

Extending	SaltStack

Table	of	Contents

Extending	SaltStack

Credits

Foreword

About	the	Author

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Starting	with	the	Basics

Using	plugins

Loading	modules

Standard	modules

Virtual	modules

Lazy	loading	modules

Extending	the	loader	system

Loading	modules	with	Python

Detecting	grains

Using	other	detection	methods

Summary

2.	Writing	Execution	Modules

Writing	Salt	modules

Hidden	objects

The	__virtual__()	function

Formatting	your	code

Virtual	modules

Using	the	salt.utils	library

Cross-calling	with	the	__salt__	dictionary

Getting	configuration	parameters

Handling	imports

Reusing	code

Logging	messages

Using	the	__func_alias__	dictionary

Validating	data

Formatting	strings

The	final	module

Troubleshooting	execution	modules

Using	salt-call

<function>	is	not	available

Summary

3.	Extending	Salt	Configuration

Setting	grains	dynamically

Setting	some	basic	grains

(Not)	cross-calling	execution	modules

The	final	grains	module

Creating	external	pillars

Configuring	external	pillars

Adding	an	external	pillar

Another	external	pillar

Troubleshooting	grains	and	pillars

Dynamic	grains	not	showing	up

External	pillars	not	showing	up

Writing	SDB	modules

Getting	SDB	data

Setting	SDB	data

Using	a	descriptive	docstring

Using	more	complex	configuration

The	final	SDB	module

Using	SDB	modules

Troubleshooting	SDB	modules

SDB	data	not	showing	up

Summary

4.	Wrapping	States	Around	Execution	Modules

Forming	a	state	module

Determining	state

The	__virtual__()	function

Setting	up	defaults

Checking	for	truth

Checking	for	test	mode

Attempting	to	configure	the	resource

Notifying	about	False

Example:	checking	an	HTTP	service

Checking	credentials

The	first	stateful	function

Another	stateful	function

Troubleshooting	state	modules

Step	1:	test	for	truth

Step	2:	test	mode

Step	3:	applying	changes

Testing	opposites

Summary

5.	Rendering	Data

Understanding	file	formats

Serializing	data

Working	with	templates

Using	render	pipes

Building	a	serializing	renderer

The	basic	structure

Building	a	templating	renderer

Templating	with	Tenjin

Using	a	templating	renderer

Troubleshooting	renderers

Summary

6.	Handling	Return	Data

Returning	data	to	external	destinations

Returning	data	to	the	master

Listening	to	event	data

When	returners	listen	to	Minions

Your	first	returner

Using	job	caches

The	final	module

Troubleshooting	returners

Testing	with	salt-call

Testing	with	the	Master	running

Testing	with	runners

Writing	outputter	modules

Pickling	our	output

Troubleshooting	outputters

Summary

7.	Scripting	with	Runners

Using	Salt’s	local	client

Scripting	with	the	local	client

Using	different	targets

Combining	jobs	to	add	more	logic

The	final	module

Troubleshooting	runners

Working	with	the	salt-master	service

Timeout	issues

Summary

8.	Adding	External	File	Servers

How	Salt	uses	files

Mimicking	a	filesystem

Looking	at	each	function

Setting	up	our	module

envs()

file_list()	and	dir_list()

find_file()

serve_file()

update()

file_hash()

The	final	module

Troubleshooting	file	servers

Start	small

Test	on	a	Minion

Summary

9.	Connecting	to	the	Cloud

Understanding	cloud	components

Looking	at	the	puzzle	pieces

Connection	mechanism

Listing	resources

Creating	virtual	machines

Managing	other	resources

Libcloud	versus	SDK	versus	direct	REST	API

Writing	a	generic	cloud	module

Checking	for	required	configuration

Using	http.query()

A	common	REST	API

GET

POST

PATCH

DELETE

Setting	up	a	_query()	function

Getting	profile	details

Listing	images

Listing	sizes

Listing	locations

Listing	nodes

Querying	standard	node	data

Querying	full	node	data

Creating	a	VM

Destroying	VMs

Using	actions	and	functions

Using	actions

Using	functions

The	final	cloud	module

Troubleshooting	cloud	modules

Write	avail_sizes()	or	avail_images()	first

Use	shortcuts

Summary

10.	Monitoring	with	Beacons

Watching	for	data

Keeping	an	eye	on	things

Validating	configuration

The	beacon()	function

Watching	for	beacons

The	final	beacon	module

Troubleshooting	beacons

Summary

11.	Extending	the	Master

Using	external	authentication

Authenticating	credentials

Troubleshooting	external	authentication

Setting	auth	parameters

Testing	with	the	salt	command

Testing	with	Salt	API

Managing	the	Master	with	the	wheel	modules

Wrapping	a	wheel	around	runners

The	final	wheel	module

Troubleshooting	wheel	modules

Summary

A.	Connecting	Different	Modules

Separating	Master	and	Minion	functionality

Working	with	dunders

Using	the	event	bus

Firing	events

B.	Contributing	Code	Upstream

How	the	community	works

Asking	questions	and	reporting	issues

Using	the	mailing	list

Using	IRC

Using	the	issue	tracker

Using	GitHub	markdown

Understanding	the	Salt	Style	Guide

Using	Pylint

Creating	pull	requests	on	GitHub

Using	other	branches

Understanding	test	errors	in	pull	requests

Index

Extending	SaltStack

Extending	SaltStack
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2016

Production	reference:	1160316

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-861-8

www.packtpub.com

http://www.packtpub.com

Credits
Author

Joseph	Hall

Reviewers

C.	R.	Oldham

Mike	Place

Commissioning	Editor

Kunal	Parikh

Acquisition	Editor

Reshma	Raman

Content	Development	Editor

Merwyn	D’souza

Technical	Editor

Mohit	Hassija

Copy	Editors

Dipti	Mankame

Jonathan	Todd

Project	Coordinator

Nikhil	Nair

Proofreader

Safis	Editing

Indexer

Priya	Sane

Graphics

Kirk	D’Penha

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

Foreword
Regardless	of	your	current	experience	with	Salt,	you	will	find	this	book	a	necessary
addition	to	unlock	the	full	potential	and	capabilities	of	Salt	to	manage	your	infrastructure.
Salt	has	a	very	flexible	and	modular	architecture,	and	you	will	no	doubt	get	very	far	down
the	path	of	fully	automating	your	environment	with	the	out-of-the-box	Salt	setup.
However,	we	all	have	those	custom	unique	quirks	to	our	environments,	or	legacy	systems,
which	require	special	treatment.	Extending	SaltStack	will	arm	you	with	all	of	the
information	you	need	to	get	the	most	out	of	Salt	to	manage	those	hard-to-reach	places	of
your	environment	to	obtain	full	automation.

As	the	author	of	one	of	Salt’s	cloud	modules,	I	can	only	say	that	I	am	envious	of	your
position!	I	wish	that	this	book	had	been	available	to	provide	the	basics	of	module
development	when	I	was	getting	started.	You’ll	find	this	book	does	a	great	job	of	covering
all	the	basics	of	extending	Salt,	whereas	also	providing	the	detailed	depth	to	really
understand	how	your	modules	plug	in	with	the	rest	of	Salt.

Joseph	Hall	was	the	first	engineer	working	at	SaltStack	apart	from	the	Founder,	Thomas
Hatch.	He	has	worked	on	all	components	of	Salt	and	built	much	of	the	foundation	that
makes	the	tool	so	easy	to	extend.	I	have	positive	feelings	that	you’ll	find	this	book
concise,	easy	to	follow,	and	an	outstanding	resource	to	learn	how	to	take	full	advantage	of
Salt.	Go	forth	and	automate!

Eric	Johnson

Author	of	SaltStack’s	Google	Compute	Engine	cloud	module

About	the	Author
Joseph	Hall	has	been	working	with	SaltStack	for	a	very	long	time.	His	first	commit	was
on	March	14,	2011,	making	him	the	second	contributor	to	the	Salt	codebase.	At	the	time
his	Python	skills	weren’t	very	good,	but	writing	Salt	modules	made	them	better.	He	has
written	a	number	of	Salt	modules	and	is	planning	to	write	many	more.	He	has	also	written
Mastering	SaltStack,	Packt	Publishing.

I	would	like	to	thank	my	beautiful	and	wonderful	wife	Nat	for	putting	up	with	me	for	two
books	and	helping	me	keep	my	sanity.	I	would	like	to	thank	Merwyn	D’Souza,	Reshma
Raman,	and	everyone	else	that	I’ve	worked	with	at	Packt	for	just	being	so	awesome.	I
would	also	like	to	thank	Colton	Meyers	for	introducing	me	to	Packt,	Mike	Place	and	C.	R.
Oldham	for	providing	technical	review	for	this	book,	and	Tom	Hatch	for	creating	this
amazing	piece	of	software.

About	the	Reviewer
C.	R.	Oldham	is	a	platform	engineer	and	team	lead	for	the	integrations	team	at	SaltStack.
A	veteran	of	the	technology	industry,	he	has	had	his	hands	in	almost	every	aspect	of
computing	in	his	20+	years’	career,	including	software	development,	engineering
management,	systems	administration,	and	open	source.	He	resides	in	Utah	with	his	wife,
three	kids,	two	cats,	a	veiled	chameleon,	and	an	albino	corn	snake.	You	can	find	his
occasional	writings	at	http://ncbt.org.

http://ncbt.org

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

	

This	book	is	dedicated	to	Nat.

“You	flicker

And	you’re	beautiful

You	glow	inside	my	head

You	hold	me	hypnotized

I’m	mesmerized”

	

	 —The	Cure,	The	Caterpillar

Preface
You	hold	in	your	hands	(or	in	your	e-reader)	the	first	book	dedicated	to	writing	code	to	be
used	with	the	SaltStack	framework	of	tools.

What	this	book	covers
Chapter	1,	Starting	with	the	Basics,	starts	with	a	discussion	of	the	two	core	principles	that
this	book	focuses	on:	how	Salt	uses	Python	and	how	the	Loader	system	works.	These	form
the	foundation	of	extending	Salt.

Chapter	2,	Writing	Execution	Modules,	explains	that	the	heavy	lifting	in	most	of	Salt	is
performed	by	execution	modules,	which	are	often	wrapped	by	other	modules.	A	solid
understanding	of	execution	modules	will	also	be	key	to	understanding	how	other	module
types	work.

Chapter	3,	Extending	Salt	Configuration,	explains	that	the	ability	to	dynamically	manage
configuration	can	make	some	modules	far	more	useful.	Some	modules	won’t	even	work
without	dynamic	configuration.	Here,	we	explore	different	ways	to	provide	that.

Chapter	4,	Wrapping	States	Around	Modules,	supports	the	fact	that	execution	modules
make	things	work,	but	state	modules	make	that	work	persist.	In	this	chapter,	you	will	see
how	to	manage	execution	modules	using	state	modules.

Chapter	5,	Rendering	Data,	shows	that	the	renderer	system	allows	you	to	add	your	own
templating	systems,	increasing	the	power	of	states.	Jinja	and	YAML	are	all	well	and	good,
but	sometimes,	you	need	something	more.

Chapter	6,	Handling	Return	Data,	answers	the	query	what	happens	to	the	data	when	a	job
finishes.	There	are	many	places	it	can	go,	and	you	can	write	modules	to	send	it	there.

Chapter	7,	Scripting	with	Runners,	shows	that	SaltStack	knows	that	system	administrators
have	used	scripting	languages	for	years,	and	they	have	provided	a	scripting	environment
that	combines	Python	with	the	raw	power	of	Salt.

Chapter	8,	Adding	External	File	Servers,	advises	not	to	just	serve	files	from	Salt	Master.
You	can	serve	files	from	wherever	you	want	with	your	own	external	file	server	module.

Chapter	9,	Connecting	to	the	Cloud,	helps	you	find	out	how	you	can	update	existing	cloud
modules	or	add	your	own.	Everyone	uses	the	cloud	now,	and	Salt	Cloud	connects	it	to
Salt.

Chapter	10,	Monitoring	with	Beacons,	helps	us	to	solve	the	problem	that	Salt	isn’t
normally	associated	with	monitoring,	which	is	a	shame.	Beacons	are	one	way	to	integrate
Salt	into	your	monitoring	framework.

Chapter	11,	Extending	the	Master,	explains	that	Salt	provides	a	way	for	you	to	serve	the
administrative	needs	of	the	Master	programmatically.	Bonus	points	for	tying	in	your	own
authentication	system	to	Salt.

Appendix	A,	Connecting	Different	Modules,	gives	solutions	to	how	to	fit	the	different
components	even	if	it	is	known	that	Salt	modules	are	designed	to	play	together.	This
appendix	lays	out	how	the	different	parts	connect	together.

Appendix	B,	Contributing	Code	Upstream,	gives	you	tips	to	know	where	the	project	is
screwed	up	or	what	features	are	missing.	It	doesn’t	have	to	be	that	way	with	Salt	but	going

back	to	the	community.

What	you	need	for	this	book
This	book	assumes	a	reasonable	amount	of	knowledge	of	both	Salt	and	the	Python
programming	language.	While	you	may	be	able	to	slam	out	some	code	without	much
experience	(indeed,	that	is	how	the	author	got	started	with	both),	you	will	find	it	much
easier	with	these	tools	already	under	your	belt.

While	the	examples	in	this	book	are	tested	and	functional,	they	may	not	be	applicable	to
your	needs.	They	are	designed	to	be	simple	and	easily	understood	by	one	who	is
comfortable	with	both	Python	and	Salt,	while	still	showcasing	a	reasonably	amount	of
functionality.

Salt	currently	has	a	baseline	of	Python	2.6,	which	means	that	many	older	Linux
distributions	are	still	supported.	As	of	the	first	edition	of	this	book,	Salt	does	not	currently
run	on	the	Python	3.x	branch.	Minion-side	examples	are	expected	to	work	in	Windows	as
well,	except	when	the	dependencies	that	they	rely	on	aren’t	available.

Because	both	the	Master	and	the	Minion	can	be	run	on	the	same	machine,	you	only	need
one	computer	to	perform	the	examples	in	this	book.	Many	of	the	examples	do	refer	to
software	that	may	not	be	preinstalled	with	your	operating	system.	In	those	cases,	the
software	should	still	be	available	for	download.

Who	this	book	is	for
This	book	is	for	both	new	and	existing	Salt	developers	who	are	looking	to	build	and	write
new	Salt	modules.	Some	prior	Python	development	experience	is	expected.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“If	there
is	no	__virtual__()	function,	then	the	module	will	always	be	available	on	every	system.”

A	block	of	code	is	set	as	follows:

'''

This	module	should	be	saved	as	salt/modules/mysqltest.py

'''

__virtualname__	=	'mysqltest'

def	__virtual__():

				'''

				For	now,	just	return	the	__virtualname__

				'''

				return	__virtualname__

def	ping():

				'''

				Returns	True

				CLI	Example:

								salt	'*'	mysqltest.ping

				'''

				return	True

Any	command-line	input	or	output	is	written	as	follows:

#salt-call	mymodule.test

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“When	you	visit	your
fork	on	GitHub	again,	you	will	see	a	link	that	says	New	Pull	Request.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/ExtendingSaltStack_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/ExtendingSaltStack_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Starting	with	the	Basics
The	vast	majority	of	Salt	users	see	it	as	a	configuration	management	platform.	And	in
truth,	it	handles	that	very	well.	But	it	did	not	start	off	with	that	as	a	design	goal.	In	its	early
days,	Salt	was	a	communication	framework	that	was	designed	to	be	useful	even	to	those
who	did	not	write	code.	But	for	those	who	were	willing,	it	was	also	designed	to	be	heavily
extensible	to	those	users	who	had	some	Python	in	their	toolbelt.

Before	we	get	into	writing	modules,	it	will	help	to	have	a	basic	understanding	of	how	the
Salt	module	system	works.	In	this	chapter,	you’ll	learn	the	following:

How	the	loader	system	works
How	Salt	uses	Python

Using	plugins
As	Salt	was	originally	designed	as	a	backbone	that	other	software	could	use	to
communicate,	its	earliest	purpose	was	to	collect	information	from	a	large	cluster	of	both
physical	and	virtual	machines,	and	return	that	data	either	to	the	user	or	to	a	database.
Various	programs,	such	as	ps,	du,	and	netstat,	were	used	to	collect	that	information.
Because	of	that,	each	program	was	wrapped	with	a	plugin,	which	contained	various
functions	to	call	those	programs,	and	parse	the	return	data.

Those	plugins	were	originally	called	modules.	Later,	when	other	types	of	module	were
added	to	Salt,	the	original	modules	began	to	be	referred	to	as	execution	modules.	This	is
because	the	execution	modules	would	do	the	heavy	lifting,	and	other	types	of	module
would	generally	wrap	around	them	and	extend	their	functionality.

Loading	modules
Like	many	data	centers,	the	one	that	Salt	was	created	in	had	various	servers	that	used
different	software	packages	to	perform	their	work.	One	server	would	be	running	Nginx,
while	another	would	be	running	DNSMasq.	It	wouldn’t	make	sense	to	enable	the	nginx
module	on	the	DHCP	server,	or	a	dnsmasq	module	on	the	web	server.	A	number	of	popular
programs	solve	this	by	allowing	the	user	to	configure	which	plugins	will	be	loaded	before
starting	the	service.

Salt	had	a	different	way	of	handling	plugins.	In	a	large	infrastructure,	individual
configuration	of	servers	can	be	costly	in	terms	of	time.	And	as	configuration	management
was	added	to	Salt,	a	core	belief	grew	that	configuration	management	platforms	should
require	as	little	configuration	themselves	as	possible.	What	is	the	point	of	using	such	a
suite	to	save	time	if	so	much	time	is	required	to	get	it	going	in	the	first	place?

This	is	how	the	loader	system	came	to	be.	Salt	would	always	ship	with	a	full	set	of
modules,	and	Salt	would	automatically	detect	modules	that	would	be	available,	and
dynamically	load	them.

Execution	modules	are	a	type	of	plugin	that	performs	most	of	the	heavy	lifting	inside	of
Salt.	These	were	the	first	to	use	the	loader	system,	and	for	a	short	time	there	was	no	other
type	of	module.	As	the	functionality	of	Salt	increased,	it	quickly	became	evident	that	other
types	of	module	would	be	needed.	For	instance,	return	output	was	originally	just	printed	to
the	console.	Then	the	output	was	changed	to	be	easier	to	handle	from	shell	scripts.	Then
the	outputter	system	was	added,	so	that	output	could	be	displayed	in	JSON,	YAML,
Python’s	pprint,	and	any	other	format	that	might	be	useful.

Standard	modules
In	the	beginning,	there	were	some	types	of	module	that	would	always	be	loaded.	The	first
of	these	was	the	test	module,	which	required	nothing	more	than	Salt’s	own	dependencies;
in	particular,	it	would	only	require	Python.

Other	modules	were	also	designed	for	general	use,	requiring	no	more	than	Salt’s	own
dependencies.	The	file	module	would	perform	various	file-based	operations.	The
useradd	module	would	wrap	the	standard	Unix	useradd	program.	This	was	fine,	so	long
as	Salt	was	only	used	on	Unix-like	platforms.	When	users	started	running	Salt	on
Windows,	where	those	utilities	were	not	readily	available,	things	changed.	This	is	where
virtual	modules	really	started	to	shine.

Virtual	modules
Supporting	Salt	on	various	platforms,	such	as	both	Unix-like	and	Windows,	presents	the
same	problem	as	whether	or	not	to	make	the	nginx	module	available:	if	that	platform	is
installed	and	available,	make	the	module	available.	Otherwise,	don’t.	Salt	handles	the
availability	problem	by	implementing	virtual	modules.

The	idea	behind	a	virtual	module	is	that	it	will	contain	a	piece	of	code	that	will	detect
whether	or	not	its	dependencies	are	met,	and	if	so,	the	module	will	be	loaded	and	made
available	to	Salt	on	that	system.	We’ll	get	into	the	details	of	actually	doing	this	in	Chapter
2,	Writing	Execution	Modules.

Lazy	loading	modules
In	the	beginning,	if	a	module	was	detected	as	being	loadable,	then	it	would	be	loaded	as
the	Salt	service	was	started.	A	number	of	modules	may	be	loaded	for	a	particular	system,
which	the	administrator	never	intends	to	use.	It	may	be	nice	to	have	them,	but	in	some
cases	it’s	better	to	only	load	them	when	they’re	needed.

When	the	Salt	service	starts,	the	lazy	loader	will	detect	which	modules	may	be	used	on	a
particular	system,	but	it	won’t	immediately	load	them	into	memory.	Once	a	particular
module	is	called,	Salt	will	load	it	on	demand,	and	then	keep	it	in	memory.	On	a	system
that	typically	only	uses	a	small	handful	of	modules,	this	can	result	in	a	much	smaller
footprint	than	before.

Extending	the	loader	system
As	we	said	before,	the	loader	system	was	originally	designed	for	one	type	of	module:	what
we	now	call	execution	modules.	Before	long,	other	types	of	module	were	added,	and	that
number	continues	to	grow	even	today.

This	book	does	not	include	every	type	of	module,	but	it	does	cover	quite	a	few.	The
following	list	is	not	comprehensive,	but	it	will	tell	you	much	of	what	is	available	now,	and
possibly	give	you	an	idea	of	what	other	types	of	module	to	look	at	after	you	finish	this
book:

Execution	modules	do	much	of	the	heavy	lifting	inside	of	Salt.	When	a	program
needs	to	be	called,	an	execution	module	will	be	written	for	it.	When	other	modules
need	to	use	that	program,	they	will	call	out	to	that	module.
Grain	modules	are	used	to	report	information	about	Minions.	Virtual	modules	often
rely	heavily	on	these.	Configuration	can	also	be	defined	in	grains.
Runner	modules	were	designed	to	add	an	element	of	scripting	to	Salt.	Whereas
execution	modules	run	on	Minions,	a	runner	module	would	run	on	the	Master,	and
call	out	to	the	Minions.
Returner	modules	give	Minions	a	way	to	return	data	to	something	besides	the
Master,	such	as	a	database	configured	to	store	log	data.
State	modules	transform	Salt	from	a	remote	execution	framework	into	a
configuration	management	engine.
Renderer	modules	allow	Salt	States	to	be	defined	using	different	file	formats,	as
appropriate.
Pillar	modules	extend	grains,	by	providing	a	more	centralized	system	of	defining
configuration.
SDB	modules	provide	a	simple	database	lookup.	They	are	usually	referenced	from
configuration	areas	(including	grains	and	pillars)	to	keep	sensitive	data	from
appearing	in	plaintext.
Outputter	modules	affect	how	command-line	data	output	is	shown	to	the	user.
External	file	server	modules	allow	the	files	that	Salt	serves	to	be	stored	somewhere
besides	locally	on	the	Master.
Cloud	modules	are	used	to	manage	virtual	machines	across	different	compute	cloud
providers.
Beacons	allow	various	pieces	of	software,	from	other	Salt	components	to	third-party
applications,	to	report	data	to	Salt.
External	authentication	modules	allow	users	to	access	the	Master	without	having	to
have	a	local	account	on	it.
Wheel	modules	provide	an	API	for	managing	Master-side	configuration	files.
Proxy	minion	modules	allow	devices	that	cannot	run	the	Salt	platform	itself	to	be
able	to	be	treated	as	if	they	were	still	full-fledged	Minions.
Engines	allow	Salt	to	provide	internal	information	and	services	to	long-running
external	processes.	In	fact,	it	may	be	best	to	think	of	engines	as	programs	in	their
own	right,	with	a	special	connection	to	Salt.

The	Master	Tops	system	allows	States	to	be	targeted	without	having	to	use	the
top.sls	file.
Roster	modules	allow	Salt	SSH	to	target	Minions	without	having	to	use	the
/etc/salt/roster	file.
Queue	modules	provide	a	means	of	organizing	function	calls.
The	pkgdb	and	pkgfile	modules	allow	the	Salt	Package	Manager	to	store	its	local
database	and	install	Salt	formulas	into	a	location	outside	of	the	local	hard	drive.

These	modules	were	generally	created	as	necessity	dictated.	All	of	them	are	written	in
Python.	And	while	some	can	be	pretty	extensive,	most	are	pretty	simple	to	create.	In	fact,
a	number	of	modules	that	now	ship	with	Salt	were	actually	provided	by	users	who	had	no
previous	Python	experience.

Loading	modules	with	Python
Python	is	well	suited	to	building	a	loader	system.	Despite	being	classified	as	a	very	high-
level	language	(and	not	a	mid-level	language	like	C),	Python	has	a	lot	of	control	over	how
it	manages	its	own	internals.	The	existence	of	robust	module	introspection	built	into
Python	was	very	useful	for	Salt,	as	it	made	the	arbitrary	loading	of	virtual	modules	at
runtime	a	very	smooth	operation.

Each	Salt	module	can	support	a	function	called	__virtual__().	This	is	the	function	that
detects	whether	or	not	a	module	will	be	made	available	to	Salt	on	that	system.

When	the	salt-minion	service	loads,	it	will	go	through	each	module,	looking	for	a
__virtual__()	function.	If	none	is	found,	then	the	module	is	assumed	to	have	all	of	its
requirements	already	met,	and	it	can	be	made	available.	If	that	function	is	found,	then	it
will	be	used	to	detect	whether	the	requirements	for	that	module	are	met.

If	a	module	type	uses	the	lazy	loader,	then	modules	that	can	be	loaded	will	be	set	aside	to
be	loaded	when	needed.	Modules	that	do	not	meet	the	requirements	will	be	discarded.

Detecting	grains
On	a	Minion,	the	most	important	things	to	load	are	probably	the	grains.	Although	grain
modules	are	important	(and	are	discussed	in	Chapter	3,	Extending	Salt	Configuration),
there	are	in	fact	a	number	of	core	grains	that	are	loaded	by	Salt	itself.

A	number	of	these	grains	describe	the	hardware	on	the	system.	Others	describe	the
operating	system	that	Salt	is	running	on.	Grains	such	as	os	and	os	_family	are	set,	and
used	later	to	determine	which	of	the	core	modules	will	be	loaded.

For	example,	if	the	os_family	grain	is	set	to	redhat,	then	the	execution	module	located	at
salt/modules/yumpkg.py	will	be	loaded	as	the	pkg	module.	If	the	os_family	grain	is	set
to	debian,	then	salt/modules/aptpkg.py	will	be	loaded	as	the	pkg	module.

Using	other	detection	methods
Grains	aren’t	the	only	mechanism	used	for	determining	whether	a	module	should	be
loaded.	Salt	also	ships	with	a	number	of	utilities	that	can	be	used.	The	salt.utils	library
contains	a	number	of	functions	that	are	often	faster	than	grains,	or	have	more	functionality
than	a	simple	name=value	(also	known	as	a	key-value	pair)	configuration	can	provide.

One	example	is	the	salt.utils.is_windows()	function	that,	as	the	name	implies,	reports
whether	Salt	is	being	run	inside	of	Windows.	If	Windows	is	detected,	then
salt/modules/win_file.py	will	be	loaded	as	the	file	module.	Otherwise,
salt/modules/file.py	will	be	loaded	as	the	file	module.

Another	very	common	example	is	the	salt.utils.which()	function,	which	reports
whether	a	necessary	shell	command	is	available.	For	instance,	this	is	used	by
salt/modules/nginx.py	to	detect	whether	the	nginx	command	is	available	to	Salt.	If	so,
then	the	nginx	module	will	be	made	available.

There	are	a	number	of	other	examples	that	we	could	get	into,	but	there	is	not	nearly
enough	room	in	this	book	for	all	of	them.	As	it	is,	the	most	common	ones	are	best
demonstrated	by	example.	Starting	with	Chapter	2,	Writing	Execution	Modules,	we	will
begin	writing	Salt	modules	that	make	use	of	the	examples	that	we’ve	already	gone	over,
plus	a	wealth	of	others.

Summary
Salt	is	made	possible	by	the	existence	of	the	loader	system,	which	detects	which	modules
are	able	to	load,	and	then	only	what	is	available.	Types	of	module	that	make	use	of	the
lazy	loader	will	only	be	loaded	on	demand.

Python	is	an	integral	part	of	Salt,	allowing	modules	to	be	easily	written	and	maintained.
Salt	ships	with	a	library	of	functions	that	help	support	the	loader	system,	and	the	modules
that	are	loaded	with	it.	These	files	live	in	various	directories	under	the	salt/	directory	in
Salt’s	code	base.	For	example,	execution	modules	live	in	salt/modules/.

This	chapter	barely	brushed	the	surface	of	what	is	possible	with	Salt,	but	it	got	some
necessary	concepts	out	of	the	way.	From	here	on	in,	the	focus	will	be	all	about	writing	and
maintaining	modules	in	Python.

Chapter	2.	Writing	Execution	Modules
Execution	modules	form	the	backbone	of	the	workload	that	Salt	performs.	They’re	also
easy	to	write,	and	the	techniques	used	in	writing	them	form	the	foundation	for	writing
every	other	type	of	Salt	module.	With	a	solid	understanding	of	how	execution	modules
work,	the	functionality	of	other	module	types	will	also	be	opened	up.

In	this	chapter,	we’ll	talk	about:

The	basics	of	writing	Salt	modules
Making	use	of	Salt	built-ins
Using	good	practices
Troubleshooting	execution	modules

Writing	Salt	modules
There	are	a	few	items	that	are	consistent	across	all	Salt	modules.	These	pieces	generally
work	the	same	way	across	all	module	types,	though	there	are	a	handful	of	places	where
you	can	expect	at	least	a	little	deviation.	We’ll	cover	those	in	other	chapters	as	we	get	to
them.	For	now,	let’s	talk	about	the	things	that	are	generally	the	same.

Hidden	objects
It	has	long	been	common	for	programmers	to	preface	functions,	variables,	and	the	like
with	an	underscore,	if	they	are	only	intended	to	be	used	internally	in	the	same	module.	In
many	languages,	objects	that	are	used	like	this	are	said	to	be	private	objects.

Some	environments	enforce	private	behavior	by	not	allowing	external	code	to	reference
those	things	directly.	Other	environments	allow	it,	but	its	use	is	discouraged.	Salt	modules
fall	into	the	list	of	environments	that	enforce	private	function	behavior;	if	a	function	inside
a	Salt	module	begins	with	an	underscore,	it	will	not	even	be	exposed	to	other	modules	that
try	to	call	it.

In	Python,	there	is	a	special	type	of	object	whose	name	begins	and	ends	with	two
underscores.	These	“magic	methods”	are	nicknamed	dunder	(meaning	double
underscore).	How	Python	normally	treats	them	is	beyond	the	scope	of	this	book,	but	it	is
important	to	know	that	Salt	adds	some	of	its	own.	Some	are	built-ins,	which	are	generally
available	in	(almost)	all	module	types,	whereas	others	are	user-defined	objects	that	Salt
will	apply	special	treatment	to.

The	__virtual__()	function
This	is	a	function	that	can	appear	in	any	module.	If	there	is	no	__virtual__()	function,
then	the	module	will	always	be	available	on	every	system.	If	that	module	is	present,	then
its	job	is	to	determine	whether	the	requirements	for	that	module	are	met.	These
requirements	could	be	any	number	of	things	from	configuration	settings	to	package
dependencies.

If	the	requirements	are	not	met,	then	the	__virtual__()	function	will	return	False.	In
more	recent	versions	of	Salt,	it	is	possible	to	instead	return	a	tuple	containing	both	the
False	value	and	a	reason	why	the	module	cannot	be	loaded.	If	they	are	met,	then	there	are
two	types	of	value	that	it	can	return.	This	is	where	things	get	just	a	tad	tricky.

Let’s	say	that	the	module	that	we	are	working	on	is	located	at
salt/modules/mymodule.py.	If	the	requirements	are	met,	and	the	module	is	to	be	referred
to	as	mymodule,	then	the	__virtual__()	function	will	return	True.	Assuming	there	is	also
a	function	in	that	module	called	test(),	it	would	be	called	using	the	following	command:

#salt-call	mymodule.test

If	the	requirements	are	met,	but	this	module	is	to	be	referred	to	as	testmodule,	then	the
__virtual__()	function	will	return	the	string	testmodule	instead.	However,	instead	of
returning	that	string	directly,	you	should	define	it	before	all	of	the	functions	using	the
__virtualname__	variable.

Let’s	go	ahead	and	start	writing	a	module,	using	the	__virtual__()	function	and
__virtualname__	variable.	We	won’t	check	for	any	requirements	yet:

'''

This	module	should	be	saved	as	salt/modules/mysqltest.py

'''

__virtualname__	=	'mysqltest'

def	__virtual__():

				'''

				For	now,	just	return	the	__virtualname__

				'''

				return	__virtualname__

def	ping():

				'''

				Returns	True

				CLI	Example:

								salt	'*'	mysqltest.ping

				'''

				return	True

Formatting	your	code
Before	we	get	any	further,	I	want	to	point	out	some	important	things	that	you	should	be
aware	of	now,	so	that	you	don’t	get	into	any	bad	habits	that	need	to	be	fixed	later.

The	module	starts	off	with	a	special	kind	of	comment	called	a	docstring.	In	Salt,	this
begins	and	ends	with	three	single	quotes,	all	on	one	line,	by	themselves.	Do	not	use	double
quotes.	Do	not	put	text	on	the	same	line	as	the	quotes.	All	public	functions	must	also
include	a	docstring,	with	the	same	rules.	These	docstrings	are	used	internally	by	Salt,	to
provide	help	text	to	functions	such	as	sys.doc.

Note
Keep	in	mind	that	these	guidelines	are	specific	to	Salt;	Python	itself	follows	a	different
style.	Check	Understanding	the	Salt	style	guide	in	Appendix	B	for	more	information.

Take	note	that	the	docstring	for	the	ping()	function	includes	a	CLI	Example.	You	should
always	include	just	enough	information	to	make	it	clear	what	the	function	is	meant	to	do,
and	at	least	one	(or	more,	as	warranted)	command-line	examples	that	demonstrate	how	to
use	that	function.	Private	functions	do	not	include	a	CLI	Example.

You	should	always	include	two	blank	lines	between	any	imports	and	variable	declarations
at	the	top	and	the	functions	below,	and	between	all	functions.	There	should	be	no
whitespace	at	the	end	of	the	file.

Virtual	modules
The	primary	motivation	behind	the	__virtual__()	function	is	not	just	to	rename	modules.
Using	this	function	allows	Salt	to	not	only	detect	certain	pieces	of	information	about	the
system	but	also	use	them	to	appropriately	load	specific	modules	to	make	certain	tasks
more	generic.

Chapter	1,	Starting	with	the	Basics,	mentioned	some	of	these	examples.
salt/modules/aptpkg.py	contains	a	number	of	tests	to	determine	whether	it	is	running	on
a	Debian-like	operating	system	that	uses	the	apt	suite	of	tools	to	perform	package
management.	There	are	similar	tests	in	salt/modules/yumpkg.py,
salt/modules/pacman.py,	salt/modules/solarispkg.py,	and	a	number	of	others.	If	all
of	the	tests	pass	for	any	of	those	modules,	then	it	will	be	loaded	as	the	pkg	module.

If	you	are	building	a	set	of	modules	like	this,	it	is	important	to	remember	that	they	should
all	perform	as	similarly	as	possible.	For	instance,	all	of	the	pkg	modules	contain	a	function
called	install().	Every	single	install()	function	accepts	the	same	arguments,	performs
the	same	task	(as	appropriate	for	that	platform),	and	then	returns	data	in	exactly	the	same
format.

There	may	be	situations	where	one	function	is	appropriate	for	one	platform,	but	not
another.	For	example,	salt/modules/aptpkg.py	contains	a	function	called	autoremove(),
which	calls	out	to	apt-get	autoremove.	There	is	no	such	functionality	in	yum,	so	that
function	does	not	exist	in	salt/modules/yumpkg.py.	If	there	were,	then	that	function
would	be	expected	to	behave	the	same	way	between	both	files.

Using	the	salt.utils	library
The	preceding	module	will	always	run,	because	it	doesn’t	check	for	requirements	on	the
system.	Let’s	go	ahead	and	add	some	checking	now.

There	is	an	extensive	set	of	tools	available	to	import	inside	the	salt/utils/	directory.	A
large	number	of	them	live	directly	under	the	salt.utils	namespace,	including	a	very
commonly	used	function	called	salt.utils.which().	When	given	the	name	of	a
command,	this	function	will	report	the	location	of	that	command,	if	it	exists	on	the	system.
If	it	does	not	exist,	then	it	will	return	False.

Let’s	go	ahead	and	rework	the	__virtual__()	function	to	look	for	a	command	called
mysql:

'''

This	module	should	be	saved	as	salt/modules/mysqltest.py

'''

import	salt.utils

__virtualname__	=	'mysqltest'

def	__virtual__():

				'''

				Check	for	MySQL

				'''

				if	not	salt.utils.which('mysql'):

								return	False

				return	__virtualname__

def	ping():

				'''

				Returns	True

				CLI	Example:

								salt	'*'	mysqltest.ping

				'''

				return	True

The	salt.utils	libraries	ship	with	Salt,	but	you	need	to	explicitly	import	them.	It	is
common	for	Python	coders	to	import	only	parts	of	functions.	You	may	find	it	tempting	to
use	the	following	import	line	instead:

from	salt.utils	import	which

And	then	use	the	following	line:

if	which('myprogram'):

Although	not	expressly	forbidden	in	Salt,	this	is	discouraged	except	when	necessary.
Although	it	may	require	more	typing,	especially	if	you	use	a	particular	function	several
times	in	a	particular	module,	doing	so	makes	it	easier	to	tell	at	a	glance	which	module	a
particular	function	came	from.

Cross-calling	with	the	__salt__	dictionary
There	are	times	when	it	is	helpful	to	be	able	to	call	out	to	another	function	in	another
module.	For	instance,	calling	external	shell	commands	is	a	pretty	important	part	of	Salt.
It’s	so	important	in	fact	that	it	was	standardized	in	the	cmd	module.	The	most	common
command	for	issuing	shell	commands	is	cmd.run.	The	following	Salt	command
demonstrates	using	cmd.run	on	a	Windows	Minion:

#salt	winminon	cmd.run	'dir	C:\'

If	you	had	a	need	for	your	execution	module	to	obtain	the	output	from	such	a	command,
you	would	use	the	following	Python:

__salt__['cmd.run']('dir	C:\')

The	__salt__	object	is	a	dictionary,	which	contains	references	to	all	of	the	available
functions	on	that	Minion.	If	a	module	exists,	but	its	__virtual__()	function	returns
False,	then	it	will	not	appear	in	this	list.	As	a	function	reference,	it	requires	parentheses	at
the	end,	with	any	arguments	inside.

Let’s	go	ahead	and	create	a	function	that	tells	us	whether	or	not	the	sshd	daemon	is
running	on	a	Linux	system,	and	listening	to	a	port:

def	check_mysqld():

				'''

				Check	to	see	if	sshd	is	running	and	listening

				CLI	Example:

								salt	'*'	testmodule.check_mysqld

				'''

				output	=	__salt__['cmd.run']('netstat	-tulpn	|	grep	mysqld',	

python_shell=True)

				if	'tcp'	not	in	output:

								return	False

				return	True

If	sshd	is	running	and	listening	on	a	port,	the	output	of	the	netstat	-tulpn	|	grep	sshd
command	should	look	like	this:

tcp								0						0	0.0.0.0:3306														0.0.0.0:*															

LISTEN						426/mysqld

tcp6							0						0	:::3306																			:::*																				

LISTEN						426/mysqld

If	mysqld	is	running,	and	listening	either	on	IPv4	or	IPv6	(or	both),	then	this	function	will
return	True.

This	function	is	far	from	perfect.	There	are	a	number	of	factors	that	may	cause	this
command	to	return	a	false	positive.	For	instance,	let’s	say	you	were	looking	for	sshd
instead	of	mysqld.	And	say	you	were	a	fan	of	American	football,	and	had	written	your
own	high-definition	football	video-streaming	service	that	you	called	passhd.	This	may	be
unlikely,	but	it’s	certainly	not	impossible.	And	it	brings	up	an	important	point:	when
dealing	with	data	received	either	from	users	or	from	computers,	trust	but	verify.	In	fact,

you	should	always	assume	that	somebody	is	going	to	try	to	do	something	bad,	and	you
should	watch	for	ways	to	keep	them	from	doing	so.

Getting	configuration	parameters
Whereas	some	software	can	be	accessed	without	any	special	configuration,	there	is	plenty
that	does	require	some	information	to	be	set	up.	There	are	four	places	that	an	execution
module	can	get	its	configuration	from:	the	Minion	configuration	file,	grain	data,	pillar
data,	and	the	master	configuration	file.

Note
This	is	one	of	those	places	where	Salt	built-ins	behave	differently.	Grain	and	pillar	data	are
available	to	execution	and	state	modules,	but	not	to	other	types	of	module.	This	is	because
grain	and	pillar	data	is	specific	to	the	Minion	running	the	module.	Runners,	for	instance,
cannot	access	this	data,	because	runners	are	used	on	the	Master;	not	directly	on	Minions.

The	first	place	we	can	look	for	configuration	is	from	the	__opts__	dictionary.	When
working	in	modules	that	execute	on	a	Minion,	this	dictionary	will	contain	a	copy	of	the
data	from	the	Minion	configuration	file.	It	may	also	contain	some	information	that	Salt
generates	on	its	own	during	runtime.	When	accessed	from	modules	that	execute	on	the
Master,	this	data	will	come	from	the	master	configuration	file.

It	is	also	possible	to	set	configuration	values	inside	grain	or	pillar	data.	This	information	is
accessed	using	the	__grains__	and	__pillar__	dictionaries,	respectively.	The	following
example	shows	different	configuration	values	being	pulled	from	each	of	these	locations:

username	=	__opts__['username']

hostname	=	__grains__['host']

password	=	__pillar__['password']

Since	those	values	may	not	actually	exist,	it	is	better	to	use	Python’s	dict.get()	method,
and	supply	a	default:

username	=	__opts__.get('username',	'salt')

hostname	=	__grains__.get('host',	'localhost')

password	=	__pillar__.get('password',	None)

The	last	place	we	can	store	configuration	data	is	inside	the	master	configuration	file.	All
of	the	Master’s	configuration	can	be	stored	inside	a	pillar	dictionary	called	master.	By
default,	this	is	not	made	available	to	Minions.	However,	it	can	be	turned	on	by	setting
pillar_opts	to	True	in	the	master	configuration	file.

Once	pillar_opts	is	turned	on,	you	can	use	commands	like	this	to	access	a	value	in	the
master	configuration:

master_interface	=	__pillar__['master']['interface']

master_sock_dir	=	__pillar__.get('master',	{}).get('sock_dir',	None)

Finally,	it	is	possible	to	ask	Salt	to	search	each	of	these	locations,	in	turn,	for	a	specific
variable.	This	can	be	very	valuable	when	you	don’t	care	which	component	carries	the
information	that	you	need,	so	long	as	you	can	get	it	from	somewhere.

In	order	to	search	each	of	these	areas,	cross-call	to	the	config.get()	function:

username	=	__salt__['config.get']('username')

This	will	search	for	the	configuration	parameter	in	the	following	order:

1.	 __opts__	(on	the	Minion).
2.	 __grains__.
3.	 __pillar__.
4.	 __opts__	(on	the	Master).

Keep	in	mind	that	when	using	config.get(),	the	first	value	found	will	be	used.	If	the
value	that	you	are	looking	for	is	defined	in	both	__grains__	and	__pillar__,	then	the
value	in	__grains__	will	be	used.

Another	advantage	of	using	config.get()	is	that	this	function	will	automatically	resolve
data	that	is	referred	to	using	sdb://	URIs.	When	accessing	those	dictionaries	directly,	any
sdb://	URIs	will	need	to	be	handled	manually.	Writing	and	using	SDB	modules	will	be
covered	in	Chapter	3,	Extending	Salt	Configuration.

Let’s	go	ahead	and	set	up	a	module	that	obtains	configuration	data	and	uses	it	to	make	a
connection	to	a	service:

'''

This	module	should	be	saved	as	salt/modules/mysqltest.py

'''

import	MySQLdb

def	version():

				'''

				Returns	MySQL	Version

				CLI	Example:

								salt	'*'	mysqltest.version

				'''

				user	=	__salt__['config.get']('mysql_user',	'root')

				passwd	=	__salt__['config.get']('mysql_pass',	'')

				host	=	__salt__['config.get']('mysql_host',	'localhost')

				port	=	__salt__['config.get']('mysql_port',	3306)

				db_	=	__salt__['config.get']('mysql_db',	'mysql')

				dbc	=	MySQLdb.connect(

								connection_user=user,

								connection_pass=passwd,

								connection_host=host,

								connection_port=port,

								connection_db=db_,

)

				cur	=	dbc.cursor()

				return	cur.execute('SELECT	VERSION()')

This	execution	module	will	run	on	the	Minion,	but	it	can	connect	to	any	MySQL	database
using	configuration	defined	in	any	of	the	four	configuration	areas.	However,	this	function
is	pretty	limited.	If	the	MySQLdb	driver	is	not	installed,	then	errors	will	appear	in	the
Minion’s	log	files	when	it	starts	up.	If	you	need	to	perform	other	types	of	query,	you	will

need	to	grab	the	configuration	values	each	time.	Let’s	solve	each	of	these	problems	in
turn.

Tip
Did	you	notice	that	we	used	a	variable	called	db_	instead	of	db?	In	Python,	it	is	considered
better	practice	to	use	variable	names	that	are	at	least	three	characters	long.	Salt	also
considers	this	to	be	a	requirement.	A	very	common	means	of	accomplishing	this	for
variables	that	would	normally	be	shorter	is	to	append	one	or	two	underscores	to	the	end	of
the	variable	name.

Handling	imports
A	number	of	Salt	modules	require	third-party	Python	libraries	to	be	installed.	If	any	of
those	libraries	aren’t	installed,	then	the	__virtual__()	function	should	return	False.	But
how	do	you	know	beforehand	whether	or	not	the	libraries	can	be	imported?

A	very	common	trick	in	a	Salt	module	involves	attempting	to	import	libraries,	and	then
recording	whether	or	not	the	import	succeeded.	This	is	often	accomplished	using	a
variable	with	a	name	like	HAS_LIBS:

try:

				import	MySQLdb

				HAS_LIBS	=	True

except	ImportError:

				HAS_LIBS	=	False

def	__virtual__():

				'''

				Check	dependencies

				'''

				return	HAS_LIBS

In	this	case,	Python	will	attempt	to	import	MySQLdb.	If	it	succeeds,	then	it	will	set
HAS_LIBS	to	True.	Otherwise,	it	will	set	it	to	False.	And	because	this	directly	correlates	to
the	value	that	needs	to	be	returned	from	the	__virtual__()	function,	we	can	just	return	it
as	it	is,	so	long	as	we’re	not	changing	__virtualname__.	If	we	were,	then	the	function
would	look	like	this:

def	__virtual__():

				'''

				Check	dependencies

				'''

				if	HAS_LIBS:

								return	__virtualname__

				return	False

Reusing	code
There’s	still	the	matter	of	eliminating	redundant	code	between	different	functions	in	the
same	module.	In	the	case	of	modules	that	use	connection	objects	(such	as	a	database
cursor,	or	a	cloud	provider	authentication)	throughout	the	code,	specific	functions	are
often	set	aside	to	gather	configuration,	and	establish	a	connection.

A	very	common	name	for	these	in-cloud	modules	is	_get_conn(),	so	let’s	go	with	that	in
our	example:

def	_get_conn():

				'''

				Get	a	database	connection	object

				'''

				user	=	__salt__['config.get']('mysql_user',	'root')

				passwd	=	__salt__['config.get']('mysql_pass',	'')

				host	=	__salt__['config.get']('mysql_host',	'localhost')

				port	=	__salt__['config.get']('mysql_port',	3306)

				db_	=	__salt__['config.get']('mysql_db',	'mysql')

				return	MySQLdb.connect(

								connection_user=user,

								connection_pass=passwd,

								connection_host=host,

								connection_port=port,

								connection_db=db_,

)

def	version():

				'''

				Returns	MySQL	Version

				CLI	Example:

								salt	'*'	mysqltest.version

				'''

				dbc	=	_get_conn()

				cur	=	dbc.cursor()

				return	cur.execute('SELECT	VERSION()')

This	greatly	simplifies	our	code,	by	turning	a	large	chunk	of	lines	in	every	function	into	a
single	line.	Of	course,	this	can	be	taken	quite	a	bit	further.	The	actual
salt/modules/mysql.py	module	that	ships	with	Salt	uses	a	function	called	_connect()
instead	of	_get_conn(),	and	it	also	has	cur.execute()	abstracted	out	into	its	own
_execute()	function.	You	can	see	these	at	Salt’s	GitHub	page:

https://github.com/saltstack/salt

https://github.com/saltstack/salt

Logging	messages
Very	often,	you	will	perform	an	operation	that	requires	some	kind	of	message	to	be	logged
somewhere.	This	is	especially	common	when	writing	new	code;	it’s	nice	to	be	able	to	log
debugging	information.

Salt	has	a	logging	system	built	in,	based	on	Python’s	own	logging	library.	To	turn	it	on,
there	are	two	lines	that	you’ll	need	to	add	toward	the	top	of	your	module:

import	logging

log	=	logging.getLogger(__name__)

With	these	in	place,	you	can	log	messages	using	a	command	like	this:

log.debug('This	is	a	log	message')

There	are	five	levels	of	logging	that	are	typically	used	in	Salt:

1.	 log.info():	Information	at	this	level	is	something	that	is	considered	to	be	important
to	all	users.	It	doesn’t	mean	anything	is	wrong,	but	like	all	log	messages,	its	output
will	be	sent	to	STDERR	instead	of	STDOUT	(so	long	as	Salt	is	running	in	the	foreground,
and	not	configured	to	log	elsewhere).

2.	 log.warn():	A	message	logged	from	here	should	indicate	to	the	user	that	something
is	not	happening	as	it	should	be.	However,	it	is	not	so	broken	as	to	stop	the	code	from
running.

3.	 log.error():	This	denotes	that	something	has	gone	wrong,	and	Salt	is	unable	to
continue	until	it	is	fixed.

4.	 log.debug():	This	is	not	only	information	that	is	useful	for	determining	what	the
program	is	thinking	but	is	also	intended	to	be	useful	to	regular	users	of	the	program
for	things	like	troubleshooting.

5.	 log.trace():	This	is	similar	to	a	debug	message,	but	the	information	here	is	more
likely	to	be	useful	only	to	developers.

For	now,	we’ll	add	a	log.trace()	to	our	_get_conn()	function,	which	lets	us	know	when
we	successfully	connect	to	the	database:

def	_get_conn():

				'''

				Get	a	database	connection	object

				'''

				user	=	__salt__['config.get']('mysql_user',	'root')

				passwd	=	__salt__['config.get']('mysql_pass',	'')

				host	=	__salt__['config.get']('mysql_host',	'localhost')

				port	=	__salt__['config.get']('mysql_port',	3306)

				db_	=	__salt__['config.get']('mysql_db',	'mysql')

				dbc	=	MySQLdb.connect(

								connection_user=user,

								connection_pass=passwd,

								connection_host=host,

								connection_port=port,

								connection_db=db_,

)

				log.trace('Connected	to	the	database')

				return	dbc

Tip
There	are	certain	places	where	it	is	tempting	to	use	log	messages,	but	they	should	be
avoided.	Specifically,	log	messages	may	be	used	in	any	function,	except	for
__virtual__().	Log	messages	used	outside	of	functions,	and	in	the	__virtual__()
function,	make	for	messy	log	files	that	are	a	pain	to	read	and	navigate.

Using	the	__func_alias__	dictionary
There	are	a	handful	of	words	that	are	reserved	in	Python.	Unfortunately,	some	of	these
words	are	also	very	useful	for	things	like	function	names.	For	instance,	many	modules
have	a	function	whose	job	is	to	list	data	relevant	to	that	module,	and	it	seems	natural	to
call	such	a	function	list().	But	that	would	conflict	with	Python’s	list	built-in.	This
poses	a	problem,	since	function	names	are	directly	exposed	to	the	Salt	command.

A	workaround	is	available	for	this.	A	__func_alias__	dictionary	may	be	declared	at	the
top	of	a	module,	which	creates	a	map	between	aliases	used	from	the	command	line	and	the
actual	name	of	the	function.	For	instance:

__func_alias__	=	{

				'list_':	'list'

}

def	list_(type_):

				'''

				List	different	resources	in	MySQL

				CLI	Examples:

								salt	'*'	mysqltest.list	tables

								salt	'*'	mysqltest.list	databases

				'''

				dbc	=	_get_conn()

				cur	=	dbc.cursor()

				return	cur.execute('SHOW	{0}()'.format(type_))

With	this	in	place,	the	list_	function	will	be	called	as	mysqltest.list	(as	in	the	CLI
Example)	instead	of	mysqltest.list_.

Tip
Why	did	we	call	the	variable	type_	instead	of	type?	Because	type	is	a	Python	built-in.
But	since	this	function	only	has	one	argument,	it’s	not	expected	that	users	will	need	to	use
type_=<something>	as	part	of	their	Salt	command.

Validating	data
From	that	last	piece	of	code,	a	number	of	readers	at	this	point	probably	have	warning	bells
going	off	in	their	heads.	It	allows	for	a	very	common	type	of	security	vulnerability	called
an	injection	attack.	Because	the	function	does	not	perform	any	sort	of	validation	on	the
type_	variable,	it	is	possible	for	users	to	pass	in	code	that	can	cause	destruction,	or	obtain
data	that	they	shouldn’t	have.

One	might	think	that	this	isn’t	necessarily	a	problem	in	Salt,	because	in	a	number	of
environments,	only	trusted	users	should	have	access.	However,	because	Salt	can	be	used
by	a	wide	range	of	user	types,	who	may	be	intended	to	only	have	limited	access,	there	are
a	number	of	scenarios	where	an	injection	attack	can	be	devastating.	Imagine	a	user
running	the	following	Salt	command:

#salt	myminion	mysqltest.list	'tables;	drop	table	users;'

This	is	often	easy	to	fix,	by	adding	some	simple	checking	to	any	user	input	(remember:
trust	but	verify):

from	salt.exceptions	import	CommandExecutionError

def	list_(type_):

				'''

				List	different	resources	in	MySQL

				CLI	Examples:

								salt	'*'	mysqltest.list	tables

								salt	'*'	mysqltest.list	databases

				'''

				dbc	=	_get_conn()

				cur	=	dbc.cursor()

				valid_types	=	['tables',	'databases']

				if	type_	not	in	valid_types:

								err_msg	=	'A	valid	type	was	not	specified'

								log.error(err_msg)

								raise	CommandExecutionError(err_msg)

				return	cur.execute('SHOW	{0}()'.format(type_))

In	this	case,	we’ve	declared	which	types	are	valid	before	allowing	them	to	be	passed	in	to
the	SQL	query.	Even	a	single	bad	character	will	cause	Salt	to	refuse	to	complete	the
command.	This	kind	of	data	validation	is	often	better,	because	it	doesn’t	try	to	modify	the
input	data	to	make	it	safe	to	run.	Doing	so	is	referred	to	as	validating	user	input.

We’ve	added	in	another	piece	of	code	as	well:	a	Salt	exception.	There	are	a	number	of
these	available	in	the	salt.exceptions	library,	but	CommandExecutionError	is	one	that
you	may	find	yourself	using	quite	a	bit	when	validating	data.

Formatting	strings
A	quick	note	on	string	formatting:	Older	Python	developers	may	have	noticed	that	we
opted	to	use	str.format()	instead	of	the	older	printf-style	string	handling.	The
following	two	lines	of	code	do	the	same	thing	in	Python:

'The	variable's	value	is	{0}'.format(myvar)

'The	variable's	value	is	%s'	%	myvar

String	formatting	using	str.format()	is	just	a	little	faster	in	Python,	and	is	required	in
Salt	except	for	in	places	where	it	doesn’t	make	sense.

Don’t	be	tempted	to	use	the	following	shortcut	available	in	Python	2.7.x:

'The	variable's	value	is	{}'.format(myvar)

Because	Salt	still	needs	to	run	on	Python	2.6,	which	doesn’t	support	using	{}	instead	of
{0},	this	will	cause	problems	for	users	on	older	platforms.

The	final	module
When	we	put	all	of	the	preceding	code	together,	we	end	up	with	the	following	module:

'''

This	module	should	be	saved	as	salt/modules/mysqltest.py

'''

import	salt.utils

try:

				import	MySQLdb

				HAS_LIBS	=	True

except	ImportError:

				HAS_LIBS	=	False

import	logging

log	=	logging.getLogger(__name__)

__func_alias__	=	{

				'list_':	'list'

}

__virtualname__	=	'mysqltest'

def	__virtual__():

				'''

				Check	dependencies,	using	both	methods	from	the	chapter

				'''

				if	not	salt.utils.which('mysql'):

								return	False

				if	HAS_LIBS:

								return	__virtualname__

				return	False

def	ping():

				'''

				Returns	True

				CLI	Example:

								salt	'*'	mysqltest.ping

				'''

				return	True

def	check_mysqld():

				'''

				Check	to	see	if	sshd	is	running	and	listening

				CLI	Example:

								salt	'*'	testmodule.check_mysqld

				'''

				output	=	__salt__['cmd.run']('netstat	-tulpn	|	grep	mysqld',	

python_shell=True)

				if	'tcp'	not	in	output:

								return	False

				return	True

def	_get_conn():

				'''

				Get	a	database	connection	object

				'''

				user	=	__salt__['config.get']('mysql_user',	'root')

				passwd	=	__salt__['config.get']('mysql_pass',	'')

				host	=	__salt__['config.get']('mysql_host',	'localhost')

				port	=	__salt__['config.get']('mysql_port',	3306)

				db_	=	__salt__['config.get']('mysql_db',	'mysql')

				dbc	=	MySQLdb.connect(

								connection_user=user,

								connection_pass=passwd,

								connection_host=host,

								connection_port=port,

								connection_db=db_,

)

				log.trace('Connected	to	the	database')

				return	dbc

def	version():

				'''

				Returns	MySQL	Version

				CLI	Example:

								salt	'*'	mysqltest.version

				'''

				dbc	=	_get_conn()

				cur	=	dbc.cursor()

				return	cur.execute('SELECT	VERSION()')

def	list_(type_):

				'''

				List	different	resources	in	MySQL

				CLI	Examples:

								salt	'*'	mysqltest.list	tables

								salt	'*'	mysqltest.list	databases

				'''

				dbc	=	_get_conn()

				cur	=	dbc.cursor()

				valid_types	=	['tables',	'databases']

				if	type_	not	in	valid_types:

								err_msg	=	'A	valid	type	was	not	specified'

								log.error(err_msg)

								raise	CommandExecutionError(err_msg)

				return	cur.execute('SHOW	{0}()'.format(type_))

Troubleshooting	execution	modules
As	with	any	programming,	the	more	time	you	spend	writing	execution	modules,	the	more
likely	you	are	to	encounter	issues.	Let’s	take	a	moment	to	talk	about	how	to	troubleshoot
and	debug	your	code.

Using	salt-call
The	salt-call	command	has	always	been	a	valuable	tool	for	testing	and	troubleshooting
code.	Without	it,	you	would	need	to	restart	the	salt-minion	service	each	time	you	wanted
to	test	new	code;	believe	me,	that	gets	old	fast.

Because	salt-call	doesn’t	start	up	a	service,	it	will	always	run	the	latest	copy	of	the	Salt
code.	It	does	do	most	of	the	things	that	the	salt-minion	service	does:	it	loads	grains,
connects	to	the	Master	(unless	told	not	to)	to	obtain	pillar	data,	goes	through	the	loader
process	to	decide	which	modules	to	load,	and	then	performs	the	requested	command.
Pretty	much	the	only	thing	it	doesn’t	do	is	keep	running.

Using	salt-call	to	issue	a	command	is	also	the	same	as	using	the	salt	command,	except
that	a	target	is	not	required	(because	the	target	is	the	Minion	that	salt-call	is	running
on):

#salt	'*'	mysqltest.ping

#salt-call	mysqltest.ping

You	may	notice	that	even	though	you’re	issuing	salt-call	commands	on	the	same
machine	that	will	be	performing	the	execution,	it	tends	to	run	a	little	slower.	There	are	two
reasons	for	this.	First	of	all,	you	are	still	basically	starting	up	the	salt-minion	service
each	time,	without	actually	keeping	it	running.	That	means	that	detecting	grains,	loading
modules,	and	so	on	will	have	to	happen	each	time.

To	get	a	feel	for	how	much	time	this	really	takes,	try	comparing	execution	times	both	with
and	without	grain	detection:

#	time	salt-call	test.ping

local:

				True

real	 0m3.257s

user	 0m0.863s

sys	 0m0.197s

#	time	salt-call	--skip-grains	test.ping

local:

				True

real	 0m0.675s

user	 0m0.507s

sys	 0m0.080s

Of	course,	if	you’re	testing	a	module	that	makes	use	of	grains,	this	is	not	an	acceptable
strategy.	The	second	thing	that	slows	down	commands	is	having	to	connect	to	the	Master.
This	doesn’t	take	nearly	as	much	time	as	grain	detection,	but	it	does	take	a	hit:

#	time	salt-call	--local	test.ping

local:

				True

real	 0m2.820s

user	 0m0.797s

sys	 0m0.120s

The	--local	flag	doesn’t	just	tell	salt-call	not	to	talk	to	the	Master.	It	actually	tells

salt-call	to	use	itself	as	the	Master	(meaning,	operate	in	local	mode).	If	your	module
makes	use	of	pillars	or	other	resources	on	the	Master,	then	you	can	just	serve	them	locally
instead.

Any	configuration	in	the	master	configuration	file	that	you	need	can	be	copied	directly	to
the	Minion	file.	If	you’re	just	using	the	defaults,	you	don’t	even	need	to	do	that:	just	copy
the	necessary	files	from	the	Master	to	the	Minion:

#	scp	-r	saltmaster:/srv/salt	/srv

#	scp	-r	saltmaster:/srv/pillar	/srv

Once	everything	is	in	place,	go	ahead	and	fire	up	salt-call	with	the	--local	flag	and	get
to	troubleshooting.

<function>	is	not	available
When	I’m	writing	a	new	module,	one	of	the	first	problems	I	have	is	getting	the	module	to
show	up.	Quite	often	this	is	because	of	obviously	bad	code,	such	as	a	typo.	For	instance,	if
we	were	to	change	our	import	from	salt.utils	to	salt.util,	our	module	would	fail	to
load:

$	grep	'import	salt'	salt/modules/mysqltest.py

import	salt.util

#	salt-call	--local	mysqltest.ping

'mysqltest.ping'	is	not	available.

In	cases	like	this,	we	can	find	the	problem	by	running	salt-call	in	debug	mode:

#	salt-call	--local	-l	debug	mysqltest.ping

...

[DEBUG]	Failed	to	import	module	mysqltest:

Traceback	(most	recent	call	last):

		File	"/usr/lib/python2.7/site-packages/salt/loader.py",	line	1217,	in	

_load_module

),	fn_,	fpath,	desc)

		File	"/usr/lib/python2.7/site-packages/salt/modules/mysqltest.py",	line	

4,	in	<module>

				import	salt.util

ImportError:	No	module	named	util

...

'mysqltest.ping'	is	not	available.

Another	possibility	is	that	there	is	a	problem	with	the	__virtual__()	function.	This	is	the
one	time	I	would	recommend	adding	log	messages	to	that	function:

def	__virtual__():

				'''

				Check	dependencies,	using	both	methods	from	the	chapter

				'''

				log.debug('Checking	for	mysql	command')

				if	not	salt.utils.which('mysql'):

								return	False

				log.debug('Checking	for	libs')

				if	HAS_LIBS:

								return	__virtualname__

				return	False

However,	make	sure	you	pull	them	out	before	you	ever	get	into	production,	or	you’re
going	to	have	some	very	unhappy	users	sooner	or	later.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

You	can	download	the	code	files	by	following	these	steps:

Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
Click	on	Code	Downloads	&	Errata.
Enter	the	name	of	the	book	in	the	Search	box.
Select	the	book	for	which	you’re	looking	to	download	the	code	files.
Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

Summary
Learning	how	to	write	execution	modules	creates	an	excellent	foundation	for	writing	other
Salt	modules.	Salt	contains	a	number	of	built-ins,	many	of	which	are	available	across	all
module	types.	A	number	of	libraries	also	ship	with	Salt	inside	the	salt/utils/	directory.
And	troubleshooting	Salt	modules	is	easiest	when	using	the	salt-call	command,
particularly	in	local	mode.

Next	up,	we’ll	talk	about	various	types	of	Salt	module	that	can	be	used	to	handle
configuration.

Chapter	3.	Extending	Salt	Configuration
By	now	you	know	how	to	access	configuration	variables	from	the	various	parts	of	Salt,
except	for	SDB	modules,	which	will	be	covered	in	this	chapter.	But	while	setting	static
configuration	is	all	fine	and	well,	it	can	be	very	useful	to	be	able	to	supply	that	data	from
an	external	source.	In	this	chapter,	you’ll	learn	about:

Writing	dynamic	grains	and	external	pillars
Troubleshooting	grains	and	pillars
Writing	and	using	SDB	modules
Troubleshooting	SDB	modules

Setting	grains	dynamically
As	you	already	know,	grains	hold	variables	that	describe	certain	aspects	of	a	Minion.	This
could	be	information	about	the	operating	system,	the	hardware,	the	network,	and	so	on.	It
can	also	contain	statically	defined	user	data,	which	is	configured	either	in
/etc/salt/minion	or	/etc/salt/grains.	It	is	also	possible	to	define	grains	dynamically
using	grains	modules.

Setting	some	basic	grains
Grains	modules	are	interesting	in	that	so	long	as	the	module	is	loaded,	all	public	functions
will	be	executed.	As	each	function	is	executed,	it	will	return	a	dictionary,	which	contains
items	to	be	merged	into	the	Minion’s	grains.

Let’s	go	ahead	and	set	up	a	new	grains	module	to	demonstrate.	We’ll	prepend	the	names
of	the	return	data	with	a	z	so	that	it	is	easy	to	find.

'''

Test	module	for	Extending	SaltStack

This	module	should	be	saved	as	salt/grains/testdata.py

'''

def	testdata():

				'''

				Return	some	test	data

				'''

				return	{'ztest1':	True}

Go	ahead	and	save	this	file	as	salt/grains/testdata.py,	and	then	use	salt-call	to
display	all	of	the	grains,	including	this	one:

#	salt-call	--local	grains.items

local:

...

				virtual:

								physical

				zmqversion:

								4.1.3

				ztest1:

								True

Keep	in	mind	that	you	can	also	use	grains.item	to	display	only	a	single	grain:

#	salt-call	--local	grains.item	ztest

local:

				ztest1:

								True

It	may	not	look	like	this	module	is	much	good,	since	this	is	still	just	static	data	that	could
be	defined	in	the	minion	or	grains	files.	But	keep	in	mind	that,	as	with	other	modules,
grains	modules	can	be	gated	using	a	__virtual__()	function.	Let’s	go	ahead	and	set	that
up,	along	with	a	flag	of	sorts	that	will	determine	whether	or	not	this	module	will	load	in
the	first	place:

import	os.path

def	__virtual__():

				'''

				Only	load	these	grains	if	/tmp/ztest	exists

				'''

				if	os.path.exists('/tmp/ztest'):

								return	True

				return	False

Go	ahead	and	run	the	following	commands	to	see	this	in	action:

#	salt-call	--local	grains.item	ztest

local:

				ztest:

#	touch	/tmp/ztest

#	salt-call	--local	grains.item	ztest

local:

				ztest:

								True

This	is	very	useful	for	gating	the	return	data	from	an	entire	module,	whether	dynamic	or,
as	this	module	currently	is,	static.

You	may	be	wondering	why	that	example	checked	for	the	existence	of	a	file,	rather	than
checking	the	existing	Minion	configuration.	This	is	to	illustrate	that	the	detection	of
certain	system	properties	is	likely	to	dictate	how	grains	are	set.	If	you	want	to	just	set	a
flag	inside	the	minion	file,	you	can	pull	it	out	of	__opts__.	Let’s	go	ahead	and	add	that	to
the	__virtual__()	function:

def	__virtual__():

				'''

				Only	load	these	grains	if	/tmp/ztest	exists

				'''

				if	os.path.exists('/tmp/ztest'):

								return	True

				if	__opts__.get('ztest',	False):

								return	True

				return	False

Go	ahead	and	remove	the	old	flag,	and	set	the	new	one:

#	rm	/tmp/ztest

#	echo	'ztest:	True'	>>	/etc/salt/minion

#	salt-call	--local	grains.item	ztest

local:

				ztest:

								True

Let’s	go	ahead	and	set	up	this	module	to	return	dynamic	data	as	well.	Because	YAML	is	so
prevalent	in	Salt,	let’s	go	ahead	and	set	up	a	function	that	returns	the	contents	of	a	YAML
file:

import	yaml

import	salt.utils

def	yaml_test():

				'''

				Return	sample	data	from	/etc/salt/test.yaml

				'''

				with	salt.utils.fopen('/etc/salt/yamltest.yaml',	'r')	as	fh_:

								return	yaml.safe_load(fh_)

You	may	notice	that	we’ve	used	salt.utils.fopen()	instead	of	a	standard	Python
open().	Salt’s	fopen()	function	wraps	Python’s	open()	with	some	extra	handling,	so	that
files	are	closed	properly	on	Minions.

Save	your	module,	and	then	issue	the	following	commands	to	see	the	result:

#	echo	'yamltest:	True'	>	/etc/salt/yamltest.yaml

#	salt-call	--local	grains.item	yamltest

local:

				yamltest:

								True

(Not)	cross-calling	execution	modules
You	may	be	tempted	to	try	to	cross-call	an	execution	module	from	inside	a	grains	module.
Unfortunately,	that	won’t	work.	The	__virtual__()	function	in	many	execution	modules
relies	heavily	on	grains.	Allowing	grains	to	cross-call	to	execution	modules,	before	Salt
has	decided	whether	or	not	to	even	the	execution	module	in	the	first	place,	would	cause
circular	dependencies.

Just	remember,	grains	are	loaded	first,	then	pillars,	then	execution	modules.	If	you	have
code	that	you	plan	to	use	two	or	more	of	these	types	of	modules,	consider	setting	up	a
library	for	it	in	the	salt/utils/	directory.

The	final	grains	module
With	all	of	the	code	we’ve	put	together,	the	resulting	module	should	look	like	the
following:

'''

Test	module	for	Extending	SaltStack.

This	module	should	be	saved	as	salt/grains/testdata.py

'''

import	os.path

import	yaml

import	salt.utils

def	__virtual__():

				'''

				Only	load	these	grains	if	/tmp/ztest	exists

				'''

				if	os.path.exists('/tmp/ztest'):

								return	True

				if	__opts__.get('ztest',	False):

								return	True

				return	False

def	testdata():

				'''

				Return	some	test	data

				'''

				return	{'ztest1':	True}

def	yaml_test():

				'''

				Return	sample	data	from	/etc/salt/test.yaml

				'''

				with	salt.utils.fopen('/etc/salt/yamltest.yaml',	'r')	as	fh_:

								return	yaml.safe_load(fh_)

Creating	external	pillars
As	you	know,	pillars	are	like	grains,	with	a	key	difference:	grains	are	defined	on	the
Minion,	whereas	pillars	are	defined	for	individual	Minions,	from	the	Master.

As	far	as	users	are	concerned,	there’s	not	a	whole	lot	of	difference	here,	except	that	pillars
must	be	mapped	to	targets	on	the	Master,	using	the	top.sls	file	in	pillar_roots.	One
such	mapping	might	look	like	this:

#	cat	/srv/pillar/top.sls

base:

		'*':

				-	test

In	this	example,	we	would	have	a	pillar	called	test	defined,	which	might	look	like	this:

#	cat	/srv/pillar/test.sls

test_pillar:	True

Dynamic	pillars	are	still	mapped	in	the	top.sls	file,	but	that’s	where	the	similarities	end,
so	far	as	configuration	is	concerned.

Configuring	external	pillars
Unlike	dynamic	grains,	which	will	run	so	long	as	their	__virtual__()	function	allows
them	to	do	so,	pillars	must	be	explicitly	enabled	in	the	master	configuration	file.	Or,	if
running	in	local	mode	as	we	will	be,	in	the	minion	configuration	file.	Let’s	go	ahead	and
add	the	following	lines	to	the	end	of	/etc/salt/minion:

ext_pillar:

		-	test_pillar:	True

If	we	were	testing	this	on	the	Master,	we	would	need	to	restart	the	salt-master	service.
However,	since	we’re	testing	in	local	mode	on	the	Minion,	this	will	not	be	required.

Adding	an	external	pillar
We’ll	also	need	to	create	a	simple	external	pillar	to	get	started	with.	Go	ahead	and	create
salt/pillar/test_pillar.py	with	the	following	content:

'''

This	is	a	test	external	pillar

'''

def	ext_pillar(minion_id,	pillar,	config):

				'''

				Return	the	pillar	data

				'''

				return	{'test_pillar':	minion_id}

Go	ahead	and	save	your	work,	and	then	test	it	to	make	sure	it	works:

#	salt-call	--local	pillar.item	test_pillar

local:

				test_pillar:

								dufresne

Let’s	go	over	what’s	happened	here.	First	off,	we	have	a	function	called	ext_pillar().
This	function	is	required	in	all	external	pillars.	It	is	also	the	only	function	that	is	required.
Any	others,	whether	or	not	named	with	a	preceding	underscore,	will	be	private	to	this
module.

This	function	will	always	be	passed	three	pieces	of	data.	The	first	is	the	ID	of	the	Minion
that	is	requesting	this	pillar.	You	can	see	this	in	our	example	already:	the	minion_id	where
the	earlier	example	was	run	was	dufresne.	The	second	is	a	copy	of	the	static	pillars
defined	for	this	Minion.	The	third	is	an	extra	piece	of	data	that	was	passed	to	this	external
pillar	in	the	master	(or	in	this	case,	minion)	configuration	file.

Let’s	go	ahead	and	update	our	pillar	to	show	us	what	each	component	looks	like.	Change
your	ext_pillar()	function	to	look	like:

def	ext_pillar(minion_id,	pillar,	command):

				'''

				Return	the	pillar	data

				'''

				return	{'test_pillar':	{

								'minion_id':	minion_id,

								'pillar':	pillar,

								'config':	config,

				}}

Save	it,	and	then	modify	the	ext_pillar	configuration	in	your	minion	(or	master)	file:

ext_pillar:

		-	test_pillar:	Alas,	poor	Yorik.	I	knew	him,	Horatio.

Take	a	look	at	your	pillar	data	again:

#	salt-call	--local	pillar.item	test_pillar

local:

				test_pillar:

								config:

												Alas,	poor	Yorik.	I	knew	him,	Horatio.

								minion_id:

												dufresne

								pillar:

												test_pillar:

																True

You	can	see	the	test_pillar	that	we	referenced	a	couple	of	pages	ago.	And	of	course,
you	can	see	minion_id,	just	like	before.	The	important	part	here	is	config.

This	example	was	chosen	to	make	it	clear	where	the	config	argument	came	from.	When
an	external	pillar	is	added	to	the	ext_pillar	list,	it	is	entered	as	a	dictionary,	with	a	single
item	as	its	value.	The	item	that	is	specified	can	be	a	string,	boolean,	integer,	or	float.	It
cannot	be	a	dictionary	or	a	list.

This	argument	is	normally	used	to	pass	arguments	into	the	pillar	from	the	configuration
file.	For	instance,	the	cmd_yaml	pillar	that	ships	with	Salt	uses	it	to	define	a	command	that
is	expected	to	return	data	in	YAML	format:

ext_pillar:

-	cmd_yaml:	cat	/etc/salt/testyaml.yaml

If	the	only	thing	that	your	pillar	requires	is	to	be	enabled,	then	you	can	just	set	this	to
True,	and	then	ignore	it.	However,	you	must	still	set	it!	Salt	will	expect	that	data	to	be
there,	and	you	will	receive	an	error	like	this	if	it	is	not:

[CRITICAL]	The	"ext_pillar"	option	is	malformed

Tip
Although	minion_id,	pillar,	and	config	are	all	passed	into	the	ext_pillar()	function
(in	that	order),	Salt	doesn’t	actually	care	what	you	call	the	variables	in	your	function
definition.	You	could	call	them	Emeril,	Mario,	and	Alton	if	you	wanted	(not	that	you
would).	But	whatever	you	call	them,	they	must	still	all	be	there.

Another	external	pillar
Let’s	put	together	another	external	pillar,	so	that	it	doesn’t	get	confused	with	our	first	one.
This	one’s	job	is	to	check	the	status	of	a	web	service.	First,	let’s	write	our	pillar	code:

'''

Get	status	from	HTTP	service	in	JSON	format.

This	file	should	be	saved	as	salt/pillar/http_status.py

'''

import	salt.utils.http

def	ext_pillar(minion_id,	pillar,	config):

				'''

				Call	a	web	service	which	returns	status	in	JSON	format

				'''

				comps	=	config.split()

				key	=	comps[0]

				url	=	comps[1]

				status	=	salt.utils.http.query(url,	decode=True)

				return	{key:	status['dict']}

You’ve	probably	noticed	that	our	docstring	states	that	This	file	should	be	saved	as
salt/pillar/http_status.py.	When	you	check	out	the	Salt	codebase,	there	is	a
directory	called	salt/	that	contains	the	actual	code.	This	is	the	directory	that	is	referred	to
in	the	docstring.	You	will	continue	to	see	these	comments	in	the	code	examples
throughout	this	book.

Save	this	file	as	salt/pillar/http_status.py.	Then	go	ahead	and	update	your
ext_pillar	configuration	to	point	to	it.	For	now,	we’ll	use	GitHub’s	status	URL:

ext_pillar

		-	http_status:	github	https://status.github.com/api/status.json

Go	ahead	and	save	the	configuration,	and	then	test	the	pillar:

#	salt-call	--local	pillar.item	github

local:

				github:

								last_updated:

												2015-12-02T05:22:16Z

								status:

												good

If	you	need	to	be	able	to	check	the	status	on	multiple	services,	you	can	use	the	same
external	pillar	multiple	times,	but	with	different	configurations.	Try	updating	your
ext_pillar	definition	to	contain	two	entries:

ext_pillar

		-	http_status:	github	https://status.github.com/api/status.json

		-	http_status:	github2	https://status.github.com/api/status.json

Now,	this	can	quickly	become	a	problem.	GitHub	won’t	be	happy	with	you	if	you’re
constantly	hitting	their	status	API.	So,	as	nice	as	it	is	to	get	real-time	status	updates,	you
may	want	to	do	something	to	throttle	your	queries.	Let’s	save	the	status	in	a	file,	and
return	it	from	there.	We	will	check	the	file’s	timestamp	to	make	sure	it	doesn’t	get	updated
more	than	once	a	minute.

Let’s	go	ahead	and	update	the	entire	external	pillar:

'''

Get	status	from	HTTP	service	in	JSON	format.

This	file	should	be	saved	as	salt/pillar/http_status.py

'''

import	json

import	time

import	datetime

import	os.path

import	salt.utils.http

def	ext_pillar(minion_id,		#	pylint:	disable=W0613

															pillar,		#	pylint:	disable=W0613

															config):

				'''

				Return	the	pillar	data

				'''

				comps	=	config.split()

				key	=	comps[0]

				url	=	comps[1]

				refresh	=	False

				status_file	=	'/tmp/status-{0}.json'.format(key)

				if	not	os.path.exists(status_file):

								refresh	=	True

				else:

								stamp	=	os.path.getmtime(status_file)

								now	=	int(time.mktime(datetime.datetime.now().timetuple()))

								if	now	-	60	>=	stamp:

												refresh	=	True

				if	refresh:

								salt.utils.http.query(url,	decode=True,	decode_out=status_file)

				with	salt.utils.fopen(status_file,	'r')	as	fp_:

								return	{key:	json.load(fp_)}

Now	we’ve	set	a	flag	called	refresh,	and	the	URL	will	only	be	hit	when	that	flag	is	True.
We’ve	also	defined	a	file	that	will	cache	the	content	obtained	from	that	URL.	The	file	will
contain	the	name	given	to	the	pillar,	so	it	will	end	up	having	a	name	like	/tmp/status-
github.json.	The	following	two	lines	will	retrieve	the	last	modified	time	of	the	file,	and
the	current	time	in	seconds:

								stamp	=	os.path.getmtime(status_file)

								now	=	int(time.mktime(datetime.datetime.now().timetuple()))

And	comparing	the	two,	we	can	determine	whether	the	file	is	more	than	60	seconds	old.	If
we	wanted	to	make	the	pillar	even	more	configurable,	we	could	even	move	that	60	to	the
config	parameter,	and	pull	it	from	comps[2].

Troubleshooting	grains	and	pillars
While	writing	grains	and	pillars,	you	may	encounter	some	difficulties.	Let’s	take	a	look	at
the	most	common	problems	you	might	have.

Dynamic	grains	not	showing	up
You	may	find	that	when	you	issue	a	grains.items	command	from	the	Master,	your
dynamic	grains	aren’t	showing	up.	This	can	be	difficult	to	track	down,	because	grains	are
evaluated	on	the	Minion,	and	any	errors	aren’t	likely	to	make	it	back	over	the	wire	to	you.

When	you	find	that	dynamic	grains	aren’t	showing	up	as	you	expect,	it’s	usually	easiest	to
log	in	to	the	Minion	directly	to	troubleshoot.	Open	up	a	shell	and	try	issuing	a	salt-call
command	to	see	if	any	errors	manifest	themselves.	If	they	don’t	immediately,	try	adding	-
-log-level=debug	to	your	command	to	see	if	any	errors	have	been	hiding	at	that	level.
Using	a	trace	log	level	might	also	be	necessary.

External	pillars	not	showing	up
These	can	be	a	little	more	difficult	to	pick	out.	Using	salt-call	is	effective	in	finding
errors	in	grains,	because	all	of	the	code	can	be	executed	without	starting	up	or	contacting	a
service.	But	pillars	come	from	the	Master,	unless	you’re	running	salt-call	in	local
mode.

If	you	are	able	to	install	your	external	pillar	code	on	a	Minion	for	testing,	then	the	steps
are	the	same	as	for	checking	for	grains	errors.	But	if	you	find	yourself	in	a	situation	where
the	Master’s	environment	cannot	be	duplicated	on	a	Minion,	you	will	need	to	use	a
different	tactic.

Stop	the	salt-master	service	on	the	Master,	and	then	start	it	back	up	in	the	foreground,
with	a	debug	log	level:

#	salt-master	--log-level	debug

Then	open	up	another	shell	and	check	the	pillars	for	an	affected	Minion:

#	salt	<minionid>	pillar.items

Any	errors	in	the	pillar	code	should	manifest	themselves	in	the	window	with	salt-master
running	in	the	foreground.

Writing	SDB	modules
SDB	is	a	relatively	new	type	of	module,	and	ripe	for	development.	It	stands	for	Simple
Database,	and	it	is	designed	to	allow	data	to	be	simple	to	query,	using	a	very	short	URI.
Underlying	configuration	can	be	as	complex	as	necessary,	so	long	as	the	URI	that	is	used
to	query	it	is	as	simple	as	possible.

Another	design	goal	of	SDB	is	that	URIs	can	mask	sensitive	pieces	of	information	from
being	stored	directly	inside	a	configuration	file.	For	instance,	passwords	are	often	required
for	other	types	of	modules,	such	as	the	mysql	modules.	But	it	is	a	poor	practice	to	store
passwords	in	files	that	are	then	stored	inside	a	revision	control	system	such	as	Git.

Using	SDB	to	look	up	passwords	on	the	fly	allows	references	to	the	passwords	to	be
stored,	but	not	the	passwords	themselves.	This	makes	it	much	safer	to	store	files	that
reference	sensitive	data,	inside	revision	control	systems.

There	is	one	supposed	function	that	may	be	tempting	to	use	SDB	for:	storing	encrypted
data	on	the	Minion,	which	cannot	be	read	by	the	Master.	It	is	possible	to	run	agents	on	a
Minion	that	require	local	authentication,	such	as	typing	in	a	password	from	the	Minion’s
keyboard,	or	using	a	hardware	encryption	device.	SDB	modules	can	be	made	that	make
use	of	these	agents,	and	due	to	their	very	nature,	the	authentication	credentials	themselves
cannot	be	retrieved	by	the	Master.

The	problem	is	that	the	Master	can	access	anything	that	a	Minion	that	subscribes	to	it	can.
Although	the	data	may	be	stored	in	an	encrypted	database	on	the	Minion,	and	although	its
transfer	to	the	Master	is	certainly	encrypted,	once	it	gets	to	the	Master	it	can	still	be	read
in	plaintext.

Getting	SDB	data
There	are	only	two	public	functions	that	are	used	for	SDB:	get	and	set.	And	in	truth,	the
only	important	one	of	these	is	get,	since	set	can	usually	be	done	outside	of	Salt	entirely.
Let’s	go	ahead	and	take	a	look	at	get.

For	our	example,	we’ll	create	a	module	that	reads	in	a	JSON	file	and	then	returns	the
requested	key	from	it.	First,	let’s	set	up	our	JSON	file:

{

				"user":	"larry",

				"password":	"123pass"

}

Go	ahead	and	save	that	file	as	/root/mydata.json.	Then	edit	the	minion	configuration
file	and	add	a	configuration	profile:

myjson:

				driver:	json

				json_file:	/root/mydata.json

With	those	two	things	in	place,	we’re	ready	to	start	writing	our	module.	JSON	has	a	very
simple	interface,	so	there	won’t	be	much	here:

'''

SDB	module	for	JSON

This	file	should	be	saved	as	salt/sdb/json.py

'''

from	__future__	import	absolute_import

import	salt.utils

import	json

def	get(key,	profile=None):

				'''

				Get	a	value	from	a	JSON	file

				'''

				with	salt.utils.fopen(profile['json_file'],	'r')	as	fp_:

								json_data	=	json.load(fp_)

				return	json_data.get(key,	None)

You’ve	probably	noticed	that	we’ve	added	a	couple	of	extra	things	outside	of	the
necessary	JSON	code.	First,	we	imported	something	called	absolute_import.	This	is
because	this	file	is	called	json.py,	and	it’s	importing	another	library	called	json.	Without
absolute_import,	the	file	would	try	to	import	itself,	and	be	unable	to	find	the	necessary
functions	from	the	actual	json	library.

The	get()	function	takes	two	arguments:	key	and	profile.	key	refers	to	the	key	that	will
be	used	to	access	the	data	that	we	need.	profile	is	a	copy	of	the	profile	data	that	we	save
in	the	minion	configuration	file	as	myjson.

The	SDB	URI	makes	use	of	these	two	items.	When	we	build	that	URI,	it	will	be	formatted
as:

sdb://<profile_name>/<key>

For	instance,	if	we	were	to	use	the	sdb	execution	module	to	retrieve	the	value	of	key1,	our
command	would	look	like:

#	salt-call	--local	sdb.get	sdb://myjson/user

local:

				larry

With	this	module	and	profile	in	place,	we	can	now	add	lines	to	the	minion	configuration
(or	to	grains	or	pillars,	or	even	the	master	configuration)	that	look	like:

username:	sdb://myjson/user

password:	sdb://myjson/password

When	a	module	that	uses	config.get	comes	across	an	SDB	URI,	it	will	automatically
translate	it	on	the	fly	to	the	appropriate	data.

Before	we	move	on,	let’s	update	this	function	a	little	bit	to	do	some	error	handling.	If	the
user	makes	a	typo	in	the	profile	(such	as	json_fle	instead	of	json_file),	or	the	file	being
referenced	doesn’t	exist,	or	the	JSON	isn’t	formatted	correctly,	then	this	module	will	start
spitting	out	trace	back	messages.	Let’s	go	ahead	and	handle	all	of	those,	using	Salt’s	own
CommandExecutionError:

from	__future__	import	absolute_import

from	salt.exceptions	import	CommandExecutionError

import	salt.utils

import	json

def	get(key,	profile=None):

				'''

				Get	a	value	from	a	JSON	file

				'''

				try:

								with	salt.utils.fopen(profile['json_file'],	'r')	as	fp_:

												json_data	=	json.load(fp_)

								return	json_data.get(key,	None)

				except	IOError	as	exc:

								raise	CommandExecutionError	(exc)

				except	KeyError	as	exc:

								raise	CommandExecutionError	('{0}	needs	to	be	

configured'.format(exc))

				except	ValueError	as	exc:

								raise	CommandExecutionError	(

												'There	was	an	error	with	the	JSON	data:	{0}'.format(exc)

)

IOError	will	catch	problems	with	a	path	that	doesn’t	point	to	a	real	file.	KeyError	will
catch	errors	with	missing	profile	configuration	(which	would	happen	if	one	of	the	items
was	misspelled).	ValueError	will	catch	problems	with	an	improperly	formatted	JSON
file.	This	will	turn	errors	like:

Traceback	(most	recent	call	last):

		File	"/usr/bin/salt-call",	line	11,	in	<module>

				salt_call()

		File	"/usr/lib/python2.7/site-packages/salt/scripts.py",	line	333,	in	

salt_call

				client.run()

		File	"/usr/lib/python2.7/site-packages/salt/cli/call.py",	line	58,	in	run

				caller.run()

		File	"/usr/lib/python2.7/site-packages/salt/cli/caller.py",	line	133,	in	

run

				ret	=	self.call()

		File	"/usr/lib/python2.7/site-packages/salt/cli/caller.py",	line	196,	in	

call

				ret['return']	=	func(*args,	**kwargs)

		File	"/usr/lib/python2.7/site-packages/salt/modules/sdb.py",	line	28,	in	

get

				return	salt.utils.sdb.sdb_get(uri,	__opts__)

		File	"/usr/lib/python2.7/site-packages/salt/utils/sdb.py",	line	37,	in	

sdb_get

				return	loaded_db[fun](query,	profile=profile)

		File	"/usr/lib/python2.7/site-packages/salt/sdb/json_sdb.py",	line	49,	in	

get

				with	salt.utils.fopen(profile['json_fil'])	as	fp_:

KeyError:	'json_fil'

…into	errors	like	this:

Error	running	'sdb.get':	'json_fil'	needs	to	be	configured

Setting	SDB	data
The	function	that	is	used	for	set	may	look	strange,	because	set	is	a	Python	built-in.	That
means	that	the	function	may	not	be	called	set();	it	must	be	called	something	else,	and
then	given	an	alias	using	the	__func_alias__	dictionary.	Let’s	go	ahead	and	create	a
function	that	does	nothing	except	return	the	value	to	be	set:

__func_alias__	=	{

				'set_':	'set'

}

def	set_(key,	value,	profile=None):

				'''

				Set	a	key/value	pair	in	a	JSON	file

				'''

				return	value

This	will	be	enough	for	your	purposes	with	read-only	data,	but	in	our	case,	we’re	going	to
modify	the	JSON	file.	First,	let’s	look	at	the	arguments	that	are	passed	into	our	function.

You	already	know	that	the	key	points	to	the	data	are	to	be	referenced,	and	that	profile
contains	a	copy	of	the	profile	data	from	the	Minion	configuration	file.	And	you	can
probably	guess	that	value	contains	a	copy	of	the	data	to	be	applied.

The	value	doesn’t	change	the	actual	URI;	that	will	always	be	the	same,	no	matter	whether
you’re	getting	or	setting	data.	The	execution	module	itself	is	what	accepts	the	data	to	be
set,	and	then	sets	it.	You	can	see	that	with:

#	salt-call	--local	sdb.set	sdb://myjson/password	321pass

local:

				321pass

With	that	in	mind,	let’s	go	ahead	and	make	our	module	read	in	the	JSON	file,	apply	the
new	value,	and	then	write	it	back	out	again.	For	now,	we’ll	skip	error	handling,	to	make	it
easier	to	read:

def	set_(key,	value,	profile=None):

				'''

				Set	a	key/value	pair	in	a	JSON	file

				'''

				with	salt.utils.fopen(profile['json_file'],	'r')	as	fp_:

								json_data	=	json.load(fp_)

				json_data[key]	=	value

				with	salt.utils.fopen(profile['json_file'],	'w')	as	fp_:

								json.dump(json_data,	fp_)

				return	get(key,	profile)

This	function	reads	in	the	JSON	file	as	before,	then	updates	the	specific	value	(creating	it
if	necessary),	then	writes	the	file	back	out.	When	it’s	finished,	it	returns	the	data	using	the

get()	function,	so	that	the	user	knows	whether	it	was	set	properly.	If	it	returns	the	wrong
data,	then	the	user	will	know	that	something	went	wrong.	It	won’t	necessarily	tell	them
what	went	wrong,	but	it	will	raise	a	red	flag.

Let’s	go	ahead	and	add	some	error	handling	to	help	the	user	know	what	went	wrong.	We’ll
go	ahead	and	add	in	the	error	handling	from	the	get()	function	too:

def	set_(key,	value,	profile=None):

				'''

				Set	a	key/value	pair	in	a	JSON	file

				'''

				try:

								with	salt.utils.fopen(profile['json_file'],	'r')	as	fp_:

												json_data	=	json.load(fp_)

				except	IOError	as	exc:

								raise	CommandExecutionError	(exc)

				except	KeyError	as	exc:

								raise	CommandExecutionError	('{0}	needs	to	be	

configured'.format(exc))

				except	ValueError	as	exc:

								raise	CommandExecutionError	(

												'There	was	an	error	with	the	JSON	data:	{0}'.format(exc)

)

				json_data[key]	=	value

				try:

								with	salt.utils.fopen(profile['json_file'],	'w')	as	fp_:

												json.dump(json_data,	fp_)

				except	IOError	as	exc:

								raise	CommandExecutionError	(exc)

				return	get(key,	profile)

Because	we	did	all	of	that	error	handling	when	reading	the	file,	by	the	time	we	get	to
writing	it	back	again,	we	already	know	that	the	path	is	value,	the	JSON	is	valid,	and	there
are	no	profile	errors.	However,	there	could	still	be	errors	in	saving	the	file.	Try	the
following:

#	chattr	+i	/root/mydata.json

#	salt-call	--local	sdb.set	sdb://myjson/password	456pass

Error	running	'sdb.set':	[Errno	13]	Permission	denied:	'/root/mydata.json'

We’ve	changed	the	attribute	of	the	file	to	make	it	immutable	(read-only),	and	we	can	no
longer	write	to	the	file.	Without	IOError,	we	would	get	an	ugly	trace	back	message	just
like	before.	Removing	the	immutable	attribute	will	allow	our	function	to	run	properly:

#	chattr	-i	/root/mydata.json

#	salt-call	--local	sdb.set	sdb://myjson/password	456pass

local:

				456pass

Using	a	descriptive	docstring
With	SDB	modules,	it	is	more	important	than	ever	to	add	a	docstring	that	demonstrates
how	to	configure	and	use	the	module.	Without	it,	using	the	module	is	all	but	impossible
for	the	user	to	figure	out,	and	trying	to	modify	a	module	is	even	worse.

The	docstring	doesn’t	need	to	be	a	novel.	It	should	contain	enough	information	to	use	the
module,	but	not	so	much	that	figuring	things	out	becomes	confusing	and	frustrating.	You
should	include	not	only	an	example	of	the	profile	data	but	also	of	an	SDB	URI	to	be	used
with	this	module:

'''

SDB	module	for	JSON

Like	all	sdb	modules,	the	JSON	module	requires	a	configuration	profile	to

be	configured	in	either	the	minion	or	master	configuration	file.	This	

profile

requires	very	little.	In	the	example:

..	code-block::	yaml

				myjson:

						driver:	json

						json_file:	/root/mydata.json

The	``driver``	refers	to	the	json	module	and	json_file	is	the	path	to	the	

JSON

file	that	contains	the	data.

..	code-block::	yaml

				password:	sdb://myjson/somekey

'''

Using	more	complex	configuration
It	may	be	tempting	to	create	SDB	modules	that	make	use	of	more	complicated	URIs.	For
instance,	it	is	entirely	possible	to	create	a	module	that	supports	a	URI	such	as:

sdb://mydb/user=curly&group=ops&day=monday

With	the	preceding	URI,	the	key	that	is	passed	in	would	be:

user=curly&group=ops&day=monday

At	that	point,	it	would	be	up	to	you	to	parse	out	the	key	and	translate	it	into	something
usable	by	your	code.	However,	I	strongly	discourage	it!

The	more	complex	you	make	an	SDB	URI,	the	less	it	becomes	a	simple	database	lookup.
You	also	risk	exposing	data	in	an	unintended	way.	Look	at	the	preceding	key	again.	It
reveals	the	following	information	about	the	database	that	holds	the	information	that	is
supposed	to	be	sensitive:

There	is	a	field	(abstracted	or	real)	that	is	referred	to	as	user.	Since	users	tend	to	be
lazier	than	they	think,	this	is	likely	to	point	to	a	real	database	field	called	user.	If
that’s	true,	then	this	exposes	a	portion	of	the	database	schema.
There	is	a	group	called	ops.	This	means	that	there	are	other	groups	as	well.	Since	ops
typically	refers	to	a	team	that	performs	server	operations	tasks,	does	that	mean	that
there’s	a	group	called	dev	too?	And	if	the	dev	group	is	compromised,	what	juicy
pieces	of	data	do	they	have	for	an	attacker	to	steal?
A	day	was	specified.	Does	this	company	rotate	passwords	on	a	daily	basis?	The	fact
that	monday	was	specified	implies	that	there	are	no	more	than	seven	passwords:	one
for	each	day	of	the	week.

Rather	than	putting	all	of	this	information	into	the	URL,	it	is	generally	better	to	hide	it
inside	the	profile.	It’s	probably	safe	to	assume	that	mydb	refers	to	a	database	connection	(if
we	called	the	profile	mysql,	we	would	be	exposing	what	kind	of	database	connection).
Skipping	over	any	database	credentials	that	would	be	present,	we	could	use	a	profile	that
looks	like:

mydb:

		driver:	<some	SDB	module>

		fields:

				user:	sdbkey

				group:	ops

				day:	monday

Assuming	that	the	module	in	question	is	able	to	translate	those	fields	into	a	query,	and
internally	change	sdbkey	to	whatever	actual	key	was	passed	in,	we	could	use	a	URI	that
looks	like:

sdb://mydb/curly

You	can	still	guess	that	curly	refers	to	a	username,	which	is	probably	even	more	obvious
when	the	URI	is	used	with	a	configuration	argument	like:

username:	sdb://mydb/curly

However,	it	doesn’t	expose	the	name	of	the	field	in	the	database.

The	final	SDB	module
With	all	of	the	code	we’ve	put	together,	the	resulting	module	should	look	like	the
following:

'''

SDB	module	for	JSON

Like	all	sdb	modules,	the	JSON	module	requires	a	configuration	profile	to

be	configured	in	either	the	minion	or	master	configuration	file.	This	

profile

requires	very	little.	In	the	example:

..	code-block::	yaml

				myjson:

						driver:	json

						json_file:	/root/mydata.json

The	``driver``	refers	to	the	json	module	and	json_file	is	the	path	to	the	

JSON

file	that	contains	the	data.

..	code-block::	yaml

				password:	sdb://myjson/somekey

'''

from	__future__	import	absolute_import

from	salt.exceptions	import	CommandExecutionError

import	salt.utils

import	json

__func_alias__	=	{

				'set_':	'set'

}

def	get(key,	profile=None):

				'''

				Get	a	value	from	a	JSON	file

				'''

				try:

								with	salt.utils.fopen(profile['json_file'],	'r')	as	fp_:

												json_data	=	json.load(fp_)

								return	json_data.get(key,	None)

				except	IOError	as	exc:

								raise	CommandExecutionError	(exc)

				except	KeyError	as	exc:

								raise	CommandExecutionError	('{0}	needs	to	be	

configured'.format(exc))

				except	ValueError	as	exc:

								raise	CommandExecutionError	(

												'There	was	an	error	with	the	JSON	data:	{0}'.format(exc)

)

def	set_(key,	value,	profile=None):		#	pylint:	disable=W0613

				'''

				Set	a	key/value	pair	in	a	JSON	file

				'''

				try:

								with	salt.utils.fopen(profile['json_file'],	'r')	as	fp_:

												json_data	=	json.load(fp_)

				except	IOError	as	exc:

								raise	CommandExecutionError	(exc)

				except	KeyError	as	exc:

								raise	CommandExecutionError	('{0}	needs	to	be	

configured'.format(exc))

				except	ValueError	as	exc:

								raise	CommandExecutionError	(

												'There	was	an	error	with	the	JSON	data:	{0}'.format(exc)

)

				json_data[key]	=	value

				try:

								with	salt.utils.fopen(profile['json_file'],	'w')	as	fp_:

												json.dump(json_data,	fp_)

				except	IOError	as	exc:

								raise	CommandExecutionError	(exc)

				return	get(key,	profile)

Using	SDB	modules
There	are	a	number	of	places	where	SDB	modules	can	be	used.	Because	SDB	retrieval	is
built	into	the	config.get	function	in	the	config	execution	module,	the	following
locations	can	be	used	to	set	a	value	for	a	Minion:

Minion	configuration	file
Grains
Pillars
Master	configuration	file

SDB	is	also	supported	by	Salt	Cloud,	so	you	can	also	set	SDB	URIs	in:

The	main	cloud	configuration	file
Cloud	profiles
Cloud	providers
Cloud	maps

Regardless	of	where	you	set	an	SDB	URI,	the	format	is	the	same:

<setting	name>:	sdb://<profile	name>/<key>

This	can	be	particularly	useful	with	cloud	providers,	all	of	which	require	credentials,	but
many	of	which	also	use	more	complex	configuration	blocks	that	should	be	checked	into
revision	control.

Take,	for	example,	the	openstack	Cloud	provider:

my-openstack-config:

		identity_url:	https://keystone.example.com:35357/v2.0/

		compute_region:	intermountain

		compute_name:	Compute

		tenant:	sdb://openstack_creds/tenant

		user:	sdb://openstack_creds/username

		ssh_key_name:	sdb://openstack_creds/keyname

In	this	organization,	compute_region	and	compute_name	are	probably	public.	And
identity_url	certainly	is	(else,	how	would	you	authenticate?).	But	the	other	information
should	probably	be	kept	hidden.

If	you’ve	ever	set	up	OpenStack	in	Salt	Cloud,	you’ve	probably	used	a	number	of	other
arguments	as	well,	many	of	which	are	probably	not	sensitive.	However,	a	complex
configuration	file	should	probably	be	kept	in	a	revision	control	system.	With	SDB	URIs,
you	can	do	so	without	having	to	worry	about	exposing	the	data	that	is	sensitive.

Troubleshooting	SDB	modules
We’ve	already	covered	some	error	handling	that	can	be	added	to	our	SDB	modules,	but
you	may	still	encounter	problems.	Like	grains	and	pillars,	the	most	common	involve	data
not	showing	up	when	expected.

SDB	data	not	showing	up
You	may	find	that	when	you	include	an	SDB	URI	in	your	configuration,	it	doesn’t	resolve
as	you	think	it	might.	If	you’ve	made	typos	in	the	earlier	SDB	code,	you	have	probably
already	figured	out	that	sdb.get	is	more	than	happy	to	raise	trace	backs	when	there	are
syntactical	errors.	But	if	using	salt-call	on	sdb.get	doesn’t	raise	any	errors	that	you	can
see,	then	it	may	not	be	a	problem	in	your	code.

Before	you	start	to	blame	other	services,	it’s	best	to	make	sure	that	you’re	not	to	blame.
Start	logging	key	pieces	of	information,	to	make	sure	it’s	showing	up	as	you	expect.	Make
sure	to	add	the	following	lines	toward	the	top	of	your	module:

import	logging

log	=	logging.getLogger(__name__)

Then	you	can	use	log.debug()	to	log	those	pieces	of	information.	If	you’re	logging
sensitive	pieces	of	information,	you	may	want	to	use	log.trace()	instead,	just	in	case
you	forget	to	take	the	log	messages	out.

You	may	want	to	start	with	logging	the	information	coming	into	each	function,	to	make
sure	it	looks	like	you	expect.	Let’s	go	ahead	and	take	a	look	at	our	get()	example	from
earlier,	with	some	logging	added	in:

def	get(key,	profile=None):

				'''

				Get	a	value	from	a	JSON	file

				'''

				import	pprint

				log.debug(key)

				log.debug(pprint.pformat(profile))

				with	salt.utils.fopen(profile['json_file'],	'r')	as	fp_:

								json_data	=	json.load(fp_)

				return	json_data.get(key,	None)

We’ve	only	added	a	couple	of	log	lines	here,	but	we	used	Python’s	pprint	library	to
format	one	of	them.	The	pprint.pformat()	function	formats	text	that	is	meant	to	be
stored	in	a	string	or	passed	to	a	function,	instead	of	just	dumping	it	to	STDOUT	like
pprint.pprint()	does.

If	your	SDB	module	connects	to	a	service,	you	may	discover	that	the	service	itself	is
unavailable.	This	may	be	due	to	unknown	or	unintended	firewall	rules,	a	network	error,	or
actual	downtime	on	the	service	itself.	Scattering	log	messages	throughout	your	code	will
help	you	discover	where	it	is	falling	down,	so	that	you	can	address	it	there.

Summary
The	three	areas	of	Salt	configuration	that	can	be	hooked	into	using	the	loader	system	are
dynamic	grains,	external	pillars,	and	SDB.	Grains	are	generated	on	the	Minion,	pillars	are
generated	on	the	Master,	and	SDB	URIs	can	be	configured	in	either	place.

SDB	modules	allow	configuration	to	be	stored	outside,	but	referenced	from,	the	various
parts	of	the	Salt	configuration.	When	accessed	from	execution	modules,	they	are	resolved
on	the	Minion.	When	accessed	from	Salt-Cloud,	they	are	resolved	on	whichever	system	is
running	Salt	Cloud.

Now	that	we	have	configuration	out	of	the	way,	it’s	time	to	dive	into	configuration
management,	by	wrapping	state	modules	around	execution	modules.

Chapter	4.	Wrapping	States	Around
Execution	Modules
Now	that	we’ve	covered	execution	modules	and	configuration	modules,	it’s	time	to	talk
about	configuration	management.	The	idea	behind	a	state	module	is	to	use	execution
modules	as	a	mechanism	for	bringing	a	resource	to	a	certain	state:	a	package	is	in	an
installed	state,	a	service	is	in	a	running	state,	a	file’s	contents	match	the	state	defined	on
the	Master.	In	this	chapter,	we’ll	discuss:

The	concepts	behind	a	basic	state	module	layout
Deciding	how	far	to	take	each	state
Troubleshooting	state	modules

Forming	a	state	module
State	modules	are	more	structured	than	most	other	kinds	of	modules,	but	as	you’ll	soon
see,	that	actually	makes	them	easier	to	write.

Determining	state
There	is	a	set	of	operations	that	a	state	module	must	take	in	order	to	perform	its	job,	and	as
those	operations	are	done,	there	is	certain	data	that	is	stored.	Let’s	start	off	with	a	pseudo
piece	of	code,	and	explain	each	component	in	turn:

def	__virtual__():

				'''

				Only	load	if	the	necesaary	modules	available	in	__salt__

				'''

				if	'module.function'	in	__salt__:

								return	True

				return	False

def	somestate(name):

				'''

				Achieve	the	desired	state

				nane

								The	name	of	the	item	to	achieve	statefulness

				'''

				ret	=	{'name':	name,

											'changes':	{},

											'result':	None,

											'comment':	''}

				if	<item	is	already	in	the	desired	state>:

								ret['result']	=	True

								ret['comment']	=	'The	item	is	already	in	the	desired	state'

								return	ret

				if	__opts__['test']:

								ret['comment']	=	'The	item	is	not	in	the	desired	state'

								return	ret

				<attempt	to	configure	the	item	correctly>

				if	<we	are	able	to	put	the	item	in	the	correct	state>:

								ret['changes']	=	{'desired	state':	name}

								ret['result']	=	True

								ret['comment']	=	'The	desired	state	was	successfully	achieved'

								return	ret

				else:

								ret['result']	=	False

								ret['comment']	=	'The	desired	state	failed	to	be	achieved'

								return	ret

The	__virtual__()	function
By	now,	you’re	already	familiar	with	this	function,	but	I	want	to	mention	it	here	again.
Because	execution	modules	are	meant	to	perform	the	heavy	lifting,	it	is	crucial	to	make
sure	that	they	are	available	before	trying	to	make	use	of	them.

There’s	a	good	chance	you’ll	need	to	cross-call	multiple	functions	inside	your	state
module.	Usually,	you’ll	call	at	least	one	function	to	check	for	the	status	of	the	item	in
question,	and	at	least	one	more	to	bring	the	item	into	the	desired	configuration.	But	if
they’re	all	in	the	same	execution	module,	you	really	only	need	to	check	for	the	presence	of

one	of	them.

Say	you	were	going	to	write	a	state	that	used	the	http.query	execution	module	to	perform
lookups	and	make	changes	to	a	web	resource.	That	function	should	always	be	available,
but	for	the	sake	of	demonstration,	we’ll	assume	that	we	need	to	check	for	it.	One	way	to
write	the	function	would	be:

def	__virtual__():

				'''

				Check	for	http.query

				'''

				if	'http.query'	in	__salt__:

								return	True

				return	False

There	is	also	a	shorter	way	to	do	this:

def	__virtual__():

				'''

				Check	for	http.query

				'''

				return	'http.query'	in	__salt__

Setting	up	defaults
With	the	__virtual__()	function	out	of	the	way,	we	can	move	on	to	the	stateful	function
itself.	First	we	set	up	some	default	variables	in	a	dictionary.	In	our	example,	and	in	most
state	modules,	the	dictionary	is	called	ret.	This	is	by	convention	only,	and	is	not	an	actual
requirement.	However,	the	keys	and	their	data	types	inside	the	dictionary	are	a	hard
requirement.	These	keys	are:

name	(string)	–	This	is	the	name	of	the	resource	that	is	passed	into	the	state.	This	is
also	known	as	the	ID	from	the	state.	For	instance,	in	the	following	state:

nginx:

		-	pkg.installed

The	name	passed	in	would	be	nginx.

changes	(dictionary)	–	If	the	state	applies	any	changes	to	the	Minion,	this	dictionary
will	contain	an	entry	for	each	of	the	changes	that	was	applied.	For	instance,	if
pkg.installed	was	used	to	install	nginx,	the	changes	dictionary	would	look	like:

{'nginx':	{'new':	'1.8.0-2',		'old':	''}}

There	is	no	restriction	imposed	on	the	type	of	data	stored	in	changes,	so	long	as
changes	itself	is	a	dictionary.	If	changes	are	made,	then	this	dictionary	must
have	something	in	it.

result	(boolean)	–	This	field	is	one	of	three	values:	True,	False,	or	None.	If	the
specified	resource	is	already	in	the	state	that	it	was	meant	to	be	in,	or	it	was
successfully	made	to	be	in	that	state,	this	field	will	be	True.	If	the	resource	was	not	in
the	correct	state,	but	salt	was	run	with	test=True,	then	this	field	is	set	to	None.	If
the	resource	was	not	in	the	correct	state,	and	Salt	was	unable	to	put	it	into	the	correct

state,	then	this	field	will	be	set	to	False.

When	performing	a	state	run,	such	as	state.highstate,	the	value	of	the	result
will	affect	the	color	of	the	output.	States	that	are	True,	but	have	no	changes,	will
be	green.	States	that	are	True	and	have	changes	will	be	blue.	States	that	are
None	will	be	yellow.	States	that	are	False	will	be	red.

comment	(string)	–	This	field	is	entirely	freeform:	it	may	contain	any	comments	you
want,	or	no	comments.	However,	it	is	better	to	have	some	comment,	even	as	short	as
The	requested	resource	is	already	in	the	desired	state.	If	the	result	is	None
or	False,	then	the	comment	should	contain	a	message	that	is	as	helpful	as	possible
concerning	why	the	resource	is	not	configured	properly,	and	how	that	may	be
corrected.

The	defaults	that	we	use	in	our	example	will	be	good	for	almost	any	state:

				ret	=	{'name':	name,

											'changes':	{},

											'result':	None,

											'comment':	''}

Checking	for	truth
After	the	defaults	have	been	set,	the	next	task	is	to	check	the	resource	and	see	whether	or
not	it	is	in	the	desired	state:

				if	<item	is	already	in	the	desired	state>:

								ret['result']	=	True

								ret['comment']	=	'The	item	is	already	in	the	desired	state'

								return	ret

This	may	be	a	quick	check	using	a	single	function	in	an	execution	module,	or	it	may
consist	of	much	more	logic	requiring	several	functions	to	be	cross-called.	Don’t	add	any
more	code	here	than	is	necessary	to	check	the	state	of	the	resource;	remember	that	all
heavy	lifting	should	be	performed	in	the	execution	module.

If	the	resource	is	found	to	be	properly	configured,	then	the	result	is	set	to	True,	a	helpful
comment	is	added,	and	the	function	returns.	If	the	resource	is	not	properly	configured,
then	we	move	on	to	the	next	section.

Checking	for	test	mode
If	the	code	makes	it	past	the	check	for	truth,	then	we	can	assume	that	something	is	wrong.
But	before	we	make	any	changes	to	the	system,	we	need	to	see	whether	or	not	salt	was
called	with	test=True.

				if	__opts__['test']:

								ret['comment']	=	'The	item	is	not	in	the	desired	state'

								return	ret

If	so,	we	set	a	helpful	comment	for	the	user,	and	then	return	the	ret	dictionary.	If	there	is
any	more	logic	that	happens	once	it	has	been	determined	that	salt	is	running	in	test
mode,	then	it	should	only	be	to	give	the	user	more	helpful	information	in	the	comment.	No

changes	should	ever	be	made	in	test	mode!

Attempting	to	configure	the	resource
If	we	get	past	the	check	for	test	mode,	then	we	know	that	we	can	try	to	make	changes	to
correctly	configure	the	resource:

				<attempt	to	configure	the	item	correctly>

				if	<we	are	able	to	put	the	item	in	the	correct	state>:

								ret['changes']	=	{'desired	state':	name}

								ret['result']	=	True

								ret['comment']	=	'The	desired	state	was	successfully	achieved'

								return	ret

Again,	this	section	of	the	code	should	only	contain	enough	logic	to	correctly	configure	the
resource	in	question,	and	then	notify	the	user	if	it	was	successful.	If	the	change	was
successful,	then	we	update	the	changes	dictionary,	add	a	comment	that	describes	how	those
changes	were	achieved,	set	the	result	to	True,	and	then	return.

Notifying	about	False
If	we	get	past	that	piece	of	code,	we	are	now	assured	that	something	has	gone	wrong,	and
that	we	are	unable	to	fix	it:

				else:

								ret['result']	=	False

								ret['comment']	=	'The	desired	state	failed	to	be	achieved'

								return	ret

This	is	the	most	important	section	of	code	to	be	helpful	to	the	user,	because	user
interaction	will	likely	be	required	to	fix	whatever	the	problem	is.

It	could	be	that	the	SLS	file	was	just	poorly	written,	and	that	the	next	state	run	will	fix	it.
It	could	also	be	that	the	state	module	has	a	bug	that	needs	to	be	fixed.	Or	there	could	be
some	other	situation	that	is	beyond	Salt’s	ability	to	control,	such	as	a	web	service	that	is
temporarily	unavailable.	The	comment	should	contain	as	much	information	as	is	helpful	to
track	down	and	fix	the	problem,	and	no	more.	This	is	also	the	time	to	set	the	result	to
False	before	returning.

Example:	checking	an	HTTP	service
There	is	already	a	state	for	contacting	web	services:	the	http.query	state.	However,	it	is
very	general-purpose,	and	using	it	directly	has	limited	use.	In	fact,	it	doesn’t	really	have
the	logic	to	do	much	more	than	check	whether	a	URL	responds	as	expected.	In	order	to
make	it	more	intelligent,	we	need	to	add	some	logic	on	our	own.

Checking	credentials
Let’s	start	by	setting	up	our	docstring,	a	library	import,	and	a	__virtual__()	function
with	some	credentials	for	a	theoretical	web	service:

'''

This	state	connects	to	an	imaginary	web	service.

The	following	credentials	must	be	configured:

				webapi_username:	<your	username>

				webapi_password:	<your	password>

This	module	should	be	saved	as	salt/states/fake_webapi.py

'''

import	salt.utils.http

def	__virtual__():

				'''

				Make	sure	there	are	credentials

				'''

				username	=	__salt__['config.get']('webapi_username',	False)

				password	=	__salt__['config.get']('webapi_password',	False)

				if	username	and	password:

								return	True

				return	False

In	this	case,	we	aren’t	checking	for	the	existence	of	the	http.query	function;	as	we	said
before,	it’s	already	there.	But	this	module	won’t	function	without	being	able	to	connect	to
the	web	service,	so	we	do	a	quick	check	to	make	sure	the	credentials	are	in	place.

We	aren’t	checking	to	see	if	the	service	itself	responds,	or	if	the	credentials	are	correct.
The	__virtual__()	function	is	checked	when	the	Minion	starts,	and	doing	all	that
checking	then	is	unnecessary	and,	in	the	event	of	downtime,	possibly	inaccurate.	It	will
also	slow	the	Minion	from	loading.	It	is	better	to	do	that	checking	later,	when	we	actually
make	the	call	to	the	service.

The	first	stateful	function
Next,	we	need	to	set	up	a	state	function.	For	our	example,	we’re	going	to	allow	users	to
make	sure	that	a	specific	user’s	account	on	that	web	service	is	locked	out.	First,	we	set	up
our	defaults,	and	then	check	to	see	if	that	user’s	account	has	been	locked	out	yet:

def	locked(name):

				'''

				Ensure	that	the	user	is	locked	out

				'''

				username	=	__salt__['config.get']('webapi_username',	False)

				password	=	__salt__['config.get']('webapi_password',	False)

				ret	=	{'name':	name,

											'changes':	{},

											'result':	None,

											'comment':	''}

				result	=	salt.utils.http.query(

								'https://api.example.com/v1/users/{0}'.format(name),

								username=username,

								password=password,

								decode=True,

								decode_type='json',

)

				if	result('dict',	{}).get('access',	'')	==	'locked':

								ret['result']	=	True

								ret['comment']	=	'The	account	is	already	locked'

								return	ret

You	may	see	a	problem	right	away.	Making	an	authenticated	web	call	is	a	little	heavy,
especially	when	you	have	to	decode	the	return	data,	no	matter	how	you	do	it.	We’re	going
to	make	another	web	call	in	this	function,	and	then	more	in	other	functions.	Let’s	break
out	what	we	can	into	another	function:

def	_query(action,	resource='',	data=None):

				'''

				Make	a	query	against	the	API

				'''

				username	=	__salt__['config.get']('webapi_username',	False)

				password	=	__salt__['config.get']('webapi_password',	False)

				result	=	salt.utils.http.query(

								'https://api.example.com/v1/{0}/{1}'.format(action,	resource),

								username=username,

								password=password,

								decode=True,

								decode_type='json',

								data=data,

)

def	locked(name):

				'''

				Ensure	that	the	user	is	locked	out

				'''

				ret	=	{'name':	name,

											'changes':	{},

											'result':	None,

											'comment':	''}

				result	=	_query('users',	name)

				if	result('dict',	{}).get('access',	'')	==	'locked':

								ret['result']	=	True

								ret['comment']	=	'The	account	is	already	locked'

								return	ret

The	new	_query()	function	expects	at	least	one	argument:	the	type	of	query	(action)	that
is	going	to	be	performed	against	the	API.	It’s	very	common	for	this	kind	of	API	to	be
expected	to	list	all	items	for	that	query	if	a	specific	resource	isn’t	specified,	so	we’ve
allowed	the	resource	to	be	blank.	We’ve	also	set	up	another	optional	parameter	called	data,
which	we’ll	make	use	of	in	a	moment.

Now	we	have	a	check	for	whether	the	account	is	locked,	and	are	able	to	return	True	if	it
is.	If	we	get	past	that	point,	we	know	the	account	isn’t	locked,	so	let’s	do	our	check	for
test	mode:

				if	__opts__['test']:

								ret['comment']	=	'The	{0}	account	is	not	locked'.format(name)

								return	ret

This	part	is	easy	enough;	we	have	all	of	the	information	that	is	needed	for	test	mode,	and
we	don’t	need	to	do	anything	else	besides	return	it.	Let’s	go	ahead	and	try	to	apply	the
correct	setting	to	the	account.

				_query('users',	name,	{'access':	'locked'})

Remember	that	data	option?	We	used	it	to	pass	in	a	dictionary	that	sets	the	access	value
for	that	user	to	locked.	This	is	also	a	very	common	way	to	modify	data	with	a	web	API.

Of	course,	we	don’t	necessarily	know	that	the	setting	was	applied	correctly,	so	let’s	do	one
more	check,	just	to	make	sure:

				result	=	_query('users',	name)

				if	result('dict',	{}).get('access',	'')	==	'locked':

								ret['changes']	=	{'locked':	name}

								ret['result']	=	True

								ret['comment']	=	'The	{0}	user	account	is	now	locked'.format(name)

								return	ret

				else:

								ret['result']	=	False

								ret['comment']	=	'Failed	to	set	the	{0}	user	account	to	

locked'.format(name)

								return	ret

If	the	account	is	now	locked,	then	we	can	return	that	we	were	successful.	If	the	account	is
still	not	locked,	then	we	can	return	a	failure	message.

Another	stateful	function
Let’s	go	ahead	and	add	another	function,	to	allow	a	user	account	to	be	unlocked.	We’ll
also	take	this	opportunity	to	show	you	the	entire	module,	with	all	of	the	public	and	private
functions:

'''

This	state	connects	to	an	imaginary	web	service.

The	following	credentials	must	be	configured:

				webapi_username:	<your	username>

				webapi_password:	<your	password>

This	module	should	be	saved	as	salt/states/fake_webapi.py

'''

import	salt.utils.http

def	__virtual__():

				'''

				Make	sure	there	are	credentials

				'''

				username	=	__salt__['config.get']('webapi_username',	False)

				password	=	__salt__['config.get']('webapi_password',	False)

				if	username	and	password:

								return	True

				return	False

def	_query(action,	resource='',	data=None):

				'''

				Make	a	query	against	the	API

				'''

				username	=	__salt__['config.get']('webapi_username',	False)

				password	=	__salt__['config.get']('webapi_password',	False)

				result	=	salt.utils.http.query(

								'https://api.example.com/v1/{0}/{1}'.format(action,	resource),

								username=username,

								password=password,

								decode=True,

								decode_type='json',

								data=data,

)

return	result

def	locked(name):

				'''

				Ensure	that	the	user	is	locked	out

				'''

				ret	=	{'name':	name,

											'changes':	{},

											'result':	None,

											'comment':	''}

				result	=	_query('users',	name)

				if	result('dict',	{}).get('access',	'')	==	'locked':

								ret['result']	=	True

								ret['comment']	=	'The	account	is	already	locked'

								return	ret

				if	__opts__['test']:

								ret['comment']	=	'The	{0}	account	is	not	locked'.format(name)

								return	ret

				_query('users',	name,	{'access':	'locked'})

				result	=	_query('users',	name)

				if	result('dict',	{}).get('access',	'')	==	'locked':

								ret['changes']	=	{'locked':	name}

								ret['result']	=	True

								ret['comment']	=	'The	{0}	user	account	is	now	locked'.format(name)

								return	ret

				else:

								ret['result']	=	False

								ret['comment']	=	'Failed	to	set	the	{0}	user	account	to	

locked'.format(name)

								return	ret

def	unlocked(name):

				'''

				Ensure	that	the	user	is	NOT	locked	out

				'''

				ret	=	{'name':	name,

											'changes':	{},

											'result':	None,

											'comment':	''}

				result	=	_query('users',	name)

				if	result('dict',	{}).get('access',	'')	==	'unlocked':

								ret['result']	=	True

								ret['comment']	=	'The	account	is	already	unlocked'

								return	ret

				if	__opts__['test']:

								ret['comment']	=	'The	{0}	account	is	locked'.format(name)

								return	ret

				_query('users',	name,	{'access':	'unlocked'})

				result	=	_query('users',	name)

				if	result('dict',	{}).get('access',	'')	==	'unlocked':

								ret['changes']	=	{'locked':	name}

								ret['result']	=	True

								ret['comment']	=	'The	{0}	user	account	is	no	longer	

locked'.format(name)

								return	ret

				else:

								ret['result']	=	False

								ret['comment']	=	'Failed	to	unlock	the	{0}	user	

account'.format(name)

								return	ret

You	can	see	that	there’s	not	much	difference	between	these	two	functions.	In	fact,	really,
they	do	exactly	the	same	thing,	but	with	opposing	logic:	one	locks	an	account	and	one
unlocks	an	account.

It	is	very	common	for	a	state	module	to	contain	two	opposites	for	the	same	configuration.
You	will	frequently	see	function	names	like	installed	and	removed,	present	and	absent,

and	running	and	dead.

Troubleshooting	state	modules
Even	though	the	code	is	more	structured,	it	can	be	a	little	tricky	to	troubleshoot	state
modules.	This	is	because	you	need	to	test	all	four	types	of	return	results:

True	–	The	resource	is	already	correctly	configured
None	–	The	resource	is	not	correctly	configured,	and	test	mode	is	True
True	with	changes	–	The	resource	was	not	correctly	configured,	but	now	it	is
False	–	The	resource	could	not	be	correctly	configured

What	makes	this	even	trickier	is	that	in	the	course	of	troubleshooting,	you	are	likely	to
change	configuration	to	be	correct,	and	then	incorrect,	and	then	back	again	several	times
before	the	code	is	right.	I	suggest	breaking	it	up.

Step	1:	test	for	truth
Your	first	step,	after	setting	up	your	defaults,	is	to	check	whether	the	resource	is	correctly
configured.	This	is	likely	to	require	you	to	manually	toggle	settings	to	make	sure	it	is
properly	checking	both	desired	and	undesired	configuration.	Add	two	returns:	one	for
True	and	one	for	False:

				ret	=	{'name':	name,

											'changes':	{},

											'result':	None,

											'comment':	''}

				if	<item	is	already	in	the	desired	state>:

								ret['result']	=	True

								ret['comment']	=	'The	item	is	already	in	the	desired	state'

								return	ret

				ret['result']	=	False

				return	ret

You	can	remove	those	last	two	lines	later,	once	you	know	the	code	is	correct.	You	don’t
need	to	set	up	an	entire	SLS	file	to	test	your	state;	you	can	use	state.single	to	perform	a
one-off	state	command:

#	salt-run	--local	state.single	fake_webapi.locked	larry

Step	2:	test	mode
Once	you’re	sure	it’s	correctly	detecting	the	current	configuration,	manually	set	the
configuration	to	an	undesired	value,	and	make	sure	test	mode	is	working	properly:

Step	3:	applying	changes
When	you	are	sure	that	your	code	will	not	try	to	apply	changes	without	first	checking	for
test	mode,	you	can	move	on	to	applying	changes.

This	is	the	trickiest	part,	for	two	reasons.	First,	you’ll	end	up	setting	and	resetting	your
configuration	a	lot.	This	can	be	tedious	at	best,	but	there’s	no	avoiding	it.	Second,	you’ll
be	both	setting	the	correct	configuration,	and	then	testing	to	see	if	it	was	set,	at	the	same
time:

				<attempt	to	configure	the	item	correctly>

				if	<we	are	able	to	put	the	item	in	the	correct	state>:

								ret['changes']	=	{'desired	state':	name}

								ret['result']	=	True

								ret['comment']	=	'The	desired	state	was	successfully	achieved'

								return	ret

				else:

								ret['result']	=	False

								ret['comment']	=	'The	desired	state	failed	to	be	achieved'

								return	ret

You	may	think	that	you	can	split	this	part	up,	but	before	long	you’re	likely	to	realize	that
in	order	to	make	sure	the	configuration	was	applied	properly,	you	still	need	to	perform	the
same	check	as	you	would	normally	be	performing	in	your	own	tests,	so	you	might	as	well
get	it	out	of	the	way	now.

Testing	opposites
Thankfully,	if	you’re	writing	functions	that	perform	opposite	functions,	the	second	one
tends	to	go	much	faster.	That’s	because	once	you	have	the	first	one	out	of	the	way,	you	can
keep	running	it	to	reset	the	configuration	back	to	the	undesired	value	for	the	second	one.
In	the	case	of	our	example,	once	you	are	able	to	lock	an	account,	you	can	easily	lock	it
while	testing	the	unlock	functionality.

Summary
State	modules	are	more	structured	than	execution	modules,	but	that	often	makes	them
easier	to	write.	A	state’s	return	result	can	be	True	(green),	None	(yellow),	True	with
changes	(blue),	or	False	(red).	State	modules	frequently	contain	pairs	of	functions	that
perform	opposing	functionality.

Now	that	you	know	how	to	write	state	modules,	it’s	time	to	take	a	look	at	the	data	that	we
pass	to	them.	Next	up:	renderers!

Chapter	5.	Rendering	Data
Having	the	ability	to	write	your	own	execution	and	state	modules	is	powerful	from	a
developer’s	point	of	view,	but	you	cannot	overlook	being	able	to	provide	that	kind	of
power	to	users	who	do	not	have	the	ability	to	provide	modules	of	their	own.

Renderers	allow	users	to	provide	data	to	various	parts	of	Salt	using	different	kinds	of	data
input	formats.	The	handful	of	renderers	that	ship	with	Salt	cover	the	majority	of	use	cases,
but	what	if	your	users	need	to	apply	data	in	a	specialized	format?	Or	even	a	more	common
one	that	is	not	yet	supported,	such	as	XML?	In	this	chapter,	we’ll	discuss:

Writing	renderers
Troubleshooting	renderers

Understanding	file	formats
By	default,	Salt	uses	YAML	for	its	various	files.	There	are	two	primary	reasons	for	this:

YAML	is	easily	converted	into	Python	data	structures
YAML	is	easy	for	humans	to	read	and	modify

Salt	configuration	files	must	be	in	YAML	as	well	(or	JSON,	which	can	be	read	by	YAML
parsers),	but	other	files	such	as	states,	pillars,	reactors,	and	so	on	can	use	other	formats.	A
data	serialization	format	is	the	most	common,	but	any	format	that	can	be	translated	into	a
Python	dictionary	will	do	just	fine.

For	example,	there	are	three	different	Python	renderers	that	ship	with	Salt:	py,	pyobjects,
and	pydsl.	Each	has	its	strengths	and	weaknesses,	but	the	end	result	is	the	same:	they
execute	Python	code	that	results	in	a	dictionary,	which	is	then	passed	into	Salt.

Generally	speaking,	you	will	find	two	types	of	renderers	inside	of	Salt.	The	first	returns
data	in	a	Python	data	structure.	Both	serializers	and	code-based	modules	fit	into	this
category.	The	second	is	for	managing	text	formatting	and	templating.	Let’s	talk	about	each
in	turn,	and	then	build	our	own	renderers	later	on	in	the	chapter.

Serializing	data
Data	can	be	stored	in	any	number	of	formats,	but	in	the	end,	that	data	must	be	something
that	can	be	turned	into	instructions.	Formats	such	as	YAML	and	JSON	are	obvious
choices,	because	they	are	easy	to	modify	and	mirror	the	resulting	data	structures	in	the
program	that	uses	them.	Binary	formats	such	as	Message	Pack	aren’t	as	easily	modified	by
humans,	but	they	still	result	in	the	same	data	structures.

Other	formats,	such	as	XML,	are	more	difficult	because	they	don’t	directly	resemble	the
internal	data	structures	of	programs	like	Salt.	They’re	great	for	modeling	code	that	makes
heavy	use	of	classes,	but	Salt	doesn’t	make	much	use	of	such	code.	However,	when	you
know	how	such	a	format	can	be	converted	into	a	data	structure	that	Salt	can	use,	then
building	a	renderer	for	it	is	not	difficult.

Working	with	templates
Templates	are	important	because	they	allow	end	users	to	use	certain	programmatic
elements	without	having	to	write	actual	modules.	Variables	are	certainly	one	of	the	most
critical	elements	of	a	templating	engine,	but	other	constructs	such	as	loops	and	branching
can	also	give	a	lot	of	power	to	the	user.

Templating	renderers	differ	from	data-serializing	renderers	in	that	instead	of	returning	data
in	a	dictionary	format,	which	is	then	ingested	by	Salt,	they	return	data	that	must	be
converted	at	least	one	more	time,	using	a	data-serialization	renderer.

This	may	seem	counterintuitive	on	some	levels,	but	the	use	of	render	pipes	brings	these
two	elements	together.

Using	render	pipes
Render	pipes	are	based	on	Unix	pipes;	data	can	be	passed	from	module	to	module	through
a	series	of	pipes,	in	order	to	arrive	at	the	final	data	structure.	You	may	not	realize	it,	but	if
you’ve	ever	written	an	SLS	file,	you’ve	used	a	render	pipe.

To	set	up	a	render	pipe,	you	add	a	line	to	the	top	of	the	file	to	be	rendered,	which	contains
the	classic	Unix	hashbang,	followed	by	the	renderers	to	be	used,	in	the	order	to	be	used,
separated	by	the	pipe	character.	The	default	rendering	sequence	is	effectively:

#!jinja|yaml

This	means	that	the	file	in	question	will	be	first	parsed	by	Jinja2,	and	compiled	into	a
format	that	can	be	read	by	the	YAML	library.

It’s	generally	not	reasonable	or	necessary	to	pipe	more	than	two	different	renderers
together;	the	more	that	are	used,	the	more	complicated	the	resulting	file	is	to	understand
by	humans,	and	the	greater	the	chance	for	errors.	Generally,	a	templating	engine	that	adds
programmatic	shortcuts,	and	a	data	serializer,	is	plenty.	One	notable	exception	is	the	gpg
renderer,	which	can	be	used	for	encryption-at-rest	scenarios.	The	hashbang	for	this	would
look	like:

#!jinja|yaml|gpg

Building	a	serializing	renderer
Renderers	are	reasonably	easy	to	build,	because	they	typically	do	little	more	than	import	a
library,	shove	data	through	it,	and	then	return	the	result.	Our	example	renderer	will	make
use	of	Python’s	own	Pickle	format.

The	basic	structure
Outside	of	any	necessary	imports,	a	renderer	requires	only	a	render()	function.	The	most
important	argument	is	the	first.	As	with	other	modules,	the	name	of	this	argument	is	not
important	to	Salt,	so	long	as	it	is	defined.	Because	our	example	uses	the	pickle	library,
we’ll	use	pickle_data	as	our	argument	name.

Other	arguments	are	also	passed	into	renderers,	but	in	our	case	we’ll	only	use	them	for
troubleshooting.	In	particular,	we	need	to	accept	saltenv	and	sls,	with	the	defaults	shown
later.	We’ll	cover	those	in	the	Troubleshooting	Renderers	section,	but	for	now	we’ll	just
use	kwargs	to	cover	them.

We	also	need	to	start	with	a	special	kind	of	import,	called	absolute_import,	that	allows
us	to	import	the	pickle	library	from	a	file	that’s	also	called	pickle.

Let’s	go	ahead	and	lay	out	the	module,	and	then	talk	about	the	components	in	the
render()	function:

'''

Render	Pickle	files.

This	file	should	be	saved	as	salt/renderers/pickle.py

'''

from	__future__	import	absolute_import

import	pickle

from	salt.ext.six	import	string_types

def	render(pickle_data,	saltenv='base',	sls='',	**kwargs):

				'''

				Accepts	a	pickle,	and	renders	said	data	back	to	a	python	dict.

				'''

				if	not	isinstance(pickle_data,	string_types):

								pickle_data	=	pickle_data.read()

				if	pickle_data.startswith('#!'):

								pickle_data	=	pickle_data[(pickle_data.find('\n')	+	1):]

				if	not	pickle_data.strip():

								return	{}

				return	pickle.loads(pickle_data)

This	function	does	not	do	much,	other	than:

First,	check	to	see	whether	the	data	being	passed	in	is	a	string,	and	if	not,	treat	it	as	a
file-like	object.
Check	for	the	existence	of	a	#!,	indicating	the	use	of	an	explicit	render	pipe.	Because
that	pipe	is	handled	elsewhere,	and	it	will	cause	errors	with	the	pickle	library,
discard	it.
Check	to	see	whether	the	resulting	content	is	empty.	If	so,	return	an	empty	dictionary.
Run	the	data	through	the	pickle	library,	and	return	the	result.

If	you	start	comparing	this	code	with	the	renderers	that	ship	with	Salt,	you’ll	find	that
many	of	them	are	almost	identical.	This	is	in	part	because	so	many	data	serialization

libraries	in	Python	use	exactly	the	same	methods.

Let’s	put	together	a	file	that	can	be	used.	The	example	data	that	we’ll	use	is:

apache:

		pkg:

				-	installed

				-	refresh:	True

The	best	way	to	create	this	file	is	with	Python	itself.	Go	ahead	and	open	up	a	Python	shell
and	type	the	following	commands:

>>>	import	pickle

>>>	data	=	{'apache':	{'pkg':	['installed',	{'refresh':	True}]}}

>>>	out	=	open('/srv/salt/pickle.sls',	'w')

>>>	pickle.dump(data,	out)

>>>	out.close()

When	you	exit	out	of	the	Python	shell,	you	should	be	able	to	open	this	file	in	your	favorite
text	editor.	When	you	add	a	hashbang	line	to	the	top	that	specifies	the	pickle	renderer,
your	file	will	probably	look	like	this:

#!pickle

(dp0

S'apache'

p1

(dp2

S'pkg'

p3

(lp4

S'installed'

p5

a(dp6

S'refresh'

p7

I01

sass.

Save	the	file,	and	use	salt-call	to	test	out	your	renderer.	This	time,	we’ll	tell	Salt	to
dump	out	the	resulting	SLS,	as	Salt	sees	it:

#	salt-call	--local	state.show_sls	pickle	--out=yaml

local:

		apache:

				__env__:	base

				__sls__:	!!python/unicode	pickle

				pkg:

				-	installed

				-	refresh:	true

				-	order:	10000

Salt’s	state	compiler	adds	some	extra	information	that	it	uses	internally,	but	we	can	see
that	the	basics	of	what	we	requested	are	there.

Building	a	templating	renderer
Building	a	renderer	that	handles	templating	files	is	not	that	different	from	one	that	does
serialization.	In	fact,	the	renderer	itself	is	pretty	much	the	same,	outside	of	the	library-
specific	code.	This	time,	we’ll	use	a	Python	library	called	tenjin.	You	may	need	to	install
it	using	pip:

#	pip	install	tenjin

Templating	with	Tenjin
This	module	makes	use	of	a	third-party	library,	so	there	will	be	a	__virtual__()	function
to	make	sure	it’s	installed:

'''

Conver	a	file	using	the	Tenjin	templating	engine

This	file	should	be	saved	as	salt/renderers/tenjin.py

'''

from	__future__	import	absolute_import

try:

				import	tenjin

				from	tenjin.helpers	import	*

				HAS_LIBS	=	True

except	ImportError:

				HAS_LIBS	=	False

from	salt.ext.six	import	string_types

def	__virtual__():

				'''

				Only	load	if	Tenjin	is	installed

				'''

				return	HAS_LIBS

def	render(tenjin_data,	saltenv='base',	sls='',	**kwargs):

				'''

				Accepts	a	tenjin,	and	renders	said	data	back	to	a	python	dict.

				'''

				if	not	isinstance(tenjin_data,	string_types):

								tenjin_data	=	tenjin_data.read()

				if	tenjin_data.startswith('#!'):

								tenjin_data	=	tenjin_data[(tenjin_data.find('\n')	+	1):]

				if	not	tenjin_data.strip():

								return	{}

				template	=	tenjin.Template(input=tenjin_data)

				return	template.render(kwargs)

The	render()	function	itself	is	fundamentally	identical	to	the	one	that	we	used	for	pickle,
except	for	the	last	two	lines,	which	handles	the	templating	engine	slightly	differently.

Take	note	of	the	kwargs	that	are	passed	into	this	function.	Templating	engines	generally
have	the	ability	to	merge	in	an	external	data	structure,	which	can	be	used	with	the	various
data	structures	in	the	templating	engine	itself.	Salt	will	make	some	data	available	inside
kwargs,	so	we’ll	pass	that	in	for	Tenjin	to	use.

Using	a	templating	renderer
Of	course,	you’ll	need	a	hashbang	line	in	your	SLS	files	as	before,	but	since	our	Tenjin
renderer	isn’t	set	up	to	return	straight	data,	you	will	need	to	add	the	name	of	the	desired
data-serialization	renderer	to	your	render	pipe.	We’ll	use	the	same	actual	SLS	data	as
before,	but	with	a	couple	of	Tenjin-specific	elements	added:

#!tenjin|yaml

<?py	pkg	=	'apache'?>

<?py	refresh	=	True?>

#{pkg}:

		pkg:

				-	installed

				-	refresh:	#{refresh}

We	haven’t	done	anything	special	here,	just	set	a	couple	of	variables,	and	then	used	them.
The	resulting	content	will	be	in	YAML	format,	so	we’ve	added	yaml	to	our	render	pipe.

A	number	of	templating	engines,	including	Tenjin,	have	the	ability	to	process	templates
that	output	either	strings	(as	we’ve	done	in	our	example),	or	an	actual	data	structure,	such
as	what	a	data	serializer	would	return.	When	using	such	a	library,	take	a	moment	to
consider	how	much	of	it	you	plan	to	use,	and	whether	it	makes	sense	to	create	two	distinct
renderers	for	it:	one	for	data	and	one	for	strings.

Testing	is	much	the	same	as	before:

#	salt-call	--local	state.show_sls	tenjin	--out	yaml

local:

		apache:

				pkg:

				-	installed

				-	refresh:	true

				-	order:	10000

				__sls__:	!!python/unicode	tenjin

				__env__:	base

We	can	see	slight	differences	between	our	first	example	and	our	second,	but	those
differences	just	show	which	module	was	used	to	render	the	data.

Troubleshooting	renderers
Because	renderers	are	so	often	used	to	manage	SLS	files,	it	is	often	easiest	to	troubleshoot
them	using	the	state	compiler,	as	we	have	been	doing	already	in	this	chapter.

First,	generate	a	small	SLS	file	that	contains	the	specific	elements	which	you	need	to	test.
This	will	either	be	a	data	file	in	the	format	that	a	serialization	engine	uses,	or	a	text-based
file	that	results	in	a	data-serialization	file	format.	If	you	are	writing	a	templating	renderer,
it	is	often	easiest	to	just	use	YAML.

The	state	execution	module	contains	a	number	of	functions	that	exist	primarily	for
troubleshooting.	We	used	state.show_sls	in	our	examples,	with	--out	yaml,	because	it
displays	the	output	in	a	format	that	we’re	already	used	to	in	our	SLS	files.	However,	some
other	useful	functions	are:

state.show_low_sls:	Shows	data	from	a	single	SLS	file,	after	it	has	been	converted
to	low	data	by	the	State	compiler.	Low	data	is	often	easier	to	visualize	when	writing
state	modules.
state.show_highstate:	Shows	all	of	the	states,	as	they	would	be	applied	to	a
Minion,	according	to	the	top.sls	file.	The	output	from	this	will	look	as	if	all	of	the
SLS	files	have	been	shoved	together.	This	can	be	useful	when	troubleshooting
rendering	issues	that	you	believe	span	across	multiple	SLS	files.
state.show_lowstate:	The	data	returned	from	this	function	is	the	same	as	what
state.show_highstate	returns,	but	after	being	processed	by	the	state	compiler.
Again,	this	is	like	a	long	version	of	state.show_low_sls.

Summary
Renderers	are	used	to	convert	various	file	formats	into	a	data	structure	that	is	usable
internally	by	Salt.	Data-serialization	renderers	return	data	in	a	dictionary	format,	whereas
templating	renderers	return	data	that	can	be	processed	by	a	data	serializer.	Both	types	of
renderer	look	the	same,	and	require	a	render()	function.

Now	that	we	know	how	to	handle	the	data	going	into	Salt,	it’s	time	to	look	at	the	data
coming	back	out	of	Salt.	Next	up:	handling	return	data.

Chapter	6.	Handling	Return	Data
When	the	Salt	Master	issues	a	command	to	a	Minion	and	the	task	completes	successfully,
there	will	always	be	return	data.	The	salt	command	normally	listens	for	return	data,	and
if	it	is	sent	back	in	time,	it	will	be	displayed	using	an	outputter.	But	whether	or	not	that
happens,	the	Minion	will	always	send	return	data	back	to	the	Master,	and	any	other
destinations	configured	as	returners.

This	chapter	is	all	about	handling	that	return	data,	using	both	returner	and	outputter
modules.	We’ll	talk	about:

How	data	is	returned	to	the	Master
Writing	returner	modules
Extending	returners	to	be	used	as	external	job	caches
Troubleshooting	returners
Writing	outputter	modules
Troubleshooting	outputters

Returning	data	to	external	destinations
The	most	important	type	of	module	to	handle	return	data	is	called	a	returner.	When	the
Master	publishes	a	task	(called	a	job)	to	a	target,	it	assigns	a	job	ID	(or	JID)	to	it.	When	a
Minion	finishes	that	job,	it	sends	the	resulting	data	back	to	the	Master,	along	with	the	JID
that	is	associated	with	it.

Returning	data	to	the	master
Salt’s	architecture	is	based	on	the	publish-subscribe	pattern,	known	colloquially	as
pub/sub.	In	this	design,	one	or	more	clients	subscribe	to	a	message	queue.	When	a
message	is	published	to	the	queue,	any	current	subscribers	receive	a	copy,	which	they
usually	process	in	some	way.

Salt	in	fact	makes	use	of	two	message	queues,	both	of	which	are	managed	by	the	Master.
The	first	is	used	by	the	Master	to	publish	commands	to	its	Minions.	Each	Minion	can	see
the	messages	published	to	this	queue,	but	they	will	only	react	to	them	if	the	Minions	are
included	in	the	target.	A	message	targeted	to	'*'	will	be	processed	by	all	Minions	that	are
connected,	whereas	one	targeted	to	192.168.0.0/16	using	the	-s	command-line	option
will	only	be	processed	by	Minions	whose	IP	address	starts	with	192.168.

The	second	message	queue	is	also	hosted	by	the	Master,	but	messages	are	published	to	it
from	Minions,	and	the	Master	itself	is	the	subscriber.	These	messages	are	normally	stored
in	the	Master’s	job	cache.	Returners	can	be	configured	to	send	these	messages	to	other
destinations,	and	some	returners	can	also	use	those	destinations	as	the	job	cache	itself.	If
the	salt	command	is	still	listening	when	those	messages	are	received,	then	it	will	also
send	the	data	to	an	outputter.

Listening	to	event	data
Every	time	a	message	is	published	to	the	queue,	an	event	is	also	fired	along	Salt’s	event
bus.	You	can	use	the	state.event	runner	to	listen	to	the	event	bus	and	display	those
messages	in	real	time.

Make	sure	you	have	the	salt-master	service	running,	and	the	salt-minion	service	on	at
least	one	machine	connected	to	it.	On	the	Master,	run	the	following	command:

#	salt-run	state.event

In	another	terminal,	issue	a	command	to	one	or	more	Minions:

#	salt	'*'	test.ping

In	the	terminal	that	is	running	the	event	listener,	you	will	see	the	job	go	out	to	the
Minions:

Event	fired	at	Sun	Dec	20	12:04:15	2015

Tag:	20151220120415357444

Data:

{'_stamp':	'2015-12-20T19:04:15.387417',

	'minions':	['trotter',

													'achatz']}

The	information	contained	in	this	event	is	no	more	than	a	timestamp	indicating	when	the
job	was	created,	and	a	list	of	Minions	that	the	specified	target	(in	our	example,	all	of	them)
are	expected	to	execute	the	job	and	return	data	from	it.

This	is	a	very	small	task,	so	almost	immediately	you	should	start	seeing	return	data	show
up	from	Minions.	Because	each	Minion	responds	individually,	you	will	see	one	entry	per
Minion:

Event	fired	at	Sun	Dec	20	12:04:15	2015

Tag:	salt/job/20151220120415357444/ret/dufresne

Data:

{'_stamp':	'2015-12-20T19:04:15.618340',

	'cmd':	'_return',

	'fun':	'test.ping',

	'fun_args':	[],

	'id':	'dufresne',

	'jid':	'20151220120415357444',

	'retcode':	0,

	'return':	True,

	'success':	True}

Take	note	of	the	tags	used	for	each	event.	The	event	that	was	created	when	the	Master
created	the	job	has	a	tag	that	contains	just	the	JID.	Each	return	event	contains	a	tag	that	is
namespaced	with	salt/job/<JID>/ret/<Minion	ID>.

After	a	few	seconds,	the	salt	command	will	also	return,	and	notify	you	which	Minions	did
and	did	not	finish	the	job	that	was	assigned	to	them:

#	salt	'*'	test.ping

achatz:

				True

trotter:

				Minion	did	not	return.	[Not	connected]

In	our	case,	achatz	was	active,	and	able	to	return	True	as	requested.	Unfortunately,
trotter	isn’t	around	anymore,	and	so	wasn’t	able	to	do	what	we	need.

When	returners	listen	to	Minions
Each	time	the	Master	receives	a	response	from	a	Minion,	it	will	call	out	to	a	returner.	If	a
job	targets,	say,	400	Minions,	then	you	should	expect	the	returner	to	be	executed	400
times,	one	for	each	Minion.

This	is	not	normally	a	problem.	If	a	returner	connects	to	a	database,	then	that	database	is
likely	to	be	able	to	handle	400	responses	very	quickly.	However,	if	you	create	a	returner
that	sends	messages	to	humans,	such	as	the	SMTP	returner	that	ships	with	Salt,	then	you
can	expect	400	individual	e-mails	to	be	sent;	one	per	Minion.

There	is	one	more	thing	to	keep	in	mind:	returners	were	originally	designed	to	be	executed
on	Minions.	The	idea	behind	this	was	to	offload	the	work	to	Minions	so	that	in	a	large
environment,	a	Master	wouldn’t	be	required	to	handle	all	of	the	work	necessary	to,	say,
connect	to	a	database	once	per	Minion	per	job.

Returners	can	now	be	run	either	by	a	Master	or	by	a	Minion,	and	when	writing	your	own
returners,	you	should	expect	either	to	be	a	possibility.	We	will	discuss	the	configuration
for	this	later	in	the	chapter,	when	we	talk	about	job	caches.

Let’s	go	ahead	and	see	an	example	of	this	in	action.	Connect	to	one	of	your	Minions	and
stop	the	salt-minion	service.	Then	start	it	running	in	the	foreground,	using	the	info	log
level:

#	salt-minion	--log-level	info

Then	connect	to	the	Master	and	issue	a	job	directly	to	it:

#	salt	dufresne	test.ping

dufresne:

				True

Switch	back	to	the	Minion,	and	you	will	see	some	information	about	the	job:

[INFO]	User	sudo_techhat	Executing	command	test.ping	with	jid	

20151220124647074029

[INFO]	Starting	a	new	job	with	PID	25016

[INFO]	Returning	information	for	job:	20151220124647074029

Now	issue	the	command	again,	but	with	the	--return	flag	set	to	local.	This	returner	will
display	the	return	data	directly	to	the	local	console:

#	salt	dufresne	--return	local	test.ping

dufresne:

				True

Switch	back	to	the	Minion	again	to	check	out	the	return	data:

[INFO]	User	sudo_techhat	Executing	command	test.ping	with	jid	

20151220124658909637

[INFO]	Starting	a	new	job	with	PID	25066

[INFO]	Returning	information	for	job:	20151220124658909637

{'fun_args':	[],	'jid':	'20151220124658909637',	'return':	True,	'retcode':	

0,	'success':	True,	'fun':	'test.ping',	'id':	'dufresne'}

Your	first	returner
Go	ahead	and	open	up	salt/returners/local.py.	There’s	not	much	in	here,	but	what
we’re	interested	in	is	the	returner()	function.	It’s	very,	very	small:

def	returner(ret):

				'''

				Print	the	return	data	to	the	terminal	to	verify	functionality

				'''

				print(ret)

In	fact,	all	it	does	is	accept	return	data	as	ret,	and	then	print	it	to	the	console.	It	doesn’t
even	attempt	any	sort	of	pretty	printing;	it	just	dumps	it	as	is.

This	is	in	fact	the	bare	minimum	that	a	returner	needs:	a	returner()	function	that	accepts
a	dictionary,	and	then	does	something	with	it.	Let’s	go	ahead	and	create	our	own	returner,
which	stores	job	information	locally	in	JSON	format.

'''

Store	return	data	locally	in	JSON	format

This	file	should	be	saved	as	salt/returners/local_json.py

'''

import	json

import	salt.utils

def	returner(ret):

				'''

				Open	new	file,	and	save	return	data	to	it	in	JSON	format

				'''

				path	=	'/tmp/salt-{0}-{1}.json'.format(ret['jid'],	ret['id'])

				with	salt.utils.fopen(path,	'w')	as	fp_:

								json.dump(ret,	fp_)

Save	this	file,	on	a	Minion,	and	then	issue	a	job	to	it.	It	doesn’t	matter	whether	or	not	you
restart	the	salt-minion	service;	returner	modules	use	LazyLoader.	But	we’ll	go	ahead	and
use	salt-call	anyway:

#	salt-call	--local	--return	local_json	test.ping

local:

				True

Go	ahead	and	look	inside	the	/tmp/	directory:

#	ls	-l	/tmp/salt*

-rw-r--r--	1	root		root		132	Dec	20	13:03	salt-20151220130309936721-

dufresne.json

If	you	take	a	look	inside	that	file,	you	will	see	return	data	that	looks	very	similar	to	what
we	received	from	the	local	returner,	except	that	it	is	in	JSON	format:

#	cat	/tmp/salt-20151220130309936721-dufresne.json

{"fun_args":	[],	"jid":	"20151220130309936721",	"return":	true,	"retcode":	

0,	"success":	true,	"fun":	"test.ping",	"id":	"dufresne"}

Using	job	caches
In	a	way,	our	JSON	returner	is	a	job	cache,	because	it	caches	return	data.	Unfortunately,	it
doesn’t	contain	any	code	to	do	anything	with	the	data	once	it’s	saved.	By	updating	the
logic	and	adding	a	few	functions,	we	can	extend	the	functionality.

Right	now,	our	returner	behaves	like	little	more	than	a	set	of	log	files.	Let’s	change	it	to
behave	more	like	a	flat-file	database.	We’ll	use	the	JID	as	the	access	key,	and	format	the
directory	structure	based	on	the	dates	in	the	JIDs:

import	json

import	os.path

import	salt.utils

import	salt.syspaths

def	_job_path(jid):

				'''

				Return	the	path	for	the	requested	JID

				'''

				return	os.path.join(

								salt.syspaths.CACHE_DIR,

								'master',

								'json_cache',

								jid[:4],

								jid[4:6],

								jid[6:],

)

def	returner(ret):

				'''

				Open	new	file,	and	save	return	data	to	it	in	JSON	format

				'''

				path	=	os.path.join(_job_path(ret['jid']),	ret['id'])	+	'/'

				__salt__['file.makedirs'](path)

				ret_file	=	os.path.join(path,	'return.json')

				with	salt.utils.fopen(ret_file,	'w')	as	fp_:

								json.dump(ret,	fp_)

We	haven’t	changed	anything	except	for	the	directory	structure,	and	how	it’s	handled.	The
private	function	_job_path()	will	standardize	the	directory	structure,	and	can	be	used	by
future	functions.	We’ve	also	made	use	of	salt.syspaths	to	detect	where	Salt	is
configured	to	keep	cache	files	on	this	machine.	When	run	against	a	Minion	called
dufresne,	the	path	used	to	store	the	return	data	will	look	like:

/var/cache/salt/master/json_cache/2015/12/21134608721496/dufresne/return.js

on

We’ll	also	need	to	store	information	about	the	job	itself.	The	return.json	file	contains
some	information	about	the	job,	but	not	all	of	it.

Let’s	go	ahead	and	add	a	function	that	saves	the	metadata	about	the	job.	This	metadata	is
called	the	load,	and	contains	a	jid,	a	dictionary	called	clear_load	that	contains	the	bulk

of	the	metadata,	and	a	list	called	minions,	which	will	contain	a	list	of	all	of	the	Minions
that	were	included	in	the	target:

def	save_load(jid,	clear_load,	minions=None):

				'''

				Save	the	load	to	the	specified	JID

				'''

				path	=	os.path.join(_job_path(jid))	+	'/'

				__salt__['file.makedirs'](path)

				load_file	=	os.path.join(path,	'load.json')

				with	salt.utils.fopen(load_file,	'w')	as	fp_:

								json.dump(clear_load,	fp_)

				if	'tgt'	in	clear_load:

								if	minions	is	None:

												ckminions	=	salt.utils.minions.CkMinions(__opts__)

												#	Retrieve	the	minions	list

												minions	=	ckminions.check_minions(

																				clear_load['tgt'],

																				clear_load.get('tgt_type',	'glob')

)

								minions_file	=	os.path.join(path,	'minions.json')

								with	salt.utils.fopen(minions_file,	'w')	as	fp_:

												json.dump(minions,	fp_)

Once	again,	we	generate	the	path	that	the	data	will	be	written	to.	The	clear_load
dictionary	will	be	written	to	load.json	inside	that	path.	The	list	of	Minions	is	a	little
trickier,	since	it	may	contain	an	empty	list.	If	it	does,	we	use	a	class	inside
salt.utils.minions	called	CkMinions	to	generate	that	list,	based	on	the	target	that	was
used	for	the	job.	Once	we	have	that	list,	we	write	it	as	minions.json.

Testing	this	is	also	a	little	trickier,	because	it	requires	a	job	that	was	generated	from	the
Master	in	order	to	generate	all	of	the	metadata	that	is	needed.	We	also	need	to	let	the
Master	know	that	we’re	using	an	external	job	cache.

First,	edit	the	master	configuration	file	and	add	an	ext_job_cache	line,	which	is	set	to
local_json:

ext_job_cache:	local_json

Note
External	job	cache	versus	Master	job	cache

When	the	Master	is	set	to	use	an	external	job	cache	(with	the	ext_job_cache)	setting,	the
returner	code	will	be	executed	on	the	Minion.	This	will	relieve	load	on	the	Master	since
each	Minion	will	be	recording	its	own	job	data,	instead	of	asking	the	Master	to.	However,
any	credentials	necessary	to	connect	to	the	job	cache	(for	instance,	if	a	database	was	used)
will	need	to	be	accessible	to	the	Minion.

When	the	Master	is	set	to	use	a	Master	job	cache	(with	the	master_job_cache)	setting,	the
returner	code	will	be	executed	on	the	Master.	This	will	increase	the	workload	on	the
Master,	but	will	save	you	from	having	to	make	credentials	available	to	Minions.

Once	you’ve	turned	on	the	job	cache,	let’s	go	ahead	and	restart	both	the	Master	and	the
Minion,	and	try	things	out:

#	systemctl	restart	salt-master

#	systemctl	restart	salt-minion

#	salt	dufresne	test.ping

dufresne:

				True

#	find	/var/cache/salt/master/json_cache/

/var/cache/salt/master/json_cache/2015/12/

/var/cache/salt/master/json_cache/2015/12/21184312454127

/var/cache/salt/master/json_cache/2015/12/21184312454127/load.json

/var/cache/salt/master/json_cache/2015/12/21184312454127/dufresne

/var/cache/salt/master/json_cache/2015/12/21184312454127/dufresne/return.js

on

/var/cache/salt/master/json_cache/2015/12/21184312454127/minions.json

#	cat	/var/cache/salt/master/json_cache/2015/12/21184312454127/load.json

{"tgt_type":	"glob",	"jid":	"20151221184312454127",	"cmd":	"publish",	

"tgt":	"dufresne",	"kwargs":	{"delimiter":	":",	"show_timeout":	true,	

"show_jid":	false},	"ret":	"local_json",	"user":	"sudo_larry",	"arg":	[],	

"fun":	"test.ping"}

#	cat	/var/cache/salt/master/json_cache/2015/12/21184312454127/minions.json

["dufresne"]

Now	we	have	the	information	being	saved,	but	we	don’t	have	any	way	to	retrieve	it,
outside	of	manually	looking	inside	the	files.	Let’s	go	ahead	and	complete	our	returner	with
some	functions	that	can	read	the	data.

First,	we	need	a	function	that	just	returns	information	about	the	job	load:

def	get_load(jid):

				'''

				Return	the	load	data	for	a	specified	JID

				'''

				path	=	os.path.join(_job_path(jid),	'load.json')

				with	salt.utils.fopen(path,	'r')	as	fp_:

								return	json.load(fp_)

We	also	need	a	function	that	gets	the	return	data	from	each	job.	These	two	functions	will
be	used	together	by	the	jobs	runner:

def	get_jid(jid):

				'''

				Return	the	information	returned	when	the	specified	JID	was	executed

				'''

				minions_path	=	os.path.join(_job_path(jid),	'minions.json')

				with	salt.utils.fopen(minions_path,	'r')	as	fp_:

								minions	=	json.load(fp_)

				ret	=	{}

				for	minion	in	minions:

								data_path	=	os.path.join(_job_path(jid),	minion,	'return.json')

								with	salt.utils.fopen(data_path,	'r')	as	fp_:

												ret[minion]	=	json.load(fp_)

				return	ret

We	don’t	need	to	restart	the	Master	to	be	able	to	test	this,	since	the	jobs	runner	doesn’t
require	the	Master	to	be	running:

#	salt-run	jobs.print_job	20151221184312454127

20151221184312454127:

				Arguments:

				Function:

								test.ping

				Result:

								dufresne:

												fun:

																test.ping

												fun_args:

												id:

																dufresne

												jid:

																20151221184312454127

												retcode:

																0

												return:

																True

												success:

																True

				StartTime:

								2015,	Dec	21	18:43:12.454127

				Target:

								dufresne

				Target-type:

								glob

				User:

								sudo_techhat

We’ll	also	need	a	function	that	returns	a	list	of	JIDs,	along	with	some	basic	information
about	their	associated	jobs.	This	function	will	make	use	of	another	import,	which	we	will
use	to	quickly	locate	the	load.json	files:

import	salt.utils.find

def	get_jids():

				'''

				Return	a	dict	mapping	all	JIDs	to	job	information

				'''

				path	=	os.path.join(

								salt.syspaths.CACHE_DIR,

								'master',

								'json_cache'

)

				ret	=	{}

				finder	=	salt.utils.find.Finder({'name':	'load.json'})

				for	file_	in	finder.find(path):

								with	salt.utils.fopen(file_)	as	fp_:

												data	=	json.load(fp_)

								if	'jid'	in	data:

												ret[data['jid']]	=	{

																'Arguments':	data['arg'],

																'Function':	data['fun'],

																'StartTime':	salt.utils.jid.jid_to_time(data['jid']),

																'Target':	data['tgt'],

																'Target-type':	data['tgt_type'],

																'User':	data['user'],

												}

				return	ret

Once	again,	we	test	this	with	the	jobs	runner:

#	salt-run	jobs.list_jobs

20151221184312454127:

				Arguments:

				Function:

								test.ping

				StartTime:

								2015,	Dec	21	18:43:12.454127

				Target:

								dufresne

				Target-type:

								glob

				User:

								sudo_techhat

The	final	module
Once	we	have	compiled	all	of	the	code	together,	the	final	module	will	look	like	this:

'''

Store	return	data	locally	in	JSON	format

This	file	should	be	saved	as	salt/returners/local_json.py

'''

import	json

import	os.path

import	salt.utils

import	salt.utils.find

import	salt.utils.jid

import	salt.syspaths

def	_job_path(jid):

				'''

				Return	the	path	for	the	requested	JID

				'''

				return	os.path.join(

								salt.syspaths.CACHE_DIR,

								'master',

								'json_cache',

								jid[:4],

								jid[4:6],

								jid[6:],

)

def	returner(ret):

				'''

				Open	new	file,	and	save	return	data	to	it	in	JSON	format

				'''

				path	=	os.path.join(_job_path(ret['jid']),	ret['id'])	+	'/'

				__salt__['file.makedirs'](path)

				ret_file	=	os.path.join(path,	'return.json')

				with	salt.utils.fopen(ret_file,	'w')	as	fp_:

								json.dump(ret,	fp_)

def	save_load(jid,	clear_load,	minions=None):

				'''

				Save	the	load	to	the	specified	JID

				'''

				path	=	os.path.join(_job_path(jid))	+	'/'

				__salt__['file.makedirs'](path)

				load_file	=	os.path.join(path,	'load.json')

				with	salt.utils.fopen(load_file,	'w')	as	fp_:

								json.dump(clear_load,	fp_)

												minions	=	ckminions.check_minions(

																				clear_load['tgt'],

																				clear_load.get('tgt_type',	'glob')

)

								minions_file	=	os.path.join(path,	'minions.json')

								with	salt.utils.fopen(minions_file,	'w')	as	fp_:

												json.dump(minions,	fp_)

def	get_load(jid):

				'''

				Return	the	load	data	for	a	specified	JID

				'''

				path	=	os.path.join(_job_path(jid),	'load.json')

				with	salt.utils.fopen(path,	'r')	as	fp_:

								return	json.load(fp_)

def	get_jid(jid):

				'''

				Return	the	information	returned	when	the	specified	JID	was	executed

				'''

				minions_path	=	os.path.join(_job_path(jid),	'minions.json')

				with	salt.utils.fopen(minions_path,	'r')	as	fp_:

								minions	=	json.load(fp_)

				ret	=	{}

				for	minion	in	minions:

								data_path	=	os.path.join(_job_path(jid),	minion,	'return.json')

								with	salt.utils.fopen(data_path,	'r')	as	fp_:

												ret[minion]	=	json.load(fp_)

				return	ret

def	get_jids():

				'''

				Return	a	dict	mapping	all	JIDs	to	job	information

				'''

				path	=	os.path.join(

								salt.syspaths.CACHE_DIR,

								'master',

								'json_cache'

)

				ret	=	{}

				finder	=	salt.utils.find.Finder({'name':	'load.json'})

				for	file_	in	finder.find(path):

								with	salt.utils.fopen(file_)	as	fp_:

												data	=	json.load(fp_)

								if	'jid'	in	data:

												ret[data['jid']]	=	{

																'Arguments':	data['arg'],

																'Function':	data['fun'],

																'StartTime':	salt.utils.jid.jid_to_time(data['jid']),

																'Target':	data['tgt'],

																'Target-type':	data['tgt_type'],

																'User':	data['user'],

												}

				return	ret

Troubleshooting	returners
As	you	have	seen,	there	are	a	number	of	different	pieces	of	Salt	that	use	different	parts	of
the	returner.	Some	of	these	require	a	Master	to	be	running,	which	makes	them	a	little
trickier	to	troubleshoot.	Here	are	some	strategies	that	can	help.

Testing	with	salt-call
The	returner()	function	can	be	tested	with	the	salt-call	command.	When	doing	this,
simple	print	statements	can	be	used	to	display	information	to	your	console.	If	there	are
typos,	Python	will	display	error	messages.	If	the	problem	pertains	to	technically	valid,	but
still	buggy	code,	then	print	statements	can	be	used	to	track	down	the	problem.

Testing	with	the	Master	running
The	save_load()	function	requires	a	job	to	be	generated	on	the	Master,	to	one	or	more
Minions.	This	of	course	requires	both	a	Master	and	at	least	one	Minion	to	be	running.	You
can	run	them	in	the	foreground	in	separate	terminals,	in	order	to	see	the	output	from	print
statements:

#	salt-master	--log-level	debug

#	salt-minion	--log-level	debug

If	you	are	using	ext_job_cache,	then	it	is	the	Minion	that	you	will	want	to	be	watching.	If
you	are	using	the	master_job_cache,	then	watch	the	Master.

Testing	with	runners
The	get_load(),	get_jid(),	and	get_jids()	functions	are	all	used	by	the	jobs	runner.
This	runner	doesn’t	require	either	Master	or	Minions	to	be	running;	it	only	requires	that
the	data	store	that	is	being	used	by	the	returner	is	available.	Again,	print	statements
inside	these	functions	will	display	information	when	the	jobs	runner	is	used.

Writing	outputter	modules
When	the	salt	command	is	used,	any	return	data	that	is	received	during	the	wait	period
will	be	displayed	to	the	user.	Outputter	modules	are	used	in	this	case	to	display	that	data	to
the	console	(or	more	accurately,	to	STDOUT),	usually	in	a	format	that	is	somewhat	user-
friendly.

Pickling	our	output
Because	Salt	already	ships	with	a	json	outputter,	we’ll	take	advantage	of	the	fact	that
output	data	is	technically	going	to	STDOUT,	and	put	together	an	outputter	that	uses	a
serializer	(pickle)	that	may	dump	binary	data:

'''

Pickle	outputter

This	file	should	be	saved	as	salt/output/pickle.py

'''

from	__future__	import	absolute_import

import	pickle

def	output(data):

				'''

				Dump	out	data	in	pickle	format

				'''

				return	pickle.dumps(data)

This	outputter	is	about	as	simple	as	it	gets.	The	only	required	function	is	called
output(),	and	it	accepts	a	dictionary.	It	doesn’t	matter	what	the	dictionary	is	called,	so
long	as	the	function	has	one	defined.

The	pickle	library	is	built	into	Python,	and	as	you	saw	with	the	pickle	renderer,	is	very
easy	to	use:	we	just	tell	it	to	dump	out	the	data	into	a	string,	which	is	returned	to	Salt.

As	usual,	we	can	test	this	outputter	using	salt-call:

#	salt-call	--local	test.ping	--out	pickle

(dp0

S'local'

p1

I01

s.

If	you	take	a	look	at	some	of	the	other	outputters	that	ship	with	Salt,	you’ll	notice	that
some	are	just	as	simple.	Even	the	json	outputter	doesn’t	do	any	extra	work,	outside	of
formatting	the	output.	Most	execution	modules	will	make	use	of	the	nested	outputter	by
default.	nested	uses	a	format	based	on	YAML,	but	with	color-coded	data.	The	state
functions,	however,	use	the	highstate	outputter,	which	builds	upon	nested	to	return	an
aggregated	version	of	the	data,	with	statistics	about	the	success	of	the	state	run.

Troubleshooting	outputters
Outputters	can	be	one	of	the	easiest	types	of	module	to	troubleshoot.	You	should	be	able
to	test	any	of	them	using	the	salt-call	command.

When	testing,	start	with	a	simple	test.ping,	just	to	make	sure	that	you	are	getting	some
output	in	the	first	place.	Once	you’re	satisfied	that	your	output()	function	is	returning
simple	data	that	looks	correct,	take	a	look	at	grains.items,	which	will	make	use	of	both
lists	and	dictionaries.

You	may	find	it	useful	to	test	your	output	against	another	outputter	that	is	known	to	work
well.	I	find	that	the	pprint	outputter	tends	to	be	the	most	succinct	at	displaying	data	in	a
format	that	is	easy	to	read,	but	takes	the	least	amount	of	screen	real-estate:

#	salt-call	--local	grains.items	--out	pickle

#	salt-call	--local	grains.items	--out	pprint

Summary
Return	data	command	is	always	sent	to	the	Master,	even	after	the	salt	command	has
finished	listening	for	it.	The	event	bus	picks	up	those	messages	and	can	store	them	in	an
external	job	cache.	If	the	salt	command	is	still	listening,	then	it	will	be	displayed	using	an
outputter.	But	specifying	a	returner	will	always	send	return	data	someplace	to	be
processed,	so	long	as	the	Master	itself	is	still	running.

Returners	can	be	specified	using	the	--return	flag,	or	can	be	set	to	run	by	default	on	the
Minion	using	the	ext_job_cache	master	configuration	option,	or	on	the	Master	using	the
master_job_cache	master	configuration	option.

Now	that	we	have	ways	of	handling	return	data,	it’s	time	to	create	more	intelligent
processes	to	execute	our	commands.	Next	up:	runners.

Chapter	7.	Scripting	with	Runners
One	of	the	design	principles	behind	Unix	is	that	programs	should	be	small,	doing	only	one
thing,	but	doing	it	well.	Execution	modules	follow	this	pattern,	using	functions	that
normally	do	only	one	thing,	grouped	with	related	functions	into	modules.	When	a	function
is	executed,	it	performs	that	job,	and	then	returns.

In	Unix,	these	small	programs	can	be	combined	together	using	a	shell	script,	which	ties
them	into	a	more	powerful	tool.	Salt’s	runner	system	brings	that	element	of	scripting	to
Salt,	using	the	same	language	that	Salt	itself	is	written	in:	Python.	In	this	chapter,	we	will
discuss:

Connecting	to	Salt’s	local	client
Adding	extra	logic	to	execution	modules
Troubleshooting	runners

Using	Salt’s	local	client
Runners	were	originally	designed	to	run	on	the	Master,	to	combine	multiple	jobs	across
Minions	into	one	complete	task.	In	order	to	communicate	with	those	Minions,	a	runner
needs	to	use	local_client.	Unlike	other	components,	this	is	not	built	directly	into
runners;	you	need	to	initialize	the	client	yourself.	Let’s	set	up	a	quick	example:

import	salt.client

client	=	salt.client.get_local_client(__opts__['conf_file'])

minions	=	client.cmd('*',	'test.ping',	timeout=__opts__['timeout'])

These	three	lines	form	the	basis	of	setting	up	and	using	the	local	client.	First,	we	import
the	salt.client	library.	Then,	we	instantiate	a	client	object,	which	is	used	to
communicate	to	Salt.	When	creating	that	client	object,	you	do	need	to	tell	it	where	to	find
Salt’s	configuration	file.	Luckily,	this	is	something	we	get	for	free	in	the	__opts__
dictionary,	and	we’re	unlikely	to	need	to	change	it,	so	that	line	in	your	code	will	probably
always	look	exactly	like	what	we’ve	done	here.

The	last	line	uses	the	client	object	to	issue	a	command	to	a	target.	What	is	returned	from
that	is	a	list	of	the	Minions	that	responded,	within	the	specified	timeout.	Let’s	go	ahead
and	break	out	that	last	line	into	components,	and	discuss	each	one:

minions	=	client.cmd(

				'*',		#	The	target	to	use

				'test.ping',		#	The	command	to	issue

				timeout=__opts__['timeout']		#	How	long	to	wait	for	a	response

)

By	now,	you	should	be	used	to	using	'*'	as	a	target,	and	know	that	it	refers	to	all	of	the
Minions.	And	you	should	know	that	test.ping	is	a	standard	command,	often	used	to
check	and	see	which	Minions	are	responding.	The	timeout	is	also	required,	but	there’s
rarely	a	need	to	use	anything	but	the	configured	timeout,	so	__opts__['timeout']	will
almost	always	be	sufficient.

Scripting	with	the	local	client
Runners,	like	other	Salt	modules,	are	based	around	functions	inside	of	modules.	The
preceding	code	is	technically	correct,	but	it’s	not	where	it	needs	to	be	in	order	to	be	used
as	a	runner.	Let’s	go	ahead	and	create	a	runner	module	called	scan,	which	we’ll	use	to
collect	various	pieces	of	information	about	all	of	our	Minions:

'''

Scan	Minions	for	various	pieces	of	information

This	file	should	be	saved	as	salt/runners/scan.py

'''

import	salt.client

__func_alias__	=	{

	 'up_':	'up'

}

def	up_():

				'''

				Return	a	list	of	minions	which	are	responding

				'''

				client	=	salt.client.get_local_client(__opts__['conf_file'])

				minions	=	client.cmd('*',	'test.ping',	timeout=__opts__['timeout'])

				return	sorted(minions.keys())

At	the	moment,	we	don’t	have	much,	but	it	is	functional	as	a	runner.	Our	first	function	is
called	up,	but	since	it’s	considered	bad	form	to	use	function	names	shorter	than	three
characters,	we’ve	defined	it	as	up_(),	and	used	__func_alias__	to	make	it	callable	as	up.

This	function	will	connect	to	the	local	client,	issue	a	test.ping	to	all	Minions,	and	then
return	a	list	of	which	Minions	responded.	If	we	were	to	return	minions	instead	of
minions.keys(),	then	we	would	get	a	list	of	all	of	the	Minions	that	responded,	and	what
they	responded	with.	Since	we	know	that	test.ping	will	always	return	True	(assuming
that	it	returns	in	the	first	place),	we	can	skip	returning	that	data.	We	also	sorted	the	list	of
Minions,	to	make	it	easier	to	read.

To	execute	this	function,	use	the	salt-run	command:

#	salt-run	scan.up

-	achatz

-	dufresne

Note
Why	not	create	the	client	connection	at	the	top	of	the	module,	so	that	every	function	can
have	access	to	it?	Due	to	the	way	the	loader	presents	modules	to	Salt,	the	__opts__
dictionary	is	only	available	inside	functions,	so	we	can’t	use	it	at	the	top	of	the	module.
You	could	hardcode	the	correct	path,	but	as	we	all	know,	hardcoded	data	is	also	poor	form,
and	to	be	avoided.

If	you	only	want	to	define	the	client	once,	then	consider	using	a	private	function	called

_get_conn(),	which	returns	the	connection	object.	However,	since	it	would	only	contain
one	line	of	code,	and	that	line	is	unlikely	to	ever	change,	it’s	probably	not	worth	it.

The	scan.up	function	that	we’ve	created	tells	us	which	Minions	are	responding,	but	you
may	be	more	interested	in	which	ones	aren’t	responding.	Those	are	more	likely	to	tell	you
when	Minions	are	having	connection	issues.	Let’s	go	ahead	and	add	a	function	called
down():

import	salt.key

def	down():

				'''

				Return	a	list	of	minions	which	are	NOT	responding

				'''

				minions	=	up_()

				key	=	salt.key.Key(__opts__)

				keys	=	key.list_keys()

				return	sorted(set(keys['minions'])	–	set(minions))

First,	we	need	to	know	which	Minions	have	responded,	but	we	already	have	a	function
that	reports	that	to	us,	so	we	just	use	the	response	from	that.

We	also	need	a	list	of	the	Minions	that	are	expected	to	return.	We	can	get	this	by	creating	a
salt.key	object,	and	asking	it	for	a	list	of	Minions	whose	keys	have	been	accepted	by	the
Master.

Now	that	we	have	a	list	of	which	Minions	should	respond,	we	remove	the	Minions	that	did
respond	from	that	list,	and	if	any	Minions	are	left	in	the	list,	then	they	are	the	ones	that	we
can	assume	are	down.	As	before,	we’ve	sorted	the	list	of	Minions	as	we	return	them,	to
make	it	easy	to	read:

#	salt-run	scan.down

-	adria

-	trotter

Using	different	targets
One	major	difference	that	separates	the	salt-run	command	from	the	salt	command	is
the	inability	to	specify	a	target	on	the	command	line.	This	is	because	runners	are	designed
to	be	able	to	determine	their	targets	on	their	own.

Let’s	go	ahead	and	update	the	up_()	and	down()	functions	to	allow	the	user	not	only	to
specify	their	own	target	but	also	a	target	type:

def	up_(tgt='*',	tgt_type='glob'):

				'''

				Return	a	list	of	minions	which	are	responding

				'''

				client	=	salt.client.get_local_client(__opts__['conf_file'])

				minions	=	client.cmd(

								tgt,

								'test.ping',

								expr_form=tgt_type,

								timeout=__opts__['timeout']

)

				return	sorted(minions.keys())

def	down(tgt='*',	tgt_type='glob'):

				'''

				Return	a	list	of	minions	which	are	NOT	responding

				'''

				minions	=	up_(tgt,	tgt_type)

				key	=	salt.key.Key(__opts__)

				keys	=	key.list_keys()

				return	sorted(set(keys['minions'])	-	set(minions))

In	our	function,	the	tgt	argument	refers	to	the	target.	The	local	client	requires	a	target	to
be	specified	anyway,	so	we	just	replace	'*'	in	our	function	with	tgt.	The	tgt_type	is	the
type	of	target	to	be	used.	By	default,	Salt	uses	a	target	type	of	glob	anyway,	but	users	can
specify	something	else	(pcre,	list,	and	so	on)	if	they	need	to.	The	name	of	this	argument
in	the	local	client	is	expr_form.	Check	the	“Target	Selection	Options”	in	the	output	of
salt	--help	to	see	which	options	are	supported	in	your	version	of	Salt.

Combining	jobs	to	add	more	logic
One	of	the	most	powerful	things	about	runners	is	the	ability	to	take	the	output	from	one
job,	and	use	it	to	start	another	job.	First,	let’s	define	a	few	things	about	our	infrastructure:

We’re	using	Salt	Virt	to	manage	some	VMs.
Some	Minions	run	hypervisors;	others	are	VMs	that	run	inside	those	hypervisors.
Some	do	not	run	a	hypervisor,	but	are	also	not	a	VM.
A	number	of	different	operating	systems	are	being	used,	such	as	Suse,	CentOS,	and
Ubuntu.

With	that	in	mind,	we	need	to	run	a	report	of	which	hypervisors	are	running	on	which
operating	systems.

We	could	use	this	Salt	command	to	discover	which	Minions	are	running	which	operating
systems:

#	salt	'*'	grains.item	os

And	we	could	run	this	command	to	find	out	which	Minions	are	virtualized:

#	salt	'*'	grains.item	virtual

But	just	because	a	Minion’s	virtual	grain	is	set	to	physical	doesn’t	mean	it’s	a
hypervisor.	We	could	run	this	command	to	find	out	which	Minions	are	running
hypervisors:

#	salt	'*'	virt.is_hyper

However,	there’s	nothing	that	can	aggregate	those	data	together	and	tell	us	which
hypervisors	are	running	which	operating	systems;	so	let’s	put	together	a	function	that	can
do	that:

def	hyper_os():

				'''

				Return	a	list	of	which	operating	system	each	hypervisor	is	running

				'''

				client	=	salt.client.get_local_client(__opts__['conf_file'])

				minions	=	client.cmd(

								'*',

								'virt.is_hyper',

								timeout=__opts__['timeout']

)

				hypers	=	[]

				for	minion	in	minions:

								if	minions[minion]	is	True:

												hypers.append(minion)

				return	client.cmd(

								hypers,

								'grains.item',

								arg=('os',),

								expr_form='list',

								timeout=__opts__['timeout']

)

After	we	create	our	client	object,	our	first	job	is	to	see	which	Minions	actually	have	a
hypervisor	running.	Then	we	loop	through	that	list	and	save	the	ones	that	are	in	another
list	called	hypers.	Because	we’re	storing	that	in	list	form,	we	can	pass	it	to	the	client	again
with	an	expr_form	of	list.

We’ve	also	added	something	new.	The	grains.item	function	expects	a	single	argument
that	tells	it	which	grain	to	look	up.	When	you	need	to	pass	a	list	of	unnamed	arguments	to
a	function,	pass	it	in	as	arg.	When	we	run	this	runner,	our	output	will	look	something	like
this:

#	salt-run	scan.hyper_os

dufresne:

				os:

								Arch

Let’s	say	we	want	to	be	able	to	run	an	arbitrary	Salt	command	on	any	machine	that	shows
up	in	that	hypervisor	list.	We’re	going	to	do	two	things	in	our	next	bit	of	code.	We’re
going	to	break	hyper_os()	into	two	functions,	called	hypers()	and	hyper_os(),	and	then
add	a	new	function	called	hyper_cmd(),	which	will	make	use	of	the	hypers()	function:

def	hypers(client=None):

				'''

				Return	a	list	of	Minions	that	are	running	hypervisors

				'''

				if	client	is	None:

								client	=	salt.client.get_local_client(__opts__['conf_file'])

				minions	=	client.cmd(

								'*',

								'virt.is_hyper',

								timeout=__opts__['timeout']

)

				hypers	=	[]

				for	minion	in	minions:

								if	minions[minion]	is	True:

												hypers.append(minion)

				return	hypers

def	hyper_os():

				'''

				Return	a	list	of	which	operating	system	each	hypervisor	is	running

				'''

				client	=	salt.client.get_local_client(__opts__['conf_file'])

				return	client.cmd(

								hypers(client),

								'grains.item',

								arg=('os',),

								expr_form='list',

								timeout=__opts__['timeout']

)

def	hyper_cmd(cmd,	arg=None,	kwarg=None):

				'''

				Execute	an	arbitrary	command	on	Minions	which	run	hypervisors

				'''

				client	=	salt.client.get_local_client(__opts__['conf_file'])

				if	arg	is	None:

								arg	=	[]

				if	not	isinstance(arg,	list):

								arg	=	[arg]

				if	kwarg	is	None:

								kwarg	=	{}

				return	client.cmd(

								hypers(client),

								cmd,

								arg=arg,

								kwarg=kwarg,

								expr_form='list',

								timeout=__opts__['timeout']

)

You	may	notice	that	each	function	is	able	to	create	its	own	client	object,	including
hypers().	This	allows	us	to	use	scan.hypers	on	its	own.	However,	it	also	allows	us	to
pass	in	a	client	object	from	other	functions.	This	can	save	a	lot	of	time	over	creating	one
client	object	per	Salt	command.

The	hyper_cmd()	function	allows	us	to	pass	in	arguments	in	a	number	of	different	ways,
or	none	at	all	if	necessary.	Using	it	without	any	arguments	would	look	like	this:

#	salt-run	scan.hyper_cmd	test.ping

Using	it	with	an	unnamed	argument	would	look	like:

#	salt-run	scan.hyper_cmd	test.ping

It	starts	to	get	tricky	when	you	pass	in	a	list	of	arguments.	By	default,	Salt	is	able	to
convert	YAML	that	is	passed	in	on	the	command	line	into	data	structures	that	can	be	used
inside	of	Salt.	This	means	that	you	can	run	this	command:

#	salt-run	scan.hyper_cmd	test.arg	[one,two]

And	Salt	will	automatically	translate	[one,two]	into	a	list	containing	a	string	of	one
followed	by	a	string	of	two.	However,	that	is	not	what	will	happen	if	you	run	this
command:

#	salt-run	scan.hyper_cmd	test.arg	one,two

In	this	case,	Salt	will	think	that	you	have	passed	in	a	string	whose	value	is	one,two.	If	you
wanted	to	allow	users	to	enter	lists	like	that,	you	would	need	to	detect	and	parse	them	out
manually.

It	gets	even	trickier	if	you	want	to	pass	in	named	arguments.	The	following	is	valid:

salt-run	scan.hyper_cmd	network.interface	kwarg="{'iface':'wlp3s0'}"

But	it’s	pretty	horrible	to	ask	users	to	type	that	in.	Let’s	go	ahead	and	shrink	our	function
down	by	using	Python’s	own	*	and	**	tools,	which	allow	us	to	accept	arbitrary	lists	and
dictionaries	from	the	command	line:

def	hyper_cmd(cmd,	*arg,	**kwarg):

				'''

				Execute	an	arbitrary	command	on	Minions	which	run	hypervisors

				'''

				client	=	salt.client.get_local_client(__opts__['conf_file'])

				return	client.cmd(

								hypers(client),

								cmd,

								arg=arg,

								kwarg=kwarg,

								expr_form='list',

								timeout=__opts__['timeout']

)

Now	we	can	run	the	following	command:

#	salt-run	scan.hyper_cmd	test.kwarg	iface='wlp3s0'

The	final	module
With	all	of	our	code	in	place,	the	final	module	will	look	like:

'''

Scan	Minions	for	various	pieces	of	information

This	file	should	be	saved	as	salt/runners/scan.py

'''

import	salt.client

import	salt.key

__func_alias__	=	{

				'up_':	'up'

}

def	up_(tgt='*',	tgt_type='glob'):

				'''

				Return	a	list	of	minions	which	are	responding

				'''

				client	=	salt.client.get_local_client(__opts__['conf_file'])

				minions	=	client.cmd(

								tgt,

								'test.ping',

								expr_form=tgt_type,

								timeout=__opts__['timeout']

				'''

				Return	a	list	of	minions	which	are	NOT	responding

				'''

				minions	=	up_(tgt,	tgt_type)

				key	=	salt.key.Key(__opts__)

				keys	=	key.list_keys()

				return	sorted(set(keys['minions'])	-	set(minions))

def	hypers(client=None):

				'''

				Return	a	list	of	Minions	that	are	running	hypervisors

				'''

				if	client	is	None:

								client	=	salt.client.get_local_client(__opts__['conf_file'])

				minions	=	client.cmd(

								'*',

								'virt.is_hyper',

								timeout=__opts__['timeout']

)

				hypers	=	[]

				for	minion	in	minions:

								if	minions[minion]	is	True:

												hypers.append(minion)

				return	hypers

def	hyper_os():

				'''

				Return	a	list	of	which	operating	system	each	hypervisor	is	running

				'''

				client	=	salt.client.get_local_client(__opts__['conf_file'])

				return	client.cmd(

								hypers(client),

								'grains.item',

								arg=('os',),

								expr_form='list',

								timeout=__opts__['timeout']

)

def	hyper_cmd(cmd,	*arg,	**kwarg):

				'''

				Execute	an	arbitrary	command	on	Minions	which	run	hypervisors

				'''

				client	=	salt.client.get_local_client(__opts__['conf_file'])

				return	client.cmd(

								hypers(client),

								cmd,

								arg=arg,

								kwarg=kwarg,

								expr_form='list',

								timeout=__opts__['timeout']

)

Troubleshooting	runners
In	a	way,	runners	are	a	little	easier	to	troubleshoot	than	other	types	of	modules.	For
instance,	even	though	they	run	on	the	Master,	they	don’t	need	the	salt-master	service	to
be	restarted	to	pick	up	new	changes.	In	fact,	unless	you’re	using	the	local	client,	you	don’t
actually	have	to	have	the	salt-master	service	running.

Working	with	the	salt-master	service
If	you	are	using	the	local	client,	and	you	try	to	issue	a	command	without	the	salt-master
service	running,	you	will	get	an	error	that	looks	like	this:

#	salt-run	scan.hyper_os

Exception	occurred	in	runner	scan.hyper_os:	Traceback	(most	recent	call	

last):

		File	"/usr/lib/python2.7/site-packages/salt/client/mixins.py",	line	340,	

in	low

				data['return']	=	self.functions[fun](*args,	**kwargs)

		File	"/usr/lib/python2.7/site-packages/salt/runners/scan.py",	line	68,	in	

hyper_os

				hypers(client),

		File	"/usr/lib/python2.7/site-packages/salt/runners/scan.py",	line	50,	in	

hypers

				timeout=__opts__['timeout']

		File	"/usr/lib/python2.7/site-packages/salt/client/__init__.py",	line	

562,	in	cmd

				**kwargs)

		File	"/usr/lib/python2.7/site-packages/salt/client/__init__.py",	line	

317,	in	run_job

				raise	SaltClientError(general_exception)

SaltClientError:	Salt	request	timed	out.	The	master	is	not	responding.	If	

this	error	persists	after	verifying	the	master	is	up,	worker_threads	may	

need	to	be	increased.

This	is	because,	although	runners	themselves	don’t	rely	on	the	salt-master	service,
Minions	do	rely	on	it	to	receive	commands,	and	send	responses	back	to	the	Master.

Timeout	issues
If	the	Master	is	running	properly	and	you’re	not	receiving	the	responses	that	you	expect,
think	about	the	targets	that	you’re	hitting.	It	is	very	common	for	a	runner	to	issue
commands	to	all	Minions,	but	if	you’re	testing	in	a	large	infrastructure,	or	you	have	keys
on	your	Master	that	belong	to	Minions	which	are	inaccessible	or	no	longer	exist,	then
runner	commands	can	take	a	long	time	to	return.

While	writing	your	modules,	you	may	want	to	consider	changing	the	target	from	'*'	to
one	specific	Minion,	or	perhaps	to	a	specific	list	of	Minions	(with	the	expr_form	set	to
'list',	as	we	did	in	our	hyper_os()	and	hyper_cmd()	functions).	Just	make	sure	you	set
it	back	before	you	push	it	into	production.

Summary
Runners	add	a	scripting	element	to	Salt,	using	Python.	They	are	designed	to	run	on	the
Master,	but	do	not	require	the	salt-master	service	to	be	running,	unless	they	are	using
the	local	client	to	issue	commands	to	Minions.	Runners	are	designed	to	manage	targeting
on	their	own,	but	you	can	add	elements	to	allow	users	to	specify	targets	anyway.	They	are
especially	useful	for	using	the	output	from	one	job	as	input	for	another	job,	which	allows
you	to	wrap	your	own	logic	around	execution	modules.

In	the	next	chapter,	we	will	allow	the	Master	to	use	external	sources	to	store	the	files	that
it	serves	to	its	Minions.	Next	up:	adding	external	file	servers.

Chapter	8.	Adding	External	File	Servers
Salt	Master	normally	keeps	its	resources	locally	on	the	machine	that	hosts	it.	This
involves,	among	other	things,	files	that	are	served	to	Minions.	The	file	server	loader
allows	you	to	use	an	external	resource	to	store	those	files,	and	treat	them	as	if	they	are
local	to	the	Master.	In	this	chapter,	we’ll	discuss:

Understanding	how	Salt	uses	files
Abstracting	external	sources	to	deliver	files	to	Salt
Using	Salt’s	cache	system
Troubleshooting	external	file	servers

How	Salt	uses	files
There	are	two	ways	that	Salt’s	built-in	file	server	uses	files	when	communicating	with
Minions.	They	can	be	served	whole	and	intact,	or	they	can	be	processed	by	a	templating
engine,	using	a	renderer	module	as	discussed	in	Chapter	5,	Rendering	Data.

In	either	case,	these	files	are	stored	in	one	or	more	sets	of	directories,	as	configured	with
the	file_roots	directive	in	the	master	configuration	file.	These	directories	are	grouped	by
environment.	When	Salt	is	looking	for	a	file,	it	will	search	through	the	directories	in	the
order	in	which	they	are	listed.	The	default	environment,	base,	normally	uses	/srv/salt/
to	store	files.	Such	a	configuration	would	look	like:

file_roots:

		base:

				-	/srv/salt/

What	many	users	don’t	realize	is	that	the	file_roots	directive	is	actually	a	configuration
option	that	is	specific	to	a	file	server	module	called	roots.	This	module,	along	with	all
other	file	server	modules,	is	configured	using	the	fileserver_backend	directive:

fileserver_backend:

		-	roots

This	is	where	you	configure	any	other	file	server	modules	to	be	used	within	Salt.	Once
again,	modules	are	configured	in	the	order	in	which	they	are	to	be	used.	When	the	Master
requests	a	file	for	a	Minion,	Salt	will	check	with	each	of	these	modules	until	it	finds	a
match.	When	it	does,	it	will	stop	looking,	and	serve	the	file	that	it	has	found.	That	means
that	if	you	have	the	following	configuration:

fileserver_backend:

		-	git

		-	roots

And	Salt	finds	the	requested	file	inside	of	Git,	it	will	ignore	any	files	that	would	otherwise
be	found	on	the	local	filesystem.

Mimicking	a	filesystem
If	you	have	ever	written	a	FUSE	filesystem	before,	you	will	recognize	some	of	the
functions	used	inside	a	Salt	file	server	module.	Many	of	the	operations	used	to	request	a
file	from	an	operating	system	are	very	similar	to	the	files	used	by	Salt	to	request	a	file.
When	it	comes	down	to	it,	a	Salt	file	server	module	is	effectively	a	virtual	filesystem,	but
with	an	API	designed	specifically	for	Salt,	rather	than	for	an	operating	system.

As	you	do	development	with	file	server	modules,	you	may	also	notice	another	trend.
While	the	data	that	is	used	may	be	stored	in	a	remote	location,	it	may	be	costly	in	terms	of
resources	to	repeatedly	retrieve	those	files.	Because	of	this,	a	number	of	file	server
modules	will	retrieve	files	from	that	remote	location	and	then	cache	them	locally	on	the
Master,	only	updating	them	as	necessary.

In	this	respect,	when	you	are	writing	a	file	server	module,	you	are	often	only
implementing	a	means	of	retrieving	and	caching	files,	and	serving	them	from	the	cache.
This	is	not	always	the	best	thing	to	do;	a	truly	dynamic	file	server	based	purely	on
database	queries	might	perform	best	by	always	performing	a	lookup.	You	need	to	decide
from	the	beginning	what	the	most	appropriate	strategy	is.

Looking	at	each	function
The	file	server	that	we	will	be	writing	will	be	based	on	SFTP.	Because	SFTP	calls	can	be
expensive	to	make,	we	will	use	a	caching	implementation	that	relies	on	a	popular	Python
library	called	Paramiko	to	retrieve	files.	For	simplicity,	we	will	only	allow	one	SFTP
server	to	be	configured,	but	if	you	find	yourself	using	this	module,	you	may	want	to
consider	allowing	multiple	endpoints	to	be	configured.

Setting	up	our	module
Before	we	go	over	the	functions	that	are	used,	we	start	setting	up	the	module	itself.	We
will	implement	a	few	functions	that	provide	objects	that	we	will	use	throughout	the	rest	of
our	module:

'''

The	backend	for	serving	files	from	an	SFTP	account.

To	enable,	add	``sftp``	to	the	:conf_master:`fileserver_backend`	option	in	

the

Master	config	file.

..	code-block::	yaml

				fileserver_backend:

						-	sftp

Each	environment	is	configured	as	a	directory	inside	the	SFTP	account.	The	

name

of	the	directory	must	match	the	name	of	the	environment.

..	code-block::	yaml

				sftpfs_host:	sftp.example.com

				sftpfs_port:	22

				sftpfs_username:	larry

				sftpfs_password:	123pass

				sftpfs_root:	/srv/sftp/salt/

'''

import	os

import	os.path

import	logging

import	time

import	salt.fileserver

import	salt.utils

import	salt.syspaths

try:

				import	fcntl

				HAS_FCNTL	=	True

except	ImportError:

				HAS_FCNTL	=	False

try:

				import	paramiko

				from	paramiko	import	AuthenticationException

				HAS_LIBS	=	True

except	ImportError:

				HAS_LIBS	=	False

__virtualname__	=	'sftp'

log	=	logging.getLogger()

transport	=	None

client	=	None

def	__virtual__():

				'''

				Only	load	if	proper	conditions	are	met

				'''

				if	__virtualname__	not	in	__opts__['fileserver_backend']:

								return	False

				if	not	HAS_LIBS:

								return	False

				if	__opts__.get('sftpfs_root',	None)	is	None:

								return	False

				global	client

				global	transport

				host	=	__opts__.get('sftpfs_host')

				port	=	__opts__.get('sftpfs_port',	22)

				username	=	__opts__.get('sftpfs_username')

				password	=	__opts__.get('sftpfs_password')

				try:

								transport	=	paramiko.Transport((host,	port))

								transport.connect(username=username,	password=password)

								client	=	paramiko.SFTPClient.from_transport(transport)

				except	AuthenticationException:

								return	False

				return	True

There’s	quite	a	bit	going	on	already!	Fortunately,	you	should	recognize	most	of	this	by
now,	so	this	part	should	go	by	quickly.

We’ve	included	a	docstring	that’s	a	bit	longer	than	usual,	but	which	explains	how	to
configure	Salt	to	use	our	module.	We	will	see	these	parameters	used	when	we	get	to	the
__virtual__()	function.

Next,	we	set	up	our	imports.	The	usage	of	most	of	these	will	be	covered	as	we	go	through
individual	functions,	but	there	are	a	couple	that	we	have	wrapped	in	try/except	blocks.
The	first	of	these	is	fcntl,	which	is	a	Unix	system	call	that	handles	file	descriptors.	This
library	is	useful	for	locking	files	in	Unix	and	Linux,	but	does	not	exist	in	Windows.
However,	the	rest	of	our	module	is	usable	in	Windows,	so	we	set	a	flag	now	that	can	be
used	later,	when	we	need	to	lock	files.

The	second	import	is	Paramiko.	This	is	one	of	the	most	popular	connection	libraries
available	for	SSH	and	SFTP	in	Python,	and	simple	to	use	for	our	purposes.	If	it	has	not
been	installed,	then	we	can	return	False	in	the	__virtual__()	function.

We’ve	added	__virtualname__,	even	though	it’s	not	strictly	necessary,	just	so	that	we
have	a	central	and	easy-to-find	place	to	name	our	module.	We	will	use	this	variable	in	the
__virtual__()	function.	We’ve	also	added	a	little	logging,	which	we’ll	make	use	of.

Before	even	loading	the	__virtual__()	function,	we’ve	defined	two	variables	to	be	used
for	connecting	to	the	SFTP	server.	We’ll	assign	a	connection	to	them	inside
__virtual__(),	and	it	will	be	used	throughout	the	rest	of	the	module.

Finally,	we	have	our	__virtual__()	function.	First,	we	check	to	see	if	our	module	has
even	been	configured	for	use.	If	not,	there’s	no	point	in	going	any	further.	We	also	check
to	make	sure	Paramiko	is	installed.	Then	we	make	sure	a	root	directory	has	been	specified
for	the	SFTP	server.	It’s	not	evident	now,	but	this	directory	will	be	required	elsewhere.	If
it’s	not	there,	then	we’re	not	even	going	to	bother	trying	to	connect	to	the	server.

If	it	is	defined,	then	we	can	go	ahead	and	try	to	make	our	connection.	Paramiko	will	raise
AuthenticationException	if	the	rest	of	our	parameters	have	been	incorrectly	defined,
and	in	that	case	of	course,	we	will	consider	this	module	unavailable	and	return	False.	But
if	all	of	those	stars	line	up,	then	we’re	ready	for	business!

Let’s	go	over	the	functions	that	we	should	find	inside	any	given	file	server	module.	In
each	section,	we	will	implement	and	explain	that	function.

envs()
We	start	off	by	reporting	which	environments	have	been	configured	for	this	file	server.	At
the	very	least,	the	base	environment	should	be	supported	and	reported,	but	it’s	best	to
offer	a	mechanism	to	support	other	environments	as	well.	Because	we’re	effectively
abstracting	a	file	management	mechanism,	it’s	often	easiest	to	just	do	this	by	separating
environments	into	directories:

def	envs():

				'''

				Treat	each	directory	as	an	environment

				'''

				ret	=	[]

				root	=	__opts__.get('sftpfs_root')

				for	entry	in	client.listdir_attr(root):

								if	str(oct(entry.st_mode)).startswith('04'):

												ret.append(entry.filename)

				return	ret

This	function	needs	to	return	a	list.	Because	we’ve	separated	out	environments	into	their
own	directories,	all	that	we	need	to	do	for	our	module	is	return	a	list	of	directories	at	the
root	directory	that	we’ve	configured.

This	function	is	tricky	to	test,	because	there’s	no	direct	interface	for	it	in	any	Salt	modules.
However,	it	can	be	tested	once	the	next	two	functions	are	in	place.

file_list()	and	dir_list()
These	two	functions	are	pretty	self-explanatory;	they	connect	to	the	remote	endpoint	and
return	a	list	of	all	files	and	directories	for	that	environment:

def	file_list(load):

				'''

				Return	a	list	of	all	files	on	the	file	server	in	a	specified	

environment

				'''

				root	=	__opts__.get('sftpfs_root')

				path	=	os.path.join(root,	load['saltenv'],	load['prefix'])

				return	_recur_path(path,	load['saltenv'])

def	dir_list(load):

				'''

				Return	a	list	of	all	directories	on	the	master

				'''

				root	=	__opts__.get('sftpfs_root')

				path	=	os.path.join(root,	load['saltenv'],	load['prefix'])

				return	_recur_path(path,	load['saltenv'],	True)

def	_recur_path(path,	saltenv,	only_dirs=False):

				'''

				Recurse	through	the	remote	directory	structure

				'''

				root	=	__opts__.get('sftpfs_root')

				ret	=	[]

				try:

								for	entry	in	client.listdir_attr(path):

												full	=	os.path.join(path,	entry.filename)

												if	str(oct(entry.st_mode)).startswith('04'):

																ret.append(full)

																ret.extend(_recur_path(full,	saltenv,	only_dirs))

												else:

																if	only_dirs	is	False:

																				ret.append(full)

								return	ret

				except	IOError:

								return	[]

What	is	needed	by	these	two	functions	is	exactly	the	same,	except	for	whether	or	not	to
include	files.	Because	recursion	is	usually	needed	anyway,	we’ve	added	a	recursive
function	called	_recur_path()	that	can	report	either	just	directories	or	both	files	and
directories.	You	may	notice	the	check	against	entry.st_mode.	You	may	think	of	a	Unix
file	mode	as	a	set	of	permissions,	which	can	be	changed	using	the	chmod	(change	mode)
command.	However,	the	mode	also	stores	which	kind	of	file	it	is:

0100755		#	This	is	a	file,	with	0755	permissions

040755		#	This	is	a	directory,	with	0755	permissions

We	could	use	another	try/except	block	to	see	if	we	can	descend	into	a	directory.	But	it’s	a

little	less	work	to	check	the	mode.	If	it	starts	with	04,	then	we	know	that	it	is	a	directory.

Each	of	these	functions	requires	a	load	argument.	If	you	were	to	look	inside,	you	would
find	a	dictionary	that	looks	like	this:

{'cmd':	'_file_list',	'prefix':	'',	'saltenv':	'base'}

The	cmd	field	stores	what	kind	of	command	was	used.	prefix	will	contain	the	directory
path,	inside	the	environment,	which	contains	any	requested	files,	and	saltenv	tells	you	the
name	of	the	requested	environment	itself.	You	will	see	this	argument	throughout	the
module,	but	it	looks	largely	the	same.

Let’s	go	ahead	and	look	at	a	couple	of	Salt	commands:

#	salt-call	--local	cp.list_master

local:

				-	testdir

				-	testfile

#	salt-call	--local	cp.list_master_dirs

local:

				-	testdir

Keep	in	mind	that	--local	will	tell	salt-call	to	pretend	that	it	is	its	own	Master.	In	that
case,	it	will	look	to	the	minion	configuration	file	for	the	connection	parameters.

find_file()
Like	file_list()	and	dir_list(),	this	function	checks	a	requested	path.	It	then	reports
whether	or	not	the	specified	file	exists:

'''

def	find_file(path,	saltenv='base',	**kwargs):

				'''

				Search	the	environment	for	the	relative	path

				'''

				fnd	=	{'path':	'',

											'rel':	''}

				full	=	os.path.join(salt.syspaths.CACHE_DIR,	'sftpfs',	saltenv,	path)

				if	os.path.isfile(full)	and	not	

salt.fileserver.is_file_ignored(__opts__,	full):

								fnd['path']	=	full

								fnd['rel']	=	path

				return	fnd

You	may	have	noticed	that	no	SFTP	calls	are	being	made	in	this	function.	That’s	because
we’re	using	a	caching	file	server,	and	all	that	we	need	to	check	for	right	now	is	to	see	if
the	file	has	been	cached.	If	it	has,	then	Salt	will	just	serve	the	file	from	the	cache.

If	you	are	writing	a	file	server	module	that	does	not	keep	a	local	cache,	then	this	function
should	check	the	remote	endpoint	to	ensure	that	the	file	exists.

Speaking	of	the	cache,	one	of	the	more	important	lines	in	this	function	is	the	one	that
defines	the	full	variable.	This	sets	up	the	directory	structure	that	is	to	be	used	for	this
caching	file	server.	It	makes	use	of	salt.syspaths	to	determine	the	correct	directory	for
your	platform;	normally,	this	will	be	/var/cache/salt/.

Note	that	a	load	is	not	passed	into	this	function,	but	saltenv	that	would	normally	be	in
the	load	is.	Previous	versions	of	Salt	passed	in	saltenv	as	just	env,	and	the	**kwargs
functions	as	a	catch-all	to	keep	Python	from	choking	on	old	implementations.

Once	again,	there	is	no	way	to	test	this	function	directly.	It	will	be	used	by	the	update()
function	later	on	in	this	section.

serve_file()
Once	a	file	has	been	found	using	find_file(),	its	data	is	passed	to	this	function	in	order
to	return	the	actual	file	contents:

def	serve_file(load,	fnd):

				'''

				Return	a	chunk	from	a	file	based	on	the	data	received

				'''

				ret	=	{'data':	'',

											'dest':	''}

				if	'path'	not	in	load	or	'loc'	not	in	load	or	'saltenv'	not	in	load:

								return	ret

				if	not	fnd['path']:

								return	ret

				ret['dest']	=	fnd['rel']

				gzip	=	load.get('gzip',	None)

				full	=	os.path.join(salt.syspaths.CACHE_DIR,	'sftpfs',	fnd['path'])

				with	salt.utils.fopen(fnd['path'],	'rb')	as	fp_:

								fp_.seek(load['loc'])

								data	=	fp_.read(__opts__['file_buffer_size'])

								if	gzip	and	data:

												data	=	salt.utils.gzip_util.compress(data,	gzip)

												ret['gzip']	=	gzip

								ret['data']	=	data

				return	ret

This	function	is	used	directly	by	Salt’s	own	internal	file	server,	which	splits	files	into
chunks	before	delivering	them	to	Minions.	If	the	gzip	flag	is	set	to	True	in	the	master
configuration	file,	then	each	of	these	chunks	will	be	individually	compressed.

Since,	in	our	case,	this	function	is	serving	files	from	the	cache,	you	can	probably	get	away
with	using	this	function	as	it	is	printed	here,	except	for	the	line	that	defines	the	full
variable.	If	you	are	not	using	a	caching	file	server,	then	you	will	need	to	have	a	way	to
access	and	deliver	each	chunk	of	a	file,	as	requested.

You	can	test	this	function	using	the	cp.get_file	function.	This	function	requires	both	a
filename	to	download,	and	a	full	path	to	save	the	file	locally:

#	salt-call	--local	cp.get_file	salt://testfile	/tmp/testfile

local:

				/tmp/testfile

update()
At	regular	intervals,	Salt	will	request	that	an	external	file	server	perform	maintenance	on
itself.	This	function	will	compare	the	local	file	cache	(if	it	is	being	used)	with	the	remote
endpoint,	and	update	Salt	with	new	information:

def	update():

				'''

				Update	the	cache,	and	reap	old	entries

				'''

				base_dir	=	os.path.join(salt.syspaths.CACHE_DIR,	'sftpfs')

				if	not	os.path.isdir(base_dir):

								os.makedirs(base_dir)

				try:

								salt.fileserver.reap_fileserver_cache_dir(

												os.path.join(base_dir,	'hash'),

												find_file

)

				except	(IOError,	OSError):

								#	Hash	file	won't	exist	if	no	files	have	yet	been	served	up

								pass

				#	Find	out	what	the	latest	file	is,	so	that	we	only	update	files	more

				#	recent	than	that,	and	not	the	entire	filesystem

				if	os.listdir(base_dir):

								all_files	=	[]

								for	root,	subFolders,	files	in	os.walk(base_dir):

												for	fn_	in	files:

																full_path	=	os.path.join(root,	fn_)

																all_files.append([

																				os.path.getmtime(full_path),

																				full_path,

])

				#	Pull	in	any	files	that	have	changed

				for	env	in	envs():

								path	=	os.path.join(__opts__['sftpfs_root'],	env)

								result	=	client.listdir_attr(path)

								for	fileobj	in	result:

												file_name	=	os.path.join(base_dir,	env,	fileobj.filename)

												#	Make	sure	the	directory	exists	first

												comps	=	file_name.split('/')

												file_path	=	'/'.join(comps[:-1])

												if	not	os.path.exists(file_path):

																os.makedirs(file_path)

												if	str(oct(fileobj.st_mode)).startswith('04'):

																#	Create	the	directory

																if	not	os.path.exists(file_name):

																				os.makedirs(file_name)

												else:

																#	Write	out	the	file

																if	fileobj.st_mtime	>	all_files[file_name]:

																				client.get(os.path.join(path,	fileobj.filename),	

file_name)

												os.utime(file_name,	(fileobj.st_atime,	fileobj.st_mtime))

Whew!	This	is	a	long	one!	First,	we	define	the	cache	directory,	and	if	it	is	not	there,	then
we	create	it.	This	is	important	for	caching	file	servers.	Then	we	ask	Salt	to	clean	up	old
entries,	using	the	built-in	salt.fileserver.reap_fileserver_cache_dir()	function.
This	passes	in	a	reference	to	find_file()	to	help	with	the	work.

The	next	section	walks	through	the	remaining	files	to	check	their	timestamps.	Files	will
only	be	downloaded	if	they	either	have	not	yet	been	downloaded,	or	if	there	is	a	more
recent	copy	on	the	remote	SFTP	server.

Finally,	we	loop	through	each	environment	to	see	which	files	have	changed,	and	download
them	if	necessary.	Any	directories	that	don’t	exist	in	the	local	cache	will	be	created.	And
whether	we	create	a	file	or	a	directory,	we	make	sure	to	update	its	timestamp	so	that	the
cache	matches	what’s	on	the	server.

This	function	will	be	run	periodically	by	the	Salt	Master,	but	you	can	force	it	to	run	by
manually	deleting	a	file	from	the	local	cache,	and	then	requesting	a	copy:

#	rm	/var/cache/salt/sftpfs/base/testfile

#	salt-call	--local	cp.get_file	salt://testfile	/tmp/testfile

local:

				/tmp/testfile

file_hash()
One	of	the	ways	that	Salt	knows	that	a	file	has	been	changed	is	by	keeping	track	of	the
file’s	hash	signature.	If	a	hash	changes,	then	Salt	will	know	that	it	is	time	to	serve	a	new
copy	of	the	file	from	the	cache:

def	file_hash(load,	fnd):

				'''

				Return	a	file	hash,	the	hash	type	is	set	in	the	master	config	file

				'''

				path	=	fnd['path']

				ret	=	{}

				#	if	the	file	doesn't	exist,	we	can't	get	a	hash

				if	not	path	or	not	os.path.isfile(path):

								return	ret

				#	set	the	hash_type	as	it	is	determined	by	config

				ret['hash_type']	=	__opts__['hash_type']

				#	Check	if	the	hash	is	cached

				#	Cache	file's	contents	should	be	'hash:mtime'

				cache_path	=	os.path.join(

								salt.syspaths.CACHE_DIR,

								'sftpfs',

								'hash',

								load['saltenv'],

								'{0}.hash.{1}'.format(

												fnd['rel'],

												ret['hash_type']

)

)

				#	If	we	have	a	cache,	serve	that	if	the	mtime	hasn't	changed

				if	os.path.exists(cache_path):

								try:

												with	salt.utils.fopen(cache_path,	'rb')	as	fp_:

																try:

																				hsum,	mtime	=	fp_.read().split(':')

																except	ValueError:

																				log.debug(

																								'Fileserver	attempted	to	read	incomplete	cache	

file.	Retrying.'

)

																				file_hash(load,	fnd)

																				return	ret

																if	os.path.getmtime(path)	==	mtime:

																				#	check	if	mtime	changed

																				ret['hsum']	=	hsum

																				return	ret

								except	os.error:

												#	Can't	use	Python	select()	because	we	need	Windows	support

												log.debug(

																'Fileserver	encountered	lock	when	reading	cache	file.	

Retrying.'

)

												file_hash(load,	fnd)

												return	ret

				#	If	we	don't	have	a	cache	entry--	lets	make	one

				ret['hsum']	=	salt.utils.get_hash(path,	__opts__['hash_type'])

				cache_dir	=	os.path.dirname(cache_path)

				#	Make	cache	directory	if	it	doesn't	exist

				if	not	os.path.exists(cache_dir):

								os.makedirs(cache_dir)

				#	Save	the	cache	object	'hash:mtime'

				if	HAS_FCNTL:

								with	salt.utils.flopen(cache_path,	'w')	as	fp_:

												fp_.write('{0}:{1}'.format(ret['hsum'],	

os.path.getmtime(path)))

												fcntl.flock(fp_.fileno(),	fcntl.LOCK_UN)

								return	ret

				else:

								with	salt.utils.fopen(cache_path,	'w')	as	fp_:

												fp_.write('{0}:{1}'.format(ret['hsum'],	

os.path.getmtime(path)))

								return	ret

This	is	the	longest	function	in	our	example,	but	thankfully	it	also	needs	the	least	amount	of
modification,	for	a	caching	file	server.	As	with	the	other	examples	in	this	book,	you	can
download	a	copy	of	this	module	from	Packt	Publishing’s	website.	Once	you	have	it
downloaded,	you	will	likely	only	need	to	change	the	value	of	cache_path.	However,	we
will	go	through	this	function	briefly	anyway.

After	setting	up	a	few	basics,	including	the	path	of	the	file	being	hashed,	check	for	the
existence	of	said	path,	and	define	where	in	the	cache	to	keep	a	copy	of	the	hash.	In	our
case,	we’ve	set	up	another	directory	structure	inside	the	cache,	mirroring	the	original,	but
with	.hash.<hash_type>	appended	to	the	filename.	Resulting	files	will	have	names	like
this:

/var/cache/salt/sftpfs/hash/base/testfile.hash.md5

The	next	section	checks	to	see	if	the	hash	file	has	been	created,	and	if	so,	whether	or	not
the	timestamp	matches	the	local	copy.	If	the	timestamp	on	the	existing	hash	file	is	too	old,
then	a	new	hash	will	be	generated.

If	we	get	past	all	of	that,	then	we	know	it’s	time	to	generate	a	new	hash.	After	determining
the	hash	type	to	use	and	setting	up	a	directory	to	put	it	in,	we	get	to	the	section	that
actually	writes	the	hash	to	disk.	Remember	the	check	for	fcntl	at	the	beginning	of	the
module?	On	a	busy	Salt	Master,	it’s	possible	that	multiple	attempts	may	be	made
simultaneously	to	work	on	the	same	file.	With	fcntl	in	place,	we	can	lock	that	file	before
writing	to	it,	to	avoid	corruption.

The	final	module
With	all	of	our	functions	in	place,	the	final	module	will	look	like	this:

'''

The	backend	for	serving	files	from	an	SFTP	account.

To	enable,	add	``sftp``	to	the	:conf_master:`fileserver_backend`	option	in	

the

Master	config	file.

..	code-block::	yaml

				fileserver_backend:

						-	sftp

Each	environment	is	configured	as	a	directory	inside	the	SFTP	account.	The	

name

of	the	directory	must	match	the	name	of	the	environment.

..	code-block::	yaml

				sftpfs_host:	sftp.example.com

				sftpfs_port:	22

				sftpfs_username:	larry

				sftpfs_password:	123pass

				sftpfs_root:	/srv/sftp/salt/

'''

import	os

import	os.path

import	logging

import	time

try:

				import	fcntl

				HAS_FCNTL	=	True

except	ImportError:

				#	fcntl	is	not	available	on	windows

				HAS_FCNTL	=	False

import	salt.fileserver

import	salt.utils

import	salt.syspaths

try:

				import	paramiko

				from	paramiko	import	AuthenticationException

				HAS_LIBS	=	True

except	ImportError:

				HAS_LIBS	=	False

__virtualname__	=	'sftp'

log	=	logging.getLogger() 
transport	=	None

client	=	None

def	__virtual__():

				'''

				Only	load	if	proper	conditions	are	met

				'''

				if	__virtualname__	not	in	__opts__['fileserver_backend']:

								return	False

				if	not	HAS_LIBS:

								return	False

				if	__opts__.get('sftpfs_root',	None)	is	None:

								return	False

				global	client

				global	transport

				host	=	__opts__.get('sftpfs_host')

				port	=	__opts__.get('sftpfs_port',	22)

				username	=	__opts__.get('sftpfs_username')

				password	=	__opts__.get('sftpfs_password')

				try:

								transport	=	paramiko.Transport((host,	port))

								transport.connect(username=username,	password=password)

								client	=	paramiko.SFTPClient.from_transport(transport)

				except	AuthenticationException:

								return	False

				return	True

def	envs():

				'''

				Treat	each	directory	as	an	environment

				'''

				ret	=	[]

				root	=	__opts__.get('sftpfs_root')

				for	entry	in	client.listdir_attr(root):

								if	str(oct(entry.st_mode)).startswith('04'):

												ret.append(entry.filename)

				return	ret

def	file_list(load):

				'''

				Return	a	list	of	all	files	on	the	file	server	in	a	specified	

environment

				'''

				root	=	__opts__.get('sftpfs_root')

				path	=	os.path.join(root,	load['saltenv'],	load['prefix'])

				return	_recur_path(path,	load['saltenv'])

def	dir_list(load):

				'''

				Return	a	list	of	all	directories	on	the	master

				'''

				root	=	__opts__.get('sftpfs_root')

				path	=	os.path.join(root,	load['saltenv'],	load['prefix'])

				return	_recur_path(path,	load['saltenv'],	True)

def	_recur_path(path,	saltenv,	only_dirs=False):

				'''

				Recurse	through	the	remote	directory	structure

				'''

				root	=	__opts__.get('sftpfs_root')

				ret	=	[]

				try:

								for	entry	in	client.listdir_attr(path):

												full	=	os.path.join(path,	entry.filename)

												if	str(oct(entry.st_mode)).startswith('04'):

																ret.append(full)

																ret.extend(_recur_path(full,	saltenv,	only_dirs))

												else:

																if	only_dirs	is	False:

																				ret.append(full)

								return	ret

				except	IOError:

								return	[]

def	find_file(path,	saltenv='base',	env=None,	**kwargs):

				'''

				Search	the	environment	for	the	relative	path

				'''

				fnd	=	{'path':	'',

											'rel':	''}

				full	=	os.path.join(salt.syspaths.CACHE_DIR,	'sftpfs',	saltenv,	path)

				if	os.path.isfile(full)	and	not	

salt.fileserver.is_file_ignored(__opts__,	full):

								fnd['path']	=	full

								fnd['rel']	=	path

				return	fnd

def	serve_file(load,	fnd):

				'''

				Return	a	chunk	from	a	file	based	on	the	data	received

				'''

				ret	=	{'data':	'',

											'dest':	''}

				if	'path'	not	in	load	or	'loc'	not	in	load	or	'saltenv'	not	in	load:

								return	ret

				if	not	fnd['path']:

								return	ret

				ret['dest']	=	fnd['rel']

				gzip	=	load.get('gzip',	None)

				full	=	os.path.join(salt.syspaths.CACHE_DIR,	'sftpfs',	fnd['path'])

				with	salt.utils.fopen(fnd['path'],	'rb')	as	fp_:

								fp_.seek(load['loc'])

								data	=	fp_.read(__opts__['file_buffer_size'])

								if	gzip	and	data:

												data	=	salt.utils.gzip_util.compress(data,	gzip)

												ret['gzip']	=	gzip

								ret['data']	=	data

				return	ret

def	update():

				'''

				Update	the	cache,	and	reap	old	entries

				'''

				base_dir	=	os.path.join(salt.syspaths.CACHE_DIR,	'sftpfs')

				if	not	os.path.isdir(base_dir):

								os.makedirs(base_dir)

				try:

								salt.fileserver.reap_fileserver_cache_dir(

												os.path.join(base_dir,	'hash'),

												find_file

)

				except	(IOError,	OSError):

								#	Hash	file	won't	exist	if	no	files	have	yet	been	served	up

								pass

				#	Find	out	what	the	latest	file	is,	so	that	we	only	update	files	more

				#	recent	than	that,	and	not	the	entire	filesystem

				if	os.listdir(base_dir):

								all_files	=	{}

								for	root,	subFolders,	files	in	os.walk(base_dir):

												for	fn_	in	files:

																full_path	=	os.path.join(root,	fn_)

																all_files[full_path]	=	os.path.getmtime(full_path)

				#	Pull	in	any	files	that	have	changed

				for	env	in	envs():

								path	=	os.path.join(__opts__['sftpfs_root'],	env)

								result	=	client.listdir_attr(path)

								for	fileobj	in	result:

												file_name	=	os.path.join(base_dir,	env,	fileobj.filename)

												#	Make	sure	the	directory	exists	first

												comps	=	file_name.split('/')

												file_path	=	'/'.join(comps[:-1])

												if	not	os.path.exists(file_path):

																os.makedirs(file_path)

												if	str(oct(fileobj.st_mode)).startswith('04'):

																#	Create	the	directory

																if	not	os.path.exists(file_name):

																				os.makedirs(file_name)

												else:

																#	Write	out	the	file

																if	fileobj.st_mtime	>	all_files[file_name]:

																				client.get(os.path.join(path,	fileobj.filename),	

file_name)

												os.utime(file_name,	(fileobj.st_atime,	fileobj.st_mtime))

def	file_hash(load,	fnd):

				'''

				Return	a	file	hash,	the	hash	type	is	set	in	the	master	config	file

				'''

				path	=	fnd['path']

				ret	=	{}

				#	if	the	file	doesn't	exist,	we	can't	get	a	hash

				if	not	path	or	not	os.path.isfile(path):

								return	ret

				#	set	the	hash_type	as	it	is	determined	by	config

				#—so	mechanism	won't	change	that

				ret['hash_type']	=	__opts__['hash_type']

				#	Check	if	the	hash	is	cached

				#	Cache	file's	contents	should	be	'hash:mtime'

				cache_path	=	os.path.join(

								salt.syspaths.CACHE_DIR,

								'sftpfs',

								'hash',

								load['saltenv'],

								'{0}.hash.{1}'.format(

												fnd['rel'],

												ret['hash_type']

)

)

				#	If	we	have	a	cache,	serve	that	if	the	mtime	hasn't	changed

				if	os.path.exists(cache_path):

								try:

												with	salt.utils.fopen(cache_path,	'rb')	as	fp_:

																try:

																				hsum,	mtime	=	fp_.read().split(':')

																except	ValueError:

																				log.debug(

																								'Fileserver	attempted	to	read'

																								'incomplete	cache	file.	Retrying.'

)

																				file_hash(load,	fnd)

																				return	ret

																if	os.path.getmtime(path)	==	mtime:

																				#	check	if	mtime	changed

																				ret['hsum']	=	hsum

																				return	ret

								except	os.error:

												#	Can't	use	Python	select()	because	we	need	Windows	support

												log.debug(

																'Fileserver	encountered	lock	when	reading	cache	file.	

Retrying.'

)

												file_hash(load,	fnd)

												return	ret

				#	If	we	don't	have	a	cache	entry--	lets	make	one

				ret['hsum']	=	salt.utils.get_hash(path,	__opts__['hash_type'])

				cache_dir	=	os.path.dirname(cache_path)

				#	Make	cache	directory	if	it	doesn't	exist

				if	not	os.path.exists(cache_dir):

								os.makedirs(cache_dir)

				#	Save	the	cache	object	'hash:mtime'

				if	HAS_FCNTL:

								with	salt.utils.flopen(cache_path,	'w')	as	fp_:

												fp_.write('{0}:{1}'.format(ret['hsum'],	

os.path.getmtime(path)))

												fcntl.flock(fp_.fileno(),	fcntl.LOCK_UN)

								return	ret

				else:

								with	salt.utils.fopen(cache_path,	'w')	as	fp_:

												fp_.write('{0}:{1}'.format(ret['hsum'],	

os.path.getmtime(path)))

								return	ret

Troubleshooting	file	servers
File	server	modules	can	be	tricky	to	troubleshoot,	because	so	many	of	the	pieces	need	to
be	in	place	before	others	are	usable.	But	there	are	some	tricks	that	you	can	keep	in	mind.

Start	small
I’ve	tried	to	present	the	functions	that	are	necessary,	in	the	order	that	is	easiest	for	writing
and	troubleshooting.	While	envs()	cannot	be	called	directly,	it	is	easy	to	write,	and	can	be
debugged	while	working	on	file_list()	and	dir_list().	And	those	two	functions	are
easy	to	troubleshoot	using	the	cp.list_master	and	cp.list_master_dirs	functions,
respectively.

Test	on	a	Minion
While	file	server	modules	are	designed	to	be	used	on	the	Master,	it	is	possible	to	test	them
on	a	Minion.	Be	sure	to	define	all	of	the	appropriate	configurations	in	the	minion
configuration	file	instead	of	the	master	file.	Use	salt-call	--local	to	issue	commands,
and	regularly	wipe	both	the	local	cache	(in	/var/salt/cache/)	and	any	files	that	were
downloaded	using	cp.get_file.

Summary
File	server	modules	can	be	used	to	present	resources	on	an	external	endpoint	as	if	they
were	files	sitting	on	the	Master.	The	default	file	server	module,	called	roots,	does	in	fact
use	local	files	on	the	Master.	Many	file	server	modules	cache	files	locally	on	the	Master,
to	avoid	making	too	many	calls	to	the	external	source,	but	this	is	not	always	appropriate.

There	are	a	number	of	functions	inside	a	file	server	module,	which	work	in	concert	to
present	a	file-server-like	interface.	Some	of	these	functions	cannot	be	tested	directly,	but
they	can	still	be	tested	in	tandem	with	other	functions	that	do	have	a	direct	external
interface.

Despite	all	of	the	functions	involved,	file	server	modules	are	relatively	easy	to	write.	In
the	next	chapter,	we’ll	talk	about	cloud	modules,	which	have	even	more	required
functions,	but	which	are	even	easier	to	write.

Chapter	9.	Connecting	to	the	Cloud
Cloud	modules	may	seem	like	the	most	daunting	type	of	Salt	module,	because	of	how
many	functions	are	required	to	present	a	cohesive	tool	for	a	cloud	provider.	Fortunately,
connecting	to	most	cloud	providers	is	easy,	once	you	know	how.	In	this	chapter,	we’ll
discuss:

Understanding	how	cloud	components	fit	together
Learning	which	functions	are	required,	and	how	they	are	used
Comparing	Libcloud-based	modules	with	direct	REST	modules
Writing	a	generic	cloud	module
Troubleshooting	cloud	modules

Understanding	cloud	components
The	word	cloud	has	suffered	from	an	unfortunate	bout	of	overuse	and	misuse	in	recent
years,	so	before	we	talk	about	what	the	components	look	like,	we	need	to	define	what
we’re	actually	talking	about	in	the	first	place.

Salt	Cloud	is	designed	to	operate	with	compute	cloud	providers.	This	means	that	they	offer
computing	resources,	often	in	the	form	of	virtual	machines.	A	number	of	cloud	providers
also	offer	other	resources,	such	as	storage	space,	DNS,	and	load	balancing.	While	Salt
Cloud	isn’t	explicitly	designed	to	manage	these	resources,	it	is	possible	to	add	support	for
them.

For	our	purposes,	we	will	discuss	creating	cloud	drivers	with	a	focus	on	managing	virtual
machines.	Some	of	the	techniques	can	be	used	for	adding	other	resources,	so	if	you’re
planning	on	going	in	that	direction,	this	chapter	will	still	be	useful	to	you.

Looking	at	the	puzzle	pieces
The	primary	goal	of	Salt	Cloud	is	to	easily	create	virtual	machines	on	a	cloud	provider,
install	a	Salt	Minion	onto	that	machine,	and	then	automatically	accept	that	Minion’s	keys
on	the	Master.	When	you	dig	down,	you	will	find	that	a	number	of	pieces	fit	together	to
achieve	this	goal.

Connection	mechanism
Most	cloud	providers	offer	an	API	to	manage	the	resources	in	your	account.	This	API
comprises	an	authentication	scheme,	and	a	collection	of	URLs	that	are	used	in	similar
ways.	Almost	every	cloud	provider	supports	URLs	based	on	both	GET	and	POST	methods,
but	some	support	other	methods	such	as	PATCH	and	DELETE.

Quite	frequently,	these	URLs	will	include	up	to	four	components:

A	resource	name
The	action	to	be	performed	on	that	resource
The	ID	of	the	resource	to	be	managed
Arguments	that	define	how	the	resource	is	managed

These	components	can	be	combined	with	the	authentication	scheme	to	create	a	single	tool
that	is	used	to	perform	all	of	the	management	features	that	are	available.

Listing	resources
Most	resources	have	a	way	to	list	them	from	the	API.	These	include	both	options	that	are
defined	by	the	cloud	provider	and	resources	that	belong	to	your	account	and	can	be
managed	by	you.	Some	of	the	resources	that	can	usually	be	listed	from	the	API	are:

Operating	system	images
Sizes	of	virtual	machines	that	can	be	created
Existing	virtual	machines	in	a	user’s	account
Details	about	specific	virtual	machines
Non-compute	resources	that	are	managed	by	the	account

A	Salt	Cloud	module	should	provide	a	few	different	ways	to	list	resources,	both	for
creating	new	virtual	machines	and	for	managing	existing	virtual	machines.

Creating	virtual	machines
The	most	complex	component	of	most	cloud	modules	is	the	create()	function,	which
orchestrates	the	tasks	of	requesting	a	virtual	machine,	waiting	for	it	to	become	available,
logging	in	to	it	and	installing	Salt,	and	accepting	that	virtual	machine’s	Minion	keys	on	the
Master.	Many	of	these	tasks	have	been	abstracted	into	helper	functions	that	can	be	called
from	cloud	modules,	which	greatly	simplifies	the	development	of	the	create()	function.

Managing	other	resources
Once	the	preceding	components	have	been	put	together,	creating	other	functions	to	create,
list,	modify,	and	delete	other	resources	will	usually	not	take	much	effort.

Libcloud	versus	SDK	versus	direct	REST	API
There	are	three	types	of	cloud	modules	that	ship	with	Salt.	The	first	and	original	type	of
module	uses	a	library	called	Libcloud	to	communicate	with	cloud	providers.	Using	this
kind	of	library	has	some	distinct	advantages:

Libcloud	supports	a	huge	amount	of	cloud	providers
Libcloud	provides	a	standard	and	reasonably	consistent	interface	across	providers
Salt	Cloud	has	a	number	of	functions	built	in	specifically	for	Libcloud
Libcloud	is	actively	developed,	with	frequent	releases

There	are	some	disadvantages	to	using	Libcloud:

Not	every	feature	in	every	cloud	is	supported	by	Libcloud
New	cloud	providers	may	not	yet	be	supported
Old,	obscure,	and	proprietary	drivers	may	not	ever	be	supported

Some	cloud	providers	also	provide	their	own	libraries	for	connecting	to	their
infrastructure.	This	may	prove	the	fastest,	easiest,	or	most	reliable	way	to	connect	to	them.
Some	advantages	to	using	a	provider’s	own	SDK	are:

The	developers	are	likely	to	have	the	most	complete	knowledge	of	the	API
When	new	features	are	released,	the	SDK	is	often	the	first	library	to	support	them

Some	disadvantages	are:

Some	SDKs	still	don’t	support	all	of	the	features	for	that	cloud	provider
Some	SDKs	can	be	difficult	to	use

Another	option	for	communicating	with	a	cloud	provider	is	to	communicate	directly	with
their	REST	API.	Some	advantages	to	this	are:

You	control	how	the	module	is	maintained
You	can	make	your	own	additions	without	waiting	for	new	versions	of	a	library

But	there	are	some	definite	disadvantages	to	using	a	direct	REST	API:

You	have	to	maintain	the	module
You	have	to	add	any	new	features	yourself
You	aren’t	likely	to	have	as	many	resources	to	use	the	driver	as	the	cloud	provider
has

You	are	going	to	need	to	decide	which	of	these	options	is	most	appropriate	for	your
situation.	Fortunately,	once	you	have	set	up	a	connection	mechanism	to	use	(whether	you
write	it	yourself	or	use	somebody	else’s),	there	aren’t	really	any	differences	between	the
functions	that	make	use	of	those	connections.

Writing	a	generic	cloud	module
We’re	going	to	set	up	a	very	generic	module	that	uses	a	direct	REST	API	to	communicate
with	a	cloud	provider.	If	you	spend	a	lot	of	time	with	different	APIs,	you’ll	find	the	style
used	here	to	be	very	common.

Checking	for	required	configuration
In	order	to	use	a	cloud	provider,	you	will	need	a	__virtual__()	function	to	check	for
required	configuration,	and	if	necessary,	any	dependencies.	You	will	also	need	a	function
called	get_configured_provider(),	which	checks	to	make	sure	that	the	configuration
that	is	required	to	connect	to	your	cloud	provider	(usually	authentication	at	the	very	least,
and	sometimes	other	connection	parameters)	have	been	specified.	We	will	also	need	to
define	__virtualname__,	which	contains	the	name	of	the	driver	as	Salt	Cloud	will	know
it.	Let’s	go	ahead	and	start	our	cloud	module	with	these:

'''

Generic	Salt	Cloud	module

This	module	is	not	designed	for	any	specific	cloud	provider,	but	is	generic

enough	that	only	minimal	changes	may	be	required	for	some	providers.

This	file	should	be	saved	as	salt/cloud/clouds/generic.py

Set	up	the	cloud	configuration	at	``/etc/salt/cloud.providers``	or

``/etc/salt/cloud.providers.d/generic.conf``:

..	code-block::	yaml

				my-cloud-config:

						driver:	generic

						#	The	login	user

						user:	larry

						#	The	user's	password

						password:	123pass

						#	The	user's	API	key

						api_key:	0123456789abcdef

'''

__virtualname__	=	'generic'

def	__virtual__():

				'''

				Check	for	cloud	configs

				'''

				#	No	special	libraries	required

				if	get_configured_provider()	is	False:

								return	False

				return	__virtualname__

def	get_configured_provider():

				'''

				Make	sure	configuration	is	correct

				'''

				return	config.is_provider_configured(

								__opts__,

								__active_provider_name__	or	__virtualname__,

								('user',	'password',	'apikey')

)

We’ve	started	out	with	a	docstring	that	contains	information	about	the	required
configuration	for	our	driver.	We’re	going	to	stick	with	a	simple	authentication	scheme,
which	uses	an	API	key	as	part	of	the	URL,	and	an	HTTP	username	and	password.

The	__virtual__()	function	should	first	make	sure	that	any	required	libraries	are
installed.	In	our	case,	we	don’t	need	anything	special,	so	we’ll	skip	that	part.	We	then	call
get_configured_provider()	to	make	sure	that	any	required	configurations	are	in	place,
and	if	all	is	good,	we	return	__virtualname__.

The	get_configured_provider()	function	will	never	change,	outside	of	the	list	of
parameters	that	are	absolutely	required	in	order	for	the	module	to	work.	If	you	are	going	to
accept	any	optional	parameters,	do	not	include	them	in	this	function.

Note
The	get_configured_provider()	function	mentions	another	built-in	variable	called
__active_provider_name__.	This	contains	a	combination	of	the	name	that	the	user	sets
for	this	module	in	their	provider	config	(such	as	my-cloud-config)	and	the	name	of	the
actual	driver	itself	(in	our	case,	generic),	separated	by	a	colon	(:).	If	you	were	to	use	the
sample	configuration	in	our	docstring,	then	__active_provider_name__	would	be	set	to
my-cloud-config:generic.

Using	http.query()
Salt	comes	with	its	own	library	for	communicating	over	HTTP.	This	library	is	not	a
connection	library	itself;	rather,	it	allows	you	to	use	urllib2	(which	ships	with	Python),
Tornado	(which	is	a	dependency	of	Salt	itself),	or	requests	(which	is	a	very	popular	and
powerful	HTTP	library	for	Python).	Like	Libcloud,	Salt’s	HTTP	library	strives	to	provide
a	consistent	interface	across	available	libraries.	You	can	specify	which	library	is	to	be
used,	if	you	need	to	use	specific	features	in	that	library,	but	by	default	Tornado	is	used.

This	library	lives	in	salt.utils	and	contains	a	number	of	HTTP-related	functions.	The
one	that	is	most	commonly	used	is	called	query().	It	not	only	supports	all	three	backend
libraries	but	also	includes	mechanisms	to	automatically	translate	return	data	from	either
JSON	or	XML	into	a	Python	dictionary.

A	call	to	http.query()	usually	looks	something	like	this:

import	salt.utils.http

result	=	salt.utils.http.query(

				'https://api.example.com/v1/resource/action/id',

				'POST',

				data=post_data_dict,

				decode=True,

				decode_type='json',

				opts=__opts__

)

print(result['dict'])

A	common	REST	API
Before	we	connect	to	a	REST	API,	we	need	to	know	what	it	looks	like.	The	structure	of
the	URL	often	contains	the	following	components:

https://<hostname>/<version>/<resource>[/<action>[/<id>]]

Technically,	the	URL	scheme	can	be	HTTP,	but	if	that’s	your	only	option,	I	would
recommend	switching	to	another	cloud	provider.

The	hostname	usually	contains	some	hint	that	it	belongs	to	the	API,	such	as
api.example.com.	The	documentation	for	your	cloud	provider	will	tell	you	which
hostname	to	use	here.	The	hostname	may	also	include	information	about	which	data	center
you	are	communicating	with,	such	as	eu-north.api.example.com.

Most	providers	also	require	you	to	specify	which	version	of	their	API	you	are	using.	This
may	be	in	the	URL,	or	in	the	POST	data,	or	even	in	the	client	request	headers.	You	should
always	use	the	latest	version	unless	you	have	a	very	good	reason	not	to,	but	cloud
providers	will	often	support	old	versions	as	well,	if	only	temporarily.

The	resource	refers	to	what	you	are	actually	monitoring.	This	may	be	something	like
instance	or	nodes	for	virtual	machines,	storage	or	volumes	to	refer	to	disks,	or	images
to	refer	to	prebuilt	operating	system	images	or	templates.	I	wish	I	could	be	more	specific
here,	but	this	will	depend	on	your	cloud	provider.

The	action	may	or	may	not	appear	in	the	URL.	Some	cloud	providers	will	include	actions
such	as	create,	list,	modify,	delete,	and	so	on,	followed	by	the	ID	of	the	resource	to	be
managed,	where	necessary.

However,	it’s	becoming	increasingly	common	for	the	action	to	be	determined	by	the
HTTP	method	that	is	used	to	make	the	call.	The	following	methods	are	commonly	used	by
REST	APIs:

GET
This	is	used	for	calls	that	will	only	display,	but	never	change	resources.	If	an	ID	is	not
given,	then	a	list	of	resources	is	usually	given.	If	an	ID	is	used,	then	the	details	about	that
specific	resource	will	be	returned.

POST
This	is	often	used	for	calls	that	create	data,	and	frequently	for	those	that	modify	data.	If	an
ID	is	not	declared,	then	a	new	resource	will	usually	be	created.	If	an	ID	is	given,	then	an
existing	resource	will	be	modified.

PATCH
This	method	was	recently	added	for	modifying	existing	resources.	If	a	cloud	provider
makes	use	of	this	method,	then	they	are	unlikely	to	allow	POST	to	modify	existing	data.
Instead,	POST	will	only	be	used	to	apply	new	data,	and	PATCH	will	be	used	to	update
existing	data.

DELETE
Calls	using	a	DELETE	method	will	generally	include	both	a	resource	type,	and	the	ID	of	the
resource	to	be	removed.	This	method	is	never	used	to	create	or	modify	data;	only	remove
it.

Setting	up	a	_query()	function
Now	that	we	know	what	the	API	will	look	like,	let’s	create	a	function	to	communicate
with	it.	We	will	make	use	of	http.query()	to	talk	to	it,	but	we	also	need	to	wrap	a	few
other	items	in	there	as	well.	We’ll	start	with	a	function	declaration:

def	_query(

				resource=None,

				action=None,

				method='GET',

				location=None,

				data=None,

):

Notice	that	we	have	made	this	function	private.	There	is	no	reason	to	allow	this	function	to
be	called	directly	from	the	command	line,	so	we	need	to	hide	it.	We	have	allowed	any	of
the	arguments	to	remain	unspecified,	because	we	won’t	always	need	all	of	them.

Let’s	go	ahead	and	set	our	_query()	function,	and	then	go	over	each	of	the	components	in
it:

import	json

import	salt.utils.http

import	salt.config	as	config

def	_query(

								resource=None,

								action=None,

								params=None,

								method='GET',

								data=None

):

				'''

				Make	a	web	call	to	the	cloud	provider

				'''

				user	=	config.get_cloud_config_value(

								'user',	get_configured_provider(),	__opts__,

)

				password	=	config.get_cloud_config_value(

								'password',	get_configured_provider(),	__opts__,

)

				api_key	=	config.get_cloud_config_value(

								'api_key',	get_configured_provider(),	__opts__,

)

				location	=	config.get_cloud_config_value(

								'location',	get_configured_provider(),	__opts__,	default=None

)

				if	location	is	None:

								location	=	'eu-north'

				url	=	'https://{0}.api.example.com/v1'.format(location)

				if	resource:

								url	+=	'/{0}'.format(resource)

				if	action:

								url	+=	'/{0}'.format(action)

				if	not	isinstance(params,	dict):

								params	=	{}

				params['api_key']	=	api_key

				if	data	is	not	None:

								data	=	json.dumps(data)

				result	=	salt.utils.http.query(

								url,

								method,

								params=params,

								data=data,

								decode=True,

								decode_type='json',

								hide_fields=['api_key'],

								opts=__opts__,

)

				return	result['dict']

We	start	off	by	collecting	the	connection	parameters	that	are	required	for	our	cloud
provider.	The	salt.config	library	includes	a	function	called	get_cloud_config_value()
that	searches	through	the	cloud	configuration	for	the	requested	value.	It	can	search
through	the	main	cloud	configuration	(usually	at	/etc/salt/cloud)	as	well	as	through	any
provider	or	profile	configuration.	In	this	case,	all	of	the	configuration	should	be	found	in
the	provider	configuration,	as	specified	in	our	docstring.

Once	we	have	collected	the	user,	password,	and	api_key,	we	turn	our	attention	to
location.	You	may	recall	that	many	cloud	providers	use	the	hostname	to	differentiate
different	data	centers.	Many	also	have	a	default	data	center.	In	the	case	of	our	generic
driver,	we’ll	assume	that	eu-north	is	the	default,	and	create	a	URL	using	that.	Our	URL
also	contains	a	version,	as	we	mentioned	before.

We	then	look	at	the	resource	that	will	be	used,	and	any	actions	that	will	be	performed	on
it.	If	found,	these	will	be	appended	to	the	URL	path.	With	those	in	place,	we	look	at	any
parameters	that	will	be	added	to	the	URL.

The	params	variable	refers	to	<name>=<value>	pairs	that	will	be	added	to	the	URL.	These
will	start	with	a	question	mark	(?)	and	then	be	separated	with	an	ampersand	(&),	for
instance:

http://example.com/form.cgi?name1=value1&name2=value2&name3=value3

Instead	of	appending	these	to	the	URL	by	ourselves,	we’ll	let	the	http.query()	function

take	care	of	it	for	us.	It	will	properly	encode	this	data	if	specified	and	append	it	to	the	end
of	the	URL	for	us.

If	used,	params	need	to	be	specified	as	a	dictionary.	We	know	that	api_key	will	be	one
params,	so	we	add	it	after	doing	a	type	check.

Finally,	we	need	to	look	at	any	data	that	is	going	to	be	POSTed	to	the	cloud	provider.	Many
providers	require	POST	data	to	be	sent	as	a	JSON	string,	rather	than	as	URL-encoded	data,
so	if	any	data	is	given,	we’ll	convert	it	to	JSON	before	sending	it	over.

Once	we	have	everything	prepared,	we	use	http.query()	(as	salt.utils.http.query())
to	actually	make	the	call.	You	can	see	url,	method	(as	specified	in	the	function
declaration),	params,	and	data.	We’ve	also	set	decode	to	True	and	decode_type	to	json,
so	that	the	return	data	from	the	cloud	provider	will	automatically	be	converted	to	a
dictionary	for	us.

We’ve	also	passed	through	a	list	of	fields	to	hide	from	any	logging	that	may	occur	inside
the	http.query()	function.	This	will	keep	data	such	as	our	api_key	private,	in	the	event
that	any	logs	are	generated.	Rather	than	logging	a	URL	such	as:

https://example.com/?api_key=0123456789abcdef

A	sanitized	URL	will	be	logged:

https://example.com/?api_key=XXXXXXXXXX

Finally,	we	pass	through	a	copy	of	__opts__,	so	that	http.query()	has	access	to	any
variables	that	it	needs	from	the	master	or	minion	configuration	files.

The	http.query()	function	will	return	a	dictionary,	including	an	item	called	dict,	which
contains	the	return	data	from	the	cloud	provider,	converted	into	a	dictionary.	This	is	what
we	will	pass	back	to	any	functions	calling	our	_query()	function.

Getting	profile	details
Once	we	have	the	ability	to	connect	to	a	cloud	provider,	we	need	to	be	able	to	collect
information	that	can	be	used	to	create	a	VM	on	that	provider.	That	almost	always	includes
a	list	of	VM	images	and	VM	sizes.	If	a	cloud	provider	has	multiple	data	centers	(and	most
of	them	do),	then	you	will	also	need	a	function	that	returns	a	list	of	them.

These	three	functions	are	called	avail_images(),	avail_sizes(),	and
avail_locations().	They	are	accessed	from	the	salt-cloud	command	using	the	--list-
images,	--list-sizes,	and	--list-locations	options,	respectively.

Listing	images
Images	refer	to	a	prebuilt	root	VM	volume.	With	Windows	images,	this	will	be	the	C:\
disk	volume.	In	other	operating	systems,	it	will	be	the	/	volume.	Very	commonly,	a	cloud
provider	will	give	access	to	a	number	of	different	operating	systems,	and	a	number	of
different	versions	of	each	of	those.

For	instance,	a	cloud	provider	may	offer	a	single	image	each	for	Ubuntu	14.04,	Ubuntu
14.10,	Ubuntu	15.04,	and	so	on,	or	they	may	provide	each	of	those	bundled	with
WordPress,	MediaWiki,	MariaDB,	or	another	popular	software	package.

In	the	case	of	our	generic	cloud	provider,	a	list	of	images	can	be	returned	simply	by
requesting	the	images	resource:

def	avail_images():

				'''

				Get	list	of	available	VM	images

				'''

				return	_query(resource='images')

In	a	profile	configuration,	an	image	is	specified	using	the	image	argument.

Listing	sizes
Sizes	are	a	concept	that	is	unique	to	cloud	providers,	and	indeed	not	every	cloud	provider
even	supports	them.	Depending	on	the	provider,	size	usually	refers	to	a	combination	of	the
number	of	processors,	processor	speed,	amount	of	RAM,	disk	space,	type	of	disk	(platter
versus	SSD),	and	so	on.

Once	again,	our	generic	cloud	provider	will	return	a	list	of	sizes	under	the	sizes	resource:

def	avail_sizes():

				'''

				Get	list	of	available	VM	sizes

				'''

				return	_query(resource='sizes')

In	a	profile	configuration,	a	size	is	specified	using	the	size	argument.

Listing	locations
Depending	on	the	cloud	provider,	a	location	may	refer	to	a	specific	data	center,	a	region	in

some	part	of	the	world,	or	even	a	specific	data	center	inside	a	region	that	contains	multiple
data	centers.

As	we	said	before,	the	location	is	often	prepended	to	the	URL	used	to	talk	to	the	API.	In
the	case	of	our	generic	cloud	provider,	locations	are	queried	using	the	regions	resource.

def	avail_locations():

				'''

				Get	list	of	available	locations

				'''

				return	_query(resource='locations')

In	a	profile	configuration,	a	location	is	specified	using	the	location	argument.

Listing	nodes
The	next	thing	to	do	is	display	the	nodes	that	currently	exist	inside	the	account	for	that
cloud	provider.	There	are	three	salt-cloud	arguments	to	display	node	data:	-Q	or	--
query,	-F	or	--full-query,	and	-S	or	--select-query.	Each	of	these	options	will	query
every	configured	cloud	provider,	and	return	all	of	the	information	at	once.

Querying	standard	node	data
There	are	six	pieces	of	information	that	should	always	be	provided	for	each	node.	This
data	is	displayed	when	the	-Q	argument	is	used	with	salt-cloud:

id:	The	ID	of	this	VM,	as	used	by	the	cloud	provider.
image:	The	image	used	to	create	this	VM.	If	this	data	is	not	available,	it	should	be	set
to	None.
size:	The	size	used	to	create	this	VM.	If	this	data	is	not	available,	it	should	be	set	to
None.
state:	The	current	running	state	of	this	VM.	This	is	usually	RUNNING,	STOPPED,
PENDING	(the	VM	is	still	booting),	or	TERMINATED	(the	VM	has	been	destroyed,	but
not	yet	cleaned	up).	If	this	data	is	not	available,	it	should	be	set	to	None.
private_ips:	Any	private	IP	addresses	that	are	used	on	a	cloud	provider’s	internal
network.	These	should	be	returned	as	a	list.	If	this	data	is	not	available,	the	list	should
be	empty.
public_ips:	Any	public	IP	addresses	that	are	available	for	this	VM.	Any	IPv6
addresses	should	be	included	here.	These	IPs	should	be	returned	as	a	list.	If	this	data
is	not	available,	the	list	should	be	empty.

Users	should	have	access	to	all	of	these	variables,	even	if	they	are	empty	or	set	to	None.
This	is	also	the	only	data	that	should	be	returned	by	the	-Q	argument.	To	return	this	data,
we	use	a	function	called	list_nodes():

def	list_nodes():

				'''

				List	of	nodes,	with	standard	query	data

				'''

				ret	=	{}

				nodes	=	_query(resource='instances')

				for	node	in	nodes:

								ret[node]	=	{

												'id':	nodes[node]['id'],

												'image':	nodes[node].get('image',	None),

												'size':	nodes[node].get('size',	None),

												'state':	nodes[node].get('state',	None),

												'private_ips':	nodes[node].get('private_ips',	[]),

												'public_ips':	nodes[node].get('public_ips',	[]),

								}

				return	ret

Querying	full	node	data
VMs	usually	contain	quite	a	bit	more	information	than	is	returned	with	-Q.	If	you	want	to

view	all	of	the	information	that	a	cloud	provider	is	willing	and	able	to	display	to	you,	you
use	the	-F	flag.	This	corresponds	to	a	function	called	list_nodes_full():

def	list_nodes_full():

				'''

				List	of	nodes,	with	full	node	data

				'''

				return	_query(resource='instances')

Sometimes,	you	are	only	interested	in	a	very	specific	set	of	data.	For	instance,	you	may
only	want	to	display	a	VM’s	ID,	public	IPs,	and	state.	The	-S	option	allows	you	to
perform	a	query	that	returns	only	a	selection	of	the	fields	that	are	available	with	a	full
query.	The	selection	itself	is	defined	as	a	list	in	the	main	cloud	configuration	file	(usually
/etc/salt/cloud):

query.selection:

		-	id

		-	public_ips

		-	state

The	query	itself	is	performed	by	a	function	called	list_nodes_select().	Some	providers
may	require	something	special	to	be	done	to	separate	out	this	data,	but	most	of	the	time
you	can	just	use	the	list_nodes_select()	function	that	ships	with	the	salt.utils.cloud
library:

import	salt.utils.cloud

def	list_nodes_select():

				'''

				Return	a	list	of	the	VMs	that	are	on	the	provider,	with	select	fields

				'''

				return	salt.utils.cloud.list_nodes_select(

								list_nodes_full('function'),	__opts__['query.selection'],

)

Creating	a	VM
The	most	complex	part	of	any	cloud	module	has	traditionally	been	the	create()	function.
That’s	because	this	function	doesn’t	just	spin	up	a	VM.	Its	tasks	can	generally	be	split	up
into	these	components:

Request	that	the	cloud	provider	create	a	VM
Wait	for	that	VM	to	become	available
Log	in	to	that	VM	and	install	Salt
Accept	that’s	VM’s	Minion	keys	on	the	Master

Some	more	complex	cloud	providers	may	include	additional	steps,	such	as	requesting
different	types	of	VMs	based	on	the	profile	configuration,	or	attaching	volumes	to	the
VM.	In	addition,	the	create()	function	should	fire	events	along	Salt’s	event	bus,	to	let	the
Master	know	how	far	along	it	is	with	the	creation	process.

Before	we	get	into	the	create()	function,	we	should	put	together	another	function	called
request_instance().	This	function	will	do	two	things	for	us:

It	can	be	called	directly	from	create(),	which	will	simplify	the	create()	function
It	can	be	called	outside	of	create(),	when	a	non-Salt	VM	is	needed

This	function	doesn’t	need	to	do	much.	As	the	name	implies,	it	need	only	request	that	the
cloud	provider	create	a	VM.	But	it	will	need	to	collect	together	some	information	to	build
the	HTTP	request:

def	request_instance(vm_):

				'''

				Request	that	a	VM	be	created

				'''

				request_kwargs	=	{

								'name':	vm_['name'],

								'image':	vm_['image'],

								'size':	vm_['size'],

								'location':	vm_['location']

				}

				salt.utils.cloud.fire_event(

								'event',

								'requesting	instance',

								'salt/cloud/{0}/requesting'.format(vm_['name']),

								{'kwargs':	request_kwargs},

								transport=__opts__['transport']

)

				return	_query(

								resource='instances',

								method='POST',

								data=request_kwargs,

)

You’ve	probably	noticed	the	call	to	salt.utils.cloud.fire_event()	in	this	function.
Every	time	you	do	something	major	in	the	create()	function	(or	in	functions	that	are

called	by	create()),	you	should	fire	an	event	that	gives	some	information	about	what
you’re	about	to	do.	Those	events	will	be	picked	up	by	the	event	reactor,	allowing	the
Master	to	keep	track	of	progress	and	perform	additional	tasks	if	configured	to	do	so,	at	the
right	time.

We’re	also	going	to	create	a	function	called	query_instance().	This	function	will	watch	a
newly	requested	VM,	and	wait	for	an	IP	address	to	become	available.	This	IP	address	will
be	used	to	log	in	to	the	VM	and	provision	it.

def	query_instance(vm_):

				'''

				Query	a	VM	upon	creation

				'''

				salt.utils.cloud.fire_event(

								'event',

								'querying	instance',

								'salt/cloud/{0}/querying'.format(vm_['name']),

								transport=__opts__['transport']

)

				def	_query_ip_address():

								nodes	=	list_nodes_full()

								data	=	nodes.get(vm_['name'],	None)

								if	not	data:

												return	False

								if	'public_ips'	in	data:

												return	data['public_ips']

								return	None

				data	=	salt.utils.cloud.wait_for_ip(

								_query_ip_address,

								timeout=config.get_cloud_config_value(

												'wait_for_ip_timeout',	vm_,	__opts__,	default=10	*	60),

								interval=config.get_cloud_config_value(

												'wait_for_ip_interval',	vm_,	__opts__,	default=10),

								interval_multiplier=config.get_cloud_config_value(

												'wait_for_ip_interval_multiplier',	vm_,	__opts__,	default=1),

)

				return	data

This	function	makes	use	of	another	function	that	ships	with	Salt	called
salt.utils.cloud.wait_for_ip().	That	function	takes	a	callback,	which	we’re	defining
as	a	nested	function	called	_query_ip_address().	That	nested	function	checks	to	see	if	an
IP	address	exists.	If	it	does,	then	salt.utils.cloud.wait_for_ip()	will	stop	waiting	and
move	on.	If	it	does	not	yet	exist,	then	it	will	keep	waiting.

There	are	three	more	arguments	that	we’re	passing	in	as	well.	timeout	defines	how	long
to	wait	for	an	IP	address	to	show	up	at	all	(in	our	case,	ten	minutes);	interval	tells	Salt
Cloud	how	long	to	wait	between	queries	(our	default	is	ten	seconds).

You	may	be	tempted	to	use	a	much	shorter	interval,	but	many	cloud	providers	will	throttle

requests	if	an	account	seems	to	be	abusing	its	privileges.	On	that	note,
interval_multiplier	will	increase	interval	after	each	request.	For	instance,	if
interval	was	set	to	1	and	interval_multiplier	was	set	to	2,	then	requests	would	be
spaced	out	at	1	second,	then	2,	4,	8,	16,	32,	and	so	on.

With	those	two	functions	in	place,	we	can	finally	set	up	our	create()	function.	It	requires
one	argument,	which	is	a	dictionary	containing	a	combination	of	the	profile,	provider,	and
main	cloud	configuration	data:

def	create(vm_):

				'''

				Create	a	single	VM

				'''

				salt.utils.cloud.fire_event(

								'event',

								'starting	create',

								'salt/cloud/{0}/creating'.format(vm_['name']),

								{

												'name':	vm_['name'],

												'profile':	vm_['profile'],

												'provider':	vm_['driver'],

								},

								transport=__opts__['transport']

)

				create_data	=	request_instance(vm_)

				query_data	=	query_instance(vm_)

				vm_['key_filename']	=	config.get_cloud_config_value(

								'private_key',	vm_,	__opts__,	search_global=False,	default=None

)

				vm_['ssh_host']	=	query_data['public_ips'][0]

				salt.utils.cloud.bootstrap(vm_,	__opts__)

				salt.utils.cloud.fire_event(

								'event',

								'created	instance',

								'salt/cloud/{0}/created'.format(vm_['name']),

								{

												'name':	vm_['name'],

												'profile':	vm_['profile'],

												'provider':	vm_['driver'],

								},

								transport=__opts__['transport']

)

				return	query_data

We	begin	our	function	by	firing	an	event	stating	that	a	creation	process	is	being	started.
We	then	allow	request_instance()	and	query_instance()	to	do	their	work,	pull	the
name	of	an	SSH	key	filename	from	the	profile	data,	and	then	scrape	an	IP	address	to	use
to	log	in	to	the	box	from	the	VM	data.

The	next	step	involves	waiting	for	the	VM	to	become	available,	and	then	logging	in	and
provisioning	it.	But	since	that	part	of	the	process	is	the	same	across	cloud	providers,	it’s
all	been	rolled	into	another	helper	function	inside	salt.utils.cloud	called	bootstrap().
The	bootstrap()	function	will	even	fire	additional	events	for	us,	keeping	the	event
reactor	apprised	of	its	own	status.

When	all	is	said	and	done,	we	fire	one	last	event	stating	the	information	about	the	VM,
and	return	the	VM’s	data	to	the	user.

Tip
You	may	have	noticed	that	the	events	that	we	fire	all	include	a	tag	starting	with
salt/cloud/,	then	the	VM’s	name,	then	a	short	name	for	the	step	that	we	are	currently
performing.	If	you	are	working	with	a	more	complex	cloud	provider	and	wish	to	fire	other
events	that	are	specific	to	them,	keep	the	tag	looking	the	same	way,	with	as	simple	a
descriptor	as	possible.	This	will	help	your	users	keep	track	of	all	of	your	cloud	tags.

Destroying	VMs
It’s	just	as	important	to	be	able	to	destroy	a	VM	as	it	is	to	be	able	to	create	one,	but	the
process	is	thankfully	much	easier.	Keep	in	mind	that	events	should	also	be	fired	when
destroying:	once	before	it	happens,	and	once	after:

def	destroy(name):

				'''

				Destroy	a	machine	by	name

				'''

				salt.utils.cloud.fire_event(

								'event',

								'destroying	instance',

								'salt/cloud/{0}/destroying'.format(name),

								{'name':	name},

								transport=__opts__['transport']

)

				nodes	=	list_nodes_full()

				ret	=	_query(

								resource='instances/{0}'.format(nodes[name]['id']),

								location=node['location'],

								method='DELETE'

)

				salt.utils.cloud.fire_event(

								'event',

								'destroyed	instance',

								'salt/cloud/{0}/destroyed'.format(name),

								{'name':	name},

								transport=__opts__['transport']

)

				if	__opts__.get('update_cachedir',	False)	is	True:

								salt.utils.cloud.delete_minion_cachedir(

												name,	__active_provider_name__.split(':')[0],	__opts__

)

				return	ret

We’ve	done	one	more	important	thing	in	this	function.	Salt	Cloud	has	the	ability	to
maintain	a	cache	of	information	about	VMs.	We	didn’t	see	this	before,	because	the
bootstrap()	function	handles	populating	the	cache	when	a	VM	is	created.	However,
since	there	is	no	generic	method	for	destroying	machines,	we	need	to	handle	this
manually.

Using	actions	and	functions
So	far,	all	of	the	functions	that	we’ve	written	are	called	directly	using	a	special	command-
line	argument	(such	as	--query	or	--provision).	However,	there	are	other	operations	that
cloud	providers	may	be	able	to	perform	that	are	not	necessarily	as	standard	as	the	ones
that	we’ve	seen	so	far.

For	instance,	most	cloud	providers	have	API	methods	for	start,	stop,	and	restart.	But
some	providers	don’t	support	all	of	those;	start	and	stop	may	be	available,	but	not
restart.	Or	start	and	restart,	but	not	stop.	Other	operations,	such	as	listing	SSH	keys,
may	be	available	on	one	cloud	provider,	but	not	another.

When	it	comes	down	to	it,	there	are	two	types	of	operations	that	can	be	performed	against
a	cloud	provider.	Operations	that	are	specific	to	a	VM	(stop,	start,	restart,	and	so	on)
are	known	in	Salt	Cloud	as	actions.	Operations	that	interact	with	a	component	of	the
cloud	provider,	that	are	not	specific	to	a	VM	(listing	SSH	keys,	modifying	users,	and	so
on),	are	known	in	Salt	Cloud	as	functions.

Using	actions
Actions	are	called	using	the	--action	argument	with	the	salt-cloud	command.	Because
they	operate	on	a	specific	VM,	the	first	argument	passed	to	them	is	a	name.	If	other
arguments	are	passed	in	from	the	command	line,	they	will	show	up	in	a	dictionary	called
kwargs.	There	is	one	more	argument,	called	call,	which	tells	a	function	whether	it	was
called	with	--action	or	--function.	You	can	use	this	to	inform	users	when	they	have
called	an	action	or	function	incorrectly:

def	rename(name,	kwargs,	call=None):

				'''

				Properly	rename	a	node.	Pass	in	the	new	name	as	"newname".

				'''

				if	call	!=	'action':

								raise	SaltCloudSystemExit(

												'The	rename	action	must	be	called	with	-a	or	--action.'

)

				salt.utils.cloud.rename_key(

								__opts__['pki_dir'],	name,	kwargs['newname']

)

				nodes	=	list_nodes_full()

				return	_query(

								resource='instances/{0}'.format(nodes[name]['id']),

								action='rename',

								method='POST',

								data={'name':	kwargs['newname']}

)

Even	if	you	do	not	plan	to	issue	a	warning	to	users,	you	must	accept	the	call	argument;	it
will	be	passed	to	it	regardless,	and	an	error	will	be	raised	if	it	isn’t	there.

Once	again,	I’ve	sprung	another	surprise	on	you.	Since	this	action	will	be	renaming	a	VM,

we	need	to	notify	Salt	as	well.	If	we	don’t,	then	the	Master	will	be	unable	to	contact	the
Minion.	As	usual,	there	is	a	helper	function	(salt.utils.cloud.rename_key())	that	does
the	work	for	us.

Using	functions
Because	functions	do	not	operate	on	a	specific	VM,	they	do	not	require	a	name	argument.
However,	they	do	require	the	kwargs	and	call	arguments,	even	if	you	don’t	intend	to	use
them	for	anything.

def	show_image(kwargs,	call=None):

				'''

				Show	the	details	for	a	VM	image

				'''

				if	call	!=	'function':

								raise	SaltCloudSystemExit(

												'The	show_image	function	must	be	called	with	-f	or	--function.'

)

				return	_query(resource='images/{0}'.format(kwargs['image']))

If	you	add	the	call	argument	to	various	functions	throughout	your	module,	you	will	be
able	to	call	them	directly	using	the	--action	or	--function	arguments.	This	can	be	very
useful	for,	say,	the	list_nodes()	functions,	when	you	want	to	look	at	VMs	for	only	one
cloud	provider	at	a	time,	rather	than	all	of	them	at	once.

The	only	public	function	that	cannot	be	called	this	way	is	the	create()	function.
destroy()	can	be	called	using	the	--action	argument,	and	almost	everything	else	that
we’ve	added	so	far	can	be	called	using	the	–-function	argument.	We’ll	go	ahead	and	add
those	in	for	our	final	cloud	module.

The	final	cloud	module
When	we	have	finished,	the	final	cloud	module	will	look	like	this:

'''

Generic	Salt	Cloud	module

This	module	is	not	designed	for	any	specific	cloud	provider,	but	is	generic

enough	that	only	minimal	changes	may	be	required	for	some	providers.

This	file	should	be	saved	as	salt/cloud/clouds/generic.py

Set	up	the	cloud	configuration	at	``/etc/salt/cloud.providers``	or

``/etc/salt/cloud.providers.d/generic.conf``:

..	code-block::	yaml

				my-cloud-config:

						driver:	generic

						#	The	login	user

						user:	larry

						#	The	user's	password

						password:	123pass

'''

import	json

import	salt.utils.http

import	salt.utils.cloud

import	salt.config	as	config

from	salt.exceptions	import	SaltCloudSystemExit

__virtualname__	=	'generic'

def	__virtual__():

				'''

				Check	for	cloud	configs

				'''

				if	get_configured_provider()	is	False:

								return	False

				return	__virtualname__

def	get_configured_provider():

				'''

				Make	sure	configuration	is	correct

				'''

				return	config.is_provider_configured(

								__opts__,

								__active_provider_name__	or	__virtualname__,

								('user',	'password')

)

def	request_instance(vm_):

				'''

				Request	that	a	VM	be	created

				'''

				request_kwargs	=	{

								'name':	vm_['name'],

								'image':	vm_['image'],

								'size':	vm_['size'],

								'location':	vm_['location']

				}

				salt.utils.cloud.fire_event(

								'event',

								'requesting	instance',

								'salt/cloud/{0}/requesting'.format(vm_['name']),

								{'kwargs':	request_kwargs},

								transport=__opts__['transport']

)

				return	_query(

								resource='instances',

								method='POST',

								data=request_kwargs,

)

def	query_instance(vm_):

				'''

				Query	a	VM	upon	creation

				'''

				salt.utils.cloud.fire_event(

								'event',

								'querying	instance',

								'salt/cloud/{0}/querying'.format(vm_['name']),

								transport=__opts__['transport']

)

				def	_query_ip_address():

								nodes	=	list_nodes_full()

								data	=	nodes.get(vm_['name'],	None)

								if	not	data:

												log.error('There	was	an	empty	response	from	the	cloud	

provider')

												return	False

								log.debug('Returned	query	data:	{0}'.format(data))

								if	'public_ips'	in	data:

												return	data['public_ips']

								return	None

				data	=	salt.utils.cloud.wait_for_ip(

								_query_ip_address,

								timeout=config.get_cloud_config_value(

												'wait_for_ip_timeout',	vm_,	__opts__,	default=10	*	60),

								interval=config.get_cloud_config_value(

												'wait_for_ip_interval',	vm_,	__opts__,	default=10),

								interval_multiplier=config.get_cloud_config_value(

												'wait_for_ip_interval_multiplier',	vm_,	__opts__,	default=1),

)

				return	data

def	create(vm_):

				'''

				Create	a	single	VM

				'''

				salt.utils.cloud.fire_event(

								'event',

								'starting	create',

								'salt/cloud/{0}/creating'.format(vm_['name']),

								{

												'name':	vm_['name'],

												'profile':	vm_['profile'],

												'provider':	vm_['driver'],

								},

								transport=__opts__['transport']

)

				create_data	=	request_instance(vm_)

				query_data	=	query_instance(vm_)

				vm_['key_filename']	=	config.get_cloud_config_value(

								'private_key',	vm_,	__opts__,	search_global=False,	default=None

)

				vm_['ssh_host']	=	query_data['public_ips'][0]

				salt.utils.cloud.bootstrap(vm_,	__opts__)

				salt.utils.cloud.fire_event(

								'event',

								'created	instance',

								'salt/cloud/{0}/created'.format(vm_['name']),

								{

												'name':	vm_['name'],

												'profile':	vm_['profile'],

												'provider':	vm_['driver'],

								},

								transport=__opts__['transport']

)

				return	query_data

def	destroy(name,	call=None):

				'''

				Destroy	a	machine	by	name

				'''

				salt.utils.cloud.fire_event(

								'event',

								'destroying	instance',

								'salt/cloud/{0}/destroying'.format(name),

								{'name':	name},

								transport=__opts__['transport']

)

				nodes	=	list_nodes_full()

				ret	=	_query(

								resource='instances/{0}'.format(nodes[name]['id']),

								location=node['location'],

								method='DELETE'

)

				salt.utils.cloud.fire_event(

								'event',

								'destroyed	instance',

								'salt/cloud/{0}/destroyed'.format(name),

								{'name':	name},

								transport=__opts__['transport']

)

				if	__opts__.get('update_cachedir',	False)	is	True:

								salt.utils.cloud.delete_minion_cachedir(

												name,	__active_provider_name__.split(':')[0],	__opts__

)

				return	ret

def	rename(name,	kwargs,	call=None):

				'''

				Properly	rename	a	node.	Pass	in	the	new	name	as	"newname".

				'''

				if	call	!=	'action':

								raise	SaltCloudSystemExit(

												'The	rename	action	must	be	called	with	-a	or	--action.'

)

				salt.utils.cloud.rename_key(

								__opts__['pki_dir'],	name,	kwargs['newname']

)

				nodes	=	list_nodes_full()

				return	_query(

								resource='instances/{0}'.format(nodes[name]['id']),

								action='rename',

								method='POST',

								data={'name':	kwargs['newname']}

)

def	show_image(kwargs,	call=None):

				'''

				Show	the	details	for	a	VM	image

				'''

				if	call	!=	'function':

								raise	SaltCloudSystemExit(

												'The	show_image	function	must	be	called	with	-f	or	--function.'

)

				return	_query(resource='images/{0}'.format(kwargs['image']))

def	list_nodes(call=None):

				'''

				List	of	nodes,	with	standard	query	data

				'''

				ret	=	{}

				nodes	=	_query(resource='instances')

				for	node	in	nodes:

								ret[node]	=	{

												'id':	nodes[node]['id'],

												'image':	nodes[node].get('image',	None),

												'size':	nodes[node].get('size',	None),

												'state':	nodes[node].get('state',	None),

												'private_ips':	nodes[node].get('private_ips',	[]),

												'public_ips':	nodes[node].get('public_ips',	[]),

								}

				return	ret

def	list_nodes_full(call=None):

				'''

				List	of	nodes,	with	full	node	data

				'''

				return	_query(resource='instances')

def	list_nodes_select(call=None):

				'''

				Return	a	list	of	the	VMs	that	are	on	the	provider,	with	select	fields

				'''

				return	salt.utils.cloud.list_nodes_select(

								list_nodes_full('function'),	__opts__['query.selection'],	call,

)

def	avail_images(call=None):

				'''

				Get	list	of	available	VM	images

				'''

				return	_query(resource='images')

def	avail_sizes(call=None):

				'''

				Get	list	of	available	VM	sizes

				'''

				return	_query(resource='sizes')

def	avail_locations(call=None):

				'''

				Get	list	of	available	locations

				'''

				return	_query(resource='locations')

def	_query(

								resource=None,

								action=None,

								params=None,

								method='GET',

								location=None,

								data=None

):

				'''

				Make	a	web	call	to	the	cloud	provider

				'''

				user	=	config.get_cloud_config_value(

								'user',	get_configured_provider(),	__opts__,	search_global=False

)

				password	=	config.get_cloud_config_value(

								'password',	get_configured_provider(),	__opts__,

)

				api_key	=	config.get_cloud_config_value(

								'api_key',	get_configured_provider(),	__opts__,

)

				location	=	config.get_cloud_config_value(

								'location',	get_configured_provider(),	__opts__,	default=None

)

				if	location	is	None:

								location	=	'eu-north'

				url	=	'https://{0}.api.example.com/v1'.format(location)

				if	resource:

								url	+=	'/{0}'.format(resource)

				if	action:

								url	+=	'/{0}'.format(action)

				if	not	isinstance(params,	dict):

								params	=	{}

				params['api_key']	=	api_key

				if	data	is	not	None:

								data	=	json.dumps(data)

				result	=	salt.utils.http.query(

								url,

								method,

								params=params,

								data=data,

								decode=True,

								decode_type='json',

								hide_fields=['api_key'],

								opts=__opts__,

)

				return	result['dict']

Troubleshooting	cloud	modules
Cloud	modules	may	seem	daunting	because	there	are	so	many	components	that	are
required	to	make	a	cohesive	piece	of	code.	But	if	you	work	on	the	module	with	bite-sized
chunks,	it	will	be	a	lot	easier	to	handle.

Write	avail_sizes()	or	avail_images()	first
Whenever	I	write	a	new	cloud	module,	the	first	thing	I	do	is	get	some	sample	code
working	that	makes	a	small	query.	Because	images	and	sizes	are	critical	to	the	creation	of
a	VM,	and	because	those	calls	tend	to	be	very	simple,	they	are	usually	the	easiest	to	get
working.

Once	you	have	one	of	those	functions	working,	break	it	out	into	a	_query()	function	(if
you	didn’t	start	that	way)	and	a	function	that	calls	it.	Then	write	another	function	that	calls
it.	You	may	find	yourself	tweaking	_query()	for	each	of	the	first	few	functions,	but	then	it
will	stabilize	and	require	few,	if	any,	changes.

Use	shortcuts
I	cannot	tell	you	how	many	hours	I	have	spent	waiting	for	VMs	to	spin	up,	just	to	test	one
piece	of	code.	If	you	break	out	the	create()	function	into	a	lot	of	smaller	functions,	then
you	can	temporarily	hardcode	VM	data	as	needed,	and	skip	over	operations	that	would
otherwise	waste	too	much	time.	Just	be	sure	to	take	out	the	shortcuts	when	you	finish!

Summary
Salt	Cloud	is	designed	to	handle	compute	resources,	though	additional	cloud	functionality
can	be	added	as	needed.	A	cloud	module	can	be	written	using	Libcloud,	an	SDK,	or	the
direct	REST	API;	each	method	has	its	pros	and	cons.	Modern	REST	APIs	tend	to	be	very
similar	and	easy	to	work	with.	There	are	several	functions	that	are	required	for	a	cohesive
cloud	module,	but	most	are	not	complex.	Actions	are	performed	against	individual	VMs
while	functions	are	performed	against	cloud	providers	themselves.

Now	that	we’ve	gone	over	cloud	modules,	it’s	time	to	start	monitoring	our	resources.	Next
up:	beacons.

Chapter	10.	Monitoring	with	Beacons
Beacons	are	a	newer	type	of	module	in	Salt	which	are	designed	to	watch	resources	on	a
Minion,	and	report	to	the	Master	when	those	resources	fall	out	of	alignment	with	what	you
expect	them	to	look	like.	In	this	chapter,	we	will	discuss:

Monitoring	external	systems	with	Salt
Troubleshooting	beacons

Watching	for	data
There	are	two	basic	types	of	monitoring	services:	those	that	record	data,	and	those	that
trigger	alerts	based	on	that	data.	On	the	surface,	beacons	may	look	like	the	second	type.
They	run	on	a	regular	interval	(as	frequently	as	every	second,	by	default)	and	when	they
find	data	that	is	important,	they	send	it	up	to	the	Master.

However,	because	beacons	have	access	to	execution	modules	on	the	Minion	that	they	are
running	on,	they	can	interact	with	any	program	on	the	Minion	that	an	execution	module
can.

Keeping	an	eye	on	things
Let’s	go	ahead	and	put	together	a	beacon	that	monitors	nspawn	containers.	It	doesn’t	need
to	be	very	complex;	indeed,	beacons	should	be	as	simple	as	possible,	since	they	are
expected	to	run	so	often.	All	that	our	beacon	needs	to	do	is	keep	an	eye	on	containers	that
should	be	running,	and	those	that	should	be	absent.

Note
Containers	have	become	very	popular	in	the	modern	data	center,	thanks	in	large	part	to
Docker	and	LXC.	systemd	has	its	own	containering	system	called	nspawn,	which	is	a	very
powerful	system	in	its	own	right.	A	number	of	Linux	distributions	now	ship	with	systemd,
which	means	that	you	may	already	have	nspawn	installed.	You	can	find	a	more	complete
discussion	of	nspawn	itself	on	Lennart	Pottering’s	blog	at:

http://0pointer.net/blog/systemd-for-administrators-part-xxi.html

First,	we	need	to	set	up	our	__virtual__()	function.	Since	nspawn	is	part	of	systemd,	and
not	every	Minion	will	have	systemd	on	it,	we	need	to	perform	a	check	for	it.	However,
since	we’re	going	to	use	the	nspawn	execution	module	that	ships	with	Salt,	and	it	already
contains	a	__virtual__()	function,	all	that	we	really	need	to	do	is	make	sure	it	is	present:

'''

Send	events	covering	nspawn	containers

This	beacon	accepts	a	list	of	containers	and	whether	they	should	be

running	or	absent:

beacons:

		nspawn:

				vsftpd:	absent

				httpd:	running

This	file	should	be	saved	as	salt/beacons/nspawn.py

'''

__virtualname__	=	'nspawn'

def	__virtual__():

				'''

				Ensure	that	systemd-nspawn	is	available

				'''

				if	'nspawn.list_running'	in	__salt__:

								return	__virtualname__

				return	False

It	makes	sense	to	check	specifically	for	nspawn.list_running,	since	that	is	the	only
function	that	we’ll	be	using	here.

http://0pointer.net/blog/systemd-for-administrators-part-xxi.html

Validating	configuration
Beacons	will	not	run	unless	they	know	which	data	to	watch	for.	You	probably	saw	the
configuration	example	in	the	preceding	docstring.	The	validate()	function	checks	the
configuration	that	was	passed	to	this	beacon,	to	make	sure	that	it	has	been	formatted	in	the
correct	way.

If	we	were	going	to	be	minimalistic	about	this,	then	we	would	just	check	to	make	sure	that
the	correct	type	of	data	has	been	passed	in.	In	our	case,	we’re	expecting	a	dictionary,	so
we	could	get	away	with	just	checking	for	that:

def	validate(config):

				'''

				Validate	the	beacon	configuration

				'''

				if	not	isinstance(config,	dict):

								return	False

				return	True

But	we’ll	go	ahead	and	add	just	a	little	more,	to	make	sure	that,	at	the	very	least,	the
containers	listed	are	set	to	one	of	the	required	values:	running	or	absent:

def	validate(config):

				'''

				Validate	the	beacon	configuration

				'''

				if	not	isinstance(config,	dict):

								return	False

				for	key	in	config:

								if	config[key]	not	in	('running',	'absent'):

												return	False

				return	True

You	can	skip	this	function	if	you	need	to;	if	it’s	not	there,	then	Salt	will	skip	over	it.
However,	it	is	a	good	idea	to	have	it	there,	to	help	keep	bad	configuration	from	causing
the	beacon	to	crash	with	a	stacktrace.

The	beacon()	function
As	with	some	of	the	other	types	of	modules,	beacons	have	a	function	that	is	required,
since	Salt	will	look	for	it	when	trying	to	use	the	module.	Not	surprisingly,	this	function	is
called	beacon().	It	is	passed	the	same	config	data	as	the	validate()	function.

Our	beacon’s	only	job	is	to	use	machinectl	to	report	which	containers	are	currently
running	on	the	Minion.	Its	output	looks	something	like	the	following:

#	machinectl	list

MACHINE							CLASS					SERVICE							

vsftpd									container	systemd-nspawn

1	machines	listed.

We	could	call	this	manually	and	parse	the	output	ourselves,	but	as	I	said	before,	there	is
already	an	nspawn	execution	module	that	ships	with	Salt,	and	it	has	a	list_running()
function	that	does	all	of	that	for	us.

All	that	we	have	to	do	then	is	get	a	list	of	the	nodes	that	are	reported	as	running,	and	then
match	it	against	the	list	of	nodes	in	the	config	dictionary:

def	beacon(config):

				'''

				Scan	for	nspawn	containers	and	fire	events

				'''

				nodes	=	__salt__['nspawn.list_running']()

				ret	=	[]

				for	name	in	config:

								if	config[name]	==	'running':

												if	name	not	in	nodes:

																ret.append({name:	'Absent'})

								elif	config[name]	==	'absent':

												if	name	in	nodes:

																ret.append({name:	'Running'})

								else:

												if	name	not	in	nodes:

																ret.append({name:	False})

				return	ret

Rather	than	stepping	through	the	list	of	running	nodes,	we	iterate	through	the	list	of	nodes
that	were	configured.	If	a	node	that	should	be	absent	shows	up	in	the	running	list,	then	we
mark	it	as	running.	If	it	should	be	running	but	doesn’t	show	up,	then	we	mark	it	as	absent.

That	last	else	statement	will	notify	us	if	something	that	wasn’t	marked	as	running	or
absent	showed	up	in	the	list.	Since	we	already	did	that	check	in	the	validate()	function,
this	shouldn’t	be	needed.	But	it’s	not	a	bad	idea	to	keep	this	kind	of	check	in	there,	just	in
case	your	validate()	function	missed	something.	If	you	start	seeing	events	from	this
module	that	have	nodes	set	to	False,	then	you	know	you	need	to	go	back	and	check	the
validate()	function.

If	you’ve	been	following	along	and	have	already	started	testing	this	module,	then	you	may

notice	something,	well,	obnoxious.	By	default,	beacons	are	executed	once	a	second.	You
can	change	that	interval	on	a	per-module	basis:

beacons:

		nspawn:

				vsftpd:	present

				httpd:	absent

				interval:	30

With	that	configuration,	the	nspawn	beacon	will	only	be	executed	once	every	five	seconds,
instead	of	every	second.	That	will	cut	down	on	the	chatter,	but	also	means	that	your
beacon	won’t	necessarily	be	watching	as	often	as	you’d	like.

Let’s	go	ahead	and	add	some	code,	which	will	allow	the	beacon	to	run	as	often	as	you’d
like,	but	send	updates	on	a	less	regular	basis.	Let’s	say	that	you	have	your	beacon	tied	into
a	monitoring	service	(through	the	event	reactor),	and	you	want	up-to-the-second
monitoring,	but	you	don’t	need	to	be	told	more	than	once	every	five	minutes	that,	“oh,	by
the	way,	the	container	is	still	down”:

import	time

def	beacon(config):

				'''

				Scan	for	nspawn	containers	and	fire	events

				'''

				interval	=	__salt__['config.get']('nspawn_alert_interval',	360)

				now	=	int(time.time())

				nodes	=	__salt__['nspawn.list_running']()

				ret	=	[]

				for	name	in	config:

								lasttime	=	__grains__.get('nspawn_last_notify',	{}).get(name,	0)

								if	config[name]	==	'running':

												if	name	not	in	nodes:

																if	now	-	lasttime	>=	interval:

																				ret.append({name:	'Absent'})

																				__salt__['grains.setval']('nspawn_last_notify',	{name:	

now})

								elif	config[name]	==	'absent':

												if	name	in	nodes:

																if	now	-	lasttime	>=	interval:

																				ret.append({name:	'Running'})

																				__salt__['grains.setval']('nspawn_last_notify',	{name:	

now})

								else:

												if	name	not	in	nodes:

																if	now	-	lasttime	>=	interval:

																				ret.append({name:	False})

																								__salt__['grains.setval']('nspawn_last_notify',	

{name:	now})

				return	ret

First,	we	set	up	an	alert	interval	called	nspawn_alert_interval,	and	default	it	to	360
seconds	(or,	every	five	minutes).	Because	we	used	config.get	to	look	for	it,	we	can

configure	it	in	either	the	master	or	minion	configuration	files,	or	in	a	grain	or	a	pillar	for
the	Minion.

Then	we	make	a	note	of	the	current	time	using	Python’s	own	time.time()	function.	This
function	reports	the	number	of	seconds	since	the	epoch,	which	is	perfect	for	our	purposes,
since	our	alert	interval	is	also	configured	in	seconds.

As	we	iterate	through	the	list	of	configured	nodes,	we	check	to	see	when	the	last
notification	was	sent	out.	This	is	stored	in	a	grain	called	nspawn_last_notify.	This	isn’t	a
grain	that	your	users	will	be	updating;	this	is	one	that	the	beacon	will	keep	track	of.

In	fact,	you	will	see	that	happen	for	each	of	the	branches	in	the	if	statement.	Whenever
the	beacon	detects	that	an	alert	should	be	sent,	it	first	checks	to	see	if	an	alert	has	already
been	sent	during	the	specified	interval.	If	not,	then	it	sets	up	an	event	to	be	returned.

Watching	for	beacons
Beacons	use	Salt’s	event	bus	to	send	notifications	to	the	Master.	You	can	use	the	event
function	in	the	state	runner	to	watch	the	beacons	come	in	on	the	event	bus.	The	return
from	this	particular	beacon	module	will	look	like	the	following:

salt/beacon/alton/nspawn/	 {

				"_stamp":	"2016-01-17T17:48:48.986662",

				"data":	{

								"vsftpd":	"Present",

								"id":	"alton"

				},

				"tag":	"salt/beacon/alton/nspawn/"

}

Take	note	of	the	tag,	which	contains	salt/beacon/,	followed	by	the	ID	of	the	Minion
(alton)	that	fired	the	beacon,	and	then	the	name	of	the	beacon	itself	(nspawn).

The	final	beacon	module
When	all	is	said	and	done,	our	final	beacon	module	will	look	like	this:

'''

Send	events	covering	nspawn	containers

This	beacon	accepts	a	list	of	containers	and	whether	they	should	be

running	or	absent:

				..	code-block::	yaml

								beacons:

										nspawn:

												vsftpd:	running

												httpd:	absent

This	file	should	be	saved	as	salt/beacons/nspawn.py

'''

import	time

__virtualname__	=	'nspawn'

def	__virtual__():

				'''

				Ensure	that	systemd-nspawn	is	available

				'''

				if	'nspawn.list_running'	in	__salt__:

								return	__virtualname__

				return	False

def	validate(config):

				'''

				Validate	the	beacon	configuration

				'''

				if	not	isinstance(config,	dict):

								return	False

				for	key	in	config:

								if	config[key]	not	in	('running',	'absent'):

												return	False

				return	True

def	beacon(config):

				'''

				Scan	for	nspawn	containers	and	fire	events

				'''

				interval	=	__salt__['config.get']('nspawn_alert_interval',	360)

				now	=	int(time.time())

				nodes	=	__salt__['nspawn.list_running']()

				ret	=	[]

				for	name	in	config:

								lasttime	=	__grains__.get('nspawn_last_notify',	{}).get(name,	0)

								if	config[name]	==	'running':

												if	name	not	in	nodes:

																if	now	-	lasttime	>=	interval:

																				ret.append({name:	'Absent'})

																				__salt__['grains.setval']('nspawn_last_notify',	{name:	

now})

								elif	config[name]	==	'absent':

												if	name	in	nodes:

																if	now	-	lasttime	>=	interval:

																				ret.append({name:	'Running'})

																				__salt__['grains.setval']('nspawn_last_notify',	{name:	

now})

								else:

												if	name	not	in	nodes:

																if	now	-	lasttime	>=	interval:

																				ret.append({name:	False})

																				__salt__['grains.setval']('nspawn_last_notify',	{name:	

now})

				return	ret

Troubleshooting	beacons
Beacons	are	a	type	of	module	that	require	both	a	running	Master	and	a	running	Minion.
Running	the	salt-master	service	in	the	foreground	won’t	give	you	much	insight,	since
the	code	will	be	running	on	the	Minion,	but	running	the	salt-minion	service	in	the
foreground	will	be	very	helpful:

#	salt-minion	-l	debug

Set	aside	a	Minion	that	only	has	your	beacon	configured	and	no	others.	By	default,	these
beacons	will	run	every	second,	and	that	can	generate	very	noisy	logs	indeed:

[INFO]	Executing	command	'machinectl	--no-legend	--no-pager	list'	in	

directory	'/root'

[DEBUG]	stdout:	vsftpd	container	systemd-nspawn

[INFO]	Executing	command	'machinectl	--no-legend	--no-pager	list'	in	

directory	'/root'

[DEBUG]	stdout:	vsftpd	container	systemd-nspawn

[INFO]	Executing	command	'machinectl	--no-legend	--no-pager	list'	in	

directory	'/root'

[DEBUG]	stdout:	vsftpd	container	systemd-nspawn

Imagine	several	beacons	running	at	once,	each	logging	its	own	data	for	what	it’s	currently
doing.	That	will	get	old	fast.

You	will	also	want	to	keep	an	event	listener	open	on	the	Master:

#	salt-r

un	state.event	pretty=True

salt/beacon/alton/nspawn/	 {

				"_stamp":	"2016-01-17T17:48:48.986662",

				"data":	{

								"ftp-container":	"Present",

								"id":	"alton"

				},

				"tag":	"salt/beacon/alton/nspawn/"

}

Fortunately,	beacons	are	not	the	sort	of	thing	that	you	really	need	to	wait	around	for;	just
make	the	machine	exhibit	the	kind	of	behavior	that	you’re	looking	for,	and	then	start	up
the	salt-minion	process.	Just	make	sure	to	test	for	any	variation	of	the	behavior	that	you
expect	to	find,	whether	or	not	it	is	expected	to	return	an	event.

Summary
Beacons	give	Minions	the	ability	to	raise	events	based	on	monitored	conditions.	A
validate()	function	is	helpful	for	ensuring	that	the	configuration	is	correct,	but	it	is	not
required.	A	beacon()	function	is	required,	as	it	is	the	function	that	performs	the	actual
monitoring.	Use	execution	modules	when	possible	to	perform	the	heavy	lifting.	Beacons
can	run	at	very	short	intervals,	but	by	having	them	store	data	in	grains,	you	can	set
notifications	at	longer	intervals.

Now	that	we	have	all	of	the	Minion-side	modules	in	the	book	out	of	the	way,	let’s	go	back
and	finish	up	with	some	Master-side	modules.	Next	up:	extending	the	Master.

Chapter	11.	Extending	the	Master
Even	though	some	of	the	modules	that	we’ve	written	so	far	can	be	used	on	the	Master,	the
focus	has	still	been	entirely	on	managing	Minion-based	operations.	Even	runners,	which
only	run	on	the	Master,	were	originally	designed	to	script	tasks	between	Minions.

There	are	two	types	of	modules	that	are	designed	entirely	for	Master-side	work:	external
authentication	modules	and	wheel	modules.	In	this	chapter,	we’ll	go	over:

Adding	external	authentication	to	the	Master
Troubleshooting	external	authentication	modules
Managing	Master	configuration	with	wheel	modules
Troubleshooting	wheel	modules

Using	external	authentication
In	its	default	setup,	users	only	communicate	with	Salt	with	one	user:	usually	either	root	or
salt.	Any	user	who	has	access	to	log	in	as	that	user	will	be	able	to	issue	Salt	commands.
This	may	be	OK	with	smaller	setups,	but	it	does	not	scale	well	at	all.	Larger	organizations
will	want	each	user	to	manage	Salt	with	their	own	login,	and	be	able	to	set	access	controls
on	a	per-user	basis.	There	are	also	other	programs,	including	Salt	API,	which	require	the
use	of	external	authentication	modules.

External	authentication	(or	auth	or	eauth)	modules	allow	individual	users	to	have	their
own	permissions	to	the	various	components	of	Salt.	The	simplest	is	probably	the	pam
module,	in	part	because	other	existing	access	control	mechanisms	can	be	configured	inside
PAM	itself.	Unfortunately,	PAM	is	rarely	used	outside	of	Linux,	so	other	modules	are
needed	on	other	platforms.

Authenticating	credentials
On	the	surface,	an	auth	module	doesn’t	need	to	do	much.	It	only	needs	to	accept	a
username	and	password,	and	check	with	the	appropriate	service	to	ensure	that	it	is	valid.	If
it	is,	then	it	returns	True.	Otherwise,	it	will	return	False.

Let’s	go	ahead	and	set	up	an	auth	module	for	a	fictional	web	service	that	accepts	a
username	and	password,	and	returns	a	status	of	200	(OK)	if	they	are	correct	and	403
(FORBIDDEN)	if	they	are	not.	As	with	some	of	the	other	module	types,	there	is	a	required
function	in	auth	modules.	This	one	is	called	auth().	Let’s	go	ahead	and	look	at	our	entire
auth	module	at	once:

'''

Provide	authentication	using	an	authentication	web	service.	This	service

must	be	configured	with	an	API	ID	and	API	key	in	the	master	configuration.

webauth:

		apiid:	0123456789

		apikey:	abcdef0123456789abcdef0123456789

This	file	should	be	saved	as	salt/auth/webauth.py

'''

import	json

import	base64

import	urllib

import	salt.utils.http

def	auth(username,	password):

				'''

				Authenticate	using	an	external	web	authentication	service

				'''

				apiid	=	__opts__.get('webauth',	{}).get('apiid',	None)

				apikey	=	__opts__.get('webauth',	{}).get('apikey',	None)

				url	=	'https://api.example.com/v1/checkauth'

				username	=	urllib.quote(username)

				password	=	urllib.quote(password)

				data	=	{

								'type':	'basic',

								'value':	base64.b64encode('{0}:{1}'.format(username,	password))

				}

				result	=	salt.utils.http.query(

								path,

								method='POST',

								username=apiid,

								password=apikey,

								data=json.dumps(data),

								status=True,

								opts=__opts__,

)

				if	result.get('status',	403)	==	200:

								return	True

				return	False

Our	function	declaration	has	two	required	arguments:	username	and	password.	These	will
be	sent	to	the	authentication	service	to	check	their	validity.	Our	service	doesn’t	just	accept
arbitrary	credentials;	it	requires	an	account	to	be	set	up	first,	with	its	own	authentication,
which	stores	the	username	and	password.	So,	our	first	job	is	to	grab	the	credentials	for	that
service	(apiid	and	apikey)	from	the	master	configuration.	Then	add	in	the	URL	to	be
used	for	the	authentication	check:

				apiid	=	__opts__.get('webauth',	{}).get('apiid',	None)

				apikey	=	__opts__.get('webauth',	{}).get('apikey',	None)

				url	=	'https://api.example.com/v1/checkauth'

We	want	to	be	able	to	accept	special	characters	in	either	the	username	or	password,	but
since	they	won’t	translate	properly	over	the	wire,	we	use	Python’s	urllib	library	to	add
quoting	to	them.	Then	we	format	the	credentials	in	the	way	that	the	external	web	service
expects:

				username	=	urllib.quote(username)

				password	=	urllib.quote(password)

				data	=	{

								'type':	'basic',

								'value':	base64.b64encode('{0}:{1}'.format(username,	password))

				}

Now	that	we	have	all	of	the	data	set	up	to	pass	to	the	web	service,	we	use	the
http.query()	function	to	make	the	call.	apiid	and	apikey	are	used	as	the	username	and
password	to	the	service	itself,	and	the	user’s	username	and	password	are	set	along	as	a
JSON	string.	We	also	make	sure	to	tell	http.query()	to	return	a	status	code,	since	that	is
the	only	part	of	the	result	that	we	care	about:

				result	=	salt.utils.http.query(

								path,

								method='POST',

								username=apiid,

								password=apikey,

								data=json.dumps(data),

								status=True,

								opts=__opts__,

)

Once	we	have	an	authentication	code,	we	check	to	see	if	it’s	200.	If	something	goes	wrong
and	there	is	no	code,	then	we	default	the	value	to	403,	but	when	it	comes	down	to	it,
anything	other	than	200	means	that	the	credentials	will	be	considered	invalid:

			if	result.get('status',	403)	==	200:

								return	True

				return	False

Troubleshooting	external	authentication
Troubleshooting	auth	modules	is	a	little	different	from	other	types	of	module,	because
what	you’re	testing	is	the	ability	to	access	a	command,	not	the	functionality	of	the
resulting	command.	This	means	that	the	command	that	you	choose	to	execute	should	be
one	that	is	already	known	to	work,	such	as	test.ping.

Setting	auth	parameters
Before	you	can	use	an	auth	module,	you	need	to	enable	it	in	the	master	configuration	file.
Multiple	auth	modules	can	be	configured,	using	the	external_auth	directive:

external_auth:

		pam:

				moe:

						-	.*

						-	'@runner'

						-	'@wheel'

				larry:

						-	test.*

						-	disk.*

						-	network.*

						-	'@runner'

						-	'@wheel'

		webauth:

				shemp:

						-	test.*

						-	network.*

						-	'@runner'

						-	'@wheel'

In	this	example,	we	have	three	users	set,	between	two	different	auth	modules.	The	moe
and	larry	users	are	set	to	use	the	pam	module,	and	the	shemp	user	is	set	to	use	the	webauth
module	that	we	just	created.	The	moe	user	has	access	to	all	execution	modules,	plus	the
runner	and	wheel	systems,	while	larry‘s	execution	module	access	is	limited	to	the	test,
disk,	and	network	modules.	The	shemp	user	is	the	same	as	larry,	minus	access	to	the
disk	module.

Keep	in	mind	that	Salt	API	requires	@runner	and	@wheel	to	be	set.	If	you	are	not	planning
on	giving	users	access	to	resources	using	Salt	API,	then	you	can	skip	those	two	lines.

Once	you	have	external_auth	configured,	there	are	two	means	of	testing	auth	modules:
using	the	salt	command	on	the	Master,	and	using	Salt	API.

Testing	with	the	salt	command
The	fastest	way	to	test	an	auth	module	is	to	log	in	to	the	Master	with	the	account	that	the
salt-master	service	is	running	as	and	issue	a	salt	command,	with	the	appropriate
arguments	to	set	which	auth	module	is	to	be	used,	and	which	credentials	to	use:

--auth	or	-a:	This	argument	sets	which	auth	module	to	use.	The	default	argument	for
this	is	pam.
--username:	The	username	to	authenticate	with.
--password:	The	password	to	authenticate	with.

Assuming	that	you’re	testing	with	the	webauth	module	that	we	just	created,	a	basic	salt
command	will	look	like	this:

salt	--auth=webauth	--username=larry	--password=123pass	'*'	test.ping

Testing	with	Salt	API
You	can	also	test	auth	modules	using	Salt	API.	This	can	be	easily	accomplished	using	the
curl	command	that	is	commonly	available	in	Linux.	Before	you	can	test	using	this
method,	you	need	to	configure	Salt	API	inside	the	master	configuration	file.

Please	note	that	the	following	configuration	block	is	insecure,	as	it	does	not	use	SSL.
Never	set	disable_ssl	to	True	in	production!	As	a	safety	measure,	this	configuration
block	also	sets	Salt	API	to	only	listen	to	requests	from	the	local	host:

rest_cherrypy:

		port:	8080

		host:	127.0.0.1

		debug:	True

		disable_ssl:	True

Once	you	have	Salt	API	configured,	go	ahead	and	start	the	salt-master	and	salt-api
services	in	the	foreground	(in	two	different	windows):

#	salt-master	-l	debug

#	salt-api	-l	debug

Use	the	following	curl	command	to	run	the	test.ping	function:

#	curl	localhost:8080/run	\

				-H	'Accept:	application/json'	\

				-d	username=larry	\

				-d	password=123pass	\

				-d	eauth=pam	\

				-d	client=local	\

				-d	tgt='*'	\

				-d	fun='test.ping'

The	most	important	arguments	here	are	eauth,	which	is	equivalent	to	the	--auth
parameter	from	the	salt	command,	and	client,	which	specifies	which	type	of	module	to
access.	Here,	we	use	local,	which	refers	to	execution	modules.	Some	of	the	other
available	arguments	are	runner	and	wheel,	for	runner	and	wheel	modules.

When	you	issue	the	preceding	command	with	the	correct	credentials,	you	will	receive	a
JSON	string	back	with	the	result:

{"return":	[{"dufresne":	true}]}

If	you	issue	it	with	bad	credentials,	you	will	receive	an	error	page	that	includes	the
following	text:

<h2>401	Unauthorized</h2>

<p>No	permission—see	authorization	schemes</p>

If	you	look	at	the	window	with	salt-master	running	in	the	foreground,	you	will	see	an
error	message	like	this:

[WARNING]	Authentication	failure	of	type	"eauth"	occurred	for	user	larry.

And	if	you	look	in	the	window	running	salt-api,	you	will	see	a	message	like	this:

127.0.0.1	-	-	[26/Jan/2016:08:25:32]	"POST	/run	HTTP/1.1"	401	1214	""	

"curl/7.46.0"

[INFO]	127.0.0.1	-	-	[26/Jan/2016:08:25:32]	"POST	/run	HTTP/1.1"	401	

1214	""	"curl/7.46.0"

Managing	the	Master	with	the	wheel
modules
The	wheel	system	is	designed	to	provide	an	API	to	the	Master,	which	is	accessible	via
programs	that	give	external	access	to	the	Master,	such	as	Salt	API.

One	of	the	first	things	that	you’ll	find	when	writing	wheel	modules	is	that	there	is	no
command-line	program	available	for	testing	wheel	modules	directly.	Wheel	modules
generally	include	functionality	that	would	be	available	via	some	other	means,	were	you
logged	directly	in	to	the	Master,	but	are	still	useful	when	manual	access	is	not	an	option.

For	instance,	possibly	the	most	commonly	used	wheel	module	is	key,	which	allows	a
programmatic	way	to	manage	Minion	keys	without	using	the	key	command.	Because
wheel	modules	are	available	to	the	reactor	system,	you	can	write	reactor	modules	that	can
automatically	accept	or	delete	keys	for	Minions	based	on	predefined	conditions.

Wrapping	a	wheel	around	runners
For	our	example	module,	we’ll	put	together	a	wheel	module	that	returns	a	small	amount	of
data	concerning	runner	modules.	This	module	is	a	simplified	version	of	the	runner
functions	inside	the	sys	execution	module.	The	reason	these	functions	might	be	useful	as	a
wheel	module	is	that	runners	are	designed	to	run	on	the	Master,	not	Minions.	If	you	do	not
run	the	salt-minion	service	on	the	Master,	then	you	have	no	way	to	programmatically	list
available	runner	modules	on	the	Master.

To	start	things	off,	we’ll	create	a	function	that	does	nothing	more	than	list	all	of	the
functions	available	in	the	runner	system:

'''

Show	information	about	runners	on	the	Master

This	file	should	be	saved	as	salt/wheel/runners.py

'''

import	salt.runner

def	list_functions():

				'''

				List	the	functions	for	all	runner	modules.

				'''

				run_	=	salt.runner.Runner(__opts__)

				return	sorted(run_.functions)

This	function	doesn’t	do	a	whole	lot.	It	sets	up	a	connection	to	the	Runner	system	and
assigns	it	to	a	run_	object.	Then	it	returns	a	sorted	list	of	all	of	the	runner	functions
available	on	the	Master.

To	test	this,	we’ll	need	Salt	API	configured,	just	like	we	did	in	the	Troubleshooting
external	authentication	section.	Then	we	issue	a	command	that	sets	client	to	use	the
wheel	system:

#	curl	localhost:8080/run	\

				-H	'Accept:	application/json'	\

				-d	username=larry	\

				-d	password=123pass	\

				-d	eauth=pam	\

				-d	client=wheel	\

				-d	fun='runners.list_functions'

On	a	Master	that	only	has	the	manage	module	available,	we	would	get	a	JSON	string	back
that	looks	like	this:

"return":	[{"tag":	"salt/wheel/20160126084725920013",	"data":	{"jid":	

"20160126084725920013",	"return":	["manage.alived",	"manage.allowed",	

"manage.bootstrap",	"manage.bootstrap_psexec",	"manage.down",	

"manage.get_stats",	"manage.joined",	"manage.key_regen",	

"manage.lane_stats",	"manage.list_not_state",	"manage.list_state",	

"manage.not_alived",	"manage.not_allowed",	"manage.not_joined",	

"manage.not_present",	"manage.not_reaped",	"manage.present",	

"manage.reaped",	"manage.road_stats",	"manage.safe_accept",	

"manage.status",	"manage.tagify",	"manage.up",	"manage.versions"],	

"success":	true,	"_stamp":	"2016-01-26T15:47:25.974625",	"tag":	

"salt/wheel/20160126084725920013",	"user":	"larry",	"fun":	

"wheel.runners.list_functions"}}]}

Let’s	go	ahead	and	build	on	that	a	little	bit	and	add	a	runner-specific	version	of	the
sys.doc	function	in	the	execution	modules:

from	salt.utils.doc	import	strip_rst	as	_strip_rst

def	doc():

				'''

				Return	the	docstrings	for	all	runners.

				'''

				run_	=	salt.runner.Runner(__opts__)

				docs	=	{}

				for	fun	in	run_.functions:

								docs[fun]	=	run_.functions[fun].__doc__

				return	_strip_rst(docs)

Once	again,	this	function	sets	up	a	connection	to	the	Runner	system,	and	assigns	it	to	the
run_	object.	It	then	iterates	through	the	functions	inside	the	run_	object,	extracting	the
docstrings	that	live	inside	the	__doc__	attribute.	Each	docstring	is	added	to	a	docs
dictionary,	which	is	passed	through	a	function	in	Salt	called	_strip_rst(),	which	cleans
things	up	a	little	bit.

Let’s	finish	things	up	with	a	function	that	lists	just	the	runner	modules	available,	but	no
other	information	about	them	such	as	docstrings	or	even	function	names:

__func_alias__	=	{

				'list_':	'list'

}

def	list_():

				'''

				List	the	runners	loaded	on	the	minion

				'''

				run_	=	salt.runner.Runner(__opts__)

				runners	=	set()

				for	func	in	run_.functions:

								comps	=	func.split('.')

								if	len(comps)	<	2:

												continue

								runners.add(comps[0])

				return	sorted(runners)

This	function	expands	upon	the	list_runners()	function	by	stripping	out	function	names
and	adding	the	resulting	module	names	to	a	set	called	runners.	As	before,	a	sorted	copy	of
that	set	is	returned.

The	final	wheel	module
With	all	of	our	functions	put	together,	we	will	end	up	with	a	cohesive	module	that	looks
like	this:

'''

Show	information	about	runners	on	the	Master

This	file	should	be	saved	as	salt/wheel/runners.py

'''

import	salt.runner

from	salt.utils.doc	import	strip_rst	as	_strip_rst

__func_alias__	=	{

				'list_':	'list'

}

def	doc():

				'''

				Return	the	docstrings	for	all	runners.

				'''

				run_	=	salt.runner.Runner(__opts__)

				docs	=	{}

				for	fun	in	run_.functions:

								docs[fun]	=	run_.functions[fun].__doc__

				return	_strip_rst(docs)

def	list_():

				'''

				List	the	runners	loaded	on	the	minion

				'''

				run_	=	salt.runner.Runner(__opts__)

				runners	=	set()

				for	func	in	run_.functions:

								comps	=	func.split('.')

								if	len(comps)	<	2:

												continue

								runners.add(comps[0])

				return	sorted(runners)

def	list_functions():

				'''

				List	the	functions	for	all	runner	modules.

				'''

				run_	=	salt.runner.Runner(__opts__)

				return	sorted(run_.functions)

Troubleshooting	wheel	modules
Once	again,	wheel	modules	are	a	little	special	when	it	comes	to	troubleshooting,	because
there	is	no	specific	command-line	program	in	Salt	that	executes	them	directly.	Unlike	auth
modules,	they	can’t	even	be	tested	using	the	salt	command.

However,	as	you	have	just	seen,	they	can	be	tested	using	Salt	API	and	curl:

#	curl	localhost:8080/run	\

				-H	'Accept:	application/json'	\

				-d	username=larry	\

				-d	password=123pass	\

				-d	eauth=pam	\

				-d	client=wheel	\

				-d	fun='runners.list'

You	can	also	test	wheel	modules	using	the	event	system	in	Salt.	It	is	good	to	get	used	to
testing	this	way,	since	wheel	modules	are	so	useful	inside	reactor	modules.

Let’s	go	ahead	and	set	up	a	reactor	that	deletes	a	Minion’s	key	from	the	Master:

#	This	reactor	should	be	saved	as	/srv/reactor/test_delete.sls

test_delete_minion:

		wheel.key.delete:

				-	match:	data['bad_minion']

Then	add	that	reactor	to	the	master	configuration	file:

reactor:

		-	'user/minon/delete/*':

				-	'/srv/reactor/test_delete.sls'

Go	ahead	and	create	a	bad	Minion	key	on	the	Master:

#	touch	/etc/salt/pki/master/minions/ronald

After	restarting	the	Master,	go	ahead	and	issue	a	command	to	trigger	the	reactor:

#	salt	myminion	event.fire_master	'{"bad_minion":"ronald"}'	

'user/minion/delete/ronald'

Once	you	issue	this	command,	you	can	use	the	salt-key	command	to	make	sure	that	the
Minion’s	bad	key	is	no	longer	there:

#	salt-key	-L

Or	for	bonus	points,	why	not	use	Salt	API	to	make	sure	that	Minion’s	key	is	gone?:

#	curl	localhost:8080/run	\

				-H	'Accept:	application/json'	\

				-d	username=larry	\

				-d	password=123pass	\

				-d	eauth=pam	\

				-d	client=wheel	\

				-d	fun='key.list'	\

				-d	match='ronald'

{"return":	[{"tag":	"salt/wheel/20160126091522567932",	"data":	{"jid":	

"20160126091522567932",	"return":	{},	"success":	true,	"_stamp":	"2016-01-

26T16:15:22.576966",	"tag":	"salt/wheel/20160126091522567932",	"user":	

"larry",	"fun":	"wheel.key.list"}}]}

Don’t	be	fooled	by	the	fact	that	success	is	set	to	true;	the	important	value	here	is	return,
which	is	an	empty	dictionary.

Summary
External	authentication	(or	auth)	modules	allow	an	external	authentication	system	to
validate	user	credentials	on	the	Master.	This	can	be	used	for	authenticating	a	user	locally,
but	it	is	required	for	using	external	systems	that	connect	to	Salt.

Wheel	modules	allow	API	access	to	Master-side	functionality.	The	functions	contained	in
a	wheel	module	generally	allow	the	management	of	features	that	are	normally	available
via	some	other	means	on	the	Master	locally,	but	not	other	means	from	an	external
endpoint	outside	the	Master.	However,	wheel	modules	can	contain	any	Master-side
management	that	you	deem	necessary.

Congratulations!	You	made	it	all	the	way	through	Extending	SaltStack!	We’ve	included	a
couple	of	appendices	to	give	you	some	general	development	guidelines	and	some
information	about	contributing	to	the	community.

As	you	can	see,	there	is	a	world	of	Salt	development	to	explore.	More	modules	are	added
regularly,	and	occasionally	new	types	of	modules	will	appear	as	well.	While	we	haven’t
covered	everything	there	is	or	will	be,	you	now	have	a	solid	foundation	that	you	can	use	to
tackle	new	Salt	code	as	you	come	across	it.	Good	luck	out	there;	I	hope	you	win!

Appendix	A.	Connecting	Different
Modules
When	building	an	infrastructure,	it	is	helpful	to	understand	how	each	of	the	module	types
fits	together.	This	includes	both	how	they	fit	together	inside	of	Salt	and	how	you	are	able
to	use	those	connections	to	build	your	own	solutions.

Separating	Master	and	Minion
functionality
It’s	easy	to	think	of	Salt	in	terms	of	the	following:	the	Master	sends	commands	to	the
Minions,	the	Minions	do	the	work,	and	then	the	Minions	send	the	results	back	to	the
Master.	However,	the	Master	and	the	Minion	are	two	distinct	components	that	work
together	in	harmony	to	complete	their	respective	tasks.

It	is	important	to	keep	in	mind	that	when	the	Minion	is	running	in	a	Masterless	mode
(using	salt-call	--local),	it	behaves	as	its	own	Master,	and	outside	of	a	few	specific
features	(such	as	salt-key	and	runners	that	make	use	of	local_client),	any	feature	that
is	available	on	the	Master	is	also	available	on	the	Minion,	using	the	same	configuration
options	that	would	appear	in	the	master	file,	but	in	the	minion	file	instead.

But	when	running	with	a	Master	and	one	or	more	Minions,	they	are	two	distinct	entities.
Some	module	types	are	available	to	either	the	Master	or	the	Minion;	there	are	many	more
that	are	only	available	for	that	specific	service.

Let	us	have	a	look	at	a	diagrammatic	representation	of	the	Salt	Master	topology:

And	now	follows	the	diagrammatic	representation	of	the	Salt	Minion	topology:

Like	the	Master	and	the	Minion,	each	module	type	is	specific	and	distinct.	However,	like
the	Master	and	the	Minion,	modules	connect	to	each	other	and	work	in	concert	to
accomplish	larger	workflows.	Regardless	of	module	type,	the	Master	and	the	Minion	will

always	communicate	directly	(using	transport	modules,	which	are	beyond	the	scope	of	this
book).	Beyond	that,	different	modules	are	able	to	communicate	with	each	other	to	varying
degrees.

The	Master	generally	uses	its	own	modules	directly.	Some	of	those	modules	may	be	used
to	provide	Minions	with	resources	(such	as	file	server	modules),	but	a	number	of	them	are
used	entirely	for	providing	resources	to	the	Master	itself.	Master	returners	are	functionally
identical	to	returners	that	execute	on	the	Minion,	with	the	exception	of	how	they	get	their
data.

Minion	modules	communicate	with	each	other	extensively.	Execution	modules	can	pull
data	from	grain	and	SDB	modules	(and	from	pillars,	through	the	Master)	and	cross-call
each	other.	State	modules	are	themselves	called	from	an	execution	module,	but	also	have
access	to	cross-callback	to	execution	modules.	Renderers	are	used	by	a	number	of
different	module	types,	and	when	all	is	said	and	done,	returners	transport	return	data	to	the
correct	destination.

Salt	Cloud	is	the	odd	man	out,	because	while	it	can	be	accessed	via	either	a	runner	or	an
execution	module,	it	can	also	be	accessed	directly,	and	even	used	independently	of	the	rest
of	Salt.	In	fact,	it	can	be	used	to	manage	nodes	without	even	installing	Salt	on	them.

Working	with	dunders
For	those	of	you	not	in	the	know,	dunder	refers	to	a	variable	that	is	preceded	and
succeeded	by	two	underscores.	For	instance,	one	of	the	most	common	dunders	in	Salt	is
__opts__,	which	contains	the	configuration	for	either	the	Master	or	the	Minion,	depending
on	the	context.	There	are	a	number	of	dunders	that	work	together	to	form	the	glue	that	ties
all	of	Salt	together.	Let’s	take	a	look	at	them	in	turn:

__opts__:	On	a	Master,	the	__opts__	dictionary	contains	a	composite	of	the
information	located	in	the	Master’s	configuration	files	(normally	/etc/salt/master
plus	files	located	in	the	/etc/salt/master.d/	directory),	along	with	the	default
values	for	configuration	parameters	not	specified,	plus	any	internal	configuration	that
Salt	generates	for	its	own	use	at	runtime.

On	a	Minion,	__opts__	contains	the	same	sort	of	information	(but	from	the
/etc/salt/minion	file	and	the	/etc/salt/minion.d/	directory),	when	it	is
connected	to	the	Master.	However,	when	the	Minion	is	used	in	a	Masterless	mode
(such	as	when	called	from	salt-call	--local),	any	defaults	are	filled	in	as	if	it
were	a	Master,	rather	than	a	Minion.	This	is	because	lookups	such	as	pillars	and	files
need	to	be	provided	from	a	Master	of	some	sort,	and	in	this	capacity	the	Minion
needs	to	play	that	role.

__salt__:	In	modules	that	run	on	the	Minions	(most	notably	execution	and	state
modules),	__salt__	contains	a	list	of	function	calls	to	all	of	the	available	execution
modules	on	the	system.	These	items	can	be	called	directly,	as	if	they	were	functions
inside	the	calling	module	itself.	For	example:

__salt__['disk.usage']()

__salt__['cmd.run']('ls	-l	/')

__salt__['cmd.run']('dir	c:\\')

Using	a	function	in	this	way	is	referred	to	as	cross-calling.	Because	it	calls	out	to
execution	modules,	which	are	only	available	as	a	Minion,	the	Master	does	not	make
use	of	cross-calling.

__grains__:	Another	Minion-only	dunder	is	the	__grains__	dictionary,	which
contains	a	copy	of	all	of	the	grains	computed	for	the	Minion.	This	is	used	extensively
throughout	Salt	to	help	Minions	auto-detect	what	kinds	of	resources	are	available.	It
is	possible	to	start	salt-call	without	detecting	grains	by	passing	the	--skip-grains
flag,	like	this:

#	salt-call	--local	--skip-grains	test.ping

You	will	notice	that	if	you	try	this,	the	Minion	responds	much	more	quickly.	But	if
you	try	to	use	any	modules	much	more	advanced	than	test,	you	will	quickly	find	out
how	important	grains	are	to	the	functionality	of	the	Minion.

__pillar__:	Pillars	have	their	own	dunder	dictionary	as	well,	whose	name	is
strangely	singular	(__pillar__	instead	of	__pillars__).	Unlike	grains,	which	are

generated	by	the	Minion,	pillars	are	generated	by	the	Master.	However,	if	you	run
salt-call	in	--local	mode	like	this,	you	will	discover	that	as	__opts__	now
contains	Master-side	configuration,	pillar	configuration	that	would	normally	live	on
the	Master	will	now	be	accepted	by	the	Minion:

#	salt-call	--local	test.ping

This	is	incredibly	useful	for	writing	and	debugging	pillar	modules,	since	you	don’t
run	the	risk	of	contaminating	other	Minions	with	bad	pillar	data.
__context__:	This	dictionary	is	available	both	to	state	and	execution	modules.	When
Salt	fires	up	the	first	execution	module	(which	will	be	the	state	module	on	a	state
run),	it	creates	the	__context__	dictionary.	All	of	the	information	entered	into	this
dictionary	will	persist	across	each	subsequent	module,	so	that	different	modules	have
a	means	of	storing	information	for	later	use	by	another	module.	Once	the	final
module	has	finished,	the	__context__	dictionary	will	be	destroyed.

Make	sure	that	if	you	decide	to	use	__context__,	you	check	for	the	existence	of	keys
in	it	before	trying	to	set	or	use	them.	This	is	because	you	really	have	no	way	of
knowing	beforehand	which	order	somebody	will	use	modules	in,	so	you	shouldn’t
assume	that	things	have	or	have	not	been	populated.

Note
For	more	information	about	Salt	dunders,	check	out:

https://docs.saltstack.com/en/latest/topics/development/dunder_dictionaries.html

https://docs.saltstack.com/en/latest/topics/development/dunder_dictionaries.html

Using	the	event	bus
The	event	bus	does	not	appear	in	the	topology	drawings	because	it	is	available	anywhere
inside	of	Salt,	just	by	importing	the	salt.event	library.	It	also	has	the	ability	to	call	out	to
other	module	types,	using	the	reactor	system.	Reactors	have	access	to	execution,	state,	and
runner	modules.

Tip
You	may	be	wondering	why	we	didn’t	cover	reactor	modules	in	this	book.	In	truth,	there	is
no	such	thing	as	a	reactor	module.	Reactors	are	written	using	standard	SLS	files,	which
can	include	extra	functionality	using	the	renderer	system.	For	more	thorough	discussions
on	writing	and	using	reactors,	be	sure	to	check	out	Mastering	SaltStack,	Joseph	Hall,
Packt	Publishing.

Because	the	event	bus	is	so	ubiquitous,	it	can	be	a	very	powerful	tool	for	tying	together
the	other	module	types	into	a	cohesive	workflow.

For	example,	let’s	take	a	look	at	Salt	Cloud.	It	can	be	operated	independently	from	the	rest
of	Salt,	but	when	using	a	Master	+	Minions	setup,	it	will	fire	events	to	the	Master	during
the	creation	and	deletion	process	that	can	be	picked	up	by	reactors.

Salt	Cloud	events	use	tags	that	are	namespaced	in	a	way	that	can	be	easily	determined	by
reactors:

salt/cloud/<minion_id>/<operation>

Available	events	vary	depending	on	the	cloud	provider,	and	the	work	that	provider	has
been	configured	to	do,	but	a	properly	written	cloud	driver	will	always	fire	at	least	these
two	events	when	creating	a	node:

salt/cloud/<minion_id>/creating

salt/cloud/<minion_id>/created

It	will	also	fire	these	two	events	when	deleting	a	node:

salt/cloud/<minion_id>/deleting

salt/cloud/<minion_id>/deleted

Operations	that	perform	maintenance	on	Minions	and	their	resources	can	be	kicked	off
using	these	events.	For	instance,	if	you	want	to	sync	a	Minion’s	resources	as	soon	as	it’s
created,	you	can	use	a	reactor	that	looks	like:

sync_minion:

		cmd.saltutil.sync_all:

				-	tgt:	data['id']

Because	a	Minion	will	be	available	by	the	time	Salt	Cloud	sends	the
salt/cloud/<minion_id>/created	tag,	you	can	set	a	reactor	to	ensure	that	the	Minion	is
synced	as	soon	as	it	comes	online,	without	having	to	configure	any	startup_states.

Firing	events
You	can	fire	events	both	from	the	Minion-side	modules	(such	as	execution	and	state
modules)	and	Master-side	modules	(such	as	runners).	From	a	Minion-side	module,	you
need	nothing	more	than	to	call	out	to	the	event	execution	module	as	follows:

__salt__['event.fire_master'](data_dict,	some_tag)

But	in	Master-side	modules,	you	need	to	do	a	little	more	work,	since	__salt__	isn’t
available.	You	need	to	import	salt.utils.event,	then	use	it	to	fire	the	event.	This	isn’t
much	more	work,	but	you	do	have	to	do	some	setup.	It	looks	like:

import	os.path

import	salt.utils.event

import	salt.syspaths

sock_dir	=	os.path.join(salt.syspaths.SOCK_DIR,	'master')

transport	=	__opts__.get('transport',	'zeromq')

event	=	salt.utils.event.get_event(

				'master',

				sock_dir,

				transport,

				listen=False,

)

event.fire_event(data_dict,	some_tag)

Let’s	go	over	what	happened	here.	First,	we	set	up	our	imports.	The	salt.syspaths
library	contains	information	about	where	standard	files	and	directories	will	be	located	on
this	system.	In	our	case,	we	need	to	connect	to	a	socket	called	master.	We	use	this
information	to	set	up	a	variable	called	sock_dir,	which	tells	Salt	where	to	find	the	event
bus	to	connect	to.

We	also	find	out	which	transport	mechanism	is	configured	for	this	system.	This	will
usually	be	zeromq,	but	it	can	also	be	another	protocol	such	as	raet	or	tcp.	Then	we	set	up
an	object	using	the	get_event()	function.	The	first	argument	says	which	bus	we’re
dealing	with,	then	the	sock_dir,	transport,	and	finally	we	say	that	we’re	not	going	to	be
listening	for	events’	we’ll	be	sending	them.

Note
What	do	we	mean	by	which	bus	we’re	dealing	with?	Both	the	Master	and	the	Minion	have
their	own	event	bus.	A	Minion	can	either	fire	a	message	to	itself	using	the	minion	bus,	or
to	the	Master	using	the	master	bus.	The	Minion	event	bus	is	rarely	used	except	by	the
internal	Salt	code,	but	the	Master	bus	is	used	extensively.

Once	we	have	the	event	object	set	up,	we	can	fire	the	event.	The	data	(which	can	be	a	list
or	a	dictionary)	is	specified	first,	and	then	the	event	tag.	If	you	like,	you	can	set	up	a
listener	on	the	Master	to	see	those	events	come	in:

#	salt-run	state.event	pretty=True

One	of	the	most	useful	things	that	events	are	used	in	is	reactors.	As	mentioned	earlier,	for
more	information	on	writing	reactors,	check	out	Mastering	SaltStack,	Joseph	Hal	l,	Packt

Publishing.

Appendix	B.	Contributing	Code	Upstream
A	number	of	users	have	commented	over	the	years	that	Salt	has	a	low	barrier	to	entry	for
new	developers.	This	can	be	attributed	in	part	both	to	the	friendly	and	professional
community,	and	the	tools	that	are	used	to	manage	the	Salt	code	base.

How	the	community	works
The	Salt	community	comprises	users	and	developers	from	all	over	the	globe.	The	vast
majority	of	these	people	are	professionals	who	use	Salt	in	a	business	environment,	though
some	hobbyists	have	found	their	place	among	the	ranks	too.

When	most	people	make	their	way	to	the	community,	they	are	looking	for	help	and
information	about	a	particular	situation	that	they	are	working	with.	This	may	be	as	minor
as	looking	for	examples	or	documentation,	or	it	could	be	more	serious,	such	as	reporting
what	appears	to	be	a	bug	in	the	software.

Once	people	have	spent	some	time	in	the	community,	they	often	stick	around	to	help	out
other	users.	Remember	that	while	some	of	them	may	be	experts	with	Salt	and	the	various
pieces	of	technology	that	it	manages,	they	are	still	just	users	like	you,	who	are	contributing
their	own	time	to	help	out	people	like	you.

Asking	questions	and	reporting	issues
There	are	three	primary	places	where	the	Salt	community	gets	together	to	discuss	the
software	and	help	each	other	out:	the	mailing	list,	the	IRC	chat	room,	and	the	issue	tracker
on	GitHub.

There	are	three	types	of	messages	that	you	will	generally	find	in	these	places:	questions
about	the	software,	bug	reports,	and	feature	requests.	In	general,	questions	about	the
software	should	be	asked	either	on	the	mailing	list	or	in	IRC.	Bug	reports	and	feature
requests	are	better	suited	to	the	issue	tracker.

Using	the	mailing	list
The	salt-users	mailing	list	is	a	very	active	discussion	environment,	hosted	on	Google
Groups.	The	mailing	list	can	be	found	at:

https://groups.google.com/d/forum/salt-users

You	can	browse	the	mailing	list	at	the	preceding	link,	or	you	can	set	up	an	e-mail
subscription	and	get	messages	sent	to	your	inbox,	where	you	can	reply	to	them.	There	are,
typically,	a	good	dozen	or	so	e-mails	a	day,	so	if	that	sounds	like	too	many,	then	maybe
just	looking	online	is	the	way	to	go.

If	you’re	going	to	post	a	question,	there	are	a	few	guidelines	that	will	help	you	out:

When	you	ask	a	question,	try	to	post	enough	information	about	your	problem	so	that
people	will	be	able	help	you	out.	In	the	past,	people	have	asked	how	to	fix	a
particular	problem	without	stating	what	the	problem	actually	is,	or	in	some	cases,
even	the	part	of	Salt	that	the	question	pertains	to.	As	you	can	imagine,	this	isn’t
helpful	to	anybody.
Describe	what	you’re	trying	to	do,	and	what	you	expect	to	happen.	If	something	isn’t
working	the	way	that	you	expect,	make	sure	to	state	what	is	actually	happening.
You	may	need	to	post	the	output	from	a	command	in	order	to	explain	what	is
happening.	If	this	is	the	case,	make	sure	to	post	the	actual	command	that	you’re
running,	and	the	relevant	part	of	the	output.	If	you	issue	a	command	that	results	in
dozens	of	lines	of	logging	output,	but	the	actual	error	only	takes	up	five	lines,	then
just	post	those	five	lines	to	start	with.	If	somebody	asks	for	more,	then	go	ahead	and
post	more.

Tip
Be	careful	when	posting	logs	and	configuration	files!	All	too	often,	people	will
accidentally	post	an	API	key,	password,	or	private	network	information	without
meaning	to.	Before	pasting	any	information	at	a	place	online,	where	somebody	can
see	it,	make	sure	to	remove	any	sensitive	information.	Making	sure	not	to	post	long
log	messages	will	make	this	a	lot	easier.

It	is	also	helpful	to	know	which	version	of	Salt	you	are	running.	It	is	likely	that	your
particular	experience	is	unique	to	a	specific	version	of	Salt.	Rather	than	just	saying
which	version	of	Salt,	it	is	often	more	helpful	to	give	the	output	of	the	following
command:

#	salt	--versions-report

If	you	are	working	with	Salt	Cloud,	then	make	sure	to	get	that	report	instead,	using:

#	salt-cloud	--versions-report

Because	Salt	Cloud	uses	a	different	set	of	libraries,	using	its	versions	report	will
give	more	information	that	may	be	useful,	in	addition	to	all	of	the	version
information	for	Salt	itself.

https://groups.google.com/d/forum/salt-users

If	you	happen	to	find	the	resolution	for	your	situation	from	outside	the	mailing	list,	it
is	also	a	good	idea	to	reply	to	your	own	thread	with	a	copy	of	the	solution.	The
mailing	list	is	archived	on	Google’s	servers,	and	if	somebody	else	with	your	issue
searches	for	it,	they	will	appreciate	seeing	the	solution.	Believe	me,	few	things	are
more	frustrating	than	finding	a	dozen	different	people	asking	the	same	question	on	a
dozen	different	mailing	lists,	with	either	no	solution	or	a	message	from	the	original
person	saying,	“Hey,	I	figured	it	out,”	and	leaving	it	at	that.

Using	IRC
IRC,	or	Internet	relay	chat,	is	a	type	of	chat	room	that’s	been	around	for	a	very	long	time.
If	you	already	have	an	IRC	client,	you	can	connect	to	the	Freenode	server	at:

irc.freenode.com

And	then	join	the	Salt	chat	room	at:

#salt

If	you	don’t	have	an	IRC	client	yet,	you	might	want	to	consider	Pidgin,	which	is	a	chat
client	that	supports	a	number	of	chat	protocols.	It’s	not	the	most	popular	IRC	client	by	any
means,	but	it’s	easy	to	use	and	available	for	Windows,	Mac,	and	Linux.	You	can	download
it	at:

https://www.pidgin.im/

If	you	don’t	want	to	commit	to	an	IRC	client,	Freenode	does	have	a	web-based	IRC	client
that	you	can	use	to	connect	to	Salt’s	chat	room.	You	can	find	this	client	at:

https://webchat.freenode.net/

When	you	connect	to	Salt’s	chat	room,	there	are	a	few	things	that	will	be	useful	to	know:

Be	patient.	There	are	hundreds	of	people	logged	in	to	the	Salt	chat	room	at	any	given
time,	but	not	all	of	them	are	actively	participating.	It	is	very	common	for	people	to
log	in	to	an	IRC	room	while	at	work,	and	check	it	periodically	throughout	the	day.
When	you	ask	a	question,	don’t	expect	an	immediate	answer.	Somebody	may	be
watching	at	that	moment	and	try	to	help	you,	but	it	may	take	an	hour	for	the	right
person	to	see	your	question	and	jump	in	to	try	to	answer	it.
Be	ready	to	provide	information	as	necessary.	The	kind	person	who	offers	to	help
you	may	ask	for	log	messages	or	code	snippets,	or	may	ask	you	to	try	a	few	different
commands,	and	post	the	response.

You	may	want	to	look	into	getting	an	account	on	a	text-sharing	service.	One	such
popular	service	is	PasteBin:

http://pastebin.com/

However,	you	might	also	want	to	look	into	using	GitHub’s	gist	service:

https://gist.github.com/

This	has	become	an	increasingly	popular	way	to	share	logs	and	code	snippets	as	with
PasteBin,	but	with	the	kind	of	revision	management	that	Git	is	known	for.

Post	solutions.	As	with	the	mailing	list,	conversations	in	the	Salt	chat	room	are
archived.	You	can	find	them	at:

https://irclog.perlgeek.de/salt/

If	you	find	the	solution	as	you	are	working	on	the	problem,	and	it’s	not	obvious	by
looking	at	the	conversation	what	it	is,	make	sure	to	post	it	in	the	chat	room	so	that

http://irc.freenode.com
https://www.pidgin.im/
https://webchat.freenode.net/
http://pastebin.com/
https://gist.github.com/
https://irclog.perlgeek.de/salt/

others	can	find	it	later.

Using	the	issue	tracker
When	you	come	across	a	situation	that	you	know	is	a	bug,	or	you	have	a	feature	request,
the	Salt	issue	tracker	on	GitHub	is	the	way	to	go.	You	can	find	it	at:

https://github.com/saltstack/salt/issues

You	may	come	across	a	situation	where	you	don’t	know	whether	your	problem	is	the
result	of	inexperience,	or	an	actual	bug.	If	you’re	not	sure,	go	ahead	and	post	it	on	the
mailing	list.	If	it	is	a	bug,	then	you	will	probably	be	asked	to	file	an	issue	in	the	issue
tracker,	assuming	somebody	else	hasn’t	already	filed	the	same	issue.

One	of	the	advantages	of	filing	an	issue	in	the	issue	tracker	is	that	you	are	automatically
subscribed	to	updates	for	that	issue.	That	means	that	when	others	post	questions	and
comments	on	the	issue,	you	will	receive	an	e-mail	with	a	copy	of	their	response.	If
somebody	else	posted	the	issue,	then	you	can	still	subscribe	to	it.	Just	look	for	the
Subscribe	button	on	the	right-hand	side	of	the	issue	page:

Once	you	hit	that	button,	it	will	change	to	say	Unsubscribe.	If	you	ever	get	tired	of
receiving	updates	for	that	issue	(even	if	you	created	it),	then	you	can	unsubscribe	from	it.
But	if	you’ve	left	comments,	I	would	encourage	you	to	remain	subscribed,	in	case
anybody	wants	to	ask	you	further	questions	down	the	road.

Once	again,	make	sure	to	post	any	relevant	information,	exactly	as	you	would	on	the
mailing	list.	Detailed	information	about	the	issue,	version	reports,	and	code	snippets	are
all	helpful.	A	very	recent	addition	to	the	Salt	issue	tracker	is	the	use	of	templates,	which
provide	reminders	as	to	which	information	to	give.

https://github.com/saltstack/salt/issues

Using	GitHub	markdown
One	incredibly	helpful	feature	in	GitHub	is	the	ability	to	use	markdown.	You	can	find	a
helpful	guide	to	markdown	at:

https://guides.github.com/features/mastering-markdown/

By	far	the	most	useful	markdown	syntax	to	know	is	how	to	mark	out	code	blocks.	The
character	used	to	mark	out	code	is	commonly	known	as	the	backtick,	also	known	as	the
grave	accent.	On	an	American	QWERTY	keyboard,	this	key	is	located	in	the	top-left
position:

When	you	place	a	single	backtick	in	front	of	a	piece	of	text	and	another	at	the	end,	then
the	text	will	be	formatted	as	a	piece	of	code.	If	you	need	to	format	multiple	lines,	then
start	with	three	backticks	together	on	the	first	line,	and	three	more	together	on	the	last	line.
Blocking	out	code	this	way	helps	immensely	with	readability.

https://guides.github.com/features/mastering-markdown/

Understanding	the	Salt	Style	Guide
If	you’ve	spent	enough	time	in	Python,	then	you’re	already	familiar	with	the	Style	Guide
for	Python	Code,	also	known	as	PEP	8.	For	those	who	have	not	seen	it,	or	if	you	need	a
refresher,	you	can	take	a	look	at	it	here:

https://www.python.org/dev/peps/pep-0008/

There	is	also	a	guide	to	the	Salt	Coding	Style,	available	at:

https://docs.saltstack.com/en/latest/topics/development/conventions/style.html

In	general,	Salt	coding	conventions	follow	PEP	8,	but	there	are	some	key	differences:

Quoting:	One	of	the	first	conventions	that	new	developers	come	across	is	that	Salt
uses	single	quotes	(‘)	instead	of	double	quotes	(“).	This	applies	to	everything	from
string	formatting	to	docstrings.
Line	length:	It	is	very	common	for	code	to	restrict	lines	to	no	longer	than	80
characters.	This	seems	to	be	especially	adhered	to	in	Python,	but	it	is	based	on	an
older	convention	where	computer	screens	were	exactly	80	characters	wide.	Because
this	is	no	longer	the	case,	it	is	considered	acceptable	in	Salt	to	expand	to	120
characters,	particularly	if	it	helps	with	readability.
Tabs	versus	spaces:	Salt	uses	four	spaces	for	indentation.	No	tabs.	No	exceptions.

https://www.python.org/dev/peps/pep-0008/
https://docs.saltstack.com/en/latest/topics/development/conventions/style.html

Using	Pylint
Salt	makes	extensive	use	of	a	program	called	Pylint	to	ensure	that	its	code	adheres	to	its
style	guide.	You	can	find	information	about	installing	Pylint	at:

http://www.pylint.org/

Keep	in	mind	that	Salt	currently	uses	Python	2	(the	minimum	version	being	2.6),	so	if
you’re	working	in	a	distribution	where	both	Python	2	and	3	versions	of	Pylint	are
available,	make	sure	you	use	the	Python	2	version.

The	Salt	code	base	ships	with	a	.pylintrc	file	to	be	used	with	Pylint.	It	doesn’t	get	used
by	default,	so	you	need	to	make	sure	to	point	it	out	to	Pylint:

$	cd	/path/to/salt

$	pylint	--rcfile=.pylintrc

Not	only	will	this	file	allow	you	to	check	your	code	against	Salt	style	guidelines	but	also
to	check	the	entire	code	base	at	once.	This	is	important,	because	the	loader	inserts
variables	into	modules	that	wouldn’t	be	picked	up	otherwise	by	Pylint.

http://www.pylint.org/

Creating	pull	requests	on	GitHub
Whereas	many	project	communities	accept	code	only	through	mailing	lists	or	complex
websites,	Salt	has	opted	to	stick	with	pull	requests	for	accepting	code	contributions.	A	list
of	active	pull	requests	can	be	found	at:

https://github.com/saltstack/salt/pulls

The	complete	details	of	using	Git	are	way	beyond	the	scope	of	this	book,	but	it	is	worth
going	over	the	steps	to	clone	the	Salt	repository	and	put	in	a	new	pull	request.

First,	you	will	need	your	own	fork	of	Salt	on	GitHub.	If	you	don’t	have	one	yet,	then	use
the	Fork	button	at	Salt’s	own	GitHub	page:

https://github.com/saltstack/salt

Assuming	that	your	GitHub	username	is	mygithubuser,	your	new	fork	will	appear	at:
https://github.com/mygithubuser/salt

Once	you	have	a	fork	set	up,	you’ll	need	to	clone	a	copy	to	your	computer.	The	following
steps	assume	that	you	work	in	a	command-line	environment,	such	as	Linux:

1.	 If	you	have	an	SSH	key	set	up,	you	can	clone	using	SSH:

$	git	clone	git@github.com:mygithubuser/salt.git

Otherwise,	you’ll	need	to	clone	over	HTTPS:

$	git	clone	https://github.com/mygithubuser/salt.git

2.	 You	will	also	need	to	add	the	original	SaltStack	repository	to	your	local	clone,	to	be
able	to	create	pull	requests:

$	git	remote	add	upstream	https://github.com/saltstack/salt.git

3.	 The	default	Git	branch	is	develop.	If	you’re	adding	a	new	feature	to	Salt,	the	work
should	be	performed	on	a	branch	based	on	develop.	To	create	a	new	branch	called
newfeature	and	switch	to	it,	use:

$	git	checkout	-b	newfeature

4.	 When	you	are	ready	to	put	in	a	pull	request,	it	is	best	to	rebase	your	branch	to	make
sure	it	doesn’t	conflict	with	any	other	pull	requests	that	have	been	merged	since	your
last	update:

$	git	checkout	develop

$	git	fetch	upstream

$	git	pull	upstream	develop

$	git	checkout	newfeature

$	git	rebase	develop

Note
For	more	information	on	using	rebase,	check	out:

https://github.com/saltstack/salt/pulls
https://github.com/saltstack/salt

https://help.github.com/articles/using-git-rebase/

5.	 Once	you	have	rebased,	go	ahead	and	push	your	branch	up	to	GitHub:

$	git	push	origin	newfeature

6.	 When	you	visit	your	fork	on	GitHub	again,	you	will	see	a	link	that	says	New	Pull
Request.	From	there,	you	can	look	at	the	diff	readout	between	your	branch	and	the
current	version	of	the	develop	branch	on	GitHub,	and	create	your	pull	request	when
you’re	satisfied	with	it.

As	with	issue	submission,	pull	requests	now	also	have	a	template	to	use	as	a	guide	to
provide	useful	information	about	describing	the	changes	that	your	pull	request	includes.

https://help.github.com/articles/using-git-rebase/

Using	other	branches
If	you’re	submitting	bug	fixes,	then	it	may	be	more	appropriate	to	submit	them	against	a
branch	that	matches	a	specific	version	of	Salt.	If	you	know	which	version	of	Salt	the	bug
was	first	found	in,	then	use	that	branch.	The	exception	would	be	if	the	branch	in	question
is	so	old	that	it	is	no	longer	being	maintained.	If	that	is	the	case,	then	choose	the	oldest
branch	that	is	being	maintained.	For	instance,	if	the	oldest	maintained	version	is	2015.8.x,
then	check	out	the	2015.8	branch:

$	git	checkout	2015.8

Understanding	test	errors	in	pull	requests
When	you	submit	a	new	pull	request,	GitHub	will	trigger	the	test	suite	to	run	against	it.
This	will	take	several	minutes,	as	it	needs	to	create	a	new	virtual	machine,	and	start	a	lint
test	using	Pylint,	as	well	as	tests	on	popular	platforms	such	as	CentOS	and	Ubuntu:

As	the	tests	are	running,	you	can	check	progress	by	clicking	the	Details	button	on	the
right:

Click	on	one	of	the	tests	to	see	more	information.	You	will	see	output	such	as	error
messages,	stacktraces,	and	standard	output	and	standard	error	output.

There	is	a	chance	that	one	or	more	of	the	test	failures	that	show	up	in	your	pull	request	are
not	actually	your	fault.	It	could	be	that	another	pull	request	was	merged,	which	caused
unforeseen	issues	on	the	build	server.	If	the	errors	that	show	up	don’t	look	to	be	related	to
your	code,	leave	a	comment	to	ask	about	it.	One	of	the	core	developers	at	SaltStack	will
see	it	and	help	you	out.

Lint	errors	look	a	little	different.	When	you	look	at	the	details	for	a	lint	test,	you	will	see	a
list	of	files	that	are	affected.	Click	on	one,	and	you	will	see	each	error	marked	out.	Hover
over	it	to	find	out	what	went	wrong:

If	you	would	like	more	information	about	the	lint	test,	you	can	click	on	Console	Output
on	the	left,	to	see	a	full	log	of	the	lint	test.

Once	you	have	made	corrections	to	the	code	in	your	local	Git	clone,	commit	them	as	you
normally	would,	and	push	them	back	up	to	GitHub:

$	git	push	origin	newfeature

A	new	test	run	will	be	scheduled,	and	any	remaining	errors	will	show	up	as	before.	Once
all	of	the	errors	have	been	resolved,	a	core	developer	will	be	able	to	merge	your	code.

Index
A

actions
about	/	Using	actions	and	functions
using	/	Using	actions

auth	parameters
setting	/	Setting	auth	parameters
testing,	with	salt	command	/	Testing	with	the	salt	command
testing,	with	Salt	API	/	Testing	with	Salt	API

B
backtick

about	/	Using	GitHub	markdown
beacons

data,	watching	for	/	Watching	for	data
used,	for	keeping	eye	on	things	/	Keeping	an	eye	on	things
configuration,	validating	/	Validating	configuration
beacon()	function	/	The	beacon()	function
watching	for	/	Watching	for	beacons
troubleshooting	/	Troubleshooting	beacons

C
changes	(dictionary)	/	Setting	up	defaults
chmod	(change	mode)	command

about	/	file_list()	and	dir_list()
cloud	components

defining	/	Understanding	cloud	components
puzzle	pieces,	observing	/	Looking	at	the	puzzle	pieces
Libcloud	versus	SDK	versus	direct	REST	API	/	Libcloud	versus	SDK	versus
direct	REST	API

cloud	modules
troubleshooting	/	Troubleshooting	cloud	modules,	Use	shortcuts

comment	(string)	/	Setting	up	defaults
connection	mechanism

components	/	Connection	mechanism

D
data

returning,	to	external	destinations	/	Returning	data	to	external	destinations
returning,	to	Master	/	Returning	data	to	the	master

direct	REST	API
about	/	Libcloud	versus	SDK	versus	direct	REST	API
advantages	/	Libcloud	versus	SDK	versus	direct	REST	API
disadvantages	/	Libcloud	versus	SDK	versus	direct	REST	API

dunder
about	/	Hidden	objects

dunders
working	with	/	Working	with	dunders
__opts__	/	Working	with	dunders
__salt__	/	Working	with	dunders
__grains__	/	Working	with	dunders
__pillar__	/	Working	with	dunders
__context__	/	Working	with	dunders

E
event	bus

using	/	Using	the	event	bus
event	data

listening	to	/	Listening	to	event	data
events

firing	/	Firing	events
execution	modules

troubleshooting	/	Troubleshooting	execution	modules
salt-call,	using	/	Using	salt-call
<function>,	availability	/	<function>	is	not	available

external	authentication
using	/	Using	external	authentication
credentials,	authenticating	/	Authenticating	credentials
troubleshooting	/	Troubleshooting	external	authentication
auth	parameters,	setting	/	Setting	auth	parameters

external	authentication	(or	auth	or	eauth)
about	/	Using	external	authentication

external	job	cache
versus	Master	job	cache	/	Using	job	caches

external	pillars
creating	/	Creating	external	pillars
configuring	/	Configuring	external	pillars
adding	/	Adding	an	external	pillar
another	external	pillar	/	Another	external	pillar

F
file	formats

about	/	Understanding	file	formats
data	serializing	/	Serializing	data
templates,	working	with	/	Working	with	templates
render	pipes,	using	/	Using	render	pipes

files
used,	by	Salt	/	How	Salt	uses	files

file	servers
troubleshooting	/	Troubleshooting	file	servers

filesystem
mimicking	/	Mimicking	a	filesystem

final	beacon	module
about	/	The	final	beacon	module

final	cloud	module
defining	/	The	final	cloud	module

final	module
about	/	The	final	module,	The	final	module
defining	/	The	final	module

first	returner
about	/	Your	first	returner

Freenode
URL	/	Using	IRC

function
defining	/	Looking	at	each	function
module,	setting	up	/	Setting	up	our	module
envs()	/	envs()
file_list()	/	file_list()	and	dir_list()
dir_list()	/	file_list()	and	dir_list()
find_file()	/	find_file()
serve_file()	/	serve_file()
update()	/	update()
file_hash()	/	file_hash()

functions
about	/	Using	actions	and	functions
using	/	Using	functions

G
generic	cloud	module

writing	/	Writing	a	generic	cloud	module
required	configuration,	checking	/	Checking	for	required	configuration
http.query(),	using	/	Using	http.query()
REST	API,	defining	/	A	common	REST	API
_query()	function,	setting	up	/	Setting	up	a	_query()	function
profile	details,	obtaining	/	Getting	profile	details
nodes,	listing	/	Listing	nodes
VM,	creating	/	Creating	a	VM
VM,	destroying	/	Destroying	VMs
actions,	using	/	Using	actions	and	functions
functions,	using	/	Using	actions	and	functions

gist	service,	GitHub
URL	/	Using	IRC

GitHub
pull	requests,	creating	on	/	Creating	pull	requests	on	GitHub

GitHub	markdown
URL	/	Using	GitHub	markdown

grains,	setting	dynamically
about	/	Setting	grains	dynamically
basic	grains,	setting	/	Setting	some	basic	grains
(Not)	cross-calling	execution	modules	/	(Not)	cross-calling	execution	modules
final	grains	module	/	The	final	grains	module

grains	and	pillars,	troubleshooting
about	/	Troubleshooting	grains	and	pillars
dynamic	grains	not	showing	up	/	Dynamic	grains	not	showing	up
external	pillars	not	showing	up	/	External	pillars	not	showing	up

H
HTTP	service	checking,	example

about	/	Example:	checking	an	HTTP	service
credentials,	checking	/	Checking	credentials
first	stateful	function	/	The	first	stateful	function
another	stateful	function	/	Another	stateful	function

I
IRC

URL	/	Using	IRC
issue	tracker,	Salt

URL	/	Using	the	issue	tracker

J
job	caches

using	/	Using	job	caches

K
kwargs

about	/	Using	actions

L
Libcloud

about	/	Libcloud	versus	SDK	versus	direct	REST	API
advantages	/	Libcloud	versus	SDK	versus	direct	REST	API
disadvantages	/	Libcloud	versus	SDK	versus	direct	REST	API

loader	system
extending	/	Extending	the	loader	system

local	client
using	/	Using	Salt’s	local	client
scripting	with	/	Scripting	with	the	local	client
different	targets,	using	/	Using	different	targets
jobs,	combining	/	Combining	jobs	to	add	more	logic
final	module	/	The	final	module

M
Master

managing,	with	wheel	modules	/	Managing	the	Master	with	the	wheel	modules
Master	and	Minion	functionality

separating	/	Separating	Master	and	Minion	functionality
modules

loading,	with	Python	/	Loading	modules	with	Python
modules,	loader	system

about	/	Extending	the	loader	system
execution	modules	/	Extending	the	loader	system
grain	modules	/	Extending	the	loader	system
runner	modules	/	Extending	the	loader	system
returner	modules	/	Extending	the	loader	system
state	modules	/	Extending	the	loader	system
renderer	modules	/	Extending	the	loader	system
pillar	modules	/	Extending	the	loader	system
SDB	modules	/	Extending	the	loader	system
outputter	modules	/	Extending	the	loader	system
external	file	server	modules	/	Extending	the	loader	system
cloud	modules	/	Extending	the	loader	system
Beacons	/	Extending	the	loader	system
external	authentication	modules	/	Extending	the	loader	system
wheel	modules	/	Extending	the	loader	system
proxy	minion	modules	/	Extending	the	loader	system
engines	/	Extending	the	loader	system
Master	Tops	system	/	Extending	the	loader	system
roster	modules	/	Extending	the	loader	system
queue	modules	/	Extending	the	loader	system
pkgdb	module	/	Extending	the	loader	system
pkgfile	module	/	Extending	the	loader	system

modules,	with	Python
grains,	detecting	/	Detecting	grains
detection	methods,	using	/	Using	other	detection	methods

N
name	(string)	/	Setting	up	defaults
nodes

listing	/	Listing	nodes
standard	node	data,	querying	/	Querying	standard	node	data
full	node	data,	querying	/	Querying	full	node	data

nspawn
URL	/	Keeping	an	eye	on	things

O
outputter	modules

writing	/	Writing	outputter	modules
output,	pickling	/	Pickling	our	output

outputters
troubleshooting	/	Troubleshooting	outputters

P
Paramiko

about	/	Setting	up	our	module
PasteBin

URL	/	Using	IRC
Pidgin

URL	/	Using	IRC
plugins

using	/	Using	plugins
modules,	loading	/	Loading	modules
standard	modules	/	Standard	modules
virtual	modules	/	Virtual	modules
lazy	loading	modules	/	Lazy	loading	modules

private	objects
about	/	Hidden	objects

profile	details
obtaining	/	Getting	profile	details
images,	listing	/	Listing	images
sizes,	listing	/	Listing	sizes
locations,	listing	/	Listing	locations

pull	requests
creating,	on	GitHub	/	Creating	pull	requests	on	GitHub
URL	/	Creating	pull	requests	on	GitHub
test	errors,	defining	/	Understanding	test	errors	in	pull	requests

pull	requests,	on	GitHub
other	branches,	using	/	Using	other	branches

puzzle	pieces
observing	/	Looking	at	the	puzzle	pieces
connection	mechanism	/	Connection	mechanism
resources,	listing	/	Listing	resources
virtual	machines,	creating	/	Creating	virtual	machines
other	resources,	managing	/	Managing	other	resources

Pylint
about	/	Using	Pylint
URL	/	Using	Pylint

Python
modules,	loading	with	/	Loading	modules	with	Python

Q
questions	and	issues

sorting	/	Asking	questions	and	reporting	issues
sorting,	mailing	list	used	/	Using	the	mailing	list
sorting,	IRC	used	/	Using	IRC
sorting,	issue	tracker	used	/	Using	the	issue	tracker
sorting,	GitHub	markdown	used	/	Using	GitHub	markdown

R
rebase

URL	/	Creating	pull	requests	on	GitHub
renderers

troubleshooting	/	Troubleshooting	renderers
REST	API

defining	/	A	common	REST	API
GET	/	GET
POST	/	POST
PATCH	/	PATCH
DELETE	/	DELETE

result	(boolean)	/	Setting	up	defaults
returners

listening,	to	Minions	/	When	returners	listen	to	Minions
returners,	troubleshooting

about	/	Troubleshooting	returners
salt-call,	testing	with	/	Testing	with	salt-call
Master	running,	testing	with	/	Testing	with	the	Master	running
runners,	testing	with	/	Testing	with	runners

runners,	troubleshooting
about	/	Troubleshooting	runners
salt-master	service,	working	with	/	Working	with	the	salt-master	service
timeout	issues	/	Timeout	issues

S
Salt

about	/	Loading	modules
URL	/	Reusing	code,	Creating	pull	requests	on	GitHub
logging	levels	/	Logging	messages

salt-users	mailing	list
URL	/	Using	the	mailing	list

Salt	chat	room
URL	/	Using	IRC

Salt	Cloud
about	/	Understanding	cloud	components

Salt	community
working	/	How	the	community	works

Salt	configuration
grains,	setting	dynamically	/	Setting	grains	dynamically
external	pillars,	creating	/	Creating	external	pillars
grains	and	pillars,	troubleshooting	/	Troubleshooting	grains	and	pillars
SDB	modules,	writing	/	Writing	SDB	modules
SDB	modules,	using	/	Using	SDB	modules
SDB	modules,	troubleshooting	/	Troubleshooting	SDB	modules

Salt	dunders
URL	/	Working	with	dunders

Salt	Master	topology
defining	/	Separating	Master	and	Minion	functionality

Salt	Minion	topology
defining	/	Separating	Master	and	Minion	functionality

Salt	modules
writing	/	Writing	Salt	modules
hidden	objects	/	Hidden	objects
__virtual__()	function	/	The	__virtual__()	function
code,	formatting	/	Formatting	your	code
virtual	modules	/	Virtual	modules
salt.utils	library,	using	/	Using	the	salt.utils	library
cross-calling,	with	__salt__	dictionary	/	Cross-calling	with	the	__salt__
dictionary
configuration	parameters,	obtaining	/	Getting	configuration	parameters
imports,	handling	/	Handling	imports
code,	reusing	/	Reusing	code
messages,	logging	/	Logging	messages
__func_alias__	dictionary,	using	/	Using	the	__func_alias__	dictionary
data,	validating	/	Validating	data
strings,	formatting	/	Formatting	strings

Salt	Style	Guide

defining	/	Understanding	the	Salt	Style	Guide
references	/	Understanding	the	Salt	Style	Guide
conventions	/	Understanding	the	Salt	Style	Guide
Pylint,	using	/	Using	Pylint

SDB	modules
writing	/	Writing	SDB	modules
SDB	data,	obtaining	/	Getting	SDB	data
SDB	data,	setting	/	Setting	SDB	data
descriptive	docstring,	using	/	Using	a	descriptive	docstring
complex	configuration,	using	/	Using	more	complex	configuration
final	SDB	module	/	The	final	SDB	module
using	/	Using	SDB	modules

SDB	modules,	troubleshooting
about	/	Troubleshooting	SDB	modules
SDB	data	not	showing	up	/	SDB	data	not	showing	up

SDK
about	/	Libcloud	versus	SDK	versus	direct	REST	API
advantages	/	Libcloud	versus	SDK	versus	direct	REST	API
disadvantages	/	Libcloud	versus	SDK	versus	direct	REST	API

serializing	renderer
building	/	Building	a	serializing	renderer
basic	structure	/	The	basic	structure

state.show_highstate	function	/	Troubleshooting	renderers
state.show_lowstate	function	/	Troubleshooting	renderers
state.show_low_sls	function	/	Troubleshooting	renderers
state	determining,	state	module

about	/	Determining	state
__virtual__()	function	/	The	__virtual__()	function
defaults,	setting	up	/	Setting	up	defaults
truth,	checking	for	/	Checking	for	truth
test	mode,	checking	for	/	Checking	for	test	mode
resource,	configuring	/	Attempting	to	configure	the	resource
notification	/	Notifying	about	False

state	module
forming	/	Forming	a	state	module
state,	determining	/	Determining	state
HTTP	service	checking,	example	/	Example:	checking	an	HTTP	service

state	modules,	troubleshooting
about	/	Troubleshooting	state	modules
truth,	testing	for	/	Step	1:	test	for	truth
test	mode	/	Step	2:	test	mode
changes,	appyling	/	Step	3:	applying	changes
opposites,	testing	/	Testing	opposites

T
templating	renderer

building	/	Building	a	templating	renderer
templating,	with	Tenjin	/	Templating	with	Tenjin
using	/	Using	a	templating	renderer

test	errors
defining,	in	pull	requests	/	Understanding	test	errors	in	pull	requests

troubleshooting
returners	/	Troubleshooting	returners
outputters	/	Troubleshooting	outputters
runners	/	Troubleshooting	runners

V
VM

creating	/	Creating	a	VM
destroying	/	Destroying	VMs

W
wheel	modules

Master,	managing	with	/	Managing	the	Master	with	the	wheel	modules
wheel,	wrapping	around	runners	/	Wrapping	a	wheel	around	runners
final	wheel	module,	defining	/	The	final	wheel	module
troubleshooting	/	Troubleshooting	wheel	modules

	Extending SaltStack
	Credits
	Foreword
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Starting with the Basics
	Using plugins
	Loading modules
	Standard modules
	Virtual modules
	Lazy loading modules
	Extending the loader system
	Loading modules with Python
	Detecting grains
	Using other detection methods
	Summary
	2. Writing Execution Modules
	Writing Salt modules
	Hidden objects
	The __virtual__() function
	Formatting your code
	Virtual modules
	Using the salt.utils library
	Cross-calling with the __salt__ dictionary
	Getting configuration parameters
	Handling imports
	Reusing code
	Logging messages
	Using the __func_alias__ dictionary
	Validating data
	Formatting strings
	The final module
	Troubleshooting execution modules
	Using salt-call
	<function> is not available
	Summary
	3. Extending Salt Configuration
	Setting grains dynamically
	Setting some basic grains
	(Not) cross-calling execution modules
	The final grains module
	Creating external pillars
	Configuring external pillars
	Adding an external pillar
	Another external pillar
	Troubleshooting grains and pillars
	Dynamic grains not showing up
	External pillars not showing up
	Writing SDB modules
	Getting SDB data
	Setting SDB data
	Using a descriptive docstring
	Using more complex configuration
	The final SDB module
	Using SDB modules
	Troubleshooting SDB modules
	SDB data not showing up
	Summary
	4. Wrapping States Around Execution Modules
	Forming a state module
	Determining state
	The __virtual__() function
	Setting up defaults
	Checking for truth
	Checking for test mode
	Attempting to configure the resource
	Notifying about False
	Example: checking an HTTP service
	Checking credentials
	The first stateful function
	Another stateful function
	Troubleshooting state modules
	Step 1: test for truth
	Step 2: test mode
	Step 3: applying changes
	Testing opposites
	Summary
	5. Rendering Data
	Understanding file formats
	Serializing data
	Working with templates
	Using render pipes
	Building a serializing renderer
	The basic structure
	Building a templating renderer
	Templating with Tenjin
	Using a templating renderer
	Troubleshooting renderers
	Summary
	6. Handling Return Data
	Returning data to external destinations
	Returning data to the master
	Listening to event data
	When returners listen to Minions
	Your first returner
	Using job caches
	The final module
	Troubleshooting returners
	Testing with salt-call
	Testing with the Master running
	Testing with runners
	Writing outputter modules
	Pickling our output
	Troubleshooting outputters
	Summary
	7. Scripting with Runners
	Using Salt's local client
	Scripting with the local client
	Using different targets
	Combining jobs to add more logic
	The final module
	Troubleshooting runners
	Working with the salt-master service
	Timeout issues
	Summary
	8. Adding External File Servers
	How Salt uses files
	Mimicking a filesystem
	Looking at each function
	Setting up our module
	envs()
	file_list() and dir_list()
	find_file()
	serve_file()
	update()
	file_hash()
	The final module
	Troubleshooting file servers
	Start small
	Test on a Minion
	Summary
	9. Connecting to the Cloud
	Understanding cloud components
	Looking at the puzzle pieces
	Connection mechanism
	Listing resources
	Creating virtual machines
	Managing other resources
	Libcloud versus SDK versus direct REST API
	Writing a generic cloud module
	Checking for required configuration
	Using http.query()
	A common REST API
	GET
	POST
	PATCH
	DELETE
	Setting up a _query() function
	Getting profile details
	Listing images
	Listing sizes
	Listing locations
	Listing nodes
	Querying standard node data
	Querying full node data
	Creating a VM
	Destroying VMs
	Using actions and functions
	Using actions
	Using functions
	The final cloud module
	Troubleshooting cloud modules
	Write avail_sizes() or avail_images() first
	Use shortcuts
	Summary
	10. Monitoring with Beacons
	Watching for data
	Keeping an eye on things
	Validating configuration
	The beacon() function
	Watching for beacons
	The final beacon module
	Troubleshooting beacons
	Summary
	11. Extending the Master
	Using external authentication
	Authenticating credentials
	Troubleshooting external authentication
	Setting auth parameters
	Testing with the salt command
	Testing with Salt API
	Managing the Master with the wheel modules
	Wrapping a wheel around runners
	The final wheel module
	Troubleshooting wheel modules
	Summary
	A. Connecting Different Modules
	Separating Master and Minion functionality
	Working with dunders
	Using the event bus
	Firing events
	B. Contributing Code Upstream
	How the community works
	Asking questions and reporting issues
	Using the mailing list
	Using IRC
	Using the issue tracker
	Using GitHub markdown
	Understanding the Salt Style Guide
	Using Pylint
	Creating pull requests on GitHub
	Using other branches
	Understanding test errors in pull requests
	Index

