

Getting	Started	with	SpriteKit

Table	of	Contents

Getting	Started	with	SpriteKit

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	The	First	Step	toward	SpriteKit

Game	engines

Creating	a	new	SpriteKit	project

Running	the	project	for	first	time

How	the	default	project	looks	like

The	SKNode	class

The	SKNode	class	properties

The	position	property

The	frame	property

The	zPosition	property

The	hidden	property

An	alpha	property

The	children	node

name

userInteractionEnabled

Using	SKNode	to	organize	a	scene

SKScene

The	game	loop

The	SKScene	properties

scaleMode

anchorPoint

size

backgroundColor

Your	first	game	–	InsideTheHat

Our	first	SKSpriteNode	class

Adding	a	background

Working	with	screen	resolutions

Summary

2.	What	Makes	a	Game	a	Game?

Handling	touch	events

Handling	actions

Building	a	wall

Running	through	the	doors

1-star	challenge:	an	easier	way	to	reset	position

Solution

Creating	loops

Installing	doors	into	the	wall

Collision	management

Understanding	collisions

Handling	collisions

1-star	challenge:	check	collisions	accurately

Solution

Creating	labels

Aligning	labels

Playing	some	music

AVFoundation

2-star	challenge:	reproducing	sound	effects

Solution

Summary

3.	Taking	Games	One	Step	Further

Extending	the	SKNode	class

Creating	a	new	class

Handling	the	behavior	of	custom	classes

2-star	challenge:	colliding	puppets

Solution

The	parallax	effect

The	update	method	and	delta	times

Creating	animations	in	SpriteKit

2-star	challenge:	animate	collisions

Solution

Geometrical	primitives

Summary

4.	From	Basic	to	Professional	Games

Ending	the	game

3-star	challenge:	restarting	a	game

Solution

Creating	a	main	menu

Transitions	and	scenes

The	SKTransition	class

Creating	a	tutorial

Updating	the	tutorial	steps

Loading	and	saving	data

The	NSUserDefaults	class

2-star	challenge:	completing	the	tutorial

Solution

The	property	list	files

Summary

5.	Utilizing	the	Hardware	and	Graphics	Processor

Using	the	accelerometer

The	CMMotionManager	class

Compensating	for	the	position	of	the	device

Adding	shaders	to	our	game

Turning	on	the	lights

Creating	lights	with	the	editor

Programmatically	creating	lights

2-star	challenge:	moving	lights

Solution

Summary

6.	Auxiliary	Techniques

Creating	particle	systems

Creating	an	emitter	with	the	editor

Creating	the	emitter	programmatically

Combining	SpriteKit	and	UIKit

Including	UIKit	in	a	game

Including	SpriteKit	in	an	app

Using	third-party	tools

Creating	audio	resources

Voice	memos

Audacity

GarageBand

Font	makers

How	to	find	audio	files

How	to	find	images

Summary

Index

Getting	Started	with	SpriteKit

Getting	Started	with	SpriteKit
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	January	2016

Production	reference:	1200116

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-733-8

www.packtpub.com

http://www.packtpub.com

Credits
Author

Jorge	Jordán

Reviewer

Andrew	Kenady

Commissioning	Editor

Amarabha	Banerjee

Acquisition	Editor

Prachi	Bisht

Content	Development	Editor

Arshiya	Ayaz	Umer

Technical	Editor

Vishal	Mewada

Copy	Editor

Vedangi	Narvekar

Project	Coordinator

Shipra	Chawhan

Proofreader

Safis	Editing

Indexer

Priya	Sane

Graphics

Kirk	D’Penha

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Jorge	Jordán	is	an	iOS	indie	developer	who’s	passionate	about	how	things	work	since	his
childhood.	This	is	the	reason	why	he	graduated	in	computer	science	and	became	a	Java
developer.	After	buying	his	first	iPhone,	he	became	deeply	interested	in	its	technology	and
spent	his	spare	time	learning	how	to	develop	apps	for	Apple’s	smartphones.

Over	time,	he	founded	www.insaneplatypusgames.com,	where	he	tries	to	make	his	dreams
and	games	come	true.	He	is	also	a	member	of	the	tutorial	team	at
www.raywenderlich.com.

Also,	he	has	worked	on	a	book	titled	Cocos2d	Game	Development	Blueprints,	Packt
Publishing.

In	his	free	time,	he	loves	to	play	video	games,	play	bass	guitar,	and	watch	TV	series.

You	can	follow	him	on	Twitter;	his	Twitter	handle	is	@jjordanarenas.

I	would	like	to	thank	my	family,	especially	my	mom	and	brother,	for	always	believing	in
me.	Thanks	to	them,	I	am	the	person	that	I	am.	I	would	also	like	to	thank	the	people	who
have	encouraged	me	unconditionally,	especially	Angélica,	for	being	so	patient	and	for	her
support	while	I	was	writing	this	book.

Thanks	to	José	Antonio	Espino	(<joseantonio.espinosuar@gmail.com>)	for	creating	all
the	art	for	this	book	and	designing	these	amazing	characters	and	content.

Also,	thanks	to	all	my	friends:	the	canupis	(especially	to	you,	Eugenio,	wherever	you	are),
Javi	Sáez,	Kike,	Pedro,	Fanny,	Guille,	and	Carmelo	for	all	the	laughs	and	the	good	times
that	we	spend	together.

I	finally	want	to	thank	all	the	people	from	Packt	Publishing	for	their	efforts	to	make	this
book	real.

http://www.insaneplatypusgames.com
http://www.raywenderlich.com
mailto:joseantonio.espinosuar@gmail.com

About	the	Reviewer
Andrew	Kenady	is	a	game	engineer	from	Kentucky.	He	holds	a	bachelor’s	degree	in
computer	science	from	Western	Kentucky	University	and	has	worked	professionally	in	the
games	industry	since	his	graduation	in	2013.	His	published	titles	span	multiple	genres	and
platforms	and	include	Battlepillars	and	Draw	a	Stickman:	EPIC	2.	He	is	currently	working
for	NC2	Media,	a	Tennessee-based	tech	company,	on	new	and	promising	confidential
products	for	the	mobile	games	sector.

In	addition	to	working	on	this	publication,	Andrew	has	worked	in	the	past	as	a	reviewer
for	iOS	Game	Programming	Cookbook	by	Bhanu	Birani	and	Chhavi	Vaishnav.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
I	think	that	I’m	not	wrong	if	I	say	that	we	as	developers	have	the	healthy	(or	unhealthy)
habit	of	trying	to	decompose	mentally	(or	even	physically)	everything	that	comes	to	our
hands	into	smaller	pieces	to	understand	how	it	works.

In	my	case,	I	have	to	acknowledge	that	I	am	a	video	game	lover	and	a	restless	developer,
and	every	time	I	get	a	game	or	an	app,	I	can’t	stop	myself	from	thinking	about	how	an
animation	or	a	particular	effect	is	achieved.

This	concern	helped	me	learn	how	to	develop	apps	and	games.	Thanks	to	this,	I
discovered	that	Apple	provides	a	powerful	set	of	tools	that	can	be	combined	to	create
amazing	games	and	stunning	apps.

One	of	these	tools	is	SpriteKit,	a	2D	game	engine	that	is	at	the	forefront	of	the	frameworks
that	are	available	on	the	market	and	which	can	be	included	in	any	application	to	provide
its	dynamic	features.

If	you	are	reading	these	lines,	you	probably	are	either	a	game	lover	with	a	curiosity	to
learn	how	video	games	are	developed,	or	you	are	an	app	developer	who	wants	to	know
how	the	animations	that	you	have	seen	in	other	apps	or	games	have	been	created.

At	this	point	starts	a	journey	full	of	new	experiences	and	knowledge	that	will	satisfy	all
your	curiosity.	So	take	a	seat,	get	comfortable,	and	start	reading	and	enjoying.

What	this	book	covers
This	book	contains	six	chapters	that	will	guide	you	through	the	process	of	creating	a	video
game	with	the	tools	provided	by	SpriteKit.	At	the	same	time,	you	will	learn	how	to	deal
with	the	common	difficulties	that	you	may	come	across	when	developing	games	and	how
to	apply	the	techniques	that	you	learn	here	to	give	a	stunning	look	to	an	app.

Chapter	1,	The	First	Steps	toward	SpriteKit,	covers	the	basics	of	developing	a	game	with
SpriteKit.	In	this	chapter,	you	will	learn	what	a	game	engine	is	and	what	a	new	SpriteKit
project	looks	like.	In	addition	to	this,	you	will	learn	the	purpose	of	the	SKNode	and
SKScene	classes	and	how	to	utilize	them	to	add	a	background	and	a	sprite	into	the	game.

Chapter	2,	What	Makes	a	Game	a	Game?,	shows	the	main	techniques	used	in	game
development,	such	as	moving	sprites	on	the	scene,	detecting	touches,	and	handling
collisions.	In	addition	to	this,	you	will	learn	how	to	create	and	update	labels	and	play
music	and	sound	effects.

Chapter	3,	Taking	Games	One	Step	Further,	teaches	advanced	techniques	such	us	how	to
create	complex	nodes	by	extending	the	SKNode	class	or	implement	the	parallax	effect.
You	will	also	learn	how	to	draw	geometrical	primitives	and	animate	sprites.

Chapter	4,	From	Basic	to	Professional	Games,	helps	us	provide	our	game	with	the	needed
components	to	consider	it	as	a	finished	product.	You	will	learn	how	to	create	a	Game	Over
condition	for	the	game	and	a	main	menu	scene	from	where	you	will	learn	how	to
transition	to	a	tutorial	that	you	will	create	for	players	so	that	they	know	the	mechanism	of
the	game.	You	will	also	learn	how	to	save	and	load	data	from	internal	and	external
sources.

Chapter	5,	Utilizing	the	Hardware	and	Graphics	Processor,	teaches	you	how	to	get	the
most	advantage	from	the	hardware	of	physical	devices	using	the	accelerometer	or	creating
stunning	visual	effects	by	adding	shaders,	lights,	and	shadows	into	a	game.

Chapter	6,	Auxiliary	Techniques,	covers	the	development	of	special	effects,	which	are	also
known	as	particle	systems,	and	ways	to	combine	SpriteKit	with	UIKit	in	order	to	create
robust	games	and	dynamic	apps.	You	will	also	learn	how	to	use	third-party	tools	to	create
custom	audio	and	fonts	and	find	resources	that	can	be	used	in	games.

What	you	need	for	this	book
To	follow	the	implementation	of	the	code	provided	in	this	book,	you	will	need	the
following	hardware	and	software:

An	Intel-based	Mac	that	runs	on	Mac	OS	X	10.10.4	or	later
The	latest	version	of	Xcode	(version	7.0	at	the	time	of	writing	this	book)
An	enrollment	in	the	iOS	Developer	Program	if	you	want	to	test	the	games	on	a
device
An	iOS	device	to	test	games	on	it

You	will	not	need	a	lot	of	experience	developing	with	Swift	or	SpriteKit	as	the	chapters
will	help	you	easily	understand	how	to	utilize	the	tools	provided	by	the	game	development
framework.

Who	this	book	is	for
If	you	are	an	iOS	developer	who	wants	to	learn	which	tools	offer	the	game	development
framework	provided	by	Apple	so	that	you	can	add	an	extra	edge	to	your	applications	or
learn	how	to	bring	to	life	the	games	that	you	have	imagined	in	your	mind,	this	book	is	for
you.	It	has	been	written	to	teach	the	key	concepts	of	2D	game	development	and	ways	to
create	2D	games	using	SpriteKit.	This	book	will	help	you	deploy	framework	tools	to
improve	the	visual	experience	of	your	apps.

Conventions
There	are	several	text	styles	in	this	book	that	refer	to	different	type	of	information.	For
example,	you	will	find	words	referring	code	that	will	look	like	the	following	line:

There	are	a	couple	of	storyboard	files,	namely	Main	and	LaunchScreen,	which	are
responsible	for	showing	the	game	screen	and	launch	image	respectively.

You	will	find	code	blocks	that	look	like	this:

import	UIKit

@UIApplicationMain

class	AppDelegate:	UIResponder,	UIApplicationDelegate	{

				var	window:	UIWindow?

				func	application(application:	UIApplication,	

didFinishLaunchingWithOptions	launchOptions:	[NSObject:	AnyObject]?)	->	

Bool	{

								//	Override	point	for	customization	after	application	launch.

								return	true

				}

If	you	are	expected	to	perform	some	actions	on	specific	places	of	the	screen	you	will	find
the	instructions	highlighted	in	the	following	way:

To	create	a	new	SpriteKit	project,	we	need	to	open	Xcode	and	then	navigate	to	File	|	New
|	Project….

You	will	find	instructions	specifying	the	exact	value	you	have	to	enter	in	a	text	field	that
will	look	like	the	following	line:

Call	it	Enemy	and	choose	the	folder	where	you	want	it	to	be	saved.

Hints,	tips,	advices	and	notes	will	look	like	this:

Tip
Note	that	we	just	need	to	create	a	motion	manager	instance	as	thanks	to	it	we	can	retrieve
all	the	motion	data	we	need.

Sometimes	you	are	going	to	be	challenged	by	me,	requesting	you	to	try	to	solve	a
particular	situation.	These	challenges	will	be	labeled	as	1-star,	2-star	or	3-star	Challenge
depending	on	the	difficulty	of	the	task,	but	they	can	be	solved	with	the	knowledge
acquired	along	the	book:

2-star	challenge:	colliding	puppets

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
http://www.packtpub.com/sites/default/files/downloads/GettingStartedWithSpriteKit_ColorImages.pdf

http://www.packtpub.com/sites/default/files/downloads/GettingStartedWithSpriteKit_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	The	First	Step	toward
SpriteKit
In	2013,	Apple	released	SpriteKit,	its	2D	game	engine,	in	order	to	compete	with	all	the
two-dimensional	frameworks	that	were	existing	in	the	market	and	retain	their	developers
in	its	own	technological	ecosystem.	Since	then,	SpriteKit	has	become	one	of	the	most
powerful	tools	that	are	used	to	develop	2D	games	for	iOS.	In	this	chapter,	we	will	have	a
look	at	the	elements	that	are	a	part	of	game	development,	and	we’ll	study	how	to	use	them
with	SpriteKit.

In	this	chapter,	we	will	explore	the	following	topics:

Understanding	game	engines
Creating	and	understanding	a	new	SpriteKit	project
Understanding	the	SKNode	class
Studying	the	SKScene	class
How	to	add	a	sprite	and	background	to	a	scene

Game	engines
I	remember	the	time	when	I	developed	my	first	game	using	the	BASIC	programming
language	on	my	old	Amstrad	CPC.	In	those	times,	every	game	was	hardware-specific,
which	means	that	you	had	to	take	into	account	every	machine’s	low-level	characteristics.

A	game	engine	is	a	collection	of	software	instructions	that	eases	the	process	of	game
development	by	providing	abstraction	between	the	hardware	and	software	layers.	This
way,	you	don’t	need	to	waste	your	efforts	when	performing	important	tasks,	such	as
handling	user	inputs,	playing	sound	and	video,	rendering	images,	or	simulating	physics.

As	mentioned	previously,	SpriteKit	is	an	engine	developed	by	Apple	to	create	games,	and
it’s	one	of	the	most	powerful	tools	that	are	used	to	build	native	2D	games	for	both	iOS	and
Max	OS	X.

Creating	a	new	SpriteKit	project
The	tool	needed	to	develop	SpriteKit	games	is	Apple’s	Integrated	Development
Environment	(IDE)	Xcode,	which	can	be	found	free	of	charge	on	Apple’s	App	Store	at
https://itunes.apple.com/en/app/xcode/id497799835?l=en&mt=12.	We	are	going	to	work
with	version	7.0,	which	is	the	latest	at	the	time	of	writing	the	book,	and	iOS	9.

Creating	a	new	project	with	Xcode	is	a	straightforward	task,	but	I	would	like	to	take
advantage	of	it	to	help	you	understand	how	a	default	Xcode	project	looks	like.

To	create	a	new	SpriteKit	project,	we	need	to	open	Xcode	and	then	navigate	to	File	|	New
|	Project….	On	the	left-hand	side,	you	will	need	to	click	on	the	iOS	|	Application
Template;	you	will	see	what’s	shown	in	the	following	screenshot:

At	this	point,	you	will	need	to	perform	the	following	steps:

1.	 Select	the	Game	template	and	click	on	Next.
2.	 Set	InsideTheHat	as	the	template	name.	Ensure	that	the	Swift	option	is	chosen	in	the

Language	menu.	Select	SpriteKit	as	the	Game	Technology,	and	Universal	is
chosen	on	the	Device	Family	menu.	Leave	the	default	configuration	(checked)	for
Include	Unit	Tests	and	Include	UI	Tests	before	clicking	on	the	Next	button.

3.	 Choose	a	place	to	save	your	project	in	and	click	on	Create.

https://itunes.apple.com/en/app/xcode/id497799835?l=en&mt=12

The	first	thing	that	you	should	look	at	is	the	left	section,	which	is	called	Project
Navigator	and	contains	the	folders,	and	files	that	will	be	a	part	of	our	game;	this	section	is
shown	in	the	following	screenshot:

The	Project	Navigator	shows	a	tree	of	files	and	folders	that	represents	a	hierarchy	that
doesn’t	correspond	with	how	these	files	are	located	on	your	hard	drive.	It	means	that,	if
you	move	some	file,	on	the	Project	Navigator,	it	won’t	affect	their	position	in	Finder.
However,	if	you	move	some	file	in	Finder,	the	reference	kept	by	Xcode	will	be	broken
and	it	won’t	be	able	to	make	use	of	it.

The	yellow	containers	on	the	project	navigator	are	called	Groups	in	Xcode,	and	they	are
equivalent	to	folders	in	a	filesystem;	as	folders,	the	groups’	responsibility	is	to	organize	all
the	files	(images,	classes,	and	so	on)	of	an	Xcode	project.

One	of	the	most	important	groups	is	the	one	called	Project.	It	contains	classes	and
resource	files.	As	you	can	see	in	the	preceding	screenshot,	a	default	project	contains	three
Swift	classes,	namely	AppDelegate,	GameScene,	and	GameViewController,	that	will
contain	the	core	of	the	game.

Tip
Swift	is	Apple’s	programming	language	that	was	created	by	Apple	for	iOS,	Mac	OS	X,
watchOS,	and	Linux	development.	It	was	first	released	in	June	2014.

There	are	a	couple	of	storyboard	files,	namely	Main	and	LaunchScreen,	that	are
responsible	for	showing	the	game	screen	and	launch	image	respectively.	You	will	also	see
an	image	asset	file,	which	will	contain	the	images	used	on	the	game,	and	a	plist	file
with	the	project	configuration.

In	addition	to	this,	there	is	a	file	called	GameScene.sks	that	should	look	pretty	new	to	you.
This	file	is	used	to	build	the	screen	in	a	static	way,	which	is	similar	to	a	storyboard,	that	is
created	with	Interface	Builder.

Getting	back	to	Xcode,	there	is	another	important	section	in	the	Project;	it	is	the	window
at	the	center,	which	shows	the	configuration	of	the	Project,	as	shown	in	the	following

screenshot:

In	this	panel,	you	will	see	three	different	sections,	namely	Identity,	Deployment	Info,
and	App	Icons	and	Launch	Images.	Let’s	take	a	look	at	the	second	one	first,	where	you
can	configure	the	following:

Deployment	Target:	This	is	the	iOS	version	that	is	used	to	run	the	game.	By	default,
9.0	is	chosen.
Devices:	This	is	the	family	of	devices	(iPhone,	iPad,	or	both),	on	which	we	will	be
able	to	run	the	game.	In	our	case,	it	shows	Universal,	which	is	the	property	that	we
specified	when	creating	the	project.
Main	Interface:	This	is	the	main	storyboard	file	that	is	used	to	run	the	project.
Device	Orientation:	This	determines	the	different	orientations	that	our	game	will	be
able	to	support.	As	we	are	going	to	develop	a	vertical	game,	unselect	the	Landscape
Left	and	Landscape	Right	checkboxes,	leaving	just	Portrait	checked	off.
Status	Bar	Style:	This	helps	us	determine	how	we	want	the	status	bar	to	be	shown.

The	third	section	contains	the	following	configuration:

App	Icons	Source:	This	comprises	the	asset	catalog	for	app	icons.
Launch	Images	Source:	This	comprises	the	asset	catalog	for	the	launch	image.
Launch	Screen	File:	This	determines	the	screen	shown	while	loading	the	game.	If
you	want	to	avoid	the	launch	screen	that	shows	the	copyright	(such	as	the	one	that
you	can	use	to	show	your	company’s	logo),	choose	Main.Storyboard	in	the	drop-
down	menu.

After	performing	the	aforementioned	modifications,	the	project’s	properties	will	meet	our
requirements.	So,	let’s	run	the	project.

Running	the	project	for	first	time
To	execute	the	project,	you	just	need	to	click	on	the	Run	icon	at	the	top	left	of	the	Xcode
screen,	and	it	will	run	the	project	on	an	iPhone	6	on	the	iOS	Simulator;	the	result	is
shown	in	the	following	screenshot:

Well,	with	a	little	effort,	we	have	created	our	first	Hello,	World	project	using	SpriteKit.
Now,	it’s	time	to	look	at	the	code	and	understand	why	the	preceding	screenshot	is	the
result	of	these	files.

Note
From	now	on,	we	are	going	to	assume	that	we	are	running	the	game	on	the	iOS	Simulator.

How	the	default	project	looks	like
In	this	section,	you	are	not	supposed	to	understand	everything.	The	aim	of	this	section	is
to	understand	the	responsibility	of	each	class	in	a	default	SpriteKit	project.

The	entry	point	of	our	game	is	the	AppDelegate	class,	which	is	the	same	as	that	of	all	iOS
applications.	Let’s	take	a	look	at	its	content:

import	UIKit

@UIApplicationMain

class	AppDelegate:	UIResponder,	UIApplicationDelegate	{

				var	window:	UIWindow?

				func	application(application:	UIApplication,	

didFinishLaunchingWithOptions	launchOptions:	[NSObject:	AnyObject]?)	->	

Bool	{

								//	Override	point	for	customization	after	application	launch.

								return	true

				}

Tip
Downloading	the	example	code.

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

I’ve	just	pasted	the	top	block	of	the	file	because	it	is	the	important	one.	As	you	can	see,	we
imported	the	UIKit	framework	that	will	provide	the	window	and	the	view	architecture
needed	to	build	an	application.	It	also	provides	our	project	with	the	event-handling
infrastructure	that	is	needed	to	respond	to	user	input	and	the	app	model	needed	to	drive	the
main	run	loop	and	interact	with	the	system.

The	next	line	contains	an	odd-looking	instruction,	which	is	@UIApplicationMain.	This
tells	Xcode	which	is	the	main	file	of	the	project.

Then,	you	will	see	that	the	AppDelegate	class	inherits	from	UIResponder	and
UIApplicationDelegate,	which	is	what	happens	with	all	iOS	applications.	We	declared	a
UIWindow	optional	variable	to	avoid	runtime	errors	in	case	of	nil	content.

Note
As	per	Apple’s	documentation	(
https://developer.apple.com/library/mac/documentation/Swift/Conceptual/Swift_Programming_Language/OptionalChaining.html
optional	chaining	is	a	Swift	process	that	is	used	to	call	properties	and	methods	on	an
optional	that	might	currently	be	nil.	If	the	optional	contains	a	value,	the	call	succeeds,
and	if	the	optional	is	nil,	the	call	returns	nil.

Finally,	you	will	see	that	the	only	method	implemented	is	application(application:,

http://www.packtpub.com
http://www.packtpub.com/support
https://developer.apple.com/library/mac/documentation/Swift/Conceptual/Swift_Programming_Language/OptionalChaining.html

launchOptions:).	This	is	the	point	where	we	can	apply	some	instructions	that	we	want
the	game	to	execute	as	soon	as	it’s	launched.

There	is	nothing	more	to	remark	on	this	class.	So	let’s	take	a	look	at	the	class	that	will	be
called	just	after	AppDelegate:	GameViewController.

To	understand	why	this	class	is	called,	as	soon	as	the	main	screen	is	launched,	we	need	to
keep	in	mind	that	the	project	is	configured	to	show	Main.storyboard	as	the	main
interface.	In	the	Project	Explorer,	select	the	File	and	look	at	the	Utilities	panel	on	the
right-hand	side	of	screen,	and	choose	the	Identity	Inspector	to	have	a	look	at	its
configuration,	as	shown	in	the	following	screenshot:

This	means	that	the	interface	is	linked	to	the	GameViewController	class.	It’s	time	to	open
the	class	and	discover	what	it	contains:

import	UIKit

import	SpriteKit

class	GameViewController:	UIViewController	{

override	func	viewDidLoad()	{

								super.viewDidLoad()

								if	let	scene	=	GameScene(fileNamed:"GameScene")	{

												//	Configure	the	view.

												let	skView	=	self.view	as!	SKView

												skView.showsFPS	=	true

												skView.showsNodeCount	=	true

												

												/*	Sprite	Kit	applies	additional	optimizations	to	improve			

rendering	performance	*/

												skView.ignoresSiblingOrder	=	true

												

												/*	Set	the	scale	mode	to	scale	to	fit	the	window	*/

												scene.scaleMode	=	.AspectFill

												

												skView.presentScene(scene)

								}

				}

As	you	can	see	at	the	top	of	the	file,	the	view	controller	is	a	subclass	of	the
UIViewController	class,	which	is	commonly	seen	in	many	iOS	applications.	However,
the	difference	is	that	here,	we	imported	the	SpriteKit	framework	(apart	from	UIKit),	to
provide	game	characteristics	to	the	project.

This	class	overrides	the	viewDidLoad	method,	where	we	create	a	scene	by	using	a	file

called	GameScene.	This	file	corresponds	to	GameScene.sks.	If	it	succeeds,	we	create	a
view	(an	instance	of	the	SKView	class),	setting	the	showsFPS	and	showsNodeCount
attributes	to	True.

This	is	the	reason	why	we	can	see	these	labels	at	the	bottom	right	of	the	game’s	screen;
they	show	the	amount	of	draw	calls	(node	count),	and	frame	rate	respectively.

Note
The	frame	rate	value	measures	how	smooth	our	game	will	be.	In	iOS,	the	maximum	frame
rate	is	60	Hz.

The	number	of	draw	calls	and	the	frame	rate	are	values	that	you	need	to	take	care	of,	as
they	will	let	us	know	if	our	game	will	run	smoothly.

We	will	have	a	look	at	the	last	view’s	configuration	(ignoresSiblingOrder),	and	the
scaleMode	property	later	in	the	chapter,	as	we	just	want	to	have	an	overview	the	project.
Once	the	view	is	configured,	we	can	load	the	scene	by	calling	the	presentScene	method.

Next,	in	the	file,	you	will	see	four	more	methods.	Take	a	look	at	the	following	two
methods:

override	func	shouldAutorotate()	->	Bool	{

								return	true

			}

override	func	supportedInterfaceOrientations()	->	

UIInterfaceOrientationMask	{

								if	UIDevice.currentDevice().userInterfaceIdiom	==	.Phone	{

												return	.AllButUpsideDown

								}	else	{

												return	.All

								}

			}

This	code	means	that	the	user	can	rotate	the	device,	and	the	screen	will	adapt	itself
automatically	to	the	new	orientation	with	one	restriction,	due	to	the	AllButUpsideDown
property:	the	game’s	screen	won’t	rotate	when	we	hold	the	iPhone	or	iPod	devices	upside
down.

Have	a	look	at	the	following	method:

override	func	didReceiveMemoryWarning()	{

								super.didReceiveMemoryWarning()

								//	Release	any	cached	data,	images,	etc	that	aren't	in	use.

			}

This	method	should	look	familiar	to	you	if	you	have	developed	an	iOS	application
previously.	It’s	raised	by	the	system	when	the	amount	of	available	memory	is	low.	It
allows	us	to	release	some	memory	to	avoid	an	application	crash.

Finally,	we	have	the	following	method	that	has	to	do	with	the	way	the	game	is	shown:

override	func	prefersStatusBarHidden()	->	Bool	{

								return	true

			}

This	method	keeps	the	status	bar	hidden,	as	our	application	is	a	game	and	we	want	to	use
the	full	screen	to	show	it.

We	have	previously	seen	that	this	class	creates	a	scene	by	calling	the	constructor	method
in	the	GameScene	class.	Therefore,	it’s	time	to	open	the	file:

	import	SpriteKit

	class	GameScene:	SKScene	{

				override	func	didMoveToView(view:	SKView)	{

								/*	Setup	your	scene	here	*/

								let	myLabel	=	SKLabelNode(fontNamed:"Chalkduster")

								myLabel.text	=	"Hello,	World!";

								myLabel.fontSize	=	65;

								myLabel.position	=	CGPoint(x:CGRectGetMidX(self.frame),	

y:CGRectGetMidY(self.frame));

								

								self.addChild(myLabel)

				}

As	you	can	see,	this	class	also	imports	the	SpriteKit	framework,	but	the	most	important
thing	about	this	is	the	class	that	it	is	inheriting	SKScene.	We	will	study	it	in	detail	further	in
this	chapter,	but	for	now,	you	need	to	understand	that	an	instance	of	SKScene	or	its
subclass	is	the	object	that	will	represent	a	scene	of	content	in	a	SpriteKit	game.

The	didMoveToView	method	means	that	its	code	will	be	executed	as	soon	as	the	scene	is
presented	by	a	view.	This	is	the	perfect	place	to	initialize	a	scene	and,	as	we	can	see,	in	the
default	project,	we	are	creating	a	new	label	using	a	font	called	Chalkduster	and
configuring	some	of	its	properties	to	set	the	size,	text,	and	desired	position.	Adding	the
label	to	the	scene	is	as	easy	as	executing	the	addChild	method.

The	next	method	in	the	class	looks	like	this:

	override	func	touchesBegan(touches:	Set<UITouch>,	withEvent	event:	

UIEvent?)	{

							/*	Called	when	a	touch	begins	*/

								

								for	touch	in	touches	{

												let	location	=	touch.locationInNode(self)

												

												let	sprite	=	SKSpriteNode(imageNamed:"Spaceship")

												

												sprite.xScale	=	0.5

												sprite.yScale	=	0.5

												sprite.position	=	location

												

												let	action	=	SKAction.rotateByAngle(CGFloat(M_PI),	duration:1)

												

												sprite.runAction(SKAction.repeatActionForever(action))

												

												self.addChild(sprite)

								}

				}

This	method	is	called	when	the	user	touches	somewhere	on	the	screen.	It	is	also	one	of	the
methods	that	we	can	override	to	handle	touches.	There	are	three	more	methods,	namely
touchesMoved,	touchesEnded,	and	touchesCancelled,	which	will	be	covered	in	detail	in
Chapter	2,	What	Makes	a	Game	a	Game?	As	soon	as	user	touches	on	the	screen	and	this
whole	process	gets	completed,	it	gets	the	location	of	the	touch,	creates	an	SKSpriteNode
instance	using	the	Spaceship	texture,	sets	its	size	to	half	of	the	texture’s	original	size,	and
places	it	on	the	touch	position.	You	will	find	the	image	that	is	used	to	create	the	spaceship
in	the	Assets.xcassets	folder	of	the	Project	Navigator.

Then,	it	applies	a	rotation	to	the	spaceship	by	creating	an	action	method,	and	calling	the
rotateByAngle	method,	which	accepts	an	angle	value	as	an	input	parameter,	and	running
this	action	on	the	spaceship.	Finally,	it	adds	the	ship	to	the	scene.

Note
The	SKSpriteNode	instance	is	one	of	the	most	used	classes	in	SpriteKit	game	development
as	it	provides	a	visual	representation	and	a	physical	shape	to	the	objects	in	view.

The	last	method	looks	like	this:

	override	func	update(currentTime:	CFTimeInterval)	{

								/*	Called	before	each	frame	is	rendered	*/

				}

This	is	one	of	the	most	important	methods	when	developing	games	with	SpriteKit,	as	it	is
called	just	before	each	frame	is	rendered	and	it	is	the	place	where	we	can	perform
important	operations	and	actions.

If	you	run	the	project	again	and	touch	anywhere	on	the	screen,	you	will	see	something	that
is	similar	to	what’s	shown	in	the	following	screenshot:

As	expected,	a	spaceship	has	been	created	and	it	has	begun	to	rotate	in	a	counterclockwise
direction.	Another	important	thing	to	note	at	this	point	is	the	number	of	nodes,	which	has
increased	and	corresponds	to	the	draw	of	the	scene,	the	text	label,	the	spaceship,	and	the
background.

Now	that	we	had	an	overview	of	the	initial	project	code,	it’s	time	to	go	deeper	into	some
of	the	classes	that	we	saw	earlier.	We	have	seen	that	the	default	project	creates	instances	of
SKScene,	SKLabelNode,	and	SKSpriteNode,	which	are	subclasses	of	SKNode,	one	of	the
most	important	classes	of	the	SpriteKit	framework.	You	will	understand	why	if	you	keep
reading.

The	SKNode	class
When	developing	a	scene,	we	sometimes	build	what	is	called	a	scene	hierarchy.	This
scene	graph	is	a	hierarchy	of	the	nodes	that	are	available	on	it.

We	call	them	nodes	because	they	inherit	from	the	SKNode	class.	For	more	information,
visit
https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKNode_Ref,
which	is	the	main	SpriteKit	class	that	renders	visual	elements.

The	following	diagram	corresponds	to	the	scene	graph	of	the	project.	You	can	see	that
there	is	a	parent	SKScene	node	with	two	children	that	correspond	to	the	SKSpriteNode	and
SKLabelNode	that	we	have	added	to	the	game:

The	SKNode	class	is	a	subclass	of	UIResponder.	This	means	that	all	the	SKNode	instances
and	every	subclass	of	SKNode	will	be	able	to	handle	touches	and	other	kind	of	events	such
as	motion	events.

If	you	look	at	the	SKNode	class	hierarchy	in	the	following	diagram,	you	will	realize	the
importance	of	this	class,	as	it	is	the	parent	of	several	useful	classes:

https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKNode_Ref

The	SKNode	class	properties
In	this	section,	we	are	going	to	have	a	look	at	the	most	important	properties	available	in
the	SKNode	class	in	detail.

The	position	property
An	important	property	of	nodes	is	their	position,	as	we	are	going	to	manipulate	this
several	times	during	the	game’s	development.	This	property	corresponds	to	the	position	of
the	node	in	the	parent’s	coordinate	system.	Therefore,	we	need	to	take	it	into	account
when	adding	new	elements	to	a	scene.	Its	default	value	is	(0.0,	0.0).

The	frame	property
Another	useful	property	is	the	frame	of	a	node,	which	makes	a	reference	to	the	rectangle
defined	by	its	texture	(the	visual	content).	This	property	size	can	be	modified	by	applying
a	scaling	factor	on	both	the	width	and	height	by	applying	a	value	between	0	and	1	to	the
xScale	and	yScale	attributes.	The	frame	can	also	be	rotated	by	modifying	the	zRotation
property,	which	will	apply	a	counterclockwise	rotation	if	the	value	is	greater	than	0.

Note
As	a	node	can	be	used	to	organize	the	content	by	storing	other	nodes,	the	scale	and
rotation	modifiers	will	affect	both	the	node	and	its	descendants.

If	we	want	to	take	into	account	a	node’s	descendants	when	getting	its	frame,	there	is	a
function	called	calculateAccumulatedFrame()	that	retrieves	the	rectangle	containing	the
content	of	the	parent	and	children	while	taking	into	account	the	scale	and	rotation
factors.

We	can,	for	instance,	determine	whether	this	whole	frame	is	intersected	by	another	node’s
frame	thanks	to	this	method.

The	zPosition	property
This	property	determines	the	height	of	the	node	related	to	its	parent.	Its	value	is	0.0	by
default,	but	we	can	set	positive	or	negative	values	so	that,	the	bigger	the	zPosition	value,
the	closer	the	node	will	be	to	the	user.	This	way,	we	will	have	full	control	over	how	the
children	are	rendered.

The	hidden	property
Sometimes,	we	will	need	to	keep	a	node	invisible	while	it	is	in	a	scene.	We	can	do	this	by
setting	the	hidden	property	to	true.	It	only	affects	the	way	the	node	and	its	descendants
are	rendered,	as	they	will	still	be	able	to	perform	actions	and	collide	with	other	nodes	in
the	scene.

An	alpha	property
A	property	that	provides	a	similar	effect	is	the	alpha	property	of	the	node.	It	applies	a
modifier	between	0.0	and	1.0	to	the	alpha	component	of	each	pixel	and	allows	us	to
make	the	node	transparent.

The	children	node
This	read-only	array	of	the	AnyObject	type	contains	all	the	node	children	in	an	SKNode
object.

name
If	a	scene	contains	several	nodes,	we	may	need	to	identify	them	in	order	to	handle
collisions.	In	such	cases,	it	is	a	good	approach	to	provide	a	value	to	each	node’s	name
property.	We	can	use	this	property	to	give	the	same	name	to	a	group	of	nodes	in	order	to
differentiate	them	from	the	player’s	node	and	make	collision	detection	tasks	easy.

If	we	want	to	find	a	node	by	its	unique	name,	we	can	make	use	of	the	childNodeWithName
method.	On	the	other	hand,	if	we	have	used	a	name	to	identify	a	collection	of	nodes,	we
can	call	enumerateChildNodesWithName:usingBlock,	which	will	search	a	node’s	children
and	execute	a	block	of	code	once	for	each	child	that	is	found.

userInteractionEnabled
There	is	another	property	that	is	commonly	used,	userInteractionEnabled.	This
determines	whether	a	node	can	receive	touch	events.	If	its	value	is	false,	the	node	won’t
react	to	user	input.

Using	SKNode	to	organize	a	scene
We	have	seen	previously	that	an	SKNode	instance	can	be	used	to	contain	other	nodes	in
order	to	organize	the	scene	content.	The	following	are	a	few	examples:

You	may	want	to	group	several	nodes	that	need	to	be	treated	as	a	unique	object	to
represent	an	army	of	alien	ships,	and	you	don’t	want	any	of	the	ships	to	be	the	root.
Grouping	them	as	children	of	a	node	will	allow	you	to	move	them,	while	always
keeping	the	line-up.
In	a	game,	it	is	common	to	have	a	background,	several	characters,	objects	to	collide,
texts,	and	many	more	elements.	You	can	create	different	layers	to	separate	each	of
these	different	kind	of	elements	by	creating	basic	nodes	and	inserting	them	in	the
desired	order	into	the	scene.

In	the	preceding	screenshot,	you	can	see	how	we	used	three	different	layers,	one	for	the
background,	another	one	for	the	ninja	character,	and	the	last	one	for	the	score.

By	following	the	afore	mentioned	approaches,	you	will	be	able	to	add	or	remove	entire
groups	of	objects	by	deleting	a	single	node.	This	will	make	the	scene	management	more
efficient.	You	can	also	configure	the	properties	of	several	nodes	by	applying	the
configuration	to	the	root	node.	You	can	even	take	advantage	of	it	when	running	actions	or
handling	physics	contacts.

SKScene
The	SKScene	class	is	a	subclass	of	SKNode	that	has	some	specific	properties	and	methods
to	handle	the	way	content	is	drawn	in	an	SKView	object	(the	screen).

The	game	loop
Each	node	provides	content	that	will	be	animated	and	rendered	by	the	scene	in	a	process
called	game	loop.	It	looks	like	the	following	screenshot	that	was	taken	from
https://developer.apple.com/library/ios/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG

According	to	the	preceding	screenshot,	each	frame	in	a	SpriteKit	game	is	calculated	in	the
following	order:

1.	 Firstly,	the	scene	calls	the	update	method.	Here,	we	can	specify	the	code	that	we
want	to	execute	just	before	the	scene	actions	are	evaluated.

2.	 Then,	the	scene	executes	the	actions	on	its	children	nodes.
3.	 Once	the	actions	have	been	executed,	the	scene	triggers	its	didEvaluateActions

method.	We	should	include	in	this	method	the	code	that	we	want	to	execute	as	soon
as	the	actions	have	been	evaluated.

4.	 Now,	it’s	time	for	the	physics	to	be	evaluated.	SpriteKit	provides	an	easy	way	to
simulate	physics	in	a	node	such	as	gravity,	collisions,	and	friction,	but	we	are
not	going	to	cover	it	in	this	book.	You	just	need	to	know	that	there	is	a	step	in	the
game	loop	where	the	scene	executes	every	physics	simulation	on	the	physic	bodies
in	the	scene.

5.	 After	the	physics	is	simulated,	the	scene	triggers	its	didSimulatePhysics	method.
We	should	include	in	this	method	the	code	that	we	want	to	execute	as	soon	as	the
physics	is	simulated.

6.	 Then,	the	scene	applies	the	constraints	associated	to	its	children	nodes.	These

https://developer.apple.com/library/ios/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG

constraints	are	an	array	of	instances	of	the	SKConstraint	class,	which	basically	are
restrictions	applied	to	a	node	that	can	be	related	to	another	node	in	the	scene.	For
example,	we	can	create	constraints	to	set	a	node’s	zRotation	method	so	that	it
always	points	at	another	node	or	position	in	the	scene,	or	keeps	a	node	inside	a
specified	rectangle	or	within	a	specified	distance	of	another	node.

7.	 Once	the	constraints	have	been	applied,	the	scene	triggers	its	didApplyConstraints
method,	which	we	should	take	advantage	of	to	include	the	code	that	we	want	to
execute	as	soon	as	the	physics	has	been	simulated.

8.	 Then,	the	scene	calls	the	didFinishUpdate	method,	which	is	the	last	method	that	is
called	before	the	scene	is	rendered.

9.	 Finally,	the	scene	renders	all	of	its	children	nodes	and	updates	the	view.

Tip
You	don’t	need	to	call	the	aforementioned	methods	directly,	because	they	are	called
once	per	frame	as	long	as	the	scene	is	presented	in	the	view	and	it	is	not	paused.

The	SKScene	properties
In	this	section,	we	are	going	to	study	in	detail	the	most	important	properties	that	are
available	in	the	SKScene	class.

scaleMode
An	SKScene	instance	provides	some	properties	that	can	become	interesting	when	creating
a	scene.	For	example,	the	scaleMode	property	allows	us	to	specify	the	way	a	scene	is
mapped	to	the	view	that	presents	it,	which	can	be	one	of	the	following	four	values	defined
in	the	SKSceneScaleMode	enumeration:

Fill:	Each	axis	of	the	scene	(x	and	y)	is	scaled	independently.	This	way,	each	axis	in
the	scene	exactly	maps	to	the	length	of	the	same	axis	in	the	view.
AspectFill:	This	is	the	scale	mode	that	is	used	by	the	default	project.	In	this	case,
we	will	choose	a	scaling	factor,	that	will	be	the	larger	scaling	factor	between	the	two
dimensions,	and	each	axis	of	the	scene	will	be	scaled	by	the	same	factor.	This	way,
the	entire	area	of	the	view	will	be	filled,	but	it’s	possible	that	some	parts	of	the	scene
may	be	cropped.
AspectFit:	In	this	case,	we	will	choose	a	scaling	factor	that	will	be	the	smaller
scaling	factor	between	the	two	dimensions,	and	each	axis	of	the	scene	will	be	scaled
by	the	same	factor.	This	way,	the	entire	scene	will	be	visible,	but	letterboxing	may	be
required	in	the	view.
ResizeFill:	This	value	will	automatically	resize	the	scene	so	that	its	dimensions
match	those	of	the	view.

anchorPoint
This	property	makes	reference	to	the	origin	point	of	the	scene.	By	default,	its	value	is
(0,0),	which	means	that	the	scene	will	be	pinned	to	the	bottom	left	point	of	the	view,	as
shown	in	the	following	screenshot.	When	we	add	the	first	sprite	to	the	scene,	we’ll	see
how	important	it	is:

size
This	property	specifies	the	part	of	the	scene’s	coordinate	space	that	is	visible	in	the	view.
When	this	property	is	changed,	the	didChangeSize	method	is	triggered.	An	important
aspect	that	needs	to	be	highlighted	is	that	this	property	will	also	be	modified	if	we	set	the
ResizeFill	value	in	the	scaleMode	property.

backgroundColor
If	we	are	not	planning	to	add	a	background	image	to	our	game,	it’s	a	good	idea	to	set	a
nice	color	to	the	scene.	We	can	perform	this	change	by	applying	an	RGBA	(Red,	Blue,
Green,	and	Alpha)	color	to	this	property,	which	is	a	gray	color	(0.15,	0.15,	0.15,1.0)
by	default.

Your	first	game	–	InsideTheHat
In	this	game,	we	will	take	control	of	a	little	rabbit	that	is	trying	to	escape	from	the	top	hat
of	a	magician,	where	it	is	trapped.	To	achieve	its	objective,	our	main	character	will	need	to
run	through	magic	doors	until	it	gets	the	ace	of	diamonds	that	will	let	the	rabbit	escape.

In	this	chapter,	we	are	going	to	see	how	to	create	the	main	character’s	sprite	and	add	it	to
the	scene.	On	the	other	hand,	we	will	learn	how	to	set	a	background	for	the	game.	In	the
preceding	pages,	we	have	seen	a	lot	of	properties	and	methods	that	will	help	us	reach	our
current	goal.

Let’s	start	by	cleaning	off	the	unnecessary	files	and	content	in	the	project.	We	are	going	to
generate	the	screens	programmatically	so	that	you	can	delete	the	sks	file:

1.	 Right-click	on	the	GameScene.sks	file.
2.	 Choose	Delete.
3.	 Ensure	that	you	click	on	the	Move	to	Trash	button.

Next,	adapt	the	GameViewController	class	in	order	to	avoid	initializing	the	scene	from	the
file	that	we	have	just	removed.	Replace	the	viewDidLoad	method	from	this	class	with	the
following	block	of	code:

override	func	viewDidLoad()	{

								super.viewDidLoad()

								let	scene	=	GameScene(size:	view.bounds.size)

								//	Configure	the	view.

								let	skView	=	self.view	as!	SKView

								skView.showsFPS	=	true

								skView.showsNodeCount	=	true

								

								/*	Sprite	Kit	applies	additional	optimizations	to	improve	rendering	

performance	*/

								skView.ignoresSiblingOrder	=	true

								

								/*	Set	the	scale	mode	to	scale	to	fit	the	window	*/

								scene.scaleMode	=	.AspectFill

								

								skView.presentScene(scene)

			}

We	have	just	modified	the	old	line,	which	looks	like	this:

if	let	scene	=	GameScene(fileNamed:"GameScene")	{

We	replaced	the	preceding	line	of	code	with	the	following	code:

let	scene	=	GameScene(size:	view.bounds.size)

This	way,	we	initialized	the	scene	using	the	init(size:)	method	of	the	SKScene	class,	to
which	we	pass	a	size	value	as	an	input	parameter	in	the	form	of	view.bounds.size.	We
are	using	the	bounds	property	of	the	SKView	class,	which	corresponds	to	a	rectangle	that

occupies	the	whole	size	of	the	screen.

Now,	it’s	time	to	clean	the	GameScene	class.	Therefore,	open	it	and	replace	the
didMoveToView	method	with	the	following	piece	of	code:

	override	func	didMoveToView(view:	SKView)	{

				}

Replace	the	touchesBegan	method	with	the	following	code:

	override	func	touchesBegan(touches:	Set<UITouch>,	withEvent	event:	

UIEvent?)	{

				}

The	project	is	now	ready	to	be	updated	with	our	brand-new	code,	but	you	can	run	it	just	to
ensure	that	we	haven’t	broken	anything.

Our	first	SKSpriteNode	class
The	SKSpriteNode	class
https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKSpriteNode_Ref
is	the	one	that	we	are	going	to	use	in	order	to	load	the	sprites	that	will	be	a	part	of	our
game.

The	SKSpriteNode	class	is	a	subclass	of	SKNode,	and	it’s	used	to	represent	visual	elements
called	sprites	on	the	screen	by	using	images.	As	you	are	going	to	need	an	image	to	create
a	sprite	(an	instance	of	SKSpriteNode	class),	perform	the	following	steps	to	add	it	to	the
project:

1.	 Unzip	the	7338_01_Resources.zip	file	in	the	desired	location.
2.	 In	Xcode,	right-click	on	the	InsideTheHat	group	on	the	Navigator	tab,	select	New

Group,	and	call	it	Art.
3.	 Right-click	on	the	Art	group	and	select	Add	Files	to	InsideTheHat….
4.	 A	dialog	box	will	open,	where	you	need	to	select	the	rabbit.png	image	in	the

7338_01_Resources	folder	that	you	just	unzipped.
5.	 Ensure	that	Copy	items	if	needed	is	selected	and	click	on	Add.

Now	that	the	image	has	been	added,	we	will	need	a	variable	to	manage	the	main	character.
Therefore,	on	GameScene.swift,	add	the	following	line	just	after	class
GameScene:SKScene	{:

			private	var	rabbit:	SKSpriteNode!

Note	that	we	have	declared	the	variable	as	a	var	because	its	value	will	change	throughout
the	game’s	life.

Now	that	the	sprite	variable	has	been	declared,	modify	the	didMoveToView	method	by:

	override	func	didMoveToView(view:	SKView)	{

								self.initializeMainCharacter()

				}

				

				func	initializeMainCharacter()	{

								//	Creating	the	rabbit	sprite	using	an	image	file	and	adding	it	to	

the	scene

		rabbit	=	SKSpriteNode(imageNamed:	"rabbit")

								

								addChild(rabbit)

				}

As	soon	as	the	scene	is	loaded,	we	call	a	new	method	named
self.initializeMainCharacter	that	we	created	just	to	keep	the	code	as	clean	as	we	can.
We	will	use	the	self	object	because	we	are	referencing	a	method	in	the	current	class.	If
you	look	at	the	method,	you	will	see	that	it	initializes	the	sprite	with	the
init(imageNamed:)	method,	which	takes	the	image	that	we	have	just	added	to	the	project
to	provide	the	sprite’s	visual	content.

https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKSpriteNode_Ref

Tip
Note	that	you	don’t	need	to	specify	the	extension	of	the	filename,	as	it	will	load	a	.png,
.jpg,	.jpeg,	.tiff,	.tif,	.gif,	.bmp,	.BMPf,	.ico,	.cur,	or	.xbm	file.

Thanks	to	this	init	method,	the	sprite’s	size	property	(and	its	frame)	is	automatically	set
to	the	dimensions	of	the	image	and	the	color	to	white	(1.0,	1.0,	1.0).

Once	the	sprite	has	been	initialized,	we	add	it	to	the	scene	by	using	the	addChild	method,
which	adds	a	new	child	to	the	specified	container	(GameScene	in	this	case),	and	this	is	how
we	add	new	nodes	to	the	scene.

If	you	run	the	game	now,	you	will	see	something	similar	to	what’s	shown	in	the	following
screenshot:

The	sprite	has	been	placed	at	the	bottom	left	corner	of	the	screen	(the	(0,0)	coordinate),
which	corresponds	to	the	scene’s	anchor	point.	You	may	be	wondering	why	the	rabbit	is

not	fully	visible.

The	answer	is	that	the	default	value	of	the	anchorPoint	on	an	SKSpriteNode	is	the	center
of	the	texture	at	(0.5,	0.5),	while	the	anchorPoint	of	the	scene	is	at	(0,0).	As	soon	as
the	sprite	is	added	to	the	scene,	their	anchor	points	get	aligned.

For	our	game,	we	want	the	rabbit	to	be	placed	at	the	center	of	the	screen	and	near	at	the
bottom	of	the	screen.	Therefore,	add	the	following	lines	of	code	to
initializeMainCharacter	just	before	addChild(rabbit):

	//	Positioning	the	rabbit	centered

				rabbit.position	=	CGPoint(x:(view!.bounds.size.width/2),	y:	

rabbit.size.height)

With	the	preceding	line	of	code,	we	created	a	CGPoint	class,	which	is	a	commonly	used
class	that	is	utilized	to	represent	a	point	in	a	two-dimensional	coordinate	system	that
accepts	a	CGFloat	value	for	both	the	x	and	y	axes.	At	the	bottom-center	of	the	screen,	we
are	setting	this	point	as	the	position	of	the	rabbit.

Also	note	how	we	are	getting	the	center	of	the	screen’s	width.	We	get	the	width	property
from	the	size	method	of	the	bounds	property	of	the	current	view	(passed	as	an	input
argument	when	the	scene	is	loaded),	which	is	the	rectangle	that	contains	all	the	visual
elements.	As	we	want	our	sprite	to	be	centered	on	the	x	axis,	we	just	need	to	divide	it	by	2,
and	we	have	the	desired	value.

Tip
As	there	are	several	devices	that	support	iOS	and	each	of	them	has	its	own	specific
resolution	and	screen	sizes,	it’s	very	important	to	always	work	with	relative	positions.	This
way,	you	don’t	need	to	worry	about	an	element’s	position.

If	you	look	at	the	code,	you	will	realize	that	we	are	setting	the	sprite’s	position	before
adding	it	to	the	scene,	but	you	can	place	it	just	after	the	addChild	method,	and	the	result
won’t	vary.	Now,	if	you	run	the	game,	the	rabbit	will	be	placed	in	the	correct	position,	as
shown	in	the	following	screenshot:

At	this	moment,	there	is	nothing	that	represents	that	the	rabbit	is	trying	to	escape	from
somewhere.	Therefore,	we	need	to	add	context	to	the	game,	which	is	the	same	as	adding	a
background.

Adding	a	background
We	need	to	create	a	road	for	our	rabbit	to	run	on	and	also	for	it	to	find	the	exit	of	the	top
hat.	In	this	case,	we	will	follow	almost	the	same	steps	than	we	did	to	add	the	rabbit,	but
with	a	few	differences.

Add	the	background	image	in	a	way	that	is	similar	to	how	we	added	the	rabbit’s	image:

1.	 On	the	Project	Navigator,	select	the	Art	group.
2.	 Right-click	and	select	Add	Files	to	“InsideTheHat”….
3.	 Look	for	the	background.png	file	in	the	7338_01_Resources	folder	that	you

unzipped.	Select	it	and	click	on	Add.

Then,	add	the	following	lines	to	GameScene	before	the	addChild(rabbit)	line:

		//	Creating	and	adding	the	background	to	the	scene

								let	background	=	SKSpriteNode(imageNamed:	«background»)

								background.anchorPoint	=	.zero

								addChild(background)

You	already	know	the	first	line;	we	are	creating	a	sprite	using	the	background	image	that
we	have	just	added	to	the	project.	Then,	we	set	its	anchorPoint	to	.zero,	which	is	a
shortcut	for	CGPoint(x:0,	y:0).	The	image	covers	the	whole	screen,	and	finally	we	add
the	background	to	the	scene.

Run	the	game.	Now,	the	rabbit	should	appear	standing	on	a	lonely	road,	as	shown	in	the
following	screenshot:

You	may	be	wondering	why	the	rabbit	sometimes	appears	and	sometimes	it	doesn’t.	The
reason	is	that	it	is	behind	the	background,	even	though	it	has	been	added	after	the
background	image.

The	reason	for	this	behavior	lies	in	the	skView.ignoresSiblingOrder	=	true	line	in	the
GameViewController	class.

The	ignoresSiblingOrder	property	indicates	whether	the	relationship	between	the	parent
nodes	and	children	affects	the	order	of	the	nodes	in	the	scene.	By	default,	its	value	is
false.	This	means	that	SpriteKit	will	render	the	children	in	the	same	order	they	appear	in
the	children	array,	one	node	at	a	time.

Setting	this	property	to	true	will	not	take	into	account	the	position	of	the	nodes	in	the	tree,
but	their	zPosition	property	groups	all	the	nodes	at	the	same	zPosition	property	in	a
single	draw.	Therefore,	the	reason	behind	setting	the	ignoresSiblingOrder	property	to
true	is	the	fact	that	it	will	improve	the	rendering	performance.

In	the	game,	the	property	has	been	set	to	true	and	the	nodes	have	no	zPosition	specified
(0.0	by	default).	This	will	render	all	the	children	on	the	same	time	in	an	arbitrary	way.
That’s	why,	the	rabbit	may	sometimes	be	visible	and	sometime	not.

As	we	want	the	game	to	be	very	efficient,	we	will	keep	the	ignoresSiblingOrder
property	as	is.	So,	we	will	need	to	give	the	zPosition	value	to	some	nodes.	Open
GameScene	and	add	the	following	line	just	before	addChild(background):

background.zPosition	=	-1

This	way,	we	set	the	background	behind	the	default	zPosition	value	so	that	the	rest	of	the
nodes	that	we	will	add	will	always	be	visible.	Let’s	run	the	game	again	and	check	whether
the	rabbit	is	now	visible.	The	output	is	shown	in	the	following	screenshot:

Working	with	screen	resolutions
As	mentioned	previously,	iOS	games	can	be	executed	on	devices	with	different	resolutions
and	screen	sizes.	This	is	the	reason	why	it’s	important	to	keep	in	mind	the	following	table,
which	shows	the	different	families	of	resolutions	and	their	required	file	names:

	 iPhone	6	Plus iPhone	6 iPhone	4s,
iPhone	5 iPad	Retina iPad

Devices iPhone	6	Plus,	iPhone
6s	Plus iPhone	6,	6s

iPhone	4s

iPhone	5,	5C,
5S

iPod	Touch	5G

iPad	Air,	Air	2,	iPad
mini	Retina

iPad,	iPad	2,
iPad	mini

Resolution 1242	x	2208 750	x	1334
640	x	960

640	x	1136
1536	x	2048 768	x	1024

File	name file@3x.png file@2x~iphone.png file@2x.png file@2x~ipad.png file@1x.png

Note	that	we	are	showing	the	devices	supported	by	iOS	9,	which	is	the	version	that	we	are
using	for	development	purposes.

The	above	table	corresponds	to	the	five	resolution	families	that	are	available	at	the	time	of
writing	this	chapter.	In	the	table,	you	will	see	the	different	devices	of	each	family,	their
resolutions,	and	the	names	that	you	will	need	to	specify	for	each	of	them.

The	filenames	are	composed	of	a	prefix	(the	filename)	and	a	suffix	that	can	be	@3x,
@2x~iphone,	@2x,	@2x~ipad,	or	@1x	(in	this	case,	the	suffix	can	be	omitted),	depending	on
the	devices	that	you	want	the	game	to	be	available	on.

Providing	the	needed	files	will	not	only	result	in	a	better	resolution,	but	also	will	avoid	the
programmatic	upscaling	or	downscaling	of	the	image,	thus	improving	the	game’s
performance.	Upscaling	an	image	will	result	in	smudgy-looking	images	but,	on	the	other
hand,	downscaling	images	will	allow	you	to	reuse	a	high-resolution	image	for	lower
resolution	devices.	However,	this	approach	is	not	recommended	due	to	the	waste	of
memory	that	a	non-retina	display	could	lead	to.

From	now	on,	when	we	add	a	new	image	to	the	game,	we	will	need	to	include	the
corresponding	@2x,	@2x~iphone,	@2x~ipad	and	@3x	files,	if	available.	Let’s	add	the
required	images	by	performing	the	following	steps:

1.	 In	the	project	navigator,	right-click	on	Art	and	select	Add	Files	to
“InsideTheHat”….

2.	 You’ll	find	rabbit@3x.png,	rabbit@2x~ipad.png,	rabbit@2x.png,
background@3x.png,	background@2x~ipad.png,	and	background@2x.png	in	the
7338_01_Resources	folder.	Select	these	four	files	and	click	on	Add.

You	can	now	run	the	game	on	other	devices	and	check	whether	the	resolution	is

maintained	in	all	of	them.

Another	way	of	including	new	image	files	in	a	project	is	by	taking	advantage	of	the	assets
catalog	that	we	mentioned	at	the	beginning	of	the	chapter.	If	you	take	a	look	at	this	folder,
you	will	see	something	that	is	similar	to	the	following	screenshot:

Here,	you	can	create	a	New	Image	Set	by	clicking	on	the	+	button	and	filling	the	1x,	2x,
and	3x	slots	with	the	corresponding	images.

Summary
We	started	the	chapter	by	looking	at	a	default	SpriteKit	project,	creating	a	new	project,
and	learning	how	it	is	configured	and	what	files	it	consists	of.

You	learned	what	a	node	is	and	how	to	create	one	with	the	SKNode	class,	which	is	the
parent	of	several	important	classes	that	take	part	in	a	game.	Also,	we	showed	the	structure
of	a	scene	graph,	with	a	parent	SKScene	node	and	several	children.

I	explained	some	of	the	key	properties	and	methods	of	SKNode	and	SKScene	that	will	take
part	in	the	development	of	our	game.	You	also	had	a	look	at	the	different	steps	a	game
loop	requires	to	render	all	the	contents	on	the	screen.

Then,	you	learned	how	to	create	a	scene	and	add	a	sprite	and	a	background	properly,
taking	into	account	their	anchor	point	and	their	zposition	value	to	ensure	that	the
background	lies	behind	the	rest	of	nodes.

In	the	last	section	of	this	chapter,	we	explored	the	characteristics	that	we	need	to	keep	in
mind	when	developing	a	game	for	both	iPhone	and	iPad	devices,	such	as	screen
resolutions	and	image	filenames.

Now	that	we	know	how	to	create	a	project	and	load	sprites	efficiently,	let’s	take	a	step
forward	in	order	to	make	them	interactive	and	the	game	playable.

Chapter	2.	What	Makes	a	Game	a	Game?
In	Chapter	1,	The	First	Step	toward	SpriteKit,	we	set	the	basis	of	our	game	by	adding	a
background	and	the	first	sprite	to	our	project.	In	the	following	pages,	I	will	show	you	the
key	elements	that	take	part	in	every	game,	such	as	the	movement	of	sprites	in	a	scene,	the
detection	of	touches,	and	the	handling	of	collisions.	You	will	also	learn	how	to	add	labels
to	a	scene	and	play	music	and	sound	effects.

The	things	that	you	will	learn	in	this	chapter	are	as	follows:

How	to	detect	touch	interaction
How	to	execute	actions	on	sprites
How	to	handle	collisions
Creating	and	updating	labels
Playing	music	and	sound	effects

Handling	touch	events
Our	beloved	main	character	is	supposed	to	run	though	several	doors,	but	some	of	them	are
closed	and	others	are	open,	so	it	will	need	to	move	laterally	to	choose	the	right	ones.	We
will	need	to	handle	the	players’	interaction	to	help	the	rabbit	properly	select	a	door.

By	default,	SpriteKit	listens	to	touch	events,	and	we	can	manage	them	by	implementing
some	of	the	methods	provided	by	the	UIResponder	class,	which	is	the	parent	class	of
SKNode.

The	following	four	methods	are	available	if	you	wish	to	detect	and	handle	touches:

The	touchesBegan	method:	This	method	is	triggered	as	soon	as	the	user	touches	the
screen,	and	it	can	detect	one	or	more	touches.	That’s	why	it	receives	a	set	of	UITouch
instances.	We	can	use	this	method	to	select	the	place	where	we	want	the	rabbit	to	be
moved	in	the	game.
The	touchesMoved	method:	This	method	will	be	triggered	when	one	or	more	fingers
that	are	touching	the	screen	begin	to	move.	We	can	take	advantage	of	this	method	to
update	a	node’s	position	while	it	is	being	dragged.
The	touchesEnded	method:	This	method	will	be	triggered	as	soon	as	one	or	more
fingers	that	are	touching	the	screen	are	released	and	they	are	no	longer	touching	the
screen.	This	method	can	be	useful	when	you	want	to	recognize	when	a	user	wants	to
stop	dragging	a	node.
The	touchesCancelled	method:	We	can	implement	this	method	in	order	to	execute
actions	when	a	touch	event	is	finished	due	to	some	system	event,	such	as	a	phone	call
or	a	memory	warning.

From	these	methods,	we	will	take	advantage	of	the	touchesBegan	method,	which	is
inheriting	from	SKScene	class,	which	is	inheriting	from	the	UIResponder	class.	For	this
purpose,	open	GameScene.swift	and	implement	touchesBegan	using	the	following	lines:

if	let	touch	=	touches.first	{

				//	Moving	the	rabbit	to	the	touched	position

				let	location	=	touch.locationInNode(self)

				self.moveRabbitToNextLocation(location)

}

As	a	device	detects	all	the	touches	on	the	screen,	the	touches	object	will	contain	a	set	of
UITouch	instances.	From	here,	you	can	get	the	first	instances	of	them	by	executing	the
first	method.

Once	we	have	one	single	touch	event,	we	just	need	to	know	where	it	is	placed.	This	task	is
very	easy	to	perform	as	we	just	need	to	call	the	locationInNode	method	and	pass	the
node	where	the	touch	event	has	taken	place	(the	scene),	and	we	will	get	the	CGPoint
function	corresponding	to	it.

Once	we	have	the	location	of	the	touch,	we	just	need	to	pass	it	to	the
moveRabbitToNextLocation	method,	where	all	the	magic	is	going	to	happen.	To	know
what	this	method	does,	add	the	following	code	after	the	touchesBegan	method:

func	moveRabbitToNextLocation(touchLocation:	CGPoint)	{

				//	The	constant	rabbit's	speed

				let	rabbitSpeed:	CGFloat	=	360.0

				var	moveAction:SKAction!

				var	duration:	CGFloat	=	0.0

				var	nextPosition:	CGPoint

				if	touchLocation.x	<=	view!.bounds.size.width/3	{

								//	Setting	the	next	position

								nextPosition	=	CGPoint(x:	view!.bounds.size.width/6	+	25	*	

rabbit.frame.width/40,	y:	rabbit.position.y)

								//	We	want	the	rabbit	to	move	on	a	constant	speed

								duration	=	self.distanceBetween(point:	rabbit.position,	andPoint:	

nextPosition)	/	rabbitSpeed

								//	Move	the	rabbit	to	the	touched	position

								moveAction	=	SKAction.moveToX(nextPosition.x,	duration:	

Double(duration))												

				}	else	if	touchLocation.x	>	view!.bounds.size.width/3	&&	

touchLocation.x	<=	2	*	view!.bounds.size.width/3	{												

								//	Setting	the	next	position

								nextPosition	=	CGPoint(x:	view!.bounds.size.width/2,	y:	

rabbit.position.y)

								//	We	want	the	rabbit	to	move	on	a	constant	speed

								duration	=	self.distanceBetween(point:	rabbit.position,	andPoint:	

nextPosition)	/	rabbitSpeed

								//	Move	the	rabbit	to	the	touched	position

								moveAction	=	SKAction.moveToX(nextPosition.x,	duration:	

Double(duration))												

				}	else	{												

								//	Setting	the	next	position

								nextPosition	=	CGPoint(x:	5*view!.bounds.size.width/6	-	25	*	

rabbit.frame.width/40,	y:	rabbit.position.y)

								//	We	want	the	rabbit	to	move	on	a	constant	speed

								duration	=	self.distanceBetween(point:	rabbit.position,	andPoint:	

nextPosition)	/	rabbitSpeed

								//	Move	the	rabbit	to	the	touched	position

								moveAction	=	SKAction.moveToX(nextPosition.x,	duration:	

Double(duration))

				}

				//	Executing	the	action

				rabbit.runAction(moveAction)

}

Okay,	I	know	that	it’s	a	big	piece	of	code,	but	don’t	worry.	It’s	very	easy	to	understand.
We	want	to	move	the	little	rabbit	laterally	with	a	constant	speed	(360.0).	That’s	why	we
declared	the	rabbitSpeed,	moveAction,	duration,	and	nextPosition	variables.

The	rabbit	will	need	to	choose	between	the	three	doors	that	are	placed	at	the	center	of	each
third	of	the	screen’s	width.	That’s	why,	after	declaring	the	variables,	we	need	to	check
whether	the	touch	event	has	taken	place	on	any	third	of	the	screen’s	width.

For	example,	let’s	pay	attention	to	the	first	condition:

if	touchLocation.x	<=	view!.bounds.size.width/3{

With	this	line,	we	are	checking	whether	the	x	coordinate	of	the	touch	location	is	lower
than	the	view’s	width	divided	by	3	(the	third	of	the	screen	on	the	left).	If	this	condition	is
fulfilled,	we	initialize	the	nextPosition	variable	with	the	coordinates	of	the	desired
location,	which	corresponds	to	the	screen	position	at	the	middle	of	each	of	the	three	doors
that	the	rabbit	will	need	to	avoid.

So,	once	we	know	the	next	position,	we	just	need	to	focus	on	the	movement	itself.
SpriteKit	provides	a	large	number	of	methods	to	perform	all	the	actions	that	we	will	need
in	a	game.	At	this	moment,	we	will	just	focus	on	movement	actions	and	specifically	on
moveToX,	which	will	move	a	sprite	to	a	desired	position	(taking	into	account	only	the	x
coordinate)	in	a	specified	duration	and	can	be	concurrently	called,	resulting	in	a
movement	that	will	be	the	sum	of	the	different	movements.	There	are	similar	actions,	such
as	moveToY,	moveToX	(a	specific	point),	and	moveBy,	that	generate	a	movement	to	the	next
position	using	relative	coordinates.	However,	we	want	to	move	to	an	absolute	position	to
ensure	that	we	pass	through	the	doors	properly.

As	we	want	the	rabbit	to	always	move	at	the	same	speed	(360.0),	we	will	need	to	update
the	duration	of	the	action	using	basic	physics.	Do	you	remember	the	formula	to	calculate
speed?

time	=	distance/speed

We	already	know	the	speed,	but	we	need	to	calculate	the	distance	between	the	main
character	and	its	nextPosition	value.	Then	we	will	be	able	to	get	the	time	(duration)	that
this	movement	will	last.

For	the	purpose	of	calculating	the	distance	between	the	rabbit	and	its	desired	position,	I’ve
implemented	a	very	useful	method	named	distanceBetween,	which	will	retrieve	the	value
that	we	are	looking	for.	Add	the	following	method	to	GameScene:

func	distanceBetween(point	p1:CGPoint,	andPoint	p2:CGPoint)	->	CGFloat	{

				return	sqrt(pow((p2.x	-	p1.x),	2)	+	pow((p2.y	-	p1.y),	2))

}

This	method	is	basic	mathematics;	it	returns	the	distance	between	the	points	named	p1	and
p2.	Once	we	have	the	distance	and	the	speed	values,	we	can	calculate	the	duration	value
and	create	the	movement	action	by	specifying	the	position	and	the	time	we	want	the	action
to	last.

The	last	line	in	the	moveRabbitToNextLocation	method	is
rabbit.runAction(moveAction).	This	line	will	trigger	the	action,	and	without	it,	there
won’t	be	any	movement	at	all,	as	it	sends	the	runAction	message	with	the	action	that	we
just	created	for	the	node	that	we	want	to	move.

Okay,	that’s	enough	code	for	now.	Run	the	project	and	see	how	the	rabbit	happily	moves
left	and	right:

However,	if	you	touch	on	the	screen	several	times,	you	will	notice	that	the	movement
action	behaves	in	a	strange	way.	Don’t	worry,	it’s	due	to	the	moveToX	nature	itself.	When	I
introduced	this	action,	I	specified	that	it	can	be	concurrently	called,	resulting	in	a
movement	that	will	be	the	sum	of	the	individual	movements.	But	in	our	case,	it’s	making
the	rabbit	look	a	bit	crazy.	To	take	control	of	the	actions,	we	need	to	be	aware	of	some
methods	that	can	be	used	to	stop	them	whenever	we	need	to.

Handling	actions
In	SpriteKit,	we	can	trigger	and	stop	actions	whenever	we	want.	In	this	way,	we	can
control	what	is	happening	at	every	moment	thanks	to	a	collection	of	methods	provided	by
SKNode,	which	are	as	follows:

hasActions():	This	method	returns	a	Boolean	value	that	indicates	whether	a	node	is
running	an	action.	We	can	take	advantage	of	this	method	to	check	whether	we	can
run	an	action,	as	it	may	cause	some	wrong	behavior	if	it	takes	place	at	the	same	time
as	that	of	existing	actions.
runAction(_:):	As	previously	discussed,	this	method	runs	the	SKAction	object	as	an
input	parameter.
runAction(_:,	completion:):	This	method	is	similar	to	the	previous	one;	the	only
difference	is	that	with	this	method,	we	can	specify	a	block	of	code	that	we	want	to
execute	as	soon	as	an	action	finishes.	For	example,	this	will	be	very	useful	if	we	want
to	reset	an	enemy’s	position	when	its	movement	is	completed.
runAction(_:,	withKey:):	With	this	method,	we	can	specify	a	character	chain	to
indicate	an	action.	In	this	way,	we	will	be	able	to	have	direct	control	over	the	action.
actionForKey(_:):	This	method	will	allow	us	to	get	a	specified	key	in	order	to
retrieve	an	action	if	it	exists.	If	there	is	no	matching	key,	it	will	return	a	nil	value.
removeAllActions():	This	method	will	stop	all	the	running	actions	in	a	node.
However,	when	an	action	is	removed,	it	may	make	a	final	change	to	the	scene	as	it
corresponds	to	the	changes	prior	to	the	removal.
removeActionForKey(_:):	If	we	have	stored	the	key	value	of	an	action	that	was	run
before,	we	can	use	it	to	stop	the	action	directly	and	leave	the	rest	of	the	actions
running.

All	of	these	methods	can	be	useful	during	a	game’s	development.	In	fact,	we	will	make
use	of	several	of	these	methods	in	the	following	sections.	In	our	case,	we	just	want	to	stop
all	actions	so	that	they	don’t	concatenate	and	result	in	strange	behavior.

We	just	need	to	make	one	change	in	the	code.	In	touchesBegan,	add	the	following	lines
just	after	if	let	touch	=	touches.first	{:

//	Controlling	actions

if	rabbit.hasActions()	{

				rabbit.removeAllActions()

}

If	you	run	the	game	now,	you	will	realize	that	the	rabbit’s	movement	doesn’t	exhibit	any
weird	behavior	even	when	you	touch	the	screen	several	times.

Building	a	wall
When	the	game	starts,	the	rabbit	will	start	running,	trying	to	find	the	exit	of	the	top	hat.	In
its	course,	it	will	need	to	avoid	closed	doors.	For	this	purpose,	we	need	to	create	a	wall.	So
let’s	start	by	adding	the	needed	images:

1.	 Unzip	the	7338_02_Resources.zip	and	go	back	to	Xcode.
2.	 Right-click	on	Art	and	select	Add	Files	to	InsideTheHat….
3.	 You’ll	find	wall.png,	wall@2x.png,	wall@2x~ipad.png,	wall@2x~iphone.png,	and

wall@3x.png	in	the	7338_02_Resources	folder	that	you	just	unzipped.	Select	these
five	files	and	click	on	Add.

Now	that	we	have	the	resources,	let’s	call	the	method	that	will	create	the	wall.	Add	the
following	code	at	the	end	of	the	didMoveToView	method	of	GameScene:

self.initializeWall()

Before	implementing	the	method,	we	will	need	to	declare	a	variable	for	the	wall	in	a	way
that	is	similar	to	how	we	declared	a	variable	for	the	rabbit.	Add	the	following	line	just
after	the	declaration	of	the	rabbit	variable:

private	var	wall:	SKSpriteNode!

Now,	implement	the	initializeWall	method	with	the	following	block	of	code:

func	initializeWall()	{

				//	Creating	the	wall	sprite	using	an	image	file

				wall	=	SKSpriteNode(imageNamed:	"wall")

				//	Positioning	the	wall	centered

				wall.position	=	CGPoint(x:(view!.bounds.size.width/2),	y:	

view!.bounds.size.height/2)

				//	Specifying	zPosition

				wall.zPosition	=	2

				//	Adding	the	wall	to	the	scene

				addChild(wall)

}

This	method	is	pretty	similar	to	the	one	that	we	used	to	create	the	rabbit.	We	initialized	the
wall	variable	using	the	image	that	we	just	provided.	Then,	we	set	its	position	just	at	the
center	of	the	screen.	Finally,	we	added	the	new	node	to	the	scene.	We	have	chosen	the
center	of	the	screen	just	to	see	how	the	wall	looks,	but	it	will	change	in	the	following
section.

We	also	specified	the	zPosition	value	of	the	wall	in	order	to	achieve	the	result	that	we
want	after	adding	all	the	objects	that	are	needed	in	the	scene.

Time	to	run	the	game	and	check	out	how	it	looks	so	far:

Running	through	the	doors
In	this	section,	we	are	going	to	manage	the	wall’s	behavior.	As	we	are	simulating	that	the
little	rabbit	is	running,	it	will	need	to	avoid	the	doors	and	the	wall	that	will	appear	at	the
top	of	the	screen.	To	simulate	the	rabbit’s	run,	we	will	move	the	walls	from	the	top	to	the
bottom	of	the	screen,	and	we	already	have	the	needed	knowledge	to	perform	this	task.

First	of	all,	we	will	need	to	place	the	original	wall’s	position	outside	the	screen.	You	need
to	replace	the	following	line	in	initializeWall:

wall.position	=	CGPoint(x:(view!.bounds.size.width/2),	y:	

view!.bounds.size.height/2)

The	preceding	line	should	be	replaced	by	the	following	code:

wall.position	=	CGPoint(x:(view!.bounds.size.width/2),	y:	

view!.bounds.size.height	+	wall.frame.size.height/2)

In	this	way,	we	have	set	the	wall	in	the	position	that’s	shown	in	the	following	screenshot:

Now	that	the	wall	is	in	its	initial	position,	it’s	time	to	apply	some	movement	to	it.	So,	let’s
call	a	new	method	by	adding	the	following	lines	of	code	at	the	end	of	the	didMoveToView
method	of	GameScene:

self.initializeWallMovement()

Implement	this	using	the	following	block	of	code:

func	initializeWallMovement()	{

				//	The	constant	wall's	speed

				let	wallSpeed:	CGFloat	=	250.0

				//	Setting	the	wall's	final	position

				let	nextWallPosition	=	CGPoint(x:	wall.position.x,	y:	-

wall.frame.size.height/2)

				//	We	want	the	wall	to	move	on	a	constant	speed

				let	duration	=	self.distanceBetween(point:	wall.position,	andPoint:	

nextWallPosition)	/	wallSpeed

				//	Move	the	wall	to	the	next	position

				let	moveWallAction	=	SKAction.moveToY(nextWallPosition.y,	duration:	

Double(duration))

				//	Reset	the	wall's	position

				let	resetPositionAction	=	SKAction.runBlock	{

				self.wall.position	=	CGPoint(x:(self.view!.bounds.size.width/2),	y:	

self.view!.bounds.size.height	+	self.wall.frame.size.height/2)

				}

				//	Executing	the	actions

				wall.runAction(SKAction.sequence([moveWallAction,	

resetPositionAction]))

}

The	preceding	code	is	very	similar	to	the	one	that	we	used	to	move	the	rabbit.	We	first
declare	a	constant	variable	for	the	wall’s	speed,	and	we	specify	the	final	position	that	we
want	the	wall	to	reach.	Note	that	this	final	position	is	centered	outside	the	view,	but	on	the
bottom	of	the	screen	this	time.

As	we	want	the	wall	to	move	at	a	constant	speed,	we	calculate	the	duration	with	the	same
strategy	that	we	used	for	the	rabbit.	Then,	we	create	a	moveToY	action	with	these	values,	as
we	just	want	the	object	to	be	scrolled	vertically.

Once	the	movement	action	is	done,	we	want	the	wall	to	recover	its	initial	position.	That’s
why,	we	are	going	to	take	advantage	of	a	special	type	of	SKAction	instances	named
sequence.	A	sequence	is	an	action	that	allows	us	to	synchronously	execute	an	array	of
actions	so	that	the	first	instance	in	an	array	will	run	first	and,	as	soon	as	it	ends,	it	will
trigger	the	second	action	in	the	array,	and	so	on.

Now	that	we	know	what	a	sequence	is,	we	need	a	way	to	reset	the	wall’s	position.	That’s
why,	we	will	declare	resetPositionAction,	a	runBlock	action	that	allows	us	to	execute
all	the	code	that	we	want	whenever	we	need	to.	If	you	look	at	the	block	of	code,	you	will
see	that	we	just	specified	the	original	wall’s	position.

Tip
One	important	thing	that	you	need	to	keep	in	mind	when	coding	blocks	is	the	scope	of	the
variables.	As	we	want	to	use	a	class	variable,	we	need	to	specify	self.wall	or	self.view.

Finally,	we	will	execute	a	sequence	with	both	the	required	actions	in	order	to	achieve	the
desired	behavior.	Run	the	game	at	this	point,	and	you	will	see	how	the	node	disappears	at
the	bottom	of	the	screen.	If	you	want,	you	can	reset	the	position	to	a	visible	one	so	that
you	can	check	whether	the	sequence	is	running	properly:

1-star	challenge:	an	easier	way	to	reset
position
I	chose	the	solution	of	running	two	actions	in	order	to	recover	the	initial	position	because	I
wanted	to	introduce	you	to	sequences,	but	there	is	an	easier	and	fancier	way	of	achieving
the	same	result.	With	the	knowledge	that	you	have	so	far,	try	to	get	the	same	results	that
you	got	when	using	a	sequence.

Solution
The	key	to	this	challenge	is	to	use	the	runAction(_:,	completion:)	method	so	that	we
can	execute	the	same	block	of	code	as	that	of	resetPositionAction.	Go	to	the
initializeWallMovement	method	and	replace	moveWallAction	with	the	following	code:

wall.runAction(moveWallAction,	completion:	{

				self.wall.position	=	CGPoint(x:(self.view!.bounds.size.width/2),	y:	

self.view!.bounds.size.height	+	self.wall.frame.size.height/2)

})

There	you	are.	With	this	change,	you	will	just	execute	one	action	with	a	completion	block
associated	with	it,	thus	obtaining	the	same	behavior	as	the	one	that	you	got	before.

Creating	loops
Now	that	we	have	the	wall’s	movement	defined,	we	should	repeat	it	when	the	game	is
running,	and	this	task	is	easily	achievable.	You	just	need	to	replace	the	following	line:

wall.runAction(SKAction.sequence([moveWallAction,	resetPositionAction]))

The	preceding	line	needs	to	be	replaced	by	the	following	lines	of	code:

//	Creating	a	delay	action

let	delayAction	=	SKAction.waitForDuration(2.0)

let	sequence	=	SKAction.sequence([moveWallAction,	resetPositionAction,	

delayAction])

//	Running	the	non-ending	sequence

wall.runAction(SKAction.repeatActionForever(sequence))

In	the	preceding	block	of	code,	we	first	declared	a	delay	action,	which	is	typically	used	to
introduce	a	waiting	period	of	time	before	another	action	happens.	We	have	specified	the
delayAction	value	as	2.0	because	this	is	the	time	the	wall	will	wait	until	its	movement.

Then,	we	modified	the	sequence	to	include	this	new	action	at	the	end	of	the	process.
Finally,	we	run	the	repeatActionForever	method,	which	will	create	an	unending	loop	of
the	wall’s	movement.	You	can	check	this	behavior	by	running	the	game.	Now	that	we	have
a	way	to	create	loops,	let’s	add	some	doors	to	the	scene	so	that	the	game	makes	more
sense.

Installing	doors	into	the	wall
In	this	section,	we	are	going	to	follow	the	same	solution	that	we	used	for	the	walls	but
with	a	small	change.	Let’s	start	by	declaring	a	new	variable	for	each	door.	Add	the
following	lines	after	private	var	wall:	SKSpriteNode!:

private	var	leftDoor:	SKSpriteNode!

private	var	centerDoor:	SKSpriteNode!

private	var	rightDoor:	SKSpriteNode!

As	we	will	need	some	images	for	these	new	nodes,	we	first	have	to	add	them	to	the
project.	Perform	the	following	steps	for	this	purpose:

1.	 Right-click	on	Art	and	select	Add	Files	to	InsideTheHat….
2.	 You’ll	find	wrong_door.png,	correct_door.png,	wrong_door@2x.png,

correct_door@2x.png,	wrong_door@2x~ipad.png,	correct_door@2x~ipad.png,
wrong_door@2x~iphone.png,	correct_door@2x~iphone.png,	wrong_door@3x.png,
and	correct_door@3x.png	in	the	7338_02_Resources	folder	that	you	just	unzipped.
Select	these	10	files	and	click	on	Add.

Now,	add	the	following	line	at	the	end	of	the	didMoveToView	function:

self.initializeDoors()

And	implement	it	with	this	block	of	code:

func	initializeDoors()	{

				//	Initializing	left	door

				self.setDoorAttributes("left")

				//	Positioning	left	door

				leftDoor.position	=	CGPoint(x:(view!.bounds.size.width/2)	-	(25	*	

leftDoor.frame.size.width	/	20),	y:	self.view!.bounds.size.height	+	

leftDoor.frame.size.height/2)

				//	Specifying	zPosition

				leftDoor.zPosition	=	0

				//	Adding	the	door	to	the	scene

				addChild(leftDoor)

				//	Initializing	center	door

				self.setDoorAttributes("center")

				//	Positioning	center	door

				centerDoor.position	=	CGPoint(x:(view!.bounds.size.width/2),	y:	

self.view!.bounds.size.height	+	centerDoor.frame.size.height/2)

				//	Specifying	zPosition

				centerDoor.zPosition	=	0

				//	Adding	the	door	to	the	scene

				addChild(centerDoor)

				//	Initializing	right	door

				self.setDoorAttributes("right")

				//	Positioning	right	door

				rightDoor.position	=	CGPoint(x:(view!.bounds.size.width/2)	+	(25	*	

rightDoor.frame.size.width	/	20),	y:	self.view!.bounds.size.height	+	

rightDoor.frame.size.height/2)

				//	Specifying	zPosition

				rightDoor.zPosition	=	0

				//	Adding	the	door	to	the	scene

				addChild(rightDoor)

}

In	this	method,	we	initialized	the	three	doors	in	the	same	way.	We	first	executed	the
setDoorAttributes	function,	which	created	the	node	and	set	other	attributes.	Then,	we
specified	the	door’s	initial	position	(out	of	the	view	and	at	the	top	of	the	screen),	which
will	be	placed	at	the	corresponding	door’s	opening.	Finally,	we	specified	its	zPosition
property	and	we	added	the	door	to	the	scene.

As	you	can	see,	we	called	the	setDoorAttributes	function	using	the	left,	center,	and
right	input	parameters,	depending	on	the	door’s	position.	To	understand	this,	we
implement	setDoorAttributes	function	by	adding	the	following	lines	of	code	to
GameScene:

func	setDoorAttributes(position:	String)	{

				switch	position	{

								case	"wrong_left_door",	"correct_left_door",	"left":

								//	Setting	the	door	sprite	randomly

								if	(arc4random_uniform(2)	==	0)	{

												//	Initialize	the	door	if	null

												if	(leftDoor	==	nil)	{

																leftDoor	=	SKSpriteNode(imageNamed:	"wrong_door")

												}

												//	Update	texture	and	name	attributes

												leftDoor.texture	=	SKTexture(imageNamed:	"wrong_door")

												leftDoor.name	=	"wrong_left_door"

												}	else	{

																//	Initialize	the	door	if	null

																if	(leftDoor	==	nil)	{

																				leftDoor	=	SKSpriteNode(imageNamed:	"correct_door")

																}

																//	Update	texture	and	name	attributes

																leftDoor.texture	=	SKTexture(imageNamed:	"correct_door")

																leftDoor.name	=	"correct_left_door"

												}

								default:	break

				}

}

This	method	expects	a	String	value	that	will	represent	the	position	of	the	door	that	we
want	to	modify.	This	value	will	be	used	in	a	switch	statement	in	order	to	match	with	any
of	the	different	types	of	doors.

The	different	values	that	we	expect	for	the	left	door	are	left,	which	will	correspond	to	the
door	that	was	just	created;	wrong_left_door,	which	corresponds	to	a	left	door	whose
texture	name	is	wrong_door;	and	correct_left_door,	which	will	correspond	to	a	left
door	whose	texture	name	is	correct_door.	I	know	that	these	last	values	are	a	little	weird,

but	if	you	keep	reading,	you	will	fully	understand	why	I	chose	this	approach.

The	first	aspect	of	every	door	case	is	about	randomly	deciding	whether	we	are	creating	a
wrong	door	or	a	correct	one.	For	this	purpose,	we	will	use	the	arc4random_uniform(n)
method,	which	will	return	a	uniformly	distributed	random	value	between	0	and	n-1.

If	this	random	value	is	equal	to	0,	we	first	initialize	the	leftDoor	sprite	if	it	hasn’t	been
initialized	yet.	Then,	we	check	whether	it	has	been	initialized	because	we	want	to	reuse
this	method.	Also,	we	will	avoid	creating	a	new	node	each	time	and	maintain	the
performance	of	the	game	this	way.

Next,	we	set	the	correct	texture	value	and	specify	a	name	value	in	order	to	easily	identify
the	node.

This	block	is	repeated	for	the	correct	door	when	the	random	value	is	1.	Therefore,	we
don’t	need	to	get	into	the	details.	Just	check	whether	the	texture	and	name	are	properly	set.

The	bottom	piece	of	code	just	represents	the	default	case	of	the	switch	statement,	which
will	do	nothing	in	this	case.

The	previous	code	just	initializes	the	leftDoor	variable.	Add	the	following	block	of	code
just	before	default:	break	for	the	door	at	the	center	of	the	screen:

case	"wrong_center_door",	"correct_center_door",	"center":

				//	Setting	the	door	sprite	randomly

				if	(arc4random_uniform(2)	==	0)	{

								//	Initialize	the	door	if	null

								if	(centerDoor	==	nil)	{

												centerDoor	=	SKSpriteNode(imageNamed:	"wrong_door")

								}

								//	Update	texture	and	name	attributes

								centerDoor.texture	=	SKTexture(imageNamed:	"wrong_door")

								centerDoor.name	=	"wrong_center_door"

				}else	{

								//	Initialize	the	door	if	null

								if	(centerDoor	==	nil)	{

												centerDoor	=	SKSpriteNode(imageNamed:	"correct_door")

								}

								//	Update	texture	and	name	attributes

								centerDoor.texture	=	SKTexture(imageNamed:	"correct_door")

								centerDoor.name	=	"correct_center_door"

				}

This	code	will	create	the	center	door	properly,	depending	on	the	random	value,	if	the	sprite
node	has	been	created	previously.	Copy	the	following	lines	of	code	to	create	the	right
door:

case	"wrong_right_door",	"correct_right_door",	"right":

				//	Setting	the	door	sprite	randomly

				if	(arc4random_uniform(2)	==	0)	{

								//	Initialize	the	door	if	null

								if	(rightDoor	==	nil)	{

												rightDoor	=	SKSpriteNode(imageNamed:	"wrong_door")

								}

								//	Update	texture	and	name	attributes

								rightDoor.texture	=	SKTexture(imageNamed:	"wrong_door")

								rightDoor.name	=	"wrong_right_door"

								}	else	{

												//	Initialize	the	door	if	null

												if	(rightDoor	==	nil)	{

																rightDoor	=	SKSpriteNode(imageNamed:	"correct_door")

												}

												//	Update	texture	and	name	attributes

												rightDoor.texture	=	SKTexture(imageNamed:	"correct_door")

												rightDoor.name	=	"correct_right_door"

				}

Now	that	the	doors	have	been	initialized,	it’s	time	to	define	its	movement.	Add	the
following	lines	of	code	at	the	end	of	didMoveToView:

self.initializeDoorsMovement()

Implement	this	using	the	following	lines:

func	initializeDoorsMovement()	{

				//	The	constant	door's	speed

				let	doorSpeed:	CGFloat	=	250.0

				var	leftDoorAction:	SKAction!

				var	centerDoorAction:	SKAction!

				var	rightDoorAction:	SKAction!

				self.enumerateChildNodesWithName("*_door")	{

								node,	stop	in

				}

}

In	this	piece	of	code,	we	declared	a	float	variable	for	the	doors’	speed,	which	is	the	same
value	as	that	of	the	wall’s	speed.	Furthermore,	we	declared	three	SKAction	variables,	one
for	each	door.

In	the	last	block	of	code,	we	executed	the	enumerateChildNodesWithName	method	of	the
scene	by	passing	the	*_door	regular	expression,	which	means	that	which	will	match	the
doors’	names:	wrong_left_door,	correct_left_door,	wrong_center_door,
correct_center_door,	wrong_right_door,	and	correct_right_door.	In	this	call,	node
makes	a	reference	to	each	child	on	the	enumeration,	and	stop	is	a	variable	that	we	can	set
to	true	whenever	we	want	the	enumeration	to	end.

Let’s	add	the	following	lines	of	code	to	the	previous	code:

//	Setting	the	door's	final	position

let	nextDoorPosition	=	CGPoint(x:	node.position.x,	y:	-

(self.wall.frame.size.height	-	node.frame.size.height	/	2))

//	We	want	the	door	to	move	on	a	constant	speed

let	duration	=	self.distanceBetween(point:	node.position,	andPoint:	

nextDoorPosition)	/	doorSpeed

//	Move	the	door	to	the	next	position

let	moveDoorAction	=	SKAction.moveToY(nextDoorPosition.y,	duration:	

Double(duration))

These	lines	are	pretty	similar	to	the	ones	that	we	used	to	move	the	wall.	We	first	specified

the	position	that	we	want	each	door	to	reach.	Then,	we	calculated	the	duration	for	which
this	movement	will	last,	which	will	be	used	to	declare	a	moveToY	action.

Note	that	we	are	setting	the	final	position	of	the	door.	The	position	of	the	door	will	have
final	position,	that	moves	with	the	wall	as	a	unique	block.

Now,	add	the	following	lines	after	the	preceding	code:

//	Reset	the	door's	position

let	resetPositionAction	=	SKAction.runBlock	{

				//	Reset	door's	attributes

				self.setDoorAttributes(node.name!)

				node.position	=	CGPoint(x:node.position.x,	y:	

self.view!.bounds.size.height	+	node.frame.size.height/2)

}

We	declared	a	runBlock	action	in	order	to	set	its	texture	and	name	again	once	its
movement	finishes.	In	this	way,	the	doors’	type	will	change	after	each	wave.

The	resetPositionAction	action	will	also	reset	the	door’s	initial	position.	Therefore,	the
next	time	the	node	starts	moving,	it	will	be	from	the	correct	position.

Now,	let’s	complete	the	enumerateChildNodesWithName	block	by	adding	the	following
lines	of	code	just	after	the	resetPositionAction	declaration:

//	Preparing	the	actions

let	delayAction	=	SKAction.waitForDuration(2.0)

let	sequence	=	SKAction.sequence([moveDoorAction,	resetPositionAction,	

delayAction])

//	Set	the	sequence	into	the	correct	door

switch	node.name!	{

				case	"wrong_left_door",	"correct_left_door":

								leftDoorAction	=	SKAction.repeatActionForever(sequence)

				case	"wrong_center_door",	"correct_center_door":

								centerDoorAction	=	SKAction.repeatActionForever(sequence)

				case	"wrong_right_door",	"correct_right_door":

								rightDoorAction	=	SKAction.repeatActionForever(sequence)

				default:	break

}

In	this	block,	we	created	an	action	to	use	it	as	a	delay.	Then,	we	declared	a	sequence
event	with	the	three	actions	that	we	have	prepared.	Next,	we	used	a	switch	statement	in
order	to	initialize	each	of	the	doors’	actions,	depending	on	the	name	of	the	node,	as	a
repeatActionForever.

Finally,	we	just	need	to	execute	these	actions.	Add	the	following	lines	at	the	end	of
initializeDoorsMovement	just	after	enumerateChildNodesWithName:

//	Running	door's	actions

leftDoor.runAction(leftDoorAction)

centerDoor.runAction(centerDoorAction)

rightDoor.runAction(rightDoorAction)

The	preceding	code	just	runs	the	three	doors’	actions.	It’s	time	to	check	out	what	we	have

just	done.	Run	the	project	and	look	at	how	the	wall	and	the	doors	move:

We	could	have	achieved	the	same	results	in	other	ways,	but	I	decided	to	use	the
enumerateChildNodesWithName	way	to	show	you	how	this	method	works	and	in	order	to
avoid	duplicating	code	three	times.

Before	moving	on	to	the	explanation,	let’s	adjust	the	rabbit’s	zPosition	value	in	order	to
be	above	the	doors	but	below	the	wall.	Just	add	the	following	line	of	code	to	the
initializeMainCharacter	method	before	initializing	the	background	node:

//	Specifying	zPosition

rabbit.zPosition	=	1

Collision	management
In	the	previous	section	of	this	chapter,	we	learned	the	most	important	techniques	to
perform	actions	on	nodes,	namely	movements.	Now	that	everything	is	moving,	we	need	a
way	to	detect	when	the	main	character	tries	to	cross	a	closed	door	(a	wrong	door)	or	an
open	one	(a	correct	door).

Detecting	and	handling	collisions	is	one	of	the	main	techniques	in	game	development,	as	a
vast	percentage	of	games	is	founded	upon	enemies	trying	to	hit	our	character	in	many
different	ways	or	the	player	trying	to	kill	the	enemies	by	shooting	them,	jumping	at	them,
and	so	on.	But,	what	is	a	collision?

Understanding	collisions
In	game	development,	a	collision	is	an	intersection	between	two	or	more	elements	in	a
scene.	There	are	different	ways	to	detect	them,	from	the	most	basic’s	such	as	checking
whether	the	area	of	the	frame	of	each	node	intersects	other	nodes’	frames,	to	the	advanced
ones	such	as	making	use	of	the	physics	engines	that	most	of	the	games’	engines	(including
SpriteKit)	provide.

Our	game’s	logic	is	pretty	simple.	The	rabbit	just	has	to	avoid	colliding	with	some	doors.
We	will	go	through	the	basic	collision	detection,	which	will	consist	of	detecting	whether
the	rabbit’s	frame	hits	a	wrong	door’s	frame.

Handling	collisions
For	this	purpose,	we	will	need	to	check	collisions	of	each	frame,	and	the	best	way	to
achieve	this	is	by	making	use	of	the	update	method	provided	by	GameScene.

Let’s	start	by	creating	a	Boolean	variable	that	will	be	used	to	check	whether	a	collision	has
already	happened.	Add	the	following	line	in	the	variable	declaration	section	of	GameScene:

private	var	isCollisionDetected:	Bool	=	false

This	variable	will	help	us	avoid	unnecessary	checks	and	actions	since	in	each	game’s
frame,	when	the	rabbit	collides	with	a	door	(which	will	happen	several	times	when	the
rabbit	passes	through	it),	the	collision	detection	will	be	raised.	We	have	taken	advantage	of
its	declaration	to	initialize	it	to	false,	as	there	hasn’t	been	any	collision	so	far.

Now,	in	the	auxiliary	Boolean	variable,	add	the	following	block	of	code	to	the	update
method:

//	Detect	collisions

if	!self.isCollisionDetected	{

				self.detectCollisions()

}

If	there	haven’t	been	any	colliding	nodes,	we	call	the	detectCollisions	method.
Implement	it	using	the	following	block	of	code:

func	detectCollisions()	{

				self.enumerateChildNodesWithName("*_door")	{

								node,	stop	in

								//	Check	if	the	frames	intersect

								if	node.frame.intersects(self.rabbit.frame)	{

												if	node.name?.containsString("wrong")	==	true	{	

																//	Collision	detected

																self.isCollisionDetected	=	true

																

																//	Make	the	rabbit	blink

																let	blinkAction	=	SKAction.sequence([

																				SKAction.colorizeWithColor(UIColor.redColor(),	

colorBlendFactor:	0.5,	duration:	0.1),

																				SKAction.fadeAlphaTo(0.0,	duration:	0.2),

																				SKAction.fadeAlphaTo(1.0,	duration:	0.2),

																				SKAction.colorizeWithColor(UIColor.whiteColor(),	

colorBlendFactor:	1.0,	duration:	0.1),

])

																self.rabbit.runAction(SKAction.repeatAction(blinkAction,	

count:	3))

												}

								//	Make	door	invisible

								node.hidden	=	true

								}

				}

}

In	this	method,	we	took	advantage	of	the	already	known	enumerateChildNodesWithName

method	to	iterate	through	all	the	doors	in	the	scene.	Then,	for	each	door,	we	execute	the
intersects	method,	which	is	a	utility	provided	by	CGRect	to	check	whether	two	frames
intersect.	The	rabbit’s	frame	is	passed	as	an	input	parameter.

If	this	check	returns	true,	it	means	that	the	collision	has	happened.	However,	we	need	to
ensure	that	the	collided	door	is	a	wrong	door.	That’s	why	we	check	whether	the	node’s
name	contains	the	word	wrong.

If	both	conditions	happen,	we	update	the	Boolean	flag	to	avoid	unnecessary	checks	and
improve	the	game’s	performance.

To	represent	that	the	rabbit	has	collided	with	one	door,	we	are	going	to	make	it	blink	and
change	its	color	to	red	in	less	than	a	second.	That’s	why,	we	declare	a	new	action	as	a
sequence	of	four	actions.

The	first	action	of	this	sequence	is	colorizeWithColor,	which	allows	us	to	change	the
color	of	the	rabbit	to	red.	This	color	change	will	increase	gradually	in	the	specified
duration	value	and	with	the	strength	set	as	colorBlendFactor	(the	higher	this	factor,	the
more	opaque	the	color).

The	second	action	is	a	fadeAlphaTo	function,	which	will	change	the	alpha	value	of	the
node	to	0.0	and	make	it	invisible.

The	last	two	actions	in	the	sequence	will	recover	the	alpha	and	the	white	color	of	the	node
respectively.

Finally,	we	run	the	sequences	into	a	repeatAction	function	with	a	count	value	of	3,
which	means	that	we	will	make	the	rabbit	blink	three	times	when	it	collides	with	a	wrong
door.

The	last	line	of	code	in	the	method	will	hide	the	node	to	simulate	that	the	door	was	open
or	crashed	when	the	rabbit	crossed	it.

Now	that	we	have	included	the	code	that’s	necessary	to	check	and	react	to	collisions,	we
just	need	to	recover	the	flag’s	value	when	we	know	that	no	other	collision	will	happen	and
make	the	node	visible	again,	which	will	be	done	as	soon	as	the	doors	reach	their	final
positions.

For	this	purpose,	we	need	to	add	the	following	lines	at	the	end	of	the
resetPositionAction	block	of	initializeDoorsMovement:

//	Make	door	visible

node.hidden	=	false

//	Revert	flag's	value

if	self.isCollisionDetected	{

				self.isCollisionDetected	=	false

}

In	this	way,	when	we	recover	the	door’s	position,	we	recover	its	visibility	at	the	same	time
and	update	the	flag’s	value	to	begin	detecting	collisions	again.

Okay,	enough	of	coding	for	now.	Run	the	game	and	check	out	what	happens	when	the
rabbit	tries	to	cross	the	wrong	doors:

1-star	challenge:	check	collisions
accurately
We	learned	how	to	detect	collisions	thanks	to	the	intersects	method	provided	by	CGRect,
but	in	this	way,	the	collision	will	be	triggered	as	soon	as	the	rabbit’s	ears	touch	the	doors.
Let’s	add	another	condition	to	the	if	statement	in	detectCollisions	in	order	to	take	into
account	the	rabbit’s	and	door’s	frame	position.	Thus,	the	collision	will	only	happen	when
the	door	reaches	half	the	rabbit’s	frame.	As	shown	in	the	following	screenshot:

Solution
This	challenge	is	very	easy	and	I	hope	you	were	able	to	solve	it.	To	perform	this	check,
you	just	need	to	add	the	following	condition	to	the	if	statement:

&&	(node.position.y	-	node.frame.height/2)	<=	self.rabbit.position.y

Keep	this	line	in	the	code	as	we	are	going	to	use	this	condition	in	order	to	make	the
collisions	more	realistic.

Creating	labels
In	almost	every	game,	there	are	different	elements	(scores	or	text	labels)	to	provide	visual
information	to	the	player	and	give	them	an	incentive	to	keep	playing	in	order	to	beat	its
score	record.	In	this	section,	we	are	going	to	learn	how	to	add	these	informative	elements
to	a	scene.

In	SpriteKit,	we	have	a	class	named	SKLabelNode	that	inherits	from	SKNode	and	provides
all	the	methods	and	attributes	to	load	fonts	and	manage	every	label	that	we	want	to	show
on	the	screen.	We	are	going	to	use	this	class	to	add	a	score	label	at	the	top-right	side	of	the
screen	and	update	it,	as	the	rabbit	avoids	wrong	doors.

Let’s	start	by	creating	our	first	label.	Then,	we	will	learn	how	to	update	it
programmatically.	For	this	purpose,	we	are	going	to	need	a	new	variable.	So,	add	the
following	line	to	GameScene	just	after	the	declaration	of	isCollisionDetected:

private	var	labelScore:	SKLabelNode!

Next,	we	need	to	call	a	method	to	initialize	it.	So,	add	the	following	line	at	the	end	of
didMoveToView:

self.initializeLabels()

Implement	this	by	adding	the	following	block	of	code:

func	initializeLabels()	{

				//	Initialize	the	label	with	a	font	name

				labelScore	=	SKLabelNode(fontNamed:"MarkerFelt-Thin")

				//	Set	color,	size	and	position

				labelScore.fontColor	=	UIColor.blackColor()

				labelScore.fontSize	=	20

				labelScore.position	=	CGPoint(x:(3	*	labelScore.fontSize),	y:

(view!.bounds.size.height	-	2	*	labelScore.fontSize))

				//	Specifying	zPosition

				labelScore.zPosition	=	3

				//	Set	text

				labelScore.text	=	"Score:	0"

				//	Add	the	label	to	the	scene

				addChild(labelScore)

}

The	first	thing	that	we	did	in	this	method	was	initialize	the	node	using	MarkerFelt-Thin
as	its	font	name.	I	chose	this	font	as	it	will	be	easily	visible	on	the	screen,	but	you	can	try
whatever	you	want	from	the	ones	available	for	iOS.	For	more	information,	visit
https://support.apple.com/en-us/HT202771.

Once	we	have	created	a	label,	we	can	modify	some	of	its	attributes.	For	example,	in	the
previous	method,	we	specified	that	we	want	the	label’s	node	to	be	black	and	the	font	size
is	set	to	20,	which	is	big	enough	for	the	screen.	If	you	paid	attention,	we	modified	the
fontColor	property	in	spite	of	color,	as	the	last	property	is	combined	with

https://support.apple.com/en-us/HT202771

colorBlendFactor	to	modify	the	node’s	tint	and	not	the	font	color.

Next,	we	set	the	label’s	position	on	the	top-left	side	of	the	screen,	as	we	want	to	leave	the
major	part	of	the	view	free	for	the	game.	Note	how	we	are	using	relative	values	for	both
the	x	and	y	coordinates.	In	this	way,	the	label’s	position	will	be	equivalent	on	different
devices.

Finally,	we	specified	the	zPosition	value	for	the	label	and	we	set	an	initial	text	for	the
label,	which	would	be	the	initial	score	value,	and	we	added	it	to	the	scene.

Come	on,	run	the	project	and	look	at	the	text	on	the	screen:

Now	that	we	know	how	to	create	labels,	let’s	update	the	score	label,	which	will	happen
when	the	rabbit	crosses	a	correct	door.

For	this	purpose,	we	are	going	to	follow	an	approach	which	involves	using	a	flag	that	will
be	updated	at	the	end	of	each	wave,	when	the	group	of	doors	reach	their	final	position	at

the	bottom	of	the	screen.	In	this	way,	we	will	know	when	a	wave	ends,	which	is	when	we
need	to	check	whether	a	collision	happened.	In	case	there	were	no	collisions,	the	score
will	be	increased	by	10	points.

Let’s	start	by	initializing	the	variables	that	we	will	need	to	achieve	our	goal.	Add	the
following	lines	to	GameScene:

private	var	resetWave:	Bool	=	false

private	var	score:	Int	=	0

As	you	can	see,	we	are	going	to	use	a	Boolean	flag	to	know	when	a	wave	ends	(initialized
to	false)	and,	on	the	other	hand,	we	will	need	an	integer	variable	to	store	the	score
reached	so	far	by	the	player.

The	first	thing	that	we	need	to	modify	is	the	line	where	we	set	the	text	into	the	label,	as	we
don’t	want	hardcoded	pieces	of	code.	So,	you	need	to	replace	the	following	line	in
initializeLabels:

labelScore.text	=	"Score:	0"

Replace	the	preceding	line	with	the	following	code:

labelScore.text	=	"Score:	\(score)"

As	you	can	see,	we	have	set	the	\(score)	function	in	a	string.	This	Swift	utility	will	print
the	value	of	the	score	variable	into	the	character’s	chain.

Next,	we	need	to	scrutinize	every	frame	to	check	whether	the	wave	has	ended.	We	will
need	to	perform	this	check	in	the	update	method	by	adding	the	following	block	of	code:

//	If	a	new	wave	has	to	start

if	resetWave	{

				self.initializeWave()

}

This	means	that	when	a	wave	has	ended,	we	will	trigger	the	following	method:

func	initializeWave()	{

				if	self.isCollisionDetected	{

								//	Revert	flag's	value

								self.isCollisionDetected	=	false

				}	else	{

								//	Update	score	if	collision	avoided

								self.score	+=	10

								self.labelScore.text	=	"Score:	\(self.score)"

				}

				//Update	flag

				self.resetWave	=	false

}

In	this	method,	we	reset	the	flag	that	helps	us	identify	collisions	(if	a	collision	occurred),
as	we	need	to	start	looking	for	collisions	again.	If	there	hasn’t	been	any	collision,	we
update	the	score	by	increasing	its	value	by	10	points,	and	we	also	update	the	label	as	we
did	previously.	Finally,	we	revert	the	resetWave	flag	to	false	to	restart	the	wave.

However,	there	is	one	thing	left.	We	need	a	place	to	update	the	wave’s	flag,	and	this	place
is	at	the	end	of	each	door’s	movement.	In	other	words,	it’s	present	at	the	end	of
resetPositionAction	in	initializeDoorsMovement.	You	just	need	to	replace	the
following	code:

//	Revert	flag's	value

if	self.isCollisionDetected	{

				self.isCollisionDetected	=	false

}

Replace	the	preceding	code	with	the	following	lines:

//	The	doors	wave	will	restart

self.resetWave	=	true

In	this	way,	we	identify	when	a	wave	has	ended	by	updating	the	flag,	and	we	remove	the
part	related	to	isCollisionDetected,	as	we	have	included	it	in	initializeWave.

If	you	now	run	the	game,	you	will	see	that	the	game	works	perfectly:

Aligning	labels
Now	that	we	have	a	label	on	the	screen,	we	should	take	into	account	whether	its	size	will
change	along	the	course	of	the	gameplay.	For	example,	the	score	label	will	change	for
sure,	as	the	player	is	expected	to	choose	the	correct	doors,	therefore,	the	label	width	will
increase	fast.

In	our	case,	the	label	is	placed	at	the	top-left	side	of	the	screen.	So,	we	will	not	experience
this	behavior,	but,	what	if	we	have	a	label	on	the	right-hand	side	that	will	increase	in	size?

Let’s	change	some	things	in	the	label.	We’ll	start	by	moving	it	to	the	right-hand	side.	You
need	to	replace	the	following	line	in	initializeLabels:

labelScore.position	=	CGPoint(x:(3	*	labelScore.fontSize),	y:

(view!.bounds.size.height	-	2	*	labelScore.fontSize))

Replace	the	preceding	code	with	the	following	one:

labelScore.position	=	CGPoint(x:(view!.bounds.size.width	-	2	*	

labelScore.fontSize),	y:(view!.bounds.size.height	-	2	*	

labelScore.fontSize))

In	this	way,	we	have	placed	the	score	label	on	the	right-hand	side	of	the	screen.	If	you	run
the	game	now	and	start	avoiding	the	wrong	doors,	you	will	see	how	the	label’s	width
grows	as	the	score	increases.	The	problem	is	that	a	part	of	the	label	lies	out	of	view,	and
this	behavior	is	a	little	weird.	So,	let’s	use	some	magic	to	solve	it.

The	SKLabelNode	class	provides	two	attributes	that	allow	us	to	align	our	labels:
verticalAlignmentMode	and	horizontalAlignmentMode.

The	first	one	indicates	the	vertical	position	of	the	text	relative	to	the	node’s	position	and
can	take	one	of	the	following	values:

SKLabelVerticalAlignmentMode.Baseline:	This	is	the	default	value	and,	thanks	to
it,	the	text’s	baseline	will	lie	at	the	origin	of	the	label	node.
SKLabelVerticalAlignmentMode.Center:	This	value	will	vertically	center	the	text
on	the	label’s	origin.
SKLabelVerticalAlignmentMode.Top:	This	value	will	place	the	text’s	top	on	the
origin	of	the	label	node.
SKLabelVerticalAlignmentMode.Bottom:	This	value	will	place	the	text’s	bottom	on
the	origin	of	the	label	node.

On	the	other	hand,	we	can	align	labels	horizontally	thanks	to	horizontalAlignmentMode
and	the	following	different	values	that	it	can	take:

SKLabelHorizontalAlignmentMode.Center:	This	is	the	default	value,	and	the	text
can	be	centered	horizontally	on	the	label’s	origin	with	this	value.
SKLabelHorizontalAlignmentMode.Left:	The	text’s	left	side	will	be	on	the	origin	of
the	label	node	if	you	use	this	value.
SKLabelHorizontalAlignmentMode.Right:	The	text’s	right	side	will	be	on	the	origin
of	the	label	node	if	you	use	this	value.

Now	that	we	are	aware	of	these	properties,	let’s	apply	them,	specifically	the	horizontal
alignment,	to	our	game.	Go	back	to	the	initializeLabels	method	and	add	the	following
line	just	before	labelScore.text	=	"Score:	\(score)":

labelScore.horizontalAlignmentMode	=	SKLabelHorizontalAlignmentMode.Right

Thanks	to	this	change,	the	label	will	be	anchored	to	the	right	of	the	screen,	but	when	it
becomes	bigger,	it	will	grow	to	the	left,	and,	thus,	we	will	avoid	our	previous	problem.
Time	to	run	the	game	again	and	check	out	whether	it	worked:

Playing	some	music
We	all	know	that	music	is	very	important	in	films	as	it	helps	immerse	viewers	in	the	story,
and	this	happens	in	video	games	too.	Depending	on	the	game,	you	will	need	to	transmit
different	emotions	and	highlight	actions	or	situations.	Luckily,	SpriteKit	provides	us	with
a	group	of	utilities	to	play	and	handle	sounds,	making	these	tasks	very	simple.

Let’s	start	by	creating	a	new	group	on	the	project	navigator	and	adding	the	needed	audio
resources:

Right-click	on	the	InsideTheHat	group	on	the	navigator,	select	New	Group,	and	call
it	Sound.
Right-click	on	the	Sound	group	and	select	Add	Files	to	“InsideTheHat”….
In	the	7338_02_Resources	folder,	you	will	find	insidethehat_background.mp3,
wrong_door.mp3,	and	correct_door.mp3.	Select	them	and	click	on	Add.

We	will	start	by	playing	the	background	music	for	our	game	so	that	it	can	be	more
interesting.	We	will	need	a	variable	to	handle	the	music.	Add	the	following	line	after	the
score	variable	declaration:

private	var	backgroundMusic:SKAction!

Note	that	the	type	of	this	variable	is	SKAction,	as	this	class	provides	a	way	to	play	sound
files.	We	declared	this	variable	because	we	will	need	to	manage	it	later	on	in	the	game
development	in	order	to,	for	instance,	stop	playing	the	background	music.

To	initialize	the	music,	we	will	call	the	following	method.	Add	the	following	code	at	the
beginning	of	didMoveToView:

self.initializeMusic()

Implement	this	with	the	following	block	of	code:

func	initializeMusic()	{

				//	Initialize	background	music

				backgroundMusic	=	

SKAction.playSoundFileNamed("insidethehat_background",	waitForCompletion:	

false)

				runAction(backgroundMusic)

}

In	this	method,	we	initialized	the	backgroundMusic	as	an	SKAction	variable.	We	used	the
playSoundFileNamed	method,	specifying	the	filename	that	we	added	previously	to	the
project.	One	thing	that	needs	to	be	highlighted	is	the	waitForCompletion	argument,
whose	value	was	set	to	false	because	in	this	way,	the	action	will	be	completed
immediately	even	though	the	sound	will	keep	playing.	If	waitForCompletion	is	true,	the
duration	of	the	action	will	be	the	same	as	the	length	of	the	audio	file.

Finally,	we	have	the	background	music.	Run	the	game	and	listen	to	it:

Okay,	if	you	play	it	for	some	time,	you	will	realized	that	the	music	stops	suddenly.	Don’t
worry,	this	behavior	was	expected,	as	I	wanted	to	explain	a	couple	of	things.

AVFoundation
The	SpriteKit	engine	provides	a	framework	called	AVFoundation	that	allows	us	to	handle
and	play	audio	and	video	resources	in	iOS	games	and	apps.	It	provides	a	rich	interface
from	which	we	will	just	take	advantage	of	a	very	small	part,	namely	the	AVAudioPlayer
class.

The	first	thing	that	we	need	to	do	to	play	sounds	using	this	library	is	to	add	a	new	import
to	the	class	and	paste	the	following	line	of	code	at	the	top	of	GameScene:

import	AVFoundation

Next,	we	have	to	make	a	little	adjustment	to	the	backgroundMusic	variable.	So,	replace	its
declaration,	which	looks	like	this:

private	var	backgroundMusic:SKAction!

Replace	the	preceding	line	of	code	with	the	following	one:

private	var	backgroundMusic:AVAudioPlayer!

We	have	declared	our	variable	as	an	instance	of	AVAudioPlayer,	which	is	a	class	that	will
allow	us	to	play	sounds	no	matter	what	its	duration	is,	make	sound	loops,	control	volumes
and	position	the	sounds	in	the	stereo	field,	or	play	multiple	sounds	synchronously.

To	initialize	it,	you	will	need	to	replace	all	the	contents	of	initializeMusic	with	the
previous	block	of	code:

//	Specifying	the	file's	route	in	the	project'

var	path	=	NSBundle.mainBundle().pathForResource("insidethehat_background",	

ofType:"mp3")

var	fileURL	=	NSURL(fileURLWithPath:	path!)

do	{

				//	Initialize	variable

				backgroundMusic	=	try	AVAudioPlayer(contentsOfURL:	fileURL)

				//	Reproduce	song	indefinitely

				backgroundMusic.numberOfLoops	=	-1

				//	Play	music

				backgroundMusic.play()

}	catch	{

				print("Error	playing	background	music")

}

The	first	thing	that	we	did	here	is	create	an	NSURL	variable	by	using	the	path	to	the	desired
resource	(the	audio	file).	The	NSURL	instances	represent	a	URL	that	can	be	a	file	on	a
remote	server	or	a	file	on	your	own	device	disk.	So,	for	this	purpose,	we	need	to	obtain	the
path	to	the	background	music	file.

The	NSBundle.mainBundle().pathForResource	method	just	retrieves	a	string	value	that
contains	the	path	of	the	resource	along	with	the	provided	name	and	type.	In	this	way,	we
have	the	exact	route	to	the	desired	file.

Now	that	we	have	the	route	to	the	.mp3	file,	we	can	initialize	the	audio	player,	but,	as	you

may	have	realized,	it	has	a	different	look.	We	can	encapsulate	this	initialization	between	a
do	{	}	catch	statement,	which	is	a	new	technique	that	is	provided	by	Swift	2.0	to	handle
errors.

This	do-catch	statement	is	needed	because,	as	you	can	see	on	the	class	reference	web	page
at
https://developer.apple.com/library/ios//documentation/AVFoundation/Reference/AVAudioPlayerClassReference/index.html#//apple_ref/occ/instm/AVAudioPlayer/initWithContentsOfURL:error:
the	initializer	method	is	marked	with	the	throws	keyword.	Therefore,	if	you	don’t
encapsulate	the	method	and	specify	the	try	statement,	Xcode	will	raise	an	error	warning
to	catch	the	thrown	error.

So,	once	we	have	initialized	the	audio	player	with	the	file	that	we	want	to	play,	we	just
need	to	specify	that	we	want	it	to	be	played	indefinitely,	which	is	as	easy	as	setting	a
negative	value.	Its	default	value	is	0,	which	means	that	a	unique	reproduction	of	the	sound
file	will	be	delivered.

Finally,	we	just	need	to	execute	the	play()	method	of	the	audio	player	to	start	listening	to
the	background	file.	One	thing	to	emphasize	on	this	last	method	is	that	it	internally	calls
the	prepareToPlay	method,	which	preloads	the	audio	on	the	buffer	and	can	be	used	to
improve	the	game’s	performance	when	it	plays	sounds	several	times.

Come	on,	run	the	game	one	more	time,	and	you	will	see	how	the	background	music	is
reproduced	in	an	unending	loop.

https://developer.apple.com/library/ios//documentation/AVFoundation/Reference/AVAudioPlayerClassReference/index.html#//apple_ref/occ/instm/AVAudioPlayer/initWithContentsOfURL:error:

2-star	challenge:	reproducing	sound
effects
In	the	previous	section,	you	learned	how	to	reproduce	sounds	in	two	different	ways.	Now,
I	would	like	to	challenge	you	to	write	the	code	needed	to	reproduce	a	couple	of	sounds
(wrong_door.mp3	and	correct_door.mp3)	when	the	rabbit	crosses	a	wrong	door	or	a
correct	door	respectively.

Solution
I	don’t	think	that	this	challenge	is	very	complicated,	but	I’ve	qualified	it	as	a	2-star
challenge	because	you	need	to	add	code	in	two	to	three	parts	of	the	GameScene	class.

I’ve	chosen	to	create	two	new	variables	to	handle	each	of	the	sounds.	Add	the	following
lines	to	the	GameScene	class:

private	var	wrongDoorSound:	AVAudioPlayer!

private	var	correctDoorSound:	AVAudioPlayer!

I	declared	them	as	the	AVAudioPlayer	instances	as	it	will	provide	a	little	more	efficiency
due	to	the	way	I	coded	it.

Next,	we	need	to	declare	these	new	variables.	So,	add	the	following	block	of	code	in	the
do-catch	statement	in	the	initializeMusic	method	just	after	backgroundMusic.play():

//	Preparing	wrong	door	sound

path	=	NSBundle.mainBundle().pathForResource("wrong_door",	ofType:"mp3")

fileURL	=	NSURL(fileURLWithPath:	path!)

wrongDoorSound	=	try	AVAudioPlayer(contentsOfURL:	fileURL)

wrongDoorSound.volume	=	1.0

wrongDoorSound.prepareToPlay()

//	Preparing	correct	door	sound

path	=	NSBundle.mainBundle().pathForResource("correct_door",	ofType:"mp3")

fileURL	=	NSURL(fileURLWithPath:	path!)

correctDoorSound	=	try	AVAudioPlayer(contentsOfURL:	fileURL)

correctDoorSound.volume	=	0.9

correctDoorSound.prepareToPlay()

We	initialized	both	the	variables	using	the	same	approach	that	was	followed	for	the
background	music.	We	specified	the	route	of	the	filename	and	then,	we	initialized	the
variable,	but	there	are	two	new	lines	after	that.

On	the	first	line	of	code,	we	specified	the	volume	variable	for	the	sound	as	1.0.	This	is	the
default	value	that	it	contains,	and	it	indicates	that	we	want	this	sound	to	be	played	with	the
maximum	level	of	volume	(for	the	correct	door	sound,	we	specify	0.9,	as	this	file’s
volume	is	a	bit	loud).

Finally,	we	executed	the	prepareToPlay	method	on	both	the	players	because	we	want
them	to	be	ready	to	be	triggered	as	soon	as	the	rabbit	collides	with	a	wrong	or	a	correct
door	in	the	game,	thus	minimizing	the	CPU	usage	taken	every	time	it	happens.

Now	that	we	have	prepared	the	sounds,	we	just	need	to	reproduce	them	at	the	precise
moment.	Add	the	following	lines	in	the	detectCollisions	method	just	after
self.isCollisionDetected	=	true:

//	Reproduce	sound

self.playWrongDoorSound()

This	will	call	a	new	method.	So	implement	it	using	the	following	code:

func	playWrongDoorSound()	{

				//	Play	wrong	door	sound

				wrongDoorSound.play()

}

This	method	will	just	play	the	sound.	A	big	effort	was	made	for	the	initializer	method,	and
the	cost	of	playing	the	sounds	will	be	very	low.

Let’s	do	the	same	thing	for	the	correct	door	sound.	Add	the	preceding	block	of	code	to
detectCollisions,	this	time	before	node.hidden	=	true:

else	{

				//	Reproduce	sound

				self.playCorrectDoorSound()

}

This	code	will	raise	an	error,	when	a	collision	and	the	node’s	name	object	doesn’t	contain
the	word	wrong.	Hence,	it	will	be	called	when	a	correct	door	is	crossed.

Finally,	implement	this	last	method	using	the	following	lines:

func	playCorrectDoorSound()	{

				//	Play	correct	door	sound

				correctDoorSound.play()

}

As	seen	in	the	previous	method,	this	one	will	just	play	the	correct	door	sound	in	an
efficient	way.

Run	the	game	one	last	time	and	check	out	the	brand	new	sounds:

Summary
In	this	chapter,	we	focused	our	efforts	on	incorporating	playability	in	the	game	that	we
initialized	in	Chapter	1,	The	First	Step	toward	SpriteKit.

We	explored	the	different	ways	through	which	we	can	handle	touch	interaction,	and	we
used	them	to	detect	where	the	user	touched	the	screen	and	deploy	it	on	the	movements	of
the	main	character.

In	order	to	make	the	rabbit	move,	we	had	a	look	at	the	methods	provided	by	the	SKAction
class	in	order	to	create	and	manage	actions.	Thanks	to	these	utilities,	we	managed	the
rabbit’s	lateral	movement	and	the	looped	movement	of	the	wall	and	doors.	In	this	way,	we
created	a	group	of	objects	that	the	user	will	need	to	avoid.

Next,	we	added	one	of	the	bases	of	all	games,	namely	collision	detection.	As	the	rabbit
will	need	to	avoid	the	wrong	doors,	we	had	to	find	a	way	to	check	whether	a	collision	took
place.	So,	we	saw	how	to	detect	whether	a	collision	happened	and	how	to	handle	it	in
order	to	convert	it	into	a	success	or	failure.

We	used	this	collision	to	convert	it	into	a	reward	for	the	player,	which	will	be	shown	as	a
score	label	on	the	view.	We	had	a	look	at	how	to	create	labels	easily	using	a	font	supported
by	iOS	and	use	its	alignment	attribute	in	order	to	place	the	labels	wherever	we	want.

Finally,	we	took	advantage	of	two	different	techniques	to	reproduce	audio	files	in	games
so	that	we	can	help	players	immerse	in	the	game.

Now	that	we	have	implemented	the	basis	of	game	development,	in	the	next	chapter,	you
will	learn	some	advanced	techniques	to	make	your	games	more	complex	and	professional.

Chapter	3.	Taking	Games	One	Step
Further
In	Chapter	2,	What	Makes	a	Game	a	Game?,	we	learned	some	techniques	that	are	used	in
almost	every	video	game.	In	this	chapter,	we	will	talk	about	some	techniques	that	are	used
to	add	complexity	to	games,	such	as	creating	our	own	SKNode	subclasses	or	drawing
geometrical	primitives.	We	will	also	learn	some	other	techniques	that	will	provide	a
realistic	look	and	feel	to	a	game,	such	as	animating	sprites	or	implementing	the	parallax
effect.

You	will	learn	the	following	things	in	this	chapter:

How	to	create	classes	that	extend	SKNode
How	to	implement	the	parallax	effect
How	to	animate	sprites
Drawing	geometrical	primitives

Extending	the	SKNode	class
When	designing	games,	you	may	need	to	provide	some	extra	behavior	and	complexity	to
sprites	and	nodes.	For	example,	we	may	sometimes	like	to	create	nodes	that	consist	of
several	sprites	or	develop	enemies	that	can	behave	in	one	way	or	another,	depending	on	its
type.

For	this	purpose,	one	useful	solution	is	to	create	customized	nodes	by	extending	SKNode	in
order	to	inherit	all	of	its	properties	and	utilities	and	building	a	complex	class	to	provide
the	behavior	needed	for	a	game.

For	the	game,	we	are	going	to	take	advantage	of	this	approach	to	load	some	enemies.	The
rabbit’s	escape	route,	which	is	shown	in	the	following	screenshot,	is	a	part	of	the	doors,
and	will	be	filled	by	enemies.	The	enemies	will	be	puppet	rabbits,	which	will	move
laterally	on	a	rail.	These	enemies	can	be	of	two	types.	Depending	on	their	type,	they	will
move	either	from	left	to	right,	or	from	right	to	left.

Before	implementing	this	solution,	let’s	open	the	initial	project	for	this	chapter,	which	is
very	similar	to	how	we	left	it	at	the	end	of	Chapter	2,	What	Makes	a	Game	a	Game?
However,	I	added	some	modifications	just	to	prevent	some	weird	behavior	and	code
cleaning.

If	you	unzip	7338_03_Resources.zip,	you	will	find	InsideTheHat_init.zip.	Unzip	it
and	open	the	project	with	Xcode.

On	the	top	of	GameScene.swift,	you	will	see	one	new	flag	called	isMovementAllowed	and
a	constant	named	kRunningSpeed,	which	is	used	to	ensure	that	all	the	elements	that	move
towards	the	main	character	have	the	same	speed.	That	way,	we	can	manage	the	elements
by	modifying	just	one	variable.

Note
We	are	using	a	naming	convention	for	constants	in	order	to	easily	differentiate	them	from
variables.

We	use	the	previous	flag	(isMovementAllowed)	to	check	whether	the	rabbit	can	be	moved

by	adding	a	condition	to	touchesBegan,	and	this	flag	is	modified	when	a	collision	happens
so	that	no	movement	can	be	performed.

I’ve	modified	the	zPosition	values	for	the	game	so	that	it	can	be	visually	more	realistic
since	we	are	going	to	add	some	other	nodes.

In	addition	to	this,	I’ve	changed	the	nextPosition	value	for	the	rabbit	when	it	moves	to
the	left	or	right	side	of	the	screen.	As	we	want	the	main	character	to	be	centered	at	the
door’s	position,	we	will	use	the	door’s	horizontal	value	for	moveRabbitToNextLocation.

The	last	change	in	the	code	is	the	value	returned	by	the
supportedInterfaceOrientations	method	in	GameViewController,	which	will	return
.Portrait	for	both	iPhone	and	iPad	devices.

Creating	a	new	class
The	first	thing	that	we	need	to	do	to	add	a	customized	enemy	to	the	game	is	to	create	a
new	class.	For	this	purpose,	perform	the	following	steps:

1.	 In	Xcode,	select	the	File	menu	at	the	top	of	the	screen.
2.	 Browse	New	|	File,	and	you	will	see	what’s	shown	in	the	following	screenshot:

3.	 Select	the	Swift	File	option	in	iOS	|	Source	and	click	on	the	Next	button.
4.	 Call	it	Enemy	and	choose	the	folder	where	you	want	it	to	be	saved	before	clicking	on

the	Create	button.

If	you	now	open	Enemy.swift,	you	will	see	that	this	file	has	only	one	code	line:

import	Foundation

Don’t	worry;	we	are	going	to	add	the	necessary	code	so	that	the	enemy	appears	real.	Let’s
start	by	defining	the	class	as	a	subclass	of	SKNode.	Add	the	following	lines	at	the	end	of
the	file:

import	SpriteKit

class	Enemy:	SKNode	{

}

In	the	preceding	code,	we	just	imported	the	SpriteKit	framework	and	specified	that	the
class	will	inherit	SKNode.

Now,	add	the	following	block	of	code	at	the	top	of	the	class	just	after	the	imports	section:

enum	EnemyType	:	UInt32	{

				case	ENEMY_LEFT_RIGHT	=	0

				case	ENEMY_RIGHT_LEFT	=	1

}

As	we	are	going	to	create	two	types	of	enemies,	we	will	create	an	enumeration	to	support
both	of	them:	the	enemies	that	start	from	the	left-hand	side	of	the	screen	and	the	others
that	start	from	the	right-hand	side.	You	can	see	that	the	type	of	the	enumeration	is	UInt32.
We	chose	this	type	in	order	to	make	the	tasks	easier	when	randomly	creating	enemies.
Don’t	worry	about	this.	Keep	reading	to	understand	it.

Now,	add	the	following	block	just	after	class	Enemy:	SKNode	{:

internal	var	rail:	SKSpriteNode!

internal	var	puppet:	SKSpriteNode!

internal	var	leftAction:	SKAction!

internal	var	rightAction:	SKAction!

internal	var	enemyType:	EnemyType

In	the	preceding	code,	we	declared	two	SKSpriteNode	variables	that	will	be	used	to
represent	the	puppet	and	the	rail	respectively.	We	also	declared	two	actions,	which	will	be
used	to	store	both	movements:	the	one	that	moves	from	left	to	right	and	the	other	one	that
moves	from	the	right	side	of	the	screen	to	the	left	side.

Finally,	we	declared	an	EnemyType	variable	so	that	we	can	store	the	type	of	the	enemy	in
case	we	need	it	later.

Note
We	declared	the	SKSpritenode	and	EnemyType	variables	using	the	internal	access	level.
As	defined	in
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
this	level	of	access	allows	a	class	in	the	same	module	to	make	use	of	the	variables.	Thanks
to	this	level	of	access,	we	will	be	able	to	access	these	entities	from	the	scene	class.

At	this	point,	the	class	is	raising	an	error	warning	about	initializers	not	existing.	So,	let’s
solve	it	by	adding	the	following	code	at	the	end	of	the	Enemy	class:

init(type:	EnemyType)	{

				//	Set	enemy	type

				enemyType	=	type

				//	Call	parent's	init	method'

				super.init()

				//	Initialize	rail	sprite

				rail	=	SKSpriteNode(imageNamed:	"rail")

				//	Initialize	puppet	sprite

				setPuppetTexture()

				//	Add	sprites	to	the	node

				addChild(rail)

				addChild(puppet)

https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html

}

As	you	can	see,	we	created	an	init	method	that	expects	an	EnemyType	variable	as	an	input
parameter.	The	first	thing	that	we	need	to	do	in	this	method	is	to	assign	the	type	received
as	the	enemyType	variable	of	the	class.

Then,	we	called	the	initializer	of	the	parent	class	(SKNode).	The	purpose	of	calling	it	just
after	initializing	the	enemyType	property	is	for	the	following	two	reasons:

1.	 If	we	call	super.init()	before	all	the	properties	have	been	initialized,	it	will	raise
the	property	not	initialized	at	super.init	call	error.	It	isn’t	applicable	to
optional	properties,	like	properties	with	a	default	value,	or	lazy	properties.	This	is
why	we	don’t	need	to	initialize	the	rest	of	properties	beforehand.

2.	 We	need	to	initialize	it	before	the	rest	of	the	method	calls,	or	it	will	raise	the	Use	of
self	in	method	call	before	super.init	initializes	self	error.

After	calling	the	parent’s	initializer,	we	can	proceed	by	initializing	the	rest	of	the
properties.	This	is	why	we	initialize	the	rail	sprite	using	an	image.	Don’t	worry	about	this
image	now;	we	will	add	it	to	the	project	before	running	the	game.

Then,	we	need	to	initialize	the	puppet	by	calling	a	method.	The	purpose	of	doing	it	this
way	is	that	we	will	take	advantage	of	the	enemyType	property	on	each	game’s	wave	so	that
we	don’t	need	to	initialize	the	enemy	each	time,	and	modifying	its	texture	is	enough.

Implement	the	setPuppetTexture	method	within	the	following	block	of	code:

func	setPuppetTexture()	{

				switch	enemyType	{

								case	.ENEMY_LEFT_RIGHT:

												//	Initialize	the	puppet	if	nil

												if	(puppet	==	nil)	{

																puppet	=	SKSpriteNode(imageNamed:	"enemyLeft")

												}	else	{

																//	Update	texture

																puppet.texture	=	SKTexture(imageNamed:	"enemyLeft")

												}

								break

								case	.ENEMY_RIGHT_LEFT:

												//	Initialize	the	puppet	if	nil

												if	(puppet	==	nil)	{

																puppet	=	SKSpriteNode(imageNamed:	"enemyRight")

												}	else	{

																//	Update	texture

																puppet.texture	=	SKTexture(imageNamed:	"enemyRight")

												}

								break

				}

				puppet.anchorPoint	=	CGPointMake(0.5,	0.0)

}

This	method	will	initialize	the	puppet	sprite	in	two	similar	ways,	depending	on	its	type.	If

the	enemy	is	the	one	that	will	start	on	the	left	side,	we	create	a	sprite.	If	it	is	null,	we	use
the	respective	image	name	and,	in	case	the	sprite	already	exists,	we	just	modify	its	texture.

Finally,	we	set	the	anchorPoint	value	of	the	puppet	so	that	when	we	add	it	to	the	node,	its
bottom	coincides	with	the	center	of	the	rail,	achieving	the	expected	result.

Once	both	the	sprites	have	been	initialized,	we	can	add	them	to	the	node,	and	we	will	have
the	new	object	formed	by	two	different	images.

Before	going	further,	let’s	add	the	necessary	images	to	the	Xcode	project.	To	achieve	this
purpose,	perform	the	following	steps:

1.	 Right-click	on	Art	and	select	Add	Files	to	InsideTheHat….
2.	 You’ll	find	rail.png,	enemyLeft.png,	enemyRight.png,	rail@2x.png,

enemyLeft@2x.png,	enemyRight@2x.png,	rail@2x~ipad.png,
enemyLeft@2x~ipad.png,	enemyRight@2x~ipad.png,	rail@3x.png,
enemyLeft@3x.png,	and	enemyRight@3x.png	in	the	7338_03_Resources	folder	that
you	unzipped	previously.	Select	these	12	files	and	click	on	Add.

Now	that	we	have	finished	writing	the	code	for	the	custom	class,	you	will	realize	that
there	is	still	an	error	that	warns	us	by	stating	that	required	initializer	init(coder:)
must	be	provided	by	subclass	of	SKNode.	The	initializer	method	that	it	asks	for
(init(coder:))	is	a	way	to	declare	to	the	compiler	that	we	are	not	expecting	the	class	to
be	NSCoding-compatible,	which	means	that	we	are	not	going	to	serialize	or	deserialize	the
class	instances.

To	solve	this	error,	you	can	just	click	on	the	red	circle	with	a	white	circle	inside	it	and
accept	the	proposed	fix,	which	will	add	the	following	code	to	the	class:

required	init?(coder	aDecoder:	NSCoder)	{

				fatalError("init(coder:)	has	not	been	implemented")

}

Okay,	it’s	time	to	add	the	enemies	to	the	scene.

Handling	the	behavior	of	custom	classes
We	have	built	a	complex	object	that	was	formed	by	two	different	sprites.	But	now,	we
want	them	to	work	as	a	unique	body.	With	each	wave,	the	rail	and	the	puppet	will	perform
a	vertical	movement	that	is	similar	to	that	of	the	doors	and	the	wall	and,	in	addition	to	this,
the	puppet	will	need	to	perform	a	lateral	movement	from	left	to	right	or	vice	versa,
depending	on	the	enemy’s	type.	This	is	shown	in	the	following	screenshot:

To	understand	the	provided	specifications,	we	will	need	to	create	different	actions	and	run
them	separately	on	the	sprites	that	are	a	part	of	the	enemy	node.

Let’s	start	by	adding	the	enemy	to	the	scene.	For	this	purpose,	we	will	need	to	declare	a
new	variable.	Add	the	following	line	to	the	top	of	the	GameScene	implementation:

private	var	enemy:	Enemy!

By	using	this	line,	we	declare	an	instance	of	the	customized	class.

Note
We	are	not	importing	the	Enemy	class,	because	in	the	Swift	programming	language,	it	is	no
longer	needed.

Now,	add	the	following	method	call	at	the	end	of	didMoveToView:

self.initializeEnemy()

Implement	this	method	by	adding	the	following	block	of	code	to	GameScene:

func	initializeEnemy()	{

				//	Create	enemy	type

				let	enemyType:	EnemyType	=	EnemyType(rawValue:	arc4random_uniform(2))!

				//	Initialize	the	enemy	with	type

				enemy	=	Enemy(type:	enemyType)

				//	Specify	zPosition	values

				enemy.rail.zPosition	=	0

				enemy.puppet.zPosition	=	1

				//	Set	initial	position

				enemy.position	=	CGPoint(x:(view!.bounds.size.width/2),	y:	

view!.bounds.size.height/2)

				//	Add	enemy	to	the	scene

				addChild(enemy)

}

In	the	first	line,	we	initialized	a	constant	with	a	random	enemy	type.	As	you	can	see,	we
can	initialize	the	enumerated	type	by	calling	its	init	method	and	passing	a	rawValue
variable	as	an	input	parameter.	In	this	way,	we	create	a	random	value	between	0	and	1	that
we	will	use	to	initialize	the	enemy’s	type.

You	may	remember	that	we	declared	the	enumerated	values	as	UInt32	because	the	type	of
the	value	returned	by	the	arc4random_uniform	method	is	a	UInt32	value.

Once	we	created	the	type,	we	called	the	init	method	of	the	custom	class	that	will
internally	initialize	the	sprite	nodes,	depending	on	the	type.

Then,	we	specified	the	zPosition	values	for	both	the	rail	and	puppet	sprites	so	that	they
are	placed	in	the	correct	depth	position.

Finally,	we	set	the	enemy’s	position	at	the	center	of	the	screen	and	we	added	it	to	the
scene.	If	you	run	the	game	now,	you	will	see	something	that	is	similar	to	the	following
screenshot:

As	you	can	see,	the	enemy	is	correctly	placed	at	the	center	of	the	view,	but	what	we	really
want	is	that	it	moves	vertically	and	laterally,	starting	from	the	top	of	the	view.	Let’s	fix	the
initial	position.	You	need	to	replace	the	following	line:

enemy.position	=	CGPoint(x:(view!.bounds.size.width/2),	y:	

view!.bounds.size.height/2)

Add	the	following	block	of	code	after	replacing	previous	code:

enemy.rail.position	=	CGPoint(x:(view!.bounds.size.width/2),	y:	

view!.bounds.size.height	+	wall.frame.size.height/2)

				switch	enemyType	{

								case	.ENEMY_LEFT_RIGHT:

												//	Set	enemy's	position

												enemy.puppet.position	=	CGPoint(x:leftDoor.position.x,	y:	

view!.bounds.size.height	+	wall.frame.size.height/2)

								break

								case	.ENEMY_RIGHT_LEFT:

												//	Set	enemy's	position

												enemy.puppet.position	=	CGPoint(x:rightDoor.position.x,	y:	

view!.bounds.size.height	+	wall.frame.size.height/2)

								break

				}

In	the	first	line,	we	specified	that	we	want	the	rail	sprite	to	be	at	the	center	of	the	screen,
but	outside,	we	want	it	to	be	centered	with	the	wall’s	initial	position.

Then,	we	used	a	switch	statement	to	specify	the	puppet’s	position,	depending	on	the
enemy’s	type.	If	enemy	type	is	ENEMY_LEFT_RIGHT,	we	will	place	it	at	the	center	to	the	left
door	and	out	of	view,	centered	with	the	wall’s	initial	position.	If	the	type	of	the	enemy	is
the	opposite,	ENEMY_RIGHT_LEFT,	we	will	place	it	centered	with	the	right	door.

Now	that	we	have	the	initial	positions	correctly	specified,	it’s	time	to	make	the	enemy
move.	So	for	this	purpose,	we	will	need	to	call	a	new	method.	Add	the	following	lines	at
the	end	of	initializeEnemy:

//	Initialize	enemy's	actions

initializeEnemyActions()

Let’s	implement	this	new	method	by	using	the	following	code:

func	initializeEnemyActions()	{

				//	Enemy's	lateral	speed

				let	enemyLateralSpeed:	CGFloat	=	150.0

				//	Initialize	enemy's	type

				var	enemyType:	EnemyType	=	.ENEMY_LEFT_RIGHT

				//	Sprite's	actions

				var	verticalMovementAction:	SKAction!

				var	lateralMovementAction:	SKAction!

				//	Setting	the	rail's	final	position

				let	nextRailPosition	=	CGPoint(x:	enemy.rail.position.x,	y:	-

wall.frame.size.height	/	2)

				//	We	want	the	rail	to	move	on	a	constant	speed

				let	railDuration	=	self.distanceBetween(point:	enemy.rail.position,	

andPoint:	nextRailPosition)	/	self.kRunningSpeed

				//	Move	the	rail	to	the	next	position

				let	moveRailAction	=	SKAction.moveToY(nextRailPosition.y,	duration:	

Double(railDuration))

}

We	began	by	declaring	a	constant	variable	that	will	be	used	to	specify	the	speed	of	the
lateral	movement	so	that	the	puppet	moves	lineally.

Then,	we	declared	a	variable	for	the	enemy’s	type	with	a	default	value,	and	we	also
declared	two	different	actions:	one	for	the	vertical	movement	and	another	one	for	the
lateral	movement.

To	create	the	vertical	movement,	we	are	going	to	take	the	rail	as	a	reference.	We	specified
the	final	position,	which	is	the	same	place	as	that	on	the	x	coordinate	but	the	opposite	on
the	y	coordinate.	This	way,	the	enemy	will	finish	its	vertical	movement	outside	the	screen,
but	at	the	bottom	of	the	view	this	time.

When	we	declared	the	duration	for	this	vertical	movement.	For	this	purpose,	we	need	the
distance	between	the	rail	sprite	and	the	final	position.	We	also	used	the	kRunningSpeed
constant	for	this	movement	as	we	want	it	to	be	similar	to	the	wall’s	and	the	door’s
constant.

Finally,	we	declared	a	moveToY	action	to	specify	the	already-calculated	final	position	and
the	duration.

Once	the	enemy	arrives	at	the	final	position,	we	need	it	to	recover	its	initial	location.	So,
let’s	add	another	action	for	this	purpose	by	adding	the	following	lines	at	the	end	of
initializeEnemyActions:

//	Reset	the	rail's	position

let	resetPositionAction	=	SKAction.runBlock	{

				//	Reset	rail's	position

				self.enemy.rail.position	=	CGPoint(x:self.view!.bounds.size.width/2,	y:	

self.view!.bounds.size.height	+	self.wall.frame.size.height/2)

				//	Reset	enemy's	type

				enemyType	=	EnemyType(rawValue:	arc4random_uniform(2))!

				self.enemy.enemyType	=	enemyType

				//	Stop	previous	action

				self.enemy.puppet.removeActionForKey("puppet_action")

				switch	enemyType	{

								case	.ENEMY_LEFT_RIGHT:

												//	Reset	texture

												self.enemy.setPuppetTexture()

												//	Reset	position

												self.enemy.puppet.position	=	

CGPoint(x:self.leftDoor.position.x,	y:	self.view!.bounds.size.height	+	

self.wall.frame.size.height/2)

												//	Run	action

												

self.enemy.puppet.runAction(SKAction.repeatActionForever(self.enemy.leftAct

ion),	withKey:	"puppet_action")

								break

								case	.ENEMY_RIGHT_LEFT:

												//	Reset	texture

												self.enemy.setPuppetTexture()

												//	Reset	position

												self.enemy.puppet.position	=	

CGPoint(x:self.rightDoor.position.x,	y:	self.view!.bounds.size.height	+	

self.wall.frame.size.height/2)

												//	Run	action

												

self.enemy.puppet.runAction(SKAction.repeatActionForever(self.enemy.rightAc

tion),	withKey:	"puppet_action")

								break

				}

}

Don’t	worry	if	this	piece	of	code	is	bigger	than	the	usual;	we	are	combining	different
techniques	that	we	have	been	using	on	other	actions,	and	you	will	easily	understand	it.

We	began	by	creating	a	runBlock	action	so	that	we	can	execute	all	the	steps	needed	to
recover	the	initial	status.	The	first	thing	is	to	reset	the	rail’s	position,	as	it	will	be	different
to	that	of	the	puppet.	Also,	as	you	can	see,	we	specified	the	same	point	as	that	of	the	initial
position.

Then,	we	reset	the	enemy’s	type	by	calling	the	init	method	again.	Then,	we	set	it	to	the
enemy’s	node.	This	way,	each	wave	of	enemies	will	be	randomly	created.

As	we	are	going	to	execute	a	vertical	and	a	lateral	action	on	the	puppet	(the	rail	will	only
run	the	vertical	action),	we	need	a	way	to	stop	any	previous	lateral	action.	This	is	why	we
execute	the	removeActionForKey	method	for	the	puppet	node,	specifying	the
puppet_action	key.

Once	we	are	sure	that	there	will	not	be	repeated	actions,	we	will	take	advantage	of	the
switch	statement	to	reset	some	puppet’s	attributes,	depending	on	its	type.	As	you	can	see,
we	called	the	setPuppetTexture	method	in	order	to	update	the	sprite	texture,	but	it	will
not	create	a	new	node	each	time;	it	will	just	update	the	texture.

Then,	we	reset	the	puppet’s	position	by	placing	it	at	its	original	point.	Then,	we	run	the
leftAction	or	the	rightAction	variables	on	the	puppet	sprite,	giving	it	the	same	key
name	that	we	previously	used	to	stop	actions.

At	this	very	moment,	the	leftAction	or	rightAction	variables	aren’t	yet	created.	But
let’s	continue	implementing	the	method,	and	everything	will	make	sense.

Add	the	following	block	of	code	at	the	end	of	initializeEnemyActions:

//	Delay	action

let	delayAction	=	SKAction.waitForDuration(2.0)

//	Creating	sequence	of	actions

let	railSequence	=	SKAction.sequence([delayAction,	moveRailAction,	

resetPositionAction])

//	Initializing	vertical	movement	action

verticalMovementAction	=	SKAction.repeatActionForever(railSequence)

//	We	want	the	puppet	to	move	on	a	constant	speed

let	puppetDuration	=	self.distanceBetween(point:	rightDoor.position,	

andPoint:	leftDoor.position)	/	enemyLateralSpeed

//	Initialize	lateral	actions

let	moveEnemyLeftAction	=	SKAction.moveToX(leftDoor.position.x,	duration:	

Double(puppetDuration))

let	moveEnemyRightAction	=	SKAction.moveToX(rightDoor.position.x,	duration:	

Double(puppetDuration))

//	Initialize	sequence	of	actions

enemy.leftAction	=	SKAction.sequence([moveEnemyRightAction,	

moveEnemyLeftAction])

enemy.rightAction	=	SKAction.sequence([moveEnemyLeftAction,	

moveEnemyRightAction])

We	will	need	a	delay	action	because	we	want	the	enemy	to	move	a	little	further	from	the
wall	and	doors	so	that	there	is	a	short	distance	between	them.	This	is	why	we	created	a
waitForDuration	action	with	a	value	of	2	seconds.

Now	that	we	have	all	the	actions	needed	for	the	rail	to	behave	as	we	want,	we	created	a
sequence	with	the	delay,	the	rail	movement,	and	the	reset	action,	and	we	use	this	sequence
to	initialize	the	verticalMovementAction	object,	which	will	repeat	the	sequence	in	an
endless	loop.

Now	that	the	vertical	movement	is	done,	we	defined	the	puppets	actions.	This	is	why	we
first	calculated	the	duration	of	the	lateral	movement	between	the	left	and	right	sides	of	the
screen.	Note	how	we	specified	the	left	and	right	doors	as	the	points	at	which	motion
reverses	the	distance	because	the	movements	will	reach	each	of	those	extremes.

With	this	duration,	we	initialized	two	lateral	movements:	one	for	the	puppet	to	move	from
left	to	right	and	another	one	for	the	puppet	to	move	from	right	to	left.	Finally,	we	used
both	actions	to	create	a	sequence	in	order	to	initialize	leftAction	and	rightAction
objects.	In	this	way,	when	we	execute	the	resetPositionAction	object,	we	just	need	to
execute	the	corresponding	actions	to	achieve	the	desired	movement.

We	are	almost	finished	with	the	coding	for	the	enemy’s	actions;	just	add	the	following
lines	at	the	end	of	initializeEnemyActions:

switch	enemy.enemyType	{

				case	.ENEMY_LEFT_RIGHT:

								//	Initializing	puppet's	action

								lateralMovementAction	=	

SKAction.repeatActionForever(enemy.leftAction)

				break

				case	.ENEMY_RIGHT_LEFT:

								//	Initializing	puppet's	action

								lateralMovementAction	=	

SKAction.repeatActionForever(enemy.rightAction)												

					break

}

				//	Running	vertical	movement	actions

				enemy.rail.runAction(verticalMovementAction)

				enemy.puppet.runAction(verticalMovementAction)

				//	Running	lateral	movement	action

				enemy.puppet.runAction(lateralMovementAction,	withKey:	"puppet_action")

Now	that	we	have	all	the	desired	actions,	we	take	advantage	of	a	switch	statement	again

to	initialize	the	lateralMovementAction	variable,	which	will	run	the	left	or	right	action
respectively,	depending	on	the	enemy’s	type	in	an	endless	loop.

Then,	as	everything	is	ready,	we	can	run	the	verticalMovementAction	object	on	both	the
rail	and	puppet	sprites	so	that	they	can	move	vertically	and	the	lateralMovementAction
object	of	the	puppet	node,	specifying	a	key	name.

After	performing	all	of	these	tasks,	it’s	time	to	check	what	we	have	done.	So,	run	the	game
again,	and	you	will	see	the	enemy	moving	as	expected:

2-star	challenge:	colliding	puppets
Before	going	further,	you	need	to	add	the	code	that	detect	collisions	between	the	rabbit
and	the	puppet.	When	this	happens,	the	blinking	action	should	be	run	as	well	as	the	sound
that	is	played	when	the	rabbit	collides	with	the	wrong	door.	Also,	you	should	take	into
account	that	colliding	with	the	enemies	will	not	affect	the	score.

Solution
I’ve	decided	to	use	a	different	flag	to	detect	whether	a	collision	with	an	enemy	happened,
as	we	will	need	it	later	in	this	chapter.	So,	let’s	add	a	new	variable	declaration	at	the	top	of
GameScene:

private	var	isEnemyCollisionDetected:	Bool	=	false

Then,	we	need	to	write	the	code	that	detects	these	collisions.	So,	add	the	following	block
of	code	at	the	end	of	detectCollisions:

//	Check	puppet	collision

if	enemy.puppet.frame.intersects(rabbit.frame)	&&	(enemy.puppet.position.y	

-	enemy.puppet.frame.height/2)	<=	rabbit.position.y	{

				//	Collision	detected

				isEnemyCollisionDetected	=	true

				//	Reproduce	sound

				self.playWrongDoorSound()

				//	Make	the	rabbit	blink

				let	blinkAction	=	SKAction.sequence([

				SKAction.colorizeWithColor(UIColor.redColor(),	colorBlendFactor:	0.5,	

duration:	0.1),

								SKAction.fadeAlphaTo(0.0,	duration:	0.2),

								SKAction.fadeAlphaTo(1.0,	duration:	0.2),

								SKAction.colorizeWithColor(UIColor.whiteColor(),	colorBlendFactor:	

1.0,	duration:	0.1) ])
				self.rabbit.runAction(SKAction.repeatAction(blinkAction,	count:	3))

}

As	we	just	want	to	detect	the	collisions	with	the	puppet,	we	need	to	check	whether	the
puppet’s	frame	intersects	the	rabbit’s	frame.	Note	that	we	also	added	a	condition	to	make
this	detection	more	accurate.

If	a	collision	happens,	we	need	to	update	the	flag	and	play	a	sound	(we	use	the	same	sound
as	we	used	for	the	wrong	door).	Finally,	we	need	to	run	the	same	blink	action	that	we	run
when	the	rabbit	collides	with	the	wrong	door.

We	just	need	to	reset	the	flag’s	value	when	the	enemy	finishes	its	movement.	So,	add	the
following	lines	to	initializeEnemyActions	at	the	beginning	of	let
resetPositionAction	=	SKAction.runBlock	{:

//	Reset	flag

self.isEnemyCollisionDetected	=	false

If	you	run	the	game	now,	you	will	see	how	the	rabbit	will	collide	with	the	doors	and	the
puppets	too,	as	shown	in	the	following	screenshot:

The	parallax	effect
When	developing	two-dimensional	games,	you	will	come	across	a	problem	that	traditional
animators	have	been	facing	since	the	development	of	the	cartoon,	which	is	the	difficulty	of
providing	their	creations	with	depth	and	the	sensation	of	motion.

The	technique	used	by	animators	to	solve	this	problem	is	the	one	known	as	parallax
effect,	which	involves	the	separation	of	scenes	onto	different	layers	and	moving	the
background	ones	slower	than	the	layers	in	the	foreground.

This	is	something	that	is	similar	to	what	happens	when	you	are	traveling	in	an	automobile.
If	you	look	at	one	side,	you	will	see	trees	on	the	edge	of	the	road	passing	by	swiftly.	If	you
then	look	a	little	further	at	a	static	object,	you	will	see	that	it	moves	slower	than	the	trees.
Furthermore,	if	you	look	at	the	horizon,	you	will	see	that	mountains	almost	seem	static.

By	applying	the	parallax	effect,	we	make	our	brain	think	that	there	is	depth	in	the	scene
(we	achieve	a	three-dimensional	effect)	and	movement	is	happening,	but	the	reality	is	that
the	different	layers	are	moving	at	different	speeds	while	being	placed	on	the	same	plane.

To	apply	this	technique	to	our	game,	we	will	take	an	approach	that	involves	moving	the
background	and	some	lateral	trees	from	the	top	to	the	bottom	in	a	way	that	is	similar	to
how	we	moved	the	walls,	doors,	and	enemies.

If	we	move	the	background,	then	we	will	find	a	problem	that	the	background	disappears
from	the	scene	and	a	blank	layer	will	be	kept	as	a	background	for	the	game.	In	order	to
avoid	this	problem,	we	will	place	a	background	copy	on	top	of	the	original	one	to
constantly	cover	the	view.

We	will	also	apply	the	same	duplication	to	the	trees	on	both	sides	of	the	road	so	that	we
can	move	them	with	a	speed	that	is	different	sides	that	of	the	background.	In	this	way,	we
will	simulate	that	the	rabbit	is	running.	This	is	shown	in	the	following	screenshot:

Okay,	now	that	the	concept	is	clear	and	we	have	planned	what	we	are	going	to	implement,
let’s	start	by	adding	the	parallax	layers	to	the	scene:	the	backgrounds	and	the	trees.

First	of	all,	we	need	to	remove	the	background	that	we	added	to	the	scene	in	Chapter	1,
The	First	Step	toward	SpriteKit.	Hence,	remove	the	following	lines	from
initializeMainCharacter:

//	Creating	and	adding	the	background	to	the	scene

let	background	=	SKSpriteNode(imageNamed:	"background")

background.anchorPoint	=	.zero

background.zPosition	=	-1

addChild(background)

Furthermore,	let’s	declare	some	variables	that	will	be	useful	for	the	development	of	the
parallax	effect.	Add	the	following	lines	just	after	private	var
isEnemyCollisionDetected:	Bool	=	false:

private	var	backgroundBottom:	SKSpriteNode!

private	var	backgroundTop:	SKSpriteNode!

private	var	treesBottom:	SKSpriteNode!

private	var	treesTop:	SKSpriteNode!

To	initialize	these	variables,	we	are	going	to	call	a	new	method.	Add	the	following	line	at
the	end	of	didMoveToView:

self.initializeParallaxEffect()

Implement	this	with	the	following	lines	of	code:

func	initializeParallaxEffect()	{

				//	Initialize	background	layers

				backgroundBottom	=	SKSpriteNode(imageNamed:	"background")

				backgroundBottom.anchorPoint	=	.zero

				backgroundBottom.zPosition	=	-1

				//	Copy	the	previous	node	into	another

				backgroundTop	=	backgroundBottom.copy()	as!	SKSpriteNode

				//	Set	top	layer	position

				backgroundTop.position	=	CGPoint(x:	backgroundBottom.position.x,	y:	

backgroundBottom.position.y	+	backgroundBottom.size.height)								

				//	Initialize	tree	layers

				treesBottom	=	SKSpriteNode(imageNamed:	"trees")

				treesBottom.zPosition	=	4

				treesBottom.position	=	CGPoint(x:(view!.bounds.size.width/2),	y:	

view!.bounds.size.height/2)

				//	Copy	the	previous	node	into	another

				treesTop	=	treesBottom.copy()	as!	SKSpriteNode

				//	Set	top	layer	position

				treesTop.position	=	CGPoint(x:	treesBottom.position.x,	y:	

treesBottom.position.y	+	treesBottom.size.height)

				//	Add	background	layers	to	the	scene

				addChild(backgroundBottom)

				addChild(backgroundTop)

				//	Add	tree	layers	to	the	scene

				addChild(treesBottom)

				addChild(treesTop)

}

We	first	initialized	backgroundBottom	in	a	way	that	is	the	same	as	how	we	initialized	the
static	background	that	we	created	in	Chapter	1,	The	First	Step	toward	SpriteKit.	As	you
can	see,	we	specified	the	.zero	value	as	anchorPoint	and	placed	it	at	the	deepest
zPosition	value	of	the	scene.

Then,	we	created	backgroundTop	as	a	copy	of	the	previous	one.	As	you	can	see,	we	used
the	copy()	method,	which	is	inherited	from	the	NSObject	class	(the	parent	of	SKNode),	and
it	returns	an	exact	copy	of	the	previous	node.

Note
We	specified	that	we	want	the	node	copy	to	be	an	instance	of	SKSpriteNode,	as	the	copy()
method	creates	an	object	with	no	specific	type.

Thanks	to	this	method,	we	don’t	need	to	set	the	anchorPoint	nor	the	zPosition	values,

we	just	need	to	specify	the	position	that	we	want	the	top	background	to	take.	As	we	want
it	to	be	placed	at	the	top	of	the	bottom	background,	we	set	its	y	coordinate’s	position	as	the
sum	of	the	background	and	its	height.

Then,	we	initialized	both	the	top	and	bottom	trees	in	a	similar	way	we	used	for	the
backgrounds.	We	first	created	one	of	the	nodes	using	the	"trees"	texture	and	specified	its
zPosition	object	so	that	the	result	makes	sense.	We	also	set	its	position	so	that	it	is
centered	on	the	screen.	Finally,	we	created	a	copy	of	the	previous	node,	specifying	its
particular	position.

Before	running	the	game,	let’s	add	to	the	project	the	images	that	we	used	to	create	the
trees	by	performing	the	following	steps:

1.	 Right-click	on	Art	and	select	Add	Files	to	“InsideTheHat”….
2.	 You’ll	find	trees.png,	trees@2x.png,	trees@2x~ipad.png,	and	trees@3x.png	in	the

7338_03_Resources	folder	that	you	previously	unzipped.	Select	these	four	files	and
click	on	Add.

Finally,	add	the	four	nodes	to	the	scene	so	that	they	are	ready	to	start	running	the	parallax
effect.	Execute	the	project	now	and	have	a	look	at	what	we	have	done	so	far:

Now	that	we	have	all	the	necessary	elements,	it’s	time	to	start	running	the	parallax	effect.
For	this	purpose,	we	can	take	advantage	of	the	already-known	actions	and	make	the
different	layers	move	from	top	to	bottom	with	different	speeds,	but	we	are	going	to	use	a
different	approach	this	time.

The	update	method	and	delta	times
You	may	remember	that	the	update	method	receives	a	CFTimeInterval	value,	which	is	the
interval	of	the	time	where	the	current	frame	is	placed.	We	can	use	this	fragment	of	time	to
calculate	the	displacement	that	the	different	layers	will	perform	for	each	frame.

For	this	purpose,	we	will	need	two	variables:	one	to	store	the	previous	interval	of	time	and
another	one	to	keep	the	difference	between	fragments	of	time	(delta)	in	order	to	use	it	to
calculate	the	displacement.

Add	the	following	lines	of	code	to	the	top	of	GameScene	in	the	variable	declaration
section:

private	var	lastFrameTime	:	CFTimeInterval	=	0

private	var	deltaTime	:	CFTimeInterval	=	0

Now	that	we	have	both	variables,	let’s	calculate	the	time	intervals.	Add	the	following
method	call	at	the	end	of	the	update	method:

//	Update	layers	on	parallax	effect

self.updateParallaxLayers(currentTime)

Implement	this	using	the	following	block	of	code:

func	updateParallaxLayers(currentTime:	CFTimeInterval)	{

				//	Initialize	the	last	frame	value

				if	lastFrameTime	<=	0	{

								lastFrameTime	=	currentTime

				}

				//	Update	the	delta	time

				deltaTime	=	currentTime	-	lastFrameTime

				//	Update	the	last	frame	time

				lastFrameTime	=	currentTime

				//	Apply	the	delta	to	the	layer's	position

				self.moveParallaxLayer(backgroundBottom,	topLayer:backgroundTop,	

speed:kBackgroundSpeed)

				self.moveParallaxLayer(treesBottom,	topLayer:treesTop,

speed:kTreesSpeed)

}

As	you	can	see,	we	are	sending	the	currentTime	value	as	an	input	parameter	to	the
method,	as	we	will	need	it	to	calculate	the	delta	times.

The	first	thing	that	we	do	in	this	method	is	initialize	the	lastFrameTime	variable	with	the
current	time.	This	value	will	be	used	to	calculate	the	difference	between	the	last	time	and
the	current	one	(deltaTime),	but	on	the	first	call	to	the	method,	the	delta	value	will	be	0.

Then,	we	store	the	current	time	as	the	last	time	so	that	we	have	this	reference	to	calculate
the	following	delta	values.

Once	we	have	performed	this	calculation,	we	call	the	moveParallaxLayer	method,	where

we	will	apply	the	delta	value	for	both	the	layers,	namely	backgrounds	and	trees,
specifying	the	different	speeds	that	we	want	them	to	have.	As	you	can	see,	we	are	using
two	new	constant	values	(kBackgroundSpeed	and	kTreesSpeed).	Add	them	to	the	top	of
the	class:

private	let	kBackgroundSpeed:	CGFloat	=	250.0

				private	let	kTreesSpeed:	CGFloat	=	450.0

Finally,	let’s	implement	this	last	moveParallaxLayer	method:

func	moveParallaxLayer(bottomLayer	:	SKSpriteNode,	topLayer	:	SKSpriteNode,	

speed	:	CGFloat)	->	Void	{

				//	Initialize	next	position

				var	nextPosition	=	CGPointZero

				for	parallaxLayer	in	[bottomLayer,	topLayer]	{

								//	Update	next	position

								nextPosition	=	parallaxLayer.position

								nextPosition.y	-=	CGFloat(speed	*	CGFloat(deltaTime))

								//	Update	layer	position

								parallaxLayer.position	=	nextPosition

								//	If	the	layer	is	out	of	view

								if	parallaxLayer.frame.maxY	<	self.frame.minY	{

												//	Reset	layer	position

												parallaxLayer.position	=CGPoint(x:	parallaxLayer.position.x,	y:	

parallaxLayer.position.y	+	parallaxLayer.size.height	*	2)

								}

				}

}

This	method	receives	both	layers,	the	top	and	the	bottom,	that	are	a	part	of	the	parallax
nodes	and	the	speed	at	which	we	want	them	to	move.

First	of	all,	we	initialized	a	variable.	We	are	going	to	keep	the	next	position.	We	want	the
layers	to	move	to	and	fro.	With	a	loop,	we	can	iterate	the	bottom	and	top	layers.

For	each	variable,	we	initialize	the	next	position	so	that	we	can	keep	the	x	coordinate	as
the	original	one.	Then,	we	calculate	the	y	position.	We	calculated	this	value	by	multiplying
the	delta	factor	that	we	got	on	previous	step	and	speed	one	less	then	the	previous	step.

This	way,	the	difference	in	the	position	will	be	very	small.	Hence,	the	movement	result
will	be	smooth	enough.	Then,	we	will	use	this	new	position	value	to	update	the	layer’s
position.

The	last	past	of	the	method	checks	whether	the	layer’s	frame	is	completely	out	of	sight.
For	this	purpose,	we	check	whether	the	maximum	value	in	the	y	coordinate	of	the	layer’s
frame	is	lower	than	the	minimum	value	of	the	view’s	frame.

If	this	is	the	case,	we	need	to	restore	the	initial	value.	So,	we	place	the	rabbit	at	its	initial
position.

With	the	preceding	code,	we	implemented	the	parallax	effect.	Now,	it’s	time	to	run	the
game	and	check	how	it	looks	like:

Creating	animations	in	SpriteKit
Until	this	point,	we	have	given	movement	to	almost	every	node	in	the	scene	in	order	to
make	our	game	look	realistic,	but	we	still	have	our	main	character	static	and	it	doesn’t
look	very	normal.	It	looks	as	if	the	rabbit	is	floating	over	the	ground.

In	order	to	overcome	this	situation,	we	are	going	to	animate	the	rabbit	so	that	it	appears	as
if	it	is	running	or	jumping	through	the	doors.	Animating	nodes	consists	of	intercalating
images	with	a	little	modification	in	relation	to	the	previous	one	so	that	their	visualization
provides	a	simulation	of	movement.

The	problem	that	this	technique	can	produce	is	that	the	performance	of	the	game	can
suffer	alarmingly	due	to	the	large	amount	of	images	needed.	To	avoid	this	issue,	we	can
take	advantage	of	texture	atlases,	which	are	collections	of	images	that	contain	all	the
images,	thus	reducing	the	number	of	draw	calls.

In	SpriteKit,	we	can	create	atlases	easily	by	collecting	all	the	necessary	textures	in	a	folder
with	the	.atlas	suffix.

So,	let’s	start	by	adding	an	atlas	to	the	game	by	following	these	instructions:

1.	 Right-click	on	Art	and	select	Add	Files	to	“InsideTheHat”….
2.	 You’ll	find	AnimationsImages.atlas	in	the	7338_03_Resources	folder	that	you

previously	unzipped.	Select	it	and	click	on	Add.

This	bundle	of	images	contains	the	textures	that	are	needed	to	create	two	animations:	one
for	the	rabbit	jumping	and	another	one	for	the	rabbit	when	it	collides	with	the	wrong	door
or	some	enemy.

Now,	you	should	ask	yourself,	how	do	we	create	animations	in	SpriteKit?	Keep	reading,
and	you	will	get	the	answer.

To	create	animations,	we	first	need	an	array	with	the	images	that	we	are	going	to	use.	So,
let’s	add	a	couple	of	variables	and	constants.	Paste	the	following	lines	at	the	top	of
GameScene:

private	var	jumpingRabbitFrames	:	[SKTexture]!

private	var	smashingRabbitFrames	:	[SKTexture]!

private	let	kNumJumpTextures	=	11

private	let	kNumSmashTextures	=	11

We	declared	two	different	arrays,	one	for	each	of	the	animations	that	we	are	going	to	run,
and	two	constants	for	the	number	of	textures	that	take	part	in	each	action.

Then,	we	call	the	method	that	will	initialize	the	animations.	So,	add	the	following	line	at
the	end	of	the	didMoveToView	method:

self.initializeAnimations()

Implement	this	using	the	following	block	of	code:

func	initializeAnimations()	{

				//	Reference	for	the	atlas

				let	animationsAtlas	=	SKTextureAtlas(named:	"AnimationsImages")

				//	Initialize	arrays

				var	auxJumpFrames	=	[SKTexture]()

				var	auxSmashFrames	=	[SKTexture]()

				//	Variable	for	the	textures

				var	jumpTexture:	String

				var	smashTexture:	String

				for	var	i	=	1;	i	<=	kNumJumpTextures;	i++	{

								//	Get	the	corresponding	texture

								jumpTexture	=	"rabbitJump\(i)"

								//	Add	texture	to	the	array

								auxJumpFrames.append(animationsAtlas.textureNamed(jumpTexture))

				}

				for	var	i	=	1;	i	<=	kNumSmashTextures;	i++	{

								//	Get	the	corresponding	texture

								smashTexture	=	"rabbitSmash\(i)"

								//	Add	texture	to	the	array

								auxSmashFrames.append(animationsAtlas.textureNamed(smashTexture))

				}

				//	Initialize	the	array	of	textures

				jumpingRabbitFrames	=	auxJumpFrames

				smashingRabbitFrames	=	auxSmashFrames

}

The	first	thing	that	we	do	in	the	method	is	create	a	SKTextureAtlas	variable	that	will
reference	the	texture	atlas.

Then,	we	declare	a	couple	of	auxiliary	texture	arrays	and	a	couple	of	variables	to	store	the
different	image	names	that	we	will	get	from	the	atlas.

With	a	loop,	we	iterate	all	the	textures	for	the	jump	animation	(which	is	why	we	declare
the	kNumJumpTextures	and	kNumSmashTextures	constants).	We	prepare	each	texture
name,	as	we	have	decided	to	call	them	rabbitJump1	to	rabbitJump11,	and	we	use	this
name	to	retrieve	it	from	the	atlas.	Finally,	with	this	image,	we	update	the	array	of	textures.

Note
To	retrieve	each	texture,	we	just	need	to	call	the	textureNamed	method	with	the	required
file	name.

We	perform	the	same	actions	in	a	different	loop	for	the	smash	animation.	Then,	we	update
the	two	arrays	with	the	auxiliary	ones.

Now	that	we	have	the	textures	ready,	let’s	start	animating	the	rabbit.	For	this	purpose,	add
the	following	line	at	the	end	of	the	didMoveToView	method:

self.startJumpingRabbit()

Implement	it	using	the	following	block	of	code:

func	startJumpingRabbit()	{

				//	Run	jumping	animation

				

rabbit.runAction(SKAction.repeatActionForever(SKAction.animateWithTextures(

jumpingRabbitFrames,	timePerFrame:	0.05,	resize:	false,	restore:	true)),	

withKey:"jumping_rabbit")

}

As	you	can	see,	we	are	performing	the	action	in	just	one	line,	in	which	we	run	an
unending	action	with	a	key	so	that	we	can	identify	it	later.	The	action	that	we	run	is
animateWithTextures.	We	pass	the	array	of	frames	that	we	built	in	the	previous	step	to
this	action,	identifying	the	time	per	frame.

This	attribute	specifies	the	time	each	texture	will	be	viewed	and	can	be	modified.	I’ve
specified	0.05	in	order	to	make	the	animation	related	to	the	parallax	speed.

We	can	also	specify	whether	we	want	each	texture	to	be	resized	in	order	to	match	the
previous	one.	We	can	also	specify	that	we	want	to	restore	the	texture	to	the	first	one	so
that	each	loop	performs	smoothly.

Check	out	what	the	new	animation	looks	like	by	running	the	project	now:

2-star	challenge:	animate	collisions
Now	that	we	have	all	the	elements	needed	to	create	the	animation	for	the	rabbit	when	it
collides	with	the	wrong	door,	I	challenge	you	to	use	your	knowledge	to	stop	the	jumping
animation	and	run	the	smashing	one.	Don’t	forget	to	restart	the	jumping	animation	after
the	smashing	animation	has	finished.

Solution
For	this	challenge,	we	will	need	to	remove	the	blink	action	that	we	created	in	Chapter	2,
What	Makes	a	Game	a	Game?,	and	the	one	that	we	created	for	the	collision	between	the
rabbit	and	the	puppet	so	that	we	can	run	the	new	animation	instead.	You	need	to	replace
the	following	lines	of	code	in	the	detectCollisions	method:

//	Make	the	rabbit	blink

let	blinkAction	=	SKAction.sequence([

				SKAction.colorizeWithColor(UIColor.redColor(),	colorBlendFactor:	0.5,	

duration:	0.1),

				SKAction.fadeAlphaTo(0.0,	duration:	0.2),

				SKAction.fadeAlphaTo(1.0,	duration:	0.2),

				SKAction.colorizeWithColor(UIColor.whiteColor(),	colorBlendFactor:	1.0,	

duration:	0.1)])

self.rabbit.runAction(SKAction.repeatAction(blinkAction,	count:	3))

These	lines	need	to	be	replaced	by	the	following	lines	of	code:

//	Stop	jumping	animation

self.rabbit.removeActionForKey("jumping_rabbit")

//	Run	smashing	animation

self.startSmashingRabbit()

With	these	lines,	we	first	stop	the	jumping	animation	to	avoid	mixing	actions,	and	then	we
call	a	new	method.	Let’s	implement	it	by	adding	the	following	block	of	code:

func	startSmashingRabbit()	{

				//	Create	smashing	animation

				let	smashingRabbitAnimation	=	

SKAction.animateWithTextures(smashingRabbitFrames,

				timePerFrame:	0.05,

				resize:	false,

				restore:	true)

				//	Action	to	restart	the	jumping	action

				let	resetJumpingAnimation	=	SKAction.runBlock	{

								self.startJumpingRabbit()

				}

				//	Create	sequence	with	the	desired	actions

				let	sequence	=	SKAction.sequence([smashingRabbitAnimation,	

resetJumpingAnimation])

				//	Run	the	sequence

				rabbit.runAction(sequence)

}

In	this	method,	we	create	an	action	to	run	the	smashing	animation.	For	this	purpose,	we
use	the	array	that	contains	the	textures	for	this	animation,	which	were	created	previously,
and	we	specify	the	same	timePerFrame,	resize,	and	restore	values	than	we	used	in	the
jumping	animation.

As	we	want	to	restart	the	jumping	animation	just	when	the	collision	finishes,	we	create	a
runBlock	action,	where	we	will	call	the	startJumpingRabbit()	method.

Then,	we	create	a	sequence	with	both	actions,	and	we	run	it	on	the	rabbit	node.	If	you

execute	the	game	now,	you	will	see	how	it	works	perfectly	when	the	main	character
collides	with	the	wrong	door:

Geometrical	primitives
When	developing	games,	you	will	usually	work	with	high-level	elements,	such	as	sprites,
labels,	particle	systems,	or	physical	bodies.	But	sometimes	you	will	need	to	create	simple
shapes,	such	as	circles,	lines,	rectangles.	For	example,	you	may	need	to	do	so	to	create	a
prototype	for	your	next	game.

SpriteKit	provides	us	with	a	subclass	of	SKNode	named	SKShapeNode,	which	doesn’t	have
much	potential.	This	class	allows	us	to	create	rectangles	(init(rect:),
init(rectOfSize:),	init(rect:cornerRadius:),	and
init(rectOfSize:cornerRadius:)),	ellipses	(init(ellipseOfSize:)	and
init(ellipseInRect)),	circles	(init(circleOfRadius:)),	and	other	types	of	shape	by
providing	its	vertices	(init(points:count:))	or	path	(init(path:centered:)).

In	this	section,	we	are	going	to	take	advantage	of	this	class	in	order	to	create	a	life	bar,
which	will	consist	of	a	red	rectangle	in	the	background	and	a	green	rectangle	in	the
foreground.	This	life	bar	will	represent	the	main	character’s	life	points,	and	they	will
decrease	when	we	collide	with	an	enemy.

Let’s	start	by	creating	the	life	bar.	We	will	need	to	declare	two	new	variables	at	the	top	of
GameScene,	as	follows:

private	var	redLifeBar:	SKShapeNode!

private	var	greenLifeBar:	SKShapeNode!

To	initialize	them,	we	will	call	a	new	method.	Add	the	following	line	at	the	end	of
didMoveToView:

self.initializeLifeBar()

Implement	it	using	the	following	block	of	code:

func	initializeLifeBar()	{	

				//	Initialize	red	bar

				redLifeBar	=	SKShapeNode(rectOfSize:	CGSize(width:	

self.view!.bounds.width/2,	height:	20.0))

				//	Set	bar's	position

				redLifeBar.position.x	=	redLifeBar.frame.size.width/2	+	20

				redLifeBar.position.y	=	labelScore.position.y	+	

labelScore.frame.size.height/2

				//	No	border

				redLifeBar.lineWidth	=	0

				//	Specify	zPosition

				redLifeBar.zPosition	=	5

				//	Set	bar	color

				redLifeBar.fillColor	=	UIColor.redColor()

}

We	first	create	a	new	shape	from	a	rectangle	with	a	specified	width	and	height.	I’ve
chosen	the	same	size,	as	given	in	the	preceding	code,	in	order	to	cover	the	gap	to	the	left
of	the	score	label.	Then,	we	set	the	shape’s	x	and	y	position	in	order	to	place	it	at	the	same
level	as	that	of	the	score	label.

Note
When	specifying	the	shape’s	position,	it’s	important	to	know	that	they	don’t	have
anchorPoint	available.	Hence,	its	position	will	correspond	to	the	center	point	of	the
shape.

We	don’t	want	the	rectangle	to	have	a	border.	So,	we	will	specify	this	value	as	0	(the
default	value	is	1).	Then,	we	set	the	shape’s	zPosition	to	ensure	that	it	will	remain	at	the
top	of	the	rest	of	the	nodes.

Finally,	we	fill	the	shape	with	the	desired	color,	which	is	red	in	this	case.

Now	that	the	red	rectangle	has	been	created,	we	need	to	create	the	green	one.	Add	the
following	code	at	the	end	of	initializeLifeBar:

								//	Initialize	green	bar

								greenLifeBar	=	SKShapeNode(rectOfSize:	CGSize(width:	

self.view!.bounds.width/2,	height:	20.0))

								//	Set	bar's	position

								greenLifeBar.position.x	=	redLifeBar.position.x

								greenLifeBar.position.y	=	redLifeBar.position.y

								//	No	border

								greenLifeBar.lineWidth	=	0

								//	Specify	zPosition

								greenLifeBar.zPosition	=	5

								//	Set	bar	color

								greenLifeBar.fillColor	=	UIColor.greenColor()

								

								//	Add	bars	to	the	scene

								addChild(redLifeBar)

								addChild(greenLifeBar)

As	you	can	see,	we	have	initialized	the	green	bar	in	the	same	way	we	initialized	the	red
bar.	We	took	the	red	rectangle	as	a	reference	for	the	position,	and	we	specified	green	as	the
desired	color.

Finally,	we	add	these	new	nodes	to	the	scene,	as	follows:

Now	that	the	life	bar	is	ready,	we	want	it	to	decrease	each	time	the	rabbit	collides	with	an
enemy.	For	this	purpose,	we	will	need	to	know	the	initial	life	points	and	a	variable	to
handle	the	remaining	ones.	Therefore,	add	the	following	lines	at	the	top	of	GameScene:

private	let	kMaxNumLifePoints	=	10

private	var	lifePoints:	Int	=	0

We	declared	a	constant	with	the	maximum	number	of	life	points	(the	initial	value)	and	a
variable	that	we	will	use	to	store	the	rabbit’s	life	points.

To	initialize	this	variable,	add	the	following	lines	at	the	top	of	initializeLifeBar:

//	Initialize	life	points

lifePoints	=	kMaxNumLifePoints

Now,	we	need	to	update	the	life	bar	when	a	puppet	collides	with	the	main	character.	So,
add	the	following	lines	to	the	initializeEnemyActions	method	just	after	let

resetPositionAction	=	SKAction.runBlock	{:

//	If	the	rabbit	collides	with	the	enemy

if	self.isEnemyCollisionDetected	{

				self.lifePoints--

				self.updateLifeBar()

}

When	the	rabbit	collides	with	a	puppet,	we	decrease	the	number	of	life	points,	and	then,
we	call	a	new	method.	Let’s	implement	it,	and	you	will	understand	what	it	does:

func	updateLifeBar()	{

				//	Previous	bar's	position

				let	lastPosition	=	greenLifeBar.position.x

				//	Previous	bar's	width

				let	lastWidth	=	greenLifeBar.frame.width

				//	Size	of	lost	life

				let	lostLife	=	redLifeBar.frame.width/CGFloat(kMaxNumLifePoints)

				//	Delete	previous	green	bar

				greenLifeBar.removeFromParent()

				//	Initialize	new	green	bar

				greenLifeBar	=	SKShapeNode(rectOfSize:	CGSize(width:	lastWidth	-	

lostLife,	height:	20.0))

				//	Set	bar	position

				greenLifeBar.position.x	=	lastPosition	-	lostLife/2

				greenLifeBar.position.y	=	redLifeBar.position.y

				//	No	border

				greenLifeBar.lineWidth	=	0

				//	Specify	zPosition

				greenLifeBar.zPosition	=	5

				//	Set	bar	color

				greenLifeBar.fillColor	=	UIColor.greenColor()

				//	Add	bar	to	the	scene

				addChild(greenLifeBar)

}

In	this	method,	we	are	going	to	decrease	the	green	bar’s	width	to	represent	that	we	have
been	hit	and	we	will	need	to	set	its	position	again	to	keep	the	shape	immobile	to	the	left.

For	this	purpose,	we	will	obtain	the	green	bar’s	previous	position	and	width	in	two
variables.	We	also	initialize	a	constant	with	the	width	of	each	life	point	that	we	lost.

Then,	we	need	to	remove	the	previous	bar	and	create	a	new	one	with	the	new	width,	which
is	the	result	of	removing	a	life	point	from	the	previous	width.

We	need	to	set	the	new	x	position	by	removing	half	of	the	lost	width,	as	the	rectangle	will
decrease	from	both	sides	due	to	its	anchor	point	position.

Then,	we	set	the	rest	of	properties	as	we	did	when	initializing	red	and	green	bar,	and	we
add	the	new	bar	to	the	scene.	If	we	run	the	game	now,	we	will	see	how	it	behaves.	Don’t
worry	if	the	life	bar	acts	weirdly	when	losing	all	the	points,	as	we	will	correct	it	in	Chapter
4,	From	the	Basics	to	Professional	Games:

Summary
In	this	chapter,	you	learned	some	advanced	techniques	that	will	help	you	give	a
professional	and	complex	look	to	your	games.

We	started	by	learning	how	to	create	nodes	that	are	composed	of	several	sprites	and
actions	by	creating	classes	that	inherit	SKNode.	In	this	way,	we	created	a	new	class	for	the
enemies	in	the	game	that	consist	of	two	SKSpriteNode	instances,	two	SKAction	instances,
and	the	type	of	enemy.

In	addition	to	this,	we	learned	how	we	can	perform	actions	on	each	of	the	sprites
separately	so	that	the	element	behaves	as	we	want.

Furthermore,	I	showed	you	how	to	apply	the	parallax	effect	to	our	games	in	order	to
provide	them	with	depth	and	a	sense	of	motion.	For	this	purpose,	we	learned	how	to	take
advantage	of	the	update	method	and	combine	copies	of	nodes	to	run	movement	actions	at
different	speeds	so	that	it	seems	that	the	rabbit	is	running.

In	order	to	adapt	the	rabbit	to	the	new	movement,	we	learned	how	to	animate	nodes	using
texture	atlases	to	avoid	a	decrease	in	performance.	In	this	way,	the	main	character	jumps
and	smashes	against	enemies	and	the	wrong	doors	in	a	more	realistic	way.

Finally,	we	learned	how	to	create	geometrical	primitives	that	can	be	used	in	several	ways
in	our	games	by	taking	advantage	of	the	SKShapeNode	class.

In	the	next	chapter,	we	will	finish	our	game	development	by	applying	some	elements	that
will	provide	a	product	that	is	ready	to	be	submitted	to	the	Apple	Store.

Chapter	4.	From	Basic	to	Professional
Games
In	the	last	chapter,	you	had	a	look	at	how	to	include	some	advanced	techniques	to	create
games	with	some	complexity.	In	this	chapter,	you	will	incorporate	some	components	in
your	project,	which	will	complete	the	game.	You	will	create	a	condition	to	end	a	game	and
learn	how	to	stop	the	game	and	create	a	game	over	scene.	Also,	you	will	add	an	initial
menu	to	the	game	and	learn	how	to	create	transitions	between	the	different	scenes	of	a
game.	You	will	also	learn	how	to	take	advantage	of	this	feature	to	include	a	tutorial	in	the
game	to	teach	users	how	to	play	it.	Finally,	you	will	have	an	understanding	of	how	to	store
information,	such	as	the	best	scores,	and	load	data	from	external	files.

The	topics	that	you	will	learn	in	this	chapter	are	as	follows:

How	to	end	a	game
How	to	add	a	main	menu	to	the	game
How	to	create	transitions	between	scenes
How	to	develop	a	tutorial
How	to	load	and	save	data

Ending	the	game
Before	going	any	further,	we	will	need	to	open	the	initial	project	for	this	chapter,	which	is
similar	to	the	one	that	we	had	at	the	end	of	the	previous	chapter.	Therefore,	unzip
7338_04_Resources.zip,	where	you	will	find	InsideTheHat_init.zip.	Unzip	this	and
open	the	project	with	Xcode.

We	had	to	look	at	the	code	needed	to	decrease	the	number	of	life	points	as	well	as	the	red
life	bar	length.	In	this	section,	we	will	take	advantage	of	this	code	to	end	the	game	when
the	number	of	life	points	is	0.

Usually,	when	a	game	is	over,	everything	stops	moving	and	some	kind	of	text	alert	for	the
player	pops	on	the	screen.	So,	let’s	see	how	we	can	do	this	in	a	SpriteKit	project.

For	this	step,	we	will	need	a	new	label	variable.	So,	let’s	declare	it	by	adding	the	following
line	at	the	top	of	GameScene:

private	var	labelGameOver:	SKLabelNode!

Then,	add	the	following	block	of	code	in	the	resetPositionAction	action	of	the
initializeEnemyActions	method	just	after	self.updateLifeBar()	function:

//	If	we	have	lost	all	the	life	points

if	self.lifePoints	==	0	{

				self.gameOver()

}

When	a	collision	with	an	enemy	happens,	we	update	the	life	points.	If	this	value	equals	to
0,	we	call	a	new	method.	So,	let’s	implement	it	using	the	following	lines:

func	gameOver()	{

				//	Initialize	the	label	with	a	font	name

				labelGameOver	=	SKLabelNode(fontNamed:"MarkerFelt-Thin")

				//	Set	color,	size	and	position

				labelGameOver.fontColor	=	UIColor.redColor()

				labelGameOver.fontSize	=	60

				labelGameOver.position	=	CGPoint(x:view!.bounds.size.width/2,	

y:view!.bounds.size.height)

				//	Specifying	zPosition

				labelGameOver.zPosition	=	5

				//	Set	text

				labelGameOver.text	=	"GAME	OVER"

				//	Add	the	label	to	the	scene

				addChild(labelGameOver)

}

In	this	method,	we	initialized	the	label	variable	with	the	same	font	as	the	one	that	we	used
for	the	score	label.	Then,	we	set	red	as	its	font	color	and	specified	a	font	size	that’s	big
enough	to	cover	the	screen.

We	are	going	to	make	the	label	appear	at	the	top	of	the	screen	and	in	the	center	using	a
sequence	of	actions	in	order	to	achieve	a	dynamic	result.	This	is	the	reason	why	we	set	the
label’s	initial	position	at	the	top	of	the	view	in	the	center	in	a	horizontal	fashion.

Finally,	we	specified	the	zPosition	value	to	ensure	that	the	text	is	shown	over	the	rest	of
the	elements.	We	set	a	piece	of	text	to	indicate	that	the	game	is	over,	and	we	add	the	label
to	the	scene.

Now	that	we	have	the	label	initialized,	it’s	time	to	create	the	movement	action	that	will
make	it	appear	dynamically.	Add	the	following	block	of	code	at	the	end	of	the	gameOver
method:

//	Creating	movement	action

let	actionMoveDown	=	SKAction.moveTo(CGPoint(x:view!.bounds.size.width/2,	

y:view!.bounds.size.height/2),	duration:	0.25)

//	Creating	movement	action

let	actionMoveUp	=	SKAction.moveTo(CGPoint(x:view!.bounds.size.width/2,	

y:view!.bounds.size.height/2	+	60),	duration:	0.25)

//	Creating	block	action

let	stopGame	=	SKAction.runBlock	{

				//	Stop	game

				self.view?.paused	=	true

}

//	Creating	block	action

let	stopMusic	=	SKAction.runBlock	{

				//	Stop	background	music

				self.backgroundMusic.stop()

}

We	created	a	move	action	that	will	bring	the	label	to	the	center	of	the	screen,	and	then	we
created	another	one	that	will	move	it	a	little	upwards.

We	also	created	a	runBlock	action,	where	we	execute	the	following	command:

self.view?.paused	=	true

The	paused	attribute	will	set	all	the	animations	on	the	scene	to	a	standby	mode	and	it’s	a
property	that	we	can	take	advantage	of	if	we	want.	For	example,	you	can	use	it	to	stop	the
game	when	the	Configuration	or	Pause	menu	is	opened.

Finally,	we	want	to	stop	the	background	music.	Therefore,	we	created	another	block
action	to	stop	the	audio	player.

Let’s	add	the	last	lines	at	the	end	of	the	gameOver	method:

//	Creating	sequence	of	actions

let	sequence	=	SKAction.sequence([actionMoveDown,	actionMoveUp,	

actionMoveDown,	stopGame,	stopMusic])

//	Run	sequence

labelGameOver.runAction(sequence)

Using	the	preceding	lines,	we	created	a	sequence	of	actions	that	will	combine	everything
that	moves	the	label	from	the	top	of	the	view	to	the	center:	the	action	that	will	move	it	a
little	upwards	and	the	other	action	that	will	recover	its	position	at	the	center	of	the	view	as
well	as	the	action	that	will	pause	the	game	and	the	music.

Finally,	on	executing	this	sequence,	you	will	see	something	that’s	similar	to	the	following
screenshot	if	you	run	the	game	now:

You	will	realize	that	the	game	doesn’t	stop	instantly,	because	it	needs	to	wait	for	the
Game	Over	label’s	move	action	to	finish	before	the	scene	is	paused.	We	can	fix	it	instantly
by	removing	all	the	actions.	But	I	wanted	to	show	you	this	paused	attribute	as	it	can	be
used	in	other	circumstances.

3-star	challenge:	restarting	a	game
We	have	seen	how	we	can	end	our	game,	but	what	happens	if	the	user	wants	to	play	it
again?	Should	they	kill	the	app	and	restart	it	just	to	play	a	new	game?	This	is	not	a	kind
way	of	treating	players.	So	let’s	provide	them	with	a	way	to	replay	the	game	easily.

I	recommend	that	you	take	advantage	of	all	the	knowledge	that	you	have	acquired	so	far	in
order	to	create	a	label	when	the	game	is	over,	which	will	restart	the	game.	With	what	we
have	learned	in	the	previous	chapters,	you	will	be	capable	of	finding	a	solution	for	this
challenge.

Try	to	develop	your	own	solution	and	then	compare	it	with	the	following	one.

Solution
First	of	all,	we	are	going	to	need	a	label.	So	let’s	declare	label	by	adding	the	following
line	at	the	top	of	GameScene:

private	var	labelResetGame:	SKLabelNode!

We	will	initialize	labelResetGame	when	the	game	is	over	so	that	labelResetGame	will
happen	in	the	gameOver	method.	For	this	purpose,	replace	the	following	line	in	the
aforementioned	method:

let	sequence	=	SKAction.sequence([actionMoveDown,	actionMoveUp,	

actionMoveDown,	stopGame,	stopMusic])

Replace	this	line	with	the	following	lines:

//	Creating	block	action

let	showLabelResetAction	=	SKAction.runBlock	{

				//	Show	reset	game	label

				self.showLabelReset()

}

let	sequence	=	SKAction.sequence([actionMoveDown,	actionMoveUp,	

actionMoveDown,	stopGame,	stopMusic,	showLabelResetAction])

We	have	created	a	new	runBlock	action.	Therefore,	we	can	make	a	call	to	a	new	method
when	the	game	is	over.	That’s	the	reason	why	we	have	added	this	new	action	at	the	end	of
the	sequence.	Thus,	the	new	label	will	be	shown	just	when	the	game	is	stopped.

Let’s	implement	this	new	method	by	adding	the	following	block	of	code:

func	showLabelReset()	{

				//	Initialize	the	label	with	a	font	name

				labelResetGame	=	SKLabelNode(fontNamed:"MarkerFelt-Thin")

				//	Set	color,	size	and	position

				labelResetGame.fontColor	=	UIColor.greenColor()

				labelResetGame.fontSize	=	30

				labelResetGame.position	=	CGPoint(x:view!.bounds.size.width/2,	

y:view!.bounds.size.height/2	-	60)

				//	Specifying	zPosition

				labelResetGame.zPosition	=	5

				//	Set	text

				labelResetGame.text	=	"Reset	Game"

				//	Set	node's	name

				labelResetGame.name	=	"reset_label"

				//	Add	the	label	to	the	scene

				addChild(labelResetGame)

}

This	method	will	initialize	the	previously	declared	label	with	the	same	font	name	that	we
have	been	using	so	far.	Then,	we	specified	its	font	color,	which	will	be	green,	and	we	set
its	font	size	and	position.	Note	how	we	set	this	label	at	the	center	but	a	little	below	the
initial	position.

We	want	the	label	to	be	visible.	Therefore,	we	need	to	specify	the	zPosition	value	so
that	it’s	big	enough	for	the	text	to	be	over	the	rest	of	the	elements	in	the	scene.

Finally,	we	set	its	text	and	specified	a	key	value	for	its	name	attribute	so	that	we	can	take
advantage	of	it	when	identifying	whether	a	user	has	touched	this	node.	Once	the	label	is
created,	we	add	it	to	the	scene.

Run	the	game	now,	and	you	will	see	how	this	step	affects	it:

Now,	we	have	to	provide	this	label	with	the	functionality	of	restarting	the	game.	I	thought
that	it	would	be	a	good	idea	to	check	the	touchesBegan	method	to	find	out	whether	the
user’s	interactions	correspond	to	the	label.	Therefore,	add	the	following	lines	at	the	end
of	the	aforementioned	method:

//	Check	if	label	touched

if	self.nodeAtPoint(touch.locationInNode(self)).name	==	"reset_label"	{

				self.restartGame()

}

This	means	that	if	the	touch	location	in	the	scene	corresponds	to	the	node	named

reset_label,	we	will	call	a	new	method.	Implement	this	method	using	the	following	block
of	code:

func	restartGame()	{

				//	Reset	values

				score	=	0

				lastFrameTime	=	0

				deltaTime	=	0

				//	Set	doors	to	nil

				leftDoor	=	nil

				centerDoor	=	nil

				rightDoor	=	nil

				//	Remove	all	children	on	scene

				self.removeAllChildren()

				//	Remove	all	actions

				self.removeAllActions()

				//	Restart	the	game

				self.view?.presentScene(self)

}

When	restarting	the	game,	we	need	to	set	the	initial	values	of	the	variables	that	we	use.
That’s	the	reason	why	we	set	score,	lastFrameTime,	and	deltaTime	to	0.

We	set	the	doors	variables	to	nil	just	to	ensure	that	they	are	correctly	reinitialized.	Then,
we	removed	all	the	children	from	the	scene.	So,	when	the	game	restarts,	everything	works
fine	and	there	are	no	errors.

Finally,	we	removed	all	the	actions	in	the	scene	to	start	the	game	from	scratch	and	then	we
called	the	following	method:

self.view?.presentScene(self)

This	will	replace	the	current	scene	with	the	specified	one,	which	means	that	the	current
scene	will	replace	the	specified	one	with	a	new	instance	of	the	game’s	scene.

Run	the	game	now,	and	you	will	see	how	we	can	easily	play	the	game	any	number	of
times	that	we	want:

Creating	a	main	menu
When	playing	mobile	games,	you	will	usually	find	an	initial	menu	screen	when	you	run	it.
These	screens	are	usually	shown	to	provide	players	with	a	way	to	modify	some
configurations,	such	as	turning	on	or	turning	off	of	the	game	sound,	the	selection	of	a
game’s	difficulty,	or	just	a	way	to	hide	a	big	load	of	components.

We	are	going	to	create	a	menu	that	will	be	shown	when	the	game	is	run,	where	we	will
show	a	background	and	a	button	to	start	playing	the	game.

For	this	purpose,	we	will	need	to	create	a	new	scene	file	to	manage	this	new	screen
behavior.	To	do	so,	perform	the	following	steps:

1.	 In	Xcode,	select	the	File	menu	at	the	top	of	the	screen.
2.	 Select	New	|	File,	and	you	will	see	the	Files	dialog	box.
3.	 Select	the	Swift	File	option	under	iOS	|	Source	and	click	on	Next.
4.	 Name	it	MenuScene	and	choose	the	folder	where	you	want	it	to	be	saved	before

clicking	on	Create	button.

As	you	will	see,	the	new	file	is	almost	empty.	So	let’s	fix	this	by	adding	the	following
lines	to	the	MenuScene.swift	file:

import	SpriteKit

class	MenuScene:	SKScene	{

}

We	are	creating	the	new	file	as	a	subclass	of	SKScene.	Therefore,	it	will	have	the	potential
that	the	subclass	provides.	Now,	we	need	to	add	a	background.	To	do	so,	add	the	following
variable	declaration	inside	the	implementation	section	of	the	new	class:

private	var	background:	SKSpriteNode!

This	line	doesn’t	need	an	in-depth	explanation	because	we	are	just	declaring	a	sprite
variable	as	we	have	done	before.	Now,	let’s	initialize	it	by	calling	a	new	method.	Add	the
following	block	of	code	after	the	sprite	variable:

override	func	didMoveToView(view:	SKView)	{

				self.initializeMenu()

}

We	have	added	the	needed	didMoveToView	method,	and	it	is	mandatory	for	it	to	be
overridden	as	a	subclass	of	SKScene.	We	also	called	a	method,	where	we	will	initialize	the
menu.	So	let’s	implement	it	using	the	following	lines:

func	initializeMenu()	{

				//	Initialize	menu	background

				background	=	SKSpriteNode(imageNamed:	"menu")

				background.zPosition	=	-1

				background.position	=	CGPoint(x:(view!.bounds.size.width/2),	y:	

view!.bounds.size.height/2)

				//	Add	the	background

				addChild(background)

}

With	these	lines	of	code,	we	created	a	new	sprite	background,	specifying	a	zPosition
value,	so	that	it	has	a	position	that’s	lower	than	that	of	the	view.	We	set	its	position	so	that
it	is	placed	at	the	center	of	the	view	and	then	we	added	it	to	the	scene.

Before	running	the	game,	we	need	to	include	some	new	images	for	the	background.	So
perform	the	following	steps	to	achieve	this:

1.	 Right-click	on	Art	and	select	Add	Files	to	InsideTheHat….
2.	 You’ll	find	menu.png,	menu@2x.png,	menu@2x~ipad.png,	and	menu@3x.png	in	the

7338_04_Resources	folder	that	you	unzipped	previously.	Select	these	four	files	and
click	on	Add.

At	this	point,	the	game	will	not	show	the	new	scene	when	it	is	initialized.	We	first	need	to
make	a	little	change	to	GameViewController.	Replace	the	following	line	in	the
viewDidLoad	method:

let	scene	=	GameScene(size:	view.bounds.size)

Replace	this	line	with	the	following	one:

let	scene	=	MenuScene(size:	view.bounds.size)

In	this	way,	we	will	initialize	the	brand	new	menu	as	soon	as	we	run	the	game.	So	now
that	everything	is	ready,	execute	the	project.	You	will	see	the	following	screen:

Now	that	we	have	the	initial	menu,	we	have	no	way	to	play	the	game.	For	this	purpose,	we
will	need	some	way	to	show	the	game’s	scene.	So	keep	reading	and	you	will	learn	how	to
achieve	it.

Transitions	and	scenes
Usually,	games	comprise	more	than	one	scene.	For	example,	games	use	a	different	scene
to	show	a	Configuration	menu,	to	show	the	classification	table	once	the	game	is	over,	to
show	a	screen	with	in-app	purchases,	and	so	on.

Due	to	this,	we	need	a	way	to	move	between	the	scenes.	The	solution	that’s	provided	by
most	game	engines	is	transitions,	which	are	also	known	as	the	SKTransition	instances	in
SpriteKit.

The	SKTransition	class
The	SKTransition	class	inherits	from	NSObject	and	provides	us	with	the	ability	of
creating	animated	transitions	between	the	scenes	of	the	game.

We	have	several	methods	in	this	class	that	will	allow	us	to	create	different	types	of
transitions.	For	example,	we	can	choose	one	of	the	following	methods:

crossFadeWithDuration:	This	method	will	create	a	typical	cross-faded	transition
that	will	take	the	specified	duration	to	end	the	transition.
doorsCloseHorizontalWithDuration:	This	will	create	the	effect	of	a	door	closing
horizontally,	taking	the	specified	duration	to	end	the	door	closing	event.
doorsCloseVerticalWithDuration:	This	will	create	the	effect	of	a	door	closing
vertically,	taking	the	specified	duration	to	end	the	door	closing	event.
doorsOpenHorizontalWithDuration:	This	will	create	the	effect	of	a	door	opening
horizontally,	taking	the	specified	duration	to	end	the	door	closing	event.
doorsOpenVerticalWithDuration:	This	is	similar	to	the	preceding	method,	but	the
only	difference	is	that	it	creates	an	effect	of	a	door	opening	vertically.
doorwayWithDuration:	In	this	case,	the	outgoing	scene	disappears	as	a	pair	of	doors
open,	while	the	new	scene	moves	from	the	background	to	the	foreground.
fadeWithColor:	This	transition	will	first	fade	to	the	specified	color	and	then	it	will
fade	to	the	new	scene,	taking	the	specified	time	to	finish	the	process	of	fading.
fadeWithDuration:	This	is	similar	to	the	previous	one,	but	in	this	case,	the	chosen
color	is	black,	and	it	will	take	the	specified	time	to	finish	the	fading	process	but
according	to	the	specified	time.
flipHorizontalWithDuration:	The	previous	and	the	next	scenes	are	interchanged
by	flipping	across	a	horizontal	line	at	the	center	of	the	view.
flipVerticalWithDuration:	This	is	similar	to	the	preceding	method,	but	in	this
case,	the	previous	and	the	next	scenes	are	interchanged	by	flipping	across	a	vertical
line	at	the	center	of	the	view.
moveInWithDirection:	The	new	scene	will	appear	after	following	the	specified
direction	(up,	down,	left,	or	right),	and	taking	the	specified	time	to	finish	the	process.
pushWithDirection:	The	new	scene	appears	after	following	the	specified	direction
(up,	down,	left,	or	right),	and	pushing	the	previous	scene	out	of	view	and	taking	the
specified	duration	to	end	the	scene	process.
revealWithDirection:	In	this	case,	the	scene	that	moves	after	following	the
specified	direction	is	the	old	one	and,	while	it	moves,	it	will	reveal	the	new	scene.
This	method	also	allows	us	to	specify	a	duration	value.
init(CIFilter:duration):	This	method	allows	us	to	create	a	transition	by	using	a
Core	Image	filter	and	specifying	a	duration	value.

By	default,	both	the	outgoing	and	incoming	scenes	are	paused.	Therefore,	no	actions	will
happen	on	any	of	them,	but	we	can	choose	to	pause	just	one	of	them	by	calling	the
pausesIncomingScene	or	pausesOutgoingScene	properties.

Now	that	we	know	the	different	options	that	we	have	to	make	transitions	between	scenes,

let’s	create	one	to	move	from	the	main	menu	scene	to	the	game	scene.

First	of	all,	we	will	add	a	text	label	in	the	initial	scene	that	will	create	the	transition	when
the	player	touches	it.	So,	let’s	declare	a	new	variable	in	MenuScene:

private	var	labelInitGame:	SKLabelNode!

Let’s	initialize	it	by	adding	the	following	block	of	code	at	the	end	of	the	initializeMenu
method:

								//	Initialize	the	label	with	a	font	name

								labelInitGame	=	SKLabelNode(fontNamed:"Arial	Bold")

								//	Set	color,	size	and	position

								labelInitGame.fontColor	=	UIColor(red:	0.929,	green:	0.129,	blue:	

0.486,	alpha:	1.0)

								labelInitGame.fontSize	=	60

								labelInitGame.position	=	CGPoint(x:view!.bounds.size.width/2,	

y:view!.bounds.size.height/2)

								//	Set	text

								labelInitGame.text	=	"Init	Game"

								//	Set	node's	name

								labelInitGame.name	=	"init_game_label"

								

								//	Add	the	label	to	the	scene

								addChild(labelInitGame)

We	initialized	the	label	in	a	way	that’s	similar	to	how	we	have	initialized	labels
previously.	We	first	created	the	label	by	specifying	a	font	name.	Then,	we	set	its	position.
This	time,	we	wanted	to	set	the	label	with	the	same	color	as	that	of	the	rabbit’s	snout.
Therefore,	we	created	the	UIColor	object	with	the	red,	green,	and	blue	attributes.

Tip
In	order	to	specify	the	red,	green,	and	blue	attributes	values,	you	need	to	choose	the
CGFloat	values	between	0.0	and	1.0.

We	also	set	the	alpha	property	to	1.0	value	because	we	want	the	label	to	be	fully	visible.
Then,	we	specified	the	font	size	and	set	label	at	the	center	of	the	view.

As	we	want	the	label	to	show	its	purpose,	we	set	its	text	and	specified	the	node’s	name
property	so	that	it	can	be	used	later	to	check	whether	screen	has	been	touched.

Finally,	we	added	it	to	the	scene.	Now,	run	the	game	and	have	a	look	at	the	results:

Now	that	we	have	the	label	on	the	screen,	we	just	need	to	add	its	functionality.	You	can
detect	when	it	has	been	touched	by	adding	the	following	lines	of	code:

override	func	touchesBegan(touches:	Set<UITouch>,	withEvent	event:	

UIEvent?)	{

				if	let	touch	=	touches.first	{

								let	location	=	touch.locationInNode(self)

								//	Check	if	label	touched

								if	self.nodeAtPoint(location).name	==	"init_game_label"	{

												self.initGame()

								}

				}

}

We	have	overridden	the	touchesBegan	method	so	that	we	can	detect	and	handle	the
touches	on	this	scene.	In	this	method,	we	take	the	location	of	the	first	touch	and	check
whether	the	touch	coincides	with	the	init	game	label.

If	it	does,	we	call	a	new	method,	which	can	be	implemented	with	the	following	block	of
code:

func	initGame()	{

				//	Create	scene	transition

				let	sceneTransition	=	SKTransition.doorsOpenVerticalWithDuration(1.25)

				//	Create	next	scene

				let	gameScene	=	GameScene(size:	view!.bounds.size)

				//	Present	next	scene	with	transition

				self.view?.presentScene(gameScene,	transition:	sceneTransition)

}

We	first	created	a	scene	transition	that	will	show	the	next	scene	while	the	first	menu
disappears	vertically,	taking	1.25	seconds	for	the	transition.

Then,	we	created	the	next	scene	that	we	want	to	show,	which	was	created	using	the	view’s
size	as	usual.	Finally,	we	presented	the	new	scene	using	the	desired	transition.

Run	the	game	now	and	have	a	look	at	the	new	transition,	but	you	can	choose	the	one	that
you	prefer:

Creating	a	tutorial
When	we	first	play	a	game,	we	usually	go	through	a	guided	path	called	a	tutorial	that	will
show	us	how	to	play	the	game.	This	path	will	just	let	us	perform	some	specific	actions	so
that	the	players	learn	the	mechanics	of	the	game	and	the	operations	that	are	allowed	in	the
game.

The	best	way	of	developing	a	tutorial	is	by	thinking	about	it	as	a	state	machine,	where
each	state	corresponds	to	one	step	of	the	tutorial	and	where	we	can	specify	the	actions
allowed	on	each	state	and	learn	how	to	pass	from	one	state	to	the	next	one.

In	this	section,	we	are	going	to	develop	a	tutorial	that	will	consist	of	five	states	or	steps,
where	some	visual	elements	will	teach	players	how	to	implement	them.

For	this	purpose,	we	will	need	to	create	an	enumerated	object	to	handle	the	different	steps
of	the	tutorial.	So	add	the	following	lines	at	the	top	of	the	GameScene	class	just	after	the
import	section:

enum	TutorialSteps	:	UInt32	{

				case	TUTORIAL_STEP_1	=	0

				case	TUTORIAL_STEP_2	=	1

				case	TUTORIAL_STEP_3	=	2

				case	TUTORIAL_STEP_4	=	3

				case	TUTORIAL_STEP_5	=	4

				case	TUTORIAL_ENDED	=	5

}

As	you	can	see,	the	enumeration	consists	of	five	tutorial	steps	and	a	step	to	specify	that	the
tutorial	has	finished.

As	we	want	to	show	some	visual	elements	so	that	players	understand	how	to	play	the
game,	we	will	need	some	variables.	So	add	the	following	block	of	code	just	after	private
var	labelResetGame:	SKLabelNode!:

private	var	tutorialStep:	TutorialSteps	=	.TUTORIAL_STEP_1

private	var	tutorialImage:	SKSpriteNode!

private	var	labelTutorial:	SKLabelNode!

private	var	tutorialFrame:	SKShapeNode!

We	initialized	one	variable	to	store	the	tutorial	steps	that	will	allow	us	to	know	which
information	needs	to	be	shown	each	time	(this	is	initialized	to	the	first	step),	a	sprite	to
show	an	image	of	a	hand,	and	a	label	that	shows	an	explanatory	text.	We	also	declared	a
shape	node,	as	we	are	going	to	take	advantage	of	it	to	frame	the	different	places	where
players	can	touch.

To	initialize	the	tutorial,	we	are	going	to	perform	a	call	to	a	new	method.	So,	add	the
following	lines	at	the	beginning	of	didMoveToView:

//	If	it's	the	first	time	the	tutorial	appears

if	tutorialStep	!=	.TUTORIAL_ENDED	{

				self.initializeTutorial()

}

If	the	tutorial	step	is	not	the	last	one,	which	means	that	the	tutorial	has	finished
successfully,	we	will	initialize	it	by	calling	the	following	method:

func	initializeTutorial()	{

				//	Create	action

				let	pauseForTutorial	=	SKAction.runBlock	{

								//	Pause	game	for	the	tutorial

								self.view?.paused	=	true

								//	Initialize	tutorial	image

								self.tutorialImage	=	SKSpriteNode(imageNamed:	"hand")

								//	Set	image	position

								self.tutorialImage.position	=	

CGPoint(x:self.view!.bounds.size.width/6,	y:	

self.view!.bounds.size.height/3)

								//	Specifying	zPosition

								self.tutorialImage.zPosition	=	7

								//	Add	the	image	to	the	scene

								self.addChild(self.tutorialImage)

				}

}

We’ll	take	advantage	of	this	method	to	initialize	the	different	elements	that	will	help	us
guide	the	player.	We	will	stop	the	game	and	show	the	first	state	of	the	tutorial.	This	is	the
reason	why	we	are	going	to	initialize	the	variables	in	a	runBlock	action.

In	this	block,	we	pause	the	game	and	initialize	the	hand	node,	setting	it	in	the	middle	of
the	first	third	of	the	screen.	We	specify	its	zPosition	value,	as	we	want	it	to	be	fully
visible.	Then,	we	add	it	to	the	scene.

Now,	add	the	following	block	of	code	at	the	end	of	pauseForTutorial:

//	Initialize	tutorial	frame

self.tutorialFrame	=	SKShapeNode(rectOfSize:	CGSize(width:	

self.view!.bounds.width/3,	height:	self.view!.bounds.size.height))

//	Set	frame's	position

self.tutorialFrame.position	=	CGPoint(x:self.view!.bounds.size.width/6,	y:	

self.view!.bounds.size.height/2)

//	No	border

self.tutorialFrame.lineWidth	=	0

//	Specify	zPosition

self.tutorialFrame.zPosition	=	6

//	Set	frame	color

self.tutorialFrame.fillColor	=	UIColor.whiteColor()

//	Set	alpha	value

self.tutorialFrame.alpha	=	0.5

//	Set	node's	name

self.tutorialFrame.name	=	"tutorial_frame"

//	Add	frame	to	scene

self.addChild(self.tutorialFrame)

We	initialized	the	frame	so	that	it	will	cover	the	first	third	of	the	view	(the	one	on	the	left),
from	the	top	to	the	bottom,	specifying	that	we	don’t	want	it	to	have	borders,	and	we	set	its
zPosition	property	in	such	a	way	that	it	is	above	the	image	of	the	hand.

Then,	we	specified	its	color	and	alpha	values	so	that	we	can	see	it	as	a	highlighted	zone,

and	we	specified	a	name	value	to	use	it	as	an	identifier	for	touches.	Finally,	we	added	the
frame	to	the	scene.

We	still	need	to	initialize	the	label.	So,	add	the	following	lines	of	code	at	the	end	of
pauseForTutorial:

//	Initialize	label

self.labelTutorial	=	SKLabelNode(fontNamed:"MarkerFelt-Thin")

//	Set	color,	size	and	position

self.labelTutorial.fontColor	=	UIColor.blackColor()

self.labelTutorial.fontSize	=	30

self.labelTutorial.position.x	=	self.tutorialImage.position.x

self.labelTutorial.position.y	=	self.tutorialImage.position.y	+	50

//	Specifying	zPosition

self.labelTutorial.zPosition	=	7

//	Set	text

self.labelTutorial.text	=	"Touch"

//	Add	the	label	to	the	scene

self.addChild(self.labelTutorial)

With	these	lines,	we	initialized	the	label	the	way	we	are	used	to	doing	by	specifying	the
same	font	and	color	used	in	the	score	label.	We	chose	a	size	that’s	large	enough	to	make
the	label	clearly	visible,	and	we	set	it	on	the	left-hand	side	of	the	screen,	a	little	above	the
hand	node.	Then,	we	set	its	zPosition	property	and	text	and	added	it	to	the	scene.

Once	we	have	the	tutorial	elements	on	the	screen,	we	just	need	to	show	them.	So,	add	the
following	block	at	the	end	of	initializeTutorial:

//	Creating	a	delay	action

let	delayAction	=	SKAction.waitForDuration(1.0)

let	sequence	=	SKAction.sequence([delayAction,	pauseForTutorial])

//	Running	the	non-ending	sequence

self.runAction(sequence)

We	created	a	delay	action	so	that	the	tutorial	will	be	shown	one	second	after	the	game	is
initialized,	and	then	we	showed	the	information	of	the	first	state	of	the	tutorial.

Execute	the	project	now,	and	you	will	see	how	it	looks:

Updating	the	tutorial	steps
As	you	can	see,	the	game	is	paused,	and	it	should	start	when	we	touch	the	frame	to	the
left.	So,	let’s	add	the	needed	code	for	this	purpose.

Replace	the	following	line	in	touchesBegan:

self.moveRabbitToNextLocation(location)

Replace	the	preceding	line	with	the	following	block	of	code:

if	self.tutorialStep	!=	.TUTORIAL_ENDED	&&	self.nodeAtPoint(location).name	

==	"tutorial_frame"	{

				self.updateTutorial()

}	else	if	self.tutorialStep	==	.TUTORIAL_ENDED	{

				self.moveRabbitToNextLocation(location)

}

With	the	preceding	block	of	code,	we	specified	that	we	want	to	update	the	tutorial	step	if
the	tutorial	is	being	shown	and	we	have	touched	the	frame.	In	this	way,	the	game	will
remain	paused.	If	the	condition	doesn’t	match	and	we	are	sure	that	the	tutorial	has	ended,
we	move	the	rabbit	where	the	player	has	touched.	Thus,	we	handle	the	game	when	the
tutorial	is	finished.

Let’s	implement	this	new	updateTutorial	method.	Add	the	following	block	of	code	in
updateTutorial()	method:

func	updateTutorial()	{

				//	Auxiliar	variables

				var	moveAction:SKAction!

				var	duration:	CGFloat	=	0.0

				var	nextPosition:	CGPoint

				switch	tutorialStep	{

								default:	break

				}

}

We	are	just	adding	the	skeleton	of	the	method	in	which	we	create	some	auxiliary	variables
that	will	help	us	update	the	tutorial	steps.	We	also	added	a	switch	statement,	where	we
will	add	the	different	tutorial	steps	to	manage	what	will	happen	in	each	step.

Let’s	start	with	the	first	one.	Add	the	following	block	of	code	just	above	default:	break:

case	.TUTORIAL_STEP_1:

				//	Hide	tutorial	elements

				self.tutorialImage.hidden	=	true

				self.labelTutorial.hidden	=	true

				self.tutorialFrame.hidden	=	true

				//	Setting	the	next	position

				nextPosition	=	CGPoint(x:	leftDoor.position.x,	y:	rabbit.position.y)

				//	We	want	the	rabbit	to	move	on	a	constant	speed

				duration	=	self.distanceBetween(point:	self.rabbit.position,	andPoint:	

nextPosition)	/	360.0

				//	Move	the	rabbit	to	the	touched	position

				moveAction	=	SKAction.moveToX(nextPosition.x,	duration:	

Double(duration))

				let	updateTutorialAction	=	SKAction.runBlock	{

								//	Update	tutorial	step

								self.tutorialStep	=	.TUTORIAL_STEP_2

								self.updateTutorial()

				}

				//	Create	sequence

				let	sequence	=	SKAction.sequence([moveAction,updateTutorialAction])

				//	Run	the	sequence

				self.rabbit.runAction(sequence)

				//	Release	the	game	for	the	tutorial

				self.view?.paused	=	false

break

This	case	will	be	reached	when	we	run	the	first	state	and	the	player	touches	on	the	tutorial
frame.	At	this	point,	we	will	hide	all	the	visual	elements	and	move	the	rabbit	to	the	center
of	the	left	door.

For	this	purpose,	we	specified	the	next	position	and	the	duration	to	reach	the	next	position,
and	we	created	a	movement	action	with	this	information.

Then,	we	created	a	runBlock	action	where	we	updated	the	tutorial	step	and	called	the
updateTutorial	method	again.

Finally,	we	created	a	sequence	with	both	the	actions	and	we	released	the	game	so	that	this
results	in	a	situation	where,	once	the	player	touches	on	the	left	frame,	the	tutorial	element
will	disappear,	the	game	will	continue,	and	it	will	execute	the	code	in	the	second	step	after
a	delay.

Let’s	implement	this	second	step	by	adding	the	following	code	one	step	before	default:
break:

case	.TUTORIAL_STEP_2:

				//	Create	action

				let	pauseForTutorial	=	SKAction.runBlock	{

								//	Pause	game	for	the	tutorial

								self.view?.paused	=	true

								//	Update	tutorial	image

								self.tutorialImage.position	=	

CGPoint(x:5*self.view!.bounds.size.width/6,	y:	

self.view!.bounds.size.height/3)

								self.tutorialImage.hidden	=	false

								//	Update	tutorial	frame

								self.tutorialFrame.position	=	

CGPoint(x:5*self.view!.bounds.size.width/6,	y:	

self.view!.bounds.size.height/2)

								self.tutorialFrame.hidden	=	false

								//	Update	tutorial	label

								self.labelTutorial.position.x	=	self.tutorialImage.position.x

								self.labelTutorial.hidden	=	false

								//	Update	tutorial	step

								self.tutorialStep	=	.TUTORIAL_STEP_3

				}

				//	Creating	a	delay	action

				let	delayAction	=	SKAction.waitForDuration(4.25)

				//	Create	sequence

				let	sequence	=	SKAction.sequence([delayAction,	pauseForTutorial])

				//	Run	the	sequence

				self.runAction(sequence)

break

In	this	step,	we	executed	a	block	where	we	first	pause	the	game	and	then	show	the	same
tutorial	information	as	that	in	the	first	step,	but	on	the	right-hand	side	this	time.	We	also
updated	the	tutorialStep	variable	so	that	the	tutorial	progresses.

We	want	the	preceding	code	to	be	triggered	after	a	delay,	which	is	why	we	created	a	delay
action	and	run	it	in	a	sequence.

If	you	run	the	game	now,	you	will	see	what’s	shown	in	the	following	screenshot:

Now,	we	want	the	game	to	react	when	we	touch	on	the	right-hand	side	of	the	screen	while

the	tutorial	is	being	shown.	So,	let’s	implement	the	third	state	with	the	following	lines:

case	.TUTORIAL_STEP_3:

				//	Hide	tutorial	elements

				self.tutorialImage.hidden	=	true

				self.labelTutorial.hidden	=	true

				self.tutorialFrame.hidden	=	true

				//	Release	the	game	for	the	tutorial

				self.view?.paused	=	false

				//	Setting	the	next	position

				nextPosition	=	CGPoint(x:	rightDoor.position.x,	y:	rabbit.position.y)

				//	We	want	the	rabbit	to	move	on	a	constant	speed

				duration	=	self.distanceBetween(point:	self.rabbit.position,	andPoint:	

nextPosition)	/	360.0

				//	Move	the	rabbit	to	the	touched	position

				moveAction	=	SKAction.moveToX(nextPosition.x,	duration:	

Double(duration))

				//	Create	action

				let	updateTutorialAction	=	SKAction.runBlock	{

								//	Update	tutorial	step

								self.tutorialStep	=	.TUTORIAL_STEP_4

								self.updateTutorial()

				}

				//	Create	sequence

				let	sequence	=	SKAction.sequence([moveAction,	updateTutorialAction])

				//	Run	the	sequence

				self.rabbit.runAction(sequence)

break

This	step	is	similar	to	the	first	one;	we	hide	the	tutorial	elements	and	then	release	the	game
while	we	move	the	rabbit	to	the	right	of	the	screen,	centered	at	the	door,	thanks	to	a
movement	action.

We	created	a	runBlock	action	to	update	the	tutorial	step	and	call	the	updateTutorial
method	again.

Finally,	we	created	a	sequence	with	both	the	actions	and	ran	it.	At	this	point,	we	need	to
implement	the	fourth	state	of	the	tutorial	to	continue.	So,	let’s	add	the	following	block	of
code:

case	.TUTORIAL_STEP_4:

				//	Create	action

				let	pauseForTutorial	=	SKAction.runBlock	{

								//	Set	image	position

								self.tutorialImage.position	=	

CGPoint(x:self.view!.bounds.size.width/2,	y:	

self.view!.bounds.size.height/3)

								//	Update	tutorial	label

								self.labelTutorial.text	=	"RUN!"

								self.labelTutorial.position.x	=	self.tutorialImage.position.x

								self.labelTutorial.hidden	=	false

								//	Update	tutorial	step

								self.tutorialStep	=	.TUTORIAL_STEP_5

								self.updateTutorial()

				}

				//	Creating	a	delay	action

				let	delayAction	=	SKAction.waitForDuration(2.25)

				//	Create	sequence

				let	sequence	=	SKAction.sequence([delayAction,	pauseForTutorial])

				//	Run	the	sequence

				self.runAction(sequence)

break

When	we	reach	this	state,	we	will	pause	the	game	again	after	a	delay.	When	the	game	is
paused	again,	we	move	the	text	label	to	the	center	of	the	screen,	change	its	text,	and	then
show	it.	We	also	update	the	tutorial	step	to	the	next	one.

In	the	preceding	code,	we	also	created	a	delay	action	and	ran	a	sequence	with	both	the
actions.	So,	if	we	run	the	game	now,	we	will	see	something	that’s	similar	to	what’s	shown
in	the	following	screenshot:

Now,	let’s	see	what	will	happen	in	the	last	step	of	the	tutorial.	Add	the	following	lines	just

before	default:	break:

case	.TUTORIAL_STEP_5:

				//	Create	action

				let	endOfMovementAction	=	SKAction.runBlock	{

								//	Remove	tutorial	elements

								self.tutorialImage.removeFromParent()

								self.labelTutorial.removeFromParent()

								self.tutorialFrame.removeFromParent()

								//	Update	tutorial	step

								self.tutorialStep	=	.TUTORIAL_ENDED

				}

												

				//	Creating	a	delay	action

				let	delayAction	=	SKAction.waitForDuration(1.25)

				//	Create	sequence

				let	sequence	=	SKAction.sequence([delayAction,endOfMovementAction])

				//	Run	the	sequence

				self.runAction(sequence)

break

When	we	arrive	at	this	point,	we	create	an	action	where	we	will	remove	the	visual
elements	from	the	view	and	update	the	tutorial	step	to	the	last	one	so	that	the	game	code
understands	that	the	game	can	continue	without	interruptions.

We	want	to	execute	it	after	a	delay.	Therefore,	the	last	text	is	shown	for	a	few	seconds.
This	is	the	reason	why	we	build	a	sequence	with	the	aforementioned	runBlock	object	and
a	delay	action.

Run	the	game	again	and	play	it.	You	will	see	how	we	can	play	as	much	as	we	want	by
restarting	the	game,	but	we	will	see	the	tutorial	only	once:

If	you	develop	a	tutorial	for	another	game,	it	will	be	completely	different	from	this	one,
but	I	recommend	that	you	break	down	all	the	concepts	that	you	want	to	learn	in	several
states	so	that	you	can	ensure	that	the	player	has	complete	knowledge	to	build	and	start
playing	the	game.

Loading	and	saving	data
When	playing	games,	users	will	usually	need	a	way	to	store	how	far	they	have	arrived	in
the	game	or	some	other	information,	such	as	the	best	score	or	the	main	character’s	name.
Due	to	this,	the	game	will	be	able	to	load	this	stored	data	or	some	other	data,	such	as	the
position	of	the	enemies	in	each	level	of	the	game.

In	this	section,	we	are	going	to	learn	how	to	store	the	maximum	score	that	a	player	has
reached	so	far.	For	this	purpose,	we	are	going	to	take	advantage	of	the	NSUserDefaults
class.

The	NSUserDefaults	class
This	class	provides	an	interface	to	read	and	write	information	on	the	default	system.	This
default	system	is	the	place	where	the	preferences	that	are	chosen	on	your	game	or	app,
such	as	the	user’s	language,	sound	(enabled	or	disabled),	and	so	on,	will	be	stored.

A	user	default	values	can	be	of	different	types,	such	as	Boolean,	float,	integer,	double,
string,	data,	array,	and	so	on,	and	the	NSUserDefaults	class	provides	methods	for	all	of
them.

We	are	going	to	use	NSUserDefaults	class	to	store	the	best	score	achieved	by	the	player.
So	for	this	purpose,	we	will	need	some	new	variables.	Add	them	to	the	top	of	GameScene,
as	follows:

private	var	labelBestScore:	SKLabelNode!

private	var	bestScore:	Int	=	0

private	var	userDefaults:	NSUserDefaults!

private	var	kUserDefaultBestScore	=	"user_default_best_score"

We	declared	a	new	label	that	will	show	the	best	score,	which	will	be	kept	by	a	new	integer
variable.	We	also	declared	an	instance	of	NSUserDefaults	and	a	constant	that	will	help	us
identify	the	user’s	default	name.

The	next	step	is	to	initialize	the	user	defaults.	Add	the	following	method	call	at	the
beginning	of	didMoveToView:

self.initializeUserDefaults()

Initialize	this	method	using	the	following	block	of	code:

func	initializeUserDefaults()	{

				//	Initialize	user	defaults

				if	(userDefaults	==	nil)	{

								userDefaults	=	NSUserDefaults.standardUserDefaults()

				}

				//	If	the	user	default	exists

				if	userDefaults.integerForKey(kUserDefaultBestScore)	>	0	{

								bestScore	=	userDefaults.integerForKey(kUserDefaultBestScore)

				}

}

We	first	initialized	the	user’s	default	variables,	if	it	is	null,	and	then	we	got	the	value	of
the	stored	best	score,	if	it	has	been	previously	updated.	We	performed	this	last	action	so
that	every	time	we	execute	the	game	it	will	show	the	correct	value.

Tip
We	used	the	integerForKey	method	as	we	expect	to	store	integer	values	in	this	user’s
default	variable.

If	the	user’s	default	exists,	we	update	the	bestScore	value	so	that	it	can	be	used	later.

The	next	step	is	to	create	a	new	label.	Let’s	add	some	code	to	the	initializeLabels
variable	and	add	the	following	lines	of	code	at	the	end	of	the	aforementioned	method:

//	Initialize	the	label	as	a	copy

labelBestScore	=	labelScore.copy()	as!	SKLabelNode

//	Set	color,	size	and	position

labelBestScore.fontColor	=	UIColor.orangeColor()

labelBestScore.position.y	=	labelScore.position.y	-	30

//	Set	text

labelBestScore.text	=	"Best:	\(bestScore)"

//	Add	the	label	to	the	scene

addChild(labelBestScore)

We	initialized	this	label	as	a	copy	of	the	previous	one	so	that	we	can	reuse	some	of	its
properties.	We	just	want	it	to	have	a	different	color.	Therefore,	we	chose	the	orange	one
and	placed	it	below	the	score	label.

Then	we	set	its	text,	which	is	composed	by	a	string,	and	the	value	of	the	best	score
variable,	and	finally	we	added	it	to	the	scene.

If	you	run	the	game	now,	you	will	see	this	new	label	at	the	top	right	of	the	screen,	as
shown	in	the	following	screenshot:

Now	that	we	have	the	label	in	the	view	that	will	get	the	information	stored	in	the	user’s
default	values,	we	just	need	to	update	its	user’s	default	values	where	applicable.

The	perfect	moment	to	update	it	is	when	the	game	is	over.	Let’s	add	the	following	line	to
gameOver	just	after	addChild(labelGameOver):

//	Update	best	score

self.updateBestScore()

This	will	call	a	new	method	that	we	need	to	implement	using	the	following	lines:

func	updateBestScore()	{

				if	score	>	bestScore	{

								userDefaults.setInteger(score,	forKey:	kUserDefaultBestScore)

								labelBestScore.text	=	"Best:	\(score)"

				}

}

In	this	method,	we	first	checked	whether	the	new	score	that	was	accomplished	is	greater
than	the	best	one,	and	if	this	is	the	case,	we	set	this	new	value	to	the	user’s	default	value
that	is	specified	by	the	constant	that	we	declared	previously.	Then,	we	updated	the	label
too.

Tip
You	have	to	specify	the	same	user’s	default	value	that’s	used	when	you	are	storing	as	the
one	that’s	used	when	we	are	loading	the	data.

Run	the	game	now	and	see	what	happens	when	the	game	finishes:

If	you	kill	the	game	process	and	start	playing	again,	you	will	see	how	the	best	score	value
is	updated	correctly.	However,	everything	will	be	deleted	if	you	remove	the	game	from
your	device.

2-star	challenge:	completing	the	tutorial
You	may	have	realized	that	the	tutorial	reappears	every	time	we	rerun	the	game	even	if	it
has	been	completed	previously.	Now	that	we	know	how	to	store	information	on	the
device,	let’s	take	advantage	of	it	in	order	to	store	information	about	whether	the	tutorial
has	been	completed.

Solution
We	will	need	a	couple	of	new	variables	to	support	this	new	behavior.	Therefore,	add	the
following	lines	at	the	top	of	GameScene	class:

private	var	isTutorialCompleted:	Bool	=	false

private	var	kUserDefaultTutorialCompleted	=	

"user_default_tutorial_completed"

We	declared	a	Boolean	variable	that	will	act	as	a	flag	that	represents	the	user’s	default
value.	We	also	declared	a	constant	that	will	be	used	to	identify	the	value	of	the	desired
user	default.

This	new	flag	will	be	initialized	in	initializeUserDefaults.	So	add	the	following	block
of	code	at	the	end	of	the	aforementioned	method:

if	userDefaults.boolForKey(kUserDefaultTutorialCompleted)	{

				isTutorialCompleted	=	

userDefaults.boolForKey(kUserDefaultTutorialCompleted)

}

The	preceding	code	will	get	the	value	stored	in	the	user’s	default	in	case	value	already
exists.	If	this	is	not	the	case,	it	will	keep	the	value	that	was	set	by	user’s	default	when
initialized	(false).

Now,	we	need	to	update	the	user’s	default	value,	and	this	will	happen	at	the	end	of	the
fifth	step	of	the	tutorial.	So,	go	to	case	.TUTORIAL_STEP_5	of	updateTutorial	and	add
the	following	lines	just	after	self.tutorialStep	=	.TUTORIAL_ENDED:

//	Update	tutorial	flag

self.isTutorialCompleted	=	true

self.userDefaults.setBool(self.isTutorialCompleted,	forKey:	

self.kUserDefaultTutorialCompleted)

When	the	tutorial	reaches	the	last	step,	we	update	the	flag	and	the	user’s	default.

Finally,	we	just	need	to	take	advantage	of	this	new	flag	to	know	when	to	show	the
tutorial.	Let’s	make	a	couple	of	changes.	In	didMoveToView,	replace	the	following	line:

if	tutorialStep	!=	.TUTORIAL_ENDED	{

Replace	the	preceding	line	of	code	with	the	following:

if	!isTutorialCompleted	&&	tutorialStep	!=	.TUTORIAL_ENDED	{

In	this	way,	when	trying	to	initialize	the	tutorial,	we	will	also	take	into	account	the	new
flag.

The	last	change	that	we	need	to	perform	is	in	touchesBegan,	where	we	check	whether	the
tutorial	has	ended.	Hence,	replace	the	following	lines:

if	self.tutorialStep	!=	.TUTORIAL_ENDED	&&	self.nodeAtPoint(location).name	

==	"tutorial_frame"	{

				self.updateTutorial()

}	else	if	self.tutorialStep	==	.TUTORIAL_ENDED	{

				self.moveRabbitToNextLocation(location)

}

Replace	the	preceding	block	of	code	with	the	following	lines:

if	!isTutorialCompleted	&&	self.tutorialStep	!=	.TUTORIAL_ENDED	&&	

self.nodeAtPoint(location).name	==	"tutorial_frame"	{

				self.updateTutorial()

}	else	if	isTutorialCompleted	||	self.tutorialStep	==	.TUTORIAL_ENDED

				{

								self.moveRabbitToNextLocation(location)

				}

In	both	the	cases,	we	just	add	the	new	flag	as	a	condition	and	everything	will	work
smoothly	now.	So,	execute	the	project	and	check	out	this	new	behavior:

The	property	list	files
Apart	from	the	loading	of	data	from	user’s	default,	there	is	a	more	powerful	way	to	get
information	from	an	external	source.	It’s	called	the	known	property	files,	which	are	also
known	as	the	plist	files.

These	files	are	very	common	in	iOS	development.	For	example,	they	are	used	to	store	the
configuration	values	of	projects	in	Info.plist.

The	property	list	files	contain	a	list	of	keys	that	can	contain	different	types	of	values,	such
as	dictionaries,	strings,	numbers,	dates,	or	Boolean	values	and	we	are	going	to	take
advantage	of	them	to	store	the	information	of	each	door	for	all	the	waves	that	we	want	to
load.

This	approach	is	the	one	that	you	will	use	if	you	create	a	game	with	several	levels,	and
each	level	has	some	specific	information	that	you	want	to	load	once	you	initialize	the	new
scene.

In	our	case,	we	are	going	to	simulate	that	we	are	loading	the	information	of	level	1	of	the
game	from	a	plist	file.	From	this	file,	we	will	get	the	number	of	waves	that	the	level	has
and	the	distribution	of	the	correct	and	wrong	doors	in	each	wave.

First	of	all,	let’s	add	the	corresponding	file	to	the	project	by	performing	the	following
steps:

1.	 Right-click	on	Art	and	select	Add	Files	to	InsideTheHat….
2.	 You’ll	find	Level_info.plist	in	the	7338_04_Resources	folder	that	you	previously

unzipped.	Select	this	file	and	click	on	Add.

You	will	see	something	that’s	similar	to	what’s	shown	in	the	following	screenshot:

Tip
Note	that	you	can	create	your	own	plist	file	using	the	iOS	|	Resource	|	Property	List
option	in	the	New	File	menu.

As	you	can	see	in	the	preceding	screenshot,	this	file	contains	a	key	called	numWaves	that
contains	the	number	of	waves	of	the	first	level	(20)	and	a	list	of	dictionaries	that	contains
three	strings	for	each	wave.	Each	of	these	strings	corresponds	to	one	of	the	doors	in	a
wave,	and	its	value	can	be	correct	or	wrong,	depending	on	how	we	want	the	wave	to	be
loaded.

Now	that	we	know	how	information	is	distributed	in	a	property	list	file,	it’s	time	to	read	it.
So,	let’s	declare	some	variables	that	we	will	need	for	this	purpose:

private	var	maxWaves:	Int	=	0

private	var	waveNumber:	Int	=	1

private	var	leftDoorsInfo:	[String]!

private	var	centerDoorsInfo:	[String]!

private	var	rightDoorsInfo:	[String]!

We	declared	a	variable	to	store	the	maximum	number	of	waves	that	were	read	from	the
file	and	a	variable	that	will	keep	the	count	of	waves	loaded.

We	also	declared	three	arrays	of	strings	that	will	be	used	to	store	information	of	each	wave
for	each	door.

Now,	let’s	initialize	the	level	information.	Add	the	following	method	call	at	the	beginning
of	didMoveToView:

	self.readLevelInfo()

Implement	it	using	the	following	block	of	code:

self.readLevelInfo()

//Implement	it	using	the	following	block	of	code:

func	readLevelInfo()	{

				//	Declare	dictionary	variable

				var	levelDictionary:	NSDictionary!

				var	waveInfo:	NSDictionary

				leftDoorsInfo	=	[String]()

				centerDoorsInfo	=	[String]()

				rightDoorsInfo	=	[String]()

				//	Get	level	dictionary	root

				if	let	path	=	NSBundle.mainBundle().pathForResource("Level_info",	

ofType:	"plist")	{

								levelDictionary	=	NSDictionary(contentsOfFile:	path)

				}

				//	Initialize	max	number	of	waves

				maxWaves	=	levelDictionary!.valueForKey("numWaves")	as!	Int

				//	Get	info	for	all	the	waves

				for	var	i:	Int	=	1;	i	<=	maxWaves;	i++	{

								waveInfo	=	levelDictionary!.valueForKey("wave	-	\(i)")	as!	

NSDictionary

		leftDoorsInfo.append(waveInfo.valueForKey("leftDoor")	as!	String)

								centerDoorsInfo.append(waveInfo.valueForKey("centerDoor")as!	

String)

								rightDoorsInfo.append(waveInfo.valueForKey("rightDoor")as!	String)

				}

}

We	first	initialized	two	NSDictionary	variables.	The	first	one	will	be	used	to	store	the
whole	dictionary,	and	the	second	one	will	get	information	of	each	wave’s	dictionary.	Then,
we	initialized	the	arrays	so	that	they	can	begin	storing	values.

To	get	the	dictionary’s	root,	we	need	to	get	the	file’s	path	using	the	pathForResource
method,	specifying	the	filename	and	its	extension.	Once	we	have	the	path,	we	can
initialize	the	dictionary	with	the	contents	of	the	file.

Then,	we	get	the	numWaves	value	from	the	file	thanks	to	the	valueForKey	method,	where
we	specify	the	desired	key	and	force	its	type	to	be	an	integer.

We	created	a	for	loop,	where	we	will	find	the	information	of	each	wave	by	getting	each
waveInfo	dictionary	and	distributing	the	left,	center,	and	right	door	values	to	the

corresponding	array.

Now	that	we	have	loaded	the	information,	it’s	time	to	use	it	to	create	a	level.	Let’s	make	a
couple	of	changes	to	setDoorAttributes.	Replace	the	following	line	of	code	of	each
case:

if	(arc4random_uniform(2)	==	0)	{

Replace	the	preceding	line	of	code	with	the	corresponding	lines	from	the	following	code:

if	leftDoorsInfo[waveNumber-1]	==	"wrong"	{

if	centerDoorsInfo[waveNumber-1]	==	"wrong"	{

if	rightDoorsInfo[waveNumber-1]	==	"wrong"	{

In	this	way,	we	created	the	doors,	depending	on	the	already	loaded	information.	Finally,
we	need	to	update	the	wave	count.	Add	the	following	lines	at	the	end	of	initializeWave:

//	Increase	wave

if	waveNumber	<	maxWaves	{

				waveNumber++

}	else	{

				waveNumber	=	1

}

We	increase	the	counter	if	we	haven’t	reached	the	maximum	value.	In	such	a	situation,	we
reset	it	to	1.	Thus,	the	game	will	create	an	endless	loop,	but	you	can	change	it	for	things
such	as	a	Game	Over	call.

Finally,	we	need	to	reset	this	value	when	the	game	is	restarted.	Add	the	following	line	at
the	beginning	of	restartGame:

waveNumber	=	1

Run	the	game	now,	and	you	will	see	how	the	game	now	loads	the	doors	as	we	specified	in
the	property	list	file:

Summary
This	chapter	helped	you	learn	how	to	add	some	essential	elements	that	will	transform	the
game	into	a	complete	product	that’s	ready	to	be	uploaded	to	the	App	Store.

We	began	by	using	the	Game	Over	condition	to	finish	the	game.	We	also	added	a	way	to
restart	the	game	the	number	of	times	that	we	want.	Then,	we	added	a	main	menu	scene
that	helped	us	learn	how	to	create	transitions	between	the	scenes	of	the	game.	We	used	this
new	scene	to	see	how	a	tutorial	should	be	created	as	a	states	machine,	and	we	created	a
tutorial	for	the	game	so	that	the	players	know	the	mechanics	of	the	game	as	soon	as	they
play	the	game	for	the	first	time.	Finally,	we	learned	how	to	load	and	save	data	of	the	game
by	using	the	user’s	default	values	or	property	list	files.

In	the	next	chapter,	we	will	take	advantage	of	the	iOS	devices	to	learn	some	available
techniques.

Chapter	5.	Utilizing	the	Hardware	and
Graphics	Processor
In	the	last	chapter,	we	learned	some	techniques	that	helped	us	give	our	game	an	aspect	of	a
complete	and	marketable	product.	In	the	following	pages,	we	will	make	use	of	the
capabilities	of	mobile	devices	as	well	as	the	accelerometer	to	add	dynamic	behavior.	We
will	also	learn	some	visual	techniques,	the	use	of	shaders,	and	ways	to	add	lighting	and
shadows	to	a	game.

You	will	learn	the	following	things	in	this	chapter:

How	to	use	the	accelerometer
How	to	add	shaders	to	the	game
How	to	add	lighting	and	shadows	to	the	game

Using	the	accelerometer
One	of	the	best	technological	advances	brought	by	mobile	devices	is	the	accelerometer,
which	is	a	hardware	mechanism	that	provides	the	capability	of	measuring	the	G-force
acceleration	on	the	x,	y,	and	z	coordinates.

This	technology	opened	a	wide	field	of	new	types	of	games	and	helped	modernize	some
existing	genres.	We	are	going	to	utilize	it	to	provide	a	new	way	to	control	the	rabbit’s
movement.

In	order	to	start	receiving	information	from	the	accelerometer,	we	are	going	to	import	a
new	framework	to	our	project.	But	first	of	all,	let’s	open	the	initial	project	for	this	chapter,
which	is	similar	to	the	one	that	we	left	at	the	end	of	the	previous	chapter,	by	performing
the	following	steps:

1.	 Unzip	7338_05_Resources.zip,	where	you	will	find	InsideTheHat_init.zip.
Unzip	it	too	and	open	the	project	with	Xcode.

2.	 If	you	take	a	look	to	its	contents,	you	will	see	that	we	are	not	using	the	plist	file
information	anymore	to	load	the	door’s	distribution.

Now	that	we	have	the	basis	of	the	development,	add	the	following	import	statement	at	the
top	of	GameScene:

import	CoreMotion

This	iOS	framework	will	give	our	game	the	ability	to	receive	and	process	motion	data
from	an	iPhone’s	or	iPad’s	hardware.

The	CoreMotion	framework	provides	several	classes	such	as	CMAltimeter,	CMAttitude,
CMPedometer,	and	CMSensorRecorder	to	control	and	process	different	types	of	motion
data,	but	we	will	focus	on	CMMotionManager	for	our	game.

The	CMMotionManager	class
The	CMMotionManager	class	provides	information	such	as	the	rotation	rate,	accelerometer
data,	altitude,	and	magnetometer	data,	which	are	generated	by	the	accelerometer,
magnetometer,	and	gyroscope	mechanisms	that	are	available	on	every	device.

We	are	going	to	center	ourselves	on	the	accelerometer	data	that	is	provided	by	the
CMAccelerometerData	class	and	the	methods	that	it	provides.

Let’s	start	by	declaring	some	variables	that	we	will	use	during	this	development.	Add	the
following	lines	after	private	var	rightDoorsInfo:	[String]!:

private	var	motionManager:	CMMotionManager!

private	var	accelerometerData:	CMAccelerometerData!

private	var	acceleration:	CMAcceleration!

We	declared	the	CMMotionManager,	CMAccelerometerData,	and	CMAcceleration
instances,	which	are	the	objects	that	are	needed	to	manage	the	accelerometer-related
information.

To	initialize	these	objects,	add	the	following	line	at	the	beginning	of	didMoveToView:

self.initializeAccelerometer()

Implement	it	using	the	following	block	of	code:

func	initializeAccelerometer()	{

				//	Initialize	motion	manager

				self.motionManager	=	CMMotionManager()

				//	Start	receiving	accelerometer	data

				self.motionManager.startAccelerometerUpdates()

}

In	the	previous	code,	we	just	initialized	the	motion	manager	and	called	the
startAccelerometerUpdates	function	that	is	responsible	for	receiving	the	accelerometer-
related	information.

Tip
We	just	need	to	create	a	motion	manager	instance	as,	thanks	to	it,	we	can	retrieve	all	the
motion	data	that	we	need.

We	are	going	to	continuously	check	the	accelerometer-related	information.	The	best	place
to	do	this	is	in	the	update	method.	So,	add	the	following	method	call	at	the	end	of	this
method:

//	Get	accelerometer	data

self.useAccelerometerData()

Implement	the	preceding	lines	of	code	using	the	following	lines	of	code:

func	useAccelerometerData()	{

				if	self.motionManager	!=	nil	{

								//	Getting	accelerometer	data

								self.accelerometerData	=	self.motionManager.accelerometerData

								//	Getting	acceleration

								self.acceleration	=	self.accelerometerData.acceleration

								//	Calculate	next	position	on	X	coordinate

							var	nextPositionX:	CGFloat	=	self.rabbit.position.x	+	

CGFloat(acceleration.x)	*	1500.0	*	CGFloat(deltaTime)

								//	Keep	the	rabbit	inside	bounds

								if	nextPositionX	+	self.rabbit.size.width/2	>	

self.rightDoor.position.x	+	self.rightDoor.size.width/2	

								{

												nextPositionX	=	self.rightDoor.position.x	+	

self.rightDoor.size.width/2	-	self.rabbit.size.width/2

								}	

				else	if	nextPositionX	-	self.rabbit.size.width/2	<	

self.leftDoor.position.x	-	self.leftDoor.size.width/2	{

								nextPositionX	=	self.leftDoor.position.x	-	

self.leftDoor.size.width/2	+	self.rabbit.size.width/2

				}

								//	Set	new	position

								self.rabbit.position.x	=	nextPositionX

				}

}

If	the	motion	manager	is	ready,	we	obtain	its	accelerometer	data	and	update	the
accelerometerData	variable	with	this	information.

Then,	we	get	the	acceleration	data	from	the	accelerometer	and	calculate	the	next
position	on	the	x	coordinate.	We	calculate	it	by	multiplying	a	constant	(1500.0)	by	the
delta	time	that	we	updated	in	the	updateParallaxLayers	method	and	by	the	acceleration
on	the	x	coordinate.

Tip
I’ve	specified	a	value	of	1500.0	as	it’s	convenient	to	create	a	movement	that’s	fast	enough
for	the	game,	but	you	can	change	this	value	according	to	your	requirements.

Once	the	next	position	is	calculated,	we	just	want	it	to	be	kept	inside	the	bounds	of	our
game.	That’s	the	reason	why	we	specify	the	maximum	and	minimum	values	that	the	rabbit
can	take	on	the	x	coordinate.	Finally,	we	set	the	rabbit’s	new	position	to	sprite.

When	the	game	is	over,	we	should	stop	reading	the	accelerometer	information	as	it	is	no
longer	needed	until	the	game	is	restarted.	So,	add	the	following	line	to	the	gameOver
method	at	the	beginning	of	the	stopGame	block:

//	Stop	receiving	accelerometer	data

self.motionManager.stopAccelerometerUpdates()

In	this	way,	self.motionManager.stopAccelerometerUpdates()	will	stop	receiving	data
from	the	accelerometer,	and	we	will	start	receiving	it	again	when	a	user	restarts	the	game.

We	just	need	to	remove	the	block	of	code	corresponding	to	the	touchesBegan	method	that

corresponds	to	the	rabbit’s	movement.	So,	delete	the	following	lines	from	this	method,	as
they	will	not	be	needed	anymore:

if	isMovementAllowed	{

				//	Moving	the	rabbit	to	the	touched	position

				let	location	=	touch.locationInNode(self)

				if	!isTutorialCompleted	&&	self.tutorialStep	!=	.TUTORIAL_ENDED	&&	

self.nodeAtPoint(location).name	==	"tutorial_frame"	{

								self.updateTutorial()

				}	else	if	isTutorialCompleted	||	self.tutorialStep	==	.TUTORIAL_ENDED	{

								self.moveRabbitToNextLocation(location)

				}

}

Also,	remove	the	call	to	the	tutorial	from	didMoveToView:

//	If	it's	the	first	time	the	tutorial	appears

if	!isTutorialCompleted	&&	tutorialStep	!=	.TUTORIAL_ENDED	{

				self.initializeTutorial()

}

Okay,	now	that	everything	is	ready,	we	can	check	out	what	we	have	developed	so	far.	Run
the	game	on	a	physical	device	and	look	at	the	new	behavior!

Tip
You	can	only	test	the	accelerometer	on	physical	devices	as	the	Xcode’s	simulator	doesn’t
provide	this	capability.

If	you	run	the	game	now,	you	will	see	what’s	shown	in	the	following	screenshot:

Don’t	worry	if	the	rabbit	can	now	strangely	pass	through	the	wall;	we	want	just	to	learn
how	to	handle	the	accelerometer	data.

It’s	possible	that	you	haven’t	realized	that	this	code	has	some	weaknesses,	because	it’s
quite	probable	that	you	are	standing	and	your	device	is	almost	vertically	and	horizontally
leveled.	But	what	will	happen	if	you	want	to	play	while	lying	on	one	side	or	you	want	to
use	the	y	coordinate	acceleration	too?

Let’s	add	a	couple	of	lines	to	check	this.	So	copy	and	paste	the	following	lines	to
useAccelerometerData	after	creating	the	nextPositionX	object:

print("acceleration	on	X:	\(CGFloat(acceleration.x))")

print("acceleration	on	Y:	\(CGFloat(acceleration.y))")

Now,	run	the	game	again.	If	you	look	at	the	console	on	the	Debug	area	at	the	bottom	of
Xcode,	you	will	see	something	that’s	similar	to	what’s	shown	in	the	following	screenshot:

As	you	can	see,	while	the	acceleration	on	the	x	coordinate	goes	from	-0.2	to	0.2,	which
corresponds	to	a	slight	slope	to	the	left	or	right,	the	acceleration	on	the	y	coordinate	is
always	-0.7	or	lower,	which	corresponds	to	the	way	we	hold	the	device	vertically.

We	are	going	to	take	these	values	into	account	for	the	game	movement	to	be	more
accurate	and	the	player’s	position	to	be	as	comfortable	as	possible.

Compensating	for	the	position	of	the	device
To	calibrate	the	position	of	the	device,	we	will	need	to	declare	a	new	variable.	So,	add	the
following	line	at	the	top	of	the	GameScene	class:

private	var	initialAcceleration:	CMAcceleration!

Let’s	initialize	it	once	the	accelerometer	data	is	available.	Replace	the	following	lines	in
useAccelerometerData:

//	Calculate	next	position	on	X	coordinate

var	nextPositionX:	CGFloat	=	self.rabbit.position.x	+	

CGFloat(acceleration.x)	*	1500.0	*	CGFloat(deltaTime)

print("acceleration	on	X:	\(CGFloat(acceleration.x))")

print("acceleration	on	Y:	\(CGFloat(acceleration.y))")

Replace	the	preceding	lines	with	the	following	ones:

//	Getting	initial	acceleration

if	self.initialAcceleration	==	nil	{

				self.initialAcceleration	=	

self.motionManager.accelerometerData!.acceleration

}

//	Calculate	next	position	on	X	coordinate

var	nextPositionX:	CGFloat	=	self.rabbit.position.x	+	

CGFloat(acceleration.x	-	initialAcceleration.x)	*	1500.0	*	

CGFloat(deltaTime)

print("acceleration	on	X:	\(CGFloat(acceleration.x	-	

initialAcceleration.x))")

print("acceleration	on	Y:	\(CGFloat(acceleration.y	-	

initialAcceleration.y))")

With	this	code,	we	initialized	the	initial	acceleration	data	if	this	has	not	been	done.	Then
we	used	it	to	calculate	the	next	position.

We	also	used	the	initial	acceleration	to	show	on	the	console	the	current	acceleration.
Execute	the	game	now,	and	you	will	see	that	the	acceleration	values	are	lower	and
specifically,	the	y	coordinate’s	acceleration	is	near	0.0,	as	shown	in	the	following
screenshot:

Adding	shaders	to	our	game
A	shader	or	an	instance	of	the	SKShader	class	is	an	object	that	represents	an	Open
Graphics	Library	Embedded	Systems	(OpenGL	ES)	or	(GLES).	It	is	a	fragment
shader,	which	is	an	algorithm	that	modifies	the	drawing	behavior	of	the	node	that	it	is
applied	to.

Note
Open	Graphics	Library	(OpenGL)	is	an	application	programing	interface	that	utilizes
the	Graphics	Processing	Unit	(GPU)	to	render	graphic	elements.

You	can	use	the	effect	shown	in	the	following	screenshot	by	applying	shaders:

In	order	to	apply	a	shader	to	a	node,	we	need	to	create	a	SKShader	instance	from	a
fragment	shader	algorithm	and	assign	it	to	the	shader	property	of	the	desired	object.

The	shader	creation	and	compilation	takes	a	big	amount	of	CPU	memory.	So	that’s	why
we	need	to	keep	in	mind	the	following	things:

Avoid	initializing	shaders	while	the	game	is	running;	it’s	better	to	create	them	when
the	game	is	being	launched
Avoid	modifying	the	algorithm	source	of	the	shader	as	it	will	recompile	the	shader,
resulting	in	a	loss	of	performance
Reuse	shaders	when	several	nodes	show	the	same	behavior;	you	will	avoid	losing	a
big	amount	of	memory

When	developing	the	shader	algorithm	for	iOS	or	Mac	OS	X,	we	can	utilize	the	following
variables:

u_texture:	A	sampler	associated	with	the	texture	that’s	used	to	render	a	node
u_time:	The	elapsed	time	in	a	simulation
u_sprite_size:	The	size	of	the	sprite	in	pixels

u_path_length:	This	variable	can	be	used	only	when	the	shader	is	applied	to	the
strokeShader	property	of	an	SKShapeNode	class	reference	as	it	represents	the	length
of	the	shape’s	path	in	points
v_tex_coord:	This	is	the	point	associated	with	the	texture’s	access	and	by	default,	it
references	the	(0.0,	0.0)	point
v_color_mix:	A	premultiplied	color	value	for	the	node	where	the	shader	is	being
applied
v_path_distance:	This	variable	can	only	be	used	when	the	shader	is	applied	to	the
strokeShader	property	of	an	SKShapeNode	class	reference	as	it	represents	the
distance	along	the	shape’s	path	in	points

When	developing	the	shader	algorithm,	we	need	to	have	in	mind	that	it	should	be
wrapped	in	a	main()	function,	which	must	set	the	gl_FragColor	variable	to	a	desired
color.

We	are	going	to	use	shaders	to	give	the	wrong	doors	a	psychedelic	look.	So,	let’s	start	by
declaring	a	new	variable.	Add	the	following	line	at	the	top	of	GameScene:

private	var	doorShader:	SKShader!

This	will	represent	the	shader	instance	that	we	will	share	for	every	wrong	door	and	which
will	appear	on	a	wave.

Now,	let’s	initialize	this	variable	by	calling	a	new	method	in	didMoveToView.	Add	the
following	line	to	this	method	just	before	self.initializeWall():

self.initializeShader()

Implement	this	using	the	following	block	of	code:

func	initializeShader()	{

				//	Initialize	shaders

				self.doorShader	=	SKShader(fileNamed:	"shader.fsh")

}

The	preceding	code	is	pretty	easy;	we	are	just	creating	a	shader	as	a	new	instance	of
SKShader	using	a	file	called	shader.fsh	as	the	source,	which	is	the	file	that	contains	the
shader	algorithm.

Let’s	add	this	new	file	to	the	project	by	performing	the	following	steps:

1.	 Right-click	on	the	Resources	group	in	the	project	navigator	and	select	Add	Files	to
InsideTheHat….

2.	 You’ll	find	shader.fsh	in	the	7338_05_Resources	folder	that	had	you	previously
unzipped.	Select	this	file	and	click	on	Add.

If	you	open	this	file,	you	will	see	an	algorithm	that	was	developed	using	the	OpenGL	ES
2.0	shading	language	and	some	of	the	variables	that	were	previously	mentioned.	The
algorithm	was	taken	from	https://github.com/HeshamAmiri/SpriteKitShader.	It	will	create
a	psychedelic	effect	on	the	nodes	where	we	it	is	applied.

https://github.com/HeshamAmiri/SpriteKitShader

So,	now	that	we	have	the	required	source	and	the	shader	created,	let’s	apply	it	to	the
doors.	For	this	purpose,	in	setDoorAttributes,	add	the	following	lines	at	the	end	of	the
if	(arc4random_uniform(2)	==	0)	{	clause	related	to	the	left	door:

//	Set	door	shader

leftDoor.shader	=	self.doorShader

This	will	assign	the	new	shader	to	the	shader	property	of	the	left	door.

As	we	don’t	want	to	apply	the	shader	to	the	correct	doors,	add	the	following	lines	at	the
end	of	the	else	clause	of	the	if	statement:

//	Remove	shader

leftDoor.shader	=	nil

Let’s	add	the	same	lines	to	the	center	and	right	doors	respectively,	as	follows:

//	Set	door	shader

centerDoor.shader	=	self.doorShader

For	the	center	door,	at	the	end	of	if	(arc4random_uniform(2)	==	0)	{,	add	the
following	lines	of	code	after	the	else	block	of	the	if	statement:

//	Remove	shader

centerDoor.shader	=	nil

Finally,	let’s	apply	the	same	change	for	the	right	door.	Add	the	following	lines	at	the	end
of	if	(arc4random_uniform(2)	==	0)	{	for	the	right	door:

//	Set	door	shader

rightDoor.shader	=	self.doorShader

Add	the	following	ones	at	the	end	of	its	corresponding	else	clause:

//	Remove	shader

rightDoor.shader	=	nil

If	you	run	the	game	now,	you	will	see	the	new	effect	appearing	on	the	doors,	as	shown	in
the	following	screenshot:

Turning	on	the	lights
One	of	the	most	important	elements	in	a	game	is	lighting	as	it	helps	you	give	the	desired
atmosphere	or	highlight	some	places	on	the	scene.

SpriteKit	provides	the	SKLightNode	class	that	gives	us	the	capability	of	creating	lights	and
treating	them	as	nodes	and,	as	a	consequence	of	that,	we	can	decide	which	nodes	on	the
scene	will	interact	with	the	lights,	casting	shadows.

It’s	important	to	take	into	account	that	even	though	lights	are	nodes,	they	have	no	visual
representation	unless	we	associate	a	sprite	node	to	it.	We	also	need	to	bear	in	mind	that
it’s	possible	that	the	shadows	produced	by	a	source	of	light	will	be	shown	over	other
nodes.

When	allowing	a	node	to	be	affected	by	a	source	of	light	in	the	scene,	there	are	three
properties	that	we	can	use	to	define	its	behavior:

lightingBitMask:	Thanks	to	this	property,	the	sprite	will	be	affected	by	the	light
with	specular,	diffuse,	and	ambient	light.
shadowCastBitMask:	Thanks	to	this	property,	a	shadow	will	be	created	in	the
opposite	direction	of	the	light	being	rendered	over	the	rest	of	the	nodes	with	a
zPosition	lower	than	the	previous	node.
shadowedBitMask:	Thanks	to	this	property,	when	a	node	intersects	another	node’s
shadow,	if	its	zPosition	is	lower	than	that	of	the	other	node,	it	will	be	affected	by	the
shadow.	This	property	will	modify	how	the	nodes	in	the	previous	case	are	drawn.

We	will	use	the	lights	to	create	a	sun,	illuminate	the	scene,	and	cast	some	shadows.	For
this	purpose,	we	are	going	to	learn	how	to	create	light	in	two	ways.	The	first	way	involves
the	creation	of	light	thanks	to	the	SpriteKit	editor	that’s	available	in	Xcode.	The	second
way	involves	programmatically	creating	it.

Creating	lights	with	the	editor
To	create	lights	using	the	SpriteKit	editor,	we	are	going	to	create	a	scene	file	(an	.sks
file),	to	add	light	there	and	then	build	the	rest	of	the	game	as	we	have	been	doing	until
now.	The	SpriteKit	editor	provides	an	easy	and	visual	way	of	creating	sprites,	lights,
physics,	emitter	nodes,	actions,	and	other	elements.

Let’s	start	by	creating	this	scene	file	by	performing	the	following	steps:

1.	 Right-click	on	Resources.
2.	 Select	New	File….
3.	 Navigate	to	iOS	|	Resource.	You	will	see	a	window	that’s	similar	to	what’s	shown	in

the	following	screenshot:

4.	 Choose	the	SpriteKit	Scene	option	and	click	on	Next.
5.	 Call	it	GameScene	and	click	on	Create.

Now,	open	the	file	and	add	a	new	light,	which	can	be	found	by	selecting	the	Light	option
from	the	Object	library	to	the	right	of	Xcode:

Click	on	the	Light	option	and	drag	it	on	the	scene	so	that	it	is	placed	outside	the	view	on
the	top-left	corner,	which	is	similar	to	what’s	shown	in	the	following	screenshot:

Now	that	the	Light	is	placed	in	the	scene,	let’s	take	a	look	to	its	properties,	which	will	be
found	in	the	Attributes	inspector	to	the	right	of	Xcode.

As	you	can	see,	there	are	several	properties,	but	we	are	going	to	focus	on	just	some	of
them:

Position:	Thanks	to	this	property,	we	can	set	the	light	where	we	want.	I’ve	chosen
-65.8	and	1000.8	for	the	x	and	y	coordinates	respectively.
Z:	This	property	makes	a	reference	to	the	zPosition	attribute	of	the	light	node.	For
the	sake	of	this	section,	I’ve	chosen	1.
Color:	This	gives	a	reference	to	the	light’s	color.	I	chose	yellow	and	set	the	Opacity
to	50%.
Shadow	Color:	This	gives	a	reference	to	the	color	of	the	shadow	cast	by	the	light.	I
chose	black	and	set	the	Opacity	to	50%.
Ambient	Color:	This	gives	a	reference	to	the	ambient	color	of	the	light.	I	chose	black
and	set	the	Opacity	to	50%	too.

Falloff:	This	property	gives	a	reference	to	how	the	light	decays	with	distance.	Its
value	is	1.0	by	default,	which	means	that	it	will	decay	linearly,	but	you	can	choose	a
positive	value	between	0.0	and	1.0.	I’ve	chosen	0.5.
Enabled:	This	property	corresponds	to	the	enabled	attribute	of	the	light	and	indicates
that	the	light	affects	the	rest	of	the	nodes	in	the	scene.	Its	value	is	true	by	default
(this	can	be	checked	in	the	editor).	So	let’s	leave	it	as	it	is.
Lighting	Mask:	This	property	gives	a	reference	to	the	lightingBitMask	attribute.
This	value	will	set	a	mask	so	that	the	light	will	affect	every	node	with	the	same	mask.
I	chose	1.

Apart	from	these	properties,	we	can	modify	an	SKLightNode	instance	in	the	SpriteKit
editor	that	has	some	other	properties	to	highlight:

shadowCastBitMask:	If	this	mask	corresponds	to	that	of	the	light,	the	node	will	cast
shadows	that	are	affected	by	the	corresponding	light
shadowedBitMask:	This	node	is	affected	by	the	shadows	that	are	cast	by	the	sources
of	light	with	the	same	mask

Now	that	we	have	the	lighting	configured,	we	need	to	make	some	changes	to	the	scenes.

Let’s	start	by	forcing	our	game	to	load	the	game	scene	when	we	initialize	it	on	the	main
menu.	In	the	initGame	method	of	MenuScene,	replace	the	following	lines:

let	gameScene	=	GameScene(size:	view!.bounds.size)

self.view?.presentScene(gameScene,	transition:	sceneTransition)

Replace	the	preceding	lines	with	the	following	lines	of	code:

let	gameScene	=	GameScene(fileNamed:"GameScene")

gameScene?.size	=	view!.bounds.size

self.view?.presentScene(gameScene!,	transition:	sceneTransition)

This	will	take	the	GameScene.sks	file	to	create	the	scene.	We	also	specify	the	size,	which
will	be	the	same	as	the	one	that	was	mentioned	in	the	previous	version	of	the	scene	to
cover	the	entire	view.	Then,	we	present	the	scene	using	the	same	transition.

We	need	to	make	a	couple	of	changes	in	GameScene	too.	So	open	it	and	add	the	following
lines	to	the	initializeEnemy	method	before	addChild(enemy):

//	Set	puppet	shadow	masks

enemy.puppet.shadowCastBitMask	=	1

enemy.puppet.shadowedBitMask	=	1

We	want	just	the	puppet	to	be	affected	by	the	sunlight.	So	that’s	why,	we	set	the	same
mask	value	as	the	ones	that	we	entered	for	the	light	in	the	SpriteKit	editor.

Now	that	the	light	and	the	enemy	node	are	configured,	let’s	test	it	on	a	physical	device.	If
you	run	the	game	now,	you	will	see	something	that’s	similar	to	what’s	shown	in	the
following	screenshot:

As	you	can	see,	the	puppet	casts	a	shadow	that	is	produced	by	the	sunlight,	which	will
cover	the	full	scene	and	it	will	appear	as	if	the	sun	is	setting.	It’s	not	possible	to	achieve	a
different	result	as	it	is	a	two-dimensional	game.	So,	if	we	want	to	cast	other	types	of
shadows,	we	will	need	to	create	three-dimensional	scenes	using	SceneKit,	the	3D	game
engine	that’s	provided	by	Apple	Inc.

Programmatically	creating	lights
In	this	section,	we	are	going	to	simulate	the	same	effect	that	was	achieved	in	the	preceding
section	by	creating	a	source	of	light	with	the	same	properties	from	scratch.

Let’s	start	by	reverting	the	previous	changes.	Remove	the	GameScene.sks	file	and	replace
the	following	lines	in	the	initGame	method	of	MenuScene:

let	gameScene	=	GameScene(fileNamed:"GameScene")

gameScene?.size	=	view!.bounds.size

self.view?.presentScene(gameScene!,	transition:	sceneTransition)

Replace	the	preceding	lines	with	the	following	lines	of	code:

let	gameScene	=	GameScene(size:	view!.bounds.size)

self.view?.presentScene(gameScene,	transition:	sceneTransition)

In	this	way,	we	created	the	scene	directly	from	its	class.

We	will	need	a	new	variable.	So,	let’s	declare	it	by	adding	the	following	line	at	the	top	of
the	GameScene	class:

private	var	sunLight:	SKLightNode!

To	initialize	this,	we	are	going	to	call	a	new	method.	Add	the	following	line	just	at	the
beginning	of	didMoveToView:

self.initializeLightNode()

Implement	self.initializeLightNode()	by	adding	the	following	block	of	code	within
this	method:

func	initializeLightNode()	{

				//	Create	light	node

				sunLight	=	SKLightNode()

				//	Set	falloff	value

				sunLight.falloff	=	0.5

				//	Set	zPosition

				sunLight.zPosition	=	1

				//	Specify	position

				sunLight.position	=	CGPoint(x:	-65.8,	y:1000.8)

				//	Set	ambient	color

				sunLight.ambientColor	=	UIColor(red:	0.0,	green:	0.0,	blue:	0.0,	alpha:	

0.5)

				//	Set	light	color

				sunLight.lightColor	=	UIColor(red:	0.0,	green:	1.0,	blue:	1.0,	alpha:	

0.5)

				//	Set	shadow	color

				sunLight.shadowColor	=	UIColor(red:	0.0,	green:	0.0,	blue:	0.0,	alpha:	

0.5)

				//	Add	light	to	the	scene

				self.addChild(sunLight)

}

As	you	can	see,	we	initialized	the	sunlight	and	then	we	set	all	the	values	as	we	specified	in
the	previous	section.

If	you	run	the	game	now,	you	will	face	the	same	behavior	that	you	previously
encountered:

2-star	challenge:	moving	lights
In	this	challenge,	I	want	you	to	simulate	the	sun	moving	along	the	day	so	that	you	can	see
how	we	can	treat	lights	as	nodes.	So,	try	to	move	the	sun	from	left	to	right	as	the	game
moves	forward.

Solution
To	achieve	this	behavior,	we	are	going	to	update	the	sun’s	position	every	time	a	wave
finishes	so	that	it	will	change	gradually.

Let’s	start	by	calling	a	new	method	at	the	end	of	initializeWave:

//	Update	sun	position

self.updateSunPosition()

Implement	this	using	the	following	lines	of	code:

func	updateSunPosition()	{

				//	Move	sun	on	the	x	coordinates

				sunLight.position.x	+=	10.0

				//	Reset	sun	position	if	needed

				if	sunLight.position.x	>=	view!.bounds.size.width	+	65.8	{

								sunLight.position.x	=	-65.8

				}

}

As	you	can	see,	we	move	the	sun	along	the	x	coordinate	by	increasing	its	position	by	10.0
every	time	a	wave	is	initialized.

Also,	we	reset	its	position	when	sunLight.position.x	achieves	the	last	position	on	the
right-hand	side,	as	we	want	it	to	keep	moving	until	the	game	is	over.

If	you	run	the	game	now,	you	will	see	how	the	sun	moves	now,	as	shown	in	the	following
screenshot:

Summary
In	this	chapter,	we	learned	several	techniques	that	will	help	us	create	amazing	visual
effects	by	making	the	best	of	physical	devices.	We	learned	how	to	start	receiving	motion
data	by	enabling	the	accelerometer	module	of	the	motion	manager.	Thanks	to	this,	we	saw
how	to	manage	the	main	character’s	movement	using	the	accelerometer	or	position
physical	device.	We	also	learned	how	to	take	into	account	the	original	orientation	in	order
to	calibrate	the	accelerometer/accelerometer-related	information	and	obtain	accurate	data.

Then,	we	saw	what	the	shader	algorithm	is	and	how	we	can	apply	the	Open	GL	algorithms
to	the	nodes	of	our	game	so	that	we	can	modify	the	way	they	are	drawn.

Toward	the	end	of	the	chapter,	we	learned	that	SpriteKit	provides	the	capability	of	creating
lights	in	two	different	ways	to	achieve	the	same	results.	Thanks	to	these	lights,	we	can
configure	nodes	so	that	they	can	cast	shadows	that	are	affected	by	the	desired	lights,
creating	amazing	visual	effects.	We	also	learnt	that	lights	can	be	treated	as	nodes	and	we
can	perform	operations	such	as	the	modification	of	position	on	them.

The	next	chapter,	which	is	also	the	final	chapter	of	this	book,	will	show	us	some	skills	to
know	how	to	create	different	sources	and	effects	that	will	improve	the	quality	of	games
and	applications.

Chapter	6.	Auxiliary	Techniques
The	previous	chapter	explored	the	use	of	some	techniques	to	squeeze	the	potential	out	of
physical	devices	in	order	to	control	the	main	character’s	movement	with	an	accelerometer
or	to	create	stunning	visual	effects	thanks	to	shaders,	lights,	and	shadows.	This	chapter
will	show	us	how	to	load	and	set	up	a	particle	system	in	order	to	create	amazing	effects
such	a	fire,	smog,	and	explosions.

We	will	also	take	advantage	of	SpriteKit	animations	to	provide	a	dynamic	look	to	the
existing	apps.	Finally,	we	will	learn	how	to	find	art	and	audio	resources	or	even	create	our
own	audio	and	fonts	using	third-party	tools.

We	will	explore	the	following	topics	in	this	chapter:

How	to	load	and	set	up	a	particle	system
How	to	add	SpriteKit	in	apps
Using	third-party	tools	to	create	audio	and	fonts
How	to	find	art	and	audio	that	can	be	included	in	games

Creating	particle	systems
You	probably	don’t	know	what	a	particle	system	is,	but	I’m	sure	that	you	have	seen	a	lot
of	them.	If	you	think	about	some	sci-fi	or	action	films	that	you	may	have	watched	of	late,
you	will	remember	that	they	are	plenty	of	special	effects	made	by	computers	such	as	fire,
explosions,	smog,	rain,	and	snow.

These	effects	have	something	in	common;	all	of	them	are	composed	of	hundreds	of	small
components,	or	particles,	that	create	the	desired	result	by	moving	or	changing	the	size	or
color	of	each	particle	independently.

In	SpriteKit,	we	can	easily	create	special	effects,	which	are	also	known	as	particle
systems,	thanks	to	the	SKEmitterNode	class,	which	allows	us	to	create	and	render	small
particle	sprites	to	get	the	desired	results.

On	the	other	hand,	SpriteKit	provides	a	visual	way	of	creating	an	emitter	and	editing	its
properties	using	the	Particle	Emitter	editor	that’s	included	in	Xcode.	In	the	following
sections,	you	are	going	to	learn	how	to	programmatically	create	an	emitter	node	with	the
aforementioned	editor	.

Creating	an	emitter	with	the	editor
In	order	to	use	the	Particle	Emitter	editor,	we	need	to	create	a	SpriteKit	file	(an	.sks	file)
by	performing	the	following	steps:

1.	 Unzip	7338_06_Resources.zip,	where	you	will	find	InsideTheHat_init.zip.
Unzip	InsideTheHat_init.zip	and	open	the	project	with	Xcode.

2.	 Right-click	on	Resources.
3.	 Select	New	File….
4.	 Select	iOS	|	Resource,	and	you	will	see	a	screen	that’s	similar	to	what’s	shown	in	the

following	screenshot:

5.	 Choose	SpriteKit	Particle	File	and	click	on	Next.
6.	 Choose	Snow	as	Particle	template	and	click	on	Next.
7.	 Name	it	SnowParticle	and	select	where	you	want	it	to	be	saved	before	clicking	on

the	Create	button.

As	you	can	see,	if	you	look	at	the	Resources	group	window,	you	will	find	that	these	steps
have	created	two	files,	namely	spark.png	and	SnowParticle.sks.	If	you	now	select	the
SnowParticle.sks	file	in	the	project	navigator,	it	will	be	shown	in	the	Particle	Emitter
editor,	where	you	will	see	its	default	properties	on	the	right-hand	side.	But	first	of	all,
touch	the	grey	area	at	the	center	of	the	editor	to	see	how	the	initial	effect	looks:

These	properties	are	as	follows:

Name:	This	property	makes	a	reference	to	the	name	attributes	of	the	SKEmitterNode
class	and	allows	us	identify	the	node	so	that	it	can	be	easily	handled	later.
Background:	This	property	allows	us	to	set	a	background	color	to	the	emitter,	but	we
can	remove	it	by	setting	its	opacity	to	0.
Particles	Birthrate:	This	allows	us	to	set	the	particleBirthRate	property	that
indicates	the	rate	at	which	the	particles	are	emitted.
Particles	Maximum:	This	allows	us	to	modify	the	numParticlesToEmit	property
that	indicates	the	number	of	particles	emitted	before	stopping	the	emission	process.
By	default,	the	value	is	0.	This	means	that	the	emitter	will	endlessly	generate
particles.	A	positive	value	means	that	this	number	of	particles	will	be	created	before
stopping	the	emission	process.
Lifetime	Start:	This	allows	us	to	modify	the	particleLifetime	property,	which
indicates	the	amount	of	time	the	particle	will	live.	The	default	value	in	the	editor	for
the	snow	is	8,	while	it	is	0.0	if	we	programmatically	create	the	emitter.
Lifetime	Range:	This	allows	us	to	modify	the	particleLifetimeRange	property,
which	allows	us	to	specify	a	value	that	will	be	used	to	generate	a	random	number
between	0	and	the	property’s	value.	Half	of	the	resulting	number	will	be	randomly
subtracted	or	added	to	the	particleLifetime	object	to	get	the	final	lifetime	value.
The	default	value	is	0.0.

Position	Range:	This	property	allows	us	to	modify	particlePositionRange,	which
defines	a	maximum	value	that	the	x	or	y	coordinates	can	randomly	get.	Half	of	this
random	value	will	be	added	to	the	original	emitter’s	position	to	calculate	the	next
particle	position.	The	default	value	in	the	editor	for	the	snow	is	363.44	for	the	x
coordinate	and	5	for	the	y	coordinate,	while	it	is	(0.0,	0.0)	if	we	programmatically
create	the	emitter.
Angle	Start:	This	allows	us	to	modify	the	emissionAngle	property,	which	specifies
the	direction	in	degrees	in	which	the	particles	are	emitted.	The	default	value	in	the
editor	for	the	snow	is	269.863,	while	it	is	0.0	if	we	programmatically	create	the
emitter.
Angle	Range:	This	allows	us	to	modify	the	emissionAngleRange	object,	which
indicates	the	maximum	number	of	degrees	the	initial	angle	added	to	half	of	a	random
value	between	0	and	the	specified	range	will	vary.	The	default	value	in	the	editor	for
the	snow	is	-22.918,	while	it	is	0.0	if	we	programmatically	create	the	emitter.
Speed	Start:	This	property	allows	us	to	modify	the	particleSpeed	property,	which
specifies	the	base	speed	in	points	per	second	with	which	the	particles	are	emitted.
The	default	value	in	the	editor	for	the	snow	is	80,	while	it	is	0.0	if	we
programmatically	create	the	emitter.
Speed	Range:	This	allows	us	to	modify	the	particleSpeedRange	property,	which
specifies	a	maximum	range	that	a	random	value	will	take.	Half	of	this	random	value
is	added	to	the	particle’s	speed	to	get	the	resultant	final	speed.	The	default	value	in
the	editor	for	the	snow	is	100,	while	it	is	0.0	if	we	programmatically	create	the
emitter,	which	means	that	all	the	particles	move	at	the	same	speed.
Acceleration:	This	allows	us	to	modify	the	xAcceleration	and	the	yAcceleration
properties,	which	will	apply	a	horizontal	and	vertical	acceleration	to	each
coordinate’s	velocity	respectively.	The	default	value	in	the	editor	for	the	snow	is	0
and	-10,	while	it	is	0.0	for	both	x	and	y	if	we	programmatically	create	the	emitter.
Alpha	Start:	This	allows	us	to	modify	the	initial	alpha	property	of	the	emitted
particles.	The	default	value	for	the	snow	is	1.0	if	you	create	it	either	by	using	the
editor	or	programmatically.
Alpha	Range:	This	allows	us	to	modify	the	particleColorAlphaRange	property,
which	defines	a	range	of	values	that	will	randomly	modify	the	initial	alpha	value.	The
default	value	in	the	editor	for	the	snow	is	0.2,	while	it	is	0.0	if	we	create	the	emitter
programmatically.
Alpha	Speed:	This	allows	us	to	modify	the	particleColorAlphaSpeed	property,
which	indicates	the	rate	at	which	the	alpha	component	of	a	particles’	color	changes
per	second.	The	default	value	for	the	snow	is	0.0	if	you	create	it	either	by	using	the
editor	or	programmatically.
Scale	Start:	This	allows	us	to	modify	the	particleScale	property,	which	determines
how	large	a	particle	is	when	it	is	created.	The	default	value	in	the	editor	for	the	snow
is	0.2,	while	it	is	1.0	if	we	create	the	emitter	programmatically,	which	means	that	the
particle	size	will	be	the	same	as	the	image	used	to	generate	it.
Scale	Range:	This	allows	us	to	modify	the	particleScaleRange	property,	which
determines	an	amount	the	size	of	the	particle	can	vary	as	compared	to	the	initial	size.

The	default	value	in	the	editor	for	the	snow	is	0.2,	while	it	is	0.0	if	we	create	the
emitter	programmatically.
Scale	Speed:	This	allows	us	to	modify	the	particleScaleSpeed	property,	which
indicates	the	rate	at	which	the	scale	of	the	particles	changes	per	second.	The	default
value	for	the	snow	is	0.0	if	you	create	it	either	by	using	the	editor	or
programmatically.
Rotation	Start:	This	allows	us	to	modify	the	particleRotation	property,	which
determines	an	initial	rotation	angle	in	radians	for	each	particle.	The	default	value	for
the	snow	is	0.0	in	both	the	editor	and	if	you’re	doing	it	programmatically.
Rotation	Range:	This	allows	us	to	modify	the	particleRotationRange	property,
which	determines	the	amount	that	the	rotation	of	the	particle	can	vary	from	the	initial
stage.	The	default	value	for	the	snow	is	0.0	for	both	the	editor	as	well	as	if	it’s	being
done	programmatically.
Rotation	Speed:	This	allows	us	to	modify	the	particleRotationSpeed	property,
which	indicates	the	speed	at	which	a	particle	rotates,	and	is	expressed	in	radians	per
second.	The	default	value	for	the	snow	is	0.0	for	both	the	editor	and	if	it’s	being	done
programmatically.
Color	Blend	Factor:	This	allows	us	to	modify	the	particleColorBlendFactor
property,	which	determines	the	average	starting	value	for	the	particle’s	color.	The
default	value	in	the	editor	for	the	snow	is	1.0,	while	it	is	0.0	if	we	create	the	emitter
programmatically.
Color	Blend	Range:	This	allows	us	to	modify	the	particleColorBlendFactorRange
property,	which	determines	an	amount	by	which	the	blend	of	the	particle	can	vary
from	the	initial	one.	The	default	value	for	the	snow	is	0.0	if	we	create	it	either	by
using	the	editor	or	programmatically.
Color	Blend	Speed:	This	allows	us	to	modify	the	particleColorBlendFactorSpeed
property,	which	indicates	the	speed	at	which	a	particle’s	color	is	blended,	and	it	is
expressed	in	seconds.	The	default	value	for	the	snow	is	0.0	for	both	the	editor	and	if
you	create	it	programmatically.
Color	Ramp:	This	allows	us	to	choose	the	color	that’s	used	to	blend	the	particle’s
color.
Blend	Mode:	This	allows	us	to	modify	the	particleBlendMode	property,	which	can
get	one	of	the	following	seven	values:

Alpha:	The	source	and	destination	colors	are	blended	by	multiplying	the	source
alpha	value.	This	is	the	default	value	for	both	the	editor	and	if	you’re	creating	it
programmatically,	for	example,	SKBlendMode.SKBlendModeAlpha.
Add:	The	source	and	destination	colors	are	added	together.	If	we	want	to	set	it
programmatically,	we	need	to	specify	SKBlendMode.SKBlendModeAdd.
Subtract:	The	source	color	is	subtracted	from	the	destination	color.	If	we	want
to	set	it	programmatically,	we	need	to	specify
SKBlendMode.SKBlendModeSubtract.
Multiply:	The	source	color	is	multiplied	by	the	destination	color.	If	we	want	to
set	it	programmatically,	we	need	to	specify
SKBlendMode.SKBlendModeMultiply.

MultiplyX2:	The	source	color	is	multiplied	by	the	destination	color	and	then
doubled.	If	we	want	to	set	it	programmatically,	we	need	to	specify
SKBlendMode.SKBlendModeMultiplyX2.
Screen:	The	source	color	is	added	to	the	destination	color	times	the	inverted
source	color.	If	we	want	to	set	it	programmatically,	we	need	to	specify
SKBlendMode.SKBlendModeScreen.
Replace:	The	source	color	replaces	the	destination	color.	If	we	want	to	set	it
programmatically,	we	need	to	specify	SKBlendMode.SKBlendModeReplace.

Field	Mask:	This	allows	us	to	modify	the	fieldBitMask	property	that	determines
which	categories	of	the	physics	fields	can	interact	with	the	particles.	The	default
value	for	the	snow	is	0.0	for	both	the	editor	and	if	you’re	creating	it
programmatically.
Custom	Shader:	This	allows	us	to	modify	the	shader	property,	which	helps	us
specify	an	Open	GL	algorithm	in	order	to	modify	the	color	of	the	particles	emitted.
The	default	value	for	the	snow	is	nil	for	both	the	editor	and	if	you’re	creating	it
programmatically.

These	are	the	most	important	properties	of	a	particle	system	and,	as	you	can	see,	when	we
create	an	emitter	using	the	editor,	it	will	be	initialized	with	different	values	for	its
properties,	depending	on	the	type	of	emitter	that	we	have	selected.

We	are	going	to	take	advantage	of	the	default	values	to	generate	the	first	particles	system.
Let’s	add	some	code	to	the	project.

We	will	need	a	new	variable.	So,	let’s	add	the	following	declaration	at	the	top	of
GameScene.swift:

private	var	emitterNode:	SKEmitterNode!

In	order	to	initialize	this,	we	will	call	a	new	method.	Add	the	following	line	to
didMoveToView	just	before	initializeLifeBar:

self.initializeEmitterNode()

Implement	this	using	the	following	block	of	code:

func	initializeEmitterNode()	{

				//	Initialize	emitter

				emitterNode	=	SKEmitterNode(fileNamed:	"SnowParticle")

				//	Add	emitter	to	the	scene

				addChild(emitterNode)

}

With	this	method,	we	initialize	the	emitter	using	the	SnowParticle.sks	file	that	we
previously	created.	Then,	we	add	it	to	the	scene.

If	you	run	the	game	now,	you	will	see	how	the	emitter	looks	with	its	default	values:

There	is	a	problem	that	we	could	have	previewed.	The	default	position	of	the	emitter	is
placed	at	the	bottom	of	the	scene	and	it	is	barely	visible	(you	can	see	only	a	part	of	a	snow
fleck	in	the	following	screenshot)	because	its	original	y	coordinate	value	is	5:

We	are	going	to	fix	this	quickly.	You	just	need	to	make	a	couple	of	modifications	in	the
SnowParticle.sks	file:

1.	 Set	Position	Range	X	to	600.	Thus,	the	snow	flakes	will	cover	almost	the	entire
width	of	an	iPhone	6	device.

2.	 Set	Position	Range	Y	to	1800.	Thus,	it	will	cover	almost	the	entire	height	of	an
iPhone	6	device.

If	you	look	closely,	there	is	an	issue	with	the	current	configuration	of	the	emitter.	The
flecks’	zPosition	object	is	not	correct	and	they	appear	below	some	elements	of	the	scene
and	the	result	is	weird.

However,	before	fixing	this,	let’s	make	a	couple	of	changes	to	the	emitter	file	in	order	to
adapt	the	snow’s	behavior	to	a	stronger	snowfall,	as	follows:

1.	 Set	Particles	Birthrate	to	80.	Thus,	we	simulate	that	the	snowfall	is	stronger	than
the	default	one.

2.	 Set	Lifetime	Start	to	4.	This	property,	in	collaboration	with	the	previous	change,	will
let	us	achieve	the	expected	effect.

Then,	in	GameScene,	add	the	following	lines	to	the	initializeEmitterNode	method	of	the
GameScene	class	just	before	addChild(emitterNode):

//	Specify	zPosition

emitterNode.zPosition	=	5

Run	the	game	again	and	look	at	the	final	result,	as	shown	in	the	following	screenshot:

Creating	the	emitter	programmatically
In	the	previous	section,	we	saw	how	to	load	a	particle	system	thanks	to	the	visual	editor
provided	by	Xcode,	but	we	faced	a	problem.	The	GameScene.swift	is	a	static	file	and	we
cannot	modify	its	behavior	along	the	game’s	lifetime.	However,	if	we	create	it
programmatically,	we	can	adjust	it	whenever	we	want.

In	addition	to	this,	we	can	also	manipulate	other	properties	such	as	position	or
zPosition	that	are	usually	handled	in	every	game	(and	in	our	game	specifically).	So,	in
this	section,	we	are	going	to	manage	the	emitter	programmatically.

Open	GameScene.swift	and	add	the	following	lines	to	the	initializeEmitterNode
method	just	before	emitterNode.zPosition	=	5:

emitterNode.particleBirthRate	=	80.0

emitterNode.particleLifetime	=	4.0

emitterNode.position	=	CGPoint(x:(view!.bounds.size.width/2),	y:	

view!.bounds.size.height)

emitterNode.particlePositionRange.dx	=	600

emitterNode.particlePositionRange.dy	=	1800

emitterNode.emissionAngle	=	269.863

emitterNode.emissionAngleRange	=	-22.918

emitterNode.particleSpeed	=	80.0

emitterNode.particleSpeedRange	=	100.0

emitterNode.yAcceleration	=	-10.0

emitterNode.particleColorAlphaRange	=	0.2

emitterNode.particleScale	=	0.2

emitterNode.particleScaleRange	=	0.2

emitterNode.particleColorBlendFactor	=	1.0

As	you	can	see,	we	are	still	using	the	file	created	with	Xcode,	but	we	are	using	it	to
modify	some	needed	properties,	such	as	the	position,	which	will	allow	us	to	place	the
emitter	at	the	center	of	any	device	no	matter	what	its	resolution	is.

The	rest	of	the	properties	have	been	assigned	to	match	the	values	that	we	set	in	the	file.
Therefore,	if	you	now	run	the	game	on	any	device,	it	will	show	the	same	behavior	as	what
was	created	in	the	previous	section.	The	output	is	as	follows:

Combining	SpriteKit	and	UIKit
As	SpriteKit	and	User	Interface	Kit	(UIKit)	are	frameworks	that	are	available	in	iOS,	we
can	expect	to	combine	them	in	different	ways.	Actually,	we	can	create	games	with
SpriteKit	and	include	components	from	UIKit	and,	on	the	other	hand,	we	can	create
applications	that	show	the	elements	that	were	created	with	SpriteKit.

These	features	give	us	great	power	and	versatility,	as	we	can	join	the	capabilities	provided
by	both	the	frameworks	to	create	robust	games	or	give	a	more	dynamic	look	to	existing
applications.

In	the	following	lines,	we	are	going	to	learn	how	to	use	UIKit	with	SpriteKit	and	vice
versa.	So	let’s	start	by	adding	some	element	from	UIKit	into	the	game.

Including	UIKit	in	a	game
As	you	may	already	know,	if	you	have	tried	to	create	an	iOS	application	before,	UIKit	is	a
framework	that	provides	all	the	components	that	are	necessary	to	create	an	app.

In	this	section,	we	will	harness	the	potential	provided	by	UIKit	to	add	a	button	into	the
game	so	that	we	can	stop	the	background	music	that’s	playing	or	restart	it,	and	we	will
also	silence	the	sound	effects.

We	are	going	to	use	an	image	to	load	this	button.	First,	let’s	add	it	to	the	game.	For	this
purpose,	perform	the	following	steps:

1.	 Right-click	on	Art	and	select	Add	Files	to	InsideTheHat….
2.	 You’ll	find	soundOffOn.png	in	the	7338_06_Resources	folder	that	you	previously

unzipped.	Select	this	file	and	click	on	Add.

Now	that	we	have	all	the	necessary	resources,	let’s	get	to	work.	Open	GameScene.swift
and	add	the	following	line	at	the	top	of	the	file	just	after	import	AVFoundation:

import	UIKit

Thus,	we	have	the	potential	to	add	visual	components	(UIKit	is	the	acronym	for	User
Interface	Kit)	to	the	game.

As	we	are	going	to	add	a	button	to	the	game,	we	will	need	to	declare	a	new	variable.	So,
add	the	following	line	just	after	private	var	emitterNode:	SKEmitterNode!:

private	var	soundOffOnButton:	UIButton!

We	have	declared	this	variable	as	a	UIButton	object,	which	is	the	class	provided	by	UIKit
to	create	buttons	on	the	touch	screen.

Tip
In	this	book,	we	are	not	going	to	get	into	the	details	of	any	UIKit	component,	but	you	can
take	a	look	at	its	framework	reference	webpage,	which	can	be	viewed	by	visiting
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework.

The	next	step	is	to	initialize	this	new	variable.	So,	let’s	add	the	following	method	call	at
the	end	of	the	didMoveToView	method:

self.initializeSoundOffOnButton()

Implement	this	using	the	following	block	of	code:

func	initializeSoundOffOnButton()	{

				//	Initialize	UIButton

				soundOffOnButton	=	UIButton(frame:	CGRectMake(view!.bounds.size.width	-	

rabbit.frame.width,	view!.bounds.size.height	-	rabbit.frame.width,	

rabbit.frame.width,	rabbit.frame.width))

				//	Set	image	to	button

				soundOffOnButton.setImage(UIImage(named:	"soundOffOn"),	forState:	

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework

UIControlState.Normal)

				//	Specify	function	to	trigger

				soundOffOnButton.addTarget(self,	action:	"alternateSound",	

forControlEvents:	UIControlEvents.TouchUpInside)

				//	Add	button	to	view

				self.view!.addSubview(soundOffOnButton)

}

As	you	can	see,	we	first	initialized	the	UIButton,	specifying	a	frame	(a	CGRectMake
instance),	by	providing	its	initial	position	in	the	x	and	y	coordinates,	width,	and	height.

Note
Note	how	we	are	taking	into	account	the	rabbit	size,	as	we	don’t	want	the	button	to	be
bigger	than	the	main	character.

Then,	we	specify	the	image	that	we	want	to	use	to	render	the	button,	and	we	specify	the
one	that	we	had	previously	added	to	the	project.

The	button	needs	to	know	the	action	that	it	should	trigger	when	it	is	touched,	and	this
information	needs	to	be	provided	by	using	the	addTarget	method	of	the	class.	This
method	allows	us	to	specify	the	class	(self)	where	the	method	(alternateSound)	will	be
triggered	when	the	desired	event	(TouchUpInside)	happens.	In	this	way,	the	button	will
execute	what	we	expected.

Finally,	we	add	the	button	to	the	scene.	But	if	you	pay	attention,	you	will	see	that	we	are
not	adding	the	element	as	we	have	been	doing	previously	using	the	addChild	method;	we
are	adding	it	as	a	sub-view	of	the	scene’s	view.

In	this	way,	we	can’t	specify	the	zPosition	value,	but	we	will	have	complete	control	over
the	position	that	each	component	takes,	as	it	will	depend	on	the	view	that	they	are	the
children	of.

Now	that	we	have	created	the	button,	we	just	need	to	implement	the	method	that	we	want
to	trigger	when	it	is	touched.	But	first,	let’s	add	a	new	variable	that	we	will	use	to	know
whether	the	sound	should	be	played	or	not:

private	var	isSoundOn:	Bool	=	true

We	create	a	Boolean	flag	that’s	initialized	to	true	so	that	the	game	will	start	playing	once
the	game	begins.	Now,	add	the	following	lines	at	the	end	of	GameScene	to	implement	the
method	that	does	the	magic:

func	alternateSound()	{

				if	isSoundOn	{

								//	Stop	background	music

								isSoundOn	=	false

								backgroundMusic.stop()

				}	else	{

								//	Restart	background	music

								isSoundOn	=	true

								backgroundMusic.play()

				}

}

If	the	music	is	playing	(the	flag	is	true),	we	update	its	value	and	stop	the	background
music.	If	it	is	not	playing,	we	update	the	flag	and	restart	the	music.

This	code	will	just	stop	the	background	music,	but	we	also	want	the	sound	effects	to	stop.
Therefore,	we	just	need	a	last	change.	Replace	the	playWrongDoorSound	and
playCorrectDoorSound	methods	with	the	following	ones:

func	playWrongDoorSound()	{

				if	isSoundOn	{

								//	Play	wrong	door	sound

								wrongDoorSound.play()

				}

}

func	playCorrectDoorSound()	{

				if	isSoundOn	{

								//	Play	correct	door	sound

								correctDoorSound.play()

				}

}

As	you	can	see,	we	just	check	the	flag	in	order	to	know	whether	the	sounds	must	be
played	when	the	rabbit	collides	with	some	door	or	the	enemies.

If	you	run	the	game	now,	you	will	see	how	this	new	button	that	was	created	with	UIKit
works:

Including	SpriteKit	in	an	app
We	have	seen	that	we	can	incorporate	UIKit	elements	into	our	games	easily.	Now,	we	are
going	to	discover	how	we	can	use	SpriteKit	to	create	dynamic	and	visually	attractive
applications.

For	this	purpose,	we	are	going	to	add	some	cloud	nodes	into	an	existing	weather
application	and	apply	some	actions	to	these	nodes	so	that	they	will	move	from	right	to	left.

First	of	all,	we	need	to	open	the	existing	application	by	performing	the	following	steps:

1.	 Unzip	the	SpriteKitApp_init.zip	project	that	you	will	find	in	7338_06_Resources.
2.	 Open	the	SpriteKitApp	file	with	Xcode.

If	you	look	at	the	contents	of	this	project,	you	will	see	that	it	has	the	appearance	of	a
Single	View	application	project,	where	you	will	find	the	following	three	important
components:

A	Resources	group	with	a	clouds.png	file	will	be	present,	which	will	be	used	to
render	some	sprites	on	the	app.
A	Main.storyboard	that	contains	a	view	with	one	button	and	text	field	will	also	be
seen.	If	you	look	at	the	Connections	inspector	to	the	right	of	Xcode,	you	will	realize
that	the	view	(Scene	View)	is	already	connected	to	some	outlet.
The	ViewController.swift	file	contains	an	@IBOutlet	variable,	which	is	the	one
that’s	connected	to	the	view	on	the	storyboard.

The	most	important	thing	here	is	the	new	outlet	variable:

@IBOutlet	var	sceneView:	SKView!

As	you	can	see,	it	is	a	SKView	variable,	and	it	is	currently	raising	a	Use	of	undeclared
type	'SKView'	error.	The	reason	behind	why	this	warning	is	seen	is	that	SKView	is	a	class
from	SpriteKit,	but	we	haven’t	imported	it	into	the	project.

So,	the	first	thing	that	we	need	in	order	to	include	the	SpriteKit	elements	into	the
application	is	to	import	this	framework.	Hence,	add	the	following	line	at	the	top	of
ViewController.swift	just	after	import	UIKit:

import	SpriteKit

Thanks	to	the	previous	line	of	code,	the	error	will	not	be	raised	after	this.

To	show	the	sprites,	we	are	going	to	create	a	scene	that	will	be	shown	in	the	existing
sceneView	view.	So	for	this	purpose,	we	will	need	a	new	variable.	Add	the	following	line
just	after	the	declaration	of	sceneView:

private	var	scene:	SKScene!

We	have	declared	this	scene	as	we	usually	do	on	a	game.	So	now	it’s	time	to	initialize	it.
For	this	purpose,	we	are	going	to	call	a	new	method.	Add	the	following	line	of	code	at	the
end	of	the	viewDidLoad	method:

self.initializeScene()

Let’s	implement	this	method	using	the	following	block	of	code:

func	initializeScene()	{

				//	Initialize	scene

				scene	=	SKScene(size:	view!.bounds.size)

				scene.backgroundColor	=	UIColor.whiteColor()

				//	Add	scene	to	view

				sceneView.presentScene(scene)

}

We	initialized	the	scene	using	the	size	of	the	view,	we	set	the	background	color	to	white
and	then	we	presented	the	scene	in	the	view	that	we	have	linked	to	the	storyboard
component.

At	this	point,	we	have	the	application	ready	to	host	a	game	or	the	components	that	we
want	to	add	from	SpriteKit.	So,	it’s	time	for	us	to	create	the	desired	clouds.	Add	the
following	line	of	code	towards	the	end	of	viewDidLoad:

self.initializeClouds()

Implement	this	using	the	following	lines:

func	initializeClouds()	{

				//	Random	number	of	clouds	to	generate

				let	numClouds	=	arc4random_uniform(10)	+	UInt32(15)

				for	_	in	0…numClouds	{

								//	Initialize	cloud	node

								let	clouds	=	SKSpriteNode(imageNamed:	"clouds")

								clouds.alpha	=	0.7

								//	Random	Y	position

								let	positionY	=	

arc4random_uniform(UInt32(view!.bounds.size.height))

								//	Positioning	the	clouds

								clouds.position	=	CGPoint(x:view!.bounds.size.width	+	

clouds.size.width/2		,	y:	CGFloat(positionY))

								//	Add	clouds	to	scene

								scene.addChild(clouds)

								//	Run	actions	on	each	node

								self.runCloudsAction(clouds)

				}

}

In	this	method,	we	created	a	random	number	of	clouds	between	15	and	24,	as	we	create	a
random	number	between	0	and	9	and	add	15	to	this	result.	Then,	we	created	each	cloud
using	a	for	loop,	where	we	first	initialized	a	sprite	node	using	the	image	file,	and	then	we
set	its	alpha	property	to	0.7	to	give	it	a	volatile	look.

We	want	each	cloud	to	be	placed	at	a	random	height.	Therefore,	we	created	positionY	as
a	random	value	of	the	entire	view	height	and	used	it	to	initially	place	the	cloud	on	the

right-hand	side	of	the	screen	and	outside	the	view.

Finally,	we	added	the	sprite	to	the	scene	and	called	a	new	method,	where	we	configured
the	actions	that	we	want	each	node	to	execute.	Add	the	following	block	of	code	to	know
what	this	method	does:

func	runCloudsAction(node:	SKSpriteNode)	{

				var	moveAction:SKAction!

				var	nextPosition:	CGPoint

				//	Setting	the	next	position

				nextPosition	=	CGPoint(x:	-node.size.width/2,	y:	node.position.y)

				//	Move	the	clouds	to	the	left	side	of	the	screen

				moveAction	=	SKAction.moveToX(nextPosition.x,	duration:	

Double(arc4random_uniform(8)	+	UInt32(4)))

}

We	want	the	clouds	to	move	from	right	to	left.	Therefore,	we	declare	an	SKAction	variable
and	a	point	that	will	be	the	final	point	that	the	cloud	will	reach.

We	specified	this	point	so	that	it	is	the	same	as	its	initial	place	but	on	the	opposite	side	of
the	screen.	Then,	we	created	the	movement	action	as	a	moveToX	object,	where	we	indicated
the	position	and	a	random	duration	that	will	be	a	random	value	between	4	and	11.

This	method	is	incomplete.	So,	add	the	following	lines	at	the	end	of	runCloudsAction	to
give	it	the	entire	behavior:

//	Reset	the	clouds	position

let	resetPositionAction	=	SKAction.runBlock	{

//	Random	Y	position

let	positionY	=	arc4random_uniform(UInt32(self.view!.bounds.size.height))

//	Positioning	the	clouds

node.position	=	CGPoint(x:(self.view!.bounds.size.width	+	

node.size.width/2),	y:	CGFloat(positionY))

}

//	Creating	a	delay	action

let	delayAction	=	SKAction.waitForDuration(1.0)

let	sequence	=	SKAction.sequence([delayAction,	moveAction,	

resetPositionAction,	delayAction])

//	Runaction

node.runAction(SKAction.repeatActionForever(sequence))

In	this	block,	we	created	a	runBlock	action,	where	we	reset	the	cloud	position	by	creating
a	y	coordinate	randomly.	Then,	we	created	a	delay	of	1	second	in	action	and	configured	a
sequence	with	the	delay	and	the	rest	of	the	actions.	Finally,	we	run	the	action	in	the	node.
So,	let’s	execute	the	game	now	and	check	out	what	we	have	done:

So	that’s	how	we	can	combine	both	the	frameworks	that	are	available	in	iOS	to	create
powerful	games	and	highly	engaging	applications.

Using	third-party	tools
In	the	following	pages,	we	are	going	to	see	how	we	can	use	some	tools	to	create	audio
resources.	In	addition	to	this,	this	section	will	show	you	how	to	make	use	of	other
complementary	tools	that	are	being	provided	by	third-party	companies	or	persons	to	create
and	use	our	own	customized	fonts.

Creating	audio	resources
Sounds	and	music	is	one	of	the	most	important	elements	in	video	games	and	usually,	we
as	developers	need	to	add	some	of	these	resources	to	our	games.	Usually,	we	also	don’t
have	enough	budget	to	hire	either	audio	composers	or	recording	studios,	and	we	need	to
take	matters	into	our	own	hands.

I	will	show	you	the	tools	that	we	have	at	our	disposal	for	this	purpose	and	how	we	can	use
them	to	create	audio	resources.

Voice	memos
This	app	is	one	of	the	apps	that	was	integrated	with	iOS.	Therefore,	you	will	have	it	if	you
own	an	iPhone	or	iPad	device:

You	can	use	this	utility	to	record	short	effects	or	sounds	that	can	be	exported	in	an	.m4a
file	to	a	computer	and	played	in	SpriteKit	games.	In	addition	to	this,	this	app	allows	us	to
perform	this	task	easily,	as	you	just	need	to	push	the	Record	and	Stop	buttons	and	then
use	the	Share	button.

For	example,	I	used	this	app	to	record	the	sounds	that	we	produce	when	the	rabbit	collides
with	a	wrong	or	a	correct	door	and	then,	I	converted	the	file	type.

Tip
If	you	have	no	iOS	device,	you	can	record	any	audio	with	another	application	that’s
available	in	your	phone	or	computer.

Audacity
Once	I	recorded	the	sound	effects,	I	sent	them	to	my	computer	and	opened	them	with
Audacity	(for	more	information,	visit	http://sourceforge.net/projects/audacity),	an	open
source	software	that’s	used	to	record	and	edit	audio	files.

I	used	this	software	to	cut	the	part	of	the	recorded	file	that	I	wanted	and	ignore	the	noise
from	the	beginning	and	the	end.	Then,	I	exported	the	file	to	.mp3	for	a	better	compression:

This	tool	also	allows	us	to	record	sounds	using	the	internal	microphone	from	a	computer
or	an	external	sound	card	and	to	perform	a	complete	set	of	transformations,	apply	effects,
and	combine	several	tracks.

GarageBand
GarageBand	is	a	software	that	is	pre-installed	with	Mac	OS	X.	It	is	a	very	powerful	tool

http://sourceforge.net/projects/audacity

that’s	used	to	create	professional	musical	productions.	It	has	a	battery	of	prerecorded
audio	pieces	of	a	wide	variety	of	instruments	that	I	combined	to	create	the	background
music	that	we	can	listen	to	in	InsideTheHat.

In	addition	to	this,	GarageBand	provides	powerful	tools	and	techniques	that	will	allow	you
to	create	professional	songs:

Font	makers
There	are	several	ways	to	create	our	own	custom	fonts;	you	will	realize	this	when	you
visit	http://superdevresources.com/create-your-own-font.	I	will	not	show	you	how	to
create	you	own	font,	but	I’ll	show	you	how	to	use	it	into	your	game.

First,	let’s	add	the	font	that	I’ve	created	thanks	to
http://www.pentacom.jp/pentacom/bitfontmaker2:

Perform	the	following	steps:

1.	 In	InsideTheHat,	right-click	on	Resources	and	select	Add	Files	to	InsideTheHat….
2.	 You’ll	find	customFont.ttf	in	the	7338_06_Resources	folder	that	you	previously

unzipped.	Select	this	file	and	click	on	Add.

Then,	we	need	to	know	the	project	to	which	we	are	going	to	provide	external	fonts	to	the
project.	To	know	this,	perform	the	following	steps:

1.	 Select	the	Info.plist	file	in	the	project	navigator.
2.	 Add	a	new	Array	key	for	Fonts	provided	by	application.
3.	 For	the	Item	0	key,	specify	the	customFont.ttf	value.
4.	 Ensure	that	the	file	is	included	in	the	build	by	checking	whether	it	is	specified	in	the

Copy	Bundle	Resources	directory	inside	the	Build	Phases	section	of	the	target
configuration.

Finally,	we	need	to	specify	this	font	when	we	create	a	label.	So	go	to	MenuScene.swift

http://superdevresources.com/create-your-own-font
http://www.pentacom.jp/pentacom/bitfontmaker2

and	replace	the	following	line	of	code:

labelInitGame	=	SKLabelNode(fontNamed:"Arial	Bold")

Replace	this	with	the	following	line:

labelInitGame	=	SKLabelNode(fontNamed:"customFont")

If	you	run	the	game	now,	you	will	see	that	the	game	is	using	the	new	font:

How	to	find	audio	files
There	are	several	websites	where	you	will	find	audio	resources	of	different	types	and
licenses.	Some	of	them	are	listed	here:

http://soundbible.com:	This	site	offers	a	wide	variety	of	sound	bites,	sound	clips,	and
sound	effects	with	different	license	types	such	as	Public	Domain,	Attribution	3.0,
Attr-Noncommercial	3.0,	Sampling	Plus	1.0,	and	Noncommercial	3.0.
http://www.partnersinrhyme.com:	This	website	has	an	interesting	database	of	free
sound	effects,	music,	videos,	MIDI	files.	It	also	provides	collections	of	paid	music	of
different	genres	of	music.
http://www.pacdv.com/sounds:	Even	though	this	site	contains	a	short	database	of
files,	it	provides	high-quality,	free,	and	very	useful	resources.
http://www.freesound.org:	This	site	contains	a	variety	of	Public	Domain,	Attribution,
and	Attribution	Non-Commercial	licensed	audio	resources.	Here,	you	will	also	find	a
very	active	forum	with	information	on	how	to	create	your	own	audio,	sample
requests,	or	even	legal	information.
http://www.royaltyfreemusicradio.com:	If	you	need	radio	station	samples,	you	can
find	several	resources	here.	But	you	will	need	to	pay	to	get	some	of	their	files.
http://www.musicloops.com:	This	place	contains	a	wide	variety	of	free	and	paid	high-
quality	and	royalty-free	audios.
http://www.freesoundeffects.com:	This	site	contains	a	very	wide	variety	of
professional	and	free	sound	effects.
http://www.naturemusicdownload.com:	If	you	need	ambient	music	or	sounds	based
on	nature,	this	is	your	site.	You	need	to	pay	to	use	the	content	that’s	available	here.
http://audiojungle.net:	Here,	you	will	find	lots	of	professional,	paid	content	to
provide	sound	for	your	apps	and	games.

The	following	screenshot	shows	one	of	the	website	from	you	can	get	free	or	premium
audio	files:

http://soundbible.com
http://www.partnersinrhyme.com
http://www.pacdv.com/sounds
http://www.freesound.org
http://www.royaltyfreemusicradio.com
http://www.musicloops.com
http://www.freesoundeffects.com
http://www.naturemusicdownload.com
http://audiojungle.net

How	to	find	images
You	will	find	a	lot	of	images	that	can	be	used	in	your	games	at	the	following	links:

http://opengameart.org:	This	site	provides	free	2D	and	3D	art,	concept	art,	and
textures	that	can	be	used	in	our	games.
http://www.rpg-palace.com:	If	you	are	developing	an	RPG	game,	this	is	your	place.
Here,	you	will	find	free	characters,	scenarios,	and	other	related	resources	to	create
your	game.
http://untamed.wild-refuge.net/rmxpresources.php?characters:	Like	the	previous	site,
you	will	find	a	variety	of	free	resources	for	your	RPG	games	here.
http://www.textures.com:	This	place	is	recommended	if	you	wish	to	find	a	wide
variety	of	free	textures	that	you	can	use	in	your	games.
http://www.spiralgraphics.biz/packs/browse.htm:	This	is	yet	another	complete	site
that	can	be	used	to	find	high-quality	and	free	textures.
http://www.pixelresort.com/blog/app-icon-template:	This	site	offers	a	template	to
generate	all	the	icons	for	your	game,	which	can	be	uploaded	to	the	App	Store.
http://qvectors.net:	This	site	provides	high-quality,	free,	and	paid	vector	resources.
http://www.gameartguppy.com:	On	this	site,	you	will	find	a	wide	variety	of	amazing
paid	sprites	for	your	games.
http://www.gameart2d.com/freebies.html:	An	amazing	collection	of	animated	sprites,
icons,	and	beautiful	backgrounds	can	be	found	here.
http://unluckystudio.com:	This	is	another	site	with	amazing	assets	related	to	free	art
and	images.
http://www.graphic-buffet.com/freebies:	A	wide	variety	of	images	can	be	found	here.
http://gameartpartners.com:	Amazing	free	resources	can	be	found	here.

http://opengameart.org
http://www.rpg-palace.com
http://untamed.wild-refuge.net/rmxpresources.php?characters
http://www.textures.com
http://www.spiralgraphics.biz/packs/browse.htm
http://www.pixelresort.com/blog/app-icon-template
http://qvectors.net
http://www.gameartguppy.com
http://www.gameart2d.com/freebies.html
http://unluckystudio.com
http://www.graphic-buffet.com/freebies
http://gameartpartners.com

The	following	screenshot	shows	one	of	the	website	from	you	can	get	free	or	premium
game	images:

Summary
In	this	final	chapter	of	the	book,	we	learned	some	techniques	that	can	be	used	to	create
amazing	visual	results	that	are	similar	to	the	special	effects	in	films.	For	this	purpose,	we
had	a	look	at	how	we	can	create	particle	systems,	either	by	using	the	editor	available	in
Xcode,	or	programmatically	so	that	we	can	modify	its	properties	to	improve	our	game
performance.

We	learned	how	to	combine	SpriteKit	and	UIKit	to	make	use	of	the	potential	that	game
elements	have	in	applications.	Vice	versa,	we	also	learned	how	to	use	typical	app	elements
to	create	robust	games.

In	the	last	half	of	the	chapter,	we	developed	some	skills	so	that	we	can	create	our	own
audio	resources	and	customized	text	fonts.	We	had	a	look	at	some	places	where	we	can
find	free	and	paid	music	files	on	the	Internet	that	can	be	included	in	our	games.	Finally,
we	had	a	look	at	where	we	can	find	amazing	visual	content,	such	as	sprites,	textures,
backgrounds,	and	visual	elements,	on	different	websites.

Index
A

accelerometer
using	/	Using	the	accelerometer
CMMotionManager	class	/	The	CMMotionManager	class
device	position,	compensating	/	Compensating	for	the	position	of	the	device

actionForKey(_$)	method	/	Handling	actions
animations

creating,	in	SpriteKit	/	Creating	animations	in	SpriteKit
Audacity

URL	/	Audacity
audio	files

finding	/	How	to	find	audio	files
references	/	How	to	find	audio	files

audio	resources
creating	/	Creating	audio	resources
voice	memos	/	Voice	memos
Audacity	/	Audacity
GarageBand	/	GarageBand

AVFoundation
about	/	AVFoundation

C
CMMotionManager	class	/	The	CMMotionManager	class
collision	management

about	/	Collision	management
collisions	/	Understanding	collisions
collisions,	handling	/	Handling	collisions

collisions
checking	/	1-star	challenge:	check	collisions	accurately,	Solution

collisions,	animating
about	/	2-star	challenge:	animate	collisions
solution	/	Solution

D
data

loading	/	Loading	and	saving	data
saving	/	Loading	and	saving	data

E
editor

lights,	creating	with	/	Creating	lights	with	the	editor
emitter

properties	/	Creating	an	emitter	with	the	editor

F
font	makers

references	/	Font	makers

G
game

ending	/	Ending	the	game
restarting	/	3-star	challenge:	restarting	a	game
solution	/	Solution
shaders,	adding	to	/	Adding	shaders	to	our	game

game	engines
defining	/	Game	engines

game	loop
about	/	The	game	loop
URL	/	The	game	loop

geometrical	primitives
about	/	Geometrical	primitives

GLES
about	/	Adding	shaders	to	our	game

Graphics	Processing	Unit	(GPU)
about	/	Adding	shaders	to	our	game

H
hasActions()	method	/	Handling	actions

I
images

finding	/	How	to	find	images
references	/	How	to	find	images

InsideTheHat	game
about	/	Your	first	game	–	InsideTheHat
background,	adding	/	Adding	a	background

Integrated	Development	Environment	(IDE)
about	/	Creating	a	new	SpriteKit	project

K
known	property	files

about	/	The	property	list	files

L
labels

creating	/	Creating	labels
aligning	/	Aligning	labels

lights
turning	on	/	Turning	on	the	lights
properties	/	Turning	on	the	lights
creating,	with	editor	/	Creating	lights	with	the	editor
creating	programmatically	/	Programmatically	creating	lights
moving	/	2-star	challenge:	moving	lights
solution	/	Solution

M
main	menu

creating	/	Creating	a	main	menu
music

playing	/	Playing	some	music

N
nodes

about	/	The	SKNode	class
NSUserDefaults	class

defining	/	The	NSUserDefaults	class

O
Open	Graphics	Library	(OpenGL)

about	/	Adding	shaders	to	our	game
Open	Graphics	Library	Embedded	Systems	(OpenGL	ES)

about	/	Adding	shaders	to	our	game
optional	chaining

URL	/	How	the	default	project	looks	like
about	/	How	the	default	project	looks	like

P
parallax	effect

about	/	The	parallax	effect
update	method	/	The	update	method	and	delta	times
delta	times	/	The	update	method	and	delta	times

particle	systems
creating	/	Creating	particle	systems
emitter,	creating	with	editor	/	Creating	an	emitter	with	the	editor
emitter,	creating	programmatically	/	Creating	the	emitter	programmatically

position	resetting,	1-star	challenge
about	/	1-star	challenge:	an	easier	way	to	reset	position
solution	/	Solution
loops,	creating	/	Creating	loops
doors,	installing	to	wall	/	Installing	doors	into	the	wall

properties,	SKNode	class
position	property	/	The	position	property
frame	property	/	The	frame	property
zPosition	property	/	The	zPosition	property
hidden	property	/	The	hidden	property
alpha	property	/	An	alpha	property
children	node	/	The	children	node
name	/	name
userInteractionEnabled	/	userInteractionEnabled

properties,	SKScene	class
scaleMode	/	scaleMode
anchorPoint	/	anchorPoint
size	/	size
backgroundColor	/	backgroundColor

puppet	collision
defining	/	2-star	challenge:	colliding	puppets
solution	/	Solution

R
removeActionForKey(_$)	method	/	Handling	actions
removeAllActions()	method	/	Handling	actions
RGBA	(Red,	Blue,	Green,	and	Alpha)	color

about	/	backgroundColor
runAction(_$)	method	/	Handling	actions
runAction(_$,	completion

)	method	/	Handling	actions
runAction(_$,	withKey$)	method	/	Handling	actions

S
scene	graph

about	/	The	SKNode	class
scene	hierarchy

about	/	The	SKNode	class
scenes

and	transitions	/	Transitions	and	scenes
screen	resolutions

working	with	/	Working	with	screen	resolutions
shader	algorithm

variables	/	Adding	shaders	to	our	game
shaders

adding,	to	game	/	Adding	shaders	to	our	game
SKLabelNode	class	/	Aligning	labels
SKNode	class

defining	/	The	SKNode	class
properties	/	The	SKNode	class	properties
used,	for	organizing	scene	/	Using	SKNode	to	organize	a	scene
extending	/	Extending	the	SKNode	class
new	class,	creating	/	Creating	a	new	class
custom	class	behavior,	handling	/	Handling	the	behavior	of	custom	classes

SKScene	class
defining	/	SKScene
game	loop	/	The	game	loop
properties	/	The	SKScene	properties

SKShader
references	/	Adding	shaders	to	our	game

SKSpritenode	and	EnemyType	variables
references	/	Creating	a	new	class

SKSpriteNode	class
URL	/	Our	first	SKSpriteNode	class
defining	/	Our	first	SKSpriteNode	class

SKTransition	class
about	/	The	SKTransition	class
methods,	defining	/	The	SKTransition	class

sound	effects
reproducing	/	2-star	challenge:	reproducing	sound	effects,	Solution

SpriteKit
about	/	Game	engines
animations,	creating	/	Creating	animations	in	SpriteKit
and	UIKit,	combining	/	Combining	SpriteKit	and	UIKit
including,	in	app	/	Including	SpriteKit	in	an	app

SpriteKit	class

URL	/	The	SKNode	class
SpriteKit	project

creating	/	Creating	a	new	SpriteKit	project
running	/	Running	the	project	for	first	time
default	project,	displaying	/	How	the	default	project	looks	like

T
texture	atlases

about	/	Creating	animations	in	SpriteKit
third-party	tools

using	/	Using	third-party	tools
audio	resources,	creating	/	Creating	audio	resources
font	makers	/	Font	makers

touchesBegan	method	/	Handling	touch	events
touchesCancelled	method	/	Handling	touch	events
touchesEnded	method	/	Handling	touch	events
touchesMoved	method	/	Handling	touch	events
touch	events

handling	/	Handling	touch	events
actions,	handling	/	Handling	actions
wall,	building	/	Building	a	wall
running,	through	doors	/	Running	through	the	doors

transitions
and	scenes	/	Transitions	and	scenes

tutorial
creating	/	Creating	a	tutorial
completing	/	2-star	challenge:	completing	the	tutorial
solution	/	Solution
property	list	files	/	The	property	list	files

tutorial	steps
updating	/	Updating	the	tutorial	steps

U
UIKit

and	SpriteKit,	combining	/	Combining	SpriteKit	and	UIKit
including,	into	game	/	Including	UIKit	in	a	game

User	Interface	Kit	(UIKit)
about	/	Combining	SpriteKit	and	UIKit,	Including	UIKit	in	a	game
URL	/	Including	UIKit	in	a	game

X
Xcode

URL	/	Creating	a	new	SpriteKit	project

	Getting Started with SpriteKit
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. The First Step toward SpriteKit
	Game engines
	Creating a new SpriteKit project
	Running the project for first time
	How the default project looks like
	The SKNode class
	The SKNode class properties
	The position property
	The frame property
	The zPosition property
	The hidden property
	An alpha property
	The children node
	name
	userInteractionEnabled
	Using SKNode to organize a scene
	SKScene
	The game loop
	The SKScene properties
	scaleMode
	anchorPoint
	size
	backgroundColor
	Your first game – InsideTheHat
	Our first SKSpriteNode class
	Adding a background
	Working with screen resolutions
	Summary
	2. What Makes a Game a Game?
	Handling touch events
	Handling actions
	Building a wall
	Running through the doors
	1-star challenge: an easier way to reset position
	Solution
	Creating loops
	Installing doors into the wall
	Collision management
	Understanding collisions
	Handling collisions
	1-star challenge: check collisions accurately
	Solution
	Creating labels
	Aligning labels
	Playing some music
	AVFoundation
	2-star challenge: reproducing sound effects
	Solution
	Summary
	3. Taking Games One Step Further
	Extending the SKNode class
	Creating a new class
	Handling the behavior of custom classes
	2-star challenge: colliding puppets
	Solution
	The parallax effect
	The update method and delta times
	Creating animations in SpriteKit
	2-star challenge: animate collisions
	Solution
	Geometrical primitives
	Summary
	4. From Basic to Professional Games
	Ending the game
	3-star challenge: restarting a game
	Solution
	Creating a main menu
	Transitions and scenes
	The SKTransition class
	Creating a tutorial
	Updating the tutorial steps
	Loading and saving data
	The NSUserDefaults class
	2-star challenge: completing the tutorial
	Solution
	The property list files
	Summary
	5. Utilizing the Hardware and Graphics Processor
	Using the accelerometer
	The CMMotionManager class
	Compensating for the position of the device
	Adding shaders to our game
	Turning on the lights
	Creating lights with the editor
	Programmatically creating lights
	2-star challenge: moving lights
	Solution
	Summary
	6. Auxiliary Techniques
	Creating particle systems
	Creating an emitter with the editor
	Creating the emitter programmatically
	Combining SpriteKit and UIKit
	Including UIKit in a game
	Including SpriteKit in an app
	Using third-party tools
	Creating audio resources
	Voice memos
	Audacity
	GarageBand
	Font makers
	How to find audio files
	How to find images
	Summary
	Index

