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Preface
This book will give you a complete understanding of the Simulink software.  
You will learn by example, going through the three main phases of Simulink 
development—modeling, simulating, and interfacing with the external world  
while developing a cruise controller for a real car.

While reading this book, you'll be given a clear, no-frills explanation of the main 
components of Simulink and how to use them in order to achieve the desired result. 
After having read this book, you will be able to develop, test, and deploy your 
models without any difficulty.

What this book covers
Chapter 1, Simulink Facts, deals with the problems that arise while developing the 
software for the biggest manufacturing industries and how Simulink can cut down 
the total development time, from specifications to final implementation. You will 
understand where Simulink really shines and where it isn't worth the hassle.

Chapter 2, Creating a Model, deals with developing a very simple cruise controller 
model in order to get started quickly with Simulink and the MATLAB environment. 
Then you will be guided through the Simulink implementation of a real-world car 
to use with the previously developed cruise controller, thus introducing the usage of 
more complex blocks. You will understand how a model is developed and where to 
look for the appropriate blocks.

Chapter 3, Simulating a Model, deals with presenting the theory behind simulation: 
solvers, simulation times, and how to choose them. You will then simulate the 
models you already developed, learning what are the available sources and sinks 
blocks and when to use them in order to discover failures in your models and change 
some of the parameters you defined.
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Chapter 4, Using the Model, guides you through the most powerful feature of 
Simulink—the ability to create your own blocks, also known as S-function 
development—after having learned how to develop and simulate a model.  
You will create a simple S-function that enables your cruise controller to drive  
an external application and receive feedback from it.

What you need for this book
You should have a working MATLAB installation with the Simulink package. While 
this book has been written using the 8.1 (R2013a) release, you aren't required to 
use this exact version, as there are only minor differences between one release and 
another; the basic workflow remains the same. But you'll need at least the 8.1 release 
to be able to run the provided code.

In order to develop and test S-functions, you should have a compiler supported by 
your MATLAB release.

Who this book is for
This book is aimed at undergraduate students, researchers, and engineers who need 
to have a quick and complete understanding of how Simulink works, including some 
of its most advanced features.

The reader should have basic knowledge of physics and C programming.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
While, to a certain degree, it is possible to spot the differences when saving models 
with the .mdl format.



Preface

[ 3 ]

A block of code is set as follows:

  int main()
{
  int u1, u2, y1;
  printf(""Enter two numbers\n"");
  scanf(""%d%d"", &u1, &u2);
  y1 = mul(u1, u2);
  printf(""Here''s your result, 
    the operation done is a shining ''x''!\n%d\n"", y1);
     return EXIT_SUCCESS;
}

Any command-line input or output is written as follows:

  new_string = 'hello world!';

  new_number = 0.01;

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "From  
the MATLAB main window, click on the New button and select the Simulink  
Model option".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



Simulink Facts
In this chapter, we'll explain what Simulink is, and why it has been so widely 
adopted in the academic and the industrial world.

After reading this chapter, you'll have learned about the limits of the usual C 
software development cycle, and how Simulink helps to address these limits.

What is Simulink?
Simulink is best described as a graphical programming tool. Let's elaborate a little on 
these two words.

Programming
Since the start of the digital era, telling a computer what to do has been a huge 
problem. Humans communicate through a set of conventions—languages—with 
very elaborate rules, definitions, and exceptions. New languages aren't easily born 
in the human world. But what about computers? They operate by means of a stream 
of zeros and ones, using Boolean logic; that's the binary system. The computer 
language is nowhere as complex as the human language, but how fast are computers 
at solving logical problems! The difficulty is in telling the computer how to solve a 
given problem, and this is the art of programming.

Nowadays there are so many programming languages that knowing at least one is 
as common as knowing more than one human language. Those lucky ones who do 
are called programmers. They're able to write the instructions that a computer has to 
execute (and the computer understands them—well, most of the time).
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Writing and debugging a complex, real-time, safety-critical application is not a 
trivial task, and in big automotive/aerospace industries, a misbehaving software 
is definitely not an option. As an example, the 327.6 million dollars NASA Mars 
Climate Orbiter space probe disintegrated before landing because the ground control 
software used the imperial metric system instead of the international one. It sounds 
funny, but imagine what would happen if your car maker made such a mistake in 
the brake control software?

The problem with using the venerable, almighty C—still the language of choice 
for embedded systems—is that it isn't easy to scale up the system complexity. It's 
interesting to note that while the system gets bigger, the deadlines get narrower. The 
good old tools (code editors, compilers, and debuggers) aren't effective anymore to 
keep the whole development time constant while raising the software requirements.

Graphical
This is the next step.

Imagine an Italian guy in Moscow willing to buy a bottle of water. Chances are that 
he doesn't know one word of Russian, nor the Russian shop owner knows more than 
two words of Italian (bella and ciao).

Our Italian guy would likely point at a bottle of water with his finger and mimic the 
act of drinking. The Russian shop owner would smile to acknowledge the request, 
and then use his fingers (or pencil and paper) to communicate the price to pay.

So what? We had visual communication. The simplest of all languages are the  
visual ones.

When a programmer tries to explain to his manager how a code works, he 
usually starts drawing blocks on a piece of paper—something like the following 
oversimplified example:

It isn't hard to understand that the logic flows from left to right (because of the 
arrows), and that two inputs will be multiplied together to obtain the output. With 
nothing more than a simple glance, you've understood what the computer has been 
programmed to do.
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Let's compare it with a warning-free, standards-compliant C code:

#include <stdio.h>
#include <stdlib.h>

int mul(int, int);

int main()
{
    int u1, u2, y1;
    printf("Enter two numbers\n");
    scanf("%d%d", &u1, &u2);
    y1 = mul(u1, u2);
    printf("Here's your result, 
 the operation done is a shining 'x'!\n%d\n", y1);
    return EXIT_SUCCESS;
}

int mul(int input1, int input2)
{
    return input1*input2;
}

Now chances are one of the following:

• You know C, and you understood what the code does after reading through 
it

• You don't know C, but you know other programming languages; maybe you 
haven't understood every line, but you are still able to figure out what the 
program does

• You don't know any programming language; you're almost clueless and you 
understand what's going on only because you've seen the figure first

Either way, a visual representation of the code is much easier to understand  
and maintain.

Now imagine a long (several hundred lines), complex (tens of source files) code, 
poorly commented, highly optimized for a certain processor architecture, edited by 
several people without a strict style policy—the classic spaghetti code that many 
programmers are faced with in their job. They'll spend a huge amount of time 
understanding what the code does, no matter how skilled they are. Explaining that 
code to a colleague who doesn't know programming is out of the question.
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That's where visual programming comes the rescue. A graphical programming tool 
can save countless hours of work in a job where explaining the code is as important 
as a code without bugs, or where a bug can have disastrous (safety-critical) effects.

Simulink is such a tool.

Problems solved by Simulink
Simulink is a true life saver in large companies manufacturing safety-critical 
products, or where the software development is usually split into three  
different phases:

• Specification phase: The algorithm is planned or updated by the 
specification team and a new specification is released

• Development phase: The algorithm is implemented by the development 
team and a software release is made

• Testing phase: The software undergoes an extensive testing phase both on 
simulated and on real hardware; only when the test results are positive, the 
testing team states that the software is ready for production

Software specification
In every software project where safety is an issue, the software development starts 
only when a stable specification has been released.

Specifications are usually written as text documents where each sentence describes 
an atomic requirement and must be highly detailed.

The problem with specifications as text documents is that there isn't any way of 
verifying the correctness of the specified logic until the development phase or even 
the testing phase.

Every time that the specification is found to be incorrect or incomplete, the 
specification team must be notified and must make a new release. So the 
development team has to develop the new release, likewise the testing team will 
have to test the new software.

A specification error is one of the worst things that can happen in a big 
manufacturing company, often leading to production delays, while underspecified 
software can lead to unwanted behavior.
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Simulink can be used to achieve the goal of writing correct and complete 
specifications, without losing anything in readability. Let's consider the following 
atomic requirement:

REQUIREMENT # 101:

If InputSignal is greater than 0, the InputSignalFlag variable must be set.

The corresponding Simulink block would be as follows:

What's the real deal? It is that you can test the requirement before it's released. With 
Simulink, it's easy to generate input signals and register the output as shown in the 
following diagram:
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When viewing the display on Scope, the result will look like the following diagram:

But wait! Let's examine the textual requirement; it says that the flag must be set. It's 
unclear (not specified) whether the InputSignalFlag variable should be reset when 
InputSignal becomes 0 or less than 0.

But the difference is very clear in a specification done with Simulink. The following 
is the block diagram that describes the requirement with the InputSignalFlag 
variable remaining set until the end of the execution cycle:
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We can see that the simulation result is very different from the previous one, as seen 
in the following diagram:

With textual requirements, there's always a gray area due to the fact that human 
languages, despite their richness (or because of it), have problems in describing a 
Boolean logic. And it's extremely difficult, if not impossible, to test the requirement 
before the release.

With Simulink models as requirements, there is no room for doubt. The requirement 
is complete and easily understandable by nonprogrammers, and a preliminary test 
can be made with little to zero effort by the very same team that wrote it.
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Software development
The development team has the responsibility of maintaining and updating  
the software for a certain project or series of projects. The usual work flow  
for the embedded C developer of an automotive industry is shown in the  
following diagram:

Start

Receive specifications

Update the code

Static analysis

Analysis
successful?

Compile

Compilation
successful?

Debug

No

No

No

Yes

Yes

Yes

Debugging
successful?

Release software

End

The first problem developers are faced with is the code itself. A well-commented 
code with strict coding-style guidelines will be easily understandable and 
maintainable, but sadly, that's not the common situation. Code maintainability is a 
major issue almost everywhere, strictly dependent on code readability.
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The second problem is the formal code-correctness checking. This means doing a 
static code analysis to check compliance with one or more sets of formal rules (for 
example, the MISRA-C rule set).

The third and the most important problem is code debugging. This is done by 
running the code to do an early testing (for example, with valgrind) and applying 
well-known input patterns to detect and correct the blocking bugs.

Simulink helps the pressed developer solve these problems in the following ways:.

• Code readability: Being a graphical development tool, developers have 
an intuitive way of dividing the code into multilayered virtual blocks. 
The topmost layers give a representation of the functionality subsets 
implemented, while the lower layers contain the code primitives (logical and 
mathematical operators, memories, state machines, and so on).

• Static code analysis: By using Simulink with code generation software 
(Simulink coder—formerly Real-Time Workshop—and DSpace TargetLink 
are the most popular), it is possible to produce error-free embedded C 
code. They guarantee that the produced code offers the same functionality 
described in the model.

• Code debugging: During model development, Simulink offers the option to 
do an early testing; the developer can apply an input pattern to a well-known 
problematic algorithm and visualize the simulation result, inspect every 
signal, do a step-by-step debug, and stop the simulation on selected events 
on the same model used for code generation.

By using Simulink, the development team can apply the required updates in a 
shorter time and use the remaining time to perform a quick preliminary testing  
of the code.

Static code analysis becomes almost irrelevant since coding rules and conventions 
are enforced by the code generation software.

Finally, with the autogenerated code being free of syntax errors, the compilation 
phase is usually straightforward. This greatly helps the programmer who is not 
familiar with the C syntax.
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Software testing
The released code needs an extensive testing phase before being put into production. 
The testing team's objective is to confirm that the software is compliant with the 
specifications.

This usually involves breaking the specifications into atomic requirements and 
having one or more test cases for each requirement (the so-called functional testing), 
or defining what should never happen and automatically apply every possible 
combination of inputs to the software component (a subset of destructive testing).

By using Simulink models, the testing team can easily perform automatic model-in-
the-loop (MIL) testing on their computers; the logical correctness is demonstrated by 
applying inputs to the Simulink models and comparing the outputs to the expected 
behavior. MIL testing easily spots failures in a very short time and generates a 
detailed test report, even pinpointing the model block where the problem resides. 
MATLAB already has everything needed to perform an MIL test, while automated 
tests can be coded using the MATLAB scripting language.

Once the MIL testing is successful, the software-in-the-loop (SIL) testing is 
performed by running the autogenerated code on standard computers. It is usually 
aimed at finding discrepancies between the model and the code behaviors, and it 
requires another software monitoring the process's I/O or the inclusion of debug 
headers into the tested code, or a mixture of both.

The next testing step is the processor-in-the-loop(PIL) testing, where the software 
is programmed into the target processor and debugged via an external high-speed 
bus connected to a standard computer, such as a JTAG connection. Of course this 
requires having the target processor available on a board with a testing connection.

The last step is to perform hardware-in-the-loop (HIL) testing, which is running 
the software on the target hardware connected to a real-time system. It requires a 
custom test bench to be purchased or made internally, and some test steps have to be 
executed manually.

The biggest advantage of MIL testing is to reduce the number of times SIL, PIL, and 
HIL tests are performed. This is because most of the problems are caught during the 
fast, nonexpensive MIL tests, thereby reducing the overall time spent to generate, 
build, and validate the produced code.
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Simulink drawbacks
Simulink isn't the way to go for small projects with a low budget: a MATLAB license 
is rather expensive: like the additional packages that may be required for testing on 
dedicated hardware. It is suited for big projects with a large number of developers 
working on them. A skilled C developer can write code for simple to trivial projects 
in a much shorter time than by dragging blocks in Simulink.

MATLAB and Simulink are targeted specifically to engineering and scientific 
applications; they aren't general-purpose-programming tools. It's difficult, though 
not impossible, to develop desktop applications or web services using Simulink.

Finally, it's hard to track model changes with software versioning and revision 
control systems (such as CVS, SVN, Git, Bazaar, or Mercurial). While, to a certain 
degree, it is possible to spot the differences when saving models with the .mdl 
format (because it's a structured text file), this has become difficult with the .slx 
format (a zipped archive with more information on the model). To see and highlight 
the differences between two versions of the same model, separate software has to  
be purchased.

Where Simulink excels
There are two main use cases for Simulink.

The first one is in the academic research world where Simulink is used to simulate 
multidomain dynamic systems. Typically, Simulink is used in a continuous-
time environment with variable step-size implicit solvers; the main scope of the 
simulation is to reproduce the behavior of a real system in order to predict the 
answer to the applied stimuli.

The second one is in the automotive, aerospace, avionics, and the defense industry 
where Simulink is used to build models for real-time, safety-critical, embedded 
targets with many people involved in the specification, development, and testing 
phases. The main scope of the simulation is to find and correct bugs in order to 
produce (through the appropriate code-generation software) a final C code to 
compile in the target processor. The simulation solver used in this environment is  
the fixed-size step explicit one, and the model doesn't contain any continuous states.
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Summary
In this chapter we learned what benefits Simulink brings in and where Simulink has 
become a de-facto standard and why. We explained how the software development 
process is simplified using Simulink and cases where Simulink is not the right 
solution. After reading this chapter, you should be able to decide whether Simulink 
can be used for your projects.

In the following chapters, we'll take a learn-by-doing approach where we'll go 
through the whole software development process while developing and testing a 
cruise controller model for a real-world car.



Creating a Model
In this chapter, we'll learn how to build a Simulink model and run the  
first simulations.

We'll start with a short description of the MATLAB environment features that  
we need to know in order to start developing a Simulink model.

Then we'll build a simple model to introduce the basics of Simulink  
development; we'll learn what the Library Browser is and how to place  
blocks into the Model Editor.

Finally, we'll develop a more complex model implementing a not-so-simple 
nonlinear system. There will be a small part of theory detailing the physic  
equations describing the system before the implementation.

The MATLAB environment
Simulink is not a standalone tool, but lies on MATLAB's shoulders; it's almost 
impossible to use Simulink without keeping an eye on MATLAB's main window, not 
to mention that you need to start MATLAB before even opening a model.

Simulink inherits from MATLAB the current working folder, the workspace, and the 
path and uses MATLAB's Command Window to report errors, warnings, and notes.

The first time you open MATLAB, you should see the default main window view 
with the following sections:

• The Workspace panel and the Command History panel on the right
• The Command Window panel in the middle
• The Current Folder panel with the folder contents on the left.
• The current path is displayed above the three

www.allitebooks.com
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An example is shown in the following screenshot:

Command Window – how MATLAB  
talks to us
The Command Window panel is the place where Simulink will report most of  
the errors, warnings, and information—always keep an eye on it while debugging  
a model!

The Command Window panel also allows us to declare new variables that will  
be stored into the workspace. In short, the Command Window panel works very 
much like any interactive OS terminal shell, accepting commands written in the 
MATLAB language.

The MATLAB interface being written in Java, you 
can even create and use Java objects!
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Try entering these two commands and see what happens:

new_string = 'hello world!';

new_number = 0.01;

The newly created variables have appeared in the Workspace panel and are ready  
to use.

It's worth noting that every command executed is stored in the Command History 
panel too; if you need to re-execute a command you entered earlier, simply drag-
and-drop it into the Command Window panel.

The Command Window panel supports autocompletion; you only 
need to type the first characters of a command or variable name and 
hit the Tab key—MATLAB will show the matching labels.

The workspace – our treasury chest
The workspace holds the variables we create in the session, allowing you to edit and 
delete them through the Workspace panel.

Simulink is able to see the variables in the workspace and use them in the model. 
From Simulink's perspective, they belong to the base workspace.

Keep in mind that the workspace resides in volatile memory and is not persistent; as 
soon as MATLAB is closed, the workspace is lost.

To save the workspace into a MATLAB file (with the .mat extension), click on the 
Save Workspace button in the HOME tab. MATLAB will ask you where you wish to 
store it, with the working folder as the default choice.

The working folder – where MATLAB saves 
our work
The working folder (called Current Folder in MATLAB's main window) is the 
folder that is currently open in MATLAB and all the files contained here are visible 
to MATLAB and Simulink. The exact path of the working folder is shown in the 
address bar right above the Command Window, the Workspace, and the Current 
Folder panels.



Creating a Model

[ 20 ]

To execute a file, you can simply drag-and-drop the file from the Current  
Folder panel to the Command Window panel. This works with all MATLAB  
and Simulink files.

The path – where MATLAB finds the tools
The path variable is the list of folders where MATLAB will look for libraries at 
startup (this is very similar to how the $PATH variable is used in most operating 
systems). If you need to use a Simulink blockset (a library of ready-to-use blocks), 
you must place it into a folder listed in your MATLAB's path.

You can easily view and edit MATLAB's path by clicking on the Set Path icon in the 
HOME tab. A new window will appear, listing every folder present in MATLAB's 
path and giving you the option to add other folders and change the order in which 
they appear.

The display order is important; if a file with the same name is present in two or more 
folders listed in the path variable, MATLAB will use the one found in the folder 
nearest to the top of the search path.

The exact file where the path variable is stored is the pathdef.m script, located in 
your MATLAB install folder (usually $MATLABROOT/toolbox/local).

If you don't remember where you've installed MATLAB, just enter 
matlabroot in the Command Window.
A great thing to have in the path is a customized startup script; if you 
need to execute a set of commands every time MATLAB starts, put 
them in a startup.m script and save the script in one of the folders 
belonging to MATLAB's path.
If you've added too many folders to the path and something 
is going wrong, you can restore the default path with the 
restoredefaultpath command.

This is all you need to know about the MATLAB environment.

Remember that Simulink is reading everything from MATLAB and you will save 
yourself a lot of trouble.
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The Simulink interface
From the MATLAB main window, click on the New button and select the Simulink 
Model option.

A blank Simulink window will appear, showing an empty model named untitled. 
This window is made up of the following sections:

• The title bar with the name of the opened system (untitled).
• The menu bar immediately below the title bar.
• The toolbar below the menu bar with the default tools (the Library Browser 

and Model Explorer are the tools most used).
• The Model Browser panel on the left displaying the model's hierarchical tree 

(it can be hidden with the « button at the bottom right of this panel).
• The model editor panel on the right of the Model Browser panel is the  

most useful panel. If you like a clutter-free edit window, you can hide all  
the other panels through the View menu (I suggest that you leave the  
status bar though).

• The status bar on the bottom reporting the name and the current status of the 
underlying simulation solver (more on this later).

The most useful shortcuts and gestures are as follows:

• Zooming in/out can be done with the mouse's scroll wheel
• If you wish the scroll wheel to retain its usual behavior (just scrolling up and 

down), then navigate to File | Simulink Preferences | Editor defaults and 
clear the Scroll wheel controls zooming checkbox; zooming is still possible 
by pressing the Ctrl key while scrolling

• Tapping the Space bar key will make the model view (or the selected block 
view) fit the window size

• Pressing Alt + 1 resets the default zoom (it's a lifesaver!)
• Pressing and keeping the mouse wheel pressed will allow you to drag the 

model in the direction of the mouse, an operation known as panning
• If you don't have the scroll wheel, you can achieve panning by keeping the 

Space bar key and the left mouse button pressed

We'll talk extensively about the Library Browser in the following paragraphs. Now 
it's time to start modeling!
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Our first model – a cruise controller
There aren't many things in the world funnier than a sporty car. That's a fact.

Let's imagine we want to develop a simple cruise control system for such a car.  
This system will perform the following tasks:

• Read the target vehicle speed [km/h]
• Read the current vehicle speed [km/h]
• Command the throttle with the gas pedal [from 0 (not pressed) to 1  

(fully pressed)]

This system will behave like a driver that keeps the car going straight using only the 
gas pedal to match the desired speed.

Let's get started!

Step 1 – create and save the model
After pointing MATLAB to your preferred working folder (for example, a folder 
called 1386EN_02 located in your home folder) and opening a new model, click 
on the Save button, or use the Save option under the File menu, or the Ctrl + S 
keyboard shortcut, and give it the name cruise_control.slx.

You'll notice that there are two file formats available. They are explained as follows:

• The .mdl extension was the format used by Simulink versions prior to 
MATLAB R2012a (a structured text file)

• The .slx extension is the format used by newer Simulink versions, 
introduced in MATLAB R2012a (a compressed group of files)

The first format is the most widely used, but be aware that every model depends 
on the Simulink version used to create it; those developed with newer releases are 
unreadable by older releases, while newer releases can upgrade old models.

The saved model will now be visible in our working folder. If you close  
Simulink, you can re-open the model at a later time by dragging it to the  
MATLAB's Command Window.
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Step 2 – do comment the code!
It's always a good idea to explain what a system does. In the C programming 
language, you use the comment section (/* ... */) to explain a function; in 
Simulink, you insert a note by clicking on the Annotation tool icon (to the left of our 
cruise_control editor panel) or double-clicking on the white area of the model editor.

Like comments explaining functions in C, it's a good practice to insert a note at the 
top of the model view explaining what it does. Let's insert this note:

This model simulates a cruise control system.

The purpose is to make a car going at a desired

speed using the throttle.

By right-clicking on the note, you can set the alignment (default: centered) and draw 
an annotation border, to make it more eye-catching:

Step 3 – open Simulink Library Browser
Let's start inserting some blocks from the Simulink library. We need to open the 
Simulink Library Browser by pressing the Library Browser button, or using the 
View | Library Browser menu, or using the Ctrl + Shift + L keyboard shortcut.

A new window with two panels will appear: the left panel lists all the available 
libraries, each one holding one or more subsets, while the right panel shows all the 
blocks belonging to the selected library. Block libraries are also called blocksets.

By double-clicking on a block, a new window appears with a brief block description 
and the parameters that the block can accept. To get detailed information about the 
block and how to use it, click on the Help button and the documentation center will 
be opened with the page describing the selected block's meaning and usage.

Navigating in the Simulink Library Browser is fairly straightforward; most of  
the time we'll be using blocks from the Simulink blockset (installed with the 
Simulink software).
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Both the Simulink Library Browser and the documentation center 
have a search input field located above the main window content, 
allowing you to get the block itself and its documentation by 
entering the block name (or part of it).

Step 4 – add blocks to the model from Library 
Browser
The first blocks we need are input and output ports. Input ports (also called inports) 
are available in the Simulink | Sources blockset and are labeled In1:

Similarly, output ports are available in the Simulink | Sinks blockset and are 
labeled Out1.

These blocks can be placed in the model by:

• Dragging and dropping from the Library Browser to the model window, or
• Copying and pasting (Ctrl + C, Ctrl + V) to the model window, or
• Right-clicking and selecting the option Add to cruise_control, or
• Using the keyboard shortcut Ctrl + I (insert)
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Let's place one input port and one output port in the model using your  
preferred method.

Notice that the window title has changed and now bears an asterisk  
(cruise_control *). This means that the model has been edited since the last save. 
Save the model and the asterisk will go away.

Of course, opening the Simulink Library Browser each time you need to place a 
block is a tedious task and slows down development time. If a block offering the 
same functionality is already present in the model, you can just copy and paste it,  
or drag it while keeping the right mouse button pressed; a new copy will be made.

Let's add another input port by moving the mouse arrow on the previous port, and 
while keeping the right mouse button pressed drag it to some other position and 
then release the button; a small menu will appear asking you if you intend to Paste 
or Duplicate the port:

• Paste: This option creates a new port, adding a new input signal to the 
subsystem.

• Duplicate: This option will not add a new input signal; the new port will be 
equal to the copied one and the signal will be the same. It's useful only to 
avoid a connecting line.

Notice that while dragging a block, Simulink suggests the alignment with other 
ports, which helps in keeping the project well-structured.

If we don't spend a little time in trying to keep the system view well organized, we'll 
end up with a garbled system that very much resembles the dreaded "spaghetti 
code" that we should avoid.

A set of rules has been defined by the MathWorks Automotive 
Advisory Board with the automotive industry in mind. 
Embedded developers with code generation in mind should 
stick to it as closely as possible. The ruleset is available at 
http://www.mathworks.com/automotive/standards/
maab.html.

Step 5 – rename the blocks
Note that each block must have a unique name in the current subsystem. Try to 
rename the In2 port to In1 by double-clicking on its name; Simulink will issue an 
error window saying that the name already exists.
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Since the labels In1 and In2 don't make a lot of sense, we'll rename them to our 
inputs: the Vehicle speed and the Target speed. The same goes for our output:  
the Throttle.

A good practice is to put the measurement unit in the name too; 
it helps to avoid conversion errors (even the best can make such 
errors—the NASA did!).

Now we should have something similar to the following screenshot:

Step 6 – implement the algorithm
The simplest yet most effective cruise control algorithm is a PI (Proportional-
Integral) controller. This algorithm can be summarized in the following four steps:

1. Calculate the error e(t), that is, the difference between the target speed and 
the vehicle speed.

2. Apply a correction factor to the error Kp.
3. Apply a correction factor to the integral of the error, Ki.
4. Sum both the proportional and the integral components and obtain the 

control signal u(t).

The mathematical formula of a PI controller is as follows:

Of course, we can't push the gas pedal beyond its physical limits; the throttle control 
signal needs to be clamped, the lower limit being 0 (throttle closed) and the higher 
limit being 1 (throttle fully open).



Chapter 2

[ 27 ]

By looking at the formula, it's easy to guess that we need to find the following blocks 
in the Simulink Library Browser:

• One Subtract block (from Simulink | Math Operations) in order to  
calculate the error

• Two Constant blocks (from Simulink | Sources) for Kp and Ki, and two 
Product blocks (from Simulink | Math Operations)

• One Integrator block (from Simulink | Continuous) used to hold the  
error integral

• One Add block (from Simulink | Math Operations)
• One Saturation block (from Simulink | Discontinuities) to clamp the  

output throttle

The Integrator block (and almost every other block in the Continuous 
blockset) is represented with the corresponding transfer function H(s) = 
Y(s)/U(s) in the Laplace domain. More information can be obtained by 
clicking on the Help button in the block parameters window.
You don't need to know about Laplace transforms in order to understand 
this book; just remember that the 1/s block is an integrator.

Place the blocks in the order suggested by the algorithm (refer to the following 
screenshot) and open every block to understand its options. Don't forget to:

• Check the Subtract block operands: the Target speed has to be connected to 
the positive port and the Vehicle speed to the negative port; thus the block 
parameter should be +−

• Edit the Saturation block limits by double-clicking on it; a window opens;  
in that window, set the value of Upper limit: as 1 and the value of Lower 
limit: as 0

Optionally, resize the blocks (by dragging the little handles that appear on the 
selected block's border), hide the math blocks' names (by right-clicking on the blocks 
and opening the Format submenu), and rename the constant blocks to Ki and Kp.

To connect two blocks, it's sufficient to drag the little arrow from the source block to 
the endpoint at the destination block with the mouse.

To quickly connect two blocks, select the source block, then 
press and hold the Ctrl key, and click on the destination 
block. This works with multiple blocks too.
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We should end up with a model similar to the one shown in the  
following screenshot:

Step 7 – nest the logic into subsystems
Subsystems are a very convenient way to group together the blocks that implement a 
specific functionality.

In order to make a clear distinction between the PI controller components, we 
can select the elements to group together and right-click the selection to open the 
contextual menu and create a subsystem (or use the Ctrl + G keyboard shortcut).  
The operation is shown in the following screenshot:

We'll create two subsystems: one for the proportional component and one for the 
integral component. Since they are of a small default size and have the default port 
names of In1 and Out1, we should resize and rename them, then open them (with a 
double click) and rename their ports.
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We should obtain the model shown in the following screenshot:

Notice the change in the Model Browser panel on the left; you can now navigate 
in your system hierarchy by clicking on the subsystems' names. The cruise_control 
block is called the root subsystem.

Let's continue organizing the model into subsystems by selecting all the PI controller 
components (everything except the ports and the Saturation block) and making a 
subsystem. Again, we need to edit the new subsystem's port names.

We should see the clean, ordered, neat-looking, self-explanatory system shown in the 
following screenshot:

The final step—the root subsystem should contain absolutely no logic, only root-level 
blocks implementing a complete functionality, sharing little to no signals. We still 
have the Saturation block left out.
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So we'll select everything (literally—ports included) and create the cruise control 
root subsystem as shown in the following screenshot:

This time we didn't have to rename the ports; since we included them inside the 
selection, Simulink kept their names and created new copies outside the newly 
created subsystem.

Step 8 – declare workspace variables
There's a problem with the cruise controller; we've left the PI calibration constants 
inside the block, and we can't calibrate them without doing some simulations.

This means that either we dig into the model hierarchy down to the Integral and 
Proportional blocks every time we need to change their values, or we pull them out 
to the root level.

Both of these methods are viable with a simple system like the one we've just 
modeled. But as soon as the model complexity grows, you'll have problems either in 
knowing where the constants are or in having a clean, understandable system layout.

But there is a clean and effective solution. Since Simulink can read MATLAB's 
variables, it's easy to define the Kp and Ki constants in the MATLAB workspace and 
use their labels in the Constant blocks.

So we define them by entering these commands in MATLAB's Command Window:

Kp = 1;

Ki = 1;

Then we'll navigate to the constant blocks, double-click each one of them and edit the 
Constant Value field in their respective Source Block Parameters window with the 
previously defined variables Kp and Ki.
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The block parameters window for Kp will look like the following screenshot:

Done! Now we can edit Kp and Ki directly from the MATLAB's Command Window!

Let's save the workspace alongside the model, (that is, at the same location where 
cruise_control.slx is saved) calling it cruise_control.mat (click on the Save 
Workspace button in MATLAB's main window.).

To avoid loading it every time we open the model, we can use the PreLoadFcn model 
callback. Navigate to the root subsystem, right-click on the white space, and choose 
the Model Properties item from the contextual menu. A new window will open; 
click on the Callbacks tab and select the PreLoadFcn item from the list. Inside the 
textbox, we'll type the MATLAB command that will perform the workspace loading: 
load('cruise_control.mat').

To confirm that we didn't make trivial mistakes, we should run Update Diagram 
(from the Simulation menu or by pressing Ctrl + D).

Now we've finished our first model. It's time to see how it behaves.

Step 9 – do a first simulation
Let's see how our controller works in an open loop (without actually anything  
to control).

We must delete the input and output ports from the root level, since we're replacing 
them with appropriate Sources and Sinks blocks from the Library Browser.
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We'll take the following blocks from the Simulink Library Browser:

• A Constant block (from Simulink | Sources) to be connected to the  
Vehicle speed input with the Constant value set to 0

• A Step block (from Simulink | Sources) to be connected to the Target speed 
input with the Final value set to 0.1 (remember that the throttle is clamped 
between 0 and 1)

• A Scope block (from Simulink | Sinks) to be connected to the  
Throttle output

We should have the system looking like the following screenshot:

Running the simulation is an easy task: just click on the green Run button in  
the toolbar, or click the Simulation | Run menu entry, or type the Ctrl + T  
keyboard shortcut.

When the simulation is completed (the status bar at the bottom left shows the  
Ready word again), double click on the newly added Scope block and you'll  
see this neat graph:
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To make the graph fill the whole window size, press 
the Autoscale icon button (the sixth from the left).

Good! Notice that the simulation stopped at the tenth second; it is the default 
simulation time, which can be adjusted in the Simulink toolbar (right above the 
model editor).

We can do our little result analysis:

• Before 1 second: the target speed is still 0, equal to the vehicle speed with no 
throttle required.

• At 1 second: the target speed (and the speed difference) goes to 0.1, the 
proportional factor of the PI controller kicks in and sets a throttle equal to the 
speed difference multiplied by Kp, while the integral factor starts working.

• From 1 second onwards: the proportional contribution to the throttle stays 
at 0.1, but the integral contribution rises linearly (Ki being 1, the slope of the 
throttle is equal to the speed difference, that is, 0.1).

A new variable has appeared in the workspace: tout. It is an array 
containing the time instants where the results have been calculated. 
By using the Sinks | To Workspace block, we can save the simulation 
results in the workspace too. This is often useful to do further analysis 
and prepare a report using MATLAB's powerful plotting functions, 
thus overcoming the limitations of the Scope block.

You can see that the resulting scope graph is not really continuous by opening the 
'Scope' parameters window [click on the Parameters icon button (the second from 
the left)] and choosing a line marker (Line:) in the Style tab. Simulink automatically 
chose an adequate time step. We'll discuss simulation times in the next chapter.

What we have just performed is an open-loop simulation: we have a controller 
running without the controlled system, so the speed (or better: the error e(t) that  
the controller is reacting to) is made up with a Step block. The purpose of open-loop 
simulations is to demonstrate and check the controller behavior with certain kinds  
of inputs.

What now? We need a mathematical model of a controlled system in order to 
perform a closed-loop simulation and see how our cruise controller is able to make 
the speed difference disappear by commanding the throttle. We need to model a car.
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Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Our second model – the Alfa Romeo  
147 GTA
With what we've learned so far, we're ready to develop a simple mathematical model 
of a real car in order to test and fine-tune the controller in a closed-loop simulation.

Luckily enough, a lot of technical detail is available nowadays on almost every car. 
The author likes the Alfa Romeo 147 GTA a lot, so the choice is made.

Open a new Simulink model and save it as alfa147gta.slx. The model will have 
one input (the throttle, coming from the cruise controller) and one output (the car's 
speed, going to the cruise controller).

We're interested only in the longitudinal speed (a car going straight on a flat 
ground), and we assume the gearbox to be ideal (shifting gears in no time).

How do we compute the speed?

Getting the speed – Newton's laws
We know that the car's speed is the integral of the acceleration in time:

Newton's second law reminds us that the acceleration is proportional to the total 
force applied on the car, with the mass m being the factor:
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Since we're building a simplified model, we'll consider only the following three  
main forces:

• The engine force FEngine, generated by the fuel burning in the engine
• The aerodynamic drag FDrag, generated by the car moving in the air  

(that is, a viscous fluid)
• The rolling resistance FRes, the sum of all the rolling frictions that oppose  

the movement

Putting it all together, we have:

The mass being a constant, we can declare it in the workspace right away.  
The Alfa 147 GTA weighs 1360 kg, so we'll enter the following command in 
MATLAB's main window:

Mass = 1360;

Let's make the relevant blocks in the root system. Open Library Browser and drag 
three Subsystem blocks into the model (one for each force applied) from the Ports 
& Subsystems blockset; one Add block and one Divide block from the Math 
Operations blockset; one Integrator block from the Continuous blockset; and one 
Constant block from the Sources blockset for the mass.

Since we'll be working with the international metric system inside this model, we'll 
put a Gain block too (from the Math Operations blockset) before the output, to 
convert the speed unit from m/s to the one used by the cruise controller, km/h.

Rename the Subsystem blocks to Aerodynamic drag, Rolling Resistance, and 
Engine Force, and align them vertically.

Double-click on the Add block and edit the list of signs; we need three inputs, only 
one positive (the engine force). Let's keep the positive input as the last; the list of 
signs should be --+.

Double-click on the Constant block and set its Constant value parameter to Mass 
(the variable we just created in the workspace).

The same must be done for the Gain block, setting the Gain to 3.6 in order to 
convert from m/s to km/h.
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After putting a brief note, connecting the blocks following the above  
formulas, and renaming the blocks, we should have our model as shown  
in the following screenshot:

We still need to compute the forces. We'll start with the drag and the rolling 
resistance first, since they're simpler; then we'll build the algorithm calculating the 
engine force.

The aerodynamic drag equation
The aerodynamic drag force, whose effect is evident at high vehicle speeds, can be 
calculated with the drag equation as follows:

KDrag is a constant for the car, made of:

• The air density ρ, at 20 °C and 101.325 kPa equals to 1.2041 kg/m3

• The drag coefficient CD, which is 0.32 for the 147 GTA
• The frontal area A, approx. 2.2 m2

Let's declare it in the workspace with the following command:

Kdrag = 0.5 * 1.2041 * 0.32 * 2.2;

Since the vehicle speed needs to be an input of the block, we're adding a Goto and 
From block from the Signal Routing blockset to the root block.
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The Goto and From blocks can avoid drawing a connection 
between two or more subsystems and are extremely helpful to 
avoid cluttering the view. It's a common practice in the automotive 
industry to use them instead of connecting input and output ports 
directly to the subsystems implementing the logic. When the 
system becomes too complex and there are many tags, it's helpful 
to assign the same foreground/background color to matching Goto 
and From blocks. This can be done by right-clicking on the block 
and using the Format menu option.

Open both and use the same tag: speed. It's suggested to hide their names. Be careful 
to connect the Goto block at the end of the integrator—we want the speed in m/s, 
not in km/h.

The root system should be looking like the following screenshot:

Inside the Aerodynamic drag subsystem, we'll implement the drag equation with 
one Gain block, one Math function block (both from Simulink | Math Operations), 
and one Constant block (from Simulink | Sources).

We'll use Kdrag as the Gain parameter for the Gain block and select the pow 
function in the Math function block (double-click and set the Function drop-down 
list to pow). A second input will appear; it is the exponential to apply; we'll connect 
it to the Constant block and set its Constant value parameter to 2.
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Finally, we'll rename and connect the input and output ports, the input being 
the speed (in m/s) and the output being the drag force (in N). After making the 
connections, the subsystem should look like the following:

Don't forget to copy and connect the speed Goto in the parent system to the  
input port.

Let's do the next step, the rolling resistance.

The rolling resistance approximation
The rolling resistance (sometimes called rolling friction or rolling drag) is 
proportional to the vehicle speed. It's the main resistance at a lower speed.

It's not simple to obtain a precise formula because it involves knowledge about the 
tire characteristics, but we can simplify the calculations by assuming that:

• At approximately 30 m/s (100 km/h), the rolling resistance and the drag  
are equal

• The proportional factor is constant at other speeds

This assumption is valid for most cars.

So we can find, with v = 30 m/s, the constant KRes:

KRes being just 30 times bigger than KDrag, we don't even need to declare a new 
variable in the workspace.

The implementation is simple: we just put inside the Rolling resistance subsystem a 
Gain block set to 30*Kdrag and connect it to the input and output ports (renamed as 
usual). We should have this subsystem:
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Don't forget to copy and connect the speed Goto in the parent system to the  
input port.

So far, so good. Now comes the hard part: the subsystem that calculates the  
engine force requested by the cruise controller (via the throttle input).

The engine force – engine, wheels, and 
transmission
Every combustion engine has a characteristic torque curve (also called lug curve) that 
can be found in almost every technical review book. The Alfa 147 GTA shows the 
following one:

The torque in the preceding graph represents the maximum available torque τMAX 
(with the throttle fully open), measured at the crankshaft.

The engine and the wheels are linked together through the gearbox and the 
differential; the former applies a variable gear ratio KGear and the latter applies a 
constant final ratio KFinal.
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Since we have to transform the vehicle speed to engine RPM first and the engine 
torque to the engine force last, all taking into account the gearbox and differential 
combined ratios, we need to model four subsystems:

• Gearbox and differential, will output the transmission ratio at the  
current speed

• Wheel to RPM, will output the current RPM based on the current 
transmission ratio and the current speed

• Engine, will receive the throttle command and output the resulting torque  
at the current RPM

• Torque to force, will convert the engine torque to the force that the engine  
is applying on the car

Let's start by having two input ports (the vehicle speed and the throttle input), one 
output port (the engine force), and the four empty Subsystem blocks (found in 
Simulink | Ports & Subsystems) in the Engine force subsystem. The subsystem 
should now look like the following screenshot:

The first subsystem we'll implement is Gearbox and differential.

Gearbox and differential
From the crankshaft to the wheel, the rotation is reduced twice: first in the gearbox, 
where the reduction ratio can be changed by upshifting/downshifting, then in the 
differential, which has a fixed reduction ratio.

We need to implement an automatic gearbox; the simplest is the one that chooses the 
gear based on the current speed and doesn't have the reverse gear.

In the following table, we'll find the Alfa 147 GTA optimal speed ranges for each 
gear, together with the gear ratio KGear:
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Gear Speed range [km/h] Gear ratio
1 < 39 3.500
2 39 – 59 2.235
3 60 – 86 1.520
4 86 – 109 1.156
5 110 – 129 0.971
6 ≥ 130 0.818

The differential on the Alfa 147 GTA applies a final ratio KFinal of 3.733.

As an example: in the first gear, the engine's crankshaft is rotating 13 times 
(3.5*3.733) faster than the wheel axis, while in sixth gear, it's only three times 
(0.818*3.733) faster.

We'll put this data right now in the workspace by executing these commands:

GearRatio = [3.500 2.235 1.520 1.156 0.971 0.818];

FinalRatio = 3.733;

Let's build the automatic gearbox; the input is the vehicle speed in m/s, which gets 
converted to km/h through a Gain block with the value set to 3.6.

Then we'll use a particular construct to select the gear: an If block from the Ports & 
Subsystems blockset. The If block allows us to replicate exactly the C language's 
if()...elseif()...else construct. Opening the block parameters window reveals 
that we have to set the first if() condition: then we can define as many elseif() 
conditions as we like.

Looking at the speed ranges, it's easy to set the parameters:

• The Number of inputs will be set to 1, since we only need to evaluate the 
vehicle speed (the corresponding label inside the block will be u1)

• The If expression will be u1 < 39 (the first gear)
• The Elseif expressions elements will be u1 < 60, u1 < 86, u1 < 110, u1 

< 130 (gears 2 through 5)
• The Show else condition checkbox will be checked (the sixth gear)
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If we entered the parameters correctly, we should have the following  
subsystem now:

For each output of the If block, we need to put one If Action Subsystem  
(available in the Ports & Subsystems blockset). These subsystems must contain the 
code to be executed when the corresponding condition in the If block is verified 
(they're called conditionally executed subsystems). In our case, they'll output the 
chosen gear number. We don't need the input port; remove it from each one of these 
subsystems using a Constant block with the gear number instead.

In the following screenshot, we can see how the subsystem looks after inserting and 
editing the If Action Subsystem relative to the first gear and running the Simulation 
| Update Diagram action (the keyboard shortcut is Ctrl + D):
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Notice that the connections between the If block and the subsystems are dotted. 
This means that the connection is not transporting a signal, but it's a function-call. 
When a condition is verified, the If block will call the subsystem connected to the 
corresponding port, executing its code.

To avoid Simulink emitting warnings in MATLAB's main 
window, the output ports of every conditionally executed 
subsystem should have the initial output value set in their 
parameters window.

We now have six possible gear values; how to put them together? We must use 
another particular block: the Merge block from the Signal Routing blockset.  
This block will instruct the connected subsystems to write their outputs to the  
same signal.

Let's put one Merge block into our model and open the parameters window by 
double-clicking on it. Since we have six subsystems, we need to set its Number of 
inputs parameter to 6, then connect each subsystem to one of the inputs.

The resulting model should be the one shown as follows:

Now that we have the gear, we must use it to select the gear ratio.

We'll use Direct Lookup Table (n-D) (from Simulink | Lookup Tables). Open the 
parameters window, set the Number of table dimensions parameter to 1 and the 
Table data parameter to GearRatio. Since the table must be accessed with a zero-
based index, we must subtract one unit from the gear number coming from the 
Merge block.
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The subsystem and the Direct Lookup Table parameters are shown in the  
following screenshot:

The last step is to include the final ratio due to the differential. That's easily done 
by putting a Gain block right before the output port (that should be renamed), and 
setting its Gain parameter to FinalRatio.

The final Gearbox and differential subsystem is shown in the following screenshot:

This subsystem's output will be used to convert the vehicle speed to the engine RPM, 
and later the engine torque to the new vehicle speed.
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Wheel to RPM
The purpose of this subsystem is to get the engine RPM using two inputs: the vehicle 
speed, and the combined (gear and differential) reduction ratio.

The vehicle speed v can be translated to the rotational speed of the wheel (in RPM, 
revolutions per minute). The RPMWheel is equal to the distance the car has traveled in 60 
seconds (v*60), divided by the wheel diameter (that is, 2π times the wheel radius rWheel).

Then we know that the engine and the wheels are linked together through the 
gearbox and the differential. We already have their ratios; the engine's RPMEngine is 
equal to RPMWheel multiplied by the gear and differential ratios.

This gives us these easy formulas to implement in Simulink:

The Alfa Romeo 147 GTA requires 185/45R17 tires, meaning that:

• The wheel rim diameter is 17 in = 0.4318 m
• The tire section height is 45% of 185 mm ≈ 83.3 mm

So the wheel radius is 0.4318/2 + 0.0833 = 0.2992 m. Let's save it into the workspace 
with this command:

WheelRadius = 0.2992;

The subsystem's implementation in Simulink following the preceding formula is 
simple, using the well-known Gain, Divide, and Product blocks:

Now that we have the engine RPM, we can model the Engine subsystem.
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Engine
This subsystem will calculate the engine torque response τEngine. The inputs are the 
engine RPM coming from the previous subsystem, and the throttle command from 
the cruise control system. The formula is very simple:

In order to obtain the maximum torque τMAX available at a certain RPM, we need an 
interpolating block using the following coordinates (taken from the torque curve we 
saw earlier in this chapter):

RPM 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
τMAX 200 220 242 258 260 261 268 285 300 296 290 250 220

Let's add these vectors to the workspace:

EngineRPM = [1000 1500 2000 2500 3000 3500 4000 4500 5000 5500  
6000 6500 7000];

EngineTRQ = [200 220 242 258 260 261 268 285 300 296 290 250 220];

We'll place into the Engine subsystem a 1-D Lookup Table (from Simulink | 
Lookup Tables), double-click on it, and configure it as follows:

• Table dimensions: 1 (for each RPM value, we only need one torque value)
• Table data: EngineTRQ (the ordinates)
• Breakpoints 1: EngineRPM (the abscissas)
• Interpolation method (in Algorithm tab): Cubic spline (how to calculate the 

curve between two known points)
• Extrapolation method (in Algorithm tab): Linear (how to calculate the curve 

outside the RPM range)
The Engine subsystem implementation will look like the following screenshot:

Easy, wasn't it? Now that we have the resulting τEngine we can calculate the force that 
the engine is applying to the vehicle in the next subsystem.
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Torque to force
This subsystem converts the provided engine torque τEngine to the force F applied to 
the vehicle.

Thanks to Newton's third law, we know that the same force F is applied by the 
wheels on the ground. Remembering the definition of torque, we can relate F to 
the wheel torque τWheel and the latter to the engine torque by applying the gear and 
differential ratios:

The Simulink implementation of the preceding formula is easily done with the now 
familiar Product, Divide, and Constant (set to WheelRadius) blocks, like in the 
following screenshot:

As always, don't forget to update the relevant connections in the parent subsystems.

The finishing touches
First of all, let's group all the root-level subsystems into one subsystem called Alfa 
Romeo 147 GTA, and save the current workspace as alfa147gta.mat since we've 
declared every constant we need.

Like we did for the cruise controller model, we can have the model 
load the workspace automatically by setting its PreLoadFcn callback to: 
load('alfa147gta.mat')
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Then we'll check if we did everything right by running a Simulation |  
Update Diagram (Ctrl + D). The resulting root subsystem should look like the  
following screenshot:

That's it! We managed to create a fully usable, fairly accurate car model!  
Well, we can't steer, but we can surely have drag races!

Summary
We've now learned the basics of building continuous time models implementing 
ordinary differential equations, together with almost every modeling technique 
you'll ever need.

In the next chapter, we'll be discussing the simulation phase using the models and 
workspaces we've just created.



Simulating a Model
In this chapter, we'll learn how to simulate a model. We'll start with a little theory 
about the solver and simulation time in order to understand the main concepts 
behind the Simulink engine. Then we will assemble the test system by putting 
together the cruise controller and the car model, and run various simulations.  
We'll be able to calibrate our cruise controller and we'll learn what really sets 
Simulink apart—many different source blocks and one mighty sink block, Scope.

The mandatory theory
Before starting the simulation, we'll have a closer look at how Simulink computes  
the simulation results, in order to be able to choose the appropriate simulation  
time and solver.

Let's build a simple system that finds the solution to this problem:

The exact mathematical solution is y(t) = e-t.

The Simulink model (which we'll save as example.slx) that implements the  
problem is:
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Notice that we've set the Initial condition source parameter of the Integrator block 
to be external.

To configure the simulation time and solver of this model, click on the  
Model Configuration Parameters option from the Simulation menu  
(keyboard shortcut: Ctrl + E).

A new window will open; select the Solver node from the left-side panel, which will 
give you access to configure the Solver options and Simulation time parameters.

Under the Solver options section, select the Type list value as Fixed-step (don't 
worry, we'll explain the meaning later) as shown in the following screenshot:

Then let's edit the Scope block parameters. We want to see where Simulink does the 
calculations, so we'll click on the Style tab and set the Marker option as round to 
both lines:

Now that we have set up our example, let's begin by examining the simulation times.
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The simulation times – when the math is done
There are three main times to be set before starting with the simulation: the 
simulation start time, the simulation stop time, and the simulation step size.

The Start time and Stop time parameters under Simulation time are self-
explanatory; they tell Simulink the time period (in seconds) required to perform  
the simulation. Usually Start time is set to 0.0, and Stop time to either inf  
(meaning that the simulation will never end until it's stopped by the user) or a  
time when the transient effects in the model become negligible. The default value  
of Stop time is 10.0.

The step size defines the time period that Simulink uses to sample the inputs and 
calculate the outputs. The default value is set to auto; that is, Simulink will try to 
determine the appropriate step size.

Let's run the simulation and see the result by double-clicking on the Scope block.  
We should see this graph:

By zooming in on the graph a little, we'll find that the samples have been computed 
every 0.2 seconds (0.2, 0.4, 0.6, and so on). This is confirmed by the warning that 
Simulink issued in MATLAB's Command Window, which is seen as follows:

Warning: Unable to determine a fixed step size based on the sample times 
in the model 'example', because the model does not have any discrete 
sample times. Picking a fixed step size of (0.2) based on simulation 
start and stop times.

Let's take a quick note of the result at 1 second: it is y(1) = 0.3677.

The exact solution is e-1 = -0.3679, so the simulation result is fairly accurate.
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Now, in the Model Configuration Parameters window, let's set Fixed-step size 
(fundamental sample time) as 1, and run the simulation again.

You'll be presented with this graph:

What happened? We told Simulink to acquire new samples every second; thus, the 
resulting curve is less accurate. If we look at the result for 1 second, we can see that it 
has changed to y(1) = -0.3333. With such a large step size, we shouldn't be surprised 
that the solution Simulink found is showing a greater difference from the exact one.

Most of the time, your models will give unpredictable results because you chose an 
inadequately long step size. Vice versa, you may have defined a very small time step 
size, just to be on the safe side, and your simulation could take ages. If you've got a 
fast computer, try setting a step size of 0.00001 and running the simulation again 
(you'll have to uncheck the Limit data points to last option in the Scope parameter 
window under the History tab).

The rule of thumb is to have a time step smaller than half the 
smallest period of your analog signals if the system is not stiff 
like this one—more about that in the later sections.

The solvers – these great unknown
The solvers are the answers to the question: how does Simulink run the simulation?

Every solver performs the simulation by advancing one time step and computing 
the new outputs starting from the previous state(s) of the system until the end of the 
simulation time. The initial system state must be fully defined.



Chapter 3

[ 53 ]

The appropriate solver for a model can be chosen by defining these characteristics:

• Time step size, which can be fixed or variable
• Presence of continuous states in the system
• Stiffness of the system

Variable-step versus fixed-step solvers
A variable-step solver will choose to use a shorter time step when the signal 
derivative is changing faster in order to obtain a better approximation, while it  
will use a longer step when the result changes at a slower pace. The most used 
variable-step solver is the ode45 solver (this is the default Simulink solver as well).

A fixed-step solver will, on the other hand, always use the same step size. The 
simplest is the ode1 solver (the famous Euler method).

We've already run our example with a fixed-step solver. Let's change this to a 
variable-step solver by opening the Model Configuration Parameters window and 
setting the ode45 solver.

We now have the option to configure more Solver parameters; we'll allow it to 
use a Max step size of 1 second and a Min step size of 0.2 seconds, setting other 
parameters to the default value. Running the simulation now will give us the 
following result:

We can see that the step size is indeed variable: the second value has been computed 
after only 0.2 seconds, and then the step size grew bigger and stayed at 1 second. 
We got a good approximation in the problematic region while using longer steps in 
the almost constant region, thus achieving a faster simulation time than a fixed-step 
solver with a step size of 0.2 seconds.
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But how does the solver determine when it's necessary to reduce the step size? 
The answer is by looking at the tolerances defined in the Model Configuration 
Parameters window.

Relative tolerance defines the maximum error as a percentage of the actual value. 
The default value (1e-3) means that an error of 0.1 percent is accepted.

Absolute tolerance defines the maximum error as a scalar value. When it is set to 
auto, Simulink will assume 1e-6 initially (that is, 0.000001), then change it to the 
maximum error calculated with the relative tolerance.

The Shape preservation option, off (Disable all) by default, helps to increase the 
accuracy when the solution's derivative varies rapidly at the cost of a more computing-
intensive simulation (thus increasing the overall time to compute the result).

Finally, there's the option Number of consecutive min steps, which defines how 
many times the solver can use a time step smaller than the minimum step size 
violations defined before issuing a warning or an error.

Let's set the Relative tolerance parameter to 1e-5 and run the simulation.  
We'll obtain this result:

This time, the solver chose to use more shorter steps while the signal was changing 
to improve the accuracy, thanks to the relative tolerance we've set; then the step size 
grew gradually back to 1 second.
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Variable-step solvers give us a good trade-off between result approximation 
and overall simulation times in models, whereas fixed-step solvers are too 
computationally intensive to be used efficiently.

Fixed-step solvers are required for code generation and real-time 
control purposes because Simulink can't go back in time to give a 
more accurate result.

Continuous versus discrete
A system can be continuous or discrete based on the presence of integrators or 
derivatives in the model (these are called continuous states). In other words,  
if the system is represented by the means of one or more differential equations,  
the system is continuous. Our cruise controller is continuous because it has an 
integral component.

The continuous solver can choose to perform several iteration cycles in a single time 
step to reach the best possible approximation of the final result. Such solvers fall into 
the ODE (Ordinary Differential Equation solvers) category.

If a system is discrete, there are no differential equations but only memories and 
mathematical operands. A discrete solver is unable to perform the numerical 
integration required by continuous states.

The continuous system requires continuous solvers, while Simulink will switch to a 
discrete solver for discrete systems even if a continuous solver has been specified.

Try to set a discrete solver in our example system and run a simulation. An error 
window will appear, telling us that a discrete solver can't be used because the model 
contains continuous states.

Stiff versus nonstiff
In a stiff continuous system, certain solvers are unable to compute the result unless 
the step size is small enough; thus, a stiff solver is needed. These systems can be 
identified by an overall slowly changing solution that can vary rapidly in a very 
small time period.
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Our example is mildly stiff: the ode45 solver had to use a small step size to compute 
the result close to t = 0, but it managed to get the job done by changing the time step. 
A more appropriate choice would have been the ode23t solver (moderately stiff), 
which would have given the following result:

Let's choose another nonstiff solver, the fixed-step ode1, implementing the Euler 
method. Set the Fixed step size parameter to 1.5 and run the simulation:

That's interesting: Using the Euler method with a long time step shows the result to 
be oscillating around the mathematical result, but the solution is still convergent.

Setting the step size to 2 seconds will show that it can't converge anymore, and any 
step size higher than 2 seconds will make the simulation diverge from the correct 
result and go towards infinite oscillation. The following figure shows the result with 
a step size of 2.1 and a simulation time of 20 seconds:



Chapter 3

[ 57 ]

The following article presents stiff solvers in a way that is 
easy to understand: http://blogs.mathworks.com/
seth/2012/07/03/why-do-we-need-stiff- 
ode-solvers/.
The documentation center, accessible by pressing F1, has 
detailed information about the solver types and parameters. 
This information can be found by navigating to Simulink | 
Simulation | Configure simulation.

Now that we've learned how solvers work and how to choose the right solver, we 
can start with the practice.

Build the complete closed-loop system
So far we've got two models: a simple cruise controller and a beautiful car.  
Until now, they've been treated separately in an open loop. Remembering what we 
learned in the previous chapter, we're going to place the required blocks and connect 
them in a closed loop.

Let's open both the models and copy them to a new model named cruise_control_
sim.slx. If their workspaces aren't loaded automatically, load them by dragging 
them from their folders to the MATLAB's Command Window and save the new 
workspace as cruise_control_sim.mat. It's suggested to have the new workspace 
loaded automatically via the PreLoadFcn model callback as we have learned in the 
previous chapter.

In order to see what's happening inside the engine, let's pull out the Gear and  
RPM signals from Alfa Romeo 147 GTA | Engine force | Gearbox and differential 
until we reach the root block, by adding and connecting the output ports to every 
parent subsystem.
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Then we need to make the important connections: the Throttle output of the Cruise 
controller system has to be connected to the Throttle input of the Alfa Romeo 147 
GTA system. The same goes for the Speed port, going from the car to the controller.

We need to place a Scope block to view the outputs too. This block will be placed 
near the upper-right corner of the root view above the systems.

In order to easily connect the signals to the Scope block, we'll use four From blocks 
paired with four Goto blocks. Three of the From blocks will be connected to the car's 
output, which are labeled using their names, while the fourth From block will be 
connected to the throttle signal and labeled as Throttle. The Goto blocks will be 
labeled the same way as the From blocks and placed near the Scope block.

Another couple of Goto/From blocks will be added to feed the remaining controller's 
input. The From block will be connected to the Target speed input of the controller, 
and the Goto block is placed above the systems near the upper-left corner of the root 
view. Both will be labeled as Target.

We now have a system, as shown in the following figure:

It's time to connect the From blocks, tagged, Target, Speed, Throttle, RPM, and 
Gear, to the Scope block.

To visualize the Target and Speed signals on the same Scope graph, rather than 
having them in separate graphs, we'll add a Mux block and connect these signals  
to it.
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The Mux block creates a virtual bus containing the muxed signals, which 
must be of the same datatype. The subsequent blocks (connected to that 
virtual bus) will execute their operations on each virtual signal. This is 
extremely useful when you need to perform the same operations on many 
signals. The Demux block does the opposite operation; it pulls out the 
muxed signals in the same order that they were muxed.
The Bus Creator block may seem to be equivalent to the Mux block, but 
it serves different purposes. Unlike the Mux block, the Bus Creator block 
creates real buses (accepted only by bus-enabled blocks). The signals 
entering the bus must be named; they can be complex and have different 
datatypes. The Bus Creator block is used by code-generation tools to 
declare and populate C structs.

Open the Scope block configuration window and set the Number of axes to 4, then 
connect the signals from the Mux block and the Throttle, RPM, and Gear From 
blocks. Finally, give a name to each signal exiting the From blocks by double-clicking 
on the signal lines. Use the corresponding From block label as the signal name.  
The signal names will be displayed above the Scope block graphs.

The portion of the system connected to the Scope block should look like the 
following figure:

Another useful option of the Scope configuration is the Legends 
checkbox in the General tab. When this option is checked, a legend 
with the signal names will be printed in the graph window, allowing 
us to distinguish the Speed and Target signals easily.

We're now ready to race.
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Configuring the simulation
First and foremost, with the knowledge we gained in this chapter, we have to choose 
the right simulation times, the solvers, and their options. Let's open the model's 
Configuration Parameters window (or press Ctrl + E) for the last time.

Simulation times
The Start time parameter will be left as 0.0 seconds. We're not going to wait at the 
car parking, are we?

Having a powerful engine, we'll reach the target speed of 100 km/h from standstill 
in less than 10 seconds. But we want to see how the vehicle speed settles to the target 
speed (to detect overshoots and make sure the target is actually reached), so we'll use 
a long enough Stop time, 50 seconds.

The step size will be large enough to allow an external (soft real-time) application 
to run synchronously but small enough to not allow the car to reach a speed higher 
than the target before the cruise control can cut the throttle. This happens when the 
target speed is low and the car is in the first gear and jumps from 0 to 20 km/h in less 
than 2 seconds. Therefore, we're choosing a step size of 0.1 seconds.

In a simulation of 50 seconds, we'll be getting 500 samples.

Remember that the Scope block is limited to 5000 samples by 
default with a step size smaller than 0.01 seconds we would 
have to edit or remove the Limit data points to last option in the 
'Scope' parameters window under the History tab.

Solvers
Since we're going to test our cruise controller with an external application, we cannot 
use a variable-step solver; we have to choose a fixed-step solver.

It must be continuous since we've got three integrators (two in the cruise controller, 
and one in the car).

The system is mildly stiff: the throttle command, even if clamped, can vary very fast 
from 0 to 1 (depending on the Kp constant), and the speed signal can be problematic 
at lower speeds for the reasons we listed earlier.

Since Kp will not have a big value (otherwise, driving the car would be an unpleasant 
experience) and the chosen step size is small, the ode1 Euler solver is likely to work 
well, so we're using it.



Chapter 3

[ 61 ]

Run our first serious simulation
Let's place a Step block in the model, connect it to the Target Goto (whose 
corresponding From block is connected to the Target speed controller input), and set 
its Final value to 100 km/h.

Run the simulation and open the Scope block. The speed graph should be like this one:

Quite an overshoot! The vehicle speed reaches almost 150 km/h when the controller 
closes the throttle. This is due to a too high integral gain, Ki, forcing the vehicle to go 
a lot faster than intended. Who wants a ride?

Calibrate the PI controller
To calibrate the PI controller constants, Kp and Ki, we'll use this manual method  
of keeping Ki to zero and finding the Kp value to where the Throttle signal begins  
to oscillate.

Then we'll halve the found value and save it into Kp and tune Ki in order to reach the 
target speed with a minimum overshoot.

Calibrating Kp
Prepare the model by setting Ki to zero with this MATLAB command: Ki = 0.

We'll start with an insanely high proportional gain value, Kp = 5. The result is 
shown in the following graphs:
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No doubt Kp is too high (oscillations are strong); no one would accept a ride from us.

 Let's try with Kp = 1.1:

The preceding graph has been zoomed to show that there is only a small glitch due 
to the fact that the speed increased beyond the target speed in the middle of a sample 
period. But the rest of the graph shows no oscillations, so we're about to find the 
right value.

The next simulation is done with Kp = 0.8:

This works very well. We can assume our Kp to be the half of 0.8. That's a fairly high 
value, but there aren't passengers in the car... yet!

Let's type the MATLAB command, Kp = 0.4, and save the workspace.
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Calibrating Ki
Now we'll keep Kp as the untouched constant and calibrate Ki. The purpose is to use 
the integral component to actually reach the target speed, keeping the overshoot 
below 1 percent of the target speed.

We've already seen that Ki = 1 generates way too much overshoot, so we'll try 
much smaller values such as Ki = 0.01:

The overshoot is above 5 percent of the target speed, so we need to choose a lower Ki. 
Let's try with Ki = 0.002:

Got it! The overshoot is below 1 percent of the target speed.

We have now found both the calibration constants: Kp = 0.4 and Ki = 0.002. Don't 
forget to save the workspace (cruise_control_sim.mat).
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Test with other sources
So far we've learned how to use the Step source block. This is arguably the  
most important source because it presents clearly the system's transient answer  
to a stimulus.

But that's about it; it doesn't show the response to a wave, a random signal,  
or a noise.

A more thorough test with other sources could help us detect problems that  
were overlooked. For instance, we didn't take into account while testing that  
the car can show a very different response in lower gears: at 100 km/h, it was 
running in fourth gear.

Sine Wave
The cruise controller is acting only on the throttle, so we can predict that it will be 
hard for it to follow decreasing speeds.

Let's try using a Sine Wave block as the target speed source, which was configured 
as follows:

• Bias: 100 (km/h)
• Amplitude: 20 (km/h)
• Frequency: 0.2 (rad/s)

The simulation result is shown as follows:
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Our cruise controller can't use the brakes, so it isn't able to follow the falling side of 
the wave. But it's able to rise up fast from zero and follow the rising wave accurately.

Ramp
The Ramp block will give us a linear increase in speed to match. We could use it to 
observe the maximum speed the car is able to give us. Of course, at some point the 
car won't accelerate anymore because the opposing drag and rolling resistances will 
be equal to the force produced by the engine, and a maximum speed will be reached.

Let's try a slow-rising Ramp block using the following configuration:

• Slope: As we have a simulation time of 50 seconds, set the final target speed 
to 300 km/h. So the slope parameter will be 300/50 = 6 km/h per second. 
Enter this value (6) for this field.

• Start time: 0.
• Initial output: 0.

The result would look like this:

Everything looks in place: zooming in on the throttle and speed graphs when the car 
is in first gear doesn't reveal any problems so far.

Let's make a more thorough test using a configurable source: the signal builder block.
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Signal Builder
The Signal Builder block allows you to create and edit your own signals through a 
supposedly intuitive graphical user interface. Once you put the Signal Builder block 
in the model and open it, you should see the following screenshot:

With the mouse you can:

• Drag the points up and down (but not right/left)
• Drag the vertical lines right and left
• Drag the horizontal/oblique lines up and down
• Open a fancy menu by right-clicking the mouse
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That's all that you can do with the GUI. You may try to delete the signal, but 
Simulink will complain because this is the only signal in the block. The easiest  
way to make it work is to create a new signal.

First of all, increase the time range; we've got a 50 second simulation time and this 
block keeps the default of 10 seconds. To do so, navigate to Axes | Change Time 
Range as shown in the following screenshot and set Max time as 50:

Then, create a new signal by navigating to Signal | New | Custom..., represented in 
the following screenshot:
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We'll have to insert Time values and Y values. Spending 5 seconds in lower gears, 
10 seconds in higher gears, and using speeds slightly below the thresholds at which 
gear-shifting occurs, the strings to insert are:

Time values [0 5 5 10 10 20 20 30 30 40 40 50]

Y values [30 30 50 50 80 80 100 100 120 120 140 140]

Now that we've created another signal, we can safely delete the previous one and 
obtain the situation presented in the following screenshot:
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Let's connect it to the target speed Goto block input and run the simulation again. 
Now the Scope block will show the following result:

Again, we make sure that there are no problems by zooming in on the Speed and 
Throttle graphs.

Having found the right calibration constants, we can finally use our cruise controller 
on something more interesting than a model.
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Summary
You are now able to prepare a Simulink virtual test bench and run the closed-loop 
simulations of a controller and the mathematical model of the controlled item by 
setting the right simulation parameters, choosing the most appropriate sources, and 
viewing the result on the Scope block.

In the next chapter, you'll learn how to use your Simulink models with something 
outside Simulink itself. Have you got a spare car?



Using the Model
In the earlier chapters we've developed a simple cruise controller model and the 
controlled car model, and then we've tested and fine-tuned the controller model.  
All the work has been done in Simulink only.

We couldn't perform our model testing on something other than the car model, 
because we still lack an interface with an external system, outside Simulink.  
This external system could be the real car for those lucky ones who have a spare  
147 GTA in their garage and all the hardware needed to command its engine control 
unit, or—more realistically—a car simulation software like the one provided with 
this book.

In this chapter we'll take a first look at the software and understand how it is 
exchanging the data.

We'll then learn how to develop custom blocks to communicate with the application 
and use them with our cruise controller model. Those custom blocks will be 
developed with the MATLAB scripting language, which has the advantage of having 
a simple and intuitive syntax.

The final part of this chapter, aimed at those who know the C language, discusses the 
implementation of the same blocks using the C language.

The external software – a Qt5 application
The application is shipped with the code bundle provided with this chapter. It's 
located in the external_app folder (in code bundle), containing:

• The 64-bit Linux executable (external_app/Linux/alfa147gta_linux64), 
which needs the Qt5 libraries to be installed in the system (the package is 
usually called qt5) and must be marked as executable (by typing chmod  
+x alfa147gta_linux64 in the terminal)
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• The 32-bit Windows executable (external_app\Windows\ 
alfa147gta_win32.exe) built using MinGW; the needed libraries  
(the .dll files) are located in the same folder to avoid you the hassle  
of installing Qt5 on Windows

• The source code (external_app/source/alfa147gta, distributed under  
the GPL license), made using Qt Creator

Move the application (and every .dll file, if you're on Windows) to the folder we'll 
use as the MATLAB working folder, and run it by double-clicking on the icon.

You should see the following window:

The application works by reading and writing three text files (whose paths have to 
be put in the three input fields above the graphs), having only one line with a real 
number. The vehicle speed and target speed files are written by the application itself, 
while the throttle command file is read. Throughout this chapter, we'll assume the 
files to be speed.txt, target.txt, and throttle.txt, located in the same directory 
as the application itself. Enter their paths in the application input fields.
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There is another input field: the simulation step size (in seconds). It must be set equal 
to the step size used by the cruise controller model, and allow the application to run 
synchronously with the model. The value we'll use, as discussed in the previous 
chapter, is 0.1 seconds.

Finally, the slider allows us to vary the target speed easily.

As soon as the Run button is clicked, the application begins simulating the vehicle 
(assuming an initial throttle input equal to 0) the same way our mathematical Alfa 
147 GTA model did.

Try moving the target speed slider: you'll see a red line moving in the speed graph. 
Of course, since there isn't any controller writing the throttle file, the other graphs 
will keep their default values.

The first graph, displaying the speeds, will have two lines: the red one is the target 
speed, and the blue one is the vehicle speed, with the difference between the two 
highlighted in yellow. The second graph displays the throttle command and the 
third graph displays the the current gear.

The Stop button will stop the simulation. You'll notice that the speed.txt,  
target.txt, and throttle.txt files have been automatically created by the 
application itself.

At this point we know that in order to use this application we've got to develop two 
custom blocks: a sink block that will write a scalar, one-dimensional, real signal to a 
file, and a source block that will read a file and output a scalar, one-dimensional, real 
signal. Custom blocks are developed with S-functions.

The Swiss army knife – S-functions
S-functions are the most powerful way of defining custom blocks. There's no limit to 
what you can do: re-use an existing code, implement a functionality not available in 
your current blocksets, exchange data with external applications and devices, and so 
on. If you can code it, you can use it.

S-functions can be implemented using the following languages: the MATLAB 
scripting language, C/C++, and Fortran. S-functions written with the latter two  
need to be compiled first in order to produce a shared library loadable by the 
Simulink engine, while a MATLAB S-function will be interpreted and executed 
during the simulation.
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In this chapter we'll focus on Level 2 MATLAB S-functions, since they are the easiest 
to develop even for people without programming knowledge. But the final part of 
this chapter, aimed at those who already know the C language, will explain how to 
obtain the same results with C MEX S-functions.

There are Level 1 MATLAB S-functions too, with a different (older 
and likely to be deprecated soon) API to work with. New MATLAB 
S-functions should be developed using the Level 2 API.

In order to code an S-function, we'll have to learn some concepts: how a simulation is 
done, what information the Simulink engine requires, how S-functions provide that 
information, and how to store persistent data during the simulation.

The simulation phases
The whole simulation process can be divided into three phases: initialization, 
simulation, and cleanup.

The initialization phase takes place before the simulation starts: Simulink needs to 
know the number of inputs and outputs for each block (with their dimensions), the 
parameters, the sample time, and the amount of memory to be reserved. While some 
properties are read during model development (without knowing the number of 
input ports and output ports, the block could not be drawn), the required memory is 
allocated only once, as soon as the user starts the simulation.

The simulation loop is executed until the simulation reaches its end time, or the user 
manually stops it. Since block properties and memories have been properly set up 
in the previous phase, all that Simulink needs is to know how the outputs have to be 
calculated and update the memories.

Finally, the cleanup phase is executed only once, that is, after the simulation is 
stopped. During this phase, Simulink will free every system resource that has been 
allocated in the initialization phase, asking custom blocks what the appropriate 
method to free their resources is.

Level 2 MATLAB S-function callbacks
The S-function block must implement a certain number of predefined routines, or 
callbacks, that the Simulink engine will call during the three simulation phases.

Only two callbacks are required, the other ones being optional (if you don't need 
them, you don't have to declare them).
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The mandatory callbacks
The first mandatory callback to have is the setup function called during the 
initialization phase. The block characteristics—inputs, outputs, sample times, and 
number of parameters—must be defined here. This function is called during model 
updates too (while developing the model).

There is an important configuration related to input ports: the direct 
feedthrough. If, at a given simulation time step, the current input port 
value is required to calculate one or more output, that port must have the 
direct feedthrough flag set.
If, on the other hand, the outputs can be calculated using only the 
previous states (memories, integrators), the direct feedthrough flag must 
be cleared for every input port.
This will allow the Simulink engine to determine the block execution 
order and detect the presence of algebraic loops: they occur when an 
input port with direct feedthrough is driven by the output of the same 
block, either directly, or by a feedback path through other blocks which 
have direct feedthrough. Memory and integrator blocks are capable of 
breaking the loop.

The second mandatory callback is the Outputs function, called in the simulation loop 
at each time step. This function implements the core logic of the block; its purpose is 
to calculate the output ports values using the block's memories (and input values, if 
the block has direct feedthrough).

That's it. Those are the required callbacks. But if you want to store some variables in 
a persistent memory (that will be available to every callback during the simulation), 
we'll need to use some optional callbacks too.

The most useful optional callbacks
These callbacks are the ones we should know about in order to save persistent data 
during the simulation.

The first optional callback, PostPropagationSetup, is the one where you declare the 
necessary memory. It will be executed once after the setup routine, when Simulink 
has calculated the datatype and the dimensions for each signal in the model.

The second optional callback, Start, is called right before the beginning of the 
simulation loop. It's used to assign an initial value to the memory declared in 
PostPropagationSetup.
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The third optional callback, Update, serves the purpose of updating the persistent 
memory and it is called at every step in the simulation loop, immediately after 
Outputs.

The fourth optional callback, Terminate, belongs to the cleanup phase and must 
be used when some system resources allocated in PostPropagationSetup can't be 
freed automatically by Simulink (common examples are pipes, network sockets, and 
devices like an RS232 serial port; they have to be closed first).

The Documentation center, as always, has a complete list of the 
available callbacks, with their description and example usage. It's 
under this path: Simulink | Block creation | Host-specific code | 
MATLAB S-Functions | S-Function Callback Methods.

The work vector – DWork
Let's suppose we would like to write a custom log-to-file block, which would save 
each input value to a line in a log file.

The implementation would be as follows:

• Open a file for writing in Start
• Write to the file each time Outputs is called
• Close the file in Terminate

Where could we store the file handle?

We can't store it in a local variable. A local variable will disappear as soon as the 
Start callback is completed, and the Outputs callback will throw an error at the first 
attempt to write some data.

We could store it in a workspace (global) variable. The file handle will be accessible 
to the Outputs and Terminate callbacks. But there's a huge problem: if we had 
more than one log-to-file blocks in the same model, they will use the same variable 
to store the file handles, therefore writing everything to the same file. To overcome 
this problem we may use a vector variable holding a list of open file handles, and a 
boilerplate code determining the right index to use for each log-to-file block. Quite 
difficult, not to mention memory management issues.



Chapter 4

[ 77 ]

There's a much better, cleaner way: work vectors. Yes, The MathWorks wrote the 
boilerplate code for us. The DWork vector is a portion of memory the Simulink 
engine allocates for each S-function block that needs to store persistent data during 
simulation, solving the problem of concurrent access; every S-function block will use 
only its own memory. And that memory is managed directly by the Simulink engine. 
Isn't it sweet?

There are four types of DWork vectors:

• Generic DWork type vectors are the most generic, allowing to store 
variables, discrete states, and mode data

• DState type vectors are specifically made to store discrete states (memories), 
enabling Simulink's data logging facilities

• Scratch type vectors are persistent for only one time step; the data stored in 
them will disappear as soon as the next time step begins

• Mode type vectors can store switches modifying the S-function  
operating mode

To understand what an S-function mode is, imagine a block calculating 
the absolute value of the input. It has two modes of operation: copy the 
unchanged input to the output or change the input sign before copying it 
to the output. By using zero-crossing detection, we could set the mode in 
a single-width Mode DWork vector, used later in the Outputs callback.

Using DWork vectors is simple. We must use the PostPropagationSetup callback  
to define:

• How many DWork vectors we need
• The type of each DWork vector
• The width of each DWork vector, equal to the number of elements we want  

to store
• The characteristics (datatype, complexity) of the DWork vector elements

The theory is over. We know everything we need to develop our first MATLAB 
S-functions.
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MATLAB S-functions – file source and 
sink blocks
We'll develop the simplest possible S-functions to enable our models to communicate 
with the application we described earlier: a file-source block and a file-sink block.

These S-functions will have only one port and be able to read/write a scalar real 
signal from/to a file. The file path will be passed as a parameter; and the files will 
have only one line containing the new signal value.

The sink block, called filesink_msfun, will receive the input and convert it to a 
string that will be written to the file. The file path is passed as parameter, no DWork 
vector is needed because we don't have to output a default value.

The source block, called filesource_msfun, will read one line from the file, attempt 
to convert it into a real number, and output it. When the file is not readable, the last 
line is empty, or an error occurs, the last valid value will be used. This means that 
we'll have to use one DWork vector, and one more parameter for the initial output.

In the following paragraphs we will walk through a detailed description of their 
implementation, beginning with the simpler one, the filesink_msfun block.

The filesink_msfun block
This block has the purpose of writing the input signal to a text file. Since the text file 
will be read by the external application, we can't open it once the simulation starts 
and close it when the simulation ends; otherwise, the application may have problems 
in reading it. Therefore, the file has to be opened and closed at each time step, in the 
Outputs callback.

Let's open an empty model and save it as msfun_test.slx.

We'll immediately place the Level-2 MATLAB S-Function block from the  
Simulink | User-Defined Functions blockset in our model:
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Double-clicking on the block will open the usual parameters window, where we 
need to replace the S-function name parameter with filesink_msfun:

Let's click on the Edit button; since the filesink_msfun.m script file does not exist 
yet, Simulink will ask if we want to open the editor or locate the file. Choose the 
Open editor option to launch the MATLAB editor with an empty file, which we'll 
immediately save as filesink_msfun.m.

A quick note to Linux users: the editor is using Emacs-like shortcuts 
by default (for example, Ctrl + W/Ctrl + Y to copy/paste). If you're not 
using Emacs, you may want to switch to Windows-like shortcuts (for 
example, Ctrl + C/Ctrl + V to copy/paste) by opening the Preferences 
window and navigating to Keyboard | Shortcuts. The first item, Active 
settings, will let you choose between Emacs or Windows behavior.

The MATLAB code
First and foremost, we need to define the S-function entry point, that is, a function 
with the same name as the script file itself (minus the extension), calling the 
mandatory setup callback.

%% S-function entry point
function filesink_msfun(block)
setup(block);

When Simulink updates or simulates the model, it will call filesink_msfun, passing 
as argument one Simulink.MSFcnRunTimeBlock object containing every data about 
the block itself. This will, in turn, run the setup callback.
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The second function we must implement is the setup callback:

%% First required callback: setup
function setup(block)

The first line in this snippet of code is a comment, followed by the function definition 
taking the block object as argument.

Let's set the simplest block properties first: the number of parameters, input ports, 
and output ports.

block.NumDialogPrms  = 1; % Number of parameters
block.NumInputPorts  = 1; % Number of inports
block.NumOutputPorts = 0; % Number of outports

In order to edit them, it's sufficient to assign the desired values to the block object's 
attributes. In this case, we specify that the S-function will accept only one parameter. 
Being a sink block, it has one input port and no output port.

We must now configure the input port:

% Set input port properties as inherited 
block.SetPreCompInpPortInfoToDynamic;

% Override some properties: scalar real input
block.InputPort(1).Dimensions = 1;
block.InputPort(1).DatatypeID = 0; % double
block.InputPort(1).Complexity = 'Real';
block.InputPort(1).SamplingMode = 'Inherited';
block.InputPort(1).DirectFeedthrough = 1;

We begin by initializing the first input port properties (dimensions, datatype, 
complexity, and sampling mode) to be inherited from the driving block. Remember 
that the elements in a vector are accessed with one-based indexes.

Then we explicitly set the properties to make the input port a one-dimensional 
double-precision real number. The sampling mode is set as inherited from the 
previous block, but (unless you have the DSP System ToolboxTM product installed) 
the only possible value is Sample. Finally we set the DirectFeedthrough property in 
order to execute this block after the driving one.

We could have used the instruction block.
SetPreCompPortInfoToDefaults that would have 
configured the port to accept a real scalar sampled signal 
with a double datatype.
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Since we don't have to configure any output port, we proceed by defining the  
sample times:

% Set the sample time and the offset time.
%  [0 offset]            : Continuous sample time
%  [positive_num offset] : Discrete sample time
%  [-1, 0]               : Inherited sample time
%  [-2, 0]               : Variable sample time
block.SampleTimes = [-1 0];

This parameter accepts a vector: the first element is the sampling time period and the 
second is the initial offset time (both are expressed in seconds).

The possible combinations are as follows:

• [0 Y]: For a continuous sample time with Y offset, meaning that a new 
sample will be acquired every time step

• [X Y]: For a discrete sampling period of X seconds with Y offset
• [-1 0]: To inherit the sample time from the driving block
• [-2 0]: To declare a variable sample time, useful only with variable-step 

solvers

Here we set the sample time as inherited from the driving block (-1). This block will 
be executed immediately after the driving one.

The next step is to define how this block should behave when the user tries to save or 
restore a simulation state:

% Specify the block simStateCompliance. The allowed values are:
%    'UnknownSimState', < The default setting; warn and assume 
DefaultSimState
%    'DefaultSimState', < Same sim state as a built-in block
%    'HasNoSimState',   < No sim state
%    'CustomSimState',  < Has GetSimState and SetSimState methods
%    'DisallowSimState' < Error out when saving or restoring the model 
sim state
block.SimStateCompliance = 'HasNoSimState';

Since this block, not having a DWork vector, has no simulation state to save or restore, 
we use the 'HasNoSimState' constant. Another valid option would have been 
'DefaultSimState', which would end up doing nothing anyway.
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To understand what a simulation state is, and when it could be 
useful, refer to this page in the Documentation center: Simulink | 
Simulation | Run Simulation | Interactive | Save and Restore 
Simulation State as SimState.
The default setting is 'UnknownSimState', which is equivalent 
to 'DefaultSimState', with a warning issued when the user 
attempts to save or restore the simulation state.

Now every block property has been defined and Simulink should be theoretically 
able to do a model update. But there's one information missing to complete the 
initialization phase. We have to register every other implemented callback at the end 
of the setup function.

Since we'll need the mandatory Outputs callback, we'll register it now:

block.RegBlockMethod('Outputs', @Outputs); % Required

The RegBlockMethod function tells Simulink that the required callback ('Outputs') 
is implemented by another function (@Outputs). We could have called that function 
Foo and used block.RegBlockMethod('Outputs', @Foo)to register it. It's not 
mandatory to use the same name as the callback, but it's always better to keep  
things simple.

The final step is to implement the Outputs function's required callback:

%% Second required callback: Outputs
function Outputs(block)
% open the file as write-only
fid = fopen(block.DialogPrm(1).Data, 'w'); 
% print input port value to file
fprintf(fid, '%f', block.InputPort(1).Data);
% close the file
fclose(fid);

We're retrieving the value of the first parameter from the DialogPrm vector: it 
contains the filename.

The file is then opened in write mode using fopen, which returns the file identifier 
stored in fid.

fprintf will print to the file pointed by fid one line, that is, the number in fixed-
point notation. This number is the signal we got from the first input port (accessed 
the same way as the parameter).
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Finally, we're closing the file with fclose.

File operations are found in the documentation center of the MATLAB | 
Data and File Management | Data Import and Export section.

The script is complete. Save the filesink_msfun.m script and close the S-function 
block properties dialog window. You'll notice that the block appearance has 
changed, the output port has disappeared, and the script filename is shown without 
the extension:

Let's develop the corresponding source block now.

The filesource_msfun block
The filesource_msfun block has the purpose of reading its output signal from a 
text file, passed as parameter. Like we discussed before, the file can't be left open 
since the external application will be using it too. Therefore, we have to open and 
close the file at each time step.

Moreover, we have to provide a fallback value if the file isn't readable. That fallback 
will be the last valid value stored in a DWork vector. An initial value needs to be set 
via another parameter.

Repeating the same steps seen above, we add another Level-2 MATLAB S-function 
to the msfun_test.slx model, and start developing the new script that will be called 
filesource_msfun.m.

The MATLAB code
The S-function entry point, as we saw before, must have the same name as the file 
and must execute the setup callback:

%% S-function entry point
function filesource_msfun(block)
setup(block);
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The mandatory setup callback will define the block characteristics, telling Simulink 
there are two parameters and one scalar, real output:

%% First required callback: setup
function setup(block)
block.NumDialogPrms  = 2; % Number of parameters
block.NumInputPorts  = 0; % Number of inports
block.NumOutputPorts = 1; % Number of outports

% Set the default properties to all ports
block.SetPreCompPortInfoToDefaults;

This time we won't inherit the port characteristics from other blocks; we will just set 
the default options.

% Set the sample time and the offset time.
block.SampleTimes = [0 0];

The same applies to the sample time. We want the block to be run at each time step, 
so we're using the continuous sample time option with zero offset time.

% Specify the block simStateCompliance.
block.SimStateCompliance = 'DefaultSimState';

This block will have one DWork vector. By using 'DefaultSimState', we'll instruct 
Simulink to save it into the simulation state.

Since we're using a DWork vector, we must register the optional callbacks 
(PostPropagationSetup) to define it, set its initial value (Start), and perform its 
update (Update) after the outputs have been calculated:

block.RegBlockMethod('PostPropagationSetup', 
@PostPropagationSetup);
block.RegBlockMethod('Start', @Start);
block.RegBlockMethod('Outputs', @Outputs); % Required
block.RegBlockMethod('Update', @Update);

Now we have to implement the callbacks, using the same order Simulink will call 
them with.

The first callback is the one that sets the DWork vector properties:

%% First optional callback: PostPropagationSetup
function PostPropagationSetup(block)
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We must define how many DWork vectors we need. Since the variable that we need 
to store is the last valid output and there's only one output port, we need only one 
DWork vector:

block.NumDworks = 1;
block.Dwork(1).Name = 'lastValue'; % required!
block.Dwork(1).Dimensions = 1;
block.Dwork(1).DatatypeID = 0; % double
block.Dwork(1).Complexity = 'Real';
block.Dwork(1).Usage = 'DWork';

That vector is accessed using a one-based index. We define the vector to be one-
dimensional, able to store a double datatype representing a real number. We're not 
interested in logging facilities, so we use the generic usage type 'DWork' (that is the 
default, so we could safely omit it).

The DWork vector requires the Name property to be set!
It's common practice to declare one DWork vector for each port; 
this way the indexes don't change and it's easy to develop and 
maintain the code.

The DWork vector has to be initialized before the simulation loop; this is done with 
the Start callback:

%% Second optional callback: Start
function Start(block)
block.Dwork(1).Data = block.DialogPrm(2).Data;

We just store the second parameter, which holds the initial output, inside the first 
DWork vector data.

The other required callback, Outputs, implements the logic that reads the source file:

%% Second required callback: Outputs
function Outputs(block)
% open file as readonly
fid = fopen(block.DialogPrm(1).Data, 'r'); 
% read one line
tline = fgetl(fid);
if (tline == -1) % fail
    % output last value
    block.OutputPort(1).Data = block.Dwork(1).Data;
    return
end
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% convert to double
output = str2double(tline);
% check that the output is a valid number
if (isnan(output)) % fail
    % output last value
    block.OutputPort(1).Data = block.Dwork(1).Data;
    return
end
% output the read value
block.OutputPort(1).Data = output;
fclose(fid);

The file, whose path is the first parameter of the S-function, is opened in read-only 
mode with fopen. The fgetl function will attempt to read a line from the file. If the 
line is valid, the str2double function will parse it, putting the result into the output 
variable. If that variable actually contains a valid number, it is sent to the first output 
port. Finally the file is closed with fclose.

If something fails, the number stored in the first DWork vector will be sent instead, 
and the file is closed.

The final Update callback, called immediately after the Outputs callback, is the one 
that will update the DWork vector with the last output value:

%% Third optional callback: Update
function Update(block)
block.Dwork(1).Data = block.OutputPort(1).Data;

We're now done. Save the filesource_msfun.m script and check that the S-function 
block changes, having only the output port and displaying the new S-function name.

A quick test
To check that everything is working, let's add to the msfun_test.slx model a Sine 
wave, a Mux, and a Scope. Connect the blocks as shown in the following screenshot:
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Set the filesource_msfun parameter to 'testfile' 0, and the filesink_msfun 
parameter to 'testfile' (don't forget the single quotation marks around the 
filename), then set the Fixed-Step Discrete solver with a time step of 0.1 seconds in 
the Model configuration parameters window (Ctrl + E) and run the simulation.

By double-clicking on the Scope block we should see the following result:

Good! The S-functions are working as expected: the filesink_msfun block has 
created the file named testfile in the workspace and written the Sine wave signal 
output to it. Meanwhile, the filesource_msfun is reading the value from the same 
file. A comparison of the two waves, shown in the third graph, shows that they  
are coincident.

If we changed the direct feedthrough setting of the filesink_msfun block 
input to 0, we would see the second wave being late by 0.1 seconds. This 
is because Simulink will not know that the Sine Wave block must be 
executed before the filesink_msfun block.
The block execution order can be viewed in the model window by 
selecting the Display | Blocks | Sorted Execution Order menu item.

We're almost ready for the real thing.

www.allitebooks.com

http://www.allitebooks.org
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Simulink and the real world
We've got a big problem: how fast did the simulations run? Were they in sync with 
our real clock? The answer is no; simulation time and actual clock time are not the 
same. The amount of time it takes to run a simulation depends on many factors 
(among them are the model's complexity, the solver's step sizes, and the processor's 
speed). Having a very simple model (the cruise controller), powerful hardware, and 
a time step of 0.1 seconds, the simulation time is way ahead of the real time.

And guess what, the application we want to interface with is using the system clock.

How do we solve this problem?

Forcing Simulink to sync
We'll use the famous Simulink Real Time Execution S-function by Guy Rouleau, 
published in the MATLAB Central at the address http://www.mathworks.com/
matlabcentral/fileexchange/21908-simulink%C2%AE-real-time-execution.

The MATLAB Central (http://www.mathworks.com/
matlabcentral/) is the main community of MATLAB and 
Simulink developers. You can find the latest news and updates, 
the blogs of many MathWorks developers, a discussion board, and 
the invaluable File Exchange. The File Exchange holds over 18,000 
user-contributed packages, usually distributed with a permissive 
license like the 3-clause BSD.

The code bundle coming with this chapter already contains the RealTimeSlower 
folder with all the needed files for Windows (32 and 64 bit) and UNIX/Linux (64 
bit); we only have to add that folder to our MATLAB path, as explained in Chapter 2, 
Creating a Model.

The Simulink Library Browser will now have a new item: the Soft Real Time block 
under the Soft Real Time Lib blockset. This block is the one that does the trick for 
us, that is, syncs Simulink to the system clock.

Preparing the cruise controller model
Let's make a copy of the cruise controller model we did in Chapter 2, Creating a Model, 
and save it to the current working folder as cruise_control_external_msfun.slx.
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The calibration constants Kp and Ki have to be set to the values we found in  
Chapter 3, Simulating a Model. They were 0.4 and 0.002, respectively. Let's set  
them now:

Kp = 0.4;

Ki = 0.002;

Save the workspace as cruise_control_external.mat. We'll add the 
load('cruise_control_external.mat') command to the model's PreLoadFcn 
callback too, as shown in Chapter 2, Creating a Model.

Then we'll open the Model configuration parameters window (shortcut: Ctrl + E) 
and set the fixed-step solver ode1 (Euler), with a Fixed-step size of 0.1 seconds. 
The simulation Stop time should be set to inf, since we want the simulation to run 
indefinitely until we stop it.

Finally, instead of the root-level input and output ports, we'll use the blocks we just 
made, along with the Soft Real Time block:

• The current speed input will be served by a Level 2 MATLAB S-Function 
block calling the filesource_msfun code, having this string as parameter 
'speed.txt' 0

• The target speed input will be served by a Level 2 MATLAB S-Function  
block calling the filesource_msfun code, having this string as parameter 
'target.txt' 0

• The throttle output will feed a Level 2 MATLAB S-Function block calling the 
filesink_msfun code, with the file 'throttle.txt' passed as parameter

• One Soft Real Time Lib | Soft Real Time block will be placed into the 
model, right above the main block

The prepared cruise controller model should look like the following screenshot:

Don't forget to do a model update (shortcut: Ctrl + D) as a little check.
Now we're ready to have some fun!
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Running the simulation on the target 
application
With the directions we had at the beginning of this chapter, we'll start the external 
application inside the same folder as the model, and set these file paths:

• The speed.txt file for the vehicle speed
• The target.txt file for the target speed
• The throttle.txt file for the throttle command

Before hitting the Run button in Simulink, hit the Run button in the target 
application first! Otherwise, our filesource_msfun blocks will recognize that the 
input files don't exist (they're created by the application as soon as its Run button is 
clicked) and throw an error. The application is less picky: the files, if they don't exist, 
will be automatically created.

Now we can move the Target speed slider, and the cruise controller will try to match 
it through the throttle. The simulated car will react to the throttle input, and the 
vehicle speed will be painted with a blue line on the application's Speed graph.  
The application will update the Throttle and the Gear graphs too.

An example is presented in the following screenshot:
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Isn't it awesome to see our Simulink cruise controller model interacting with 
something so different?

When we're tired of investigating how fast the car can go, measuring the 0-100 km/h 
time, and frantically moving the slider trying to get the Euler solver to diverge, you 
can stop the simulation and the application by clicking on the provided Stop buttons.

Want to do more? Try achieving a smoother throttle command 
from the cruise controller by editing Kp, Ki, and lowering the 
simulation step size. Be warned that file-based data exchange is 
highly inefficient though. (Hint: UNIX/Linux systems could use 
named pipes instead of standard files)
Want to do even more? The application code is really simple 
and is released under the GPLv2 license. You can find the most 
updated version at https://github.com/sevendays/gsws-
alfa147gta. Feel free to suit the application to your needs (and 
let the author know)!

Going further – C MEX S-functions
Now we'll learn how to develop a custom S-function block using the C language. A 
basic knowledge of the C syntax is required.

The C language offers some advantages over MATLAB's scripting language:

• It is the most-used language to develop (hard) real-time systems
• It is one of the most popular languages, if not the most popular
• C executables offer unparalleled performance with respect to MATLAB 

scripts
• C S-functions can be developed without having MATLAB installed (but 

you'd still need the external headers and libraries)
• Legacy C code can be easily ported to S-function blocks and used in Simulink
• C++ compilers can be used, giving access to some powerful C++ frameworks 

like Qt

C MEX S-functions are programmed in C/C++ and built with the mex tool, which 
comes with MATLAB.
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They are compiled as dynamically linked libraries on Windows platform, and as 
shared objects on UNIX/Linux platform, using the available compiler.

For a list of supported compilers, go to http://www.mathworks.
com/support/compilers/current_release/.

Setting up the mex tool
Since mex is only a frontend to a compiler and linker, we need to locate the available 
compilers in the system, and tell MATLAB which one to use.

This is easily done; just enter this command in the MATLAB main window:

mex -setup

The response is different based on the operating system in use.

UNIX-like systems (GNU/Linux in particular)
MATLAB will list the available compiler configurations, asking you to choose one: 
the default compiler is gcc, and will appear in the list if it is installed.

As soon as an option is selected, the file mexopts.sh containing the compiler options 
will be written in your home folder (usually ~/.matlab/R2013a/).

If you want to use C++ comments (beginning with //) in your C code, 
you can replace the string -ansi with -std=c99 in your ~/.matlab/
R2013a/mexopts.sh file. Keep in mind that the next time you run mex 
-setup, your changes will be overwritten.
If MATLAB complains about your gcc version being unsupported, either 
install the package gcc-4.4 (or similar) if your distribution ships it, 
or run MATLAB inside a chroot with a distribution using gcc 4.4 by 
default, like Debian Squeeze.

Microsoft Windows systems
On Microsoft Windows systems, MATLAB will ask you for permission to 
automatically detect the compilers, and then it will list the available compilers, 
allowing you to select one.
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Even if the lcc compiler is shipped bundled with 32-bit MATLAB for Windows, the 
best choice is to install the SDK provided free of charge by Microsoft, containing the 
msvc compiler. 64-bit MATLAB ships without a compiler, making it mandatory to 
install the SDK.

How C MEX S-functions work
Like we already learned with MATLAB S-functions, the Simulink engine requires 
some callbacks to be defined, and will optionally look for other callbacks.

There are four mandatory callbacks: mdlInitializeSizes, 
mdlInitializeSampleTimes, mdlOutputs, and mdlTerminate.

The first two belong to the initialization phase; mdlOutputs is called during the 
simulation loop and mdlTerminate in the cleanup phase.

The complete call graph for the initialization phase is the following one (required 
routines are the darker ones):
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The complete call graph for the simulation and cleanup phase is the following one:

Each routine is extensively documented in the Documentation center: 
see Simulink | Block Creation | Host-Specific Code | S-Function 
Basics | Concepts, subsections S-Function Callback Methods and 
S-Function SimStruct Functions.

The required callbacks
Let's take a closer look at the required routines, and when the Simulink  
engine calls them.
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mdlInitializeSizes
This function is used to describe the inports, outports, and characteristics of their 
parameters, together with the number of continuous states (integrators/derivatives), 
discrete states (memories), and work vectors.

It is called during the initialization phase and during a model update (it is called as 
soon as you configure the S-function block parameters too).

mdlInitializeSampleTimes
This function must define the sampling time period at which the S-function block 
operates, together with the offset time (mostly useful if the output has to be 
calculated after the sampling done by other blocks).

Like mdlInitializeSizes, it is called during the initialization phase and during a 
model update.

mdlOutputs
This function must implement the block's core logic, using saved states, work 
vectors, and input signals to calculate the block outputs.

It is called during the simulation phase, at each time step.

mdlTerminate
This function must have the cleanup logic to be executed in order to free the system 
resources that were allocated when the simulation started. A common usage is to 
close file descriptors and free the memory manually allocated with malloc().

This function is called once at the end of the simulation, in the cleanup phase.

The most useful optional callbacks
These routines allow the developer to have a more fine-grained control on the 
S-function behavior.

Each optional routine is ignored by the Simulink engine, unless the corresponding 
preprocessor identifier is properly defined.

The most useful optional routines are mdlStart, mdlInitializeConditions, and 
mdlUpdate. Their main purpose, like the optional callbacks we saw while developing 
MATLAB S-functions, is to initialize and update block states and work vectors.
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mdlStart
This function is called once, right when the simulation starts allowing you to  
allocate the necessary system resources. The corresponding preprocessor  
identifier is MDL_START.

mdlInitializeConditions
This function is called during the simulation phase, at the beginning of each time 
step, allowing you to reinitialize the variables stored in block states and work vectors 
before mdlOutputs is executed. If the S-function block is placed into an enabled 
subsystem, this function will be called each time the subsystem is re-enabled. The 
corresponding preprocessor identifier is MDL_INITIALIZE_CONDITIONS.

mdlUpdate
This function, called during the simulation phase right after the execution of 
mdlOutputs, serves the purpose of updating block states and work vectors.

It is called only if the block has discrete states or doesn't have direct feedthrough 
(otherwise there is obviously no state to update, and the Simulink engine avoids 
making this extra call). The corresponding preprocessor identifier is MDL_UPDATE.

If you need to initialize persistent variables only once, use 
mdlStart.
If, on the other hand, you need to initialize persistent variables at 
each simulation time step, use mdlInitializeConditions.

The DWork vector
Like its MATLAB S-function counterpart, this is the main work vector. It is able to 
store every datatype supported by Simulink.

Its usage is similar: the work vector characteristics, which were defined in the 
MATLAB S-function callback PostPropagationSetup, now have to be defined in 
mdlInitializeSizes.

Then, using mdlStart, initialize the values of every DWork vector and allocate the 
needed system resources.

Optionally, we can use mdlInitializeConditions to reinitialize the DWork vector 
values at the beginning of each time step.
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The DWork vectors are then used by mdlOutputs to calculate the S-function block 
outputs and updated by mdlUpdate.

Finally, in mdlTerminate, we get the allocated system resources from the DWork 
vector(s) and free them up.

Remember that DWork vectors are managed by the Simulink engine: 
don't attempt to free() their memory inside mdlTerminate.

There is more though. C MEX S-functions can use the so-called elementary work 
vectors built for the most common use cases.

The elementary work vectors
The elementary vectors that can store specific data are:

• The IWork vector can store integer data
• The RWork vector can store floating-point (real) data
• The PWork vector can store pointers to persistent data structures (such as file 

handlers, allocated memory, and so on)
• The Mode vector can store integer flags modifying the behavior of the 

S-function

Their usage is almost identical to the usage of DWork vectors described in  
the previous paragraphs, but with a big difference, they must be unique.  
This means that:

• The S-function can use only one elementary vector in mdlInitializeSizes 
(for example, it's not possible to have two RWork vectors in the same code, 
while it's possible to use the RWork vector together with the IWork vector)

• It's not possible to customize them (for example, assigning them a name)

Now that we've learned the theory behind C MEX S-functions, let's implement the 
same file-based source and sink blocks in C.

The filesource S-function
As we saw earlier, we need one DWork vector to store the previous block output.

Open a new file in the C editor of your preference, and call it filesource_sfun.c.
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The beginning – headers and includes
The first thing to do is to define the S-function name and level, which will be used by 
the Simulink engine:

#define S_FUNCTION_NAME filesource_sfun /* mandatory */
#define S_FUNCTION_LEVEL 2              /* mandatory */

The S-function name is the filename without the extension. The S-function level, 
since Simulink release 2.2, must be always set to 2.

We may now include the required headers:

#include <stdio.h>    /* file manipulation functions */
#include "simstruc.h" /* mandatory */
#include "matrix.h"   /* helper functions */

The first header contains the system's standard I/O functions (including the file 
operations we'll need).

The simstruc.h header contains the C equivalent of MATLAB's Simulink.
MSFcnRunTimeBlock object: a structure (SimStruct) representing the whole block; 
therefore, it's mandatory to include it.

Finally, the matrix.h header contains some convenient functions to operate  
with strings.

Block properties and memory usage – 
mdlInitializeSizes
We must define the block characteristics: parameters, states, ports, sample times,  
and work vectors.

The function begins with the following snippet of code:

static void mdlInitializeSizes(SimStruct *S)
{

Every S-function routine requires SimStruct *S as the first argument. This is the 
pointer to the Simulink block structure, maintained by the Simulink engine.
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Let's define the parameters. We're going to have two parameters passed to the 
S-function: the first parameter is the file path, and the second is the initial output. 
This is accomplished by the following code:

    /* set number of S-function parameters */
    ssSetNumSFcnParams(S, 2);
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))
        return; /* Parameter mismatch will be reported by Simulink */

    /* set parameters as non-tunable during simulation */
    ssSetSFcnParamTunable(S, 0, SS_PRM_NOT_TUNABLE);
    ssSetSFcnParamTunable(S, 1, SS_PRM_NOT_TUNABLE);

The function ssSetNumSFcnParams allows us to declare that the block accepts two 
parameters. The function ssGetNumSFcnParams will return 2, and the function 
ssGetSFcnParamsCount will return the actual number of defined parameters. If the 
latter isn't 2, Simulink will report an error while editing the S-function block.

Each parameter is set as SS_PRM_NOT_TUNABLE with the ssSetSFcnParamTunable 
function, where the second argument is the parameter index. Since we have two 
parameters, the function is called twice using the indexes 0 and 1. This disables the 
possibility of changing the parameters while the simulation is running.

Regarding the states, we don't need continuous or discrete states (we're using the 
DWork vector instead to save the previous output value). This code instructs Simulink 
about it:

    ssSetNumContStates(S, 0); /* no continuous states (integrator/
derivator) */
    ssSetNumDiscStates(S, 0); /* no discrete states (unit delay/
memory) */

Ports are easy: we only need one output port, and no input port.

    if (!ssSetNumInputPorts(S, 0)) /* set inports number to 0 */
        return;
    if (!ssSetNumOutputPorts(S, 1)) /* set outports number to 1 */
        return;
    ssSetOutputPortWidth(S, 0, 1); /* set outport width (scalar) */
    ssSetOutputPortDataType(S, 0, SS_DOUBLE); /* set outport type */

The functions ssSetOutputPortWidth and ssSetOutputPortDataType need the  
zero-based port index as second parameter. The former declares that the output signal 
is a scalar (width equal to 1), the latter that it is a real number (of datatype double).
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We don't need a different sample time than the one used in the simulation, so we use 
the following code line:

ssSetNumSampleTimes(S, 1); /* one block-based sample time */

Setting the number of sample times to 1 with ssSetNumSampleTimes causes the 
block to use the global sample time only.

Finally, we need to declare a work vector that will hold the initial value and  
previous output. We could use the easier elementary RWork vector, but we're 
interested in learning the more generic DWork vector. The following snippet 
demonstrates its usage:

    ssSetNumDWork(S, 1);                  /* needed vectors: 1 */
    ssSetDWorkWidth(S, 0, 1);             /* the vector 0 has only 1 
element */
    ssSetDWorkDataType(S, 0, SS_DOUBLE);  /* and will hold a real 
signal */

The three functions ssSetNumDWork, ssSetDWorkWidth, and ssSetDWorkDataType 
allow the Simulink engine to know how much memory should be reserved. 
S-functions can contain more than one DWork vector; their number is set with 
ssSetNumDWork. The zero-based index of the vector is then used by every other 
function accessing the vector itself as the second argument.

One last thing: let's put a debug statement, before the closing bracket, to ensure 
everything went well:

    #ifndef NDEBUG
    printf("mdlInitializeSizes called\n");
    #endif
}

That's it; this routine now contains everything the Simulink engine needs to know in 
order to reserve the right amount of memory, and the debug statement will allow us 
to see when it is called by the Simulink engine.

Timings – mdlInitializeSampleTimes
We want to use the simulation sample time without any offset. In other words, we 
want this S-function block to be executed at the beginning of each time step.
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The C implementation is very simple:

static void mdlInitializeSampleTimes(SimStruct *S)
{
    ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME); /* sample always */
    ssSetOffsetTime(S, 0, 0.0);                   /* apply no offset */

    #ifndef NDEBUG
    printf("mdlInitializeSampleTimes called\n");
    #endif
}

The ssSetSampleTime and ssSetOffsetTime functions use the zero-based sample 
time index as second argument. Having declared (in mdlInitializeSizes) that 
we're using only one sample time, the index is 0.

Since this is a source block, we define a continuous sample time. Other options are 
INHERITED_SAMPLE_TIME, VARIABLE_SAMPLE_TIME, and discrete sample time (any 
real number greater than 0).

Initial tasks – mdlStart
We'll use this optional routine to retrieve the default output parameter and store it 
into the DWork vector. Remember that we must define MDL_START, or Simulink will 
ignore the function.

The implementation is:

#define MDL_START  /* Change to #undef to remove function. */
#ifdef MDL_START
static void mdlStart(SimStruct *S)
{
    real_T *yPrev = NULL; /* pointer to DWork element */ 
    real_T yInit = 0.0;   /* tmp variable to read parameter */

    yPrev = (real_T*) ssGetDWork(S, 0);
    yInit = mxGetScalar(ssGetSFcnParam(S, 1));
    yPrev[0] = yInit;

    #ifndef NDEBUG 
    printf("mdlStart: got initial output %f\n", yInit); 
    #endif
}
#endif /* MDL_START */
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The function ssGetDWork is used to retrieve the first DWork vector pointer. The index 
is zero based.

The function ssGetSFcnParam retrieves a pointer to the second parameter (the initial 
output), converted to a number with mxGetScalar. That number is saved in the first 
(and only) element of the DWork vector, accessed as an array. Remember that the 
number of elements was declared in mdlInitializeSizes.

Core logic – mdlOutputs
This routine is where the magic happens. We have to get the last line of the  
source file, parse the number, and output the result. If any error occurs, the  
recovery strategy is to output the last valid value taken from the DWork vector  
(used as a memory).

The routine definition is:

static void mdlOutputs(SimStruct *S, int_T tid)
{
    FILE *fd = NULL;
    char_T path[FILEPATH_LEN];
    char_T line[FILELINE_LEN];
    char_T *lineEnd;
    real_T *y = NULL;
    real_T *yPrev = NULL;
    real_T yOut;
    UNUSED_ARG(tid);

    /* get the output pointer */
    y = ssGetOutputPortRealSignal(S,0);

    /* get the previous output pointer from DWork */
    yPrev = (real_T*) ssGetDWork(S,0);

    /* get the filename for reading */
    memset(path, 0, FILEPATH_LEN);
    mxGetString(ssGetSFcnParam(S,0), path, FILEPATH_LEN);

    /* open file for reading */
    fd = fopen(path, "r");
    if(fd == NULL)
    {
        printf("Error: source file %s not readable\n", path);
        y[0] = yPrev[0];
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        return;
    }

    /* get one line */
    memset(line, 0, FILELINE_LEN);
    if (fgets(line, FILELINE_LEN, fd) == NULL) /* error or empty file */
    {
        printf("Error: source file %s empty\n", path);
        y[0] = yPrev[0];
        fclose(fd);
        return;
    }

    /* convert from string to double */
    lineEnd = NULL;
    yOut = strtod(line, &lineEnd);
    if(lineEnd == line)
    {
        printf("Error: string to double conversion failed");
        y[0] = yPrev[0];
        fclose(fd);
        return;
    }

    /* if we got here everything went good */
    y[0] = yOut; /* set the output */
    fclose(fd); /* close the file */

    #ifndef NDEBUG
    printf("%s value: %f\n", path, yOut);
    #endif
}

We now have a second argument: tid. Blocks with more than one sample time 
(called multirate blocks) are run in different tasks by the Simulink engine, and tid 
identifies the current task being run.

Since this is not our case (we have only one sample time), we're using the  
UNUSED_ARG macro to avoid compiler warnings. The macro just casts the variable  
to void.
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We've already learned how to get the DWork vectors with ssGetDWork.  
The ssGetOutputPortRealSignal function (accepting the zero-based port  
index as second argument) returns the pointer to the output port.

Remember that ports (and signals) are arrays, even if 
they're scalar (their width being 1).

The first block parameter (the file name) is retrieved with ssGetSFcnParam, and 
converted to a string by mxGetString.

The following logic attempts to open the file, read a line from it, parse a number 
from the line, and output the number. If the file doesn't exist, or is empty, or there is 
a parsing error, the previous output is used.

Update memories – mdlUpdate
We need to save the new output into the work vector DWork:

#define MDL_UPDATE
#ifdef MDL_UPDATE
static void mdlUpdate(SimStruct *S, int_T tid) 
{
    real_T *y = NULL;
    real_T *yPrev = NULL;
    UNUSED_ARG(tid);

    /* get the output pointer */
    y = ssGetOutputPortRealSignal(S,0);

    /* get the previous output pointer from DWork */
    yPrev = (real_T*) ssGetDWork(S,0);

    /* update the previous output */
    yPrev[0] = y[0];

    #ifndef NDEBUG
    printf("mdlUpdate: saved output %f\n", yPrev[0]);
    #endif
}
#endif /* MDL_UPDATE */

Being an optional function, it's necessary to define MDL_UPDATE. The rest of the 
code is nothing we haven't seen before; both the output signal and the work 
vector are mono-dimensional arrays, with only one element as specified in 
mdlInitializeSizes.
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Cleanup – mdlTerminate
This is where we perform the cleanup, closing every system resource that has been 
allocated. But we don't have any.

So the C implementation is the following:

static void mdlTerminate(SimStruct *S)
{
    UNUSED_ARG(S);

    #ifndef NDEBUG
    printf("mdlTerminate successfully called\n");
    #endif
}

This code is just an empty function that will let us know when it has been  
called while we're debugging. Avoid compiler warnings about unused parameters, 
of course.

The happy ending
One little final step has to be performed, since each S-function must have this trailer:

/*=============================*
 * Required S-function trailer *
 *=============================*/
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a 
 MEX-file?*/
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

We don't need to define MATLAB_MEX_FILE, since it is already defined by the mex 
tool, in order to include the necessary functions to build a MEX executable loadable 
by the Simulink engine.

Since automatic code generation is outside the scope of this book (and requires 
Simulink Coder, formerly Real-Time Workshop, which isn't cheap either), we'll 
ignore the cg_sfun.h header meaning.

We're done now, our first S-function is ready to be compiled.
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Compiling the S-function
It's sufficient to type the following command into MATLAB's Command Window:

mex -v -g filesource_sfun.c

This will invoke the mex utility in verbose (-v) mode and with debugging (-g) 
enabled. This way we'll be able to read compiler messages and the NDEBUG 
preprocessor flag will be undefined.

If the compilation is successful, your folder will contain a new file:

• On 32-bit Microsoft Windows systems: filesource_sfun.mexw32
• On 64-bit Microsoft Windows systems: filesource_sfun.mexw64
• On UNIX-like systems (only 64-bit supported): filesource_sfun.mexa64

That file is the library Simulink will load.

Exercise – the filesink S-function
This S-function will get a real, scalar signal from its input port and write it to a file. 
The file name is the only S-function parameter, and the file format is the same as 
described earlier.

Being very similar to the filesource S-function, the source code will not be 
commented in detail. It's available in the code bundle provided with this book.

The reader is strongly encouraged to write and compile this S-function as an exercise 
following the guidelines provided below, instead of using the provided code.

We need to make a copy of the filesource_sfun.c file and rename it to  
filesink_sfun.c. Remember to change the mandatory definitions accordingly.

To read the input signal value, the best method is to use the 
ssGetInputPortRealSignal function. However, this requires the input signal to  
be set as contiguous with ssSetInputPortRequiredContiguous.
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The sample time can be inherited from the driving block now.

An important thing that needs special attention is that by default the file writes 
are buffered by the operating system. You should turn off buffering by using 
setbuf(fd, NULL); right after opening the file.

The command to compile the S-function is the same as we've seen before:

mex -v -g filesink_sfun.c

The compilation will produce the filesink_sfun MEX file for your platform.

A quick test
Let's open the model we used to do a preliminary test on MATLAB S-functions again 
and save it as sfun_test.slx.

We only need to replace Level 2 MATLAB S-function blocks with S-function blocks. 
Those blocks will use the newly developed filesource_sfun and filesink_sfun 
as S-function names. Their parameters, as well as the model configuration, will be 
the same as before.

As soon as we're done editing and running a model update, a quick look at the 
MATLAB's Command Window will reveal, thanks to the debug statements we put 
in the code, that the mdlInitializeSizes routine has been called by Simulink in 
order to draw the new blocks' input and output ports.

Running the simulation and opening the Scope block should show the same results 
we had while testing MATLAB S-functions: both sine waves should coincide, and 
the MATLAB's Command Window will show the debug messages. Notice that 
mdlStart is called only once.

We can recompile them without the debugging macros:

mex -v filesource_sfun.c

mex -v filesink_sfun.c
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Go for another ride
Let's run the application together with the cruise controller again, this time using the 
new S-functions.

Open the cruise_control_external_msfun.slx model we developed earlier, 
save a copy as cruise_control_external_sfun.slx, and replace every Level 2 
MATLAB S-function blocks with S-function blocks, but keep the same parameters 
(except the S-function name).

Having the cruise_control_external.mat workspace loaded, the model 
configuration parameters, and the application configured as before, press the 
application's Run button, and then run the simulation.

Everything should behave as it did before:
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Summary
In this chapter we've learned what S-functions are and how they can be used to  
build custom blocks to extend the basic Simulink functionality.

We have learned which required callbacks and optional ones need to be  
implemented if the S-function will use work vectors to store internal states  
and allocate system resources.

We developed and built two simple Level 2 MATLAB S-function blocks and used 
them to interface the cruise controller model with an external application. Then 
we implemented the same block functionality in the C language, learning how to 
develop and build C MEX S-functions with the mex tool.

These S-functions can be used as a good starting point to develop other interfaces  
to communicate with virtually any application or physical device.

With the knowledge acquired in this chapter, we can greatly extend Simulink's 
functionality by creating new blocks or porting legacy C code to Simulink.
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