
www.allitebooks.com

http://www.allitebooks.org

Getting Started with Simulink

Get up and running with Simulink with this hands-on,
easy-to-read guide

Luca Zamboni

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Simulink

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1181013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-138-6

www.packtpub.com

Cover Image by Irene Sánchez Guillén (irene.s.guillen@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Luca Zamboni

Reviewers
Robin T. Bye

Marco Caputano

Mohamed H. Zaher

Acquisition Editors
Edward Gordon

Kevin Colaco

Commissioning Editor
Poonam Jain

Technical Editors
Pramod Kumavat

Krutika Parab

Nadeem N. Bagban

Copy Editors
Dipti Kapadia

Gladson Monteiro

Sayanee Mukherjee

Kirti Pai

Project Coordinator
Sherin Padayatty

Proofreader
Sandra Hopper

Indexer
Monica Ajmera Mehta

Graphics
Yuvraj Mannari

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Luca Zamboni, born in Ivrea, Italy, obtained his Bachelor's and Master's
degrees in Electronics Engineering from the Polytechnic of Turin. He worked as a
network systems administrator for some years before becoming a consultant for the
automotive industry. Now he works in FIAT's research center.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Robin T. Bye, got his Bachelor's, Master's, and PhD degrees, all in Electrical
Engineering, from the University of New South Wales, Sydney, Australia. He has
been working at the Aalesund University College (AAUC) in Norway since 2008
and is now an associate professor in automation engineering. Apart from teaching
automation and computer engineering classes for cybernetics, microcontrollers, and
intelligent systems, he also supervises PhD and bachelor students on their theses'
topics. His main research interests belong to areas such as computational modeling
and simulation of human movements, bio-inspired robotics and automation, and
dynamic resource allocation.

Marco Caputano was born in Southern Italy in 1980. He has obtained an M.Sc.
in Control Engineering from the University of Napoli Federico II in Italy. His final
dissertation was on nuclear plasma modeling in the framework of nuclear fusion
research. He broadened his academic education with a Masters in Mechatronic
Systems Design obtained from the Engineering Polytechnic of Milano, Italy. His
former work activities include modeling and numerical simulations for nuclear
fusion research (CREATE consortium, Napoli, Italy), and in the field of aeronautical
engineering (SAFRAN group, Paris, France). Currently, he works as a Mechatronics
Engineer for ASML in the Netherlands.

www.allitebooks.com

http://www.allitebooks.org

Mohamed H. Zaher is from Egypt; he is a Mechatronics and Controls Engineer.
He received both his Bachelor's and Master's degrees in Mechanical Engineering
with System Dynamics and Mechatronics Focus from Cairo University in Egypt
and his Ph.D from University of Illinois at Chicago. Mohamed taught mechanical
engineering curriculum at both universities including the use of software tools such
as MATLAB and Simulink. He also worked on contract at Caterpillar, Case New
Holland, and Servo Tech Inc., where he worked with several professional tools on
several developmental projects.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Simulink Facts 5

What is Simulink? 5
Programming 5
Graphical 6

Problems solved by Simulink 8
Software specification 8
Software development 12
Software testing 14

Simulink drawbacks 15
Where Simulink excels 15
Summary 16

Chapter 2: Creating a Model 17
The MATLAB environment 17

Command Window – how MATLAB talks to us 18
The workspace – our treasury chest 19
The working folder – where MATLAB saves our work 19
The path – where MATLAB finds the tools 20

The Simulink interface 21
Our first model – a cruise controller 22

Step 1 – create and save the model 22
Step 2 – do comment the code! 23
Step 3 – open Simulink Library Browser 23
Step 4 – add blocks to the model from Library Browser 24
Step 5 – rename the blocks 25
Step 6 – implement the algorithm 26
Step 7 – nest the logic into subsystems 28
Step 8 – declare workspace variables 30
Step 9 – do a first simulation 31

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Our second model – the Alfa Romeo 147 GTA 34
Getting the speed – Newton's laws 34
The aerodynamic drag equation 36
The rolling resistance approximation 38
The engine force – engine, wheels, and transmission 39

Gearbox and differential 40
Wheel to RPM 45
Engine 46
Torque to force 47

The finishing touches 47
Summary 48

Chapter 3: Simulating a Model 49
The mandatory theory 49

The simulation times – when the math is done 51
The solvers – these great unknown 52

Variable-step versus fixed-step solvers 53
Continuous versus discrete 55
Stiff versus nonstiff 55

Build the complete closed-loop system 57
Configuring the simulation 60

Simulation times 60
Solvers 60

Run our first serious simulation 61
Calibrate the PI controller 61

Calibrating Kp 61
Calibrating Ki 63

Test with other sources 64
Sine Wave 64
Ramp 65
Signal Builder 66

Summary 70
Chapter 4: Using the Model 71

The external software – a Qt5 application 71
The Swiss army knife – S-functions 73

The simulation phases 74
Level 2 MATLAB S-function callbacks 74

The mandatory callbacks 75
The most useful optional callbacks 75

The work vector – DWork 76

Table of Contents

[iii]

MATLAB S-functions – file source and sink blocks 78
The filesink_msfun block 78

The MATLAB code 79
The filesource_msfun block 83

The MATLAB code 83
A quick test 86

Simulink and the real world 88
Forcing Simulink to sync 88
Preparing the cruise controller model 88
Running the simulation on the target application 90

Going further – C MEX S-functions 91
Setting up the mex tool 92

UNIX-like systems (GNU/Linux in particular) 92
Microsoft Windows systems 92

How C MEX S-functions work 93
The required callbacks 94

mdlInitializeSizes 95
mdlInitializeSampleTimes 95
mdlOutputs 95
mdlTerminate 95

The most useful optional callbacks 95
mdlStart 96
mdlInitializeConditions 96
mdlUpdate 96
The DWork vector 96
The elementary work vectors 97

The filesource S-function 97
The beginning – headers and includes 98
Block properties and memory usage – mdlInitializeSizes 98
Timings – mdlInitializeSampleTimes 100
Initial tasks – mdlStart 101
Core logic – mdlOutputs 102
Update memories – mdlUpdate 104
Cleanup – mdlTerminate 105
The happy ending 105
Compiling the S-function 106

Exercise – the filesink S-function 106
A quick test 107
Go for another ride 108

Summary 109
Index 111

Preface
This book will give you a complete understanding of the Simulink software.
You will learn by example, going through the three main phases of Simulink
development—modeling, simulating, and interfacing with the external world
while developing a cruise controller for a real car.

While reading this book, you'll be given a clear, no-frills explanation of the main
components of Simulink and how to use them in order to achieve the desired result.
After having read this book, you will be able to develop, test, and deploy your
models without any difficulty.

What this book covers
Chapter 1, Simulink Facts, deals with the problems that arise while developing the
software for the biggest manufacturing industries and how Simulink can cut down
the total development time, from specifications to final implementation. You will
understand where Simulink really shines and where it isn't worth the hassle.

Chapter 2, Creating a Model, deals with developing a very simple cruise controller
model in order to get started quickly with Simulink and the MATLAB environment.
Then you will be guided through the Simulink implementation of a real-world car
to use with the previously developed cruise controller, thus introducing the usage of
more complex blocks. You will understand how a model is developed and where to
look for the appropriate blocks.

Chapter 3, Simulating a Model, deals with presenting the theory behind simulation:
solvers, simulation times, and how to choose them. You will then simulate the
models you already developed, learning what are the available sources and sinks
blocks and when to use them in order to discover failures in your models and change
some of the parameters you defined.

Preface

[2]

Chapter 4, Using the Model, guides you through the most powerful feature of
Simulink—the ability to create your own blocks, also known as S-function
development—after having learned how to develop and simulate a model.
You will create a simple S-function that enables your cruise controller to drive
an external application and receive feedback from it.

What you need for this book
You should have a working MATLAB installation with the Simulink package. While
this book has been written using the 8.1 (R2013a) release, you aren't required to
use this exact version, as there are only minor differences between one release and
another; the basic workflow remains the same. But you'll need at least the 8.1 release
to be able to run the provided code.

In order to develop and test S-functions, you should have a compiler supported by
your MATLAB release.

Who this book is for
This book is aimed at undergraduate students, researchers, and engineers who need
to have a quick and complete understanding of how Simulink works, including some
of its most advanced features.

The reader should have basic knowledge of physics and C programming.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
While, to a certain degree, it is possible to spot the differences when saving models
with the .mdl format.

Preface

[3]

A block of code is set as follows:

 int main()
{
 int u1, u2, y1;
 printf(""Enter two numbers\n"");
 scanf(""%d%d"", &u1, &u2);
 y1 = mul(u1, u2);
 printf(""Here''s your result,
 the operation done is a shining ''x''!\n%d\n"", y1);
 return EXIT_SUCCESS;
}

Any command-line input or output is written as follows:

 new_string = 'hello world!';

 new_number = 0.01;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "From
the MATLAB main window, click on the New button and select the Simulink
Model option".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Simulink Facts
In this chapter, we'll explain what Simulink is, and why it has been so widely
adopted in the academic and the industrial world.

After reading this chapter, you'll have learned about the limits of the usual C
software development cycle, and how Simulink helps to address these limits.

What is Simulink?
Simulink is best described as a graphical programming tool. Let's elaborate a little on
these two words.

Programming
Since the start of the digital era, telling a computer what to do has been a huge
problem. Humans communicate through a set of conventions—languages—with
very elaborate rules, definitions, and exceptions. New languages aren't easily born
in the human world. But what about computers? They operate by means of a stream
of zeros and ones, using Boolean logic; that's the binary system. The computer
language is nowhere as complex as the human language, but how fast are computers
at solving logical problems! The difficulty is in telling the computer how to solve a
given problem, and this is the art of programming.

Nowadays there are so many programming languages that knowing at least one is
as common as knowing more than one human language. Those lucky ones who do
are called programmers. They're able to write the instructions that a computer has to
execute (and the computer understands them—well, most of the time).

Simulink Facts

[6]

Writing and debugging a complex, real-time, safety-critical application is not a
trivial task, and in big automotive/aerospace industries, a misbehaving software
is definitely not an option. As an example, the 327.6 million dollars NASA Mars
Climate Orbiter space probe disintegrated before landing because the ground control
software used the imperial metric system instead of the international one. It sounds
funny, but imagine what would happen if your car maker made such a mistake in
the brake control software?

The problem with using the venerable, almighty C—still the language of choice
for embedded systems—is that it isn't easy to scale up the system complexity. It's
interesting to note that while the system gets bigger, the deadlines get narrower. The
good old tools (code editors, compilers, and debuggers) aren't effective anymore to
keep the whole development time constant while raising the software requirements.

Graphical
This is the next step.

Imagine an Italian guy in Moscow willing to buy a bottle of water. Chances are that
he doesn't know one word of Russian, nor the Russian shop owner knows more than
two words of Italian (bella and ciao).

Our Italian guy would likely point at a bottle of water with his finger and mimic the
act of drinking. The Russian shop owner would smile to acknowledge the request,
and then use his fingers (or pencil and paper) to communicate the price to pay.

So what? We had visual communication. The simplest of all languages are the
visual ones.

When a programmer tries to explain to his manager how a code works, he
usually starts drawing blocks on a piece of paper—something like the following
oversimplified example:

It isn't hard to understand that the logic flows from left to right (because of the
arrows), and that two inputs will be multiplied together to obtain the output. With
nothing more than a simple glance, you've understood what the computer has been
programmed to do.

Chapter 1

[7]

Let's compare it with a warning-free, standards-compliant C code:

#include <stdio.h>
#include <stdlib.h>

int mul(int, int);

int main()
{
 int u1, u2, y1;
 printf("Enter two numbers\n");
 scanf("%d%d", &u1, &u2);
 y1 = mul(u1, u2);
 printf("Here's your result,
 the operation done is a shining 'x'!\n%d\n", y1);
 return EXIT_SUCCESS;
}

int mul(int input1, int input2)
{
 return input1*input2;
}

Now chances are one of the following:

• You know C, and you understood what the code does after reading through
it

• You don't know C, but you know other programming languages; maybe you
haven't understood every line, but you are still able to figure out what the
program does

• You don't know any programming language; you're almost clueless and you
understand what's going on only because you've seen the figure first

Either way, a visual representation of the code is much easier to understand
and maintain.

Now imagine a long (several hundred lines), complex (tens of source files) code,
poorly commented, highly optimized for a certain processor architecture, edited by
several people without a strict style policy—the classic spaghetti code that many
programmers are faced with in their job. They'll spend a huge amount of time
understanding what the code does, no matter how skilled they are. Explaining that
code to a colleague who doesn't know programming is out of the question.

Simulink Facts

[8]

That's where visual programming comes the rescue. A graphical programming tool
can save countless hours of work in a job where explaining the code is as important
as a code without bugs, or where a bug can have disastrous (safety-critical) effects.

Simulink is such a tool.

Problems solved by Simulink
Simulink is a true life saver in large companies manufacturing safety-critical
products, or where the software development is usually split into three
different phases:

• Specification phase: The algorithm is planned or updated by the
specification team and a new specification is released

• Development phase: The algorithm is implemented by the development
team and a software release is made

• Testing phase: The software undergoes an extensive testing phase both on
simulated and on real hardware; only when the test results are positive, the
testing team states that the software is ready for production

Software specification
In every software project where safety is an issue, the software development starts
only when a stable specification has been released.

Specifications are usually written as text documents where each sentence describes
an atomic requirement and must be highly detailed.

The problem with specifications as text documents is that there isn't any way of
verifying the correctness of the specified logic until the development phase or even
the testing phase.

Every time that the specification is found to be incorrect or incomplete, the
specification team must be notified and must make a new release. So the
development team has to develop the new release, likewise the testing team will
have to test the new software.

A specification error is one of the worst things that can happen in a big
manufacturing company, often leading to production delays, while underspecified
software can lead to unwanted behavior.

Chapter 1

[9]

Simulink can be used to achieve the goal of writing correct and complete
specifications, without losing anything in readability. Let's consider the following
atomic requirement:

REQUIREMENT # 101:

If InputSignal is greater than 0, the InputSignalFlag variable must be set.

The corresponding Simulink block would be as follows:

What's the real deal? It is that you can test the requirement before it's released. With
Simulink, it's easy to generate input signals and register the output as shown in the
following diagram:

Simulink Facts

[10]

When viewing the display on Scope, the result will look like the following diagram:

But wait! Let's examine the textual requirement; it says that the flag must be set. It's
unclear (not specified) whether the InputSignalFlag variable should be reset when
InputSignal becomes 0 or less than 0.

But the difference is very clear in a specification done with Simulink. The following
is the block diagram that describes the requirement with the InputSignalFlag
variable remaining set until the end of the execution cycle:

Chapter 1

[11]

We can see that the simulation result is very different from the previous one, as seen
in the following diagram:

With textual requirements, there's always a gray area due to the fact that human
languages, despite their richness (or because of it), have problems in describing a
Boolean logic. And it's extremely difficult, if not impossible, to test the requirement
before the release.

With Simulink models as requirements, there is no room for doubt. The requirement
is complete and easily understandable by nonprogrammers, and a preliminary test
can be made with little to zero effort by the very same team that wrote it.

Simulink Facts

[12]

Software development
The development team has the responsibility of maintaining and updating
the software for a certain project or series of projects. The usual work flow
for the embedded C developer of an automotive industry is shown in the
following diagram:

Start

Receive specifications

Update the code

Static analysis

Analysis
successful?

Compile

Compilation
successful?

Debug

No

No

No

Yes

Yes

Yes

Debugging
successful?

Release software

End

The first problem developers are faced with is the code itself. A well-commented
code with strict coding-style guidelines will be easily understandable and
maintainable, but sadly, that's not the common situation. Code maintainability is a
major issue almost everywhere, strictly dependent on code readability.

Chapter 1

[13]

The second problem is the formal code-correctness checking. This means doing a
static code analysis to check compliance with one or more sets of formal rules (for
example, the MISRA-C rule set).

The third and the most important problem is code debugging. This is done by
running the code to do an early testing (for example, with valgrind) and applying
well-known input patterns to detect and correct the blocking bugs.

Simulink helps the pressed developer solve these problems in the following ways:.

• Code readability: Being a graphical development tool, developers have
an intuitive way of dividing the code into multilayered virtual blocks.
The topmost layers give a representation of the functionality subsets
implemented, while the lower layers contain the code primitives (logical and
mathematical operators, memories, state machines, and so on).

• Static code analysis: By using Simulink with code generation software
(Simulink coder—formerly Real-Time Workshop—and DSpace TargetLink
are the most popular), it is possible to produce error-free embedded C
code. They guarantee that the produced code offers the same functionality
described in the model.

• Code debugging: During model development, Simulink offers the option to
do an early testing; the developer can apply an input pattern to a well-known
problematic algorithm and visualize the simulation result, inspect every
signal, do a step-by-step debug, and stop the simulation on selected events
on the same model used for code generation.

By using Simulink, the development team can apply the required updates in a
shorter time and use the remaining time to perform a quick preliminary testing
of the code.

Static code analysis becomes almost irrelevant since coding rules and conventions
are enforced by the code generation software.

Finally, with the autogenerated code being free of syntax errors, the compilation
phase is usually straightforward. This greatly helps the programmer who is not
familiar with the C syntax.

Simulink Facts

[14]

Software testing
The released code needs an extensive testing phase before being put into production.
The testing team's objective is to confirm that the software is compliant with the
specifications.

This usually involves breaking the specifications into atomic requirements and
having one or more test cases for each requirement (the so-called functional testing),
or defining what should never happen and automatically apply every possible
combination of inputs to the software component (a subset of destructive testing).

By using Simulink models, the testing team can easily perform automatic model-in-
the-loop (MIL) testing on their computers; the logical correctness is demonstrated by
applying inputs to the Simulink models and comparing the outputs to the expected
behavior. MIL testing easily spots failures in a very short time and generates a
detailed test report, even pinpointing the model block where the problem resides.
MATLAB already has everything needed to perform an MIL test, while automated
tests can be coded using the MATLAB scripting language.

Once the MIL testing is successful, the software-in-the-loop (SIL) testing is
performed by running the autogenerated code on standard computers. It is usually
aimed at finding discrepancies between the model and the code behaviors, and it
requires another software monitoring the process's I/O or the inclusion of debug
headers into the tested code, or a mixture of both.

The next testing step is the processor-in-the-loop(PIL) testing, where the software
is programmed into the target processor and debugged via an external high-speed
bus connected to a standard computer, such as a JTAG connection. Of course this
requires having the target processor available on a board with a testing connection.

The last step is to perform hardware-in-the-loop (HIL) testing, which is running
the software on the target hardware connected to a real-time system. It requires a
custom test bench to be purchased or made internally, and some test steps have to be
executed manually.

The biggest advantage of MIL testing is to reduce the number of times SIL, PIL, and
HIL tests are performed. This is because most of the problems are caught during the
fast, nonexpensive MIL tests, thereby reducing the overall time spent to generate,
build, and validate the produced code.

Chapter 1

[15]

Simulink drawbacks
Simulink isn't the way to go for small projects with a low budget: a MATLAB license
is rather expensive: like the additional packages that may be required for testing on
dedicated hardware. It is suited for big projects with a large number of developers
working on them. A skilled C developer can write code for simple to trivial projects
in a much shorter time than by dragging blocks in Simulink.

MATLAB and Simulink are targeted specifically to engineering and scientific
applications; they aren't general-purpose-programming tools. It's difficult, though
not impossible, to develop desktop applications or web services using Simulink.

Finally, it's hard to track model changes with software versioning and revision
control systems (such as CVS, SVN, Git, Bazaar, or Mercurial). While, to a certain
degree, it is possible to spot the differences when saving models with the .mdl
format (because it's a structured text file), this has become difficult with the .slx
format (a zipped archive with more information on the model). To see and highlight
the differences between two versions of the same model, separate software has to
be purchased.

Where Simulink excels
There are two main use cases for Simulink.

The first one is in the academic research world where Simulink is used to simulate
multidomain dynamic systems. Typically, Simulink is used in a continuous-
time environment with variable step-size implicit solvers; the main scope of the
simulation is to reproduce the behavior of a real system in order to predict the
answer to the applied stimuli.

The second one is in the automotive, aerospace, avionics, and the defense industry
where Simulink is used to build models for real-time, safety-critical, embedded
targets with many people involved in the specification, development, and testing
phases. The main scope of the simulation is to find and correct bugs in order to
produce (through the appropriate code-generation software) a final C code to
compile in the target processor. The simulation solver used in this environment is
the fixed-size step explicit one, and the model doesn't contain any continuous states.

Simulink Facts

[16]

Summary
In this chapter we learned what benefits Simulink brings in and where Simulink has
become a de-facto standard and why. We explained how the software development
process is simplified using Simulink and cases where Simulink is not the right
solution. After reading this chapter, you should be able to decide whether Simulink
can be used for your projects.

In the following chapters, we'll take a learn-by-doing approach where we'll go
through the whole software development process while developing and testing a
cruise controller model for a real-world car.

Creating a Model
In this chapter, we'll learn how to build a Simulink model and run the
first simulations.

We'll start with a short description of the MATLAB environment features that
we need to know in order to start developing a Simulink model.

Then we'll build a simple model to introduce the basics of Simulink
development; we'll learn what the Library Browser is and how to place
blocks into the Model Editor.

Finally, we'll develop a more complex model implementing a not-so-simple
nonlinear system. There will be a small part of theory detailing the physic
equations describing the system before the implementation.

The MATLAB environment
Simulink is not a standalone tool, but lies on MATLAB's shoulders; it's almost
impossible to use Simulink without keeping an eye on MATLAB's main window, not
to mention that you need to start MATLAB before even opening a model.

Simulink inherits from MATLAB the current working folder, the workspace, and the
path and uses MATLAB's Command Window to report errors, warnings, and notes.

The first time you open MATLAB, you should see the default main window view
with the following sections:

• The Workspace panel and the Command History panel on the right
• The Command Window panel in the middle
• The Current Folder panel with the folder contents on the left.
• The current path is displayed above the three

www.allitebooks.com

http://www.allitebooks.org

Creating a Model

[18]

An example is shown in the following screenshot:

Command Window – how MATLAB
talks to us
The Command Window panel is the place where Simulink will report most of
the errors, warnings, and information—always keep an eye on it while debugging
a model!

The Command Window panel also allows us to declare new variables that will
be stored into the workspace. In short, the Command Window panel works very
much like any interactive OS terminal shell, accepting commands written in the
MATLAB language.

The MATLAB interface being written in Java, you
can even create and use Java objects!

Chapter 2

[19]

Try entering these two commands and see what happens:

new_string = 'hello world!';

new_number = 0.01;

The newly created variables have appeared in the Workspace panel and are ready
to use.

It's worth noting that every command executed is stored in the Command History
panel too; if you need to re-execute a command you entered earlier, simply drag-
and-drop it into the Command Window panel.

The Command Window panel supports autocompletion; you only
need to type the first characters of a command or variable name and
hit the Tab key—MATLAB will show the matching labels.

The workspace – our treasury chest
The workspace holds the variables we create in the session, allowing you to edit and
delete them through the Workspace panel.

Simulink is able to see the variables in the workspace and use them in the model.
From Simulink's perspective, they belong to the base workspace.

Keep in mind that the workspace resides in volatile memory and is not persistent; as
soon as MATLAB is closed, the workspace is lost.

To save the workspace into a MATLAB file (with the .mat extension), click on the
Save Workspace button in the HOME tab. MATLAB will ask you where you wish to
store it, with the working folder as the default choice.

The working folder – where MATLAB saves
our work
The working folder (called Current Folder in MATLAB's main window) is the
folder that is currently open in MATLAB and all the files contained here are visible
to MATLAB and Simulink. The exact path of the working folder is shown in the
address bar right above the Command Window, the Workspace, and the Current
Folder panels.

Creating a Model

[20]

To execute a file, you can simply drag-and-drop the file from the Current
Folder panel to the Command Window panel. This works with all MATLAB
and Simulink files.

The path – where MATLAB finds the tools
The path variable is the list of folders where MATLAB will look for libraries at
startup (this is very similar to how the $PATH variable is used in most operating
systems). If you need to use a Simulink blockset (a library of ready-to-use blocks),
you must place it into a folder listed in your MATLAB's path.

You can easily view and edit MATLAB's path by clicking on the Set Path icon in the
HOME tab. A new window will appear, listing every folder present in MATLAB's
path and giving you the option to add other folders and change the order in which
they appear.

The display order is important; if a file with the same name is present in two or more
folders listed in the path variable, MATLAB will use the one found in the folder
nearest to the top of the search path.

The exact file where the path variable is stored is the pathdef.m script, located in
your MATLAB install folder (usually $MATLABROOT/toolbox/local).

If you don't remember where you've installed MATLAB, just enter
matlabroot in the Command Window.
A great thing to have in the path is a customized startup script; if you
need to execute a set of commands every time MATLAB starts, put
them in a startup.m script and save the script in one of the folders
belonging to MATLAB's path.
If you've added too many folders to the path and something
is going wrong, you can restore the default path with the
restoredefaultpath command.

This is all you need to know about the MATLAB environment.

Remember that Simulink is reading everything from MATLAB and you will save
yourself a lot of trouble.

Chapter 2

[21]

The Simulink interface
From the MATLAB main window, click on the New button and select the Simulink
Model option.

A blank Simulink window will appear, showing an empty model named untitled.
This window is made up of the following sections:

• The title bar with the name of the opened system (untitled).
• The menu bar immediately below the title bar.
• The toolbar below the menu bar with the default tools (the Library Browser

and Model Explorer are the tools most used).
• The Model Browser panel on the left displaying the model's hierarchical tree

(it can be hidden with the « button at the bottom right of this panel).
• The model editor panel on the right of the Model Browser panel is the

most useful panel. If you like a clutter-free edit window, you can hide all
the other panels through the View menu (I suggest that you leave the
status bar though).

• The status bar on the bottom reporting the name and the current status of the
underlying simulation solver (more on this later).

The most useful shortcuts and gestures are as follows:

• Zooming in/out can be done with the mouse's scroll wheel
• If you wish the scroll wheel to retain its usual behavior (just scrolling up and

down), then navigate to File | Simulink Preferences | Editor defaults and
clear the Scroll wheel controls zooming checkbox; zooming is still possible
by pressing the Ctrl key while scrolling

• Tapping the Space bar key will make the model view (or the selected block
view) fit the window size

• Pressing Alt + 1 resets the default zoom (it's a lifesaver!)
• Pressing and keeping the mouse wheel pressed will allow you to drag the

model in the direction of the mouse, an operation known as panning
• If you don't have the scroll wheel, you can achieve panning by keeping the

Space bar key and the left mouse button pressed

We'll talk extensively about the Library Browser in the following paragraphs. Now
it's time to start modeling!

Creating a Model

[22]

Our first model – a cruise controller
There aren't many things in the world funnier than a sporty car. That's a fact.

Let's imagine we want to develop a simple cruise control system for such a car.
This system will perform the following tasks:

• Read the target vehicle speed [km/h]
• Read the current vehicle speed [km/h]
• Command the throttle with the gas pedal [from 0 (not pressed) to 1

(fully pressed)]

This system will behave like a driver that keeps the car going straight using only the
gas pedal to match the desired speed.

Let's get started!

Step 1 – create and save the model
After pointing MATLAB to your preferred working folder (for example, a folder
called 1386EN_02 located in your home folder) and opening a new model, click
on the Save button, or use the Save option under the File menu, or the Ctrl + S
keyboard shortcut, and give it the name cruise_control.slx.

You'll notice that there are two file formats available. They are explained as follows:

• The .mdl extension was the format used by Simulink versions prior to
MATLAB R2012a (a structured text file)

• The .slx extension is the format used by newer Simulink versions,
introduced in MATLAB R2012a (a compressed group of files)

The first format is the most widely used, but be aware that every model depends
on the Simulink version used to create it; those developed with newer releases are
unreadable by older releases, while newer releases can upgrade old models.

The saved model will now be visible in our working folder. If you close
Simulink, you can re-open the model at a later time by dragging it to the
MATLAB's Command Window.

Chapter 2

[23]

Step 2 – do comment the code!
It's always a good idea to explain what a system does. In the C programming
language, you use the comment section (/* ... */) to explain a function; in
Simulink, you insert a note by clicking on the Annotation tool icon (to the left of our
cruise_control editor panel) or double-clicking on the white area of the model editor.

Like comments explaining functions in C, it's a good practice to insert a note at the
top of the model view explaining what it does. Let's insert this note:

This model simulates a cruise control system.

The purpose is to make a car going at a desired

speed using the throttle.

By right-clicking on the note, you can set the alignment (default: centered) and draw
an annotation border, to make it more eye-catching:

Step 3 – open Simulink Library Browser
Let's start inserting some blocks from the Simulink library. We need to open the
Simulink Library Browser by pressing the Library Browser button, or using the
View | Library Browser menu, or using the Ctrl + Shift + L keyboard shortcut.

A new window with two panels will appear: the left panel lists all the available
libraries, each one holding one or more subsets, while the right panel shows all the
blocks belonging to the selected library. Block libraries are also called blocksets.

By double-clicking on a block, a new window appears with a brief block description
and the parameters that the block can accept. To get detailed information about the
block and how to use it, click on the Help button and the documentation center will
be opened with the page describing the selected block's meaning and usage.

Navigating in the Simulink Library Browser is fairly straightforward; most of
the time we'll be using blocks from the Simulink blockset (installed with the
Simulink software).

Creating a Model

[24]

Both the Simulink Library Browser and the documentation center
have a search input field located above the main window content,
allowing you to get the block itself and its documentation by
entering the block name (or part of it).

Step 4 – add blocks to the model from Library
Browser
The first blocks we need are input and output ports. Input ports (also called inports)
are available in the Simulink | Sources blockset and are labeled In1:

Similarly, output ports are available in the Simulink | Sinks blockset and are
labeled Out1.

These blocks can be placed in the model by:

• Dragging and dropping from the Library Browser to the model window, or
• Copying and pasting (Ctrl + C, Ctrl + V) to the model window, or
• Right-clicking and selecting the option Add to cruise_control, or
• Using the keyboard shortcut Ctrl + I (insert)

Chapter 2

[25]

Let's place one input port and one output port in the model using your
preferred method.

Notice that the window title has changed and now bears an asterisk
(cruise_control *). This means that the model has been edited since the last save.
Save the model and the asterisk will go away.

Of course, opening the Simulink Library Browser each time you need to place a
block is a tedious task and slows down development time. If a block offering the
same functionality is already present in the model, you can just copy and paste it,
or drag it while keeping the right mouse button pressed; a new copy will be made.

Let's add another input port by moving the mouse arrow on the previous port, and
while keeping the right mouse button pressed drag it to some other position and
then release the button; a small menu will appear asking you if you intend to Paste
or Duplicate the port:

• Paste: This option creates a new port, adding a new input signal to the
subsystem.

• Duplicate: This option will not add a new input signal; the new port will be
equal to the copied one and the signal will be the same. It's useful only to
avoid a connecting line.

Notice that while dragging a block, Simulink suggests the alignment with other
ports, which helps in keeping the project well-structured.

If we don't spend a little time in trying to keep the system view well organized, we'll
end up with a garbled system that very much resembles the dreaded "spaghetti
code" that we should avoid.

A set of rules has been defined by the MathWorks Automotive
Advisory Board with the automotive industry in mind.
Embedded developers with code generation in mind should
stick to it as closely as possible. The ruleset is available at
http://www.mathworks.com/automotive/standards/
maab.html.

Step 5 – rename the blocks
Note that each block must have a unique name in the current subsystem. Try to
rename the In2 port to In1 by double-clicking on its name; Simulink will issue an
error window saying that the name already exists.

Creating a Model

[26]

Since the labels In1 and In2 don't make a lot of sense, we'll rename them to our
inputs: the Vehicle speed and the Target speed. The same goes for our output:
the Throttle.

A good practice is to put the measurement unit in the name too;
it helps to avoid conversion errors (even the best can make such
errors—the NASA did!).

Now we should have something similar to the following screenshot:

Step 6 – implement the algorithm
The simplest yet most effective cruise control algorithm is a PI (Proportional-
Integral) controller. This algorithm can be summarized in the following four steps:

1. Calculate the error e(t), that is, the difference between the target speed and
the vehicle speed.

2. Apply a correction factor to the error Kp.
3. Apply a correction factor to the integral of the error, Ki.
4. Sum both the proportional and the integral components and obtain the

control signal u(t).

The mathematical formula of a PI controller is as follows:

Of course, we can't push the gas pedal beyond its physical limits; the throttle control
signal needs to be clamped, the lower limit being 0 (throttle closed) and the higher
limit being 1 (throttle fully open).

Chapter 2

[27]

By looking at the formula, it's easy to guess that we need to find the following blocks
in the Simulink Library Browser:

• One Subtract block (from Simulink | Math Operations) in order to
calculate the error

• Two Constant blocks (from Simulink | Sources) for Kp and Ki, and two
Product blocks (from Simulink | Math Operations)

• One Integrator block (from Simulink | Continuous) used to hold the
error integral

• One Add block (from Simulink | Math Operations)
• One Saturation block (from Simulink | Discontinuities) to clamp the

output throttle

The Integrator block (and almost every other block in the Continuous
blockset) is represented with the corresponding transfer function H(s) =
Y(s)/U(s) in the Laplace domain. More information can be obtained by
clicking on the Help button in the block parameters window.
You don't need to know about Laplace transforms in order to understand
this book; just remember that the 1/s block is an integrator.

Place the blocks in the order suggested by the algorithm (refer to the following
screenshot) and open every block to understand its options. Don't forget to:

• Check the Subtract block operands: the Target speed has to be connected to
the positive port and the Vehicle speed to the negative port; thus the block
parameter should be +−

• Edit the Saturation block limits by double-clicking on it; a window opens;
in that window, set the value of Upper limit: as 1 and the value of Lower
limit: as 0

Optionally, resize the blocks (by dragging the little handles that appear on the
selected block's border), hide the math blocks' names (by right-clicking on the blocks
and opening the Format submenu), and rename the constant blocks to Ki and Kp.

To connect two blocks, it's sufficient to drag the little arrow from the source block to
the endpoint at the destination block with the mouse.

To quickly connect two blocks, select the source block, then
press and hold the Ctrl key, and click on the destination
block. This works with multiple blocks too.

Creating a Model

[28]

We should end up with a model similar to the one shown in the
following screenshot:

Step 7 – nest the logic into subsystems
Subsystems are a very convenient way to group together the blocks that implement a
specific functionality.

In order to make a clear distinction between the PI controller components, we
can select the elements to group together and right-click the selection to open the
contextual menu and create a subsystem (or use the Ctrl + G keyboard shortcut).
The operation is shown in the following screenshot:

We'll create two subsystems: one for the proportional component and one for the
integral component. Since they are of a small default size and have the default port
names of In1 and Out1, we should resize and rename them, then open them (with a
double click) and rename their ports.

Chapter 2

[29]

We should obtain the model shown in the following screenshot:

Notice the change in the Model Browser panel on the left; you can now navigate
in your system hierarchy by clicking on the subsystems' names. The cruise_control
block is called the root subsystem.

Let's continue organizing the model into subsystems by selecting all the PI controller
components (everything except the ports and the Saturation block) and making a
subsystem. Again, we need to edit the new subsystem's port names.

We should see the clean, ordered, neat-looking, self-explanatory system shown in the
following screenshot:

The final step—the root subsystem should contain absolutely no logic, only root-level
blocks implementing a complete functionality, sharing little to no signals. We still
have the Saturation block left out.

Creating a Model

[30]

So we'll select everything (literally—ports included) and create the cruise control
root subsystem as shown in the following screenshot:

This time we didn't have to rename the ports; since we included them inside the
selection, Simulink kept their names and created new copies outside the newly
created subsystem.

Step 8 – declare workspace variables
There's a problem with the cruise controller; we've left the PI calibration constants
inside the block, and we can't calibrate them without doing some simulations.

This means that either we dig into the model hierarchy down to the Integral and
Proportional blocks every time we need to change their values, or we pull them out
to the root level.

Both of these methods are viable with a simple system like the one we've just
modeled. But as soon as the model complexity grows, you'll have problems either in
knowing where the constants are or in having a clean, understandable system layout.

But there is a clean and effective solution. Since Simulink can read MATLAB's
variables, it's easy to define the Kp and Ki constants in the MATLAB workspace and
use their labels in the Constant blocks.

So we define them by entering these commands in MATLAB's Command Window:

Kp = 1;

Ki = 1;

Then we'll navigate to the constant blocks, double-click each one of them and edit the
Constant Value field in their respective Source Block Parameters window with the
previously defined variables Kp and Ki.

Chapter 2

[31]

The block parameters window for Kp will look like the following screenshot:

Done! Now we can edit Kp and Ki directly from the MATLAB's Command Window!

Let's save the workspace alongside the model, (that is, at the same location where
cruise_control.slx is saved) calling it cruise_control.mat (click on the Save
Workspace button in MATLAB's main window.).

To avoid loading it every time we open the model, we can use the PreLoadFcn model
callback. Navigate to the root subsystem, right-click on the white space, and choose
the Model Properties item from the contextual menu. A new window will open;
click on the Callbacks tab and select the PreLoadFcn item from the list. Inside the
textbox, we'll type the MATLAB command that will perform the workspace loading:
load('cruise_control.mat').

To confirm that we didn't make trivial mistakes, we should run Update Diagram
(from the Simulation menu or by pressing Ctrl + D).

Now we've finished our first model. It's time to see how it behaves.

Step 9 – do a first simulation
Let's see how our controller works in an open loop (without actually anything
to control).

We must delete the input and output ports from the root level, since we're replacing
them with appropriate Sources and Sinks blocks from the Library Browser.

Creating a Model

[32]

We'll take the following blocks from the Simulink Library Browser:

• A Constant block (from Simulink | Sources) to be connected to the
Vehicle speed input with the Constant value set to 0

• A Step block (from Simulink | Sources) to be connected to the Target speed
input with the Final value set to 0.1 (remember that the throttle is clamped
between 0 and 1)

• A Scope block (from Simulink | Sinks) to be connected to the
Throttle output

We should have the system looking like the following screenshot:

Running the simulation is an easy task: just click on the green Run button in
the toolbar, or click the Simulation | Run menu entry, or type the Ctrl + T
keyboard shortcut.

When the simulation is completed (the status bar at the bottom left shows the
Ready word again), double click on the newly added Scope block and you'll
see this neat graph:

Chapter 2

[33]

To make the graph fill the whole window size, press
the Autoscale icon button (the sixth from the left).

Good! Notice that the simulation stopped at the tenth second; it is the default
simulation time, which can be adjusted in the Simulink toolbar (right above the
model editor).

We can do our little result analysis:

• Before 1 second: the target speed is still 0, equal to the vehicle speed with no
throttle required.

• At 1 second: the target speed (and the speed difference) goes to 0.1, the
proportional factor of the PI controller kicks in and sets a throttle equal to the
speed difference multiplied by Kp, while the integral factor starts working.

• From 1 second onwards: the proportional contribution to the throttle stays
at 0.1, but the integral contribution rises linearly (Ki being 1, the slope of the
throttle is equal to the speed difference, that is, 0.1).

A new variable has appeared in the workspace: tout. It is an array
containing the time instants where the results have been calculated.
By using the Sinks | To Workspace block, we can save the simulation
results in the workspace too. This is often useful to do further analysis
and prepare a report using MATLAB's powerful plotting functions,
thus overcoming the limitations of the Scope block.

You can see that the resulting scope graph is not really continuous by opening the
'Scope' parameters window [click on the Parameters icon button (the second from
the left)] and choosing a line marker (Line:) in the Style tab. Simulink automatically
chose an adequate time step. We'll discuss simulation times in the next chapter.

What we have just performed is an open-loop simulation: we have a controller
running without the controlled system, so the speed (or better: the error e(t) that
the controller is reacting to) is made up with a Step block. The purpose of open-loop
simulations is to demonstrate and check the controller behavior with certain kinds
of inputs.

What now? We need a mathematical model of a controlled system in order to
perform a closed-loop simulation and see how our cruise controller is able to make
the speed difference disappear by commanding the throttle. We need to model a car.

Creating a Model

[34]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Our second model – the Alfa Romeo
147 GTA
With what we've learned so far, we're ready to develop a simple mathematical model
of a real car in order to test and fine-tune the controller in a closed-loop simulation.

Luckily enough, a lot of technical detail is available nowadays on almost every car.
The author likes the Alfa Romeo 147 GTA a lot, so the choice is made.

Open a new Simulink model and save it as alfa147gta.slx. The model will have
one input (the throttle, coming from the cruise controller) and one output (the car's
speed, going to the cruise controller).

We're interested only in the longitudinal speed (a car going straight on a flat
ground), and we assume the gearbox to be ideal (shifting gears in no time).

How do we compute the speed?

Getting the speed – Newton's laws
We know that the car's speed is the integral of the acceleration in time:

Newton's second law reminds us that the acceleration is proportional to the total
force applied on the car, with the mass m being the factor:

Chapter 2

[35]

Since we're building a simplified model, we'll consider only the following three
main forces:

• The engine force FEngine, generated by the fuel burning in the engine
• The aerodynamic drag FDrag, generated by the car moving in the air

(that is, a viscous fluid)
• The rolling resistance FRes, the sum of all the rolling frictions that oppose

the movement

Putting it all together, we have:

The mass being a constant, we can declare it in the workspace right away.
The Alfa 147 GTA weighs 1360 kg, so we'll enter the following command in
MATLAB's main window:

Mass = 1360;

Let's make the relevant blocks in the root system. Open Library Browser and drag
three Subsystem blocks into the model (one for each force applied) from the Ports
& Subsystems blockset; one Add block and one Divide block from the Math
Operations blockset; one Integrator block from the Continuous blockset; and one
Constant block from the Sources blockset for the mass.

Since we'll be working with the international metric system inside this model, we'll
put a Gain block too (from the Math Operations blockset) before the output, to
convert the speed unit from m/s to the one used by the cruise controller, km/h.

Rename the Subsystem blocks to Aerodynamic drag, Rolling Resistance, and
Engine Force, and align them vertically.

Double-click on the Add block and edit the list of signs; we need three inputs, only
one positive (the engine force). Let's keep the positive input as the last; the list of
signs should be --+.

Double-click on the Constant block and set its Constant value parameter to Mass
(the variable we just created in the workspace).

The same must be done for the Gain block, setting the Gain to 3.6 in order to
convert from m/s to km/h.

Creating a Model

[36]

After putting a brief note, connecting the blocks following the above
formulas, and renaming the blocks, we should have our model as shown
in the following screenshot:

We still need to compute the forces. We'll start with the drag and the rolling
resistance first, since they're simpler; then we'll build the algorithm calculating the
engine force.

The aerodynamic drag equation
The aerodynamic drag force, whose effect is evident at high vehicle speeds, can be
calculated with the drag equation as follows:

KDrag is a constant for the car, made of:

• The air density ρ, at 20 °C and 101.325 kPa equals to 1.2041 kg/m3

• The drag coefficient CD, which is 0.32 for the 147 GTA
• The frontal area A, approx. 2.2 m2

Let's declare it in the workspace with the following command:

Kdrag = 0.5 * 1.2041 * 0.32 * 2.2;

Since the vehicle speed needs to be an input of the block, we're adding a Goto and
From block from the Signal Routing blockset to the root block.

Chapter 2

[37]

The Goto and From blocks can avoid drawing a connection
between two or more subsystems and are extremely helpful to
avoid cluttering the view. It's a common practice in the automotive
industry to use them instead of connecting input and output ports
directly to the subsystems implementing the logic. When the
system becomes too complex and there are many tags, it's helpful
to assign the same foreground/background color to matching Goto
and From blocks. This can be done by right-clicking on the block
and using the Format menu option.

Open both and use the same tag: speed. It's suggested to hide their names. Be careful
to connect the Goto block at the end of the integrator—we want the speed in m/s,
not in km/h.

The root system should be looking like the following screenshot:

Inside the Aerodynamic drag subsystem, we'll implement the drag equation with
one Gain block, one Math function block (both from Simulink | Math Operations),
and one Constant block (from Simulink | Sources).

We'll use Kdrag as the Gain parameter for the Gain block and select the pow
function in the Math function block (double-click and set the Function drop-down
list to pow). A second input will appear; it is the exponential to apply; we'll connect
it to the Constant block and set its Constant value parameter to 2.

www.allitebooks.com

http://www.allitebooks.org

Creating a Model

[38]

Finally, we'll rename and connect the input and output ports, the input being
the speed (in m/s) and the output being the drag force (in N). After making the
connections, the subsystem should look like the following:

Don't forget to copy and connect the speed Goto in the parent system to the
input port.

Let's do the next step, the rolling resistance.

The rolling resistance approximation
The rolling resistance (sometimes called rolling friction or rolling drag) is
proportional to the vehicle speed. It's the main resistance at a lower speed.

It's not simple to obtain a precise formula because it involves knowledge about the
tire characteristics, but we can simplify the calculations by assuming that:

• At approximately 30 m/s (100 km/h), the rolling resistance and the drag
are equal

• The proportional factor is constant at other speeds

This assumption is valid for most cars.

So we can find, with v = 30 m/s, the constant KRes:

KRes being just 30 times bigger than KDrag, we don't even need to declare a new
variable in the workspace.

The implementation is simple: we just put inside the Rolling resistance subsystem a
Gain block set to 30*Kdrag and connect it to the input and output ports (renamed as
usual). We should have this subsystem:

Chapter 2

[39]

Don't forget to copy and connect the speed Goto in the parent system to the
input port.

So far, so good. Now comes the hard part: the subsystem that calculates the
engine force requested by the cruise controller (via the throttle input).

The engine force – engine, wheels, and
transmission
Every combustion engine has a characteristic torque curve (also called lug curve) that
can be found in almost every technical review book. The Alfa 147 GTA shows the
following one:

The torque in the preceding graph represents the maximum available torque τMAX
(with the throttle fully open), measured at the crankshaft.

The engine and the wheels are linked together through the gearbox and the
differential; the former applies a variable gear ratio KGear and the latter applies a
constant final ratio KFinal.

Creating a Model

[40]

Since we have to transform the vehicle speed to engine RPM first and the engine
torque to the engine force last, all taking into account the gearbox and differential
combined ratios, we need to model four subsystems:

• Gearbox and differential, will output the transmission ratio at the
current speed

• Wheel to RPM, will output the current RPM based on the current
transmission ratio and the current speed

• Engine, will receive the throttle command and output the resulting torque
at the current RPM

• Torque to force, will convert the engine torque to the force that the engine
is applying on the car

Let's start by having two input ports (the vehicle speed and the throttle input), one
output port (the engine force), and the four empty Subsystem blocks (found in
Simulink | Ports & Subsystems) in the Engine force subsystem. The subsystem
should now look like the following screenshot:

The first subsystem we'll implement is Gearbox and differential.

Gearbox and differential
From the crankshaft to the wheel, the rotation is reduced twice: first in the gearbox,
where the reduction ratio can be changed by upshifting/downshifting, then in the
differential, which has a fixed reduction ratio.

We need to implement an automatic gearbox; the simplest is the one that chooses the
gear based on the current speed and doesn't have the reverse gear.

In the following table, we'll find the Alfa 147 GTA optimal speed ranges for each
gear, together with the gear ratio KGear:

Chapter 2

[41]

Gear Speed range [km/h] Gear ratio
1 < 39 3.500
2 39 – 59 2.235
3 60 – 86 1.520
4 86 – 109 1.156
5 110 – 129 0.971
6 ≥ 130 0.818

The differential on the Alfa 147 GTA applies a final ratio KFinal of 3.733.

As an example: in the first gear, the engine's crankshaft is rotating 13 times
(3.5*3.733) faster than the wheel axis, while in sixth gear, it's only three times
(0.818*3.733) faster.

We'll put this data right now in the workspace by executing these commands:

GearRatio = [3.500 2.235 1.520 1.156 0.971 0.818];

FinalRatio = 3.733;

Let's build the automatic gearbox; the input is the vehicle speed in m/s, which gets
converted to km/h through a Gain block with the value set to 3.6.

Then we'll use a particular construct to select the gear: an If block from the Ports &
Subsystems blockset. The If block allows us to replicate exactly the C language's
if()...elseif()...else construct. Opening the block parameters window reveals
that we have to set the first if() condition: then we can define as many elseif()
conditions as we like.

Looking at the speed ranges, it's easy to set the parameters:

• The Number of inputs will be set to 1, since we only need to evaluate the
vehicle speed (the corresponding label inside the block will be u1)

• The If expression will be u1 < 39 (the first gear)
• The Elseif expressions elements will be u1 < 60, u1 < 86, u1 < 110, u1

< 130 (gears 2 through 5)
• The Show else condition checkbox will be checked (the sixth gear)

Creating a Model

[42]

If we entered the parameters correctly, we should have the following
subsystem now:

For each output of the If block, we need to put one If Action Subsystem
(available in the Ports & Subsystems blockset). These subsystems must contain the
code to be executed when the corresponding condition in the If block is verified
(they're called conditionally executed subsystems). In our case, they'll output the
chosen gear number. We don't need the input port; remove it from each one of these
subsystems using a Constant block with the gear number instead.

In the following screenshot, we can see how the subsystem looks after inserting and
editing the If Action Subsystem relative to the first gear and running the Simulation
| Update Diagram action (the keyboard shortcut is Ctrl + D):

Chapter 2

[43]

Notice that the connections between the If block and the subsystems are dotted.
This means that the connection is not transporting a signal, but it's a function-call.
When a condition is verified, the If block will call the subsystem connected to the
corresponding port, executing its code.

To avoid Simulink emitting warnings in MATLAB's main
window, the output ports of every conditionally executed
subsystem should have the initial output value set in their
parameters window.

We now have six possible gear values; how to put them together? We must use
another particular block: the Merge block from the Signal Routing blockset.
This block will instruct the connected subsystems to write their outputs to the
same signal.

Let's put one Merge block into our model and open the parameters window by
double-clicking on it. Since we have six subsystems, we need to set its Number of
inputs parameter to 6, then connect each subsystem to one of the inputs.

The resulting model should be the one shown as follows:

Now that we have the gear, we must use it to select the gear ratio.

We'll use Direct Lookup Table (n-D) (from Simulink | Lookup Tables). Open the
parameters window, set the Number of table dimensions parameter to 1 and the
Table data parameter to GearRatio. Since the table must be accessed with a zero-
based index, we must subtract one unit from the gear number coming from the
Merge block.

Creating a Model

[44]

The subsystem and the Direct Lookup Table parameters are shown in the
following screenshot:

The last step is to include the final ratio due to the differential. That's easily done
by putting a Gain block right before the output port (that should be renamed), and
setting its Gain parameter to FinalRatio.

The final Gearbox and differential subsystem is shown in the following screenshot:

This subsystem's output will be used to convert the vehicle speed to the engine RPM,
and later the engine torque to the new vehicle speed.

Chapter 2

[45]

Wheel to RPM
The purpose of this subsystem is to get the engine RPM using two inputs: the vehicle
speed, and the combined (gear and differential) reduction ratio.

The vehicle speed v can be translated to the rotational speed of the wheel (in RPM,
revolutions per minute). The RPMWheel is equal to the distance the car has traveled in 60
seconds (v*60), divided by the wheel diameter (that is, 2π times the wheel radius rWheel).

Then we know that the engine and the wheels are linked together through the
gearbox and the differential. We already have their ratios; the engine's RPMEngine is
equal to RPMWheel multiplied by the gear and differential ratios.

This gives us these easy formulas to implement in Simulink:

The Alfa Romeo 147 GTA requires 185/45R17 tires, meaning that:

• The wheel rim diameter is 17 in = 0.4318 m
• The tire section height is 45% of 185 mm ≈ 83.3 mm

So the wheel radius is 0.4318/2 + 0.0833 = 0.2992 m. Let's save it into the workspace
with this command:

WheelRadius = 0.2992;

The subsystem's implementation in Simulink following the preceding formula is
simple, using the well-known Gain, Divide, and Product blocks:

Now that we have the engine RPM, we can model the Engine subsystem.

Creating a Model

[46]

Engine
This subsystem will calculate the engine torque response τEngine. The inputs are the
engine RPM coming from the previous subsystem, and the throttle command from
the cruise control system. The formula is very simple:

In order to obtain the maximum torque τMAX available at a certain RPM, we need an
interpolating block using the following coordinates (taken from the torque curve we
saw earlier in this chapter):

RPM 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
τMAX 200 220 242 258 260 261 268 285 300 296 290 250 220

Let's add these vectors to the workspace:

EngineRPM = [1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
6000 6500 7000];

EngineTRQ = [200 220 242 258 260 261 268 285 300 296 290 250 220];

We'll place into the Engine subsystem a 1-D Lookup Table (from Simulink |
Lookup Tables), double-click on it, and configure it as follows:

• Table dimensions: 1 (for each RPM value, we only need one torque value)
• Table data: EngineTRQ (the ordinates)
• Breakpoints 1: EngineRPM (the abscissas)
• Interpolation method (in Algorithm tab): Cubic spline (how to calculate the

curve between two known points)
• Extrapolation method (in Algorithm tab): Linear (how to calculate the curve

outside the RPM range)
The Engine subsystem implementation will look like the following screenshot:

Easy, wasn't it? Now that we have the resulting τEngine we can calculate the force that
the engine is applying to the vehicle in the next subsystem.

Chapter 2

[47]

Torque to force
This subsystem converts the provided engine torque τEngine to the force F applied to
the vehicle.

Thanks to Newton's third law, we know that the same force F is applied by the
wheels on the ground. Remembering the definition of torque, we can relate F to
the wheel torque τWheel and the latter to the engine torque by applying the gear and
differential ratios:

The Simulink implementation of the preceding formula is easily done with the now
familiar Product, Divide, and Constant (set to WheelRadius) blocks, like in the
following screenshot:

As always, don't forget to update the relevant connections in the parent subsystems.

The finishing touches
First of all, let's group all the root-level subsystems into one subsystem called Alfa
Romeo 147 GTA, and save the current workspace as alfa147gta.mat since we've
declared every constant we need.

Like we did for the cruise controller model, we can have the model
load the workspace automatically by setting its PreLoadFcn callback to:
load('alfa147gta.mat')

Creating a Model

[48]

Then we'll check if we did everything right by running a Simulation |
Update Diagram (Ctrl + D). The resulting root subsystem should look like the
following screenshot:

That's it! We managed to create a fully usable, fairly accurate car model!
Well, we can't steer, but we can surely have drag races!

Summary
We've now learned the basics of building continuous time models implementing
ordinary differential equations, together with almost every modeling technique
you'll ever need.

In the next chapter, we'll be discussing the simulation phase using the models and
workspaces we've just created.

Simulating a Model
In this chapter, we'll learn how to simulate a model. We'll start with a little theory
about the solver and simulation time in order to understand the main concepts
behind the Simulink engine. Then we will assemble the test system by putting
together the cruise controller and the car model, and run various simulations.
We'll be able to calibrate our cruise controller and we'll learn what really sets
Simulink apart—many different source blocks and one mighty sink block, Scope.

The mandatory theory
Before starting the simulation, we'll have a closer look at how Simulink computes
the simulation results, in order to be able to choose the appropriate simulation
time and solver.

Let's build a simple system that finds the solution to this problem:

The exact mathematical solution is y(t) = e-t.

The Simulink model (which we'll save as example.slx) that implements the
problem is:

Simulating a Model

[50]

Notice that we've set the Initial condition source parameter of the Integrator block
to be external.

To configure the simulation time and solver of this model, click on the
Model Configuration Parameters option from the Simulation menu
(keyboard shortcut: Ctrl + E).

A new window will open; select the Solver node from the left-side panel, which will
give you access to configure the Solver options and Simulation time parameters.

Under the Solver options section, select the Type list value as Fixed-step (don't
worry, we'll explain the meaning later) as shown in the following screenshot:

Then let's edit the Scope block parameters. We want to see where Simulink does the
calculations, so we'll click on the Style tab and set the Marker option as round to
both lines:

Now that we have set up our example, let's begin by examining the simulation times.

Chapter 3

[51]

The simulation times – when the math is done
There are three main times to be set before starting with the simulation: the
simulation start time, the simulation stop time, and the simulation step size.

The Start time and Stop time parameters under Simulation time are self-
explanatory; they tell Simulink the time period (in seconds) required to perform
the simulation. Usually Start time is set to 0.0, and Stop time to either inf
(meaning that the simulation will never end until it's stopped by the user) or a
time when the transient effects in the model become negligible. The default value
of Stop time is 10.0.

The step size defines the time period that Simulink uses to sample the inputs and
calculate the outputs. The default value is set to auto; that is, Simulink will try to
determine the appropriate step size.

Let's run the simulation and see the result by double-clicking on the Scope block.
We should see this graph:

By zooming in on the graph a little, we'll find that the samples have been computed
every 0.2 seconds (0.2, 0.4, 0.6, and so on). This is confirmed by the warning that
Simulink issued in MATLAB's Command Window, which is seen as follows:

Warning: Unable to determine a fixed step size based on the sample times
in the model 'example', because the model does not have any discrete
sample times. Picking a fixed step size of (0.2) based on simulation
start and stop times.

Let's take a quick note of the result at 1 second: it is y(1) = 0.3677.

The exact solution is e-1 = -0.3679, so the simulation result is fairly accurate.

Simulating a Model

[52]

Now, in the Model Configuration Parameters window, let's set Fixed-step size
(fundamental sample time) as 1, and run the simulation again.

You'll be presented with this graph:

What happened? We told Simulink to acquire new samples every second; thus, the
resulting curve is less accurate. If we look at the result for 1 second, we can see that it
has changed to y(1) = -0.3333. With such a large step size, we shouldn't be surprised
that the solution Simulink found is showing a greater difference from the exact one.

Most of the time, your models will give unpredictable results because you chose an
inadequately long step size. Vice versa, you may have defined a very small time step
size, just to be on the safe side, and your simulation could take ages. If you've got a
fast computer, try setting a step size of 0.00001 and running the simulation again
(you'll have to uncheck the Limit data points to last option in the Scope parameter
window under the History tab).

The rule of thumb is to have a time step smaller than half the
smallest period of your analog signals if the system is not stiff
like this one—more about that in the later sections.

The solvers – these great unknown
The solvers are the answers to the question: how does Simulink run the simulation?

Every solver performs the simulation by advancing one time step and computing
the new outputs starting from the previous state(s) of the system until the end of the
simulation time. The initial system state must be fully defined.

Chapter 3

[53]

The appropriate solver for a model can be chosen by defining these characteristics:

• Time step size, which can be fixed or variable
• Presence of continuous states in the system
• Stiffness of the system

Variable-step versus fixed-step solvers
A variable-step solver will choose to use a shorter time step when the signal
derivative is changing faster in order to obtain a better approximation, while it
will use a longer step when the result changes at a slower pace. The most used
variable-step solver is the ode45 solver (this is the default Simulink solver as well).

A fixed-step solver will, on the other hand, always use the same step size. The
simplest is the ode1 solver (the famous Euler method).

We've already run our example with a fixed-step solver. Let's change this to a
variable-step solver by opening the Model Configuration Parameters window and
setting the ode45 solver.

We now have the option to configure more Solver parameters; we'll allow it to
use a Max step size of 1 second and a Min step size of 0.2 seconds, setting other
parameters to the default value. Running the simulation now will give us the
following result:

We can see that the step size is indeed variable: the second value has been computed
after only 0.2 seconds, and then the step size grew bigger and stayed at 1 second.
We got a good approximation in the problematic region while using longer steps in
the almost constant region, thus achieving a faster simulation time than a fixed-step
solver with a step size of 0.2 seconds.

Simulating a Model

[54]

But how does the solver determine when it's necessary to reduce the step size?
The answer is by looking at the tolerances defined in the Model Configuration
Parameters window.

Relative tolerance defines the maximum error as a percentage of the actual value.
The default value (1e-3) means that an error of 0.1 percent is accepted.

Absolute tolerance defines the maximum error as a scalar value. When it is set to
auto, Simulink will assume 1e-6 initially (that is, 0.000001), then change it to the
maximum error calculated with the relative tolerance.

The Shape preservation option, off (Disable all) by default, helps to increase the
accuracy when the solution's derivative varies rapidly at the cost of a more computing-
intensive simulation (thus increasing the overall time to compute the result).

Finally, there's the option Number of consecutive min steps, which defines how
many times the solver can use a time step smaller than the minimum step size
violations defined before issuing a warning or an error.

Let's set the Relative tolerance parameter to 1e-5 and run the simulation.
We'll obtain this result:

This time, the solver chose to use more shorter steps while the signal was changing
to improve the accuracy, thanks to the relative tolerance we've set; then the step size
grew gradually back to 1 second.

Chapter 3

[55]

Variable-step solvers give us a good trade-off between result approximation
and overall simulation times in models, whereas fixed-step solvers are too
computationally intensive to be used efficiently.

Fixed-step solvers are required for code generation and real-time
control purposes because Simulink can't go back in time to give a
more accurate result.

Continuous versus discrete
A system can be continuous or discrete based on the presence of integrators or
derivatives in the model (these are called continuous states). In other words,
if the system is represented by the means of one or more differential equations,
the system is continuous. Our cruise controller is continuous because it has an
integral component.

The continuous solver can choose to perform several iteration cycles in a single time
step to reach the best possible approximation of the final result. Such solvers fall into
the ODE (Ordinary Differential Equation solvers) category.

If a system is discrete, there are no differential equations but only memories and
mathematical operands. A discrete solver is unable to perform the numerical
integration required by continuous states.

The continuous system requires continuous solvers, while Simulink will switch to a
discrete solver for discrete systems even if a continuous solver has been specified.

Try to set a discrete solver in our example system and run a simulation. An error
window will appear, telling us that a discrete solver can't be used because the model
contains continuous states.

Stiff versus nonstiff
In a stiff continuous system, certain solvers are unable to compute the result unless
the step size is small enough; thus, a stiff solver is needed. These systems can be
identified by an overall slowly changing solution that can vary rapidly in a very
small time period.

Simulating a Model

[56]

Our example is mildly stiff: the ode45 solver had to use a small step size to compute
the result close to t = 0, but it managed to get the job done by changing the time step.
A more appropriate choice would have been the ode23t solver (moderately stiff),
which would have given the following result:

Let's choose another nonstiff solver, the fixed-step ode1, implementing the Euler
method. Set the Fixed step size parameter to 1.5 and run the simulation:

That's interesting: Using the Euler method with a long time step shows the result to
be oscillating around the mathematical result, but the solution is still convergent.

Setting the step size to 2 seconds will show that it can't converge anymore, and any
step size higher than 2 seconds will make the simulation diverge from the correct
result and go towards infinite oscillation. The following figure shows the result with
a step size of 2.1 and a simulation time of 20 seconds:

Chapter 3

[57]

The following article presents stiff solvers in a way that is
easy to understand: http://blogs.mathworks.com/
seth/2012/07/03/why-do-we-need-stiff-
ode-solvers/.
The documentation center, accessible by pressing F1, has
detailed information about the solver types and parameters.
This information can be found by navigating to Simulink |
Simulation | Configure simulation.

Now that we've learned how solvers work and how to choose the right solver, we
can start with the practice.

Build the complete closed-loop system
So far we've got two models: a simple cruise controller and a beautiful car.
Until now, they've been treated separately in an open loop. Remembering what we
learned in the previous chapter, we're going to place the required blocks and connect
them in a closed loop.

Let's open both the models and copy them to a new model named cruise_control_
sim.slx. If their workspaces aren't loaded automatically, load them by dragging
them from their folders to the MATLAB's Command Window and save the new
workspace as cruise_control_sim.mat. It's suggested to have the new workspace
loaded automatically via the PreLoadFcn model callback as we have learned in the
previous chapter.

In order to see what's happening inside the engine, let's pull out the Gear and
RPM signals from Alfa Romeo 147 GTA | Engine force | Gearbox and differential
until we reach the root block, by adding and connecting the output ports to every
parent subsystem.

Simulating a Model

[58]

Then we need to make the important connections: the Throttle output of the Cruise
controller system has to be connected to the Throttle input of the Alfa Romeo 147
GTA system. The same goes for the Speed port, going from the car to the controller.

We need to place a Scope block to view the outputs too. This block will be placed
near the upper-right corner of the root view above the systems.

In order to easily connect the signals to the Scope block, we'll use four From blocks
paired with four Goto blocks. Three of the From blocks will be connected to the car's
output, which are labeled using their names, while the fourth From block will be
connected to the throttle signal and labeled as Throttle. The Goto blocks will be
labeled the same way as the From blocks and placed near the Scope block.

Another couple of Goto/From blocks will be added to feed the remaining controller's
input. The From block will be connected to the Target speed input of the controller,
and the Goto block is placed above the systems near the upper-left corner of the root
view. Both will be labeled as Target.

We now have a system, as shown in the following figure:

It's time to connect the From blocks, tagged, Target, Speed, Throttle, RPM, and
Gear, to the Scope block.

To visualize the Target and Speed signals on the same Scope graph, rather than
having them in separate graphs, we'll add a Mux block and connect these signals
to it.

Chapter 3

[59]

The Mux block creates a virtual bus containing the muxed signals, which
must be of the same datatype. The subsequent blocks (connected to that
virtual bus) will execute their operations on each virtual signal. This is
extremely useful when you need to perform the same operations on many
signals. The Demux block does the opposite operation; it pulls out the
muxed signals in the same order that they were muxed.
The Bus Creator block may seem to be equivalent to the Mux block, but
it serves different purposes. Unlike the Mux block, the Bus Creator block
creates real buses (accepted only by bus-enabled blocks). The signals
entering the bus must be named; they can be complex and have different
datatypes. The Bus Creator block is used by code-generation tools to
declare and populate C structs.

Open the Scope block configuration window and set the Number of axes to 4, then
connect the signals from the Mux block and the Throttle, RPM, and Gear From
blocks. Finally, give a name to each signal exiting the From blocks by double-clicking
on the signal lines. Use the corresponding From block label as the signal name.
The signal names will be displayed above the Scope block graphs.

The portion of the system connected to the Scope block should look like the
following figure:

Another useful option of the Scope configuration is the Legends
checkbox in the General tab. When this option is checked, a legend
with the signal names will be printed in the graph window, allowing
us to distinguish the Speed and Target signals easily.

We're now ready to race.

Simulating a Model

[60]

Configuring the simulation
First and foremost, with the knowledge we gained in this chapter, we have to choose
the right simulation times, the solvers, and their options. Let's open the model's
Configuration Parameters window (or press Ctrl + E) for the last time.

Simulation times
The Start time parameter will be left as 0.0 seconds. We're not going to wait at the
car parking, are we?

Having a powerful engine, we'll reach the target speed of 100 km/h from standstill
in less than 10 seconds. But we want to see how the vehicle speed settles to the target
speed (to detect overshoots and make sure the target is actually reached), so we'll use
a long enough Stop time, 50 seconds.

The step size will be large enough to allow an external (soft real-time) application
to run synchronously but small enough to not allow the car to reach a speed higher
than the target before the cruise control can cut the throttle. This happens when the
target speed is low and the car is in the first gear and jumps from 0 to 20 km/h in less
than 2 seconds. Therefore, we're choosing a step size of 0.1 seconds.

In a simulation of 50 seconds, we'll be getting 500 samples.

Remember that the Scope block is limited to 5000 samples by
default with a step size smaller than 0.01 seconds we would
have to edit or remove the Limit data points to last option in the
'Scope' parameters window under the History tab.

Solvers
Since we're going to test our cruise controller with an external application, we cannot
use a variable-step solver; we have to choose a fixed-step solver.

It must be continuous since we've got three integrators (two in the cruise controller,
and one in the car).

The system is mildly stiff: the throttle command, even if clamped, can vary very fast
from 0 to 1 (depending on the Kp constant), and the speed signal can be problematic
at lower speeds for the reasons we listed earlier.

Since Kp will not have a big value (otherwise, driving the car would be an unpleasant
experience) and the chosen step size is small, the ode1 Euler solver is likely to work
well, so we're using it.

Chapter 3

[61]

Run our first serious simulation
Let's place a Step block in the model, connect it to the Target Goto (whose
corresponding From block is connected to the Target speed controller input), and set
its Final value to 100 km/h.

Run the simulation and open the Scope block. The speed graph should be like this one:

Quite an overshoot! The vehicle speed reaches almost 150 km/h when the controller
closes the throttle. This is due to a too high integral gain, Ki, forcing the vehicle to go
a lot faster than intended. Who wants a ride?

Calibrate the PI controller
To calibrate the PI controller constants, Kp and Ki, we'll use this manual method
of keeping Ki to zero and finding the Kp value to where the Throttle signal begins
to oscillate.

Then we'll halve the found value and save it into Kp and tune Ki in order to reach the
target speed with a minimum overshoot.

Calibrating Kp
Prepare the model by setting Ki to zero with this MATLAB command: Ki = 0.

We'll start with an insanely high proportional gain value, Kp = 5. The result is
shown in the following graphs:

Simulating a Model

[62]

No doubt Kp is too high (oscillations are strong); no one would accept a ride from us.

 Let's try with Kp = 1.1:

The preceding graph has been zoomed to show that there is only a small glitch due
to the fact that the speed increased beyond the target speed in the middle of a sample
period. But the rest of the graph shows no oscillations, so we're about to find the
right value.

The next simulation is done with Kp = 0.8:

This works very well. We can assume our Kp to be the half of 0.8. That's a fairly high
value, but there aren't passengers in the car... yet!

Let's type the MATLAB command, Kp = 0.4, and save the workspace.

Chapter 3

[63]

Calibrating Ki
Now we'll keep Kp as the untouched constant and calibrate Ki. The purpose is to use
the integral component to actually reach the target speed, keeping the overshoot
below 1 percent of the target speed.

We've already seen that Ki = 1 generates way too much overshoot, so we'll try
much smaller values such as Ki = 0.01:

The overshoot is above 5 percent of the target speed, so we need to choose a lower Ki.
Let's try with Ki = 0.002:

Got it! The overshoot is below 1 percent of the target speed.

We have now found both the calibration constants: Kp = 0.4 and Ki = 0.002. Don't
forget to save the workspace (cruise_control_sim.mat).

Simulating a Model

[64]

Test with other sources
So far we've learned how to use the Step source block. This is arguably the
most important source because it presents clearly the system's transient answer
to a stimulus.

But that's about it; it doesn't show the response to a wave, a random signal,
or a noise.

A more thorough test with other sources could help us detect problems that
were overlooked. For instance, we didn't take into account while testing that
the car can show a very different response in lower gears: at 100 km/h, it was
running in fourth gear.

Sine Wave
The cruise controller is acting only on the throttle, so we can predict that it will be
hard for it to follow decreasing speeds.

Let's try using a Sine Wave block as the target speed source, which was configured
as follows:

• Bias: 100 (km/h)
• Amplitude: 20 (km/h)
• Frequency: 0.2 (rad/s)

The simulation result is shown as follows:

Chapter 3

[65]

Our cruise controller can't use the brakes, so it isn't able to follow the falling side of
the wave. But it's able to rise up fast from zero and follow the rising wave accurately.

Ramp
The Ramp block will give us a linear increase in speed to match. We could use it to
observe the maximum speed the car is able to give us. Of course, at some point the
car won't accelerate anymore because the opposing drag and rolling resistances will
be equal to the force produced by the engine, and a maximum speed will be reached.

Let's try a slow-rising Ramp block using the following configuration:

• Slope: As we have a simulation time of 50 seconds, set the final target speed
to 300 km/h. So the slope parameter will be 300/50 = 6 km/h per second.
Enter this value (6) for this field.

• Start time: 0.
• Initial output: 0.

The result would look like this:

Everything looks in place: zooming in on the throttle and speed graphs when the car
is in first gear doesn't reveal any problems so far.

Let's make a more thorough test using a configurable source: the signal builder block.

Simulating a Model

[66]

Signal Builder
The Signal Builder block allows you to create and edit your own signals through a
supposedly intuitive graphical user interface. Once you put the Signal Builder block
in the model and open it, you should see the following screenshot:

With the mouse you can:

• Drag the points up and down (but not right/left)
• Drag the vertical lines right and left
• Drag the horizontal/oblique lines up and down
• Open a fancy menu by right-clicking the mouse

Chapter 3

[67]

That's all that you can do with the GUI. You may try to delete the signal, but
Simulink will complain because this is the only signal in the block. The easiest
way to make it work is to create a new signal.

First of all, increase the time range; we've got a 50 second simulation time and this
block keeps the default of 10 seconds. To do so, navigate to Axes | Change Time
Range as shown in the following screenshot and set Max time as 50:

Then, create a new signal by navigating to Signal | New | Custom..., represented in
the following screenshot:

Simulating a Model

[68]

We'll have to insert Time values and Y values. Spending 5 seconds in lower gears,
10 seconds in higher gears, and using speeds slightly below the thresholds at which
gear-shifting occurs, the strings to insert are:

Time values [0 5 5 10 10 20 20 30 30 40 40 50]

Y values [30 30 50 50 80 80 100 100 120 120 140 140]

Now that we've created another signal, we can safely delete the previous one and
obtain the situation presented in the following screenshot:

Chapter 3

[69]

Let's connect it to the target speed Goto block input and run the simulation again.
Now the Scope block will show the following result:

Again, we make sure that there are no problems by zooming in on the Speed and
Throttle graphs.

Having found the right calibration constants, we can finally use our cruise controller
on something more interesting than a model.

Simulating a Model

[70]

Summary
You are now able to prepare a Simulink virtual test bench and run the closed-loop
simulations of a controller and the mathematical model of the controlled item by
setting the right simulation parameters, choosing the most appropriate sources, and
viewing the result on the Scope block.

In the next chapter, you'll learn how to use your Simulink models with something
outside Simulink itself. Have you got a spare car?

Using the Model
In the earlier chapters we've developed a simple cruise controller model and the
controlled car model, and then we've tested and fine-tuned the controller model.
All the work has been done in Simulink only.

We couldn't perform our model testing on something other than the car model,
because we still lack an interface with an external system, outside Simulink.
This external system could be the real car for those lucky ones who have a spare
147 GTA in their garage and all the hardware needed to command its engine control
unit, or—more realistically—a car simulation software like the one provided with
this book.

In this chapter we'll take a first look at the software and understand how it is
exchanging the data.

We'll then learn how to develop custom blocks to communicate with the application
and use them with our cruise controller model. Those custom blocks will be
developed with the MATLAB scripting language, which has the advantage of having
a simple and intuitive syntax.

The final part of this chapter, aimed at those who know the C language, discusses the
implementation of the same blocks using the C language.

The external software – a Qt5 application
The application is shipped with the code bundle provided with this chapter. It's
located in the external_app folder (in code bundle), containing:

• The 64-bit Linux executable (external_app/Linux/alfa147gta_linux64),
which needs the Qt5 libraries to be installed in the system (the package is
usually called qt5) and must be marked as executable (by typing chmod
+x alfa147gta_linux64 in the terminal)

Using the Model

[72]

• The 32-bit Windows executable (external_app\Windows\
alfa147gta_win32.exe) built using MinGW; the needed libraries
(the .dll files) are located in the same folder to avoid you the hassle
of installing Qt5 on Windows

• The source code (external_app/source/alfa147gta, distributed under
the GPL license), made using Qt Creator

Move the application (and every .dll file, if you're on Windows) to the folder we'll
use as the MATLAB working folder, and run it by double-clicking on the icon.

You should see the following window:

The application works by reading and writing three text files (whose paths have to
be put in the three input fields above the graphs), having only one line with a real
number. The vehicle speed and target speed files are written by the application itself,
while the throttle command file is read. Throughout this chapter, we'll assume the
files to be speed.txt, target.txt, and throttle.txt, located in the same directory
as the application itself. Enter their paths in the application input fields.

Chapter 4

[73]

There is another input field: the simulation step size (in seconds). It must be set equal
to the step size used by the cruise controller model, and allow the application to run
synchronously with the model. The value we'll use, as discussed in the previous
chapter, is 0.1 seconds.

Finally, the slider allows us to vary the target speed easily.

As soon as the Run button is clicked, the application begins simulating the vehicle
(assuming an initial throttle input equal to 0) the same way our mathematical Alfa
147 GTA model did.

Try moving the target speed slider: you'll see a red line moving in the speed graph.
Of course, since there isn't any controller writing the throttle file, the other graphs
will keep their default values.

The first graph, displaying the speeds, will have two lines: the red one is the target
speed, and the blue one is the vehicle speed, with the difference between the two
highlighted in yellow. The second graph displays the throttle command and the
third graph displays the the current gear.

The Stop button will stop the simulation. You'll notice that the speed.txt,
target.txt, and throttle.txt files have been automatically created by the
application itself.

At this point we know that in order to use this application we've got to develop two
custom blocks: a sink block that will write a scalar, one-dimensional, real signal to a
file, and a source block that will read a file and output a scalar, one-dimensional, real
signal. Custom blocks are developed with S-functions.

The Swiss army knife – S-functions
S-functions are the most powerful way of defining custom blocks. There's no limit to
what you can do: re-use an existing code, implement a functionality not available in
your current blocksets, exchange data with external applications and devices, and so
on. If you can code it, you can use it.

S-functions can be implemented using the following languages: the MATLAB
scripting language, C/C++, and Fortran. S-functions written with the latter two
need to be compiled first in order to produce a shared library loadable by the
Simulink engine, while a MATLAB S-function will be interpreted and executed
during the simulation.

Using the Model

[74]

In this chapter we'll focus on Level 2 MATLAB S-functions, since they are the easiest
to develop even for people without programming knowledge. But the final part of
this chapter, aimed at those who already know the C language, will explain how to
obtain the same results with C MEX S-functions.

There are Level 1 MATLAB S-functions too, with a different (older
and likely to be deprecated soon) API to work with. New MATLAB
S-functions should be developed using the Level 2 API.

In order to code an S-function, we'll have to learn some concepts: how a simulation is
done, what information the Simulink engine requires, how S-functions provide that
information, and how to store persistent data during the simulation.

The simulation phases
The whole simulation process can be divided into three phases: initialization,
simulation, and cleanup.

The initialization phase takes place before the simulation starts: Simulink needs to
know the number of inputs and outputs for each block (with their dimensions), the
parameters, the sample time, and the amount of memory to be reserved. While some
properties are read during model development (without knowing the number of
input ports and output ports, the block could not be drawn), the required memory is
allocated only once, as soon as the user starts the simulation.

The simulation loop is executed until the simulation reaches its end time, or the user
manually stops it. Since block properties and memories have been properly set up
in the previous phase, all that Simulink needs is to know how the outputs have to be
calculated and update the memories.

Finally, the cleanup phase is executed only once, that is, after the simulation is
stopped. During this phase, Simulink will free every system resource that has been
allocated in the initialization phase, asking custom blocks what the appropriate
method to free their resources is.

Level 2 MATLAB S-function callbacks
The S-function block must implement a certain number of predefined routines, or
callbacks, that the Simulink engine will call during the three simulation phases.

Only two callbacks are required, the other ones being optional (if you don't need
them, you don't have to declare them).

Chapter 4

[75]

The mandatory callbacks
The first mandatory callback to have is the setup function called during the
initialization phase. The block characteristics—inputs, outputs, sample times, and
number of parameters—must be defined here. This function is called during model
updates too (while developing the model).

There is an important configuration related to input ports: the direct
feedthrough. If, at a given simulation time step, the current input port
value is required to calculate one or more output, that port must have the
direct feedthrough flag set.
If, on the other hand, the outputs can be calculated using only the
previous states (memories, integrators), the direct feedthrough flag must
be cleared for every input port.
This will allow the Simulink engine to determine the block execution
order and detect the presence of algebraic loops: they occur when an
input port with direct feedthrough is driven by the output of the same
block, either directly, or by a feedback path through other blocks which
have direct feedthrough. Memory and integrator blocks are capable of
breaking the loop.

The second mandatory callback is the Outputs function, called in the simulation loop
at each time step. This function implements the core logic of the block; its purpose is
to calculate the output ports values using the block's memories (and input values, if
the block has direct feedthrough).

That's it. Those are the required callbacks. But if you want to store some variables in
a persistent memory (that will be available to every callback during the simulation),
we'll need to use some optional callbacks too.

The most useful optional callbacks
These callbacks are the ones we should know about in order to save persistent data
during the simulation.

The first optional callback, PostPropagationSetup, is the one where you declare the
necessary memory. It will be executed once after the setup routine, when Simulink
has calculated the datatype and the dimensions for each signal in the model.

The second optional callback, Start, is called right before the beginning of the
simulation loop. It's used to assign an initial value to the memory declared in
PostPropagationSetup.

Using the Model

[76]

The third optional callback, Update, serves the purpose of updating the persistent
memory and it is called at every step in the simulation loop, immediately after
Outputs.

The fourth optional callback, Terminate, belongs to the cleanup phase and must
be used when some system resources allocated in PostPropagationSetup can't be
freed automatically by Simulink (common examples are pipes, network sockets, and
devices like an RS232 serial port; they have to be closed first).

The Documentation center, as always, has a complete list of the
available callbacks, with their description and example usage. It's
under this path: Simulink | Block creation | Host-specific code |
MATLAB S-Functions | S-Function Callback Methods.

The work vector – DWork
Let's suppose we would like to write a custom log-to-file block, which would save
each input value to a line in a log file.

The implementation would be as follows:

• Open a file for writing in Start
• Write to the file each time Outputs is called
• Close the file in Terminate

Where could we store the file handle?

We can't store it in a local variable. A local variable will disappear as soon as the
Start callback is completed, and the Outputs callback will throw an error at the first
attempt to write some data.

We could store it in a workspace (global) variable. The file handle will be accessible
to the Outputs and Terminate callbacks. But there's a huge problem: if we had
more than one log-to-file blocks in the same model, they will use the same variable
to store the file handles, therefore writing everything to the same file. To overcome
this problem we may use a vector variable holding a list of open file handles, and a
boilerplate code determining the right index to use for each log-to-file block. Quite
difficult, not to mention memory management issues.

Chapter 4

[77]

There's a much better, cleaner way: work vectors. Yes, The MathWorks wrote the
boilerplate code for us. The DWork vector is a portion of memory the Simulink
engine allocates for each S-function block that needs to store persistent data during
simulation, solving the problem of concurrent access; every S-function block will use
only its own memory. And that memory is managed directly by the Simulink engine.
Isn't it sweet?

There are four types of DWork vectors:

• Generic DWork type vectors are the most generic, allowing to store
variables, discrete states, and mode data

• DState type vectors are specifically made to store discrete states (memories),
enabling Simulink's data logging facilities

• Scratch type vectors are persistent for only one time step; the data stored in
them will disappear as soon as the next time step begins

• Mode type vectors can store switches modifying the S-function
operating mode

To understand what an S-function mode is, imagine a block calculating
the absolute value of the input. It has two modes of operation: copy the
unchanged input to the output or change the input sign before copying it
to the output. By using zero-crossing detection, we could set the mode in
a single-width Mode DWork vector, used later in the Outputs callback.

Using DWork vectors is simple. We must use the PostPropagationSetup callback
to define:

• How many DWork vectors we need
• The type of each DWork vector
• The width of each DWork vector, equal to the number of elements we want

to store
• The characteristics (datatype, complexity) of the DWork vector elements

The theory is over. We know everything we need to develop our first MATLAB
S-functions.

Using the Model

[78]

MATLAB S-functions – file source and
sink blocks
We'll develop the simplest possible S-functions to enable our models to communicate
with the application we described earlier: a file-source block and a file-sink block.

These S-functions will have only one port and be able to read/write a scalar real
signal from/to a file. The file path will be passed as a parameter; and the files will
have only one line containing the new signal value.

The sink block, called filesink_msfun, will receive the input and convert it to a
string that will be written to the file. The file path is passed as parameter, no DWork
vector is needed because we don't have to output a default value.

The source block, called filesource_msfun, will read one line from the file, attempt
to convert it into a real number, and output it. When the file is not readable, the last
line is empty, or an error occurs, the last valid value will be used. This means that
we'll have to use one DWork vector, and one more parameter for the initial output.

In the following paragraphs we will walk through a detailed description of their
implementation, beginning with the simpler one, the filesink_msfun block.

The filesink_msfun block
This block has the purpose of writing the input signal to a text file. Since the text file
will be read by the external application, we can't open it once the simulation starts
and close it when the simulation ends; otherwise, the application may have problems
in reading it. Therefore, the file has to be opened and closed at each time step, in the
Outputs callback.

Let's open an empty model and save it as msfun_test.slx.

We'll immediately place the Level-2 MATLAB S-Function block from the
Simulink | User-Defined Functions blockset in our model:

Chapter 4

[79]

Double-clicking on the block will open the usual parameters window, where we
need to replace the S-function name parameter with filesink_msfun:

Let's click on the Edit button; since the filesink_msfun.m script file does not exist
yet, Simulink will ask if we want to open the editor or locate the file. Choose the
Open editor option to launch the MATLAB editor with an empty file, which we'll
immediately save as filesink_msfun.m.

A quick note to Linux users: the editor is using Emacs-like shortcuts
by default (for example, Ctrl + W/Ctrl + Y to copy/paste). If you're not
using Emacs, you may want to switch to Windows-like shortcuts (for
example, Ctrl + C/Ctrl + V to copy/paste) by opening the Preferences
window and navigating to Keyboard | Shortcuts. The first item, Active
settings, will let you choose between Emacs or Windows behavior.

The MATLAB code
First and foremost, we need to define the S-function entry point, that is, a function
with the same name as the script file itself (minus the extension), calling the
mandatory setup callback.

%% S-function entry point
function filesink_msfun(block)
setup(block);

When Simulink updates or simulates the model, it will call filesink_msfun, passing
as argument one Simulink.MSFcnRunTimeBlock object containing every data about
the block itself. This will, in turn, run the setup callback.

Using the Model

[80]

The second function we must implement is the setup callback:

%% First required callback: setup
function setup(block)

The first line in this snippet of code is a comment, followed by the function definition
taking the block object as argument.

Let's set the simplest block properties first: the number of parameters, input ports,
and output ports.

block.NumDialogPrms = 1; % Number of parameters
block.NumInputPorts = 1; % Number of inports
block.NumOutputPorts = 0; % Number of outports

In order to edit them, it's sufficient to assign the desired values to the block object's
attributes. In this case, we specify that the S-function will accept only one parameter.
Being a sink block, it has one input port and no output port.

We must now configure the input port:

% Set input port properties as inherited
block.SetPreCompInpPortInfoToDynamic;

% Override some properties: scalar real input
block.InputPort(1).Dimensions = 1;
block.InputPort(1).DatatypeID = 0; % double
block.InputPort(1).Complexity = 'Real';
block.InputPort(1).SamplingMode = 'Inherited';
block.InputPort(1).DirectFeedthrough = 1;

We begin by initializing the first input port properties (dimensions, datatype,
complexity, and sampling mode) to be inherited from the driving block. Remember
that the elements in a vector are accessed with one-based indexes.

Then we explicitly set the properties to make the input port a one-dimensional
double-precision real number. The sampling mode is set as inherited from the
previous block, but (unless you have the DSP System ToolboxTM product installed)
the only possible value is Sample. Finally we set the DirectFeedthrough property in
order to execute this block after the driving one.

We could have used the instruction block.
SetPreCompPortInfoToDefaults that would have
configured the port to accept a real scalar sampled signal
with a double datatype.

Chapter 4

[81]

Since we don't have to configure any output port, we proceed by defining the
sample times:

% Set the sample time and the offset time.
% [0 offset] : Continuous sample time
% [positive_num offset] : Discrete sample time
% [-1, 0] : Inherited sample time
% [-2, 0] : Variable sample time
block.SampleTimes = [-1 0];

This parameter accepts a vector: the first element is the sampling time period and the
second is the initial offset time (both are expressed in seconds).

The possible combinations are as follows:

• [0 Y]: For a continuous sample time with Y offset, meaning that a new
sample will be acquired every time step

• [X Y]: For a discrete sampling period of X seconds with Y offset
• [-1 0]: To inherit the sample time from the driving block
• [-2 0]: To declare a variable sample time, useful only with variable-step

solvers

Here we set the sample time as inherited from the driving block (-1). This block will
be executed immediately after the driving one.

The next step is to define how this block should behave when the user tries to save or
restore a simulation state:

% Specify the block simStateCompliance. The allowed values are:
% 'UnknownSimState', < The default setting; warn and assume
DefaultSimState
% 'DefaultSimState', < Same sim state as a built-in block
% 'HasNoSimState', < No sim state
% 'CustomSimState', < Has GetSimState and SetSimState methods
% 'DisallowSimState' < Error out when saving or restoring the model
sim state
block.SimStateCompliance = 'HasNoSimState';

Since this block, not having a DWork vector, has no simulation state to save or restore,
we use the 'HasNoSimState' constant. Another valid option would have been
'DefaultSimState', which would end up doing nothing anyway.

Using the Model

[82]

To understand what a simulation state is, and when it could be
useful, refer to this page in the Documentation center: Simulink |
Simulation | Run Simulation | Interactive | Save and Restore
Simulation State as SimState.
The default setting is 'UnknownSimState', which is equivalent
to 'DefaultSimState', with a warning issued when the user
attempts to save or restore the simulation state.

Now every block property has been defined and Simulink should be theoretically
able to do a model update. But there's one information missing to complete the
initialization phase. We have to register every other implemented callback at the end
of the setup function.

Since we'll need the mandatory Outputs callback, we'll register it now:

block.RegBlockMethod('Outputs', @Outputs); % Required

The RegBlockMethod function tells Simulink that the required callback ('Outputs')
is implemented by another function (@Outputs). We could have called that function
Foo and used block.RegBlockMethod('Outputs', @Foo)to register it. It's not
mandatory to use the same name as the callback, but it's always better to keep
things simple.

The final step is to implement the Outputs function's required callback:

%% Second required callback: Outputs
function Outputs(block)
% open the file as write-only
fid = fopen(block.DialogPrm(1).Data, 'w');
% print input port value to file
fprintf(fid, '%f', block.InputPort(1).Data);
% close the file
fclose(fid);

We're retrieving the value of the first parameter from the DialogPrm vector: it
contains the filename.

The file is then opened in write mode using fopen, which returns the file identifier
stored in fid.

fprintf will print to the file pointed by fid one line, that is, the number in fixed-
point notation. This number is the signal we got from the first input port (accessed
the same way as the parameter).

Chapter 4

[83]

Finally, we're closing the file with fclose.

File operations are found in the documentation center of the MATLAB |
Data and File Management | Data Import and Export section.

The script is complete. Save the filesink_msfun.m script and close the S-function
block properties dialog window. You'll notice that the block appearance has
changed, the output port has disappeared, and the script filename is shown without
the extension:

Let's develop the corresponding source block now.

The filesource_msfun block
The filesource_msfun block has the purpose of reading its output signal from a
text file, passed as parameter. Like we discussed before, the file can't be left open
since the external application will be using it too. Therefore, we have to open and
close the file at each time step.

Moreover, we have to provide a fallback value if the file isn't readable. That fallback
will be the last valid value stored in a DWork vector. An initial value needs to be set
via another parameter.

Repeating the same steps seen above, we add another Level-2 MATLAB S-function
to the msfun_test.slx model, and start developing the new script that will be called
filesource_msfun.m.

The MATLAB code
The S-function entry point, as we saw before, must have the same name as the file
and must execute the setup callback:

%% S-function entry point
function filesource_msfun(block)
setup(block);

Using the Model

[84]

The mandatory setup callback will define the block characteristics, telling Simulink
there are two parameters and one scalar, real output:

%% First required callback: setup
function setup(block)
block.NumDialogPrms = 2; % Number of parameters
block.NumInputPorts = 0; % Number of inports
block.NumOutputPorts = 1; % Number of outports

% Set the default properties to all ports
block.SetPreCompPortInfoToDefaults;

This time we won't inherit the port characteristics from other blocks; we will just set
the default options.

% Set the sample time and the offset time.
block.SampleTimes = [0 0];

The same applies to the sample time. We want the block to be run at each time step,
so we're using the continuous sample time option with zero offset time.

% Specify the block simStateCompliance.
block.SimStateCompliance = 'DefaultSimState';

This block will have one DWork vector. By using 'DefaultSimState', we'll instruct
Simulink to save it into the simulation state.

Since we're using a DWork vector, we must register the optional callbacks
(PostPropagationSetup) to define it, set its initial value (Start), and perform its
update (Update) after the outputs have been calculated:

block.RegBlockMethod('PostPropagationSetup',
@PostPropagationSetup);
block.RegBlockMethod('Start', @Start);
block.RegBlockMethod('Outputs', @Outputs); % Required
block.RegBlockMethod('Update', @Update);

Now we have to implement the callbacks, using the same order Simulink will call
them with.

The first callback is the one that sets the DWork vector properties:

%% First optional callback: PostPropagationSetup
function PostPropagationSetup(block)

Chapter 4

[85]

We must define how many DWork vectors we need. Since the variable that we need
to store is the last valid output and there's only one output port, we need only one
DWork vector:

block.NumDworks = 1;
block.Dwork(1).Name = 'lastValue'; % required!
block.Dwork(1).Dimensions = 1;
block.Dwork(1).DatatypeID = 0; % double
block.Dwork(1).Complexity = 'Real';
block.Dwork(1).Usage = 'DWork';

That vector is accessed using a one-based index. We define the vector to be one-
dimensional, able to store a double datatype representing a real number. We're not
interested in logging facilities, so we use the generic usage type 'DWork' (that is the
default, so we could safely omit it).

The DWork vector requires the Name property to be set!
It's common practice to declare one DWork vector for each port;
this way the indexes don't change and it's easy to develop and
maintain the code.

The DWork vector has to be initialized before the simulation loop; this is done with
the Start callback:

%% Second optional callback: Start
function Start(block)
block.Dwork(1).Data = block.DialogPrm(2).Data;

We just store the second parameter, which holds the initial output, inside the first
DWork vector data.

The other required callback, Outputs, implements the logic that reads the source file:

%% Second required callback: Outputs
function Outputs(block)
% open file as readonly
fid = fopen(block.DialogPrm(1).Data, 'r');
% read one line
tline = fgetl(fid);
if (tline == -1) % fail
 % output last value
 block.OutputPort(1).Data = block.Dwork(1).Data;
 return
end

Using the Model

[86]

% convert to double
output = str2double(tline);
% check that the output is a valid number
if (isnan(output)) % fail
 % output last value
 block.OutputPort(1).Data = block.Dwork(1).Data;
 return
end
% output the read value
block.OutputPort(1).Data = output;
fclose(fid);

The file, whose path is the first parameter of the S-function, is opened in read-only
mode with fopen. The fgetl function will attempt to read a line from the file. If the
line is valid, the str2double function will parse it, putting the result into the output
variable. If that variable actually contains a valid number, it is sent to the first output
port. Finally the file is closed with fclose.

If something fails, the number stored in the first DWork vector will be sent instead,
and the file is closed.

The final Update callback, called immediately after the Outputs callback, is the one
that will update the DWork vector with the last output value:

%% Third optional callback: Update
function Update(block)
block.Dwork(1).Data = block.OutputPort(1).Data;

We're now done. Save the filesource_msfun.m script and check that the S-function
block changes, having only the output port and displaying the new S-function name.

A quick test
To check that everything is working, let's add to the msfun_test.slx model a Sine
wave, a Mux, and a Scope. Connect the blocks as shown in the following screenshot:

Chapter 4

[87]

Set the filesource_msfun parameter to 'testfile' 0, and the filesink_msfun
parameter to 'testfile' (don't forget the single quotation marks around the
filename), then set the Fixed-Step Discrete solver with a time step of 0.1 seconds in
the Model configuration parameters window (Ctrl + E) and run the simulation.

By double-clicking on the Scope block we should see the following result:

Good! The S-functions are working as expected: the filesink_msfun block has
created the file named testfile in the workspace and written the Sine wave signal
output to it. Meanwhile, the filesource_msfun is reading the value from the same
file. A comparison of the two waves, shown in the third graph, shows that they
are coincident.

If we changed the direct feedthrough setting of the filesink_msfun block
input to 0, we would see the second wave being late by 0.1 seconds. This
is because Simulink will not know that the Sine Wave block must be
executed before the filesink_msfun block.
The block execution order can be viewed in the model window by
selecting the Display | Blocks | Sorted Execution Order menu item.

We're almost ready for the real thing.

www.allitebooks.com

http://www.allitebooks.org

Using the Model

[88]

Simulink and the real world
We've got a big problem: how fast did the simulations run? Were they in sync with
our real clock? The answer is no; simulation time and actual clock time are not the
same. The amount of time it takes to run a simulation depends on many factors
(among them are the model's complexity, the solver's step sizes, and the processor's
speed). Having a very simple model (the cruise controller), powerful hardware, and
a time step of 0.1 seconds, the simulation time is way ahead of the real time.

And guess what, the application we want to interface with is using the system clock.

How do we solve this problem?

Forcing Simulink to sync
We'll use the famous Simulink Real Time Execution S-function by Guy Rouleau,
published in the MATLAB Central at the address http://www.mathworks.com/
matlabcentral/fileexchange/21908-simulink%C2%AE-real-time-execution.

The MATLAB Central (http://www.mathworks.com/
matlabcentral/) is the main community of MATLAB and
Simulink developers. You can find the latest news and updates,
the blogs of many MathWorks developers, a discussion board, and
the invaluable File Exchange. The File Exchange holds over 18,000
user-contributed packages, usually distributed with a permissive
license like the 3-clause BSD.

The code bundle coming with this chapter already contains the RealTimeSlower
folder with all the needed files for Windows (32 and 64 bit) and UNIX/Linux (64
bit); we only have to add that folder to our MATLAB path, as explained in Chapter 2,
Creating a Model.

The Simulink Library Browser will now have a new item: the Soft Real Time block
under the Soft Real Time Lib blockset. This block is the one that does the trick for
us, that is, syncs Simulink to the system clock.

Preparing the cruise controller model
Let's make a copy of the cruise controller model we did in Chapter 2, Creating a Model,
and save it to the current working folder as cruise_control_external_msfun.slx.

Chapter 4

[89]

The calibration constants Kp and Ki have to be set to the values we found in
Chapter 3, Simulating a Model. They were 0.4 and 0.002, respectively. Let's set
them now:

Kp = 0.4;

Ki = 0.002;

Save the workspace as cruise_control_external.mat. We'll add the
load('cruise_control_external.mat') command to the model's PreLoadFcn
callback too, as shown in Chapter 2, Creating a Model.

Then we'll open the Model configuration parameters window (shortcut: Ctrl + E)
and set the fixed-step solver ode1 (Euler), with a Fixed-step size of 0.1 seconds.
The simulation Stop time should be set to inf, since we want the simulation to run
indefinitely until we stop it.

Finally, instead of the root-level input and output ports, we'll use the blocks we just
made, along with the Soft Real Time block:

• The current speed input will be served by a Level 2 MATLAB S-Function
block calling the filesource_msfun code, having this string as parameter
'speed.txt' 0

• The target speed input will be served by a Level 2 MATLAB S-Function
block calling the filesource_msfun code, having this string as parameter
'target.txt' 0

• The throttle output will feed a Level 2 MATLAB S-Function block calling the
filesink_msfun code, with the file 'throttle.txt' passed as parameter

• One Soft Real Time Lib | Soft Real Time block will be placed into the
model, right above the main block

The prepared cruise controller model should look like the following screenshot:

Don't forget to do a model update (shortcut: Ctrl + D) as a little check.
Now we're ready to have some fun!

Using the Model

[90]

Running the simulation on the target
application
With the directions we had at the beginning of this chapter, we'll start the external
application inside the same folder as the model, and set these file paths:

• The speed.txt file for the vehicle speed
• The target.txt file for the target speed
• The throttle.txt file for the throttle command

Before hitting the Run button in Simulink, hit the Run button in the target
application first! Otherwise, our filesource_msfun blocks will recognize that the
input files don't exist (they're created by the application as soon as its Run button is
clicked) and throw an error. The application is less picky: the files, if they don't exist,
will be automatically created.

Now we can move the Target speed slider, and the cruise controller will try to match
it through the throttle. The simulated car will react to the throttle input, and the
vehicle speed will be painted with a blue line on the application's Speed graph.
The application will update the Throttle and the Gear graphs too.

An example is presented in the following screenshot:

Chapter 4

[91]

Isn't it awesome to see our Simulink cruise controller model interacting with
something so different?

When we're tired of investigating how fast the car can go, measuring the 0-100 km/h
time, and frantically moving the slider trying to get the Euler solver to diverge, you
can stop the simulation and the application by clicking on the provided Stop buttons.

Want to do more? Try achieving a smoother throttle command
from the cruise controller by editing Kp, Ki, and lowering the
simulation step size. Be warned that file-based data exchange is
highly inefficient though. (Hint: UNIX/Linux systems could use
named pipes instead of standard files)
Want to do even more? The application code is really simple
and is released under the GPLv2 license. You can find the most
updated version at https://github.com/sevendays/gsws-
alfa147gta. Feel free to suit the application to your needs (and
let the author know)!

Going further – C MEX S-functions
Now we'll learn how to develop a custom S-function block using the C language. A
basic knowledge of the C syntax is required.

The C language offers some advantages over MATLAB's scripting language:

• It is the most-used language to develop (hard) real-time systems
• It is one of the most popular languages, if not the most popular
• C executables offer unparalleled performance with respect to MATLAB

scripts
• C S-functions can be developed without having MATLAB installed (but

you'd still need the external headers and libraries)
• Legacy C code can be easily ported to S-function blocks and used in Simulink
• C++ compilers can be used, giving access to some powerful C++ frameworks

like Qt

C MEX S-functions are programmed in C/C++ and built with the mex tool, which
comes with MATLAB.

Using the Model

[92]

They are compiled as dynamically linked libraries on Windows platform, and as
shared objects on UNIX/Linux platform, using the available compiler.

For a list of supported compilers, go to http://www.mathworks.
com/support/compilers/current_release/.

Setting up the mex tool
Since mex is only a frontend to a compiler and linker, we need to locate the available
compilers in the system, and tell MATLAB which one to use.

This is easily done; just enter this command in the MATLAB main window:

mex -setup

The response is different based on the operating system in use.

UNIX-like systems (GNU/Linux in particular)
MATLAB will list the available compiler configurations, asking you to choose one:
the default compiler is gcc, and will appear in the list if it is installed.

As soon as an option is selected, the file mexopts.sh containing the compiler options
will be written in your home folder (usually ~/.matlab/R2013a/).

If you want to use C++ comments (beginning with //) in your C code,
you can replace the string -ansi with -std=c99 in your ~/.matlab/
R2013a/mexopts.sh file. Keep in mind that the next time you run mex
-setup, your changes will be overwritten.
If MATLAB complains about your gcc version being unsupported, either
install the package gcc-4.4 (or similar) if your distribution ships it,
or run MATLAB inside a chroot with a distribution using gcc 4.4 by
default, like Debian Squeeze.

Microsoft Windows systems
On Microsoft Windows systems, MATLAB will ask you for permission to
automatically detect the compilers, and then it will list the available compilers,
allowing you to select one.

Chapter 4

[93]

Even if the lcc compiler is shipped bundled with 32-bit MATLAB for Windows, the
best choice is to install the SDK provided free of charge by Microsoft, containing the
msvc compiler. 64-bit MATLAB ships without a compiler, making it mandatory to
install the SDK.

How C MEX S-functions work
Like we already learned with MATLAB S-functions, the Simulink engine requires
some callbacks to be defined, and will optionally look for other callbacks.

There are four mandatory callbacks: mdlInitializeSizes,
mdlInitializeSampleTimes, mdlOutputs, and mdlTerminate.

The first two belong to the initialization phase; mdlOutputs is called during the
simulation loop and mdlTerminate in the cleanup phase.

The complete call graph for the initialization phase is the following one (required
routines are the darker ones):

Using the Model

[94]

The complete call graph for the simulation and cleanup phase is the following one:

Each routine is extensively documented in the Documentation center:
see Simulink | Block Creation | Host-Specific Code | S-Function
Basics | Concepts, subsections S-Function Callback Methods and
S-Function SimStruct Functions.

The required callbacks
Let's take a closer look at the required routines, and when the Simulink
engine calls them.

Chapter 4

[95]

mdlInitializeSizes
This function is used to describe the inports, outports, and characteristics of their
parameters, together with the number of continuous states (integrators/derivatives),
discrete states (memories), and work vectors.

It is called during the initialization phase and during a model update (it is called as
soon as you configure the S-function block parameters too).

mdlInitializeSampleTimes
This function must define the sampling time period at which the S-function block
operates, together with the offset time (mostly useful if the output has to be
calculated after the sampling done by other blocks).

Like mdlInitializeSizes, it is called during the initialization phase and during a
model update.

mdlOutputs
This function must implement the block's core logic, using saved states, work
vectors, and input signals to calculate the block outputs.

It is called during the simulation phase, at each time step.

mdlTerminate
This function must have the cleanup logic to be executed in order to free the system
resources that were allocated when the simulation started. A common usage is to
close file descriptors and free the memory manually allocated with malloc().

This function is called once at the end of the simulation, in the cleanup phase.

The most useful optional callbacks
These routines allow the developer to have a more fine-grained control on the
S-function behavior.

Each optional routine is ignored by the Simulink engine, unless the corresponding
preprocessor identifier is properly defined.

The most useful optional routines are mdlStart, mdlInitializeConditions, and
mdlUpdate. Their main purpose, like the optional callbacks we saw while developing
MATLAB S-functions, is to initialize and update block states and work vectors.

Using the Model

[96]

mdlStart
This function is called once, right when the simulation starts allowing you to
allocate the necessary system resources. The corresponding preprocessor
identifier is MDL_START.

mdlInitializeConditions
This function is called during the simulation phase, at the beginning of each time
step, allowing you to reinitialize the variables stored in block states and work vectors
before mdlOutputs is executed. If the S-function block is placed into an enabled
subsystem, this function will be called each time the subsystem is re-enabled. The
corresponding preprocessor identifier is MDL_INITIALIZE_CONDITIONS.

mdlUpdate
This function, called during the simulation phase right after the execution of
mdlOutputs, serves the purpose of updating block states and work vectors.

It is called only if the block has discrete states or doesn't have direct feedthrough
(otherwise there is obviously no state to update, and the Simulink engine avoids
making this extra call). The corresponding preprocessor identifier is MDL_UPDATE.

If you need to initialize persistent variables only once, use
mdlStart.
If, on the other hand, you need to initialize persistent variables at
each simulation time step, use mdlInitializeConditions.

The DWork vector
Like its MATLAB S-function counterpart, this is the main work vector. It is able to
store every datatype supported by Simulink.

Its usage is similar: the work vector characteristics, which were defined in the
MATLAB S-function callback PostPropagationSetup, now have to be defined in
mdlInitializeSizes.

Then, using mdlStart, initialize the values of every DWork vector and allocate the
needed system resources.

Optionally, we can use mdlInitializeConditions to reinitialize the DWork vector
values at the beginning of each time step.

Chapter 4

[97]

The DWork vectors are then used by mdlOutputs to calculate the S-function block
outputs and updated by mdlUpdate.

Finally, in mdlTerminate, we get the allocated system resources from the DWork
vector(s) and free them up.

Remember that DWork vectors are managed by the Simulink engine:
don't attempt to free() their memory inside mdlTerminate.

There is more though. C MEX S-functions can use the so-called elementary work
vectors built for the most common use cases.

The elementary work vectors
The elementary vectors that can store specific data are:

• The IWork vector can store integer data
• The RWork vector can store floating-point (real) data
• The PWork vector can store pointers to persistent data structures (such as file

handlers, allocated memory, and so on)
• The Mode vector can store integer flags modifying the behavior of the

S-function

Their usage is almost identical to the usage of DWork vectors described in
the previous paragraphs, but with a big difference, they must be unique.
This means that:

• The S-function can use only one elementary vector in mdlInitializeSizes
(for example, it's not possible to have two RWork vectors in the same code,
while it's possible to use the RWork vector together with the IWork vector)

• It's not possible to customize them (for example, assigning them a name)

Now that we've learned the theory behind C MEX S-functions, let's implement the
same file-based source and sink blocks in C.

The filesource S-function
As we saw earlier, we need one DWork vector to store the previous block output.

Open a new file in the C editor of your preference, and call it filesource_sfun.c.

Using the Model

[98]

The beginning – headers and includes
The first thing to do is to define the S-function name and level, which will be used by
the Simulink engine:

#define S_FUNCTION_NAME filesource_sfun /* mandatory */
#define S_FUNCTION_LEVEL 2 /* mandatory */

The S-function name is the filename without the extension. The S-function level,
since Simulink release 2.2, must be always set to 2.

We may now include the required headers:

#include <stdio.h> /* file manipulation functions */
#include "simstruc.h" /* mandatory */
#include "matrix.h" /* helper functions */

The first header contains the system's standard I/O functions (including the file
operations we'll need).

The simstruc.h header contains the C equivalent of MATLAB's Simulink.
MSFcnRunTimeBlock object: a structure (SimStruct) representing the whole block;
therefore, it's mandatory to include it.

Finally, the matrix.h header contains some convenient functions to operate
with strings.

Block properties and memory usage –
mdlInitializeSizes
We must define the block characteristics: parameters, states, ports, sample times,
and work vectors.

The function begins with the following snippet of code:

static void mdlInitializeSizes(SimStruct *S)
{

Every S-function routine requires SimStruct *S as the first argument. This is the
pointer to the Simulink block structure, maintained by the Simulink engine.

Chapter 4

[99]

Let's define the parameters. We're going to have two parameters passed to the
S-function: the first parameter is the file path, and the second is the initial output.
This is accomplished by the following code:

 /* set number of S-function parameters */
 ssSetNumSFcnParams(S, 2);
 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))
 return; /* Parameter mismatch will be reported by Simulink */

 /* set parameters as non-tunable during simulation */
 ssSetSFcnParamTunable(S, 0, SS_PRM_NOT_TUNABLE);
 ssSetSFcnParamTunable(S, 1, SS_PRM_NOT_TUNABLE);

The function ssSetNumSFcnParams allows us to declare that the block accepts two
parameters. The function ssGetNumSFcnParams will return 2, and the function
ssGetSFcnParamsCount will return the actual number of defined parameters. If the
latter isn't 2, Simulink will report an error while editing the S-function block.

Each parameter is set as SS_PRM_NOT_TUNABLE with the ssSetSFcnParamTunable
function, where the second argument is the parameter index. Since we have two
parameters, the function is called twice using the indexes 0 and 1. This disables the
possibility of changing the parameters while the simulation is running.

Regarding the states, we don't need continuous or discrete states (we're using the
DWork vector instead to save the previous output value). This code instructs Simulink
about it:

 ssSetNumContStates(S, 0); /* no continuous states (integrator/
derivator) */
 ssSetNumDiscStates(S, 0); /* no discrete states (unit delay/
memory) */

Ports are easy: we only need one output port, and no input port.

 if (!ssSetNumInputPorts(S, 0)) /* set inports number to 0 */
 return;
 if (!ssSetNumOutputPorts(S, 1)) /* set outports number to 1 */
 return;
 ssSetOutputPortWidth(S, 0, 1); /* set outport width (scalar) */
 ssSetOutputPortDataType(S, 0, SS_DOUBLE); /* set outport type */

The functions ssSetOutputPortWidth and ssSetOutputPortDataType need the
zero-based port index as second parameter. The former declares that the output signal
is a scalar (width equal to 1), the latter that it is a real number (of datatype double).

Using the Model

[100]

We don't need a different sample time than the one used in the simulation, so we use
the following code line:

ssSetNumSampleTimes(S, 1); /* one block-based sample time */

Setting the number of sample times to 1 with ssSetNumSampleTimes causes the
block to use the global sample time only.

Finally, we need to declare a work vector that will hold the initial value and
previous output. We could use the easier elementary RWork vector, but we're
interested in learning the more generic DWork vector. The following snippet
demonstrates its usage:

 ssSetNumDWork(S, 1); /* needed vectors: 1 */
 ssSetDWorkWidth(S, 0, 1); /* the vector 0 has only 1
element */
 ssSetDWorkDataType(S, 0, SS_DOUBLE); /* and will hold a real
signal */

The three functions ssSetNumDWork, ssSetDWorkWidth, and ssSetDWorkDataType
allow the Simulink engine to know how much memory should be reserved.
S-functions can contain more than one DWork vector; their number is set with
ssSetNumDWork. The zero-based index of the vector is then used by every other
function accessing the vector itself as the second argument.

One last thing: let's put a debug statement, before the closing bracket, to ensure
everything went well:

 #ifndef NDEBUG
 printf("mdlInitializeSizes called\n");
 #endif
}

That's it; this routine now contains everything the Simulink engine needs to know in
order to reserve the right amount of memory, and the debug statement will allow us
to see when it is called by the Simulink engine.

Timings – mdlInitializeSampleTimes
We want to use the simulation sample time without any offset. In other words, we
want this S-function block to be executed at the beginning of each time step.

Chapter 4

[101]

The C implementation is very simple:

static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME); /* sample always */
 ssSetOffsetTime(S, 0, 0.0); /* apply no offset */

 #ifndef NDEBUG
 printf("mdlInitializeSampleTimes called\n");
 #endif
}

The ssSetSampleTime and ssSetOffsetTime functions use the zero-based sample
time index as second argument. Having declared (in mdlInitializeSizes) that
we're using only one sample time, the index is 0.

Since this is a source block, we define a continuous sample time. Other options are
INHERITED_SAMPLE_TIME, VARIABLE_SAMPLE_TIME, and discrete sample time (any
real number greater than 0).

Initial tasks – mdlStart
We'll use this optional routine to retrieve the default output parameter and store it
into the DWork vector. Remember that we must define MDL_START, or Simulink will
ignore the function.

The implementation is:

#define MDL_START /* Change to #undef to remove function. */
#ifdef MDL_START
static void mdlStart(SimStruct *S)
{
 real_T *yPrev = NULL; /* pointer to DWork element */
 real_T yInit = 0.0; /* tmp variable to read parameter */

 yPrev = (real_T*) ssGetDWork(S, 0);
 yInit = mxGetScalar(ssGetSFcnParam(S, 1));
 yPrev[0] = yInit;

 #ifndef NDEBUG
 printf("mdlStart: got initial output %f\n", yInit);
 #endif
}
#endif /* MDL_START */

Using the Model

[102]

The function ssGetDWork is used to retrieve the first DWork vector pointer. The index
is zero based.

The function ssGetSFcnParam retrieves a pointer to the second parameter (the initial
output), converted to a number with mxGetScalar. That number is saved in the first
(and only) element of the DWork vector, accessed as an array. Remember that the
number of elements was declared in mdlInitializeSizes.

Core logic – mdlOutputs
This routine is where the magic happens. We have to get the last line of the
source file, parse the number, and output the result. If any error occurs, the
recovery strategy is to output the last valid value taken from the DWork vector
(used as a memory).

The routine definition is:

static void mdlOutputs(SimStruct *S, int_T tid)
{
 FILE *fd = NULL;
 char_T path[FILEPATH_LEN];
 char_T line[FILELINE_LEN];
 char_T *lineEnd;
 real_T *y = NULL;
 real_T *yPrev = NULL;
 real_T yOut;
 UNUSED_ARG(tid);

 /* get the output pointer */
 y = ssGetOutputPortRealSignal(S,0);

 /* get the previous output pointer from DWork */
 yPrev = (real_T*) ssGetDWork(S,0);

 /* get the filename for reading */
 memset(path, 0, FILEPATH_LEN);
 mxGetString(ssGetSFcnParam(S,0), path, FILEPATH_LEN);

 /* open file for reading */
 fd = fopen(path, "r");
 if(fd == NULL)
 {
 printf("Error: source file %s not readable\n", path);
 y[0] = yPrev[0];

Chapter 4

[103]

 return;
 }

 /* get one line */
 memset(line, 0, FILELINE_LEN);
 if (fgets(line, FILELINE_LEN, fd) == NULL) /* error or empty file */
 {
 printf("Error: source file %s empty\n", path);
 y[0] = yPrev[0];
 fclose(fd);
 return;
 }

 /* convert from string to double */
 lineEnd = NULL;
 yOut = strtod(line, &lineEnd);
 if(lineEnd == line)
 {
 printf("Error: string to double conversion failed");
 y[0] = yPrev[0];
 fclose(fd);
 return;
 }

 /* if we got here everything went good */
 y[0] = yOut; /* set the output */
 fclose(fd); /* close the file */

 #ifndef NDEBUG
 printf("%s value: %f\n", path, yOut);
 #endif
}

We now have a second argument: tid. Blocks with more than one sample time
(called multirate blocks) are run in different tasks by the Simulink engine, and tid
identifies the current task being run.

Since this is not our case (we have only one sample time), we're using the
UNUSED_ARG macro to avoid compiler warnings. The macro just casts the variable
to void.

Using the Model

[104]

We've already learned how to get the DWork vectors with ssGetDWork.
The ssGetOutputPortRealSignal function (accepting the zero-based port
index as second argument) returns the pointer to the output port.

Remember that ports (and signals) are arrays, even if
they're scalar (their width being 1).

The first block parameter (the file name) is retrieved with ssGetSFcnParam, and
converted to a string by mxGetString.

The following logic attempts to open the file, read a line from it, parse a number
from the line, and output the number. If the file doesn't exist, or is empty, or there is
a parsing error, the previous output is used.

Update memories – mdlUpdate
We need to save the new output into the work vector DWork:

#define MDL_UPDATE
#ifdef MDL_UPDATE
static void mdlUpdate(SimStruct *S, int_T tid)
{
 real_T *y = NULL;
 real_T *yPrev = NULL;
 UNUSED_ARG(tid);

 /* get the output pointer */
 y = ssGetOutputPortRealSignal(S,0);

 /* get the previous output pointer from DWork */
 yPrev = (real_T*) ssGetDWork(S,0);

 /* update the previous output */
 yPrev[0] = y[0];

 #ifndef NDEBUG
 printf("mdlUpdate: saved output %f\n", yPrev[0]);
 #endif
}
#endif /* MDL_UPDATE */

Being an optional function, it's necessary to define MDL_UPDATE. The rest of the
code is nothing we haven't seen before; both the output signal and the work
vector are mono-dimensional arrays, with only one element as specified in
mdlInitializeSizes.

Chapter 4

[105]

Cleanup – mdlTerminate
This is where we perform the cleanup, closing every system resource that has been
allocated. But we don't have any.

So the C implementation is the following:

static void mdlTerminate(SimStruct *S)
{
 UNUSED_ARG(S);

 #ifndef NDEBUG
 printf("mdlTerminate successfully called\n");
 #endif
}

This code is just an empty function that will let us know when it has been
called while we're debugging. Avoid compiler warnings about unused parameters,
of course.

The happy ending
One little final step has to be performed, since each S-function must have this trailer:

/*=============================*
 * Required S-function trailer *
 =============================/
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a
 MEX-file?*/
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

We don't need to define MATLAB_MEX_FILE, since it is already defined by the mex
tool, in order to include the necessary functions to build a MEX executable loadable
by the Simulink engine.

Since automatic code generation is outside the scope of this book (and requires
Simulink Coder, formerly Real-Time Workshop, which isn't cheap either), we'll
ignore the cg_sfun.h header meaning.

We're done now, our first S-function is ready to be compiled.

Using the Model

[106]

Compiling the S-function
It's sufficient to type the following command into MATLAB's Command Window:

mex -v -g filesource_sfun.c

This will invoke the mex utility in verbose (-v) mode and with debugging (-g)
enabled. This way we'll be able to read compiler messages and the NDEBUG
preprocessor flag will be undefined.

If the compilation is successful, your folder will contain a new file:

• On 32-bit Microsoft Windows systems: filesource_sfun.mexw32
• On 64-bit Microsoft Windows systems: filesource_sfun.mexw64
• On UNIX-like systems (only 64-bit supported): filesource_sfun.mexa64

That file is the library Simulink will load.

Exercise – the filesink S-function
This S-function will get a real, scalar signal from its input port and write it to a file.
The file name is the only S-function parameter, and the file format is the same as
described earlier.

Being very similar to the filesource S-function, the source code will not be
commented in detail. It's available in the code bundle provided with this book.

The reader is strongly encouraged to write and compile this S-function as an exercise
following the guidelines provided below, instead of using the provided code.

We need to make a copy of the filesource_sfun.c file and rename it to
filesink_sfun.c. Remember to change the mandatory definitions accordingly.

To read the input signal value, the best method is to use the
ssGetInputPortRealSignal function. However, this requires the input signal to
be set as contiguous with ssSetInputPortRequiredContiguous.

Chapter 4

[107]

The sample time can be inherited from the driving block now.

An important thing that needs special attention is that by default the file writes
are buffered by the operating system. You should turn off buffering by using
setbuf(fd, NULL); right after opening the file.

The command to compile the S-function is the same as we've seen before:

mex -v -g filesink_sfun.c

The compilation will produce the filesink_sfun MEX file for your platform.

A quick test
Let's open the model we used to do a preliminary test on MATLAB S-functions again
and save it as sfun_test.slx.

We only need to replace Level 2 MATLAB S-function blocks with S-function blocks.
Those blocks will use the newly developed filesource_sfun and filesink_sfun
as S-function names. Their parameters, as well as the model configuration, will be
the same as before.

As soon as we're done editing and running a model update, a quick look at the
MATLAB's Command Window will reveal, thanks to the debug statements we put
in the code, that the mdlInitializeSizes routine has been called by Simulink in
order to draw the new blocks' input and output ports.

Running the simulation and opening the Scope block should show the same results
we had while testing MATLAB S-functions: both sine waves should coincide, and
the MATLAB's Command Window will show the debug messages. Notice that
mdlStart is called only once.

We can recompile them without the debugging macros:

mex -v filesource_sfun.c

mex -v filesink_sfun.c

Using the Model

[108]

Go for another ride
Let's run the application together with the cruise controller again, this time using the
new S-functions.

Open the cruise_control_external_msfun.slx model we developed earlier,
save a copy as cruise_control_external_sfun.slx, and replace every Level 2
MATLAB S-function blocks with S-function blocks, but keep the same parameters
(except the S-function name).

Having the cruise_control_external.mat workspace loaded, the model
configuration parameters, and the application configured as before, press the
application's Run button, and then run the simulation.

Everything should behave as it did before:

Chapter 4

[109]

Summary
In this chapter we've learned what S-functions are and how they can be used to
build custom blocks to extend the basic Simulink functionality.

We have learned which required callbacks and optional ones need to be
implemented if the S-function will use work vectors to store internal states
and allocate system resources.

We developed and built two simple Level 2 MATLAB S-function blocks and used
them to interface the cruise controller model with an external application. Then
we implemented the same block functionality in the C language, learning how to
develop and build C MEX S-functions with the mex tool.

These S-functions can be used as a good starting point to develop other interfaces
to communicate with virtually any application or physical device.

With the knowledge acquired in this chapter, we can greatly extend Simulink's
functionality by creating new blocks or porting legacy C code to Simulink.

Index
Symbols
$PATH variable 20
.mdl extension 22
.slx extension 22

A
aerodynamic drag equation 36-38
Alfa Romeo 147 GTA

about 34
aerodynamic drag equation 36-38
engine force 39, 40
finishing touches 47, 48
rolling resistance 38
speed, obtaining 34-36

algorithm
implementing 26, 27

B
block object 80
blocks

adding, to model from Library
Browser 24, 25

renaming 25
Bus Creator block 59

C
callbacks

mandatory callbacks 75
optional callbacks 75

C language
advantages 91

cleanup phase 74

C MEX S-functions
filesource S-function 97
mex tool, setting up 92
optional callbacks 95
required callbacks 94
working 93, 94

code
commenting 23

Command Window panel 18, 19
compilers

URL 92
complete closed-loop system

building 57
Constant Value field 30
Constant value parameter 35, 37
continuous solver

about 55
versus, discrete solver 55

cruise controller
about 22
algorithm, implementing 26, 27
blocks, adding to model from Library

Browser 24, 25
blocks, renaming 25
code, commenting 23
logic, nesting into subsystems 28-30
model, creating 22
model, saving 22
preparing 88, 89
simulation, performing 31-33
Simulink Library Browser, opening 23
workspace variables, declaring 30, 31

[112]

D
Demux block 59
DirectFeedthrough property 80
discrete solver

about 55
versus, continuous solver 55

DState type vectors 77
Duplicate option 25
DWork vector

about 76, 77, 96, 97
DState type vectors 77
Generic DWork type vectors 77
Mode type vectors 77
Scratch type vectors 77

E
Edit button 79
elementary vectors 97
Engine, subsystems 40, 46, 47

F
fgetl function 86
filesink_msfun block

about 78, 79
MATLAB code 79-82

filesink_msfun parameter 87
filesink S-function 106, 107
filesource_msfun block

about 83
MATLAB code 84, 85

filesource_msfun parameter 87
filesource S-function

compiling 106
headers 98
includes 98
mdlInitializeSampleTimes

function 100, 101
mdlInitializeSizes function 98-100
mdlOutputs function 102, 103
mdlStart function 101
mdlTerminate function 105
mdlUpdate function 104

first model. See cruise controller

fixed-step solvers
about 53
versus variable-step solver 53, 54

fprintf 82
free() 97
From block 37

G
Gain parameter 37
Gearbox and differential, subsystems 40-44
Generic DWork type vectors 77
GNU/Linux 92
Goto block 37

H
hardware-in-the-loop (HIL) testing 14
headers, filesource S-function 98
Help button 23

I
includes, filesource S-function 98
initialization phase 74
IWork vector 97

K
Ki

calibrating 63
Kp

calibrating 61

L
Library Browser

blocks, adding to model from 24, 25
logic

nesting, into subsystems 28-30

M
mandatory callbacks

about 75
Outputs function 75
setup function 75

[113]

MATLAB
Command Window panel 18, 19
path variable 20
working folder 19
workspace 19

MATLAB Central
URL 88

MATLAB code, filesink_msfun block 79-82
MATLAB code, filesource_msfun

block 84, 85
matlabroot 20
mdlInitializeConditions function 96
mdlInitializeSampleTimes

function 95, 100, 101
mdlInitializeSizes function 95, 98-100
mdlOutputs function 95, 102, 103
mdlStart function 96, 101
mdlTerminate function 95, 105
mdlUpdate function 96, 104
mex tool

GNU/Linux 92
Microsoft Windows systems 92
setting up 92
UNIX-like systems 92

Microsoft Windows systems 92
model

blocks, adding from Library Browser 24, 25
creating 22
saving 22
simulating 49

model-in-the-loop (MIL) testing 14
Mode type vectors 77
Mode vector 97
Mux block 59

N
Name property 85
nonstiff solver 56

O
ode1 solver 53
ode45 solver 53
ODE (Ordinary Differential

Equation solvers) 55

optional callbacks
DWork vector 96, 97
elementary vectors 97
mdlInitializeConditions function 96
mdlStart function 96
mdlUpdate function 96
PostPropagationSetup 75
Start 75
Terminate 76
Update 76

Outputs function 75
output variable 86

P
Paste option 25
path variable 20
PI controller

calibrating 61
PI controller constants

Ki, calibrating 63
Kp, calibrating 61, 62

PostPropagationSetup 75
processor-in-the-loop (PIL) testing 14
PWork vector 97

Q
Qt5 application 71-73

R
Ramp block

about 65
using 65

RegBlockMethod function 82
required callbacks

mdlInitializeSampleTimes function 95
mdlInitializeSizes function 95
mdlOutputs function 95
mdlTerminate function 95

restoredefaultpath command 20
rolling resistance

about 38
ruleset

URL 25
Run button 32, 73, 90, 108
RWork vector 97

[114]

S
scope block parameters

editing 50
Scratch type vectors 77
second model. See Alfa Romeo 147 GTA
setup function 75
S-function name parameter 79
S-functions

about 73, 74
callbacks 74
DWork vector 76, 77
filesink_msfun block 78, 79
filesource_msfun block 83
simulation phases 74
testing 86, 87

ssGetSFcnParam function 102
Signal Builder block

about 66
using 66-69

simulation
configuring 60
executing 61
performing 31, 33
running, on target application 90, 91

simulation configuration
about 60
simulation times 60
solvers 60

simulation loop 74
simulation phases

cleanup phase 74
initialization phase 74
simulation loop 74

simulation times
about 51
examining 51, 52
start time 51
step size 51
stop time 51

Simulink
about 5
cruise controller, preparing 88, 89
drawbacks 15
forcing, to sync 88
graphical 6, 7
issues, resolved 8
programming 5, 6

simulation, running on target application
90, 91

software, development 12, 13
software, specification 8-11
software, testing 14
use cases 15

Simulink interface 21
Simulink Library Browser

opening 23
Simulink model

about 49
simulation results, computing 50

Simulink.MSFcnRunTimeBlock object 79
Sine Wave block

about 64
using 64, 65

sink block. See filesink_msfun block
software

development 12
specification 8-11

software-in-the-loop (SIL) testing 14
solvers

about 52
characteristics 53
continuous solver 55
discrete solver 55
fixed-step solver 53
nonstiff solver 56
stiff solver 56
variable-step solver 53

source block. See filesource_msfun block
ssGetDWork function 102
ssGetOutputPortRealSignal function 104
Start 75
stiff solver

about 55
versus, nonstiff solver 55-57

Stop button 91
str2double function 86
subsystems

Engine 40
Gearbox and differential 40
logic, nesting into 28-30
Torque to force 40
Wheel to RPM 40

sync
Simulink, forcing to 88

[115]

T
target application

simulation, running on 90, 91
Terminate 76
Torque to force, subsystems 40, 47

U
UNIX-like systems 92
Update 76

V
variable-step solver

about 53
versus fixed-step solvers 53, 54

W
Wheel to RPM, subsystems 40, 45
working folder 19
workspace

about 19
variables, declaring 30, 31

Thank you for buying
Getting Started with Simulink

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

MATLAB Graphics and Data
Visualization Cookbook
ISBN: 978-1-849693-16-5 Paperback: 284 pages

Tell data stories with compelling graphics using this
collection of data visualization recipes

1. Collection of data visualization recipes with
functionalized versions of common tasks
for easy integration into your data analysis
workflow

2. Recipes cross-referenced with MATLAB
product pages and MATLAB Central File
Exchange resources for improved coverage

3. Includes hand created indices to find exactly
what you need; such as application driven,
or functionality driven solutions

Sage Beginner's Guide
ISBN: 978-1-849514-46-0 Paperback: 364 pages

Unlock the full potential of Sage for simplifying the
automating mathematical computing

1. The best way to learn Sage which is a
open source alternative to Magma, Maple,
Mathematica, and MATLAB

2. Learn to use symbolic and numerical
computation to simplify your work and
produce publication-quality graphics

3. Numerically solve systems of equations, find
roots, and analyze data from experiments or
simulations

Please check www.PacktPub.com for information on our titles

Visual Media Processing Using
MATLAB Beginner's Guide
ISBN: 978-1-849697-20-0 Paperback: 334 pages

Learn a range of techniques from enhancing and
adding artistic effects to your photographs, to editing
and processing your videos, all using MATLAB

1. Apply sophisticated techniques to images and
videos in just a few steps

2. Learn and practice techniques for enhancing and
restoring your photographs

3. Create artistic photographs using simple
methods

NumPy Beginner's
Guide - Second Edition
ISBN: 978-1-782166-08-5 Paperback: 310 pages

An action packed guide using real world examples of
the easy to use, high performance, free open source
NumPy mathematical library

1. Perform high performance calculations with
clean and efficient NumPy code

2. Analyze large data sets with statistical
functions

3. Execute complex linear algebra and
mathematical computations

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Simulink Facts
	What is Simulink?
	Programming
	Graphical

	Problems solved by Simulink
	Software specification
	Software development
	Software testing

	Simulink drawbacks
	Where Simulink excels
	Summary

	Chapter 2: Creating a Model
	The MATLAB environment
	The Command Window – how MATLAB
talks to us
	The workspace – our treasury chest
	The working folder – where MATLAB saves our work
	The path – where MATLAB finds the tools

	The Simulink interface
	Our first model – a cruise controller
	1 – create and save the model
	2 – do comment the code!
	3 – open the Simulink Library Browser
	4 – add blocks to the model from the Library Browser
	5 – rename the blocks
	6 – implement the algorithm
	7 – nest the logic into subsystems
	8 – declare workspace variables
	9 – do a first simulation

	Our second model – the Alfa Romeo
147 GTA
	Getting the speed – Newton's laws
	The aerodynamic drag equation
	The rolling resistance approximation
	The engine force – engine, wheels, and transmission
	Gearbox and differential
	Wheel to RPM
	Engine
	Torque to force

	The finishing touches

	Summary

	Chapter 3: Simulating a Model
	The mandatory theory
	The simulation times – when the math is done
	The solvers – these great unknown
	Variable-step versus fixed-step solvers
	Continuous versus discrete
	Stiff versus non-stiff

	Build the complete closed-loop system
	Configuring the simulation
	Simulation times
	Solvers

	Run our first serious simulation
	Calibrate the PI controller
	Calibrating Kp
	Calibrating Ki

	Test with other sources
	Sine Wave
	Ramp
	Signal Builder

	Summary

	Chapter 4: Using the Model
	The external software – a Qt5 application
	The Swiss army knife – S-functions
	The simulation phases
	Level 2 MATLAB S-function callbacks
	The mandatory callbacks
	The most useful optional callbacks

	The work vector – DWork

	MATLAB S-functions – file source and sink blocks
	The filesink_msfun block
	The MATLAB code

	The filesource_msfun block
	The MATLAB code

	A quick test

	Simulink and the real world
	Forcing Simulink to sync
	Preparing the cruise controller model
	Running the simulation on the target application

	Going further – C MEX S-functions
	Setting up the mex tool
	UNIX-like systems, GNU/Linux in particular
	Microsoft Windows systems

	How C MEX S-functions work
	The required callbacks
	mdlInitializeSizes
	mdlInitializeSampleTimes
	mdlOutputs
	mdlTerminate

	The most useful optional callbacks
	mdlStart
	mdlInitializeConditions
	mdlUpdate
	The DWork vector
	The elementary work vectors

	The filesource S-function
	The beginning – headers and includes
	Block properties and memory usage – mdlInitializeSizes
	Timings – mdlInitializeSampleTimes
	Initial tasks – mdlStart
	Core logic – mdlOutputs
	Update memories – mdlUpdate
	Cleanup – mdlTerminate
	The happy ending
	Compiling the S-function

	Exercise – the filesink S-function
	A quick test
	Go for another ride

	Summary

	Index

