisor because
they do not always account for existing indexes. Therefore, when using the DMVs or
Database Engine Tuning Advisor to identify missing indexes, you might consider simply
adding a new column to an existing index by adding it as another key or as an included
column.

Meanwhile, when you encounter overlapping indexes, you should drop one of them so
that database maintenance tasks run faster and less storage is required. Use the script in
Listing 4-13 to find overlapping indexes.

 Exam Tip

The exam has several different styles of questions to test your understanding
of missing indexes and overlapping indexes. In particular, you should know
how to identify overlapping indexes and what actions are necessary to
consolidate and optimize them. It’s also important to understand which
operators can be removed with a clustered or covering index.

LISTING 4-13 Find overlapping indexes

Click here to view code image

USE [WideWorldImporters];
WITH IndexColumns AS (
 SELECT
 '[' + s.Name + '].[' + T.Name + ']' AS TableName,
 ix.name AS IndexName,
 c.name AS ColumnName,
 ix.index_id,
 ixc.index_column_id,

352

 COUNT(*) OVER(PARTITION BY t.OBJECT_ID, ix.index_id) AS
ColumnCount
 FROM sys.schemas AS s
 INNER JOIN sys.tables AS t ON
 t.schema_id = s.schema_id
 INNER JOIN sys.indexes AS ix ON
 ix.OBJECT_ID = t.OBJECT_ID
 INNER JOIN sys.index_columns AS ixc ON
 ixc.OBJECT_ID = ix.OBJECT_ID AND
 ixc.index_id = ix.index_id
 INNER JOIN sys.columns AS c ON
 c.OBJECT_ID = ixc.OBJECT_ID AND
 c.column_id = ixc.column_id
WHERE
 ixc.is_included_column = 0 AND
 LEFT(ix.name, 2) NOT IN ('PK', 'UQ', 'FK')
)
SELECT DISTINCT
 ix1.TableName,
 ix1.IndexName AS Index1,
 ix2.IndexName AS Index2
FROM IndexColumns AS ix1
INNER JOIN IndexColumns AS ix2 ON
 ix1.TableName = ix2.TableName AND
 ix1.IndexName <> ix2.IndexName AND
 ix1.index_column_id = ix2.index_column_id AND
 ix1.ColumnName = ix2.ColumnName AND
 ix1.index_column_id < 3 AND
 ix1.index_id < ix2.index_id AND
 ix1.ColumnCount <= ix2.ColumnCount
ORDER BY ix1.TableName, ix2.IndexName;

/* Output
TableName Index1 Index2

 [Sales].[Invoices] IX_Sales_Invoices_ExamBook762Ch4_A
 IX_Sales_Invoices_ExamBook762Ch4_B
[Sales].[OrderLines]IX_Sales_OrderLines_AllocatedStockItems
 IX_Sales_OrderLines_Perf_20160301_02
*/

Skill 4.2: Analyze and troubleshoot query plans
One of the most important skills that you can have as a database administrator is the ability
to analyze and troubleshoot query plans. In this section, we explain how to capture query
plans, how certain query plan operators can indicate a potential performance problem, and

353

how to interpret estimated versus actual query plans. We also introduce Query Store as a
SQL Server 2016 feature that you can use to review SQL Server’s selection of query plans
for a query over time. For Azure SQL Database implementations, we show you how Azure
SQL Database Performance Insight provides visibility into query performance in the cloud.

This section covers how to:
 Capture query plans using extended events and traces
 Identify poorly performing query plan operators
 Create efficient query plans using Query Store
 Compare estimated and actual query plans and related metadata
 Configure Azure SQL Database Performance Insight

Capture query plans using extended events and traces
Before a query executes, several processes occur to manage how SQL Server performs the
instructions in the T-SQL statement. The first process is query parsing, a step in which the
database engine checks to make sure the submitted query uses valid T-SQL syntax. If query
parsing is successful and if the T-SQL statement is a DML statement, the next process to run
is the algebrizer, which verifies the existence of the referenced objects, such as tables and
columns. If this process succeeds, the next process invoked is the query optimizer. The
query optimizer checks to see if a query plan already exists for the query. If not, it
generates one or more query plans based on the statistics available for the data and then
selects the query plan that is good enough to perform the task at hand while minimizing the
use CPU and IO when possible.

Although you can use the graphical query plan to analyze a single query, such as you
might during index design as described in Chapter 1, you need an alternate approach when
you need to troubleshoot many queries running on a server. In that case, you can automate
the process of capturing execution plans by using extended events or SQL Trace.

Important Permissions required to view a query plan
You must have the appropriate permissions within a database to view a query
plan. If your login is assigned to the sysadmin, dbcreator, or db_owner role,
you have the necessary permissions. Otherwise, you need to be granted the
SHOWPLAN permission by running the following statement:
GRANT SHOWPLAN TO [username];

Extended Events
Using Extended Events is a lightweight approach to capturing query plans. There are two
Extended Events that you can use to review query plans:

354

 query_pre_execution_showplan This Extended Event captures the estimated query
plan for a query. An estimated query plan is prepared without executing the query.
 query_post_execution_showplan This Extended Event captures the actual query
plan for a query. An actual query plan is the estimated query plan that includes
runtime information. For this reason, it is not available until after the query executes.

Listing 4-14 shows how to create and start an Extended Event session for actual query
plans. In this example, the session definition filters the query activity on the server for a
specific database and query type, ADHOC. In your own environment, you can remove
filters entirely or apply more filters as needed. We describe how to work with Extended
Events in greater detail in Skill 4.4.

Note Create target folder for query plan before running sample script
The target folder for the query plan, C:\ExamBook762Ch4\, must exist before
running the script shown in Listing 4-14.
Also, be aware that running an Extended Event session to capture actual query
plans is an expensive operation and should be used sparingly on a production
server and only with highly selective filtering in place.

LISTING 4-14 Create and start an Extended Event session to capture an actual query plan

Click here to view code image

IF EXISTS(SELECT *
 FROM sys.server_event_sessions
 WHERE name='ActualQueryPlans')
 DROP EVENT SESSION ActualQueryPlans
 ON SERVER;
GO
CREATE EVENT SESSION ActualQueryPlans
ON SERVER
ADD EVENT sqlserver.query_post_execution_showplan(
 ACTION (sqlserver.database_name,
 sqlserver.client_hostname,
 sqlserver.client_app_name,
 sqlserver.plan_handle,
 sqlserver.sql_text,
 sqlserver.tsql_stack,
 package0.callstack,
 sqlserver.query_hash,
 sqlserver.session_id,
 sqlserver.request_id)
 WHERE

355

 sqlserver.database_name='WideWorldImporters' AND
 object_type = 'ADHOC'
)
ADD TARGET package0.event_file(SET
filename=N'C:\ExamBook762Ch4\ActualQueryPlans.xel',
 max_file_size=(5),max_rollover_files=(4)),
ADD TARGET package0.ring_buffer
 WITH (MAX_DISPATCH_LATENCY=5SECONDS, TRACK_CAUSALITY=ON);
GO
ALTER EVENT SESSION ActualQueryPlans
 ON SERVER
 STATE=START;
GO

You can review the query plans captured by this Extended Event using the graphical
interface in SQL Server Management Studio. In Object Explorer, expand the Management
node, expand the Sessions node, right click ActualQueryPlans, and select Watch Live Data.
Now that you are watching the sessions, execute a query, like this:

USE WideWorldImporters;
GO
SELECT *
FROM Warehouse.StockGroups;

In the session window, click the row in which the query event appears, and then click the
Query Plan tab in the lower portion of screen, as shown in Figure 4-4.

356

FIGURE 4-4 A query plan accessed from an Extended Event session
When you no longer need to capture query plans, be sure to disable or drop the Extended

Event session, using the applicable statement in Listing 4-15.

LISTING 4-15 Disable or drop extended event sessions

Click here to view code image

--Disable extended event session
ALTER EVENT SESSION ActualQueryPlans
 ON SERVER
 STATE=STOP;
GO
--Drop extended event session
IF EXISTS(SELECT *
 FROM sys.server_event_sessions
 WHERE name='ActualQueryPlans')

357

 DROP EVENT SESSION ActualQueryPlans
 ON SERVER;
GO

SQL Trace
Although SQL Trace is designated as a deprecated feature and will be removed from a
future release of SQL Server, it remains an available option in SQL Server 2016. You can
define server-side traces by using system stored procedures and then run these traces on
demand or on a scheduled basis. As an alternative, you can use SQL Server Profiler as a
client-side option. The overhead of running server-side traces is much less than the
overhead of using SQL Server Profiler, but the overhead is still significant. Therefore, take
care when using SQL Trace in a production environment regardless of the approach you
take and disable tracing as soon as possible.

Server-side tracing
To define a trace, use the following system stored procedures:

 sp_trace_create This procedure creates a new trace and defines a file into which
SQL Server stores trace data. It returns a trace ID that you reference in the other
procedures to manage the trace.
 sp_trace_setevent This procedure must be called once for each data column of the
events to capture in the trace. That means you must call this procedure many times for
any single trace. When you call this procedure, you pass in the following arguments,
the trace identifier captured as output when you create the trace, the event identifier,
the column identifier, and the status of ON (1) or OFF (0).
 sp_trace_setfilter This procedure must be called once for each filter on an event
data column.
 sp_trace_setstatus This procedure starts, stops, or removes a trace. It must be
stopped and removed before you can open the related trace file.

Listing 4-16 illustrates how to use these four system stored procedures to create a trace
for a query plan. The trace data is stored in the ExamBook762Ch4 folder that must exist
prior to executing the sp_trace_create system stored procedure. Next, the sp_trace_setevent
system stored procedure is called multiple times to capture the query plan, the login name
associated with the query, the start and end time of the query, and the text of the query,
respectively.

LISTING 4-16 Create a trace, add events and filter to a trace, and start a trace

Click here to view code image

USE master;

358

GO
DECLARE @TraceID int;
EXEC sp_trace_create
 @TraceID output,
 0,
 N'C:\ExamBook762Ch4\ActualQueryPlanTrc';

EXEC sp_trace_setevent @TraceID,
 146, -- Showplan XML Statistics Profile
 27, -- BinaryData column
 1; -- Column is ON for this event

EXEC sp_trace_setevent @TraceID,
 146,
 1, -- TextData column
 1;

EXEC sp_trace_setevent @TraceID,
 146,
 14, -- StartTime column
 1;

EXEC sp_trace_setevent @TraceID,
 146,
 15, -- EndTime column
 1;

-- Set filter for database
EXEC sp_trace_setfilter @TraceID,
 @ColumnID = 35, --Database Name
 @LogicalOperator = 0, -- Logical AND
 @ComparisonOperator = 6, -- Comparison LIKE
 @Value = N'WideWorldImporters' ;

-- Set filter for application name
EXEC sp_trace_setfilter @TraceID,
 @ColumnID = 10, --ApplicationName
 @LogicalOperator = 0, -- Logical AND
 @ComparisonOperator = 6, -- Comparison LIKE
 @Value = N'Microsoft SQL Server Management Studio - Query'
;

-- Start Trace (status 1 = start)
EXEC sp_trace_setstatus @TraceID, 1;
GO

359

Note Resources for sp_trace_setevent and sp_trace_setfilter
Lists of event and column identifiers for defining the event columns are
available at “sp_trace_setevent (Transact-SQL)”,
https://msdn.microsoft.com/en-us/library/ms186265.aspx. Lists of the
logical and comparison operators for the trace filter are available at
“sp_trace_setfilter (Transact-SQL)” at https://msdn.microsoft.com/en-
us/library/ms174404.aspx.

Now execute a query to generate an event for the trace like this:

USE WideWorldImporters;
GO
SELECT *
FROM Warehouse.StockGroups;

To view the trace information, find the trace identifier by using the sys.fn_trace_getinfo
system function and then use sp_trace_setstatus twice, as shown in Listing 4-17, replacing
<traceid> with the trace identifier that you find by executing the first statement. The first
time you set the status of the trace to 0 to stop it and the second time you set the status to 2
to close and delete the trace information from SQL Server.

LISTING 4-17 Stop and delete a trace

Click here to view code image

---- Find the trace ID
USE master;
GO
SELECT *
FROM sys.fn_trace_getinfo(0)
WHERE value = 'C:\ExamBook762Ch4\ActualQueryPlanTrc.trc';

-- Set the trace status to stop
EXEC sp_trace_setstatus
 @traceid = <traceid>,
 @status= 0;
GO

-- Close and Delete the trace
EXEC sp_trace_setstatus
 @traceid = <traceid>,
 @status = 2;
GO

360

https://msdn.microsoft.com/en-us/library/ms186265.aspx
https://msdn.microsoft.com/en-us/library/ms174404.aspx

The trace file remains on the file system and is available for you to view in SQL Server
Profiler. Be sure to open SQL Server Profiler by using the Run As Administrator option
and then open the trace file. Click the row containing the query’s Showplan event to view
the graphical query plan, as shown in Figure 4-5.

FIGURE 4-5 A query plan accessed from a SQL trace file

Setting up traces manually by using the system stored procedures can be tedious due to
the number of numeric parameters required. Rather than refer to Books Online to find the
necessary values, you can take advantage of SQL Server catalog views to find the values
you need, as shown in Listing 4-18.

LISTING 4-18 Get event and column identifiers for use in a trace definition

Click here to view code image

--Get event identifiers
SELECT
 e.trace_event_id AS EventID,
 e.name AS EventName,

361

 c.name AS CategoryName
FROM sys.trace_events e
JOIN sys.trace_categories c
 ON e.category_id = c.category_id
ORDER BY e.trace_event_id;

/* Partial output
EventID EventName CategoryName
------------ ------------------------------- ------------------

10 RPC:Completed Stored
Procedures
11 RPC:Starting Stored
Procedures
12 SQL:BatchCompleted TSQL
13 SQL:BatchStarting TSQL
*/

--Get column identifiers for events
SELECT
 trace_column_id,
 name AS ColumnName
FROM sys.trace_columns
ORDER BY trace_column_id;

/* Partial output
trace_column_id ColumnName
----------------------- -----------------------------
1 TextData
2 BinaryData
3 DatabaseID
4 TransactionID
5 LineNumber
*/

LISTING 4-19 Create an indexed view to improve aggregate query performance

Click here to view code image

CREATE VIEW Sales.vSalesByYear
WITH SCHEMABINDING
AS
 SELECT
 YEAR(InvoiceDate) AS InvoiceYear,
 COUNT_BIG(*) AS InvoiceCount
FROM Sales.Invoices

362

GROUP BY YEAR(InvoiceDate);
GO
CREATE UNIQUE CLUSTERED INDEX idx_vSalesByYear
 ON Sales.vSalesByYear
 (InvoiceYear);
GO

Client-side tracing
You can use SQL Server Profiler instead of manually creating the many stored procedures
to define a trace when you need to capture a query plan. On the File menu, click New
Trace, and then connect to the server on which you want to run the trace. In the Trace
Properties dialog box, click the Events Selection tab and then select the Show All Events
checkbox. Expand the Performance node, and select one or more of the following
checkboxes:

 Showplan XML This event is raised when SQL Server selects an estimated query
plan.
 Showplan XML For Query Compile This event is raised when SQL Server
compiles a query and produces an estimated query plan which it adds to the query
plan cache. Generally, this event is raised only once for a query unless the query
requires recompilation.
 Showplan XML Statistics Profile This event is raised after SQL Server executes a
query and has generated an actual query plan.

To minimize the performance impact of running SQL Server Profiler, you should apply
as many filters as possible to capture only the query plans of interest. As an example, you
might want to focus on queries in a specific database. To do this, select the Show All
Columns checkbox, and then click Column Filters. In the Edit Filter dialog box, click
DatabaseName, expand Like, type WideWorldImporters as shown in Figure 4-6, and then
click OK. Next, click Run to start the trace.

363

FIGURE 4-6 Adding a filter to a trace in SQL Server Profiler
After enabling a trace, you can run a query against the WideWorldImporters database,

such as the one shown in Listing 4-15. After executing the query, click the Stop Selected
Trace in the SQL Server Profiler toolbar. You can click on any of the events that begin with
Showplan to view the graphical estimated or actual query plan, depending on the specific
event you select. To save the query plan to a separate file for later review, right click the
event, and then select Extract Event Data to save the file with a SQLPlan file extension.
You can then open this file in SQL Server Management Studio.

Identify poorly performing query plan operators
Not only can a query plan tell you the specific steps performed by SQL Server during query
execution, it can also help you discover which step in the sequence is performing poorly.
Each step in the query plan is a separate operation performed by the database engine and is
represented as an icon known as an operator. As you analyze a graphical query plan, you
should check for the following conditions that can affect query performance:

 Query plan optimization You can find this property by right clicking the first
operator in the plan (for example, SELECT) and selecting Properties. In the
Properties window, look for the Reason For Early Termination Of Statement

364

Optimization property. If it is Good Enough Plan Found, then proceed with further
analysis of the query plan. If the value is Timeout, you should spend time tuning your
query because the property indicates that the current query plan is not optimal.
 Operators In particular, operators requiring a lot of memory (such as a Sort) or
blocking operators can contribute to performance problems in a query. We describe
potential issues with query plan operators in more detail later in this section.
 Arrow width The width of arrows between operators is an indicator relative to the
number of rows affected by the operation. If you see one operation outputs a wide
arrow, while the arrow preceding a SELECT operator is narrow, the query must
process many rows before returning a small number of rows in the result set. In this
case, you might investigate whether you can add a filter to the query to reduce the
number of rows for the earlier operation and thereby improve overall query
performance.
 Operator cost Each operator’s contribution to the overall cost of the query is
represented as a percentage value. As you analyze the query plan, look for the
operators with the highest costs.
 Warnings When the optimizer detects a problem, it includes a warning in an
operator’s properties and displays a warning icon on the operator in the graphical
query plan. This is a significant clue that the query performance is likely to suffer. If
you see a warning, you should take steps to tune your query or optimize your
environment to eliminate the warning.

Let’s consider some examples of query plan operators that can adversely affect
performance. Before executing the ad hoc queries in this section, click the Include Actual
Execution Plan button once to enable the graphical query plan for each query.

Note Understanding query plans for queries using the WideWorldImporters
database

The size of the WideWorldImporters database is too small to illustrate
performance problems with the use of certain operators. Nonetheless, we use
queries against this database to familiarize you with the appearance of
specific poorly performing operators in a query plan, explain the conditions in
which SQL Server might use them, and suggest steps you can take to improve
query performance.

 Exam Tip

Understanding query plan operators is important both in the real world and on
the exam. Be prepared for questions that present two possible query plans and
ask you to choose the more optimal of the two query plans.

365

Table Scan operator
As we explained in Chapter 1, SQL Server must read a heap row by row to find the rows
for a query. This operation can perform slowly when run against a large table. Try this
query:
Click here to view code image

SELECT *
FROM Warehouse.VehicleTemperatures;

In the Execution Plan window, as shown in Figure 4-7, you can see that SQL Server used
a Table Scan operator that represents 100% of the query cost. Note also the size of the
arrow between the SELECT and Table Scan operators to indicate a relatively large result
set. In this case, the table is memory-optimized, so the performance cost of reading
659,998 rows for this query is minimal. On the other hand, if this table were not memory-
optimized and you were investigating poor query performance, the presence of the Table
Scan operator should lead you to consider adding a clustered index to the table or look for
ways to filter the query to return fewer rows.

FIGURE 4-7 Table Scan operator in a query plan

Clustered Index Scan operator
Another potential problem for query performance is the use of the Clustered Index Scan
operator. It is similar in concept to the Table Scan operator in that SQL Server must scan
all the data. This might occur when the query must return so many rows that using the index
to find specific rows is no longer advantageous, index selectivity is too low, or statistics
are obsolete. To see this operator in action, execute the following query:
Click here to view code image

SELECT *
FROM Warehouse.StockGroups;

As you can see in Figure 4-8, SQL Server uses the Clustered Index Scan operator to
process the query. You can also see which index is used, PK_Warehouse_StockGroups.
This clustered index is relatively small (as you can see by the size of the arrows between
operators), so performance is not an issue here. However, the presence of a Clustered

366

Index Scan operator can indicate the source of poor query performance and merits further
investigation to determine whether you can modify the query by adding a WHERE clause to
return only the needed rows, as long as a proper index exists for the column used in the
filter. Importantly, the WHERE clause must have a predicate that includes a column on one
side of the operator and an expression on the other side with both the column and
expression having the same data type. If you use the LIKE operator in the WHERE clause,
you cannot use a wildcard as the first character in the search string.

FIGURE 4-8 Clustered Index Scan operator in a query plan

That said, an index scan is not necessarily a bad operation. It is more efficient than a
table scan by comparison. Nonetheless, if you need to find a way to improve query
performance, your next step is to add a filter. To see what happens when you do this,
execute the following query:

SELECT *
FROM Warehouse.StockGroups
WHERE StockGroupID = 1;

Now SQL Server uses a Clustered Index Seek operator, as shown in Figure 4-9. This
change to the query plan is good because a seek operator can be one of the faster data
retrieval methods used by SQL Server. In particular, a Clustered Index Seek is a preferred
operator because all data in the table is also included in the index and SQL Server can
return results directly from the index without performing additional steps.

FIGURE 4-9 Clustered Index Seek operator in a query plan

Notice also that SQL Server converted the predicate to @1 instead of using the actual
value of 1 that was requested in the query. That way, SQL Server can reuse the query plan
when the same query executes with a different value in the WHERE clause. This reuse is
known as simple parameterization.

367

Index Seek (NonClustered) and Key Lookup (Clustered) operators
Like the Clustered Index Seek operator, the Index Seek (NonClustered) operator is a much
better operator to see in a query plan than a Table Scan or a Clustered Index Scan operator
because it can selectively find rows in the index rather than read all the rows, although this
behavior is dependent on the query. On the other hand, if the non-clustered index is not a
covering index, the query plan also includes a Key Lookup (Clustered) operator, which
adds a slight overhead to query performance. To see a query plan with these
characteristics, as shown in Figure 4-10, execute this query:
Click here to view code image

SELECT
 StockGroupID,
 StockGroupName,
 ValidFrom,
 ValidTo
FROM Warehouse.StockGroups
WHERE StockGroupName = 'Novelty Items';

FIGURE 4-10 Index Seek (NonClustered) and Key Lookup (Clustered) operator in a
query plan.

In this case, the index used by the Index Seek (NonClustered) operator contains only the
StockGroupName column, but the query references other columns in the SELECT clause,
so it must use the Key Lookup (Clustered) operator to get the additional columns for each
row. Incidentally, if the query references columns in JOIN conditions or the WHERE
clause, SQL Server includes the Key Lookup (Clustered) operator in the query plan even if
those columns are not also in the SELECT clause. Therefore, whenever you see the Key
Lookup (Clustered) operator in combination with an Index Seek (NonClustered) operator,
consider creating a covering index by adding the necessary columns to the index key or as
included columns.

Note RID Lookup operator versus Key Lookup (Clustered) operator
When a query accesses a table without a clustered index, SQL Server uses the

368

RID Lookup operator instead of the Key Lookup (Clustered) operator. The net
effect of each operator type has a similar effect on query performance which
can be mitigated by the addition of a covering index or a clustered index.

Sort operator
The Sort operator can also increase the cost of a query. Consider the query plan shown in
Figure 4-11 that results from executing the following query which includes an ORDER BY
clause containing a column that is not used in an index:

SELECT *
FROM Warehouse.StockItems
ORDER BY StockItemName;

FIGURE 4-11 Sort operator in a query plan for a query sorting by a non-key column.
Contrast the query plan in Figure 4-11 with the one in Figure 4-12 that is created by

executing this query:

SELECT *
FROM Warehouse.StockItems
ORDER BY StockItemID;

FIGURE 4-12 Sort operator in a query plan for a query sorting by a key column
Because a clustered index is already sorted, SQL Server no longer requires a Sort

operator when the ORDER BY clause includes a key column from the clustered index. With
this in mind, look for Sort operators with a significant query cost and consider adding the
sort columns to a clustered index on the table. Another potential solution is to reduce the
number of rows to sort by adding a WHERE clause to the query.

Another consideration when working with a Sort operator is the volume of data that SQL
Server must sort. The query optimizer uses the estimated number of rows and the average

369

row size to calculate the minimum amount of memory required to perform the operation and
the amount of memory needed to perform the operation entirely in memory. If the actual
number of rows to be sorted is larger than the estimate due to obsolete statistics, the
operation spills to tempdb. You can identify this type of memory problem in the actual
query plan when you see a warning symbol on the Sort, as shown in Figure 4-13, or Hash
Match operators.

FIGURE 4-13 Sort and Hash Match operators with warning symbols in actual query plan

When you hover the cursor over the Sort operator, the tooltip includes a warning that the
operator used tempdb to spill data, as shown in Figure 4-14.

370

FIGURE 4-14 Sort and Hash Match operators with warning symbols in actual query plan
The query performance will suffer when the sort must use tempdb instead of memory.

Use the tooltip for the SELECT operator to check the Memory Grant property which shows
how much memory that SQL Server is allocating to the query. In SQL Server 2016, you can
now add a query hint to request a minimum memory grant size as a percentage of the default
limit to override the minimum memory per query property that is set on the server like this:

371

Click here to view code image

OPTION(min_grant_percent = 100)

Hash Match (Aggregate) operator
Aggregations in a query can have a negative effect on performance and should be reviewed
carefully. Figure 4-15 shows the query plan created for the following aggregate query:
Click here to view code image

SELECT
 YEAR(InvoiceDate) AS InvoiceYear,
 COUNT(InvoiceID) AS InvoiceCount
FROM Sales.Invoices
GROUP BY YEAR(InvoiceDate);

FIGURE 4-15 Hash Match (Aggregate) operator in a query plan.

In this case, the Hash Match (Aggregate) operator to group the rows from the Index Scan
(NonClustered) operator contributes a significant percentage to the query cost. To perform
this aggregation, SQL Server creates a temporary hash table in memory to count the rows
by invoice year. Notice the larger width of the arrow sending data into the Hash Match
(Aggregate) operator as compared to the width of the arrow sending the results to the next
operator as an indicator that a larger row set has been reduced to a smaller row set by the
operation.

Options to consider for minimizing the impact on performance when performing
aggregations is to minimize the number of rows to aggregate where possible or to use an
indexed view to pre-aggregate rows. Execute the statements in Listing 4-19 to set up an
indexed view to improve the previous query’s performance.
Click here to view code image

DCREATE VIEW Sales.vSalesByYear
WITH SCHEMABINDING
AS
 SELECT
 YEAR(InvoiceDate) AS InvoiceYear,
 COUNT_BIG(*) AS InvoiceCount
FROM Sales.Invoices
GROUP BY YEAR(InvoiceDate);
GO

372

CREATE UNIQUE CLUSTERED INDEX idx_vSalesByYear
 ON Sales.vSalesByYear
 (InvoiceYear);
GO

Now you can execute the earlier query again, even though it does not reference the
indexed view directly, to see how the query optimizer takes advantage of the indexed view
in the query plan shown in Figure 4-16.
Click here to view code image

SELECT
 YEAR(InvoiceDate) AS InvoiceYear,
 COUNT(InvoiceID) AS InvoiceCount
FROM Sales.Invoices
GROUP BY YEAR(InvoiceDate);

FIGURE 4-16 Query plan using an indexed view
As a result of the addition of the indexed view, SQL Server no longer requires the Hash

Match (Aggregator) operator and instead uses a Clustered Index Scan (ViewClustered)
operator to retrieve data. Because the data is pre-aggregated, the index scan is much faster
in this case than it would be against an index containing all rows in the table.

Hash Match (Inner Join) operator
Thus far, the queries we have examined have been relatively simple and read data from
only one table. Now let’s consider a query that combines data from multiple tables to
produce the query plan shown in Figure 4-17:
Click here to view code image

SELECT
 si.StockItemName,
 c.ColorName,
 s.SupplierName

FROM Warehouse.StockItems si
INNER JOIN Warehouse.Colors c ON
 c.ColorID = si.ColoriD
INNER JOIN Purchasing.Suppliers s ON
 s.SupplierID = si.SupplierID;

373

FIGURE 4-17 Hash Match (Inner Join) operator in a query plan
In this example, we see the addition of the Hash Match (Inner Join) operator in two

places in the query plan. We also see that these two operations have the two highest costs
in the plan and therefore should be the first operations we assess for possible optimization.
SQL Server uses this operator when it puts data into temporary hash tables so that it can
match rows in two different data sets and produce a single result set. Specifically, SQL
Server converts, or hashes, rows from the smaller data set into a value that is more
efficient for comparisons and then stores these values in a hash table in tempdb. Then it
compares each row in the larger data set with the hash table to find matching rows to join.
As long as the smaller data set is in fact small, this comparison operation is fast, but
performance can suffer when both data sets are large. Furthermore, if a query requires
many of these operations, tempdb might experience memory pressure. Last, it’s important to
note that the Hash Match (Inner Join) operator is a blocking operator as it requires SQL
Server to gather data from each data set before it can perform the join.

In Figure 4-17, the Hash Match (Inner Join) operator combines the results of the Index
Scan (NonClustered) and the Clustered Index Scan operators that gets SupplierID and
SupplierName by scanning a non-clustered index on the Suppliers table and
StockItemName, SupplierID, and ColorID by scanning the clustered index on the
StockItems table. This result set becomes input for the second usage of the operation and is
combined with ColorName set from an index scan on the Colors table.

Your options for improving the query performance based on this query plan include
adding or revising indexes, filtering the data by using a WHERE clause, or fixing a
WHERE clause that prevents the query optimizer from using an existing index. Let’s try
adding indexes to the Suppliers and StockItems tables, as shown in Listing 4-20. The index
on the Suppliers table includes the SupplierID column used for the JOIN operation and the
SupplierName column to return in the final query results. Similarly, the index on the
StockItems table includes the ColorID and SupplierID columns used for JOIN operations
and the StockItemName column to return in the final query results.

LISTING 4-20 Add indexes to eliminate Hash Match (Inner Join) operators

374

Click here to view code image

CREATE NONCLUSTERED INDEX
IX_Purchasing_Suppliers_ExamBook762Ch4_SupplierID
 ON Purchasing.Suppliers
(
 SupplierID ASC,
 SupplierName
);
GO
CREATE NONCLUSTERED INDEX
IX_Warehouse_StockItems_ExamBook762Ch4_ColorID
 ON Warehouse.StockItems
(
 ColorID ASC,
 SupplierID ASC,
 StockItemName ASC
);

After adding the indexes, execute the following query to see the new query plan, as
shown in Figure 4-18:
Click here to view code image

 SELECT
 si.StockItemName,
 c.ColorName,
 s.SupplierName
FROM Warehouse.StockItems si
INNER JOIN Warehouse.Colors c ON
 c.ColorID = si.ColoriD
INNER JOIN Purchasing.Suppliers s ON
 s.SupplierID = si.SupplierID;

After adding the indexes, execute the following query to see the new query plan, as
shown in Figure 4-18:
Click here to view code image

SELECT
 si.StockItemName,
 c.ColorName,
 s.SupplierName

FROM Warehouse.StockItems si
INNER JOIN Warehouse.Colors c ON
 c.ColorID = si.ColoriD
INNER JOIN Purchasing.Suppliers s ON

375

 s.SupplierID = si.SupplierID;

FIGURE 4-18 Query plan after adding usable indexes to eliminate Hash Match (Inner
Join) operators

In the new query plan, SQL Server replaces the Hash Match (Inner Join) operators with
Nested Loops operators and replaces two of the index scan operations with Index Seek
(NonClustered) operators which should significantly improve performance even when
large tables are queried. The Nested Loops operator is an efficient operation that compares
two data sets row by row. For each row output by the top operator in the query plan
(known as the inner data set), which is the index scan on the small Colors table, SQL
Server scans the rows output by the bottom operator (known as the outer data set), which is
the index seek on the StockItems table. Then the output of this operation becomes the inner
data set for the second Nested Loops operator in the query plan. For each row in this new
inner data set, SQL Server scans the output from the index seek on the Suppliers table.
Notice that the cost of the Nested Loops operators in the new query plan is significantly
lower than the cost of the Hash Match (Inner Join) operators shown in Figure 4-17. Create
efficient query plans using Query Store

The query plan selected by the query optimizer is not guaranteed to be the most efficient
plan. When working with a version earlier than SQL Server 2016, you can capture query
plans from the procedure cache periodically, but run the risk of losing access to query
plans when the server comes under memory pressure and begins evicting older query plans
from the cache. With Query Store in SQL Server 2016 and Azure SQL Database, you can
capture and analyze information about all query plans generated over time for a query. You
can then force SQL Server to use the query plan that you determine to be most efficient
based on the criteria that best meets your business requirements.

Query Store properties
By default, Query Store is not enabled. You can enable it at the database level in SQL
Server Management Studio by using Object Explorer to navigate to the database for which
you want to enable Query Store. Right-click the database name to open the Database

376

Properties dialog box and click the Query Store tab. In the Operation Mode (Requested)
drop-down list, select Read Write.

Note Changing the Query Store behavior
You can later change the Operation Mode (Requested) property to Read Only
when you want to retain existing query plans and execution statistics
information available in the query store, but no longer want to add new
information. SQL Server automatically switches to this mode when the query
store reaches its maximum allocated space. To disable Query Store, change
this property to Off.

As shown in Figure 4-19, there are several other properties that you can configure to
manage the query store:

 Data Flush Interval (Minutes) The frequency in minutes at which SQL Server
writes data collected by the query store to disk.
 Statistics Collection Interval The granularity of time for which SQL Server
aggregates runtime execution statistics for the query store. You can choose one of the
following intervals: 1 minute, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour,
or 1 day. If you capture data at a high frequency, bear in mind that the query store
requires more space to store more finely grained data.
 Max Size (MB) The maximum amount of space allocated to the query store. The
default value is 100 MB per database. If your database is active, this value might not
be large enough to store query plans and related information.
 Query Store Capture Mode The specification of the types of queries for which
SQL Server captures data for the query store. You can choose one of the following
options:
 None The query store stops collecting data for new queries, but continues
capturing data for existing queries.
 All The query store captures data for all queries.
 Auto The query store captures data for relevant queries. It ignores infrequent
queries and queries with insignificant compile and execution duration.

 Size Based Cleanup Mode The specification of whether the cleanup process
activates when the query store data approaches its maximum size (Auto) or never
runs (OFF).
 Stale Query Threshold (Days) The number of days that SQL Server keeps data in
the query store.

377

FIGURE 4-19 Query Store properties configurable in the Database Properties dialog box

Note Query store enabled by default for WideWorldImporters database
The query store for WideWorldImporters database is already enabled when
you restore it. The current disk usage that displays for you will differ from that
shown in Figure 4-19 as these metrics depend on the volume of query activity
that has occurred on your computer to date.

You can also use the statement shown in Listing 4-21 to enable the query store, replacing
<databasename> with the name of the database that you want to configure.

LISTING 4-21 Enable the query store for a database and set its properties

378

Click here to view code image

ALTER DATABASE <databasename>
 SET QUERY_STORE = ON
 (
 OPERATION_MODE = READ_WRITE ,
 CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 30),
 DATA_FLUSH_INTERVAL_SECONDS = 3000,
 MAX_STORAGE_SIZE_MB = 500,
 INTERVAL_LENGTH_MINUTES = 50
);

You can clear the data from the query store by clicking Purge Query Data on the Query
Store tab of the Database Properties dialog box or by executing either of the statements
shown in Listing 4-22.

LISTING 4-22 Purge data from the query store

Click here to view code image

--Option 1: Use the ALTER DATABASE statement
ALTER DATABASE <databasename>
SET QUERY_STORE CLEAR ALL;
GO

--Option 2: Use a system stored procedure
EXEC sys.sp_query_store_flush_db;
GO

Query Store components
The query store captures information about query plans and runtime execution statistics
until the maximum space allocation is reached. You can review this data in the following
DMVs:

 sys.query_store_plan Query plan information, such as Showplan XML, the number
of compilations, the date and time of the initial and last compilations, the last
execution date and time, and the average and most recent duration of compilation,
among other details. The query plan available in this DMV is the estimated plan only.
 sys.query_store_query Aggregated runtime execution statistics for a query,
including CPU binding, memory, optimization, and compilation statistics. This
information is stored at the statement level and not at the batch level which is
different from the behavior of sys.dm_exec_query_stats.
 sys.query_store_query_text The text of the executed query.

379

 sys.query_store_runtime_stats Runtime execution statistics for a query, such as
first and last execution date and time, the number of executions, statistics (average,
last, minimum, maximum, and standard deviation) for query duration, CPU time,
logical IO reads and writes, physical IO reads and writes, CLR time, DOP, maximum
used memory, and row counts.
 sys.query_store_runtime_stats_interval The start and end times defining the
intervals during which SQL Server collects runtime execution statistics for the query
store.

As an example, you can query the DMVs to find the top query with the highest average
logical reads and its corresponding query plan, as shown in Listing 4-23.

LISTING 4-23 Top 5 queries with highest average logical reads

Click here to view code image

USE WideWorldImporters;
GO
SELECT TOP 1
 qt.query_sql_text,
 CAST(query_plan AS XML) AS QueryPlan,
 rs.avg_logical_io_reads
FROM sys.query_store_plan qp
INNER JOIN sys.query_store_query q
 ON qp.query_id = q.query_id
INNER JOIN sys.query_store_query_text qt
 ON q.query_text_id = qt.query_text_id
INNER JOIN sys.query_store_runtime_stats rs
 ON qp.plan_id = rs.plan_id
ORDER BY rs.avg_logical_io_reads DESC;

You can use the following system stored procedures to manage the query store:
 sp_query_store_flush_db Flush the portion of the query store currently in memory to
disk. This stored procedure takes no arguments.
 sp_query_store_force_plan Force SQL Server to use a specified query plan for a
specified query. You provide identifiers for the query and plan as arguments for this
stored procedure.
 sp_query_store_remove_plan Remove a specified query plan from the query store.
 sp_query_store_remove_query Remove a specified query from the query store, in
addition to the query plans and runtime execution statistics related to it.
 sp_query_store_reset_exec_stats Reset the runtime execution statistics for a
specified plan.

380

 sp_query_store_unforce_plan Keep a specified query plan in the query store, but
no longer force SQL Server to use it for a specified query.

Need More Review? More query store monitoring examples available
online

See the “Key Usage Scenarios” section of the “Monitoring Performance By
Using the Query Store” article at https://msdn.microsoft.com/en-
US/library/dn817826.aspx. Here you will find several examples of using
these DMVs and system stored procedures, such as showing the last n queries
executed on a database, the number of executions per query, queries having the
longest average execution time in the last hour, among others.

Query Store views
An easy way to review the information available in the query store is to use Query Store
views in SQL Server Management Studio. After enabling query store for a database, a
Query Store node appears below the database node and contains four views, as shown in
Figure 4-20.

FIGURE 4-20 Query Store views for a database in SQL Server Management Studio’s
Object Explorer

Before we the review contents of these views, let’s execute the statements in Listing 4-
24 to create a test environment in which a new database and table is added. The table is
populated with a random 9,999 rows of random values with an ID of 1 and one row with

381

https://msdn.microsoft.com/en-US/library/dn817826.aspx

an ID of 2 to create a skewed distribution. A primary key clustered index and a non-
clustered index on the ID column are added. Next, a parameterized stored procedure to
select rows from the table is added to the database. Query Store Is enabled on the database
to capture query plan changes over time using an interval length of 1 minute to capture
statistics at the most granular level available for better visibility of the query examples in
this section. Last, the stored procedure is called with the ID associated with a large number
of rows in the table. This stored procedure is called multiple times to accumulate more
statistics than other background queries in the database so that you can see it more easily in
the view later.

LISTING 4-24 Create test environment for Query Store

Click here to view code image

CREATE DATABASE ExamBook762Ch4_QueryStore;
GO
USE ExamBook762Ch4_QueryStore;
GO
CREATE SCHEMA Examples;
GO
CREATE TABLE Examples.SimpleTable(
 Ident INT IDENTITY,
 ID INT,
 Value INT);
WITH IDs
 AS (SELECT
 TOP (9999)
 ROW_NUMBER() OVER (ORDER BY (SELECT 1)) AS n
 FROM master.sys.All_Columns ac1
 CROSS JOIN master.sys.All_Columns ac2
)
INSERT INTO Examples.SimpleTable(ID, Value)
SELECT
 1,
 n
FROM IDs;
GO
INSERT Examples.SimpleTable (ID, Value)
 VALUES (2, 100);
ALTER TABLE Examples.SimpleTable
 ADD CONSTRAINT [PK_SimpleTable_Ident]
PRIMARY KEY CLUSTERED (Ident);
CREATE NONCLUSTERED INDEX ix_SimpleTable_ID
 ON Examples.SimpleTable(ID);
GO
CREATE PROCEDURE Examples.GetValues

382

 @PARAMETER1 INT
AS
 SELECT
 ID,
 Value
 FROM Examples.SimpleTable
 WHERE
 ID = @PARAMETER1;
GO

ALTER DATABASE ExamBook762Ch4_QueryStore
SET QUERY_STORE = ON (
 INTERVAL_LENGTH_MINUTES = 1
);

EXEC Examples.GetValues 1;
GO 20

At this point, the Top Resource Consuming Queries view, shown in Figure 4-21, is the
only one that contains information. The default configuration includes a column chart in the
top left that displays total duration by query id, a point chart in the top right that displays
duration for query plans associated with the selected query (known as a plan summary),
and a query plan for the plan identifier currently selected in the point chart.

383

FIGURE 4-21 Top Resource Consuming Queries view

Note Working with multiple queries in the Top Resource Consuming
Queries view

Depending on the activity occurring in the database, the query that you want to
analyze might not be the first column in the chart as it is in Figure 4-21. You
can click on each column to view the query plan associated with a query and
its query text, or click the View Top Resource Consuming Queries In A Grid
Format With Additional Details button in the chart’s toolbar to locate your
query by its query text. If you select a query in this grid and toggle back to the
chart, the view retains your selection and shows the plan summary and a query
plan.

Taking a closer look at the column chart, notice that each column represents a query.
When multiple queries exist in the query store, the columns are sorted in descending order
by the selected metric, which is currently Duration. When you hover the cursor over a
column in the chart, a tooltip displays the query id, the metric and its selected statistic, and
the query text. If the query includes a WHERE clause, the query text is parameterized. You
can find similar information by using the sys.query_store_query,
sys.query_store_query_text, and sys.query_store_runtime_stats DMVs. By using the Query
Store view in SQL Server Management Studio, you can quickly visualize and access key
metrics about your queries without writing any code.

The plan summary chart displays one point per query plan for the query selected in the
column chart. When you hover the cursor over a point on this chart, as shown in Figure 4-
22, a tooltip displays some of the information related to the selected metric that is
available in the sys.query_store_runtime_stats DMV. Last, notice the graphical query plan
shows that SQL Server used a Clustered Index Scan operator to retrieve rows for the
SELECT statement in the stored procedure. An index scan is used instead of a seek
because the number of rows for the parameter value of 1 is high relative to the size of the
table.

384

FIGURE 4-22 Plan summary for a selected query and its associated runtime statistics
You can change the configuration of the charts by changing the y-axis of the column chart

and by selecting new metric and statistic values in the respective drop-down lists above
the column chart. For example, select Logical Reads in the Metric drop-down list, and Avg
in the Statistic drop down list, and point to your query’s column in the chart to view the
corresponding metric value, execution count, and number of query plans for the selected
query.

Now let’s modify the query slightly by changing the parameter to the other possible ID
value in the table, and execute it by using the code shown in Listing 4-25.

LISTING 4-25 Execute stored procedure with new parameter value

EXEC Examples.GetValues 2;
GO

Return to the Top Resource Consuming Queries dashboard and click the Refresh button
above the column chart to update it. When you click the query’s column in the column chart,
the plan summary chart now has two points that are associated with the same query plan, as
shown in Figure 4-23. That means the index scan for the query executed to get rows with
ID 1 was also used to get the one row with ID 2. This is condition is a result of parameter

385

sniffing in which the query optimizer uses the estimated rows from the first execution of the
stored procedure to select a query plan and then uses it for all subsequent executions
without considering the estimated rows for the new parameter values. In the current
example, an index seek is a more efficient operator for retrieving the one row for ID 2, but
it is not considered due to the parameter sniffing behavior.

FIGURE 4-23 Plan summary with two points for the same Plan ID

Let’s clear the procedure cache and see what happens when SQL Server must generate a
new query plan rather than use the one created previously. To do this, execute the
statements shown in Listing 4-26. Click the Refresh button in the Query Store view to see
the effect of the last query execution. When you click the Plan ID with the higher identifier
in the legend, you can see its new query plan, as shown in Figure 4-24. Notice the disparity
between the points in the point chart which indicates the new query plan has a lower
average logical read value than the first query plan and is therefore more efficient. As you
can see in the graphical query plan at the bottom of the view, SQL Server used an index
seek operation to retrieve a single row from the table.

LISTING 4-26 Execute stored procedure after clearing procedure cache

DBCC FREEPROCCACHE();
GO

386

EXEC Examples.GetValues 2;
GO

FIGURE 4-24 An improved query plan in the Plan Summary after clearing the procedure
cache

Another way to compare the differences between the query plans is to view their
respective metrics. To do this, click the View Plan Summary In A Grid Format button in the
toolbar to switch the plan summary from a chart to a grid, as shown in Figure 4-25.

FIGURE 4-25 Plan Summary metrics in a grid format

When you click a row in the grid, you can see the associated graphical query plan, but
you can only view one graphical query plan at a time this way. If you want to compare

387

query plans, click the View Plan Summary In A Chart Format button in the toolbar to switch
back to the point chart, click one plan identifier in the legend and then, while holding the
Shift key, click the other plan identifier. Next, click the Compare The Plans For The
Selected Query In A Separate Window button in the toolbar. In the Showplan Comparison
window that opens, shown in Figure 4-26, you can more easily compare the differences
between the two plans. The top query plan (which was the last to execute) uses an index
seek to retrieve one row, whereas the bottom query plan uses an index scan to retrieve
many rows and performs less efficiently for small rowsets.

FIGURE 4-26 Showplan Comparison between query plans captured by Query Store

Let’s say that the normal query pattern for this particular stored procedure is to retrieve
a limited number of rows. In that case, the use of the query plan that uses the index seek is
preferable. An advantage of using Query Store is the ability to force this plan to be used for
all executions of the same query. Returning to the Top Resource Consuming Queries view,
click the plan identifier for the last query plan (with the lower average logical reads) and
then click the Force Plan button to require SQL Server to use this query plan for all future
queries. You must confirm that you want to force the selected plan before SQL Server
accepts the change.

Run the query shown in Listing 4-27 to retrieve most of the rows from the table, and then
refresh the Top Resource Consuming Queries view to check the results, as shown in Figure
4-27. Although there is a forced plan for the query that should be reused, the Plan Summary

388

chart now shows a third plan identifier, Plan ID 15, for which the average logical reads is
significantly higher than it was for Plan ID 10, the forced plan. (You can identify the forced
plan id by the check mark on the point in the chart.)

LISTING 4-27 Execute stored procedure with new parameter value and forced query plan

EXEC Examples.GetValues 1;
GO

FIGURE 4-27 A new query plan in the Query Store view based on the forced plan

If you check the graphical query plan for Plan ID 10 and Plan ID 15, you find that both
query plans use an index seek operation to retrieve rows. SQL Server generated a new
query plan for the stored procedure due to the difference in estimated rows, but the same
operations are used. Although this is not the most efficient operation when retrieving a
relatively high number of rows, as we discussed previously, it might be a reasonable trade-
off when the majority of executions retrieves a small number of rows. If you execute the
stored procedure again using a parameter value of 2 and refresh the view, another point
associated with Plan ID 10 appears on the Plan Summary chart with a lower value for
average logical reads.

Of course, this approach is not a suitable solution for all performance problems.
Furthermore, forcing a query plan does not guarantee that SQL Server always uses that
query plan. As an example, if a forced query plan is dependent on an index that is

389

subsequently dropped, the plan forcing will fail. For this reason, you should periodically
review the status of forced plans and reasons for failure by running the query shown in
Listing 4-28. You can also use the query_store_plan_forcing_failed Extended Event to
monitor failed plan forcing.

LISTING 4-28 Check status of forced plans

Click here to view code image

SELECT
 p.plan_id,
 p.query_id,
 q.object_id,
 force_failure_count,
 last_force_failure_reason_desc
FROM sys.query_store_plan AS p
INNER JOIN sys.query_store_query AS q
 ON p.query_id = q.query_id
WHERE is_forced_plan = 1;

The following three Query Store views behave much like the view we explored in detail
in this section, but focus on different types of queries:

 Regressed Queries Displays a column chart of metrics by query, a plan summary,
and query plan for regressed queries executed in the previous hour. A regressed
query is one for which a new query plan generated for a particular query is less
optimal than a query plan that was previously used for the same query. Regression
can happen due to changes in statistics, structural changes to the data, addition or
removal or indexes, and so on. Use this view to find regressed queries and determine
whether to force an earlier query plan.
 Overall Resource Consumption Displays overall resource consumption during the
last month in separate charts: duration, execution count, CPU time, and logical reads.
You can toggle between the chart view and grid view. This view does not provide
access to the query plan details.
 Tracked Queries Displays tracked queries. You add a query to this dashboard view
by selecting it in the metric chart and then clicking the Track The Selected Query In A
New Tracked Queries Window. That way, you can focus on the metrics for a single
query rather than try to find it among the changing set of Query IDs on the Top
Resource Consuming Queries view.

Compare estimated and actual query plans and related metadata
After the query optimizer generates a query plan or uses a query plan existing in the plan

390

cache, the storage engine is responsible for executing the query according to that plan.
However, the plan that it starts with is an estimated query plan. That is, it is the plan
determined by the query optimizer to be the most efficient query plan based on the
calculations performed by the query optimizer. At runtime, SQL Server reports an actual
query plan to add runtime information to the estimated query plan. When you compare an
estimated and actual query plan for the same query, you can see differences when either of
the following situations occur:

 Inaccurate statistics As data is inserted into or deleted from a table, both the
indexes and the distribution of data in each column change. The automatic statistics
update uses a data sample rather than the entire table to reduce the overhead of the
process, Therefore, statistics can become less accurate over time.
 Structural changes Changing the schema of a table or changing its structure also
affects indexes and data distribution and causes a recompilation as does changing or
dropping an index used by the query or updating statistics.

A common reason to work with estimated query plans is to evaluate performance of a
query in development, particularly when the query execution time is long or when restoring
the database to its state prior to query execution is challenging. You can add or change
indexes or modify the query structure and then analyze changes to the estimated query plan
after making these changes.

To set up an environment to compare estimated and actual query plans that differ, execute
the code in Listing 4-29.

LISTING 4-29 Create test environment for comparing estimated and actual query plans

Click here to view code image

CREATE DATABASE ExamBook762Ch4_QueryPlans;
GO
USE ExamBook762Ch4_QueryPlans;
GO
CREATE SCHEMA Examples;
GO
CREATE TABLE Examples.OrderLines (
 OrderLineID int NOT NULL,
 OrderID int NOT NULL,
 StockItemID int NOT NULL,
 Description nvarchar(100) NOT NULL,
 PackageTypeID int NOT NULL,
 Quantity int NOT NULL,
 UnitPrice decimal(18, 2) NULL,
 TaxRate decimal(18, 3) NOT NULL,
 PickedQuantity int NOT NULL,
 PickingCompletedWhen datetime2(7) NULL,

391

 LastEditedBy int NOT NULL,
 LastEditedWhen datetime2(7) NOT NULL);
GO
INSERT INTO Examples.OrderLines
SELECT *
FROM WideWorldImporters.Sales.OrderLines;
GO
CREATE INDEX ix_OrderLines_StockItemID
ON Examples.OrderLines (StockItemID);
GO

Next, execute the code in Listing 4-30 to generate an estimated query plan. The inclusion
of the SET SHOWPLAN_XML ON statement instructs SQL Server to generate the
estimated plan without executing the query. As an alternative, you can use the following
statements:

 SET SHOWPLAN_TEXT ON Returns a single column containing a hierarchical
tree that describes the operations and includes the physical operator and optionally
the logical operator.
 SET SHOWPLAN_ALL ON Returns the same information as SET
SHOWPLAN_TEXT except the information is spread across a set of columns in
which you can more easily see property values for each operator.

LISTING 4-30 Generate estimated query plan

Click here to view code image

SET SHOWPLAN_XML ON;
GO
BEGIN TRANSACTION;
 UPDATE Examples.OrderLines
 SET StockItemID = 300
 WHERE StockItemID < 100;
 SELECT
 OrderID,
 Description,
 UnitPrice
 FROM Examples.OrderLines
 WHERE StockItemID = 300;
ROLLBACK TRANSACTION;
GO
SET SHOWPLAN_XML OFF;
GO

Click the result row to view the graphical query plan in its own window, as shown in

392

Figure 4-28. Query 3 shows the use of an index seek operation in the SELECT statement.

Note SQL Server 2016 Service Pack 1 (SP1) behavior
If you are using SQL Server 2016 SP1 and have not applied any subsequent
cumulative updates or service packs, the query plan is displayed as XML text
instead of the graphical query plan.

FIGURE 4-28 Estimated query plan

Let’s take a closer look at the SELECT statement operations. Because this is an
estimated plan, the UPDATE operation has not yet occurred. Therefore, there are no rows
with StockItemID equal to 300 in the statistics. By hovering the cursor over the Index Seek
(NonClustered) operator, you can display the tooltip that shows the Estimated Number of
Rows is 1, as shown in Figure 4-29. It does not yet factor in the effect of the UPDATE
operation. Consequently, the query optimizer selects an index seek an operation because it
is efficient for a single row. However, if you check the Estimated Row Size for the
UPDATE operator for Query 2 in the estimated query plan, the value is 104391, which is a
significant discrepancy from the estimate for the index seek operation in Query 3.

393

FIGURE 4-29 Estimated Row Size in estimated query plan for Index Seek
(NonClustered) operator

To generate an actual query plan, execute the statements in Listing 4-31, which uses the
SET STATISTICS XML ON statement to have SQL Server generate a graphical actual
query plan. As an alternative, you can use the SET STATISTICS PROFILE ON statement to
get the query plan information in a hierarchical tree with profile information available
across columns in the result set. Figure 4-30 shows that SQL Server recognized the change
of greater than 20% in the table’s statistics and performed an automatic update which in
turn forced a recompilation of the SELECT statement’s query plan. This time the query

394

optimizer chose a Table Scan operator because the number of rows to retrieve is nearly
half the number of rows in the table.

Note SQL Server 2016 SP1 behavior
If you are using SQL Server 2016 SP1 and have not applied any subsequent
cumulative updates or service packs, the query plan is displayed as XML text
instead of the graphical query plan.

LISTING 4-31 Generate actual query plan

Click here to view code image

SET STATISTICS XML ON;
GO
BEGIN TRANSACTION;
 UPDATE Examples.OrderLines
 SET StockItemID = 300
 WHERE StockItemID < 100;
 SELECT
 OrderID,
 Description,
 UnitPrice
 FROM Examples.OrderLines
 WHERE StockItemID = 300;
ROLLBACK TRANSACTION;
GO
SET STATISTICS XML OFF;
GO

FIGURE 4-30 Actual query plan
Checking the tooltip for the Table Scan operation, shown in Figure 4-31, notice the

Estimated Number of Rows is 104066 to reflect the updated statistics and the Actual
Number of Rows is 104391.

395

FIGURE 4-31 Estimated Number of Rows and Actual Number of Rows in actual query
plan for Table Scan operator.

Need More Review? Additional resource for query plans
For a deep dive into query plans, also known as execution plans, download
Grant Fritchey’s SQL Server Execution Plans, Second Edition, a free e-book
available at https://www.simple-talk.com/books/sql-books/sql-server-
execution-plans-second-edition-by-grant-fritchey/.

Configure Azure SQL Database Performance Insight
Query Performance Insight is the name of a feature available in Azure SQL Database that
allows you to review the effect of queries on database resources, identify long-running

396

https://www.simple-talk.com/books/sql-books/sql-server-execution-plans-second-edition-by-grant-fritchey/

queries, or create custom settings to review query workloads. This feature available only
with Azure SQL Database V12 and requires you to enable Query Store on your database
before you can analyze queries. Because Query Store is enabled by default for a V12
database, you do not need to perform this extra step unless you previously disabled it.

Note Creating a SQL Database in the Azure portal
To work with the monitoring tools in SQL Database, you must have an Azure
account and description. You must then create a SQL Database and associate it
with a new or existing server. Last, you must configure the firewall settings to
enable your IP address to access the database.
If you do not currently have an account, you can set up a free trial at
https://azure.microsoft.com/en-us/free/. Then connect to the Azure portal at
https://portal.azure.com. Next, to create a new sample database, click SQL
Databases in the navigation pane on the left side of the screen, and then click
Add to open the SQL Database blade. Here you provide a name for your
database, select a subscription, select Create New in the Resource Group
section, and provide a name for the resource group. In the Select Source
dropdown list, select Sample, and then in the Select Sample dropdown list,
select AdventureWorksLT [V12]. Click Server, click Create A New Server,
provide a server name, a server admin login, password and password
confirmation, and location. Be sure to keep the default selection of Yes for
Create V12 Server (Lastest Update) as Query Performance Insight works only
with SQL Database V12. Click Select to create the server. In the SQL
Database blade, click Pricing Tier, select the Basic tier, and then click the
Select button. For the sample database, you can use the lowest service tier
level to minimize charges associated with this service. When you no longer
need to work with the database, be sure to delete it in the Azure portal to
avoid incurring ongoing charges. In the SQL Database blade, click Create to
finalize the creation of the sample database. When the database is ready, it
appears in the list of SQL Databases. You might need to click Refresh several
times to see it appear.
When the SQL Database is available, click the dataset to open its blade, and
then click the server name to open the server’s blade. Click Show Firewall
Settings, click Add Client IP, and then click Save to enable your connection to
the SQL Database. You can manually add client IPs to open the firewall to
allow other users to access the database also.

Although you use the Azure portal to view the information available from Query
Performance Insight, you must use SQL Server Management Studio to first enable Query
Store on a SQL Database. To do this, click Connect in Object Explorer, type the full name

397

https://azure.microsoft.com/en-us/free/
https://portal.azure.com

of the server (such as mysampleserver2016.database.windows.net), select SQL Server
Authentication in the Authentication drop-down list, type the admin login and password
that you created for the database, and then click Connect.

Of course, before you can analyze queries, you must first execute several queries.
Execute the query shown in Listing 4-32 which runs 20 times to create a workload on SQL
Database. You must wait at least a couple of hours before you can view the corresponding
workload analysis in Azure SQL Database Performance Insight.

LISTING 4-32 Execute SQL Database query multiple times after enabling Query Store

Click here to view code image

SELECT
 c.LastName,
 c.FirstName,
 c.CompanyName,
 year(OrderDate) AS OrderYear,
 sum(OrderQty) AS OrderQty,
 p.Name AS ProductName,
 sum(LineTotal) AS SalesTotal
FROM SalesLT.SalesOrderHeader soh
JOIN SalesLT.SalesOrderDetail sod ON
 soh.SalesOrderID = sod.SalesOrderID
JOIN SalesLT.Customer c ON
 soh.CustomerID = c.CustomerID
JOIN SalesLT.Product p ON
 sod.ProductID = p.ProductID
GROUP BY
 c.LastName,
 c.FirstName,
 c.CompanyName,
 year(OrderDate),
 p.Name
ORDER BY
 c.CompanyName,
 c.LastName,
 c.FirstName,
 p.Name;
GO 20

When Query Store is unable to collect new data, you might see the following messages:
 “Query Store is not properly configured on this database. Click here to learn more.”
 “Query Store is not properly configured on this database. Click here to change
settings.”

398

There are two ways to clear these messages. First, you can increase the Query Store size
or clear Query Store. Second, you can change the Retention and Capture policy and enable
Query Store by executing the ALTER DATABASE commands described in the “Create
efficient query plans using Query Store” section earlier in this chapter.

When enough time has passed after queries have executed, open the Azure portal, select
SQL databases in the navigation pane, click the database to analyze, and then select Query
Performance Insight in the Support + Troubleshooting category. The Query Performance
Insight blade includes the following three tabs:

 Resource consuming queries
 Long running queries
 Custom

Resource consuming queries
The Resource Consuming Queries tab lists the queries consuming the most resources for
the last 24 hours. The top of this section shows a line chart that by default shows the
percentage of CPU over time consumed by various queries, as shown in Figure 4-32,
although the values for the individual queries are too low to see clearly on the chart. You
can click Data IO or Log IO in the top left section to review the relative resource
consumption for these resources instead of CPU.

399

FIGURE 4-32 Resource Consuming Queries chart showing CPU and DTU components
consumption for top resource consuming queries

This chart has many interactive features. For example, you can click on the red line on
the chart to show the overall Database Throughput Unit (DTU) values, as shown in Figure
4-33. A DTU is a single metric to represent CPU, memory, and IO thresholds. You can also
change the basis for determining the top five queries from CPU as shown to Data IO or Log
IO by clicking the respective filter labels in the top left of the chart. Another option is to
zoom in on a period of time by using the sliders (as indicated by the triangles along the
horizontal axis of the chart) to increase or decrease the period of time to view in the chart.

400

FIGURE 4-33 Resource Consuming Queries chart showing Overall DTU and DTU
components consumption

When you scroll down this page, you can view the average CPU, Data IO, Log IO,
duration, and execution count for the top 5 queries for a table, as shown in Figure 4-34.

FIGURE 4-34 Query Performance Insight table listing average metrics for individual
queries

When you click a query in this list, you can view its related details in a set of charts, as
shown in Figure 4-35.

401

FIGURE 4-35 Query Performance Insight chart showing metrics for a selected query
Below the charts, a table of time intervals displays the metrics, duration, and execution

count for the selected query, as shown in Figure 4-36.

FIGURE 4-36 Query Performance Insight table showing metrics for a selected query at
different time intervals

Long running queries
The Long Running Queries tab, shown in Figure 4-37, shows the top queries based on
duration that have executed on the SQL Database during the past 24 hours. The top of the
page shows a chart of each query’s duration by execution time and the bottom of the page
shows a table of the key performance metrics for each query. You can use this information
to find queries that might require tuning.

402

FIGURE 4-37 Query Performance Insight chart showing durations of the top 5 long
running queries

Custom
You can also optionally configure a custom view by selecting the Custom tab and then
selecting values in each of the following drop-down lists:

 Metric type Select one of the following metrics by which to determine top queries:
CPU, Data IO, Log IO, Duration, or Execution Count.
 Time interval Select one of the following time intervals to set as boundaries for
selecting top queries: last 6 hours, 24 hours, past week, past month, and a custom
range.
 Number of queries Select one of the following numbers to use when selecting top
queries: 5, 10, or 20.
 Aggregate function Select one of the following aggregate functions to use when
aggregating metric values: Sum, Max, or Avg.

403

Skill 4.3: Manage performance for database instances
SQL Server 2016 and Azure SQL Database include many features that help you monitor
and manage the performance of database instances. In this section, we review your options
for allocating and optimizing server resources. In addition, we introduce DMVs and SQL
Server performance counters that you can use to monitor and troubleshoot database
performance over time.

This section covers how to:
 Manage database workload in SQL Server
 Design and implement Elastic Scale for Azure SQL Database
 Select an appropriate service tier or edition
 Optimize database file and tempdb configuration
 Optimize memory configuration
 Monitor and diagnose scheduling and wait statistics using dynamic
management objects
 Troubleshoot and analyze storage, IO, and cache issues
 Monitor Azure SQL Database query plans

Manage database workload in SQL Server
The SQL Server Resource Governor helps you manage database workloads by setting
limits for the amount of CPU, IO, and memory that incoming requests can consume. Within
Resource Governor, a workload is a set of queries or requests for which SQL Server
should consistently allocate a specific set of resources. This capability is useful when you
are managing multiple tenants on the same server and need to minimize the impact of one
tenant’s workload on the other tenants’ workloads or when you need to track resource
consumption by workload for chargeback purposes, just to name two examples.

Important Editions supporting Resource Governor
Resource Governor is supported only in the Enterprise, Developer, or
Evaluation editions of SQL Server.

Figure 4-38 shows the relationship between several components managed by Resource
Governor. A resource pool defines the physical resources of the server and behaves much
like a virtual server. SQL Server creates an internal pool and a default pool during
installation, and you can add user-defined resource pools. You associate one or more
workload groups, a set of requests having common characteristics, to a resource pool. As
SQL Server receives a request from a session, the classification process assigns it to the

404

workload group having matching characteristics. You can fine-tune the results of this
process by creating classifier user-defined functions.

FIGURE 4-38 Resource Governor components

You must enable Resource Governor to start using it. You can do this in SQL Server
Management Studio by expanding the Management node in Object Explorer, right-clicking
Resource Governor, and selecting Enable. As an alternative, you can execute the following
T-SQL statement:
Click here to view code image

ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

 Exam Tip

For the exam, you should be able to review a Resource Governor
configuration and identify which workload group will execute a specified T-
SQL statement. To correctly answer this type of question, you should have a
thorough understanding of Resource Governor’s architecture and
configuration.

Resource pools
You distribute the amount of memory, CPU, and IO available to SQL Server among
resource pools as a means of reducing contention between workloads. Each resource pool
is configured with the following settings (except the external resource pool as described

405

later in this section): Minimum CPU%, Maximum CPU%, Minimum Memory %, and
Maximum Memory %. The sum of Minimum CPU% and of Minimum Memory % for all
resources pools cannot be more than 100. These values represent the guaranteed average
amount of that resource that each resource pool can use to respond to requests. The
Maximum CPU% and Maximum Memory % reflect the maximum average amount for the
respective resources. SQL Server can use more than the maximum percentage defined for a
resource if it is available. To prevent this behavior, you can configure a hard cap on the
resource available to the resource pool.

After you enable Resource Governor, SQL Server has the following types of resource
pools:

 Internal SQL Server uses the internal resource pool for resources required to run the
database engine. You cannot change the resource configuration for the internal
resource pool. SQL Server creates one when you enable the Resource Governor.
 Default In SQL Server 2016, there is one resource pool for standard database
operations and a separate resource pool for external processes such as R script
execution. These two resource pools are created when you enable the Resource
Governor.
 External An external resource pool is a new type for SQL Server 2016 that was
added to support R Services. Because the execution of R scripts can be resource-
intensive, the ability to manage resource consumption by using the Resource
Governor is necessary to protect normal database operations. In addition, you can
add an external resource pool to allocate resources for other external processes. The
configuration for an external resource pool differs from the other resource pool types
and includes only the following settings: Maximum CPU%, Maximum Memory %,
and Maximum Processes.
 User-defined resource pool You can add a resource pool to allocate resources for
database operations related to a specific workload.

Note Maximum number of supported resource pools per instance
SQL Server supports a maximum of 64 resource pools per instance.

You can use the Resource Governor node in Object Explorer to open a dialog box and
add or configure resource pools as needed, although this interface does not include all
settings available to configure by using T-SQL. When you create a resource pool by using
T-SQL, as shown in Listing 4-33, you specify any or all arguments for CPU, the scheduler,
memory, and I/O operations per second (IOPS).

Listing 4-33 Create user-defined resource pools

Click here to view code image

406

CREATE RESOURCE POOL poolExamBookDaytime
WITH (
 MIN_CPU_PERCENT = 50,
 MAX_CPU_PERCENT = 80,
 CAP_CPU_PERCENT = 90,
 AFFINITY SCHEDULER = (0 TO 3),
 MIN_MEMORY_PERCENT = 50,
 MAX_MEMORY_PERCENT = 100,
 MIN_IOPS_PER_VOLUME = 20,
 MAX_IOPS_PER_VOLUME = 100
);
GO
CREATE RESOURCE POOL poolExamBookNighttime
WITH (
 MIN_CPU_PERCENT = 0,
 MAX_CPU_PERCENT = 50,
 CAP_CPU_PERCENT = 50,
 AFFINITY SCHEDULER = (0 TO 3),
 MIN_MEMORY_PERCENT = 5,
 MAX_MEMORY_PERCENT = 15,
 MIN_IOPS_PER_VOLUME = 45,
 MAX_IOPS_PER_VOLUME = 100
);
GO
ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

Need More Review? Additional information regarding resource
poolcreation

For more information about using T-SQL to create a resource pool, see
“CREATE RESOURCE POOL (Transact-SQL”) at
https://msdn.microsoft.com/en-us/library/bb895329.aspx.

Workload groups
Resource Governor monitors the resources consumed in aggregate by the sessions in a
workload group to ensure consumption does not exceed the thresholds defined for both the
workload group and the resource pool to which it is assigned. The predefined resource
pools each have a predefined workload group, but you can also add workload groups to the
default, external, and user-defined resource pools.

When you configure a workload group, as shown in Listing 4-34, you can specify the
relative importance of a workload group as compared to other workload groups in the
same resource pool only. You can also specify the maximum amount of memory or CPU

407

https://msdn.microsoft.com/en-us/library/bb895329.aspx

time that a request in the workload group can acquire from the resource pool, the maximum
degree of parallelism (DOP) for parallel requests, or the maximum number of concurrent
requests.

Listing 4-34 Create workload groups

Click here to view code image

CREATE WORKLOAD GROUP apps
WITH (
 IMPORTANCE = HIGH,
 REQUEST_MAX_MEMORY_GRANT_PERCENT = 35,
 REQUEST_MAX_CPU_TIME_SEC = 0, --0 = unlimited
 REQUEST_MEMORY_GRANT_TIMEOUT_SEC = 60, --seconds
 MAX_DOP = 0, -- uses global setting
 GROUP_MAX_REQUESTS = 1000 --0 = unlimited
)
USING "poolExamBookNighttime";
GO
CREATE WORKLOAD GROUP reports
WITH (
 IMPORTANCE = LOW,
 REQUEST_MAX_MEMORY_GRANT_PERCENT = 25,
 REQUEST_MAX_CPU_TIME_SEC = 0, --0 = unlimited
 REQUEST_MEMORY_GRANT_TIMEOUT_SEC = 60, --seconds
 MAX_DOP = 0, -- uses global setting
 GROUP_MAX_REQUESTS = 100 --0 = unlimited
)
USING "poolExamBookNighttime";
GO
ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

Classifier user-defined functions
Resource Governor assigns a request to the default group if there is no criteria that matches
the request to a workload group. You must create a user-defined function to provide the
criteria necessary to assign a request to a specific workload group. If the user-defined
function assigns the request to a non-existent workload group, or if the classification
process fails for any reason, Resource Governor assigns the request to the default group.

Let’s say that you want to establish a classification function to assign a request to a
workload group based on the time of day. Furthermore, you want to use a lookup table for
the start and end times applicable to a workload group. Let’s start by creating and adding a
row to the lookup table, as shown in Listing 4-35. Note that you must create this table in the

408

master database because Resource Governor uses schema bindings for classifier functions.

Listing 4-35 Create lookup table

Click here to view code image

USE master
GO
CREATE TABLE tblClassificationTime (
 TimeOfDay SYSNAME NOT NULL,
 TimeStart TIME NOT NULL,
 TimeEnd TIME NOT NULL
) ;
GO
INSERT INTO tblClassificationTime
VALUES('apps', '8:00 AM', '6:00 PM');
GO
INSERT INTO tblClassificationTime
VALUES('reports', '6:00 PM', '8:00 AM');
GO

Next, you create the classifier function that uses the lookup table to instruct the Resource
Governor which workload group to use when classifying an incoming request. An example
of such a classifier function is shown in Listing 4-36.

Listing 4-36 Create and register classifier function

Click here to view code image

USE master;
GO
CREATE FUNCTION fnTimeOfDayClassifier()
RETURNS sysname
WITH SCHEMABINDING AS
BEGIN
 DECLARE @TimeOfDay sysname
 DECLARE @loginTime time
 SET @loginTime = CONVERT(time,GETDATE())
 SELECT
 TOP 1 @TimeOfDay = TimeOfDay
 FROM dbo.tblClassificationTime
 WHERE TimeStart <= @loginTime and TimeEnd >= @loginTime
 IF(@TimeOfDay IS NOT NULL)
 BEGIN
 RETURN @TimeOfDay

409

 END
 RETURN N'default'
END;
GO
ALTER RESOURCE GOVERNOR with (CLASSIFIER_FUNCTION =
dbo.fnTimeOfDayClassifier);
ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

Note Resources for checking configuration of Resource Governor
components

You can confirm the configuration of resource pools, workload groups, and
user-defined classifier functions by querying the
sys.resource_governor_resource_pools,
sys.resource_governor_workload_groups, and
sys.resource_governor_configuration system tables respectively. For more
information, see “Create and Test a Classifier User-Defined Function” at
https://msdn.microsoft.com/en-us/library/cc645892.aspx.

Resource Governor management queries
After you configure all the components necessary for Resource Governor, you can monitor
resource consumption by using any of the queries shown in Listing 4-37.

Listing 4-37 Monitor resource consumption

Click here to view code image

--Current runtime data
SELECT * FROM sys.dm_resource_governor_resource_pools;
GO

SELECT * FROM sys.dm_resource_governor_workload_groups;
GO

--Determine the workload group for each session
SELECT
 s.group_id,
 CAST(g.name as nvarchar(20)) AS WkGrp,
 s.session_id,
 s.login_time,
 CAST(s.host_name as nvarchar(20)) AS Host,
 CAST(s.program_name AS nvarchar(20)) AS Program
FROM sys.dm_exec_sessions s

410

https://msdn.microsoft.com/en-us/library/cc645892.aspx

INNER JOIN sys.dm_resource_governor_workload_groups g
 ON g.group_id = s.group_id
ORDER BY g.name ;
GO

SELECT
 r.group_id,
 g.name,
 r.status,
 r.session_id,
 r.request_id,
 r.start_time,
 r.command,
 r.sql_handle,
 t.text
FROM sys.dm_exec_requests r
INNER JOIN sys.dm_resource_governor_workload_groups g
 ON g.group_id = r.group_id
CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) AS t
 ORDER BY g.name
GO

-- Determine the classifier running the request
SELECT
 s.group_id,
 g.name,
 s.session_id,
 s.login_time,
 s.host_name,
 s.program_name
FROM sys.dm_exec_sessions s
INNER JOIN sys.dm_resource_governor_workload_groups g
 ON g.group_id = s.group_id AND
 s.status = 'preconnect'
ORDER BY g.name;
GO

SELECT
 r.group_id,
 g.name,
 r.status,
 r.session_id,
 r.request_id,
 r.start_time,
 r.command,
 r.sql_handle,
 t.text

411

FROM sys.dm_exec_requests r
INNER JOIN sys.dm_resource_governor_workload_groups g
 ON g.group_id = r.group_id
 AND r.status = 'preconnect'
CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) AS t
ORDER BY g.name;
GO

Design and implement Elastic Scale for Azure SQL Database
Elastic Scale is a feature in SQL Database that you use to adjust the database capacity to
match the scalability requirements for different applications. In other words, you can grow
or shrink the database by using a technique known as sharding, which partitions your data
across identically structured database. Sharding is useful when the application data in
aggregate exceeds the maximum size supported by SQL Database or when you need to
separate data by geography for compliance, latency, or geopolitical reasons.

Although sharding is not a new concept, it requires the use of custom code to create and
manage sharded applications and adds complexity to your solution architecture. Elastic
Scale provides an elastic database client library and a Split-Merge service that help
simplify the management of your applications. That way you can adapt the capacity of SQL
Database to support varying workloads and ensure consistent performance without manual
intervention.

Elastic database client library
You must use the elastic database client library to implement standard sharding patterns in
a SQL Database by calling its features in your elastic scale application. You use it to
perform operations across the all shards as a unit or to perform operations on individual
shards, as shown in Figure 4-39. The elastic database client library provides the following
features:

 Shard map management You first register each database as a shard, and then define
a shard map manager that directs connection requests to the correct shard by using a
sharding key or a key range. A sharding key is data such as a customer ID number
that the database engine uses to keep related transactions in one database.
 Data-dependent routing Rather than define a connection in your application, you
can use this feature to automatically assign a connection to the correct shard.
 Multishard querying The database engine uses this feature to process queries in
parallel across separate shards and then combine the results into a single result set.
 Shard elasticity This feature monitors resource consumption for the current
workload and dynamically allocates more resource as necessary and shrinks the
database to its normal state when those resources are no longer required.

412

FIGURE 4-39 Sharding management with elastic database client library

Note Learning more about working with the elastic database client library
To use the elastic database client library, you must use Visual Studio 2012 (or
higher), C#, and Nuget 2.7 (or higher). You can learn more about working
with this client library at “Get started with Elastic Database tools” at
https://azure.microsoft.com/en-us/documentation/articles/sql-database-
elastic-scale-get-started/.

Split-Merge service
You use the Split-Merge service to add or remove databases as shards from the shard set
and redistribute the data across more or fewer shards, as shown in Figure 4-40. As demand
increases, you can split the data out across a greater number of shards. Conversely, you can
merge the data into fewer shards as demand lowers.

413

https://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-get-started/

FIGURE 4-40 Examples of splitting and merging shards

Note A tutorial for using the split-merge service
A tutorial that includes a link for the split-merge tool and instructions for using
it is available at “Deploy a split-merge service,”
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-
scale-configure-deploy-split-and-merge.

Need More Review? Elastic Scale resources online
For the exam, you should be familiar with the architecture, features, and tools

414

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-configure-deploy-split-and-merge

of Elastic Scale and understand use cases. For more details about Elastic
Scale, refer to “Scaling out with Azure SQL Database” at
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-
scale-introduction.

Select an appropriate service tier or edition
Microsoft uses editions for SQL Server 2016 and service tiers for Azure SQL Database to
provide combinations of product features, performance, and price levels so that you can
select one that best meets your application’s requirements. You should be familiar with the
general features and limitations of each edition and understand the differences between
each edition for the exam.

SQL Server 2016 is available in the following editions:
 Express This edition is a free version of SQL Server with limited features that you
can use for small applications and Web sites. The maximum database size supported
by this edition is 10 GB. It uses up to 1 GB memory and to the lesser of 1 physical
processor or 4 cores. There are three types of SQL Server 2016 Express from which
to choose:
 LocalDB You use LocalDB for a simple application with a local embedded
database that runs in single-user mode.
 Express You use Express when your application requires a small database only
and does not require any other components packaged with SQL Server in the
Standard edition. You can install this edition on a server and then enable remote
connections to support multiple users.
 Express with Advanced Services This edition includes the database engine as
well as Full Text Search and Reporting Services.

 Web This edition is scalable up to 64 GB of memory and the lesser of 4 physical
processors or 16 cores with a maximum database size of 524 PB. It includes the
database engine, but without support for availability groups and other high-
availability features. It also does not include many of the advanced security and
replication features available in Standard or Enterprise edition, nor does it include
the business intelligence components such as Analysis Services and Reporting
Services, among others. Web edition is intended for use only by Web hosters and
third-party software service providers.
 Standard This edition scales to 128 GB of memory and the lesser of 4 physical
processors or 24 cores. The maximum database size with Standard edition is 524
PB. This edition includes core database and business intelligence functionality and
includes basic high-availability and disaster recovery features, new security features
such as row-level security and dynamic data masking, and access to non-relational
data sources by using JSON and PolyBase.

415

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction

 Enterprise This edition includes all features available in the SQL Server platform
and provides the highest scalability, greatest number of security features, and the
most advanced business intelligence and analytics features. Like Standard edition,
Enterprise edition supports a database size up to 524 PB, but its only limits on
memory and processor sizes are the maximums set by your operating system.
To support higher availability, this edition supports up to 8 secondary replicas, with
up to two synchronous secondary replicas, in an availability group, online page and
file restore, online indexing, fast recovery, mirrored backups, and the ability to hot
add memory and CPU.
For greater performance, Enterprise edition supports in-memory OLTP, table and
index partitioning, data compression, Resource Governor, parallelism for partitioned
tables, multiple file stream containers, and delayed durability, among other features.
Enterprise edition includes many security features not found in Standard edition. In
particular, Always Encrypted protects data at rest and in motion. Additional security
features exclusive to Enterprise edition include more finely-grained auditing,
transparent data encryption, and extensible key management.
Features supporting data warehouse operations found only in Enterprise edition
include change data capture, star join query optimizations, and parallel query
processing on partitioned indexes and tables.
 Developer This edition is for developers that create, test, and demonstrate
applications using any of the data platform components available in Enterprise
edition. However, the Developer edition cannot be used in a production environment.
 Evaluation This edition is a free trial version of SQL Server 2016. You can use this
for up to 180 days that you can use to explore all of the features available in
Enterprise Edition before making a purchasing decision.

Need More Review? Features and limitations of SQL Server editions
A complete list of the features and limitations of each edition is available at
https://technet.microsoft.com/en-us/windows/cc645993(v=sql.90).

When you select the type of SQL Database to implement, you choose a service tier along
with a performance level. The service tier sets the maximum database size while the
performance level determines the amount of CPU, memory, and IO thresholds which
collectively are measured as a DTU. When you create a new SQL Database, you can
choose from the following service tiers:

 Basic This service tier has a maximum database size of 2 GB and performance level
of 5 DTUs. You use this option when you need a small database for an application or
website with relatively few concurrent requests. The benchmark transaction rate is
16,600 transactions per hour.

416

https://technet.microsoft.com/en-us/windows/cc645993(v=sql.90)

 Standard This service tier has a maximum database size of 250 GB and performance
levels ranging from 10 to 100 DTUs. You can use this option when a database needs
to support multiple applications and multiple concurrent requests for workgroup and
web applications. With 50 DTUs, the benchmark transaction rate is 2,570
transactions per minute.
 Premium This service tier has a maximum database size of 1 TB and performance
levels ranging from 125 to 4,000 DTUs. You use this option for enterprise-level
database requirements. With 1,000 DTUs, the benchmark transaction rate is 735
transactions per second.

Optimize database file and tempdb configuration
One option that you have for improving the performance of read and write operations is to
optimize the configuration of files that SQL Server uses to store data and log files. Your
optimization goal is to reduce contention for storage and IO of files used not only by your
database, but also by tempdb.

Database file optimization
When your application must support a high volume of read/write operations, you should
consider taking the following steps to mitigate disk contention:

 File placement Data and log files should be placed on separate physical disks for
better performance. Remember from the explanation of transactions that we
described in Chapter 3, “Managing database concurrency,” that SQL Server writes
each transaction to the log before updating the data file. By separating the two file
types, the read/write head for the disk with the log file can work more efficiently
without frequent interruptions by the writes to the data file. Furthermore, consider
using a disk with high write performance for the log file. This recommendation is
less applicable when the bulk of SQL Server activity is read operations.
By default, the data and log files for a new database are placed on the same drive,
and normally in the same directory as the system databases: \Program
Files\Microsoft SQL Server\MSSQL13.MSSQLSERVER\MSSQL\DATA. You can
move the data and log files to a new location by using the ALTER DATABASE
command as shown in Listing 4-38, replacing <databasename> and <drive:\filepath>
with the appropriate names for your database and folder structures.

LISTING 4-38 Relocate data and log files

Click here to view code image

ALTER DATABASE <databasename>
SET OFFLINE;
GO

417

ALTER DATABASE <databasename>
MODIFY FILE (NAME = <databasename>_Data, FILENAME = "
<drive:\filepath>\
Data\<databasename>_Data.mdf");
GO
ALTER DATABASE <databasename>
MODIFY FILE (NAME = <databasename>_Log, FILENAME =
"drive:filepath>\
Log\<databasename>_Log.mdf");
ALTER DATABASE <databasename>
SET ONLINE;

Another benefit of separating data and log files on separate drives is mitigating a
potential failure. If the drive containing the data files fails, you can still access the
log file from the other disk and recover data up to the point of failure.
 File groups and secondary data files By default, each database has a primary
filegroup that contains the primary data file containing system tables and database
files created without a filegroup specification. SQL Server uses the primary
filegroup as the default for new indexes and tables that you create without placing
them in a specific filegroup, but you can create a new filegroup and designate it as
the default. There can only be one default filegroup, but you can create as many
additional file groups as you need as containers for one or more data and log files.
Files within a single filegroup can be spread across multiple disks to increase the
parallelism of data access. Furthermore, you can separate tables or indexes that are
heavily accessed from lesser used tables or indexes by assigning them to different
filegroups, which in turn are each placed on separate disks. Listing 4-39 shows how
to create a database with multiple filegroups and how to add a filegroup to an
existing database to isolate an index on its own disk:

LISTING 4-39 Create and alter database with multiple file groups

Click here to view code image

--Create a database on 4 drives
CREATE DATABASE DB1 ON
PRIMARY
 (Name = <databasename>, FILENAME = '<drive1:filepath>\
<databasename>.mdf'),
 FILEGROUP FGHeavyAccess1
 (Name = <databasename>_1, FILENAME = '<drive3:filepath>\
<databasename>_1.ndf')
LOG ON
 (Name = <databasename>_1_Log, FILENAME =
'<drive3:filepath>\<databasename>_1_

418

log.ldf'),
 (Name = <databasename>_1, FILENAME = '<drive4:filepath>\
<databasename>_1_
log_2.ldf');
-- Add filegroup for index
ALTER DATABASE <databasename>
 ADD FILEGROUP FGIndex;
-- Add data file to the new filegroup
ALTER DATABASE <databasename>
ADD FILE (
 NAME = <databasename>,
 FILENAME = '<drive1:filepath>\<databasename>.ndf',
 SIZE=1024MB,
 MAXSIZE=10GB,
 FILEGROWTH=10%)
TO FILEGROUP FGIndex;
-- Add index to filegroup
CREATE NONCLUSTERED INDEX ix_Example
 ON Examples.BusyTable(TableColumn)
 ON FGIndex;

 Partitioning You can use partitioning to place a table across multiple filegroups.
Each partition should be in its own filegroup to improve performance. To map a
value in a partition function to a specific filegroup, you use a partition scheme. Let’s
say you have four filegroups—FGYear1, FGYear2, FGYear3, and FGYear4—and a
partition function PFYearRange that defines four partitions for a table. You can create
a partition schema to apply the partition function to these filegroups as shown in
Listing 4-40.

LISTING 4-40 Create partition scheme to map partition function to filegroups

Click here to view code image

CREATE PARTITION SCHEME PSYear
 AS PARTITION PFYearRange
 TO (FGYear1, FGYear2, FGYear3, FGYear4);

tempdb optimization
Because so many operations, such as cursors, temp tables, and sorts, to name a few, rely on
tempdb, configuring tempdb properly is critical to the performance of the database engine.
Consider performing the following steps to optimize tempdb configuration:

 SIMPLE recovery model By using the SIMPLE recovery model, which is the
default, SQL Server reclaims log space automatically so that the space required for

419

the database is kept as low as possible.
 Autogrowth You should keep the default setting which allows tempdb files to
automatically grow as needed.
 File placement The tempdb data and log files should be placed on different disks
than your production database data and log files. Do not place the tempdb data files
on the C drive to prevent the server from failing to start after running out of hard
drive space. In addition, be sure to place the tempdb log file on its own disk.
Regardless, put tempdb files on fast drives.
 Files per core In general, the number of data files for tempdb should be a 1:1 ratio of
data files to CPU cores. In fact, in SQL Server 2016, the setup wizard now assigns
the correct number based on the number of logical processors that it detects on your
server, up to a maximum of 8, as shown in Figure 4-41.
 File size When you configure the database engine at setup, the default file size
recommended by the setup wizard of 8 MB for an initial size with an autogrowth
setting of 64MB is conservative and too small for most implementations. Instead,
consider starting with an initial size of 4,096 MB with an autogrowth setting of 512
MB to reduce contention and minimize the impact of uncontrolled tempdb growth on
performance. If you dedicate a drive to tempdb, you can set up the log files evenly on
the drive to avoid performance issues caused by SQL Server pausing user activity as
it grows the log files.

420

FIGURE 4-41 TempDB configuration in SQL Server 2016 Setup wizard

Need More Review? Optimization and capacity planning for tempdb
For specific size and placement recommendations, see “Optimizing tempdb
Performance” at https://technet.microsoft.com/en-us/library/ms175527.aspx
and “Capacity Planning for tempdb” at https://technet.microsoft.com/en-
us/library/ms345368.aspx.

Optimize memory configuration
SQL Server’s memory manager dynamically allocates memory according to the workloads
on the host computer and in the database engine. However, you can use the following
server configuration options to optimize SQL Server memory:

 min server memory Use this option to prevent SQL Server from releasing memory
to the operating system when the server memory drops to this threshold.
 max server memory Use this option to ensure that other applications running on the
same computer as SQL Server have adequate memory. When an application requests

421

https://technet.microsoft.com/en-us/library/ms175527.aspx
https://technet.microsoft.com/en-us/library/ms345368.aspx

memory only as needed, you do not need to configure this option. It applies only
when an application uses the memory available when it starts and does not later
request more memory when necessary. You should configure this option to prevent
SQL Server from taking the memory that the application might need.
 max worker threads Use this configuration to define the number of threads
available to user operations. If you keep the default value of 0, SQL Server
configures the number of worker threads each time the service restarts.
 index create memory Use this option to set the maximum amount of memory that
SQL Server initially allocates for index creation. SQL Server will allocate more
memory later if necessary, but only if it is available. Typically, you do not need to
configure this option, but if SQL Server is experiencing performance delays related
to indexing, you can increase the value of this option.
 min memory per query Use this option to improve performance of memory-
intensive queries by establishing the minimum amount of memory allocated for query
execution. SQL Server can use more memory than the configured minimum if it is
available.

To configure memory, right-click the server instance in Object Explorer and select
Properties. Click the Memory page, and then in the Server Memory Options, type the
appropriate values for any property except max worker threads. You can also use T-SQL to
adjust a property value like this:
Click here to view code image

EXEC sp_configure 'show advanced options', 1;
GO
RECONFIGURE;
GO
EXEC sp_configure 'min memory per query', 512 ;
GO
RECONFIGURE;
GO

Monitor and diagnose schedule and wait statistics using dynamic
management objects
One of the best ways to determine which SQL Server resource is a bottleneck on
performance is to review wait statistics. To better understand why waits, it is helpful first
to understand how SQL Server manages incoming requests. Each authenticated connection
is assigned to a session by SQL Server which then uses a pseudo-operating system called
the SQL Operating System (SQLOS) Scheduler to schedule CPU time for each session’s
requests. There is one SQLOS Scheduler per logical CPU core on the server to manage the
worker threads performing operations necessary to complete a request. These worker
threads must work cooperatively by running only for 4-milliseconds, known as a quantum,

422

before yielding the CPU to another worker thread and waiting in a runnable queue for
another turn. It might voluntarily yield the CPU if its quantum has not yet expired and it
cannot complete its task, because a resource it needs is unavailable. In this case, the
worker thread is moved to a waiter list and then later moves back to the runnable queue
when the needed resource becomes available.

Wait statistics allow you to analyze the time a worker thread spends in various states
before it completes a request by providing the following key pieces of information:

 Wait type The cause of the wait. For example, the disk IO is slow, resources are
locked, CPU is under pressure, an index is missing, or many other reasons. There are
hundreds of wait types that SQL Server tracks.
 Service time The amount of time that a thread runs on the CPU.
 Wait time The amount of time that a thread is not running because it is in the waiter
list.
 Signal wait time The amount of time that a thread is in the runnable queue ready to
run, but waiting for CPU time.
 Total wait time The sum of wait time and signal wait time.

You can access wait statistics through the following DMVS:
 sys.dm_os_wait_stats View information about completed waits at the instance level.
 sys.dm_exec_session_wait_stats View information about waits at the session level.
 sys.dm_os_waiting_tasks View information about requests in the waiter list.

sys.dm_os_wait_stats
In Chapter 3 we explored how to use this DMV for troubleshooting lock issues, but it is
also useful for discovering the most frequently occurring waits since the last reset of the
cumulative values. The cumulative wait time in this DMV includes the cumulative signal
wait time, so subtract signal wait time from wait time when you want to determine the
cumulative time threads spend in the waiter list.

Note Isolating top waits
You can find a useful query for isolating top waits to help focus your
troubleshooting efforts in Paul Randal’s blog post, “Wait statistics, or please
tell me where it hurts” at http://www.sqlskills.com/blogs/paul/wait-statistics-
or-please-tell-me-where-it-hurts/.

By reviewing this DMV for specific characteristics, you can uncover some of the
following potential issues on your server:

 CPU pressure Compare the signal wait time to the total wait time to determine the

423

http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/

relative percentage of time that a thread has to wait for its turn to run on the CPU.
When this value is relatively high, it can be an indicator that the CPU is
overwhelmed by queries that require tuning or your server needs more CPU. You can
confirm whether the issue is related to CPU by checking the runnable_tasks_count
column in the sys.dm_os_schedulers DMV to see if there is a high number of tasks in
the runnable queue. You might also see a higher occurrence of the
SOS_SCHEDULER_YIELD wait type if the CPU is under pressure. In addition, you
can monitor CPU-related performance counters as described in Skill 4.4.
 IO issues If tasks are waiting for the IO subsystem, you will see waits that contain
IO in the name. In particular, monitor the trend in average wait time which is
calculated by dividing wait_time_ms by waiting_tasks_count. If it starts trending
upward, investigate IO using performance counters.
Two wait types that will appear frequently in this DMV when IO issues exist are
ASYNC_IO_COMPLETION and IO_COMPLETION. Check physical disk
performance counters to confirm this diagnosis, which we describe in the next
section, “Troubleshoot and analyze storage, IO, and cache issues.” Consider adding
indexes to reduce IO contention.
You might also see PAGEIOLATCH waits when a thread is waiting for latches to
release after writing a data page in memory to disk or WRITELOG waits when the
log management system is waiting to flush to disk. These wait types can indicate
either an IO subsystem problem or a memory problem. To narrow down the
possibilities, you need to check IO statistics by using sys.dm_io_virtual_file_stats
and by reviewing IO-related performance counters.
 Memory pressure The PAGEIOLATCH wait might also indicate memory pressure
instead of an IO subsystem problem. It appears when SQL Server does not have
enough free memory available for the buffer pool. Check the Page Life Expectancy
performance counter to see if it is dropping as compared to a baseline value to
confirm whether memory is the reason for this wait type. If you see an increase in
CXPACKET waits in conjunction with PAGEIOLATCH waits, the culprit could be a
query plan using large table or index scans.
Another indicator of a memory pressure issue is the RESOURCE_SEMAPHORE
wait. It occurs when a query requests more memory than is currently available. You
can check the sys.dm_exec_query_memory_grants DMV and combine it with
sys.dm_exec_sql_text and sys.dm_exec_sql_plan DMVs to find the memory-
intensive queries and review their query plans.

sys.dm_exec_session_wait_stats
This DMV is new in SQL Server 2016 and is identical in structure to
sys.dm_os_wait_stats, but has an additional column for session ID. However, it is
important to note that this new DMV only includes information for sessions that are

424

currently connected. When a session disconnects, its wait statistics are cleared from the
DMV. Nonetheless, it can be helpful when you need to diagnose the workload for a specific
session.

sys.dm_os_waiting_tasks
We introduced this DMV in Chapter 3 as a tool for finding blocked sessions, but you can
also use it to find the requests currently waiting for a resource and why. As one example,
you might filter the DMV by using the wait_duration_ms column to find tasks that have
been waiting longer than a threshold that you specify.

Note Additional resource for using the sys.dm_os_waiting_tasks DMV
Paul Randal has published a script that demonstrates how to use
sys.dm_os_waiting_tasks with other DMVs to gather information about
blocked sessions, the wait type, the resource affected, the query text, and the
query plan in his blog post “Updated sys.dm_os_waiting_tasks” at
http://www.sqlskills.com/blogs/paul/updated-sys-dm_os_waiting_tasks-
script/.

Need More Review? Learning more about analyzing wait statistics
You can learn more about analyzing wait statistics in Jonathan Kehayias and
Erin Stellato’s SQL Server Performance Tuning Using Wait Statistics: A
Beginner’s Guide, a free whitepaper at https://www.simple-talk.com/free-
stuff/sql-server-performance-tuning-using-wait-statistics-a-beginners-
guide/.

Troubleshoot and analyze storage, IO, and cache issues
Troubleshooting and analyzing storage, IO, and cache issues is a huge topic to which many
books, blog posts, and workshops are dedicated because there are many different ways to
configure the disk and IO subsystem and many different issues that can arise. For the exam,
you should understand how to get information about storage, IO, and cache performance
from SQL Server and the Microsoft Windows operating system.

Storage and IO
Storage bottlenecks occur when your data or log files are stored on slow disks or when the
RAID is not configured appropriately for your workload. Unless your application is using
memory-optimized tables, SQL Server is frequently reading data from disk in response to
queries or writing new or changed data to disk. Meanwhile, tempdb is disk-based and uses
a lot of IO for grouping and sorting operations. Conditions within SQL Server that create
IO bottlenecks include frequent index scans, inefficient queries, and outdated statistics.

425

http://www.sqlskills.com/blogs/paul/updated-sys-dm_os_waiting_tasks-script/
https://www.simple-talk.com/free-stuff/sql-server-performance-tuning-using-wait-statistics-a-beginners-guide/

Although SQL Server is requesting the reads and writes, the operating system controls the
system bus, disk controller cards, disks, and other IO devices to physically perform the
disk IO. Another factor to consider is the demand that other applications running on the
server can place on the IO subsystem.

Your first indication that you might have an IO problem might come from an analysis of
waits as we described in the previous section. Your next step is to use the
sys.dm_io_virtual_file_stats DMV in combination with sys.master_files to analyze
cumulative metrics related to each database including its data and log files. These DMVs
help you find the busiest files and provides IO stall information that tells you how long
users had to wait for IO operations to finish.

Note Example of IO subsystem latency analysis
You can find an example of analyzing these DMVs in Paul Randal’s blog post,
“How to examine IO subsystem latencies from within SQL Server” at
http://www.sqlskills.com/blogs/paul/how-to-examine-io-subsystem-
latencies-from-within-sql-server/.

Another way to find these issues is to use the sys.dm_os_performance_counters DMV.
The availability of the DMV means you can easily get SQL Server-related performance
counter information without first setting up Windows Performance Monitor.

Note An online resource for querying SQL Server performance counters
Interpreting the information found in the sys.dm_os_performance_counters
information can sometimes be challenging because counter values can be an
average of operations executed within a sample interval or the last observed
value for a counter, to name only two types of values. Jason Strate has
produced a comprehensive explanation of the types of values and how to
derive important calculations from counter values when the available from the
DMV in his blog post, “Querying Performance Counters in SQL Server,” at
http://www.jasonstrate.com/2012/11/querying-performance-counters-in-sql-
server/.

The following performance counters, accessible by executing the statements shown in
Listing 4-41, provide insight into the amount of IO that SQL Server is directly contributing
to the server:

 SQLServer:Buffer Manager: Page lookups/sec Average requests per second at
which SQL Server finds a page in the buffer pool. This value should be lower than
SQLServer:SQL Statistics: Batch Requests/sec multiplied by 100.
 SQLServer:Buffer Manager: Page reads/sec Average rate at which SQL Server

426

http://www.sqlskills.com/blogs/paul/how-to-examine-io-subsystem-latencies-from-within-sql-server/
http://www.jasonstrate.com/2012/11/querying-performance-counters-in-sql-server/

reads from disk. This value should be lower than the hardware specifications for the
IO subsystem’s read operations.
 SQLServer:Buffer Manager: Page writes/sec Average rate at which SQL Server
writes to disk. This value should be lower than the hardware specifications for the
IO subsystem’s write operations.

Listing 4-41 Review SQL Server:Buffer Manager performance counters

Click here to view code image

SELECT
 object_name,
 counter_name,
 instance_name,
 cntr_value,
 cntr_type
FROM sys.dm_os_performance_counters
WHERE object_name = 'SQLServer:Buffer Manager' AND
 counter_name IN
 ('Page lookups/sec', 'Page reads/sec', 'Page
writes/sec')

If these performance counters are too high, consider one or more of the following
solutions:

 Tune database performance by adding new indexes, improving existing indexes, or
normalizing tables, or partitioning tables.
 Replace the IO subsystem hardware with faster components.

Cache issues
SQL Server is self-tuning and manages memory dynamically. It will use as much memory
as you can give it, and it will not release memory until the operating system sets the low
memory resource notification flag. Cache bottlenecks occur when SQL Server does not
have enough memory to manage. To diagnose cache issues, start by checking the physical
memory of the server and identifying how other applications on the server are using
memory. You might need to analyze and tune specific queries as well. For example, if an
index is missing on a large table, SQL Server must perform a table scan which reads a
significant amount of data into memory.

The following DMVs are useful for understanding memory usage on your server:
 sys.dm_os_memory_cache_counters View the current state of the cache.
 sys.dm_os_sys_memory View resource usage information for the server, including
total physical and available memory and high or low memory state.

427

 sys.dm_os_memory_clerks View usage information by memory clerk processes that
manage memory for SQL Server.

Note Learning more about using DMVs to tune performance
You can learn more about using these and related DMVs to investigate
memory usage in Louis Davidson and Tim Ford’s free book, Performance
Tuning with SQL Server Dynamic Management Views, which you can
download from https://assets.red-gate.com/community/books/performance-
tuning-with-dmvs.pdf.

You should also use the following performance counters to monitor whether SQL Server
has adequate memory:

 SQLServer:Buffer Manager: Free List Stalls/Sec Number of requests per second
that SQL Server waits for a free page in the buffer cache. If this value is greater than
zero on a frequent basis, the server is experiencing memory pressure.
 SQLServer:Buffer Manager: Lazy Writes/Sec Number of times per second that
SQL Server flushes pages to disk. If this number is rising over time, and Free List
Stalls/Sec is also greater than zero, you likely need more memory on the server.
 SQLServer:Memory Manager: Memory Grants Outstanding Number of
processes that have acquired a memory grant successfully. A low value might signify
memory pressure.
 SQLServer:Memory Manager: Memory Grants Pending Number of processes
that are waiting for a memory grant. If this value is greater than zero, consider turning
queries or adding memory to the server.

Monitor Azure SQL Database query plans
To monitor Azure SQL Database query plans, you use many of the same techniques that you
use to monitor SQL Server query plans. Specifically, you can choose any of the following
methods:

 T-SQL statements You can use the Showplan SET options in SQL Server
Management Studio to capture query plans, just as you can for SQL Server. You can
also use the Display Estimated Execution Plan and Include Actual Execution Plan
buttons in the toolbar to generate the respective graphical query plan.
 Extended Events You can use Extended Events to capture query plans, much like
you can for SQL Server. There are some slight differences, however. Instead of using
the ON SERVER clause in the CREATE EVENT SESSION, ALTER EVENT
SESSION, and DROP EVENT SESSION commands, you must use ON DATABASE
instead. If you want to save a query plan to a file, you must write the file to an Azure
Storage container. In addition, there are also several DMVS for Extended Events that

428

https://assets.red-gate.com/community/books/performance-tuning-with-dmvs.pdf

are unique to SQL Database.

Note Understanding differences in Extended Events between SQL Server
and SQL Database

For more information about the differences in usage of Extended Events
between SQL Server and SQL Database, see “Extended events in SQL
Database” at https://docs.microsoft.com/en-us/azure/sql-database/sql-
database-xevent-db-diff-from-svr.

 Query Store Query Store is enabled by default for V12 databases. You can access
the Query Store views in SQL Server Management Studio in the same way that you
do for SQL Server. Also, you can use the same Query Store DMVs.

Important SQL Database lacks support for SQL Trace
The use of SQL Trace is not supported in SQL Database.

Skill 4.4: Monitor and trace SQL Server baseline performance metrics
One of the most important responsibilities of a DBA is to ensure that SQL Server runs
smoothly and performs optimally. To fulfill this responsibility, you should be familiar with
the array of tools available to help you uncover and diagnose problems occurring on the
server. We have introduced several of these tools in the preceding pages of this chapter, but
we did so with specific contexts in mind. Now let’s step back and survey the tools again in
terms of how you can use them to baseline server performance at the operating system and
SQL Server instance levels. In addition, we introduce some new tools that you can use
towards this same goal.

This section covers how to:
 Monitor operating system and SQL Server performance metrics
 Compare baseline metrics to observed metrics while troubleshooting
performance issues
 Identify differences between performance monitoring and logging tools
 Monitor Azure SQL Database performance
 Determine best practice use cases for Extended Events
 Distinguish between Extended Events targets
 Compare the impact of Extended Events and SQL Trace
 Define differences between Extended Events Packages, Targets, Actions,
and Sessions

429

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-xevent-db-diff-from-svr

Monitor operating system and SQL Server performance metrics
At any time, without any elaborate setup requirements, you can access the following tools
to check performance metrics for the operating system and SQL Server:

 Dynamic management objects (DMOs) DMVs and DMFs provide insight into the
historical and current state of SQL Server. You can query DMOs on an ad hoc basis,
or you can create export the data into tables for long-term storage and trend analysis.
 Performance Monitor Operating system and SQL Server performance counters
provide useful information to corroborate metrics obtained from other sources and to
help narrow down the range of possible causes when investigating specific
problems.
 SQL Trace You can set up server-side or SQL Server Profiler tracing for a variety
of events as a method of investigating problematic workloads and poorly performing
queries.
 Extended Events You can create Extended Events sessions as a more lightweight
approach to server-side tracing.

Dynamic management objects
In Chapter 3 and earlier in this chapter, we explored a wide variety of DMOs that you can
use to troubleshoot locking and blocking issues, collect execution statistics on natively
compiled stored procedures, review index usage, access Query Store information, review
wait statistics, and troubleshoot storage, IO, and cache issues. Did you happen to notice
any patterns in the naming of these DMOs? By understanding the naming conventions, you
can get a high-level view of the range of information that DMOs supply. For the exam, you
do not need to be familiar with the complete list of DMO categories supported in SQL
Server. However, given the name of a specific DMO, you should be able to identify the
type of information it provides at a general level by its association with one of the
following categories:

 sys.dm_exec_* Connections, sessions, requests, and query execution
 sys.dm_os_* Information for the operating system on which SQL Server runs
 sys.dm_tran_* Details about transactions
 sys.dm_io_* IO processes
 sys.dm_db_* Database-scoped information

Note Additional information about DMOs
For more in-depth information about dynamic management objects, refer to
“Dynamic Management Views and Functions (Transact-SQL)” at
https://msdn.microsoft.com/en-us/library/ms188754.aspx.

430

https://msdn.microsoft.com/en-us/library/ms188754.aspx

Most DMOs provide information about the current state, such as currently blocked
sessions in sys.dm_os_waiting_tasks, or information accumulated since SQL Server last
restarted, such as sys.dm_os_wait_stats. SQL Server retains the information accessible
through DMOs in memory only and does not persist it to disk. Therefore, the information is
reset when SQL Server restarts.

Performance Monitor
Performance Monitor, also known as PerfMon, is a tool provided with the Windows
operating system that you can use to monitor operating system, application, and hardware
performance in real time. You can even establish thresholds and receive alerts when
thresholds are crossed. As an alternative, you can capture performance data in logs that you
can review in the graphical interface or save to SQL Server tables for trend analysis.

Typically, you use performance counters to confirm suspicions of a problem that you
uncover by using wait statistics rather than as a starting point. Like DMOs,

For real-time analysis, open Performance Monitor, and click the Add button in the
toolbar. In the Add Counters dialog box, select the server to monitor in the Select Counters
From Computer drop-down list (or use the Browse button to locate a server on your
network), and then scroll through the Available Counters list to locate the set of counters to
monitor, such as PhysicalDisk. When you monitor PhysicalDisk counters, you can select a
specific disk to monitor or all disks. Select a specific counter, such as % Disk Time, and
click the Add button. Continue adding counters as needed. When finished, click OK. You
can then view real-time metrics for the selected counters. If you are monitoring multiple
counters at the same time, right-click a counter and select Properties to change Color,
Width, Style values to more easily distinguish between counters, as shown in Figure 4-42.
You might also need to reset the scale for a counter.

431

FIGURE 4-42 Real-time monitoring of performance counters in Performance Monitor
To identify issues in disk IO activity, start by reviewing the following performance

counters (replacing PhysicalDisk with the LogicalDisk if you have multiple logical
partitions on the same disk):

 PhysicalDisk: % Disk Time Percentage of time the disk is active with reads and
writes. If this percentage is greater than 90 percent, review the Physical Disk:
Current Disk Queue Length counter.
 PhysicalDisk: Avg. Disk sec/Read Average read latency in seconds. This value
should be less than 0.20.
 PhysicalDisk: Avg. Disk sec/Transfer Average latency of IO requests to the disk in
seconds. This value should be less than .020.
 PhysicalDisk: Avg. Disk sec/Write Average read latency of IO requests to the disk
in seconds. This value should be less than .020.
 PhysicalDisk: Current Disk Queue Length Number of IO requests waiting for
access to the disk. This value should be no more than two times the number of
spindles for the disk. Most disks have a single spindle, but a redundant array of

432

independent disks (RAID) typically have more than one spindle, even though the
RAID device appears as a single physical disk in System Monitor.
 Memory: Page Faults/sec This performance counter increases when processes on
the server are consuming too much memory and SQL Server must page to disk.
Paging itself is not necessarily a cause of an I/O bottleneck, but can slow the
performance of the IO subsystem.

Another important resource to monitor is CPU usage, which you can watch by using the
following performance counters:

 Processor: % Privileged Time Percentage of time that the operating system spends
processes SQL Server I/O requests. If this value is high at the same time that the
disk-related performance counters described in the “Troubleshoot and analyze
storage, IO, and cache issues” section are also high, your server likely needs a faster
disk.
 Processor: % Processor Time Percentage of time that each processor spends
executing a thread that is not idle. If this value is consistently between 80 and 90
percent, you should upgrade the CPU or add more processors.
 Processor: % User Time Percentage of time that the operating system executes user
processes, including IO requests from SQL Server. If this value approaches 100%, it
might indicate that the CPU is under pressure.
 System: Processor Queue Length Number of threads waiting for processor time.
An increase in this counter means the CPU is not keeping up with demand and a
faster processor is necessary.

To monitor memory, use the following performance counters:
 Memory: Available Bytes Amount of memory available for processes on the server.
If this value is too low, check to see if another application on the server is failing to
release memory or if memory on the server is adequate for your requirements.
 Memory: Pages/sec Frequency with which pages are retrieved from or written to
disk due to hard page faults. When this value is consistently high, the server might be
paging excessively. If it is, the Memory: Page Faults/sec performance counter will
also be high.
 Process: Working Set Amount of memory used by a process. If this number is
consistently lower than the minimum server memory option, SQL Server is
configured to use too much memory.

Note Customizing the collection of performance counters
Refer to “Create a Data Collector Set to Monitor Performance Counters” at
https://technet.microsoft.com/en-us/library/cc722414.aspx to customize a
set of performance counters to collect and configure alerts. Step-by-step

433

https://technet.microsoft.com/en-us/library/cc722414.aspx

instructions for saving performance counter data to SQL Server tables is
available in “Capture PerfMon Statistics to SQL Server for Benchmarking,
Baselining and Analysis,” a blog post by David Ames at
http://www.amescode.com/capture-perfmon-statistics-to-sql-server-for-
benchmarking-baselining-and-analysis/.

SQL Trace
As we described in Skill 4.2, “Analyze and troubleshoot query plans,” SQL Trace is useful
for server-side or client-side tracing when you want to capture query plans. However, you
can use tracing to monitor other aspects of SQL Server performance. Unlike DMOs that
allow you to capture activity as it occurs, SQL Trace requires that a monitored event is
completed before its data is added to the trace.

Important Considerations for query plan impact on performance
Remember that capturing a query plan does place some overhead on the
server, so use with caution on a busy production server. In that case, the better
approach is to use a server-side trace that stores output on a local drive. In
addition, try to filter the trace as much as possible to limit the impact of
tracing on your server.

Besides using SQL Trace to get query plans, consider using it as a diagnostic tool when
you need to monitor SQL Server’s behavior during query processing. For example, you
might use SQL Trace in the following situations:

 Lock escalation You can find correlations between lock escalation events and
queries running when lock escalation occurs by creating a trace that includes the
Lock:Escalation, SP:Started, T-SQL:StmtStarted, SP:Completed, and T-
SQL:StmtCompleted.
 Deadlocks As we described in Chapter 3, you can capture a deadlock graph by
creating a trace that includes the Deadlock Graph, Lock:Deadlock, and
Lock:Deadlock Chain events.
 Slow queries You can identify and capture information about slow queries in a trace
containing the RPC:Completed, SP:StmtCompleted, SQL:BatchStarting,
SQL:BatchCompleted, and Showplan XML events.

Note A resource for learning more about SQL Server Profiler
You can find in-depth information about using SQL Server Profiler, the
graphical interface, in Brad M. McGehee’s free ebook “Mastering SQL
Server Profiler” at http://www.red-gate.com/library/mastering-sql-server-
profiler.

434

http://www.amescode.com/capture-perfmon-statistics-to-sql-server-for-benchmarking-baselining-and-analysis/
http://www.red-gate.com/library/mastering-sql-server-profiler

Extended Events
We introduced Extended Events in Chapter 3 as a method for finding deadlocks after they
occur and explored this feature again as lightweight alternative to SQL Trace for capturing
query plans. The Extended Events feature in SQL Server provides even more functionality
than deadlock and query plan monitoring.

As the replacement for SQL Trace, which is slated for deprecation in a future version of
SQL Server, Extended Events not only allow you to perform the same tasks with greater
flexibility and better performance, but also allow you to monitor more events. In SQL
Server 2016, you can monitor 180 events by using SQL Trace, whereas you can monitor
1209 events by using Extended Events. Later in this chapter, we provide specific examples
of how you might use Extended Events, we compare the performance impact between
Extended Events and SQL Trace, and explain its architecture of this event-handling
infrastructure.

Compare baseline metrics to observed metrics while troubleshooting
performance issues
When using dynamic management objects to gain insight into SQL Server performance, you
can only see current or recent historical information. Some problems become apparent only
when you view how this information changes over time. Rather than wait for users to
complain about application or query performance, you can proactively monitor the health
of SQL Server by collecting baseline metrics and then periodically comparing current
system behavior. That way you can identify negative trends as early as possible.

SQL Server includes a data collector to help you gather data and store it in the
management data warehouse. This is a database that you use as centralized storage for
many types of data, not just performance data. When you set up the management data
warehouse, you specify which DMOs to query, which performance counters from the
operating system and SQL Server to collect, and which SQL Trace events to capture. You
can also use this infrastructure to capture other types of data that you might want to store
centrally.

To set up management data warehouse in SQL Server Management Studio, expand the
Management node in Object Explorer, right-click Data Collection, point to Tasks, and
select Configure Management Data Warehouse. In the Configure Management Data
Warehouse Wizard, click Next, and click New to open the New Database dialog box. Type
a name for the database, click OK, and then click Next. On the Map Logins And Users page
of the wizard, select the login for your SQL Server service account, select mdw_admin,
and then click OK. Next click Finish, and then click Close.

To set up data collection, right-click Data Collection again, point to Tasks, and select
Configure Data Collection. In the Configure Data Collection Wizard, click Next, and then
select the server and database hosting the management data warehouse. Select the System

435

Data Collection Sets checkbox, click Next, click Finish, and then click Close.
To view information collected in the management data warehouse, right-click Data

Collection once more, point to Reports, point to Management Data Warehouse, and select
one of the following reports:

 Server Activity History This report, a portion of which is shown in Figure 4-43,
displays data collected from DMVs and performance counters, such as waits, locks,
latches, among other SQL Server statistics, and CPU, memory, disk, and network
usage. By default, this information is gathered every 60 seconds, uploaded into the
Management Data Warehouse every 15 minutes, and retained for 14 days. The report
is interactive. When you click on a chart, a new report page displays. For example,
when you click the SQL Server Waits report, you can view a table and chart
containing wait statistics for the selected period of time.

FIGURE 4-43 Server Activity History report

 Disk Usage Summary This report displays a table of databases listing the starting

436

and current size of the database and log files, the average growth measured as
megabytes per day, and a sparkline chart to show the growth trend over time. You can
click on a database name to view disk usage details for the database and log files as
pie charts or click on the sparkline to view the disk space growth trends and
collection details for each size metric, as shown in Figure 4-44.

FIGURE 4-44 Disk Usage Summary subreport for a selected database

 Query Statistics History This report displays a column chart the top 10 queries
within a specified interval by CPU usage, duration, total IO, physical reads, or
logical writes and a table that includes the following query executions statistics:
Executions/min, CPU ms/sec, Total Duration (sec), Physical Reads/sec, and Logical
Writes/sec. The data is cached on the local file system and then uploaded to the
Management Data Warehouse every 15 minutes.

437

FIGURE 4-45 Query Statistics History report
You can click on one of these queries to view its details in a subreport, such as the query

text, and more detailed execution statistics such as Average Duration (ms) per Execution or
Average Executions Per Min. The subreport also displays a column chart of query plans
that you can rank by CPU, duration, physical reads, or logical writes. Statistics by query
plan are also available. Click on a query plan to view the query plan details much like the
details for a query. Other links on this page allow you to view sampled waits or the
graphical query plan.

Identify differences between performance monitoring and logging tools
Now that we have reviewed the various tools available for performance monitoring and
logging, let’s compare and contrast them to better understand their differences. That way,
you can select the right tool for the particular task and objectives at hand. Table 4-1
provides a comparison of the tools by capability.

438

TABLE 4-1 Comparison of performance monitoring and logging tools

Monitor Azure SQL Database performance
There are several diagnostic tools available to you for monitoring SQL Database
performance. For a quick view of performance metrics, use the Azure portal. For more
targeted analysis, you can use DMVs, Query Store, or Extended Events to monitor SQL
Database performance just as you do for SQL Server.

Azure Portal
In the Azure portal, you can select the metrics that you want to monitor and display a chart
that shows average utilization for selected metrics. To configure the chart, open the blade
for your database in the Azure portal, and then click Edit inside the Monitoring chart. In the
Edit Chart blade, select one of the following time ranges: Past Hour, Today, Past Week, or
Custom. If you select Custom, you can type in a data range or use calendar controls to set a
beginning and end date for the range. Next, select one of the following chart types: Bar or
Line. Then select one or more of the following metrics:

439

 Blocked by firewall
 CPU percentage
 DTU limit
 DTU percentage
 DTU used
 Data IO percentage
 Database size percentage
 Deadlocks
 Failed connections
 In-memory OLTP storage percent
 Log IO percentage
 Sessions percentage
 Successful connections
 Total database size
 Workers percentage

After you add the metrics to monitor, you can view the results in the Monitoring chart in
addition to details in the Metric window. When you select metrics, you can select
compatible metrics only. For example, you can select metrics that count connections, as
shown in Figure 4-46, or you can select metrics that measure the percentage of resources
consumed, but you cannot mix those two types of metrics in the same chart.

440

FIGURE 4-46 Monitoring chart for SQL Database in the Azure portal
You can also use the Azure portal to configure an email alert when a performance metric

exceeds or drops below a specified threshold. Click the Monitoring chart to open the
Metric blade. Then click Add Alert and follow the instructions in the Add Alert Rule
blade. For example, you can add an alert to send an email when the number of connections
blocked by the firewall exceeds 1, as shown in Figure 4-47. Not shown in this figure is the
name of the resource, the name of the alert rule, and whether to email the alert to owners,
contributors, and readers and optionally additional administrators.

441

442

FIGURE 4-47 Add An Alert Rule blade for SQL Database

DMVs for SQL Database
Use the following DMVs to monitor SQL Database performance:

 sys.database_connection_stats Count successful and failed connections. The count
of failed connections is the sum of login failures, terminated connections, and
throttled connections.
 sys.dm_db_resource_stats Get the resource consumption percentages for CPU, data
IO, and log IO. It returns one row for every 15 seconds, even when there is no
activity in the database. For less granular data, you can use sys.resource_stats in the
logical master database for your server.
 sys.dm_exec_query_stats In combination with sys.dm_exec_sql_text, find queries
that use a lot of resources, such as CPU time or IO.
 sys.dm_tran_locks Discover blocked queries.
 sys.event_log Find issues such as deadlocking and throttling over the last 30 days.
You must have permission to read the master database on the Azure server. As an
example, you can search for specific types of events, such as deadlocks or throttle
events, and when they occurred, as shown in Listing 4-42.

LISTING 4-42 Review SQL Server:Buffer Manager performance counters

Click here to view code image

SELECT
 Event_Category,
 Event_Type,
 Event_Subtype_Desc,
 Event_Count,
 Description,
 Start_Time
FROM sys.event_log
WHERE Event_Type = 'deadlock' OR
 Event_Type like 'throttling%'

Note Permission required for using DMVs in SQL Database
To use a DMV in SQL Database, you must be granted the VIEW DATABASE
STATE permission.

Extended Events in SQL Database

443

You can use Extended Events to troubleshoot performance in SQL Database. It is similar to
using Extended Events in SQL Server, although the set of extended events in SQL Database
is smaller than the set available for SQL Server. In addition, there are some slight syntax
differences when creating, altering, or dropping an event session as we noted in the
“Monitor Azure SQL Database query plans” section earlier in this chapter.

Determine best practice use cases for extended events
Extended Events is a robust, yet lightweight tracing infrastructure that you can use to
monitor and analyze SQL Server activity by collecting as much or as little information as
you need. At minimum, you can use Extended Events for any diagnostic task that you can
perform by using SQL Trace, but it can do so much more. In particular, Extended Events
offers greater flexibility because you can filter events with more granularity. For this exam,
you should be familiar with the following types of use cases that Extended Events supports:

 System health By default, an Extended Events session dedicated to system health
information starts automatically when SQL Server starts. System health information
includes session_id and sql_text for sessions with a severity greater than or equal to
20 or experiencing a memory-related error, non-yielding scheduler problems,
deadlocks, long latch and lock waits, connectivity and security errors, and more. For
complete details, see https://msdn.microsoft.com/en-us/library/ff877955.aspx.
 Query performance diagnostics Find historical deadlocks or queries that did not
end, troubleshoot waits for a particular session or query, capture queries that match a
specific pattern, and get query plans, to name a few. You can count the number of
occurrences of a specific event to determine if a problem is recurring frequently.
 Resource utilization monitoring and troubleshooting You can create a session to
capture information about server resources, such as CPU, IO or memory utilization.
You can filter events for specific utilization thresholds to fine-tune the diagnostic
process. Furthermore, you can correlate SQL Server events with Windows Event
Tracing for Windows (ETW) logs that capture details about operating system
activities.
 Security audits Capture login failures by filtering events with Severity 14 and Error
18456 with client application name to find malicious login attempts.

Distinguish between Extended Events targets
An Extended Event target receives information about an event. For example, in the
“Capture query plans using extended events and traces” section earlier in this chapter, the
target for the example Extended Events session is a file in which the session stores a query
plan. In the last section of this chapter, we explain targets in greater detail. For now, be
sure you understand the difference between the following targets for an Extended Events
session:

444

https://msdn.microsoft.com/en-us/library/ff877955.aspx

 etw_classic_sync_target Unlike the other targets that receive data asynchronously,
this is an ETW target that receives data synchronously. You use it to monitor system
activity.
 event_counter This target counts the number of times that a specific event occurred.
 event_file This target writes the event session output to a file on disk in binary
format. You use the sys.fn_xe_file_target_read_file function to read the contents of
the file.
 histogram Like the event_counter target, the histogram target counts the occurrences
of an event, but can count occurrences for multiple items separately and for both
event fields or actions.
 pair_matching This target helps you find start events that do not have a
corresponding end event. For example, you can discover when a lock_acquired event
occurred without a matching lock_released event within a reasonable time.
 ring_buffer This target holds data in memory using an first-in, first-out method in
which the oldest data is removed when the memory allocation is reached.

Compare the impact of Extended Events and SQL Trace
As we have explained throughout this chapter, you can use Extended Events and SQL Trace
interchangeably to provide many similar diagnostic functions. However, it is important to
note that there is considerable difference between them when considering their respective
impact on the observed server. Both tools by necessity add overhead to the server, which is
measurable by observing performance counters for monitoring CPU processor time and
batch requests per second. The use of SQL Server Profiler for client-side tracing is the
most intrusive option whereas using SQL Trace stored procedures for server-side tracing
is less intrusive. With this in mind, you should try to limit the number of events and number
of columns captured to minimize the overhead as much as possible.

The least intrusive option is Extended Events, which was developed as a lightweight
replacement for SQL Trace. Nonetheless, because it does incur overhead, you should take
care to create events that collect the minimum amount of data necessary for
troubleshooting. In particular, be aware that the query_post_execution_showplan event is
expensive and should be avoided on a production server. If you must use it to troubleshoot
a specific issue, take care to restrict its use to a limited time only.

Define differences between Extended Events Packages, Targets, Actions,
and Sessions
Throughout this chapter, we have discussed specific capabilities of Extended Events as
well as the benefits of this feature, but we have yet to explore its components in detail. In
this final section of the chapter, we review Extended Events concepts and objects that you
should understand.

445

Events in Extended Events correspond to events in SQL Trace, but many more are
supported in Extended Events to give you better diagnostic capabilities. An example of an
event is sp_statement_starting.

Packages
A package is the top-level container for the various types of Extended Events objects:
events, targets, actions, types, predicates, and maps. Of all the available packages, you can
only use the following three packages in an event session:

 package0 Contains Extended Events system objects
 sqlserver Contains objects related to SQL Server
 sqlos Contains SQLOS objects

Targets
A target is the destination for the data collected about an event. For short-term diagnostics,
you can use a memory-resident target. To persist the data, you can use the event_file target.
Review the section “Distinguish between Extended Events targets” earlier in this chapter
to see the full list of available targets. After you create an Extended Event session, you can
add one or more targets, like this:
Click here to view code image

ADD TARGET package0.event_file(SET
filename=N'C:\ExamBook762Ch4\query.xel',
 max_file_size=(5),max_rollover_files=(4)),
ADD TARGET package0.ring_buffer

Actions
An action is a response or series of responses that you bind to an event. For example, you
can use an action to detect an execution plan or calculate run-time statistics. Or you can
add information from the global state, such as session_id, to the firing event to aid in
troubleshooting, like this:
Click here to view code image

ADD EVENT sqlserver.sql_statement_completed(
 ACTION (sqlserver.session_id,
 sqlserver.sql_text))

Sessions
An Extended Events session is the equivalent of a trace. When you create a session, you
add an event and actions to fire with that event, define one or more targets for the data
collected about the event, and optionally create predicates that define filters for the event.
Listing 4-43 provides an example of an event session that captures session_id and sql_text

446

when a stored procedure executes on the server and sends the data to a file on the local
drive and to the ring buffer.

LISTING 4-43 Create event session

Click here to view code image

CREATE EVENT SESSION [stored_proc]
ON SERVER
ADD EVENT sqlserver.sp_statement_completed(
 ACTION (sqlserver.session_id,
 sqlserver.sql_text))
ADD TARGET package0.event_file(SET
filename=N'C:\ExamBook762Ch4\query.xel',
 max_file_size=(5),max_rollover_files=(4)),
ADD TARGET package0.ring_buffer;

Note Learning more about Extended Events packages
There are other objects that can also exist in a package: types, predicates, and
maps. However, these topics are not covered in the exam. If you’d like to
learn more refer to “SQL Server Extended Events Packages” at
https://technet.microsoft.com/en-us/library/bb677278.aspx.

Chapter summary
 SQL Server relies on statistics to select an optimal query plan. For this reason, it’s
important to keep statistics current. Statistics can become obsolete when a table is
the target of high volume inserts or deletions because the data distribution can change
significantly. You can use the DBCC SHOW_STATISTICS command to check the
histogram and index densities for an index.
 SQL Server updates statistics automatically by default, but you can disable the
automatic update and instead rely on a maintenance plan to update statistics when you
need greater control over the timing of the update. When you create a maintenance
plan, SQL Server creates a SQL Server Agent job that you can schedule to run at a
convenient time.
 There are several DMOs available to help you manage indexes. Use
sys.dm_db_index_usage_stats to review current index usage or, in combination with
sys.indexes and sys.objects, to find indexes that are never used. Use
sys.dm_db_index_physical_stats to find fragmented indexes. To find missing indexes,
use sys.dm_db_missing_index_details, sys.dm_db_missing_index_groups, and
sys.dm_db_missing_index_group_stats.

447

https://technet.microsoft.com/en-us/library/bb677278.aspx

 The existence of overlapping indexes adds unnecessary overhead to SQL Server. You
should periodically review index columns to ensure an index was not inadvertently
added that overlaps with a similar index.
 Use the query_pre_execution_showplan or query_post_execution_showplan
Extended Events as a lightweight method to capture the estimated or actual query
plans, respectively. As an alternative, you can use SQL Trace system stored
procedures for server-side tracing or use SQL Server Profiler to capture the
Showplan XML or Showplan XML For Query Compile events for an estimated query
plan or the Showplan XML Statistics Profile event for an actual query plan.
 When reviewing a query plan, you should review whether the following operators
exist in the plan: Table Scan, Clustered Index Scan, Key Lookup (Clustered) or RID
Lookup (Clustered) in conjunction with Index Seek (NonClustered), Sort, or Hash
Match. Although the presence of these operators is not bad in all cases, you might
consider options for tuning your query such as adding indexes to tables or adding
filters to the query if operations are performed on large tables and your goal is to
improve query performance.
 Query Store is a new feature in SQL Server 2016 and SQL Database that you can use
to capture query plans and associated runtime execution statistics over time. Several
built-in views are available to help you find queries that consume a lot of resources
or have regressed from a previous point in time. You can also force a query plan
when necessary.
 Usually an estimated query plan and an actual query plan are the same plan except
that an actual query plan includes calculations and information that is available only
after the query executes. You can create an estimated query plan to assess the impact
of potential changes to a query or to table structures without executing the query. The
actual query plan can vary from the estimated query plan if statistics are out-of-date
or if the data structures changes after the estimated query plan is generated.
 Query Performance Insight is an Azure SQL Database features that graphically shows
you which queries are consuming the most CPU, memory, IO, and DTU resources
over time.
 The Resource Governor (available only in Enterprise, Developer, or Evaluation
editions) allows you to define how SQL Server allocates CPU, memory, and IOPS
resources on the server. You specify this allocation by creating one or more resource
pools and then create workload groups that you assign to a resource pool. A
workload group can have further resource consumption limits imposed and can be
configured with relative importance within a resource pool to prioritize access to
server resources when workload groups run concurrently. SQL Server assigns a
session to a workload group by using criteria that you define in a classifier function.
It if cannot match the session to a workload group, Resource Governor assigns the
session to the default workload group assigned to the default resource pool.

448

 By using Elastic Scale for Azure SQL Database, you can manage your data in
separate shards for which resource requirements can dynamically grow or shrink as
needed to match the current workload. To use this feature, you must use the elastic
database client library in your application to perform operations across all shards or
in individual shards. You can also use the Split-Merge service to separate data in one
shard into multiple shards or to combine data from multiple shards into a single
shard.
 When choosing one of the following SQL Server 2016 editions, you must consider
the scalability and features each supports: Express, Web, Standard, Enterprise,
Developer, and Evaluation. For SQL Database, you choose the Basic, Standard, or
Premium service level based on the maximum size of your database and the range of
performance levels required. Performance levels are measured as DTUs which
represent CPU, memory, and IO thresholds.
 One aspect of query performance is the efficiency of your storage and IO subsystems
which you can optimize by managing file placement for system, data, and log files.
Use filegroups as separate containers that can be spread across separate disks and
optionally use secondary data files and partitioning to improve data access.
 The setup wizard for SQL Server 2016 makes it easier than in previous versions to
optimize the configuration of tempdb by allowing you to define its file placement, the
number of files to create, the initial file size, and autogrowth settings.
 As long as SQL Server is the only application running on a server, it can manage
memory dynamically without intervention. When you must run other applications on
the server, you can optimize SQL Server’s memory configuration by specifying
minimum and maximum memory thresholds, maximum worker threads, maximum
memory for index creation, and minimum memory for query execution.
 You use the sys.dm_os_wait_stats, sys.dm_exec_session_wait_stats, or
sys.dm_os_waiting_tasks DMVs to gather information about the amount of time that
threads must wait on resources, determine whether the server is experiencing CPU,
memory, or IO pressure, or find out which resources are causing excessive waits.
 You can troubleshoot IO issues by analyzing IO subsystem latencies captured in the
sys.dm_io_virtual_file_stats and sys.master_files DMVs or by reviewing
performance counters for SQL Server’s buffer manager in the
sys.dm_os_performance_counters DMV.
 You can troubleshoot cache issues by using the following DMVs:
sys.dm_os_memory_cache_counters, sys.dm_os_sys_memory, or
sys.dm_os_memory_clerks. You can also use performance counters for SQL Server’s
buffer manager and memory manager in the sys.dm_os_performance_counters DMV.
 SQL Database query plans are accessible by using Showplan SET options, Extended
Events, or Query Store, but not by using SQL Trace.

449

 You have a variety of tools that you can use to monitor operating system and SQL
Server performance metrics: DMOs, Performance Monitor, SQL Trace, and Extended
Events. In many cases, you are likely to use a combination of tools to diagnose SQL
Server behavior.
 Management Data Warehouse is a SQL Server feature that allows you to capture
performance-related information over time in contrast to other available monitoring
tools which primarily provide point-in-time or cumulative information. Management
Data Warehouse provides the following reports for your review: Server Activity
History, Disk Usage Summary, and Query Statistics History.
 To monitor SQL Database performance, you can monitor specific metrics in the
Azure portal. In addition, you can use the following DMVs with SQL Database for
monitoring: sys.database_connection_stats, sys.dm_db_resource_stats,
sys.dm_exec_query_stats, sys.dm_tran_locks, and sys.event_log. Extended Events
are also available for SQL Database, although the set of supported events is smaller
than the set that supports SQL Server.
 You should be familiar with the following best practice use cases for extend events:
system health, query performance diagnostics, resource utilization monitoring and
troubleshooting, and security audits.
 You should also understand how Extended Events uses the following targets to store
information about an event: etw_classic_sync_target, event_counter, event_file,
histogram, pair_matching, and ring_buffer.
 Although Extended Events and SQL Trace can often be used interchangeably,
Extended Events has a much lower impact on performance. You can measure the
difference in impact by observing CPU processor time and batch requests per
second.
 The Extended Events architecture is comprised of several components. A package is
the top-level container for the other objects. As data is collected about an event, it is
sent to a target. In addition, you can configure an action to occur in response to an
event. A session is a set of events, actions, and targets that you configure and enable
or disable as a group.

Thought experiment
In this thought experiment, demonstrate your skills and knowledge of the topics covered in
this chapter. You can find answer to this thought experiment in the next section.

You recently started as a new database administrator at Consolidated Messenger.
Because you are unfamiliar with this SQL Server environment as a new employee, you
decide to perform some analysis to determine if there are any significant problems to fix.

1. Which query or command do you use to find the most recent update for statistics on
tables or indexed views?

450

A. DBCC SHOW_STATISTICS(‘ConsolidatedMessengerDB’, All Indexes);
B. SELECT name, STATS_DATE(object_id, stats_id) FROM sys.stats WHERE

object_id IN (SELECT object_id FROM sys.objects WHERE type = ‘U’);
C. SELECT name, auto_created (object_id, stats_id) FROM sys.stats WHERE

object_id IN (SELECT object_id FROM sys.objects WHERE type = ‘U’);
D. SELECT name, auto_created (object_id, stats_id) FROM sys.stats WHERE

object_id IN (SELECT object_id FROM sys.objects WHERE type = ‘U’);
2. When you query the sys.dm_db_index_physical_stats DMV, you see the output

shown below. What problem do you see and what step should you take to resolve it?
Click here to view code image

idx_id
ObjectName index_type_desc pg_ct
AvgPageSpacePct frag_ct AvgFragPct
-------- -------------------------------------- ------------

------- -------------------------- ---------- --------------

1 PK_SalesOrders_OrderD CLUSTERED
INDEX 2037
54.9851742031134 237 34.02189781021898
2 IX_SalesOrders_CustomerID NONCLUSTERED
INDEX 685 98.4313442055844
2 0

3. You enabled Query Store on the main corporate database several weeks ago. Which
DMV do you use to locate the top 5 queries with the longest duration?
A. sys.query_store_plan
B. sys.query_store_query
C. sys.query_store_query_text
D. sys.query_store_runtime_stats
E. sys.query_store_runtime_stats_interval

4. When you use Query Store to examine the query plans for a frequently executed
query, you notice that for one plan uses an Index Scan operator and a second plan
uses and Index Seek operator. If the normal query pattern is to retrieve a small
number of rows, which is the more optimal query plan and how can you require SQL
Server to use it?

5. You have been monitoring wait statistics in the sys.dm_os_wait_stats DMV for
several weeks and notice that the ratio of signal_wait_time_ms to wait_time_ms has
been increased from 10% to 30%. What type of problem is this likely to indicate?

451

A. CPU pressure
B. Memory pressure
C. Network bandwidth issues
D. IO subsystem failures

6. As another method to confirm your diagnosis for the scenario in the previous
question, which performance counters should you check?
A. Physical disk counters: % Disk Time, Avg. Disk sec/Read, Avg. Disk

sec/Transfer, Avg. Disk sec/Write, Current Disk Queue Length.
B. Processor counters: % Privileged Time, % Processor Time, % User Time,

Processor Queue Length.
C. Memory counters: Available bytes, Pages/sec, Working set.
D. SQL Server counters: Page lookups/sec, Page reads/sec, Page writes/sec, Free

List Stalls/Sec, Lazy Writes/Sec, Memory Grants Outstanding, Memory Grants
Pending.

7. Which tool monitoring tools can you use to get information about SQL Server
memory usage without writing any code?
A. DMVs or SQL Profiler
B. Server-side SQL Trace or Extended Events
C. Performance Monitor or Management Data Warehouse
D. Client-side SQL Trace or Resource Governor

Thought experiment answer
This section contains the solution to the thought experiment.

1. The answer is B. The sys.stats catalog view contains both the stats_id and object_id
columns necessary to use the STATS_DATE system function that returns the most
recent update date for an object’s statistics. The DBCC SHOW_STATISTICS
command requires you to include a specific index name as the second argument,
therefore A is incorrect due to the syntax. Similarly, C and D are examples of
incorrect syntax because T-SQL does not include an auto_created function.

2. The clustered index has a page count greater than 500 and fragmentation is 34%. In
this case, you should rebuild the index.

3. The answer is D. You can order by the avg_duration column in descending order in
the sys.query_store_runtime_stats DMV to find the queries that run the longest. The
sys.query_store_plan in A is incorrect because this DMV includes only information
about estimated query plans. Sys.query_store_query is incorrect in B because this
DMV collects aggregated information for a query’s compilation, but does not collect
execution statistics. On its own the sys.query_store_query_text DMV in C is not a

452

correct answer because it includes the query text without duration information,
although you can join it to sys.query_store_runtime_stats to get more complete
information about long-running queries. Sys.query_store_runtime_stats_interval is
stores information about the intervals of time during which statistics are captured, but
does not report duration information.

4. When multiple query plans exist for a selected query, Query Store allows you to
select a query plan and then force that plan for all subsequent executions of the same
query. In this example, the more optimal query plan is the one that includes the Index
Seek because it incurs a lower cost by selecting specific rows from the index rather
than scanning the entire index to find the rows to select.

5. The answer is A. The signal wait time is the amount of time that a thread is able to
run a task, but is waiting its turn on the CPU. To confirm this diagnosis, check for an
increasing number of SOS_SCHEDULER_YIELD wait types in the
sys.dm_os_wait_stats DMV and check the sys.dm_os_schedulers DMV for a high
value in the runnable_tasks_count column. Answer B is incorrect because memory
pressure is indicated by PAGEIOLATCH waits in combination with a Page Life
Expectancy performance counter value dropping over time. Answer C is incorrect
because you generally use network-related wait types and performance counters to
confirm your diagnosis of network bandwidth issues. Answer D is incorrect because
a failure in the IO subsystem will become evident when there are many waits
containing IO in the name and average wait time begins to increase.

6. The answer is B. You can monitor CPU usage by using the Processor performance
counters. In particular, if % Processor Time is between 80 and 90 percent
consistently, % User Time nears 100% consistently, and the Processor Queue Length
value is increasing over time, the CPU is experiencing pressure. You should consider
upgrading the CPU or adding more processors. The counters listed for Answers A,
C, and D are useful performance counters. However, they do not provide any
confirmation of whether the observations in Question 5 are related to CPU pressure.

7. The answer is C. Both Performance Monitor and Management Data Warehouse
provide graphical interfaces that you can use to monitor SQL Server’s memory usage.
In Performance Monitor, you can set up the data collection of performance counters
for the SQL Server Memory Manager, such as Memory Grants Outstanding or
Memory Grants Pending, among others. In Management Data Warehouse, you can use
the Server Activity History report to drill into Memory Usage details for the server.
To access information from DMVs, you must write a T-SQL query; therefore, A is
incorrect. Similarly, B is incorrect because a server-side SQL Trace requires you to
write code. Answer D is incorrect because Resource Governor is not a performance
monitoring tool.

453

Index

A
abbreviations 11
ACID properties 196–203
actual query plans 314–319
AFTER triggers 160, 176–179
algebrizer 283
ALTER INDEX statement 89, 90, 92
ALTER statement 61
ALTER TABLE command 120–122
ALTER TABLE statement 14–15, 27, 253
approximate numeric data type 16
artificial keys 5, 47
ASCII characters 18
atomic blocks 249
atomicity 196, 198–201
attributes 3

relationship of non-key to key 8–11
auto-commit transactions 203
autocommit transactions 151
AUTO_CREATE_STATISTICS 271
Autogrowth 338
AUTO_UPDATE_STATISTICS 271
AUTO_UPDATE_STATISTICS_ASYNC 271
Azure Access Panel. See Access Panel
Azure portal 319–320, 356–357
Azure SQL Database

DMVs for 358
Extended Events in 358
performance monitoring 356–358

Azure SQL Database Performance Insight 283, 319–324
Azure SQL Database query plans 346

B
backward compatibility 64

454

baseline performance metrics 347–362
compared to observed metrics 352–355

batch execution mode 79–80
batch separator 12
BEGIN ATOMIC_END clause 249
BEGIN TRANSACTION statement 151, 205, 207
binary data 17
bookmark lookups 30
bottlenecks 242, 243, 340, 345
Boyce-Codd normal form 9
brackets 11
B-Tree indexes 24–50

designing 26–40
structure 24–26

bulk data loading
into clustered columnstore index 89–93

bulk update locks 214
business requirements

for database 2–4
view structure design based on 53–57

business rules
enforcing with constraints 102–115

C
cache issues 345–346
Camel Casing 12
cardinality 74, 266–270
cascading operations 113–115
CASE statement 247
character data 17
CHECK constraint 65
CHECK constraints 102, 107–111, 121, 160
classification process 325
classifier user-defined functions 329–330
client-side tracing 290–292, 360
CLR. See Common Language Runtime (CLR)
CLR stored procedures 130

455

clustered columnstore indexes 73–80, 85–88
bulk data loading 89–93

clustered indexes 25, 46–48, 69, 85
Clustered Index Scan operator 36, 50, 69, 293–294
clustering key 46–47, 48
COALESCE() function 20
columnar data 165–167
columnar databases 70–71
column constraints 102
COLUMNPROPERTYEX() function 34
columns 5, 5–6

adding 14–15
cardinality of 266–270
clustered index 46–48
computed 20–21, 34
data format for 109–110
data types for 15–24
density of 268
dropping 15
foreign key 28–32, 74
indexed vs. included 41–45
limiting to set of values 118–119
NOT NULL 104
NULL values in 28, 106

column segments
in columnstore indexes 72

columnstore indexes 70–93, 252
adding rows to compressed rowgroups 83
attributes of 85
batch execution mode 79–80
clustered 73–80, 85–88
loading data into 89–93
maintenance 89–95
non-bulk operations on 93–95
non-clustered 78, 80–88
structure of 71–72
targeting analytically valuable columns in 83

456

use cases 70–73
Columnstore Scan operator 88
COMMIT statement 204–205
COMMIT TRANSACTION 151
COMMIT TRANSACTION statement 205
Common Language Runtime (CLR) 130
common table expressions (CTEs) 116, 248
company names 18–19
comparison operators 59
composite indexes 25, 39
compressed rowgroups 83
COMPRESSION_DELAY setting 83
computed columns 20–21

indexing 34
Compute Scalar operator 30
concurrency 26
concurrent processes

potential problems with 211–216
concurrent queries

results of 219–228
connectors. See also receive connectors; See also send connectors
consistency 196, 201
constraints 14, 61, 101, 102–129

adding to tables 119–122
CHECK 65, 102, 107–111, 121, 160
column 102
DEFAULT 48, 65, 102, 103–105
FOREIGN KEY 73, 75, 102

relating to UNIQUE constraint 117–119
use of 110–116

PRIMARY KEY 27, 28, 41, 47, 65, 102, 106, 111–112, 120, 125–130
results of DML statements and 123–125
table 102
UNIQUE 102, 105–106, 117–119, 120
uniqueness 27–28

covering indexes 41–45, 57, 77
CPU pressure 341

457

CPU usage 350
CREATE COLUMNSTORE INDEX statement 83
CREATE INDEX statement 29, 39, 43, 48
CREATE SCHEMA statement 12
CREATE TABLE statement 12–15
CTEs. See common table expressions (CTEs)

D
DAC. See Datacenter Activation Coordination
DAGs. See Database Availability Groups
DAS. See Direct-Attached Storage
data

binary 17
character (string) 17
hiding 53
limiting, through DDL 61–62
modifying in views, with multiple tables 62–64
redundant 8, 9
reformatting 53, 54–55
view structure design to select 53–57

data access
real-time 244

database concurrency 195–264
isolation levels and 216–229
locking behavior and 230–241
memory-optimized tables and 242–255
natively compiled stored procedures and 242, 255–258
transactions and 195–216

DATABASE DDL triggers 172–174
database design

adding indexes during 26–32
based on business requirements 2–4
denormalization 11
determining data types 15–24
using normalization 4–11
writing table create statements 11–15

Database Engine Tuning Advisor 281

458

database file optimization 336–337
database instances

performance management for 324–346
database file optimization 336–337
database workload 325–331
Elastic Scale 331–333
memory optimization 339–340
query plans 346
storage, IO, and cache troubleshooting 343–346
wait statistics 340–343

tempdb optimization 338–339
Database Manipulation Language (DML)

statements 196–203
database objects 1–100

changing definition of 61
columnstore indexes 70–93
dropping 61
indexes 24–50
naming 11–12, 12–13
relational database schema 2–24
views 52–69

databases. See mailbox databases
columnar 70–71
logical database model 4
tuning 32

database scalability 331–333
Database Throughput Unit (DTU) 321–322
database workload

managing, in SQL Server 325–331
Resource Governor management queries 330–331
resource pools 326–328
user-defined functions 328–329
workload groups 328

Databse Definition Language (DDL) triggers 159
Data Definition Language (DDL) 123
Data Definition Language (DDL) triggers 169–174
data distribution 266–270

459

data files 336
data format 107, 109–110
data input

CHECK constraints on 107–111
coordinating multiple values 110–111

data integrity
complex 160–164
constraints for 102–129

data loading
into columnstore index 89–95

Data Manipulation Language (DML) 123–125
Data Manipulation Language (DML) triggers 159–160, 169. See also triggers
data storage. See also storage architectures; See also storage requirements
datatype

choosing 108–109
conversion 144
int 107
precedence 144

data types 15–24
approximate numeric 16
binary data 17
character (string) data 17
computed columns 20–21
considerations for choosing 18–20
date and time values 16–17
dynamic data masking 20, 21–24
for clustering key 48
importance of choosing 15–16
not supported in columnstore indexes 71
other 17–18
precise numeric 16

data values 15
data warehouses

clustered columnstore indexes and 73–80
date values 16–17
DBCC SHOW_STATISTICS command 266–268
DDL. See Data Definition Language (DDL)

460

deadlock graphs
capture and analyze 237–240
Extended Events 240
SQL Server Profiler 239–240

deadlocks 351
remediation of 241–242

decimals 16
DEFAULT constraint 48, 65
DEFAULT constraints 102, 103–105
DEFAULT keyword 182
DEFAULT VALUES 104–105
degenerate dimensions 75
degree of parallelism (DOP) 328
delayed durability 254
delayed durable transactions 202–203
DELETE statement 63
delimiters 11, 12
deltastore structure 72
denormalization 11
design

database
adding indexes during 26–32
based on business requirements 2–4
determining data types 15–24
using normalization 4–11
writing table create statements 11–15

indexes 26–40
tables

improving, using normalization 4–11
deterministic calculations 20
deterministic functions 186–188
Developer edition 335
DFS. See Distributed File Share
dimensional formatted data warehouses

using clustered columnstore indexes on 73–80
dimension keys 74
dimensions 74

461

dirty reads 212
Disk Usage Summary report 353–354
distributed transactions 208–209, 211, 219
divide-by-zero errors 180–181
DML. See Data Manipulation Language (DML)
DMV. See dynamic management view
DMVs. See dynamic management views (DMVs)
doomed transactions 152
double-quotes 11
DROP command 61
DROP [objectType] IF EXISTS command 61
duplicate key values 46
durability 197, 202–203
durable memory-optimized tables 254
dynamic data masking 20, 21–24
dynamic link library (DLL) files 246, 247
dynamic management objects (DMOs) 276–281, 340–343, 347, 348, 355
dynamic management view (DMV) 45
dynamic management views (DMVs) 231–237, 256–259, 276–280, 304–305, 341–342,
345–346, 358

E
EFS. See Encrypting File System
elastic database client library 332
Elastic Scale 331–333
email() function 23
ENCRYPTION 52
Enterprise edition 334–335
error handling

@@ERROR system function for 148–149
in stored procedures 144–158
rethrowing errors 150
throwing errors 144, 145–147
THROW statement for 157
transaction control logic in 144, 151–158
TRY...CATCH construct for 149–151, 153–154, 157

ERROR_PROCEDURE() function 158

462

@@ERROR system function 148–149, 154
ESRA. See EdgeSync replication account (ESRA)
estimated query plans 268–270, 314–319
ETDATE() function 20
Evaluation edition 335
EVENTDATA() function 171
exclusive locks 213, 229, 236
EXECUTE AS statement 24
EXECUTE statement 142
execution statistics 256–259
explicit transactions 151, 203–204, 205–209
Express edition 334
Extended Events 283–286, 313, 346, 348, 352, 355, 358

actions 360
best practice use cases for 359
compared with SQL Trace 360
events 360
packages 360
sessions 360
targets 359–360, 360

Extended Events deadlock graph 240
external resource pools 327
Extract-Transform-Load (ETL) operations 243, 245–246

F
fact tables 74, 78
federated SQL Servers 64
file groups 336–337
file placement 336, 338
file size 338
filtered rowstore indexes 29, 84
first normal form 6–7
forced query plans 313–314
foreign key columns 28–32, 74
FOREIGN KEY constraints 28–32, 75, 102

cascading operations 113–115
limiting column to set of values using 118–119

463

PRIMARY KEY constraints and 111–112
relating to UNIQUE constraint 117–119
table hierarchies and 115–116
use of 110–116

forms 4
FROM clause 60, 248
FSW. See File Share Witness
FUNCTION query 182
functions

deterministic 186–188
non-deterministic 186–188
system. See system functions
user-defined. See User-Defined Functions (UDFs)

G
globally unique identifier (GUID) 18, 48
Globally Unique Identifiers (GUIDs) 128
GO 12
GROUP BY query 182
GUID. See globally unique identifier

H
hash indexes 252
Hash Match (Aggregate) operator 298–299
Hash Match (Inner Join) operator 299–302
Hash Match join operator 51
Hash Match operator 35, 37, 51, 77
heaps 25
heirarchyId data type 18
high-concurrency databases

transactions in 211–216
hygiene. See message hygiene

I
IDENTITY property 65, 104, 105, 126–128
implicit transactions 203–205, 216
included columns 41–45

464

INCLUDE keyword 43, 46
index create memory 340
indexed columns 41–45
indexed views 67–69
indexes 24–50, 252–253

adding during coding phase 26
adding during database design phase 26–32
bookmark lookups 30
clustered 25, 46–48, 69, 85
columnstore 70–93

clustered and non-clustered 73–87
data loading 89–95
maintenance 89–95
use cases 70–73

composite 25, 39
consolidating overlapping 281–282
covering 41–45, 57, 77
designing 26–40

common search paths 32–35
foreign key columns 28–32
once data is in tables 32–40
uniqueness constraints 27–28

filtered 29, 84
finding unused 278–279
fragmented 279–280
identifying missing 280–281
indexed vs. included columns 41–45
joins 35–37
missing 45, 46
non-clustered 25, 85
optimization of 266–284
optimizing 28
query plans 30–32, 34–36, 42, 46, 49–52
review current usage 276–279
simple 25, 39
sorts 38–41
structure 24–26

465

uses of 24, 31–32
using dynamic managemet objects to review 276–281

index keys 42
maximum size of 25–26

Index Seek (NonClustered) operator 294–295
In-Memory OLTP feature 242
inner data set 301
INSERT INTO clause 105
INSERT statements 248
INSTEAD OF INSERT triggers 168
INSTEAD OF triggers 160, 166–170, 176–179
INSTEAD OF UPDATE triggers 166
int data type 107
integers 16, 48
intent locks 213–214
internal resource pools 327
Internet of Things 243
interpreted SQL stored procedures 130
interpreted stored procedures 249
IO issues 341
IO troubleshooting 343–345
isolation 196–197, 201–202
isolation levels 216–229

concurrent queries based on 219–228
differences between 217–219
READ COMMITTED 218, 220–221, 229
READ_COMMITTED_SNAPSHOT 219, 227–228, 230–231
READ UNCOMMITTED 218, 221–222, 229
REPEATABLE READ 218, 222–223, 229
resource and performance impact of 228–230
SERIALIZABLE 218, 223–224, 229
SNAPSHOT 219, 224–227, 229

J
joins 35–37

K

466

key attributes
relationship to non-key attributes 8–11

Key Lookup (Clustered) operator 294–295
Key Lookup operator 38
key-range locks 214–215
keys 5, 6

artificial 5
natural 6
surrogate 6

L
lazy commits 202–203
linked servers 67
lock compatibility 215
lock escalation events 351
lock hierarchy 213–215
locking behavior 230–241

deadlocking 237–241
escalation behaviors 237–238
troubleshooting 231–237

log files 336. See transaction log files
logging tools 355
login triggers 159, 174–176
logon triggers 169, 174–176
log sequence numbers (LSNs) 202
long running queries 323–324
lost updates 212
Lync Online. See Skype for Business

M
maintenance

columnstore indexes 89–95
Management Data Warehouse 352–355
materialized views. See indexed views
max server memory 339
max worker threads 340
measures 75

467

memory cache 345–346
memory optimization 339–340
memory-optimized tables 242–255

analytics workloads 253
durability options 253–254
indexes 252–253
natively compile stored procedures and 247–252
performance optimization of 245–255
SQL Server editions supporting 245
use cases for 242–245

memory pressure 342
memory usage monitoring 350
Merge Join operator 38, 40–41
MERGE statement 248
message transport. See transport
Microsoft Azure. See Azure
Microsoft Azure Active Directory. See Azure Active Directory (Azure AD)
min memory per query 340
min server memory 339
missing indexes 45, 46
monetary values 16, 19

N
names

company 18–19
database objects 12–13
object 11–12

NAT. See network address translation (NAT)
natively compiled objects 130
natively compiled stored procedures 242

creating 247–252
execution statistics for 256–259
unsupported T-SQL constructs for 249
usage scenarios for 255

natural keys 6
Nested Loop operator 78
nested loops 35

468

nested transactions 206–207
NEWSEQUENTIALID() function 128
NICs. See network interface cards (NICs)
non-bulk operations

on columnstore 93–95
nonclustered B-tree indexes 252
non-clustered columnstore indexes 73, 78, 80–88

designing in conjuction with clustered 85–88
filtered 84–85
on OLTP tables 81–85

non-clustered indexes 25, 85
non-deterministic functions 186–188
non-durable memory-optimized tables 254
non-key attributes

relationship to key attributes 8–11
non-repeatable reads 212
normalization

Boyce-Codd normal form 9
defined 4
first normal form 6–7
rules

covering relationship of non-key attributes to attributes 8–11
covering shape of table 5–7

second normal form 8–10
table design using 4–11
third normal form 8, 9–11

NOT NULL columns 104
NULL columns 106
NULL expression 13
NULL values 28, 29

O
object naming 11–13
objects 3
Office Telemetry. See telemetry
OLTP. See online transaction processing
OLTP databases 28

469

OLTP tables
using non-clustered columnstore indexes on 81–85

ON clause 14
one-to-one cardinality 10
online transaction processing (OLTP) 1–100
operating system performance metrics 347–352
ORDER BY clause 38, 40, 52
outer data set 301
Overall Resource Consumption view 314

P
parallelism 76
parameters

input and output 135–137
stored procedures 132, 135–139
table-valued 137–139, 244
type mismatch 143–144

parameter sniffing 310
partial() function 23
partitioned views 64–67
partitioning 14, 337–338
Pascal-casing 12
PERCENT clause 248
performance

data types and 15
performance counters 344–346, 348–351
Performance Monitor 347, 348–351, 355
performance monitoring

Azure SQL Database 356–358
baseline performance metrics 347–362
DMOs for 276–280, 340–343, 347, 348, 355
Extended Events for 355, 358, 359–362
Management Data Warehouse 352–355
Performance Monitor for 347, 348–351, 355
SQL Trace for 347, 355
vs. logging 355

phantom reads 212

470

plan summary 308, 310, 311
platform-as-a-service. See PaaS
precise numeric data type 16
prefixes 11
PRIMARY KEY constraint 14, 27, 28, 41, 47, 65
PRIMARY KEY constraints 102, 106, 120

FOREIGN KEY constraints and 111–112
use of 125–130

Q
quantum 340
queries

concurrent 219–228
dimensional data warehouses 73–80
grouping data in 76
long running 323–324
parallelism 76
range 47
resource consuming 321–323
Resource Governor management 330–331
slow 351
statistics collection 258–259
that return large results 47

Query Menu 31
query optimizer 283
query parsing 283
Query Performance Insight 319–324
query plan operators 291–301

Clustered Index Scan operator 293–294
Hash Match (Aggregate) operator 298–299
Hash Match (Inner Join) operator 299–302
Hash Match operator 296
Index Seek (NonClustered) operator 294–295
Key Lookup (Clustered) operator 294–295
Sort operator 295–297
Table Scan operator 293

query plans 30–32, 34–36, 35–36, 42, 46, 49–52, 268–270, 283–324

471

Azure SQL Database 346
Azure SQL Database Performance Insight 319–324
capturing, using extended events and traces 283–292
comparing estimated and actual 314–319
estimated 268
forced 313–314
performance impacts of 351
poorly performing operators 291–301

query_post_execution_showplan 284
query_pre_execution_showplan 284
Query Statistics History report 354
Query Store 283, 346

components 304–306
enabling 319–320
properties 302–304
views 306–314

query_store_plan_forcing_failed Extended Event 313

R
RAISERROR statement 145–147
range queries 47
READ COMMITTED isolation level 218, 220–221, 229
READ_COMMITTED_SNAPSHOT isolation level 219, 227–228, 230–231
READ UNCOMMITTED isolation level 218, 221–222, 229
real data types 19
real-time analytics

using non-clustered columnstore indexes 81–85
real-time data access 244
REBUILD setting 89, 92
redundant data 8, 9
Regressed Queries view 314
relational database schema 2–24

designing
based on business requirements 2–4
determining data types 15–24
using normalization 4–11
writing table create statements 11–15

472

REORGANIZE setting 89, 90, 92
REPEATABLE_READ isolation level 213, 218, 222–223, 229
reporting

views for 53, 55–56
resource consuming queries 321–323
resource consumption monitoring 330–331, 359
Resource Governor 325–331

management queries 330–331
resource locks 212–216
resource pools 325, 326–328
RETURN statement 139–140
REVERT statement 24
ROLLBACK TRANSACTION statement 151, 164, 207, 209
row groups 83

in columnstore index 71
Row-Level Security feature 53
rows 5, 5–6
rowstore 24
rowstore indexes

uses of 85
rowversion data type 18

S
savepoints 157, 209–211
SAVE TRANSACTION statement 209
scalar user-defined functions 180–183
SCHEMABINDING 52
SCHEMABINDING clause 249
schema locks 214
schema modification locks 236
schemas

defined 3
designing

based on business requirements 2–4
relational database 2–24

SCOPE_IDENTITY() function 136
search conditions 35

473

secondary data files 336–337
secondary uniqueness criteria 105–106
second normal form 8–10
security

Row-Level Security feature 53
security audits 359
SELECT clause 183
SELECT INTO clause 248
SELECT statement 317
SELECT statements 52
self-service deployment. See user-driven client deployments
semicolons 12
semi joins 51
SEQUENCE object 65
SEQUENCE objects 128
SERIALIZABLE isolation level 213, 218, 223–224, 229
Server Activity History report 353
SERVER DDL triggers 170–172
server principal 169, 171
servers

linked 67
server-side tracing 286–289, 360
service tiers 335
session state management 244
SET command 134
SET SHOWPLAN_ALL ON statement 315
SET SHOWPLAN_TEXT ON statement 315
SET SHOWPLAN_XML ON statement 315
sharding 331–332
shared locks 229
simple indexes 25, 39
SIMPLE recovery model 338
slow queries 351
SMTP. See Single Mail Transfer Protocol (SMTP)
SNAPSHOT isolation level 219, 224–227, 229
snowflake schema 74
Sort operator 295–297

474

sorts 38–41
spatial data type 18
SPF. See send policy framework (SPF) records
Split-Merge service 333
sp_query_store_flush_db 305
sp_query_store_force_plan 305
sp_query_store_remove_plan 305
sp_query_store_remove_query 305
sp_query_store_reset_exec_stats 305
sp_query_store_unforce_plan 305
sp_trace_create 286
sp_trace_setevent 286
sp_trace_setfilter 286
sp_trace_setstatus 286
SQL Database. See also Azure SQL Database

DMVs for 358
Elastic Scale for 331–333
Extended Events in 358

SQL Operating System (SQLOS) Scheduler 340
SQL Server

baseline performance metrics 347–362
Enterprise Edition 67
managing database workload in 325–331
memory optimization 339–340
Standard Edition 67

SQL Server 2012
columnstar indexes and 85

SQL Server 2014
columnstar indexes and 85

SQL Server 2016
columnstar indexes and 85–86
editions 334–335
service tiers 334–335

SQL Server Agent stored procedures 273
SQL Server Integration Services (SSIS) 275
SQL Server Lock Manager 212–213
SQL Server Management Studio 352

475

SQL Server Profiler 286, 288–289, 290
SQL Server Profiler deadlock graph 239–240
SQL Server Resource Governor 325–331
SQL Trace 283, 286–292, 347, 351, 355, 360
sql_variant 17
Standard edition 334
star schema 73–74
statistics 266–277

accuracy of 266–273
automatic updates 271–273
data distribution and cardinality 267–271
execution. See execution statistics
maintenance tasks 273–276
wait 340–343

statistics collection queries 258–259
STATS_DATE system function 272
storage

troubleshooting 343–345
stored procedures 53, 101

CLR 130
complex business logic in 243
creating 130–158
designing, based on business requirements 131–135
error handling in 144–158
interpreted 249
interpreted SQL 130
natively compiled 130, 242, 247–252, 255–258
parameters 132

input and output 135–137
table-valued 137–139
type mismatch 143–144

return codes 139–140
returning data from 133–134
server-side tracing 286
SQL Server Agent extended 273
streamlining logic 141–144
structure of 131

476

transactions in 206–208
use of 131

string data 17
STRING_SPLIT() function 137–138
surrogate keys 6
surrograte keys 126–129
syntax

names 11–12
sys.database_connection_stats 358
sys.dm_db_index_physical_stats 279–280
sys.dm_db_index_usage_stats 276–278
sys.dm_db_missing_index_details 280
sys.dm_db_missing_index_groups 280
sys.dm_db_missing_index_group_stats 280
sys.dm_db_resource_stats 358
sys.dm_exec_query_stats 358
sys.dm_exec_session_wait_stats 342
sys.dm_io_virtual_file_stats 343
sys.dm_os_memory_cache_counters 345
sys.dm_os_memory_clerks 345
sys.dm_os_performance_counters 344
sys.dm_os_sys_memory 345
sys.dm_os_waiting_tasks 231, 234–235, 342
sys.dm_os_wait_stats 231, 235–236, 341–342
sys.dm_tran_locks 231, 231–234, 358
sys.event_log 358
sys.fn_trace_getinfo system function 288
sys.master_files 343
sys.query_store_plan 304
sys.query_store_query 304
sys.query_store_query_text 304
sys.query_store_runtime_stats 304
sys.query_store_runtime_stats_interval 305
sys.sp_xtp_control_proc_exec_stats 256
sys.sp_xtp_control_query_exec_stats 257–258
system functions

invalid use of, on search arguments 143

477

system health 359

T
table constraints 102
tables

adding constraints to 119–122
adding indexes to 32–40
ALTER TABLE statement 14–15, 27
cascading operations 113–115
columns 5, 5–6

adding 14–15
data types for 15–24
dropping 15
indexed vs. included 41–45

creating 11
designing

based on business requirements 2–4
using normalization 4–11

fact 74, 78
hierarchies 115–116
joins 35–37
keys 5, 6
memory-optimized 242–255
modifying, using views 58–64
multiple, in views 62–64
names 11–13
OLTP

using non-clustered columnstore indexes on 81–85
PRIMARY KEY constraints 27
redundancy in 9
relationship of non-key to key attributes 8–11
rows 5–6
rules covering shape of 5–7
sorts 38–41
temporary 244
virtual 62

Table Scan operator 293

478

table-valued parameters 137–139, 244
table-valued user-defined functions 183–186
table variables 244
tempdb 224, 242, 247, 343
tempdb optimization 338–339
temporal extensions 14
temporary tables 244
third normal form 8, 9–11
THROW statement 145–147, 155, 157, 164
timestamp 18
time values 16–17
Top Resource Consuming Queries view 308
traces 283, 286–292, 351

client-side 290–292, 360
server-side 286–289, 360

Tracked Querie view 314
@@TRANCOUNT variable 204, 206, 207, 209
transaction control logic

in stored procedures 144–158
transactions 195–216

ACID properties of 196–203
auto-commit 203
distributed 208–209, 211, 219
DLM statement results based on 196–203
explicit 203–204, 205–209
implicit 203–205, 216
in high-concurrency databases 211–216
isolation levels 216–229
nested 206–207
resource locks and 212–216
savepoints within 209–211

Transact-SQL code 2–24, 12
Transact-SQL statements

to add contraints to tables 119–122
triggers 101

AFTER 176–179
columnar data and 165–167

479

complex data integrity and 160–164
creating 159–179
DDL 159, 169–174
designing logic for, based on business requirements 159–169
DML 159–160, 169
INSTEAD OF 166–170, 176–179
login 159
logon 169, 174–176
running code in response to action 164–165
uses of 160

troubleshooting
IO 343–345
locking behavior 231–237
performance issues 352–355
storage 343–345

TRY...CATCH construct 149–151, 153–154, 157
T-SQL statements 346
tuple mover 72, 89

U
UDFs. See User-Defined Functions (UDFs)
uncommitable transactions 152
underscores 12
UNION ALL set operator 64
UNIQUE constraints 102, 120

FOREIGN KEY constraints relating to 117–119
use of 105–106

uniqueidentifier data type 18
uniqueness constraints

on indexes 27–28
updateable views 57–63
update locks 213
UPDATE operations

DEFAULT constraints on 104
in columnstore index 72

UPDATE statement 179
UPDATE STATISTICS statement 271, 275

480

Update Statistics Task dialog box 274
user accounts. See also identities
user-defined functions 50
User-Defined Functions (UDFs) 101, 159, 180–186

classifier 328–329
scalar 180–183
table-valued 183–186

user-defined resource pools 327
user identities. See identities
user input

DEFAULT constraints on 103–105
limiting with constraints 107–111

user requirements
creating views to meet 53–57

V
version store 227
VIEW_METADATA 52, 58
views 52–69

basic form of 52
designing

based on user or business requirements 53–57
updateable 57–63

editable 58–64
indexed 67–69
layers of 55
limiting what data can be added to table 61–62
modifiable 167–169
modifying data in, with multiple tables 62–64
options for 52
partitioned 64–67
that reference single table, modifying 58–61
uses 52, 53

as reporting interface 55–56
reformatting data in output 54–55
table modification 58–64
to hide data 53

481

virtual tables 62

W
wait statistics 340–343
wait types 235
Web edition 334
WHERE clause 62, 87, 88, 183
WIM. See Windows Imaging Format (WIM)
WITH CHECK OPTION clause 52, 61–62
WITH NATIVE_COMPILATION clause 249
WITH TIES in TOP clause 248
worker threads 340–341
workload groups 325, 328

X
XACT_ABORT() function 152, 155–156
XACT_STATE() function 152
XML data type 18
xml_deadlock_report 240

Y
ys.sp_xtp_control_query_exec_stats 256

482

About the authors

LOUIS DAVIDSON is a Microsoft MVP (Data Platform), and a Senior Data Architect for
CBN. He has Over 20 years of experience with SQL Server as an architect, developer, and
writer. Follow him on Twitter at @drsql.

STACIA VARGA, Microsoft MVP (Data Platform) is a consultant, educator, mentor, and
author specializing in data solutions since 1999. She provides consulting and custom
education services through her company, Data Inspirations, writes about her experiences
with data at blog.datainspirations.com, and tweets as @_StaciaV_.

483

http://blog.datainspirations.com

484

485

486

487

Code Snippets

Many titles include programming code or configuration examples. To optimize the
presentation of these elements, view the eBook in single-column, landscape mode and
adjust the font size to the smallest setting. In addition to presenting code and configurations
in the reflowable text format, we have included images of the code that mimic the
presentation found in the print book; therefore, where the reflowable format may
compromise the presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return to the previous
page viewed, click the Back button on your device or app.

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

Table of Contents

Title Page 2
Copyright Page 3
Contents at a glance 5
Contents 6
Introduction 10

Organization of this book 10
Microsoft certifications 11
Acknowledgments 11
Free ebooks from Microsoft Press 12
Microsoft Virtual Academy 12
Quick access to online references 12
Errata, updates, & book support 12
We want to hear from you 13
Stay in touch 13
Important: How to use this book to study for the exam 13

Chapter 1. Design and implement database objects 14
Skill 1.1: Design and implement a relational database schema 14

Designing tables and schemas based on business requirements 15
Improving the design of tables by using normalization 17
Writing table create statements 25
Determining the most efficient data types to use 30

Skill 1.2: Design and implement indexes 40
Design new indexes based on provided tables, queries, or plans 42
Distinguish between indexed columns and included columns 61
Implement clustered index columns by using best practices 67

Recommend new indexes based on query plans 69
Skill 1.3: Design and implement views 74

Design a view structure to select data based on user or business requirements 75
Identify the steps necessary to design an updateable view 81
Implement partitioned views 89
Implement indexed views 93

Skill 1.4: Implement columnstore indexes 96

1118

Determine use cases that support the use of columnstore indexes 96
Identify proper usage of clustered and non-clustered columnstore indexes 99
Design standard non-clustered indexes in conjunction with clustered
columnstore indexes 114

Implement columnstore index maintenance 119
Chapter summary 126
Thought experiment 128
Thought experiment answer 130

Chapter 2. Implement programmability objects 133
Skill 2.1 Ensure data integrity with constraints 134

Define table and foreign-key constraints to enforce business rules 134
Write Transact-SQL statements to add constraints to tables 155
Identify results of Data Manipulation Language (DML) statements given
existing tables and constraints 160

Identify proper usage of PRIMARY KEY constraints 162
Skill 2.2 Create stored procedures 168

Design stored procedure components and structure based on business
requirements 169

Implement input and output parameters 174
Implement table-valued parameters 177
Implement return codes 180
Streamline existing stored procedure logic 181
Implement error handling and transaction control logic within stored
procedures 186

Skill 2.3 Create triggers and user-defined functions 206
Design trigger logic based on business requirements 206
Determine when to use Data Manipulation Language (DML) triggers, Data
Definition Language (DDL) triggers, or logon triggers 219

Recognize results based on execution of AFTER or INSTEAD OF triggers 229
Design scalar-valued and table-valued user-defined functions based on
business requirements 233

Identify differences between deterministic and non-deterministic functions 241
Chapter summary 244

Thought Experiment 246
Though Experiment Answer 246

Chapter 3. Manage database concurrency 252

1119

Skill 3.1: Implement transactions 252
Identify DML statement results based on transaction behavior 253
Recognize differences between and identify usage of explicit and implicit
transactions 261

Implement savepoints within transactions 268
Determine the role of transactions in high-concurrency databases 271

Skill 3.2: Manage isolation levels 276
Identify differences between isolation levels 277
Define results of concurrent queries based on isolation level 279
Identify the resource and performance impact of given isolation levels 290

Skill 3.3: Optimize concurrency and locking behavior 292
Troubleshoot locking issues 292
Identify lock escalation behaviors 300
Capture and analyze deadlock graphs 300
Identify ways to remediate deadlocks 304

Skill 3.4: Implement memory-optimized tables and native stored procedures 306
Define use cases for memory-optimized tables 306
Optimize performance of in-memory tables 309
Determine best case usage scenarios for natively compiled stored procedures 321
Enable collection of execution statistics for natively compiled stored
procedures 322

Chapter summary 326
Thought experiment 329
Thought experiment answers 330

Chapter 4. Optimize database objects and SQL infrastructure 332
Skill 4.1: Optimize statistics and indexes 332

Determine the accuracy of statistics and the associated impact to query plans
and performance 333

Design statistics maintenance tasks 341
Use dynamic management objects to review current index usage and identify
missing indexes 345

Consolidate overlapping indexes 351
Skill 4.2: Analyze and troubleshoot query plans 353

Capture query plans using extended events and traces 354
Identify poorly performing query plan operators 364
Compare estimated and actual query plans and related metadata 390

1120

Configure Azure SQL Database Performance Insight 396
Skill 4.3: Manage performance for database instances 404

Manage database workload in SQL Server 404
Design and implement Elastic Scale for Azure SQL Database 412
Select an appropriate service tier or edition 415
Optimize database file and tempdb configuration 417
Optimize memory configuration 421
Monitor and diagnose schedule and wait statistics using dynamic management
objects 422

Troubleshoot and analyze storage, IO, and cache issues 425
Monitor Azure SQL Database query plans 428

Skill 4.4: Monitor and trace SQL Server baseline performance metrics 429
Monitor operating system and SQL Server performance metrics 430
Compare baseline metrics to observed metrics while troubleshooting
performance issues 435

Identify differences between performance monitoring and logging tools 438
Monitor Azure SQL Database performance 439
Determine best practice use cases for extended events 444
Distinguish between Extended Events targets 444
Compare the impact of Extended Events and SQL Trace 445
Define differences between Extended Events Packages, Targets, Actions, and
Sessions 445

Chapter summary 447
Thought experiment 450
Thought experiment answer 452

Index 454
About the authors 483
Free ebooks 484
Survey 486
Code Snippets 488

1121

	Title Page
	Copyright Page
	Contents at a glance
	Contents
	Introduction
	Organization of this book
	Microsoft certifications
	Acknowledgments
	Free ebooks from Microsoft Press
	Microsoft Virtual Academy
	Quick access to online references
	Errata, updates, & book support
	We want to hear from you
	Stay in touch
	Important: How to use this book to study for the exam

	Chapter 1. Design and implement database objects
	Skill 1.1: Design and implement a relational database schema
	Designing tables and schemas based on business requirements
	Improving the design of tables by using normalization
	Writing table create statements
	Determining the most efficient data types to use

	Skill 1.2: Design and implement indexes
	Design new indexes based on provided tables, queries, or plans
	Distinguish between indexed columns and included columns
	Implement clustered index columns by using best practices

	Recommend new indexes based on query plans
	Skill 1.3: Design and implement views
	Design a view structure to select data based on user or business requirements
	Identify the steps necessary to design an updateable view
	Implement partitioned views
	Implement indexed views

	Skill 1.4: Implement columnstore indexes
	Determine use cases that support the use of columnstore indexes
	Identify proper usage of clustered and non-clustered columnstore indexes
	Design standard non-clustered indexes in conjunction with clustered columnstore indexes
	Implement columnstore index maintenance

	Chapter summary
	Thought experiment
	Thought experiment answer

	Chapter 2. Implement programmability objects
	Skill 2.1 Ensure data integrity with constraints
	Define table and foreign-key constraints to enforce business rules
	Write Transact-SQL statements to add constraints to tables
	Identify results of Data Manipulation Language (DML) statements given existing tables and constraints
	Identify proper usage of PRIMARY KEY constraints

	Skill 2.2 Create stored procedures
	Design stored procedure components and structure based on business requirements
	Implement input and output parameters
	Implement table-valued parameters
	Implement return codes
	Streamline existing stored procedure logic
	Implement error handling and transaction control logic within stored procedures

	Skill 2.3 Create triggers and user-defined functions
	Design trigger logic based on business requirements
	Determine when to use Data Manipulation Language (DML) triggers, Data Definition Language (DDL) triggers, or logon triggers
	Recognize results based on execution of AFTER or INSTEAD OF triggers
	Design scalar-valued and table-valued user-defined functions based on business requirements
	Identify differences between deterministic and non-deterministic functions
	Chapter summary

	Thought Experiment
	Though Experiment Answer

	Chapter 3. Manage database concurrency
	Skill 3.1: Implement transactions
	Identify DML statement results based on transaction behavior
	Recognize differences between and identify usage of explicit and implicit transactions
	Implement savepoints within transactions
	Determine the role of transactions in high-concurrency databases

	Skill 3.2: Manage isolation levels
	Identify differences between isolation levels
	Define results of concurrent queries based on isolation level
	Identify the resource and performance impact of given isolation levels

	Skill 3.3: Optimize concurrency and locking behavior
	Troubleshoot locking issues
	Identify lock escalation behaviors
	Capture and analyze deadlock graphs
	Identify ways to remediate deadlocks

	Skill 3.4: Implement memory-optimized tables and native stored procedures
	Define use cases for memory-optimized tables
	Optimize performance of in-memory tables
	Determine best case usage scenarios for natively compiled stored procedures
	Enable collection of execution statistics for natively compiled stored procedures
	Chapter summary

	Thought experiment
	Thought experiment answers

	Chapter 4. Optimize database objects and SQL infrastructure
	Skill 4.1: Optimize statistics and indexes
	Determine the accuracy of statistics and the associated impact to query plans and performance
	Design statistics maintenance tasks
	Use dynamic management objects to review current index usage and identify missing indexes
	Consolidate overlapping indexes

	Skill 4.2: Analyze and troubleshoot query plans
	Capture query plans using extended events and traces
	Identify poorly performing query plan operators
	Compare estimated and actual query plans and related metadata
	Configure Azure SQL Database Performance Insight

	Skill 4.3: Manage performance for database instances
	Manage database workload in SQL Server
	Design and implement Elastic Scale for Azure SQL Database
	Select an appropriate service tier or edition
	Optimize database file and tempdb configuration
	Optimize memory configuration
	Monitor and diagnose schedule and wait statistics using dynamic management objects
	Troubleshoot and analyze storage, IO, and cache issues
	Monitor Azure SQL Database query plans

	Skill 4.4: Monitor and trace SQL Server baseline performance metrics
	Monitor operating system and SQL Server performance metrics
	Compare baseline metrics to observed metrics while troubleshooting performance issues
	Identify differences between performance monitoring and logging tools
	Monitor Azure SQL Database performance
	Determine best practice use cases for extended events
	Distinguish between Extended Events targets
	Compare the impact of Extended Events and SQL Trace
	Define differences between Extended Events Packages, Targets, Actions, and Sessions
	Chapter summary

	Thought experiment
	Thought experiment answer

	Index
	About the authors
	Free ebooks
	Survey
	Code Snippets

