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Introduction

Hi, there. Thank you for reading my book, Exploring C++. My name is Ray, and I’ll be your 
author today. And tomorrow. And the day after that. We’ll be together for quite a while, so why 
don’t you pull up a chair and get comfortable. My job is to help you learn C++. To do that, I 
have written a series of lessons, called explorations. Each exploration is an interactive exercise 
that helps you learn C++ one step at a time. Your job is to complete the explorations, and in so 
doing, learn C++.

No doubt you have already leafed through the book a little bit. If not, do so now. Notice 
that this book is different from most books. Most programming books are little more than 
written lectures. The author tells you stuff and expects you to read the stuff, learn it, and 
understand it.

This book is different. I don’t see much point in lecturing at you. That’s not how people 
learn best. You learn programming by reading, modifying, and writing programs. To that end, 
I’ve organized this book so that you spend as much time as possible reading, modifying, and 
writing programs.

How to Use This Book
Each exploration in this book is a mixture of text and interactive exercises. The exercises are 
unlike anything you’ve seen in other books. Instead of multiple choice, fill-in-the-blank, or 
simple Q&A exercises, my lessons are interactive explorations of key C++ features. Early in the 
book, I will give you complete programs to work with. As you learn more C++, you will modify 
and extend programs. Pretty soon, you will write entire programs on your own.

By “interactive,” I mean that I ask questions and you answer them. I do my best to 
respond to your answers throughout the lesson text. It sounds crazy, but by answering the 
questions, you will be learning C++. To help ensure you answer the questions, I leave space in 
this book for you to write your answers. I’m giving you permission to write in this book (unless 
you are borrowing the book from a library or friend). In fact, I encourage you to write all your 
answers in the book. Only by answering the questions will you learn the material properly.

Sometimes, the questions have no right answer. I pose the question to make you ponder 
it, perhaps to look at a familiar topic from a new perspective. Other times, the question has an 
unambiguous, correct answer. I always give the answer in the subsequent text, so don’t skip 
ahead! Write your answer before you continue reading. Then and only then can you check 
your answer. Some questions are tricky or require information that I have not yet presented. 
In such cases, I expect your answer to be wrong, but that’s okay. Don’t worry. I won’t be grad-
ing you. (If you are using this book as part of a formal class, your teacher should grade this 
book’s exercises solely on whether you complete them, and never on whether your answer 
was correct. The teacher will have other exercises, quizzes, and tests to assess your progress in 
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the class.) And no fair looking ahead and writing down the “correct” answer. You don’t learn 
anything that way.

Ready? Let’s practice.

What is your most important task when reading this book?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

This question does not have a single correct answer, but it does have a number of demon-
strably wrong answers. I hope you wrote something similar to, “Completing every exercise” or 
“Understanding all the material.” Another good answer is, “Having fun.”

The Book’s Organization
C++ is a complicated language. To write even the most trivial program requires an under-
standing of many disparate aspects of the language. The language does not lend itself to neat 
compartmentalization into broad topics, such as functions, classes, statements, or expres-
sions. This book, therefore, does not attempt such an organization. Instead, you learn C++ in 
small increments: a little bit of this, a little bit of that, some more of this, and pretty soon you 
will have accumulated enough knowledge to start writing nontrivial programs.

Roughly speaking, the book starts with basic expressions, declarations, and statements 
that are sufficient to work with simple programs. You learn how to use the standard library 
early in the book. Next, you learn to write your own functions, to write your own classes, to 
write your own templates, and then to write fairly sophisticated programs.

You won’t be an expert, however, when you finish this book. You will need much more 
practice, more exposure to the breadth and depth of the language and library, and more prac-
tice. You will also need more practice. And some more. You get the idea.

Who Should Read This Book
Read this book if you want to learn C++ and you already know at least one other programming 
language. You don’t need to know a specific language or technology, however. In particu-
lar, you don’t need to know C, nor do you need to know anything about object-oriented 
programming.

The C programming language influenced the design of many other languages, from PHP 
to Perl to AWK to C#, not to mention C++. As a result, many programmers who do not know C 
or C++ nonetheless find many language constructs hauntingly familiar. You might even feel 
confident enough to skip sections of this book that seem to cover old ground. Don’t do that! 
From the start, the lessons present language features that are unique to C++. In a few, isolated 
cases, I will tell you when it is safe to skip a section, and only that section. Even when a lan-
guage feature is familiar, it might have subtle issues that are unique to C++.

The trap is most perilous for C programmers because C++ bears the greatest superficial 
similarity with C. C programmers, therefore, have the most to overcome. By design, many 
C programs are also valid C++ programs, leading the unwary C programmer into the trap of 
thinking that good C programs are also good C++ programs. In fact, C and C++ are distinct 
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languages, each with their own idioms and idiosyncrasies. To become an effective C++ pro-
grammer, you must learn the C++ way of programming. C programmers need to break some of 
their established habits and learn to avoid certain C features (such as arrays) in favor of better 
C++ idioms. The structure of this book helps you get started thinking in terms of C++, not C.

Projects
This book also contains four projects. The projects are opportunities to apply what you have 
learned. Each project is a realistic endeavor, based on the amount of C++ covered up to that 
point. I encourage you to try every project. Design your project using your favorite software 
design techniques. Remember to write test cases in addition to the source code. Do your best 
to make the code clean and readable, in addition to correct. After you are confident that your 
solution is finished, download the files from the book’s web site, and compare your solution 
with mine.

Work Together
You can use this book alone, teaching yourself C++, or a teacher might adopt this book as a 
textbook for a formal course. You can also work with a partner. It’s more fun to work with 
friends, and you’ll learn more and faster by working together. Each of you needs your own 
copy of the book. Read the lessons and do the work on your own. If you have questions, dis-
cuss them with your partner, but answer the exercises on your own. Then compare answers 
with your partner. If your answers are different, discuss your reasoning. See if you can agree 
on a single answer before proceeding.

Work on the projects together. Maybe you can divide the work into two (or more) mod-
ules. Maybe one person codes and the other person checks. Maybe you’ll practice some form 
of pair programming. Do whatever works best for you, but make sure you understand every 
line of code in the project. If you have asymmetric roles, be sure to swap roles for each project. 
Give everyone a chance to do everything.

For More Information
This book cannot teach you everything you need to know about C++. No single book can. 
After you finish this book, I encourage you to continue to read and write C++ programs, and to 
seek out other sources of information. To help guide you, this book has a dedicated web site, 

. The web site has links to other books, other web sites, mail-
ing lists, newsgroups, FAQs, compilers, other tools, and more. You can also download all the 
source code for this book, so you can save yourself some typing.

Why Explorations?
In case you were wondering about the unusual nature of this book, rest assured that, “though 
this be madness, yet there is method in’t.”

The method is an approach to teaching and writing that I developed while I was teaching 
computer science at Oregon State University. I wanted to improve the quality of my teaching, 
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so I investigated research into learning and knowledge, especially scientific knowledge, and in 
particular, computer programming.

To summarize several decades of research: everyone constructs mental models of the 
world. We acquire knowledge by adding information to our models. The new information 
must always be in concert with the model. Sometimes, however, new information contradicts 
the model. In that case, we must adjust our models to accommodate the new information. 
Our brains are always at work, always taking in new information, always adjusting our mental 
models to fit.

As a result of this research, the emphasis in the classroom has shifted from teachers to stu-
dents. In the past, teachers considered students to be empty vessels, waiting to be filled from 
the fount of the teacher’s knowledge and wisdom. Students were passive recipients of infor-
mation. Now we know better. Students are not passive, but active. Even when their outward 
appearance suggests otherwise, their brains are always at work, always absorbing new infor-
mation and fitting that information into their mental models. The teacher’s responsibility has 
changed from being the source of all wisdom to being an indirect manager of mental models. 
The teacher cannot manage those models directly, but can only create classroom situations in 
which students have the opportunity to adjust their own models.

Although the research has focused on teachers, the same applies to authors.
In other words, I cannot teach you C++, but I can create explorations that enable you to 

learn C++. Explorations are not the only way to apply research to learning and writing, but 
they are a technique that I have refined over several years of teaching and have found success-
ful. Explorations work because

book passively. The questions force you to confront new ideas and to fit them into your 
mental model. If you skip the questions, you might also skip a crucial addition to your 
model.

information at once, you are likely to incorporate incorrect information into your 
model. The longer that misinformation festers, the harder it will be to correct. I want 
to make sure your model is as accurate as possible at all times.

you will automatically grasp them. Instead, I tie new concepts to old ones. I do my best 
to ensure that every concept has a strong anchor in your existing mental model.

-
ing how someone else solves a problem, you spend as much time as possible working 
hands-on with a program: modifying existing programs and writing new programs.

C++ is a complicated language, and learning C++ is not easy. In any group of C++ pro- 
grammers, even simple questions can often provoke varied responses. Most C++ programmers’ 
mental models of the language are not merely incomplete, but are flawed, sometimes in fun-
damental ways. My hope is that I can provide you with a solid foundation in C++, so that you 
can write interesting and correct programs, and most importantly, so that you can continue to 
learn and enjoy C++ for many years to come.
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The C++ Standard
This book covers the current standard, namely, ISO/IEC 14882:2003 (E), Programming
languages — C++. The 2003 edition of the standard is a bug-fix edition, containing corrections 
to and clarifications of the original 1998 edition. Most modern compilers do a decent job of 
conforming to the standard.

The standardization committee has also issued an addendum to the standard, adding 
regular expressions, mathematical functions, and a lot more. This addendum is an optional 
extension to the standard library called Technical Report 1, or TR1. Because it is optional, ven-
dors are not required to implement it. Most vendors provide at least part of the library. A few 
implement TR1 in its entirety. You do not need TR1 support to use this book, but I point out a 
few cases where TR1 makes your life a little easier.

By issuing TR1 and having thousands of C++ developers use it, the standardization com-
mittee gained valuable practical experience to feed back into the next major revision of the 
C++ standard. Work on the next revision is underway as I write this. Depending on when you 
read this, their work may be complete. You may even have a compiler and library that con-
forms to the new release of the standard, which will likely be labeled ISO/IEC 14882:2010 (E).

Even if you have a brand new compiler, this book still has value. Many of the new features 
are advanced so they don’t affect this book. Other planned features impact C++ programmers 
of all levels and abilities. I point out the proposed changes throughout this book, but keep my 
focus on the tools that are available and in widespread use today.
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E X P L O R A T I O N  1

Honing Your Tools

Before you begin your exploration of the C++ landscape, you need to gather some basic 
supplies: a text editor, a C++ compiler, a linker, and a debugger. You can acquire these tools 
separately or bundled, possibly as a package deal with an integrated development environ-
ment (IDE). Options abound regardless of your platform, operating system, and budget.

If you are taking a class, the teacher will provide the tools or dictate which tools to use. If 
you are working at an organization that already uses C++, you probably want to use their tools, 
so you can become familiar with them and their proper use. If you need to acquire your own 
tools, check out this book’s web site, . Tool versions and qual-
ity change too rapidly to provide details in print form, so you can find up-to-date suggestions 
on the web site. The following section gives some general advice.

Ray’s Recommendations
C++ is one of the most widely used programming languages in the world: it is second only to C 
(depending on how you measure “widely used”). Therefore, C++ tools abound for many hard-
ware and software environments and at a wide variety of price points.

You can choose command-line tools, which are especially popular in UNIX and UNIX-like 
environments, or you can opt for an IDE, which bundles all the tools into a single graphical 
user interface (GUI). Choose whichever style you find most comfortable. Your programs won’t 
care what tools you use to edit, compile, and link them.

Microsoft Windows
If you are working with Microsoft Windows, I recommend Microsoft’s Visual Studio (be sure 
that you have a current release). In particular, the venerable Visual C++ 6.0 is obsolete and out-
of-date. As I write this, the current release is Visual Studio 2008. If you want a no-cost option, 
download Visual C++ Express from Microsoft’s web site (find a current link at 

), or for an open source solution, download MinGW, which is a port of the popular GNU 
compiler to Windows.

Note that C++/CLI is not the same as C++. It is a new language that Microsoft invented to 
help integrate C++ into the .NET environment. That’s why it chose a name that incorporates 
C++, just as the name C++ derives from the name C. It is, however, a distinct language from C. 
This book covers standard C++ and nothing else. If you decide to use Visual Studio, take care 
that you work with C++, not C++/CLI or Managed C++ (the predecessor to C++/CLI).

www.allitebooks.com

http://www.allitebooks.org
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Visual Studio includes a number of doodads, froufrous, and whatnots that are unimport-
ant for your core task of learning C++. Perhaps you will need to use ATL, MFC, or .NET for your 
job, but for now, you can ignore all that. All you need is the C++ compiler and standard library.

If you prefer a free (as in speech) solution, the GNU compiler collection is available on 
Windows. Choose the Cygwin distribution, which includes a nearly complete UNIX-like envi-
ronment, or MinGW, which is much smaller and might be easier to manage. In both cases, 
you get a good C++ compiler and library. This book’s web site has links with helpful hints on 
installing and using these tools.

Macintosh OS 9 and Earlier
If you are stuck using an old Macintosh, download the no-cost Macintosh Programmer’s 
Workbench from Apple’s web site (link at ).

Everyone Else
I recommend the GNU compiler collection (GCC). The C++ compiler is called g++. Linux and 
BSD distributions typically come with GCC, but you might need to install the necessary devel-
oper packages. Be sure you have a recent release (version 3.4 or later) of GCC.

Mac OS X also uses GCC. For a no-cost IDE, download Xcode from Apple’s web site (link 
at ).

Some hardware vendors (Sun, HP, etc.) offer a commercial compiler specifically for their 
hardware. This compiler might offer better optimization than GCC, but might not conform to 
the C++ standard as well as GCC. At least while you work through the exercises in this book, I 
recommend GCC. If you already have the vendor’s compiler installed and you don’t want to 
bother installing yet another compiler, go ahead and use the vendor’s compiler. However, if it 
ever trips over an example in this book, be prepared to install GCC.

If you are using an Intel hardware platform, Intel’s compiler is excellent and available at 
no cost for noncommercial use. Visit the book’s web site for a current link.

If you want to use an IDE, choose from Eclipse, KDevelop, Anjuta, and others (go to 
 for an up-to-date list).

Read the Documentation
Now that you have your tools, take some time to read the product documentation—especially 
the Getting Started section. Really, I mean it. Look for tutorials and other quick introductions 
that will help you get up to speed with your tools. If you are using an IDE, you especially need 
to know how to create simple command-line projects.

IDEs typically require you to create a project, workspace, or some other envelope, or 
wrapper, before you can actually write a C++ program. You need to know how to do this, and I 
can’t help you because every IDE is different. If you have a choice of project templates, choose 
“console,” “command-line,” “terminal,” “C++ Tool,” or some project with a similar name.

How long did it take you to read the documentation for your compiler and other tools? 
________________

Was that too much time, too little time, or just right? ________________
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The C++ language is subject to an international standard. Every compiler (more or less) 
adheres to that standard, but also throws in some nonstandard extras. These extras can be 
useful—even necessary—for certain projects, but for this book, you need to make sure you use 
only standard C++. Most compilers can turn off their extensions. Even if you didn’t read the 
documentation before, do so now to find out which options you need to enable to compile 
standard C++ and only standard C++.

Write down the options, for future reference.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

You may have missed some of the options; they can be obscure. To help you, Table 1-1 
lists the command-line compiler options you need for Microsoft Visual C++ and for g++. This 
book’s web site has suggestions for some other popular compilers. If you are using an IDE, 
look through the project options or properties to find the equivalents.

Table 1-1. Compiler Options for Standard C++

Compiler Options

Visual C++ command line

Visual C++ IDE Enable C++ exceptions, disable language extensions

g++

Your First Program
Now that you have your tools, it’s time to start. Fire up your favorite text editor or your C++ 
IDE and start your first project or create a new file. Name this file , which is short 
for Listing 1-1. Several different file name extensions are popular for C++ programs. I like to 
use , where the “p” means “plus.” Other common extensions are  and . Some 
compilers recognize  (uppercase C) as a C++ file extension, but I don’t recommend using it 
because it is too easy to confuse with  (lowercase c), the default extension for C programs. 
Many desktop environments do not distinguish between uppercase and lowercase file names, 
further compounding the problem. Pick your favorite and stick with it. Type in the text con-
tained within Listing 1-1. (With one exception, you can download all the code listings from this 
book’s web site. Listing 1-1 is that exception. I want you to get used to typing C++ code in your 
text editor.)

Listing 1-1. Your First C++ Program
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No doubt, some of this code is gibberish to you. That’s okay. The point of this exercise 
is not to understand C++, but to make sure you can use your tools properly. The comments 
describe the program, which is a simple sort utility. I could have started with a trivial, “Hello, 
world” type of program, but that touches only a tiny fraction of the language and library. This 
program, being slightly more complex, does a better job at revealing possible installation or 
other problems with your tools.
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Now go back and double-check your source code. Make sure you entered everything cor-
rectly.

Did you actually double-check the program? ________________

Did you find any typos that needed correcting? ________________

To err is human, and there is no shame in typographical errors. We all make them. Go 
back and recheck your program.

Now compile your program. If you are using an IDE, find the Compile or Build button or 
menu item. If you are using command-line tools, be sure to link the program, too. For histori-
cal (or hysterical) reasons, UNIX tools such as g++ typically produce an executable program 
named . You should rename it to something more useful, or use the  option to name an 
output file. Table 1-2 shows sample command lines to use for Visual C++ and g++.

Table 1-2. Sample Command Lines to Compiler 

Compiler Command Line

Visual C++

g++

If you get any errors from the compiler, it means you made a mistake entering the source 
code; the compiler, linker, or C++ library has not been installed correctly; or the compiler, 
linker, or library does not conform to the C++ standard and so are unsuitable for use with this 
book. Triple-check you entered the text correctly. If you are confident that the error lies with 
the tools and not with you, check the date of publication. If the tools predate 1998, discard 
them immediately. They predate the standard and therefore, by definition, they cannot con-
form to the standard. In fact, the quality of C++ tools has improved tremendously in the last 
few years; so much so that I recommend discarding any tools that predate 2005. If the tools are 
recent, you might try the old trick of reinstalling them.

If all else fails, try a different set of tools. Download the current release of GCC or Visual 
Studio Express. You may need to use these tools for this book, even if you must revert to some 
crusty, rusty, old tools for your job.

Successful compilation is one thing, but successful execution is another. How you invoke 
the program depends on the operating system. In a GUI environment, you will need a console 
or terminal window where you can type a command line. You may need to type the complete 
path to the executable file, or just the program name—again, this depends on your operating 
system. When you run the program, it reads numbers from the standard input stream, which 
means whatever you type, the program reads. You then need to notify the program you are 
done by pressing the magic keystrokes that signal end-of-file. On most UNIX-like operating 
systems, press Control+D. On Windows, press Control+Z.

Running a console application from an IDE is sometimes tricky. If you aren’t careful, the 
IDE might close the program’s window before you have a chance to see any of its output. You 
need to ensure that the window remains visible. Some IDEs (such as Visual Studio and KDe-
velop) do this for you automatically, asking you to press a final Enter key before it closes the 
window.

If the IDE doesn’t keep the window open automatically, and you can’t find any option 
or setting to keep the window open, you can force the issue by setting a breakpoint on the 
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program’s closing curly brace or the nearest statement where the debugger will let you set a 
breakpoint.

Knowing how to run the program is one thing; another is to know what numbers to type 
so you can test the program effectively. How would you test  to ensure it is running 
correctly?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Okay, do it. Does the program run correctly? ________________
There, that was easy, wasn’t it? You should try several different sequences. Run the pro-

gram with no input at all. Try it with one number. Try it with two that are already in order and 
two numbers that are in reverse order. Try a lot of numbers, in order. Try a lot of numbers in 
random order. Try a lot of numbers in reverse order.

Before you finish this Exploration, I have one more exercise. This time, the source file is 
more complicated. It was written by a professional stunt programmer. Do not attempt to read 
this program, even with adult supervision. Don’t try to make any sense of the program. Above 
all, don’t emulate the programming style used in this program. This exercise is not for you, but 
for your tools. Its purpose is to see whether your compiler can correctly compile this program 
and that your library implementation has the necessary parts of the standard library. It’s not a 
severe torture test for a compiler, but it does touch on a few advanced C++ features.

So don’t even bother trying to read the code. Just download the file  from the 
book’s web site and try to compile and link it with your tools. (I include the full text of the pro-
gram only for readers who lack convenient Internet access.) If your compiler cannot compile 
and run Listing 1-2 correctly, you need to replace it (your compiler, not the program). You may 
be able to squeak by in the early lessons, but by the end of the book, you will be writing some 
fairly complicated programs, and you need a compiler that is up to the task. (By the way, List-
ing 1-2 pretty much does the same thing as Listing 1-1.)

Listing 1-2. Testing Your Compiler
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I caught you peeking. In spite of my warning, you tried to read the source code, didn’t 
you? Just remember that I deliberately wrote this program in a complicated fashion to test 
your tools. By the time you finish this book, you will be able to read and understand this pro-
gram. Even more important, you will be able to write it more simply and more cleanly. Before 
you can run, however, you must learn to walk. Once you are comfortable working with your 
tools, it’s time to start learning C++. The next Exploration begins your journey with a reading 
lesson.
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Reading C++ Code

I suspect you already have some knowledge of C++. Maybe you already know C, Java, Perl, or 
other C-like languages. Maybe you know so many languages that you can readily identify com-
mon elements. Let’s test my hypothesis. Take a few minutes to read Listing 2-1 then answer 
the questions that follow it.

Listing 2-1. Reading Test

13
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What does Listing 2-1 do?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Listing 2-1 reads integers from the standard input and keeps track of the largest and 
smallest values entered. After exhausting the input, it then prints those values. If the input 
contains no numbers, the program prints nothing.

Let’s take a closer look at the various parts of the program.

Comments
Line 1 begins with three consecutive slashes to start a comment. The comment ends at the end 
of the line. Actually, you need only two slashes to signal the start of a comment ( ), but as you 
will learn later in the book, three has a special meaning. For now though, use three.

Note that you cannot put a space between the slashes. That’s true in general for all the 
multicharacter symbols in C++. It’s an important rule, and one you must internalize early. 
A corollary of the “no spaces in a symbol” rule is that when C++ sees adjacent characters, it 
always tries to construct the longest possible symbol, even if you can see that doing so would 
produce meaningless results. I predict that this rule will surprise you several Explorations 
down the road.

The other method you can use to write a comment in C++ is to begin the comment with 
and end it with . The difference between this style and the style demonstrated in Listing 2-1
is with this method, your comment can span multiple lines. You may notice that some pro-
grams in this book use  to start a comment. Much like the third slash in Listing 2-1, this 
second asterisk ( ) is magic, but unimportant at this time. A comment cannot nest within 
a comment of the same style, but you can nest one style of comment in comments of the other 
style, as illustrated in Listing 2-2.

Listing 2-2. Demonstrating Comment Styles and Nesting

The C++ community uses both styles widely. Get used to seeing and using both styles.
Modify Listing 2-1 to change the  comment to use the  ...  style then try to recom-

pile the program. What happens?

_________________________________________________________________________________
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If you made the change correctly, the program should still compile and run normally. The 
compiler eliminates comments entirely, so nothing about the final program should be differ-
ent. (With one exception being that some binary formats include a timestamp, which would 
necessarily differ from one compilation run to another.)

Headers
Lines 3 through 6 import declarations and definitions from parts of the standard library. C++, 
like C and many other languages, distinguishes between the core language and the standard 
library. Both are part of the standard language, and a tool suite is incomplete without both 
parts. The difference is that the core language is self-contained. For example, certain types 
are built in, and the compiler inherently knows about them. Other types are defined in terms 
of the built-in types, so they are declared in the standard library, and you need to instruct the 
compiler that you want to use them. That’s what lines 3 through 6 are all about.

In particular, line 3 informs the compiler about the names of the standard I/O streams 
(  for the standard input and  for the standard output). Line 4 fetches the input operator 
( ), line 5 brings in the name , and line 6 brings in the output operator ( ).
Note that names from the standard library generally begin with  (short for “standard”).

In C++ parlance, the  keyword is also a verb, as in “line 3 includes the 
header,” “line 5 includes the  header,” and so on. A header is typically a file that contains 
a series of declarations and definitions. (A declaration is a kind of definition. A definition tells 
the compiler more about a name than a declaration. Don’t worry about the difference yet, but 
notice when I use declaration and when I use definition.) The compiler needs these declara-
tions and definitions so it knows what to do with names such as . Somewhere in the 
documentation for your C++ compiler and standard library is the location for its standard 
headers. If you are curious, visit that folder or directory and see what you can find there, but 
don’t be disappointed that you can’t read the headers. The C++ standard library makes full use 
of the entire range of C++ language features. It’s likely you won’t be able to decipher most of 
the library until after you’ve made it through a large part of this book.

Another important C++ rule: the compiler needs to know what every name means. 
A human can often infer meaning or at least a part of speech from context. For instance, if 
I were to say, “I furbled my drink all over my shirt,” you may not know exactly what “furbled” 
means, but you can deduce that it is the past tense of a verb, and that it probably is something 
undesirable and somewhat messy.

C++ compilers are a lot dumber than you. When the compiler reads a symbol or identifier, 
it must know exactly what the symbol or identifier means and what part of “speech” it is. Is the 
symbol a punctuator (such as the statement-ending semicolon) or an operator (such as plus 
sign for addition)? Is the identifier a type? A function? A variable? The compiler also needs to 
know everything you can do with that symbol or name, so it can correctly compile the code. 
The only way it can know is for you to tell it, and the way you tell it is by writing a declara-
tion or by importing a declaration from a header. And that’s what  statements are all 
about.

Any line that begins with , ends at the end of the line. C++ has several different  state-
ments, but only  concerns us at this time. Inside the angle brackets must be a header
name, which is typically a standard library header, but it might also be a header from a third- 
party library.

Later in the book, you’ll even learn to write your own headers.



EXPLORATION 2   READING C++ CODE16

Modify line 5 to misspell  as . Try to compile the program. What happens?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

The compiler cannot find any header named , so it issues a message. Then it 
may try to compile the program, but it doesn’t know what  is, so it 
issues one or more messages. Some compilers cascade messages, which means every use 
of  produces additional messages. The actual error becomes lost in the 
noise. Focus on the first one or few messages the compiler issues. Fix them then try again. As 
you gain experience with C++, you will learn which messages are mere noise and which are 
important. Unfortunately, most compilers will not tell you, for example, that you can’t use 

 until you include the  header. Instead, you need a good C++ lan-
guage reference, so you can look up the correct header on your own. The first place to check 
is the documentation that accompanies your compiler and library. If you want an additional 
reference, I recommend my book, C++ in a Nutshell (O’Reilly, 2003), but feel free to choose any 
reference (this book’s web site contains some recommendations and book reviews).

Most programmers don’t use  much; Listing 2-1 included it only to obtain the 
definition of . On the other hand, almost every program in this book uses 

 because it declares the names of the I/O stream objects,  and .
The  header declares input operators, and  declares output operators. You 
will meet quite a few more headers in coming Explorations.

Main Program
Every C++ program must have , as shown on line 8. You are permitted a few varia-
tions on a theme, but the name  is crucial. A program can have only one , and the 
name must be spelled using all lowercase characters. The definition must start with .

Note Some books tell you to use . Those books are wrong. If you need to convince someone  is 
wrong and  is right, refer the skeptic to section 3.6.1 of the C++ Standard. 

For now, use empty parentheses after the name .
The next line starts the main program. Notice how the statements are grouped inside 

curly braces (  and ). That’s how C++ groups statements. A common error for novices is to 
omit a curly brace, or miss seeing them when reading a program. If you are used to more ver-
bose languages, such as Pascal, Ada, or Visual Basic, you might need some time acquainting 
yourself with the more terse C++ syntax. This book will give you plenty of opportunities to 
practice.
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Modify line 8 to spell  in capital letters ( . Try to compile the program. What
happens?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

The compiler accepts the program, but the linker complains. Whether you can see the dif-
ference between the compiler and the linker depends on your particular tools. Nonetheless, 
you failed to create a valid program because you must have a . Only the name  is spe-
cial. As far as the compiler is concerned,  is just another name, like  or . Thus, you 
don’t get an error message saying that you misspelled , only that  is missing. There’s 
nothing wrong with having a program that has a function named , but to be a complete
program, you must be sure to include the definition .

Variable Definitions
Lines 10 through 13 define some variables. The first word on each line is the variable’s type. 
The next word is the variable name. The name is followed optionally by an initial value in 
parentheses. The type  is short for integer, and  is short for Boolean.

Note Boolean is named after George Boole, the inventor of mathematical logic. As such, some languages 
use the name  for this type.

The name  is part of the C++ standard library and lets you query 
the attributes of the built-in arithmetic types. You can determine the number of bits a type
requires, the number of decimal digits, the minimum and maximum values, and more. Put the 
type that you are curious about in angle brackets. (You’ll see this approach to using types quite 
often in C++.) Thus, you could also query  and get  as 
the result.

If you were to query the number of bits in , what would you expect as a result?
________________

Try compiling and running Listing 2-3, and find out if you are correct.

Listing 2-3. Determining the Number of Bits in a
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Did you get the value you expected? If not, do you understand why you got 1 as a result?

Statements
Line 14 of Listing 2-1 contains a  statement. Lines 17, 19, and 23 start  statements. They 
have similar syntax: both statements begin with a keyword, followed by a Boolean condition 
in parentheses, followed by a statement. The statement can be a simple statement, such as the 
assignment on line 18, or it can be a list of statements within curly braces. Notice that a simple
statement ends with a semicolon.

Assignment (lines 16, 18, and 20) uses a single equal sign. For clarity, when I read a pro-
gram out loud or to myself, I like to read the equal sign as “gets.” For example, “x gets min.”

A  loop performs its associated statement while the condition is true. The condition 
is tested prior to executing the statement, so if the condition is false the first time around, the 
statement never executes.

On line 14, the condition is an input operation. It reads an integer from the standard input 
( ) and stores that integer in the variable . The condition is true as long as a value is 
successfully stored in . If the input is malformed, or if the program reaches the end of the 
input stream, the logical condition becomes false, and the loop terminates.

The  statement can be followed by an  branch; you’ll see examples in future Explo-
rations.

Line 23’s condition consists of a single name: . Because it has type , you can use it 
directly as a condition.

Modify line 17 to change the statement to just “ ”. This kind of mistake sometimes 
happens when you get careless (and we all get careless from time to time). What do you expect 
to happen when you compile the program?

_________________________________________________________________________________

_________________________________________________________________________________

Were you surprised that the compiler did not complain? What do you expect to happen 
when you run the program?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

If you supply the following input to the program, what do you expect as output?

_________________________________________________________________________________

_________________________________________________________________________________
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If you supply the following input to the program, what do you expect as output?

_________________________________________________________________________________

_________________________________________________________________________________

Explain what is happening:

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

C++ is permissive about what it allows as a condition. Any numerical type can be a con-
dition, and the compiler treats non-zero values as true and zero as false. In other words, it 
supplies an implicit  0 to test the numeric value.

Many C and C++ programmers take advantage of the brevity these languages offer, but 
I find it a sloppy programming practice. Always make sure your conditions are logical in 
nature, even if that means using an explicit comparison to zero. The C++ syntax for comparing 

 is , as in .

Output
The output operator is . You can print a variable’s value, a character string, a single charac-
ter, or a computed expression. The standard library places output operators in the 
header, and  declares the name .

Enclose a single character in single quotes, such as . Of course, there may be times 
when you need to include a single quote in your output. To print a single quote, you will need 
to escape the quote character with a backslash ( ). Escaping a character instructs the com-
piler to process it as a standard character, not as a part of the program syntax. Other escape 
characters can follow a backslash, such as  for a newline (that is, a magic character sequence 
to start a new line of text; the actual characters in the output depend on the host operating sys-
tem). To print a backslash character, escape it: . Some examples of characters include the 
following: , , , , .

If you want to print more than one character at a time, use a character string, which is 
enclosed in double quotes. To include a double quote in a string, use a backslash escape:

A single output statement can use multiple occurrences of , as shown in line 24, or you 
can use multiple output statements. The only difference is readability.

Modify Listing 2-3 to experiment with different styles of output. Try using multiple out-
put statements.
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Remember to use curly braces when the body of an  statement contains more than one 
statement.

See! I told you that you could read a C++ program. Now all you need to do is fill in some of 
your knowledge gaps about the details. The next Exploration starts doing that with the basic 
arithmetic operators.



E X P L O R A T I O N  3

Integer Expressions

In Exploration 2, you examined a program that defined a few variables and performed some 
simple operations on them. This Exploration introduces the basic arithmetic operators. Read 
Listing 3-1 then answer the questions that follow it.

Listing 3-1. Integer Arithmetic

What does the program in Listing 3-1 do?

_________________________________________________________________________________

_________________________________________________________________________________

Test the program with the following input:

Lines 8 and 9 initialize the variables  and  to zero. You can enter any integer value 
in the parentheses to initialize a variable; the value does not have to be constant. You must 
supply something in the parentheses, however, so if you want to leave a variable uninitialized, 

21
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omit the parentheses entirely, as shown in line 10. Ordinarily, it’s a bad idea not to initialize 
your variables, but in this case  is safe because line 11 immediately stuffs a value into it by 
reading from the standard input.

Lines 13 and 14 show examples of addition ( ) and assignment ( ). Addition follows the 
normal rules of computer arithmetic (we’ll worry about overflow later). Assignment works the 
way it does in any procedural language. 

Thus, you can see that Listing 3-1 reads integers from the standard input, adds them up, 
and prints the average (mean) value, as computed by the division ( ) operator. Or does it?
What is wrong with Listing 3-1?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Try running the program with no input—that is, press the end-of-file keystroke immedi-
ately after starting the program. Some operating systems have a “null” file that you can supply 
as the input stream. When a program reads from the null file, the input stream always sees an 
end-of-file condition. On UNIX-like operating systems, run the following command line:

On Windows, the null file is called , so type:

What happens?

_________________________________________________________________________________

C++ doesn’t like division by zero, does it? Each platform reacts differently. Most systems 
indicate an error condition one way or another. A few quietly give you garbage results. Either 
way, you get don’t get anything meaningful.

Fix the program by introducing an  statement. Don’t worry that the book hasn’t covered 
 statements yet. I’m confident you can figure out how to ensure this program avoids dividing 

by zero. Write the corrected program below:

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________
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_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Now try your new program. Was your fix successful?

_________________________________________________________________________________

Compare your solution with Listing 3-2.

Listing 3-2. Print Average, Testing for a Zero Count

Remember that  is the C++ syntax for the  operator. Thus  is true when 
is not zero, which means the program has read at least one number from its input.
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Suppose you were to run the program with the following input:

What do you expect as the output?

_________________________________________________________________________________

Try it. What is the actual output?

_________________________________________________________________________________

Did you get what you expected? Some languages use different operators for integer divi-
sion and floating-point division. C++ (like C) uses the same operator symbol, and depends on 
the context to decide what kind of division to perform. If both operands are integers, the result 
is an integer.

What do you expect if the input is

_________________________________________________________________________________

Try it. What is the actual output?

_________________________________________________________________________________

Integer division truncates the result toward zero, so  equals  equals .
The other arithmetic operators are  for subtraction,  for multiplication, and  for 

remainder. C++ does not have an operator for exponentiation.
Listing 3-3 asks for integers from the user and tells the user whether the number is even 

or odd. (Don’t worry about how input works in detail; Exploration 5 will cover that.) Complete
line 12:

Listing 3-3. Testing for Even or Odd Integers

www.allitebooks.com
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Test your program. Did you get it right?

_________________________________________________________________________________

I hope you used a line that looks something like this:

In other words, a number is odd if it has a non-zero remainder after dividing it by 2.
You know that  compares for inequality. How do you think you should write an equality 

comparison? Try reversing the order of the odd and even messages, as shown in Listing 3-4.
Complete the condition on line 12:

Listing 3-4. Testing for Even or Odd Integers

To test for equality, use two equal signs ( ). In this case:

A common mistake that new C++ programmers make, especially those who are accus-
tomed to Pascal and similar languages, is to use a single equal sign for comparison. In this 
case, the compiler usually alerts you to the mistake. Go ahead and try it, to see what the 
compiler does. What message does the compiler issue when you use a single equal sign in 
line 12?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

A single equal sign is the assignment operator. Thus, the C++ compiler thinks you are try-
ing to assign the value 0 to the expression , which is nonsense, and the compiler rightly 
tells you so.
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What if you want to test whether  is zero? Modify Listing 3-1 to print a message when 
 is zero. Once you get the program right, it should look something like Listing 3-5.

Listing 3-5. Print Average, Testing for a Zero Count

Now modify Listing 3-5 to use a single equal sign on line 18. What message does your 
compiler issue?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Most modern compilers recognize this common error and issue a warning. Strictly speak-
ing, the code is correct: the condition assigns zero to . Recall that a condition of zero 
means false, so the program always prints , regardless of how much data it actually 
reads.

If your compiler does not issue a warning, read the compiler’s documentation. You might 
need to enable a switch to turn on extra warnings, such as “possible use of assignment instead 
of comparison” or “condition is always false.”

As you can see, working with integers is easy and unsurprising. Text, however, is a little
trickier, as you will see in the next Exploration.
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Strings

In earlier Explorations, you used quoted character strings as part of each output operation. In 
this Exploration, you will begin to learn how to make your output a little fancier by doing more 
with strings. Start by reading Listing 4-1.

Listing 4-1. Different Styles of String Output

Predict the output from the program in Listing 4-1. You may already know what 
means. If so, this prediction is easy to make. If you don’t know, take a guess.

_________________________________________________________________________________

Now check your answer. Were you correct? So what does  mean?

_________________________________________________________________________________

Inside a string, the backslash ( ) is a special, even magical, character. It changes the mean-
ing of the character that follows it. You have already seen how  starts a new line. Now you 
know that  is a horizontal tab: that is, it aligns the subsequent output at a tab position. In 
a typical console, tab stops are set every eight character positions.

How should you print a double-quote character in a string?

_________________________________________________________________________________

Write a program to test your hypothesis then run the program. Were you correct?

_________________________________________________________________________________

Compare your program with Listing 4-2.

27
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Listing 4-2. Printing a Double-Quote Character

In this case, the backslash turns a special character into a normal character. C++ recog-
nizes a few other backslash character sequences, but these three are the most commonly used. 
(You’ll learn a few more when you read about characters in Exploration 16.)

Now modify Listing 4-1 to add Triangle to the list of shapes.
What does the output look like? Tabs do not automatically align columns, but merely 

position the output at a tab position. To align columns, you need to take control of the output. 
One easy way to do this is to use multiple tab characters, as shown in Listing 4-3.

Listing 4-3. Adding a Triangle and Keeping the Columns Aligned

I played a trick on you in Listing 4-3. Look closely at the end of line 9 and the start of line 
10. Notice that the program lacks an output operator ( ) that ordinarily separates all output 
items. Anytime you have two (or more) adjacent character strings, the compiler automatically 
combines them into a single string. This trick applies only to strings, not to characters. Thus, 
you can write lines 9 and 10 in many different ways, all meaning exactly the same thing:

Choose the style you like best, and stick with it. I like to make a clear break after each new-
line, so the human who reads my programs can clearly distinguish where each line ends and 
a new line begins.

You may be asking yourself why I bothered to print the numbers separately, instead of 
printing one big string. That’s a good question. In a real program, printing a single string 
would be best, but in this book, I want to keep reminding you about the various ways you 
can write an output statement. Imagine, for example, what you would do if you didn’t know 
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beforehand the name of a shape and its number of sides. Perhaps that information is stored in 
variables, as shown in Listing 4-4.

Listing 4-4. Printing Information That Is Stored in Variables

The type of a string is . You must have  near the top of your 
program to inform the compiler that you are using the  type. Line 7 shows how to 
give an initial value to a string variable. Sometimes, you want the variable to start out empty. 
How do you think you would define an empty string variable?

_________________________________________________________________________________

_________________________________________________________________________________

Write a program to test your hypothesis.
If you have trouble verifying that the string is truly empty, try printing the string between 

two other, nonempty strings. Listing 4-5 shows an example.

Listing 4-5. Defining and Printing an Empty String

Compare your program with Listing 4-5. Which do you prefer? ________________
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Why?

_________________________________________________________________________________

_________________________________________________________________________________

You may have tried to define an empty string with empty parentheses, extrapolating from 
the definitions of  and  in Listing 4-4. Your reasoning is completely logical, but in 
this case, C++ works differently. To define a variable with no initial value, omit the parentheses 
entirely.

When you define a string variable with no initial value, C++ guarantees that the string is 
initially empty. Modify Listing 4-4 so the  and  variables are uninitialized. Predict 
the output of the program:

_________________________________________________________________________________

_________________________________________________________________________________

What happened? Explain.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Your program should look like Listing 4-6.

Listing 4-6. Demonstrating Uninitialized Variables

When I run Listing 4-6, I get different answers depending on which compilers and plat-
forms I use. One of the answers I get is the following:
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With another compiler on another platform, the final number is . Yet another compiler’s 
program prints  as the final number. Some systems may even crash instead of 
printing the value of  or .

Isn’t that curious? If you do not supply an initial value for a variable of type ,
C++ makes sure the variable starts out with an initial value—namely, an empty string. On the 
other hand, if the variable has type , you cannot tell what the initial value will actually be, 
and in fact, you cannot even tell whether the program will run. This is known as undefined
behavior. The standard permits the C++ compiler and runtime environment to do anything, 
absolutely anything, when confronted with certain erroneous situations, such as accessing an 
uninitialized variable. A design goal of C++ is that the compiler and library should not do any 
extra work if they can avoid it. Only the programmer knows what value makes sense as a vari-
able’s initial value, so assigning that initial value must be the programmer’s responsibility. 
After all, when you are putting the finishing touches on your weather simulator (the one that 
will finally explain why it always rains when I plan ahead for a trip to the beach), you don’t 
want the inner loop burdened by even one wasteful instruction. The flip side of that perfor-
mance guarantee is an added burden on the programmer to avoid situations that give rise to 
undefined behavior. Some languages help the programmer avoid problem situations, but that 
help invariably comes with a performance cost.

So what’s the deal with ? The short answer is that complicated types, such as 
strings, are different from the simple, built-in types. For types such as , it is actu-
ally simpler for the C++ library to provide a well-defined initial value. Most of the interesting 
types in the standard library behave the same way.

If you have trouble remembering when it is safe to define a variable without an initial 
value, play it safe and provide one:

I recommend initializing every variable, even if you know the program will overwrite it 
soon, such as the input loops we used earlier. The next Exploration demonstrates the impor-
tance of initializing every variable.



E X P L O R A T I O N  5

Simple Input

So far, the Explorations have focused on output. Now it’s time to turn your attention to 
input. Given that the output operator is , what do you expect the input operator to be? 
________________

That didn’t take a rocket scientist to deduce, did it? The input operator is , the opposite 
direction of the output operator. Think of the operators as arrows pointing in the direction 
that information flows: from the stream to variables for input, or from variables to the stream 
for output. The standard library declares input operators in the  header.

Listing 5-1 shows a simple program that performs input and output.

Listing 5-1. Demonstrating Input and Output

How many numbers does Listing 5-1 read from the standard input? ________________
Suppose you enter  and  as the two input values. What do you expect for the output?

_________________________________________________________________________________

Now run the program, and check your prediction. I hope you got . Suppose you type the 
following as input?

33
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What do you predict will be the output?

_________________________________________________________________________________

Test your hypothesis. What is the actual output?

_________________________________________________________________________________

Do you see what happened? If not, try  as the input to the program. Try . Try 
.

The program exhibits two distinct behaviors that you need to understand. First, to read an 
, the input stream must contain a valid integer. The integer can start with a sign (  or ) but 

must be all digits after that; no intervening whitespace is allowed. The input operation stops 
when it reaches the first character that cannot be part of a valid integer (such as ). If at least 
one digit is read from the input stream, the read succeeds, and the input text is converted to an 
integer. The read fails if the input stream does not start with a valid integer. If the read fails, the 
input variable is not modified.

The second behavior is what you discovered in the previous Exploration; uninitialized 
 variables result in undefined behavior. In other words, if a read fails, the variable contains 

junk, or worse. When you learn about floating point numbers, for example, you will learn that 
some bit patterns in an uninitialized floating-point variable can cause a program to terminate. 
On some specialized hardware, an uninitialized integer can do the same. The moral of the 
story is that using an uninitialized variable results in undefined behavior. That’s bad. So don’t 
do it.

Thus, when the input is , both reads fail, and undefined behavior results. You probably 
see junk values for both numbers. When the input is , the first number is  and the sec-
ond number is , so the result is correct. However, when the input is , the first number 
is , and the second number is junk because an integer cannot start with a dot ( ).

Once an input operation fails, all subsequent input attempts will also fail unless you take 
remedial action. That’s why the program doesn’t wait for you to type a second number if the 
first one is invalid. C++ can tell you when an input operation fails, so your program can avoid 
using junk values. Also, you can reset a stream’s error state, so you can resume reading after 
handling an error. I will cover these techniques in future Explorations. For now, make sure 
your input is valid and correct.

Some compilers warn you when your program leaves variables uninitialized, but it is best 
to be safe and initialize every variable, all the time. As you can see, even if the program imme-
diately attempts to store a value in the variable, it may not succeed, which can give rise to 
unexpected behavior.

Whenever possible, use initializers when defining a variable, so you can assure yourself 
that the variable holds the value you want it to hold. You can see this clearly in the definition of 

, which has an initial value of .
Did you think that integers could be so complicated? Surely strings are simpler because 

there is no need to interpret them or convert their values. Let’s see if they truly are simpler 
than integers. Listing 5-2 is similar to Listing 5-1, but it reads text into  variables.
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Listing 5-2. Reading Strings

Listing 5-2 is clearly not a model of artificial intelligence, but it demonstrates one thing 
well. Suppose the input is as follows:

What do you expect as the output?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Run the program and test your hypothesis. Were you correct? ________________
Explain.

_________________________________________________________________________________

_________________________________________________________________________________

Experiment with different input and try to discern the rules that C++ uses to delimit 
a string in the input stream. Ready? Go ahead. I’ll wait until you’re done.

Back so soon? How does C++ delimit strings in an input stream?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Any whitespace character (the exact list of whitespace characters depends on your imple-
mentation, but typically includes blanks, tabs, newlines, and the like) ends a string, at least 
as far as the input operation is concerned. Specifically, C++ skips leading whitespace charac-
ters. Then it accumulates nonspace characters to form the string. The string ends at the next 
whitespace character.
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So what happens when you mix integers and strings? Write a program that asks for a per-
son’s name (first name only) and age (in years) and then echoes the input to the standard 
output. Which do you want to ask for first? Print the information after reading it.

Table 5-1 shows some sample inputs for your program. Next to each one, write your pre-
diction for the program’s output. Then run the program, and write the actual output.

Table 5-1. Sample Inputs for Name and Age

Input Predicted Output Actual Output

Think of the standard input as a stream of characters. Regardless of how the user types 
those characters, the program sees them arrive one by one. (Okay, they arrive in big chunks, 
by the buffer-load, but that’s a minor implementation detail. As far as you are concerned, your 
program reads one character at a time, and it doesn’t matter that the character comes from the 
buffer, not the actual input device.) Thus, the program always maintains the notion of a cur-
rent position in the stream. The next read operation always starts at that position.

Before starting any input operation, if the character at the input position is a whitespace
character, that character is skipped. All leading whitespace characters are skipped. Then the 
actual read begins.

If the program attempts to read an integer, it grabs the character at the input position, 
and checks whether it is valid for an integer. If not, the read fails, and the input position does 
not move. Otherwise, the input operation keeps the character and all subsequent characters 
that are valid elements of an integer. The input operation interprets the text as an integer and 
stores the value in the variable. Thus, after reading an integer, you know that the input posi-
tion points to a character that is not a valid integer character.

When reading a string, all the characters are grabbed from the stream until a whitespace
character is reached. Thus, the string variable does not contain any whitespace characters. The 
next read operation will skip over the whitespace, as described earlier.

The input stream ends at the end of the file (if reading from a file), when the user closes 
the console or terminal, or when the user types a special keystroke sequence to tell the operat-
ing system to end the input (such as Control+D on UNIX or Control+Z on DOS or Windows). 
Once the end of the input stream is reached, all subsequent attempts to read from the stream 
will fail. This is what caused the loop to end in Exploration 2.

Listing 5-3 shows my version of the name-first program. Naturally, your program will dif-
fer in the details, but the basic outline should agree with yours.
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Listing 5-3. Getting the User’s Name and Age

Now modify the program to reverse the order of the name and age, and try all the input 
values again. Explain what you observe.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

When an input operation fails due to malformed input, the stream enters an error state; 
e.g., the input stream contains the string “Ray” when the program tries to read an integer. 
All subsequent attempts to read from the stream result in an error being generated without 
actually trying to read. Even if the stream subsequently tries to read a string, which would 
otherwise succeed, the error state is sticky, and the string read fails, too.

In other words, when the program cannot read the user’s age, it won’t be able to read the 
name, either. That’s why the program gets both right or both wrong.

Listing 5-4 shows my version of the age-first program.

Listing 5-4. Getting the User’s Age and Then Name
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Table 5-2 shows a truncated version of the output (just the name and age) in each 
situation.

Table 5-2. Interpreting Input the C++ Way

Input Name First Age First

, ,

" , ,

, ,

, ,

, ,

, ,

, ,

, ,

Handling errors in an input stream requires some more advanced C++, but handling 
errors in your code is something you can take care of right now. The next Exploration helps 
you untangle compiler error messages.
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Error Messages

By now you’ve seen plenty of error messages from your C++ compiler. No doubt, some are 
helpful and others are cryptic—a few are both. This Exploration presents a number of com-
mon errors and gives you a chance to see what kinds of messages your compiler issues for 
these mistakes. The more familiar you are with these messages, the easier it will be for you to 
interpret them in the future.

Read through Listing 6-1 and keep an eye out for mistakes.

Listing 6-1. Deliberate Errors

39
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What errors do you expect the compiler to detect?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Download the source code and compile Listing 6-1.

What messages does your compiler actually issue?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Create three groups: messages that you correctly predicted, messages that you expected 
but the compiler did not issue, and messages that the compiler issued but you did not expect. 
How many messages are in each group? ________________

The program actually contains seven errors, but don’t fret if you missed them. Let’s take 
them one at a time.

Misspelling
Line 1 misspells  as . Your compiler should give you a simple message, 
informing you that it could not find . The compiler cannot tell that you meant to 
type , so it cannot give you a suggestion. You need to know the proper spelling of 
the header name.

At least one compiler gives up completely at this point. If that happens to you, fix this one 
error then run the compiler again to see some more messages.

If your compiler tries to continue, it does so without the declarations from the misspelled 
header. In this case,  declares  and , so the compiler also issues 
messages about those names being unknown.

Bogus Character
The most interesting error is the use of a square bracket character ( ) instead of a brace
character ( ) in line 6. Some compilers may be able to guess what you meant, which can limit 
the resulting error messages. Others cannot and give a message that may be rather cryptic. 
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For example, g++ issues many errors, none of which directly points you to the error. Instead, it 
issues the following messages:

When you cannot understand the error messages, look at the first message. Search for 
errors at or near the line number. Ignore the rest of the messages.

On line 7, you may see another error or two. After you fix them, however, a slew of mes-
sages still remain. That means you still haven’t found the real culprit (which is on line 6).

Once you track down the square bracket and change it to a curly brace, you may get 
entirely different messages. This is because the substitution of  for  so sufficiently confuses 
the compiler that it cannot make any sense of the rest of the program. Correcting that problem 
straightens out the program for the compiler, but now it may find a whole new set of errors.

Unknown Operator
The input and output operators (  and ) are no different from any other C++ operator, 
such as addition ( ), multiplication ( ), or comparison (such as ). Every operator has a lim-
ited set of allowed operands. For example, you cannot “add” two I/O streams (e.g., 

), nor can you use an output operator to “write” a number to a string (e.g.,   
).
On line 7, one error is the use of  instead of . The compiler cannot determine that you 

intended to use , and instead issues a message that indicates what is wrong with . The exact 
message depends on the compiler, but most likely the message is not something that helps 
you solve this particular problem. One compiler complains as follows:

This message notifies you that you are using the wrong operator or the wrong operands. 
You need to determine which one it is.
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Once you fix the operator, notice that the compiler does not issue any message for the 
other mistake, namely, the extraneous semicolon. Strictly speaking, it is not a C++ error. It 
is a logical error, but the result is a valid C++ program. Some compilers will issue a warning,
advising you that line 8 does nothing, which is a hint that you made a mistake. Other compil-
ers will silently accept the program.

The only sure way to detect this kind of mistake is to learn to proofread your code.

Unknown Name
An easy error for a compiler to detect is when you use a name that the compiler does not rec-
ognize at all. In this case, accidentally typing the letter  instead of a semicolon produces the 
name  instead of . The compiler issues a clear message about this unknown name. 

Fix the semicolon, and now the compiler complains about another operator. This time 
you should be able to zoom in on the problem and notice that the operator is facing the wrong 
way (  instead of ). The compiler may not offer much help, however. One compiler spews 
out errors of the form:

The line number tells you where to look, but it is up to you to find the problem.

Symbol Errors
But now you run into a strange problem. The compiler complains that it does not know what 
a name means (  on line 19), but you know that it does. After all, the rest of the program 
uses  without any difficulty. What’s wrong with line 19 that it causes the compiler to 
forget?

Small errors can have profound consequences in C++. As it turns out, a single colon 
means something completely different from a double colon. The compiler sees  as 
a statement labeled , followed by the bare name . At least the error message points you 
to the right place. Then it’s up to you to notice the missing colon.
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Fun with Errors
After you have fixed all the syntax and semantic errors, compile and run the program to make 
sure you truly found them all. Then introduce some new errors, just to see what happens. 
Some suggestions follow:

Try dropping a semicolon from the end of a statement. What happens?

_________________________________________________________________________________

_________________________________________________________________________________

Try dropping a double quote from the start or end of a string. What happens?

_________________________________________________________________________________

_________________________________________________________________________________

Try misspelling  as . What happens?

_________________________________________________________________________________

_________________________________________________________________________________

Now I want to you to explore on your own. Introduce one error at a time and see what 
happens. Try making several errors at once. Sometimes, errors have a way of obscuring each 
other. Go wild! Have fun! How often does your teacher encourage you to make mistakes?

Now it’s time to return to correct C++ code. The next Exploration introduces the  loop.
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For Loops

Explorations 2 and 3 show some simple  loops. This Exploration introduces the 
loop’s big brother, the  loop.

Bounded Loops
You’ve already seen  loops that read from the standard input until no more input is avail-
able. That is a classic case of an unbounded loop. Unless you know beforehand exactly what 
the input stream will contain, you cannot define the loop’s bounds or limits. Sometimes you 
know in advance how many times the loop must run; that is, you know the bounds of the loop, 
making it a bounded loop. The  loop is how C++ implements a bounded loop.

Let’s start with a simple example. Listing 7-1 shows a program that prints the first ten 
non-negative integers.

Listing 7-1. Using a  Loop to Print Ten Non-Negative Numbers

The  loop crams a lot of information in a small space, so take it one step at a time.
Inside the parentheses are three parts of the loop, separated by semicolons. What do you 
think these three pieces mean?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

The three parts are: initialization, condition, and postiteration. Take a closer look at 
each part.

45
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Initialization
The first part looks similar to a variable definition. It defines an  variable named , with 
an initial value of 0. Some C-inspired languages permit only an initialization expression, not 
a variable definition. In C++, you have a choice: expression or definition. The advantage of 
defining the loop control variable as part of the initialization is that you cannot accidentally 
refer to that variable outside the loop. Listing 7-2 demonstrates the advantage of limiting the 
loop control variable.

Listing 7-2. You Cannot Use the Loop Control Variable Outside the Loop

Another consequence of limiting the loop control variable is that you may define and use 
the same variable name in multiple loops, as shown in Listing 7-3.

Listing 7-3. Using and Reusing a Loop Control Variable Name
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What does Listing 7-3 produce as output?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

If you don’t need to perform any initialization, you can leave the initialization part empty. 

Condition
The middle part follows the exact same rules as a  loop condition. As you might expect, it 
controls the loop execution. The loop body executes while the condition is true. If the condi-
tion is false, the loop terminates. If the condition is false the first time the loop runs, the loop 
body never executes.

Sometimes you will see a  loop with a missing condition. That means the condition is 
always true, so the loop runs without stopping. A better way to write a condition that is always 
true is to be explicit and use  as the condition. That way, anyone who needs to read and 
maintain your code in the future will understand that you deliberately designed the loop 
to run forever. Think of it as the equivalent of a comment: “This condition deliberately left 
blank.”

Postiteration
The last part looks like a statement, even though it lacks the trailing semicolon. In fact, it is 
not a full statement, but only an expression. The expression is evaluated after the loop body 
(hence the name post-iteration) and before the condition is tested again. You can put any-
thing you want here, or leave it blank. Typically, this part of the  loop controls the iteration, 
advancing the loop control variable as needed.

How a for Loop Works
The flow of control is as follows:

1. The initialization part runs exactly once.

2. The condition is tested. If it is false, the loop terminates and the program continues 
with the statement that follows the loop body.

3. If the condition is true, the loop body executes.

4. The postiteration part executes.

5. Control jumps to 2.
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Your Turn
Now it’s your turn to write a  loop. Listing 7-4 shows a skeleton of a C++ program. Fill in the 
missing parts to compute the sum of integers from 10 to 20, inclusive.

Listing 7-4. Compute Sum of Integers from 10 to 20

Before you test your program, you must first determine how you will know whether the 
program is correct. In other words, what is the sum of the integers from 10 to 20, inclusive? 
________________

Okay, now compile and run your program. What answer does your program produce? 
________________ Is your program correct? ________________

Compare your program with that shown in Listing 7-5.

Listing 7-5. Compute Sum of Integers from 10 to 20 (Completed)

A common use of  loops is to format and print tables of information. To accomplish 
this, you need finer control over output formatting than what you have learned so far. That will 
be the subject of the next Exploration.



E X P L O R A T I O N  8

Formatted Output

In Exploration 4, you used tab characters to line up output neatly. Tabs are useful, but crude. 
This Exploration introduces some of the features that C++ offers to format output nicely, such 
as setting the alignment, padding, and width of output fields.

The Problem
This Exploration begins a little differently. Instead of reading a program and answering ques-
tions about it, you must write your own program to solve a problem. The task is to print a table
of squares and cubes (the mathematical variety, not the geometrical shapes) for integers from 
1 to 20. The output of the program should look something like the following:

49
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To help you get started, Listing 8-1 gives you a skeleton program. You need only fill in the 
loop body.

Listing 8-1. Print a Table of Squares and Cubes 

This is a trick problem, so don’t worry if you had difficulties. The point of this exercise is 
to demonstrate how difficult formatted output actually is. If you’ve learned that much, you 
successfully completed this exercise, even if you didn’t finish the program. Perhaps you tried 
using tab characters at first, but that aligns the numbers on the left:

Left-alignment is not the way we usually write numbers. Tradition dictates that numbers 
should align to the right (or on decimal points, when applicable—more on that in the section, 
“Alignment,” later in this Exploration). Right-aligned numbers are easier to read.

C++ offers some simple but powerful techniques to format output. To format the table 
of powers, you need to define a field for each column. A field has a width, an alignment, and 
a pad character. The following sections explain these concepts in depth.

Field Width
Before exploring how you would specify alignment, first you need to know how to set the 
width of an output field. I gave you a hint in Listing 8-1. What is the hint?

_________________________________________________________________________________
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The first line of the program is , which you have not seen before. This 
header declares some useful tools, including , which sets the minimum width of 
an output field. For example, to print a number so that it occupies at least three character 
positions, call . If the number requires more space than that—say the value is 
314159—the actual output will take up as much space as needed. In this case, the spacing 
turned out to be six character positions.

To use , call the function as part of an output statement. The statement looks like you 
are trying to print , but in fact, nothing is printed, and all you are doing is manipulating 
the state of the output stream. That’s why  is called an I/O manipulator. The 
header declares several manipulators, which you will learn about in due course.

Listing 8-2 shows the table of powers program, using  to set the width of each field in 
the table.

Listing 8-2. Printing a Table of Powers the Right Way 

The first column of the table requires two positions, to accommodate numbers up to 20. 
The second column needs some space between columns, and room for numbers up to 400; 

 uses three spaces between the  and the  columns, and three character positions 
for the number. The final column also uses three spaces between columns, and four character 
positions, to allow numbers up to 8000.

The default field width is zero, which means everything you print takes up the exact 
amount of space it needs, no more, no less.

After printing one item, the field width automatically resets to zero. For instance, if you 
wanted to use a uniform column width of six for the entire table, you could not call 
once, and leave it at that. Instead, you must call  before each output operation:
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Padding
By default, values are padded, or filled, with space characters ( ). You can set the fill char-
acter to be any that you choose, such as zero ( ) or an asterisk ( ). Listing 8-3 shows 
a fanciful use of both fill characters in a program that prints a check.

Listing 8-3. Using Alternative Fill Characters 

Notice that unlike ,  is sticky. That is, the output stream remembers the fill 
character and uses that character for all output fields until you set a different fill character.

std Prefix
Another new feature in Listing 8-3 is the declaration, . All those 
prefixes can sometimes make the code hard to read. The important parts of the names become 
lost in the clutter. By starting your program with , you are instructing the 
compiler to treat names that it doesn’t recognize as though they began with .

As the keyword indicates,  is called a namespace. Almost every name in the stan-
dard library is part of the  namespace. You are not allowed to add anything to the 
namespace, nor are any third-party library vendors. Thus, if you see , you know that what 
follows is part of the standard library (so you can look it up in any decent reference). More 
important, you know that most names you invent in your own program will not conflict with 
any name in the standard library, and vice versa. Namespaces keep your names separate from 
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the standard library names. Later in the book, you will learn to create your own namespaces, 
which help organize libraries and manage large applications.

On the other hand,  is a dangerous declaration, and one I use spar-
ingly. Without the  qualifier before every standard library name, you have opened the 
door to confusion. Imagine, for example, if your program defines a variable named  or 

. The compiler has strict rules for interpreting names and would not be confused at all, but 
the human reader certainly would be. It is always best to avoid names that collide with those 
in the standard library, with or without .

Alignment
C++ lets you align output fields to the right or the left. If you want to center a number, you are 
on your own. To force the alignment to be left or right, use the  and  manipulators 
(declared in ).

The default alignment is to the right, which might strike you as odd. After all, the first 
attempt at using tab characters to align the table columns produced left-aligned values. As 
far as C++ is concerned, however, it knows nothing about your table. Alignment is within 
a field. The  manipulator specifies the width, and the alignment determines whether the 
fill characters are added on the right (left-alignment) or on the left (right-alignment). The out-
put stream has no memory of other fields. So, for example, if you want to align a column of 
numbers on their decimal points, you must do that by hand (or ensure that every value in the 
column has the same number of digits after the decimal point).

Exploring Formatting
Now that you know the rudiments of formatting output fields, it is time to explore a little, and 
help you develop a thorough understanding of how field width, padding, and alignment inter-
act. Read the program in Listing 8-4 and predict its output.

Listing 8-4. Exploring Field Width, Padding, and Alignment 
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What do you expect as the output from Listing 8-6?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Now write a program that will produce the following output. Don’t cheat and simply 
print a long string. Instead, print only integers and newlines, throwing in the field width, pad-
ding, and alignment manipulators you need to achieve the desired output.

Lots of different programs can achieve the same goal. My program, shown in Listing 8-5, is 
only one possibility of many.

Listing 8-5. Program to Produce Formatted Output 

The manipulators that take arguments, such as  and  are declared in 
. The manipulators without arguments, such as  and , are declared 

in . If you can’t remember, include both headers. If you include a header that you don’t 
really need, you might see a slightly slower compilation time, but no other ill effects will 
befall you.

Alternative Syntax
I like to use manipulators because they are concise, clear, and easy to use. You can also apply 
functions to the output stream object, using the dot operator ( ). For example, to set the fill 
character, you can call . The  function is called a member function
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because it is a member of the output stream’s type. You cannot apply it to any other kind of 
object. Only some types have member functions, and each type defines the member func-
tions that it allows. A large part of any C++ library reference is taken up with the various types 
and their member functions. (The member functions of an output stream are declared in 

 along with the output operators. An input stream’s member functions are declared 
in .)

When setting sticky properties, such as fill character or alignment, you might prefer using 
member functions instead of manipulators. You can also use member functions to query the 
current fill character, alignment and other flags, and field width—something you can’t do with 
manipulators.

The member function syntax uses the stream object, a dot ( ), and the function call, e.g., 
. Setting the alignment is a little more complicated. Listing 8-6 shows the same 

program as Listing 8-5, but uses member functions instead of manipulators.

Listing 8-6. A Copy of Listing 8-5, But Using Member Functions 

To query the current fill character, call . That’s the same function name you 
use to set the fill character, but when you call the function with no arguments, it returns the 
current fill character. Similarly,  returns the current field width. Obtaining the 
flags is slightly different. You call  to set flags, such as the alignment, but you call 
to return the current flags. The details are not important at this time, but if you’re curious, 
consult any library reference.

On Your Own
Now it is time for you to write a program from scratch. Feel free to look at other programs to 
make sure you have all the necessary parts. Write this program to produce a multiplication
table for the integers from 1 to 10, inclusive:
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After you finish your program, and have made sure it produces the correct output, com-
pare your program with mine, which is shown in Listing 8-7.

Listing 8-7. Printing a Multiplication Table 
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My guess is that you wrote your program a little differently than how I wrote mine, or per-
haps you wrote it very differently. That’s okay. Most likely, you used a hardcoded string for the 
table rule (the line that separates the header from the table), or perhaps you used a  loop. 
I used I/O formatting just to show you what is possible. Printing an empty string with a non-
zero field width is a quick and easy way to print a repetition of a single character.

Another new feature I threw in for good luck is the  keyword. Use this keyword in 
a definition to define the object as a constant instead of a variable. The compiler makes sure 
you do not accidentally assign anything to the object. As you know, named constants make 
programs easier to read and understand than littering the source code with numbers.

Loops sure are fun! What data structure do you think of first when you think of loops? 
I hope you picked arrays because that is the subject of the next Exploration.
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Arrays and Vectors

Now that you understand the basics, it is time to start moving on to more exciting chal-
lenges. Let’s write a real program, something nontrivial, but still simple enough to master this 
early in the book. Your job is to write a program that reads integers from the standard input, 
sorts them into ascending order, and then prints the sorted numbers, one per line.

At this point, the book has not quite covered enough material for you to solve this prob-
lem, but it is instructive to think about the problem and the tools you may need to solve it. 
Your first task in this Exploration is to write pseudo-code for the program. Write C++ code 
where you can, and make up whatever you need to tackle the problem.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________
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Using Vectors for Arrays
You need an array to store the numbers. Given only that much new information, you can write 
a program to read, sort, and print numbers, but only by hand-coding the sort code. Those of 
you who suffered through a college algorithms course may remember how to write a bubble
sort or quick sort, but why should you need to muck about with such low-level code? Surely, 
you say, there’s a better way. There is: the C++ standard library has a fast sort function that can 
sort just about anything. Jump straight into the solution in Listing 9-1.

Listing 9-1. Sorting Integers

Notice anything unusual about the program? Where is the array? C++ has a type called 
, which is like a resizable array. The next section explains it all to you.

Vectors
Line 9 defines the variable , of type . C++ has several container types; 
that is, data structures that can contain a bunch of objects. One of those containers is ,
which is the closest type C++ has to a conventional array. All C++ containers require an ele-
ment type; that is, the type of object that you intend to store in the container. In this case, the 
element type is . Specify the element type in angle brackets: . That tells the compiler 
that you want data to be a  and that the  will store integers.
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What’s missing from the definition?

_________________________________________________________________________________

The vector has no size. Conventional arrays require a size, but  is resizable at 
runtime. Thus,  is initially empty. Like ,  is a library type, and it has 
a well-defined initial value, namely, empty.

You can specify an initial size for the , if you wish, by providing the size as the ini-
tial value of the vector. By default, all elements of the vector are filled with zero, but you can 
specify a different value as the second argument to the initializer.

A  can change size at runtime, expanding or contracting to any size you need it to 
be. You can insert and erase items at any position in the vector, although the performance is 
best when you only add items to, or erase them from the end. That’s how the program stores 
values in : by calling , which adds an element to the end of a  (line 15). 
The “back” of a vector is the end, with the highest index. The “front” is the beginning, so 

 returns the last element of the vector, and  returns the first. (Just don’t call these 
functions if the  is empty.) If you want to refer to a specific element, use , where 
is a zero-based index, as shown on line 22. The  function (line 21) returns the number of 
elements in the vector. Therefore, valid indices range from  to .

When you read C++ programs, you will most likely see square brackets ( ) used to 
access elements of a vector. The difference between square brackets and the  function is that 
the  function provides an additional level of safety. If the index is out of bounds, the program 
will terminate cleanly. On the other hand, using square brackets with an invalid index will 
result in undefined behavior: you don’t know what will happen. Most dangerous is that your 
program will not terminate, but will continue to run with the bad data. That’s why I recom-
mend using  for now.

As you can tell from the  prefix, the  type is part of the standard library and is 
not built into the compiler. Therefore, you need to , as shown on line 5. No 
surprises there.

All the functions mentioned so far are member functions; that is, you must supply 
a  object on the left-hand side of the dot operator ( ), and the function call on the 
right-hand side. Another kind of function does not use the dot operator and is free from any 
particular object. In most languages, this is the typical kind of function, but sometimes C++ 
programmers call them “free” functions, to distinguish them from member functions. Line 18 
shows an example of a free function, .

How would you define a vector of strings?

_________________________________________________________________________________

Substitute  for  to get . To define a  of 
s, there is one trick; try changing Listing 9-1 to define a  of .

(Ignore the compilation error for line 22: you cannot print an entire vector using an output 
operator. Instead, heed only the compilation error on line 9.) 
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What happens?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

C++ builds multicharacter symbols by grabbing as many characters as it can to form 
a valid token. Thus, any time it sees two greater-than signs next to each other, it automatically 
considers them to form a single operator ( ).To define a vector of vectors, you must make 
sure a space character separates the two closing angle brackets, as shown in the following:

Don’t worry if you can’t remember this rule. These early Explorations do not use nested 
vectors, and by the time you get around to using them, you will be more comfortable with C++ 
syntax rules.

Iterators
The  function sorts stuff, as you can tell from the name. In some other object- 
oriented language, you might expect  to have a  member function. Alternatively, 
the standard library could have a  function that can sort anything the library can throw at 
it. The C++ library is different.

The  function can sort any sequence of objects that can be compared 
using the less-than ( ) operator: numbers, strings, user-defined types, and more. You 
specify the sequence to sort by providing the starting position (such as ) and 
one-past-the-end position ( ).

These “positions” are called iterators. An iterator is an object that can refer to an element 
of a sequence. The sequence might be elements of a vector, or they could be data in a file
or database, or nodes in a tree. The implementation of the sequence is irrelevant, and the 

 function knows nothing about it. Instead, the  function sees only the iterators.
Iterators present a simple interface, even if their implementation is complicated. The 

operator returns the value to which the iterator refers ( ), and you can advance an iterator 
to the next element of the sequence ( ). You can compare two iterators to see if they refer 
to the same element ( ). Iterators come in different flavors, and some flavors let 
you modify the element or move backward in the sequence.

The notion of “one-past-the-end” is a common idiom in the C++ library and programs. 
A bounded loop needs a starting and ending position. One way to specify these for a vector is 
to specify the positions of the first and last elements, but that raises a thorny issue of what to 
do with an empty vector. Long ago, computer scientists invented the concept of a sentry or 
guard. Sometimes, the sentry was a real element added after the last element of a container,
marking the position one-past-the-last element. In that case, a container with only the sentry 
element was empty. Iterators work similarly, but instead of using an explicit sentry element 
in the container, the iterator has a sentry value that denotes the position just past the last true 
element of the sequence.

Thus,  returns an iterator that refers to the first element of data, and 
 returns an iterator with the special one-past-the-end value, as shown in Figure 9-1.
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Figure 9-1. Iterators pointing to positions in a vector

What is the value of  if  is zero?

_________________________________________________________________________________

That’s right. If the vector is empty,  returns the same value as .
Because you can compare two iterators, one way to determine if a vector is empty is to test, as 
demonstrated in the following code:

A better way, however, is to call , which returns  if the vector is empty 
and  if the vector contains at least one element.

Iterators have many uses beyond accessing elements of a vector, and you will see them 
used often in this book, for input, output, and more.

Algorithms
The  function is an example of a generic algorithm, so named because these func-
tions implement common algorithms and they operate generically. That is, they work for just 
about anything you can express as a sequence. Most of the standard algorithms are declared 
in the  header, although a few that are numerically oriented are declared in the 

 header.
The standard algorithms run the gamut of common programming activities: sorting, 

searching, copying, comparing, modifying, and more. Searches can be linear or binary. 
A number of functions, including , reorder elements within a sequence. No matter 
what they do, all generic algorithms share some common features.

Almost all the generic algorithms operate on iterators. (The sole exceptions are 
and , which return the maximum and minimum of two values, respectively.) Earlier, 
I mentioned that iterators come in different flavors, each flavor having different capabilities. 
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Although C++ has five flavors in all, you can broadly group them into two categories: read and 
write.

A read iterator refers to a position in a sequence of values that enables reading from the 
sequence. The algorithms use read iterators for input, but do not modify the values. Typically, 
you must specify a range with a pair of read iterators: start and one-past-the-end.

A write iterator refers to a position in a sequence where the algorithm is to write its out-
put. Typically, you specify only the starting position of the output sequence. The algorithm 
does not and cannot check for overflow, so you must ensure the output sequence has enough 
room to accommodate everything the algorithm will write. 

For example, the  algorithm copies values from an input sequence to an output 
sequence. The function takes three arguments: two read iterators to specify the input range 
and one write iterator to specify the start of the output range. You must ensure the output has 
enough capacity. For example, you might specify the initial size of a vector when you define it, 
as shown in Listing 9-2.

Listing 9-2. Demonstrating the  Function

The  function is a quick way to verify that what you think is true, actually is true. 
You assert a logical statement, and if you are wrong, the program terminates with a message
that identifies the assertion. The  function is declared in ; the  means the 
C++ library inherits this header from the C standard library. Note that  is one of the rare 
exceptions to the rule that standard library members begin with .

If the program is correct, it runs and exits normally. But if we make a mistake, the asser-
tion triggers and the programs fails with a message.

Test the program in Listing 9-2. Just to see what happens when an assertion fails, com-
ment out the call to  and run it again. Write down the message you get. 

_________________________________________________________________________________

_________________________________________________________________________________



EXPLORATION 9   ARRAYS AND VECTORS 65

Member Types
Line 21 of Listing 9-1 looks worse than it is. The definition in the first part of the  loop is 
particularly scary, even for experienced C++ programmers. In addition to member functions, 
a C++ class can have member classes. In this case, the parent class, , has 
a member type named . Use this type whenever you need to store a size or index for 
a vector.

The  is like an , but not really. In particular, you cannot assign a negative
value to  (after all, what kind of vector has a negative size?). Or rather, the language 
rules let you assign a negative value, but you won’t get the result you want or expect. A good
compiler warns you that you are making a mistake. Until you learn enough C++ to appreciate 
the subtleties of , the best strategy is to use  only for loop control, for stor-
ing the size of a vector, and for storing indices. Don’t try to perform arithmetic with 
values beyond simply incrementing a loop control variable.

Line 21 uses  to define the variable , which is the loop control variable. The 
loop increments  from 0 up to the vector size, at which point it exits. This is a common idiom 
for looping through a vector when you need the vector indices. Most programs, in fact, do not 
need to use the vector indices. I wrote Listing 9-1 that way only to demonstrate the  member 
function.

A better way to write the program in Listing 9-1 is to use iterators instead of indices and 
the  member function. To define an iterator, substitute the member type  for 

 in the definition of the loop control variable. Initialize the loop control variable to 
. , and end with loop when the iterator equals . Use the  operator to 

advance the iterator, and  to obtain the vector element to which the iterator refers. Put these 
pieces together and rewrite lines 21 and 22 of Listing 9-1 to use iterators.

_________________________________________________________________________________

_________________________________________________________________________________

Compare your response to Listing 9-3. (For your convenience, I repeat the entire program. 
That makes it easy for you to compile and test the program.)

Listing 9-3. Sorting Integers, Using Iterators to Print the Results
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Using iterators instead of indices has many advantages:

containers (such as linked lists), even if they don’t 
have the  member function.

 easier to read, especially for experienced C++ programmers.

Using Iterators and Algorithms
Loops over iterator ranges are so common that many generic algorithms implement the most 
common actions that you may need to take in a program. With a couple of helpers, you can 
re-implement the program using only generic algorithms, as shown in Listing 9-4.

Listing 9-4. Sorting Integers by Using Only Generic Algorithms and Iterator Adapters
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A  creates a read iterator that reads from an input stream. Every 
time you read a value from the iterator, the  object uses the  opera-
tor to read a value from the stream. You must supply the type in angle brackets, so that the 
compiler knows what type of information you want to read from the stream, which you 
pass as a function argument. With no argument,  returns 
a special one-past-the-end iterator. When the input stream iterator equals this special 
one-past-the-end iterator, the program has reached the end of the stream, and no more input 
is available.

The  function takes a  (or any object that has a  func-
tion) and wraps it in a write iterator. Any time you assign a value to the iterator, the back insert 
iterator calls the  function to add the value to the object. Using , you 
can guarantee that the program will not overrun the output buffer.

Finally, an  is the counterpart to . It takes an output 
stream and wraps it in a write iterator. Any value that you assign to the iterator is written to 
the stream using the  operator. You can pass an optional string argument, and the 

 writes that string after each value. In this case, the string contains just a newline
character, so each number is written on its own line.

All these special iterators are declared in . You don’t need this header to use an 
ordinary iterator, such as that returned from a ’s  function, but you do need it if 
you use a special iterator, such as .

Until you are accustomed to using the generic algorithms, iterators, and special iterators, 
this style of programming can seem unusual. Once you are familiar with these unique C++ 
library members, you will find such code easier to read and write than more traditional pro-
gramming styles 

It’s now time for you to practice using iterators and algorithms.
Write a program that reads integers from the standard input into a vector. Modify the 

vector by multiplying each element by 2. Then print the vector, one value per line.
Test your program using the following input:

What output do you expect?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

What output do you actually get?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________



EXPLORATION 9   ARRAYS AND VECTORS68

Now try running the program with no input at all. What do you expect?

_________________________________________________________________________________

What do you get?

_________________________________________________________________________________

Listing 9-5 shows one way to write this program using explicit loops. Notice how the 
operator means multiplication when used as a binary (two-operand) operator, and it means 
“dereference the iterator” when used as a unary, prefix operator.

Listing 9-5. Doubling Input Values in a Vector

Listing 9-6 shows another way, this time using algorithms and iterators for the input and 
output loops.

Listing 9-6. Doubling Input Values in a Vector
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The  operator is new in this Exploration. The next Exploration takes a closer look at this 
handy operator.
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Increment and Decrement

The previous Exploration introduced the increment ( ) operator to advance an iterator. This 
operator works on numeric types, as well. Not surprisingly, it has a decrement counterpart: -.
This Exploration takes a closer look at these operators, which appear so often they are part of 
the language name.

Note I know that you C, Java, etc., programmers have been waiting for this Exploration ever since I wrote
 in Exploration 7. As you saw in the previous Exploration, the  operator means more in C++ than 

what you’re used to. That’s why I waited until now to introduce it.

Increment
The  operator is familiar to C, Java, Perl, and many other programmers. C was the first wide-
spread language to introduce this operator to mean “increment” or “add 1.” C++ expanded the 
usage it inherited from C; the standard library uses the  operator in several new ways, such 
as advancing an iterator (as you saw in the previous Exploration).

The increment operator comes in two flavors: prefix and postfix. The best way to 
understand the difference between these two flavors is with a demonstration, as shown in 
Listing 10-1.

Listing 10-1. Demonstrating the Difference Between Prefix and Postfix Increment

71
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Predict the output of the program.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

What is the actual output?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Explain the difference between prefix ( ) and postfix ( ) increment.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Described briefly, the prefix operator increments the variable first: the value of the expres-
sion is the value after incrementing. The postfix operator saves the old value, increments the 
variable, and uses the old value as the value of the expression.

As a general rule, use prefix instead of postfix unless you need the postfix functionality. 
Rarely is the difference significant, but the postfix operator must save a copy of the old value, 
which may impose a small performance cost. If you don’t need to use postfix, why pay that 
price?

Decrement
The increment operator has a decrement counterpart: -. The decrement operator subtracts 
one instead of adding one. Decrement also has a prefix and postfix flavor. The prefix operator 
predecrements, and the postfix operator postdecrements.

You can increment and decrement any variable with a numeric type; however, only some 
iterators permit decrement.

For example, all write iterators move forward only. You can use the increment opera-
tor (prefix or postfix), but not decrement. Test this for yourself. Write a program that uses 

, and try to use the decrement operator on the iterator. (If you need 
a hint, look at Listing 9-4. Save the  object in a variable. Then use the 



EXPLORATION 10   INCREMENT AND DECREMENT 73

decrement operator. It doesn’t matter that the program makes no sense; it won’t get past the 
compiler, anyway.)

What error message do you get?

_________________________________________________________________________________

_________________________________________________________________________________

Different compilers issue different messages, but the essence of the message should be 
that the  operator is not defined. If you need help with the program, see Listing 10-2.

Listing 10-2. Erroneous Program that Applies Decrement to an Output Iterator

INITIALIZING A VECTOR

Listing 10-2 stores numbers in  by defining an empty vector then adding values to it by calling  
. Many C++ programmers don’t like this style, and the next major revision to the C++ language 

will permit a more graceful initialization method:

You may be using a compiler that conforms to the new standard. Even if the standard is not yet 
released, your compiler may implement the new syntax as an extension. Some compiler vendors are experi-
menting with language features as part of the effort to revise the standard. If you have a new compiler, give 
the new syntax a whirl, and see how you like it.

This book covers the current standard, so all the examples will work even if your compiler obeys the 
current language standard, but a little extra credit never hurts, so feel free to explore some of the new lan-
guage features that I will mention along the way.

A ’s iterators allow increment and decrement. Using increment and decrement 
operators on iterators, write a program that reads integers from the standard input into 
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a vector, reverses the order of the vector, and writes the result. (No fair peeking in a language
reference and using the  algorithm. Use two iterators: one pointing to the start 
of the vector, and the other pointing to the end. Stop the loop when the iterators meet. Make 
sure they don’t pass each other, and make sure your program does not try to dereference the 
one-past-the-end iterator.)

Test your program on input with both an even and an odd number of integers. Compare 
your program with the one in Listing 10-3.

Listing 10-3. Reversing the Input Order

The  iterator points to the beginning of the  vector, and  initially points to 
one-past-the-end. If the vector is empty, the  loop terminates without executing the loop 
body. The loop body decrements , so it points to an actual element of the vector. If the vec-
tor contains an even number of elements, the  condition is true, so  and  swap 
values, and the program advances  one position.

Notice that the program is careful to compare  after each increment or dec-
rement operation. If the program had only one comparison, it would be possible for 
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and  to pass each other. The loop condition would never be true, and the program would 
exhibit undefined behavior, so the sky would fall, the earth would swallow me, or worse.

Also note how the  loop has an empty postiteration part. The iteration logic appears in 
different places in the loop body, which is not the preferred way to write a loop, but is neces-
sary in this case.

You can rewrite the loop so the postiteration logic appears only in the loop header. Some 
programmers argue that distributing the increment and decrement in the loop body makes 
the loop harder to understand, and in particular, harder to prove the loop terminates correctly. 
On the other hand, cramming everything in the loop header makes the loop condition espe-
cially tricky to understand, as you can see in Listing 10-4.

Listing 10-4. Rewriting the  Loop

To keep all the logic in the loop header, it was necessary to use a new operator: . You 
will learn more about this operator in the next Exploration; meanwhile, just believe that it 
implements a logical operation and keep reading.

Most experienced C++ programmers will probably prefer Listing 10-4, whereas most 
beginners will probably prefer Listing 10-3. Hiding a decrement in the middle of a condition
makes the code harder to read and understand. It’s too easy to overlook the decrement. As you 
gain experience with C++, however, you will become more comfortable with increments and 
decrements, and Listing 10-4 will start to grow on you.
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Note I prefer Listing 10-3 over Listing 10-4. I really don’t like to bury increment and decrement operators 
in the middle of a complicated condition.

So what else would experienced C++ programmers do? Because they have broader knowl-
edge of the C++ standard library, they would make better use of it. In particular, they would 
use the  algorithm, which reverses the elements in a range.

Another idea is to use , which you learned about in Exploration 9. This 
time you will use it a little differently. Instead of using  and the  algorithm, 
Listing 10-5 calls the  member function, which copies values from any iterator range 
into the vector. The values are inserted before the position given by the first argument  
(  in this case).

Listing 10-5. Taking Advantage of the Standard Library

As you learn more C++, you will find other aspects of this program that lend themselves 
to improvement. I encourage you to revisit old programs and see how your new techniques 
can often simplify the programming task. I’ll do the same as I revisit examples throughout this 
book.

Listing 10-4 introduced the  operator. The next Exploration takes a closer look at this 
operator as well as other logical operators and their use in conditions.
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Conditions and Logic

You first met the  type in Exploration 2. This type has two possible values:  and 
, which are reserved keywords (unlike in C). Although most Explorations have not needed 

to use the  type, many have used logical expressions in loop and f-statement conditions. 
This Exploration examines the many aspects of the  type and logical operators.

I/O and bool
C++ I/O streams permit reading and writing  values. By default, streams treat them as 
numeric values:  is  and  is . The manipulator  (declared in )
tells a stream to interpret  values as words. By default, the words are  and .
(In Exploration 17, you’ll discover how to use a language other than English.) You use the 

 manipulator the same way you do any other manipulator (as you saw in 
Exploration 8). For an input stream, use an input operator with the manipulator.

Write a program that demonstrates how C++ formats and prints  values, numeri-
cally and textually.

Compare your program with Listing 11-1.

Listing 11-1. Printing  Values
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How do you think C++ handles  values for input?

_________________________________________________________________________________

Write a program to test your assumptions. Were you correct? ________________ Explain 
how an input stream handles  input:

_________________________________________________________________________________

_________________________________________________________________________________

By default, when an input stream needs to read a  value, it actually reads an integer, 
and if the integer’s value is , the stream interprets that as true. The value  is false, and any 
other value results in an error 

With the  manipulator, the input stream requires the exact text  or 
. Integers are not allowed, nor are any case differences. The input stream accepts only 

those exact words.
Use the  manipulator to revert to the default numeric Boolean values. 

Thus, you can mix alphabetic and numeric representations of  in a single stream:

Reading and writing  values does not actually happen all that often in most programs, 
but you needed to learn how to write  values before you can continue this Exploration.

Boolean Type
C++ automatically converts many different types to , so you can use integers, I/O stream 
objects, and other values whenever you need a , such as in a loop or f-statement condi-
tion. You can see this for yourself in Listing 11-2.

Listing 11-2. Automatic Type Conversion to 
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Predict the output from Listing 11-2:

_________________________________________________________________________________

Check your answer. Were you right? ________________
You may have been fooled by lines 18 through 21. C++ does not interpret the contents of 

string literals to decide whether to convert the string to  or . All character strings are 
, even empty ones. (The C++ language designers did not do this to be perverse. There’s 

a good reason that strings are , but you will need to learn quite a bit more C++ in order to 
understand why.)

On the other hand, character literals are completely different from string literals. The 
compiler converts the escape character  to . All other characters are .

Recall from many previous examples (especially in Exploration 3) that loop conditions 
often depend on an input operation. If the input succeeds, the loop condition is . What 
is actually happening is that C++ knows how to convert a stream object (such as ) to 

. Every I/O stream keeps track of its internal state, and if any operation fails, the stream 
remembers that fact. When you convert a stream to , if the stream is in a failure state, the 
result is . Not all complex types can be converted to , however.

What do you expect to happen when you compile and run Listing 11-3?

_________________________________________________________________________________

Listing 11-3. Converting a  to 
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The compiler reports an error because it does not know how to convert  to 
.

Note If you think the standard library should support such a conversion, consider how you would define 
the conversion. Would it be like character strings: everything is ? That doesn’t seem particularly use-
ful, so you would probably choose to interpret the string. Perhaps  and  could be , and 
everything else would be . So should  be , also? What about ? Or ? Or 

? Such decisions are best left to the application programmer (who can use the member
of  if he wants to force the issue), not the language designer.

What about ? Do you think C++ defines a conversion from  to 
bool? ________________ Write a program to test your hypothesis. What is your conclusion?

_________________________________________________________________________________

This is another case in which no general solution is feasible. Should an empty vector 
be  whereas all others are ? Maybe a  that contains only  ele-
ments should be . Only the application programmer can make these decisions, so the 
C++ library designers wisely chose not to make them for you; therefore you cannot convert 

 to . However, there are ways of obtaining the desired result by using member 
functions.

Logic Operators
Real-world conditions are often more complicated than merely converting a single value to 

. To accommodate this, C++ offers the usual logical operators: , , and  (which are 
reserved keywords). They have their usual meaning from mathematical logic, namely that 

 is  unless both operands are ,  is  unless both operands are , and 
inverts the value of its operand.

More important, however, is that the built-in  and  operators do not evaluate their 
right-hand operand unless they need to. The  operator needs to evaluate its right-hand
operand only if the left-hand operand is . (If the left-hand operand is , the entire 
expression is , and there is no need to evaluate the right-hand operand.) Similarly, the 
operator evaluates its right-hand operand only if the left-hand operand is . Stopping the 
evaluation early like this is known as short-circuiting.

For example, suppose you are writing a simple loop to examine all the elements of a vec-
tor to determine whether they are all equal to zero. The loop ends when you reach the end of 
the vector or when you find an element not equal to zero.

Write a program that reads numbers into a vector, searches the vector for a non-zero
element, and prints a message about whether the vector is all zero.

You can solve this problem without using a logical operator, but try to use one, just for 
practice. Take a look at Listing 11-4 to see one way to solve this problem.
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Listing 11-4. Using Short-Circuiting to Test for Non-Zero Vector Elements

Line 15 is the key. The iterator advances over the vector and tests for zero-valued
elements.

What happens when the iterator reaches the end of the vector?

_________________________________________________________________________________

The condition  becomes  at the end of the vector. Because of 
short-circuiting, C++ never evaluates the  part of the expression, which is good.

Why is this good? What would happen if short-circuiting did not take place?

_________________________________________________________________________________

_________________________________________________________________________________

Imagine that  is ; in other words the value of  is .
That means  is just like , which is bad—really bad. You are not allowed to 
dereference the one-past-the-end iterator. If you are lucky, it would crash your program. If you 
are unlucky, your program will continue to run, but with completely unpredictable and erro-
neous data; and therefore, unpredictable and erroneous results.

Short-circuiting guarantees that C++ will not evaluate  when  equals ,
which means  will always be valid when the program dereferences it, which is good. Some 
languages (such as Ada) use different operators for short-circuiting and non–short-circuiting
operations. C++ does not. The built-in logical operators always perform short-circuiting, so 
you never accidentally use non–short-circuiting when you intended to use the short-circuiting
operator.
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Old-Fashioned Syntax
The logical operators have symbolic versions:  for ,  for , and  for . The key-
words are clearer, easier to read, easier to understand, and less error-prone. That’s right, less 
error-prone. You see,  means , but  is also an operator. Similarly,  is a valid operator. 
Thus, if you accidentally write  instead of , your program will compile and even run. It 
might seem to run correctly for a while, but it will eventually fail because  and  mean dif-
ferent things. (You’ll learn about  and  later in this book.) New C++ programmers aren’t the 
only ones to make this mistake. I’ve seen highly experienced C++ programmers write  when 
they mean  or  instead of . Avoid this error by using only the keyword logical operators.

I was hesitant about even mentioning the symbolic operators, but I can’t ignore them. 
Most C++ programs use the symbolic operators instead of the keyword equivalents. Most 
C++ programmers, having grown up with the symbols, prefer to continue to use the symbols 
over the keywords. This is your chance to become a trend-setter. Eschew the old-fashioned,
harder-to-read, harder-to-understand, error-prone symbols, and embrace the keywords.

Comparison Operators
The built-in comparison operators always yield  results, regardless of their operands. 
You have already seen  and  for equality and inequality. You also saw  for less than, and 
you can guess that  means greater than. Similarly, you probably already know that  means 
less-than-or-equal and  means greater-than-or-equal.

These operators produce the expected results when you use them with numeric operands. 
You can even use them with vectors of numeric types.

Write a program that demonstrates how  works with a vector of . (If you’re having 
trouble writing the program, take a look at Listing 11-5.) What are the rules that govern  for 
a vector?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

C++ compares vectors at the element level. That is, the first elements of two vectors are 
compared. If one element is smaller than the other, its vector is considered less than the other. 
If one vector is a prefix of the other (that is, the vectors are identical up to the length of the 
shorter vector), the shorter vector is less than the longer one.

Listing 11-5. Comparing Vectors
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C++ uses the same rules when comparing  types, but not when comparing two 
character string literals.

Write a program that demonstrates how C++ compares two  objects by com-
paring their contents.

Compare your solution with mine in Listing 11-6.

Listing 11-6. Demonstrating How C++ Compares Strings
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Testing how C++ compares quoted strings is more difficult. Instead of using the contents 
of the string, the compiler uses the location of the strings in memory, which is a detail of the 
compiler’s internal workings and has no bearing on anything practical. Thus, unless you know 
how the compiler works, you cannot predict how it will compare two quoted strings. In other 
words, don’t do that. Make sure you create  objects before you compare strings. 
It’s okay if only one operand is . The other can be a quoted string, and the com-
piler will automatically create a  from the quoted string, as demonstrated in the 
following example:

The next Exploration does not relate directly to Boolean logic and conditions. Instead, it 
shows how to write compound statements, which you need in order to write any kind of useful 
conditional statement.
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Compound Statements

You have already used compound statements (that is, lists of statements enclosed in curly 
braces) in many programs. Now it’s time to learn some of the special rules and uses for com-
pound statements, which are also known as blocks.

Statements
C++ has some hairy, scary syntax rules. By comparison though, the syntax for statements is 
downright simplistic. The C++ grammar defines most statements in terms of other statements. 
For example, the rule for  statements is:

In this example, bold elements are required, such as the  keyword. Italic elements 
stand for other syntax rules. As you can likely deduce from the example, a  statement can 
have any statement as the loop body, including another  statement.

The reason most statements appear to end with a semicolon is because the most funda-
mental statement in C++ is just an expression followed by a semicolon.

This kind of statement is called an expression statement.
I haven’t discussed the precise rules for expressions yet, but they work the way they do in 

most other languages, with a few differences. Most significant is that assignment is an expres-
sion in C++ (as it is in C, Java, C#, etc., but not in Pascal, Basic, Fortran, etc.). Consider the 
following:

This example demonstrates a single  statement. Part of the  statement is 
another statement: in this case, an expression statement. The expression in the expression 
statement is . Expressions in expression statements are often assignments or 
function calls, but the language permits any expression. The following, therefore, is a valid
statement:

85
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What do you think happens if you use this statement in a program?

_________________________________________________________________________________

Try it. What actually happens?

_________________________________________________________________________________

Modern compilers are usually able to detect statements that serve no useful purpose and 
eliminate them from the program. Typically, the compiler tells you what it’s doing, but you 
might need to supply an extra option to tell the compiler to be extra picky. For example, try the 

 option for g++ or  for Microsoft Visual C++. (That’s Wall as in all warnings, not the 
thing holding up your roof.)

The syntax rule for a compound statement is

where  means zero-or-more occurrences of the preceding rule ( ). Notice that the 
closing curly brace has no semicolon.

How does C++ parse the following?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Once again, you have a  statement, so the loop body must be a single statement. In 
this example, the loop body is a compound statement. The compound statement consists of 
two expression statements. Figure 12-1 shows a tree view of the same information.
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Figure 12-1. Simplified parse tree for C++ statements

Consider the body of , such as the one in Listing 12-1. What do you see? That’s right, 
it’s a compound statement. It’s an ordinary block, and it follows the same rules as any other 
block. In case you were wondering, the body of  must be a compound statement. This 
is one of the few circumstances in which C++ requires a specific kind of statement, instead of 
allowing any statement whatsoever. 
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Find and fix the errors in Listing 12-1. Visually locate as many errors as you can by read-
ing the code. When you think you found and fixed them all, try compiling and running the 
program.

Listing 12-1. Finding Statement Errors

Record all the errors in Listing 12-1:

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Did you find them all without the compiler’s help? ________________
The errors are:

For extra credit, which errors are not syntax violations (the compiler will not alert you to 
them) and do not affect the program’s behavior?

_________________________________________________________________________________

_________________________________________________________________________________

the extra semicolon represents an empty, do-nothing statement, called a null statement
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a statement sometimes has a use in a loop, especially a  loop that does all its work in the 

for the  statement. The next statement is a compound statement, which is followed by an 
, which has no corresponding , hence the error. Every  must be a counterpart to 

an earlier  in the same statement. In other words, every  condition must be followed by 
exactly one statement then by an optional  keyword and another statement. You cannot 
use  in any other way.

As written, the 
a compound statement, and another null statement. The solution is to delete the null state-

The statements that make up a compound statement can be any statements, including 
other compound statements. The next section explains why you might want to nest a com-
pound statement within another compound statement.

Local Definitions and Scope
Compound statements do more than simply group multiple statements into a single state-
ment. You can also group definitions within the block. Any variable that you define in a block
is visible only within the confines of the block. The region where you can use a variable is 
known as the variable’s scope. A good programming practice is to limit the scope to as small 
a region as possible. Limiting the scope of a variable serves several purposes:

Preventing mistakes: You can’t accidentally use a variable’s name outside of its scope.

Communicating intent: Anyone who reads your code can tell how a variable is used. 
If variables are defined at the broadest scope possible, whoever reads your code must 
spend more time and effort trying to determine where different variables are used.

Reusing names: How many times can you use the variable  as a loop control variable? 
You can use and reuse it as often as you like, provided each time you limit the vari-
able’s scope to its loop.

Listing 12-2 shows some examples of local definitions. The lines highlighted in bold indi-
cate local definitions.

Listing 12-2. Local Variable Definitions
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Listing 12-2 has a lot of new functions and features, so let’s look at the code one section at 
a time.

The definition of  is a local definition in a block. True, almost all your definitions have 
been at this outermost level, but a compound statement is a compound statement, and any 
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definition in a compound statement is a local definition. That begs the question of whether 
you can define a variable outside of all blocks. The answer is yes, but you rarely want to. C++ 
permits global variables, but no program in this book has needed to define any yet. I’ll cover 

A  loop has its own special scope rules. As you learned in Exploration 7, the initializa-
tion part of a  loop can, and often does, define a loop control variable. The scope of that 
variable is limited to the  loop, as though the  statement was enclosed in an extra set of 
curly braces.

The  variable is also local to the  loop’s body. If you try to use this variable outside 
of the loop, the compiler issues an error message. In this case, you have no reason to use this 
variable outside the loop, so define the variable inside the loop.

The  algorithm performs a binary search that tries to find a value in a range of 
sorted values. It returns an iterator that points to the first occurrence of the value in the range, 
or if the value is not found, the position where you can insert the value and keep the range in 
order. This is exactly what this program needs to sort the  vector.

The  member function deletes an element from a vector, reducing the vector’s size 
by one. Pass an iterator to  to designate which element to delete, and save the return 
value, which is an iterator that refers to the new value at that position in the vector. The 
function inserts a value (the second argument) just before the position designated by an itera-
tor (the first argument).

You can define more than one variable at a time by separating the variables with 
a comma. Each variable gets its own initializer.

Notice how you can use and reuse the name . Each loop has its own distinct variable 
named . Each  is local to its loop. If you were to write sloppy code and fail to initialize 

, the variable’s initial value would be junk. It is not the same variable as the one defined 
earlier in the program, so its value is not the same as the old value of the old variable.

The  variable holds a separator string to print between elements when printing 
the vector. It too is a local variable, but local to the  program’s block. However, by defining 
it just before it is used, you communicate the message that this variable is not needed earlier 
in . It helps prevent mistakes that can arise if you reuse a variable from one part of  in 
another part.

Another way you can help limit the scope of variable such as  is to define it in 

loops with calls to standard algorithms, which is a better way to write C++ programs when you 
are not trying to make a point.)

Listing 12-3. Local Variable Definitions in a Nested Block
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Most C++ programmers nest blocks infrequently. As you learn more C++, you will learn 
a variety of techniques that improve on nested blocks and keep your  program from look-
ing so cluttered.

Definitions in for Loop Headers
What if you did not define loop control variables inside the  loop header, but defined them 
outside the loop, instead? Try it.

Rewrite Listing 12-2 so you don’t define any variables in the  loop headers.
What do you think? Does the new code look better or worse than the original? _________ 

Why?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Personally, I find  loops can become cluttered very easily. Nonetheless, keeping loop 
control variables local to the loop is critical for clarity and code comprehension. When faced 
with a large, unknown program, one of the difficulties you face in understanding that program 
is knowing when and how variables can take on new values. If a variable is local to a loop, you 
know the variable cannot be modified outside the loop. That is valuable information. If you 
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Listing 12-4. Mystery Function
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Well, that wasn’t too hard, was it? After all, you recently finished reading Listing 12-2,

The difficulty is in keeping track of the values of  and , and ensuring that they have the cor-
rect value at each step of the program. Try compiling and running the program. Record your 
observations:

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

What went wrong?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

I made a mistake and wrote  instead of . Congratulations if you spotted this 
error before you ran the program. If the variables had been properly defined local to their 
respective scopes, this error could never have occurred.

The next Exploration introduces file I/O, so your exercises can read and write files instead 
of using console I/O. I’m sure your fingers will appreciate it.



E X P L O R A T I O N  1 3

Introduction to File I/O

Reading from standard input and writing to standard output works fine for many trivial 
programs, and it is a standard idiom for UNIX and related operating systems. Nonetheless, 
real programs must be able to open named files for reading, writing, or both. This Exploration 
introduces the basics of file I/O. Later Explorations will tackle more sophisticated I/O issues.

Reading Files
The most common file-related task in these early Explorations will involve reading from a file
instead of from the standard input stream. One of the greatest benefits of this is it saves a lot of 
tedious typing. Some IDEs make it difficult to redirect input and output, so it’s easier to read 
from a file and sometimes write to a file. Listing 13-1 shows a rudimentary program that reads 
integers from a file named list1301.txt and writes them, one per line, to the standard output 
stream. If the program cannot open the file, it prints an error message.

Listing 13-1. Copying Integers from a File to Standard Output

95
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The  header declares , which is the type you use to read from a file.
To open a file, simply name the file in ’s initializer. If the file cannot be opened, the 

 object is left in an error state; a condition for which you can test using an  state-
ment. When you are done reading from the file, call the  member function. After 
closing the stream, you cannot read from it any more.

Once the file is open, read from it the same way you read from . All the input 
operators that are declared in  work equally well for an  as they do for 

.
The  (declared in ) function prints an error message. If the file can-

not be opened, the exact reason is saved in a global variable, and  uses that variable to 
decide which message to print. It also prints its argument.

Run the program when you know the input file does not exist. What message does the 
program display?

_________________________________________________________________________________

If you can, create the input file then change the protection on the file so you can no longer 
read it. Run the program.

What message do you get this time?

_________________________________________________________________________________

Writing Files
As you have probably guessed, to write to a file, you define an  object. To open the file, 
simply name the file in the variable’s initializer. If the file does not exist, it will be created. If 
the file does exist, its old contents are discarded in preparation for writing new contents. If the 
file cannot be opened, the  object is left in an error state, so remember to test it before 
you try to use it. Use an  object the same way you use .

Modify Listing 13-1 to write the numbers to a named file. This time, name the input 
file list1302.in and name the output file list1302.out. Compare your solution with mine in 
Listing 13-2.

Listing 13-2. Copying Integers from a Named File to a Named File
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Notice that my program no longer includes . Remember that 
declares the names  and . Listing 13-2 doesn’t use these names, therefore 
it doesn’t need the header. It still needs  for the  operator and  for the 
operator. The  type is declared in .

The program opens the input file first. If that succeeds, it opens the output file. If the order 
were reversed, the program might create the output file then fail to open the input file, and the 
result would be a wasted, empty file. Always open input files first.

Also notice that the program does not close the input file if it cannot open the output file. 
Don’t worry: it closes the input file just fine. When  is destroyed at the end of , the file is 
automatically closed.

I know what you’re thinking: “If  is automatically closed, why call  at all? Why not 
let  close automatically in all cases?” For an input file, that’s actually okay. Feel free to delete 
the  statement from the program. For an output file, however, doing so is unwise.

Some output errors do not arise until the file is closed, and the operating system flushes 
all its internal buffers and does all the other clean up it needs to do when closing a file. Thus, 
an output stream object might not receive an error from the operating system until you call 

. Detecting and handling these errors is an advanced skill. The first step toward devel-
oping that skill is to adopt the habit of calling  explicitly for output files. When it comes 
time to add the error-checking, you will have a place where you can add it.

Try running the program in Listing 13-2 in various error scenarios. Create the output file, 
list1302.out, and then use the operating system to mark the file as read-only. What happens?

_________________________________________________________________________________

If you noticed that the program does not check whether the output operations succeed, 
congratulations for having sharp eyes! C++ offers a few different ways to check for output 
errors, but they all have drawbacks. The easiest is to test whether the output stream is in an 
error state. You can check the stream after every output operation, but that approach is cum-
bersome, and few people write code that way. Another way lets the stream check for an error 
condition after every operation, and alert your program with an exception. You’ll learn about 
this technique in Exploration 43. A frighteningly common technique is to ignore output errors 
altogether. As a compromise, I recommend testing for errors after calling . Listing 13-3
shows the final version of the program.
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Listing 13-3. Copying Integers, with Minimal Error-Checking

Basic I/O is not difficult, but it can quickly become a morass of gooey, complicated code 
when you start to throw in sophisticated error-handling, international issues, binary I/O, and 
so on. Later Explorations will introduce most of these topics, but only when the time is ripe. 
For now, however, go back to earlier programs and practice modifying them to read and write 
named files instead of the standard input and output streams. For the sake of brevity (if for no 
other reason), the examples in the book will continue to use the standard I/O streams. If your 
IDE interferes with redirecting the standard I/O streams, or if you just prefer named files, you 
now know how to change the examples to meet your needs.
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The Map Data Structure

Now that you understand the basics, it’s time to move on to more exciting challenges. Let’s 
write a real program—something non-trivial, but still simple enough to master this early in 
the book. Your task is to write a program that reads words and counts the frequency of each 
unique word. For the sake of simplicity, a word is a string of non-space characters separated 
by whitespace. Be aware, however, that by this definition, words end up including punctuation 
characters, but we’ll worry about fixing that problem later.

This is a complicated program, touching on everything you’ve learned about C++ so far. 
If you want to exercise your new understanding of file I/O, read from a named file. If you 
prefer the simplicity, read from the standard input. Before jumping in and trying to write 
a program, take a moment to think about the problem and the tools you need to solve it. Write
pseudo-code for the program. Try to write C++ code where you can, and make up whatever 
else you need to tackle the problem. Keep it simple: and don’t dwell on trying to get syntax 
details correct.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

99
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Using Maps
The title of this Exploration tells you what C++ feature will help provide an easy solution to 
this problem. What C++ calls a map, some languages and libraries call a dictionary or associa-
tion. A map is simply a data structure that stores pairs of keys and values, indexed by the key. 
In other words, it maps a key to a value. Within a map, keys are unique. Thus, the heart of 
the program is a map that stores strings as keys and number of occurrences as the associated 
value for each key.

Naturally, your program needs the  header. The map datatype is called . To 
define a map, you need to specify the key and value type within angle brackets (separated by 
a comma), as shown in the following example:

You can use almost any type as the key and value types, even another map. As with ,
if you do not initialize a , it starts out empty.

The simplest way to use a map is to look up values using square brackets. For example, 
 returns the value associated with the key . If the key is not present in the 

map, it is added with an initial value of zero. If the value type were , the initial 
value would be an empty string.

Armed with this knowledge, you can write the first part of the program—collecting the 
word counts—as shown in Listing 14-1. (Feel free to modify the program to read from a named
file, as you learned in Exploration 13.)

Listing 14-1. Counting Occurrences of Unique Words

In Listing 14-1, the  operator increments the count that the program stores in . In 
other words, when  retrieves the associated value, it does so in a way that lets you 
modify the value. You can use it as a target for an assignment or apply the increment or decre-
ment operator.

For example, suppose you wanted to reset a count to zero.
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That was easy. Now all that’s left to do is to print the results. Like vectors, maps also use 
iterators, but because an iterator refers to a key/value pair, they are a little more complicated 
to use than a vector’s iterators.

Iterators
The best way to extract information from a  is to use iterators. A  iterator refers to one 
element of the : that is, one pair, which consists of a key and its associated value.

The value of a  iterator is a  object. It has two parts, named  and . The 
 part is the key and the  part is the value.

Note The two parts of the  iterator’s value are not named  and  because the 
type is a generic part of the C++ library. The library uses this type in several different places. Thus, the 
names of the parts of a  are also generic, and not tied specifically to .)

As you know, the  operator dereferences an iterator, and so returns the  object. Use 
a dot ( ) operator to access a member of the . C++ has one twist, however: the dot opera-
tor has higher precedence than , so the compiler thinks  means ,
which doesn’t work. Instead, you must write  to make sure that the compiler 
dereferences the iterator before accessing the  member. Some programmers find that 
a little ugly and hard to read. They prefer the shorthand, st. Both mean the same 
thing; choose the style that you prefer, and stick with it.

The next question is what to do with each . To keep things simple, print the output 
as the key, followed by a tab character, followed by the count, all on one line. Putting all these 
pieces together, you end up with the finished program, as presented in Listing 14-2.

Listing 14-2. Printing Word Frequencies
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Recall from Exploration 8 that  is a shorthand that lets us drop the 
 prefix from standard library names.

Using the knowledge you gained in Exploration 8, you know how to format the output 
as two neat columns. All that is required is to find the size of the longest key. In order to 
right-align the counts, you can try to determine the number of places required by the largest 
count, or you can simply use a very large number, such as 10.

Rewrite Listing 14-2 to line up the output neatly, according to the size of the longest 
key.

Naturally, you will need to write another loop to visit all the elements of  and test 
the size of each element. In Exploration 9, you learned that  has a  member func-
tion that returns the number of elements in the vector. Would you be surprised to learn that 

 and  also have  member functions? The designers of the C++ library did their 
best to be consistent with names. The  member function returns an integer of type 

.

Tip Remember  from Exploration 9? If not, go back and refresh your memory; Exploration 9 
has some important admonitions about .

Compare your program with Listing 14-3.

Listing 14-3. Aligning Words and Counts Neatly
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If you want some sample input, try the file explore14.txt, which you can download from 
this book’s web site. Notice how the word is left-aligned and the count is right-aligned. We 
expect numbers to be right-aligned, and words are customarily left-aligned (in Western cul-
tures). And remember  from Exploration 8? That simply means  is a constant.

Searching in Maps
A  stores its data in sorted order by key. Searching in a , therefore, is pretty fast (logarith-
mic time). Because a  keeps its keys in order, you can use any of the standard binary search 
algorithms (such as , to which you were introduced in Exploration 12), but even 
better is to use ’s member functions. These member functions have the same names as the 
standard algorithms, but can take advantage of their knowledge of a ’s internal structure. 
The member functions also run in logarithmic time, but with less overhead than the standard 
algorithms.

For example, suppose you want to know how many times the word “the” appears in 
an input stream. You can read the input and collect the counts in the usual way then call 

 to see if  is in the , and if so, get an iterator that points to its key/value 
pair. If the key is not in the map,  returns the  iterator. If the key is present, you can 
extract the count. You have all the knowledge and skills you need to solve this problem, so go 
ahead and write the program to print the number of occurrences of the word “the”. Once 
again, you can use explore14.txt as sample input. If you don’t want to use redirection, modify 
the program to read from the explore14.txt file.

What count does your program print when you provide this file as the input? __________ 
The program presented in Listing 14-4 detects 10 occurrences.
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Listing 14-4. Searching for a Word in a Map

I don’t know about you, but I find  to be unwieldy. Throw in 
the  prefixes, and it becomes downright burdensome. Fortunately, C++ (like C) offers 
a way out: type synonyms, which just happens to be the subject of the next Exploration.
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Type Synonyms

Using types such as  or 
 can be clumsy, prone to typographical errors, and just plain annoying to type 

and read. Fortunately, C++ lets you define short synonyms for clumsy types. You can also 
use type synonyms to provide meaningful names for generic types. (The standard library has 
quite a few synonyms of the latter variety.) These synonyms are often referred to as typedefs 
because the keyword you use to declare them is .

typedef Declarations
C++ inherits the basic syntax and semantics of  from C, so you might already be famil-
iar with this keyword. If so, please bear with me while I bring other readers up to speed.

The idea of a  is to create a synonym, or alias, for another type. There are two com-
pelling reasons for creating type synonyms:

 as a type synonym for .

 as 
a synonym for  to emphasize that variables of type  store a height value. This 
information helps the human reader understand the program.

The basic syntax for a  declaration is like defining a variable, except you start with 
the  keyword, and the name of the type synonym takes the place of the variable name. 

Revisit Listing 14-3 and simplify the program by judicious use of  declarations. 
Compare your result with Listing 15-1.

Listing 15-1. Counting Words, with a Clean Program That Uses 

105
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I like the new version of this program. The  loops are much easier to read when using 
a  name instead of the full iterator type name. You might think  is superfluous, 
but I wanted to demonstrate as many uses of  as I could without being ridiculous.

Common typedefs
The standard library makes heavy use of typedefs, as you have already seen. For example, 

 is a typedef for an integer type. You don’t know which integer 
type (C++ has several, which you will learn about in Exploration 23), nor does it matter. All you 
need to know is that  is the type to use if you want to store a vector size or index in 
a variable.

Most likely,  is a typedef for , which is itself a typedef. The 
typedef is a synonym for an integer type that is suitable for representing a size. In particular, 
C++ has an operator, , which returns the size in bytes of a type or object. The result of 
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 is an integer of type , however a compiler-writer chooses to implement 
and .

Note A “byte” is defined as the size of type . So, by definition,  == 1. The size of 
other types depends on the implementation. On most popular desktop workstations,  == 4, but 
2 and 8 are also likely candidates.

That was short and sweet, wasn’t it? Now you can return to the problem of counting 
words. This program has a number of usability flaws.

What can you think of to improve the word-counting program?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

At the top of my list are the following two items:

In order to implement these additional features, you need to learn some more C++. For 
example, the C++ standard library has functions to test whether a character is punctuation, 
a digit, an uppercase letter, a lowercase letter, and so on. The next Exploration begins by 
exploring characters more closely. 
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Characters

In Exploration 2, I introduced you to character literals in single quotes, such as  to end 
a line of output, but I have not yet taken the time to explain these fundamental building 
blocks. Now is the time to explore characters in greater depth.

Character Type
The  type represents a single character. Internally, all computers represent characters as 
integers. The character set defines the mapping between characters and numeric values. Com-
mon character sets are ISO 8859-1 (also called Latin-1) and ISO 10646 (same as Unicode), but 
many, many, other character sets are in wide use.

The C++ standard does not mandate any particular character set. The literal  represents 
the digit 4, but the actual value that the computer uses internally is up to the implementation. 
You should not assume any particular character set. For example, in ISO 8859-1 (Latin-1),
has the value 52, but in EBCDIC, it has the value 244.

Similarly, given a numeric value, you cannot assume anything about the character that 
value represents. If you know a  variable stores the value 169, the character may be 
(EBCDIC),  (Unicode), or  (ISO 8859-5).

C++ does not try to hide the fact that a character is actually a number. You can compare 
 values with  values, assign a  to an  variable, or do arithmetic with s. Per-

forming arithmetic is fraught with danger unless you know the actual character set, but C++ 
guarantees that any character set your compiler and library support represents digit charac-
ters with contiguous values, starting at . Thus, for example, the following is true for all C++ 
implementations:

Read Listing 16-1. What does the program do? (Hint: the  member function reads 
a single character from the stream. It does not skip over white space or treat any character 
specially. Extra hint: what happens if you subtract  from a character that you know to be 
a digit?)

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________
109
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Listing 16-1. Working and Playing with Characters

Briefly, this program reads numbers from the standard input and echoes the values to the 
standard output. If the program reads any invalid characters, it alerts the user (with , which 
I describe later in this Exploration) and ignores the rest of the line of input. Leading and trail-
ing blank and tab characters are allowed. The program prints the saved numeric value only 
after reaching the end of an input line. This means if a line contains more than one valid num-
ber, the program prints only the last value.

The  function takes a character variable as an argument. It reads one character from 
the input stream then stores the character in that variable. The  function does not skip over 
white space. When you use  as a loop condition, it returns  if it successfully reads a 
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character, and the program should keep reading. It returns  if no more input is available 
or some kind of input error occurred.

All the digit characters have contiguous values, so the inner loop tests to determine if 
a character is a digit character by comparing it to the values for  and . If it is a digit, sub-
tracting the value of  from it leaves you with an integer in the range 0 to 9.

The final loop reads characters and does nothing with them. The loop terminates when it 
reads a new line character. In other words, the final loop reads and ignores the rest of the input 
line.

Programs that need to handle white space on their own (such as Listing 16-1) can use ,
or you can tell the input stream not to skip over white space prior to reading a number or any-
thing else. The next section discusses character I/O in more detail.

Character I/O
You just learned that the  function reads a single character without treating white space 
specially. You can do the same thing with a normal input operator, but you must use the 

 manipulator. To restore the default behavior, use the  manipulator 
(declared in ).

After turning off the  flag, the input stream does not skip over leading white space 
characters. For instance, if you were to try to read an integer, and the stream is positioned at 
white space, the read would fail. If you were to try to read a string, the string would be empty, 
and the stream position would not advance. So you need to carefully consider whether to skip 
white space. Typically, you would do that only when reading individual characters.

Remember that an input stream uses the  operator (Exploration 5), even for manipula-
tors. Using  for manipulators seems to break the mnemonic of transferring data to the right, 
but it follows the convention of always using  with an input stream. If you forget, the com-
piler will remind you.

Write a program that reads the input stream one character at a time and echoes the 
input to the standard output stream verbatim. This is not a demonstration of how to copy 
streams, but an example of working with characters. Compare your program with Listing 16-2.

Listing 16-2. Echoing Input to Output, One Character at a Time
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You can also use the  member function, in which case you don’t need the 
manipulator.

Let’s try something a little more challenging. Suppose you need to read a series of points. 
The points are defined by a pair of x, y coordinates, separated by a comma. White space is 
allowed before and after each number and around the comma. Read the points into a vector
of x values and a vector of y values. Terminate the input loop if a point does not have a proper
comma separator. Print the vector contents, one point per line. I know this is a bit dull, but the 
point is to experiment with character input. If you prefer, do something special with the data. 
Compare your result with Listing 16-3.

Listing 16-3. Finding the Points with the Largest x and y Values

The  loop is the key. The loop condition reads an integer and a character and tests 
to determine if the character is a comma before reading a second integer. The loop terminates 
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if the input is invalid or ill-formed or if the loop reaches the end of file. A more sophisticated 
program would distinguish between these two cases, but that’s a side issue for the moment.

Newlines and Portability
You’ve probably noticed that Listing 16-3 and every other program I’ve presented so far, prints 

 at the end of each line of output. We have done so without considering what this really 
means. Different environments have different conventions for end-of-line characters. UNIX 
uses a line feed ( ); MacOS uses a carriage return ( ); DOS and Microsoft Windows 
use a combination of a carriage return followed by a line feed ( ); and some operat-
ing systems don’t use line terminators, but instead have record-oriented files, in which each 
line is a separate record. 

In all these cases, the C++ I/O streams automatically convert a native line ending to 
a single  character. When you print  to an output stream, the library automatically 
converts it to a native line ending (or terminates the record).

In other words, you can write programs that use  as a line ending and not concern 
yourself with native OS conventions. Your source code will be portable to all C++ environ-
ments.

Character Escapes
In addition to , C++ offers several other escape sequences, such as  for horizontal tab. 
Table 16-1 lists all the character escapes. Remember that you can use these escapes in charac-
ter literals and string literals.

Table 16-1. Character Escape Sequences

Escape Meaning

Alert: ring a bell or otherwise signal the user

Backspace

Formfeed

Newline

Carriage return

Horizontal tab

Vertical tab

Literal 

Literal 

Literal 

Literal 

OOO Octal (base 8) character value

XX . . . Hexadecimal (base 16) character value
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The last two items are the most interesting. An escape sequence of one to three octal digits 
(  to ) specifies the value of the character. Which character the value represents is up to the 
implementation.

Understanding all the caveats from the first section of this Exploration, there are times 
when you need to specify an actual character value. The most common is , which is the 
character with value zero, also called a null character, which you may utilize to initialize 
variables. It has some other uses as well, especially when interfacing with C functions and the 
legacy C standard library.

The final escape sequence ( ) lets you specify a character value in hexadecimal. Typi-
cally, you would use two hexadecimal digits, because this is all that fits in the typical, 8-bit

. (The purpose of longer  escapes is for wide characters, the subject of Exploration 52.)
The next section continues the exploration of characters by examining how C++ classifies 

characters according to letter, digit, punctuation, etc.
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Character Categories

Exploration 16 introduced and discussed characters. This Exploration continues that discus-
sion with character classification, which as you will see, turns out to be more complicated than 
you might have expected.

Character Sets
As you learned in Exploration 16, the numeric value of a character, such as , depends on 
the character set. The compiler must decide which character set to use at compile time and at 
runtime. This is typically based on preferences that the end user selects in the host operating 
system.

Character set issues rarely arise for the basic subset of characters—such as letters, digits, 
and punctuation symbols—that are used to write C++ source code. Although it is conceiv-
able that you could compile a program using ISO 8859-1 and run that program using EBCDIC, 
you would need to work pretty hard to arrange such a feat. Most likely, you will find yourself 
using one or more character sets that share some common characteristics. For example, all 
ISO 8859 character sets use the same numeric values for the letters of the Roman alphabet, 
digits, and basic punctuation. Even most Asian character sets preserve the values of these 
basic characters.

Thus, most programmers blithely ignore the character set issue. We use character literals, 
such as  and assume the program will function the way we expect it to, on any system, any-
where in the world—and we are usually right. But not always.

Assuming the basic characters are always available in a portable manner, we can modify 
the word-counting program to treat only letters as characters that make up a word. The pro-
gram would no longer count  and  as two distinct words. The  type offers 
several member functions that can help us: search in strings, extract substrings, and so on.

For example, you can build a string that contains only the letters and any other charac-
ters that you want to consider to be part of a word (such as ). After reading each word from 
the input stream, make a copy of the word, but keep only the characters that are in the string 
of acceptable characters. Use the  member function to try to find each character; 
returns the zero-based index of the character if found, or  if not found.

Using the  function, rewrite Listing 15-1 to clean up the word string prior to insert-
ing it in the map. Test the program with a variety of input samples. How well does it work? 
Compare your program with Listing 17-1.

115
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Listing 17-1. Counting Words: Restricting Words to Letters and Letter-like Characters
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Some of you may have written a program very similar to mine. Others among you— 
particularly those living outside the United States—may have written a slightly different pro-
gram. Perhaps you included other characters in your string of acceptable characters.

For example, if you are French and using Microsoft Windows (and the Windows 1252 
character set), you may have defined the  object as follows:

But what if you then try to compile and run this program in a different environment, par-
ticularly one that uses the ISO 8859-1 character set (popular on UNIX systems)? ISO 8859-1
and Windows 1252 share many character codes, but differ in a few significant ways. In particu-
lar, the characters , , and  are missing from ISO 8859-1. As a result, the program may 
not compile successfully in an environment that uses ISO 8859-1 for the compile-time charac-
ter set.

What if you want to share the program with a German user. Surely that user would want 
to include characters such as , , and  as letters. What about Greek, Russian, and Japa-
nese users?

We need a better solution. Wouldn’t it be nice if C++ provided a simple function that 
would notify us if a character is a letter, without forcing us to hardcode exactly which charac-
ters are letters? Fortunately, it does.

Character Categories
An easier way to write the program in Listing 17-1 is to call the  function (declared in 

). This function indicates whether a character is alphanumeric in the runtime char-
acter set. The advantages of using  is that you don’t need to enumerate all the possible 
alphanumeric characters; you don’t need to worry about differing character sets; and you 
don’t need to worry about accidentally omitting a character from the approved string.

Rewrite Listing 17-1 to call  instead of . The first argument to  is the 
character to test, and the second is . (Don’t worry yet about what that means. Have 
patience: I’ll get to that soon.)

Try running the program with a variety of alphabetic input, including accented characters. 
Compare the results with the results from your original program. The files that accompany 
this book include some samples that use a variety of character sets. Choose the sample that 
matches your everyday character set and run the program again, redirecting the input to that 
file.

If you need help with the program, see my version of the program in Listing 17-2. For the 
sake of brevity, I eliminated the neat-output part of the code, reverting to simple strings and 
tabs. Feel free to restore the pretty output, if you desire.
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Listing 17-2. Testing a Character by Calling 

Now let’s turn your attention to the  argument. The locale directs  to 
the character set it should use to test the character. As you saw in Exploration 16, the charac-
ter set determines the identity of a character, based on its numeric value. A user can change 
character sets while a program is running, so the program must keep track of the user’s actual 
character set, and not depend on the character set that was active when you compiled the 
program.

Download the files that accompany this book and find the text files whose names begin 
with . Find the one that best matches the character set you use every day, and select 
that file as the redirected input to the program. Look for the appearance of the special char-
acters in the output.
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Change  to  in the boldface line of Listing 17-2. Now compile and run 
the program with the same input. Do you see a difference? ________________ If so, what is the 
difference?

_________________________________________________________________________________

_________________________________________________________________________________

Without knowing more about your environment, I can’t tell you what you should expect. 
If you are using a Unicode character set, you won’t actually see any difference. The program 
would not treat any of the special characters as letters, even when you can plainly see they are 
letters. This is due to the way Unicode is implemented, and Exploration 52 will discuss this 
topic in depth.

Other users will notice that only one or two strings make it to the output. Western Europe-
ans who use ISO 8859-1 may notice that  is considered a word. Greek users of ISO 8859-7
will see  as a word.

Power users who know how to change their character sets on the fly can try several dif-
ferent options. You must change the character set that programs use at runtime and the 
character set that your console uses to display text.

What is most noticeable is that the characters the program considers to be letters vary 
from one character set to another. But after all, that’s the idea of different character sets. The 
knowledge of which characters are letters in which character sets is embodied in the locale.

Locales
In C++, a locale is a collection of information pertaining to a culture, region, and language. The 
locale includes information about:

vice versa

 less than, equal to, or greater than ?)

Every C++ program begins with a minimal, standard locale, which is known as the classic
or  locale. The  function returns the classic locale. The unnamed 
locale, ( ), is the user’s preferences that C++ obtains from the host operating 
system. The locale with the empty-string argument is often known as the native locale.

The advantage of the classic locale is that its behavior is known and fixed. If your program 
must read data in a fixed format, you don’t want the user’s preferences getting in the way. By 
contrast, the advantage of the native format is that the user chose those preferences for a rea-
son, and wants to see program output follow that format. A user who always specifies a date as 
day/month/year doesn’t want a program printing month/day/year simply because that’s the 
convention in the programmer’s home country.

Thus, the classic format is often used for reading and writing data files, and the native for-
mat is used to interpret input from the user and to present output directly to the user.
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Every I/O stream has its own  object. To affect the stream’s , call its 
function, passing the  object as the sole argument.

Note You read that correctly: , not , or —given that the  function returns 
a stream’s current locale—or anything else that might be easy to remember. On the other hand,  is 
such an unusual name for a member function, you may remember it for that reason alone.

In other words, when C++ starts up, it initializes each stream with the classic locale as 
follows:

Suppose you want to change the output stream to adopt the user’s native locale. Do this 
using the following statement at the start of your program:

For example, suppose you need to write a program that reads a list of numbers from the 
standard input and computes the sum. The numbers are raw data from a scientific instrument, 
so they are written as digit strings. Therefore, you should continue to use the classic locale to 
read the input stream. The output is for the user’s benefit, so the output should use the native 
locale.

Write the program and try it with very large numbers, so the output will be greater than 
one thousand. What does the program print as its output? ________________

See Listing 17-3 for my approach to solving this problem.

Listing 17-3. Using the Native Locale for Output
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When I run the program in Listing 17-3, in my default locale (United States), I get the fol-
lowing result:

Notice the commas that separate thousands. In some European countries, you might see 
the following instead:

You should obtain a result that conforms to native customs, or at least follows the prefer-
ences that you set in your host operating system.

When you use the native locale, I recommend defining a variable of type  in 
which to store it. You can pass this variable to , , or other functions. By creating 
this variable and distributing copies of it, your program needs to query the operating system 
for your preferences only once, not every time you need the . Thus, the main loop ends 
up looking something like Listing 17-4.

Listing 17-4. Creating and Sharing a Single Locale Object
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The next step toward improving the word-counting program is to ignore case differences, 
so the program does not count the word  as different from . It turns out this problem is 
trickier than it first appears, so it deserves an entire Exploration of its own.
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Case-Folding

Picking up where we left off in Exploration 17, the next step to improving the word-counting
program is to update it so it ignores case differences when counting. For example, the program 
should count  just as it does . This is a classic problem in computer programming. C++ 
offers some rudimentary help, but lacks some important fundamental pieces. This Exploration 
takes a closer look at this deceptively tricky issue.

Simple Cases
Western European languages have long made use of capital (or majuscule) letters and minus-
cule letters. The more familiar terms—uppercase and lowercase—arise from the early days 
of typesetting when the type slugs for majuscule letters were kept in the upper cases of large 
racks containing all the characters used to make a printing plate. Beneath them were the cases, 
or boxes, that stored the minuscule letter slugs.

In the  header, C++ declares the  and  functions. They take a char-
acter as the first argument and a  as the second argument. The return value is a :

 if the character is uppercase (or lowercase, respectively) and  if the character is 
lowercase (or uppercase) or not a letter.

The  header also declares two functions to convert case:  converts 
lowercase to uppercase. If its character argument is not a lowercase letter,  returns 
the character as is. Similarly,  converts to lowercase if the character in question is an 
uppercase letter. Just like the category testing functions, the second argument is a
object.

Now you can modify the word-counting program to fold uppercase to lowercase, 
and count all words in lowercase. Modify your program from Exploration 17, or start with 
Listing 17-4. If you have difficulty, take a look at Listing 18-1.

123
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Listing 18-1. Folding Uppercase to Lowercase Prior to Counting Words

That was easy. So what’s the problem?
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Harder Cases
Some of you—especially German readers—already know the problem. Several languages have 
letter combinations that do not map easily between upper and lowercase, or one character 
maps to two characters. The German eszet, , is a lowercase letter; when you convert it to 
uppercase, you get two characters: . Thus, if your input file contains  and ,
you want them to map to the same word so they’re counted together, but that just isn’t fea-
sible with C++. The way the program currently works, it maps  to , which is 
counted as a different word from . A naïve solution would be to map  to ,
but not all uses of  are equivalent to .

Greek readers are familiar with another kind of problem. Greek has two forms of low-
ercase sigma: use  at the end of a word and  elsewhere. Our simple program maps 

(uppercase sigma) to , so some words in all uppercase will not convert to a form that 
matches its lowercase version.

Sometimes, accents are lost during conversion. Mapping  to uppercase usually yields 
, but may also yield . Mapping uppercase to lowercase has fewer problems in that 

maps to , but what if that  (which maps to , really means , and you want it to 
map to ? The program has no way of knowing the writer’s intentions, so all it can do is map 
the letters it receives.

Some character sets are more problematic than others. For example, ISO 8859-1 has 
a lowercase , but not an uppercase equivalent ( ). Windows 1252, on the other hand, 
extends ISO 8859-1, and one of the new code points is .

Tip Code point is a fancy way of saying “numeric value that represents a character.” Although most pro-
grammers don’t use “code point” in everyday speech, those programmers who work closely with character 
set issues use it all the time, so you may as well get used to it. Mainstream programmers should become 
more accustomed to using this phrase.

In other words, converting case is impossible to do correctly using only the standard C++ 
library.

If you know your alphabet is one that C++ handles correctly, then go ahead and use 
 and . For example, if you are writing a command line interpreter, within which 

you have full control over the commands, and you decide that the user should be able to enter 
commands in any case, simply make sure the commands map correctly from one case to 
another. This is easy to do as all character sets can map the 26 letters of the Roman alphabet 
without any problems.

On the other hand, if your program accepts input from the user and you want to map that 
input to uppercase or lowercase, you cannot and must not use standard C++. For example, if 
you are writing a word processor, and you decide you need to implement some case-folding
functions, you must write or acquire a non-standard function to implement the case-folding
logic correctly. Most likely, you would need a library of character and string functions to 
implement your word processor; case-folding would simply be one small part of this hypo-
thetical library. (See this book’s web site for some links to non-hypothetical libraries that can 
help you.)
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What about our simple program? It isn’t always practical to handle the full, complete, 
correct handling of cases and characters when you just want to count a few words. The 
case-handling code would dwarf the word-counting code.

In this case (pun intended), you must accept the fact that your program will sometimes 
produce incorrect results. Our poor little program will never recognize that  and 
are the same word, but in different cases. You can work around some of the multiple mappings 
(such as with Greek sigma) by mapping to uppercase then to lowercase. On the other hand, 
this can introduce problems with some accented characters. And I still have not touched upon 
the issue of whether  is the same word as . In some locales, the accents are sig-
nificant, which would cause and to be interpreted as two different words. In 
other locales, they are the same word and should be counted together.

In some character sets, accented characters can be composed from separate non-accented 
characters followed by the desired accent. For example, you can write , which is the 
same as .

I hope by now you are completely scared away from manipulating cases and characters. 
Far too many naïve programmers (again, pun intended) become entangled in this web, or 
worse, simply write bad code. I was tempted to wait until much later in the book before throw-
ing all this at you, but I know that many readers will want to improve the word-counting
program by ignoring case, so I decided to tackle the problem early.

Well, now you know better.
That doesn’t mean you can’t keep working on the word-counting program. The next 

Exploration returns to the realm of the realistic and feasible, as I finally show you how to write 
your own functions.
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Writing Functions

At last, it’s time to embark on the journey toward writing your own functions. In this Explo-
ration, you’ll begin by improving the word-counting program you’ve been crafting over the 
past four Explorations, writing functions to implement separate aspects of the program’s 
functionality.

Functions
You’ve been using functions since the very first program you wrote. In fact, you’ve been writ-
ing functions, too. You see,  is a function, and you should view it the same as you would 
any other function (well sort of,  actually has some key differences from ordinary func-
tions, but they needn’t concern you yet).

A function has a return type, a name, and parameters in parentheses. Following that is 
a compound statement, which is the function body. If the function has no parameters, the 
parentheses are empty. Each parameter is like a variable declaration: type and name. Parame-
ters are separated by commas, so you cannot declare two parameters after a single type name. 
Instead you must specify the type explicitly for each parameter.

A function usually has at least one  statement, which causes the function to discon-
tinue execution and return control to its caller. A return statement’s structure begins with the 

 keyword, followed by an expression, and ending with a semicolon, as demonstrated in 
the following example:

You can use a  statement anywhere you need a statement, and you can use as 
many  statements as you need or want. The only requirement is that every execution 
path through the function must have a  statement. Many compilers will warn you if you 
forget.

Some languages distinguish between functions, which return a value, and procedures 
or subroutines, which do not. C++ calls them all functions. If a function has no return value, 
declare the return type as . Omit the value in the  statements in a  function.

You can also omit the  statement entirely. In this circumstance, control returns to 
the caller when execution reaches the end of the function body. Listing 19-1 presents some 
function examples.

127
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Listing 19-1. Examples of Functions
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What does Listing 19-1 do?

_________________________________________________________________________________

_________________________________________________________________________________

The  function reads and discards characters from  until it reaches the 
end of the line or the end of the file. It takes no arguments and returns no values to the caller.

The  function prints a prompt to  then reads a number from 
. It then discards the rest of the input line. Because  is initialized to , if the read fails, 

the function returns . The caller cannot distinguish between a failure and a real  in the input 
stream, so the  function tests  to know when to terminate the loop. (The value 

 is unimportant; feel free to initialize  to any value.) The sole argument to the function is the 
prompt string. The return type is , and the return value is the number read from .

The  function takes two arguments, both of type . It returns nothing: it 
simply prints the results. Notice how it returns early if the input contains no data.

Finally, the  function puts it all together, repeatedly calling  and 
accumulating the data. Once the input ends,  prints the results, which in this example 
are the sum, count, and average of the integers it read from the standard input.

Function Call
In a function call, all arguments are evaluated before the function is called. Each argument is 
copied to the corresponding parameter in the function then the function body begins to run. 
When the function executes a  statement, the value in the statement is copied back to 
the caller, which can then use the value in an expression, assign it to a variable, and so on.

In this book, I try to be careful about terminology: arguments are the expressions in 
a function call, and parameters are the variables in a function’s header. I’ve also seen the 
phrase actual argument used for arguments and formal argument used for parameters. I find
these confusing, so I recommend you stick with arguments and parameters.
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Declarations and Definitions
I wrote the functions in bottom-up fashion because C++ needs to know about a function
before it can compile any call to that function. The easiest way to achieve this in a simple
program is to write every function before you call it—that is, write the function earlier in the 
source file than the point at which you call the function.

If you prefer, you can code in a top-down manner and write  first, followed by the 
functions it calls. The compiler still needs to know about the functions before you call them, 
but you don’t need to provide the complete function. Instead, you provide only what the com-
piler needs: the return type, name, and a comma-separated list of parameters in parentheses. 
Listing 19-2 shows this new arrangement of the source code.

Listing 19-2. Separating Function Declarations from Definitions
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Writing the function in its entirety is known as providing a definition. Writing the function 
header by itself—that is, the return type, name, and parameters, followed by a semicolon—is
known as a declaration. In general, a declaration tells the compiler how to use a name: what 
part of a program the name is (typedef, variable, function, etc.), the type of the name, and 
anything else (such as function parameters) that the compiler needs in order to make sure 
your program uses that name correctly. The definition provides the body or implementation 
for a name. A function’s declaration must match its definition: the return types, name, and the 
types of the parameters must be the same. However, the parameter names can differ.

A definition is also a declaration because the full definition of an entity also tells C++ how 
to use that entity.

The distinction between declaration and definition is crucial in C++. So far, our simple 
programs have not needed to face the difference, but that will soon change. Remember: 
a declaration describes a name to the compiler, and a definition provides all the details the 
compiler needs for the entity you are defining.
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A variable definition notifies the compiler of the variable’s type, name, and possibly its 
initial value. The definition instructs the compiler to set aside memory for the variable, and if 
necessary, to generate code to initialize the variable.

In order to use a variable, such as a function parameter, the compiler needs only the name 
and the type. For a local variable, however, the compiler needs a definition so it knows to set 
aside memory to store the variable. The definition can also provide the variable’s initial value. 
Even without an explicit initial value, the compiler may generate code to initialize the variable, 
such as ensuring that a  or  is properly initialized as empty.

Counting Words, Again
Your turn: rewrite the word-counting program (last seen in Exploration 18), this time mak-
ing use of functions. For example, you can restore the pretty-printing utility by encapsulating 
it in a single function. Here’s a hint: you may want to use the  names in multiple func-
tions. If so, declare them before the first function, following the  directives.

Test the program to ensure that your changes have not altered its behavior.
Compare your program with Listing 19-3.

Listing 19-3. Using Functions to Clarify the Word-Counting Program
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By using functions, you can read, write, and maintain a program in discrete chunks, or 
modules. Instead of being overwhelmed by one long , you can read, understand, and 
internalize one function at a time, and then move on to the next function. The compiler keeps 
you honest by ensuring that the function calls match the function declarations, the function 
definitions and declarations agree, you haven’t mistyped a name, and the function return 
types match the contexts where the functions are called.

The main() Function
Now that you know more about functions, you can answer the question that you may have 
already asked yourself: What is special about the  function?

_________________________________________________________________________________

_________________________________________________________________________________

One way that  differs from ordinary functions is immediately obvious. All the 
functions in this book lack a return statement. An ordinary function that returns an  must 
have at least one return statement, but  is special. If you don’t supply your own return 
statement, the compiler inserts a  statement at the end of . If control reaches 
the end of the function body, the effect is the same as , which returns a success status 
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to the operating system. If you want to signal an error to the operating system, you can return 
a non-zero value from . How the operating system interprets the value depends on the 
implementation. The only portable values to return are , , and .

 means the same thing as —namely, success, but its actual value can be different 
from . The names are declared in .

The next Exploration continues to examine functions by taking a closer look at the argu-
ments in function calls.
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Function Arguments

This Exploration continues the examination of functions introduced in Exploration 19 by 
focusing on argument-passing. Take a closer look. Remember that arguments are the expres-
sions that you pass to a function in a function call. Parameters are the variables that you 
declare in the function declaration.

Argument Passing
Read through Listing 20-1 then answer the questions that follow it.

Listing 20-1. Function Arguments and Parameters

137
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Predict what the program will print.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Now compile and run the program. What does it actually print?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Were you correct? ________________ Explain why the program behaves as it does.

_________________________________________________________________________________

_________________________________________________________________________________
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When I run the program, I get the following results:

Expanding on these results, you may have noticed the  function does not actually 
modify the variable in , and the  function does not modify .

As you can see, C++ passes arguments by value—that is, it copies the argument value to 
the parameter. The function can do whatever it wants with the parameter, but when the func-
tion returns, the parameter goes away, and the caller never sees any changes the function 
made.

If you want to return a value to the caller, use a  statement, as was done in the 
 function.

Rewrite the add function so it returns the modified vector to the caller.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Compare your solution with the following code block:

To call the new , you must assign the function’s result to a variable.

What is the problem with this new version of ?

_________________________________________________________________________________

_________________________________________________________________________________

Consider what would happen when you call  with a very large vector. The function 
makes an entirely new copy of its argument, consuming twice as much memory as it really 
ought to.
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Pass-by-Reference
Instead of passing large objects (such as vectors) by value, C++ lets you pass them by reference.
Add an ampersand ( ) after the type name in the function parameter declaration. Change
Listing 20-1 to pass  parameters by reference. Also change the  function, but 
leave the other  parameters alone. What do you predict will be the output?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Now compile and run the program. What does it actually print?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Were you correct? ________________ Explain why the program behaves as it does.

_________________________________________________________________________________

_________________________________________________________________________________

Listing 20-2 shows the new version of the program.

Listing 20-2. Pass Parameters by Reference
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When I run the program, I get the following results:

This time the program modified the  parameter in  and updated the vector’s con-
tents in .

Change the rest of the parameters to use pass-by-reference. What do you expect to 
happen?

_________________________________________________________________________________

_________________________________________________________________________________
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Try it. What actually happens?

_________________________________________________________________________________

_________________________________________________________________________________

The compiler does not allow you to call  when ’s parameter is a refer-
ence. Consider what would happen if  attempted to modify its parameter. You can’t 
assign to a number, only to a variable. In C++ terms, a variable is called an lvalue, which in 
rough translation means it can appear on the left-hand side of an assignment. An integer lit-
eral is an example of an rvalue, which again, loosely translated, means it can appear only on 
the right-hand side of an assignment.

When a parameter is a reference, the argument in the function call must be an lvalue. If 
the parameter is call-by-value, you can pass an rvalue.

Can you pass an lvalue to a call-by-value parameter? ________________
You’ve seen many examples that you can pass an lvalue. C++ automatically con-

verts any lvalue to an rvalue when it needs to. Can you convert an rvalue to an lvalue?
________________

If you aren’t sure, try to think of the problem in more concrete terms: can you convert 
an integer literal to a variable? That means you cannot convert an rvalue to an lvalue. Except, 
sometimes you can, as the next section will explain.

const References
In the new program, the  function takes its parameter by reference, but it doesn’t 
modify the parameter. This opens a window for programming errors: you can accidentally 
write code to modify the vector. To prevent such errors, you can revert to call-by-value, but 
you would still have a memory problem if the argument is large. Ideally, you would be able to 
pass an argument by reference, but still prevent the function from modifying its parameter. 
Well, as it turns out, such a method does exist: remember ? C++ lets you declare a func-
tion parameter , too:

Read the parameter declaration by starting at the parameter name and working your way 
from right to left: the parameter name is ; it is a reference; the reference is to a  object; 
and the object type is . Sometimes, C++ can be hard to read, especially for 
a newcomer to the language, but with practice, you will soon read such declarations with ease.
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CONST WARS

Many C++ programmers put the  keyword in front of the type, as demonstrated in the following:

For simple definitions, the  placement is not critical. For example, to define a named constant, 
you might use

The difference between that and

is small. But with a more complicated declaration, such as the parameter to , the differ-
ence is more significant. I find my technique much easier to read and understand. My rule of thumb is to keep 
the  keyword as close as possible to whatever it is modifying.

More and more C++ programmers are coming around to adopt the t-near-the-name style instead 
of t-out-in-front. Again, this is an opportunity for you to be in the vanguard of the most up-to-date C++ 
programming trends. But you need to get used to reading code with  out in front, because you’re going 
to see a lot of it.

So,  is a reference to a  vector. Because the vector is , the compiler prevents 
the  function from modifying it (adding elements, erasing elements, changing 
elements, and so on). Go ahead and try it. See what happens if you throw in any one of the fol-
lowing lines:

The compiler stops you from modifying a  parameter.
Standard practice is to use references to pass any large data structure, such as , ,

or . If the function has no intention of making changes, declare the reference as a .
For small objects, such as , use pass-by-value.

If a parameter is a reference to , you can pass an rvalue as an argument. This is the 
exception that lets you convert an rvalue to an lvalue. To see how this works, change ’s
parameter to be a reference to .

Convince yourself that you can pass an rvalue (such as 14) to . Thus, the more pre-
cise rule is that you can convert an rvalue to a  lvalue, but not to a non  lvalue.
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const_iterator
One additional trick you need to know when using  parameters: if you need an itera-
tor, use  instead of . An ordinary iterator lets you modify the element 
by assigning to . Because the object is , you cannot modify its elements, so 
you cannot use an . A  lets you read values but not modify them; this 
means you can safely use a .

Output Parameters
You’ve already seen how to return a value from a function. Sometimes, you want to return a 
large object, or you need to return multiple values. In that case, you may want to call-by-
reference, which is how C++ implements output parameters. For example, you may want to 
write a function that populates a vector with data read from the standard input, as shown in 
the following:

Now that you know how to pass strings, vectors, and whatnot to a function, you can begin 
to make further improvements to the word-counting program, as you will see in the next 
Exploration.
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Using Algorithms

So far, your use of the standard algorithms has been limited to a few calls to , the occa-
sional use of , and so on. The main limitation has been that many of the more interesting 
algorithms require you to supply a function. This Exploration takes a look at these more 
advanced algorithms. In addition, we’ll revisit some of the algorithms you already know to 
show you how they too can be used in a more advanced manner.

Transforming Data
Several programs that you’ve read and written have a common theme: copying a sequence of 
data, such as a  or , and applying some kind of transformation to each element 
(converting to lowercase, doubling the values in an array, and so on). The standard algorithm, 

, is ideal for applying an arbitrarily complex transformation to the elements of 
a sequence.

For example, recall Listing 9-5, which doubled all the values in an array. Listing 21-1 pres-
ents a new way to write this same program, but using .

Listing 21-1. Calling  to Apply a Function to Each Element of an Array

145
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The  function takes four arguments: the first two specify the input range (as start 
and one-past-the-end iterators), the third argument is an output iterator, and the final argu-
ment is the name of a function.

Regarding the third argument, as usual, it is your responsibility to ensure the output 
sequence has enough room to accommodate the transformed data. In this case, the trans-
formed data overwrite the original data, so the start of the output range is the same as the 
start of the input range. The fourth argument is just the name of a function that you must 
have declared or defined earlier in the source file. In this example, the function takes one 
parameter and returns an . The general rule for a  function is that its parameter 
type must match the input type, which is the type of the element to which the input itera-
tors refer. The return value must match the output type, which is the type to which the result 
iterator refers. The  algorithm calls this function once for each element in the input 
range. It copies to the output range the value returned by the function.

Rewriting the word-counting program is a little harder. Recall from Listing 19-3 that the 
 function transforms a string by removing non-letters and converting all uppercase 

letters to lowercase. The purpose of the C++ standard library is not to provide a zillion func-
tions that cover all possible programming scenarios, but rather, to provide the tools you need 
to build your own functions with which you can solve your problems. Thus, you would search 
the standard library in vain for a single algorithm that copies, transforms, and filters. Instead, 
you can combine two standard functions: one that transforms and one that filters.

A further complication, however, is that you know that the filtering and transforming 
functions will rely on a locale. Solve the problem for now by setting your chosen locale to 
global. In that way, the functions you write can use the global locale without needing to pass 

 objects around. Listing 21-2 demonstrates how to rewrite Listing 18-3 to set the global 
locale to the native locale, and then to use the global locale in the rest of the program.

Listing 21-2. New  Function That Sets the Global Locale
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Now it’s time to rewrite the  function to take advantage of algorithms. Use 
 to convert characters to lowercase. Use  to get rid of non-alphabetic

characters from the string. The  algorithm calls a function for each element 
of a sequence. If the function returns true,  eliminates that element from the 
sequence—well, it kind of does.

One curious side effect of how iterators work in C++ is that the  function does 
not actually erase anything from the sequence. Instead, it rearranges the elements and returns 
an iterator that points to the position one past the end of the elements to be preserved. You 
can then call the  member function to delete the elements that were removed, or you can 
make sure your function keeps track of the new logical end of the sequence.

Figure 21-1 illustrates how  works with a before and after view of a string. Notice 
how the  function does not alter the size of the string, but the characters after the 
new end are not meaningful. They are junk.

str

str.begin() str.end()

str

str.begin() end

Figure 21-1. Removing elements from a sequence

Take a look at Listing 21-3 to see how  works in code.

Listing 21-3. Sanitizing a String by Transforming It
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The  member function takes two iterators as arguments and erases all the elements 
within that range. The  function returns an iterator that points to one-past-the-end
of the new , which means it also points to the first position of the elements to be erased. 
Passing  as the end of the range instructs  to get rid of all the removed elements.

The remove/erase idiom is common in C++, so you should get used to seeing it. The stan-
dard library has several remove-like functions, all of which work the same way. It takes a little
while to get used to this approach, but once you do, you will find it quite easy to use.

Predicates
The  function is an example of a predicate. A predicate is a function that returns 
a  result. These functions have many uses in the standard library.

For example, the  function sorts values in ascending order. What if you wanted to sort 
data in descending order? The  function lets you provide a predicate to compare items. 
The ordering predicate (call it ) must meet the following qualifications:



EXPLORATION 21   USING ALGORITHMS 151

 must be  (a common error is to implement  instead of , which vio-
lates this requirement)

 is , and  is , then  must also be 

 or something that C++ can convert automatically to 

If you don’t provide a predicate,  uses the  operator as the default.

Write a predicate to compare two integers for sorting in descending order.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Write a program to test your function. Did it work? ________________
Compare your solution with Listing 21-4.

Listing 21-4. Sorting into Descending Order
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The default comparison that  uses (the  operator) is the standard for comparison 
throughout the standard library. The standard library uses  as the ordering function for 
anything and everything that can be ordered. For example,  uses  to compare keys. The 

 functions (which you used in Exploration 12) use the  operator to perform 
a binary search.

The standard library even uses  to compare objects for equality when dealing with 
ordered values, such as a map or a binary search. (Algorithms and containers that are not 
inherently ordered use  to determine when two objects are equal.) To test if two items, and

, are the same, these library functions use  and . If both comparisons are , then 
and  must be the same, or in C++ terms, equivalent. If you supply a comparison predicate 

( ), the library considers and  to be equivalent if  is  and  is 
.

Modify your descending-sort program (or Listing 21-4) to use  as the comparison 
operator. What do you expect to happen?

_________________________________________________________________________________

_________________________________________________________________________________

Run the new program with a variety of inputs. What actually happens?

_________________________________________________________________________________

_________________________________________________________________________________

Were you correct? ________________

The equivalence test is broken because  is , not . Because the 
predicate does not work properly,  is not guaranteed to work properly, or at all. The results 
are undefined. Whenever you write a predicate, be sure the comparison is strict (that is, you 
can write a valid equivalence test) and the transitive property holds (if  and , then 
is also ).

Other Algorithms
The standard library contains too many useful algorithms to cover in this book, but I’ll take 
a few moments in this section to introduce you to at least some of them. Refer to a compre-
hensive language reference to learn about the other algorithms.

Let’s explore algorithms by looking for palindromes. A palindrome is a word or phrase 
that reads the same forward and backward, ignoring punctuation, such as:

Madam, I’m Adam.

The program reads one line of text at a time by calling the  function. This function 
reads from an input stream into a string, stopping when it reads a delimiter character. The 
default delimiter is , so it reads one line of text. It does not skip over initial or trailing white 
space.

The first step is to remove non-letter characters, but you already know how to do that.
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The next step is to test whether the resulting string is a palindrome. The  function 
transposes the order of elements in a range, such as characters in a string.

The  function compares two sequences to determine whether they are the same. It 
takes two iterators for the first range and a starting iterator for the second range. It assumes 
the two ranges are the same size, and it compares one element at a time and works for any 
kind of sequence. In this case, the comparison must be case-insensitive, so provide a predicate
that converts all text to a canonical case and then compares them.

Go ahead. Write the program. A simple web search should deliver up some juicy palin-
dromes with which to test your program. If you don’t have access to the web, try the following:

Eve

Deed

Hannah

Leon saw I was Noel

If you need some hints, here are my recommendations:

 that takes a string as a parameter and returns 
a .

 function to clean up the string.

returned by  and use that instead of .

, which is a copy of the sanitized string. Copy only the desired 
part of the test string by taking only up to the iterator that was returned from .

.

, to compare two characters after converting them both to 
uppercase and then to lowercase.

 function with  as its predicate to compare the original string 
with the reversed copy.

 program sets the global locale to the native locale, and imbues the input and 
output streams with the new global locale.

 until the function returns 
(meaning error or end-of-file) then calls  for each line.

Listing 21-5 shows my version of the completed program.

Listing 21-5. Testing for Palindromes
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You may have noticed that some algorithms have more than one form. The  function, 
for example, can take two iterators as arguments, or it can take two iterators and a predicate.
Using one name for more than one function is called overloading. This is the subject of the 
next Exploration.
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Overloading Function Names

In C++, multiple functions can have the same name, provided the functions have a different
number of arguments or different argument types. Using the same name for multiple func-
tions is called overloading and is common in C++.

Overloading
All programming languages use overloading at one level or another. For example, most lan-
guages use  for integer addition as well as for floating-point addition. Some languages, such 
as Pascal, use different operators for integer division ( ) and floating-point division ( ), but 
others, such as C and Java, uses the same operator ( ).

C++ takes overloading one step further, letting you overload your own function names. 
Judicious use of overloading can greatly reduce complexity in a program and make your pro-
grams easier to read and understand.

For example, C++ inherits several functions from the standard C library that compute 
an absolute value:  takes an  argument,  takes a floating-point argument, and 
takes a long integer argument.

Note Don’t be concerned that we have not yet covered these other types. All that matters for the purpose 
of this discussion is that they are distinct from . The next Exploration will begin to examine them more 
closely, so please be patient.

C++ also has its own  type for complex numbers, which has its own absolute value 
function. In C++, however, they all have the same name, . Using different names for differ-
ent types merely clutters the mental landscape and contributes nothing to the clarity of the 
code.

The  function, just to name one example, has two overloaded forms.

The first form sorts in ascending order, comparing elements with the  operator, and the 
second form compares elements by calling . Overloading appears in many other places 
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in the standard library. For example, when you create a  object, you can copy the global 
locale by passing no arguments

or create a native locale object by passing an empty string argument

Overloading functions is easy, so why not jump in? Write a set of functions, all named 
. They all have a  return type and take various parameters:

 as a parameter. It prints the parameter to the standard output.

 parameters. It prints the first parameter to the standard output 
and uses the second parameter as the field width.

 as the first parameter, followed by three  parame-
ters. Print the first  parameter then each element of the  (by calling ),
with the second  parameter between elements, and the third  parameter 
after the . If the  is empty, print the first and third  parameters only.

 form, but also takes an  as the field 
width for each  element.

Write a program to print s using the  functions. Compare your functions and 
program with mine in Listing 22-1.

Listing 22-1. Printing Vectors by Using Overloaded Functions
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The C++ library often uses overloading. For example, you can change the size of a
by calling its  member function. You can pass one or two arguments: the first argument 
is the new size of the . If you pass a second argument, it is a value to use for new ele-
ments in case the new size is larger than the old size.
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Library-writers often employ overloading, but applications programmers use it less often. 
Practice writing libraries by writing the following functions:

bool is_alpha(char ch)
Returns  if  is an alphabetic character in the global locale; if not, returns .

bool is_alpha(std::string const& str)
Returns  if  contains only alphabetic characters in the global locale, or  if any 
character is not alphabetic. Returns  if  is empty.

char to_lower(char ch)
Returns  after converting it to lowercase, if possible; otherwise returns . Use the global 
locale.

std::string to_lower(std::string str)
Returns a copy of  after converting its contents to lowercase, one character at a time.
Copies verbatim any character that cannot be converted to lowercase.

char to_upper(char ch)
Returns  after converting it to uppercase, if possible; otherwise returns . Use the global 
locale.

std::string to_upper(std::string str)
Returns a copy of  after converting its contents to uppercase, one character at a time.
Copies verbatim any character that cannot be converted to uppercase.

Compare your solution with mine, which is shown in Listing 22-2.

Listing 22-2. Overloading Functions in the Manner of a Library-Writer
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After waxing poetic about the usefulness of standard algorithms, such as ,
I turned around and wrote my own loops. If you tried to use a standard algorithm, I applaud
you for your effort and apologize for tricking you.

If you want to pass an overloaded function to a standard algorithm, the compiler needs to 
be able to tell which overloaded function you really mean. For some rather complicated rea-
sons, the compiler has difficulty understanding situations such as the following:
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C++ has ways to help the compiler understand what you mean, but it involves some 
nasty-looking code, and I’d rather you stay away from it for the time being. If you really insist 
on punishing yourself, look at code that works, but don’t try to sprain your brain understand-
ing it.

If you look closely at  and , you’ll notice another technique that’s differ-
ent from other, similar functions. Can you spot it? If so, what is it?

_________________________________________________________________________________

_________________________________________________________________________________

The  and  string functions do not take  references, but take plain 
s as parameters. This means the argument is passed by value, which in turn means the 

compiler arranges to copy the string when passing the argument to the function. The function 
needs the copy, so this technique helps the compiler generate optimal code for copying the 
argument, and it saves you a step in writing the function. It’s a small trick, but a useful one. 
This technique will be especially useful later in the book—so don’t forget it.

The  string function does not modify its parameter, so it can take a  refer-
ence. Remember that when the parameter is , you must use  instead of 

.
A common use of overloading is to overload a function for different types, including dif-

ferent integer types, such as a long integer. The next Exploration takes a look at these other 
types.
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Big and Little Numbers

Another common use for overloading is to write functions that work with large and small 
integers just as well as with plain integers. C++ has four different integer types: byte, short, 
plain, and long. This Exploration takes a look at the details.

The Long and Short of It
The size of an  is the natural size of an integer on the host platform. For your desktop com-
puter, that probably means 32 bits or 64 bits. Not too long ago, it meant 16 bits or 32 bits. I’ve 
also used computers with 36-bit and 60-bit integers. In the realm of desktop computers and 
workstations, 32-bit and 64-bit processors dominate today’s computing landscape, but don’t 
forget specialized devices, such as digital signal processors (DSPs ) and other embedded chips, 
where 16-bit architectures are still common. The purpose of leaving the standard flexible is to 
ensure maximum performance for your code. The C++ standard guarantees that an  can 
represent, at a minimum, any number in the range –32,767 to 32,767, inclusive.

Although your desktop computer most likely uses two’s complement representation for 
integers, C++ does not mandate that format, only that the representation be binary. In other 
words, you should treat an integer as a number, not a bit pattern. (Wait for Exploration 61 if 
you need to work at the bit level.)

To discover the number of bits in an integer, use , as you did way back 
in Listing 2-3. Try that same program, but substitute  for . What do you get for the 
output? ________________

Most likely, you got 31, although some of you may have seen 15 or 63. The reason for this 
is  does not count the sign bit. No matter what representation your computer uses for 
an integer, one of those bits must indicate whether the number is negative or positive. Thus, 
for a type that represents a signed quantity, such as , you must add one to , and 
for a type with no sign, such as , use  without further modification. Fortunately, 

 offers , which is  for a signed type and  for an unsigned 
type. Rewrite Listing 2-3 to use  to determine whether to add one to  and 
print the number of bits per  and per .

Check your answers. Are they correct? ________________ Compare your program with 
Listing 23-1.
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Listing 23-1. Discovering the Number of Bits in an Integer

Long Integers
Sometimes, you need more bits than  can handle. In this case, add  to the definition to 
get a long integer.

You can even drop the , as shown in the following:

The standard guarantees that a  can handle numbers in the range –2,147,483,647 
to 2,147,483,647, but C++ does not guarantee that a  is actually longer than a plain .
On some platforms,  might be 32 bits and  might be 64. When I first used a PC at home, 
an  was 16 bits and  was 32 bits. But at work, I used systems for which  and 
were both 32 bits. I’m writing this book on a machine that uses 32 bits for  and for .

Use  if you want to store numbers as large as possible, and are willing to pay a small
performance penalty (on some systems), or if you need to ensure portability and need to rep-
resent numbers outside the range ±32,767 (which is all C++ guarantees for type ).

EXTRA-LONG INTEGERS

The next revision to the C++ standard will sport another type: . This type can handle values 
in the range –9,223,372,036,854,775,807 to 9,223,372,036,854,775,807. As with plain , you can drop 
the  and write the type as merely . Many compilers already support this type as an extension 
to the standard. Write a  literal with two s as a suffix, e.g., .
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Short Integers
Sometimes, you don’t need the full range of an , and reducing memory consumption is 
more important. In this case, use a , or just , which has a guaranteed range of at 
least –32,767 to 32,767, inclusive. As I just mentioned,  may be the same size as . On 
the other hand, most modern implementations define  to be smaller than .

As is done with , you define a type as  or .

Modify Listing 23-1 to print the number of bits in a  and a , too. How many bits 
are in a  on your system? ________________ How many in a ? ________________

When I run the program in Listing 23-2. I get 16 bits in a , 32 in an , and 32 in 
a . On a friend’s 64-bit processor, I get 16 bits in a , 32 in an , and 64 in a .

Listing 23-2. Revealing the Number of Bits in Short and Long Integers 
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Integer Literals
When you write an integer literal, the type depends on its value. If the value fits in an ,
the type is ; otherwise, the type is . If the value is too big even for a , the compiler 
should issue an error message. You can force a literal to have type  by adding  or  (the 
letter L in lowercase or uppercase) after the digits. (Curiously, C++ has no way for you to type 
a  literal.) I always use uppercase  because a lowercase  looks too much like the digit .
The compiler can always tell the difference, but every year it gets a little harder for me to see 
the difference between  and .

Devise a way for a program to print , followed by the value, for an  literal, and 
print , followed by the value, for a  literal. (Hint: what was the topic of the previous 
Exploration?) Write a program to demonstrate your idea and test it with some literals. If you 
can, run the program on platforms that use different sizes for  and . Compare your pro-
gram to that of Listing 23-3.

Listing 23-3. Using Overloading to Distinguish Types of Integer Literals
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The last three lines work only on 64-bit systems, and result in compiler errors on 32-bit
systems. In other words, a program that works perfectly fine on one system may not even 
compile on another. That’s why the C++ standard sets down some guaranteed ranges for each 
of the integer types. If you stick to the guaranteed ranges, your program will compile and run 
everywhere; outside the range, you’re taking your chances. Library-writers need to be espe-
cially careful. You never know when someone working on a small, embedded processor might 
like your code and want to use it.

Byte-Sized Integers
The smallest integer type that C++ offers is . The type name looks similar to the 
character type, , but the type acts differently. It usually acts like an integer. By definition, 
the size of  is one byte, which is the smallest size that your C++ compiler supports 
for any type. The guaranteed range of  is –127 to 127.

In spite of the name, you should try not to think of  as a mutated character 
type; instead, think of it as a misspelled integer type. Many programs have a  similar to 
this

to make it easier for you to think of this type as a byte-sized integer type.
There is no easy way to write a  literal. Character literals have type , not 

. Besides, some characters may be out of range for .
Although the compiler does its best to help you remember that  is not a ,

the I/O stream library is less helpful. It tries to treat  values as characters. Some-
how, you need to inform the stream that you want to print an integer, not a character. You also 
need a solution to create  (and ) literals. Fortunately, the same solution lets 
you use  constants and print  numbers: type casting.

Type Casting
Although you cannot write a  or arbitrary  literal directly, you can write a con-
stant expression that has type  or , and can take any suitable value. The trick 
is to use a plain  and tell the compiler exactly what type you want.

The expression does not have to be a literal, as demonstrated in the following:

The  expression is known as a type cast. The operator, , is 
a reserved keyword. It converts an expression from one type to another. The “static” in its 
name means the type is static, or fixed, at compile time.

You can convert any integer type to any other integer type. If the value is out of range for 
the target type, you get junk as a result—for example, the high-order bits may be discarded. 
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Thus, you should always be careful when using . Be absolutely sure that you are 
not discarding important information.

If you cast a number to , the result is  if the number is zero or  if the number 
is not zero (just like the conversion that takes place when you use an integer as a condition).

Rewrite Listing 23-3 to overloading  for  and  values, too. Use type 
casting to force various values to different types and ensure that the results match your expec-
tations. Take a look at Listing 23-5 to see one possible solution.

Listing 23-4. Using Type Casts



EXPLORATION 23   B IG AND LITTLE NUMBERS 169

When I run Listing 23-4, I get  for  and 
. That’s because the values are out of range for the target types. The resulting value is 

mere coincidence. In this case, it is related to the bit patterns that my particular compiler and 
platform happen to use. Different environments will yield different values.

Integer Arithmetic
When you use  and  values or objects in an expression, the compiler always 
turns them into type . It then performs the arithmetic or whatever operation you wanted 
to do. This is known as type promotion. The compiler promotes a  to an . The result of 
arithmetic operations is also an .

You can mix  and  in the same expressions. C++ converts the smaller type to match 
the larger type, and the larger type is the type of the result. This is known as type conversion,
which is different from type promotion. (The distinction may seem arbitrary or trivial, but it’s 
important. The next section will explain one of the reasons.) Remember: promote
and  to ; convert  to .

When you compare two integers, the same promotion and conversion happens: the 
smaller argument is promoted or converted to the size of the larger argument. The result is 
always .

The compiler can convert any numeric value to ; it considers this a conversion on the 
same level as any other integer conversion.

Overload Resolution
The two-step type conversion process may puzzle you. It matters when you have a set of over-
loaded functions, and the compiler needs to decide which function to call. The first thing the 
compiler tries is to find an exact match. If it can’t find one, it searches for a match after type 
promotion. Only if that fails does it search for a match allowing type conversion. Thus, it con-
siders a match based only on type promotion to be better than type conversion. Listing 23-5
demonstrates the difference.
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Listing 23-5. Overloading Prefers Type Promotion over Type Conversion
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The first four lines of  call the  function. The compiler always finds an exact 
match and is happy. The next four lines call . When called with  and 
arguments, the compiler promotes the arguments to , and finds an exact match with 

.
The last four lines call the aptly-named function, . The problem is that the compiler 

promotes  and  to , and then must convert  to either  or . It 
treats all conversions equally, thus it cannot decide which function to call, so it reports an 
error. Delete the three lines that I marked with “expected error,” and the program works just 
fine, or add an overload for , and everything will work.

The problem of ambiguous overload resolution is a difficult hurdle for new C++ program-
mers. It’s also a difficult hurdle for most experienced C++ programmers. The exact rules for 
how C++ resolves overloaded names are complicated and subtle. Avoid being clever about 
overloaded functions, and keep it simple. Most overloading situations are straightforward, but 
if you find yourself writing an overload for type , be certain you also have an overload for 
type .

Knowing about big integers helps with some programs, but others need to represent even 
larger numbers. The next Exploration examines how C++ works with floating point values.
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Very Big and Very  
Little Numbers

Even the longest  cannot represent truly large numbers, such as Avogadro’s number 
(6.02 1023) or extremely small numbers, such as the mass of an electron (9.1 10–31 kg). Scien-
tists and engineers use scientific notation, which consists of a mantissa (such as 6.02 or 9.1) 
and an exponent (such as 23 or –31), relative to a base (10).

Computers represent very large and very small numbers using a similar representation, 
known as floating-point. I know many of you have been waiting eagerly for this exploration, as 
you’ve probably grown tired of using only integers, so let’s jump in.

Floating-Point Numbers
Computers use floating-point numbers for very large and very small values. By sacrificing 
precision, you can gain a greatly extended range. However, never forget that the range and 
precision are limited. Floating-point numbers are not the same as mathematical real numbers, 
although they can often serve as useful approximations of real numbers.

Like its scientific notation counterpart, a floating-point number has a mantissa, also 
called a significand, a sign, and an exponent. The mantissa and exponent use a common base
or radix. Although integers in C++ are always binary in their representation, floating-point 
numbers can use any base. Binary is a popular base, but some computers use 16 or even 10 
as the base. The precise details are, as always, dependent upon the implementation. In other 
words, each C++ implementation uses its native floating-point format, for maximum perfor-
mance.

Floating-point values often come in multiple flavors. C++ offers single, double, and 
extended precision, called , , and , respectively. The difference is 
that  usually has less precision and a smaller range than , and  usually has 
less precision and smaller range than . In exchange,  usually requires 
more memory and computation time than , which usually takes up more memory and 
computation time than . On the other hand, an implementation is free to use the same 
representation for all three types.

Use  unless there is some reason not to: use  when memory is at a premium
and you can afford to lose precision, or  when you absolutely need the extra preci-
sion or range and can afford to give up memory and performance.

173
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A common binary representation of floating-point numbers is the IEC 60559 standard, 
which is better known as IEEE 754. Most likely, your desktop system has hardware that imple-
ments the IEC 60559 standard. For the sake of convenience, the following discussion describes 
only IEC 60559, but never forget that C++ permits many floating-point representations. Main-
frames and DSPs, for example, often use other representations.

An IEC 60559  occupies 32 bits, of which 23 bits make up the mantissa, 8 bits form 
the exponent, leaving one bit for the mantissa’s sign. The radix is 2, so the range of an IEC 
60559 float is roughly 2–127 to 2127, or 10–38 to 1038. (I lied. Smaller numbers are possible, but the 
details are not germane to C++. If you are curious, this book’s web site has some links, or just 
look up denormalization in your favorite computer science reference.)

The IEC 60559 standard reserves some bit patterns for special values. In particular, if the 
exponent is all ones, and the mantissa is all zeros, the value is considered “infinity.” It’s not 
quite a mathematical infinity, but it does its best to pretend. Adding any finite value to infin-
ity, for example, yields an answer of infinity. Positive infinity is always greater than any finite 
value, and negative infinity is always smaller than finite values.

If the exponent is all ones and the mantissa is not all zeros, the value is considered as 
not-a-number, or NaN. NaN comes in two varieties: quiet and signaling. Arithmetic with quiet 
NaN always yields a NaN result. Using a signaling NaN results in a machine interrupt. How 
that interrupt manifests itself in your program is up to the implementation. In general, you 
should expect your program to terminate abruptly. Consult your compiler’s documentation to 
learn the details. Certain arithmetic operations that have no meaningful result can also yield 
NaN, such as adding positive infinity to negative infinity.

Some floating-point representations do not have infinity or NaN, so you cannot write 
portable code that relies on these special values. Also, the C++ standardization committee 
neglected to include any functions for testing whether a value is infinity or NaN, so you must 
use a platform-specific function (or write your own), which is just one more reason not to use 
the special values in any code that must be portable. (The next major language revision will 
likely remedy this oversight.)

A  is similar in structure to a , except it takes up 64 bits: 52 bits for the man-
tissa, 11 bits for the exponent, and 1 sign bit. A  can also have infinity and NaN values, 
with the same structural representation (that is, exponent all ones).

A  is even longer than . The IEC 60559 standard permits an extended 
double-precision format that requires at least 79 bits. Many desktop and workstation systems 
implement extended-precision, floating-point numbers using 80 bits (63 for the mantissa and 
16 for the exponent).

Floating-Point Literals
Any numeric literal with a decimal point or a decimal exponent represents a floating-point
number. The decimal point is always , regardless of locale. The exponent starts with the let-
ter  or  and can be signed. No spaces are permitted in a numeric literal.
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By default, a floating-point literal has type . To write a  literal, add the letter 
or  after the number. For a , use the letter  or .

As with  literals, I prefer uppercase  to avoid confusion with the digit . Feel free 
to use  or , but I recommend you pick one and stick with it.

If a floating-point literal exceeds the range of the type, the compiler will tell you. If you ask 
for a value at greater precision than the type supports, the compiler will silently give you as 
much precision as it can. Another possibility is that you request a value that the type cannot 
represent exactly. In that case, the compiler gives you the next higher or lower value.

For example, your program may have the literal , which seems like a perfectly fine 
real number, but as a binary floating-point value, it has no exact representation. Instead, it is 
approximately 0.00110011002. The difference between the decimal value and the internal value 
can give rise to unexpected results, the most common of which is when you expect two num-
bers to be equal and they are not. Read Listing 24-1 and predict the outcome.

Listing 24-1. Floating-Point Numbers Do Not Always Behave as You Expect

What is your prediction?

_________________________________________________________________________________

What is the actual outcome?

_________________________________________________________________________________

Were you correct? ________________

The problem is that 0.03 and 0.3 do not have exact representations in binary, so if your 
floating-point format is binary (and most are), the values the computer uses are approxi-
mations of the real values. Multiplying 0.03 by 10 gives a result that is very close to 0.3, but 
the binary representation differs from that obtained by converting 0.3 to binary. (In IEC 
60559 single-precision format, 0.03 * 10.0 gives 0.01110011001100110011001002 and 0.3 is 
0.01110011001100110011010002. The numbers are very close, but they differ in the 22nd signifi-
cant bit.

Some programmers mistakenly believe that floating-point arithmetic is therefore 
“imprecise.” On the contrary, floating-point arithmetic is exact. The problem lies only in the 
programmer’s expectations if you anticipate floating-point arithmetic to follow the rules of 
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real-number arithmetic. If you realize that the compiler converts your decimal literals to other 
values, and computes with those other values, and if you understand the rules that the pro-
cessor uses when it performs limited-precision arithmetic with those values, you can know 
exactly what the results will be. If this level of detail is critical for your application, you need to 
take the time to perform this level of analysis.

The rest of us, however, can continue to pretend that floating-point numbers and arith-
metic are nearly real without worrying overmuch about the differences. Just don’t compare 
floating-point numbers for exact equality. (How to compare numbers for approximate equality 
is beyond the scope of this book. Visit the web site for links and references.)

Floating-Point Traits
You can query  to reveal the size and limits of a floating-point type. You can 
also determine whether the type allows infinity or NaN. Listing 24-2 shows some code that dis-
plays information about a floating-point type.

Listing 24-2. Discovering the Attributes of a Floating-Point Type
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Modify the program so it prints information about . Run it. Modify it again for 
, and run it. Do the results match your expectations? ________________

Floating-Point I/O
Reading and writing floating-point values depends on the locale. In the classic locale, the 
input format is the same as for an integer or floating-point literal. In a native locale, you must 
write the input according to the rules of the locale. In particular, the decimal separator must 
be that of the locale. Thousands-separators are optional, but if you use them, you must use the 
locale-specific character and correct placement.

Output is more complicated. 
In addition to the field width and fill character, floating-point output also depends on 

the precision—the number of places after the decimal point—and the format, which can be 
fixed-point (without an exponent), scientific (with an exponent), or general (use an expo-
nent only when necessary). The default is general. Depending on the locale, the number may 
include separators for groups of thousands.

In the scientific and fixed formats, the precision is the number of digits after the decimal 
point. In the general format, it is the maximum number of significant digits. Set the stream’s 
precision with the  member function or  manipulator. The default pre-
cision is six.

In  format, the exponent is printed with a lowercase  (or  if you use the 
 manipulator), followed by the base 10 exponent. The exponent always has a sign (

or ), and at least two digits, even if the exponent is zero. The mantissa is written with one digit 
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before the decimal point. The precision determines the number of places after the decimal 
point.

In  format, no exponent is printed. The number is printed with as many digits before 
the decimal point as needed. The precision determines the number of places after the decimal 
point. The decimal point is always printed.

The default format is the general format, which means printing numbers nicely without 
sacrificing information. If the exponent is less than or equal to –4, or if it is greater than the 
precision, the number is printed in scientific format. Otherwise, it is printed without an expo-
nent. However, unlike conventional fixed-point output, trailing zeros are removed after the 
decimal point. If after removal of the trailing zeros the decimal point becomes the last charac-
ter, it is also removed.

When necessary, values are rounded off to fit within the allotted precision.
The easiest way to specify a particular output format is with a manipulator: 

or  (declared in ). Like the precision, the format persists in the stream’s state until 
you change it. (Only width resets after an output operation.) Unfortunately, once you set the 
format, there is no easy way to revert to the default general format. To do that, you must use 
a member function, and a clumsy one at that, as shown in the following:

Complete Table 24-1, showing exactly how each value would be printed in each format, 
in the classic locale. I filled in the first row for your convenience.

Table 24-1. Floating-Point Output

Precision Scientific Fixed General

123456.789 6

1.23456789 4 ________________ ________________ ________________

123456789 2 ________________ ________________ ________________

–1234.5678e9 5 ________________ ________________ ________________

After you have filled in the table with your predictions, write a program that will test your 
predictions then run it and see how well you did. Compare your program with Listing 24-3.

Listing 24-3. Demonstrating Floating-Point Output
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The precise values can differ from one system to another depending on the floating-point
representation. For example,  on most systems cannot support the full precision of nine 
decimal digits, so you should expect some fuzziness in the least significant digits of the printed 
result. In other words, unless you want to sit down and do some serious binary computation, 
you cannot easily predict exactly what the output will be in every case. Table 24-2 shows the 
output from Listing 24-3, when run on a typical IEC 60559–compliant system.

Table 24-2. Results of Printing Floating-Point Numbers

Value Precision Scientific Fixed General

123456.789 6

1.23456789 4

123456789 2

−1234.5678e9 5

Some applications never need to use floating-point numbers; others need it a lot. Scien-
tists and engineers, for example, depend on floating-point arithmetic and math functions and 
must understand the subtleties of working with these numbers. C++ has everything you need 
for computation-intensive programming. Although the details are beyond the scope of this 
book, interested readers should consult a reference for the  header, and the transcen-
dental and other functions that it provides.

The next Exploration takes a side trip to a completely different topic, explaining the 
strange comments—the extra slashes ( ) and stars ( )—that I’ve used in so many 
programs.
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Documentation

This exploration is a little different from the others. Instead of covering part of the C++ stan-
dard, it examines a third-party tool called Doxygen. Feel free to skip this Exploration, but 
understand that this is where I explain the strange comments you sometimes see in the code 
listings.

Doxygen
Doxygen is a free, open-source tool that reads your source code, looks for comments that fol-
low a certain structure, and extracts information from the comments and from the code to 
produce documentation. It produces output in a number of formats: HTML, RTF (rich text for-
mat), LaTeX, UNIX man pages, and XML.

Java programmers may be familiar with a similar tool called javadoc. The javadoc tool is 
standard in the Java Software Development Kit, whereas Doxygen has no relationship with the 
C++ standard or with any C++ vendor. C++ lacks a standard for structured documentation, so 
you are free to do anything you want. For example, Microsoft defines its own conventions for 
XML tags in comments, which is fine if you plan to work entirely within the Microsoft .NET 
environment. For other programmers, I recommend using tools that have more widespread 
and portable usage. The most popular solution is Doxygen, and I think every C++ programmer 
should know about it, even if you decide not to use it. That’s why I include this Exploration in 
the book.

Structured Comments
Doxygen heeds comments that follow a specific format:

 start with an extra slash or exclamation mark:  or 

 start with an extra asterisk or exclamation mark:  or 

Also, Doxygen recognizes some widespread comment conventions. For example, it 
ignores a line of slashes.
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A multi-line comment can begin with a row full of asterisks

and a line in a multi-line comment can begin with an asterisk

Within a structured comment is where you document the various entities in your pro-
gram: functions, types, variables, and so on.

The convention is that the comment immediately before a declaration or definition 
applies to the entity being declared or defined. Sometimes, you want to put the comment after 
the declaration, such as a one-line description of a variable. To do that, use a “less-than” ( )
sign at the start of the comment.

Documentation Tags
Doxygen has its own markup language that utilizes tags. A tag can start with a backslash char-
acter ( ) or an “at-sign” ( ). Some tags take arguments and some don’t. The most 
useful tags are:

 word
Mark up word in boldface. You can also use HTML markup: phrase , which is helpful 
when phrase contains spaces.

one-sentence-description
Describe an entity briefly. Entities have brief and detailed documentation. Depending on how 
you configure Doxygen, the brief documentation can be the first sentence of the entity’s full 
documentation, or you can require an explicit  tag. In either case, the rest of the com-
ment is the detailed documentation for the entity.

 word
Treat word as a code fragment and set it in a fixed-pitch typeface. You can also use HTML 
markup: phrase , which is helpful when phrase contains spaces.

 word
Emphasize word in italics. You can also use HTML tags: phrase , which is helpful 
when phrase contains spaces.
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 filename
Presents an overview of the source file. The detailed description can describe the purpose of 
the file, revision history, and other global documentation. The filename is optional; without it, 
Doxygen uses the file’s real name. Except for advanced Doxygen uses, this tag is required.

 entity text 
Create a hyperlink to the named entity, such as a file. I use  on my  to create 
a table of contents to the most important files in the project, or to the sole file.

 title
Present an overview of the entire project for the index or cover page. You can put  in 
any source file, or even set aside a separate file just for the comment. In small projects, I place

 in the same source file as the  function, but in large projects, I use a separate
file.

 name
Set name in a fixed-pitch typeface to distinguish it as a function parameter.

 title
Start a new paragraph. If you supply a one-line title, it becomes the paragraph heading. 
A blank line also separates paragraphs.

 name description
Document a function parameter named name. If you want to refer to this parameter elsewhere 
in the function’s documentation, use name.

 postcondition
Document a postcondition for a function. A postcondition is a Boolean expression that the 
function asserts will be true when the function returns (assuming all preconditions were true). 
C++ lacks any formal mechanism for enforcing postconditions (other than ), so docu-
menting postconditions is crucial, especially for library writers.

 precondition
Document a precondition for a function. A precondition is a Boolean expression that must be 
true before the function is called, or else the function is not guaranteed to work properly. C++ 
lacks any formal mechanism for enforcing preconditions (other than ), so documenting 
preconditions is crucial, especially for library writers.

 description
Document what a function returns.
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 xref
Insert a cross-reference to an entity named xref. Doxygen looks for references to other docu-
mented entities within the structured comment. When it finds one, it inserts a hyperlink (or 
text cross reference, depending on the output format). Sometimes, however, you need to 
insert an explicit reference to an entity that is not named in the documentation, so you can 
use .

You can suppress automatic hyperlink creation by prefacing a name with .

Escapes a literal character ( , , , , or ), to prevent interpretation by Doxygen or HTML.

Doxygen supports many other tags and HTML markup. If the output format is not HTML, 
Doxygen converts HTML tags to the desired output format. This book’s web site has links to 
the main Doxygen page where you can find more information about the tool and download 
the software. Most Linux users already have Doxygen; other users can download Doxygen for 
their favorite platform.

Listing 25-1 shows a few of the many ways you can use Doxygen.

Listing 25-1. Documenting Your Code with Doxygen
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Figure 25-1 shows the main page as it appears in a web browser.
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Figure 25-1. Main page of the palindrome documentation

Using Doxygen
Instead of taking lots of command-line arguments, Doxygen uses a configuration file, typically 
named Doxyfile, in which you can put all that juicy information. Among the information in 
the configuration file is the name of the project, which files to examine for comments, which 
output format or formats to generate, and a variety of options you can use to tweak and adjust 
the output.
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Because of the plethora of options, Doxygen comes with a wizard, doxywizard, to help 
generate a suitable configuration file, or you can just run the command line doxygen utility, 
with the  switch to generate a default configuration file that has lots of comments to help 
you understand how to customize it.

and away it goes. Doxygen does a reasonable job at parsing C++, which is a complicated and 
difficult language to parse, but it sometimes gets confused. Pay attention to the error messages 
to see if it had any difficulties with your source files.

The configuration file dictates the location of the output. Typically, each output format 
resides in its own subdirectory. For example, the default configuration file stores HTML output 
in the html html/index.html file in your favorite browser to check out the 
results.

Download and install Doxygen on your system.
Add Doxygen comments to one of your programs. Configure and run Doxygen.
Future programs will continue to use Doxygen comments sporadically, when I think the 

comments help you understand what the program does. In general, however, I try to avoid 
them in the book because the text usually explains things well enough, and I don’t want to 
waste any space. The programs that accompany the book, however, have more complete 
Doxygen comments.
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Project 1: Body-Mass Index

It’s project time! Body-mass index (BMI) is a measurement model health-care professionals 
use to determine whether a person is overweight, and if so, by how much. To compute BMI, 
you need a person’s weight in kilograms and height in meters. The BMI is simply weight/
height2, converted to a unitless value.

Your task is to write a program that reads records, prints the records, and computes 
some statistics. The program should start by asking for a threshold BMI. Only records with 
a BMI greater than or equal to the threshold will be printed. Each record needs to consist of 
a person’s name (which may contain spaces), weight in kilograms, height in centimeters (not 
meters), and the person’s sex (  or ). Let the user enter the sex in uppercase or lowercase. 
Ask the user to enter the height in centimeters so you can compute the BMI using integers. 
You will need to adjust the formula to allow for centimeters instead of meters.

Print each person’s BMI immediately after reading their record. After collecting informa-
tion for everyone, print two tables—one for men, one for women—based on the data. Use 
an asterisk after the BMI rating to mark records for which the number meets or exceeds the 
threshold. After each table, print the mean (average) and median BMI. (Median is the value at 
which half the BMI values are less than the median and half are greater than the median. If the 
user enters an even number of records, take the mean of the two values in the middle.) Com-
pute individual BMI values as integers. Compute the mean and median BMI values as floating 
point numbers, and print the mean with one place after the decimal point.

Listing 26-1 shows a sample user session. User input is in boldface.

Listing 26-1. Sample User Session with the BMI Program

189
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Hints
Here are some hints, in case you need them:

, , , , .

 to compute the BMI from weight 
and height.
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covered so far, but if you know other techniques, feel free to use them. The next set of 
Explorations will present language features that will greatly facilitate writing this kind 
of program.

 source code for my solution is available with the other files that accom-
pany this book, but don’t peek until after you have written the program yourself.
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Custom Types

One of the key design goals for C++ was that you should be able to custom define brand new 
types that look and act similar to the built-in types. Do you need tri-state logic? Write your own 

 type. Need arbitrary-precision arithmetic? Write your own  type. This explora-
tion introduces some of the language features that let you define custom types. Subsequent 
explorations delve deeper into these topics.

Defining a New Type
Let’s consider a scenario in which you want to define a type, , to represent rational 
numbers (fractions). A rational number has a numerator and a denominator, both integers. 
Ideally, you would be able to add, subtract, multiply, and divide rational numbers in the same 
fashion you can with the built-in numeric types. You should also be able to mix rational num-
bers and other numeric types in the same expression.

The I/O streams should be able to read and write rational numbers in some reasonable 
manner. The input operator should accept as valid input anything the output operator pro-
duces. The I/O operators should heed the stream’s flags and related settings, such as field 
width and fill character, so you can format neatly aligned columns of rational numbers the 
same way you did for integers in Exploration 8.

You should be able to assign any numeric value to a  variable, and convert 
a  value to any built-in numeric type. Naturally, converting a rational number to an 
integer variable would result in truncation to an integer. One can argue that conversion should 
be automatic, similar to conversion from floating-point to integer. A counter argument is that 
automatic conversions that discard information were a mistake in the original C language 
design, and one not to be duplicated. Instead, conversions that discard information should be 
made explicit and clear. I prefer the latter approach.

This is a lot to tackle at once, so let’s begin slowly.
The first step is to decide how to store a rational number. You need to store a numerator

and a denominator, both as integers. What about negative numbers? Choose a convention,
such as the numerator gets the sign of the entire value, and the denominator is always posi-
tive. Listing 27-1 shows a basic  type definition.
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Listing 27-1. Defining a Custom  Type

The definition starts with the  keyword. C programmers recognize this as a struc-
ture definition—but hang on, there’s much more to follow.

The contents of the  type look like definitions for variables named 
and , but they work a little differently. Remember that Listing 27-1 shows a type
definition. In other words, the compiler remembers that  names a type, but it does 
not allocate any memory for an object, for , or for . In C++ parlance, 

 and  are called data members; some other languages call them instance 
variables or fields.

Notice the semicolon that follows the closing curly brace. Type definitions are differ-
ent from compound statements. If you forget the semicolon, the compiler will remind you, 
sometimes quite rudely, while referring to a line number several lines after the one where the 
semicolon belongs.

When you define an object with type , the object stores the  and 
 members. Use the dot ( ) operator to access the members, (which you have been 

doing throughout this book) as shown in Listing 27-2.

Listing 27-2. Using a Class and Its Members

That’s not terribly exciting, is it? The  type just sits there, lifeless. You know that 
many types in the standard library have member functions, such as ’s
member function, which allows you to write . The next section shows how 
to write your own member functions.
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Member Functions
Let’s add a member function to  that reduces the numerator and denominator by 
their greatest common divisor. Listing 27-3 shows the sample program, with the 
member function.

Listing 27-3. Adding the  Member Function
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Notice how the  member function looks just like an ordinary function, except its 
definition appears within the  type definition. Also notice how  can refer to 
the data members of . When you call the  member function, you must supply 
an object as the left-hand operand of the dot ( ) operator (such as  in Listing 27-3). When the 

 function refers to a data member, the data member is taken from that left-hand oper-
and. Thus,  has the effect of .

The  function is a free function. You can call it with any two integers, unrelated to 
 numbers. I could have also made  be a member function, but nothing about the 

function ties it to rational numbers. It does not access any members of . By making it 
a free function, you can reuse it throughout your program, anywhere you need to compute the 
greatest common divisor of two integers. If you aren’t sure whether a function should be free 
or a member, err on the side of making it free.

A member function can also call other member functions that are defined in the 
same type. Try it yourself: add the  member function, which takes a  and 

 as two parameters, and assigns them to their respective data members and calls 
. This spares the user of  the additional step (and possible error of neglecting 

the call to ). Let the return type be . Write your member function below:

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Listing 27-4 presents the entire program, with my  member function in boldface.

Listing 27-4. Adding the  Member Function
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Notice how simple the  program is now. Hiding details, such as , helps keep 
the code clean, readable, and maintainable.

Notice one other subtle detail: the definition of  precedes , even though 
it calls . We need one minor adjustment to the rule that the compiler must see at least 
a declaration of a name before you can use that name; members of a new type can refer to 
other members, regardless of the order of declaration within the type. In all other situations, 
you must supply a declaration prior to use.

Being able to assign a numerator and denominator in one step is a fine addition to the 
 type, but even more important is being able to initialize a  object. Recall 

from Exploration 5 my admonishment to ensure that all objects are properly initialized. The 
next section demonstrates how to add support for initializers to .
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Constructors
Wouldn’t it be nice to be able to initialize a  object with a numerator and denomi-
nator, and have them properly reduced automatically? You can do that by writing a special
member function that looks and acts a little like , except the name is the same as the 
name of the type ( ), and the function has no return type or return value. Listing 27-5
shows how to write this special member function.

Listing 27-5. Adding the Ability to Initialize a  Object
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Notice the definition of the  object. The variable takes arguments that look just like 
function arguments, and indeed they work just like function arguments, too. However, instead 
of calling an ordinary function, the initialization results in a call to the special initialization 
function of the  type. This special member function is called a constructor.

A constructor looks very much like a normal function, except that it doesn’t have a return
type. Also, you can’t choose a name, but must use the type name. And then there’s that extra 
line that starts with a colon. This extra bit of code initializes the data members in the same 
manner as initializing a variable. After all the data members are initialized, the body of the 
constructor runs in the same manner as any member function body.

The initializer list is optional. Without it, data members are left uninitialized—this is a 
bad thing, so don’t do it.

Modify the  type so it accepts a negative denominator. If the denomina-
tor is negative, change it to positive, and also change the sign of the numerator. Thus, 

 would have the same value as .
You can choose to perform the modification in any one of a number of places. Good 

software design practice dictates that the change should occur in exactly one spot, and all 
other functions should call that one. Therefore, I suggest modifying , as shown in 
Listing 27-6.

Listing 27-6. Modifying the  Member Function to Accept a Negative Denominator
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Overloading Constructors
You can overload a constructor the same way you overload an ordinary function. All the 
overloaded constructors have the same name (that is, the name of the type), and they must 
differ in the number or type of the parameters. For example, you can add a constructor that 
takes a single integer argument, implicitly using 1 as the denominator. Add a constructor

to the type. Compare your solution with mine in Listing 27-7.

Listing 27-7. Constructing a Rational Object from an Integer

Note that you don’t need to call  because you know the value is already in its 
reduced form, with a denominator of 1.

I’m sure you can see many deficiencies in the current state of the  type. It has 
several that you probably missed, too. Hang on, the next exploration starts improving the type. 
For example, you may want to test your modification by comparing two  objects to 
see if they are equal. To do so, however, you need to write a custom  operator, which is the 
subject of the next Exploration.
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Overloading Operators

This Exploration continues the study of writing custom types. An important aspect of making 
a custom type behave seamlessly with built-in types is ensuring that the custom types sup-
port all the expected operators—arithmetic types must support arithmetic operators, readable 
and writable types must support I/O operators, and so on. Fortunately, C++ lets you overload 
operators in much the same manner as overloading functions.

Comparing Rational Numbers
In the previous Exploration, you began to write a  type. After making a modification
to it, an important step is testing the modified type, and an important aspect of internal test-
ing is the equality ( ) operator. C++ lets you define a custom implementation for almost every 
operator, provided at least one operand has a custom type. In other words, you can’t rede-
fine integer division to yield a  result, but you can define division of an integer by a 

 number, and vice versa.
To implement a custom operator, you need to write a normal function, but for the func-

tion name, use the  keyword followed by the operator symbol, as shown in the code 
excerpt in Listing 28-1.

Listing 28-1. Overloading the Equality Operator

203
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One of the benefits of reducing all  numbers is that it makes comparison easier. 
Instead of checking whether  is the same as , both numbers are automatically reduced 
to , so it is just a matter of comparing the numerators and denominators. Another trick is 
defining  in terms of . There’s no point in your making extra work for yourself, so con-
fine the actual logic of comparing  objects to one function, and call it from another 
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function. If you worry about the performance overhead of calling an extra layer of functions, 
use the  keyword, as shown in Listing 28-2.

Listing 28-2. Using  for Trivial Functions

The  keyword is a hint to the compiler that you would like the function expanded 
at the point of call. If the compiler decides to heed your wish, the resulting program will not 
have any identifiable function named  in it. Instead, every place where you use the 

 operator with  objects, the function body is expanded there, resulting in a call to 
.

To implement the  operator, you need a common denominator. Once you implement 
, you can implement all other relational operators in terms of . You can choose 

any of the relational operators ( , , , ) as the fundamental operator, and implement the 
others in terms of the fundamental. The convention is to start with . Listing 28-3 demon-
strates  and .

Listing 28-3. Implementing the  Operator for 

Implement  and  in terms of .
Compare your operators with Listing 28-4.
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Listing 28-4. Implementing the  and  Operators in Terms of 

Then write a test program. To help you write your tests, download the test.hpp file and 
add  to your program. Call the  function as many times as you need, 
passing a Boolean expression as the sole argument. If the argument is true, the test passed. If 
the argument is false, the test failed and the  function prints a suitable message. Thus, you 
may write tests, such as the following:

How the  function works is beyond the scope of this book, but it’s useful to have 
around; you’ll be using it for future test harnesses. Compare your test program with 
Listing 28-5.

Listing 28-5. Testing the  Comparison Operators
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Arithmetic Operators
Comparison is fine, but arithmetic operators are much more interesting. You can overload any 
or all of the arithmetic operators. Binary operators take two parameters, and unary operators 
take one parameter. You can choose any return type that makes sense. Listing 28-6 shows the 
binary addition operator and the unary negation operator.

Listing 28-6. Addition Operator for the  Type

Write the other arithmetic operators: , , and . Ignore for the moment the issue of divi-
sion by zero. Compare your functions with mine, which are presented in Listing 28-7.
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Listing 28-7. Arithmetic Operators for the  Type

Adding, subtracting, etc., with  numbers is fine, but more interesting is the issue 
of mixing types. For example, what is the value of ? Try it. Collect the defini-
tion of the  type with all the operators, and write a  function that computes that 
expression and stores it somewhere. Choose a type for the result variable that makes sense to 
you then determine how best to print that value to .

Do you expect the expression to compile without errors? ________________

What is the result type of the expression? ________________

What value do you expect as the result? ________________

Explain your observations.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

It turns out that ’s one-argument constructor tells the compiler it can con-
struct a  from an  any time it needs to do so. It does so automatically, so the 
compiler sees the integer , and a multiplication of an  and a  object. It knows 
about  between two s, and it knows it cannot use the built-in  operator 
with a  operand. Thus, the compiler decides its best response is to convert the  to 
a  (by invoking ), and then it can apply the custom  that multi-
plies two  objects, yielding a  result, namely, . It does all this 
automatically on your behalf. Listing 28-8 illustrates one way to write the test program.
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Listing 28-8. Test Program for Multiplying an Integer and a Rational Number

Being able to construct a rational object automatically from an  is a great convenience. 
You can easily write code that performs operations on integers and rational numbers with-
out concerning yourself with type conversions all the time. You’ll find this same convenience 
when mixing integers and floating-point numbers. For example, you can write  without 
needing to perform a type cast: .

On the other hand, all this convenience can be too convenient. The compiler happily 
converts floating point numbers to integers, so it accepts  by converting 
the floating point argument to an  then calling ’s constructor. The solution is to 
provide constructors for floating-point arguments. Ideally,  would be equal 
to , but getting the details right is quite tricky. Because this is a book
on C++, not numerical analysis, I provide only one simple implementation in Listing 28-9.
A better solution uses  to determine the number of decimal digits of precision 
double can support, and try to preserve as much precision as possible. An even better solution 
uses the radix of the floating-point implementation, instead of working in base 10.

Listing 28-9. Constructing a Rational Number from a Floating-Point Argument
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If you want to optimize a particular function for a particular argument type, you can 
do that, too, by taking advantage of ordinary function overloading. You’d better make sure 
it’s worth the extra work, however. Remember that the  operand can be the right-hand
or left-hand operand, so you will need to overload both forms of the function, as shown in 
Listing 28-10.

Listing 28-10. Optimizing Operators for a Specific Operand Type

In such a simple case, it’s not worth the added trouble to avoid a little extra arithmetic 
However, in more complicated situations, you may need to write such code.

Math Functions
The C++ standard library offers a number of mathematical functions, such as , which 
computes absolute values. The C++ standard prohibits you from overloading these standard 
functions to operate on custom types, but you can still write functions that perform similar 
operations. In Exploration 50, you’ll learn about namespaces, which will enable you to use the 
real function name. Whenever you write a custom numeric type, you should consider which 
math functions you should provide. In this case, absolute value makes perfect sense. Write an 
absolute value function that works with rational numbers. Call it .

Your  function should take a  parameter by value and return a
result. As with the arithmetic operators I wrote, you may opt to use call-by-reference for the 
parameter; if so, make sure you declare the reference to be . Listing 28-11 shows my 
implementation of .

Listing 28-11. Computing the Absolute Value of a Rational Number

That was easy. What about the other math functions, such as , for computing square 
roots? Most of the other functions are overloaded for floating-point arguments. If the compiler 
knew how to convert a rational number to a floating-point number automatically, you could 
simply pass a  argument to any of the existing floating-point functions with no further 
work. So which floating-point type should you use? ________________
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This question has no easy answer. A reasonable first choice might be , which is the 
“default” floating-point type (e.g., floating-point literals have type ). On the other hand, 
what if someone really wants the extra precision  offers? Or what if that person 
doesn’t need much precision and prefers to use ?

The solution is to abandon the possibility of automatic conversion to a floating-point
type, and instead offer three functions that explicitly compute the floating-point value of the 
rational number. Write , , and . Each of these member func-
tions computes and returns the floating-point approximation for the rational number. The 
function name identifies the return type. You will need to cast the numerator and denomi-
nator to the desired floating-point type using , as you learned in Exploration 23. 
Listing 28-12 shows how I wrote these functions, with a sample program that demonstrates 
their use.

Listing 28-12. Converting to Floating-Point Types
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As you can see, if either argument to  (or any other arithmetic or comparison operator) 
is floating point, the other operand is converted to match. You can cast both operands or just 
one or the other. Pick the style that suits you best, and stick with it.

One more task would make it easier to write test programs: overloading the I/O operators. 
That is the topic for the next Exploration.
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Custom I/O Operators

Wouldn’t it be nice to be able to read and write rational numbers directly, for example, 
? In fact, C++ has everything you need, although the job is a 

little trickier than perhaps it should be. This Exploration introduces some of the pieces you 
need to accomplish this.

Input Operator
The I/O operators are just like any other operators in C++, and you can overload them the way 
you overload any other operator. The input operator, also known as an extractor (because it 
extracts data from a stream), takes  as its first parameter. It must be a non-
reference because the function will modify the stream object. The second parameter must also 
be a non-  reference because you will store the input value there. By convention, the 
return type is , and the return value is the first parameter. That lets you combine 
multiple input operations in a single expression. (Go back to Listing 16-3 for an example.)

The body of the function must do the work of read-
ing the input stream, parsing the input, and deciding how 
to interpret that input. Proper error handling is difficult, 
but the basics are easy. Every stream has a state mask that 
keeps track of errors. Table 29-1 lists the available state 
flags (declared in ).

If the input is not valid, the input function sets 
 in the stream’s error state. When the caller 

tests whether the stream is okay, it tests the error state; 
if  is set, the check fails. (The test also fails if an 
unrecoverable error occurs, such as a hardware malfunc-
tion, but that’s not pertinent to the current topic.)

Now you need to decide on a format for rational 
numbers. The format should be one that is flexible enough for a human to read and write eas-
ily, but simple enough for a function to read and parse quickly. The input format must be able 
to read the output format, and might be able to read other formats, too.

Let’s define the format as an integer, a slash ( ), and another integer. White space can 
appear before or after any of these elements unless the white space flag is disabled in the input 
stream. If the input contains an integer that is not followed by a slash, the integer becomes the 
resulting value (that is, the implicit denominator is one). The input operator needs to “unread” 

Table 29-1. I/O State Flags

Flag Description

Unrecoverable error

End of file

Invalid input or output

No errors

213
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the character, which may be important to the rest of the program. The  member func-
tion does exactly that. The input operator for integers does the same thing: read as many 
characters as possible until reading a character that is not part of the integer, then  that 
last character.

Putting all these pieces together requires a little care, but is not all that difficult.  
Listing 29-1 presents the input operator.

Listing 29-1. Input Operator

Notice how  is not modified until the function has successfully read both the numera-
tor and the denominator from the stream. The goal is to ensure that if the stream enters an 
error state, the function does not alter .

The input stream automatically handles white space. By default, the input stream skips 
leading white space in each input operation, which means the  input operator skips 
white space before the numerator, the slash separator, and the denominator. If the program 
turns off the  flag, the input stream does not skip white space, and all three parts must be 
contiguous.
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Output Operator
Writing the output operator, or inserter (so named because it inserts text into the output 
stream), has a number of hurdles due to the plethora of formatting flags. You want to heed 
the desired field width and alignment, and you need to insert fill characters as needed. Like 
any other output operator, you want to reset the field width, but not change any other format 
settings.

The key to writing a complicated output operator is to use a temporary output stream that 
stores its text in a . The  type is declared in the  header. 
Use  the way you would use any other output stream, such as . When you 
are done, the  member function returns the finished .

To write the output operator for a  number, create an , and then 
write the numerator, separator, and denominator. Next, write the resulting string to the actual 
output stream. Let the stream itself handle the width, alignment, and fill issues when it writes 
the string. If you had written the numerator, slash, and denominator directly to the output 
stream, the width would apply only to the numerator, and the alignment would be wrong. 
Similar to an input operator, the first parameter has type , which is also the 
return type. The return value is the first parameter. The second parameter can use call-by-
value or you can pass a reference to , as you can see in Listing 29-2.

Listing 29-2. Output Operator

Error State
The next step is to write a test program. Ideally, the test program should be able to continue 
when it encounters an invalid-input error. So now is a good time to take a closer look at how 
an I/O stream keeps track of errors.

As you learned earlier in this Exploration, every stream has a mask of error flags (see 
Table 29-1). You can test these flags, set them, or clear them. Testing the flags is a little 
unusual, however, so pay attention.
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The way most programs in this book test for error conditions on a stream is to use the 
stream itself or an input operation as a condition. As you learned, an input operator function 
returns the stream, so these two approaches are equivalent. A stream converts to a  result 
by returning the inverse of its  function, which returns  if  or  are set.

In the normal course of an input loop, the program progresses until the input stream is 
exhausted. The stream sets  when it reaches the end of the input stream. The stream’s 
state is still good in that  returns false, so the loop continues. However, the next time 
you try to read from the stream, it sees that no more input is available, sets , and 
returns an error condition. The loop condition is , and the loop exits.

The loop might also exit if the stream contains invalid input, such as non-numeric char-
acters for integer input, or the loop can exit if there is a hardware error on the input stream 
(such as a disk failure). Until now, the programs in this book didn’t bother to test why the loop 
exited. To write a good test program, however, you need to know the cause.

First, you can test for a hardware or similar error by calling the  member function, 
which returns true if  is set. That means something terrible happened to the file, and the 
program can’t do anything to fix the problem.

Next, test for normal end-of-file by calling the  member function, which is  only 
when  is set. If  and  are both  and  is , this means the stream 
contains invalid input. How your program should handle an input failure depends on your 
particular circumstances. Some programs must exit immediately; others may try to continue. 
For example, your test program can reset the error state by calling the  member func-
tion then continue running. After an input failure, you may not know the stream’s position, so 
you don’t know what the stream is prepared to read next. This simple test program skips to the 
next line.

Listing 29-3 demonstrates a test program that loops until end-of-file or an unrecoverable 
error occurs. If the problem is merely invalid input, the error state is cleared, and the loop 
continues.

Listing 29-3. Testing the I/O Operators
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The  type is nearly finished. The next Exploration tackles assignment operators, 
and seeks to improve the constructors.
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Assignment and Initialization

The final step needed to complete this stage of the  type is to write assignment oper-
ators and to improve the constructors. It turns out C++ does some work for you, but you often 
want to fine tune that work. Let’s find out how.

Assignment Operator
Until now, all the  operators have been free functions. The assignment operator is dif-
ferent. The C++ standard requires that it be a member function. One way to write this function 
is shown in Listing 30-1.

Listing 30-1. First Version of the Assignment Operator

Several points need further explanation. When you implement an operator as a free func-
tion, you need one parameter per operand. Thus, binary operators require a two-parameter 
function, and unary operators require a one-parameter function. Member functions are dif-
ferent because the object itself is an operand (always the left-hand operand), and the object is 
implicitly available to all member functions, therefore you need one fewer parameter. Binary 
operators require a single parameter (as you can see in Listing 30-1), and unary operators 
require no parameters (examples to follow).

The convention for assignment operators is to return a reference to the enclosing type; the 
value to return is the object itself. You can obtain the object with the expression  (  is 
a reserved keyword).

Because  is the object itself, another way to refer to members is to use the dot opera-
tor (e.g., ) instead of the basic . Recall from Exploration 14 that 

219
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another way to write  is . The meaning is the same; the 
alternative syntax is mostly a convenience. Writing  is not necessary for these simple 
functions, but it’s often a good idea. When you read a member function, and you have trouble 
discerning the members from the non-members, that’s a signal that you need to help the 
reader by using  before all the member names. Listing 30-2 shows the assignment oper-
ator with explicit use of .

Listing 30-2. Assignment Operator with Explicit Use of 

The right-hand operand can be anything you want it to be. For example, you may want 
to optimize assignment of an integer to a  object. The way the assignment operator 
works with the compiler’s rules for automatic conversion, the compiler treats such an assign-
ment (e.g., ) as an implicit construction of a temporary  object, followed by an 
assignment of one  object to another.

Write an assignment operator that takes an  parameter. Compare your solution with 
mine, which is shown in Listing 30-3.

Listing 30-3. Assignment of an Integer to a Rational

If you do not write an assignment operator, the compiler writes one for you. In the case of 
the simple  type, it turns out that the compiler writes one that works exactly like the 
one in Listing 30-2, so there was actually no need to write it yourself (except for instructional 
purposes).
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Constructors
The compiler also writes a constructor automatically, specifically one that constructs a 

 object by copying all the data members from another  object. This is called a 
copy constructor. Any time you pass a  argument by value to a function, the compiler 
uses the copy constructor to copy the argument value to the parameter. Any time you define a 

 variable and initialize it with the value of another  value, the compiler con-
structs the variable by calling the copy constructor.

As with the assignment operator, the compiler’s default implementation is exactly what 
we would write ourselves, so there is no need to write the copy constructor.

If you don’t write any constructors for a type, the compiler also creates a constructor that 
takes no arguments, called a default constructor. The compiler uses the default constructor 
when you define a variable and do not provide an initializer for it. The compiler’s implemen-
tation of the default constructor merely calls the default constructor for each data member. 
If a data member has a built-in type, the member is left uninitialized. In other words, if we 
did not write any constructors for , any  variable would be uninitialized, so 
its numerator and denominator would contain garbage values. That’s bad—very bad. All the 
operators assume the  object has been reduced to normal form. They would fail if you 
passed an uninitialized  object to them. The solution is simple: don’t let the compiler 
write its default constructor. Instead, you write one.

All you need to do is write any constructor at all. This will prevent the compiler from writ-
ing its own default constructor. (It will still write its own copy constructor. The only way to 
prevent that is to write your own copy constructor.)

Early on, we wrote a constructor for the  type, but it was not a default construc-
tor. As a result, you could not define a  variable and leave it uninitialized. (You may 
have run into that issue when writing your own test program.) Uninitialized data is a bad idea, 
but having default constructors is a good idea. So write a default constructor to make sure 
a  variable that has no initializer has a well-defined value nonetheless. What value 
should you use? I recommend zero, which is in keeping with the spirit of the default construc-
tors for types such as  and . Write a default constructor for  to initialize 
the value to zero.

Compare your solution with mine, which is presented in Listing 30-4.

Listing 30-4. Overloaded Constructors for 
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Putting It All Together
Before we take leave of the  type (only temporarily, we will return), let’s put all the 
pieces together so you can see what you’ve accomplished over the past four Explorations. 
Listing 30-5 shows the complete definition of  and the related operators.

Listing 30-5. Complete Definition of  and Its Operators
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I encourage you to add tests to the program in Listing 28-5 to exercise all the latest fea-
tures of the  class. Make sure everything works the way you expect it. Then put aside 

 for the next Exploration, which takes a closer look at the foundations of writing cus-
tom types.
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Writing Classes

The  type is an example of a class. Now that you’ve seen a concrete example of 
writing your own class, it’s time to understand the general rules that govern all classes. 
This Exploration and the next four lay the foundation for this important aspect of C++ 
programming.

Anatomy of a Class
A class has a name and members—data members, member functions, and even member 
typedefs and nested classes. You start a class definition with the  keyword. (You might 
wonder why you would not start a class definition with the  keyword. Please be patient; 
all will become clear in Exploration 33.) Use curly braces to surround the body of the class 
definition, and the definition ends with a semicolon. Within the curly braces, you list all the 
members. Declare data members in a manner similar to a local variable definition, with no 
initializer. You write member functions in the same manner as you would a free function. 
Listing 31-1 shows a simple class definition that contains only data members.

Listing 31-1. Class Definition for a Cartesian Point

Listing 31-2 demonstrates how C++ lets you list multiple data members in a single
declaration. Except for trivial classes, this style is uncommon. I prefer to list each member 
separately so I can include a comment explaining the member, what it’s used for, what con-
straints apply to it, and so on. Even without the comment, a little extra clarity goes a long way. 

Listing 31-2. Multiple Data Members in One Declaration

227
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As with any other name in a C++ source file, before you can use a class name, the com-
piler must see its declaration or definition. You can use the name of a class within its own 
definition.

Use the class name as a type name to define local variables, function parameters, function 
return types, and even other data members. The compiler knows about the class name from 
the very start of the class definition, so you can use its name as a type name inside the class 
definition.

When you define a variable using a class type, the compiler sets aside enough memory so 
the variable can store its own copy of every data member of the class. For example, define an 
object with type , and the object contains the  and  members. Define another object of 
type , and that object contains its own, separate  and  members.

Use the dot ( ) operator to access the members, as you have been doing throughout this 
book. The object is the left-hand operand and the member name is the right-hand operand, as 
shown in Listing 31-3.

Listing 31-3. Using a Class and Its Members

Member Functions
In addition to data members, you can have member functions. Member function definitions 
look very similar to ordinary function definitions, except you define them as part of a class
definition. Also, a member function can call other member functions of the same class and can 
access data members of the same class. Listing 31-4 shows some member functions added to 
class .
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Listing 31-4. Member Functions for Class 

For each member function, the compiler generates a hidden parameter named .
When you call a member function, the compiler passes the object as the hidden argument. In 
a member function, you can access the object with the expression . The C++ syntax rules 
specify that the member operator ( ) has higher precedence than the  operator, so you need 
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parentheses around  (e.g., ). As a syntactic convenience, another way to write 
the same expression is > , several examples of which you can see in Listing 31-4.

The compiler is smart enough to know when you use a member name, so the use of 
 is optional. If a name has no local definition, and it is the name of a member, the 

compiler assumes you want to use the member. Some programmers prefer to always include 
 for the sake of clarity—in a large program, you can easily lose track of which names are 

member names. Other programmers find the extra  to be clutter and use it only when 
necessary. My recommendation is the latter. You need to learn to read C++ classes, and one of 
the necessary skills is to be able to read a class definition, find the member names, and keep 
track of those names while you read the class definition.

A number of programmers employ a more subtle technique, which involves using a spe-
cial prefix or suffix to denote data member names. For example, a common technique is to 
use the prefix  for all data members (“m” is short for member). Another common technique 
is a little less intrusive: using a plain underscore ( ) suffix. I prefer a suffix to a prefix because 
suffixes interfere less than prefixes, so they don’t obscure the important part of a name. From 
now on, I will adopt the practice of appending an underscore to every data member name.

NO LEADING UNDERSCORE

If you want to use an underscore to denote members, use it as a suffix, not a prefix. The C++ standard sets 
aside certain names and prohibits you from using them. The actual rules are somewhat lengthy because C++ 
inherits a number of restrictions from the C standard library. For example, you should not use any name that 
begins with  and is followed by a digit or an uppercase letter. (That rule seems arcane, but the C standard 
library defines several error code names, such as , for a range error in a math function. This rule lets 
the library add new names in the future, and lets those who implement libraries add vendor-specific names.)

I like simplicity, so I follow three basic rules. These rules are slightly more restrictive than the official 
C++ rules, but not in any burdensome way:

).

).

).

Using a reserved name results in undefined behavior. The compiler may not complain, but the results 
are unpredictable. Typically, a standard library implementation must invent many additional names for 
its internal use. By defining certain names that the application programmer cannot use, C++ ensures the 
library-writer can use these names within the library. If you accidentally use a name that conflicts with an 
internal library name, the results could be chaos or merely a subtle shift in a function’s implementation.

Constructor
As I mentioned earlier, data member declarations do not take initializers. The way to initial-
ize a data member is in a constructor, which you learned about in Exploration 30. Recall that 
a constructor is a special member function. You cannot call a constructor directly; instead, 
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when you define a variable of class type, the compiler automatically generates code to call the 
appropriate constructor. Which constructor it calls depends on the arguments you supply to 
the variable’s initializer (if any), according to the usual rules for overloading functions.

Write a constructor almost the same way you would an ordinary member function, but 
with a few differences:

 (return statements that do not return values).

Listing 31-5 shows several examples of constructors added to class .

Listing 31-5. Constructors for Class 

Constructors take arguments the same way ordinary functions do. When you define an 
object of class type, you pass arguments to initialize the object. The compiler passes the argu-
ments to the constructor, just as though you were calling the constructor as a function. If you 
omit the constructor argument list, you must also omit the parentheses; the compiler calls the 
no-argument constructor (called the default constructor), as shown in the following:

Initialization is one of the key differences between class types and built-in types. If you 
define an object of built-in type without an initializer, you get a garbage value, but objects of 
class type are always initialized by calling a constructor. You always get a chance to initialize 
the object’s data members. The difference between built-in types and class types are also evi-
dent in the rules C++ uses to initialize data members in a constructor.

A constructor’s initializer list is optional, but I recommend you always provide it. It appears 
after a colon, which follows the closing parenthesis of the constructor’s parameter list. The 
initializer list initializes each data member in the same order in which you declare them in 
the class definition, ignoring the order in the initializer list. I further recommend that to avoid 
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confusion, you always write the initializer list in the same order as the data members. Mem-
ber initializers are separated by commas and can spill onto as many lines as you need. Each 
member initializer provides the initial value of a single data member. List the member name, 
followed by the initial value in parentheses.

The compiler treats class-type data members differently from data members with built-in
type. Each member initializer can have one of three kinds of values:

out the entire initializer list. Members of built-in type are left uninitialized; members 
of class type are initialized by calling their default constructors, as demonstrated in the 
following:

empty. (You must always include the parentheses after the member name.) Members 
are value-initialized: A member of built-in type is value-initialized by initializing it to 
zero, cast to the appropriate type ( , , ). A member of class type—when the 
class has at least one explicit constructor—is value-initialized by calling its default 
constructor. If the class has at least one constructor, but no default constructor, the 
compiler issues an error message. A member of class type with no explicit constructor 
is value-initialized by value-initializing its members individually. (I don’t like the name 
value-initialize, but that’s what the standard calls it, and that’s what C++ experts call it, 
so you may as well get used to it.)

 a list of one or more arguments, separated by commas (as in a func-
tion call): members of built-in type must have only one argument, and that argument 
is the initial value. Members of class type are initialized by passing the arguments to 
a suitable constructor. The compiler chooses a constructor based on the number and 
type of the arguments, using the normal rules for resolving overloaded functions, as 
shown in the following:
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If you don’t write any constructors for your class, the compiler writes its own default con-
structor. The compiler’s default constructor is just like a constructor that omits an initializer 
list.

When the compiler writes a constructor for you, the constructor is implicit. When you 
write your own constructor, it is explicit. The distinction matters when value-initializing an 
object, as I explained earlier.

In some applications, you may want to avoid the overhead of initializing the data mem-
bers of  because your application will immediately assign a new value to the  object. 
Most of the time, however, caution is best. For that reason, I wrote the default constructor for 

 to initialize the data members to .
A copy constructor is one that takes a single argument of the same type as the class, 

passed by reference. The compiler automatically generates calls to the copy constructor when 
you pass objects by value to functions, or when functions return objects. You can also initial-
ize a  object with the value of another  object, and the compiler generates code to 
invoke the copy constructor.

If you don’t write your own copy constructor, the compiler writes one for you. The auto-
matic copy constructor calls the copy constructor for every data member, just like the one in 
Listing 31-5. Because I wrote one that is exactly like the one the compiler writes implicitly, 
there is no reason to write it explicitly. Let the compiler do its job.

To help you visualize how the compiler calls constructors, read Listing 31-6. Notice how it 
prints a message for each constructor use.

Listing 31-6. Visual Constructors
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Predict the output from running the program in Listing 31-6.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Check your prediction. Were you correct? ________________
The compiler is allowed to perform some minor optimizations when passing arguments 

to functions and accepting return values. For example, instead of copying a  object to the 
 return value, and then copying the return value to initialize , the C++ standard per-

mits compilers to remove unnecessary calls to the copy constructor. Not all compilers perform 
this optimization, and not all do so in the same manner. Most compilers require a command
line switch or project option to be set before it optimizes. Thus, the exact number of calls to 
the copy constructor can vary slightly from one compiler or platform to another, or from one 
set of command line switches to another. When I run the program, I get the following:

That was easy. The next Exploration starts with a real challenge.



E X P L O R A T I O N  3 2

More About Member Functions

Member functions and constructors are even more fun than what you’ve learned so far. This 
Exploration continues to uncover their mysteries.

Invoking the Default Constructor
Let’s begin with a challenge. Read the program in Listing 32-1.

Listing 32-1. Mystery Program

235
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Predict the output from the program in Listing 32-1.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Okay, I confess. I played a trick on you. You probably expected to see the message

but you didn’t, did you? So, what happened? To better understand, try adding a line to print 
the value of .

Now what happens?

_________________________________________________________________________________

_________________________________________________________________________________

More tricks, I’m afraid. The problem is that the program does not actually define a vari-
able named , constructed with the default constructor. Instead, you have inadvertently 
declared a function named , which takes no arguments and returns a  value.

The C++ language is complicated, and the grammar in particular has a number of subtle 
complexities. In this case, the grammar is ambiguous and permits two different interpreta-
tions of the declaration of . The semantic rules resolve the syntactic ambiguity, but not in 
the way you probably predicted. Imagine for a moment that you change the type from  to 

, and the name from  to .

Now it looks like a function declaration, doesn’t it? And that’s exactly how the compiler 
sees it: a declaration (not a definition) of a function named  that takes no arguments and 
returns type . Listing 32-1 contains a declaration of a function named  that takes no argu-
ments and returns type .

The proper way to define an object named  that invokes the default constructor is to 
omit the parentheses, as shown in the following:

This issue often trips up new C++ programmers. Fortunately, the compiler detects the 
mistake and issues an error message. Unfortunately, the message is often cryptic because the 
compiler’s interpretation of what you wrote is so very different from your intention, and the 
message typically arises where you use , not where you declare it. Fortunately, with a little 
experience, you will quickly learn to recognize this coding pattern.

Subtle semantic problems arise in other ways. The most notable trap arises when you try 
to construct objects, such as vectors, only the compiler doesn’t see it that way at all. Types 
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such as  have a plethora of constructors. One constructor takes two read iterators and 
initializes the  by copying all the elements from the iterator range. Listing 32-2 shows 
a simple program that reads integers from the standard input, then finds the first instance of 
zero in the data, and constructs a new , starting at the zero and extending to the end of 
the original vector. The only point of this program is to demonstrate ’s two-iterator con-
structor.

Listing 32-2. Constructing a  from Two Read Iterators

You can use the same constructor to construct the  object, too. Instead of using the 
default constructor and a separate call to the  member function, you can directly con-
struct  with the values that  reads from . Consider the program in 
Listing 32-3. 

Listing 32-3. Problem with  Iterators
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The constructor for  looks just like the constructor for , except that the two 
read iterators are  objects. At least that’s what the program looks like at first. 
What does the program actually do?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Instead of defining a variable named  that is initialized by calling a two-argument 
constructor with two  objects as arguments, the program actually 
declares a function named  that takes two parameters of type .
The first parameter is named , and the second has no name. The parentheses around the 
parameter name (or lack of name) are redundant, so the compiler ignores them.

Once again, the compiler sees a function declaration instead of a variable definition. The 
grammar is again ambiguous, and the language rules opt in favor of the function declaration.

In past Explorations, I’ve avoided this particular problem by defining an empty vector, 
and then copying the data into the vector by calling the  member function or the 
algorithm. Another way to get around the compiler’s interpretation of the declaration is to sur-
round each argument in its entirety in parentheses, as demonstrated in the following:

These extra parentheses force the compiler to see the declaration as a variable definition, 
not a function declaration. You may find this style a little hard to read, but once you get used 
to it, you can easily see this idiom and how it works.

Revisiting Project 1
What did you find most frustrating about Project 1 (Exploration 26)? If you are anything like 
me (although I hope you’re not, for your own sake), you may have been disappointed that you 
had to define several separate vectors to store one set of records. However, without know-
ing about classes, that was the only feasible approach. Now that you’ve been introduced to 
classes, you can fix the program. Write a class definition to store one record. Refer back to 
Exploration 26 for details. To summarize, each record keeps track of an integer height in cen-
timeters, an integer weight in kilograms, the calculated BMI (which you can round off to an 
integer), the person’s sex (letter  or ), and the person’s name (a ).

Next, write a  member function that reads a single record from an . It takes 
two arguments: an  and an integer. Prompt the user for each piece of information by 
writing to . The integer argument is the record number, which you can use in the 
prompts. Write a  member function that prints one record; it takes an  and an 
integer threshold as arguments.

Finally, modify the program to take advantage of the new class you wrote. Compare 
your solution to that of mine, shown in Listing 32-4.
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Listing 32-4. New BMI Program
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That’s a lot to swallow, so take your time. I’ll wait here until you’re done. When faced with 
a new class that you need to read and understand, start by reading the comments (if any). One 
approach is to first skim lightly over the class to identify the members (function and data) then 
re-read the class to understand the member functions in depth. Tackle one member function 
at a time.

You may be asking yourself why I didn’t overload the  and  operators to read and 
write  objects. The requirements of the program are a little more complicated than what 
these operators offer. For example, reading a  also involves printing prompts, and each 
prompt includes an ordinal so the user knows which record to type. Some records are printed 
differently than others, depending on the threshold. The  operator has no convenient way 
to specify the threshold. Overloading I/O operators is great for simple types, but usually is not 
appropriate for more complicated situations.

const Member Functions
Take a closer look at the  function. Notice anything unusual or suspicious about 
its parameters? The  argument is passed by reference, but the function never modifies 
it, so you really should pass it as a reference to . Go ahead and make that change. What
happens?
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_________________________________________________________________________________

_________________________________________________________________________________

You should see an error from the compiler. I often make this particular mistake in my 
code, so I’m glad it’s easy to fix. You are not allowed to use a plain  with a  con-
tainer. You must use  instead. (See Exploration 20.) Change the  loop to use 
a . Now what happens?

_________________________________________________________________________________

_________________________________________________________________________________

Hmmm, still no go. Remember that every member function has a hidden parameter, ,
that refers to the object. In this case,  calls the  member function, but after 
the change,  refers to a  object. You know that the  function does not modify 
any data members, but the compiler doesn’t. You need to instruct the compiler that it can call 

 with a  object, and you do so by adding a  modifier between the function 
header and the function body. Listing 32-5 shows the new definition of the  member 
function.

Listing 32-5. Adding the  Modifier to 

As a general rule, use the  modifier for any member function that does not change 
any data members. This ensures that you can call the member function when you have a 
object. Copy the code from Listing 30-4 and modify it to add  modifiers where appro-
priate. Compare your result with mine in Listing 32-6.

Listing 32-6.  Member Functions for Class 
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The  and  functions modify data members, so they cannot be . The 
and  member functions don’t modify any members, so they are .

Given a  variable, you can call any member function. If the object is , however, 
you can call only  member functions. The most common situation is when you find your-
self with a  object within another function, and the object was passed by reference to 

, as illustrated in Listing 32-7.
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Listing 32-7. Calling  and Non-  Member Functions

Another common use for member functions is to restrict access to data members. Imag-
ine what would happen if a program that used the BMI  type accidentally modified the 

 member. A better design would let you call a  function to obtain the BMI, but hide 
the  data member to prevent accidental modification. You can prevent such accidents, 
and the next Exploration shows you how.
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Access Levels

Everyone has secrets, some of us more than others. Classes have secrets, too. For example: 
throughout this book you have used the  class without having any notion of what 
goes on inside the class. The implementation details are secrets—not closely guarded secrets, 
but secrets nonetheless. You cannot directly examine or modify any of ’s data mem-
bers. Instead, it presents quite a few member functions that make up its public interface. You 
are free to use any of the publicly available member functions, but only the publicly available 
member functions. This Exploration explains how you can do the same with your classes. 

Public vs. Private
The author of a class determines which members are secrets (for use only by the class’s own 
member functions), and which members are freely available for use by any other bit of code 
in the program. Secret members are called private, and the members that anyone can use are 
public. The privacy setting is called the access level.

To specify an access level, use the  keyword or the  keyword, followed by 
a colon. All subsequent members in the class definition have that accessibility level until you 
change it with a new access level keyword. Listing 33-1 shows the  class with access level 
specifiers.

Listing 33-1. The  Class with Access Level Specifiers

247



EXPLORATION 33   ACCESS LEVELS248

The data members are private, so the only functions that can modify them are ’s
own member functions. Public member functions provide access to the position with the pub-
lic  and  member functions.

Tip Always keep data members private, and provide access only through member functions.

To modify a position, notice that  does not let the user arbitrarily assign a new x or 
y value. Instead, it offers several public member functions to move the point to an absolute 
position, or relative to the current position.

The public member functions let you work in Cartesian coordinates—that is, the famil-
iar x and y positions, or in polar coordinates, specifying a position as an angle (relative to the 
x-axis) and a distance from the origin. Both representations for a point have their uses, and 
both can uniquely specify any position in two-dimensional space. Some users prefer polar 
notation while others prefer Cartesian. Neither user has direct access to the data members, so 
it doesn’t matter how the  class actually stores the coordinates. In fact, you can change 
the implementation of  to store the distance and angle as data members by changing 
only a few member functions. Which member functions would you need to change?

_________________________________________________________________________________

_________________________________________________________________________________
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Changing the data members from  and  to  and  necessitate a change to the 
, , , and  member functions just for access to the data members. You also need 

to change the two  functions:  and . Finally, you need to modify 
the constructors. No other changes are necessary. Because the  and  functions do 
not access data members directly, but instead call other member functions, they are insulated 
from changes to the class implementation. Rewrite the  class to store polar coordinates 
in its data members. Compare your class with mine, which is shown in Listing 33-2.

Listing 33-2. The  Class Changed to Store Polar Coordinates
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One small difficulty is the constructor. Ideally,  should have two constructors, one 
taking polar coordinates and the other taking Cartesian coordinates. The problem is that both 
coordinates are pairs of numbers, and overloading cannot distinguish between the arguments. 
This means you can’t use normal overloading for these constructors. Instead, you can add 
a third parameter: a flag that indicates whether to interpret the first two parameters as polar 
coordinates or Cartesian coordinates.

It’s something of a hack, but it will have to do for now. Later in the book, you will learn 
cleaner techniques to accomplish this task.

class vs. struct
Exploration 32 hinted that the  keyword was somehow involved in class definitions, even 
though every example in this book so far uses the  keyword. Now is the time to learn the 
truth.

The truth is quite simple. The  and  keywords both start class definitions. The 
only difference is the default access level:  for  and  for . That’s all.

By convention, programmers tend to use  for class definitions. Also by convention, 
class definitions begin with the public interface, tucking away the private members at the bot-
tom of the class definition. Listing 33-3 shows the latest incarnation of the  class, this 
time defined using the  keyword.

Listing 33-3. The  Class Defined with the  Keyword
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Plain Old Data
So what good is the  keyword? Authors of introductory books like it because we can 
gradually introduce concepts such as classes without miring the reader in too many details, 
such as access levels, all at once. But what about real-world programs?

The  keyword plays a crucial role in C-compatibility. C++ is a distinct language from 
C, but many programs must interface with the C world. C++ has a couple of key features to 
interface with C; one of those features is POD. That’s right, POD, short for Plain Old Data.

A POD type is one that stores data but doesn’t really do much else with it. For example, 
the built-in types are POD types. They don’t have member functions. An  just sits there and 
exists as an  with all the behavior of an . It’s up to your code to do something interesting 
with it. An  is plain, old data.

A class that has only public POD types as data members, with no constructors, and no 
overloaded assignment operator, is a POD type. A class with a private member, a member with 
reference or other non-POD type, a constructor, or an assignment operator is not POD.

The importance of POD types is that legacy C functions in the C++ library, in third-party
libraries, or operating system interfaces, require POD types. This book won’t go into the details 
of any of these functions, but if you find yourself needing to call , , , or 
any one of the myriad related functions, you will need to make sure you are using POD classes.

By defining POD classes with , you achieve two goals: data members are public by 
default so you don’t need any access level specifiers, and it’s a hint to the human reader that 
the class is not a normal class. Not everyone uses  to mean POD, but it’s a convention
I use in my own code. I use  for all other cases to remind the human reader that the class 
can take advantage of C++ features and is not required to maintain compatibility with C.

Public or Private?
Usually, you can easily determine which members should be public and which should be pri-
vate. Sometimes, however, you need to stop and ponder. Consider the  class (last seen 
in Exploration 31). Rewrite the  class to take advantage of access levels.

Did you decide to make  public or private? I chose private because there is 
no need for any outside caller to call . Instead, the only member functions to call 

 are the ones that change the data members themselves. Thus,  is hidden 
from outside view and serves as an implementation detail. The more details you hide, the bet-
ter because it makes your class easier to use.

When you added access functions, did you let the caller change the numerator only? Did 
you write a function to change the denominator only? Or did you ask that the user assign both 
at the same time? The user of a  object should treat it as a single entity, a number. You 
can’t assign only a new exponent to a floating-point number, and you shouldn’t be able to 
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assign only a new numerator to a rational number. On the other hand, I see no reason not to 
let the caller examine just the numerator or just the denominator. For example, you may want 
to write your own output formatting function, which requires knowing the numerator and 
denominator separately.

A good sign that you have made the right choices is that you can rewrite all the operator 
functions easily. These functions should not need to access the data members of , but 
use only the public functions. If you tried to access any private members, you learned pretty 
quickly that the compiler wouldn’t let you. That’s what privacy is all about.

Compare your solution with my solution, presented in Listing 33-4.

Listing 33-4. The Latest Rewrite of the  Class
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Classes are one of the fundamental building blocks of object-oriented programming. Now 
that you know how classes work, you can see how they apply to this style of programming, 
which is the subject of the next Exploration.
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Introduction to  Object- Oriented
Programming

This Exploration takes a break from C++ programming to turn to the topic of object-oriented
programming (OOP). You may already be familiar with this topic, but I urge you to continue 
reading. You may learn something new. To everyone else, this Exploration introduces some of 
the foundations of OOP in general terms. Later Explorations will show how C++ implements 
OOP principles.

Books and Magazines
What is the difference between a book and a magazine? Yes, I really want you to write down 
your answer. Write down as many differences as you can think of:

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

What are the similarities between books and magazines? Write down as many similari-
ties as you can think of:

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

If you can, compare your lists with the lists that other people write. They don’t need to be 
programmers; everyone knows what books and magazine are. Ask your friends and neighbors, 
stop strangers at the bus stop and ask them. Try to find a core set of commonalities and differ-
ences.

Many items on the lists will be qualified. For instance, “most books have at least one 
author,” “many magazines are published monthly,” and so on. That’s fine. When solving real 
problems, we often map “maybe” and “sometimes” into “never” or “always,” according to the 
specific needs of the problem at hand. Just remember that this is an OOP exercise, not a book-
store or library exercise.

257
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Now categorize the commonalities and the differences. I’m not telling you how to catego-
rize them. Just try to find a small set of categories that covers the diverse items on your lists. 
Some less useful categorizations are: group by number of words, group by last letter. Try to 
find useful categories. Write them down.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

I came up with two broad categories: attributes and actions. Attributes describe the physi-
cal characteristics of books and magazines:

don’t. (Magazine articles have authors, but the magazine as a whole rarely lists an author.) 
Actions describe how a book or magazine acts or how you interact with them:

The key distinction between attributes and actions is that attributes are specific to a single
object. Actions are shared by all objects of a common class. Sometimes, actions are called 
behaviors. All dogs exhibit the behavior called panting; they all pant in pretty much the same 
manner and for the same reasons. All dogs have the attribute color, but one dog is golden, 
another dog is black, and the dog over there next to the tree, is white with black spots.

In programming terms, a class describes the behaviors or actions and the types of attri-
butes for all the objects of that class. Each object has its own values for the attributes that the 
class enumerates. In C++ terms, member functions implement actions and provide access to 
attributes, and data members store attributes.

Classification
 don’t do much on their own. Instead, their “actions” depend on how 

we interact with them. A bookstore interacts with books and magazines by selling, stocking, 
and advertising them. A library’s actions include lending and returning. Other kinds of objects 
have actions they initiate on their own. For example, what are some of the behaviors of a dog?
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_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

What are the attributes of a dog?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

What about a cat? Do cats and dogs have significantly different behaviors? ____________ 
Attributes? ________________ Summarize the differences:

_________________________________________________________________________________

_________________________________________________________________________________

I don’t own dogs or cats, so my observations are limited. From where I sit, dogs and cats 
have many similar attributes and behaviors. I expect that many readers are much more astute 
observers than I, and can enumerate quite a few differences between the two.

Nonetheless, I maintain that once you consider the differences closely, you will see that 
many of them are not attributes or behaviors unique to one type of animal or the other, but are 
merely different values of a single attribute or different details of a single behavior. Cats may 
be more fastidious, but dogs and cats both exhibit grooming behavior. Dogs and cats come in 
different colors, but they both have colored furs (with rare exceptions).

In other words, when trying to enumerate the attributes and behaviors of various objects, 
your job can be made simpler by classifying similar objects together. For critters, biologists 
have already done the hard work for us, and they have devised a rich and detailed taxonomy 
of animals. Thus, a species (catus or familiaris) belongs to a genus (Felis or Canis), which is 
part of a family (Felidae or Canidae). These are grouped yet further into an order (Carnivora), 
a class (Mammalia), and so on, up to the animal (Metazoa) kingdom. (Taxonomists: please for-
give my oversimplification.)

So what happens to attributes and behaviors as you ascend the taxonomy tree? Which
attributes and behaviors are the same as for the general class of mammals?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________
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All animals?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

As the classification became broader, the attributes and behavior also became more gen-
eral. Among the attributes of dogs and cats are color of fur, length of tail, weight, and much 
more. Not all mammals have fur or tails, so you need broader attributes for the entire class. 
Weight still works, but instead of overall length, you may want to use length or height. Instead 
of color of fur, you need only generic coloring. For all animals, the attributes are quite broad: 
size, weight, single-cell vs. multi-cell, etc.

run, and so on. All mammals eat and drink. Female mammals nurse their young. For all ani-
mals, you are left with a short, general list: eat and reproduce. It’s hard to be more specific 
than that when you are trying to list the behaviors common to all animals, from amoebae to 
zebras.

A classification tree helps biologists understand the natural world. Class trees (or class
hierarchies, as they are often called because big words make us feel important) help program-
mers model the natural world in software (or model the unnatural world, as so often happens 
in many of our projects). Instead of trying to name each level of the tree, programmers prefer 
a local, recursive view of any class hierarchy. Going up the tree, toward the root, each class has 
a base class, also called a superclass or parent class. Thus animal is a base class of mammal,
which is a base class of dog. Going toward the leaves of the tree are derived classes, also called 
subclasses or child classes. Dog is a derived class of mammal. Figure 34-1 illustrates a class
hierarchy. Arrows point from derived class to base class.

Figure 34-1. A class diagram
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An immediate base class is one with no intervening base classes. For example, the imme-
diate base class of catus is Felis, which has an immediate base class of Felidae, which has an 
immediate base class of Carnivora. Metazoa, Mammalia, Carnivora, Felidae, and Felis are all 
base classes of catus, but only Felis is its immediate base class.

Inheritance
Just as a mammal has all the attributes and behaviors of an animal, and a dog has the attri-
butes and behaviors of all mammals, in an OOP language, a derived class has all the behaviors 
and attributes of all of its base classes. The term most often used is inheritance: the derived 
class inherits the behaviors and attributes of its base class. This term is somewhat unfortunate 
because OOP inheritance is nothing like real-world inheritance. When a derived class inherits 
behaviors, the base class retains its behaviors. In the real world, classes don’t inherit anything; 
objects do. In the real world, a person object inherits the value of certain attributes (cash, 
stock, real estate, etc.) from a deceased ancestor object. In the OOP world, a person class 
inherits behaviors from a base class by sharing the single copy of those behavior functions that 
are defined in the base class. A person class inherits the attributes of a base class, so objects 
of the derived class contain values for all the attributes defined in its class and in all of its base 
classes. In time, the inheritance terminology will become natural to you.

of inheritance. As is so common in programming, tree diagrams are drawn upside down, with 
the root at the top, and leaves at the bottom (as you saw in Figure 34-1). Some OOP languages 
(Java, Smalltalk, Delphi) have a single root, which is the ultimate base class for all classes. Oth-
ers, such as C++, do not. Any class can be the root of its own inheritance tree.

So far, the main examples for inheritance involved some form of specialization. Cat is 
more specialized than mammal, which is more specialized than animal. The same is true in 
computer programming. For example, class frameworks for graphical user interfaces (GUIs) 
often use a hierarchy of specialized classes. Figure 34-2 shows a selection of some of the more 
important classes that make up wxWidgets, which is an open-source C++ framework that sup-
ports many platforms.

Even though C++ does not require a single root class, some frameworks do; wxWidgets 
is one that does require a single root class. Most wxWidgets classes derive from .
Some objects are straightforward, such as  and . Interactive objects derive from 

 (short for “event handler”). Thus, each step in the class tree introduces another 
degree of specialization.

Later in the book, you will see other uses for inheritance, but the most common and most 
important use is to create specialized derived classes from more general base classes.
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Figure 34-2. Excerpt from the wxWidgets class hierarchy

Liskov’s Substitution Principle
When a derived class specializes the behavior and attributes of a base class (which is the com-
mon case), any code that you write involving the base class should work equally well with an 
object of the derived class. In other words, the act of feeding a mammal is, in broad principles, 
the same regardless of the specific kind of animal.

oriented programming, which is often known today as the Substitution Principle or Liskov’s 
B

and derived class D, in any situation that calls for an object of type B, you can substitute an 
object of type D with no ill effects. In other words, if you need a mammal, any mammal, and 
someone hands you a dog, you should be able to use that dog. If someone hands you a cat,
a horse, or a cow, you can use that animal. If someone hands you a fish, however, you are 
allowed to reject the fish in any manner that you deem suitable.

The Substitution Principle helps you write programs, but it also imposes a burden. It helps 
because it frees you to write code that depends on base class behavior without concerning 
yourself about any derived classes. For example, in a GUI framework, the base 
class might be able to recognize a mouse click and dispatch it to an event-handler. The 
click handler does not know or care whether the control is actually a  control, a 

 control, or a . All that matters is that  accepts a click event, 
acquires the position, determines which mouse button was clicked, and so on, and then dis-
patches this event to the event handler.

The burden is on the authors of the , , and  classes to 
ensure that their click behavior meets the requirements of the Substitution Principle. The 
easiest way to meet the requirements is to let the derived class inherit the behavior of the base 
class. Sometimes, however, the derived class has additional work to do. Instead of inherit-
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ing, it provides new behavior. In that case, the programmer must ensure that the behavior is 
a valid substitution for the base class behavior. The next few Explorations will show concrete 
examples of this abstract principle.

Type Polymorphism

you a box labeled “Mammal.” Inside the box can be any mammal: a dog, a cat, a person, etc. 
You know the box cannot contain a bird, a fish, a rock, or a tree. It must contain a mammal.
Programmers call the box polymorphic, from the Greek meaning many forms. The box can 
hold any one of many forms, that is, any one mammal, regardless of which form of mammal 
it is.

Although many programmers use the general term polymorphism, this specific kind of 
polymorphism is type polymorphism, also called subtyping polymorphism. That is, the type of 
a variable (or a box) determines which kinds of objects it can contain. A polymorphic variable 
(or box) can contain one of a number of different types of objects.

In particular, a variable with a base class type can refer to an object of the base class type 
or to an object of any type that is derived from that base class. According to the substitution 
principle, you can write code to use the base-class variable, calling any of the member func-
tions of the base class, and that code will work regardless of the object’s true, derived type.

Now that you have a fundamental understanding of the principles of OOP, it is time to see 
how these principles play out in C++.
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Inheritance

The previous Exploration introduced general OOP principles. Now it’s time to see how to 
apply those principles to C++.

Deriving a Class
Defining a derived class is just like defining any other class, except that you include a base
class access level and name after a colon. See Listing 35-1 for an example of some simple 
classes to support a library. Every item in the library is a work of some kind: a book, a maga-
zine, a movie, and so on. To keep things simple, the class  has only two derived classes, 

 and .

Listing 35-1. Defining a Derived Class

265
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When you define a class using the  keyword, the default access level is ; for 
the  keyword, the default is . These keywords also affect derived classes. Except 
in rare circumstances,  is the right choice here, which is how I wrote the classes in 
Listing 35-1.

Also in Listing 35-1, notice there is something new about the initializer lists. A derived
class can (and should) initialize its base class by listing the base class name and any arguments 
you want to pass to the base class’s constructor. You can call any constructor by passing the 
right arguments. If you omit the base class from the initializer list, the compiler uses the base 
class’s default constructor.

What do you think happens if the base class does not have a default constructor?

_________________________________________________________________________________

Try it. Comment out ’s default constructor and try to compile the code for Listing 35-1. 
(Add a trivial  to ensure that you write a complete program, and be certain to 
all necessary headers.) What happens?

_________________________________________________________________________________

That’s right; the compiler complains. The exact error message or messages you receive 
vary from compiler to compiler. I get something like the following:
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Base classes are always initialized before members, starting with the root of the class tree. 
You can see this for yourself by writing classes that print messages from their constructors, as 
demonstrated in Listing 35-2.

Listing 35-2. Printing Messages from Constructors to Illustrate Order of Construction

What output do you expect from the program in Listing 35-2?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________
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Try it. What output did you actually get?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Were you correct? ________________ In the interest of being thorough, I receive the 
following:

Remember that if you omit the base class from the initializers, or you omit the initializer 
list entirely, the base class’s default constructor is called. Listing 35-2 contains only default 
constructors, so what happens is the constructor for  first invokes the default construc-
tor for . The constructor for  invokes the default constructor for  first, and the 
constructor for  has nothing to do except execute its function body. Then it returns, and 
the constructor body for  executes and returns, finally letting  run its function 
body.

Destructors
When an object is destroyed—perhaps because the function in which it is defined ends and 
returns—sometimes you need to do some cleanup. A class has another special member func-
tion that performs cleanup when an object is destroyed. This special member function is 
called a destructor.

Like constructors, destructors do not have return values. A destructor name is the class 
name preceded by a tilde ( ). Listing 35-3 adds destructors to the example classes from 
Listing 35-2.

Listing 35-3. Order of Calling Destructors
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What output do you expect from the program in Listing 35-3?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Try it. What do you actually get?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Were you correct? ________________ When a function returns, it destroys all local objects 
in the reverse order of construction. When a destructor runs, it destroys the most-derived
class first by running the destructor’s function body. It then invokes the immediate base class 
destructor. Hence, the destructors run in opposite order of construction in this example:
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If you don’t write a destructor, the compiler writes a trivial one for you. After every destruc-
tor body finishes, the compiler arranges to call the destructor for every data member then 
execute the destructor for the base classes, starting with the most-derived. For simple classes in 
these examples, the compiler’s destructors work just fine. Later, you will find more interesting 
uses for destructors. For now, the main purpose is just to visualize the life cycle of an object.

Read Listing 35-4 carefully.

Listing 35-4. Constructors and Destructors
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Fill in the left-hand column of Table 35-1 with the output you expect from the program.

Table 35-1. Expected and Actual Results of Running the Program in Listing 35-4

Expected Output Actual Output

Try it. Fill in the right-hand column of Table 35-1 with the actual output and compare the 
two columns. Did you get everything correct? ________________
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Below is the output generated on my system, along with some commentary. Remember 
that compilers have some leeway in optimizing away extra calls to the copy constructor. You 
may get one or two extra copy calls in the mix.

Note how pass-by-reference ( ) does not invoke any constructors 
because no objects are being constructed. Instead, references are passed to the function, and 
the referenced object is incremented.

By the way, I have not yet shown you how to overload the increment operator, but you 
probably guessed that’s how it works (in class ). Decrement is similar.

Access Level
At the start of this Exploration, I told you to use  before the base class name, but never 
explained why. Now is the time to fill you in on the details.

Access levels affect inheritance the same way they affect members. Public inheritance
occurs when you use the  keyword to define a class or the  keyword before the 
base class name. Public inheritance means the derived class inherits every member of the base 
class at the same access level that the members have in the base class. Except in rare circum-
stances, this is exactly what you want. Remember that the convention is that  is reserved 
for C compatibility and other POD data types. Inheritance is not POD. Thus, you tend to see 

 definitions with explicit public inheritance. It seems more verbose than using 
with  access specifiers where necessary, but the /  distinction between POD 
and non-POD serves a useful purpose, even if the compiler doesn’t care.

Private inheritance occurs when you use the  keyword, and is the default when you 
define a class using the  keyword. Private inheritance keeps every member of the base 
class private and inaccessible to users of the derived class. The compiler still calls the base 
class constructor and destructor when necessary, and the derived class still inherits all the 
members of the base class. The derived class can call any of the base class’s public member 
functions, but no one else can call them through the derived class. It’s as though the derived 
class redeclares all inherited members as . I recommend that you not use private 
inheritance. If the compiler complains about inaccessible members, most likely you forgot to 
include a  keyword in the class definition. Try compiling Listing 35-5 to see what I mean.
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Listing 35-5. Accidentally Inheriting Privately

When you read C++ code, you may see another access level, . I’ll cover that one 
later. Two access levels are more than enough to begin with.

Programming Style
When in doubt, make data members and member functions private unless and until you 
know you need to make a member public. Once a member is part of the public interface, any-
one using your class is free to use that member, and you have one more code dependency. 
Changing a public member means finding and fixing all those dependencies. Keep the public 
interface as small as possible. If you need to add members later, you can, but it’s much harder 
to remove a member, or change it from public to private. Anytime you need to add members 
to support the public interface, make the supporting functions and data members private.

Use public inheritance, not private inheritance. Remember that inherited members also 
becomes part of the derived class’s public interface. If you change which class is the base class, 
you may need to write additional members in the derived class, to make up for members that 
were in the original base class but are missing from the new base class. The next Exploration 
continues the discussion of how derived classes work with base classes to provide important 
functionality.
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Virtual Functions

Deriving classes is fun, but there’s not a lot you can do with them—at least, not yet. The next 
step is to see how C++ implements type polymorphism, and this Exploration starts you on that 
journey.

Type Polymorphism
Recall from Exploration 34 that type polymorphism is the ability for a variable of type B to 
take the “form” of any class derived from B. The obvious question is: “How?” The key in C++ 
is to declare a function in a base class with a magic keyword, and also implement the function 
in a derived class. The magic keyword tells the compiler that you want to invoke type poly-
morphism. The compiler implements the polymorphism magic. Simply initialize a variable 
of type reference-to-base class with an object of derived-class type. When you call the poly-
morphic function for the object, the compiled code checks the object’s true type, and calls the 
derived-class implementation of the function. The magic word to turn a function into a poly-
morphic function is .

For example, suppose you want to be able to print any kind of work in the library (see 
Listing 35-1) using standard (more or less) bibliographical format. For books, I use the format:

author, title, year.

For periodicals, I use:

title, volume(number), date.

Add a  member function to each class to print this information. Because this func-
tion has different behavior in each derived class, the function is polymorphic, so use the 

 keyword before each declaration of , as shown in Listing 36-1.

Listing 36-1. Adding a Polymorphic  Function to Every Class Derived from 

275
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A program that has a reference to a  can call the  member function to print that 
work, and because  is polymorphic, or virtual, the C++ environment performs its magic 
to ensure that the correct  is called, depending on whether the  object is actually 
a  or a . To see this demonstrated, read the program in Listing 36-2.

Listing 36-2. Calling the  Function

What output do you expect?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Try it. What output do you actually get?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________
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The  function does not need to know about the  or  classes. As far 
as it is concerned,  is a reference to a  object. The only member functions you can call are 
those declared in the  class. Nonetheless, when  calls , it will invoke ’s

 or ’s  if the object’s true type is  or .
Write an output operator ( ) that prints a  object by calling its  mem-

ber function. Compare your solution with my solution, as shown in Listing 36-3.

Listing 36-3. Output Operator for Class 

Writing the output operator is perfectly normal. Just be certain you declare  as a refer-
ence. Polymorphic magic does not occur with ordinary objects, only references. With this 
operator, you can write any k-derived object to an output stream, and it will print using its 

 function.

Virtual Functions
A polymorphic function is called a virtual function in C++ due to the  keyword. Once 
a function is defined as virtual, it remains so in every derived class. You don’t need the 
keyword in the derived classes, but I like to include it as an aid and reminder to the human 
reader trying to distinguish virtual functions. In every derived class, the virtual function must 
have the same name, the same return type, and the same number and type of parameters (but 
the parameters can have different names).

A derived class is not required to implement a virtual function. If it doesn’t, it inherits 
the base class function the same way it does for a non-virtual function. When a derived class 
implements a virtual function, it is said to override the function because the derived class’s 
behavior overrides the behavior that would have been inherited from the base class.

Add a class, , to the library classes. The  class represents a movie or film 
recording on tape or disc. Like  and , the  class derives from . For 
the sake of simplicity, define a  as having an integer running time (in minutes) in addi-
tion to the members it inherits from . Do not override  yet. Compare your class to 
Listing 36-4.

Listing 36-4. Adding a Class
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Now modify the test program from Listing 36-2 to create and print a  object. If you 
want, you can take advantage of the new output operator instead of calling . Compare 
your program with Listing 36-5.

Listing 36-5. Using the New  Class

What do you expect as the last line of output?

_________________________________________________________________________________

Try it. What do you get?

_________________________________________________________________________________

Because  does not override , it inherits the implementation from the base class, 
. The definition of  in the  class does nothing, so printing the  object prints 

nothing.
Fix the problem by adding  to the  class. Now your movie class should look 

something like Listing 36-6.
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Listing 36-6. Adding a  Member Function to the  Class

Convince yourself that the  keyword is optional in the derived class. Modify the 
 class to remove the  keyword from the print function. Does the program still 

work the way you expect it to? ________________ The key is that the base class must declare 
the function and must use the  keyword. The compiler ensures that all calls to a virtual
function via a reference are polymorphic calls. However, if you call the function from an ordi-
nary object, not from a reference, the call is not polymorphic, and the compiler ignores the 

 keyword, as you will see in the next section.

References and Slices
The  function in Listing 36-2 and the output operator in Listing 36-3 declare their 
parameter as a reference to . What do you expect to happen if you were to change 
them to pass-by-value?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Try it. Delete the ampersand in the declaration of the output operator, as shown in the 
following:
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Run the test program from Listing 36-5. What is the actual output?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Explain what happened.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

When you pass an argument by value, or assign a derived-class object to a base-class
variable, you lose polymorphism. For instance, instead of a , the result is an honest-to-
goodness, genuine, no-artificial-ingredients, —with no memory of e-ness whatso-
ever. Thus, the output operator ends up calling ’s version of  every time the output 
operator calls it. That’s why the program’s output is a bunch of empty lines. When you pass 
a  object to the output operator, not only do you lose polymorphism, but you also lose all 
sense of k-ness. In particular, you lose the  and  data members. The data 
members that a derived class adds are sliced away when the object is copied to a base class 
variable. Another way to look at it is this: because the derived-class members are sliced away, 
what is left is only a  object, so you cannot have polymorphism. The same thing happens 
with assignment.

Slicing is easy to avoid when writing functions (pass all arguments by reference), but 
harder to cope with for assignment. The techniques you need to manage assignment come 
much later in this book; for now, I will focus on writing polymorphic functions.

Pure Virtual Functions
The class  defines the  function, but the function doesn’t do anything useful. In 
order to be useful, every derived class must override . The author of a base class, such as 

, can ensure that every derived class properly overrides a virtual function by omitting the 
body of the function and substituting the tokens, , instead. These tokens mark the function 
as a pure virtual function, which means the function has no implementation to inherit, and 
derived classes must override the function.
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Modify the  class to make  a pure virtual function. Then delete the  class’s 
 function, just to see what happens. What does happen?

_________________________________________________________________________________

_________________________________________________________________________________

The compiler enforces the rules for pure virtual functions. A class that has at least one 
pure virtual function is said to be abstract. You cannot define an object of abstract type. Fix
the program. The new  class should look something like Listing 36-7.

Listing 36-7. Defining  As an Abstract Class

Virtual Destructors
Although most classes you are writing at this time do not need destructors, I want to men-
tion an important implementation rule. Any class that has virtual functions must declare its 
destructor to be virtual, too. This rule is a programming guideline, not a semantic require-
ment, so the compiler will not help you by issuing a message when you break it (although 
some compilers may issue a warning). Instead, you need to enforce this rule yourself through 
discipline.

I will repeat the rule when you begin to write classes that require destructors. If you try 
any experiments on your own, please be mindful of this rule, or else your programs could be 
subject to subtle problems—or not-so-subtle crashes.

The next Exploration continues the discussion of classes and their relationship in the C++ 
type system.
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Classes and Types

One of the main design goals for C++ was to give the programmer the ability to define cus-
tom types that look and act nearly identically to the built-in types. The combination of classes 
and overloaded operators gives you that power. This Exploration takes a closer look at the type 
system and how your classes can best fit into the C++ world.

Classes vs. typedefs
Suppose you are writing a function to compute body-mass index (BMI) from an integer height 
in centimeters and an integer weight in kilograms. You have no difficulty writing such a func-
tion (which you can copy from your work in Explorations 26 and 32). For added clarity, you 
decide to add s for  and , which allows the programmer to define variables 
for storing and manipulating these values with extra clarity to the human reader. Listing 37-1
shows a simple use of the  function and the associated s.

Listing 37-1. Computing BMI

283
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Test the program. What’s wrong?

_________________________________________________________________________________

_________________________________________________________________________________

If you haven’t spotted it yet, take a closer look at the call to , on the last line of 
code in . Compare the arguments with the parameters in the function definition. Now 
do you see the problem?

In spite of the extra clarity that the  and  typedefs offer, I still made a funda-
mental mistake and reversed the order of the arguments. In this case, the error is easy to spot 
because the program is small. Also, the program’s output is so obviously wrong that testing 
quickly reveals the problem. Don’t relax too much, though; not all mistakes are so obvious.

The problem here is that a  does not define a new type, but instead creates an alias 
for an existing type. The original type and its  alias are completely interchangeable. 
Thus, a  is the same as an , is the same as a . Because the programmer is able 
to mix up  and , the s don’t actually help much.

More useful would be to create distinct types called  and . As distinct types, 
you would not be able to mix them up, and you would have full control over the operations 
that you allow. For example, dividing two s should yield a plain, unit-less . Adding 
a  to a  should result in an error message from the compiler. Listing 37-2 shows 
simple  and  classes that impose these restrictions.

Listing 37-2. Defining Classes for  and 
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The new classes prevent mistakes such as that in Listing 37-1, but at the expense of more 
code. For instance, you need to write suitable I/O operators. You also need to decide which 
arithmetic operators to implement. And don’t forget the comparison operators. Most of these 
functions are trivial to write, but you can’t neglect them. In many applications, however, the 
work will pay off many times over by removing potential sources of error.

I’m not suggesting that you do away with unadorned integers and other built-in types, 
and replace them with clumsy wrapper classes. In fact, I agree with you (don’t ask how 
I know what you’re thinking) that the BMI example is rather artificial. If I were writing a real,
honest-to-goodness program for computing and managing BMIs, I would use plain  vari-
ables, and rely on careful coding and proofreading to prevent and detect errors. I use wrapper 
classes, such as  and , when they add some primary value. For example, I might
use them if I were to add some error checking to them, impose constraints on the domain of 
values they can represent, or otherwise help me do my job as a programmer. Nonetheless, 
it’s best to start simple, and add complexity slowly and carefully. The next section explains in 
greater detail what behavior you must implement to make a useful and meaningful custom 
class.

Value Types
The  and  types are examples of value types—that is, types that behave as ordinary 
values. Contrast them with the I/O stream types, which behave very differently. For instance, 
you cannot copy or assign streams; you must pass them by reference to functions. Nor can you 
compare streams, or perform arithmetic on them. Value types, by design, behave similarly to 
the built-in types, such as  and . One of the important characteristics of value types is 
that you can store them in containers, such as  and . This section explains the gen-
eral requirements for value types.

The basic guideline is to make sure your type behaves “like an .” When it comes to 
copying, comparing, and performing arithmetic, avoid surprises by making your custom type 
look, act, and work as much like the built-in types as possible.

Copying
Copying an  yields a new  that is indistinguishable from the original. Your custom type 
should behave the same way.

Consider the example of . Many implementations of  are possible. Some of 
these use copy-on-write to optimize frequent copying and assignment. In a copy-on-write
implementation, the actual string contents are kept separately from the  object; copies
of the  object do not copy the contents until and unless a copy is needed, which hap-
pens when the string contents must be modified. Many uses of strings are read-only, so 
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copy-on-write avoids unnecessary copies of the contents, even when the  objects them-
selves are copied frequently.

Other implementations optimize for small strings by using the  object to store their 
contents, but storing large strings separately. Copying small strings is fast, but copying large 
strings is slower. Most programs use only small strings. In spite of these differences in imple-
mentation, when you copy a  (such as passing a  by value to a function), the copy 
and the original are indistinguishable: just like an .

Usually, the automatic copy constructor does what you want, and you don’t need to write 
any code. Nonetheless, you need to think about copying, and assure yourself that the com-
piler’s automatic (also called implicit) copy constructor does exactly what you want.

Assigning
Assigning objects is similar to copying them. After an assignment, the target and source must 
contain identical values. The key difference between assignment and copying is that copy-
ing starts with a blank slate: a newly constructed object. Assignment begins with an existing 
object, and you may need to clean up the old value before you can assign the new value. Sim-
ple types such as  have nothing to clean up, but later in this book, you will learn how to 
implement more complicated types, such as , which require careful cleanup.

Most simple types work just fine with the compiler’s implicit assignment operator, and 
you don’t need to write your own. Nonetheless, you need to consider the possibility, and make 
sure the implicit assignment operator is exactly what you want.

Comparing
I defined copying and assignment in a way that requires meaningful comparison. If you can’t 
determine whether two objects are equal, you can’t verify whether you copied or assigned 
them correctly. C++ has several different ways to check whether two objects are the same.

objects with the  operator. Value types 
should overload this operator. Make sure the operator is transitive—that is, if  and 

, then . Make sure the operator is commutative, that is, if , then .
Finally, the operator should be reflexive: .

 compare items by one of two methods: with 
 or with a caller-supplied predicate. Sometimes, you may want to compare 

objects with a custom predicate, for example, a  class might have 
that compares every data member (name, address, etc.), but you want to search a con-
tainer of  objects by checking only last names, which you do by writing your own 
comparison function. The custom predicate must obey the same transitive and com-
mutative restrictions as the  operator. If you are using the predicate with a specific
algorithm, that algorithm calls the predicate in a particular way, so you know the order 
of the arguments. You don’t need to make your predicate reflexive, and in some cases, 
you wouldn’t want to.
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 store their elements in sorted order. Some standard algorithms, 
such as , require their input range to be in sorted order. The ordered 
containers and algorithms use the same conventions. By default, they use the  opera-
tor, but you can also supply your own comparison predicate. These containers and 
algorithms never use the  operator to determine whether two objects are the same. 
Instead, they check for equivalence—that is, is equivalent to  if  is false and  

is false.

  If your value type can be ordered, you should overload the  operator. Ensure that the 
operator is transitive (if  and , then ). Also, the ordering must be strict:  

is always false.

instead of the  operator. The custom predicate must obey the same transitive and 
strictness restrictions as the  operator.

Not all types are comparable with a less-than relationship. If your type cannot be ordered, 
do not implement the  operator, but you must also understand that you will not be able to 
store objects of that type in a , or use any of the binary search algorithms. Sometimes, you 
may want to impose an artificial order, just to permit these uses. For example, a  type 
may represent colors such as , , or . Although nothing about  or  inher-
ently defines one as being “less than” another, you may want to define an arbitrary order just 
so you can use these values as keys in a . One immediate suggestion is to write a compari-
son function that compares colors as integers, using the  operator.

On the other hand, if you have a value that should be compared (such as ), you 
should implement  and . You can then implement all other comparison 
operators in terms of these two. (See Exploration 30 for an example of how the  class 
does this.)

Implement a  class that describes a color as three components: red, green, and 
blue, which are integers in the range 0 to 255. Define comparison functions, , to 
permit storing colors as  keys. For extra credit, devise a suitable I/O format and overload 
the I/O operators, too. Don’t worry about error-handling yet—for instance, what if the user 
tries to set red to 1000, blue to 2000, and green to 3000. You’ll get to that soon enough.

Compare your solution with mine, which is presented in Listing 37-3.

Listing 37-3. The  Class
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Listing 37-3 introduced a new trick with the  class. The next section explains all.

Resource Acquisition Is Initialization
A programming idiom that goes by the unwieldy name of Resource Acquisition Is Initialization 
(RAII) takes advantage of constructors, destructors, and automatic destruction of objects when 
a function returns. Briefly, the RAII idiom means a constructor acquires a resource: it opens 
a file, connects to a network, or even just copies some flags from an I/O stream. The acquisi-
tion is part of the object’s initialization. The destructor releases the resource: closes the file, 
disconnects from the network, or restores any modified flags in the I/O stream.

To use an RAII class, all you need to do is define an object of that type. That’s all. The com-
piler takes care of the rest. The RAII class’s constructor takes whatever arguments it needs to 
acquire its resources. When the surrounding function returns, the RAII object is automatically 
destroyed, thereby releasing the resources. It’s that simple.

You don’t even need to wait until the function returns. Define an RAII object in a com-
pound statement, and the object is destroyed when the statement finishes and control leaves 
the compound statement.

The  class in Listing 37-3 is an example of using RAII. It throws some new items at 
you; let’s take them one at a time:
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 class is the base class for all I/O stream classes, such as 
 and . Thus,  works the same with input and output streams.

 type is the type for all the formatting flags.

 member function with no arguments returns all the current formatting 
flags.

 member function with one argument sets all the flags to its argument.

The way to use  is simply to define a variable of type  in a function or 
compound statement, passing a stream object as the sole argument to the constructor. The 
function can change any of the stream’s flags. In this case, the input operator sets the input 
radix (or base) to hexadecimal with the  manipulator. The input radix is stored with 
the formatting flags. The operator also turns off the  flag. By default, this flag is enabled, 
which instructs the standard input operators to skip initial white space. By turning this flag off, 
the input operator does not permit any white space between the pound sign ( ) and the color 
value.

When the input function returns, the  object is destroyed, and its destructor 
restores the original formatting flags. Without the magic of RAII, the  function 
would need to restore the flags manually at all four return points, which is burdensome and 
prone to error.

RAII is a common programming idiom in C++. The more you learn about C++, the more 
you will come to appreciate its beauty and simplicity.

As you can see, our examples are becoming more complicated, and it’s becoming harder 
and harder for me to fit entire examples in a single code listing. Your next task is to understand 
how to separate your code into multiple files, which makes my job and yours much easier. The 
first step for this new task is to take a closer look at declarations, definitions, and the distinc-
tions between them.
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Declarations and Definitions

Exploration 19 introduced the distinction between declarations and definitions; this is a good
time to remind you of the difference and to explore declarations and definitions of classes and 
their members.

Declaration vs. Definition
Recall that a declaration furnishes the compiler with the basic information it needs so you 
can use a name in a program. In particular, a function declaration tells the compiler about the 
function’s name, return type, and parameter types.

A definition is a particular kind of declaration that also provides the full implementation 
details for an entity. For example, a function definition includes all the information of a func-
tion declaration, plus the function body. Classes, however, add another layer of complexity 
because you can declare or define the class’s members independently of the class defini-
tion itself. A class definition must declare all of its members. Sometimes, you can also define 
a member function as part of a class definition (which is the style I’ve been using until now), 
but most programmers prefer to declare member functions inside the class, and define the 
member functions separately, outside of the class definition.

As with any function declaration, a member function declaration includes the return 
type (possibly with a  specifier), the function name, the function parameters, and an 
optional  modifier. If the function is a pure virtual function, you must include the 
token marks as part of the function declaration, and you don’t define the function.

The function definition is like any other function definition, with a few exceptions. The 
definition must follow the declaration—that is, the member function definition must come 
later in the source file than the class definition that declares the member function. In the defi-
nition, omit the  specifier. The function name must start with the class name, followed 
by the scope operator ( ) and the function name so the compiler knows which member func-
tion you are defining. Write the function body the same way you would write it if you provided 
the function definition inside the class definition. Listing 38-1 shows some examples.

Listing 38-1. Declarations and Definitions of Member Functions

293
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Because each function name begins with the class name, the full constructor name 
is , and member function names have the form ,

, etc. The C++ term for the complete name is qualified name.
Programmers have many reasons to define member functions outside the class. The next 

section presents one way that functions differ depending on where they are defined, and the 
next Exploration will focus on this thread in detail.

Inline Functions
In Exploration 28, I introduced the  keyword, which is a hint to the compiler that it 
should optimize speed over size by trying to expand a function at its point of call. You can use 

 with member functions, too. Indeed, for trivial functions, such as those that return 
a data member and do nothing else, making the function  can improve speed and pro-
gram size.

When you define a function inside the class definition, the compiler automatically adds 
the  keyword. If you separate the definition from the declaration, you can still make the 
function inline by adding the  keyword to the function declaration or definition. Com-
mon practice is to place the  keyword only on the definition, but I recommend putting 
the keyword in both places to help the human reader.

Remember that  is just a hint. The compiler does not have to heed the hint. Modern 
compilers are becoming better and better at making these decisions for themselves.

My personal guideline is to define one-line functions in the class definition. Longer func-
tions or functions that are complicated to read belong outside the class definition. Some 
functions are too long to fit in the class definition, but are short and simple enough that they 
should be . Organizational coding styles usually include guidelines for  functions. 
For example, directives for large projects may eschew  functions because they increase 
compilation time. Thus inline may be allowed only on a function-by-function basis, when per-
formance measurements demonstrate their need.
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Rewrite the  class from Listing 38-1 to use  functions judiciously. Com-
pare your solution with that of mine, shown in Listing 38-2.

Listing 38-2. The  Class with  Member Functions



EXPLORATION 38   DECLARATIONS AND DEFINIT IONS 297

Don’t agonize over deciding which functions should be inline. When in doubt, don’t 
bother. Make functions inline only if performance measures show that the function is called 
often, and the function-call overhead is significant. In all other aspects, I regard the matter as 
one of aesthetics and clarity: I find one-line functions are easier to read when they are inside 
the class definition.

Variable Declarations and Definitions
Ordinary data members have declarations, not definitions. Local variables in functions and 
blocks have definitions, but not separate declarations. This can be a little confusing, but don’t 
be concerned, I’ll unravel it and make it clear.

A definition of a named object instructs the compiler to set aside memory for storing the 
object’s value and to generate the necessary code to initialize the object. Some objects are 
actually subobjects—not entire objects on their own (entire objects are called complete objects
in C++ parlance). A subobject doesn’t get its own definition; instead, its memory and lifetime 
are dictated by the complete object that contains it. That’s why a data member doesn’t get 
a definition of its own. Instead, the definition of an object with class type causes memory to be 
set aside for all of the object’s data members. Thus, a class definition contains declarations of 
data members, but not definitions.

You define a variable that is local to a block. The definition specifies the object’s type, 
name, whether it is , and the initial value (if any). You can’t declare a local variable with-
out defining it, but there are other kinds of declarations.

You can declare a local reference as a synonym for a local variable. Declare the new name 
as a reference in the same manner as a reference parameter, but initialize it with an existing 
object. If the reference is , you can use any expression (of a suitable type) as the initial-
izer. For a non  reference, you must use an lvalue (remember those from Exploration 
20?), such as another variable. Listing 38-3 illustrates these principles.

Listing 38-3. Declaring and Using References
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A local reference is not a definition because no memory is allocated, and no initializers 
are run. Instead, the reference declaration creates a new name for an old object. One common 
use for a local reference is to create a short name for an object that is obtained from a longer
expression, and another is to save a  reference to an expression so you can use the result 
multiple times. Listing 38-4 shows a silly program that reads a series of integers into a vector,
sorts the data, and searches for all the elements that equal a magic value. It does this by calling 
the  algorithm, which returns a  (first described in Exploration 14) of iterators 
that delimit a range of equal values. 

Listing 38-4. Finding the Mode of a Data Set

If you define  as a local variable instead of declaring it as a reference, the program 
would work just fine, but it would also make an unneeded copy of the result that 
returns. In this program, the extra copy is irrelevant and unnoticeable, but in other programs, 
the cost savings can add up.

What happens if you delete the from the declaration of range?

_________________________________________________________________________________

_________________________________________________________________________________
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The result that  returns is an rvalue, not an lvalue, so you must use  when 
initializing a reference to that result. Because you are free to modify an object via a non
reference, only lvalue objects are allowed. Usually, the values returned from functions are 
rvalues, not lvalues, so references must be .

Static Variables
Local variables are automatic. This means when the function begins or a local block (com-
pound statement) is entered, memory is allocated and the object is constructed. When the 
function returns or when control exits the block, the object is destroyed and memory is 
reclaimed. All automatic variables are allocated on the program stack, so memory alloca-
tion and release is trivial and typically handled by the host platform’s normal function call 
instructions.

Remember that  is like a function and follows many of the same rules as other 
functions. Thus, variables that you define in  seem to last for the entire lifetime of the 
program, but they are automatic variables, allocated on the stack, and the compiler treats 
them the same as it treats any other automatic variables.

The behavior of automatic variables permits idioms such as RAII (see Exploration 37) 
and greatly simplifies typical programming tasks. Nonetheless, it is not suited for every pro-
gramming task. Sometimes you need a variable’s lifetime to persist across function calls. 
For example, suppose you need a function that generates unique identification numbers for 
a variety of objects. It starts a serial counter at 1 and increments the counter each time it issues 
an ID. Somehow, the function needs to keep track of the counter value, even after it returns. 
Listing 38-5 demonstrates one way to do it.

Listing 38-5. Generating Unique Identification Numbers

The  keyword informs the compiler that the variable is not automatic but static. The 
first time the program calls , the variable  is initialized. The memory is 
not automatic and is not allocated on the program stack. Instead, all static variables are kept 
off to the side somewhere so they never go away. When  returns,  is not 
destroyed and therefore retains its value.

Write a program to call  multiple times to see that it works and gener-
ates new values each time you call it. Compare your program with mine, which is shown in 
Listing 38-6.
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Listing 38-6. Calling  to Demonstrate Static Variables

You can also declare a variable outside of any function. Because it is outside of all func-
tions, it is not inside any block, thus it cannot be automatic, and so its memory must be static. 
You don’t need to use the  keyword for such a variable. Rewrite Listing 38-6 to declare 

 outside of the  function. Do not use the  keyword. Assure yourself 
that the program still works correctly. Listing 38-7 shows my solution.

Listing 38-7. Declaring  Outside of the  Function

Unlike automatic variables, all static variables without initializers start out filled with zero, 
even if the variable has a built-in type. If the class has a custom constructor, the default con-
structor is then called to initialize static variables of class type. Thus, you don’t need to specify 
an initializer for , but you can if you want to.
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One of the difficulties in working with static variables in C++ is that you have little control 
over when static variables are initialized. The standard offers two basic guarantees:

, or any function called from 
.

Prior to the start of , however, you have no guarantee that a static object will be ini-
tialized when you expect it to be. In practical terms, this means a constructor for a static object 
should not refer to other static objects because those other objects may not be initialized yet. 
All names in C++ are lexically scoped; a name is visible only within its scope. The scope for 
a name declared within a function is the block that contains the declaration (including the 
statement header of , , and  statements). The scope for a name declared outside of 
any function is a little trickier. The name of a variable or function is global and can be used 
only for that single entity throughout the program. On the other hand, you can use it only in 
the source file where it is declared, from the point of declaration to the end of the file. (The 
next Exploration will go into more detail about working with multiple source files.)

The common term for variables that you declare outside of all functions is global vari-
ables. That’s not the standard C++ terminology, but it will do for now.

If you declare  globally, you can refer to it and modify it anywhere else in the pro-
gram, which may not be what you want. It’s always best to limit the scope of every name as 
narrowly as possible. By declaring  inside , you guarantee that no other 
part of the program can accidentally change its value. In other words, if only one function 
needs to access a static variable, keep the variable’s definition local to the function. If multiple 
functions must share the variable, define the variable globally.

Static Data Members
The  keyword has many uses. You can use it before a member declaration in a class to 
declare a static data member. A static data member is one that is not part of all objects of the 
class, but instead, is separate from all objects. All objects of that class type (and derived types) 
share a sole instance of the data member. A common use for static data members is to define 
useful constants. For example, the  class has a static data member, , which 
roughly means “no position.” Member functions return  when they cannot return a mean-
ingful position, such as  when it cannot find the string for which it was looking. You can 
also use static data members to store shared data the same way a globally static variable can 
be shared. By making the shared variable a data member, however, you can restrict access to 
the data member using the normal class access levels.

Define a static data member the way you would any other global variable, but qualify 
the member name with the class name. Use the  keyword only in the data member’s 
declaration, not in its definition. Because static data members are not part of objects, do not 
list them in a constructor’s initializer list. Instead, initialize static data members the way you 
would an ordinary global variable, but remember to qualify the member name with the class 
name. Qualify the name when you use a static data member, too. Listing 38-8 shows some 
simple uses of static data members.
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Listing 38-8. Declaring and Defining Static Data Members

A  data member with an integral type is a little odd, however. Only these 
data members can have an initial value specified inside the class definition, as part of the data 
member’s declaration. The value does not change the declaration into a definition, and you 
still need a definition of the data member, outside the class definition. However, by providing 
a value in the declaration, you can use the  data member as a constant value else-
where in the program, anywhere a constant integer is needed.
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To specify the value of an integral  data member, follow the member 
name with an equal sign ( ) and a constant expression. For example, the declaration for 

 is as follows:

Like other collection types,  declares  as a suitable integer type for rep-
resenting sizes and indices. The implementation of the  class needs to define this data 
member, but without an initial value.

Listing 38-9 shows some examples of static data members in a more sophisticated id-
generator. This one uses a prefix as part of the IDs it produces and then uses a serial counter 
for the remaining portion of each ID. You can initialize the prefix to a random number to 
generate IDs that are unique even across multiple runs of the same program. (The code is not 
meant to show off a high-quality ID generator, just static data members.) Using a different pre-
fix for every run is fine for production software, but greatly complicates testing. Therefore, this 
version of the program uses the fixed quantity 1. A comment shows the intended code.

Listing 38-9. Using Static Data Members for an ID Generator
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Declarators
As you’ve already seen, you can define multiple variables in a single declaration, as demon-
strated in the following:

The entire declaration contains three declarators. Each declarator declares a single name, 
whether that name is for a variable, function, or type. Most C++ programmers don’t use this 
term in everyday conversation, but C++ experts often do. You need to know official C++ termi-
nology so if you need to ask for help from the experts, you can understand them.

The most important reason to know about separating declarations from definitions is so 
you can put a definition in one source file and a declaration in another. The next Exploration 
shows how to work with multiple source files.
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Using Multiple Source Files

Real programs rarely fit into a single source file, and I know you’ve been champing at the bit, 
eager to explore how C++ works with multiple source files that make up a single program. This 
Exploration shows you the basics. Advanced techniques, such as shared libraries (DLLs, shared 
objects, etc.) are beyond the scope of this book and sometimes involve compiler-specific
features that extend the language beyond the standard. You need to consult your compiler 
documentation for details.

Multiple Source Files
The basic principle is that you can put any function or global object in any source file. The 
compiler does not care which file contains what. As long as it has a declaration for every name 
it needs, it can compile a source file to an object file. (In this unfortunate case of convergent 
terminology, object files are unrelated to objects in a C++ program.) To create the final pro-
gram, you need to link all the object files together. The linker doesn’t care which file contains 
which definition; it simply needs to find a definition for every name reference that the com-
piler generates.

The previous Exploration presented a simple program in Listing 38-6, which generated 
unique ID numbers. Let’s rewrite the program to put the  class in one file called 
generate_id.cpp, and  in another file called main.cpp. Listing 39-1 shows the generate_
id.cpp file.

Listing 39-1. The Definition of ’s Members in generate_id.cpp

305
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You can compile the generate_id.cpp file, but not link it. To create a valid C++ program, 
you must have a  function, which is presented in Listing 39-2. Because  makes use 
of the  class, it needs the class definition, but not the definitions of the class’s 
members.

Listing 39-2. The  Function for the ID-generating Program in the main.cpp File

Now compile the two source files and link them together to produce a working C++ pro-
gram. An IDE takes care of the details for you, provided both source files are part of the same 
project. If you are using command-line tools, typically, you can invoke the same compiler, but 
instead of listing source file names on the command line, list only the object file names. Alter-
natively, you can compile and link at the same time, by listing all the source file names in one 
compilation. Verify that the program’s behavior is identical to that from Listing 38-6.
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That’s the basic idea, But the details, of course, are a little trickier. For the remainder of 
this Exploration, we’ll take a closer look at those details.

Declarations and Definitions
At first glance, you will notice that both source files contain an identical definition of the 

 class. That immediately raises the question: “What happens if the definition 
changes in one file but not in the other?” Let’s find out. Rename the  function to  

, as shown in Listing 39-3.

Listing 39-3. Renaming a Member Function Only in main.cpp

Leave the other source file alone. What do you expect to happen?

_________________________________________________________________________________

_________________________________________________________________________________

Compile and link the program. What actually happens?

_________________________________________________________________________________

_________________________________________________________________________________

When compiling main.cpp, the compiler sees the declaration of  and the call to 
. As far as it can tell, everything is just fine. The linker, however, sees a call to  in 

the main object file, but no definition of  in the generate_id object file. Thus, the linker 
issues an error message and refuses to create the executable program file.
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A more subtle change is to add a new data member before , as shown in 
Listing 39-4.

Listing 39-4. Adding a New Data Member Only in main.cpp

Leaving the other source file untouched, what do you expect to happen?

_________________________________________________________________________________

_________________________________________________________________________________

Compile, link, and run the program. What actually happens?

_________________________________________________________________________________

_________________________________________________________________________________

Remember that the program should produce identical results. The exact numeric sequence 
should be the same between this program and earlier incarnations. The problem is that you 
have stumbled once again into undefined behavior.

Even though the main function thinks the  data member is indeed unused, the 
 function’s idea of the  data member happens to be at the same address as the 

 data member. This is bad—really bad. But if you weren’t watching closely, you might 
have missed it. Although anything is possible, most likely the program generated a sequence
of unique IDs, and if you hadn’t looked at the actual values, but simply used the 
class in a program, you might never have noticed. At least, not until you ported the program 
to a different environment. A different compiler or linker may be able to detect this error. 



EXPLORATION 39   USING MULTIPLE SOURCE F ILES 309

A different operating system may cause the program to crash. Once you enter the realm of 
undefined behavior, anything goes.

A class or function definition must be identical in all files, or else the results are undefined. 
The compiler and linker are not required to detect this kind of error.

You have been warned.
To avoid these kinds of problems, you need to host the definition of the  class 

in a single file, and somehow use that file in every source file that makes use of the class. This 
way, you can assure yourself that every source file is using the same definition of .

You need to write your own  file.

#include Files
Remember that the compiler needs only a function’s declaration, not its definition in order 
to call the function. If you put the declaration in its own file then  that file in every 
source file that calls the function, you ensure that the compiler sees the same declaration 
every time, allowing it to generate the correct code for calling the function. The same is true for 
a class. Put only the class definition in its own file, and then  the file in every source 
file that needs it. Listing 39-5 shows you the  file that contains the  class. 
Common conventions for  files are to use extensions such as .h or .hpp (for header, or 
C++ header), or sometimes .hh or .hxx. Some files need to preserve compatibility with C, and 
these typically use .h as the extension. For all other files, I prefer .hpp because it is a nice paral-
lel to the extension .cpp I use for C++ source files. Thus, name this file generate_id.hpp. If you 
use .cc for source files, you may like .hh for header files; ditto for .cxx and .hxx.

Listing 39-5. The  File for the  Class

To use the generate_id.hpp file, you need to  it in the source files, but use double 
quotes instead of angle brackets. Listing 39-6 displays the new version of generate_id.cpp.

Listing 39-6. Rewrite of generate_id.cpp to  the generate_id.hpp File
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Rewrite main.cpp similarly. Compile both source files and link the resulting object files 
to create your program (or let the IDE do it for you). Make sure the program behaves the 
same as it did originally. Compare your rewrite of main.cpp with mine, which is presented in 
Listing 39-7.

Listing 39-7. Rewriting main.cpp to  the generate_id.hpp File

Quotes and Brackets
Now you’re wondering why I told you to use quotes instead of angle brackets for the 
directives. The difference is that you should use angle brackets only for the standard library 
headers, although some third-party libraries recommend the use of angle brackets, too. Use 
double quotes for everything else. The C++ standard is vague about this distinction to give 
compiler vendors maximum flexibility. As a result, vendors of add-on libraries have all taken 
different approaches concerning naming their library files and whether they require angle 
brackets or double quotes.

For your own files, the important aspect is that the compiler must be able to find all your 
 files. The easiest way to do that is to keep them in the same directory or folder as 

your source files. As your projects become larger and more complex, you probably will want to 
move all the  files to a separate area. In this case, you need to consult your compiler 
documentation to learn how to inform the compiler about that separate area. Users of g++
and other UNIX and UNIX-like command-line tools typically use the  option. Microsoft’s 
command-line compiler uses . IDEs have a project option with which you can add a direc-
tory or folder to the list of places to search for  files.
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For many compilers, the only difference between angle brackets and quotes is where it 
looks for the file. A few compilers have additional differences that are specific to that compiler.

In a source file, I like to list all the standard headers together, in alphabetical order, and 
list them first, followed by the  files that are specific to the program (also in alphabeti-
cal order). This organization makes it easy for me to determine whether a source file s
a particular header and helps me add or remove  directives as needed.

Nested #include Directives
One  file can  another. For example, consider the  class (similar 
to the  class in Listing 31-3, for recording a person’s vital statistics, including body-mass
index) in Listing 39-8.

Listing 39-8. The  Class to Record a Person’s Vital Statistics

Because the  class uses , the vital_stats.hpp file should 
. Similarly,  is defined in  and  in . By 

adding all the necessary  directives to the vital_stats.hpp file, you remove one burden 
from the programmer who makes use of vital_stats.hpp.

The standard library headers work the same way. Any particular header may 
other headers. An implementation of the standard library is free to  any, all, or none 
of the other standard headers. Thus, suppose you  and forget the I/O 
stream headers. With one compiler and library, your project may compile and run success-
fully because that particular implementation of  happens to 
and . You never notice your mistake until you move the source code to a different
platform. This other implementation may work differently. Suddenly and unexpectedly, your 
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compiler issues a slew of error messages for source code that worked perfectly on the first plat-
form. The mistake is easy to fix and also easy to avoid by checking all your files to be sure each 
file s all the headers it needs.

One consequence of headers including other headers is that any single header can be 
included many times in a single source file. For example, suppose your source file includes 

, but so does generate_id.hpp. This means your source file includes the same header, 
, more than once. In the case of the standard library headers, including the same 

header more than once is harmless. What about your files? What would happen if generate_
id.cpp were to  more than once?

_________________________________________________________________________________

_________________________________________________________________________________

Try it. What happens?

_________________________________________________________________________________

_________________________________________________________________________________

C++ does not allow you to define a class, function, or object more than once in the same 
source file, and generate_id.hpp contains a class definition. Thus, if you  that file more 
than once, the compiler issues an error message. The next section explains how to prevent this 
problem.

Include Guards
You cannot define the same class, function, or object more than once in a source file. On the 
other hand, you cannot prevent anyone from including your header more than once. Some-
how, you need to ensure that the compiler sees the definitions only once, even if a source file 
includes your header more than once. Fortunately, C++ offers additional  directives to help 
you.

The most widely-used idiom is to pick a name to uniquely identify your header, such as 
 or , and then use that name to control the compilation of 

your header. Use the following two lines as the first two lines of the header file:

Next, use the following as the last line of the header file:

Convention is to use all capital letters because no other names in your program should be 
made up of all capital letters. I use the file name, but change dot ( ), and other characters that 
aren’t allowed in C++ identifiers, into underscores ( ). I use a trailing underscore to further 
ensure that I avoid collisions with other names. 

The  directive means “if not defined.” The directive controls whether the compiler 
compiles the source code normally or skips the entire section of the file. If the name is not 
defined, compilation proceeds normally. If it is defined, the compiler skips rapidly over the file 
until it finds , thereby ignoring the definitions that you want to protect.
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The  directive defines a name. Thus, the first time the compiler processes this 
header, the name is not defined, the  condition is true, and the compiler processes 
the definitions normally. Among the code it processes normally is the . If the file is 
included more than once, the second and subsequent times the name is defined, the 
directive is false, so the compiler skips the bulk of the file, and does not try to compile the defi-
nitions more than once.

BAD ADVICE

Some books and programmers recommend putting the conditional directives in the file that does the 
e-ing. For example, they maintain that  should begin like this:

They are wrong. The name  is an internal, private detail of the included file. You 
should never use it outside of that file, and no one else should ever use that name. The purported reason 
to export the guard name and use it outside of the file is to improve compilation speed by eliminating the 
compiler’s need to open and process the file that would otherwise be included. With modern compilers, the 
improvement is negligible. A better solution is for you to use precompiled headers.

With large, complicated programs, much of the compiler’s time and effort is spent compiling included 
files. In other words, the compiler spends a lot of its time recompiling the same definitions over and over 
again. The idea of using precompiled headers is that the compiler saves some information about the defini-
tions it sees in an included file. When you include the same file in other source files, the compiler fetches its 
precompiled data, and saves time by avoiding a recompilation of the same definitions. This compiler hack 
is completely unrelated to the C++ language, and is purely an artifact of the compiler program. Check your 
compiler’s documentation to learn how to set up and use precompiled headers.

Documentation
Recall the doxygen tool from Exploration 25. With headers, you now face the problem that 
you have two places to document certain entities: the declaration in the header file, and the 
definition in the source file. One option is to put the documentation in the header file. The 
documentation is usually aimed at the user of the entity, and the header is the proper place to 
document the interface.

Another option is to document the public interface in the header file and the private 
implementation details in the source file. The doxygen tool cannot merge documentation 
from two sources for a single entity. Instead, you should take advantage of its conditional 
processing features to compile a set of interface documentation and a separate set of imple-
mentation documentation. Listing 39-9 shows the final version of the vital_stats.hpp header 
file.
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Listing 39-9. The vital_stats.hpp Header File
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Listing 39-10 presents the implementation in vital_stats.cpp.

Listing 39-10. The vital_stats.cpp Source File
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extern Variables
If you define a global variable, and you want to use it in multiple files, you need a declaration
in every file that uses the variable. The most common use for global objects is for useful con-
stants. For example, one of the omissions many scientific programmers notice when they first 
begin to use C++ is that the standard math header, , lacks a definition for . Suppose 
you decide to remedy this oversight by creating your own header file, math.hpp. This header 
file contains the declarations for  and other useful constants. Declare a global variable by 
using the  keyword, followed by the variable’s type and name.

Write math.hpp, with proper #include guards and a declaration for a  constant 
named . Compare your file with Listing 39-11.

Listing 39-11. Simple Header for Math Constants

One source file in the project must define . Call the file math.cpp. Write math.cpp.
Compare your file with Listing 39-12.
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Listing 39-12. Definitions of Math Constants

Inline Functions
Typically, you declare functions in a header file and define them in a separate source file, 
which you then link with your program. This is true for free functions and for member func-
tions. Thus, most member functions are defined separately from the class.

Inline functions follow different rules than ordinary functions. Any source file that calls 
an inline function needs the function’s definition. Each source file that uses an inline func-
tion must have no more than one definition of that inline function, and every definition in the 
program must be the same. Thus, the rule for functions in header files is slightly more compli-
cated: the header file contains declarations for non-inline functions and definitions for inline 
functions. The separate source file defines only the non-inline functions.

Inline functions have their uses, but they also have some significant drawbacks:

compiler does more work for every compilation in the project. The problem grows as 
the number of source files grows.

be recompiled. However, if the function body is in a header file, you end up recompil-
ing every source file that includes that header. By putting function bodies in a separate
source file, only that file needs to be recompiled, and you can save time. In large proj-
ects, the amount of time you save can be enormous.

Separating function declarations and definitions makes sense in real programs, but it 
complicates this book. Instead of a single code listing, sometimes I will need multiple code 
listings. Nonetheless, I’ll do my best to demonstrate good programming practices in the judi-
cious use of inline functions and the separation of declarations and definitions.

One-Definition Rule
The compiler enforces the rule that permits one definition of a class, function, or object per 
source file. Another rule is that you can have only one definition of a function or global object 
in the entire program. You can define a class in multiple source files, provided the definition is 
the same in all source files.

As mentioned in the previous section, inline functions follow different rules than ordinary 
functions. You can define an inline function in multiple source files. Each source file must 
have no more than one definition of the inline function, and every definition in the program 
must be the same.

These rules are collectively known as the One-Definition Rule (ODR).
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The compiler enforces the ODR within a single source file. However, the standard does 
not require a compiler or linker to detect any ODR violations that span multiple source files. If 
you make such a mistake, the problem is all yours to find and fix.

Imagine that you are maintaining a program, and part of the program is the header file 
shown in Listing 39-13.

Listing 39-13. The Original point.hpp File

The program works just fine. One day, however, you upgrade compiler versions and 
when recompiling the program, the new compiler issues a warning, such as the following, that 
you’ve never seen before:

The problem is that the order of the data member declarations is different from the order 
of the data members in the constructors’ initializer lists. It’s a minor error, but one that can 
lead to confusion or worse in more complicated classes. It’s a good idea to ensure the orders 
are the same. You decide to fix the problem by reordering the data members.

Then you recompile the program, but the program fails in mysterious ways. Some of your 
regression tests pass and some fail, including trivial tests that have never failed in the past.

What went wrong?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

With such limited information, you can’t determine for certain what went wrong, but the 
most likely candidate is that the recompilation failed to capture all the source files. Some part 
of the program (not necessarily the part that is failing) is still using the old definition of the 

 class, and other parts of the program use the new definition. The program fails to adhere 
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to the ODR, resulting in undefined behavior. Specifically, when the program passes a
object from one part of the program to another, one part of the program stores a value in ,
and another part reads the same data member as .

This is only one small example of how ODR violations can be both subtle and terrible at 
the same time. By ensuring that all class definitions are in their respective header files, and 
that any time you modify a header file you recompile all dependent source files, you can avoid 
most accidental ODR violations.

Now that you have the tools needed to start writing some serious programs, it’s time 
to embark on some more advanced techniques. The next Exploration introduces function 
objects—a powerful technique for using the standard algorithms.
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Function Objects

Classes have many, many uses in C++ programs. This Exploration introduces one power-
ful use of classes to replace functions. This style of programming is especially useful with the 
standard algorithms.

The Function Call Operator
The first step is to take a look at an unusual “operator,” the function call operator, which lets 
an object behave as a function. Overload this operator the same way you would any other. Its 
name is . It takes any number of parameters, and can have any return type. List-
ing 40-1 shows another iteration of the  class (last seen in Listing 39-5), this time 
replacing the  member function with the function call operator. In this case, the func-
tion has no parameters, so the first set of empty parentheses is the operator name and the 
second set is the empty parameter list.

Listing 40-1. Rewriting  to Use the Function Call Operator

321
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Listing 40-2 displays the implementation of the function call operator (and , which 
also needs a definition).

Listing 40-2. Implementation of the  Function Call Operator

In order to use the function call operator, you must first declare an object of the class 
type then use the object name as though it were a function name. Pass arguments to this 
object the way you would to an ordinary function. The compiler sees the use of the object 
name as a function and invokes the function call operator. Listing 40-3 shows a sample pro-
gram that uses a  function call operator to generate id codes for new library works 
(remember the  class from Exploration 36?). Assume that  converts an integer 
identification into the string format that  requires, and that  adds a -derived
object to the library’s database.

Listing 40-3. Using a  Object’s Function Call Operator
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Function Objects
A function object or functor is an object of class type for a class that overloads the function call 
operator. Informally, programmers sometimes also speak of the class as a “function object,” 
with the understanding that the actual function objects are the variables defined with that 
class type.

The power of a function object is that the object can maintain state information, as you 
saw with generate_id. Stateful objects are much more powerful and flexible than plain, ordi-
nary functions.

Recall the  algorithm from Exploration 21. The goal was to transform a 
string by converting the case of each character in the string. The problem was that 
did not make it easy to call the standard  or  function. Using a function object, 
however, the task becomes simpler. Refer back to Listing 21-3, and rewrite the  func-
tion so it makes use of  and  function objects instead of functions.

Need a hint? The constructors take a  object as an argument.
Compare your solution with that of mine in Listing 40-4.

Listing 40-4. Rewriting the  Function to Make Use of Function Objects
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At first glance, you don’t seem to have gained much by using function objects instead of 
functions (the code is actually longer). If you aren’t used to seeing function objects, the code 
seems more complicated. On the other hand, the program is not fetching the global locale 
three times for every single character. Instead, the program fetches the global locale twice for 
an entire word. By creating the function objects in  and passing them as arguments to 

, the program could fetch the desired locale once for the entire program.
Implement this suggested optimization.
Listing 40-5 shows my solution. I wrote a new function object, , which has a 

constructor that takes a  as an argument. The  in turn creates two function 
objects,  and , and uses them as before.

Listing 40-5. Rewriting the  Function As a Function Object
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Notice how the  program requires very few changes. 
I also factored out a common base class, , for all the function objects. The base 

class manages the  object and hides it from the derived classes by presenting its own 
 and  functions. Thus, if you later find a way to further improve the perfor-

mance of these functions, you can hide the details in the base class.
Another advantage to using function objects is that function call operators can be 

expanded inline. For a small function that a program calls often, the savings can be consider-
able. Using a sample file that contains about 12 MB of text, Listing 21-3 ran in 6.2 seconds and 
Listing 40-5 ran in 4.8 seconds on the same platform.
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Recycling Member Functions
You don’t always need to write brand new classes for your function objects. Sometimes, you 
can recycle existing member functions. The standard library has a function,  (in 
the  header), which wraps a member function in a special functor, enabling you 
to use that member function easily with standard algorithms or anywhere else you need a 
function object.

Suppose you have a vector of  objects (see Listing 39-8), and you want to copy 
only the  values to another vector so you can perform some statistical analysis on the 
BMI data. Listing 40-6 shows how to use  with the  member function.

Listing 40-6. Extracting BMI Values

The key is the call to . The sole argument is the address of a member 
function—in this case the  member function of the  class—written with the 
qualified class name, . The  operand informs the compiler that you are 
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not calling the member function, but need its location in memory. The  func-
tion takes the member function address and creates a functor with one parameter, with type 

. The functor’s function call operator calls the  member function. The exact 
implementation of  is a detail best left to the library author, but the resulting func-
tor class looks something like the class presented in Listing 40-7.

Listing 40-7. The Functor Class Created by 

The actual class name is an implementation detail; it will not collide with any name that 
you use in your code. You supply the parameter type ( ) and the member function 
name ( ) in the argument to . The compiler determines everything else; such as 
the return type ( ) and that the function can be . If the  member function were not 

, the functor class would not have a  function call operator and  parameter.
The  header provides several other standard functors and wrappers of vari-

ous shapes and sizes. They can be complicated to use correctly, but if you’re curious, any 
complete language reference will spell out all the details for you. In this book, I’ll stick with 

.

Generator Functor
Suppose you need a vector that contains integers of increasing value. For example, a vector 
of size 10 would contain the values 1, 2, 3, ..., 8, 9, 10. The  algorithm takes an iterator 
range and calls a function or functor for each element of the range, assigning the result of the 
functor to successive elements. Write a functor class to generate successive integers so the 
functor can be used with the  algorithm. Name the class . The construc-
tor takes two arguments: the first specifies the initial value of the sequence and the second 
is the increment. Each time you call the function call operator, it returns the generator value 
then increments that value, which will be the value returned on the next invocation of the 
function call operator. Listing 40-8 shows the main program. Write your solution in a sepa-
rate file, sequence.hpp, using only inline functions (so you don’t need to compile a separate 
sequence.cpp source file).

Listing 40-8. The Main Program for Generating Successive Integers
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Compare your solution with mine, shown in Listing 40-9.

Listing 40-9. The sequence.hpp File
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The  algorithm has a partner, , which specifies an input range with an 
iterator for the start of the range and an integer for the size of the range. The next Exploration 
examines this and several other useful algorithms.
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Useful Algorithms

The standard library includes a suite of functions, which the library calls algorithms, to sim-
plify many programming tasks that involve repeated application of operations over sequential 
data. The data can be a container of objects, a portion of a container, values read from an 
input stream, or any other sequence of objects that you can express with iterators. I’ve been 
introducing various algorithms when appropriate; this Exploration takes a closer look at a 
number of the most useful algorithms.

Searching
The standard algorithms include many flavors of searching, divided into two broad categories: 
linear and binary. The linear searches examine every element in a range, starting from the first, 
and proceeding to subsequent elements until reaching the end (or the search ends because 
it is successful). The binary searches require the elements be sorted in ascending order using 
the  operator, or according to a custom predicate, that is, a function or a function object that 
returns a Boolean result.

Linear Search Algorithms
The most basic linear search is the  function. It searches a range of read iterators for a 
value. It returns an iterator that refers to the first matching element in the range. If  cannot 
find a match, it returns a copy of the end iterator. Listing 41-1 shows an example of its use. The 
program reads integers into a vector, searches for the value 42, and if found, changes that ele-
ment to 0.

Listing 41-1. Searching for an Integer

331
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Listing 41-2 shows the data.hpp file, which provides a few utilities for working with vec-
tors of integers. Most of the examples in this Exploration will  this file.

Listing 41-2. The data.hpp File to Support Integer Data
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A companion to the  algorithm is . Instead of searching for a matching value, 
 takes a predicate function or function object (from now on, I will write functor to 

mean a free function or a function object). It calls the functor for every element in the range 
until the functor returns  (or any value that can be converted automatically to , such 
as a nonzero numeric value). If the functor never returns true,  returns the end iterator.

Every search algorithm comes in two forms. The first compares items using an opera-
tor (  for linear searches and  for binary searches). The second form uses a caller-supplied 
functor instead of the operator. For most algorithms, the functor is an additional argument 
to the algorithm, so overloading distinguishes the two forms. In a few cases, both forms take 
the same number of arguments, and the library uses distinct names because overloading can-
not distinguish between the two forms. In these cases, the functor form has  added to the 
name, such as  and .

Suppose you want to search a vector of integers, not for a single value, but for any value 
that falls within a certain range. You can write a custom predicate to test a hard-coded range, 
but a more useful solution is to write a general-purpose functor that compares an integer 
against any range. You use this functor by supplying the range limits as argument to the con-
structor. Write the  functor. The constructor takes two  arguments. The function 
call operator takes a single  argument; it returns true if the argument falls within the inclu-
sive range specified in the constructor, or false if the argument lies outside the range.

Listing 41-3 shows my implementation of . As an added bonus, I decided to allow 
the caller to specify the range limits in either order. That way I neatly avoid the issue of error 
checking and error handling if the caller tries to use a meaningless range, such as [10, 0].

Listing 41-3. Functor  to Test Whether an Integer Lies Within a Certain Range
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The  operator form of the  function takes two arguments and returns the 
smaller. The  function also takes two arguments and returns the larger. Both func-
tions compare their arguments with the  operator; like other algorithms, you can call a 
functor form of both functions, passing a comparison functor to use instead of the  operator. 
The types of the first two arguments must be the same, and the return type matches that of the 
arguments.

Write a test program that reads integers from the standard input and then uses 
and  to find the first value that lies within the range [10, 20]. Compare your solution 
with mine in Listing 41-4.

Listing 41-4. Using  and  to Find an Integer That Lies Within a Range
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The  function is similar to , except it searches for a matching subrange. That is, 
you supply an iterator range to search and an iterator range to match. The  algorithm 
looks for the first occurrence of a sequence of elements that equals the entire match range. 
Listing 41-5 shows a silly program that generates a large vector of random integers in the range 
0 to 9, and then searches for a subrange that matches the first four digits of .

Listing 41-5. Finding a Subrange that Matches the First Four Digits of 
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Binary Search Algorithms
The  container stores its elements in sorted order, so you can use any of the binary search 
algorithms, but  also has member functions that can take advantage of access to the inter-
nal structure of a , and so offer improved performance. Thus, the binary search algorithms 
are typically used on sequential containers, such as , when you know that they contain 
sorted data. If the input range is not properly sorted, the results are undefined: you might get 
the wrong answer, the program might crash, or something even worse might happen.

The  function simply tests whether a sorted range contains a particular 
value. By default, values are compared using only the  operator. Another form of 

 takes a comparison functor as an additional argument to perform the comparison.

WHAT’S IN A NAME?

The  function performs a linear search for a single item. The  function performs a linear search 
for a matching series of items. So why isn’t  called ? On the other hand, 

 searches for the rightmost match of a range of values, so why isn’t it called ? The 
 function is completely different from , in spite of the similarity in their names.

In spite of efforts by the C++ committee to apply uniform rules for algorithm names, such as append-
ing  to functions that take a functor argument but cannot be overloaded, they goofed with a number of 
names. What this means for you is that you need to keep a reference close at hand. Don’t judge a function by 
its name, but read the description of what the function does and how it does it before you decide whether it’s 
the right function to use.

The  function is similar to , except it returns an iterator. The 
iterator points to the first occurrence of the value or it points to a position where the value 
belongs if you want to insert the value into the vector and keep the vector in sorted order. The 

 function is similar to  except it returns an iterator that points to the 
last position where you can insert the value and keep it in sorted order; if the value is found, 
that means  points to one position past the last occurrence of the value in the 
vector. To put it another way, the range [ , ) is the subrange of every 
occurrence of the value in the sorted range. As with any range, if ,
the result range is empty, which means the value is not in the search range.

Listing 41-6 shows a variation on Listing 41-1, sorting the integer vector and searching for 
a value using  to perform a binary search.

Listing 41-6. Searching for an Integer Using Binary Search
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Only two lines changed: one insertion to sort the vector, and changing  to 
. To better understand how  and  really work, it helps to write a 

test program. The program reads some integers from the user into a vector, sorts the vector, 
and clears the I/O state bits on the standard input ( ) so you can enter some 
test values. The program then repeatedly ask for integers from the user, and searches for each 
value using  and . To help you understand exactly what these func-
tions return, call the  function to determine an iterator’s position in a vector:

The  function (declared in ) takes an iterator range and returns the 
number of elements in the range. The return type is the iterator’s , which is 
just an integer type, although the exact type (e.g.,  or ) depends on the implementa-
tion.

Write the test program. Then run the program with the following sample input:

What should the program print as the sorted vector?
_________________________________________________________________________________

Fill in Table 41-1 with the expected values for the lower and upper bounds of each value. 
Then run the program to check your answers.
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Table 41-1. Results of Testing Binary Search Functions

Value Expected Lower Bound Expected Upper Bound Actual Lower Bound Actual Upper Bound

   

   

   

   

   

Compare your test program with mine in Listing 41-7.

Listing 41-7. Exploring the  and  Functions

Other useful linear functions include , which takes an iterator range and value and 
returns the number of occurrences of the value in the range. Its counterpart  takes a 
predicate instead of a value and returns the number of times the predicate returns true.

The  function takes a range and returns an iterator that refers to the smallest 
element in the range. It has a counterpart, , which returns an iterator that refers 
to the largest element in the range. Both come in the usual overloaded forms: one uses the 

operator and the other takes an additional argument for a comparison predicate.
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Comparing
To check whether two ranges are equal, that is, that they contain the same values, call the 

 algorithm. This algorithm takes a start and one-past-the-end iterator for one range and 
the start of the second range, assuming the two ranges have the same size. It returns true if 
every element of the two ranges are equal or false if any element doesn’t match. The function 
has two forms: pass only the iterators to , and it compares elements with the  operator; 
pass a comparison functor as the last argument, and  compares elements by calling the 
functor. The first argument to the functor is the element from the first range and the second 
argument is the element from the second range.

The  function is the opposite. It compares two ranges and returns a 
(introduced in Exploration 14) of iterators that refer to the first elements that do not match. 
The first iterator in the pair refers to an element in the first range and the second iterator refers 
to the second range. If the two ranges are equal, the return value is a pair of end iterators.

The  algorithm sets the record for the longest algorithm name. 
It compares two ranges and determines whether the first range is “less than” the second. It 
does this by comparing the ranges one element at a time. If the ranges are equal, the function 
returns false. If the ranges are equal up to the end of one range, and the other range is longer, 
the shorter range is less than the longer range. If an element mismatch is found, whichever 
range contains the smaller element is the smaller range. All elements are compared using the 

operator (or a caller-supplied predicate) and checked for equivalence, not equality. Recall 
that elements  and  are equivalent if the following is true:

If you apply  to two strings, you get the expected less-than rela-
tionship, which explains the name. In other words, if you call this algorithm with the strings 

 and , it returns true; if you call it with  and , it returns false; and if 
you call it with  and , it returns true.

Write a test program that reads two sequences of integers into separate vectors. (Remem-
ber to clear the state after reading the first ’s data.) Then test the , , and 

 functions on the two ranges. Remember that  and 
require their input ranges to have the same size. You can ensure that you compare only the 
number of elements in the shorter vector by computing the end iterator instead of calling the 

 member function:

Not all iterators allow addition, but a ’s iterators do allow it. Adding an integer 
to  offsets the iterator as though you had advanced it  times with the  operator. 
(Discover more about iterators in the next Exploration.)

Table 41-2 lists some suggested input data sets.
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Table 41-2. Suggested Data Sets for  
Testing Comparison Algorithms

Data Set 1 Data Set 2

1 2 3 4 5 1 2 3

1 2 3 1 2 3 4 5

1 2 3 4 5 1 2 4 5

1 2 3 1 2 3

Compare your test program with mine in Listing 41-8.

Listing 41-8. Testing Various Comparison Algorithms
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Rearranging Data
You’ve already seen the  algorithm many times. Other algorithms are also adept at rear-
ranging values in a range. The  algorithm merges two sorted input ranges into a single 
output range. As always, you must ensure the output range has enough room to accept the 
entire merged result from both input ranges. The two input ranges can be different sizes, so 

 takes five or six arguments: two for the first input range, two for the second input range, 
one for the start of the output range, and an optional argument for a functor to use instead of 
the  operator.

The  algorithm scans an input range and replaces every occurrence of an old value 
with a new value. The replacement occurs in place, so you specify the range with the usual 
pair of iterators, but no write iterator. The  function is similar, but takes a predi-
cate instead of an old value. Write a program that reads a vector of integers, and replaces all 
occurrences of values in the range [10, 20] with 0. Be sure to reuse the  functor class. 
Compare your program with mine in Listing 41-9.

Listing 41-9. Using  and  to Replace All Integers in [10, 20] with 0

A fun algorithm is , which shuffles elements in place into random order. 
This function takes two arguments, specifying the range to shuffle. Another form of the func-
tion takes three arguments. The final argument is a functor that returns a random number in 
the range [0, ), where  is the size of the input range.

Use the sequence.hpp file (from Listing 40-9) and generate a vector of 100 sequential 
integers. Then shuffle it into random order and print it. Compare your solution with mine in 
Listing 41-10.
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Listing 41-10. Shuffling Integers into Random Order

Unless you peeked ahead or used a library reference, your solution probably uses a loop to 
call the  function call operator 100 times. That’s a fine solution, and is such a common 
idiom the standard library has an algorithm to do it for you. The  algorithm repeatedly 
calls a functor with no arguments and copies the return value into an output range. It calls the 
functor once per element in the range, overwriting every element. The  function 
takes an iterator for the start of a range and an integer for the size of the range. It then calls a 
functor (the third argument) once for each element of the range, copying the return value into 
the range. It is your responsibility to ensure the range actually has that many elements in it. To 
use  instead of  in Listing 41-10, you could write

If you don’t need to call a functor for every item of a range, but instead want to fill a range 
with copies of the same value, call , passing a pair of iterators that specify a range, and a 
value. The value is copied into every element in the range. The  function takes a starting 
iterator and an integer size to specify the target range.

The only other algorithm that has a counted form is , which is the counted coun-
terpart of .

The  algorithm modifies items by calling a functor for each item in an input 
range. It writes the results to an output range, which can be the same as the input range, 
resulting in modifying the range in place. You’ve seen this algorithm at work already, so I 
won’t add much to what you already know. The function has two forms: unary and binary. 
The unary form takes one input range, the start of an output range, and a functor. It calls the 
functor for each element of the input range, copying the result to the output range. The output 
range can be the same as the input range, or it can be a separate range. As with all algorithms, 
you need to ensure that the output range is large enough to store the results.

The binary form takes an input range, the start of a second input range (it assumes the 
size is the same as the size of the first input range), the start of an output range, and a binary 
functor. The functor is called for each element in the input ranges; the first argument comes 
from the first input range, and the second argument comes from the second input range. As 
with the unary form, the function copies the result to the output range, which can be the same 
as either input range. Note that the types of the two input ranges do not have to be the same.
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Copying Data
Some algorithms operate in place, and others copy their results to an output range. For 
example,  reverses items in place, and  leaves the input range intact and 
copies the reversed items to an output range. If a copying form of an algorithm exists, its name 
has  appended. (Unless it is also a predicate form of a function, in which case it has 
appended after , as in .)

In addition to just plain , which you’ve seen many times already, the standard library 
offers  which makes a copy, but starts at the end and works toward the begin-
ning, preserving the original order. Distinguish  from . The latter 
starts at the beginning and works toward the end of the input range, but copies the values into 
reverse order.

As with all algorithms that write output, it is your responsibility to ensure the output range 
is large enough to handle everything you write to it. Some implementations of the standard 
library offer debugging modes to help detect violations of this rule. If your library offers such a 
feature, by all means, take full advantage of it.

Deleting Elements
The trickiest algorithms to use are those that “remove” elements. As you learned in Explora-
tion 21, algorithms such as  don’t actually delete anything. Instead, they rearrange the 
elements in the range so that all the elements slated for removal are packed at the end of the 
range. You can then decide to use the subrange of elements you want to keep, or erase the 
“removed” elements by calling the  member function.

The  function takes an iterator range and a value, and it removes all elements equal 
to that value. You can also use a predicate with , to remove all elements for which a 
predicate returns true. These two functions have copying counterparts, which don’t rearrange 
anything, but merely copy the elements that are not being removed:  copies all 
the elements that are not equal to a certain value, and  copies all elements for 
which a predicate returns false.

I often find situations in which I want to copy elements that meet some condition. Ideally, 
I would write a predicate for the condition and call the  algorithm. The only problem 
is that  is not in the standard library. Instead, you can reverse the logic of your predi-
cate and call . (The  function is one of several new algorithms slated to 
appear in the next revision of the C++ standard.)

Another algorithm that removes elements is  (and ). It takes an input 
range and removes all adjacent duplicates, thereby ensuring that every item in the range is 
unique. (If the range is sorted, then all duplicates are adjacent.) Both functions can take a 
comparison functor instead of using the default  operator.

Write a program that reads integers into a vector, erases all elements equal to zero, cop-
ies only those elements that lie in the range [24, 42] to another vector, sorts the other vector, 
and removes duplicates. Print the resulting vector. My solution is in Listing 41-11.
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Listing 41-11. Erasing Elements from a Vector

Iterators
Algorithms and iterators are closely related. All the algorithms (except  and ) take two 
or more iterators as arguments. To use algorithms effectively, you must understand iterators. 
Therefore, the next Exploration will help you master iterators, all five flavors. That’s right. 
Iterators come in five different varieties. Keep reading to learn more.
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Iterators

Iterators provide element-by-element access to a sequence of things. The things can be 
numbers, characters, or objects of almost any type. The standard containers, such as ,
provide iterator access to the container contents, and other standard iterators let you access 
input streams and output streams, for example. The standard algorithms use iterators exclu-
sively for operating on sequences of things.

Until now, your view and use of iterators has been somewhat limited. Sure, you’ve used 
them, but do you really understand them? This Exploration helps you understand what’s really 
going on with iterators.

Kinds of Iterators
So far, you have seen that iterators come in multiple varieties, in particular, read and write. 
The  function, for example, takes two read iterators to specify an input range and one 
write iterator to specify the start of an output range. As always, specify the input range as a pair 
of read iterators: one that refers to the first element of the range and one that refers to one-
past-the-end element of the input range. The  function returns a write iterator: the value 
of the result iterator after the copy is complete.

All this time, however, I’ve oversimplified the situation by referring to “read” and “write” 
iterators. In fact, C++ has five different categories of iterators: input, output, forward, bidirec-
tional, and random access. Input and output iterators have the least functionality, and random 
access has the most. You can substitute an iterator with more functionality anywhere that calls 
for an iterator with less. Figure 42-1 illustrates the substitutability of iterators. Don’t be misled 
by the figure, however. It does not show class inheritance. What makes an iterator an iterator 
is its behavior. If it fulfills all the requirements of an input iterator, for example, it is an input 
iterator, regardless of its type.

345



EXPLORATION 42   ITERATORS346

Figure 42-1. Substitution tree for iterators

All iterators can be copied and assigned freely. The result of a copy or an assignment is 
a new iterator that refers to the same item as the original iterator. The other characteristics 
depend on the iterator category, as described in the following sections.

Input Iterators
An input iterator, unsurprisingly, supports only input. You can read from the iterator (using 
the unary  operator) only once per iteration. You cannot modify the item that the itera-
tor refers to. The  operator advances to the next input item. You can compare iterators for 
equality and inequality, but the only meaningful comparison is to compare an iterator with 
an end iterator. You cannot, in general, compare two input iterators to see if they refer to the 
same item.

That’s about it. Input iterators are quite limited, but they are also extremely useful. Almost 
every standard algorithm expresses an input range in terms of two input iterators: the start of 
the input range and one-past-the-end of the input range.

The  type is an example of an input iterator. You can also treat any con-
tainer’s iterator as an input iterator; e.g., the iterator that a vector’s  member function 
returns.

Output Iterators
An output iterator supports only output. You can assign to an iterator item (by applying the 
operator to the iterator on the left-hand side of an assignment), but you cannot read from the 
iterator. You can modify the iterator value only once per iteration. The  operator advances to 
the next output item.

You cannot compare output iterators for equality or inequality.
In spite of the limitations on output iterators, they, too, are widely used by the standard 

algorithms. Every algorithm that copies data to an output range takes an output iterator to 
specify the start of the range.

One caution when dealing with output iterators is that you must ensure that wherever the 
iterator is actually writing has enough room to store the entire output. Any mistakes result in 
undefined behavior. Some implementations offer debugging iterators that can check for this 
kind of mistake, and you should certainly take advantage of such tools when they are avail-
able. Don’t rely solely on debugging libraries, however. Careful code design, careful code 
implementation, and careful code review are absolutely necessary to ensure safety when using 
output (and other) iterators.
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The  type is an example of an output iterator. You can also treat many 
container’s iterators as output iterators; e.g., the iterator that a vector’s  member func-
tion returns.

Forward Iterators
A forward iterator has all the functionality of an input iterator and an output iterator, and then 
some. You can freely read from and write to an iterator item (still using the unary  operator), 
and you can do so as often as you wish. The  operator advances to the next item, and the 

 and  operators can compare iterators to see if they refer to the same item or to the end 
position.

Some algorithms require forward iterators instead of input iterators. I glossed over that 
detail in the previous Explorations because it rarely affects you. For example, the binary search 
algorithms require forward iterators to specify the input range because they might need to 
refer to a particular item more than once. That means you cannot directly use an 

 as an argument to, say, , but then, you aren’t likely to try that in a real
program. All the containers’ iterators meet the requirements of forward iterators, so in practi-
cal terms, this restriction has little impact.

Bidirectional Iterators
A bidirectional iterator has all the functionality of a forward iterator, but it also supports the 

 operator, which moves the iterator backward one position to the previous item. As with any 
iterator, you are responsible for ensuring that you never advance the iterator past the end of 
the range or before the beginning.

The  and  algorithms (and a few others) require bidirectional itera-
tors. All the containers’ iterators meet at least the requirements of bidirectional iterators, so 
you rarely have to worry about this restriction.

Random Access Iterators
A random access iterator is the most powerful iterator. It has all the functionality of all other 
iterators, plus you can move the iterator an arbitrary amount by adding or subtracting an 
integer.

You can subtract two iterators (provided they refer to the same sequence of objects) to 
obtain the distance between them. Recall from Exploration 41 that the  function 
returns the distance between two iterators. If you pass forward or bidirectional iterators to the 
function, it advances the starting iterator one step at a time until it reaches the end iterator. 
Only then will it know the distance. If you pass random access iterators, it merely subtracts the 
two iterators and immediately returns the distance between them.

You can compare random access iterators for equality or inequality. If the two iterators 
refer to the same sequence of objects, you can also use any of the relational operators. For ran-
dom access iterators,  means refers to an item earlier in the sequence than .

Algorithms such as  require random access iterators. The  type provides 
random access iterators, but not all containers do. The  container, for example, imple-
ments a doubly-linked list. It has only bidirectional iterators. Because you can’t use the 
algorithm, the list container has its own  member function. Learn more about  in 
Exploration 51.



EXPLORATION 42   ITERATORS348

Now that you know vectors supply random access iterators, and you can compare ran-
dom access iterators using relational operators, revisit Listing 10-4. Can you think of an easier 
way to write that program? (Hint: consider a loop condition of .) See my rewrite in 
Listing 42-1.

Listing 42-1. Comparing Iterators by Using the < Operator

So input, forward, bidirectional, and random access iterators all qualify as “read” itera-
tors, and output, forward, bidirectional, and random access iterators all qualify as “write” 
iterators. An algorithm, such as , might require only input and output iterators. That is, the 
input range requires two input iterators; you can use any iterator that meets the requirements 
of an input iterator: input, forward, bidirectional, or random access. For the start of the output 
range, use any iterator that meets the requirements of an output iterator: output, forward, 
bidirectional, or random access.

Working with Iterators
The most common sources for iterators are the  and  member functions that all 
containers (such as  and ) provide. The  member function returns an iterator 
that refers to the first element of the container, and  returns an iterator that refers to the 
position one-past-the-end element of the container.
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What does return for an empty container?

_________________________________________________________________________________

If the container is empty,  returns the same value as , that is, a special value 
that represents “past the end” and cannot be dereferenced. One way to test whether a con-
tainer is empty is to test whether . (Even better, especially when you are 
writing a real program and not trying to illustrate the nature of iterators, is to call the 
member function, which every container provides.)

The type of a container’s iterator is always named . The name is a nested mem-
ber, so you refer to the iterator name by prefixing it with the container type.

Each container implements its iterator differently. All that matters to you is that the itera-
tor fulfills the requirements of one of the standard categories.

The exact category of iterator depends on the container. A  returns random access 
iterators. A  returns bidirectional iterators. Any library reference will tell you exactly what 
category of iterator each container supports.

A number of algorithms and container member functions also return iterators. For exam-
ple, almost every function that performs a search returns an iterator that refers to the desired 
item. If the function cannot find the item, it returns the end iterator. The type of the return 
value is usually the same as the type of the iterators in the input range. Algorithms that copy 
elements to an output range return the result iterator.

Once you have an iterator, you can dereference it with  to obtain the value that it refers 
to (except for an output iterator, which you dereference only to assign a new value; and except 
for the end iterators, which you can never dereference). If the iterator refers to an object, and 
you want to access a member of the object, you can use the shorthand  notation.

You can advance an iterator to a new position by calling the  function (declared 
in ). The first argument is the iterator you want to advance, and the second is the 
number of positions. If the iterator is bidirectional or random access, the second argument 
can be negative to go backward. You can advance an input iterator but not an output iterator. 
Reusing the  functor from Exploration 40, read the program in Listing 42-2.

Listing 42-2. Advancing an Iterator
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What does the program print?

_________________________________________________________________________________

The  vector is filled with even numbers, starting at 0. The iterator, , initially refers 
to the first element of the vector, namely, 0. The iterator advances four positions, to value 8, 
and then back two positions to 4. So the output is

Declaring variables to store iterators is clumsy. The type names are long and cumber-
some. A good idea, therefore, is to use  declarations to create shorter aliases for the 
long, clumsy type names:

SIMPLER, SHORTER DECLARATIONS

The next revision to the C++ standard will make it easier to declare iterators. The  keyword will deduce 
the type of an object automatically. Thus, a definition of the form

directs the compiler to use the return type of  as the type of . Typedefs are still useful 
in many cases, but this new use of the  keyword will reduce the size of many a  loop. Look for this 
feature soon in a compiler near you.
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const_iterator vs. const iterator
A frequent source of confusion is the difference between a  and .
An output iterator (and any iterator that also meets the requirements of an output iterator, 
namely, forward, bidirectional, and random access) lets you modify the item it references. 
For some forward iterators (and bidirectional and random access), you want to treat the data 
in the range as read only. Even though the iterator itself meets the requirements of a forward
iterator, your immediate need might be only for an input iterator.

You might think that declaring the iterator  would help. After all, that’s how you ask 
the compiler to help you by preventing accidental modification of a variable: declare the vari-
able with the  specifier. What do you think? Will it work? ________________

If you aren’t sure, try a test. Read Listing 42-3 and predict its output.

Listing 42-3. Printing the Middle Item of a Series of Integers

Can you see why the compiler refuses to compile the program? Maybe you can’t see 
the precise reason, buried in the compiler’s error output. (The next section will discuss this 
problem at greater length.) The error is that the variable  is . You cannot modify the 
iterator, so you cannot advance it to the middle of the vector.

Instead of declaring the iterator itself as , you need to tell the compiler that you want 
the iterator to refer to  data. If the vector itself were , the  function would 
return exactly such an iterator. You could freely modify the iterator’s position, but you could 
not modify the value that the iterator references. The name of the iterator that this function 
returns is  (with underscore).

In other words, every container actually has two different  functions. One is 
a  member function and returns . The other is not a  member 
function; it returns a plain . As with any  or non-  member function, the 
compiler chooses one or the other depending on whether the container itself is . If 
the container is not , you get the non-  version of , which returns a plain

, and you can modify the container contents through the iterator. If the container is 
, you get the  version of , which returns a , which prevents 

you from modifying the container’s contents.
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Rewrite Listing 42-3 to use a . Your program should look something like 
Listing 42-4.

Listing 42-4. Really Printing the Middle Item of a Series of Integers

Prove to yourself that you cannot modify the data when you have a . Make
a further modification to your program to negate the middle value. Now your program 
should look like Listing 42-5.

Listing 42-5. Negating the Middle Value in a Series of Integers

If you change  to , the program works. Do it.
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Error Messages
When you compiled Listing 42-3, the compiler issued an error message, or diagnostic as the 
C++ standard writers call it. For example, the compiler that I use every day, g++, prints the 
following:

So what does all that gobbledygook mean? Although a C++ expert can figure it out, it may 
not be much help to you. Buried in the middle is the line number and source file that identify 
the source of the error. That’s where you need to start looking. The compiler didn’t detect the 
error until it started working through various  files. These file names depend on the 
implementation of the standard library, so you can’t always tell from those file names what is 
the actual error.

In this case, the error arises from within the  function. That’s when the com-
piler detects that it has a , but it does not have any functions that work with 
a . Instead of complaining about the -ness, however, all it manages to 
do is to complain that it lacks a “match” for the function it seeks. That means it is looking for 
argument types that match the parameter types to resolve an overloaded operator. Because 
a  argument cannot match a non-  parameter, the compiler failed to find an over-
load that matches the arguments.

Don’t give up hope for ever understanding C++ compiler error messages. By the end of 
the book, you will have gained quite a bit more knowledge that will help you understand how 
the compiler and library really work, and that understanding will help you make sense of these 
error messages.

My advice for dealing with the deluge of confusing error messages is to start by finding 
the first mention of your source file. That should tell you the line number that gives rise to the 
problem. Check the source file. You might see an obvious mistake. If not, check the error mes-
sage text. Ignore the “instantiated from here” and similar messages. Try to find the real error 
message.
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Specialized Iterators
The  header defines a number of useful, specialized iterators, such as 

, which you’ve seen several times already. Strictly speaking,  is 
a function that returns an iterator, but you rarely need to know the exact iterator type.

In addition to , you can also use , which also takes a con-
tainer as an argument and returns an output iterator. Every time you assign a value to the 
dereferenced iterator, it calls the container’s  member function to insert the value 
at the start of the container.

The  function takes a container and an iterator as arguments. It returns an output 
iterator that calls the container’s  function. The  member function requires an 

 argument, specifying the position at which to insert the value. The  iterator 
initially passes its second argument as the insertion position. After each insertion, it updates 
its internal iterator, so subsequent insertions go into subsequent positions. In other words, 

 just does the right thing.
Other specialized iterators include  and , which you’ve 

also seen. An  is an input iterator that extracts values from a stream when 
you dereference the iterator. With no arguments, the  constructor creates an 
end-of-stream iterator. An iterator is equal to the end-of-stream iterator when an input opera-
tion fails.

An  is an output iterator. The constructor takes an output stream and an 
optional string as arguments. Assigning to the dereferenced iterator writes a value to the out-
put stream, optionally followed by the string (from the constructor).

Another specialized iterator is . It adapts an existing iterator (called the 
base iterator), which must be bidirectional (or random access). When the reverse iterator goes 
forward ( ), the base iterator goes backward ( ). Containers that support bidirectional itera-
tors have  and  member functions, which return reverse iterators. The 
function returns a reverse iterator that points to the last element of the container, and 
returns a special reverse iterator value that represents one position before the beginning of the 
container. Thus, you treat the range [ , r ) as a normal iterator range, expressing 
the values of the container in reverse order.

C++ doesn’t permit an iterator to point to “one-before-the-beginning,” so reverse iterators 
have a somewhat funky implementation. Ordinarily, implementation details don’t matter, but 

 exposes this particular detail in its  member function, which returns 
the base iterator.

I could tell you what the base iterator actually is, but that would take the fun away from 
you. Write a program to reveal the nature of the ’s base iterator. (Hint: fill 
a vector with a sequence of integers. Use a reverse iterator to get to the middle value. Compare 
with the value of the iterator’s  iterator.)

If a points to position x of a container, what does its iterator
point to?

_________________________________________________________________________________

If you did not answer x + 1, try running the program in Listing 42-6.
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Listing 42-6. Revealing the Implementation of 

Now do you see? The base iterator always points to one position after the reverse itera-
tor’s position. That’s the trick that allows  to point to a position “before the beginning,” 
even though that’s not allowed. Under the hood, the  iterator actually has a base iterator 
that points at the first item in the container, and the ’s implementation of 
the  operator performs the magic of taking the base iterator, retreating one position, and then 
dereferencing the base iterator.

The Importance of Being Iterator
At this point, you might be a little bewildered and wondering why I’m bothering to reveal this 
magician’s secrets. The problem is that a number of important member functions, such as 

 and , require an  as an argument—not  and not 
, but just plain .

Fully understanding the point requires more C++ than you’ve learned so far. If you still 
feel iffy about your C++ skills, you can skip this section. It provides a little bit of explanation 
about problems that can crop up when using iterators, and eventually, you will need to under-
stand this material. If you stick with the way I use iterators in this book, you won’t run into any 
problems. I raise these issues in case you venture off and start using iterators in new and  
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different ways, which I encourage you to do. This section is just an introduction to the 
problems. If you want to know more, I recommend Scott Meyers’ book, Effective STL
(Addison-Wesley, 2001).

Consider the program in Listing 42-7.

Listing 42-7. You Can’t  with a

Can you see what’s wrong with this simple program? Don’t be discouraged if you can’t. 
The problem is subtle.

The  member function takes an  for its arguments, but  returns 
a . The standard lets you convert an  to a , but not vice 
versa. Thus, the compiler complains because one of the arguments to  is ,
which is not allowed.

The solution, in this case, is to remove the  specifier in  and change 
 to . Although I recommend using  because it promotes safe pro-

gramming, when dealing with iterators, you should use a plain  whenever possible, 
and use  only when you absolutely have to.

Similarly, you can’t use a  or a  (which is just 
like a normal , except you cannot modify the data) when a plain  is 
called for. Unlike , you can convert a  into an  with 
the  member function. As you saw, however, the position is off by one, so be careful if 
you want to use the base iterator in a call to .

As you can see, iterators are a little more complicated than they initially seem to be. Once 
you understand how they work, however, you will see that they are actually quite simple, pow-
erful, and easy to use. But first, it’s time to pick up a few more important C++ programming 
techniques. The next Exploration introduces exceptions and exception-handling, necessary 
topics for properly handling programmer and user errors.
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Exceptions

You may have been dismayed by the lack of error checking and error handling in the Explora-
tions so far. That’s about to change. C++, like most modern programming languages, supports 
exceptions as a way to jump out of the normal flow of control in response to an error or other 
exceptional condition. This Exploration introduces exceptions: how to throw them, how to 
catch them, when the language and library use them, and when and how you should use them.

Introducing Exceptions
Exploration 9 introduced ’s  member function, which retrieves a vector element at 
a particular index. At the time, I wrote that most programs you read would use square brackets 
instead. Now is a good time to take a close look at the difference between square brackets and 
the  function. First, take a look at two programs. Listing 43-1 shows a simple program that 
uses a vector.

Listing 43-1. Accessing an Element of a Vector

What do you expect to happen when you run this program?

_________________________________________________________________________________

Try it. What actually happens?

_________________________________________________________________________________

357
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The vector index, 5, is out of bounds. The only valid indices for  are 0 and 1, so it’s 
no wonder that the program terminates with a nastygram. Now consider the program in 
Listing 43-2.

Listing 43-2. A Bad Way to Access an Element of a Vector

What do you expect to happen when you run this program?

_________________________________________________________________________________

Try it. What actually happens?

_________________________________________________________________________________

The vector index, 5, is still out of bounds. If you still get a nastygram, you get a different
one than before. On the other hand, the program might run to completion without indicating 
any error. You might find that disturbing, but such is the case of undefined behavior. Anything 
can happen.

That, in a nutshell, is the difference between using subscripts ( ) and the  member 
function. If the index is invalid, the  member function causes the program to terminate in 
a predictable, controlled fashion. You can write additional code and avoid termination, take 
appropriate actions to clean up prior to termination, or let the program end.

The subscript operator, on the other hand, results in undefined behavior if the index is 
invalid. Anything can happen, so you have no control—none whatsoever. If the software is 
controlling, say, an airplane, then “anything” involves many options that are too unpleasant to 
imagine. On a typical desktop workstation, a more likely scenario is that the program crashes, 
which is a good thing because it tells you that something went wrong. The worst possible con-
sequence is that nothing obvious happens, and the program silently uses a garbage value and 
keeps running.

The  member function, and many other functions, can throw exceptions to signal an 
error. When a program throws an exception, the normal, statement-by-statement progression 
of the program is interrupted. Instead, a special exception-handling system takes control of 
the program. The standard gives some leeway in how this system actually works, but you can 
imagine that it forces functions to end and destroys local objects and parameters, although 
the functions do not return a value to the caller. Instead, functions are forcefully ended, one at 
a time, and a special code block catches the exception. Use the -  statement to set up 
these special code blocks in a program. A  block is also called an exception handler. Nor-
mal code execution resumes after the handler finishes its work.

When a program throws an exception (with the  keyword), it throws a value, called 
an exception object, which can be an object of nearly any type. By convention, exceptions 
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inherit from the  class or one of several subclasses that the standard library 
provides. Third-party class libraries sometimes introduce their own exception base class.

An exception handler also has an object declaration, which has a type, and the handler 
accepts only exception objects of the same type or of a derived type. If no exception handler 
has a matching type, or if you don’t write any handler at all, the program terminates as hap-
pens with Listing 43-1. The remainder of this Exploration examines each aspect of exception 
handling in detail.

Catching Exceptions
An exception handler is said to catch an exception. Write an exception handler at the end of 
a : the  keyword is followed by a compound statement (it must be compound), followed 
by a series of handlers. Each handler starts with a  keyword, followed by parentheses that 
enclose the declaration of an exception-handler object. After the parentheses is a compound
statement that is the body of the exception handler.

When the type of the exception object matches the type of the exception-handler object, 
the handler is deemed a match, and the exception object is copied to the handler object, or 
the handler declaration can be a reference, which sometimes saves you one extra copy of the 
exception object. Most handlers don’t need to modify the exception object, so the handler 
declaration is typically a reference to . A “match” is when the exception object’s type is 
the same as the handler’s declared type or a class derived from the handler’s declared type, 
ignoring whether the handler is  or a reference.

The exception-handling system destroys all objects that it constructed in the  part of 
the statement prior to throwing the exception, then it transfers control to the handler, so the 
handler’s body runs normally, and control resumes with the statement after the end of the 
entire -  statement; that is, after the statement’s last  handler. The handler types 
are tried in order, and the first match wins. Thus, you should always list the most specific types 
first, and base class types later.

A base class exception handler type matches any exception object of a derived type. 
To handle all exceptions that the standard library might throw, write the handler to catch 

 (declared in ), which is the base class for all standard exceptions. 
Listing 43-3 demonstrates some of the exceptions that the  class can throw. Try 
out the program by typing strings of varying length.

Listing 43-3. Forcing a  to Throw Exceptions



EXPLORATION 43   EXCEPTIONS360

If you type a line that contains ten or fewer characters, the  expression throws 
a  exception. If the string has more than ten characters, the program tries to 
increase the string size, using ever-growing sizes. Most likely, the size will eventually exceed 
available memory, in which case the  function will throw . If you 
have lots and lots of memory, the next error situation is forcing the string size to the limit 
that  supports, and then trying to add another character to the string, which causes the 

 function to throw . (The  member function returns the 
maximum number of elements that a container, such as , can contain.)

The base class handler catches any exceptions that the first two handlers miss; in particu-
lar, it catches . The  member function returns a string that describes the 
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exception. The exact contents of the string vary by implementation. As a general rule, I do not 
recommend showing the  string to users. Instead, use the type of the exception object 
to format a suitable error message, and use the  string merely to add additional infor-
mation, such as a file name. Unfortunately, C++ lacks a universal convention for exception 
messages, and different libraries use  strings differently. A better solution would be to 
write an explicit handler to catch , but I want to demonstrate a handler for a base
class.

The final  handler uses an ellipsis ( ) instead of a declaration. This is a catch-all
handler that matches any exception. If you use it, it must be last because it matches every 
exception object, of any type. Because the handler doesn’t know the type of the exception, it 
has no way to access the exception object. This catch-all handler prints a message and then 
calls  (declared in ), which terminates the program by calling 

. Because the  catches all standard library exceptions, the final 
catch-all handler is not really needed, but I wanted to show you how it works.

Throwing Exceptions
A throw expression throws an exception. The expression consists of the  keyword fol-
lowed by an expression, namely, the exception object. The standard exceptions all take 
a  argument, which becomes the value returned from the  member function.

The messages that the standard library uses for its own exceptions are implementation-
defined, so you cannot rely on them to provide any useful information.

You can throw an exception anywhere an expression can be used, sort of. The type of 
a throw expression is , which means it has no type. Type  is not allowed as an operand 
for any arithmetic, comparison, etc., operator. Thus, realistically, a  expression is typi-
cally used in an expression statement, all by itself.

You can throw an exception inside a catch handler, which low-level code and libraries 
often do. You can throw the same exception object or a brand new exception. To rethrow the 
same object, use the  keyword without any expression.

A common case for rethrowing an exception is inside a catch-all handler. The catch-all
handler performs some important clean-up work, and then propagates the exception so the 
program can handle it

If you throw a new exception, the exception-handling system takes over normally. Control 
leaves the -  block immediately, so the same handler cannot catch the new exception.
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Program Stack
To understand what happens when a program throws an exception, you must first understand 
the nature of the program stack, sometimes called the execution stack. Procedural and similar 
languages use a stack at runtime to keep track of function calls, function arguments, and local 
variables. The C++ stack also helps keep track of exception handlers.

When a program calls a function, the program pushes a frame onto the stack. The frame 
has information such as the instruction pointer and other registers, arguments to the function, 
and possibly some memory for the function’s return value. When a function starts, it might 
set aside some memory on the stack for local variables. Each local scope pushes a new frame 
onto the stack. (The compiler might be able to optimize away a physical frame for some local 
scopes, or even an entire function. Conceptually, however, the following applies.)

While a function executes, it typically constructs a variety of objects: function arguments, 
local variables, temporary objects, and so on. The compiler keeps track of all the objects the 
function must create, so it can properly destroy them when the function returns. Local objects 
are destroyed in the opposite order of their creation.

Frames are dynamic, that is, they represent function calls and the flow of control in a pro-
gram, not the static representation of source code. Thus, a function can call itself, and each 
call results in a new frame on the stack, and each frame has its own copy of all the function 
arguments and local variables.

When a program throws an exception, the normal flow of control stops, and the C++ 
exception-handling mechanism takes over. The exception object is copied to a safe place, off 
the execution stack. The exception-handling code looks through the stack for a  statement. 
When it finds a  statement, it checks the types for each handler in turn, looking for a match.
If it doesn’t find a match, it looks for the next  statement, farther back in the stack. It keeps 
looking until it finds a matching handler or it runs out of frames to search.

When it finds a match, it pops frames off the execution stack, calling destructors for all 
local objects in each popped frame, and continues to pop frames until it reaches the handler. 
Popping frames from the stack is also called unwinding the stack.

After unwinding the stack, the exception object initializes the handler’s exception object, 
and then the  body is executed. After the  body exits normally, the exception object 
is freed, and execution continues with the statement that follows the end of the last sibling 

 block.
If the handler throws an exception, the search for a matching handler starts anew. A han-

dler cannot handle an exception that it throws, nor can any of its sibling handlers in the same 
 statement.

If no handler matches the exception object’s type, the  function is called, 
which aborts the program. Some implementations will pop the stack and free local objects 
prior to calling , but others won’t.

Listing 43-4 can help you visualize what is going on inside a program when it throws and 
catches an exception.

Listing 43-4. Visualizing an Exception
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The  class helps show when and how objects are constructed, copied, and 
destroyed. The  function throws an exception when its argument equals 3, and it 
calls itself when its argument is positive. The recursion stops for non-positive arguments. To 
help you see function calls, it prints the argument upon entry to and exit from the function.

The first call to  does not trigger the exception, so you should see normal cre-
ation and destruction of the local  object. Write exactly what the program should print 
as a result of line 62 ( ):

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

The next call to  from  (line 63) allows  to recurse once 
before throwing an exception. So  calls . The local object, , is 
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constructed inside , and a new instance of  is constructed inside .
Then the exception object is created and thrown. (See Figure 43-1.)

Figure 43-1. Program stack when the exception is thrown

The exception is caught inside , so its frame is not popped. The exception 
object is then copied to  (line 50), and the exception handler begins. It prints a message and 
then rethrows the original exception object (line 53). The exception-handling mechanism 
treats this exception the same way it treats any other: the  statement’s frame is popped, and 
then the  function’s frame is popped. Local objects are destroyed (including  and 

). The final statement in  does not execute.
The stack is unwound, and the  statement inside the call to  is found, 

and once again, the exception object is copied to a new instance of . (See Figure 43-2.) The 
exception handler prints a message, and rethrows the original exception. The 
frame is popped, returning control to the  statement in . Again, the final statement in 

 does not execute.

Figure 43-2. Program stack after rethrowing exception

The exception handler in  gets its turn, and this handler prints the exception object 
one last time (line 65). After the handler prints a message, and the  body reaches its end, 
the local exception object and the original exception object are destroyed. Execution then con-
tinues normally on line 69. The final output is:
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Standard Exceptions
The standard library defines several standard exception types. The base class, , is 
declared in the  header. Most of the other exception classes are defined in the 

 header. If you want to define your own exception class, I recommend deriving it 
from one of the standard exceptions in .

The standard exceptions are divided into two categories (with two base classes that derive 
directly from ):

 errors ( ) are exceptions that you cannot detect or prevent 
merely by examining the source code. They arise from conditions that you can antici-
pate, but not prevent.

errors ( ) are the result of programmer error. They represent 
violations of preconditions, invalid function arguments, and other errors that the pro-
grammer should prevent in code.

The other standard exception classes in  derive from these two. Most standard 
library exceptions are logic errors. For example,  inherits from . The 

 member function (and others) throws  when the index is out of range. After all, 
you should check indices and sizes to be sure your vector and string usage are correct, and not 
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rely on exceptions. The exceptions are there to provide clean, orderly shutdown of your pro-
gram when you do make a mistake (and we all make mistakes).

Any decent library reference tells you which functions throw which exceptions, such as 
 can throw . Any function might throw other, undocumented exceptions, too, 

depending on the library’s and compiler’s implementation. In general, however, the standard 
library uses few exceptions. Instead, most of the library yields undefined behavior when you 
provide bad input. The I/O streams do not ordinarily throw any exceptions, but you arrange 
for them to throw exceptions when bad errors happen, as I explain in the next section.

I/O Exceptions
You learned about I/O stream state bits in Exploration 29. State bits are important, but check-
ing them repeatedly is cumbersome. In particular, many programs fail to check the state bits 
of output streams, especially when writing to the standard output. That’s just plain, old-fash-
ioned laziness. Fortunately, C++ offers an avenue for programmers to gain I/O safety without 
much extra work: the stream can throw an exception when I/O fails.

In addition to state bits, each stream also has an exception mask. The exception mask 
tells the stream to throw an exception if a corresponding state bit changes value. For example, 
you could set  in the exception mask, and never write an explicit check for this unlikely 
occurrence. If a serious I/O error were to occur, causing  to become set, the stream 
would throw an exception. You can write a handler at a high level to catch the exception and 
terminate the program cleanly, as shown in Listing 43-5.

Listing 43-5. Using an I/O Stream Exception Mask
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As you can see, the exception class is named . Also note a new
output stream: . The  header actually declares several standard I/O 
streams. So far, I’ve used only  and  because that’s all we’ve needed. The  stream 
is an output stream dedicated to error output. In this case, separating normal output (to )
from error output (to ) is important because  might have a fatal error (say, a disk is 
full), so any attempt to write an error message to  would be futile. Instead, the program 
writes the message to . There’s no guarantee that writing to  would work, but at 
least there’s a chance, for example, the user might redirect the standard output to a file (and 
thereby encounter a disk full error), while allowing the error output to appear on a console.

 in its state 
mask. Although you can also set this bit in the exceptions mask, I can’t see any reason why 
you would want to. If an input operation does not read anything useful from the stream, the 
stream sets . The most common reasons that the stream might not read anything is 
end of file (  is set) or an input formatting error (e.g., text in the input stream when the 
program tries to read a number). Again, it’s possible to set  in the exception mask, but 
most programs rely on ordinary program logic to test the state of an input stream. Exceptions 
are for exceptional conditions, and end-of-file is a normal occurrence when reading from 
a stream.

The loop ends when  is set, but you need to test further to discover whether 
 is set because of a normal end-of-file condition or because of malformed input. If 

 is also set, you know the stream is at its end. Otherwise,  must be due to mal-
formed input.

As you can see, exceptions are not the solution for every error situation. Thus,  is 
the only bit in the exception mask that makes sense for most programs, especially for input 
streams. An output stream sets  if it cannot write the entire value to the stream. Usu-
ally, such a failure occurs because of an I/O error that sets , but it’s at least theoretically 
possible for output failure to set  without also setting . In most situations, any 
output failure is cause for alarm, so you might want to throw an exception for  with 
output streams and  with input streams:

Custom Exceptions
Exceptions simplify coding by removing exceptional conditions from the main flow of con-
trol. You can and should use exceptions for many different error situations. For example, the 

 class (most recently appearing in Exploration 38) has, so far, completely avoided the 
issue of division by zero. A better solution than invoking undefined behavior (which is what 
happens when you divide by zero) is to throw an exception anytime the denominator is zero. 
Define your own exception class by deriving from one of the standard exception base classes, 
as shown in Listing 43-6. By defining your own exception class, any user of  can easily 
distinguish its exceptions from other exceptions.
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Listing 43-6. Throwing an Exception for a Zero Denominator

Notice how the  class nests within the  class. The nested class is 
a perfectly ordinary class. It has no connection with the outer class (as with a Java inner class), 
except the name. The nested class gets no special access to private members in the outer class, 
nor does the outer class get special access to the nested class name. The usual rules for access 
levels determine the accessibility of the nested class. Some nested classes are private helper 
classes, so you would declare them in a private section of the outer class definition. In this 
case,  must be public so callers can use the class in exception handlers.

To use a nested class name outside the outer class, you must use the outer class and the 
nested class names, separated by a scope operator ( ). The nested class name has no signifi-
cance outside of the outer class’s scope. Thus, nested classes help avoid name collisions. They 
also provide clear documentation for the human reader who sees the type in an exception 
handler:

Find all other places in the  class that need to check for a zero denominator, 
and add appropriate error-checking code to throw .
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All roads lead to , so one approach is to replace the assertion with a check for 
a zero denominator, and throw the exception there. You don’t need to modify any other func-
tions, and even the extra check in the constructor (illustrated in Listing 43-6) is unnecessary. 
Listing 43-7 shows the latest implementation of .

Listing 43-7. Checking for a Zero Denominator in 

Exceptional Advice
The basic mechanics of exceptions are easy to grasp, but their proper use is more difficult. The 
applications programmer has three distinct tasks: catching exceptions, throwing exceptions, 
and avoiding exceptions.

You should write your programs to catch all exceptions, even the unexpected ones. One 
approach is for your  program to have a master  statement around the entire program 
body. Within the program, you might use targeted  statements to catch specific exceptions. 
The closer you are to the source of the exception, the more contextual information you have, 
and the better you can ameliorate the problem, or at least present the user with more useful 
messages.

This outermost  statement catches any exceptions that other statements miss. It is 
a last-ditch attempt to present a coherent and helpful error message before the program ter-
minates abruptly. At a minimum, tell the user that the program is terminating because of an 
unexpected exception.

In an event-driven program, such as a GUI application, exceptions are more problematic. 
The outermost  statement shuts down the program, closing all windows. Most event han-
dlers should have their own  statement to handle exceptions for that particular menu pick, 
keystroke event, and so on.

Within the body of your program, better than catching exceptions is avoiding them. Use 
the  member function to access elements of a vector, but you should write the code so you 
are confident that the index is always valid. Index and length exceptions are signs of program-
mer error.

When writing low-level code, throw exceptions for most error situations that should not 
happen or that otherwise reflect programmer error. Some error conditions are especially dan-
gerous. For example, in the  class, a denominator should never be zero or negative 
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after  returns. If a condition arises when the denominator is indeed zero or negative, 
the internal state of the program is corrupt. If the program were to attempt a graceful shut-
down, saving all files, etc., it might end up writing bad data to the files. Better to terminate 
immediately, and rely on the most recent backup copy, which your program made while its 
state was still known to be good. Use assertions, not exceptions, for such emergencies.

Ideally, your code should validate user input, check vector indices, and make sure all 
arguments to all functions are valid before calling the functions. If anything is invalid, your 
program can tell the user with a clear, direct message, and avoid exceptions entirely. Excep-
tions are a safety net when your checks fail or you forget to check for certain conditions.

As a general rule, libraries should throw exceptions, not catch them. Applications tend to 
catch exceptions more than throw them. As programs grow more complex, I will highlight situ-
ations that call for exceptions, throwing or catching.

Now that you know how to write classes, overload operators, and handle errors, you need 
only learn about some additional operators before you can start implementing fully functional 
classes of your own. The next Exploration revisits some familiar operators and introduces 
a few new ones.
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More Operators

C++ has lots of operators. Lots and lots. So far, I’ve introduced the basic operators that you 
need for most programs: arithmetic, comparison, assignment, subscript, and function call. 
Now it’s time to introduce some more: additional assignment operators, the conditional 
operator (which is like having an  statement in the middle of an expression), and the comma 
operator (most often used in  loops).

Conditional Operator
The conditional operator is a unique entry in the C++ operator bestiary, being a ternary opera-
tor, that is, an operator that takes three operands.

The condition is a Boolean expression. If it evaluates to true, the result of the entire 
expression is the true-part. If the condition is false, the result is the false-part. As with an 
statement, only one part is evaluated; the branch not taken is skipped. For example, the fol-
lowing statement is perfectly safe:

If  is zero, the  expression is not evaluated, and division by zero never occurs. The 
conditional operator has very low precedence, so you often see it written inside parentheses. 
Assignment has lower precedence, so you can safely use conditional operators as the source of 
an assignment statement.

The true-part and false-part are expressions that have the same or compatible types, 
that is, the compiler can automatically convert one type to the other, ensuring that the entire 
conditional expression has a well-defined type. For example, you can mix an integer and 
a floating-point number; the expression result is a floating-point number. The following state-
ment prints  if  is positive:

Do not use the conditional operator as a replacement for  statements. If you have 
a choice, use an  statement because a statement is almost always easier to read and under-
stand than a conditional expression. Use conditional expressions in situations when 

373
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statements are infeasible. Initializing a data member in a constructor, for example, does not 
permit the use of an  statement. Although you can use a member function for complicated 
conditions, you can also use a conditional expression for simple conditions.

The  class (last seen in Exploration 43) for example, takes a numerator and 
a denominator as constructor arguments. The class ensures that its denominator is always 
positive; if the denominator is negative, it negates the numerator and denominator. In past 
Explorations, I loaded the  member function with additional responsibilities, such as 
checking for a zero denominator and checking for a negative denominator to reverse the signs 
of the numerator and denominator. This design has the advantage of centralizing all code 
needed to convert a rational number to canonical form. An alternate design is to separate the 
responsibility, and let the constructor check the denominator prior to calling . If the
denominator is zero, the constructor throws an exception; if the denominator is negative, 
the constructor negates the numerator and the denominator. This alternative design makes 

 simpler, and simple functions are less error prone than complicated functions. 
  Listing 44-1 shows how you can do this using conditional operators.

Listing 44-1. Using Conditional Expressions in a Constructor’s Initializer

A  expression has type , but the compiler knows it doesn’t return, so you can use 
it as one (or both) of the parts of a conditional expression. The type of the overall expression is 
that of the nonthrowing part (or  if both parts throw an exception).

In other words, if  is zero, the true-part of the expression throws an exception. If the 
condition is false, the false-part executes, which is another conditional expression that evalu-
ates the absolute value of . The initializer for the numerator also tests , and if negative, it 
negates the numerator, too.

Like me, you might find the use of conditional expressions makes the code harder to read. 
The conditional operator is widely used in C++ programs, so you must get used to reading it. If 
you decide that the conditional expressions are just too complicated, write a separate, private 
member function to do the work, and initialize the member by calling the function, as shown 
in Listing 44-2.
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Listing 44-2. Using a Function and Conditional Statements Instead of Conditional Expressions

When writing new code, use the technique that you like best, but get used to reading both 
programming styles.

Short-Circuit Operators
C++ lets you overload the  and  operators, but you must resist the temptation. By over-
loading these operators, you defeat one of their key benefits: short-circuiting.

Recall from Exploration 11 that the  and  operators do not evaluate their right-hand 
operands if they don’t need to. That’s true of the built-in operators, but not if you overload 
them. When you overload the Boolean operators, they become normal functions, and C++ 
always evaluates function arguments before calling a function. Therefore, overloaded  and 

 operators behave differently from the built-in operators, and this difference makes them 
significantly less useful.

Tip Do not overload the  and  operators.
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Comma Operator
The comma ( ) serves many roles: it separates arguments in a function call, parameters in 
a function declaration, declarators in a declaration, and initializers in a constructor’s initializer 
list. In all these cases, the comma is a punctuator, that is, a symbol that is part of the syntax 
that serves only to show where one thing (argument, declarator, etc.) ends and another thing 
begins. It is also an operator in its own right (briefly introduced in Exploration 12), which is 
a completely different use for the same symbol. The comma as operator separates two expres-
sions; it causes the left-hand operand to be evaluated, then the result is discarded, and then 
the right-hand operand is evaluated, which becomes the result of the entire expression.

At first, this operator seems a little pointless. After all, what’s the purpose of writing, say,

instead of

The comma operator is not meant to be a substitute for writing separate statements. 
There is one situation, however, when multiple statements are not possible, but multiple 
expressions need to be evaluated. I speak of none other than the  loop.

Suppose you want to implement the  algorithm. Implementing a fully generic 
algorithm requires techniques that you haven’t learned yet, but you can write this function so 
that it works with the iterators of a . The basic idea is simple,  looks through 
a search range, trying to find a sequence of elements that equal elements in a match range. It 
steps through the search range one element at a time, testing whether a match starts at that 
element. If so, it returns an iterator that refers to the start of the match. If no match is found, 

 returns the end iterator. To check for a match, use a nested loop to compare successive 
elements in the two ranges. Listing 44-3 shows one way to implement this function.

Listing 44-3. Searching for a Matching Subrange in a Vector of Integers
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The boldface lines demonstrate the comma operator. The initialization portion of the first 
 loop does not invoke the comma operator. The comma in the declaration is just a separa-

tor between declarators. The comma operator appears in the post-iteration part of the loops. 
Because the post-iteration part of a  loop is an expression, you cannot use multiple state-
ments to increment multiple objects. Instead, you need to do it in a single expression. Hence, 
the need for the comma operator.

On the other hand, some programmers prefer to avoid the comma operator because the 
resulting code can be hard to read. Rewrite Listing 44-3 so that it does not use the comma 
operator. Which version of the function do you prefer? ________________ Listing 44-4 shows 
my version of  without the comma operator.

Listing 44-4. The  Function Without Using the Comma Operator
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The comma operator has very low precedence, even lower than assignment. If a loop
needs to advance objects by steps of 2, for example, you can use assignment expressions with 
the comma operator.

By the way, C++ lets you overload the comma operator, but you shouldn’t take advantage 
of this feature. The comma is so basic, C++ programmers quickly grasp its standard use. If the 
comma does not have its usual meaning, readers of your code will be confused, bewildered, 
and stymied when they try to understand it.

Arithmetic Assignment Operators
In addition to the usual arithmetic operators, C++ has assignment operators that combine 
arithmetic with assignment: , , , , and . The assignment operator  is shorthand 
for , and the same applies to the other special assignment operators. Thus, the follow-
ing three expressions are all equivalent:

The advantage of the special assignment operator is that  is evaluated only once, which 
can be a boon if  is a complicated expression. If  has type , which of the 
two equivalent expressions do you find easier to read and understand:

Listing 44-5 shows a sample implementation of  for the  class.

Listing 44-5. Implementing the Multiplication Operator
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The return type of  is a reference, . The return value is . Although 
the compiler lets you use any return type and value, the convention is for assignment opera-
tors to return a reference to the object, that is, an lvalue. Even if your code never uses the 
return value, many programmers use the result of an assignment, so don’t use  as a 
return type:

Often, implementing an arithmetic operator, such as , is easiest to do by implementing 
the corresponding assignment operator first. Then implement the free operator in terms of the 
assignment operator, as shown in Listing 44-6 for the  class.

Listing 44-6. Reimplementing Multiplication in Terms of an Assignment Operator

Implement the , , and  operators for class . You can implement these 
operators in many different ways. I recommend putting the arithmetic logic in the assignment 
operators and reimplementing the , , and  operators to use the assignment operators, as 
I did with the multiplication operators. My solution appears in Listing 44-7.

Listing 44-7. Other Arithmetic Assignment Operators
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Because  no longer checks for a negative denominator, any function that might 
change the denominator to negative must check. Because the denominator is always positive, 
you know that  and  cannot cause the denominator to become negative. 
Only  introduces that possibility, so only that function needs to check.

Increment and Decrement
Let’s add increment ( ) and decrement ( ) operators to the  class. Because these 
operators modify the object, I suggest implementing them as member functions, although C++ 
lets you use free functions, too. Implement the prefix increment operator for class .
Compare your function with mine in Listing 44-8.

Listing 44-8. The Prefix Increment Operator for 

I am confident that you can implement the decrement operator with no additional help. 
Like the arithmetic assignment operators, the prefix  returns the object as a refer-
ence. Thus, you can use the  operator on the left-hand side of an assignment statement.

That leaves the postfix operators. Implementing the body of the operator is easy, and 
requires only one additional line of code. However, you need to take care with the return type. 
The postfix operators cannot simply return  because they return the original value of the 
object, not its new value. Thus, these operators cannot return a reference. Instead, they must 
return a plain  rvalue.

But how do you declare the function? A class can’t have two separate functions with the 
same name ( ) and arguments. Somehow, you need a way to tell the compiler that 
one implementation of  is prefix and another is postfix.

The solution is that when the compiler calls a custom postfix increment or decrement 
operator, it passes the integer  as an extra argument. The postfix operators don’t need the 
value of this extra parameter; it’s just a placeholder to distinguish prefix from postfix.

Thus, when you declare  with an extra parameter of type , you are declaring 
the postfix operator. When you declare the operator, omit the name for the extra parameter. 
That tells the compiler that the function doesn’t use the parameter, so the compiler won’t 
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bother you with messages about unused function parameters. Implement the postfix incre-
ment and decrement operators for . Listing 44-9 shows my solution.

Listing 44-9. Postfix Increment and Decrement Operators

Once all the dust settles from our rehabilitation project, behold the new, improved 
 class definition in Listing 44-10.

Listing 44-10. The  Class Definition
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The next Exploration is your second project. Now that you know about classes, inheri-
tance, operator overloading, and exceptions, you are ready to tackle some serious C++ coding.
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Project 2: Fixed-Point Numbers

Your task for Project 2 is to implement a simple fixed-point number class. The class repre-
sents fixed-point numbers using an integer type. The number of places after the decimal point 
is a fixed constant, four. For example, represent the number 3.1415 as the integer 31415 and 
3.14 as 31400. You must overload the arithmetic, comparison, and I/O operators to maintain 
the fixed-point fiction.

Name the class . It should have the following members:

value_type
A typedef for the underlying integer type, such as  or . By using the  typedef 
throughout the  class, you can easily switch between  and  by changing only the 
declaration of .

places
A  equal to 4, or the number of places after the decimal point. By using a 
named constant instead of hard coding the value 4, you can easily change the value to 2 or 
something else in the future. Using a named constant instead of a member function that 
returns 4 gives the compiler more flexibility for optimization because it knows the value at 
compile time. If the value were returned from a member function, the compiler would not 
know the value at compile time.

places10
A  equal to 10 , or the scale factor for the fixed point values. Divide the 
internal integer by  to obtain the true value. Multiply a number by  to scale it 
to an integer that the  object stores internally.

fixed()
Default constructor.

fixed(value_type integer, value_type fraction)
A constructor to make a fixed-point value from an integer part and a fractional part. For exam-
ple, to construct the fixed-point value 10.0020, use .

385
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Throw  if . If , discard digits to the 
right, rounding off the result, so  and 

.

fixed(double val)
A constructor to make a fixed-point value from a floating-point number. Round-off the frac-
tion and discard excess digits. Thus, 

.
Implement the arithmetic operators, arithmetic assignment operators, comparison opera-

tors, and I/O operators. Don’t concern yourself with overflow. Do your best to check for errors 
when reading fixed-point numbers. Be sure to handle integers without decimal points ( ) and 
values with too many decimal points ( ).

Implement a member function to convert the fixed-point value to .

as_string()
Convert the value to a string representation; e.g., 3.1416 becomes  and −21 becomes 

.
To convert to an integer means discarding information. To make it abundantly clear to the 

user, call the function , to emphasize that the fixed-point value must be rounded off to 
become an integer.

round()
Round off to the nearest integer. If the fractional part is exactly 5000, round to the nearest even 
integer (banker’s rounding). Be sure to handle negative and positive numbers.

Other useful member functions give you access to the raw value (good for debugging, 
implementing additional operations, etc.), or the parts of the fixed-point value: the integer 
part and the fractional part. 

integer()
Return just the integer part, without the fractional part.

fraction()
Return just the fraction part, without the integer part. The fraction part is always in the range 
[ , ).

Be sure to write a header file (fixed.hpp) with  guards. Write a separate imple-
mentation file (fixed.cpp). Decide which member functions should be inline (if any), and be 
sure to define all inline functions in fixed.hpp, not fixed.cpp. After you finish, review your solu-
tion carefully and run some tests, comparing your results to mine, which you can download 
from the book’s web site.

If you need help testing your code, try linking your fixed.cpp file with the test program in 
Listing 45-1. The test program makes use of the  function, declared in test.hpp. The details 
are beyond the scope of this book. Just call  with a Boolean argument. If the argument is 
true, the test passed. Otherwise, the test failed, and  prints a message. Thus, if the program 
produces no output, all tests passed.
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Listing 45-1. Testing the  Class
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If you need a hint, I implemented  so it stores a single integer, with an implicit deci-
mal place  positions from the right. Thus, I store the value 1 as 10000. Addition and 
subtraction are easy. When multiplying or dividing, you need to scale the result. (Even better is 
to scale the operands prior to multiplication, which avoids some overflow situations, but you 
need to be careful about not losing precision.)
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Generic Programming
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Function Templates

You saw in Exploration 22 that the magic of overloading lets C++ implement an improved 
interface to the absolute value function. Instead, of three different names ( , , and ),
C++ has a single name for all three functions. Overloading helps the programmer who needs 
to call the  function, but it doesn’t help the implementor much, who still has to write three 
separate functions that all look and act the same. Wouldn’t it be nice if the library author could 
write the  function once instead of three times? After all, the three implementations are 
identical, differing only in the return type and parameter type. This Exploration introduces 
this style of programming, called generic programming.

Generic Functions
Sometimes, you want to provide overloaded functions for integer and floating-point types, 
but the implementation is essentially the same. Absolute value is the obvious example; for any 
type , the function looks the same (I’m using the name  to avoid any confusion or con-
flict with the standard library’s ), as shown in Listing 46-1.

Listing 46-1. Writing an Absolute Value Function

Substitute  for ,  for , or use any other numeric type. You can even substitute 
 for , and the  function still works the way you expect it to. So why waste your 

precious time writing, rewriting, and re-rewriting the same function? With a simple addition 
to the function definition, you can turn the function into a generic function, that is, a function
that work with any suitable type , which you can see in Listing 46-2.
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Listing 46-2. Writing a Function Template

The first line is the key. The  keyword means that what follows is a template, in 
this case, a function template definition. The angle brackets delimit a comma-separated list of 
template parameters. A function template is a pattern for creating functions, according to the 
parameter type, . Within the function template definition,  represents a type, potentially any 
type. The caller of the  function determines the template argument that will substitute 
for .

When you define a function template, the compiler remembers the template, but does 
not generate any code. The compiler waits until you use the function template, and then it 
generates a real function. You can imagine the compiler taking the source text of the template, 
substituting the template argument, such as , for the template parameter, , and then com-
piling the resulting text. The next section tells you more about how to use a function template.

Using Function Templates
Using a function template is easy, at least in most situations. Just call the  function, 
and the compiler will automatically determine the template arguments based on the function 
argument type. It might take you a little while to get comfortable with the notion of template 
parameters and template arguments, which are quite different from function parameters and 
function arguments.

In the case of , the template parameter is , and the template argument must be 
a type. You can’t pass a type as a function argument, but templates are different. You aren’t 
really “passing” anything in the program. Template magic occurs at compile time. The com-
piler sees the template definition of , and later it sees an invocation of the 
function template. The compiler examines the type of the function argument, and from the 
function argument’s type, determines the template argument. The compiler substitutes that 
template argument for , and generates a new instance of the  function, customized for 
the template argument type. Thus, if you write

the compiler sees that  has type , so it substitutes  for . The compiler generates a func-
tion just as though the library implementor has written
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Later, in the same program, perhaps you call  on a  object.

The compiler generates a new instance of .

In this new instance of , the  operator is the overloaded operator that takes 
 arguments. The negation operator is also a custom operator that takes a

argument. In other words, when the compiler generates an instance of , it does so by 
compiling the source code pretty much just as the template author wrote it.

Write a sample program that contains the  function template definition and some 
test code to call  with a variety of argument types. Convince yourself that function tem-
plates actually work. Compare your test program with mine in Listing 46-3.

Listing 46-3. Testing the  Function Template
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Writing Function Templates
Writing function templates is harder than writing ordinary functions. When you write a tem-
plate such as , the problem is that you don’t know what type or types  will actually 
be. So the function must be generic. C++ has no simple way for you to impose any overt 
restrictions on , such as requiring that it be a built-in type or a numeric type. Instead, the 
restrictions are implicit by the way the template body uses .

C++ REVISION WILL HELP TEMPLATE AUTHORS

The next major revision of the C++ language will let you write explicit restrictions, such as requiring that 
have a copy constructor or that the  operator be usable with values of type . The compiler will be able to 
issue clear, direct, and helpful error messages. The new feature is called a concept. The standard library will 
include a set of standard concepts, such as  and , and you will be able to 
define your own. A template author will use those concepts in a template parameter declaration to constrain 
the set of template arguments that you can use to instantiate the template. The standard library will use con-
cepts for all the standard containers and algorithms. Look for concepts soon in a compiler near you!

In particular,  imposes the following restrictions on :

 must be copyable. That means you must be able to copy an object of type , so argu-
ments can be passed to the function and a result can be returned. If  is a class type, the 
class must have an accessible copy constructor, that is, the copy constructor must not 
be private.

 must be comparable with  using the  operator. You might overload the  operator, 
or the compiler can convert  to , or  to an .

 must be defined for an operand of type . The result type must be  or 
something the compiler can convert automatically to .

The built-in numeric types all meet these requirements. The  type also meets 
these requirements because of the custom operators it supports. The  type, just to name 
one example, does not because it lacks a comparison operator when the right-hand operand 
is an integer, and it lacks a unary negation ( ) operator. Suppose you tried to call  on 
a .
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What do you think would happen?

_________________________________________________________________________________

_________________________________________________________________________________

Try it. What really happens?

_________________________________________________________________________________

_________________________________________________________________________________

The compiler complains about the lack of the comparison and negation operators for 
. One difficulty in delivering helpful error messages when working with templates 

is whether to give you the line number where the template is used or the line number in the 
template definition. Sometimes, you will get both. Sometimes, the compiler cannot report an 
error in the template definition unless you try to use the template. Other errors it can report 
immediately. Read Listing 46-4 carefully.

Listing 46-4. Mystery Function Template

What is the error?

_________________________________________________________________________________

Does your compiler report it?

_________________________________________________________________________________

Some compilers report the missing semicolon and some do not. You might have a pro-
gram that is working just fine, and one day, you add a line of code, and the compiler reports an 
error. You check that line of code over and over again, but you don’t see the problem. The real 
problem lies somewhere else entirely, in a template definition. The compiler probably gives 
you the right file and line number in a different error message, so you can find the true error.

How can you force your compiler to report the error?

_________________________________________________________________________________

Add a line of code to use the template. For example, add the following to :

Every compiler will now report the missing semicolon in the template definition.
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Template Parameters
Whenever you see  in a C++ program, most likely, you are looking at a template. Look back-
ward in the source file until you find the template header, that is, the part of the declaration 
that starts with the  keyword. That’s where you should find the template parameters. 
The use of  as a template parameter name is merely a convention, but its use is nearly uni-
versal. The use of  to declare  may seem a little strange, especially because you’ve seen 
several examples when the template argument is not, in fact, a class.

Instead of  to declare a template parameter type, some programmers use an alter-
nate keyword, , which means the same thing in this one context. The advantage of 

 over  is that it avoids any confusion over nonclass types. The disadvantage is 
that  has more than one use in a template context, which can confuse human readers 
in more complicated template definitions. Learn to read both styles, and pick the one you like 
best.

Sometimes, you will see parameter names that are more specific than . If the template 
has more than one parameter, every parameter must have a unique name, so you will defi-
nitely see names other than . For example, the  algorithm is a function template with two 
parameters: the input iterator type and the output iterator type. The definition of , there-
fore, might look something like Listing 46-5.

Listing 46-5. One Way to Implement the  Algorithm

Pretty simple, isn’t it? (The real  function is probably more complicated, with optimi-
zations for certain types. Somewhere in the optimized implementation, however, is probably 
a function that looks just like Listing 46-5, albeit with different parameter names.)

When you use the  algorithm, the compiler determines the value of   
and  according to the function argument types. As you saw with , the 
function’s requirements on the template arguments are all implicit:  must 
allow the following operators: , prefix , and unary .  must allow prefix 
and unary  operators. Now, perhaps, you can start to see why the requirements on iterators 
(Exploration 42) are written the way they are. Instead of mandating, say, that all iterators must 
derive from some base  class, the requirements are defined solely in terms of allowed 
operators.

Write a simple implementation of the  algorithm. This algorithm takes three argu-
ments: the first two are input iterators that specify a range to search. The third argument is 
a value. Successive items in the range are compared with the value (using ), and when an 
item matches, the function returns an iterator that refers to the matching position. If the item 
is not found, the end iterator is returned. Compare your solution with Listing 46-6.
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Listing 46-6. Implementing the  Algorithm

Many of the standard algorithms are quite simple at their heart. Modern implementa-
tions are heavily optimized, and as is the nature of hand-optimized code, the results often bear 
little resemblance to the original code, and the optimized code can be much harder to read. 
Nonetheless, the simplicity remains in the architecture of the standard library, which relies 
extensively on templates.

Template Arguments
Templates are easiest to use when the compiler automatically deduces the template argu-
ments from the function arguments. It can’t always do so, however, so you might need to 
tell the compiler explicitly what you want. The simple form of the  and  standard algo-
rithms, for example, take a single template parameter. Listing 46-7 shows the  function, for 
reference.

Listing 46-7. The  Algorithm

If both argument types are the same, the compiler can deduce the desired type, and every-
thing just works.

On the other hand, if the function argument types are different, the compiler can’t tell 
which type to use for the template argument.

Why is that? Suppose you wrote your own function as a nontemplate.
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The compiler could handle  by converting  from an  to a . As a tem-
plate, however, the compiler does not perform any automatic type conversion. The compiler 
cannot read your mind and know that you want the template parameter to have the type of 
the first function argument or the second, or sometimes the first and sometimes the second. 
Instead, the compiler requires you to write exactly what you mean. In this case, you can tell the 
compiler what type to use for the template parameter by enclosing the desired type in angle 
brackets.

If a template takes multiple arguments, separate the arguments with a comma. For exam-
ple, Listing 46-8 shows the  function, which reads items from the standard input, 
and accumulates them by means of the  operator. The accumulator can have a different
type than the item type. Because the item and accumulator types are not used in the function 
arguments, the compiler cannot deduce the parameter arguments, so you must supply them 
explicitly.

Listing 46-8. Multiple Template Arguments
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Rewrite the function (from Listing 33-4) to be a function template, so you can use 
the same function template for , , or  arguments. Compare your solution with 
mine in Listing 46-9. Remember to use the template parameter to declare the temporary 
variable.

Listing 46-9. The  Function Template

Declarations and Definitions
I can’t seem to stop talking about declarations and definitions. Templates introduce yet 
another twist to this plot. When you work with templates, the rules change. The compiler 
needs to see more than just a declaration before you can use a function template. The 
compiler usually needs the full function template definition. In other words, if you define 
a template in a header file, that header file must include the body of that function template. 
Suppose you want to share the  function among many projects. Ordinarily, you would put 
the function declaration in a header file, say, gcd.hpp, and put the full definition in a separate
source file, say, gcd.cpp.

When you convert  to a function template, however, you usually put the definition in 
the header file, as you saw in Listing 46-9. In order for the compiler to create concrete func-
tions from the template, say, for  or , it needs the body of the function 
template. A few compilers let you keep the template definitions in a separate file, using the 

 keyword. Most compilers do not support , however, so I don’t cover it in this 
book. There are also techniques that let you set up template instances in separate files, but 
they are tricky to get right, so I don’t cover these techniques, either. For the purposes of this 
book, be sure your header files contain the bodies of all function templates.
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Member Function Templates
The  class has three nearly identical functions: , , and  

. They all do the same thing: divide the numerator by the denominator after convert-
ing to the destination type. Whenever you have multiple functions doing the same thing, in the 
same way, using the same code, you have a candidate for a template.

As with any function template, the only requirement on  is that objects of type  have 
member functions named  and , and that these functions have 
return types suitable for use with  (which could be overloaded). To use the 
function, you must supply the target type, , as an explicit template argument, but you can let 
the compiler deduce  from the function argument:

You can omit template arguments that the compiler can deduce, starting from the 
rightmost argument. As you saw earlier in this chapter, if the compiler can deduce all the 
arguments, you can leave out the angle brackets entirely.

A function template can be a member function, too. Instead of passing the 
object as an argument, you might prefer to use a member function template.

A member function template avoids collisions with other free functions that might be 
named . For normal (nontemplate) functions, ordinary overloading rules often help 
to keep collisions to a minimum. It is unlikely that another function named  would 
take a  object as an argument. But templates are more problematic. Nothing about 
the template restricts the argument to , so the template  collides with every 
other function named  that takes one argument, even if that argument has nothing 
to do with . (Concepts, to be introduced in the new C++ revision, will let you restrict 
a function template’s arguments to the  template, neatly solving this problem. The 
standardization committee is still polishing the details as I write this book, but the standard 
may be complete when you read it.)

The details are more complicated than I’ve described, but the short version will do for 
now as a justification for writing a member function template instead of a free function tem-
plate. Listing 46-10 shows how you might write the  member function template.
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Listing 46-10. Implementing a Member Function Template

Generic programming is a powerful technique, and as you learn more about it in the next 
several Explorations, you will see how expressive and useful this programming paradigm is.
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Class Templates

A class can be a template, which makes all of its members templates. Every program in this 
book has used class templates because much of the standard library relies on templates: the 
standard I/O streams, strings, vectors, and maps are all class templates. This Exploration takes 
a look at simple class templates.

Parameterizing a Type
Consider a simple  class, which stores an  and  coordinate. A graphics device driver 
might use  for the member types.

On the other hand, a calculus tool probably prefers to use .

Imagine adding much more functionality to the  classes: computing distances 
between two  objects, rotating one  around another by some angle, etc. The more 
functionality you dream up, the more you must duplicate in both classes.

Wouldn’t your job be simpler if you could write the  class once, and use that  
single definition for both situations and other not-yet-dreamed-of templates to the rescue.  
Listing 47-1 shows the  class template.

405
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Listing 47-1. The  Class Template

Just as with function templates, the  keyword introduces a class template. The 
class template is a pattern for making classes, which you do by supplying template arguments; 
e.g., .

The member functions of a class template are themselves function templates, using the 
same template parameters, except that you supply the template arguments to the class, not 
the function, as you can see in the  function. Write the  member 
function. Compare your solution with Listing 47-2.

Listing 47-2. The  Member Function

Every time you use a different template argument, the compiler generates a new class 
instance, with new member functions. That is,  is one function and 

 is another, which is exactly what would happen if you had written the 
functions by hand. If two different source files both use , the compiler and linker 
ensure that they share the same template instance. Different tools have different ways of shar-
ing the template instances; however, the details are beyond the scope of this book.
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Parameterizing the rational Class
A simple  class is easy. What about something more complicated, such as the 
class? Suppose someone likes your  class, but wants more precision. You decide to 
change the type of the numerator and denominator from  to . Someone else then com-
plains that  takes up too much memory, and asks for a version that uses  as the 
base type. You could make three copies of the source code, one each for types , , and 

. Or you could define a class template, as illustrated by the simplified  class tem-
plate in Listing 47-3.

Listing 47-3. The  Class Template
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The typedef of  (line 7) is a useful convention. Many class templates that use 
a template parameter as some kind of subordinate type expose the parameter under a well-
defined name. For example,  is a typedef for its template parameter, 
namely, .

Look at the definition of the constructor on line 29. When you define a member outside of 
its class template, you need to repeat the template header. The full name of the type includes 
the template parameter,  in this case. Inside the class scope, use just the class 
name, without the template parameter. Also, once the compiler sees the fully qualified class 
name, it knows it is inside the class scope, and you can also use the template parameter by 
itself, which you can see in the parameter declarations 

Because the name  is already in use, the  member function (line 14) needs a new 
name for its template parameter.  is a common convention, provided you don’t take it too 
far. More than two or three single-letter parameters, and you start to need more meaningful 
names, just to help keep straight which parameter goes with which template.

In addition to the class template itself, you need to convert all the free functions that sup-
port the rational type to be function templates. Listing 47-3 keeps things simple by showing 
only  and . Other operators work similarly.

Using Class Templates
Unlike function templates, the compiler cannot deduce the template argument of a class tem-
plate. That means you must supply the argument explicitly, inside angle brackets.
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Notice anything familiar? Does  look like ? All the collection 
types, such as  and , are class templates. The standard library makes heavy use of 
templates throughout, and you will discover other templates when the time is right.

If a class template takes multiple arguments, separate the arguments with a comma, as 
in . A template argument can even be another template. For example, suppose 
you want to store vectors in a vector, as shown in Listing 47-4.

Listing 47-4. Trying to Use a Vector of Vectors

What happens when you try to compile Listing 47-4?

_________________________________________________________________________________

_________________________________________________________________________________

Most of you will get an error message. Can you explain this message?

_________________________________________________________________________________

If you need a hint, go back to Exploration 9, where I first explained it.
The root problem is that the C++ compiler always builds the longest possible token it can 

from adjacent characters. Only after it has tokenized the input does it try to make sense of that 
input. In this case, the compiler sees  as the input operator, not as two separate closing angle 
brackets. The solution is to leave a space between the angle brackets, to ensure the compiler 
sees two separate tokens.

MINOR TWEAK TO THE LANGUAGE

The next revision to the C++ language changes the interpretation of  in a template argument list. The 
compiler sees  as two separate  symbols. It’s a minor change, but one that many C++ programmers 
welcome.

Some compilers offer this capability now as an extension to the standard. I recommend sticking to the 
standard. It is always correct to keep the space, regardless of which version of the compiler you are using. If 
you are using the new revision, and have no need for compatibility with the first revision, go ahead and elide 
the space. Everyone else should keep it.
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Starting with rational.hpp from Listing 47-3, add the I/O operators. Write a simple test 
program that reads  objects and echoes the values, one per line, to the standard 
output. Try changing the template argument to different types ( , , ). Your test 
program might look something like Listing 47-5.

Listing 47-5. Simple I/O Test of the  Class Template

Now modify the test program to print only nonzero values. The program should look 
something like Listing 47-6.

Listing 47-6. Testing  Comparison Operator

The program should work, right? Remember that with the old  class, the com-
piler knew how to construct a  object from an integer. Thus, it could convert the  to 

 and then call the overloaded  operator to compare two rational objects.

Overloaded Operators
Remember from the previous Exploration that the compiler does not perform automatic type 
conversion for a function template. To solve this problem, you need to add some additional 
comparison operators:
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and so on, for all of the comparison and arithmetic operators. On the other hand, you need 
to consider whether that’s what you really want. To better understand the limitations of 
this approach, go ahead and try it. You don’t need all the comparison operators yet, just 

, so you can compile the test program. Compile the test program with a template 
parameter of . What happens?

_________________________________________________________________________________

_________________________________________________________________________________

Once again, the compiler complains that it can’t find any suitable function for the 
operator. The problem is that an overloaded  operator exists for the template parameter, 
namely, type , but the type of the literal  is , not . You can try to solve this prob-
lem by defining operators for all the built-in types, but that quickly gets out of hand. So your 
choices are

 arguments. Force the caller to convert 
arguments to the desired  type.

 arguments, and two others that 
mix one  and one base type ( ).

, , ,
, , plus some types that I haven’t covered yet). Thus, each operator needs 11 

functions.

You might be interested in knowing how the C++ standard library addresses this issue. 
Among the types in the standard library is a class template, , which represents a 
complex number. The standardization committee opted for the second choice, that is, three 
overloaded function templates.

This solution works well enough, and later in the book, you’ll learn techniques to reduce 
the amount of work involved in defining all these functions.

Another dimension to this problem is the literal . Using a literal of type  is fine when 
you know the base type of  is also . How do you express a generic zero for use in a 
template? The same issue arises when testing for a zero denominator. That was easy when you 
knew that the type of the denominator was . When working with templates, you don’t know 
the type. Recall from Listing 44-6 that the division assignment operator checked for a zero 
divisor and threw an exception in that case. If you don’t know the type , how do you know 
how to express the value zero? You can try using the literal  and hope that  has a suitable 
constructor (single argument of type ). A better solution is to invoke the default constructor 
for type , as shown in Listing 47-7.
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Listing 47-7. Invoking a Default Constructor of a Template Parameter

If the type  is a class type,  yields an object that is initialized using ’s default con-
structor. If  is a built-in type, the value of  is zero (i.e., , , or ). Initializing the local 
variables in the input operator is a little trickier.

Most likely, when you converted the old  code to the new template code, you 
didn’t change the way the local variables were initialized. In my version, I initialized the local 
numerator and denominator to zero as follows:

Recall from Exploration 32 that simply changing the definition to use empty parentheses 
doesn’t work.

Instead of invoking default  constructors, you are declaring two functions, named  and 
, which take no arguments and return type . Another approach might be to change the  to 

, which worked in Listing 47-7.

Too bad that still doesn’t work. What you’ve declared are two functions again, this time 
taking a single argument of type .

One solution is to wrap the argument in parentheses.

But I find that difficult to read. You can clean it up a little with some extra spaces, and 
debates have run hot about exactly where and when to insert extra spaces. My preferred solu-
tion is to use an alternative syntax for initializing objects in a definition.
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If you have a single initializer value, instead of enclosing the value in parentheses, you can 
use an equal sign followed by the initial value. You saw a similar syntax with  data 
members.

The equal sign in the definition is not an assignment operator. It is merely another syn-
tax for initializing an object. In addition to the syntactic difference between the equal sign 
and parentheses, there is a subtle semantic difference. Using the equal sign, the compiler 
might invoke two constructors to initialize each value: first, it calls , then it can call a copy 
constructor to construct  from the temporary value . Most compilers eliminate the copy 
constructor as an optimization, but the standard grants some flexibility to the compilers. 
Using parentheses initializes the object directly and does not need an extra call to the copy 
constructor. Thus, initializing with the equal sign is called copy initialization, and using paren-
theses is called direct initialization. My recommendation is to use direct initialization as much 
as possible, but don’t hesitate to use copy initialization when it enhances readability.

Mixing Types
As you know, you can assign an  value to a  object or vice versa. It seems reasonable, 
therefore, that you should be able to assign a  value to a  object. 
Try it. Write a simple program to perform an assignment that mixes base types. Your pro-
gram might look a little bit like Listing 47-8, but many other programs are equally reasonable.

Listing 47-8. Trying to Mix  Base Types

What happens when you compile your program?

_________________________________________________________________________________

_________________________________________________________________________________

The only assignment operator for the new  class template is the compiler’s 
implicit operator. Its parameter type is , so the base type of the source 
expression must be the same as the base type of the assignment target. You can fix this easily 
with a member function template. Add the following declaration to the class template:

Inside the  class template, the unadorned name, , means the same thing 
as . The complete name of the class includes the template argument, so the proper 
name of the constructor is . Because  means the same as , I 
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was able to shorten the constructor name, and many other uses of the type name throughout 
the class template definition. But the assignment operator’s parameter is . It uses 
a completely different template argument. Using this assignment operator, you can freely mix 
different  types in an assignment statement.

Write the definition of the assignment operator. Don’t worry about overflow that might 
result from assigning large values to small. It’s a difficult problem, and distracts from the main 
task at hand, which is practicing writing class templates and function templates. Compare 
your solution with Listing 47-9.

Listing 47-9. Defining the Assignment Operator Function Template

The first template header tells the compiler about the  class template. The next 
template header tells the compiler about the assignment operator function template. Note 
that the compiler will be able to deduce the template argument for  from the type of the 
assignment source ( ). After adding this operator to the  class template, you should 
now be able to make your test program work.

Add a member template constructor that works similarly to the assignment opera-
tor. In other words, add to  a constructor that looks like a copy constructor, but isn’t 
really. A copy constructor copies only objects of the same type, or . This new con-
structor copies rational objects with a different base type, . Compare your solution 
with Listing 47-10.

Listing 47-10. Defining a Member Constructor Template

Finish the rational.hpp header by completing all the operators. The new file is too big to 
include here, but as always, you can download the completed file from the book’s web site.

Programming with templates and type parameters opens a new world of programming 
power and flexibility. A template lets you write a function or class once, and lets the compiler 
generate actual functions and classes for different template arguments. Sometimes, however, 
one size does not fit all, and you need to grant exceptions to the rule. The next Exploration 
takes a look at how you do that by writing template specializations.
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Template Specialization

The ability to write a template and then use that template multiple times, with different 
template arguments each time, is one of the great features of C++. Even better is the ability to 
carve out exceptions to the rule. That is, you can tell the compiler to use a template for most 
template arguments, except that for certain argument types, it should use a different template 
definition. This Exploration introduces this feature.

Instantiation and Specialization
Template terminology is tricky. When you use a template, it is known as instantiating the tem-
plate. A template instance is a concrete function or class that the compiler creates by applying 
the template arguments to the template definition. Another name for a template instance is a 
specialization. Thus,  is a specialization of the template .

Therefore, specialization is the realization of a template for a specific set of template 
arguments. C++ lets you define a custom specialization for one particular set of template argu-
ments; that is, you can create an exception to the rule set down by the template. When you 
define the specialization instead of letting the compiler instantiate the template for you, it is 
known as explicit specialization. Thus, a specialization that the compiler creates automatically 
would be an implicit specialization. (Explicit specialization is also called full specialization,
for reasons that will become clear in the next Exploration.) For example, suppose you define 
a simple class template, , to represent an (x, y) coordinate and made it into a template to 
accept any numeric type as the type for x and y. Because some types are large, you decide to 
pass values by  reference whenever possible, as shown in Listing 48-1.

Listing 48-1. The  Class Template

415
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The  template works with , , , and any type that behaves the same 
way as the built-in numeric types. If you had, say, an arbitrary-precision numeric type, you 
could use that, too, and because such objects are potentially very large, passing by reference is 
a good choice for default behavior.

On the other hand,  is a fairly common usage, especially in graphical user inter-
faces. In a mathematical context,  might be more common. In either case, you 
might decide that passing values by reference is actually wasteful. You can define an explicit 
specialization for  to pass arguments by value, as shown in Listing 48-2.

Listing 48-2. The  Specialization

Start an explicit specialization with  (notice the empty angle brackets), which 
tells the compiler that you are writing an explicit specialization. Next is the definition. Notice 
how the class name is the specialized template name: . That’s how the compiler 
knows what you are specializing. Before you can specialize a template, you must tell the 
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compiler about the class template with a declaration of the class template name or a full defi-
nition of the class template. Typically, you would put the class template declaration followed 
by its specializations in a single header, in the right order.

Your explicit specialization completely replaces the template declaration for that template 
argument (or arguments: if the template takes multiple arguments, you must supply a specific 
value for each one). Although convention dictates that  should define all the same 
members as the primary template, , the compiler imposes no such limitation.

Write an explicit specialization for . Add a debugging statement to the pri-
mary template and to the specialization so you can prove to yourself that the compiler really 
does choose the specialization. Write a main program to use  and ,
and check that the correct debugging statements execute. Listing 48-3 shows how the program 
looks when I write it.

Listing 48-3. Specializing  and Testing the Code
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If you really want to get fancy, include the  header, and, in the primary tem-
plate, call  to obtain a string that describes the type . The exact contents 
of the string depend on the implementation. The  keyword returns a  object 
(defined in ) that describes a type, or you can apply the keyword to an expression to 
obtain information on the expression’s type. You can’t do much with a  object. It’s not 
a reflection mechanism, but you can call the  member function to get a name. This is a 
handy debugging technique when you have a complicated template situation, and you aren’t 
quite sure what the compiler thinks the template argument is. Thus, write the constructor as 
follows:

One compiler I have prints

Another prints
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Custom Comparators
The  container lets you provide a custom comparator. The default behavior is for  to use 
a template class, , which is a functor that uses the  operator to compare keys. If 
you want to store a type that cannot be compared with , you can specialize  for your 
type. For example, suppose you have a  class, which stores a person’s name, address, 
and telephone number. You want to store a  in a , ordered by name. All you need to 
do is write a template specialization, , as shown in Listing 48-4.

Listing 48-4. Specializing  to Compare  Objects by Name
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You are allowed to specialize templates that are defined in the  namespace, but you 
cannot add new declarations to . The  template is declared in the 
header. This header defines comparator templates for all the relational and equality operators, 
and some more besides. Consult a language reference for details. What matters right now is 
what the  primary template looks like, that is, the main template that C++ uses when 
it cannot find an explicit specialization (such as ). Write the definition of 
a class template, , that would serve as a primary template to compare any comparable 
objects with the  operator. Compare your solution with Listing 48-5.

Listing 48-5. The Primary  Class Template

Take a peek into your standard library’s  header. It might be in another 
file that  includes, and it might be more complicated than Listing 48-5, but you 
should be able to find something you can recognize and understand.

Specializing Function Templates
You can specialize a function template, but you should prefer overloading to templates. For 
example, let’s keep working with the template form of  (Exploration 46). Suppose you 
have an arbitrary-precision integer class, , and it has an efficient absolute value func-
tion (that is, it simply clears the sign bit, so there’s no need to compare the value with zero). 
Instead of the template form of , you want to use the efficient method for taking the 
absolute value of . Although C++ permits you to specialize the  function tem-
plate, a better solution is to override the  function (not template).

When the compiler sees a call to , it examines the type of the argument. If the type 
matches the parameter type used in a nontemplate function, the compiler arranges to call that 
function. If it can’t match the argument type with the parameter type, it checks template func-
tions. The precise rules are complicated, and I will discuss them later in the book. For now, 
just remember that the compiler prefers nontemplate functions to template functions, but it 
will use a template function instead of a nontemplate function if it can’t find a good match 
between the argument types and the parameter types of the nontemplate function.

Sometimes, however, you need to write a template function, even if you just want to 
overload the  function. For example, suppose you want to improve the absolute value 
function for the  class template. There is no need to compare the entire value with 
zero; just compare the numerator, and avoid unnecessary multiplications.
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When you call , pass it an argument in the usual way. If you pass an , , or 
other built-in numeric type, the compiler instantiates the original function template. If you 
pass an  object, the compiler calls the overloaded nontemplate function, and if you 
pass a  object, the compiler instantiates the overloaded function template.

Traits
Another use of specialization is to define a template that captures the characteristics, or traits,
of a type. You’ve already seen one example of a traits template: . The 

 header defines a class template named . The primary template 
is rather dull, saying that the type has zero digits of precision, a radix of zero, and so on. The 
only way this template makes any sense is to specialize it. Thus, the  header also 
defines explicit specializations of the template for all the built-in types. Thus, you can discover 
the smallest  by calling  or determine the floating-point 
radix with , and so on. Every specialization declares the 
same members, but with values that are particular to the specialization.

You can define your own specialization when you create a numeric type, such as .
Defining a template of a template involves some difficulties that I will cover in the next Explo-
ration, so for now, go back to Listing 44-9 and the old-fashioned nontemplate  class, 
which hardcoded  as the base type. Listing 48-6 shows how to specialize  for 
this  class.

Listing 48-6. Specializing  for the  Class
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This example has a few new things. They aren’t important right now, but in C++, you have 
to get all the tiny details right or the compiler voices its stern disapproval. The first line, which 
starts  is how you put names in the standard library. You are not allowed to add 
new names to the standard library (although the standard does not require a compiler to issue 
an error message if you break this rule), but you are allowed to specialize templates that the 
standard library has already defined. Notice the opening curly brace, which has a correspond-
ing closing curly brace on the last line of the listing. The member functions all have 
between their names and bodies. This tells the compiler that the function must not throw an 
exception. If the function does actually throw an exception at runtime, the program termi-
nates by calling the  function, which in turns calls , which aborts your 
program unceremoniously, without calling any destructors.

Template specialization has many other uses, but before we get carried away, the next 
Exploration takes a look at a particular kind of specialization, where your specialization still 
requires template parameters, called partial specialization.
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Partial Specialization

Explicit specialization requires you to specify a template argument for every template param-
eter, leaving no template parameters in the template header. Sometimes, however, you want 
to specify only some of the template arguments, leaving one or more template parameters in 
the header. C++ lets you do just that and more, but only for class templates, as this Exploration 
describes.

Degenerate Pairs
The standard library defines the  class template in the  header. This 
class template is a trivial holder of a pair of objects. The template arguments specify the types 
of these two objects. Listing 49-1 depicts the definition of this simple template.

Listing 49-1. The  Class Template

As you can tell, the  class template doesn’t do much. The  class template can 
use  to store keys and values. A few functions return a  in order to return two 
pieces of information. In other words,  is a useful, if dull, part of the standard library.

What happens if or is ?

_________________________________________________________________________________

Although  has popped up here and there, usually as a function’s return type, I haven’t 
discussed it much. The  type means “no type.” That’s useful for returning from a function, 

423
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but you cannot declare an object with  type, nor does the compiler permit you to use 
for a data member. Thus,  results in an error.

As you start to use templates more and more, you will find yourself in unpredictable situ-
ations. A template contains a template, which contains another template, and suddenly you 
find a template, such as , being instantiated with template arguments that you never 
imagined before. So let’s add specializations for  that permit one or two  template 
arguments, just for the sake of completeness. (The standard permits specializations of library 
templates only if a template argument is a user-defined type. Therefore, specializing  for 
the  type results in undefined behavior. If your compiler is picky, you can copy the defini-
tion of  out of the  header and into your own file, using a different namespace. 
Then proceed with the experiment. Most readers will be able to work in the  namespace 
without incurring the wrath of the compiler.)

Write an explicit specialization for . It cannot store anything, but you 
can declare objects of type . Compare your solution with Listing 49-2.

Listing 49-2. Specializing  for Two  Arguments

More difficult is the case of one  argument. You still need a template parameter for 
the other part of the pair. That calls for partial specialization.

Partial Specialization
When you write a template specialization that involves some, but not all, of the template argu-
ments, it is called partial specialization. Some programmers call explicit specialization full
specialization to help distinguish it from partial specialization. Partial specialization is explicit, 
so the phrase full specialization is more descriptive, and I will use it for the rest of this book.

Begin a partial specialization with a template header that lists the template parameters 
you are not specializing. Then define the specialization. Notice how you name the class that 
you are specializing by listing all the template arguments. Some of the template arguments 
depend on the specialization’s parameters, and some are fixed with specific values. That’s 
what makes this specialization partial.

As with full specialization, the definition of the specialization completely replaces the pri-
mary template for a particular set of template arguments. By convention, you keep the same 
interface, but the actual implementation is up to you.

Listing 49-3 shows a partial specialization of  if the first template argument is .

Listing 49-3. Specializing  for One  Argument
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Based on Listing 49-3, write a partial specialization of  with a  second argument.
Compare your solution with Listing 49-4.

Listing 49-4. Specializing  for the Other  Argument

Regardless of the presence or absence of any partial or full specializations, you still use the 
 template the same way: always with two type arguments. The compiler examines those 

template arguments and determines which specialization to use.

Partially Specializing Function Templates
You cannot partially specialize a function template. Full specialization is allowed, as described 
in the previous Exploration, but partial specialization is not. Sorry. Use overloading instead, 
which is usually better than template specialization, anyway.

Value Template Parameters
Before I present the next example of partial specialization, I want to introduce a new template 
feature. Templates typically use types as parameters, but they can also use values. Declare a 
value template parameter with a type and optional name, much the same way that you would 
declare a function parameter. Value template parameters are limited to types for which you 
can specify a compile-time constant: , , , etc. Floating-point types and classes are 
not allowed.

For example, suppose you want to modify the  class that you wrote for Exploration 45 
so the developer can specify the number of digits after the decimal place. While you’re at it, 
you can also use a template parameter to specify the underlying type, as shown in Listing 49-5.
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Listing 49-5. Changing  from a Class to a Class Template

The key challenge in converting the  class to a class template is defining .
Defining  as a compile-time constant requires template trickery that is beyond what 
I’ve covered so far. (I will cover advanced template trickery, but not until Exploration 67.) A 
simpler approach is to initialize  in fixed.cpp.

Otherwise, the conversion is mostly mechanical: adding template headers and changing 
the name  to .

Suppose you have an application that instantiates . This degenerate case 
is no different from a plain , but with overhead for managing , even though the 
value of  is . Suppose further that performance measurements of your application 
reveal that this overhead has a measurable impact on the overall performance of the appli-
cation. Therefore, you decide to use partial specialization for the case of . Use a 
partial specialization so the template still takes a template argument for the underlying type.

You might wonder why the application programmer doesn’t simply replace 
with plain . In some cases, that is the correct solution. Other times, however, the use of 

 might be buried inside another template. The issue becomes, therefore, one of 
which template to specialize. For the sake of this Exploration, we are specializing .
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Remember that any specialization must provide a full implementation. You don’t need to 
specialize the free functions, too. By specializing the  class template, we get the perfor-
mance boost we need. Listing 49-6 shows the partial specialization of .

Listing 49-6. Specializing  for 

The next Exploration introduces a language feature that helps you manage your custom 
types: namespaces.
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Names and Namespaces

Nearly every name in the standard library begins with , and only names in the standard 
library are permitted to start with . For your own names, you can define other prefixes, 
which is a good idea and an excellent way to avoid name collisions. Libraries and large pro-
grams in particular benefit from proper partitioning and naming. However, templates and 
names have some complications, and this Exploration helps clarify the issues.

Namespaces
The name  is an example of a namespace, which is a C++ term for a named scope. 
A namespace is a way to keep names organized. When you see a name that begins with ,
you know it’s in the standard library. Good third-party libraries use namespaces. The open-
source Boost project ( ), for example, uses the  namespace, to 
ensure names, such as , do not interfere with similar names in the stan-
dard library, such as . Applications can take advantage of namespaces, too. 
For example, different project teams can place their own names in different namespaces, so 
members of one team are free to name functions and classes without the need to check with 
other teams. For example, the GUI team might use the namespace  and define a
class, which manages a tree widget in a user interface. The database team might use the 
namespace. Thus,  might represent a tree data structure that is used to store database 
indexes on disk. A database debugging tool can use both tree classes because there is no clash 
between  and . The namespaces keep the names separate.

To create a namespace and declare names within it, you must define the namespace. 
A namespace definition begins with the  keyword followed by an optional identifier 
that names the namespace. This in turn is followed by declarations within curly braces. Unlike 
a class definition, a namespace definition does not end with a semicolon after the closing curly 
brace. All the declarations within the curly braces are in the scope of the namespace. You must 
define a namespace outside of any function. Listing 50-1 defines the namespace  and 
within it, the  class template.

429
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Listing 50-1. Defining the  Class Template in the  Namespace

Namespace definitions can be discontiguous. This means you can have many separate 
namespace blocks that all contribute to the same namespace. Therefore, multiple header files 
can each define the same namespace, and every definition adds names to the same, common 
namespace. Listing 50-2 illustrates how to define the  class template within the same 

 namespace, even in a different header (say, fixed.hpp).

Listing 50-2. Defining the  Class Template in the  Namespace
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Note how the free functions and operators that are associated with the class templates are 
defined in the same namespace. I’ll explain exactly why later in the Exploration, but I wanted
to point it out now because it’s very important.

When you declare but don’t define an entity (such as a function) in a namespace, you 
have a choice for how to define that entity, as described in the following:

namespace definition.

namespace name and the scope operator ( ).

Listing 50-3 illustrates both styles of definition. (The declarations are in Listings 50-1 
and 50-2.)

Listing 50-3. Defining Entities in a Namespace

The first form is straightforward. As always, the definition must follow the declaration. In 
a header file, you might define an inline function or function template using this syntax.

In the second form, the compiler sees the namespace name ( ) followed by the 
scope operator and knows to look up the subsequent name ( ) in that namespace. 
The compiler considers the rest of the function to be in the namespace scope, so you don’t 
need to specify the namespace name in the remainder of the declaration (that is, the function 
parameters and the function body). The function’s return type comes before the function 
name, which places it outside the namespace scope, so you still need to use the namespace 
name. To avoid ambiguity, you are not allowed to have a namespace and a class with the 
same name in a single namespace.

Traditionally, when you define a namespace in a header, the header contains a single
namespace definition, which contains all the necessary declarations and definitions. When 
you implement functions and other entities in a separate source file, I find it most convenient 
to write an explicit namespace and define the functions inside the namespace, but some 
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programmers prefer to omit the namespace definition. Instead, they use the namespace name 
and scope operator when defining the entities. An entity name that begins with the namespace 
name and scope operator is an example of a qualified name—that is, a name that explicitly 
tells the compiler where to look to find the name’s declaration.

The name  is qualified because the compiler knows to look 
up  in the class template , specialized for . Inside a member function, 

 is qualified because it instructs the compiler to look up  as a member
of the class or one of its base classes. The name  is a qualified name because the 
compiler looks up  in the namespace . On the other hand, where does the compiler 
look up the name ? Before I can answer that question, I need to delve into the general sub-
ject of nested namespaces.

Nested Namespaces
Namespaces can nest, that is, you can define a namespace inside another namespace, as dem-
onstrated in the following:

To use a nested namespace, the qualifier lists all the namespaces in order, starting from 
the outermost namespace. Separate each namespace with the scope operator ( ).

A top-level namespace, such as  or , is actually a nested namespace. Its 
outer namespace is called the global namespace. All entities that you declare outside of any 
function are in a namespace—in an explicit namespace or in the global namespace. Thus, 
names outside of functions are said to be at namespace scope. The phrase global scope refers to 
names that are declared in the implicit global namespace, which means outside of any explicit 
namespace. Qualify global names by prefixing the name with a scope operator.

Most programs you read will not use an explicit global scope operator. Instead, program-
mers tend to rely on the normal C++ rules for looking up names, letting the compiler find 
global names on its own. So far, every function you’ve written has been global; every call to 
these functions has been unqualified; the compiler has never had a problem with the unquali-
fied names. If you have a situation in which a local name hides a global name, you can refer 
to the global name explicitly. Listing 50-4 demonstrates the kind of trouble you can wreak 
through poor choice of names, and how to use qualified names to extricate yourself.
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Listing 50-4. Coping with Conflicting Names

The local variable  does not conflict with the namespace of the same name because 
the compiler knows that only class and namespace names can appear on the left-hand side 
of a scope operator. On the other hand, the class  does conflict, so the use of a bare
qualifier is ambiguous. You must use  (for the standard library namespace) or 
(for the class). References to the local variable must use a plain .

The name  on line 24 refers to a function, so it does not conflict with the namespace 
. Therefore, the use of  on line 32 is not ambiguous.
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The  algorithm in Listing 50-4 does exactly what its name suggests. It adds 
all the elements in a range to a starting value either by invoking the  operator or by calling 
a binary functor that takes the sum and a value from the range as arguments.

Remove the global scope operators from  (lines 29 and 31) to give 
. Recompile the program. What messages does your compiler give you?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Restore the file to its original form. Remove the first  qualifier from 
(line 24). What message does the compiler give you?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Restore the file to its original form. Remove the  qualifier from 
(line 32). What message does the compiler give you?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Sane and rational people do not deliberately name a class  in a C++ program, but we all 
make mistakes. (Maybe you have a class that represents a building element in an architectural 

 from .) By seeing the kinds of mes-
sages that the compiler issues when it runs into name conflicts, you can better recognize these 
errors when you accidentally create a name that conflicts with a name invented by a third-
party library or another team working on your project.

Most application programmers don’t need to use the global scope prefix because you can 
be careful about choosing names that don’t conflict. Library authors, on the other hand, never 
know where their code will be used, or what names that code will use. Therefore, cautious 
library authors always use the global scope prefix.

Global Namespace
Names that you declare outside of all namespaces are global. In the past, I used global to mean 
outside of any function, but that was before you knew about namespaces. C++ programmers 
refer to names declared at namespace scope, which is our way of saying, “outside of any func-
tion.” Such a name can be declared in a namespace or outside of any explicit namespace.

A program’s  function must be global. If you define another function named  in 
a namespace, it does not interfere with the global , but it will confuse anyone who reads 
your program.
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The std Namespace
As you know, the standard library uses the  namespace. You are not allowed to define any 
names in the  namespace, but you can specialize templates that are defined in , pro-
vided at least one template argument is a user-defined type.

The C++ standard library inherits some functions, types, and objects from the C standard 
library. You can recognize the C-derived headers because their names begin with an extra let-
ter ; e.g.,  is the C++ equivalent of the C header . Some C names, such as ,
do not follow namespace rules. These names are usually written in all capital letters to warn 
you that they are special. You don’t need to concern yourself with the details; just be aware 
that you cannot use the scope operator with these names, and the names are always global. 
When you look up a name in a language reference, these special names are called macros.
(You’ve already seen one example: , declared in the  header.)

The C++ standard grants some flexibility in how a library implementation inherits the C 
standard library. In particular, all C names in the  namespace are also reserved in the global 
namespace. For example,  is a typedef for an integral type that is suitable for rep-
resenting a size or index. (The choice of integer type depends on the implementation and need 
not concern us here.) Because  comes from the C standard library, the name  is 
also reserved. Not all implementations will define , but if a library does, the definition 
must be identical to .

C function names are reserved, so functions such as  are also reserved in the global 
namespace. For example, the C header  declares , which means the stan-
dard library also reserves . Thus, you are not allowed to define your own function ,
but you can define  in an explicit namespace. The standard does not guarantee that 
and  are the same function in the same way it does for types. Instead, it reserves the 
global names and prohibits you from using them.

My recommendation is not to get caught up in which names originate in the C standard 
library and which are unique to C++. Instead, consider any name in the standard library off-
limits. The only exception is when you want to use the same name for the same purpose, but 
in your own namespace. For example, you may want to overload the  function to work with 

 or 
operators and other free functions.

Caution Many C++ references omit the C portions of the standard library. As you can see, however, the 
C portions are most problematic when it comes to name clashes. Thus, make sure your C++ reference is 
complete or supplement your incomplete C++ reference with a complete C library reference.

Using Namespaces
In order to use any name, the C++ compiler must be able to find it, which means identifying 
the scope where it is declared. The most direct way to use a name from a namespace, such as 

 or , is to use a qualified name—that is, the namespace name as a prefix; e.g., 
, followed by the scope operator( ).
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When the compiler sees the namespace name and the double colons ( ), it knows to look 
up the subsequent name in that namespace. There is no chance of a collision with the same 
entity name in a different namespace.

Sometimes, however, you end up using the namespace a lot, and brevity becomes a 
virtue. The next two sections describe a couple of options.

The using Directive
You’ve seen a using directive before, but in case you need a refresher, take a look at the 
following:

The syntax is as follows: the  keyword, the  keyword, and a namespace
name. A using directive instructs the compiler to treat all the names in the namespace as 
though they were global. (The precise rule is slightly more complicated. However, unless you 
have a nested hierarchy of namespaces, the simplification is accurate.) You can list multiple 
using directives, but you run the risk of introducing name collisions among the namespaces. 
A using directive affects only the scope in which you place it. Because it can have a big impact 
on name lookup, restrict using directives to the narrowest scope you can; typically this would 
be an inner block.

Although a using directive has its advantages—and I use them in this book—you must be 
careful. They hinder the key advantage of namespaces: avoidance of name collisions. Names 
in different namespaces don’t ordinarily collide, but if you try to mix namespaces that declare 
a common name, the compiler will complain.

If you are careless with using directives, you can accidentally use a name from the wrong 
namespace. If you’re lucky, the compiler will tell you about your mistake because your code 
uses the wrong name in a way that violates language rules. If you aren’t lucky, the wrong name 
will coincidentally have the same syntax, and you won’t notice your mistake until much, much 
later.

Never place a using directive in a header. That ruins namespaces for everyone who 
includes your header. Keep using directives as local as possible, in the smallest scope possible.

In general, I try to avoid using directives. You should get used to reading fully qualified 
names. On the other hand, sometimes, long names interfere with easy comprehension of com-
plicated code. Rarely do I use more than one using directive in the same scope. So far, the only 
times I’ve ever done so is when all the namespaces are defined by the same library, so I know
they work together, and I won’t run into naming problems. Listing 50-5 illustrates how using
directives work.

Listing 50-5. Examples of using Directives
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What will happen if you try to compile Listing 50-5?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

The error is on line 32. The using directive effectively merges the  namespace with 
the global namespace. Thus, you now have two functions named  that take a single
argument, and the compiler doesn’t know which one you want. Fix the problem by qualifying 
the call to  (on line 32) so it calls the function in the  namespace. What do you 
expect as the program output?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Try it. Make sure you get what you expect. Line 32 should now look like the following:

The using Declaration
More specific, and therefore less dangerous, than a using directive is a using declaration.
A using declaration imports a single name from another namespace into a local scope, as 
demonstrated in the following:

A using declaration adds the name to the local scope as though you had declared it explic-
itly. Thus, within the scope where you place the using declaration, you can use the declared 
name without qualification (e.g., ). Listing 50-6 shows how using declarations help 
avoid the problems you encountered with using directives in Listing 50-5.

Listing 50-6. Examples of using Declarations with Namespaces
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Predict the program’s output.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

This time, the compiler can find  because the using declaration injects 
names into the local scope. Thus, the local names do not conflict with the global 
function. On the other hand, the compiler does not call  for line 39. Instead, it 
calls , converting  to .
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Are you puzzled by the compiler’s behavior? Let me explain. When the compiler tries 
to resolve an overloaded function or operator name, it looks for the first scope that declares 
a matching name. It then collects all overloaded names from that scope, and only from that 
scope. Finally, it resolves the name by choosing the best match (or reporting an error if it can-
not find exactly one good match). Once the compiler finds a match, it stops looking in other 
scopes or outer namespaces.

In this case, the compiler sees the call to  and looks first in the local scope, 
where it finds a function named , which was imported from the  namespace. So it 
stops looking for namespaces and tries to resolve the name . It finds one function, which 
takes a  argument. The compiler knows how to convert an  to a , so it deems 
this function a match and calls it. The compiler never even looks at the global namespace.

How would you instruct the compiler to also consider the global function?

_________________________________________________________________________________

Add a using declaration for the global  function. Between lines 38 and 39, insert the 
following:

When the compiler tries to resolve , it finds  and 
, both imported into the local scope. It then resolves the overload by considering 

both functions. The  function is the best match for an  argument.
Now add  at the same location. What do you expect to happen when 

you compile this example now?
_________________________________________________________________________________

Now the compiler has too many choices—and they conflict. A using directive doesn’t 
cause this kind of conflict because it simply changes the namespaces where the compiler looks 
for a name. A using declaration, however, adds a declaration to the local scope. If you add too 
many declarations, those declarations can conflict, and the compiler would complain.

When a using declaration names a template, the template name is brought into the local 
scope. The compiler keeps track of full and partial specializations of a template. The using dec-
laration affects only whether the compiler finds the template at all. Once it finds the template 
and decides to instantiate it, the compiler will find the proper specialization. That’s why you 
can specialize a template that is defined in the standard library—that is, in the  namespace.

A key difference between a using directive and a using declaration is that a using direc-
tive does not affect the local scope. A using declaration, however, introduces the unqualified 
name into the local scope. This means you cannot declare your own name in the same scope. 
Listing 50-7 illustrates the difference.

Listing 50-7. Comparing a using Directive with a using Declaration
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The local declaration of  interferes with the using declaration, but not the using
directive. A local scope can have only one object or type with a particular name, and a using
declaration adds the name to the local scope, whereas a using directive does not.

The using Declaration in a Class
A using declaration can also import a member of a class. This is different from a namespace
using declaration because you can’t just import any old member into any old class, but you 
can import a name from a base class into a derived class. There are several reasons why you 
may want to do this. Two immediate reasons are:

 a function, and the derived class declares a function with the 
same name, and you want overloading to find both functions. The compiler looks 
for overloads only in a single class scope. With a using declaration to import the base 
class function into the derived class scope, overloading can find both functions in the 
derived class scope and so choose the best match.

using dec-
laration in a public section of the derived class.

Listing 50-8 illustrates using declarations. You will learn more advantages of using decla-
rations as you learn more advanced C++ techniques.

Listing 50-8. Examples of using Declarations with Classes



EXPLORATION 50   NAMES AND NAMESPACES442

Predict the output from the program.

_________________________________________________________________________________

_________________________________________________________________________________

The class  has a single member function named . Calling  con-
verts  to  and calls that function. Class  imports  from the base class. Thus, 
overloading determines the best match for  and calls  in the base class. The 
output appears as follows:

Unnamed Namespaces
A name is optional in a namespace definition. The names in an ordinary, named namespace 
are shared among all files that make up a program, but names in an unnamed namespace are 
private to the source file that contains the namespace definition.

If a header file contains an unnamed namespace, every source file that includes the 
header is furnished with its own private copy of everything defined in that namespace. When 
you want to keep various helper functions and other implementation details private, define 
them in an unnamed namespace (sometimes called an anonymous namespace). This ensures 
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that their names will not collide with the same names in any other source files. (Note to C pro-
grammers: use anonymous namespaces instead of global  functions and objects.)

The only tricky aspect of the unnamed namespace is that you cannot qualify names to 
refer to names that you defined in the anonymous namespace. You must rely on ordinary 
name lookup for unqualified names. The next section discusses name lookup issues in greater 
depth.

Name Lookup
In the absence of namespaces, looking up a function or operator name is simple. The compiler 
looks first in the local block then in outer blocks, until finally, the compiler searches global 
declarations. It stops searching in the first block that contains a matching declaration. If the 
compiler is looking for a function or operator, the name may be overloaded, so the compiler 
considers all the matching names that are declared in the same scope.

Looking up a member function is slightly different. When the compiler looks up an 
unqualified name in a class context, it starts by searching in the local block and enclosing 
blocks, as described earlier. The search continues by considering members of the class, then 
its base class, and so on for all ancestor classes. Again, when looking up an overloaded name, 
the compiler considers all the matching names that it finds in the same scope—that is, the 
same class or block.

Namespaces complicate the name lookup rules. Suppose you want to use the 
type, which is defined in the  namespace. You know how to use 
a qualified name for the type, but what about, for instance, addition or the I/O operators, such 
as those in the following:

The full name of the addition operator is . But 
normally, you use the addition operator without specifying the namespace. Therefore, the 
compiler needs some help to determine which namespace contains the operator declaration. 
The trick is that the compiler checks the types of the operands and looks for the overloaded 
operator in the namespaces that contain those types. This is known as argument-dependent 

The compiler creates several sets of scopes to search. It first determines which scopes to 
search using the ordinary lookup rules, described at the beginning of this section. For each 
function argument or operator operand, the compiler also collects a set of namespaces based 
on the argument types. If a type is a class type, the compiler selects the namespace that con-
tains the class declaration and the namespaces that contain all of its ancestor classes. If the 
type is a specialization of a class template, the compiler selects the namespace that contains 
the primary template and the namespaces of all the template arguments. The compiler forms 
the union of all these scopes, and then searches them for the function or operator. As you can 

the operator or function name.
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Listing 50-9. Reading and Writing Tokens
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What will happen when you compile the program?

_________________________________________________________________________________

_________________________________________________________________________________

Some compilers, trying to be helpful, fill your console with messages. The core of the 
problem is that  and  invoke the standard input ( ) and 
output ( ) operators. In the case of Listing 50-9, the compiler locates the operators through 
ordinary lookup as member functions of the  and  classes. The standard library 
declares these member function operators for the built-in types, so the compiler cannot find 
a match for an argument of type . Because the compiler finds a match in a class
scope, it never gets around to searching the global scope, so it never finds the custom I/O 
operators.

The compiler applies  namespace because the second oper-
and to  and  has type . It searches the  namespace because the first 
operand has type  or . It cannot find a match for the I/O operators 
in these namespaces because the operators are in the global scope.

Now you see why it’s vital that you declare all associated operators in the same name-
space as the main type. If you don’t, the compiler cannot find them. Move the I/O operators 
into the  namespace and see that the program now works. Compare your program 
with Listing 50-10.

Listing 50-10. Move the I/O Operators into the  Namespace
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To see how the compiler extends modify the program to change the con-
tainer from a  to a , and count the number of occurrences of each token (remember 
from Exploration 21?). Because a  stores  objects, write an output operator that prints 
pairs of tokens and counts. This means  calls the  operator with two argu-
ments from namespace . Nonetheless, the compiler finds your operator (in the 
namespace) because the template argument to  is in . Your program may end 
up looking something like Listing 50-11.

Listing 50-11. Counting Occurrences of Tokens
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Now that you know about templates and namespaces, it’s time to look at some of their 
practical uses. The next several Explorations take a closer look at parts of the standard library, 
beginning with the standard containers.
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Containers

So far, the only standard containers you’ve used have been  and . I mentioned
briefly in Exploration 42, but never went into depth. This Exploration introduces the remain-
ing containers and discusses the general nature of containers. When third-party libraries 
implement additional containers, they usually follow the pattern set by the standard library, 
and make their containers follow the same requirements.

Properties of Containers
The container types implement common data structures, such as trees, lists, arrays, and so on. 
They all serve the common purpose of storing a collection of similar objects in a single con-
tainer object. You can treat the container as a single entity: compare it, copy it, assign it, and 
so on. You can also access the individual items in the container. What distinguishes one con-
tainer type from another is how the container stores the items within it, which in turn affects 
the speed of accessing and modifying items in the container.

All containers fall into two broad categories: sequence and associative. The difference 
is that you can control the order of items in a sequence container, but not in an associative 
container. As a result, associative containers offer improved performance for accessing and 
modifying their contents. The standard sequence containers are * (fixed-size), 
(double-ended queue),  (doubly-linked list), and  (variable-length array).

The associative containers have two subcategories: ordered and unordered*. Ordered 
containers store keys in a data-dependent order, which is given by the  operator or a caller-
supplied functor. Although the standard does not specify any particular implementation, the 
complexity requirements pretty much dictate that ordered associative containers are imple-
mented as balanced binary trees. Unordered containers store keys in a hash table, so the order 
is unimportant to your code and is subject to change as you add items to the container.

Another way to divide the associative containers is into sets and maps. Sets are like 
mathematical sets: they have members and can test for membership. Maps are like sets that 
store key/value pairs. Sets and maps can require unique keys or permit duplicate keys. The 
set types are  (unique key, ordered),  (duplicate key, ordered), *,  
and *. The map types are , , *, and  

*.

* These types are not yet part of the Standard, but are defined by an addition to the Standard, called 
Technical Report 1 (TR1), and they will be included in the next revision to the C++ language. See the
“Technical Report 1” section later in this chapter for details.

449
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Different containers have different characteristics. For example,  permits rapid 
access to any item, but insertion in the middle is slow. A , on the other hand, offers rapid 
insertion and erasure of any item, but provides only bidirectional iterators, not random access. 
The unordered containers do not permit comparing entire containers.

The C++ standard defines container characteristics in terms of complexity, which is 
written in big-O notation. Remember from your introductory algorithms course that O(1) is 
constant complexity, but without any indication of what the constant might be. O(n) is linear 
complexity: if the container has n items, performing an O(n) operation takes time proportional 
to n. Operations on sorted data are often logarithmic: O(log n).

Table 51-1 summarizes all the containers and their characteristics. The Insert, Erase, and 
Lookup columns show the average-case complexity for these operations, where N is the num-
ber of elements in the container. Lookup for a sequence container means looking for an item 
at a particular index; for an associative container, it means looking for a specific item by value. 
“No” means the container does not support that operation at all.

Table 51-1. Summary of Containers and Their Characteristics

Type Header Insert Erase Lookup Iterator

No No O(1) Random Access

O(N)* O(N)* O(1) Random Access

O(1) O(1) O(N) Bidirectional

O(log N) O(log N) O(log N) Bidirectional

O(log N) O(log N) O(log N) Bidirectional

O(log N) O(log N) O(log N) Bidirectional

O(log N) O(log N) O(log N) Bidirectional

O(1) O(1) O(1) Forward

O(1) O(1) O(1) Forward

O(1) O(1) O(1) Forward

O(1) O(1) O(1) Forward

O(N)* O(N)* O(1) Random Access

* Complexity is O(N) for insertion and erasure in the middle of the container, but is O(1) at the end of the 
container, when amortized over many operations. A  also allows amortized O(1) insertion and 
erasure at the beginning of the container.

Technical Report 1
The  and unordered types are not actually part of the standard library. Instead, they are 
part of a library extension called Technical Report 1 (TR1). TR1 is the work of the C++ stan-
dardization committee, and it has gone through an ISO approval process. In ISO-parlance, 
TR1 is non-normative, which means support is not mandatory. It is recommended, but not 
required.
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TR1 was approved in 2005, yet as I write this, only one vendor offers a complete imple-
mentation of TR1. This is not surprising as TR1 is large and includes many specialized math-
ematical functions, which are tricky to get right. Don’t be surprised if some vendors never get 
around to supporting the entirety of TR1. However, I do expect that most vendors will offer 
partial TR1 support, especially for the new containers and some other parts of TR1 that are 
easy to implement. Even if your particular library does not include any TR1 extensions, you 
can easily find other implementations of  and the unordered containers. This book’s web 
site has some helpful links.

Names in TR1 are in the  namespace. Each vendor is free to organize TR1 head-
ers in a way that best suits their interests, so writing portable code to use TR1 is problematic. 
If you cannot compile the listings, and you know you have TR1 installed, try inserting 
before the file name—that is, where I have written

you may need to change it to:

As I write this, the C++ committee is nearing completion on the next major revision to the 
C++ standard. Much of TR1 has become part of the revised standard. Some parts are under-
going improvement based on practical experience with TR1, but I expect the new containers 
to come through pretty much unscathed. Therefore, anything you learn now about the TR1 
containers will apply to the standard containers when the new revision is finally approved and 
products become widespread. That’s why it’s a good idea to start learning about TR1 now.

If you are using the next revision to the standard, all the new container types are in the 
namespace, e.g., .

Enough about the future. This book is about today’s standard, and the emphasis is on the 
official standard. So I made sure the TR1 sections are all optional. You can skip them if you 
wish or need to, and still make full use of the rest of the book. On the other hand, TR1 is avail-
able today (at least in part), and I highly recommend that you avail yourself of its features. 
I will mention other useful TR1 extensions when the occasion arises. However, if you cannot 
obtain TR1 for your compiler and library (or your organization’s standards prevent you), you 
can still get by just fine with the current standard, and feel free to skip over the TR1 sections.

Member Types
Every container provides a number of useful types and typedefs as members of the container. 
This section makes frequent use of several of them:

value_type
This is a synonym for the type that the container stores. For example,  for 

 is  and  is . Using a standard typedef 
makes it easier to write and read container code. The rest of this Exploration uses 
extensively.

The mapped containers store key/value pairs, so  for  (and 
, , and ) is .
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key_type
The associative containers declare  as a typedef for the template parameter—for 
instance,  is . For the set types,  and  are 
the same.

reference
This is a synonym for a reference to . Except in very rare cases,  is identi-
cal to .

const_reference
 is a synonym for a reference to . Except in very rare cases, 
 is identical to .

iterator
This is the iterator type. It might be a typedef, but more likely, it is a class, the definition of 
which is implementation-dependent. All that matters is that this type meets the requirements 
of an iterator. Each container type specifies the iterator category that it implements.

const_iterator
 is the iterator type for  items. It might be a typedef, but more likely, it is 

a class, the definition of which is implementation-dependent. All that matters is that this type 
meets the requirements of an iterator of  items. Each container type specifies the iterator 
category that it implements.

size_type
 is a typedef for one of the built-in integer types (which one depends on the imple-

mentation). It represents an index for a sequence container, or a container size.

What Can Go Into a Container
In order to store an item in a container, the item’s type must meet some basic requirements. 
You must be able to copy and assign the item. For the built-in types, this is automatic. For 
a class type, you usually have that capability. The compiler even writes the copy constructor 
and assignment operator for you. It’s possible, however, for you to write them yourself in the 
private part of a class. In this case, the constructor or assignment operator is inaccessible, so 
the container cannot copy or assign items, and you can’t store that type of item in a container.

The copy constructor and assignment operators must make accurate copies. This means 
that the newly constructed object or the target of the assignment must be the same as the orig-
inal, at least as far as the container is concerned. The compiler’s implicitly defined constructor 
and assignment operator usually manage to make good copies, but some specialized classes 
may violate this requirement, and so prevent you from storing such objects in a container.
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Sequence containers themselves do not need to compare items for equality; they just 
assume that copies are identical to the original and freely make copies and assign items when-
ever they need to.

Ordered associative containers require an ordering functor. By default, they use a stan-
dard functor called  (where  is the same base type as that used by the container), 
which in turn uses the  operator. You can supply a custom functor, provided it implements 
strict weak ordering, which is defined by the following requirements:

a < b and b < c, then a < c

a < a is always false

A common error among new C++ programmers is to violate rule 2, typically by imple-
menting  instead of . Violations of the strict weak ordering rule result in undefined 
behavior. Some libraries have a debugging mode that checks your functor to ensure that it is 
valid. If your library has such a mode, use it.

Unordered associative containers need a hash functor and an equality functor. The 
default hash functor is (declared in ). TR1 provides specializa-
tions for the built-in types and . If you store a custom class in an unordered container, 
you need to provide your own hash functor. The simplest way to do that is to specialize .
Listing 51-1 shows how to specialize  for the  type. You need to provide only 
the function call operator, which must return type  (an implementation-defined 
integer type).

Listing 51-1. Specializing the  Template for the  Type
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The default equality functor is (declared in ), which uses 
the  operator. If two items are equal, their hash values must also be equal (but the reverse is 
not necessarily true).

When you insert an item in a container, the container keeps a copy of the item. When you 
erase an item, the container destroys the item. When you destroy a container, it destroys all of 
its elements. The next section discusses insertion and erasure at greater length.

Inserting and Erasing
I’ve presented a number of examples of inserting and erasing elements in vectors and maps. 
This section explores this topic in greater depth. Note that the  type has a fixed size, so it 
provides none of the insertion or erasure functions. All the other containers follow the specifi-
cation described in this section.

Inserting in a Sequence Container
You have a choice of several different member functions with which to insert an item into 
a sequence container. The most fundamental function is , which has three overloaded 
forms:

Inserts  in the collection immediately before the position to which  refers, and 
returns an iterator that refers to the newly added item. If  is ,  is appended to 
the end of the container.

Inserts  copies of  immediately before the position to which  refers. If  is 
, the items are appended to the end of the container.

Copies the values from the range [ , ) into the container, starting at the position 
immediately before .

Two additional functions add items to the start ( ) or end ( ) of a con-
tainer. The container type provides only the functions that it can implement with constant 
complexity. Thus,  provides  but not . Both  and  provide 

 and .

Erasing From a Sequence Container
The  function erases, or deletes, items from a container. Sequence containers implement 
two forms of :

Erases the item to which  refers and returns an iterator that refers to the subsequent 
item. Returns  if the last item is erased. The behavior is undefined if you try to erase 

 or if  is an iterator for a different container object.
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Erases all the items in the range [ , ) and returns an iterator that refers to the item 
that immediately followed the last item erased. Returns  if the last item in the con-
tainer is erased. The behavior is undefined if the iterators are in the wrong order or refer to 
a different container object.

The  function erases all elements from the container. In addition to the basic 
erasure functions, sequence containers also provide  to erase the first element and 

 to erase the last element of a collection. A container implements these two func-
tions only if it can do so with constant complexity. Which sequence containers implement 

?
_________________________________________________________________________________

Which sequence containers implement ?

_________________________________________________________________________________

As with the push functions,  provides , and  and  provide both 
 and .

Inserting in an Associative Container
The  function has several forms for inserting into an associative container. One key dif-
ference from the sequence containers is that you don’t need to provide a position (one form 
does let you provide a position as a hint). The behavior of  depends on whether the con-
tainer allows duplicate items. The , , , and  types require 
unique keys; , , , and  permit dupli-
cate keys.

Tries to insert  in the container. If the container permits duplicate keys,  always 
succeeds and returns an iterator that refers to the newly inserted item. If the container 
requires unique keys,  inserts the item only if it is not already in the container. It 
returns a  of an iterator and a : the iterator refers to the item in the container 
(whether pre-existing or newly added), and the  is true if the item was added or false if 
the item was already in the container.

Tries to insert  in the container. If the container permits duplicate keys,  always 
succeeds. Otherwise,  adds  only if it is not already in the container. In all cases, 

 returns an iterator that refers to the newly added item or an existing equivalent 
item.
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For an ordered container, if the item’s position is immediately after , the item is 
added with constant complexity. Otherwise, the complexity is logarithmic. For an unor-
dered container, usage of  is implementation-defined, and complexity is always 
constant (average-case). In other words, if you need to store many items in an ordered 
container, and the items are already in order, you can save some time by using the posi-
tion of the most recently inserted item as the hint.

Copies the values from the range [ , ) into the container. For the ordered contain-
ers, you get optimal performance if the range [ , ) is already sorted.

Write a program that reads a list of strings from the standard input into a set of strings.
Use the hinted form of . Save the return value from  to pass as the hint when 
inserting the next item. Find a large list of strings to use as input. Make two copies of the list, 
one in sorted order and one in random order. (See this book’s web site if you need help locat-
ing or preparing the input files.) Compare the performance of your program reading the two 
input files.

Write another version of the same program, this time using the simple, one-argument 
form of . Again, run the program with both input files. Compare the performance of all 
four variations: hinted and unhinted insert, sorted and unsorted input.

Listing 51-2 shows a simple form of the program that uses the hinted form of .

Listing 51-2. Using a Hint Position When Inserting into a Set

When I run the program with a file of over 200,000 words, the hinted program with sorted 
input executes in about 1.6 seconds. The unhinted form takes 2.2 seconds. With randomly 
ordered inputs, both programs run in about 2.3 seconds. As you can see, the hint can make 
a difference when the input is already sorted. The details depend on the library implementa-
tion; your mileage may vary.



EXPLORATION 51   CONTAINERS 457

Erasing From an Associative Container
The  function erases, or deletes, items from a container. Associative containers imple-
ment two forms of :

Erases the item to which  refers; complexity is constant, possibly amortized over many 
calls. The ordered containers do not return a value; unordered containers return an itera-
tor that refers to the successive value (or ). The behavior is undefined if you try to 
erase  or if  is an iterator for a different container object.

Erases all the items in the range [ , ). Ordered containers do not return a value;
unordered containers return an iterator that refers to the item that follows the last item 
erased. Returns  if the last item in the container is erased. The behavior is undefined 
if the iterators are in the wrong order or refer to a different container object.

As with sequence containers,  erases all elements of the container.

Exceptions
The containers do their best to keep order if an exception is thrown. Exceptions have two 
potential sources: the container itself and the items in the containers. Most member functions 
do not throw exceptions for invalid arguments, so the most common source of exceptions 
from the container itself is  if the container runs out of memory and cannot 
insert a new item. In this case, the insertion fails, and the container is unchanged.

If you try to insert a single item into a container, and the operation fails (perhaps because 
the item’s copy constructor throws an exception, or the container ran out of memory), the 
container is unchanged.

If you try to insert multiple items, and one of those items throws an exception while it is 
being inserted into a container (e.g., the item’s copy constructor throws an exception), most 
containers do not roll back the change. Only the  type rolls back to its original state. The 
other containers leave the container in a valid state, and the items that have been inserted suc-
cessfully remain in the container.

When erasing one or many items, the containers do not throw exceptions themselves, but 
they may need to copy (or in the case of ordered containers, compare) items; if an item’s copy 
constructor throws an exception, the erasure may be incomplete. No matter what, however, 
the container remains in a valid state.

In order for these guarantees to remain valid, destructors must not throw exceptions.

Tip Never throw an exception from a destructor.
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Iterators and References
When using containers, one important point that I have not yet covered is the validity of itera-
tors and references. The issue is that when you insert or erase items in a container, some or all 
iterators for that container can become invalid, and references to items in the container can 
become invalid. The details of which iterators and references become invalid and under what 
circumstances depend on the container.

Iterators and references becoming invalid reflect the internal structure of the container. 
For example,  stores its elements in a single, contiguous chunk of memory. Therefore, 
inserting or erasing any elements shifts all the elements at higher indices, which invalidates 
all iterators and references to those elements at higher indices. As a  grows, it may need 
to allocate a new internal array, which invalidates all extant iterators and references for that 

. You never know when that can occur, so it is safest never to hold onto a ’s itera-
tors or references while adding items to the . (But look up the  member function 
in a library reference if you must keep those iterators and references lying around.)

A , on the other hand, implements a doubly linked list. Inserting or erasing an ele-
ment is simply a matter of inserting or deleting a node, which has no effect on iterators and 
references to other nodes. For all containers, if you erase a node that an iterator refers to, that 
iterator necessarily becomes invalid, just as a reference to the erased element must become 
invalid.

In practical terms, you must take care when inserting and erasing elements. These func-
tions often return iterators that you can use to help maintain your program’s logic. Listing 51-3
shows a function template, , which marches through a container and calls  for 
any element that is less than the value that precedes it. It is a function template, and it works 
with any class that meets the requirements of a sequence container.

Listing 51-3. Erasing Elements from a Sequence Container

Notice how  moves the iterator, , through the container. The  iterator 
refers to the previous item (or  when the loop first begins and there is no pre-
vious item). As long as  is less than , the loop advances by setting  to  and 
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incrementing . If the container is in ascending order, nothing happens to it. If an item is 
out of place, however,  is false, and the item at position  is erased. The value 
that  returns is an iterator that refers to the item that follows  prior to its erasure. 
That’s exactly where we want  to point, so we just set  to the return value, and let the 
loop continue.

Write a test program to see that  works with a  and with a . Make 
sure it works with ascending data, descending data, and mixed data. Listing 51-4 shows my 
simple test program.

Listing 51-4. Testing the  Function Template
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The  keyword informs the compiler that what follows is the name of a type. The 
compiler needs the hint when it compiles a template because it cannot know what 
might actually be at instantiation time, so it cannot know what  might 
be. It might be a type, an object, or a function. If you know the name is a type, you need to 
notify the compiler by inserting the  keyword before the name. Use  only in 
a template and only for names that the compiler cannot determine on its own, such as mem-
bers of a template parameter or members of a template that uses a template parameter as an 
argument.

Sequence Containers
In this book, the most common use of a container has been to add items to the end of a .
A program might then use standard algorithms to change the order, such as sorting into 
ascending order, shuffling into random order, etc. In addition to , the other sequence 
containers are , , and .

The primary distinguishing feature of the sequence containers is their complexity charac-
teristics. If you often need to insert and erase from the middle of the sequence, you probably 
want a . If you need to insert and erase only off one end, use a . If the container’s 
size is a fixed, compile-time constant, use an . (But  works just as well if you don’t 
have .) If the elements of the sequence must be stored contiguously (in a single block of 
memory), use  or .

The following sections include some more details about each container type. Each sec-
tion presents the same program for comparison. The program constructs a deck of playing 
cards then randomly selects a card for itself and a card for you. The card with the highest value 
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wins. The program plays ten times then exits. The program plays without replacement—that 
is, it does not return used cards to the deck after each game. Listing 51-5 shows the  class, 
which the sample programs use.

Listing 51-5. The Card Class, to Represent a Playing Card
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The array Class Template
The  type is a fixed-size container, so you cannot call  or . To use , spec-
ify a base type and a size as a compile-time constant expression, as shown in the following:

What makes  most unusual is that it is a POD type (Exploration 33). Recall that one 
of the requirements for a POD class is that it has no custom constructors. Thus,  lacks the 
constructors that are common to other sequence containers. In exchange, you gain the ability 
to directly initialize the elements of an  by listing the elements inside curly braces.

If you are fortunate enough to have a compiler that implements the new revision to C++, 
you can use a similar technique to initialize other containers. See Exploration 10 for an intro-
duction to this feature.

If you list fewer values than the array size, remaining values are initialized to zero. If you 
omit the initializer altogether, the compiler calls the default initializer if the base type is a class
type; otherwise it leaves the array elements uninitialized. Because an array cannot change size, 
you can’t simply erase the cards after playing. In order to keep the code simple the program 
returns cards to the deck after each game. Listing 51-6 shows the high-card program with 
replacement.

Listing 51-6. Playing High-Card with an 
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The deque Class Template
A  (pronounced “deck”) represents a double-ended queue. Insertion and erasure from 
the beginning or the end is fast, but the complexity is linear if you need to insert or erase 
anywhere else. Most of the time, you can use a  the same way you would use a ,
so apply your experience with  to write the high-card program. Play without replace-
ment: after each game, discard the two cards by erasing them from the container. Listing 51-7
shows how I wrote the high-card program using a .

Listing 51-7. Playing High-Card with a
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Recall from Exploration 21 that the  function reorders a container without erasing 
anything. It returns an iterator that you can treat as the new end of the container. You can then 
erase from that iterator to the container’s . In this case, the program saves the return 
value and passes it as the end-of-range to a second call to . Then the program erases 
both cards at the same time.

The list Class Template
A  represents a doubly linked list. Insertion and erasure is fast at any point in the list, but 
random access is not supported. Thus, the high-card program uses iterators instead of direct 
access to an element, by means of the  function (Exploration 42). Write the high-card 
program to use . Compare your solution with that of mine in Listing 51-8.

Listing 51-8. Playing High-Card with a
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Because this version of the program keeps track of the actual iterator, not just a copy of 
the , it can erase the cards directly, without calling .

The vector Class Template
A  is an array that can change size at runtime. Appending to the end or erasing from 
the end is fast, but complexity is linear when inserting or erasing anywhere else in the vector. 
Compare the  and  versions of the high-card program. Pick the one you prefer and 
modify it to work with . My version of the program is displayed in Listing 51-9.

Listing 51-9. Playing High-Card with a
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Notice how you can change the program to use  instead of a  just by changing 
the type names. Their usage is quite similar. One key difference is that  offers fast (con-
stant complexity) insertion at the beginning of the container; something that  lacks. The 
other key difference is that  stores all of its elements in a single chunk of memory, which 
can be important when interfacing with external libraries. Neither of these factors matters 
here.

Associative Containers
The associative containers offer rapid insertion, deletion, and lookup by controlling the order 
of elements in the container. The ordered associative containers store elements in a tree,
ordered by a comparison functor (default is , which uses ), so insertion, erasure, 
and lookup occur with logarithmic complexity. The unordered containers use hash tables 
(according to a caller-supplied hash functor and equality functor) for access with constant 
complexity in the average case, but with a linear worst-case complexity. Consult any textbook 
on data structures and algorithms for more information regarding trees and hash tables.

Sets store keys, and maps store key/value pairs. Multisets and multimaps allow duplicate 
keys. All equivalent keys are stored at adjacent locations in the container. Plain sets and maps 
require unique keys. If you try to insert a key that is already in the container, the new key is 
not inserted. Remember that equivalence in an ordered container is determined solely by 
calling the comparison functor:  is false and  is false means and

 are equivalent. Unordered containers call their equality functor to determine whether a key
is a duplicate. The default is (declared in ), which uses the 
operator.
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Because associative arrays store keys in an order that depends on the keys’ contents, you 
cannot modify the contents of a key that is stored in an associative container. This means you 
cannot use an associative container’s iterators as output iterators. Thus, if you want to imple-
ment the high-card program using an associative container, you cannot call  to fill the 
deck of cards. Instead, use the  function to create an output iterator that fills the con-
tainer. Listing 51-10 shows how to use  to implement the high-card program.

Listing 51-10. Playing High-Card with a

When using associative containers, you may experience some difficulty when you use 
a custom compare functor (for ordered containers) or custom equality and hash functors (for 
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unordered containers). You must specify the functor type as a template argument. When you 
construct a container object, pass a functor as an argument to the constructor. The functor 
must be an instance of the type that you specified in the template specialization.

For example, Listing 51-10 uses the  function, which it passes to the con-
structor for . Because  is a function, you must specify a function type as 
the template argument. The syntax is a little odd: it looks like a function signature, but with 
instead of a function name. In other words, start with the return type , then use  as the 
function name, and then give the function parameter types in parentheses, as shown in the 
following:

Another approach is to specialize the  class template for type . The explicit 
specialization would implement the function call operator to call . Taking 
advantage of the specialization, you could use the default template argument and construc-
tor arguments. The specialization should inherit from  (declared in 

), which is a class template of three arguments. The first two arguments are the 
operand types and the third argument is the result type. The functor should provide a function
call operator that uses those three types and implements the strict weak ordering function for 
your container. Listing 51-11 demonstrates yet another version of the high-card program, this 
time using a specialization of .

Listing 51-11. Playing High-Card Using an Explicit Specialization of 
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If you have TR1, write an explicit specialization of . Listing 51-1 should be 
able to help. The card.hpp header already declares  for card, so you should be ready 
to rewrite the high-card program one last time, this time for . Compare your 
solution with Listing 51-12.

Listing 51-12. Playing High-Card with an 
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In the next Exploration, you will embark on a completely different journey, one involving 
world travels to exotic locations, where natives speak exotic languages and use exotic charac-
ter sets. The journey also touches on new and interesting uses for templates.
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International Characters

Explorations 16–18 discussed characters, but only hinted at bigger things to come. This 
Exploration tackles the bigger issues, and what issue could be bigger than the world, its inhab-
itants, and their languages? (Astronomers need not reply.)

This Exploration introduces wide characters, which are like ordinary (or narrow) charac-
ters, except that they usually occupy more memory. This means the wide character type can 
potentially represent many more characters than plain . During your exploration of wide 
characters, you will also get to know more about Unicode.

Why Wide?
As you saw in Exploration 17, the meaning of a particular character value depends on the 
locale and character set. For instance, in one locale, you can support Greek characters, while 
in another locale, Cyrillic, depending on the character set. Your program needs to know the 
locale and the character set in order to determine which characters are letters, which are 
punctuation, which are uppercase or lowercase, and how to convert uppercase to lowercase 
and vice versa.

What if your program needs to handle Cyrillic and Greek? What if this program needs to 
handle them both at the same time? And what about Asian languages? Chinese does not use 
a western-style alphabet, but instead uses thousands of distinct ideographs. Several Asian lan-
guages have adopted some Chinese ideographs for their own use. The typical implementation 
of the  type reaches its limit at only 256 distinct characters, which is woefully inadequate 
for international demands.

In other words, you can’t use plain  and  types if you want to support the 
majority of the world’s population and their languages. C++ solves this problem with wide
characters, which it represents using the  type. (Unlike in C,  is a reserved key-
word and is a built-in type, not a typedef.) The intent is that  can represent characters 
that don’t fit into a ; with larger characters, a program can support Asian character sets.

Using Wide Characters
In true C++ fashion, the size and other characteristics of  are left to the implemen-
tation. The only guarantees are that  is at least as big as , and that  is 
the same size as one of the built-in integer types. The  header declares a typedef,

471
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, for that built-in type. In some implementations,  may be identical to ,
but most desktop and workstation environments use 16 or 32 bits for .

Dig up Listing 23-2 and modify it to reveal the size of  and  in your 
C++ environment. How many bits are in ? ________________ How many are in 

? ________________ They should be the same number. How many bits are in ?
________________

Wide string objects use the  type (declared in ). A wide string is 
a string composed of wide characters. In all other ways, wide strings and narrow strings 
behave similarly; they have the same member functions, and you use them the same way. For 
example, the  member function returns the number of characters in the string, regard-
less of the size of each character.

Wide character and string literals look like their narrow equivalents except that they start 
with a capital  and they contain wide characters. The best way to express a wide character in 
a character or string literal is to specify the character’s hexadecimal value with the  escape 
(introduced in Exploration 16). Thus, you need to know the wide character set that your C++ 
environment uses, and you need to know the numeric value of the desired character in that 
character set. If your editor and compiler permit it, you may be able to write wide characters 
directly in a wide character literal, but your source code will not be portable to other envi-
ronments. You can also write a narrow character in a wide character or string literal, and 
the compiler automatically converts the narrow characters to wide ones, as shown in the 
following:

Notice how in the last line of the example I divided the string into two parts. Recall from 
Exploration 16 that the  escape starts an escape sequence that specifies a character by 
its value in hexadecimal (base 16). The compiler collects as many characters as it can that 
form a valid hexadecimal number—that is, digits and the letters through  (in uppercase or 
lowercase). It then uses that numeric value as the representation of a single character. If the 
last line were left as one string, the compiler would try to interpret the entire string as the 
escape. This means the compiler would think the character value is the hexadecimal value, 
20AC1234516. By separating the strings, the compiler knows when the  escape ends, and 
compiles the character value 20AC16, followed by the characters , , , , and . Just like nar-
row strings, the compiler assembles adjacent wide strings into a single, wide string. (You are 
not allowed to place narrow and wide strings next to each other, however. Use all wide strings 
or all narrow strings, not a mixture of the two.)

Wide Strings
Everything you know about  also applies to . They are just instances of a com-
mon template, . The  header declares  to be a typedef for 

 and  as a typedef for . The magic of tem-
plates takes care of the details.
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Because the underlying implementation of  and  is actually a template, any 
time you write some utility code to work with strings, you should consider making that code 
a template, too. For example, suppose you want to rewrite the  function (from 
Listing 21-5) so it operates with wide characters. Instead of replacing  with , let’s 
turn it into a function template. Begin by rewriting the supporting functions to be function 
templates, taking a character type as a template argument. Rewrite the supporting functions 
for  so they function with narrow and wide strings and characters. My solution 
is presented in Listing 52-1.

Listing 52-1. Supporting Cast for the  Function Template
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The next task is to rewrite  itself. The  template actually takes 
three template arguments. The first is the character type, and the next two are details that 
needn’t concern us at this time. All that matters is that if you want to templatize your own 
function that deals with strings, you need to handle all three of the template parameters.

Before starting, however, you need to be aware of a minor hurdle when dealing with func-
tions as arguments to standard algorithms: the argument must be a real function, not the 
name of a function template. In other words, if you need to work with function templates, 
such as  and , you must instantiate the template and pass the template 
instance. When you pass  and  to the  and  algorithms, be 
sure to pass the correct template argument, too. If  is the template parameter for the char-
acter type, use  as the functor argument to .

Rewrite the  function as a function template with three template param-
eters. The first template parameter is the character type: call it . Call the second template 
parameter  and the third . You will need to use all three as arguments to the 

 template. Listing 52-2 shows my version of the  function, 
converted to a template so it can handle narrow and wide strings.

Listing 52-2. Changing  to a Function Template

The  function never uses the  and  template parameters, 
except to pass them along to . If you’re curious about those parameters, consult 
a language reference, but be warned that they’re a bit advanced.

Calling  is easy because the compiler uses automatic type deduction to 
determine whether you are using narrow or wide strings, and instantiates the templates 
accordingly. Thus, the caller doesn’t need to bother with templates at all. 

Without further ado, the  and  functions work with wide character 
arguments. That’s because locales are templates, parameterized on the character type, just like 
the string and I/O class templates.

However, in order to use wide characters you do need to perform I/O with wide charac-
ters, which is the subject of the next section.
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Wide Character I/O
You read wide characters from the standard input by reading from . Write wide 
characters by writing to  or . Once you read or write anything to or from 
a stream, the character width of the corresponding narrow and wide streams is fixed and you 
cannot change it— you must decide whether to use narrow or wide characters, and stay with 
that choice for the lifetime of the stream. So a program must use  or , but not both. 
Ditto for the output streams. The  header declares the names of all the standard 
streams, narrow and wide. The  header defines all the input stream classes and 
operators;  defines the output classes and operators. More precisely,  and 

 define templates, and the character type is the first template parameter.
The  header defines the  class template, parameterized on 

the character type. The same header declares two typedefs.

As you can guess, the  header is similar, defining the  class tem-
plate and the  and  typedefs.

The  header follows the same pattern—  and  are 
class templates, with typedefs, as in the following:

Rewrite the main program from Listing 21-5 to test the  function tem-
plate with wide character I/O. Modern desktop environments should be able to support wide 
characters, but you may need to learn some new features to figure out how to get your text edi-
tor to save a file with wide characters. You may also need to load some additional fonts. Most 
likely, you can supply an ordinary, narrow-text file as input, and the program will work just 
fine. If you’re having difficulty finding a suitable input file, try the palindrome files that you 
can download with the other examples in this book. The file names indicate the character set. 
For example, palindrome-utf8.txt contains UTF-8 input. You need to determine what format 
your C++ environment expects when reading a wide stream and pick the correct file. My solu-
tion is shown in Listing 52-3.

Listing 52-3. The main Program for Testing 
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Reading wide characters from a file or writing wide characters to a file is different from 
reading or writing narrow characters. All file I/O passes through an additional step of character 
conversion. C++ always interprets a file as a series of bytes. When reading or writing narrow 
characters, the conversion of a byte to a narrow character is a no-op, but when reading or writ-
ing wide characters, the C++ library needs to interpret the bytes to form wide characters. It 
does so by accumulating one or more adjacent bytes to form each wide character. The rules for 
deciding which bytes are elements of a wide character and how to combine the characters are 
specified by the encoding rules for a multi-byte character set.

Multi-Byte Character Sets
Multi-byte character sets originated in Asia, where demand for characters exceeded the few 
character slots available in a single-byte character set, such as ASCII. European nations man-
aged to fit their alphabets into 8-bit character sets, but languages such as Chinese, Japanese, 
Korean, and Vietnamese require far more bits to represent thousands of ideographs, syllables 
and native characters.

The requirements of Asian languages spurred the development of character sets that used 
two bytes to encode a character—hence the common term, double-byte character set (DBCS), 
with the generalization to multi-byte character sets (MBCS). Many DBCSes were invented, 
and sometimes a single character had multiple encodings. For example, in Chinese Big 5, the 
ideograph,丁, has the double-byte value, . In the EUC-KR character set (which is 
popular in Korea), the same glyph has a different encoding: .

The typical DBCS uses characters with the most significant bit set (in an 8-bit byte) to rep-
resent double characters. Characters with the most significant bit clear would be taken from 
a single-byte character set (SBCS). Some DBCSes mandate a particular SBCS; others leave it 
open, so you get different conventions for different combinations of DBCS and SBCS. Mixing 
single- and double-byte characters in a single character stream is necessary to represent the 
common use of character streams that mix Asian and Western text. Working with multi-byte 
characters is more difficult than working with single-byte characters. A string’s  func-
tion, for example, doesn’t tell you how many characters are in a string. You must examine 
every byte of the string to learn the number of characters. Indexing into a string is more diffi-
cult because you must take care not to index into the middle of a double-byte character.

Sometimes a single character stream needs more flexibility than simply switching 
between one particular SBCS and one particular DBCS. Sometimes, the stream needs to mix 
multiple double-byte character sets. The ISO 2022 standard is an example of a character set 
that allows shifting between other, subsidiary character sets. Shift sequences (also called escape
sequences, not to be confused with C++ backslash escape sequences) dictate which character 
set to use. For example, ISO 2022-JP is widely used in Japan and allows switching between 
ASCII, JIS X 0201 (a SBCS), and JIS X 0208 (a DBCS). Each line of text begins in ASCII, and 
a shift sequence changes character sets mid-string. For example, the shift sequence 
switches to JIS X 0208-1983.

Seeking to an arbitrary position in a file or text stream that contains shift sequences is 
clearly problematic. A program that needs to seek in a multi-byte text stream must keep track 
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of shift sequences in addition to stream positions. Without knowing the most recent shift 
sequence in the stream, a program has no way of knowing which character set to use to inter-
pret the subsequent characters.

A number of variations on ISO 2022-JP permit additional character sets. The point here is 
not to offer a tutorial on Asian character sets, but to impress on you the complexities of writ-
ing a truly open, general, and flexible mechanism that can support the world’s rich diversity in 
character sets and locales. These and similar problems gave rise to the Unicode project.

Unicode
Unicode is an attempt to get out of the whole character set mess by unifying all major varia-
tions into one, big, happy character set. To a large degree, the Unicode Consortium has 
succeeded. The Unicode character set has been adopted as an international standard as ISO 
10646. However, the Unicode project includes more than just the character set; it also specifies 
rules for case folding, character collation, and more.

Unicode provides over one million possible character values (called code points). So far, 
the Unicode Consortium has assigned about 100,000 code points to characters, so there’s 
plenty of room for expansion. The simplest way to represent a million code points is to use 
a 32-bit integer, and indeed, this is a common encoding for Unicode. It is not the only encod-
ing, however. The Unicode standard also defines encodings that let you represent a code point 
using one or two 16-bit integers and one to four 8-bit integers.

The standard way to write a Unicode code point is U+ followed by the code point as 
a hexadecimal number of at least four places. Thus,  is the C++ encoding of U+0041 
(Latin capital A), and Greek  has code point U+03C0, and ♪ has code point U+266A or 
U+1D160. The former code point is one of a group of miscellaneous symbols, which happen to 
include an eighth note. The latter code point is part of a group of musical symbols, which you 
will need for any significant work with music-related characters.

UTF-32 is the name of the encoding that stores a code point as a 32-bit integer. This for-
mat is ideally suited for the  type, and several C++ environments, such as GNU g++, 
can utilize UTF-32 for . This encoding is the simplest to use because one storage unit 
represents one character. On the other hand, it takes up the most memory of all Unicode 
encodings. UTF-32 is best suited for in-memory representation of Unicode text.

If you are using UTF-32, you can encode many familiar characters normally and other 
characters using their hexadecimal code points and  escapes. For example, to represent the 
letter A, use ; for a lowercase Greek , use ; and for a musical eighth note (♪),
use  or .

Some older environments use UTF-16, which represents a code point using one or two 
16-bit integers. In some ways, UTF-16 is the worst of both worlds. You still have the same 
problem as multi-byte characters, namely, that one storage unit does not necessarily rep-
resent a single code point, so UTF-16 is less than ideal as an in-memory representation. In 
addition, you have the problem that the two bytes of a UTF-16 code point can appear with the 
most-significant byte first or last. Some hardware platforms prefer one order or the other, but 
a program must be able to read and work with either order.
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Note The position of the most-significant byte is called “endianness.” A “big-endian” platform is one with 
the most-significant byte first. A “little-endian” platform puts the least-significant byte first. The popular Intel 
x86 platform is little-endian.

So UTF-16 is not ideal as a file encoding, either. Nonetheless, some major C++ tools and 
libraries, not to mention a popular operating system, have adopted UTF-16— you might be 
stuck with it. Again, you need a good library to work with code points instead of storage units.

The majority of common characters fit into a single 16-bit unit, so UTF-16 often requires 
less memory than UTF-32. For example,  fits into 16 bits, so you can still use , but 丁
requires two 16-bit storage units (called a surrogate pair): .

Many programmers cope with the difficulty of working with UTF-16 by ignoring surrogate 
pairs completely. They assume that  does indeed return the number of code points in 
the string. This strategy works for many situations because Unicode’s designers kept the most 
common code points in the lower 16-bit region (called the Basic Multilingual Plane or BMP). 
Without surrogate pairs, you cannot represent any characters with code points greater than 
U+FFFF. This means you lose access to ancient scripts, specialized alphabets and symbols, 
and infrequently used ideographs.

Another common encoding for Unicode uses one to four 8-bit units to make up a single
code point. Common characters in Western European languages can usually be represented 
in a single byte, and many other characters take only two bytes. Less common characters 
require three or four. The result is an encoding that supports the full range of Unicode code 
points, consumes less memory than UTF-16 for the vast majority of strings, and never needs 
more space than UTF-32, with a cost of increased complexity in processing. This character set 
is called UTF-8. Representing a Greek letter  requires only two bytes, as in UTF-16, but with 
a different encoding: . An eighth note (♪) requires three or four bytes, again with 
a different encoding than that used in UTF-32:  or .

UTF-8 is a common encoding for files and network transmissions. It has an advantage 
over UTF-32 and UTF-16 for external representations because you don’t need to deal with 
endianness. The Unicode standard defines a mechanism for encoding and revealing the endi-
anness of a stream of UTF-16 or UTF-32 text, but that just makes extra work for you. Thus, the 
simplest way to work when you need to use international characters is to use UTF-8 externally 
and UTF-32 internally. To conserve memory, use UTF-8 exclusively, and use a library for work-
ing with UTF-8 in memory.

In C++ terms, a  is a suitable unit for UTF-8, but the  type has no support for 
multiple units making up a single code point. The  type may be suitable for UTF-16 
or UTF-32, depending on the implementation. The  type has no support for multiple 
units, so it cannot support surrogate pairs directly.

Unicode’s popularity continues to increase, but not all C++ environments support Uni-
code, and  might use a different character set, such as Chinese Big 5. The only way to 
guarantee support for Unicode is to use a third-party library. See this book’s web pages for 
some links. Most GUI frameworks provide their own character type, such as Qt’s  and 
Microsoft’s , both of which are 16-bits and implement UTF-16.

Muddying the waters further is the fact that even if your C++ environment has full support 
for Unicode and you can write programs that use UTF-32, you have no guarantee that the host 
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operating system can support Unicode. In particular, the fonts you have on your system prob-
ably don’t contain all 100,000 glyphs that make up the Unicode character set. Thus, a program
may write  to the standard output, but you probably won’t see ♪.

Universal Character Names
Unicode makes one official appearance in the C++ standard. You can specify a character using 
its Unicode code point. The compiler maps the code point into a suitable character in the 
native character set. Use  or , replacing  or  with the hexadeci-
mal code point. Unlike the  escape, you must use exactly four hexadecimal digits with  or 
eight with . These character constructs are called universal character names.

Thus, a better way to encode international characters in a string is to use a universal char-
acter name. This helps insulate you against vagaries in the native character set. On the other 
hand, you have no control over the compiler’s actions if it cannot map a Unicode code point 
to a native character. Therefore, if your native character set is ISO 8859-7 (Greek), the follow-
ing code should initialize the variable  with the value , but if your native character set 
is ISO 8859-1 (Latin-1), the compiler cannot map it and so might give you a space, a question
mark, or something else:

Also note that  and  are not escape sequences (unlike ). You can use them anywhere 
in a program, not just in a character or string literal.

Most likely, you’ll rarely, if ever, find a need to write universal character names. Instead, 
you will probably seek out tools that let you edit Unicode characters directly. Instead of deal-
ing with Unicode encoding issues, the editor simply reads and writes universal character 
names. Thus, the programmer edits WYSIWYG international text, and the source code retains 
maximum portability. Because universal character names are allowed anywhere, you can use 
international text in comments, too. If you really want to have fun, try using international let-
ters in identifier names. Not all compilers support this feature, although the standard requires 
it. Thus, you would write a declaration

and your smart editor would store the following in the source file

and your standard-compliant compiler would accept it and let you use  as an identifier. 
I don’t recommend using extended characters in identifiers unless you know that everyone 
reading your code is using tools that are aware of universal character names. Otherwise, they 
make the code much harder to read, understand, and maintain.

Does your compiler support universal character names in strings? ________________ 
Does your compiler support universal character names in identifiers? ________________

The character set is only one aspect of an international locale. The next Exploration takes 
a closer look at locales and how to use them.
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Locales and Facets

Wide characters are merely one aspect of working with international locales. As you saw in 
Exploration 17, C++ offers a complicated system to support internationalization and localiza-
tion of your code. Even if you don’t intend to ship translations of your program in a multitude
of languages, you must understand the locale mechanism that C++ uses. Indeed, you have 
been using it all along because C++ always sends formatted I/O through the locale system. 
This Exploration will help you understand locales better and make more effective use of them 
in your programs.

The Problem
The story of the Tower of Babel is appealing to programmers. Imagine a world that speaks 
a single language and uses a single alphabet. How much simpler programming would be if we 
didn’t need to deal with character set issues, language rules, or locales.

Alas, the real world has many languages, numerous alphabets and syllabaries, and 
multitudinous character sets. Somehow, we programmers must cope. It isn’t easy, and this 
Exploration cannot give you all the answers, but it’s a start.

Different cultures, languages, and character sets give rise to different methods to pres-
ent and interpret information, different interpretations of character codes (as you learned in 
Exploration 16), and different ways of organizing (especially sorting) information. Even with 
numeric data, you find you need to write the same number in several different ways, depend-
ing on the local environment, culture, and language. Table 53-1 presents just a few examples 
of the ways to write a number according to various cultures, conventions, and locales.

Table 53-1. Various Ways to Write a Number

Number Culture

123456.7890 Default C++

123,456.7890 United States

123 456.7890 International scientific

Rs. 1,23,456.7890 Indian currency*

123.456,7890 Germany

* Yes, the commas are correct.

481
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Other cultural differences can include:

vs. 24-hour clock

accented characters are sorted relative to non-accented characters (does 
come before or after ?)

 formats: month/day/year, day/month/year, or year-month-day

currency (¥123,456 or 99¢)

Somehow, the poor application programmer must figure out exactly what is culturally-
dependent, collect the information for all the possible cultures where the application might 

already been done for you and is part of the C++ standard library.

Locales to the Rescue
C++ uses a system called locales to manage this disparity of styles. Exploration 17 introduced 
locales as a means to organize character sets and their properties. Locales also organize for-
matting of numbers, currency, dates, and times (plus some more stuff that I won’t get into).

C++ defines a basic locale, known as the classic locale, which provides minimal format-
ting. Each C++ implementation is then free to provide additional locales. Each locale typically 
has a name, but the C++ standard does not mandate any particular naming convention, which 
makes it difficult to write portable code. You can rely on only two standard names:

classic locale is named . The classic locale specifies the same basic formatting 
information for all implementations. When a program starts, the classic locale is the 
initial locale.

) means the default, or native locale. The default locale obtains 
formatting and other information from the host operating system in a manner that 
depends on what the OS can offer. With traditional desktop operating systems, you 
can assume that the default locale specifies the user’s preferred formatting rules and 
character set information. With other environments, such as embedded systems, the 
default locale may be identical to the classic locale.

A number of C++ implementations use ISO and POSIX standards for naming locales: an 
ISO 639 code for the language (e.g.,  for English,  for Korean), optionally 
followed by an underscore and an ISO 3166 code for the region (e.g.,  for Switzerland,  for 
Great Britain,  for Hong Kong). The name is optionally followed by a dot and the name of 
the character set (e.g.,  for Chinese Big 5 encoding). Thus, I use

 for my default locale. A native of Taiwan might use 
Switzerland, developers there might use . Read your library documentation to 
learn how it specifies locale names. What is your default locale? ________________ What are 
its main characteristics?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________
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Every C++ application has a global  object. Unless you explicitly change a stream’s
locale, it starts off with the global locale. (If you later change the global locale, that does not 
affect streams that already exist, such as the standard I/O streams.) Initially, the global locale 
is the classic locale. The classic locale is the same everywhere (except for the parts that depend 
on the character set), so a program has maximum portability with the classic locale. On the 
other hand, it has minimum local flavor. The next section explores how you can change 
a stream’s locale.

Locales and I/O
Recall from Exploration 17 that you imbue a stream with a locale in order to format I/O 
according to the locale’s rules. Thus, to ensure that you read input in the classic locale, and 
that you print results in the user’s native locale, you need the following:

The standard I/O streams initially use the classic locale. You can imbue a stream with 
a new locale at any time, but it makes the most sense to do so before performing any I/O.

Typically, you would use the classic locale when reading from, or writing to, files. You usu-
ally want the contents of files to be portable and not dependent on a user’s OS preferences. 

the user can be most comfortable reading and understanding it. On the other hand, if there is 
any chance that another program might try to read your program’s output (as happens with 
UNIX pipes and filters), you should stick with the classic locale in order to ensure portability 
and a common format. If you are preparing output to be displayed in a GUI, by all means, use 
the default locale.

Facets
The way a stream interprets numeric input and formats numeric output is by making requests 
of the imbued locale. A  object is a collection of pieces, each of which manages a small

, provides the punctua-
tion symbols for numeric formatting, such as the decimal point character (which is  in the 
United States, but , reads from a stream and parses the 
text to form a number, using information it obtains from . The pieces such as 
and  are called facets.

-
cally manage these details for you; the  function uses the  facet to format 
numbers for output, and  uses  to interpret text as numeric input. How-
ever, if you want to format currency, dates, or times, you need to use the facets yourself. The 

, , and other character-related functions about which you learned in Explora-
tion 17 also use facets. Any program that needs to do a lot of character testing and converting 
can benefit by managing its facets directly.

Like strings and I/O streams, facets are class templates, parameterized on the character 
type. Thus, if your program needs to parse currency for input, it may use  for 
narrow characters or  for wide characters.



EXPLORATION 53   LOCALES AND FACETS484

To obtain a facet from a locale, call the  function template. The template argu-
ment is the facet you seek, and the function argument is the  object. The returned facet 
is , so the best way to use the result is to initialize a  reference, as demonstrated in 
the following:

Reading from the inside outward, the  function is requesting a reference to the 
 facet. The default locale is passed as the sole argument to the  func-

tion. The result returned by  is used to initialize the reference called . The 
type of  is a reference to a  facet. It’s a little daunting to read at 
first, but you’ll get used to it—eventually.

Once you have a facet, call its member functions to use it. This section introduces the cur-
rency facets as an example. A complete library reference tells you about all the facets and their 
member functions.

The  facet has two overloaded functions named . The  function reads 
a currency value from an iterator range. It checks the currency symbol, thousands separator, 
thousands grouping, and decimal point. It extracts the numeric value and stores the value 
in a  (overloaded form 1) or as a  of digit characters (overloaded form 2). If you 
choose to use , take care that you do not run into rounding errors. The  function 
assumes that the input originates in an input stream, and you must pass a stream object as 
one of its arguments. It checks the stream’s flags to see whether a currency symbol is required 
(  flag is set). And finally, it sets error flags as needed:  for input formatting 
errors and  for end of file.

Similarly, the  facet provides the overloaded  function, which formats 
a  or digit  according to the locale’s currency formatting rules and writes the 
formatted value to an output iterator. If the stream’s  flag is set,  prints the 
currency symbol. The locale’s rules specify the position and formatting of the symbol (in the 

 facet). The money facets can use local currency rules or international standards. 
A  argument to the  and  functions specifies the choice:  for international and 

 for local.
Listing 53-1 shows a simple program that imbues the standard I/O streams with the 

default locale then reads and writes currency values. It hides the complexity of using facets 
inside classes, which helps keep the main program easy to read. Notice how the reader and 
writer classes cache the facet so their objects can use the locale repeatedly without the need 
to fetch it each time. The C++ library offers a means of receiving notification whenever the 
imbued locale changes. This enables you to reload the facet, but the techniques are beyond 
the scope of this book. Consult a comprehensive C++ reference for details.

Listing 53-1. Reading and Writing Currency Using the Money Facets
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Notice that the reader makes use of , not . The for-
mer works at a lower level than the latter. An  reads raw characters from 
a stream without interpreting those characters. Similarly, the writer uses 
to write individual characters to the stream.

The  objects reflect how the standard I/O streams work. An input sentry skips lead-
ing white space if the  flag is set (which is the default). An output sentry flushes the 
output buffer after each write if the  flag is set.
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Character Categories
This section continues the examination of character sets and locales that you began in Explo-
ration 17. In addition to testing for alphanumeric characters, or lowercase characters, you can 
test for several different categories. Table 53-2 lists all the classification functions and their 
behavior in the classic locale. They all take a character (  or ) as the first argument 
and a  as the second; they all return a  result.

Table 53-2. Character Classification Functions

Function Description Classic Locale

Alphanumeric – , – , –

Alphabetic – , –

Control Any non-printable character*

Digit –  (in all locales)

Graphical Printable character other than *

Lowercase –

Printable Any printable character in the character set*

Punctuation Printable character other than alphanumeric or white space*

White space , , , , ,

Uppercase –

Hexadecimal digit – , – , –  (in all locales)

* Behavior depends on the character set, even in the classic locale

The classic locale has fixed definitions for some categories (such as ). Other 
locales, however, can expand these definitions to include other characters, which may (and 
probably will) depend on the character set, too. Only  and  have fixed defini-
tions for all locales and all character sets.

However, even in the classic locale, the precise implementation of some functions, such 
as
character set  is a control character, but in the equally popular Windows-1252 character 

 is invalid, so all the categorization functions would return 
.

The interaction between the locale and the character set is one of the areas where C++ 
underperforms. The locale can change at any time, which potentially sets a new character set, 
which in turn can give new meaning to certain character values. But, the compiler’s view of the 

 as the uppercase Roman 
letter A, and compiles the numeric code according to its idea of the runtime character set. That 
numeric value is then fixed forever. If the characterization functions use the same character 
set, everything is fine. The  and  functions return true,  returns false, 
and all is right with the world. If the user changes the locale and by so doing, changes the char-
acter set, those functions may not work with that character variable any more.
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Let’s consider a concrete example as shown in Listing 53-2. This program encodes locale 
names, which may not work for your environment. Read the comments and see if your envi-
ronment can support the same kind of locales, albeit with different names. After reading 
Listing 53-2, what do you expect as the result?

_________________________________________________________________________________

_________________________________________________________________________________

Listing 53-2. Exploring Character Sets and Locales
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What do you get as the actual response?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

In case you had trouble identifying locale names or other problems running the program, 
Listing 53-3 shows the result when I run it on my system.

Listing 53-3. Result of Running the Program in Listing 53-2

As you can see, the same character has different categories, depending on the locale’s 
character set. Now imagine that the user has entered a string, and your program has stored the 
string. If your program changes the global locale or the locale used to process that string, you 
may end up misinterpreting the string.

Listing 53-1 cached its facets. In Listing 53-2, the categorization functions reload their fac-
ets every time they are called, but you can rewrite the program so it loads its facet only once. 
The character type facet is called . It has a function named  that takes a category mask 
and a character as arguments, and returns a : true if the character has a type in the mask. 
The mask values are specified in .
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Note Notice the convention that the Standard library uses throughout. When a class template needs 
helper types and constants, they are declared in a non-template base class. The class template derives from 
the base class, and so gains easy access to the types and constants. Callers gain access to the types and 
constants by qualifying with the base class name. By avoiding the template in the base class, the Standard 
library avoids unnecessary instantiations just to use a type or constant that is unrelated to the template 
argument.

The mask names are the same as the categorization functions, but without the leading 
. Listing 53-4 shows how to rewrite the simple character set demonstration to use a single

cached  facet.

Listing 53-4. Caching the  Facet
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The  facet also performs case conversions with the  and  member 
functions, which take a single character argument and return a character result. Copy the pro-
gram from Listing 40-5, and change the functor classes to use cached facets. Compare your 
program with Listing 53-5.

Listing 53-5. Counting Words Again, This Time with Cached Facets
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Notice how most of the program is unchanged. The simple act of caching the  facet 
reduces this program’s runtime by about 15 percent on my system.

Collation Order
You can use the relational operators (such as ) with characters and strings, but they don’t 
actually compare characters; they compare code points. Most users don’t care whether a list of 
names is sorted in ascending numerical order by code point. They want a list of names sorted 
in ascending alphabetical order, according to their native collation rules.

zebra. The  facet compares strings according to the locale’s rules. Its  func-
tion is somewhat clumsy to use, so the  class template provides a simple interface for 
determining whether one  is less than another in a locale: use the ’s function 
call operator. In other words, you can use a  object itself as the comparison functor for 
standard algorithms, such as . Listing 53-6 shows a program that demonstrates how colla-
tion order depends on locale. In order to get the program to run in your environment, you may 
need to change the locale names.

Listing 53-6. Demonstrating How Collation Order Depends on Locale
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The boldface line shows how the  object is used as a comparison functor to sort the 
words. Table 53-3 lists the results I get for each locale. Depending on your native character set, 
you may get different results.

Table 53-3. Collation Order for Each Locale

Classic Great Britain Norway

use them with wide characters, 
too. In fact, if you had trouble running the program in Listing 53-6, or you saw different results, 
using wide characters may solve your problems. Rewrite Listing 53-6 to use  instead 
of , to use wide string literals, and to write results to . The  class 
template takes multiple template arguments. As you know, the first is the type of item to write 
to the output stream. The second is the stream’s character type. Because the default type for 
the second argument is , we’ve never needed to specify it before, but now we do. Compare 
your program with Listing 53-7.

Listing 53-7. Testing Collation Order of Wide Strings
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On the other hand, some environments have poor support for wide characters, and the 
results may be worse than earlier. You need to get to know your compiler, library, and operat-
ing system in order to know what works best for you.

The next and final topic in Part 3 is to further your understanding of text I/O.
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Text I/O

Input and output have two basic flavors: text and binary. Binary I/O introduces subtleties that 
are beyond the scope of this book; so all discussion of I/O herein is text-oriented. This Explora-
tion presents a variety of topics related to textual I/O. You’ve already seen how the input and 
output operators work with the built-in types as well as with the standard library types, when 
it makes sense. You’ve also seen how you can write your own I/O operators for custom types. 
This Exploration shows some additional details about file modes, reading and writing strings, 
and converting values to and from strings.

File Modes
When you open a file stream, you can specify file modes as a second argument, after the file 
name. The default mode for an  is , which opens the file for input. 
The default mode for  is . (The  opera-
tor combines certain values, such as modes. Exploration 61 will cover this in depth.) The 
mode opens the file for output. If the file doesn’t exist, it is created. The  mode means 
to truncate the file so you always start with an empty file. If you explicitly specify the mode 
and omit , the old contents (if any) remain. Therefore, by default, writing to the output 
stream overwrites the old contents. If you want to position the stream at the end of the old 
contents, use the  mode (short for at-end), which sets the stream’s initial position to the 
end of the existing file contents. The default is to position the stream at the start of the file.

Another useful mode for output is  (short for append), which causes every write to 
append to the file. That is,  affects every write, whereas  affects only the starting posi-
tion. The  mode is useful when writing to a log file.

Write a  function that takes a single string as an argument and writes that string 
to a file named “debug.txt”. Listing 54-1 shows the header that declares the function.

Listing 54-1. Header That Declares a Trivial Debugging Function

495
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Append every log message to the file, terminating each message with a newline. To ensure 
that the debugging information is properly recorded, even if the program crashes, open the file 
anew every time the  function is called. Listing 54-2 shows my solution.

Listing 54-2. Implementing the Debug Function

String Streams
In addition to file streams, C++ offers string streams. The  header defines 

 and . As you may have guessed, these names are typedefs for 
template specializations:  and .
Naturally,  specializations are also in .

A string stream reads from and writes to a  object. For input, supply the 
string as an argument to the  constructor. For output, you can supply a string 
object, but the more common usage is to let the stream create and manage the string for you. 
The stream appends to the string, allowing the string to grow as needed. After you are finished 
writing to the stream, call the  member function to retrieve the final string.

Suppose you need to read pairs of numbers from a file, representing a car’s odometer 
reading and the amount of fuel needed to fill the tank. The program computes the miles-
per-gallon (or liters-per-kilometer if you prefer) at each fill-up, and overall. The file format is 
simple: each line has the odometer reading followed by the fuel amount on one line, separated 
by white space.

Write the program. Listing 54-3 demonstrates the miles-per-gallon approach.

Listing 54-3. Computing Miles-Per-Gallon
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Listing 54-4 shows the equivalent program, but instead computing liters-per-kilometer. 
For the remainder of this Exploration, I will use miles-per-gallon; Readers who don’t use this 
method can consult the files that accompany the book for liters-per-kilometer.

Listing 54-4. Computing Liters-Per-Kilometer
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What happens if the user accidentally forgets to record the fuel on one line of the file?

_________________________________________________________________________________

The input loop doesn’t know or care about lines. It resolutely skips over white space in its 
quest to fulfill each input request. Thus, it reads the subsequent line’s odometer reading as a 
fuel amount. Naturally, the results will be incorrect.

A better solution would be to read each line as a string and extract two numbers from 
the string. If the string is not formatted correctly, issue an error message and ignore that line. 
You read a line of text into a  by calling the  function (declared in 

). This function takes an input stream as the first argument and a  object as the 
second argument. It returns the stream, which means it returns a true value if the read suc-
ceeds or false if the read fails, so you can use the call to  as a loop condition.

Once you have the string, open an  to read from the string. Using the string 
stream the same way you would use any other input stream. Read two numbers from the 
string stream; if the string stream does not contain any numbers, ignore that line. If it contains 
only one number, issue a suitable error message. Listing 54-5 presents the new program.

Listing 54-5. Rewriting the Miles-Per-Gallon Program to Parse a String Stream
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Most text file formats allow some form of annotation or commentary. The file format 
already allows one form of commentary, as a side effect of the program’s implementation. 
How can you add comments to the input file?

_________________________________________________________________________________

After the program reads the fuel amount from the line, it ignores the rest of the string. 
You can add comments to any line that contains the proper odometer and fuel data. But that’s 
a sloppy side effect. A better design requires the user to insert an explicit comment marker. 
Otherwise, the program might misinterpret erroneous input as a valid input followed by a 
comment, such as accidentally inserting an extra space, as illustrated in the following:

Let’s modify the file format. Any line that begins with a pound sign ( ) is a comment. 
Upon reading a comment character, the program skips the entire line. Add this feature to the 
program. A useful function is an input stream’s  function. After reading a character 
from the stream,  returns that character to the stream, causing the subsequent read 
operation to read that character again. In other words, after reading a line, read a character 
from the line, and if it is , skip the line. Otherwise, call  and continue as before. 
Compare your result with mine, as shown in Listing 54-6.

Listing 54-6. Parsing Comments in the Miles-Per-Gallon Data File
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More complicated still is allowing the comment marker to appear anywhere on a line. A 
comment extends from the  character to the end of the line. The comment marker can appear 
anywhere on a line, but if the line contains any data, it must contain two valid numbers prior 
to the comment marker. Enhance the program to allow comment markers anywhere. Con-
sider using the  member function of . It has many forms, one of which takes 
a character as an argument and returns the zero-based index of the first occurrence of that 
character in the string. The return type is . If the character is not in the 
string,  returns the magic constant .

Once you find the comment marker, you can delete the comment by calling  or 
copy the non-comment portion of the string by calling . String member functions 
work with zero-based indices. Substrings are expressed as a starting position and a count of 
the number of characters affected. Usually, the count can be omitted to mean the rest of the 
string. Compare your solution with mine, presented in Listing 54-7.
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Listing 54-7. Allowing Comments Anywhere in the Miles-Per-Gallon Data File
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Now that the file format allows explicit comments on each line, you should add some 
more error-checking to make sure that each line contains only two numbers, and nothing 
more (after removing comments). One way to check is to read a single character after reading 
the two numbers. If the read succeeds, the line contains erroneous text. Add error-checking to 
detect lines with extra text. Compare your solution with my solution, shown in Listing 54-8.

Listing 54-8. Adding Error-Checking for Each Line of Input
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Text Conversion
Let me put on my clairvoyance cap for a moment . . . I can see that you have many unanswered 
questions about C++; and one of those questions is, “How can I convert a number to a string 
easily, and vice versa?”

Now that you know how to use string streams, you can see one possible solution: use an 
 to read a number from a string, or use an  to write a number to a 

string. The only task is to wrap up the functionality in an appropriate function. Even better is 
to use a template. After all, reading or writing an  is essentially the same as reading or writ-
ing a , etc.

Listing 54-9 shows the  function template, which has a single template param-
eter, —the type of object to convert. The function returns type  and takes a single function 
argument: a string to convert.

Listing 54-9. The  Function Extracts a Value from a String

The  class is a custom exception class. The details are not relevant to 
this discussion, but inquisitive readers can satisfy their curiosity with the files that accompany 
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this book.  can be any type that permits reading from an input stream with the  operator, 
including any custom operators and types that you write.

Your turn: write the  function template, which takes a single template argument 
and declares the  function to take a single function argument of that type. The func-
tion converts its argument to a string by writing it to a string stream and returns the resulting 
string. Compare your solution with mine, presented in Listing 54-10.

Listing 54-10. The  Function Converts a Value to a String

Can you see any particular drawback to these functions? ________________ If so, what?

_________________________________________________________________________________

No doubt, you can see many problems, but in particular, the one I want to point out is 
that they don’t work with wide characters. It would be a shame to waste all that effort you 
spent in understanding wide characters, so let’s add another template parameter for the char-
acter type. In fact, the  class template has three template parameters: the character 
type, something called the character traits, and an allocator object to manage any heap mem-
ory that the string might use. You don’t need to know any of the details of these three types; 
you need only pass them to the  class template. The  class 
template takes the first two template arguments.

Your first attempt at implementing  may look a little bit like Listing 54-11.

Listing 54-11. Rewriting  As a Template Function
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This implementation works. It’s correct, but it’s clumsy. Try it. Try to write a simple test 
program that converts an integer to a narrow string and the same integer to a wide string.
Don’t be discouraged if you can’t do it. This exercise is a demonstration of how templates in 
the standard library can lead you astray if you aren’t careful. Take a look at my solution in 
Listing 54-12.

Listing 54-12. Demonstrating the Use of 

Do you see what I mean? How are you supposed to know what to provide as the third and 
fourth template arguments? Don’t worry, we can find a better solution.

One alternative approach is not to return the string, but to take it as an output function 
argument. The compiler could then use argument-type deduction, and you wouldn’t need to 
specify all those template arguments. Write a version of  that takes the same tem-
plate parameters but takes two function arguments: the value to convert and the destination 
string. Write a demonstration program to show how much simpler this function is to use. 
Listing 54-13 shows my solution.

Listing 54-13. Passing the Destination String As an Argument to 
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On the other hand, if you want to use the string in an expression, you still need to declare 
a temporary variable just to hold the string.

Another way to approach this problem is to specify  or  as the 
sole template argument. The compiler can deduce the type of the object you want to convert. 
The  function returns the string type and takes an argument of the object type. Both 
types need to be template parameters. Which parameter should be first? Listing 54-14 shows 
the latest incarnation of , which now takes two template parameters: the string type, 
and the object type.

Listing 54-14. Improving the Calling Interface of 

(Remember  from Exploration 51?) The  function does little error 
checking. For example, it will happily convert “1+2=3” into the integer 1 or “1.2.3.4.5” into 
the floating-point value 1.2. You can add some error checking by making sure that only white 
space follows the object after reading it from the string stream. Use the same trick you used 
in Listing 54-8: try to read a single character. If the read succeeds, you know that additional 
text remains in the stream. If the read fails, only white space remains. Make this change to 

. Compare your solution with Listing 54-15.

Listing 54-15. Improving  by Adding Some Error-Checking
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Boost Lexical Cast
The  and  function templates work, but I don’t use them in my own 
programs. Instead, I use a template from an open-source C++ suite of libraries called Boost 
( ). In particular, I use , which replaces both 
function templates.

I briefly mentioned the Boost project in Exploration 50, but it deserves a more complete 
explanation. Boost is the most important third-party C++ library extant. Among the many 
libraries it contains are some that are destined to be incorporated into future revisions of the 
C++ standard. I also mentioned TR1 in Exploration 51; many of the libraries in TR1 originated 
in Boost. Boost provides a means of field-testing libraries and gaining practical experience 
with them prior to standardizing. In this way, the standardization committee has greater con-
fidence that the standard is practical and helpful.

Every library in Boost has been peer reviewed to ensure widespread support. Libraries are 
documented, although some have better documentation than others. Boost’s open-source 
license further ensures that the libraries can enjoy wide use in open-source and closed-source 
projects. Boost’s authors took great pains to achieve a high degree of portability, even to some 
fairly broken compilers that fail to implement large swaths of the C++ standard, or implement 
it incorrectly.

Perhaps most important is that much of Boost was written by C++ experts, including 
members of the C++ standardization committee. The result is that the interface to the Boost 
libraries often represents the best that C++ has to offer. The  template is an 
example.

The name parallels the name of cast expressions that are built into the C++ language, 
such as  (Exploration 23). For instance, to convert a  to an , use 

. To convert an  to a , use .
It’s that simple.

The implementation is not so simple, however. That’s why I started with  and 
. The implementation of , like most Boost elements, contains a large 

amount of code to ensure portability. In a typical Boost header, the portability hacks take up 
more lines than the real code.

Also, Boost often takes full advantage of templates. You need to be an advanced program-
mer to make sense of many Boost libraries, but anyone can use Boost without understanding 
the implementation. (Just as you were able to use  long before you learned about the 

 template.)
If you don’t have Boost available, don’t fret. This book does not require it. On the other 

hand, if you have Boost, I highly recommend that you look into using it.
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Project 3: Currency Type

It’s time for another project. You’re going to continue building on the  type from  
Project 2, and incorporate what you’ve learned about locales and I/O. Your task this time is to 
write a  type. The value is stored as a fixed-point value. I/O is formatted according to 
the  and  facets. You may need a library reference to help you.

Make sure you can add two  amounts to get a  value, subtract two 
 amounts to get , multiply and divide  by an integer or 

value to get a  result, and divide two  values to get a  result.
As with any project, start small and add functionality as you go. For example, start with 

the basic data representation then add I/O operators. Add arithmetic operators one at a time. 
Write each test function before you implement the feature.

509
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Pointers

Few topics cause more confusion, especially for programmers new to C++, than pointers. 
Necessary, powerful, and versatile, pointers can also be dangerous and the underlying cause of 
so many bugs, that they are both bane and blessing. Pointers are hard at work behind many of 
the standard library’s features, and any serious application or library inevitably uses pointers 
in some fashion. When used with care and caution, pointers will become an indispensable tool 
in your C++ programmer’s toolkit.

The Problem
Before diving into syntax and semantics, consider the following problem. Real-life C++ proj-
ects typically contain multiple source files, and each source file includes multiple headers. 
While you are working, you will compile and recompile the project many times. Each time, it’s 
preferable to recompile only those files that have changed, or that include a header file that 
has changed. Different development environments have different tools to decide which files 
to recompile. An IDE typically makes these decisions itself; in other environments, a separate 
tool, such as make, jam, or scons, examines the files in your project and decides which ones to 
recompile.

The problem to tackle in this and following Explorations is to write a simple tool that 
decides which files to compile and pretends to compile them. (Actually invoking an external 
program is beyond the scope of this book, so you won’t learn how to write an entire build tool.)

The essential idea is simple: to make an executable program, you must compile source 
files into object files and link the object files together to form the program. The executable 
program is said to depend on the object files, which in turn, depend on the source files. 
Other terminology has the program as the target with the object files as its dependencies. An 
object file, in turn, can be a target, with a source file and the header files that it includes as 
dependencies.

As you know, to compile a single source file into a single object file, the compiler may 
need to read many additional header files. Each of these header files is a dependency of the 
object file. Thus, one header file can be a dependency of many object files. In more techni-
cal terms, targets and dependencies form a directed acyclic graph (DAG), which I will call the 
dependency graph.

513
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Note A cyclic graph, such that A depends on B, and B depends on A, is a really bad idea in the real world. 
For the sake of simplicity, I will ignore this error condition in this and subsequent Explorations.

Anyone who’s been around large projects knows that dependency graphs can become 
extremely complex. Some header files may be generated by other programs, so the header files 
are targets with the generating programs as dependencies, and the generating programs are 
targets with their own dependencies.

IDEs and programs, such as make, analyze the dependency graph and determine which 
targets must be built first to ensure every target’s dependencies are fulfilled. Thus, if A depends 
on B, and B depends on C, make must build C first (if it is a target), then B, and finally A. The 
key algorithm that make employs to find the correct order in which to build targets is a topo-
logical sort.

Topological sorts are not included in the typical algorithms coursework of many computer 
science majors. Nor does the algorithm appear in many textbooks. However, any comprehen-
sive algorithms book includes topological sort. 

Note A good text on topological sort is Introduction to Algorithms, by T. H. Cormen, C. E. Leiserson, and 
R. L. Rivest, 1990 MIT Press. My solution implements exercise 23.4-5.

The C++ standard library does not include a topological sort algorithm because it is not 
a sequential algorithm. It operates on a graph, and the C++ library has no standard graph 
classes. (Boost has a graph library that includes topological sort, but to ensure everyone can 
use this Exploration, we will write our own topological sort function.)

We’ll begin this Exploration by writing a pseudo-make program—that is, a program that 
reads a makefile: a file that describes a set of targets and their dependencies, performs a topo-
logical sort to find the order for building targets, and prints the targets in proper build order. 
In order to simplify the program somewhat, restrict the input to a text file that declares depen-
dencies as pairs of strings, one pair on a line of text. The first string is the name of a target 
and the second string is the name of a dependency. If a target has multiple dependencies, the 
input file must list the target on multiple lines, one per dependency. A target can be a depen-
dency of another target. The order of lines within the input file is not important. The goal is to 
write a program that will print the targets in order so that a make-like program can build the 
first target first, and proceed in order, such that all targets are built before they are needed as 
dependencies.

To help clarify terminology, I use the term artifact for a string that can be a target, a 
dependency, or both. If you already know an algorithm for topological sort, go ahead and 
implement the program now. Otherwise, assume the existence of a function, topological_ 
sort, which performs a topological sort of a DAG. To represent the dependency graph, use a 
map of sets. The map key is a dependency, and the value is the set of targets that list the key as 
a dependency. This seems inside out from the way you may usually think about organizing tar-
gets and dependencies, but as you can see in Listing 56-1, it makes the topological sort quite 
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easy to implement. Because the topological_sort() function is reusable, it is a template function 
and works with “nodes” instead of artifacts, targets, and dependencies.

Listing 56-1. Topological Sort of a Directed Acyclic Graph
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Now that you have the topological_sort function, implement the pseudo-make pro-
gram to read and parse the input, build the dependency graph, call topological_sort, and 
print the sorted result. Keep things simple and treat artifacts (targets and dependencies) 
as strings. Thus, the dependency graph is a map with  as the key type and 

 as the value type. Compare your solution with Listing 56-2.

Listing 56-2. First Draft of the Pseudo-Make Program
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So what do DAGs and topological sorts have to do with the topic of this Exploration? I 
thought you’d never ask. Let’s construct a slightly more complicated problem by making it a 
little more realistic.

A real make program needs to keep track of more information about an artifact, especially 
the time when it was last modified. A target also has a list of actions to perform if any depen-
dency is newer than the target. Thus, a class makes more sense than a string for representing 
an artifact. You can add to the class whatever functionality you need for your make program.

Standard C++ does not have any functions for querying a file’s modification time. For 
now, we’ll just sidestep the issue and make up a time for every artifact. The important task at 
hand is to associate additional information with an artifact. The  header declares the 

 type, which represents a time in an implementation-defined format. Ignoring 
actions, you might define the  type as shown in Listing 56-3.

Listing 56-3. New Definition of an Artifact
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Now we run into a problem. In the first draft of this program, what made two strings refer 
to the same artifact is that the strings had the same content. The target named “program” is 
the same artifact as the dependency named “program” because they are spelled the same. 
That scheme falls down now that an artifact is more than just a string. When you build a target 
and update its modification time, you want all uses of that artifact to be updated. Somehow, 
every use of an artifact name must be associated with a single artifact object for that name.

Got any ideas? It can be done with your current understanding of C++, but you may need 
to stop and think about it.

Need a hint? How about storing all artifacts in one big vector? Then make a dependency 
graph that contains indices into the vector instead of artifact names. Try it. Rewrite the pro-
gram in Listing 56-2 to use the new  header from Listing 56-3. When an artifact 
name is read from the input file, look up that name in a vector of all artifacts. If the artifact 
is new, add it to the end. Store vector indices in the dependency graph. Print the final list by 
looking up the numbers in the vector. Compare your solution with Listing 56-4.

Note If the performance of linear look-ups concerns you, congratulations for sharp thinking. Not to worry, 
however, because the program will continue to grow and evolve throughout this Exploration, and we will 
eliminate the performance issue before we finish.

Listing 56-4. Second Draft, Adding Modification Times to Artifacts
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Well, that works, but it’s ugly. Looking up indices is sloppy programming. Much better 
would be to store references to the  objects directly in the graph. Ah, there’s the rub. 
You can’t store a reference in a standard container. Containers are for storing objects—real 
objects. The container needs to be able to copy and assign the elements in the container, but it 
can’t do that with references. Copying a reference actually copies the object to which it refers. 
A reference is not a first-class entity that a program can manipulate.
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Wouldn’t it be nice if C++ had a language feature that acted like a reference, but let you 
copy and assign the reference itself (not the referred-to object)? Let’s pretend we are inventing 
the C++ language and we need to add this language feature.

The Solution
Let’s devise a new language feature to solve this programming problem. This new feature is 
similar to references, but permits use with standard containers. Let’s call this feature a flex-ref,
short for flexible reference.

If  and  are both flex-refs that refer to type , the statement

means the value of  is changed so that  now refers to the same  object to which  refers. 
Passing  as an argument to a function passes the value of , so if the function assigns a new 
value to , that change is local to the function (just as with any other function argument). 
Using a suitable operator, however, the function can obtain the  object to which  refers, 
and read or modify that .

You need a way to obtain the referred-to value, so we need to invent a new operator. Look 
at iterators for inspiration: given an iterator, the unary  operator returns the item to which the 
iterator refers. Let’s use the same operator for flex-refs. Thus, the following prints the  value 
to which  refers:

In the spirit of the  operator, declare a flex-ref by using  in the same manner that you use 
 for references.

Use the same syntax when declaring a container. For example, declare a vector of flex-refs 
that refer to type .

All that’s left is to provide a way to make a flex-ref refer to an object. For that, let’s turn to 
ordinary references for inspiration and use the  operator. Suppose that  is of type , the 
following makes  refer to :

As you’ve guessed by now, flex-refs are pointers. The variables  and  are called “point-
ers to .” A pointer is an honest-to-goodness lvalue. It occupies memory. The values that are 
stored in that memory are addresses of other lvalues. You can freely change the value stored in 
that memory, which has the effect of making the pointer refer to a different object.

A pointer can point to a  object, or it can be a  pointer, or both. The following 
shows pointer to :
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Define a  pointer—that is, a pointer that is itself  and therefore cannot be the 
target of an assignment, but the dereferenced object can be the target.

Like any  object, you must supply an initializer and you cannot modify the pointer. 
However, you can modify the object to which the pointer points.

You can define a reference to a pointer, just as you can define a reference to anything 
(except another reference).

Read this declaration the way you would read any other declaration: start by finding the 
declarator, . Then read the declaration from the inside working your way outward. To the 
left, see , telling you that  is a reference. To the right is the initializer, ;  is a reference to 

 (  is another name for the object ). Continuing to the left, you see , so  is a reference to 
a pointer. Finally,  tells you that  is a reference to a pointer to . Thus, the initializer is 
valid because its type is pointer to .

What about the other way around? Can you define a pointer to a reference? The short 
answer is that you can’t. A pointer to a reference makes as little sense as a reference to a refer-
ence. References and pointers must refer or point to a real object.

You can define a pointer to a pointer. Or a pointer to a pointer to a pointer to a pointer... 
Just keep track of the exact type of your pointer. The compiler ensures that you assign only 
expressions of the correct type, as shown in the following:

Try and . What happens?

_________________________________________________________________________________

Because  has type ,  has type ;  has type , too, so you can assign  to , but 
not to , which has type . The types must match, so you can’t assign  to , either.

It took me long enough to get to the point (and no, that pun is not my proudest moment), 
but now you can see how pointers help solve the problem of writing the dependency graph. 
Before we dive into the code, however, let’s take a moment to clarify some terminology.

Addresses vs. Pointers
Programmers are sticklers for details. The compilers and other tools we use daily force us to 
be. So let’s be absolutely clear about addresses and pointers.

An address is a memory location. In C++ parlance, it is an rvalue, so you cannot modify or 
assign to an address. When a program takes the address of an object (with the  operator), the 
result is a constant for the lifetime of that object. Like every other rvalue, an address in C++ has 
a type, which must be a pointer type.
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A pointer type is more properly called an address type because the range of values repre-
sented by the type are addresses. Nonetheless, the term pointer type is more common because 
a pointer object has a pointer type.

A pointer type can denote multiple levels of indirection—it can denote a pointer to a 
pointer, or a pointer to a pointer to a pointer, etc. You must declare each level of pointer indi-
rection with an asterisk. In other words,  is the type “pointer to ” and  is “pointer 
to pointer to .”

A pointer is an lvalue that has a pointer type. A pointer object, like any object, has a loca-
tion in memory in which the program can store a value. The value must have a type that is 
compatible with the pointer’s type; the value must be an address of the correct type.

Dependency Graphs
Now let’s get back to the dependency graph. The graph can store pointers to artifacts. Each 
external file corresponds to a single  object in the program. That artifact can have 
many nodes in the graph pointing to it. If you update that artifact, all nodes that point to the 
artifact see the update. Thus, when a build rule updates an artifact, the file modification time 
may change. All nodes for that artifact in the graph immediately see the new time because they 
all point to a single object.

All that’s left to figure out is where these artifacts reside. For the sake of simplicity, I 
recommend a map, keyed by artifact name. The mapped values are  objects (not 
pointers). Take the address of an artifact in the map to obtain pointers to store in the graph. 
Go ahead; don’t wait for me. Using the topological_sort.hpp and artifact.hpp headers, rewrite
56-4 to store  objects in a map, and  pointers in the graph. Compare your 
solution with Listing 56-5.

Listing 56-5. Storing Pointers in the Dependency Graph
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As you can see, the program requires minimal changes, and the changes are all simplifica-
tions. As the program grows more complicated (as real programs inevitably do), the simplicity 
and elegance of pointers become more and more evident.

Standard containers are extremely helpful, but sometimes a program needs greater 
control over its objects. It must create and destroy objects on its own schedule, not when func-
tions start and end or when control enters or leaves a block. The next Exploration tackles this 
problem by introducing dynamic memory.
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Dynamic Memory

Declaring pointers is all well and good, but real programs need to do more. The next step is 
to learn how to create new objects on the fly, at runtime. Your program takes full control over 
the lifetime of these objects, destroying the objects only when the program is done using them. 
This Exploration details how to allocate and free memory dynamically. It also continues to 
develop the  and related classes from Exploration 56.

I want to warn you however, not to run off immediately and start using dynamic memory 
in your programs. We still have several more Explorations to go, each one building upon its 
predecessors. You need the full picture, which will include safer ways to manage pointers and 
dynamic memory.

Allocating Memory
A  expression allocates memory for a new object, calls a constructor to initialize that object, 
and returns the address of the newly allocated and constructed object. The syntax is the 
keyword followed by the base type, followed by an optional initializer in parentheses.

The  expression returns the address of an lvalue. The type of the lvalue is the type you 
provide after the  keyword. If the initializer is a set of empty parentheses, the newly allo-
cated object is zero-initialized (see Exploration 31), meaning all members are initialized to 
known, zero values. If you omit the parentheses entirely, the new object is default-initialized, 
which means objects of built-in type are left uninitialized. This is usually a bad thing, so I rec-
ommend providing an initializer with all  expressions, such as shown in the following:

As with any other initializer, if you are initializing a class-type object, and the constructor 
takes multiple arguments, separate the arguments with commas.
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If the C++ environment runs out of memory and cannot fulfill a new request, it throws the 
 exception (declared in ).

Once allocated and initialized, a dynamically allocated object lives until you get rid of it 
with a  expression (as covered in the next section).

Freeing Memory
When your program no longer needs an object that it had allocated with a  expression, it 
must free that object with a  expression. The syntax is the  keyword followed by a 
pointer to the object you want to delete.

After you delete an object, all pointers to it become invalid. It is your responsibility to 
ensure that you never dereference, copy, or otherwise use these pointers. The only thing you 
can do with a pointer variable after you delete its object is to assign a new value to the variable.

Dynamic objects are more difficult to work with than other objects because they impose a 
greater burden on you, the programmer, to manage their lifetimes. Almost any mistake results 
in undefined behavior. A few of the most common mistakes are:

 more than once on the same object

 an object before the program terminates

Most programmers are familiar with segmentation faults, access violations, and the like. 
These are the most benign of the actual behavior you might encounter if you fail to follow 
these rules.

It sure would be nice to be able to test whether a pointer is valid before dereferencing it. 
Too bad you can’t. The only way to ensure that your program never dereferences an invalid 
pointer or tries to otherwise misuse a pointer is to be very, very careful when you write pro-
grams that use pointers and dynamic memory. That’s why I waited until late in the book to 
introduce these topics.

 tool to help you: a special pointer value that you can assign to 
any pointer variable to represent a “pointer to nothing.” You cannot dereference a pointer to 
nothing, but you can copy and assign these pointers, and most important, compare a pointer 
variable with the “pointer to nothing” value. In other words, when your program deletes an 
object, it should assign a “pointer to nothing” value to the pointer variable. By ensuring that 
every pointer variable stores a valid pointer or a “pointer to nothing,” you can safely test 
whether a pointer is valid before dereferencing it. 

Pointer to Nothing
A “pointer to nothing” is called a null pointer and you write a null pointer as 
pointer constant to initialize a pointer variable, as the source of an assignment, or as a func-
tion argument, as shown in the following:
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Note that the compiler treats the integer expression  specially. You cannot assign an 
arbitrary -type expression to a pointer. Only an integer constant is permitted, and only 
the value of zero is permitted. Don’t be fooled by the zero value, however; the language rep-
resentation of a null pointer constant has nothing to do with the actual bits stored in a null 
pointer value. In some implementations, a null pointer value may have all zero bits; in another 
implementation, it may have all one bits. Zero-initializing a pointer stores a null pointer value; 
default-initializing leaves a pointer with a garbage value.

A KEYWORD FOR NULL POINTERS

The next revision to the C++ language standard adds a keyword to represent null pointers: . If you 
are using a compiler that supports , you should prefer  to .

The use of  for null pointers has caused much confusion among C++ programmers, and I look forward 
to the day when throughout the world they toss aside their confusing ’s and embrace the glorious future of 

 clarity.

You have one guarantee with null pointers: whatever value the C++ environment uses for 
them, no real object will ever have that value as its address. Thus, you can assign a null pointer 
to a variable after you delete it as a way to mark the pointer object as no longer pointing to 
anything.

A good programming practice is to ensure that no pointer variable ever retains an invalid 
value. Assigning a null pointer to a pointer variable is one way to accomplish this.

A common idiom is to take advantage of short-circuiting (Exploration 11) to test for a null 
pointer, and if the pointer is not null, use it:

A frequent question among newcomers to C++ is why the compiler does not generate 
code that automatically assigns a null pointer as part of the actions of the  expression. 
There are two key reasons:
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 expression takes an rvalue as an argument, not necessarily a modifiable 
pointer. Thus, it may not have anything to modify.

object invalidates all of these pointers. The  expression cannot modify all of 
these pointers because it doesn’t know about them. It knows only about the one 
address that is the argument to the  expression. Thus, modifying the argument 
to  does not solve this problem. You can minimize the extent of this problem by 
not copying pointers.

C++ has some of its own uses for null pointers. You can supply a null pointer value to the 
 expression, and it safely ignores the delete request. If you wish, you can ask that the 

 expression return a null pointer instead of throwing an exception when it cannot allocate 
enough memory for the new object. Just add  after the  keyword and be 
sure to check the pointer that  returns. The parentheses are required, and  is 
declared in .

Most programs don’t need to . You need that header only if you use 
 or catch .

The  and  headers declare the name , which some programmers 
use as a null pointer constant. C programmers are accustomed to using  because it is the 
easiest way to write a C null pointer constant. In C++, however, the rules are different and 
is the easiest, clearest, best way to write a null pointer constant (unless you are using the new 
language revision, in which case,  is the best way). I recommend you avoid using 
in your C++ programs.

If you define a pointer variable without initializing it, the variable’s initial value is garbage. 
This is bad, and you are courting disaster—don’t do it. If you don’t have a valid address to use 
as the pointer’s initial value, use a null pointer.

Implementing Standard Containers
Have you ever wondered how the standard containers actually work? If, for instance, I were 
to ask you to implement  or , could you do it? A full, high-quality implemen-
tation of any standard container is surprisingly difficult, but it isn’t hard to grasp the basic 
principles.

The standard mandates logarithmic complexity for the associative containers. That is, 
lookups and insertion must have logarithmic performance, which pretty much forces a tree 
implementation. Most standard C++ libraries use red-black trees. A quick trip to the Internet 
will provide the algorithms—even working code—to implement red-black trees. The details 
of balancing the trees obscure the interesting use of pointers, so let’s pick a simpler container: 

.
The  class template implements a common doubly linked list. Start with the definition 

of the  class template itself, as shown in Listing 57-1.
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Listing 57-1. Defining the  Class Template

A  has a number of  and -
ple implements only  and  in Listing 57-2.

Listing 57-2. Implementing  and 
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Notice how  removes the node from the list, ensures that the list is in a valid 
state, and then deletes the memory. Also notice how  does not need to set  to a null 
pointer. Instead, the function simply returns; it has no opportunity to refer to the address of 
the deleted memory. These two techniques are ways that help ensure that your program han-
dles dynamic memory correctly.

Adding Variables
Now return to the dependencies example that you started in Exploration 56. Let’s add a new 
feature: variables. If an input line contains only one string, and the string contains an equal 
sign, it is a variable assignment. The variable name is to the left of the equal sign; the value is 
to the right. In this over-simplified example, no spaces are allowed around the equal sign or in 
the variable’s value.

An artifact can contain a variable reference, which is a dollar sign, followed by the variable 
name in parentheses. The variable’s value replaces the reference in its containing string. If a 
variable is not defined, automatically define it as an empty string.

The target  depends on  and . In turn,  depends on  and 
 depends on  depends on  and  depends on .
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Add an  function that takes a string, expands variables, and returns the result.
What if the expansion of a variable contains further variable references? I suggest expanding 
all variables and re-expanding the string until no more variables remain to be expanded. The 

 class has a number of helpful member functions: the  function searches for 
the first occurrence of a substring or a character and returns the index of the substring or the 
constant  to mean “not found.” The index type is .
Pass an optional second argument to specify the position at which the search should begin.

The  member function takes two arguments, a starting position and a length, and 
returns a substring. The second argument is optional; omit it to mean “the rest of the string.” 
The  function has several forms. It replaces a substring with a new string. Pass the 
starting index and length of the substring to replace, followed by the replacement string.

store variables. Call it . Listing 57-3 presents my 
implementation of the  function.

Listing 57-3. Expanding Variables
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Now modify the input function to recognize a variable definition, parse the definition to 
extract the variable name and value, and store the variable and its value in the  map. 
Listing 57-4 illustrates how I rewrote the  function to parse variable definitions.

Listing 57-4. Parsing Variable Definitions
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This seemed like a good time to factor the input to its own function, . So far, 
the modifications have not used dynamic memory, at least not explicitly. (Do you think the 

 class uses dynamic memory in its implementation?) The next step is to permit 
per-target variables. That is, if the input starts with a target name, and instead of a dependency 
name, the second string is a variable definition, that definition applies only to that target.

The  variable is global, so  depends on . The  variable applies only 
to target1, so  depends on . On the other hand,  depends on , not 

 because  does not have a  variable, and unknown variables expand to an 
empty string.

One implementation is to add a map object to every artifact. Most artifacts do not have 
variables, however, so that can become wasteful. An alternative implementation uses dynamic 
memory and allocates a map only if a target has at least one variable. To look up a variable for 
a target, look only in the global map. To look up a variable for a dependency, first check the 
target’s map then check the global map.

As the program evolves, the difference between a target and a dependency grows. This is 
to be expected because in real life, they are quite different. Targets get actions, for example, so 
you can build them. You may well argue that now is a good time for refactoring, to create two 
derived classes:  and . Only the  class could have a map for variables. 
I grant you extra credit if you decide to undertake this refactoring now. To keep the solution 
simple, however, I will make the fewest modifications possible as we go along.

Start with the new  class. In addition to the new map, add an  member 
function, which hides the details of the two-level lookup. Compare your solution with mine, 
which is shown in Listing 57-5.
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Listing 57-5. Adding Variable Storage and Lookup to the  Class
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Note that the new destructor does not need to test whether the  variable is set 
to anything. The value will be either a null pointer or the address of a map. The  expres-
sion handles both and does the right thing: nothing for a null pointer or deletes the memory 
for an address. Thus, the destructor is easy to write and understand.

I hid a number of details in the new header, variables.hpp, which I present in Listing 57-6.

Listing 57-6. The variables.hpp File

The implementation of the new  function is in variables.cpp, shown in Listing 57-7.
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Listing 57-7. The variables.cpp File Implements the  Function
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The only task that remains is to update the parser. Modify the  function to 
parse target-specific variables. Compare your solution with that of mine in Listing 57-8.

Listing 57-8. Adding Per-Target Variables to 
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Special Member Functions
The program seems to function, but it still needs work. As written, it triggers undefined behav-
ior in the  class. To understand what’s going on, consider the program in Listing 57-9.

Listing 57-9. Simple Wrapper for Dynamic Memory

Predict the output from this program.

_________________________________________________________________________________
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The behavior is undefined, so I cannot predict exactly how it will work on your system. 
Most likely, the program will fail with some kind of memory violation. It is possible that the 
program will run without any observable sign of failure. It’s also possible that it will print a 
seemingly random value instead of .

So what’s going on? 
The constructor allocates an ; the destructor deletes an ; it all seems correct. 
The problem is the copy constructor.
“What copy constructor?” you ask.
“The copy constructor that the compiler creates for you,” I answer.
“Oh, that copy constructor,” you reply comprehendingly.
The compiler implicitly writes a copy constructor, assignment operator, and destructor 

for you, performing member-wise copying, assignment, and destruction. In this case, the copy 
constructor dutifully copies the  data member. Thus, the original and the copy both contain 
identical pointers. The first one to be destroyed deletes the memory, leaving the other with a 
dangling pointer—an invalid pointer. When that other object is destroyed, it tries to delete 
again, but it had already been deleted. Deleting the same address more than once is undefined 
behavior (unless a  expression has subsequently returned that same address).

One solution to this kind of problem is to disallow copying. You can easily do this by 
declaring an explicit copy constructor and assignment operator as private members. Declare 
the functions, but don’t define them. Because the members are private, no user of the class 
can copy or assign instances of the class. Because the members are not defined, even if you 
inadvertently copy or assign instances of the class, the linker will report the missing function 
definitions, as demonstrated in the following:

On the other hand, this means you can’t copy or assign the objects, which is kind of limit-
ing. Another solution is to make a deep copy—that is allocate and copy the dynamic memory. 
Listing 57-10 shows this solution applied to Listing 57-9.

Listing 57-10. Making a Deep Copy
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The implementation of the assignment operator is interesting, isn’t it? You have a choice 
of many ways to implement this operator. The swap idiom has the advantage of simplic-
ity. The standard library defines  functions for the standard containers, and any decent 
library implements  as a lightweight, fast function (if the container permits it). Typically, 
these  functions work similar to : they copy a few pointers. The trick of the 
assignment operator is that it takes its argument by value, not by reference. The compiler uses 
the copy constructor to make a copy of the source of the assignment; the  function then 
swaps the current  value with the copy. The copy will be freed after the assignment operator 
returns, thereby cleaning up the original pointer, leaving the object with a deep copy of the 
assignment source, which is exactly what you want to have happen.

Whenever a class allocates dynamic memory, you need to consider all the special member 
functions: copy constructor, assignment operator, and destructor. If you find yourself imple-
menting one of them (in this case, the destructor), most likely you need to implement all three, 
or at least deal with all three.
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Note If you write any one of the three special member functions—copy constructor, copy assignment 
operator, or destructor—you must take a look at the others, and most likely implement them, too.

As you can see, dynamic memory involves a number of complications. The next Explo-
ration takes a look at more complications—namely, exceptions. Exceptions can greatly 
complicate proper handling of dynamic memory, so pay close attention.



E X P L O R A T I O N  5 8

Exception-Safety

Exploration 43 introduced exceptions, which you have used in a number of programs since 
then. Dynamic memory presents a new wrinkle regarding exceptions, and you need to be that 
much more careful when handling them in order to do so safely and properly in the face of 
dynamic memory management. In particular, you need to watch for memory leaks and similar 
problems.

Memory Leaks
Careless use of dynamic memory and exceptions can result in memory leaks—that is, memory 
that a program allocates but fails to free. In modern desktop operating systems, when an 
application terminates, the operating system reclaims all memory that the application used, 
so it is easy to become complacent about memory leaks. After all, no leak outlives the program 
invocation. But then your pesky users surprise you and leave your word processor (or what-
ever) running for days on end. They don’t notice the memory leaking until suddenly they can 
no longer edit documents, and the automatic backup utility cannot allocate enough memory 
to save the user’s work before the program terminates abruptly.

Maybe that’s an extreme example, but leaking memory is a symptom of mismanaging 
memory. If you mismanage memory in one part of the program, you probably mismanage 
memory in other parts, too. Those other parts may be less benign than a mere memory leak.

Consider the silly program in Listing 58-1.

Listing 58-1. Silly Program to Demonstrate Memory Leaks

545
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This program introduces a new C++ feature. The  statements in  define variables 
inside their conditionals. The rules for this feature are restrictive, so it is not used often. You 
can define only one declarator. You must use an equal sign to specify an initializer. The value 
is then implicitly converted to , which in this case means comparing to a null pointer. In 
other words, this conditional is true if the pointer is not null. The scope of the variable is lim-
ited to the body of the conditional (including the  portion of an  statement).

Now that you can understand it, what’s wrong with this program?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

The program leaks memory. It leaks memory if a line of text contains only one number. It 
also leaks memory if a line of text contains two numbers. In short, the program leaks like a ter-
mite’s rowboat. Adding  expressions should fix things, right? Do it. Your program should 
now look like Listing 58-2.

Listing 58-2. Adding Delete Expressions to the Silly Program
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Well, that’s a little better, but only a little. Let’s make the problem more interesting by 
adding some exceptions.

Exceptions and Dynamic Memory
Exceptions can be a significant factor for memory errors. You may write a function that care-
fully matches every  with a corresponding , but an exception thrown in the middle of 
the function will cause that oh-so-carefully-written function to fail, and the program forgets all 
about that dynamically allocated memory.

Any time you use a  expression, you must be aware of places in your program that may 
throw an exception. You must have a plan for how to manage the exception to ensure that you 
don’t lose track of the dynamically allocated memory and that the pointer always holds a valid 
address. Many places can throw exceptions, including  expressions, any I/O statement (if 
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the appropriate exception mask bit is set, as explained in Exploration 43), and a number of 
other library calls.

To see an example of how exceptions can cause problems, read the program in Listing 58-3.

Listing 58-3. Demonstrating Issues with Exceptions and Dynamic Memory
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Now what’s wrong with this program?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

The program leaks memory when the  function throws an exception. In this case, 
the problem is easy to see, but in a more complicated program, it can be harder to identify. 
Looking at the input loop, it seems that every allocation is properly paired with a 
expression. But in a more complicated program, the source of exceptions and the -
statement may be far apart and unrelated to the input loop.

Ideally, you should be able to manage memory without knowing about exceptions. Fortu-
nately, you can—at least to a certain degree.

Automatically Deleting Pointers
Keeping track of allocated memory can be tricky, so you should accept any help that C++ 
can offer. One class template that can help a lot is  (defined in the 
header). This template wraps a pointer so that when the  object goes out of scope, 
it automatically deletes the pointer it wraps. The template also guarantees that exactly one 

 object owns a particular pointer. Thus, when you assign one  to another, you 
know exactly which  (the target of the assignment) owns the pointer and has respon-
sibility for freeing it. You can assign  objects, pass them to functions, and return them 
from functions; in all cases, ownership passes from one  object to another. Like chil-
dren playing the game of Hot Potato, whoever is left holding the pointer or potato in the end is 
the loser and must delete the pointer.

The  template is particularly helpful when a program throws an exception. When 
C++ handles the exception, it unwinds the stack and destroys local variables along the way. 
This means it will destroy local  objects in those unwound stack frames, which will 
delete their pointers. Without , you may get a memory leak.

Thus, a common idiom is to use  for local variables of pointer type, as well as 
for data members of pointer type. Equally viable, but less common, is for function parameters 
and return types to be , as illustrated in Listing 58-4.

Listing 58-4. Using the  Class Template
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As you can see, the  member function returns the raw pointer value, which you can 
use to test the pointer or pass to functions that do not expect to gain ownership of the pointer. 
You can assign a new  value, which causes the target of the assignment to delete its 
old value and take ownership of the new pointer. Dereference the  pointer with , or 
use  to access members, the same way you would with an ordinary pointer.

Use  to fix the program in Listing 58-3. Compare your repairs with mine, 
which are presented in Listing 58-5.

Listing 58-5. Fixing Memory Leaks
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The restrictions of a conditional declaration prevent its use with  because the 
 object has no implicit conversion to . Instead, you must explicitly call the 

member function to check whether it is null. Other than that, the changes are minimal, but 
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they vastly increase the safety of this program. No matter what happens in the  function 
or elsewhere, this program does not leak any memory.

What You Can’t Do with auto_ptr
The  template solves some problems, but it’s no panacea. The most glaring restriction 
in its use is that you cannot store an  in a standard container. The standard containers 
require their contents be assignable and copyable. After the assignment or copy, the source 
and the target must be identical. That isn’t true for  because the original gives up the 
pointer to the target of the assignment or copy.

Because of this key limitation, many C++ programmers avoid . Nonetheless, it 
has its uses, and if your organization eschews third-party libraries,  may be all you 
have. But the standardization committee feels your pain, and the next revision to the language 
will deprecate  in favor of newer, brighter, shinier class templates. Exploration 60 
takes a look at them and similar class templates. But for now,  is all we have in the 
standard, so it behooves us to understand the tools we have, and how best to use them.

Exceptions and Constructors
Even without , C++ guarantees one level of exception-safety when constructing an 
object: if a constructor throws an exception, the compiler automatically cleans up base-class 
portions of the incompletely constructed object. The  expression never completes, so it 
never returns a pointer to an incomplete object. On the other hand, if the constructor man-
aged to initialize some data members but not all, the pointer-type data members will be 
stranded. Listing 58-6 demonstrates how constructors and exceptions interact.

Listing 58-6. Demonstrating Constructors That Throw Exceptions
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Predict the output from this program:

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Run the program. What is the actual output?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Explain your observations.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

The  class throws an exception in its constructor. It derives from  and has an 
additional member of type pointer to . The  class lets you see the constructors 
and destructors, so you can see that the data member, , is constructed, but never 
destroyed, which indicates a memory leak. The  destructor never runs because the 
constructor never finishes. Therefore,  is never cleaned up. On the other hand,  is 
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cleaned up because the base class is automatically cleaned up if a derived-class constructor 
throws an exception.

The  function catches the exception and recognizes that the  variable was never 
assigned. Thus, there’s nothing for the  function to clean up.

What happens if you were to use  in the  class? Try and see. What happens?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Listing 58-7 shows the new program.

Listing 58-7. Using  in 
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Notice that all the  objects are now properly destroyed. Even though the con-
structor does not finish before throwing an exception, any data members that have been 
constructed will be destroyed. Thus,  objects are cleaned up. Ta da! Mission accom-
plished!

Or is it? Even with , you must still be cautious. Consider the program in  
Listing 58-8.

Listing 58-8. Mystery Program That Uses 

What’s wrong with this program?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

To help you understand what the program does, use a  object instead of . Does 
that help you understand?



EXPLORATION 58   EXCEPTION-SAFETY556

The  class uses  to ensure proper lifetime management of its pointers. It 
properly keeps the copy constructor and assignment operator private and unimplemented, to 
avoid any problems they may cause.

The problem is the basic design of the  constructor. By taking two pointer arguments, 
it opens the possibility of losing track of these pointers before it can safely tuck them away in 
their  wrappers. The  class forces an exception, but in a real program, unex-
pected exceptions can arise from a variety of less explicit sources.

The simplest solution is to force the caller to use  by changing the  construc-
tor, as demonstrated in the following:

Exploration 60 will take a closer look at  and some of its friends. But first, let’s 
take a side trip and discover the close connection between old-fashioned, C-style arrays and 
pointers.
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Old-Fashioned Arrays

Throughout this book, I’ve used  for arrays. As you discovered in Exploration 51, 
TR1 extends the standard library with , and the next revision of the language 
standard will include . Hidden in the implementation of these types is an old-fash-
ioned, crude, and unsafe style of arrays. This Exploration takes a look at this relic from C, not 
because I want you to ever use it, but because you may need to read code that uses this lan-
guage construct, and it will help you to understand how the standard library can implement 

, , and similar types. You may be surprised to learn that C-style arrays have much 
in common with pointers.

C-Style Arrays
C++ inherits from C a primitive form of array. Although an application should never need to 
use C-style arrays, library authors sometimes need to use them. For example, a typical imple-
mentation of  makes use of C-style arrays.

The following shows how you define a C-style array object by specifying the array size in 
square brackets after the declarator name:

The array size must be a compile-time constant integer expression. The size must be 
strictly positive; zero-length arrays are not allowed. The compiler sets aside a single chunk of 
memory that is large enough to store the entire array. After the array definition, your code can 
use the array name as an address, not as a pointer. The elements of the array are lvalues, so for 
instance, you can assign to , but not to  itself.

Use square brackets to refer to elements of the array. The array index must be an integer. 
If the index is out of bounds, the results are undefined. Now you can see why 
implements the square bracket operator the way it does—namely, in imitation of C style arrays.

557
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For the moment, C-style arrays offer one key advantage over vectors: you can initialize a 
C-style array, even letting the compiler count the number of elements in the array. To initialize 
an array, use an equal sign, followed by a curly brace-delimited list of array elements, sepa-
rated by commas.

When you provide initial values, you can omit the array size; the compiler uses the num-
ber of initializers as the array size.

If you provide an array size, you can omit trailing elements, in which case the compiler 
zero-initializes the remaining elements.

The next revision to the C++ standard, however, will permit the initialization of the stan-
dard containers in a similar fashion. (See the sidebar in Exploration 10.)

Array Limitations
One of the key limitations to a C-style array is that the array doesn’t know its own size. The 
compiler knows the size when it compiles the array definition, but the size is not stored with 
the array itself, so most uses of the array are not aware of the array size.

If you declare an array type as a function parameter, something strange happens: the 
compiler ignores the size and treats the array type as a pointer type. In other words, when used 
as a function parameter,  means exactly the same thing as , ,
and . In practical terms, this means the function has no idea what the array size is. The 
function sees only a pointer to the start of the array. Thus, functions that take a C-style array 
as an argument typically have an additional argument to pass the array size, as shown in 
Listing 59-1.

Listing 59-1. Array Type in Function Parameters
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Because an array does not store its size, an  declaration (Exploration 39) of an 
array doesn’t keep track of the array size. Thus, the definition of the array specifies the size, 
but  declarations can omit the size. Although you may read code that omits the size, I 
recommend specifying the size in the  declaration (which must match the size in the 
definition), as follows:

However, unlike function arguments and parameters, no conversions take place with 
 objects. Arrays are arrays and pointers are pointers. If the  declaration does not 

match the object’s definition, the results are undefined. The best way to avoid problems is to 
make the  declaration match the definition as closely as possible. Be sure to 
the header file that contains the  declarations in the source file that contains the defini-
tions. In this manner, the compiler checks that the declarations and definitions match.

Another limitation of arrays is that a function cannot return an array. If you need to return 
a sequence of objects, store them in a container object. Even better is to pass a container by 
reference, and let the function fill in the values. This way you avoid making extra copies of the 
container.

Dynamically Allocating an Array
A  expression can allocate an array, or more precisely, it allocates one or more contiguous 
values, invokes the default constructor for each element, and returns the address of the first 
one. (Remember that default-initializing a built-in type, such as , leaves the value unini-
tialized.) Like passing an array to a function, all you get from  is a pointer. It is up to you to 
keep track of the size. Pass the size in square brackets after the type.

To free the memory, use the  operator. The square brackets are required. Do not 
pass the size.

If you allocate a scalar value with  (no square brackets), you must delete the memory 
with plain  (no square brackets). If you allocate an array (even if the size is one), delete 
the memory with . You cannot mix the array-style  with a non-array  or 
vice versa. Because the  operator and  operator both take a plain pointer as an 
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operand, the compiler cannot, in general, detect errors. A good library can detect errors and 
report them at runtime, but the standard provides no guarantee.

The  type uses plain , so you cannot use it to manage dynamically allocated 
arrays. (But the next Exploration has a few hints if you need to manage one.)

The best way to avoid mismatches between , , , and  is to avoid 
the array forms entirely. Use plain  and  for single items, and use a  if you need 
an array. The advantage of using  instead of  and  is that the vector auto-
matically frees all of its memory when it is destroyed.

Why should you use instead of C-style arrays?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

I can think of many reasons. You can pass a vector to a function, return a vector from a 
function, and use the vector’s many member functions for greater functionality and safety. For 
example, use the  member function instead of square brackets for safe indexing. Use the 

 member function to learn how many elements are in the vector.

In what way are C-style arrays superior to ?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

When performance is at a premium,  has greater overhead than a C-style 
array. Sometimes you don’t need the array to grow at runtime, and you don’t want to pay the 
performance penalty for that flexibility. Another advantage of a C-style array is that you can 
directly initialize its elements when you define the array object.

Note The next revision to the standard will let you directly initialize the contents of a vector the way you 
can initialize a C-style array. For more information on this, go back and read the sidebar in Exploration 10.

The C++ standardization committee introduced the  class template in TR1 (see 
Exploration 51 for more information about Technical Report 1) and plan to include 
in the next revision of the standard to address these shortcomings. The  or 

 class template has the advanced features of  with the performance 
advantages of a C-style array. If you ever find yourself wishing for a C-style array, you should 
use  or  instead (whichever one is most readily available to you).
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Multi-Dimensional Arrays
One situation in which you might need to use C-style arrays is when you must work in mul-
tiple dimensions. In C++, as in C, a multi-dimensional array is an array of arrays. Thus, define 
a variable as a 3 × 4 matrix as follows:

Read this declaration the way you would any other. Start with the name and work your 
way from inside to outside:  is an array with 3 elements. Each element is an array of 4 
elements of type . Thus, C++ arrays are column-major—that is, the column (right-most) 
index varies fastest. So another way to define  is as follows:

When you pass a matrix to a function, only the leftmost array is converted to a pointer. 
Thus, if you were to pass  to a function, you must declare the function parameter as a 
pointer to an array of 4 s.

or

or

To refer to elements of the matrix, use a separate subscript operator for each index, as 
follows:

You can also refer to an entire row:  returns the address of the last row of the 
matrix, which has type , which means it is the address of the first element of a  
4-element array of .

C-Style Strings
Another legacy type that C++ inherits from C is the C-style string, which is little more than 
a C-style array of . (A wide C-style string is a C-style array of . Everything in this 
chapter applies equally to wide strings and , but mentions only  for the sake of 
simplicity.) A string literal in C++ is a  array of . The size of the array is the number 
of characters in the literal, plus one. The compiler automatically appends the character with 
value zero ( ) to the end of the array, as a marker for the end of the string. (Remember that 
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the array does not store the size, so the trailing zero-valued character is the only way to iden-
tify the end of the string, and therefore, the length of the string.) The zero-value character is 
also called a null character. In spite of the unfortunate collision of terminology, null characters 
have nothing to do with null pointers (Exploration 57).

The  class has a constructor to construct a C++  from a C character 
pointer. Often, the compiler is able to call this constructor automatically, so you can usually 
use a string literal anywhere that calls for .

Should you ever need to work with C-style strings directly, remember that a string lit-
eral contains  elements. A frequent mistake is to treat a string literal as an array of ,
not an array of . Although you generally cannot know the amount of memory 
that a character array occupies, you can discover the number of characters by calling the 

 function (declared in , along with several other functions that are useful 
for working with C-style strings), passing the start of the character array as an argument.

Command-Line Arguments
The one and only time you should use a C-style array is to access command-line arguments 
that the host environment passes to a program when the  function begins. For historic 
reasons, the command-line arguments are passed as a C-style array of pointers to C-style char-
acter strings. Thus, you can choose to write the  function as a function of no arguments 
or a function of two arguments: an  for the number of command-line arguments and a 
pointer to the first element of an array of pointers to the individual command line arguments, 
each as an array of . Listing 59-2 shows an example of echo, which echoes command-line 
arguments to the standard output. Note that the first command-line argument is the program 
name or path to the program’s executable file (the details are defined by the implementation). 
Note also that  knows how to print a C-style character pointer.

Listing 59-2. Echoing Command-Line Arguments

The names  and  are conventional, not required. As with any other function 
parameters, you are free to pick any names you want. The second argument is of type pointer-
to-pointer-to-char, and is often written as  to emphasize the point that it is an 
array of  values; although some programmers also use , which means the 
same thing.
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The size of the  array is  because its last element is a null pointer, after all the 
command-line arguments. Thus, some programs loop through command line arguments 
by counting and comparing with , and others loop through , until reaching a null 
pointer.

Write a program that takes two command-line arguments: an input file and an output 
file. The program copies the contents of the input file to the output file. Compare your solu-
tion with mine, shown in Listing 59-3.

Listing 59-3. Copying a File Named on the Command Line
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Pointer Arithmetic
An unusual feature of C++ pointers (inherited from C) is that you can perform addition and 
subtraction on pointers. In ordinary usage, these operations work only on pointers that point 
into arrays. Specifically, you can add or subtract integers and pointers, and you can subtract 
two pointers to get an integer. You can also compare two pointers using relational operators 
(less than, greater than, etc.). This section explores what these operations mean.

Briefly, a pointer can point to any object in an array. Add an integer to a pointer to obtain 
the address of an element of the array. For example,  points to the third element of the 
array: the element at index 2. You are allowed to form a pointer to any position in the array, 
including the position one-past-the-end. Given a pointer into the array, subtract an integer to 
obtain the address of an element earlier in the array. You are not allowed to form an address 
that precedes the first element of the array.

Subtract two pointers to obtain the number of array elements that separate them. They 
must be pointers that point into the same array. When you compare two pointers using rela-
tional operators, a pointer  is “less than” a pointer  if  and  both point to the same array 
and  comes earlier in the array than .

Ordinarily, you have no reason to use the relational operators on pointers that are not in 
the same array. But you can use pointers as keys in sets and maps, and these types need to 
compare pointers to put the keys in order. The  and  templates use 
to compare keys (Exploration 48), and  uses the  operator. The details are specific 
to the implementation, but the standard requires  to work with all pointers, thereby 
ensuring that sets and maps work properly when you use pointers as keys.

The compiler and library are not required to enforce the rule that pointers must point to 
the same array or stay confined to legal indices. Some compilers might try to give you a few 
warnings, but in general, the compiler cannot tell whether your program follows all the rules. 
If your program does not follow the rules, it enters the twilight zone of undefined behavior. 
That’s what makes pointers so dangerous: it’s easy to fall into undefined behavior territory.

The most common use for pointer arithmetic is to advance through the elements of an 
array by marching a pointer from the beginning of the array to the end, instead of using an 
array index. Listing 59-4 illustrates this idiom as well as pointer subtraction by showing one 
possible implementation of the standard  function, which returns the length of a 
C-style string.



EXPLORATION 59   OLD-FASHIONED ARRAYS 565

Listing 59-4. Using Pointer Arithmetic to Determine the Length of a C String

Pointer arithmetic is error-prone, dangerous, and I recommend avoiding it. Instead 
of C strings, for example, use . Instead of C-style arrays, use ,

, or .
However, pointer arithmetic is a common idiom in C++ programs, and therefore unavoid-

able. Pointer arithmetic is especially prevalent in library implementations. For example, I can 
almost guarantee that it is used in your library’s implementation of the , , and 

 class templates. Thus, library authors need to be especially vigilant against errors that 
are difficult or impossible for the compiler to detect, but that effort pays off by making a safer 
interface available to all other developers.

In the interest of making pointers safer, C++ lets you define a class that looks, acts, and 
smells like a pointer type, but with bonus features, such as additional checks and safety. These 
so-called smart pointers are the subjects of the next Exploration.
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Smart Pointers

The  class template is an example of a so-called smart pointer. A smart pointer 
behaves much like any other pointer, but with extra features and functionality. This Explora-
tion takes a closer look at  and other smart pointers.

Revisiting auto_ptr
Exploration 58 introduced  as a way to manage dynamically allocated objects. The 

 class template overloads the dereference ( ) and member access ( ) operators, 
which lets you use an  object the same way you would use a pointer. At the same time, 
it extends the behavior of an ordinary pointer such that when the  object is destroyed, 
it automatically deletes the pointer it holds. That’s why  is called a smart pointer—it’s
just like an ordinary pointer, only smarter. Using  helps ensure that memory is prop-
erly managed, even in the face of unexpected exceptions.

C++ REPLACEMENT FOR auto_ptr

The next major revision to the C++ standard deprecates . Instead of , you will have a 
choice of several smart pointers that serve a variety of purposes. If you are using a compiler and library that 
implement the new standard, please skip this section, and continue with Copyable Smart Pointers. That sec-
tion describes , which is one of the smart pointers in the new standard and is much more useful 
than . See an updated language reference to learn about the other smart pointers.

When used properly, the key feature of  is that exactly one  object owns 
a particular pointer. You can copy and assign  objects; each time you do, the target of 
the copy or assignment becomes the new owner of the pointer.

You can also force an  to give up ownership of its pointer by calling the 
member function. The  function returns the raw pointer, as displayed in the 
following:

567
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Call the  member function to tell an  to take over a different pointer. The 
 object deletes its old pointer and takes control of the new pointer (assuming the two 

pointer values are different). With no argument,  sets the  to a null pointer.

The  member function retrieves the raw pointer without affecting the ’s
ownership. The  template also overloads the dereference ( ) and member ( )
operators so they work the way they do with ordinary pointers. These functions do not affect 
ownership of the pointer.

Because copying an  transfers ownership, the copy constructor must be able to 
modify its argument, the source of the copy. This is unconventional and an important point 
to remember. Usually, a copy constructor declares its parameter as a reference to , but 

 requires a non-  reference. This has a number of ramifications that you may find 
surprising. Consider, for example, Listing 60-1.

Listing 60-1. Copying an  Object (Or Not)

Before you run this program, predict whether you think it will compile and run success-
fully: ________________. Try it. The  function never assigns to  or otherwise 
appears to modify it. At first glance, declaring  as a reference to  is perfectly normal and 
acceptable, but the compiler complains anyway.

Remember that copying an  object transfers ownership of the pointer, so it must 
modify the source of the copy to tell it to release its pointer. Thus, copying  to  fails because 

 is . The proper way to use  is to pass it by value. Ironically, passing it by value 
causes the argument to be modified. Ordinarily, passing an object by value prevents the argu-
ment from being modified, but  is special because of its unusual copy constructor. 
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The implementation is beyond the scope of this book, but you can use it without knowing all 
the details of its implementation. Take a look at Listing 60-2.

Listing 60-2. The Correct Way to Copy  Objects

The new program transfers ownership from  in  to  in , then to , and 
then to . When  is destroyed at the end of , the pointer is deleted.

If you use  for data members in a class, you must remember that the compiler 
imposes the same restrictions on your class. The compiler generates a copy constructor, but 
because ’s own copy constructor cannot copy a  source, neither can your class’s 
copy constructor.

Thus, using  may free you from thinking about your class’s destructor, but you 
are not excused from thinking about the copy constructor and assignment operators. This is 
a minor tweak to the guideline that if you need to deal with one, you must deal with all three. 
The same solutions are available, such as implementing a deep copy, or declaring the special 
member functions private and not implementing them at all.

One last restriction as a consequence of ’s semantics is that you cannot store 
 objects in a standard container. The standard containers have few restrictions on 

the types of objects you can store, but one restriction is absolute: the container must be free 
to make copies and assign objects such that the source and target of a copy or assignment are 
equal. That isn’t true for , so you can’t store  objects in a container. 

With all these restrictions, it’s a wonder that  has any utility at all. Indeed, some 
C++ programmers never use . Instead, they use other smart pointers that have fewer 
restrictions, such as the  class template, which is the subject of the next 
section.

Copyable Smart Pointers
A common need is to store pointers in a container, but instead of storing raw pointers, you 
often want to store smart pointers. In particular, when you erase a pointer from the container, 
it would be nice to delete the object, too. Calling  on the container to erase its entire 
contents should delete every pointer that it stores. One way to do this is to write template 
specializations for all the standard containers so that when the element type is a pointer, the 
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container takes ownership of the pointers stored in the container. That’s a lot of work, how-
ever. You would need to rewrite all the containers in their entirety.

A better solution is to write a smart pointer class that can be stored in a container. The 
Boost project includes several different smart pointers. This section discusses one of those 
types, , which the C++ committee accepted into TR1 and the next revision of the 
C++ standard.

The , , or  class template is simi-
lar in spirit to . Once you deliver a pointer to a , the  object owns 
that pointer. When the  object is destroyed, it will delete the pointer. The difference 
between  and  is that you can freely copy and assign  objects 
with normal semantics. In other words, after an assignment, the source and target s
point to the same object. The  object keeps a reference count, so assignment merely 
increments the reference count without needing to transfer ownership. When a 
object is destroyed, it decrements the reference count; when the count reaches zero, the 
pointer is deleted. Thus, you can make as many copies as you like, store  objects 
in a container, pass them to functions, return them from functions, copy them, assign them, 
and carry on to your heart’s content. Each copy increments the reference count; when a copy 
is destroyed, the reference count decrements. When the count becomes zero, that means no 
more  objects refer to the pointer, so the pointer is deleted. It’s that simple. Listing 
60-3 shows that copying  works in ways that don’t work with .

Listing 60-3. Working with 



EXPLORATION 60   SMART POINTERS 571

Using , you can reimplement the program from Listing 56-5. The old program 
used the artifact map to manage the lifetime of all artifacts. Although convenient, there is no 
reason to tie artifacts to this map because the map is used only for parsing. In a real program, 
most of its work lies in the actual building of targets, not parsing the input. All the parsing 
objects should be freed and long gone by the time the program is building targets.

Rewrite the artifact-lookup portion of Listing 56-5 to allocate  objects dynami-
cally, using  throughout to refer to artifact pointers. See Listing 60-4 for my 
solution.

Listing 60-4. Using Smart Pointers to Manage Artifacts

Once you have , you have no reason to use . However, if your work 
environment does not permit third-party libraries, or you have other reasons you cannot use 
Boost or TR1,  is better than nothing.

Smart Arrays
Recall from Exploration 59 that allocating a single object is completely different from allocat-
ing an array of objects. Thus, smart pointers must also distinguish between a smart pointer to 
a single object and a smart pointer to an array of objects. In the C++ standard, the distinction 
is well defined:  and  work only with single objects, not arrays. The C++ 
standard, including TR1, has no smart array pointers.

Caution Do not use the address of an array when constructing an  or a .
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So what if you need to manage an array of objects? Put on your thinking cap. You want 
automatic management of the lifetime of an array of objects. You may not know the number 
of objects until runtime. When the container object is destroyed, you want it to destroy all 
the objects it contains. Ring any bells? Sound familiar? Which type satisfies these require-
ments? ________________ How about ? If you don’t want to incur the overhead 
of vector—perhaps because your array has a known, fixed size—you can use  with 

 (see Exploration 51 for a refresher).
That’s why the standard library does not have  or  or anything like 

that. If you really want to use , the Boost project provides  as a com-
panion to , but you don’t need it, and I suggest you not bother with it.

Pimpls
No, that’s not a spelling error. Although programmers have spoken for years about pimples 
and warts in their programs, often referring to unsightly but unavoidable bits of code, Herb 
Sutter combined the name “pointer-to-implementation” with these pimples to come up with 
the pimpl idiom.

In short, a pimpl is a class that hides implementation details in an implementation class, 
and the public interface object holds only a pointer to that implementation object. Instead of 
forcing the user of your class to allocate and deallocate objects, manage pointers, and keep 
track of object lifetimes, you can expose a class that is easier to use. Specifically, the user can 
treat instances of the class as values, in the manner of  and other built-in types.

The pimpl wrapper manages the lifetime of the pimpl object. It typically implements the 
big three member functions: copy constructor, assignment operator, and destructor. It del-
egates most of its other member functions to the pimpl object. The user of the wrapper never 
needs to be concerned with any of this.

Thus, we will rewrite the  class so it wraps a pimpl—that is, a pointer to an 
 class. The  class will do the real work, and artifact will merely 

forward all functions through its pimpl. The language feature that makes pimpls possible is 
declaring a class name without providing a definition of the class, as illustrated by the following:

This class declaration, often called a forward declaration, informs the compiler that 
 is the name of a class. The declaration doesn’t provide the compiler with any-

thing more about the class, so the class type is incomplete. You face a number of restrictions in 
what you can do with an incomplete type. In particular, you cannot define any objects or data 
members of that type, nor can you use an incomplete class as a function parameter or return 
type. You cannot refer to any members of an incomplete class. But you can define objects, data 
members, function parameters, and return types that are pointers or references to the type. In 
particular, you can use a pointer to  in the  class.

A normal class definition is a complete type definition. You can mix forward declara-
tions with class definitions of the same class name. A common pattern is for a header, such 
as artifact.hpp, to declare a forward declaration; a source file then fills in the complete class 
definition.

The definition of the  class, therefore, can have a data member that is a pointer 
to the  class, even though the compiler knows only that  is a class, 
but doesn’t know any details about it. This means the artifact.hpp header file is independent 
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of the implementation of . The implementation details are tucked away in a 
separate file, and the rest of your program can make use of the  class completely insu-
lated from . In large projects, this kind of barrier is tremendously important.

Writing the artifact.hpp header is not difficult. Start with a forward declaration of 
. In the  class, the declarations of the member functions are the same 

as in the original class. Change the data members to a single pointer to . Finally, 
overload  for two  objects. Implement the comparison by comparing names. 
Read Listing 60-5 to see one possible implementation of this class.

Listing 60-5. Defining an  Pimpl Wrapper Class
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The header defines the  class without any mention of , except for 
the  data member.

The next step is to write the source file, artifact.cpp. This is where the compiler needs 
the full definition of the  class, thus making  a complete class, so 
include the artifact_impl.hpp header. The  class doesn’t do much on its own. Instead, 
it just delegates every action to the  class. The only interesting code is in the 
constructor, destructor, and assignment operator. They need to manage the  pointer, 
which they do by manipulating a reference count.

If you have TR1, Boost, or the new C++ revision, you can use ,
, or  to define the  member, as illustrated in the 

following:

In this case, you don’t need to manipulate the reference count because  does 
that for you. This example sticks with the current standard and nothing but the standard, so 

 manages its own reference count. We’ll save the details until it’s time to write 
. Right now, you need to know only that the copy constructor increments the 

reference count, and the destructor decrements it. The assignment operator increments the 
count of the source and decrements the count of the assignment target. Be sure to get the 
order correct: increment the source reference count first. You’ll understand why this is impor-
tant later in this section when we write artifact_impl.cpp. See the details in Listing 60-6.

Listing 60-6. Implementing the  Class
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You define the  class in the artifact_impl.hpp header. This class looks 
similar to the original artifact class, but with the addition of a reference count and member 
functions to manage the count. Listing 60-7 shows the  class definition.
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Listing 60-7. Defining the Artifact Implementation Class

The  class is unsurprising. You already know you need  and 
. The reference count is just an integer. I use  because that’s a con-

venient typedef that the C++ standard defines primarily for sizes, but also for counts, such as 
reference counts. The fun stuff lies in the implementation, as presented in Listing 60-8.

Listing 60-8. The artifact_impl.cpp Source File
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You can copy the implementation of the original  class to  then add 
the reference counting functions.

The  function is simple: it increments the reference count. The  class 
calls this function when a new artifact class points to a single  object.

The  member function decrements the reference count. When the count 
reaches zero, it is a signal that means no  objects refer to this  any more. 
The  function, therefore, deletes the  object with . It may 
seem strange for an object to delete itself, but this is perfectly safe, provided the function does 
not refer to any data member after deleting .

Now it’s time to rewrite the  function yet again. Rewrite Listings 57-4, 
57-8, and 60-4 to use the new  class. This time, the  map stores 
objects directly. See Listing 60-9 for one way to rewrite the program.

Listing 60-9. Rewriting the Program to Use the New  Value Class
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As you can see, the code that uses  objects is simpler and easier to read. The 
complexity of managing pointers and lifetimes is pushed down into the  and 

 classes. In this manner, the complexity is kept contained in one place and not 
spread throughout the application. Because the code that uses  is now simpler, it is 
less likely to contain errors. Because the complexity is localized, it is easier to review and test 
thoroughly. The cost is a little more development time to write two classes instead of one, and 
a little more maintenance effort because any time a new function is needed in the 
public interface, that function must also be added to . In many, many situations, 
the benefits far outweigh the costs, which is why this idiom is so popular.

Iterators
Perhaps you’ve noticed the similarity between iterator syntax and pointer syntax. The C++ 
committee deliberately designed iterators to mimic pointers. Indeed a pointer meets all the 
requirements of a random-access iterator, so you can use all the standard algorithms with a 
C-style array:

Thus, iterators are a form of smart pointer. Iterators are especially smart because they 
come in five distinct flavors (see Exploration 42 for a reminder). Random access iterators are 
just like pointers; other kinds of iterators have less functionality, so they are smart by being 
dumb.

Iterators can be just as dangerous as pointers. In their pure form, iterators are nearly as 
unchecked, wild, and raw as pointers. After all, iterators do not prevent you from advancing 
too far, from dereferencing an uninitialized iterator, from comparing iterators that point to 
different containers, etc. The list of unsafe practices with iterators is quite extensive. 

Because these errors result in undefined behavior, a library implementor is free to choose 
any result for each kind of error. In the interest of performance, most libraries do not imple-
ment additional safety checks, and push that back on the programmer who can decide on his 
or her preference for a safety/performance trade-off.

If the programmer prefers safety to performance, some library implementations offer a 
debugging version that implements a number of safety checks. The debugging version of the 
standard library can check that iterators do refer to the same container when comparing the 
iterators, and throw an exception if they do not. An iterator is allowed to check that it is valid 
before honoring the dereference ( ) operator. An iterator can ensure that it does not advance 
past the end of a container.

Thus, iterators are smart pointers because they can be really, really smart. I highly rec-
ommend that you take full advantage of all safety features that your standard library offers. 
Remove checks one by one only after you have measured the performance of your program 
and found that one particular check degrades performance significantly, and you have the 
reviews and tests in place to give you confidence in the less safe code.

This completes your tour of pointers and memory. The next topic gets down into the bits 
of bytes of C++.
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Working with Bits

This Exploration begins a series of Explorations that cover more advanced topics in the C++ 
type system. The series kicks off with an examination of how to work with individual bits. This 
Exploration begins with operators that manipulate integers at the bit level then introduces 
bitfields—a completely different way of working with bits. The final topic is the  class 
template, which lets you work with bitsets of any size.

Integer As a Set of Bits
A common idiom in computer programming is to treat an integer as a bitmask. The bits can 
represent a set of small integers, such that a value n is a member of the set if the bit at position 
n is one; n is not in the set if the corresponding bit is zero. An empty set has the numeric value 
zero because all bits are zero. To better understand how this works, consider the I/O stream 
formatting flags (introduced in Exploration 37).

Typically, you use manipulators to set and clear flags. For example, Exploration 16 
introduced the  and  manipulators. These manipulators set and clear the 

 flag by calling the  and  member functions. In other words, 
the following statement

is exactly equivalent to

Other formatting flags include  (introduced in Exploration 11),  (Explo-
ration 54),  (display a decimal point even when it would otherwise be suppressed), 
and  (show a plus sign for positive numbers). Consult a C++ reference to learn about 
the remaining formatting flags.

A simple implementation of the formatting flags is to store the flags in an , and assign a 
specific bit position to each flag. A common way to write flags that you define in this manner is 
to use hexadecimal notation, as shown in Listing 61-1. Write a hexadecimal integer literal with 

 or , followed by the base 16 value. Letters  through  in upper- or lowercase represent 
10 through 15. (The C++ standard does not mandate any particular implementation of the for-
matting flags. Your library probably implements the formatting flags differently.)

581
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Listing 61-1. An Initial Definition of Formatting Flags

The next step is to write the  and  functions. The former function sets specific 
bits in a  data member (of the  class), and the latter clears bits. To set and 
clear bits, C++ provides some operators that manipulate individual bits in an integer. Collec-
tively, they are called the bitwise operators.

The bitwise operators perform the usual arithmetic promotions and conversions (Explo-
ration 23). The operators then perform their operation on successive bits in their arguments. 
The  operator implements bitwise and, the  operator implements bitwise, inclusive or; and 
the  operator is a unary operator to perform bitwise complement. Figure 61-1 illustrates the 
bitwise nature of these operators (using  as an example).

Figure 61-1. How the  (bitwise and) operator works

Implement the  function. This function takes a single  argument and sets the 
specified flags in the  data member. Listing 61-2 shows a simple solution.

Listing 61-2. A Simple Implementation of the  Member Function
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The  function is slightly more complicated. It must clear flags, which means setting 
the corresponding bits to zero. In other words, the argument specifies a bitmask in which each 
1 bit means to clear (set to 0) the bit in . Write the  function. Compare your solu-
tion with Listing 61-3.

Listing 61-3. A Simple Implementation of the  Member Function

Recall from Exploration 44 that various assignment operators combine an arithmetic 
operator with assignment. Assignment operators also exist for the bitwise functions, so you 
can write these functions even more succinctly, as shown in Listing 61-4.

Listing 61-4. Using Assignment Operators in the Flags Functions

Recall from Exploration 54 that the  operator combines I/O mode flags. Now you know 
that the flags are bits, and the I/O mode is a bitmask. Should the need arise, you can use any of 
the bitwise operators on I/O modes.

Bit Masks
Not all the flags are individual bits. The alignment flags, for example, can be , , or 

. The floating-point style can be , , or general. To represent three or 
four values, you need two bits. For these situations, C++ has a two-argument form of the 
function. (Exploration 8). The second argument specifies a mask of which bits to affect; the 
first argument specifies a mask of bits to set within the field.

Using the same bitwise operators, you can define  as a two-bit wide bitmask, 
for instance, . If both bits are clear, that could mean left-adjustment; one bit set means 
right-adjustment; the other bit could mean “internal” alignment (align after a sign or  in 
a hexadecimal value). That leaves one more possible value (both bits set), but the standard 
library defines only three different alignment values.

Listing 61-5 shows one possible implementation of the  and  masks 
and their associated values.
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Listing 61-5. Declarations for Formatting Fields

Thus, to set the alignment to , one calls . Write the two-
argument form of the  function. Compare your solution with Listing 61-6.

Listing 61-6. Two-Argument Form of the  Function

One difficulty with defining bitfields in this fashion is that the numeric values can be hard 
to read unless you’ve spent a lot of time working with hexadecimal values. Another solution is 
to use more familiar integers for all flags and fields, and let the computer do the hard work by 
shifting those values into the correct positions.

Shifting Bits
Listing 61-7 shows another way to define the formatting fields. They represent the exact same 
values as shown in Listing 61-1, but they are a little easier to proofread.

Listing 61-7. Using Shift Operators to Define the Formatting Fields
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The  operator (which looks just like the output operator) is the left-shift operator. It 
shifts its left-hand operator (which must be an integer) by the number of bit positions speci-
fied by the right-hand operator (also an integer). Vacated bits are filled with zero.

Although this style is more verbose, you can clearly see that the bits are defined with adja-
cent values. You can also easily see the size of multi-bit masks. If you need to add a new flag, 
you can do so without the need to recompute any other fields or flags.

What is the C++ right-shift operator? ________________ That’s right: , which is also the 
input operator.

If the right-hand operand is negative, that reverses the direction of the shift. That is, a left 
shift by a negative amount is the same as right-shifting by a positive amount, and vice versa. 
You can use the shift operators on integers, but not on floating-point numbers. The right-hand 
operand cannot be greater than the number of bits in the left-hand operand. (Use the 

 class template, introduced in Exploration 23, to determine the number of bits in a type, 
such as .)

The C++ standard library overloads the shift operators for the I/O stream classes to imple-
ment the I/O operators. Thus, the  and  operators were designed for shifting bits in an 
integer, and were later usurped for I/O. As a result, the operator precedence is not quite right 
for I/O. In particular, the shift operators have a higher precedence than the bitwise operators 
because that makes the most sense for manipulating bits. As a consequence, if for instance you 
want to print the result of a bitwise operation, you must enclose the expression in parentheses.

One caution when using the right-shift operator: the value of the bits that are filled in is 
implementation-defined. This can be particularly problematic with negative numbers. The 
value  may be positive on some implementations and negative on others. Fortunately, 
C++ has a way to avoid this uncertainty, as the next section explains.

Safe Shifting with Unsigned Types
Every primitive integer type has a corresponding type that you declare with the 
keyword. These types are known—not surprisingly—as unsigned types. One key difference 
between ordinary (or signed) integer types and their unsigned equivalents is that unsigned 
types always shift in a zero when right-shifting. For this reason, unsigned types are preferable 
to signed types for implementing bit fields.
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Write a program to determine how your C++ environment right-shifts negative values. 
Compare this with shifting unsigned values. Your program will certainly look different from 
mine, which is shown in Listing 61-8, but you should be able to recognize the key similarities.

Listing 61-8. Exploring How Negative and Unsigned Values Are Shifted

On my Linux x86 system, I see the following output:

which means right-shifting a signed value fills in the vacated bits with copies of the sign bit (a 
process known as sign extension), and that right-shifting an unsigned value works correctly by 
shifting in zero bits.

Signed and Unsigned Types
The plain  type is shorthand for . That is, the  type has two sign flavors: 

 and , the default being . Similarly,  is the same as 
 and  is the same as . Thus, you have no reason to use the 

 keyword with the integer types.
Like too many rules, however, this one has an exception: . The  type comes 

in three flavors, not two: , , and . All three types occupy the same 
amount of space (one byte). The plain  type has the same representation as either 
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 or , but it remains a distinct type. The choice is left to the compiler; consult 
your compiler’s documentation to learn the equivalent  type for your implementation. 
Thus, the  keyword has a use for the  type; the most common use for 

 is to represent a tiny, signed integer when conserving memory is important. Use plain 
 for text,  for tiny integers, and  for tiny bitmasks.
Unfortunately, the I/O stream classes treat  and  as text, not tiny 

integers or bitmasks. Thus, reading and writing tiny integers is harder than it should be, as 
demonstrated in the following:

Unsigned Literals
If an integer literal does not fit in a , the compiler tries to make it fit into an 

. If that works, the literal’s type is . If the value is too big for , the 
compiler tries , and then  before giving up and issuing an error message. 
(The next version of the C+ + standard will try the  and  types 
before issuing an error message.)

You can force an integer to be unsigned with the  or  suffix. The  and  suffixes can appear 
in any order for an  literal.

One consequence of this flexibility is that you can’t always know the type of an integer 
literal. For instance, the type of  might be  on a 64-bit system. On some 32-bit 
systems, the type might be  and on others, it might be . The moral 
is to make sure you write code that works correctly regardless of the precise type of an integer 
literal, which isn’t difficult. For example, all the programs and fragments in this book work on 
any C++ compiler, regardless of the size of an .

Type Conversions
A signed type and its unsigned counterpart always occupy the same amount of space. You 
can use  (Exploration 23) to convert one to the other, or you can let the compiler 
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implicitly perform the conversion, which can result in surprises if you aren’t careful. Consider 
the following example:

This results in the following output on my system:

If you mix signed and unsigned values in an expression (usually a bad idea), the compiler 
converts the signed value to unsigned, which often results in more surprises. This kind of sur-
prise often arises in comparisons.

Listing 61-9. Mystery Program
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Before you run the program, predict what Listing 61-9 will print.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Try it. Were you correct? ________________ Explain what the program does.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

The program succeeds in appending  to  because the vector size is zero, which is 
less than 2. The next call to , however, does nothing because the vector size is , and 

 is also . The next call fails for a similar reason. So why does the next call succeed 
in appending  to ? Because  is , you might think the comparison would be 
with , but  is signed, and  is unsigned. Therefore the compiler converts  to 
unsigned, which is an implementation-defined conversion. On typical workstations,  con-
verts to the largest unsigned integer, so the test succeeds.

The first moral of the story is to avoid expressions that mix signed and unsigned values. 
Your compiler might help you here by issuing warnings when you mix signed and unsigned 
values. A common source for unsigned values is from the  member functions in the 
standard library, which all return an unsigned result. You can reduce the chances for surprises 
by using one of the standard typedefs for sizes, such as  (defined in ),
which is an implementation-defined unsigned integer type. The standard containers all define 
a member type, , to represent sizes and similar values for that container. Use these 
typedefs for your variables when you know you need to store sizes, indices, or counts.

“That’s easy!” you say. “Just change the declaration of  to 
, and problem solved!” Maybe you can avoid this kind of problem by sticking with the 

standard member typedefs, such as  and  (Exploration 41). Take a 
gander at Listing 61-10 and see what you think.

Listing 61-10. Another Mystery Program
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Predict the output before you run the program in Listing 61-10.

_________________________________________________________________________________

Try it. What do you actually get?

_________________________________________________________________________________

Can you spot the conceptual error that I committed? In a standard container, the 
 typedef is always a signed integral type. Thus,  always returns a 

signed value. I made the mistake of thinking that the signed value  would always be less than 
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any unsigned value because they are always  or more. Thus,  would not need to 
check for an empty container as a special case.

What I failed to take into account is that when a C++ expression mixes signed and 
unsigned values, the compiler converts the signed value to unsigned. Thus, the signed result 
from  becomes unsigned, and  becomes the largest possible unsigned value (on 
a typical two’s complement system, such as most ordinary computers). If the container is 
empty,  is zero, and  (which the compiler interprets as ) is also the 
largest possible unsigned integer.

If you are fortunate, your compiler issues a warning about comparing signed and 
unsigned values. That gives you a hint that something is wrong. Fix the program. Compare 
your solution with Listing 61-11.

Listing 61-11. Fixing the Second Mystery Program
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The second moral of the story is not to use unsigned types if you don’t need to. Most of 
the time, signed types work just as well. Just because a type’s range of legal values happens to 
be non-negative is not a reason to use an unsigned type. Doing so just complicates any code 
that must cooperate with the unsigned type.

Tip When using the standard library, make use of the typedefs and member typedefs that it provides. 
When you have control over the types, use signed types for all numeric types, including sizes, and reserve 
the unsigned types for bitmasks. And always be very, very careful every time you write an expression that 
uses an unsigned type with other integers.

Overflow
Until now, I’ve told you to ignore arithmetic overflow. That’s because it’s a difficult topic. 
Strictly speaking, if an expression involving signed integers or floating-point numbers over-
flows, the results are undefined. In reality, your typical desktop system wraps integer overflow 
(so adding two positive numbers can yield a negative result). Overflow of floating-point num-
bers can yield infinity or the program may terminate.

If you explicitly cast a signed value to a type such that the value overflows the destination 
type, the results are not so dire. Instead of undefined behavior, the results are defined by the 
implementation. Most implementations simply discard the excess bits. Therefore, for maxi-
mum safety and portability, you should check for overflow. Use  (Exploration 
23) to learn the maximum or minimum value of a type.

Unsigned integers are different. The standard explicitly permits unsigned arithmetic to 
overflow. The result is to discard any extra high-order bits. Mathematically speaking, this 
means unsigned arithmetic is modulo 2n, where n is the number of bits in the unsigned type.
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Introducing Bitfields
A bitfield is a way to partition an integer within a class into individual bits or masks of adjacent 
bits. Declare a bitfield using an unsigned integer type or , the field name, a colon, and the 
number of bits in the field. Listing 61-12 shows how you might store the I/O formatting flags 
using bitfields.

Listing 61-12. Declaring Formatting Flags with Bitfields

Use a bitfield member the way you would use any other data member. For example, to set 
the  flag, use

and to clear the flag, use the following:

To select scientific notation, try the line that follows:

As you can see, code that uses bitfields is easier to read and write than the equivalent code 
using shift and bitwise operators. That’s what makes bitfields popular. On the other hand, it is 
hard to write functions such as  and . It is hard to get or set multiple, non-adjacent 
bits at one time. That’s why your library probably doesn’t use bitfields to implement I/O for-
matting flags.

Another limitation is that you cannot take the address of a bitfield (with the  operator) 
because an individual bit is not directly addressable in the C++ memory model.

Nonetheless, the clarity that bitfields offer puts them at the top of the list when choosing 
an implementation. Sometimes, other factors knock them off the list, but you should always 
consider bitfields first. With bitfields, you don’t need to be concerned with bitwise operators, 
shift operators, mixed-up operator precedence, and so on.
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Portability
The C++ standard leaves several details up to each implementation. In particular, the order of 
bits in a field is left up to the implementation. A bitfield cannot cross a word boundary, where 
the definition of a word is also left up to the implementation. Popular desktop and workstation 
computers often use 32 bits or 64 bits, but there is no guarantee that a word is the same size as 
an . An unnamed bitfield of size zero tells the compiler to insert pad bits so the subsequent 
declaration aligns on a word boundary.

The size of a  object depends on the implementation. Whether  is the least or 
most significant bit of a ’s actual implementation also varies from one system to another. 
The number of pad bits between  and  also depends on the implementation.

Most code does not need to know the layout of the bits in memory. On the other hand, if 
you are writing code that interprets the bits in a hardware control register, you need to know 
the order of bits, the exact nature of padding bits, and so on. But you probably aren’t expect-
ing to write highly portable code, anyway. In the most common case, when you are trying to 
express a compact set of individual set members or small bitmasks, bitfields are wonderful. 
They are easy to write and easy to read. They are limited, however, to a single word, often 32 
bits. For larger bitfields, you need to use a class, such as .

The bitset Class Template
Sometimes, you need to store more bits than can fit in an integer. In that case, you can use the 

 class template, which implements a fixed-size string of bits of any size.
The  class template takes one template argument: the number of bits in the 

set. Use a  object the way you would any other value. It supports all the bitwise and 
shift operators, plus a few member functions for further convenience. Another nifty trick that 

 can perform is the subscript operator, which lets you access individual bits in the set as 
discrete objects. The right-most (least significant) bit is at index zero. Construct a  from 
an unsigned long (to set the least-significant bits of the , initializing the remaining bits 
to zero) or from a string of  and  characters, as illustrated in Listing 61-13.

Listing 61-13. Example of Using 
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In Exploration 23, I presented  as a way to convert one integer to a different 
type. Listing 61-13 demonstrates another syntax for a static cast: . This syntax 
makes the type cast look like a constructor call, pretending  is a class. For a simple 
type conversion, this syntax is often easier to read than . I recommend using this 
syntax when converting literals; use  for more complicated expressions.

Unlike working with bitfields, most of the behavior of  is completely portable. Thus, 
every implementation gives the same results when running the program in Listing 61-13. The 
following output displays those results:

Write a function template, , that takes two arguments: a  to search, and 
a value to compare. The function searches for the first pair of adjacent bits that are equal 
to the second argument and returns the index of the most significant bit of the pair. What
should the function return if it cannot find a matching pair of bits? Write a simple test pro-
gram, too.

Compare your solution with mine, which is presented in Listing 61-14.
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Listing 61-14. The  Function and Test Program
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Although  is not widely used, when you need it, it can be extremely helpful. The 
next Exploration covers a language feature that is much more widely used than :
enumerations.
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Enumerations

The final mechanism for defining types in C++ is the  keyword, which is short for 
enumeration. This Exploration has two parts. The first part presents enumerations as you 
probably expect them to work; the second part presents how enumerations actually work. The 
differences may surprise you.

Ideal Enumerations
An enumerated type is a user-defined type that defines a set of identifiers as the values of the 
type. Define an enumerated type with the  keyword, followed by the type name, followed 
by the enumerated literals in curly braces. The following code shows some examples of enu-
merated types:

An  definition adds the names of all the enumerators to the same scope that gets the 
 type name. It does not create its own scope, which surprises some people. Usually curly 

braces denote a scope, whether a local block, a namespace, a class, etc. In this case, the curly 
braces do not introduce a new scope, but simply delimit the enumerator names. Therefore, in 
a single scope, an identifier cannot be an element of more than one enumerated type. Thus, 
given the previous three enumerations, you could not also define the following enumeration:

Defining an enumerated type within a namespace or class definition is an easy way to 
avoid this kind of name conflict.

599
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Although some languages implement a mechanism for discovering the largest and small-
est values of an enumeration, C++ does not.

The only value that you can assign to a variable of enumerated type is an expression of 
the same type, such as one of the literals of that type, another variable of the same type, or the 
result of a function that returns the enumerated type. In particular, you cannot assign an inte-
ger to an enumerated-type variable.

The compiler automatically converts enumerated-type values to integer values when it 
needs to. The first literal in a type definition has value zero; the next is one, and so on. For 
example, if you print an enumerated value , what you actually see printed is .

Use the type name as a constructor name, passing an integer argument to convert that 
integer to the corresponding enumerated-type value.

You can also use a , as shown in the following:

There is no input operator for enumerations. If you want to be able to read an enumer-
ated literal as a string, you need to implement your own mechanism to map strings to values. 
Even though C++ can print enumerated values by converting them to integers, the reverse is 
not automatic for input. You cannot read an integer into an -type variable. Instead, you 
can read an integer into an integer-type variable, check the value for validity, then convert the 
integer to the enumerated type, as described earlier. 

The increment and decrement operators are not defined for enumerated types. A com-
mon language feature in other languages is the successor and predecessor operators for 
enumerated types. C++ does not offer these operators by default, but you are free to imple-
ment them yourself. You need to decide what to do at the limits of the type: throw an 
exception, stick at the end, or wrap back to the beginning.

Enumerated types have their uses, but in C++, they seem to be extremely limited. To 
understand why, you need to understand that this idealized view of enumerations is a lie. 
The next part of this Exploration reveals the truth.

Enumerations As Bitmasks
An enumerated type defines an integer bitmask type, with a set of predefined mask values. 
Every enumerated type corresponds to one of the built-in primitives types; the exact type is 
implementation-defined.

You define an enumerated type with the  keyword, the name of the enumerated type, 
and the literals in curly braces. A literal can be just a name, or it can be a name followed by an 
equal sign and constant integer value. A value expression can refer to enumerators that appear 
earlier in the same type. If you omit a value for a particular enumerator name, the compiler 
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picks a value by adding one to the value of the preceding literal value. The implicit value of the 
first enumerator is zero. Thus,

and

mean exactly the same thing. Enumerator values do not need to be contiguous, adjacent, 
ordered, or complete. Duplicate values are permitted; duplicate names are not.

The compiler does not define the arithmetic operators for enumerated types, leaving 
you free to define these operators. The compiler can convert an enumerated value to its cor-
responding integer value, but to convert back, you must use an explicit type cast. Use the 
enumerated type name in the manner of a constructor with an integer argument, or use 

.

Suppose you define the following enumeration:

The permissible values for an object of type  are all values in the range [ ,
], which may strike you as a little odd. To understand how the compiler deter-

mines the permissible values, you need to remember that enumerated types are actually 
bitmask types. The permissible values are all the bitmask values that fit into a bitfield that can 
hold the largest and smallest bitmask values among the enumerators.

The first step to understanding the full range of permissible values is to determine the 
minimum size of the bitfield that can hold all the enumerators. For , this is nine bits 
(in order to hold 25610 or 1000000002). The minimum bitmask value is a bitmask of all zeros 
and the maximum is all ones: thus, the range of bitmasks is 0000000002 to 1111111112 or 010

to 51110.
If any enumerator is negative, the same rules apply, but are more complicated because 

you need to consider the native representation of negative numbers (typically two’s comple-
ment for most desktop and workstations, but it also can be signed-magnitude or ones’ 
complement for specialized devices).

You can use an enumerated type for a bitfield (Exploration 61). It is your responsibility to 
ensure that the bitfield is large enough to store all the possible enumeration values, as demon-
strated in the following:

The compiler will let you declare a bitfield that is too small; if you are fortunate, your com-
piler will warn you about the problem.
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Simulating Enumerations
Even though enumerations are grossly misnamed, you can implement an enumerated type 
with a C++  and a class. It just takes a little extra work. (Or a lot of extra work, depending 
on how fancy you want your simulation to be.) Override the increment and decrement opera-
tors to implement the successor and predecessor operations. You need to decide what to do at 
the limits—that is, if you take the successor of the last enumeration or the predecessor of the 
first. Do you stick at the limit, wrap to the other limit, or throw an exception?

If you want to be able to read and write the literal names instead of integers, this requires 
quite a bit of extra work, but work that helps complete the simulation.

Enumerating Computer Languages
For example, let’s define an enumeration of computer programming languages. Start with a 
short list. Once you see how the mechanism works, you can easily extend the list with addi-
tional languages.

Start by defining a class that will contain the actually enumerated type and associated 
information.

Notice how the class name is the meaningful name. The enumeration itself has a place-
holder name. In order to use the enumerated literals, you must qualify the literal names with 
the class name (e.g., ). This avoids conflicts with any other uses of  as a name.

The first thing to add are successor and predecessor operators, which we implement as 
member functions for the increment the decrement operators.

Because enumerated types do not allow increment and decrement operators, the pre-
increment function must use a type cast. Implement the decrement operators similarly.

But what happens when you increment past the largest value or decrement prior to the 
smallest value? Let’s add some error checking and throw an exception in these cases. Listing 
62-1 shows the latest incarnation of the  class.

Listing 62-1. The  Class with Error-Checked Successor Functions
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Notice the addition of  and  enumerators. Whenever you change the list of lan-
guages, you must take care to ensure that  and  are correct. Implement the decrement 
operators; throw  when appropriate.

Comparing Languages
C++ lets you compare enumerated values using the relational operators because the compiler 
converts the values to integers and compares the integers. We can take advantage of this when 
implementing comparison operators for the  class. Because we are simulating an enu-
merated type, we have no reason to specify that  is greater than or less than . Thus, 
we should define the equality and inequality operators, but not the relational operators. Ide-
ally, you should define comparison operators as free functions, but so far, we have not defined 
any way to discover the underlying enumerated value of a  object. Thus, the next task 
is to define a type conversion operator.

A member function that has the form , followed by a type, is a type conversion
operator. It defines the means of converting an object of the class type to the target type. Note 
that the return type of the function is the target of the type conversion. The compiler calls the 
type conversion operator when you explicitly ask it to with ,

or when the compiler determines that an implicit conversion is allowed and necessary, such as 
the following:

Now implement the equality and inequality operators as free functions.
Implementing a default constructor is usually a good idea. Which value should the 

default constructor use? ________________ Implement the default constructor. Note that the 
implicit copy constructor and copy assignment operator work just fine.

Without relational operators, however, you cannot use a  object as a key in a 
set or map. To do this, you should specialize the  template so it compares 
objects by casting to the enumerated type, as shown in the following:
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Assignment
Now that you can get a  value out of a  object, add an assignment 
operator that assigns a  value to a  object. Remember that C++ per-
mits values in an enumeration that are not among the listed enumerated literals. In order 
to simulate a true enumerated type, we must not permit this. Implement assignment 
of  that ensures the source value is in the range [ , ], and throws 

 if the value is out of range.
Listing 62-2 shows the current language class and related functions.

Listing 62-2. The Language Class with Comparison and Assignment
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Strings and Languages
Before we can tackle I/O, we need to be able to map a string to a  and vice versa. This 
is difficult because C++ gives us no way to discover the literal names with any reflection or 
introspection mechanism. Instead, we need to duplicate information and hope we don’t make 
any mistakes.

Assume that conversions to and from strings will occur frequently. What data structure 
should you use to convert strings to  values? ________________ What data 
structure should you use for the reverse conversion? ________________

If you have TR1 available, use an  to map strings to values and 
 to map values to strings; otherwise, use  and . To reduce 

the amount of redundant information in the program, write a helper function to populate both 
data structures simultaneously. Implement the  member function to return the 
language as a , and a function, , to convert a string to a value. Throw 

 if the string is not a valid language name. Implement a constructor 
that takes a  as an argument and calls  to construct a language from the 
string. Write a function, , that initializes the internal data structures.

See Listing 62-3 for the string conversion code for the  class.
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Listing 62-3. The Language Class with String Conversion
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Recall from Exploration 38 that the  modifier on a data member instructs the com-
piler to create a single instance of the data member and share that single instance among 
all objects of that class and derived classes. The  and  members are 

 because you want to use a single, shared map to convert strings to language values and 
a single, shared vector to perform the opposite conversion.

Because the , , and  functions do not need to use any data 
members except the static data members,  and , you should make 
these functions , too. A  function is one that does not need to be called for a 
specific object. Instead, you can call it as a free function, qualified with the class name, for 
example, .

To declare a static member function, use the  keyword as a modifier on the return 
type. By convention, it is the first modifier (e.g., ). See Listing 62-4 for 
this new incarnation of the language.hpp header.

Listing 62-4. The Language Class with All Enhancements
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Note The  keyword has multiple uses in C++. When used with a class member, it means that 
member is shared among all instances of the class and is not tied to any particular instance. It has an 
entirely different meaning outside of a class. If you use  on a free function or global object, it keeps 
that function or object private to the source file in which it is defined. As you learned in Exploration 50, an 
unnamed namespace does the same thing, so there is no need to use  this way in C++. I recom-
mend not using  outside of a class, but you might read code that uses it, so you should know what 
it means.

Initializing
The next task is to ensure that  is called. The common idiom is to 
define an initialization class, call it . Its constructor calls .
Thus, constructing a single instance of  ensures that the  class is 
initialized. In language.cpp, define this instance in an unnamed namespace, as shown in 
Listing 62-5.

Listing 62-5. The language.cpp File Initializes the Language Data Structures



EXPLORATION 62   ENUMERATIONS 611

Objects at namespace or global scope are constructed before  begins or before the 
use of any function or object in the same file. Thus, the  object is constructed early, which 
calls , which in turn ensures the  data structures are properly 
initialized.

The one difficulty is when another global initializer needs to use . C++ offers no 
convenient way to ensure that objects in one file are initialized before objects in another file. 
Within a single file, objects are initialized in the order of declaration, starting at the top of the 
file. Dealing with this issue is beyond the scope of this book. None of the examples in this book 
depend on the order of initialization across files. In fact, most programs don’t face this prob-
lem. So we can return to the immediate problem: reading and writing  values.

Reading and Writing Languages
Now that the hard work of converting to and from strings is done, it is time to use them for 
I/O. Read a  by reading a string and mapping the string to a  value. Use a 

-  statement to catch the exception that  throws for an unknown language, 
and set the  bit for invalid input. Write a  by mapping to a string and writing the 
string. See Listing 62-6 for the I/O operators.

Listing 62-6. Just the I/O Operators for a Language Object

Using the Simulated Enumeration
Now that you have the  class, let’s make sure it’s easy to use. Write a program that 
asks the user for his or her favorite language. Read the response as a  object. Note 
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that the normal input stream catches any exceptions and turns them into input failures. Thus, 
test for invalid input by testing for . After a failure, call  to reset the 
state and ask again. Otherwise, obtain the successor language and suggest that the user try 
that language instead. If the user likes the highest value language, recommend the lowest.

Compare your solution with Listing 62-7.

Listing 62-7. Program to Test the  Class

Writing the  class involves a certain amount of ugliness. Once it is written, how-
ever, you have a powerful type at your disposal, and you can customize it, enhance it, and 
improve it in any way you wish. Watch an expert C++ programmer, and you will see someone 
who is adept at hiding ugliness inside classes that are beautiful and elegant from the outside.
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Revisiting Projects
Now that you know all about enumerations, consider how you could improve some previous 
projects. For example, in Exploration 33, we wrote a constructor for the  class that uses a 

 to distinguish between Cartesian and polar coordinate systems. Because it is not obvious 
whether  means Cartesian or polar, a better solution is to use an enumerated type, such as 
the following:

Another example that can be improved with enumerations is the  class, from  
Listing 51-5. Instead of using  constants for the suits, use an enumeration. You can also 
use an enumeration for the rank. The enumeration needs to specify enumerators only for ,

, , and . Choose appropriate values, and you can cast the integers 2 through 10 
to the  type for the other card ranks. Write your new, improved  class and compare it 
with my solution in Listing 62-8.

Listing 62-8. Improving the  Class with Enumerations
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What other projects can you improve with enumerations?
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Multiple Inheritance

Unlike some other object-oriented languages, C++ lets a class have more than one base class. 
This feature is known as multiple inheritance. Several recent languages permit a single base 
class, and introduce a variety of mechanisms for pseudo-inheritance, such as Java interfaces 
and Ruby mix-ins and modules. Multiple inheritance in C++ is a superset of all these other 
behaviors.

Multiple Base Classes
Declare more than one base class by listing all the base classes in a comma-separated list. 
Each base class gets its own access specifier, as demonstrated in the following:

As with single inheritance, the derived class has access to all the non-private members of 
all of its base classes. The derived class constructor initializes all the base classes in order of 
declaration. If you need to pass arguments to any base class constructor do so in the initializer 
list. As with data members, the order of initializers does not matter—only the order of declara-
tion matters, as illustrated in Listing 63-1.

Listing 63-1. Demonstrating the Order of Initialization of Base Classes

615
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Your compiler may issue a warning when you compile the program, pointing out that the 
order of base classes in ’s initializer list does not match the order in which the initializ-
ers are called. Running the program shows that the order of the base classes controls the order 
of the constructors, as shown in the following output:

Figure 63-1 illustrates the class hierarchy of Listing 63-1. Notice that each of the ,
, and  classes has its own copy of the  base class. Don’t be concerned now, 

but this point will arise later, so pay attention.
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Figure 63-1. UML diagram of classes in Listing 63-1

If two or more base classes have a member with the same name, you need to indicate to 
the compiler which of them you mean if you want to access that particular member. Do this by 
qualifying the member name with the desired base class name when you access the member 
in the derived class. See the examples in the  class in Listing 63-1. Change the 
function to the following:

Predict the output from the new program:

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Compare your results with the output I got:
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Virtual Base Classes
Sometimes, you don’t want a separate copy of a common base class. Instead, you want a single 
instance of the common base class, and every class shares that one common instance. To 
share base classes, insert the  keyword when declaring the base class. The  key-
word can come before or after the access specifier; convention is to list it first.

Note C++ overloads certain keywords, such as  and . A virtual base class has no rela-
tionship with virtual functions. They just happen to use the same keyword.

Imagine changing the  base class to be virtual when each of , , and 
 derive from it. Can you think of any difficulty that might arise?

_________________________________________________________________________________

Notice that each of the classes that inherit from  pass a different value to the con-
structor for . If you want to share a single instance of , you need to pick one 
value and stick with it. To enforce this rule, the compiler ignores all the initializers for a virtual 
base class except the one that it requires in the most-derived class (in this case, ). Thus, 
to change  to be virtual, not only must you change the declarations of , ,
and , but you must also change . When  initializes  it initializes 
the sole, shared instance of . Try it. Your modified program should look something like 
Listing 63-2.

Listing 63-2. Changing the Inheritance of Visible to Virtual
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Predict the output from Listing 63-2.

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________
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Notice that the  class is now initialized only once, and that the  class is the 
one that initializes it. This example is unusual because I want to illustrate how virtual base 
classes work. Most virtual base classes define only a default constructor. This frees authors of 
derived classes from concerning themselves with passing arguments to the virtual base class 
constructor. Instead, every derived class invokes the default constructor; it doesn’t matter 
which class is the most derived.

Figure 63-2 depicts the new class diagram, using virtual inheritance.

Figure 63-2. Class diagram with virtual inheritance

Java-Like Interfaces
Programming with interfaces has some important advantages. Being able to separate inter-
faces from implementations makes it easy to change implementations without affecting other 
code. If you need to use interfaces, you can easily do so in C++.

C++ has no formal notion of interfaces, but it supports interface-based programming. The 
essence of an interface in Java and similar languages is that an interface has no data members, 
and the member functions have no implementations. Recall from Exploration 36 that such 
a function is called a pure virtual function. Thus, an interface is merely an ordinary class in 
which you do not define any data members and you declare all member functions as pure 
virtual.

For example, Java has the  interface, which defines the  and  func-
tions. Listing 63-3 shows the equivalent C++ class.
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Listing 63-3. The  Interface in C++

Any class that implements the  interface must override all the member functions. 
For example,  implements  for a string, as shown in Listing 63-4.

Listing 63-4. The  Class

Note that  does not derive from . Instead it encapsulates a 
string and delegates all string functions to the  object it holds.

The reason you cannot derive from  is the same reason  contains a 
virtual destructor. Recall from Exploration 36 that any class with at least one virtual function 
should make its destructor virtual. Let me explain the reason.

To understand the problem, think about what would happen if  derived 
from . Suppose that somewhere else in the program is some code that frees 
strings (maybe a pool of common strings). This code stores strings as  pointers. If 

 derives from , this is fine. But when the pool object frees a string, 
it calls the  destructor. Because this destructor is not virtual, the 
destructor never runs, resulting in undefined behavior. Listing 63-5 illustrates this problem.

Listing 63-5. Undefined Behavior Arises from  That Derives from 
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On the other hand, if  does not derive from , how can the 
string pool manage these hashable strings? The short answer is that it cannot. The long answer 
is that thinking in terms of Java solutions does not work well in C++ because C++ offers a better 
solution to this kind of problem: templates.

Interfaces vs. Templates
As you can see, C++ handily supports Java-style interfaces. There are times when Java-like 
interfaces are the correct C++ solution. There are other situations, however, when C++ offers 
superior solutions, such as templates.

Instead of writing a  class, write a  class template and specialize the 
template for any type that needs to be stored in a hash table. The primary template provides 
the default behavior; specialize  for the  type. In this way, the string pool can 
easily store  pointers and destroy the string objects properly, and a hash table can 
compute hash values for strings (and anything else you need to store in the hash table). Listing 
63-6 shows one way to write the  class template and a specialization for .
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Listing 63-6. The  Class Template

Now try using the  class template to rewrite the  class. Compare your 
solution with Listing 63-7.

Listing 63-7. Rewriting  to Use 
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Use the exact same  class as you did in Listing 63-5. The program that uses 
the string pool is simple and clear and has the distinct advantage of being well-formed and 
correct.

Mix-Ins
Another approach to multiple inheritance that you find in languages such as Ruby is the mix-
in. A mix-in is a class that typically has no data members, although this is not a requirement 
in C++ (as it is in some languages). Usually, a C++ mix-in is a class template that defines some 
member functions that call upon the template arguments to provide input values for those 
functions.

For example, in Exploration 57 you saw a way to implement assignment in terms of a 
member function. This is a useful idiom, so why not capture it in a mix-in class so you can eas-
ily reuse it. The mix-in class is actually a class template that takes a single template argument: 
the derived class. The mix-in defines the assignment operator, using the  function that the 
template argument provides. 

Confused yet? You aren’t alone. This is a common idiom in C++, but one that takes time 
before it becomes familiar and natural. Listing 63-8 helps to clarify how this kind of mix-in 
works.

Listing 63-8. The  Class Template

The trick is that instead of swapping , the mix-in class casts itself to a reference to the 
template argument, . In this way, the mix-in never needs to know anything about the derived 
class. The only requirement is that the class, , must be copyable (so it can be an argument to 
the assignment function) and have a  member function.

In order to use the  class, derive your class from the 
(as well as any other mix-ins you wish to use), using the derived class name as the template 
argument. Listing 63-9 shows an example of how a class uses mix-ins.

Listing 63-9. Using  Class Template
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This C++ idiom is hard to comprehend at first, so let’s break it down. First, consider the 
 class template. Like many other templates, it takes a single template param-

eter. It defines a single member function, which happens to be an overloaded assignment 
operator. There’s nothing particularly special about .

But  has one important property: the compiler can instantiate the tem-
plate even if the template argument is an incomplete class. The compiler doesn’t need to 
expand the assignment operator until it is used, and at that point,  must be complete. But 
for the class itself,  can be incomplete. If the mix-in class were to declare a data member of 
type , then the compiler would require  be a complete type when the mix-in is instantiated 
because it would need to know the size of the mix-in.

In other words, you can use  as a base class, even if the template argu-
ment is an incomplete class.

When the compiler processes a class definition, immediately upon seeing the class name, 
it records that name in the current scope as an incomplete type. Thus, when 

 appears in the base class list, the compiler is able to instantiate the base class 
template using the incomplete type, , as the template argument.

By the time the compiler gets to the end of the class definition,  becomes a complete 
type. After that, you will be able to use the assignment operator because when the compiler 
instantiates that template, it needs a complete type, and it has one.

Friends to the Rescue
Mix-ins are a wonderful tool in C++. One difficulty, however, is that many operators should be 
implemented as free functions, not member functions. The trick is for a mix-in class to imple-
ment free functions. It turns out a mix-in class can indeed define a free function from within 
the class definition. This trick involves a new keyword, .

For example, recall from Exploration 28 how the  class implements the relational 
operators in terms of two fundamental operators:  and . This is a common pattern. Any 
type that can be compared with these two operators can follow the same pattern and imple-
ment all the relational operators. It seems perfectly reasonable to write a pair of mix-in class 
templates that implement the other comparison operators, based on these two. By using the 

 modifier when defining the function, the mix-in class template defines a free function 
inside the class, as shown in Listing 63-10.
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Listing 63-10. The  and  Class Templates

Although this trick works fine, it abuses the  keyword. The original purpose of 
 is to give permission to a function or class to access the private members of another 

class. A class grants friendship, or access to its private members, by means of friend decla-
rations. A friend declaration contains the  keyword, followed by a class or function 
declaration. You must use the  or  keyword when naming a friend class. The 
named function or all of the members of the named class can access all private and protected 
members of the class granting friendship, as illustrated in the following:

When used in a mix-in, the fact that  is meant to bypass access levels is irrel-
evant. The  class template has only public members, anyway. This trick is 
an unintended consequence of the definition of , but it is a highly useful unintended 
consequence.

Write the  and  operators for the  class. Then use the mix-ins to complete the 
suite of comparison functions. Compare your result with Listing 63-11.

Listing 63-11. The  Class with All of Its Mix-Ins
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Multiple inheritance even appears in the C++ standard library. You know about 
for input and  for output. The library also has , so a single stream can perform 
input and output. As you might expect,  derives from  and . The only 
quirk has nothing to do with multiple inheritance:  is defined in the  header. 
The  header defines the names , , etc. The header name is an 
accident of history.

The next Exploration continues your advanced study of class templates by looking at poli-
cies and traits.

Protected Access Level
In addition to the private and public access levels, C++ offers the protected access level. A 
protected member is accessible only to the class itself and to derived classes. To all other 
would-be users, a protected member is off-limits, just like private members.

Most members are private or public. Use protected members only when you are designing 
a class hierarchy and you deliberately want derived classes to call a certain member function, 
but don’t want anyone else to call it.
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Traits and Policies

Although you may still be growing accustomed to templates, it’s time to explore two com-
mon, related use patterns: traits and policies. Programming with traits and policies is probably 
a new style for you, but it is common in C++. As you will discover in this Exploration, this 
technique is extremely flexible and powerful. Traits and policies underlie much of the C++ 
standard library. This Exploration takes a look at some of the traits and policies in the standard 
library so you can learn how to take advantage of them. It then helps you take the first steps 
toward writing your own.

CONCEPTS, PART ONE

The next major revision to the C++ standard will introduce a significant new feature: concepts. A concept is a 
way to define a constraint on a template argument. Even if you never explicitly use concepts, you will benefit 
from them because the compiler will be able to issue helpful error messages if you make a mistake with a 
template argument, such as trying to use a non-copyable type as a container element.

Currently, we model concepts informally. The standard algorithms, for example, name their template 
parameters according to the kind of iterator they accept. But nothing in the algorithm definition explicitly 
enforces that constraint. The addition of concepts to the language permits the algorithm author to explicitly 
state the properties of the template arguments, and the compiler will enforce these restrictions. The stan-
dard library will contain a rich suite of useful concepts, such as , which 
specifies that a template argument must be a bi-directional iterator, and the standard library will use these 
concepts instead of plain template parameters.

Concepts will not invalidate anything you learn in this Exploration, but they will fundamentally alter the 
way we work with traits and policies. If you are fortunate enough to be working with a compiler and library 
that implement the new standard, you should still take the time to study this Exploration. Then learn about 
concepts and see how concepts will affect traits and policies.

Case Study: Iterators
Consider the humble iterator. Consider the  function (Exploration 42). The 

 function changes the position to which an iterator points. The  function knows 
nothing about container types; it knows only about iterators. Yet somehow, it knows that if you 

629
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try to advance a vector’s iterator, it can do so simply by adding an integer to the iterator. But if 
you advance a list’s iterator, the  function must step the iterator one position at a time 
until it arrives at the desired destination. In other words, the  function implements the 
optimal algorithm for changing the iterator’s position. The only information available to the 

 function must come from the iterators themselves, and the key piece of information 
is the iterator kind. In particular, only random access iterators permit rapid advancement via 
addition. All other iterators must follow the step-by-step approach. So how does  know 
what kind of iterator it has?

In most OOP languages, an iterator would derive from a common base class, which would 
implement a virtual  function. The  algorithm would call that virtual function, 
and let normal object-oriented dispatching take care of the details. C++ certainly could take 
that approach, but it doesn’t.

Instead, C++ uses a technique that does not require looking up a virtual function and 
making an extra function call. Instead, C++ uses a technique that does not force you to derive 
all iterators from a single base class. If you implement a new container, you get to pick the 
class hierarchy. C++ provides the  base class template, which you can use if you 
want, but you don’t need to use it. Instead, the  algorithm (and all other code that uses 
iterators) relies on a traits template.

Traits are attributes or properties of a type. In this case, an iterator’s traits describe the 
iterator kind (random access, bidirectional, forward, input, or output), the type that the itera-
tor points to, and so on. The author of an iterator class specializes the 
class template to define the traits of the new iterator class. Iterator traits make more sense with 
an example, so let’s take a look at Listing 64-1, which shows one possible implementation of 

.

Listing 64-1. One Possible Implementation of 
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This code is not as difficult to understand as it appears. The  class 
template provides one function, the function call operator. The implementation advances an 
input iterator  times. This implementation works for a non-negative  with 
any kind of iterator.

Bi-directional iterators permit a negative value for . Partial template specializa-
tion permits a separate implementation of  just for bi-directional iterators. 
The specialization checks whether  is negative; negative and non-negative values are 
handled differently. 

Note Remember from Exploration 50 that only classes can use partial specialization. That’s why 
 is a class template with a function call operator instead of a function template. This 

idiom is common in C++. Another approach is to use function overloading, passing the iterator kind as an 
additional argument. The value is unimportant, so just pass a default-constructed object. I prefer partial 
specialization because it is more flexible, but feel free to use whichever technique you prefer.
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Let’s assemble the pieces. The  function creates an instance of 
 and calls its function call operator, passing the  and  arguments. The 

magic is the  class template. This class template has a few member 
typedefs, including .

All bi-directional iterators must define the member typedef, , as 
. Thus, when your program calls , and passes a 

bi-directional iterator (such as a  iterator) as the first argument, the  func-
tion queries  to discover the . The compiler uses template 
specialization to decide which implementation of  to choose. The compiler 
then generates the code to call the correct function. The compiler takes care of all this magic—
your program pays no runtime penalty.

Now try running the program in Listing 64-2 to see which  specializa-
tion is called in each situation.

Listing 64-2. Example Program to Use the  Function

Notice any problems? What kind of iterator does a vector use? ________________ Which
specialization does the compiler pick? ________________ The compiler does not follow class 
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hierarchies when picking template specializations, so the fact that 
 derives from  is irrelevant in this case. If you want to special-

ize  for random access iterators, you must provide another specialization, 
this time for . Remember from Exploration 42 that random access 
iterators permit arithmetic on iterators. Thus, you can advance an iterator rapidly by adding 
the distance. Implement a partial specialization of  for random access 
iterators.

Compare your solution with the snippet in Listing 64-3.

Listing 64-3. Specializing  for Random Access Iterators

Now rerun the example program to see that the compiler picks the correct specialization.
A good optimizing compiler can take the  function with the random-access 

specialization of , and easily compile optimal code, turning a call to the 
 function into a single addition, with no function-call overhead. In other words, 

the layers of complexity that traits and policies introduce do not necessarily equate to bloated 
code and poor runtime performance. The complexity is conceptual, and once you understand 
what the traits do and how they work, you can let them abstract away the underlying complex-
ity. They will make your job easier.

CONCEPTS, PART TWO

Concepts greatly simplify writing this style of code. Instead of using template specialization, you will be able 
to use concepts to state directly what you want to accomplish, as demonstrated in the following:
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The compiler will use the iterator kind to invoke the correct  function. Thus, you don’t need to 
use template magic; the compiler does it for you when you overload  using different concepts.

Iterator Traits
The class template,  (defined in ), is an example of a traits type. 
A traits type provides traits, or characteristics, of another type. In this case, 
informs you about several traits of an iterator exposed via typedefs:

difference_type: A signed integer type that represents the difference between two 
iterators. If you have two iterators that point into the same container, the 
function returns the distance between them—that is, the number of positions that 
separate the iterators. If the iterators are bidirectional or random-access, the distance 
can be negative.

iterator_category: The iterator kind, which must be one of the following types (also 
defined in ):

Some of the standard algorithms use template specialization and the 
to provide optimal implementations for different kinds of iterators.

pointer: A typedef that represents a pointer to a value.

reference: A typedef that represents a reference to a value.

value_type: The type of values to which the iterator refers.

Can you think of another traits type in the standard library? ________________ The first 
one that I thought of is  (Explorations 23 and 49). Another traits class that 
I’ve mentioned without explanation is  (defined in ).
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Case Study: char_traits
As mentioned in the previous section,  is another class template that implements 
traits, in this instance, of a character type (e.g.,  or ). Let’s take a look.

Among the difficulties in working with characters in C++ is the  type may be signed or 
unsigned. The size of a  relative to the size of an  varies from compiler to compiler. The 
range of valid character values also varies from one implementation to another, and can even 
change while a program is running. A time-honored convention is to use  to store a value 
that may be a  or a special value that marks end-of-file, but nothing in the standard sup-
ports this convention. You may need to use  or .

In order to write portable code, you need a traits class to provide a typedef for the integer 
type to use, the value of the end-of-file marker, and so on. That’s exactly what  is 
for. When you use , you know you can safely store any 
value or the end-of-file marker (which is ).

The standard  class has a  function that returns an input character or the 
special end-of-file marker when there is no more input. The standard  class offers 

 to write a character. Use these functions with  to write a function that 
copies its standard input to its standard output, one character at a time. Call  to obtain 
the special end-of-file value and  to compare two integer representations of 
characters for equality. Both functions are static member functions of the  tem-
plate, which you must instantiate with the desired character type. Compare your solution with 
Listing 64-4.

Listing 64-4. Using Character Traits When Copying Input to Output

First, notice the loop condition. Recall from Exploration 44 that the comma can separate 
two expressions; the first sub-expression is evaluated then the second. The result of the entire 
expression is the result of the second sub-expression. In this case, the first sub-expression 
assigns  to , and the second sub-expression calls , so the result of the loop 
condition is the return value from , testing whether the result of , as stored in ,
is equal to the end-of-file marker. Another way to write the loop condition is as follows:

I don’t like to bury assignments in the middle of an expression, so I prefer to use the 
comma operator in this case. Other developers have a strong aversion to the comma operator. 
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They prefer the embedded assignment style. Another solution is to use a  loop instead of a 
 loop:

The -loop solution has the advantage of limiting the scope of the variable, . But it has 
the disadvantage of repeating the call to . Any of these solutions is acceptable; 
pick a style and stick with it.

In this case,  seems to make everything more complicated. After all, compar-
ing two integers for equality is easier and clearer when using the  operator. On the other 
hand, using a member function gives the library-writer the opportunity for added logic, such 
as checking for invalid character values.

In theory, you could write a  specialization that, for instance, implements 
case-insensitive comparison. In that case, the  (which compares two characters for equal-
ity) and  functions would certainly need extra logic. On the other hand, you 
learned in Exploration 18 that such a traits class cannot be written for many international 
character sets, at least not without knowing the locale.

In the real world, specializations of  are rare.
The  class template is interesting, nonetheless. A pure traits class template 

would implement only typedef members, static data members, and sometimes a member 
function that returns a constant, such as . Functions such as 

 are not traits, which describe a type. Instead they are policy functions. A policy class 
template contains member functions that specify behavior, or policies. The next section looks 
at policies.

Policy-Based Programming
A policy is a class or class template that another class template can use to customize its behav-
ior. In the standard library, the string and stream classes use the  policy class 
template to obtain type-specific behavior for comparing characters, copying character arrays, 
and more. The standard library provides policy implementations for the  and 
types.

Although the standard library provides and uses , it does not take full advan-
tage of policy-based programming. Only in recent years has the C++ community come to 
embrace this style of programming, in large part due to the popularity of Andrei Alexandres-
cu’s seminal work, Modern C++ Design (Addison-Wesley, 2001).

Suppose you are trying to write a high-performance server. After careful design, imple-
mentation, and testing, you discover that the performance of  introduces signifi-
cant overhead. In your particular application, memory is abundant, but processor time is at a 
premium. Wouldn’t it be nice to be able to flip a switch and change your  imple-
mentation from one that is optimized for space into one that is optimized for speed? Instead, 
you must write your own string replacement that meets your needs. In writing your own class, 
you end up rewriting the many member functions, such as , that have nothing 
to do with your particular implementation, but are essentially the same for most string imple-
mentations. What a waste of time.
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Imagine how simple your job would be if you had a string class template that took an extra 
template argument with which you could select a storage mechanism for the string, substitut-
ing memory-optimized or processor-optimized implementations according to your needs. 
That, in a nutshell, is what policy-based programming is all about.

A common implementation of  is to keep a small character array in the string 
object for small strings, and use dynamic memory allocation for larger strings. In order to con-
form to the C++ standard, these implementations cannot offer up a menu of policy template 
arguments that would let you pick the size of the character array. So let us free ourselves from 
this limitation, and write a class that implements all the members of the  class, but 
breaks the standard interface by adding a policy template argument. For the sake of simplic-
ity, this book implements only a few functions. Completing the interface of  is left 
as an exercise for the reader. Listing 64-5 shows the new string class template and a few of its 
member functions. Take a look and you can see how it takes advantage of the  policy.

Listing 64-5. The  Class Template
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The  class relies on  for comparing characters and  for storing 
them. The  policy must provide iterators for accessing the characters themselves and 
a few basic member functions ( , , , , ), and the  class 
provides the public interface, such as the assignment operator and search member functions.

Public comparison functions use standard algorithms and  for comparisons. Notice 
how the comparison functions require their two operands to have the same  (other-
wise, how could the strings be compared in a meaningful way?) but allow different .
It doesn’t matter how the strings store their contents if you want to know only whether two 
strings contain the same characters.

The next step is to write some storage policy templates. The storage policy is parameter-
ized on the character type. The simplest  is , which stores the string 
contents in a . In order to simplify the implementation of , the vector stores a trail-
ing null character. Listing 64-6 shows part of an implementation of . You can 
complete the implementation on your own.

Listing 64-6. The  Class Template
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The only difficulty in writing  is that the vector stores a trailing null byte, so 
the  function can return a valid C-style character array. Therefore, the  function has to 
adjust the iterator that it returns.

Another possibility for a storage policy is , which is just like ,
except it uses a . Because a  does not stores its data in a single array, 
does not need the added complexity of an extra null character, but it does need a new 
function, which must allocate a single character array, copy the string into that array, and 
return a pointer to the array. It must therefore manage the memory for that array. Write

. Compare your result with mine, which can be seen in Listing 64-7.

Listing 64-7. The  Class Template

If no one ever calls the  function, the  vector is never created. On the other 
hand, the  function re-creates the vector every time it is called. The first improvement to 
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make would be to re-create the  vector only if the  has changed since the last call 
to . I leave this improvement as an exercise for you to do on your own.

Returning to the original problem—that of a high-performance server that makes heavy 
use of small strings—a policy to consider is . By replacing  with a C-style 
array, you can eliminate all dynamic memory allocation, but at the cost of more memory usage 
if most strings are smaller than the array size, or array overflow if you have strings that exceed 
the array size. Thus, careful choice of array size is critical for success. Write the 
class template so it takes the array size as a template argument. One significant change is 
that the storage class template will need to keep track of the actual string size. See Listing 64-8 
for one simple implementation of .

Listing 64-8. The  Class Template
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If you have a TR1 or Boost  class template, you can take advantage of it for the 
 class template. The advantage being that you can use iterators instead of pointers, as 

shown in Listing 64-9.

Listing 64-9. The  Class Template, Based on 
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One difficulty when writing new string classes is that you must write new I/O functions, 
too. Unfortunately, this takes a fair bit of work and a solid understanding of the stream class 
templates and stream buffers. A quick-and-dirty implementation, however, is to use a tempo-
rary  intermediary. On input, read into  and assign the string contents 
to a . For output, copy  to  and write the . For 
production code, you would want to avoid the extra copy of the string, but for now, it gets you 
up and running quickly. Write input and output function templates for reading and writing 

objects. Compare your functions with Listing 64-10.

Listing 64-10. Quick and Dirty I/O Functions for 

As you know, the compiler finds your I/O operators by matching the type of the right-
hand operand, , with the type of the function parameter. In this simple case, you can 
easily see how the compiler performs the matching and finds the right function. Throw some 
namespaces into the mix, and add some type conversions, and everything gets a little bit more 
muddled. The next Exploration delves more closely into namespaces and the rules that the 
C++ compiler applies in order to find your overloaded function names (or not find them, and 
therefore how to fix that problem).
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Names and Templates

For the simple programs in this book, the compiler never encounters difficulty looking up 
and finding names of objects, types, and functions. Real programs, however, are more com-
plicated, and what seems simple and straightforward in principle turns out to be complex 
and tangled in reality. Templates are particularly challenging because they have two con-
texts: where your code defines the template and where the code instantiates the template. 
This Exploration helps you untangle the rules that the compiler uses to lookup names in a 
template.

Problems with Qualified Names
Suppose you want to write an absolute value function for the  type. (Remember 

? If not, refresh your memory in Exploration 47.) At first, it seems straightforward, 
and you may write something akin to Listing 65-1.

Listing 65-1. Simple Overload of  for  Arguments

That works just fine if  is one of the built-in numeric types. The standard library over-
loads  for , , , , and . For historical reasons, the integer 
overloads are declared in  and the floating-point overloads are in , but you 
can handle that. The problem comes when the caller supplies some other, custom numeric 
type for .

For the sake of argument, assume you have a class  that implements arbitrary pre-
cision arithmetic. The implementation is beyond the scope of this book, but you can imagine 
what its interface may be like. Assume that it stores a packed vector of  to store the 
digits, plus a  for the sign. Computing an absolute value is fast and easy because it involves 
nothing more than clearing the sign flag. Therefore, you want to overload  for the 

645
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type. Let’s further assume that this new type is in the  namespace, as shown in  
Listing 65-2.

Listing 65-2. Hypothetical Arbitrary-Size Integer Class

When you use , you get rational numbers with extremely large preci-
sion. What do you think happens if you call  on a  object?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Remember that the compiler happily compiled the definition of the  template. 
It doesn’t realize that there’s a problem until you try to instantiate . At 
first, the compiler instantiates only the function declarations. It’s not until you actually call a 
function template or a member function of a class template that the compiler instantiates the 
definition. At that time, the compiler tries to compile a function definition that is equivalent to 
Listing 65-3.

Listing 65-3. Equivalent Code to the Instantiation of 
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Do you see the problem? The standard library does not define 
. The compiler reports an error and refuses to compile any code that calls the over-

loaded  for  arguments.
It would be nice if you could add overloads to the  namespace, the way you can add 

template specializations. But you can’t. The standard disallows it.
The best solution is to change the  implementation of  and remove the 

qualifier from . This change permits ’s  implementation to be open to 
calling other implementations of , using argument-dependent lookup (Exploration 50). You 
must also make sure that the compiler searches the  namespace (with a using directive), 
to find  for the built-in functions. Thus, your function may end up looking something like 
Listing 65-4.

Listing 65-4. Rewriting  to Take Advantage of a Using Declaration

Thus, in the case of , the compiler can find  via ADL, and 
in the case of , the compiler finds  in the  namespace. 

As you learned in Exploration 50, some implementations put names such as  in 
the global namespace, too. Thus, even without the using directive, Listing 65-4 may work just 
fine with your compiler and library, but to be fully portable to all implementations, you need 
the using directive.

Tip The moral of this story is: when you write a function template, avoid namespace-qualified names 
because they interfere with argument-dependent name lookup.

Problems with Unqualified Names
Now that you know to use unqualified names in a template, consider the program in  
Listing 65-5.

Listing 65-5. Using an Unqualified Name in a Function Template
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Predict the output of the program in Listing 65-5.

_________________________________________________________________________________

_________________________________________________________________________________

The program should produce the following output:

The  program defines two  objects. Notice how the  class template uses the 
template argument as the base class name on line 16. The base class can be any class. In one 
case, the base class is ; in the other, it is . The demo constructor calls .
Because the function call is unqualified, the compiler starts by looking for this name in the 

 class. When the compiler cannot find the name in , it searches the base class. How-
ever, when the compiler is on line 19, it doesn’t know the base class and doesn’t know what 

 is. Consequently the compiler stops worrying about , puts aside the  construc-
tor for now, and continues compiling the file.
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At line 30, the compiler knows the base class, , so when the compiler looks up ,
it finds the function as a member of , therefore the compiler instantiates the  con-
structor so it calls . On line 31, however, the base class is , which does 
not provide , so the compiler searches for a free function. It starts in the namespace that 
encloses the  class, which happens to be the global namespace, which also happens to 
contain a definition of the  function. So the compiler instantiates the 
constructor to call the global  function.

Now try an experiment. Move the global  function (lines 22–26) above line 15—that is, 
before the  class template definition. Predict the output from the program.

_________________________________________________________________________________

_________________________________________________________________________________

Something different happened. The program no longer compiles because the compiler is 
trying to call the global  function in both cases, and  tries to print a  object, which 
has no overloaded output operator. Add such an operator that prints the  member. 
Your program should now look like Listing 65-6.

Listing 65-6. Reordering Functions Affects Name Lookup in Function Templates



EXPLORATION 65   NAMES AND TEMPLATES650

As the compiler already informed you, it is trying to call the global  function for both 
 instantiations. The reason is subtle. As I described earlier, when the compiler is first com-

piling the  constructor, it looks up the  function in the  class. It cannot find ,
nor can it find a base class because it doesn’t know what the base class will be when the tem-
plate is instantiated. But the compiler can find  in the global namespace, so that will do. 
The compiler is able to finish the  constructor, and it does so. When the  class tem-
plate is instantiated, the compiler has already compiled the constructor, so it never bothers to 
look for .

In other words, by moving the declaration of  earlier in the file, you radically changed 
the way the compiler processes the definition of a function template. Briefly, if the compiler is 
able to resolve an unqualified name in a function template, it does so. If not, it saves the func-
tion and waits until the template is instantiated (if ever), and finishes compiling the function 
only when it knows the template arguments and uses the template arguments to look up the 
unqualified name.

Looking up names at two different times (when first parsing the template definition, and 
later when instantiating the template) is called two-phase lookup. It is a crucial, but subtle 
aspect of writing templates.

Note Two-phase lookup is hard for programmers to understand and harder for compiler-writers to 
implement. Only recently have many major compilers properly implemented two-phase lookup. Some C++ 
programmers are still using older compilers that get it wrong. As a result, you may write perfectly correct 
code, but have the compiler reject it. Alternatively, you may write ill-formed code, and have the compiler 
accept it and even work the way you intended. My recommendation is to keep your tools up-to-date.

Two-phase lookup applies only when the compiler cannot resolve a name because the 
name depends on a template argument. Such a name is said to be dependent. This means it 
depends on a template argument, directly or indirectly. Most template arguments are types, so 
dependent names are usually type-dependent.

So what if the compiler knows about the global  function, but you want to ensure that 
the compiler looks for the member function only? In this case, you must qualify the function 
name. The most common way to qualify such names is with , as shown in Listing 65-7.
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Listing 65-7. Qualifying Dependent Names

You already know another rule for working with dependent types. As you learned in 
Exploration 51, you must use the  keyword before any dependent name of a type. The 
C++ syntax has some ambiguities if the parser does not know whether a name is an expression 
or a type. The compiler needs your help when dealing with dependent names because there is 
no way for the compiler to determine whether a name will be that of an expression or a type at 
the point of instantiation. You know what you require the name to be, so you need to help the 
compiler by using  before types, and the compiler assumes other names are not types. 
Thus,  is another way of qualifying a dependent name.
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Tip The expanded moral for writing templates is to use unqualified names for free functions, and qualified 
names if they are dependent on template arguments. When in doubt, use  to access any data mem-
ber or member function. Always use  to qualify dependent type names.

One difficulty when writing templates is that the compiler can easily become confused 
and issue error messages that are not helpful. The line number may be the point of instantia-
tion, which doesn’t help you find the source of the problem in the template definition. With 
practice and experience, you will become better at noticing certain patterns in the errors, and 
you will begin finding and fixing problems more easily. To help get you started, Listing 65-8 
contains some errors related to names and templates. With the compiler’s help, find and fix 
the errors.

Listing 65-8. Fix the Mistakes
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The first error I get from my compiler is:

What is the problem?

_________________________________________________________________________________

The problem is that  is a dependent name, so the compiler does not know 
what it is. You must tell the compiler that it is a type. Therefore, change line 17 to read as 
follows:

Look for similar problems elsewhere and fix them, too. (Hint: see lines 27–29.)
The next error I get is the following:

The  function is a member function, so call it as . Line 35 has the same 
problem, but the compiler’s message is completely different, as shown in the following:
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However, as demonstrated in the following output, the next problem is harder:

Most likely, you already fixed the problem by qualifying the call to . The compiler 
issues this message because it finds the global  function and tries to use it, but that 
function return , which is not an iterator, so the compiler cannot use the  algo-
rithm.

As you can see, the compiler’s error messages are not always helpful. Sometimes, the 
same problem yields different messages in different contexts. Nonetheless, the compiler usu-
ally directs you to the source of the problem, and you can usually figure it out from there.

Regardless of how the compiler looks up a name, when it looks up a function name and 
finds more than one overloaded declaration for that name, it must resolve the overloading and 
pick the one, best match. The next Exploration examines the rules that govern this selection.
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Overloaded Functions

Exploration 22 introduced the notion of overloaded functions. Exploration 28 continued the 
journey with overloaded operators. Since then, we’ve managed to get by with a common-sense 
understanding of overloading. I would be remiss without delving deeper into this subject, so 
let’s finish the story of overloading by examining the rules of overloaded functions in greater 
depth.

Review of Overloaded Functions
Let’s refresh the memory a bit. A function or operator name is overloaded when two or more 
function declarations declare the same name in the same scope. C++ imposes some restric-
tions on when you are allowed to overload a function name.

The primary restriction is that overloaded functions must have different argument lists. 
This means the number of arguments must be different, or the type of at least one argument 
must be different.

You are not allowed to define two functions in the same scope when the functions differ 
only in the return type.

Member functions can also differ by the presence or absence of the  qualifier.

A member function cannot be overloaded with a static member function in the same 
class.

655
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A key point is that overloading occurs within a single scope. Names in one scope have 
no influence or impact on names in another scope. Remember that a code block is a scope 
(Exploration 12), a class is a scope (Exploration 38), and a namespace is a scope (Exploration 50).

Thus, member functions in a base class are in that class’s scope and do not impact over-
loading of names in a derived class, which has its own scope, separate and distinct from the 
base class’s scope.

When you define a function in a derived class, it hides all functions with the same name in 
a base class or in an outer scope. This rule is a specific example of the general rule that a name 
in an inner scope hides names in outer scopes. Thus, any name in a derived class hides names 
in base classes and at namespace scope. Any name in a block hides names in outer blocks, 
and so on. The only way to call a hidden function from a derived class is to qualify the function 
name, as shown in Listing 66-1.

Listing 66-1. Qualifying a Member Function with the  Class Name

Sometimes, however, you want overloading to take into account functions in the derived 
class and the functions from the base class, too. The solution is to inject the base class name 
into the derived class scope. You do this with a using declaration (Exploration 50). Modify
Listing 66-1 so  sees both  functions. Change  so it calls  with an 
argument and with a  argument, with no qualifying names. What output do you expect?

_________________________________________________________________________________

_________________________________________________________________________________
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Try it and compare your result with that in Listing 66-2.

Listing 66-2. Overloading Named with a using Declaration

A using declaration imports all the overloaded functions with that name. To see this, add
 to the base class and a corresponding function call to . Now your example 

should look something like Listing 66-3.

Listing 66-3. Adding a Base Class Overload
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The overload rules usually work well. You can clearly see which  function the com-
piler selects for each function call in . Sometimes, however, the rules get murkier.

For example, suppose you were to add the line  to . What do you 
expect the program to print?

_________________________________________________________________________________

The compiler promotes the  to type , and calls , so the out-
put is as follows:

That was too easy. What about a short? Try . What happens?
_________________________________________________________________________________

The compiler promotes the  to type , and produces the following output:

That was still too easy. Now try . Add . What happens?
_________________________________________________________________________________

That doesn’t work at all, does it? To understand what went wrong, you need a better 
understanding of how overloading works in C++, and that’s what the rest of this Exploration is 
all about.

Overload Resolution
When the compiler sees a function call, it must match up the function name with a particular 
function declaration. When the compiler has multiple declarations for a single name (that 
is, when the function is overloaded), the compiler must resolve the overload to pick the right 
function. To resolve an overload, the compiler considers the arguments and their types, 
the types of the function parameters in the function declaration, and type conversions and 
promotions that are necessary to convert the argument types to match the parameter types. 
The detailed rules are complicated, so this Exploration presents a slightly simplified view 
of the C++ universe, but one that should work well for most situations that you are likely to 
encounter.

The first step to overload resolution is for the compiler to search scopes until it finds the 
scope that declares the function name using ordinary lookup, or multiple scopes that declare 
function when using argument-dependent lookup (Exploration 50).

The next step is to collect all the function declarations with the same name. These func-
tions are called the candidate functions. The list of candidates is then examined to determine 
which functions are viable. To be viable, a function must have the right number of parameters, 
and the arguments must match the parameter types, or the compiler can implicitly convert 
each argument to the parameter type.

Finally, the viable candidates are examined to determine the best one—that is, the one 
with the closest match between argument types and parameter types. If the compiler can’t 
decide because two or more functions are “best,” it issues an error for an ambiguous overload. 
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If the best match is inaccessible because it is a private or protected member function, the com-
piler issues an error. Otherwise, it has a match, and so compiles the code to call the matching 
function. The following sections describe each of these steps in depth.

Candidate Functions
The candidate functions are all the functions in the target scope with the same name. The 
compiler resolves overloaded operators using the same mechanism as overloaded functions, 
and the compiler also considers built-in operators as candidates.

If the function call is in a class context (member function body or initial value of a static 
data member), the candidate functions can be member or non-member functions. The com-
piler does not prefer one kind to another, but treats member and non-member functions 
equivalently, albeit with some constraints on the object reference for member function calls.

Initialization of a class instance follows the same overloading rules, using the class’s con-
structors as the candidate functions. If the constructor of class  takes a single argument of 
class-type (call it ), additional candidate functions are type conversion operators (Explora-
tion 62) of  and its ancestor classes that return a value or reference to  or a derived class.

Listing 66-4 shows some examples of overloading and how C++ determines candidate 
functions.

Listing 66-4. Determining Candidate Functions for Overload Resolution
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The candidate functions for constructing  are the four  constructors. The overloaded 
 operator also has three candidate functions: two user-defined and the built-in  operator. 

You can immediately see that the compiler cannot use the built-in  operator to add a 
object. That is an example of a function that is not viable. The next section explains how the 
compiler keeps only the viable candidate functions.

Viable Functions
Once the compiler has its list of candidate functions, it examines the function call arguments 
and the candidate functions’ parameters and decides which candidate functions are viable.
A viable function is one for which the compiler can match up arguments with parameters, so 
that every parameter has an argument, and every argument is associated with a parameter.

Step one toward determining viability is matching each argument with a parameter. If 
any arguments are left over without parameters, that candidate function is not viable. If any 
parameters lack an argument, that candidate is not viable.
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In order to normalize member and non-member candidate functions, the compiler treats 
the class as an implicit parameter for non-static member functions and considers the target 
object of a member function call as an implicit argument.

In addition to mere argument count, the compiler also ensures that it can convert each 
argument to the corresponding parameter type using its normal rules for type conversion. If 
the compiler cannot convert an argument to the parameter type, the function is not viable.

Of the four  constructors in Listing 66-4, the two-argument form is not viable on 
line 54 because it has the wrong number of arguments. The  and  forms are not viable 
because the compiler cannot convert the other argument to either type. Thus, only one candi-
date is viable, so it is the one the compiler uses.

On line 55, the built-in  operator is not viable, but both user-defined forms are viable. 
The compiler must decide which one is better, as described in the next section.

Best Viable Function
Once the compiler has narrowed the candidate list to only the viable candidates, it must pick 
the best viable function as the one to call. The compiler determines which candidate is best by 
checking how it must convert the arguments to the corresponding parameter types.

The compiler has several tools at its disposal to convert one type to another. Many of 
these you’ve seen earlier in the book, such as promoting arithmetic types (Exploration 23), 
converting a derived-class reference to a base-class reference (Exploration 37), or calling a 
type-conversion operator (Exploration 62). The compiler assembles a series of conversions 
into an implicit conversion sequence (ICS). An ICS is a sequence of small conversion steps that 
the compiler can apply to a function-call argument with the end result of converting the argu-
ment to the type of the corresponding function parameter.

An ICS may involve standard conversions or user-defined conversions. A standard
conversion is inherent in the C++ language, such as arithmetic conversions. A user-defined
conversion involves constructors and type conversion operators on class and enumerated 
types. A standard ICS is an ICS that contains only standard conversions. A user-defined ICS
consists of a standard ICS, a single user-defined conversion, and another standard ICS.

For example, converting  to  is a standard ICS with two steps: promoting 
 to  and adding the  qualifier. Line 11 of Listing 66-4 demonstrates a user-

defined ICS. It begins with a standard ICS that converts an array of  to a  pointer, 
then a user-defined conversion, namely, the  constructor.

One exception is that invoking a copy constructor to copy identical source and destination 
type or derived-class source to a base-class type is a standard conversion, not user-defined 
conversion, even though the conversions invoke user-defined copy constructors.

The compiler needs to pick the best ICS of all the viable candidates. As part of this deter-
mination, it must be able to rank standard conversions within an ICS. The three ranks are, 
from best to worst: exact match, promotion, and conversion.

An exact match is when the argument type is the same as the parameter type. Examples of 
exact match conversions are:

 and the parameter is 

 to 

 to 
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A promotion (Exploration 23) is an implicit conversion from a smaller arithmetic type 
(such as ) to a larger type (such as ).

All other implicit type conversions have conversion rank—for example, arithmetic conver-
sions that discard information (such as  to ), and derived-class pointers to base-class 
pointers.

The rank of an ICS is the worst rank of all the conversions in the sequence. For example, 
converting  to  involves an exact match conversion ( ) and a promotion
(  to ), so the rank for the ICS is promotion.

If one argument is an implicit object argument (for member function calls), the compiler 
ranks any conversions needed for it, too.

Now that you know how the compiler ranks standard conversions, you can see how it 
uses this information to compare ICSes. The compiler applies the following rules to determine 
which of two ICSes is better:

same user conversion, and the second standard conversion in ICS1 is better than the 
second standard conversion of ICS2.

target type T1 is better than an ICS with target type T2 if T1 and T2 have the same base 
type, but T2 is  and T1 is not.

but:

, or

“smaller” conversion. A smaller conversion is one that hops over fewer intermedi-
ate base classes. For example, if  derives from  and  from , then converting  to 

 is better than converting  to , and converting  to  is better than  to 
.

If two conversion sequences are equally good, the compiler prefers a non-template func-
tion to a template function.

CONVERSION TO BOOL

You know that the  and  objects have an implicit conversion to  that returns 
. They do not have a type conversion operator that returns . Instead, the type conversion opera-

tor returns , and the compiler implicitly converts the pointer to . As you can see in the overloading 
rules, the compiler prefers an ICS that converts a pointer to .

You should do the same for any class that you think should be usable as a condition. Implement a type 
conversion operator to , and return a non-null pointer for true:
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Never write a type conversion operator to . The problem with such an operator is that it permits 
arithmetic on your object by implicitly converting  to an . A conversion to a pointer is safer and 
works just as well in a condition as a conversion to .

Thus, for each viable candidate, the compiler determines the sequence of conversions it 
needs to convert each argument to the desired parameter type. It then ranks these sequences 
and tries to find the best by comparing pairs of sequences. If it finds one viable candidate that 
is unequivocally better than all the others, that one is the best viable candidate and is the one 
the compiler uses. If the compiler cannot distinguish between two or more viable candidates 
at the top of the list, it reports an ambiguity error.

What output do you expect from the program in Listing 66-4?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Most of the time, common-sense rules help you understand how C++ resolves overload-
ing. Sometimes, however, you find the compiler reporting an ambiguity when you did not 
expect any. Other times, the compiler cannot find any viable candidates when you expected it 
to find at least one. The really bad cases are when you make a mistake and the compiler is able 
to find a unique best viable candidate anyway. Your tests fail, but when reading the code, you 
look in the wrong place because you expect the compiler to complain about bad code.

Sometimes, your compiler helps you by identifying the viable candidates that are tied 
for best viable candidate, or showing you candidate functions when none of them are viable. 
Sometimes, however, you might need to sit down with the rules and go over them carefully to 
figure out why the compiler isn’t happy. To help you prepare for that day, Listing 66-5 presents 
some overloading errors. See if you can find and fix the problems.

Listing 66-5. Fix the Overloading Errors
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The argument to  is an , but the overloads are for  and . Both conver-
sions have conversion rank and neither one is better than the other, so the compiler issues an 
ambiguity error.

The problem with  is that neither overload is viable. If  were not , the 
conversion to  would be the sole viable candidate.
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The  function has all  parameters, but one argument is  and another is 
. No problem, the compiler can convert  to  and  to . You may not like 

the results, but it is able to do it, so it does. In other words, the problem here is that the com-
piler does not have a problem with this function. This isn’t really an overloading problem, but 
you may not see it that way if you run into this problem at work.

Do you see the missing  in the second  function? The compiler considers both 
 functions to be equally good. If you declare the second to be , it becomes the 

best viable candidate. The exact reason is that the type of  is , not , that is,  is an 
lvalue, an object that the program can modify. The subtle distinction has not been important 
before now, but with respect to overloading, the difference is crucial. The conversion from an 
lvalue to an rvalue has rank exact match, but it is a conversion step. The conversion from 
to  also has exact match. Faced with two candidates with one exact match conver-
sion each, the compiler cannot decide which one is better. Changing  to  removes the 
conversion step, and that function becomes the unambiguous best.

Both  functions require one conversion from derived-class reference to base-class 
reference, so the compiler cannot decide which one is better. The first call to  requires a 
conversion of the first argument from  to . The second call requires a 
conversion of the second argument from  to .

Default Arguments
Now that you think overloading is so frightfully complicated that you never want to overload 
a function, I will add yet another complexity. C++ lets you define a default argument for a 
parameter, which lets a function call omit the corresponding argument. You can define default 
arguments for any number of parameters, provided you begin with the right-most param-
eter and don’t skip any. You can provide default arguments for every parameter, if you wish. 
Default arguments are often easy to understand. Read Listing 66-6 for an example.

Listing 66-6. Default Arguments
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What does the program in Listing 66-6 print?

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

It’s not hard to predict the results, which are shown in the following output:

Default arguments offer a shortcut in lieu of overloading. For example, instead of writ-
ing several constructors for the rational type, you can get by with one constructor and default 
arguments:

Our definition of a default constructor must change somewhat. Instead of being a con-
structor that declares no parameters, a default constructor is one that you can call with no 
arguments. This  constructor meets that requirement.

As you may have guessed, default arguments complicate overload resolution. When the 
compiler searches for viable candidates, it checks every argument that explicitly appears in 
the function call, but does not check default argument types against their corresponding 
parameter types. As a result, you can run into ambiguous situations more easily with default 
arguments. For example, suppose you added the example  constructor to the exist-
ing class template without deleting the old constructors. The following definitions would both 
result in ambiguity errors:

Although you may not believe me, my intention was not to scare you away from overload-
ing functions. Rarely will you have to delve into the subtleties of overloading. Most of the time, 
you can rely on common sense.

But sometimes, the compiler disagrees with your common sense. Knowing the compiler’s 
rules can help you escape from a jam when the compiler complains about an ambiguous over-
load or other problems.
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Tip When you write overloaded functions, it shouldn’t matter which exact function the compiler chooses. 
Be sure that every implementation of a particular function name has the same logical behavior. For exam-
ple, when you use an output operator, , you just let the compiler pick the correct overload for 

, and you don’t need to concern yourself with the detailed rules as laid out in this Exploration.

The next Exploration visits another aspect of C++ programming for which the rules can be 
complicated and scary: template metaprogramming.
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Metaprogramming

Simply put, metaprogramming is writing code that runs at compile time. This Exploration 
merely touches the surface of metaprogramming. If you want to learn more, see Modern C++ 
Programming, by Andrei Alexandrescu (Addison-Wesley, 2001) and C++ Template Metapro-
gramming, by David Abrahams and Aleksey Gurtovoy (Addison-Wesley, 2005).

Compile-Time Programming
The simple definition of a metaprogram is code that runs at compile time. The compiler com-
piles and runs the metaprogram when it compiles the normal program. In C++, metaprograms 
are written using templates. Unfortunately, templates were not designed for compile-time 
programming, so the syntax is contorted and the semantics are limited. Nonetheless, metapro-
gramming is a useful technique for the advanced C++ programmer.

Many experienced C++ programmers will not approach metaprogramming out of fear of 
its complexities and difficulties. I don’t blame them. It is a difficult subject, but one with rich 
rewards for those who dare to tackle it.

Another reason some accomplished C++ programmers avoid template metaprogramming 
is that it requires a different style of programming, namely functional programming. Or, put 
another way, the language has no variables in which to store the metaprogram’s state—only 
functions. In a metaprogram, a template serves the role of the function.

This Exploration introduces the topic and lets you see what it’s all about, but it doesn’t 
teach you enough to run off and program a video game as a metaprogram.

Template Specialization
The key to metaprogramming lies in template specialization. Although some metaprogram-
ming examples are mere freak shows, other examples are seriously useful.

Recall the  class template from Exploration 49. That implementation of  relied 
on static constants  and , but only  could be initialized with a compile-
time constant. The trick is to determine how to initialize  with a compile-time 
constant. Somehow, you need to compute  at compile time. It turns out you can do that 
with template metaprogramming. See Listing 67-1 for an excerpt of the  class template.

669



EXPLORATION 67   METAPROGRAMMING670

Listing 67-1. Excerpt of the  Class Template

The interesting part is . Clearly,  is a template, and the template 
argument is . Somehow, this template raises 10 to the th power and uses it to initialize a 
compile-time constant data member, .

Here’s a hint: template metaprograming is a form of functional programming, so think in 
terms of recursion instead of iteration. Thus, the primary template for  is recursive, so 

 is equal to 10 times . That’s not so hard, is it?
Every recursive algorithm must terminate. When computing a power, the base case is 

when the exponent is zero: 100 is 1. Define the base case as an explicit specialization. It’s that 
simple, as you can see in Listing 67-2.

Listing 67-2. Simple Implementation of the  Class Template
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Notice the use of  to define . One advantage of using  instead of a 
 data member is that  does not require a separate definition of the data member. 

When using , be sure to provide a name for the enumerated type. Template type param-
eters must be named; you never know where you will want to use . The name isn’t 
important because its scope is limited to the  class template, so I just use , for type.

Write a program to test the  class template. My test program is presented in 
Listing 67-3.

Listing 67-3. Testing the  Class Template

Template recursion can stress a compiler. The  template is unlikely to run into 
any limitations, but the compiler limits the recursion depth, and some metaprograms hit that 
limit all too easily. Any reduction in recursion depth can be helpful, possibly the difference 
between successful compilation and abandoning that compiler. Can you see how to improve 
the  implementation? ________________ If so, how?

_________________________________________________________________________________

_________________________________________________________________________________

Instead of multiplying by 10 each time the template recurses, square the value and divide 
 by . Instead of a recursion depth of , the depth becomes log . In this particular case, the 

difference becomes important with large values of  on a 64-bit platform. If  is large enough, 
or with a different metaprogram, substituting an O(log N) algorithm for an O(N) algorithm can 
be a huge win. Implementing the improved version of  requires partial template spe-
cialization.

Partial Specialization
Template metaprogramming often requires partial specialization. As I discussed in the previ-
ous section, substituting an O(log N) algorithm for a O(N) algorithm can sometimes make the 
difference between successful compilation and breaking a compiler.



EXPLORATION 67   METAPROGRAMMING672

The plan is to compute 10 raised to the th power: if  is even, square the result of 
. If  is odd, multiply  by 10. Define the base case 

of  as . All you need to do is to figure out how to squeeze an  statement 
into a template specialization.

Hmm. Tricky, isn’t it? Remember that template metaprogramming is all about specializa-
tion. Thus, conditions are also implemented using specialization.

Define an auxiliary template—call it —that has two parameters:  and a 
parameter to indicate whether  is even. At first, the second parameter appears to be redun-
dant. You can always determine whether a number is even, so the parameter offers no new 
information. This is true. What the second parameter offers is an opportunity for partial spe-
cialization. In this case, you need two templates, so arbitrarily pick the primary template to be 
even or odd. Let’s say odd. Thus, the primary template computes the power of 10 for an odd 
number, and the partial specialization kicks in only when the second template argument is 
true, at which point it computes the power of 10 for an even number. Listing 67-4 shows the 
details.

Listing 67-4. Computing a Power of 10 Efficiently
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The first declaration is a forward declaration, which notifies the compiler that  is 
the name of a class template. Note that it is a declaration, not a definition. You need to supply 
the definition later, but by declaring the name early, you can use it in the  template.

The compiler needs a complete type when it instantiates the template, but not when you 
are defining the template. That’s why  can refer to the value member of 
even before  has been defined.

One difficulty I encountered when I first attempted metaprogramming was that I kept 
forgetting the  parts. I fell into the trap of thinking of  as a kind of compile-
time “function.” That’s how we’re using it, but it’s not a real function. It’s a class, and a class 
doesn’t have a value. The only way to get a value out of a class is to declare a member: a 
compile-time constant data member or a member enumerated type. By convention, I always 
use the same name, , so I can mix and match all my metaprogramming class templates 
without confusion.

Most programmers don’t spend much time metaprogramming, but there are a number 
of situations when it can be extremely helpful, especially for library writers. For extra credit, 
complete the job started in Exploration 49. Your task is to finish converting the  class to a 
template with two parameters: a base type, and the number of places after the decimal point. 
Use the new  class template to help. This is actually quite a big job, with some subtle 
pitfalls. If you have difficulty, consult Listing 67-5, which shows the class definition and free 
function declarations. If you still have trouble, grab the entire fixed.hpp file from this book’s 
web site.

Listing 67-5. The  Class Template
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One interesting aspect of metaprogramming with templates is that templates can operate on 
types as well as values. Using functional programming techniques, you can create lists of types 
and manipulate those lists in ways that LISP programmers would find astonishingly familiar.

In case you still think metaprogramming is primarily about parlor tricks, consider the 
homely  and its  member functions, which insert values into a vector (Exploration 
51). One form of  takes an unsigned integer count, , and a value. The function inserts 

 copies of the value. Another form takes two iterators and copies all the values from that 
range into the vector. Both functions take an iterator argument; the values are inserted just 
before that iterator. As with any function that operates on iterators, the second form of 
is a template function, accepting any input iterator as an argument. The two functions are 
declared as follows:

Consider the following code:

The compiler applies the usual rules of overloading. The type of  is , but the first 
form of  requires an unsigned integer as the first argument (the precise type is 
implementation-defined). The two arguments have the same type ( ), which makes it a 
perfect match for the iterator form of .

Clearly, 2 and 10 are not input iterators. Rather than cause the compiler to fail in this case, 
the C++ standard requires the templatized  function to interpret integer arguments 
as a count and a value. The second  function behaves in the same manner as the first 
form of  when its arguments are integers. In other words, the template form of 
has two distinct behaviors, depending on the template parameters. This is completely differ-
ent from distinguishing between different kinds of iterators. How would you write a function 
that determines whether the type of its arguments are integral, and use a completely different 
implementation for integers than for iterators?
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What you need is a little compile-time program that has a compile-time  statement to 
dispatch to two completely different functions. There are a variety of ways to solve this prob-
lem, and most involve template specialization and metaprogramming. Listing 67-6 gives you 
an idea of one approach to solving this problem.

Listing 67-6. Using Metaprogramming to Implement ’s  Function
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The  class template is another example of a traits template (Exploration 64), 
this time revealing whether a type is an integral type. Partial specialization chooses the iterator 
form of  or the integer form of , according to whether the type is integral. If you 
don’t want to write your own  template, use Boost, TR1, or the next language revi-
sion, which all contain a rich suite of type traits templates.

Here is one last exercise in template metaprogramming. See if you can wrap your head 
around metaprogramming and write a class template, , that takes two type parame-
ters and declares an  type with a single literal, . The numeric value of  is equal 
to  if the two template parameters are the same type; otherwise it is . Think about 
how you can use partial specialization to help you solve the problem. My solution is displayed 
in Listing 67-7.

Listing 67-7. Testing Two Types to See Whether They Are the Same

Don’t worry if you don’t get metaprogramming yet. It is an advanced topic, and a full 
understanding is beyond the scope of this book. I wanted to introduce the topic, however, 
because it is one of the highlights of programming in C++.
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Project 4: Calculator

Now is the time to apply everything you have learned in this book by writing a simple, textual 
calculator. If you type , for example, the calculator prints . This project can be as compli-
cated as you wish or dare to make it. I recommend starting small and adding capability slowly 
and incrementally:

1. Start with a simple parser to read numbers and operators. If you are familiar with a 
parser generator, such as Bison or Antlr, go ahead and use it. If you are feeling adven-
turous, try learning about Spirit, which is part of the Boost project. Spirit makes use of 
C++ operator overloading to implement a BNF-like syntax for writing a parser in C++ 
without requiring additional tools. If you don’t want to involve other tools or libraries, 
I recommend a simple, LISP-like syntax so you don’t spend all your time on the parser. 
The code on this book’s web site implements a simple, recursive-descent parser. 
Implement the basic arithmetic operators first: , , , and . Use  for all num-
bers. Do something helpful when dividing by zero.

2. Then add variables and the  operator. Initialize the calculator with some useful con-
stants, such as .

3. The big leap forward is not to evaluate every expression when it is typed, but to create 
a parse tree. This requires some work on the parser, not to mention the addition of the 
parse-tree classes, that is, classes to represent expressions, variables, and values.

4. Given variables and parse trees, it is a smaller step to define functions and call user-
defined functions.

5. Finally, add the ability to save functions to a file, and load them from a file. Now you 
can create libraries of useful functions.

6. If you are truly ambitious, try supporting multiple types. Use the pimpl idiom (Explo-
ration 64) to define a  class and a  class. Let the calculator use the 

 class, which frees it from the  class. Implement derived classes for 
the types you want to support: integer, double, rational, etc.

As you can see, this kind of project can continue as long as you want it to. There will 
always be another feature to add. Just be sure to add features in small increments.

679



EXPLORATION 68   PROJECT 4 :  CALCULATOR680

Similarly, your journey toward C++ expertise never ends. There will always be new 
surprises: waiting just around the corner, in the middle of your next project, with the next 
compiler upgrade. As I write this, the standardization committee is finishing work on the next 
version of the C++ language standard. After that will come the next language-revision cycle, 
and the next, and the next.

I wish you luck on your voyage, and I hope you enjoy the explorations to come.
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Symbols
:: see scope operator
!= operator, 23, 25

see also operator!=
comparing rational numbers, 204
comparison operators, 82
forward iterators, 347

# prefix, 15
# symbol, comments, 499, 500
& bitwise operator, 582
& operator, member functions, 327
* operator, 62

dereferencing iterators, 349
forward iterators, 347
map iterator, 101
output iterators, 346
precedence against dot (.) operator, 101
reverse_iterator, 355
using references with containers, 522
vectors, 65

*= operator, 378
+ operator, 22
++ operator see increment operator
+= operator, 378
-- operator

decrement operator, 72–76, 380–383
bidirectional iterators, 347

-= operator, 378
. (dot) operator, 101
, (comma) operator, 376
// comments, 14

Doxygen, 181
/* comments, 14

Doxygen, 181
/ operator, 22
= operator, 22, 25
== operator, 25

see also operator==
comparing iterators, 62, 63
comparing rational numbers, 204
comparing value types, 287
comparison operators, 82
forward iterators, 347

= sign, copy initialization, 413
@b tag, Doxygen, 182

@brief tag, Doxygen, 182
@em tag, Doxygen, 182
@file tag, Doxygen, 183
@mainpage tag, Doxygen, 183
@p tag, Doxygen, 183
@return tag, Doxygen, 183
\ (backslash) escape sequences, 19, 27, 

113, 114
\? character escape sequence, 113
\0 marker for end of string, 561

\u universal character name, 479
\x wide characters, 472
| bitwise operator, 582
~ bitwise operator, 582
< comparison operator, 82, 205
<< output operator, 15, 16
<< shift operator, 585
> comparison operator, 82
>> input operator, 15, 16, 33

initializing variables with, 22
interpretation in template arguments, 409
manipulators, 111

>> shift operator, 585

A
abort function

exception handling, 361
template specialization, 422

abs function, 157
argument-dependent lookup (ADL), 647
improved interface to, 393
overload for rational arguments, 645
using declaration, 647

abstract classes
pure virtual functions, 282

absval function, 393, 394, 395
specializing function templates, 420

accented characters, 125
cultural differences, 482

access levels, 272–273
access level specifiers

classes, 247
rational class, 251
struct and class keywords, 250

Index
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accumulate algorithm, 434
actions see behaviors, OOP
addition operator (+), 22
add_ref function, artifact_impl class, 576, 

578
addresses, 523
address type, 524
adjustfield bitmask, 583
ADL (argument-dependent lookup), 443, 

445, 446
abs function, 647

advance algorithm
iterator_advancer template, 631
traits template, 630

advance function
advancing iterators, 349
iterator error messages, 353
iterators, 629
list container, 464

alert
character escape sequences, 113

algorithm header, 63
algorithms, 63–64, 66–69, 145–155

see also functions
appending _copy to function names, 343
appending _if to function names, 336
binary search algorithms, 331, 336–338
comparison algorithms, 339–340
copy algorithms, 343
deletion algorithms, 343–344
description, 331
equal algorithm, 339
equal_range algorithm, 298, 299
find algorithm, 331
find_if algorithm, 333
generate algorithm, 328, 342
generic algorithms, 63, 66
iterators and, 344, 345, 349
lexicographical_compare algorithm, 339
linear search algorithms, 331–335
merge algorithm, 341
passing overloaded function to standard 

algorithm, 161
random_shuffle algorithm, 341
rearrangement algorithms, 341–342
remove algorithm, 343
remove_if algorithm, 149
replace algorithm, 341
reverse algorithm, 74, 76, 343
search algorithm, 335
search algorithms, 331–338
testing for equality, 152
transform algorithm, 145, 342
transforming data, 145–150

unique algorithm, 343
unique_copy algorithm, 343

aliases see typedefs
alignment

aligning columns in output, 28
aligning output fields, 53
default alignment, 53
left-alignment, 50
member function syntax, 55
output, 53
right-alignment, 50
setw manipulator, 53

alignment flags, 583
ampersand (&) character

adding after function parameter type 
name, 140

and bitwise operator (&), 582
and operator, 80

overloading, 375
reversing order of vector, 75
symbolic syntax for, 82

angle brackets
class templates, 408
standard library headers, 310

angle function
const member functions, 244

anonymous namespaces, 442
app mode, 495
application

running console application from IDE, 7
argc, 562
argument-dependent lookup see ADL
arguments

accessing command-line arguments, 
562–564

default arguments for parameters, 
665–667

function calls, 129, 137
overloaded functions, 655
passing to functions, 137–139
template arguments, 399–401

argv, 562
arithmetic assignment operators, 378–380
arithmetic operators, 21, 24, 207–210

mixing types, 208
overloading, 207

arithmetic overflow, 592
arithmetic, integers, 169
array class template, 462–463
array container, 450, 462

distinguishing feature of sequence con-
tainers, 460

insertion/erasure functions, 454
array type, 454, 460, 462
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array_storage class template, 641, 642
arrays

array limitations, 558–559
C-style arrays, 557–558
dynamically allocating, 559–560
multi-dimensional arrays, 561
pointer arithmetic, 564–565
shared_array, 572
sizing, 61
smart arrays, 571–572
TR1 library extension, 450, 451
using vectors for, 60

artifact class, 572, 574
adding variable storage and lookup to, 536
managing pointers, 579

artifact_impl class, 572, 574, 575
add_ref function, 576, 578
delete_ref function, 576, 578
managing pointers, 579
managing reference count, 574

artifact_impl.cpp file, 576
artifacts

adding modification times to, 519
adding per-target variables to parse_

graph(), 539
defining artifact pimpl wrapper class, 573
defining artifact type, 518
dependency graphs, 524–526
lookup_artifact function, 578
make program keeping track of, 518
making executable programs, 514
using smart pointers to manage, 571
variable references, 532

as_string function, 386
assert function, 64
assign function, 198, 199
assigning value types, 287
assignment operators, 22, 25

arithmetic assignment operators, 378–380
bitwise assignment operators, 583
containers, 452
enumerated values, 604
rational type, 219–220
special member functions, 542
this keyword, 219

associations see maps
associative containers, 449, 466–470

custom functors, difficulty with, 467
erasing items from, 457
inserter function, 467
inserting items into, 455–456
modifying content of keys, 467
ordered/unordered containers, 449

ordering functors, 453
sets, 449

at function
advantages of using vectors, 560
avoiding exceptions, 370
difference between square brackets and, 

357
invalid index, 358
out_of_range exception, 366
throwing exceptions, 358
vectors, 61

ate (at-end) mode, 495
attributes, OOP, 258, 259, 260
auto keyword

declaring iterators, 350
auto_ptr class template, 549–552, 567–569

caution using, 555
C++ replacement for, 567
copying, 568, 569
dereference operator (*), 567, 568
dynamically allocating arrays, 560
get function, 550, 551, 568
member access operator (->), 567, 568
non-const reference, 568
passing by value, 568
problems not solved with, 552
release function, 567
reset function, 568
storing in standard containers, 552
using in bomb class, 554

automatic type conversion
function templates, 400, 410
see also promotion

automatic variables, 299, 300

B
@b tag, Doxygen, 182
back function, vectors, 61
back_inserter function

iterators, 354
vectors, 67

backslash (\) character
character escape sequences, 113
escape characters, 19
strings, 27

backspace
character escape sequences, 113

bad function, I/O stream errors, 216
bad_alloc exception, 360

container exceptions, 457
new expression, 528

badbit flag, I/O operators, 213, 216
exceptions, 367, 368
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base classes
adding base class overload, 657
multiple base classes, 615–617
virtual base classes, 618–620

base function, 354, 356
base iterator, 354
basic_ifstream class template, 475
basic_ios class, 291
basic_istream class template, 475
basic_ofstream class template, 475
basic_ostream class template, 475, 504
basic_string class template, 504

rewriting is_palindrome function, 474
wide strings, 472

begin function
const_iterator vs. const iterator, 351
error messages, 654
iterators, 346, 347, 348, 349
vectors, 62, 65

behaviors, OOP, 258, 259, 260
bidirectional iterators, 347, 631, 632

rbegin function, 354
rend function, 354, 355
treating data as read-only, 351

binary_function template class, 468
binary_search function, 336
binary I/O, 495
binary operators, 207

comparing value types, 288
binary search algorithms, 331, 336–338, 347
bitfields, 593

enumerated types, 601
portability, 594
unsigned types, 585

bitmasks, 583–584
enumerations as, 600–601

bits
integers as sets of, 581–583
number of bits in integers, 163, 165
shifting bits, 584–585
safe shifting with unsigned types, 585–592

bitset class template, 594–597
bitwise assignment operators, 583
bitwise operators, 582

bitset class template, 594
blocks

limiting variable scope, 89
local variable definitions, 90
statements, 85

body-mass index (BMI) project, 191
revised program, 239

bogus characters, 40
boolalpha manipulator, 77
Boole, George, 17

bool type
automatic type conversions to, 78
I/O streams and bool values, 77–78
predicates, 150
printing bool values, 77
reading bool values, 78
variable definitions, 17

Boost project
lexical_cast template, 507
smart pointers, 570
Spirit, 679

brace character ({)
using square bracket ([) instead of, 40

breakpoints
ensuring window remains visible, 7

@brief tag, Doxygen, 182
BSD distributions

tool recommendations for Linux, 4
by reference

passing objects to functions, 140–142
by value

passing objects to functions, 137–139
byte, 107
byte-sized integers, 167

static_cast expression, 169

C
.c file name extension, 5
.C file name extension, 5
C function names, 435
c prefix for headers, 64
C++ compilers

checking operation of, 8
error messages, 39
hardware vendor variations, 4
“knowing what every name means” rule, 

15
reasons for compiler errors, 7
tool recommendations for Linux, 4
tool recommendations for Windows, 3
turning off nonstandard extensions, 5

C++ language
basic tool requirements, 3
comments, 14–15
headers, 15–16
main function, 16–17
“no spaces in a symbol” rule, 14
output, 19–20
programming language variations, 3
standard for, 5
statements, 18–19
variable definitions, 17–18
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C++ programs
first program, 5–11
IDE creating wrapper for, 4
interfacing with C, 251

C++ standard library, 15
C++/CLI, 3
C-style arrays, 557–558

accessing command-line arguments, 
562–564

array limitations, 558–559
key advantage over vectors, 558
multi-dimensional arrays, 561
vectors compared, 560

C-style strings, 561–562
using pointer arithmetic to determine 

length of, 565
calculator

writing calculator project, 679
candidate functions

resolving overloads, 658–660
card class, 461

using enumerations, 613
carriage return

character escape sequences, 113
cases, 123–126

accented characters, 125
double character letters, 125
islower/isupper functions, 123
tolower/toupper functions, 123

catch block, 362
catch handlers, 359, 361
catching exceptions, 359–361, 370
catch keyword, 358, 359
.cc file name extension, 5
cerr stream, 368
char type, 109–111

signed and unsigned types, 586
char_traits class template, 635–636
char_traits policy class template, 636
character categories, 117–119, 487–492
character sets, 109, 115–117

character categories, 487–492
exploring character sets and locales, 488
locales, 482
multi-byte character sets, 476–477

character traits
copying input to output, 635

character type facet, 489, 490, 491
characters

accented characters, 125
automatic type conversions to bool, 79
character I/O, 111–113
char type, 109–111
code points, 125

digit characters, 111
double character letters, 125
eq_int_type function, 635
escape sequences, 113
get function, 110
locales, 122
multi-byte character sets, 476–477
performing arithmetic with, 109
white space, 111
wide characters, 471–472

I/O, 475–476
cin stream, 15
class declaration, 572
class definitions

struct and class keywords, 250
structure of classes, 227
vectors, 238

class keyword
class definitions, 250
declaring template parameter type, 398
defining classes, 266
private inheritance, 272
structure of classes, 227

class members see members
class templates, 405–410

array class template, 462–463
array_storage class template, 641, 642
assignment_mixin class template, 624, 

625
auto_ptr class template, 549–552
basic_ifstream class template, 475
basic_istream class template, 475
basic_ofstream class template, 475
basic_ostream class template, 475
basic_string class template, 504
binary_function template class, 468
bitset class template, 594–597
changing fixed class to, 426
char_traits class template, 635–636
comparison_mixin class template, 626
demo class template, 648
deque class template, 463–464
deque_storage class template, 640
equality_mixin class template, 626
facets, 483
hash<> class template, 622
helper types and constants, 490
introduction, 405
I/O test of rational class template, 410
is_integral class template, 678
is_same class template, 678
iterator_advancer class template, 631
iterator_traits class template, 630, 632
list class template, 464–465, 531
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mixin class template, 624
mixing types, 413–414
newstring class template, 637
overloaded operators, 410–413
pair class template, 423
parameterizing rational class, 407–408
parameterizing types, 405–406
policy-based programming, 636–643
power10 class template, 670
string class template, 504
template specialization, 415
vector class template, 465–466
vector_storage class template, 639

class-type object
initialization, 527

classes
abstract classes, 282
access level specifiers, 247, 250
constructors, 230–234
defining derived classes, 265–268
destructors, 268–272
inheritance, 261
member classes, 65
member functions, 228–230
mix-ins, 624–625
object-oriented programming (OOP), 258
public and private members, 247, 251
reading and understanding, 242
structure of, 227–228
typedefs and, 283–286
using declaration in, 441–442
using nested class name outside outer 

class, 369
writing, 227–234

classic function, locales, 119
classic locale, 482, 483
classification, OOP, 258–261
clear function

erasing container contents, 569
erasing items from associative container, 

457
erasing items from sequence container, 

455
I/O stream errors, 216

clock formats
cultural differences, 482

close function
calling explicitly for output files, 97

<cmath> header, 435
code points, 125
collate facet, 492
collation order

locales, 492–494
testing collation order of wide strings, 493

colons
missing colon error, 42
see also scope operator

columns
aligning columns, 28

comma operator (,), 376–378
for loop, 376, 377
overloading, 378
precedence, 378

command-line arguments
accessing, 562–564

command-line tools
linking programs, 7
object and source files, 306
tool recommendations, 3

comments, 14–15
# symbol, 499, 500
// and /* constructs, 14
erase function, 500
nesting comments, 14

comments, Doxygen, 181–182
comparable <T>

function templates, 396
comparators

custom comparators, 419–420
compare functor

ordered containers, 466
sort function calling, 157

comparing rational numbers, 203–206
comparing value types, 287–290
comparison algorithms, 339–340
comparison operators, 25, 82–84

comparing rational numbers, 204
enumerated values, 603, 604
testing rational comparison operator, 410

comparison_mixin class template, 626
compile-time programming, 669
compilers see C++ compilers
compiling programs

class templates, 408
first program, 7
function templates, 394, 395, 396
tokenizing input, 409

complex class
overloaded function templates, 411

complex type, 157
complexity, containers (O notation), 450
compound statements

syntax rule for, 86
concepts, 629, 633

function templates, 396
conditional operator (?:), 373–375
conditions, 18, 19

for loop, 47



INDEX 687

console application
running from IDE, 7

const iterator
const_iterator compared, 351–352
iterator error messages, 353

const keyword, 57, 143
member functions, 242–245
overloaded functions, 655
static const data member, 302

const member functions, 242–245
const objects, 522, 523
const pointers, 523
const references, 142–143

variable declarations and definitions, 297, 
298

const_iterator, 144
const iterator compared, 351–352
const member functions, 243
erasing with, 356
member types, containers, 452

const_reverse_iterator
erasing with, 356

constructors
classes, 230–234
constructors throwing exceptions, 552
copy constructor, 233
custom types, 200, 201
default constructor, 231
defining member constructor template, 

414
destructors and, 270
exceptions and, 552–556
initializer list, 231, 232
initializers, 231
invoking default constructor, 235–238
messages illustrating order of construc-

tion, 267
overloaded constructors for rational, 221
overloading, custom types, 202
rational type, 221
vectors, 237
visual constructors, 233

containers
assignment operators, 452
associative containers, 449, 466–470
categories of, 449
characteristics of, 450
common purpose of, 449
complexity (O notation), 450
copy constructors, 452
element type, 60
erasing items from associative containers, 

457

erasing items from sequence container, 
454–455

exceptions, 457
implementing standard containers, 

530–532
inserting items into associative container, 

455–456
inserting items into sequence container, 

454
insertion/erasure functions, 454
iterators and references, 458–460
maps, 449
member types, 451–452
ordered containers, 449
properties of, 450
sentry/guard, 62
sequence containers, 449, 460–466
sets, 449
swap functions, 542
TR1 (Technical Report 1), 450–451
unordered containers, 449
using iterators instead of indices, 66
using references with, 522

Control+D/Control+Z
signaling end-of-file, 7

conversion_error class, 503
conversions, 169, 661

implicit conversion sequence (ICS), 662
text conversion, 503–507
type conversions, 587–592

convert function, 402
copy algorithms, 343

function templates, 398
copy constructors, 221, 233

containers, 452
special member functions, 542

copy function
copy algorithms, 343
iterators, 345
std namespace, 64

copy initialization, 413
copy_backward function, 343
copy_if algorithm, 343
copying value types, 286
count function, 338
count_down function, 364
count_if function, 338
cout stream, 15

<iostream> header, 19
.cpp file name extension, 5
<cstdio> header, 96
<cstdlib> header, 135
<cstring> header, 562



INDEX688

<ctime> header, 518
ctype facet, 489, 490, 491
currency formats, 482
currency type, writing, 509
custom comparators

template specialization, 419–420
custom exceptions, 368–370
custom types, 195–202

adding member function to, 197
constructors, 200, 201
overloading constructors, 202
overloading operators, 203–212
rational numbers, 195

<cwchar> header, 471
.cxx file name extension, 5
Cygwin

tool recommendations for Windows, 4

D
DAG (directed acyclic graph) see dependency

graphs
data

sorting data in descending order, 150
transforming data, 145–150

data members
access levels, 273
adding, 308
declarations and definitions, 297
initializer list, 231
initializers, 230, 232
public and private members, 248
rational type definition, 196
static const data member, 302
static data members, 301–304
structure of classes, 227
this keyword accessing, 652

date formats, 482
DBCS (double-byte character set), 476
debug function, 496
declarations

class declaration, 572
defining multiple variables in single dec-

laration, 304
definitions and, 293–295
function templates, 401
source files, 307–309
using declaration, 438–441

in a class, 441–442
variable declarations and definitions, 

297–299
declarations, functions, 131
declarators, 304
decrement operator (--), 72–76, 380–383

deep copy, making, 541
default constructor, 221, 231

invoking, 235–238
default-initialized objects

new expression, 527
#define directive, 312
definition, functions, 131
definitions, 293–295

function templates, 401
source files, 307–309
variable declarations and, 297–299

delete expressions
auto_ptr type, 560
exceptions and dynamic memory, 547
freeing memory, 528
memory leaks, 546
null pointers, 529, 530
writing destructors, 537

delete[] operator
advantages of using vectors, 560
dynamically allocating arrays, 559

delete_ref function, artifact_impl class, 576, 
578

deletion algorithms, 343–344
delimiting strings in input streams, 35
demo class template, 648
dependencies

adding per-target variables to parse_
graph(), 539

adding variables, 532–540
making executable programs, 513, 514
targets and, 535

dependency graphs, 524–526
making executable programs, 513, 514
topological sort of DAG, 515

dependent names, 651, 653
deque class template, 450, 463–464

remove function, 464
deque_storage class template, 640
dereference operator (*), 567, 568
dereferencing iterators, 349
dereferencing pointers, 528
derived classes

defining, 265, 268
destructors, 269
multiple inheritance, 615
overloaded functions, 656
using declaration, 441
virtual keyword, 278, 280

destructors, 268–272
special member functions, 542
virtual destructors, 282

diagnostics see error messages
dictionaries see maps
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difference_type typedef
iterator traits, 634
iterators, 337
mixing signed and unsigned values, 589, 

590
digit characters, 111
digits

number of bits in integers, 163
directed acyclic graph (DAG) see dependency

graphs
direct initialization, 413
directives

#define, 312
#ifndef, 312
#include, 309–312
using, 436–438

distance function, 337
const member functions, 244

division by zero, 22
custom exceptions, 368

division operator (/), 22
division, integers, 24
documentation

header files, 313
multiple source files, 313–316
reading documentation, 4–5
source files, 313–316

documentation tags, Doxygen, 182–186
dot operator (.), 101
double-byte character (DBCS), 476
double-ended queue type see deque con-

tainer
double quotes

character escape sequences, 113
#include directive, 310
printing double quotes, 19

double type, 173, 174
Doxygen, 188

comments, 181–182
configuration, 187
documentation tags, 182–186
documenting code with, 184
escaping literal character, 184
multiple source files, 313–316
suppressing automatic hyperlink creation, 

184
doxywizard, 188
dynamically allocated objects, managing, 

567
dynamically allocating arrays, 559–560
dynamic memory, 527–528

automatically deleting pointers, 549–552
exceptions, 547–549
freeing memory, 528

handling dynamic memory correctly, 532
implementing string class, 535
making deep copy, 541
memory leaks, 545–547
special member functions, 542
wrapper for, 540

E
echo command, 562
elements, containers, 60

advancing iterator to next element, 62
@em tag, Doxygen, 182
empty containers

sentry/guard, 62
empty function

iterators, 349
vectors, 63

empty vector, 62
end function

erasing items from associative container, 
457

erasing items from sequence container, 
454

error messages, 653
inserting items into sequence container, 

454
iterators, 348
vectors, 62, 65

endianness, 478
entities

defining entities in namespaces, 431
enum definition, 599
enumerated values, 601

assignment operators, 604
comparison operators, 603, 604
printing, 600
relational operators, 603
string conversions, 605

enumerations, 599–600
arithmetic operators, 601
as bitmasks, 600–601
comparing languages, 603
enumeration of computer programming 

languages, 603
increment/decrement operators, 600
of computer programming languages, 602
simulating, 602–612

enum keyword, 599
eof function, I/O streams, 216, 635
eofbit flag, I/O operators, 213, 216

I/O exceptions, 368
eq function, 636
eq_int_type function, 635
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equal algorithm, 153, 336, 339
equal_range algorithm, 298, 299, 336
equal_to<T>, 454
equality

algorithms testing for, 152
comparing rational numbers, 203

equality functors
unordered associative containers, 453, 454

equality operator (==), overloading, 203
equality_mixin class template, 626
equals (=) sign

copy initialization, 413
erase function

deleting comments, 500
deleting element, 343
deleting element from vectors, 91
erasing items from associative containers, 

457
erasing items from sequence container, 

454
erasing items from sequence containers, 

458
erasing with const_iterator, 356
iterators, 355
sanitizing string by transforming, 150

erase_less function template, 458, 459
error function, 171
error messages, 39–43

iterators, 353
understanding, 16
writing templates, 652

errors
bogus characters, 40
conversion_error class, 503
division by zero, 22
failing to modify parameter values, 142
I/O streams, 215
logical errors, 366
misspellings (typos), 40
No data, 26
output errors, 97
perror function, 96
runtime errors, 366
statement errors, 88
symbol (colon) errors, 42
unknown name, 42
unknown operators, 41
using < instead of <<, 41

escape characters, 19
automatic type conversions to bool, 79

escape sequences, 113
in multi-byte character set, 476

exact match
implicit conversion sequence (ICS), 661

exception class, 359, 366
exception handling, 359

abort function, 361
catch keyword, 358, 359, 361
throw keyword, 361
what function, 360

<exception> header, 366
exception mask

I/O exceptions, 367
exception objects

throwing exceptions, 358
exceptions, 357–371

avoiding, 370, 371
bad_alloc exception, 360, 528
catching, 359–361, 370
constructors and, 552–556
containers, 457
custom exceptions, 368–370
dynamic memory, 547–549
I/O exceptions, 367–368
length_error exception, 360
libraries and applications, 371
logical errors, 366
out_of_range exception, 360
program stack, 362–366
rethrowing, 361
runtime errors, 366
standard exceptions, 366–367
template specialization, 415
throwing, 370, 361
visualizing, 362

executable programs, making, 513
executing programs, 7
execution stack see program stack
expand function, 533, 537
explicit specialization, templates, 415, 416, 

417
partial specialization, 424
template arguments and parameters, 423

exponentiation operator, lack of, 24
export keyword, 401
expression statements, 85
expressions, integers, 21–26
extern variables

array limitations, 559
multiple source files, 316–317

extractor see input operator (>>)

F
fabs function, 157
facets, 483–486

character type (ctype) facet, 489, 490, 491
collate facet, 492
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money_get facet, 483, 484
money_put facet, 484
num_get facet, 483
numpunct facet, 483
use_facet function template, 484
using with wide characters, 493

failbit flag, I/O operators, 213, 216
I/O exceptions, 368

fail function, 216
fields

aligning output fields, 53
field width, 50–51, 53
querying current field width, 55

file I/O, 95–98
reading files, 95–96
writing files, 96–98

file modes, 495–496
file name extensions, 5

#include files, 309
@file tag, Doxygen, 183
files

first program, 5
#include directives, 309–312
I/O, 95–98
signaling end-of-file, 7

fill function
formatting output, 52
member function syntax, 55
querying, 55
using manipulators, 54

fill algorithm, 342
fill_n algorithm, 342
find algorithm, 398
find function, 331, 336

character sets, 115
comparing value types, 287
searching in maps, 103
string class, 533
string streams, 500

find_end algorithm, 336
find_if algorithm, 333
find_pair function, 596
fixed class

changing to class template, 426
fixed-point numbers project, 385

fixed class template
defining in numeric namespace, 430
partial specialization, 673
template specialization, 669
writing currency type, 509

fixed constructors, 385
fixed format, numbers, 178

flags
alignment flags, 583
declaring formatting flags with bitfields, 

593
manipulators, 581
querying/setting, 55

flags function, 55, 291
flex-ref, 522

see also pointers
float type, 173
floatfield bitmask, 583
floating-point I/O, 177–179
floating-point literals, 174–176
floating-point numbers, 173–174, 179

arithmetic overflow, 592
floating-point types

discovering attributes of, 176
mixing types, 209

fmtflags type, 291
for loop, 45–48

comma operator (,), 376, 377
condition, 47
defining loop control variables, 92
flow of control, 47
initialization, 46–47
postiteration, 47, 75
printing ten non-negative numbers, 45
scope, 91
using loop control variable, 46

formatting flags
declaring with bitfields, 593
manipulators, 581

formatting output, 49–57
alignment, 53
field width, 50–51, 53
fill characters, 52
fill function, 54
left manipulator, 53
padding, 52, 53
right manipulator, 53
setfill manipulator, 52
setw manipulator, 51
std namespace, 52

formfeed
character escape sequences, 113

forward declaration, 572
forward iterators, 347

treating data as read only, 351
forward slashes (//)

comments, 14
fraction function, 386
frames, program stack, 362
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free functions, 61
implementing operators as, 219
rational type, 198
static keyword, 610
using unqualified names for, 652

friends, 625–627
from_string function, 503

adding error-checking, 506
string conversions, 605

front function, vectors, 61
front_inserter function, 354
<fstream> header, 96, 97, 475
full specialization, templates, 415, 424
function arguments, 137
function call operator (()), 321–323

iterator_advancer class template, 631, 632
overloading, 323

function calls
arguments, 129, 137

function declaration, 236, 238, 293
function definition, 293
function names

C function names, 435
overloading, 157–162

function objects see functors
function overloads see overloaded functions
function parameters

declaring array type as, 558
function templates, 394–397

automatic type conversion, 400, 410
comparable <T>, 396
concepts, 396
copyable <T>, 396
declarations and definitions, 401
from_string function template, 503
generic functions, 394
member function templates, 402–403
mixing types, 413–414
overloaded function templates, 411
overloaded operators, 410–413
partial specialization, 425
qualified names, avoiding, 645–647
rewriting to_string as, 504
specializing, 420–421
template arguments, 394, 399–401
template parameters, 394, 398
turning is_palindrome function into, 473, 

474
use_facet function template, 484
using unqualified names in, 647
working with, 474
writing, 396–397

<functional> header, 328, 420

functions, 127–129
see also algorithms
abs function, 157
appending _copy to function names, 343
appending _if to function names, 336
assert function, 64
avoiding exceptions, 371
back_inserter function, 67, 354
base function, 354
binary_search function, 336
calling functions, 129
classic function, 119
copy_backward function, 343
copy function, 343
count function, 338
count_if function, 338
counting words, 132
debug function, 496
declarations and definitions, 130–132
default arguments for parameters, 

665–667
distance function, 337
eq_int_type function, 635
equal function, 153, 336, 339
equal_range function, 336
erase function, 343, 355, 500
fabs function, 157
fill function, 342
fill_n function, 342
find function, 331, 336, 500
find_end function, 336
find_if function, 333
find_pair function, 596
free functions, 61
front_inserter function, 354
generate_n function, 342
generic functions, 393–394
getline function, 152, 498
getloc function, 120
ignore_line function, 129
imbue function, 120
inline functions, 295–297, 317
insert function, 354, 355
inserter function, 354
isalnum function, 117
islower/isupper functions, 123
iterators and, 349
labs function, 157
lower_bound function, 336, 337
main function, 127, 134–135
math functions, 210
max_element function, 338
member function syntax, 55, 61
member functions, 228–230, 235–245
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min_element function, 338
mismatch function, 339
next function, 308
one-definition rule (ODR), 317
overloaded functions, 655–667
parameters, 127, 129, 137

adding ampersand (&) after type name, 
140

passing arguments to, 137–139
passing objects by reference, 140–142
passing objects by value, 137–139
passing overloaded function to standard 

algorithm, 161
perror function, 96
predicates, 150–152
print_result function, 129
print_vector function, 142
procedures and subroutines, 127
prompted_read function, 129
rbegin function, 354
recycling member functions, 327–328
remove function, 343
remove_copy function, 343
remove_copy_if function, 343
rend function, 354, 355
replace_if function, 341, 343
resize function, vectors, 159
return statement, 127
reverse function, 153
reverse_copy function, 343
sanitize function, 146, 149
search function, 335, 336
search_n function, 342
sequence function, 342
sort function, 62
str function, 496
strlen function, 562
substr function, 500
tolower function, 123
topological_sort function, 515, 516
toupper function, 123
transform function, 146
unget function, 499
upper_bound function, 336, 337
virtual functions, 278–280
void return type, 127
writing functions, 127

functors (function objects), 323–326
appending _if to function names, 336
find_if function, 333
generator functor, 328–330
intrange functor, 333
less template class, 419
mem_fun_ref function, 327

recycling member functions, 327–328
search algorithms, 333
transform algorithm, 342
wrapping member functions, 327

G
g++

command-line compiler options, 5
naming executable program, 7
tool recommendations for Linux, 4

GCC (GNU compiler collection), 4
gcd function, 198, 401
generate algorithm, 328, 342
generate_n algorithm, 342
generator functor, 328–330
generic algorithms, 63, 66
generic functions, 393–394
generic programming

improved interface to abs(), 393
get function

auto_ptr class, 550, 551, 568
character I/O, 112
characters, 110
istream class, 635
money_get facet, 484

getline function, 152
looking for palindromes, 153
string streams, 498

getloc function, 120
global locale, 483
global map

storing variables in, 533
global namespaces, 432, 434
global objects

one-definition rule (ODR), 317
static keyword, 610

global scope, 432
global variables, 301
goodbit flag, I/O operators, 213
guard

empty containers, 62
guess function, 171
GUI environment, 3, 7

H
Hashable interface, 620
HashableString class, 621
hash functors, 453
hash<T>

associative containers, 469
hash functors, 453

hash<> class template, 622
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header files (headers), 15–16
<algorithm>, 63
<cassert>, 64
<cmath>, 435
container characteristics, 450
c prefix for headers, 64
<cstdio>, 96
<cstdlib>, 135
<cstring>, 562
<ctime>, 518
<cwchar>, 471
declarations and definitions in, 15
declaring manipulators, 54
dependencies, 513
documentation, 313
<exception>, 366
<fstream>, 96, 97
<functional>, 328, 420
#include directives, 15, 311
<iomanip>, 51
<iostream>, 15, 16
<ios>, 53
<istream>, 15, 16
<iterator>, 67, 354
<limits>, 15, 16, 421
<locale>, 117
making executable programs, 513
<map>, 100
<memory>, 549
multiple #include of same header, 312
<numeric>, 63
<ostream>, 15, 16, 55
<sstream>, 496
<stdexcept>, 366
<string>, 29
unnamed namespaces, 442
using directive, 436
using precompiled headers, 313
<vector>, 61

hexadecimal (base 16) character value, 113
hexadecimal notation

formatting flags, 581
hierarchies, OOP, 260
hints

inserting items into associative container, 
456

horizontal tab
character escape sequences, 113

I
ICS (implicit conversion sequence), 661–662
IDE (integrated development environment), 

3, 4, 7

#ifndef directive, 312
if statement, 18

main function, 546
ifstream object, 96

default mode, 495
ignore_line function, 129
imbue function, 120
implicit conversion sequence (ICS), 661–662
implicit specialization, templates, 415
inaccessible members, 272
#include directives, 15, 309–312

compiler finding, 310
fixed-point numbers project, 386
nested #include directives, 311–312
using conditional directives with, 313
using double quotes, 310
using precompiled headers, 313

increment operator (++), 71–72, 380–383
advancing iterators, 62, 65
forward iterators, 347
input iterators, 346
output iterators, 346
using maps, 100

increment_reference, 272
index_of function, 590
indices

using iterators instead of, 66
indirection, pointers

levels of indirection, 524
inheritance

access levels, 272–273
derived class, 265–268
friends, 625–627
interfaces vs. templates, 622–624
Java-like interfaces, 620–622
mix-ins, 624–625
multiple base classes, 615–617
multiple inheritance, 615–627
object-oriented programming (OOP), 261
private inheritance, 272
public inheritance, 272
virtual base classes, 618–620

initialization
class-type object, 527
copy initialization, 413
default-initialized objects, 527
direct initialization, 413
for loop, 46–47
Resource Acquisition Is Initialization 

(RAII), 290–291
using conditional operator in construc-

tors, 374
zero-initialized objects, 527

initialized variables, 31
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initializer lists
constructors, 231, 232
data members, 231
defining derived classes, 266, 268

initializers
constructors, 231
data members, 230, 232
language class, 610–611

initializing variables, 34
inline functions, 295–297

multiple source files, 317
inline keyword, 205, 295
in mode, files, 495
input

adding error-checking for each line of, 502
delimiting strings in input streams, 35
ending input stream, 36
reading integers, 33
reading strings, 34
reading strings and integers, 36–38
sorting standard input alphabetically, 5, 8
uninitialized variables, 34

input iterators, 346
istream_iterator type, 346, 354

input operator (>>), 15, 16, 33
initializing variables with, 22
overloading, 213
state flags, 213

insert function, 354
inserting items into associative contain-

ers, 455
inserting items into sequence container, 

454
iterators, 355
metaprogramming, 676–678
using istream_iterator, 76

inserter see output operator (<<)
inserter function

associative containers, 467
iterators, 354

instantiation, templates, 415
int type

signed and unsigned types, 586
size of, 163
variable definitions, 17

integer arithmetic, 169
integer division, 24
integer expressions, 21–26
integer function, 386
integer literals, 166–167

compiler fitting into type, 587
rvalue, 142
using overloading to distinguish types of, 

166

integers, 163–167
arithmetic overflow, 592
binary search for, 336
bitfields, 593
byte-sized integers, 167
demonstrating input and output, 34
eq_int_type function, 635
finding integer in range, 334
forcing integer to be unsigned, 587
functor testing if in range, 333
integers as sets of bits, 581–583
long integers, 164
mixing types, 209
negating middle item in series of, 352
number of bits in, 163, 165
printing middle item of series of, 351, 352
reading, 33
reading strings and, 36–38
replacing all integers, 341
searching for, 331
short integers, 165
shuffling, 342
signed char type, 167
sorting, 60
testing for even or odd integers, 24
type casting, 167–169

integrated development environment (IDE), 
3, 4, 7

Intel hardware platform, 4
interfaces

Hashable interface, 620
interfaces vs. templates, 622–624
Java-like interfaces, 620–622

international characters
shift sequences, 476
wide characters, 471–472

internationalization see locales
intrange functor, 341
invoking programs, 7
I/O

binary I/O, 495
character I/O, 111–113
character traits copying input to output, 

635
file I/O, 95–98
floating-point I/O, 177–179
I/O test of rational class template, 410
reading files, 95–96
shift operators, 585
text I/O, 495–507
wide characters, 475–476
writing files, 96–98

I/O exceptions, 367–368
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I/O functions
newstring class template, 643

I/O manipulators
left manipulator, 53
right manipulator, 53
setfill manipulator, 52
setw manipulator, 51

I/O operators
overloading, 213
reading and writing languages, 611
state flags, 213

I/O streams
bool values and, 77–78
conversions to bool, 79
end-of-line characters, 113
eof function, 635
errors, 215
locales, 484, 483
sentry objects, 486
signed and unsigned char types, 587

ioflags class, 290
<iomanip> header, 51, 54
<ios> header, 53, 54
<iostream> header, 15, 16

cout stream, 19
isalnum function, 117, 487
is_alpha function, 160, 162
isalpha function, 487
iscntrl function, 487
isdigit function, 487
isgraph function, 487
is_integral class template, 678
is_last function, 591
islower function, 123

character classification functions, 487
ISO 8859-1 character set, 115, 117
is_palindrome function

looking for palindromes, 153
testing, 475
turning into function template, 473, 474

isprint function, 487
ispunct function, 487
is_same class template, 678
isspace function, 487
istream class

conversion to bool, 662
get function, 635

<istream> header
input classes and operators, 475
input operators, 33
input operator (>>), 15, 16

istream_iterator type, 67, 237
input iterators, 354
iterators, 346

name lookup, 445
using with insert function, 76

istreambuf_iterator type, 486
istringstream type, 496, 498, 503
isupper function, 123, 487
isxdigit function, 487
iteration

postiteration, for loop, 47
<iterator> header, 67, 354
iterator traits, 634
iterator_advancer class template, 631

function call operator (()), 631, 632
random access iterators, 633

iterator_category typedef
iterator_advancer class template, 632
iterator traits, 634

iterator_traits class template, 630, 632
iterators, 62–63, 66–69, 345–356, 629–634

advancing iterator, 62, 349
algorithms and, 344
assigning, 346
back_inserter function, 67, 354
base iterator, 354
bidirectional iterators, 347, 631, 632
comparing, 62, 63, 346, 347

using < operator, 348
const member functions, 243
const_iterator, 144

const iterator compared, 351–352
container characteristics, 450
containers, 458–460
converting, 356
copy function, 345
copying, 346
declaring, 350
declaring variables to store iterators, 350
decrement operator (--), 72–76
dereferencing, 349
description, 345
difference_type, 337
erase function, 355
erasing with const_iterator, 356
error messages, 353
forward iterators, 347
front_inserter function, 354
generic algorithms, 63
importance of, 355–356
increment operator (++), 71–72
input iterators, 346
inserter function, 354
insert function, 355
istream_iterator type, 67, 354
iterator sources, 348
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iterators pointing to positions in a vector, 
63

kinds of, 345
list container, 464, 465
lower_bound function, 336
maps, 101–103
member types, containers, 452
modifying referenced items, 351
ostream_iterator type, 67, 354
output iterators, 346
problems when using, 355
random access iterators, 347, 633
read iterators, 64, 345, 348
reverse_iterator type, 354
sentry value, 62
smart pointers, 580
specialized iterators, 354–355
substitution tree for, 345, 346
traits, 630
treating data as read only, 351
upper_bound function, 336
using instead of indices, 66
working with, 348–350
write iterators, 64, 345, 348

J
Java-like interfaces, 620–622

K
key_type typedef, 452
keys

comparing keys, 564
keywords

const keyword, 57, 143
friend keyword, 625, 626
inline keyword, 205
nullptr keyword, 529
operator keyword, 203
overloading, 618
return keyword, 127
typedef keyword, 105
virtual keyword, 618

Koenig Lookup, 443

L
labs function, 157
language class

assignment operators, 604
comparison operators, 603, 604
enumerating computer languages, 602
initializing, 610–611

reading and writing languages, 611
relational operators, 603
string conversions, 605
using, 611
with enhancements, 607

left-alignment, 50
fill characters, 53

left manipulator, 53
left shift operator (<<), 585
length_error exception, 360
less class template, 419, 420

associative containers, 468
comparing keys, 564

levels of indirection, pointers, 524
lexical_cast template, Boost, 507
lexicographical_compare algorithm, 339
libraries

checking library implementation, 8
throwing exceptions, 371

library headers, 310
<limits> header, 15, 16, 421
linear search algorithms, 331–335
linking programs, 17
Linux

tool recommendations for, 4
list class template, 464–465

implementing pop_back/push_back, 531, 
532

list container, 464
characteristics summarized, 450
distinguishing feature of sequence con-

tainers, 460
iterators, 347
iterators and references, 458

literals
floating-point literals, 174–176
integer literals, 166–167
rvalue, 142
unsigned literals, 587

local definitions
scope and, 89

local objects
functors (function objects), 326

local references, 297, 298
local variables, 297, 299
<locale> header, 117
locales, 122, 481–483

character categories, 487–492
classic function, 119
classic locale, 482
collation order, 492–494
copying global locale, 158
creating native locale, 158
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cultural differences, 482
writing numbers, 481

default (native) locale, 482
exploring character sets and, 488
facets, 483–486
global locale, 483
I/O streams, 483, 484
ISO and POSIX standards for naming, 482
organizing character sets, 482
transforming functions, 146

localization see locales
logical errors, 366
logic_error class, 366
logic operators, 80–81

symbolic syntax for, 82
long double type, 173, 174
long int type, 164
long long int type, 164
lookup_artifact function, 578
lookups

argument-dependent lookup (ADL), 443
name lookup, 443–448

loops
conversions to bool, 79
for loop, 45–48
size_type member type, 65
unbounded loops, 45
while loop, 45

lower_bound algorithm, 91
lower_bound function, 336, 337

operator used by, 152
lowercase

tolower function, 123
lvalues, 142

new expression and type, 527
pointers, 522, 524

M
Macintosh

tool recommendations for, 4
Mac OS X

tool recommendations for, 4
macros

special names, 435
main function, 16–17, 127, 134–135

automatic variables, 299
function rules, 299
if statement, 546
static object initialization, 301

@mainpage tag, Doxygen, 183
make program

adding modification times to artifacts, 519
first draft of pseudo-make program, 516

keeping track of artifacts, 518
making executable programs, 514

Managed C++, 3
manipulators

>> (input operator), 111
boolalpha manipulator, 77
fill function, 54
formatting flags, 581
headers declaring, 54
<iomanip> header, 51
left manipulator, 53
noboolalpha manipulator, 78
right manipulator, 53
setf functions, 581, 582
setfill manipulator, 52
setprecision manipulator, 177
setw manipulator, 51
showpoint manipulator, 581
showpos manipulator, 581
skipws manipulator, 111
sticky properties, 52, 55
unsetf functions, 581, 582
using manipulators, 54

map container
binary search algorithms, 336
characteristics summarized, 450
custom comparators, 419
iterators, 349

<map> header, 100
map iterator

value of, 101
map types, 449
maps, 100–101, 466

associative containers, 449
iterators, 101–103
searching in maps, 103–104
size function, 102

masks
bitmasks, 583–584

math functions
overloading, 210

max algorithm, 63, 334
template arguments, 399

max_element algorithm, 338
mem_fun_ref function, 327
member access operator (->), 567

auto_ptr class template, 568
member classes, 65
member constructor template, 414
member function syntax, 55, 61
member function templates, 402–403
member functions, 235–245

access levels, 273
classes, 228–230
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const keyword, 242–245
declarations and definitions of, 293
declaring static member function, 607
dynamic memory, 542
name lookup, 443
& operand, 327
public and private members, 248
qualifying with base class name, 656
rational type, 198
recycling member functions, 327–328
renaming, 307
structure of classes, 227
this keyword, 229, 432

member types, 65
containers, 451–452
standard library typedefs, 592

members
inaccessible members, 272
initializers, 232
naming conventions, 230
static data members, 301–304
static keyword, 610
underscores in names, 230

memory
allocating memory, 527–528
dynamic memory, 527
freeing memory, 528

<memory> header, 549
memory leaks

auto_ptr fixing, 550
delete expressions, 546
dynamic memory, 545–547

merge algorithm, 341
messages

understanding error messages, 16
metaprogramming

compile-time programming, 669
insert function, vectors, 676–678
partial specialization, 671–678
template specialization, 669–671

Microsoft Visual C++, 5
Microsoft Windows

tool recommendations, 3
min algorithm, 63, 334

template arguments, 399
min_element algorithm, 338
MinGW

tool recommendations for Windows, 3, 4
mismatch function, 339
misspellings (typos), 40
mix-ins

assignment_mixin class template, 624, 
625

comparison_mixin class template, 626

description, 624
equality_mixin class template, 626
friends, 625–627
multiple inheritance, 624–625

mixin class template, 624
modes

file modes, 495–496
modifiers

friend modifier, 625
money_get facet, 483, 484
money_put facet, 484
multi-byte character sets, 476–477
multi-dimensional arrays, 561
multi-line comments, Doxygen, 181
multimap container, 450
multiple inheritance, 615–627

friends, 625–627
interfaces vs. templates, 622–624
Java-like interfaces, 620–622
mix-ins, 624–625
multiple base classes, 615–617
virtual base classes, 618–620

multiple source files, 305–307
declarations and definitions, 307–309
documentation, 313–316
extern variables, 316–317
inline functions, 317
one-definition rule (ODR), 317–319
projects, 306

multiple template arguments, 400
multiplication operator (*), 24
multiset container, 450

N
name lookup, 443–448
named scopes see namespaces
names

C function names, 435
scope, 301
special names, 435
unknown name errors, 42

namespace-qualified names see qualified
names

namespace scope, 432, 434
namespaces, 429–432

coping with conflicting names, 433
defining entities in, 431
global namespaces, 434
name lookup, 443
nested namespaces, 432–434
qualified names, 432
scope of, 429
std namespace, 52, 435
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unnamed namespaces, 442–443
using directive, 436–438
using namespaces, 435–442

naming conventions
names in namespaces, 429
using underscores, 230

NaN (not-a-number), 174
nested classes

using nested class name outside outer 
class, 369

nested namespaces, 432–434
nested vectors, 61
new expression

allocating memory, 527
bad_alloc exception, 528
dynamically allocating arrays, 559–560
exceptions and constructors, 552
nothrow option, 530

new keyword
allocating memory, 527
exceptions and dynamic memory, 547

new[] operator
advantages of using vectors, 560

newline
backslash (\) character, 27
character escape sequences, 113

newstring class template, 637
I/O functions, 643

next function, 307, 308
replacing with operator(), 321

No data warning, 26
noboolalpha manipulator, 78
non-const reference

auto_ptr class template, 568
noskipws manipulator, 581
nothrow option, new expression, 530
not operator, 80

symbolic syntax for, 82
npos constant, string class, 533
null character

character escape sequences, 114
marker for end of string, 562

null pointers, 528–530
null statements, 88
NULL, avoiding, 530
nullptr keyword, 529
num_get facet, 483
num_put facet, 483
numbers

comparing rational numbers, 203–206
cultural differences in writing, 481
fixed format, 178
fixed-point numbers project, 385–389
floating-point literals, 174–176

floating-point numbers, 173–174, 179
integers, 163–167
NaN (not-a-number), 174
representing huge numbers, 173
scientific format, 177

<numeric> header, 63
numeric_limits class template

floating-point types, 176
<limits> header, 15, 16
mixing types, 209
number of bits in integers, 163
template specialization, 421

numeric namespace, 430
numpunct facet, 483

O
O notation, container complexity, 450
object files

making executable programs, 513
multiple source files, 305

object-oriented programming (OOP), 263
actions and attributes as concepts, 258
attributes, 258, 259, 260
behaviors, 258, 259, 260
classes and objects, 258
classification, 258–261
hierarchies, 260
inheritance, 261
Substitution Principle, 262

objects
comparing value types, 287
functors (function objects), 323–326
inheritance, 261
object-oriented programming (OOP), 258
sizeof operator, 106
stateful objects, 323
subobjects, 297

octal (base 8) character value
character escape sequences, 113

ODR (one-definition rule), 317–319
offset function, 244
ofstream object, 96

default mode, 495
one-definition rule (ODR), 317–319
one-line comments, Doxygen, 181
OOP see object-oriented programming
operator function, 321–323
operator keyword

implementing custom operators, 203
operator!=

see also != operator
overloaded operators, class templates, 410
parameterizing rational class, 408
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operator==
see also == operator
overloaded operators, class templates, 410
parameterizing rational class, 408

operator<< function, num_put facet, 483
operator>> function, num_get facet, 483
operators

* operator, 62
addition operator (+), 22
and operator, 75, 80
arithmetic assignment operators, 378–380
arithmetic operators, 21, 24, 207–210
assignment operator (=), 22, 25
binary operators, 207
bitwise operators, 582
comma operator (,), 376–378
comparison operators, 25, 82–84, 204, 205
conditional operator (?:), 373–375
decrement operator (--), 72–76, 380–383
dereference operator (*), 567
division operator (/), 22
equality operator (==), 25
exponentiation operator, lack of, 24
function call operator (()), 321–323
implementing as free function, 219
implementing custom operators, 203
increment operator (++), 71–72, 380–383
input operator (>>), 22, 33, 213
integer division (/), 24
logic operators, 80–81
member access operator (->), 567
multiplication operator (*), 24
not equal operator (!=), 23, 25
not operator, 80
or operator, 80
output operator (<<), 215
overloaded operators, 410–413
overloading operators, 203–212
postfix operators, 380
prefix operators, 380
rational type, 222–226
relational operators, 205
remainder operator (%), 24
scope operator, 432
shift operators, 584
short-circuit operators, 375
sizeof operator, 106
static_cast operator, 167, 169
subscript operator ([]), 358, 594
subtraction operator (-), 24
ternary operator (?:), 373
type conversion operator, 603
unary operators, 207

unknown operator errors, 41
using < instead of <<, 41

or bitwise operator (|), 582
or operator, 80

overloading, 375
symbolic syntax for, 82

ordered associative containers, 466
ordered containers, 449

compare functor, 466
ordering functors, 453
ostream class

conversion to bool, 662
put function, 635

<ostream> header, 55
output classes and operators, 475
output operator (<<), 15, 16

ostream_iterator class template, 493
ostream_iterator type, 67

iterators, 347
name lookup, 445, 446
output iterators, 354

ostreambuf_iterator type, 486
ostringstream type, 215, 496, 503
out mode, files, 495
out_of_range exception, 360

logic_error class, 366
output, 19–20

aligning columns, 28
alignment, 53
changing output stream to native locale, 

120
escape characters, 19
field width, 50–51, 53
fill characters, 52
fill function, 54
formatting output, 49–57
left manipulator, 53
padding, 52, 53
printing quotes (' or "), 19
printing table of powers, 51
printing table of squares and cubes, 50
right manipulator, 53
setfill manipulator, 52
setw manipulator, 51
std namespace, 52

output errors
calling close function, 97

output iterators, 346
modifying referenced items, 351
ostream_iterator type, 347, 354

output operator (<<), 15, 16, 215
multiple occurrences of, 19
separating output items, 28
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state flags, 213
using < instead of <<, 41

output parameters, 144
overflow

arithmetic overflow, 592
overloaded functions, 655–667

adding base class overload, 657
passing to standard algorithm, 161
printing vectors using, 158
resolving overloads, 658–665

candidate functions, 658–660
default arguments for parameters, 666
viable functions, 660–665

using declaration, 656
overloaded operators, 410–413
overloading, 157–162

and operator, 375
arithmetic operators, 207
comma operator, 378
compiler overload resolution, 169–171
custom type constructors, 202
distinguishing types of integer literals, 166
equality operator (==), 203
function call operator (()), 323
how overloading works in C++, 658–667
increment operator (++), 272
I/O operators, 213
is_alpha function, 160
keywords, 618
math functions, 210
or operator, 375
overloaded constructors for rational, 221
print function, 158
resolving overloads, 658–665

candidate functions, 658–660
default arguments for parameters, 666
viable functions, 660–665

sort function, 157
to_lower/to_upper functions, 160
type conversion/promotion, 169

overloading operators, 203–212
overriding

virtual functions, 278

P
@p tag, Doxygen, 183
padding

fill characters, 52
formatting output, 52, 53

pair class template, 423
partial specialization, 423–424

parameterizing rational class
class templates, 407–408

parameterizing types
class templates, 405–406

parameters
default arguments for, 665–667
failing to modify parameter values, 142
functions, 127, 129, 137

adding ampersand (&) after type name, 
140

output parameters, 144
template parameters, 398–399
value template parameters, 425

parse_graph function
adding per-target variables to, 539
parsing variable definitions, 534

parsers
writing calculator, 679

partial specialization, 424–425
class templates, 631
pair class template, 423–424
template metaprogramming, 671–678

per-target variables, 535
perror function, 96
pimpls, 572–580

defining artifact pimpl wrapper class, 573
POD (Plain Old Data) types

array type, 462
interfacing with C, 251

point class
using enumerations, 613

pointer to nothing see null pointers
pointer type, 524
pointer typedef

iterator traits, 634
pointers, 513–526

addresses and, 523
artifact class managing, 579
artifact_impl class managing, 579
automatically deleting, 549–552
auto_ptr template, 552
const objects, 522, 523
copyable smart pointers, 569–571
C++ replacement for auto_ptr, 567
defining const pointer, 523
defining pointers to, 523
defining reference to, 523
delete expression freeing memory, 528
dependency graphs, 524–526
description, 524
iterators, 580
levels of indirection, 524
lvalues, 522
null pointers, 528–530
pointer arithmetic, 564–565
random access iterators, 580
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smart arrays, 571
smart pointers, 567
swap functions, 542
testing if valid before dereferencing, 528
understanding need for, 513–522
understanding solution to need for, 

522–523
using references with containers, 522

policies, 629, 636
policy-based programming, 636–643

array_storage class template, 641, 642
char_traits policy class template, 636
deque_storage class template, 640
newstring class template, 637
storage policy templates, 639
vector_storage class template, 639

polymorphic functions see virtual functions
polymorphism

type polymorphism, 275–278
pop_back function, 455

implementing, list class template, 531, 532
pop_front function, 455
portability

bitfields, 594
postfix decrement operator (--), 72
postfix increment operator (++), 71, 72
postfix operators, 380
postiteration

flow of control in for loop, 47
reversing order of vector, 75

power10 class template
partial specialization, 672
template specialization, 670, 671

precedence
comma operator (,), 378
dot operator (.) and dereference operator 

(*), 101, 229
shift operators, 585

precision function, streams, 177
predicates, 150

same_char predicate, 153
prefix decrement operator (--), 72
prefix increment operator (++), 71, 72
prefix operators, 380
prev iterator

erasing elements from sequence contain-
ers, 458

print function
compiler overload resolution, 171
overloading, 158

print_result function, 129
print_vector function, 142
printing table of powers, 51
printing table of squares and cubes, 50

private access level, 266
private inheritance, 272
private keyword, 247
private members, classes, 247, 251
procedures, functions and, 127
program stack, 362–366
Programmer’s Workbench, 4
programming

C++ tools, 3
compile-time programming, 669

promotion, 169, 662
prompted_read function, 129
public access level, 266
public inheritance, 272
public keyword, 247
public members, classes, 247, 251
pure virtual functions, 281–282
push_back function

implementing, list class template, 531
inserting items into sequence container, 

454
length_error exception, 360
vectors, 61, 67

initializing, 73
push_front function, 454
put function

money_put facet, 484
ostream class, 635

Q
qualified names, 295

see also unqualified names
avoiding with function templates, 645–647
multiple base classes, 617
namespaces, 432
problems with, 645–647

queries
querying current fill character, 55
querying current flags, 55

question mark (?) character, 113
quotes

#include directives, 310
character string literals, 19

R
RAII (Resource Acquisition Is Initialization), 

290–291
automatic variables, 299

random access iterators, 347
iterator_advancer class template, 633
pointers, 580
treating data as read only, 351
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random_shuffle algorithm, 341
ranges

out_of_range exception, 360
rational class

access level specifiers, 251
class template for, 407
defining in numeric namespace, 430
parameterizing, 407–408
testing rational comparison operator, 410

rational numbers
assignment of integers to, 220
comparing, 203–206
computing absolute value of, 210
constructing from floating-point argu-

ment, 209
defining new type, 195
reading and writing, 213

rational type, 222–226
adding member function to, 197
addition operator for, 207
arithmetic operators for, 208
assign function, 198, 199
assignment operator (=), 219–220
constructors, 200, 221
defining new type, 195
gcd function, 198
mixing types, 208
overloaded constructors for rational, 221
overloading equality operator (==), 203
overload of abs for rational arguments, 

645
reduce function, 197, 198

rbegin function, 354
reading files, 95–96
read iterators, 64, 345, 348
rearrangement algorithms, 341–342
recycling member functions, 327–328
red-black trees, implementing, 530
reduce function

checking for zero denominator in, 370
conditional operator (?:), 374
rational type, 197, 198

reference
passing objects to functions by, 140–142

references
const references, 142–143, 298
containers, 458–460
declaring and using, 297
defining reference to pointers, 523
local references, 298
slices and, 280
using with standard containers, 522

reference typedef
iterator traits, 634

relational operators
comparing rational numbers, 205
enumerated values, 603

release function, auto_ptr class, 567
remainder operator (%), 24
remove algorithm, 343

deque type, 464
remove_copy algorithm, 343
remove_copy_if algorithm, 343
remove_if algorithm, 149, 150, 153
rend function

bidirectional iterators, 354, 355
replace algorithm, 341
replace function, strings, 533
replace_if function, 341, 343
reserve function

iterators and references, containers, 458
reset function, auto_ptr class, 568
resize function

bad_alloc exception, 360
vectors, 159

Resource Acquisition Is Initialization (RAII), 
290–291

rethrowing exceptions, 361
return keyword, 127
return statement, 127
@return tag, Doxygen, 183
return type, 127
reverse algorithm, 74, 76, 343

iterators, 347
reverse function, 153
reverse_copy algorithm, 343, 347
reverse_iterator, 354, 355, 356
right-alignment, 50

fill characters, 53
right manipulator, 53
right shift operator (>>), 585
round function

fixed-point numbers project, 386
runtime

creating objects at runtime, 527
runtime errors, 366
runtime_error class, 366
rvalues, 142, 523

S
same_char predicate, 153
sanitize function, 146, 149

functors, 323, 324
scale function, 244
scientific format, numbers, 177
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scope
for loop, 91
global scope, 432
limiting scope, 301
limiting variable scope, 89
local definitions and, 89
names, 301
namespace scope, 432, 434
overloaded functions, 656
using declaration, 440
using directive, 440

scope operator (::), 432, 433
search algorithm, 331–338

forms of, 333
implementing, 376

search function, 335, 336
without comma operator, 377

search_n algorithm, 342
searching in maps, 103–104
sentry objects, 62

I/O streams, 486
separator variable, 91
sequence containers, 449, 460–466

comparing items for equality, 453
distinguishing feature of, 460
erasing items from, 454–455, 458
inserting items into, 454

removing elements from, 149
sequence functor, 342, 349
set container, 449, 450
setf function

implementing, 582
manipulators, 581, 582
setting flags, 55
two-argument form of, 584

setfill manipulator, 52
setprecision manipulator, streams, 177
sets, 466

associative containers, 449
setw manipulator, 51

alignment, 53
shared_array, 572
shared_ptr, 567, 570–571

defining pimpl_ member, 574
shift operators, 584, 585

bitset class template, 594
shift sequences, 476
shifting bits, 584–585

safe shifting with unsigned types, 585–592
short-circuit operators, 375
short int type, 165, 167

static_cast expression, 169
short integers, 165
showpoint manipulator, 581

showpos manipulator, 581
shuffling

random_shuffle algorithm, 341
signed char type, 167
signed types

mixing signed and unsigned values, 588, 
589

signed and unsigned types, 586
single quote (') character

character escape sequences, 113
printing single quote, 19

size function
advantages of using vectors, 560
maps, 102
mixing signed and unsigned values, 589, 

591
strings, 102
vectors, 61

sizeof operator, 106
size_t typedef, 106, 435
size_type member typedef, 106

loops, 65
member types, containers, 452
mixing signed and unsigned values, 589
strings, 303, 533
type conversions, 595
vectors, 65

skipws flag, bitfields, 593
skipws manipulator

character I/O, 111
I/O stream formatting flags, 581

slashes (//)
comments, 14

slices
references and, 281

smart arrays, 571–572
smart pointers, 567

auto_ptr class template, 567–569
Boost project, 570
copyable smart pointers, 569–571
C++ replacement for auto_ptr, 567
iterators, 580
managing artifacts, 571
shared_ptr, 570–571

sort algorithm, 62
generic algorithms, 63
iterators, 155, 347
operator used by, 152
overloading, 157
rearrangement algorithms, 341
sorting data in descending order, 150

source files
declarations and definitions, 307–309
documentation, 313–316
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#include directives, 309–312
inline functions, 317
making executable programs, 513
multiple source files, 305–307
one-definition rule (ODR), 317–319
projects, 306

special characters
turning into normal characters, 28

specialization
see also template specialization
partial specialization, 424–425

specialized iterators, 354–355
Spirit parser generator

writing calculator, 679
square brackets ([])

C-style arrays, 557
difference between at function and, 357
subscript operator, 358
using instead of braces ({}), 40
using invalid index, 358
vectors, 61, 557

<sstream> header, 496
stack

program stack, 362–366
standard containers

implementing, 530–532
swap functions, 542

standard conversions, 661
standard exceptions, 366–367
standard ICS, 661
standard library, C++, 15, 429

template specialization, 422
start iterator

reversing order of vector, 74
state

functors, 323
state bits

I/O exceptions, 367
statements, 18–19, 85

compound statements, 86
conditions, 18
ending, 18
expression statement, 85
grouping, 16
if statement, 18
limiting variable scope, 89
null statement, 88
simplified parse tree for, 87
statement errors, 88
syntax, 85
while loop, 18

static const data member, 302

static data members, 301–304
declaring and defining, 302, 303
string conversions, 607

static keyword, 299
declaring static member function, 607
declaring variables outside functions, 300
static data members, 301–304
uses in C++, 610

static variables, 299–301
static_cast expression

rational type, 209
type conversions, 587

static_cast operator, 167, 169
std namespace, 435

avoiding confusion by using std::, 53
back_inserter function, 67
copy algorithm, 64
formatting output, 52
istream_iterator class template, 67
left manipulator, 53
max algorithm, 63
min algorithm, 63
names in standard library, 429
ostream_iterator class template, 67
reverse algorithm, 74, 76
right manipulator, 53
setfill manipulator, 52
setw manipulator, 51
sort algorithm, 62
template specialization, 420

std:: prefix, 15
see also namespaces
avoiding confusion by using, 53
conflicting names, 433
standard library, 429

<stdexcept> header, 366
sticky properties

manipulators, 52, 55
Storage policy, 639

array_storage class template, 641, 642
deque_storage class template, 640
newstring class template, 637
vector_storage class template, 639

storage policy templates, 639
str function, 496
streams

ifstream object, 96
ofstream object, 96
precision function, 177
setprecision manipulator, 177
string streams, 496–503

strict weak ordering, 453
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string class, 533
string class template, 504
string conversions

language class, 605
string streams

text I/O, 496–503
<string> header, 29
string_pool class

rewriting to use hash<>, 623
strings, 27–31

backslash (\) character, 27
comparing, 83
copying value types, 286
C-style strings, 561–562
defining empty string variable, 29
defining vector of, 61
delimiting strings in input streams, 35
different styles of string output, 27
from_string function template, 503
HashableString class, 621
marker for end of, 561
policy-based programming, 636, 643
printing information stored in variables, 

29
reading, 34, 36–38
sanitizing by transforming, 149
size function, 102
size_type member type, 303, 533
to_string function template, 504
wide strings, 472–474
wstring type, 472

strlen function, 562, 564
struct keyword

class definitions, 250, 251
defining classes, 266
public inheritance, 272
rational type definition, 196
structure of classes, 227

subobjects, 297
subroutines

functions and, 127
subscript operator

bitset class template, 594
using invalid index, 358

Substitution Principle, OOP, 262
substr function, 500, 533
subtraction operator (-), 24
swap functions, containers, 542
synonyms

see also typedefs
type synonyms, 105

T
tabs

aligning columns, 28
backslash (\) character, 27
character escape sequences, 113

tags, Doxygen, 182–186
targets

adding per-target variables to parse_
graph(), 539

dependencies and, 535
making executable programs, 513, 514
per-target variables, 535

Technical Report 1 (TR1), 450–451
template arguments, 399–401

concepts, 629
explicit specialization, 423
function templates, 394
interpretation of >> in, 409
member function templates, 402
mixing types, 414
pair class template, 423
partial specialization, 424
using qualified names with, 652

template definitions
export keyword, 401

template instance, 415
template keyword

class templates, 406
function templates, 394

template metaprogramming
is_same class template, 678
partial specialization, 671–678

template parameters, 398–399
declaring template parameter type, 398
explicit specialization, 423
function templates, 394
invoking default constructor of, 412
partial specialization, 424
restrictions on <T>, 396

template recursion, 671
template specialization, 415–422

custom comparators, 419–420
erasing container contents, 569
explicit specialization, 415, 416, 417
full specialization, 424
function templates, 420–421
implicit specialization, 415
metaprogramming, 669–671
partial specialization, 424–425
std namespace, 420
traits, 421–422

templates
see also class templates
auto_ptr template, 552
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compile-time programming, 669
declarations and definitions, 401
defining and initiating contexts, 645
error messages when writing, 652
function templates, 394–397

avoiding qualified names with, 645–647
using unqualified names in, 647

instantiation, 415
interfaces vs. templates, 622, 624
member function templates, 402, 403
value template parameters, 425

terminate function
exception handling, 362

ternary operator (?:), 373
test function

comparing rational numbers, 206
testing first program, 8
text conversion, 503–507
text I/O, 495–507

file modes, 495–496
string streams, 496–503
text conversion, 503–507

this keyword
accessing data members, 652
assignment operators, 219
const member functions, 243
member functions, 229, 432

throwing exceptions, 361
at function, 358
constructors throwing exceptions, 552
count_down function, 364
program stack, 362
rethrowing exceptions, 361
throw expression type, 361

throw keyword
exception handling, 358, 361
in function declaration, 422

time_t type, 518
to_lower function

overloading, 160, 162
to_string function, 605
to_string function template, 504, 505, 506
to_upper function

overloading, 160, 162
tokens

counting occurrences of, 446
reading and writing, 444

tolower function, 123
tools, 3–4

reading documentation, 4–5
reasons for compiler errors, 7
testing operation of tools, 8, 11

topological sorts, 514

topological_sort function, 515, 516
of directed acyclic graph (DAG), 515

toupper function, 123
TR1 (Technical Report 1), 450–451
traits, 630

char_traits class template, 635–636
concepts affecting, 629
iterator traits, 634
iterator_traits class template, 630, 632
template specialization, 421–422

traits template
advance algorithm, 630
is_integral class template, 678
template specialization, 421

traits types, 634
transform algorithm, 145, 146

functors, 323, 342
transforming data, 145–150

sanitizing string by transforming, 149
trees

implementing red-black trees, 530
trunc mode, files, 495
try-catch statement

catching exceptions, 358, 370
program stack, 362
transfer of control during exception han-

dling, 359
tutorials

getting started with tools, 4
two-phase lookup, 650
type casting

integers, 167–169
static_cast operator, 167, 169

type conversion operator, 603
type conversions, 169, 587–592

automatic, function templates, 400, 410
implicit conversion sequence (ICS), 662
mixing signed and unsigned values, 588, 

589
overloading, 169
size_type typedef, 595

type polymorphism, 275–278
type promotion, 169
type synonyms, 105

see also typedefs
typedef keyword, 105
typedefs, 105–107

classes and, 283–286
creating alias for existing type, 284
declaring variables to store iterators, 350
iterator_category typedef, 632
size_t, 106
size_type, 106
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standard library typedefs, 106, 592
typedef declarations, 105–106

typename keyword
declaring template parameter type, 398
qualifying dependent names, 651
testing erase_less function template, 460

types
artifact type, 518
char type, 109–111
complex type, 157
custom types, 195–202

adding member function to, 197
defining new type, 196
double type, 173, 174
enumerated type, 599
float type, 173
ifstream type, 96
long double type, 173, 174
long int type, 164
long long int type, 164
map types, 449
member types, 65–66
mixing types, 208

templates, 413–414
ostringstream type, 215
parameterizing types, 405–406
rational type, 195
set types, 449
short int type, 165
signed char type, 167
signed types, 586
time_t type, 518
unsigned types, 585, 586
value types, 286
wchar_t type, 471
wint_t type, 472
wstring type, 472

typos (typographical errors)
bogus characters, 40
misspellings, 40
reasons for compiler errors, 7
symbol (colon) errors, 42
unknown name, 42
unknown operators, 41
writing first program, 7

U
unary operators, 207
unbounded loops, 45
underscores

naming conventions, 230
unexpected function

template specialization, 422

unget function, 214
string streams, 499

uninitialized variables, 30
unique algorithm, 343
unique_copy algorithm, 343
UNIX, 7
unnamed namespaces, 442–443
unordered associative containers, 453, 454
unordered containers, 449, 450, 451, 466
unqualified names

name lookup, 443
problems with, 647–654
qualifying dependent names, 651
using in function templates, 647

unsetf function
implementing, 583
manipulators, 581, 582

unsigned integers
arithmetic overflow, 592

unsigned literals, 587
unsigned types

mixing signed and unsigned values, 588, 
589

safe shifting with, 585–592
signed and unsigned types, 586
using only when necessary, 592

unwinding program stack, 362
upper_bound algorithm, 336, 337
uppercase

toupper function, 123
use_facet function template, 484
user-defined conversions, 661
user-defined ICS, 661
using declaration, 438–441

in a class, 441–442
overloaded functions, 656

using directive, 436–438, 440

V
value

passing objects to functions by value, 
137–139

value template parameters, 425
value types, 286

assigning, 287
comparing, 287–290
copying, 286

value_type typedef
fixed-point numbers project, 385
iterator traits, 634
member types, containers, 451
parameterizing rational class, 408
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variable declarations and definitions, 
297–299

parsing variable definitions, 534
variable references, artifacts, 532
variables

automatic variables, 299
declaring variables outside functions, 300
defining empty string variable, 29
dependencies, 532–540
expanding, 533
extern variables, 316–317
global variables, 301
initialized variables, 31
initializing, 34
limiting scope, 89
local definitions, 89
lvalue, 142
per-target variables, 535
printing information stored in, 29
static variables, 299–301
targets and dependencies, 535
uninitialized variables, 30
uninitialized variables as input, 34
unknown name errors, 42
variable definitions, 17–18

variables.hpp file, 537
vector class template, 465–466
vector containers, 450
<vector> header, 61
vector_storage class template, 639
vectors, 60–62

accessing an element of, 357
adding, 139
at function, 61
back function, 61
back_inserter function, 67
begin function, 62
binary search algorithms, 336
class definition, 238
comparing, 82
constructing from two read iterators, 237
constructors, 237
conversions to bool, 80
decrement operator (--), 72–76
default element type, 61
defining vector of strings, 61
deleting element from, 91
description, 465
distinguishing feature of sequence con-

tainers, 460
doubling input values in, 68

element type, 60, 61
empty function, 63
empty vector, 62
end function, 62
erasing elements from, 344
front function, 61
increment operator (++), 71–72
initializing vectors, 73
insert function, 676–678
iterators, 62–63, 347, 349
iterators and references, 458
key advantage of C-style arrays over, 558
nested vectors, 61
print_vector function, 142
printing vectors using overloaded func-

tions, 158
push_back function, 61, 67
referencing invalid index value, 61
resize function, 159
reversing order of vector, 74
size function, 61
size_type member type, 65
sizing, 61
square brackets ([]), 61, 557
storing values in, 61
using vectors for arrays, 60
vector of vectors, 61, 409

vertical tab
character escape sequences, 113

viable functions
resolving overloads, 660–665

virtual base classes, 618–620
virtual destructors, 282
virtual functions, 278–280

function declaration, 293
pure virtual functions, 281–282

virtual keyword
derived classes, 278, 280
polymorphic functions, 275, 278
sharing base classes, 618

visible base class, 616
making virtual, 618

Visual C++, 5
Visual C++ Express, 3
Visual C++ IDE, 5
visual class

visualizing exceptions, 364
Visual Studio, 3, 4
void type, 423

function return type, 127
throw expressions, 361
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W
wchar_t type, 471
what function, 360, 361
while loop, 18, 45

character I/O, 112
syntax, 85

whitespace characters
delimiting strings in input streams, 35
handling whitespace, 111

wide characters, 471–472
I/O, 475–476
using facets with, 493
wchar_t type, 471
wstring type, 472

wide strings, 472–474
testing collation order of, 493

width
field width, 50–51, 53
setw manipulator, 53

width function, 55
Windows, 3
Windows 1252 character set, 117
wint_t type, 472

wrappers
defining artifact pimpl wrapper class, 573
pimpl wrapper, 572
wrapper for dynamic memory, 540

write iterators, 64, 345
iterators qualifying as, 348
using decrement operators with, 72

writing files, 96–98
wstring type, 472

X
Xcode

tool recommendations for Mac OS X, 4

Z
zero

division by zero, 22
working with templates, 411

zero-initialized objects, 527
zero-valued character, 562
zero_denominator class, 369, 370
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