
Eric A. Meyer

Grid Layout
 in CSS
INTERFACE LAYOUT FOR THE WEB

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Eric A. Meyer

Grid Layout in CSS
Interface Layout for the Web

www.allitebooks.com

http://www.allitebooks.org

978-1-491-93021-2

[LSI]

Grid Layout in CSS
by Eric A. Meyer

Copyright © 2016 Eric A. Meyer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Colleen Lobner
Copyeditor: Molly Ives Brower
Proofreader: Sharon Wilkey

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2016: First Edition

Revision History for the First Edition
2016-04-14: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491930212 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Grid Layout in CSS, the cover image of
salmon, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491930212
http://www.allitebooks.org

Table of Contents

Preface. v

Grid Layout. 1
Creating a Grid Container 2
Basic Grid Terminology 4
Placing Grid Lines 6

Fixed-Width Grid Tracks 8
Flexible Grid Tracks 12
Repeating Grid Lines 20
Grid Areas 23

Attaching Elements to the Grid 29
Using Column and Row Lines 29
Row and Column Shorthands 34
The Implicit Grid 37
Error Handling 40
Using Areas 41
Grid Item Overlap 44

Grid Flow 45
Automatic Grid Lines 51
The grid Shorthand 53

Subgrids 56
Opening Grid Spaces 57

Grid Gutters (or Gaps) 57
Grid Items and the Box Model 60

Aligning and Grids 65
Aligning and Justifying Individual Items 65
Aligning and Justifying All Items 67

Layering and Ordering 71
Summary 73

iii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

This element indicates a warning or caution.

v

www.allitebooks.com

http://www.allitebooks.org

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/grid-layout-in-css.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

vi | Preface

www.allitebooks.com

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/grid-layout-in-css
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.allitebooks.org

Grid Layout

For as long as CSS has existed—which is, believe it or not, two decades now—it’s had
a layout-shaped hole at its center. We’ve bent other features to the purposes of layout,
most notably float and clear, and generally hacked our way around that hole. Flex‐
box layout helped to fill it, but flexbox is really meant for only specific use cases, like
navigation bars (navbars).

Grid layout, by contrast, is a generalized layout system. With its emphasis on rows
and columns, it might at first feel like a return to table layout—and in certain ways
that’s not too far off—but there is far, far more to grid layout than table layout. Grid
allows pieces of the design to be laid out independently of their document source
order, and even overlap pieces of the layout, if that’s your wish. There are powerfully
flexible methods for defining repeating patterns of grid lines, attaching elements to
those grid lines, and more. You can nest grids inside grids, or for that matter, attach
tables or flexbox containers to a grid. And much, much more.

In short, grid layout is the layout system we’ve long waited for. There’s a lot to learn,
and perhaps even more to unlearn, as we leave behind the clever hacks and work‐
arounds that have gotten us through the past 20 years.

Before we get started, a word of caution: as I write this in April
2016, grid layout is still in a bit of flux. We literally delayed publica‐
tion twice due to changes in the specification and supporting
browsers, and there may be still more to come. This is why the
book is only available electronically at this point. Therefore, keep in
mind that while the overall features and capabilities discussed in
this book will almost certainly remain, some details or even prop‐
erties could change, or be dropped. If you have a habit of checking
for updates to your ebooks, this title might warrant more frequent
checking. If you don’t have that habit, now is an excellent time
to start.

1

www.allitebooks.com

http://www.allitebooks.org

Creating a Grid Container
The first step to creating a grid is defining a grid container. This is much like a con‐
taining block in positioning, or a flex container in flexible-box layout: a grid con‐
tainer is an element that defines a grid formatting context for its contents.

At this very basic level, grid layout is actually quite reminiscent of flexbox. For exam‐
ple, the child elements of a grid container become grid items, just as the child ele‐
ments of a flex container become flex items. The children of those child elements do
not become grid elements—although any grid item can itself be made a grid con‐
tainer, and thus have its child elements become grid items to the nested grid. It’s pos‐
sible to nest grids inside grids, until it’s grids all the way down. (Grid layout also has a
separate concept of subgrids that is distinct from nesting grid containers, but we’ll get
to that later.)

There are two kinds of grids: regular grids and inline grids. These are created with
special values for the display property: grid and inline-grid. The first generates a
block-level box, and the second an inline-level box. The difference is illustrated in
Figure 1.

Figure 1. Grids and inline grids

These are very similar to the block and inline-block values for display. Most grids
you create are likely to be block-level, though of course the ability to create inline
grids is always there.

Although display: grid creates a block-level grid, the specification is careful to
explicitly state that “grid containers are not block containers.” What this means is that

2 | Grid Layout

www.allitebooks.com

http://www.allitebooks.org

although the grid box participates in layout much as a block container does, there are
a number of differences between them.

First off, floated elements do not intrude into the grid container. What this means in
practice is that a grid will not “slide under” a floated element, as a block container will
do. See Figure 2 for a demonstration of the difference.

Figure 2. Floats interact differently with blocks and grids

Furthermore, the margins of a grid container do not collapse with the margins of its
descendants. Again, this is distinct from block boxes, whose margins do (by default)
collapse with descendants. For example, the first list item in an ordered list may have
a top margin, but this margin will collapse with the list element’s top margin. The top
margin of a grid item will never collapse with the top margin of its grid container.
Figure 3 illustrates the difference.

Figure 3. Margin collapsing and the lack thereof

Creating a Grid Container | 3

There are a few CSS properties and features that do not apply to grid containers and
grid items; specifically:

• All column properties (e.g., column-count, columns, etc.) are ignored when
applied to a grid container.

• The ::first-line and ::first-letter pseudo-elements do not apply to grid
containers and are ignored.

• float and clear are effectively ignored for grid items (though not grid contain‐
ers). Despite this, the float property still helps determine the computed value of
the display property for children of a grid container, because the display value
of the grid items is resolved before they’re made into grid items.

• The vertical-align property has no effect on grid items, though it may affect
the content inside the grid item. (There are other, more powerful ways to align
grid items, so don’t worry.)

Lastly, if a grid container’s declared display value is inline-grid and the element is
either floated or absolutely positioned, the computed value of display becomes grid
(thus dropping inline-grid).

Once you’ve defined a grid container, the next step is to set up the grid within. Before
we explore how that works, though, it’s necessary to cover some terminology.

Basic Grid Terminology
We’ve already talked about grid containers and grid items, but let’s define them in a
bit more detail. As was said before, a grid container is a box that establishes a grid-
formatting context; that is, an area in which a grid is created and elements are laid out
according the rules of grid layout instead of block layout. You can think of it the way
an element set to display: table creates a table-formatting context within it. Given
the grid-like nature of tables, this comparison is fairly apt, though be sure not to
make the assumption that grids are just tables in another form. Grids are far more
powerful than tables ever were.

A grid item is a thing that participates in grid layout within a grid-formatting context.
This is usually a child element of a grid container, but it can also be the anonymous
(that is, not contained within an element) bits of text that are part of an element’s
content. Consider the following, which has the result shown in Figure 4:

#warning {display: grid;
 background: #FCC; padding: 0.5em;
 grid-template-rows: 1fr;
 grid-template-columns: repeat(7, 1fr);}

4 | Grid Layout

<p id="warning">Note: This element is a
 grid container with several grid items inside it.</p>

Figure 4. Grid items

Notice how each element, and each bit of text between them, has become a grid item.
The image is a grid item, just as much as the elements and text runs—seven grid
items in all. Each of these will participate in the grid layout, although the anonymous
text runs will be much more difficult (or impossible) to affect with the various grid
properties we’ll discuss.

If you’re wondering about grid-template-rows and grid-

template-columns, we’ll tackle them in the next section.

In the course of using those properties, you’ll create or reference several core compo‐
nents of grid layout. These are summarized in Figure 5.

Figure 5. Grid components

Basic Grid Terminology | 5

The most fundamental unit is the grid line. By defining the placement of one or more
grid lines, you implicitly create the rest of the grid’s components:

• A grid track is a continuous run between two adjacent grid lines—in other words,
a grid column or a grid row. It goes from one edge of the grid container to the
other. The size of a grid track is dependent on the placement of the grid lines that
define it. These are analogous to table columns and rows. More generically, these
can be referred to as block axis and inline axis tracks, where (in Western lan‐
guages) column tracks are on the block axis and row tracks are on the inline axis.

• A grid cell is any space bounded by four grid lines, with no grid lines running
through it, analogous to a table cell. This is the smallest unit of area in grid lay‐
out. Grid cells cannot be directly addressed with CSS grid properties; that is, no
property allows you to say a grid item should be associated with a given cell. (But
see the next point for more details.)

• A grid area is any rectangular area bounded by four grid lines, and made up of
one or more grid cells. An area can be as small as a single cell, or as large as all
the cells in the grid. Grid areas are directly addressable by CSS grid properties,
which allow you to define the areas and then associate grid items with them.

An important thing to note is that these grid tracks, cells, and areas are entirely con‐
structed of grid lines—and more importantly, do not have to correspond to grid
items. There is no requirement that all grid areas be filled with an item; it is perfectly
possible to have some or even most of a grid’s cells be empty of any content. It’s also
possible to have grid items overlap each other, either by defining overlapping grid
areas or by using grid-line references that create overlapping situations.

Another thing to keep in mind is that you can define as many or as few grid lines as
you wish. You could literally define just a set of vertical grid lines, thus creating a
bunch of columns and only one row. Or you could go the other way, creating a bunch
of row tracks and no column tracks (though there would be one, stretching from one
side of the grid container to the other).

The flip side to that is if you create a condition where a grid item can’t be placed
within the column and row tracks you define, or if you explicitly place a grid item
outside those tracks, new grid lines and tracks will be automatically added to the grid
to accommodate.

Placing Grid Lines
It turns out that placing grid lines can get fairly complex. That’s not so much because
the concept is difficult; there are just so many different ways to get it done, and each
uses its own subtly different syntax.

6 | Grid Layout

We’ll get started by looking at two closely related properties.

grid-template-rows, grid-template-columns

Values: none | <track-list> | <auto-track-list> | subgrid <line-name-list>?

Initial value: none

Applies to: Grid containers

Inherited: No

Percentages: Refer to the inline size (usually width) of the grid container for grid-template-
columns, and to the block size (usually height) of the grid container for grid-
template-rows

Computed value: As declared, with lengths made absolute

With these properties, you can define the grid lines in your overall grid template, or
what the CSS specification calls the explicit grid. Everything depends on these grid
lines; fail to place them properly, and the whole layout can very easily fall apart.

When you’re starting out with CSS grid layout, it’s probably a very
good idea to sketch out where the grid lines need to be on paper
first, or in some close digital analogue. Having a visual reference
for where lines should be, and how they should behave, will make
writing your grid CSS a lot easier.

There are a lot of ways to specify your grid lines’ placement, so before we get started
on learning those patterns, there are some basic things to establish.

First, grid lines can always be referred to by number, and can also be named by the
author. Take the grid shown in Figure 6, for example. From your CSS, you can use
any of the numbers to refer to a grid line, or you can use the defined names, or you
can mix them together. Thus, you could say that a grid item stretches from column
line 3 to line steve, and from row line skylight to line 2.

Note that a grid line can have more than one name. You can use any of them to refer
to a given grid line, though you can’t combine them the way you can multiple class
names. You might think that means it’s a good idea to avoid repeating grid-line
names, but that’s not always the case, as we’ll soon see.

Placing Grid Lines | 7

Figure 6. Grid-line numbers and names

I used intentionally silly grid-line names in Figure 6 to illustrate that you can pick any
name you like, and also to avoid the implication that there are “default” names. If
you’d seen start for the first line, you might have assumed that the first line is always
called that. Nope. If you want to stretch an element from start to end, you’ll need to
define those names yourself. Fortunately, that’s simple to do.

As I’ve said, many value patterns can be used to define the grid template. We’ll start
with the simpler ones and work our way toward the more complex.

Fixed-Width Grid Tracks
Our first step is to create a grid whose grid tracks are a fixed width. We don’t neces‐
sarily mean a fixed length like pixels or ems; percentages also count as fixed-width
here. In this context, “fixed-width” means the grid lines are placed such that the dis‐
tance between them does not change due to changes of content.

So, as an example, this counts as a definition of three fixed-width grid columns:

#grid {display: grid;
 grid-template-columns: 200px 50% 100px;}

That will place a line 200 pixels from the start of the grid container (by default, the
left side); a second grid line half the width of the grid container away from the first;
and a third line 100 pixels away from the second. This is illustrated in Figure 7.

8 | Grid Layout

Figure 7. Grid-line placement

While it’s true that the second column can change in size if the grid container’s size
changes, it will not change based on the content of the grid items. However wide or
narrow the content placed in that second column, the column’s width will always be
half the width of the grid container.

It’s also true that the last grid line doesn’t reach the right edge of the grid container.
That’s fine; it doesn’t have to. If you want it to—and you probably will—we’ll see vari‐
ous ways to deal with that in just a bit.

This is all lovely, of course, but what if you want to name your grid lines? Just place
any grid-line name you want, and as many as you want, in the appropriate place in
the value, surrounded by square brackets. It really is as simple as that! Let’s add some
names to our previous example, with the result shown in Figure 8:

#grid {display: grid;
 grid-template-columns:
 [start col-a] 200px [col-b] 50% [col-c] 100px [stop end last];
 }

Figure 8. Grid-name placement

Placing Grid Lines | 9

What’s nice is that adding the names makes clear that each value is actually specifying
a grid track’s width, which means there is always a grid line to either side of a width
value. Thus, for the three widths we have, there are actually four grid lines created.

Row grid lines are placed in exactly the same way as columns, as Figure 9 shows.

#grid {display: grid;
 grid-template-columns:
 [start col-a] 200px [col-b] 50% [col-c] 100px [stop end last];
 grid-template-rows:
 [start masthead] 3em [content] 80% [footer] 2em [stop end];
 }

Figure 9. Creating a grid

There are a couple of things to point out here. First, there are both column and row
lines with the names start and end. This is perfectly okay. Grids and columns don’t
share the same namespace, so you can reuse names like these in the two contexts.

Second is the percentage value for the content row track. This is calculated with
respect to the height of the grid container; thus, a container 500 pixels tall would yield
a content row that’s 400 pixels tall. This obviously requires that you know ahead of
time how tall the grid container will be, which won’t always be the case.

You might think we could just say 100% and have it fill out the space, but that doesn’t
work, as Figure 10 illustrates: the content row track will be as tall as the grid con‐
tainer itself, thus pushing the footer row track out of the container altogether.

10 | Grid Layout

#grid {display: grid;
 grid-template-columns:
 [start col-a] 200px [col-b] 50% [col-c] 100px [stop end last];
 grid-template-rows:
 [start masthead] 3em [content] 100% [footer] 2em [stop end];
 }

Figure 10. Exceeding the grid container

One way (not necessarily the best way) to handle this scenario is to minmax the row’s
value, telling the browser that you want the row no shorter than one amount and no
taller than another, leaving the browser to fill in the exact value. This is done with the
minmax(a,b) pattern, where a is the minimum size and b is the maximum size:

#grid {display: grid;
 grid-template-columns:
 [start col-a] 200px [col-b] 50% [col-c] 100px [stop end last];
 grid-template-rows:
 [start masthead] 3em [content] minmax(3em,100%) [footer] 2em [stop end];
 }

What we’ve said there is to make the content row never shorter than 3 ems tall, and
never taller than the grid container itself. This allows the browser to bring up the size
until it’s tall enough to fit the space left over from the masthead and footer tracks,
and no more. Of course, it also allows the browser to make it shorter than that, as

Placing Grid Lines | 11

long as it’s not shorter than 3em, so this is not a guaranteed result. Figure 11 shows
one possible outcome of this approach.

Figure 11. Adapting to the grid container

In like fashion, with the same caveats, minmax() could have been used to help the
col-b column fill out the space across the grid container. The thing to remember
with minmax() is that if the max is smaller than the min, then the max value is thrown
out and the min value is used as a fixed-width track length. Thus, minmax(100px,
2em) would resolve to 100px for any font-size value smaller than 50px.

If the vagueness of minmax()’s behavior unsettles you, there are alternatives to this
scenario. We could also have used the calc() value pattern to come up with a track’s
height (or width). For example:

 grid-template-rows:
 [start masthead] 3em [content] calc(100%-5em) [footer] 2em [stop end];

That would yield a content row exactly as tall as the grid container minus the sum of
the masthead and footer heights, as we saw in the previous figure.

That works as far as it goes, but is a somewhat fragile solution, since any changes to
the masthead or footer heights will also require an adjustment of the calculation. It
also becomes a lot more difficult (or impossible) if you want more than one column
to flex in this fashion. As it happens, there are much more robust ways to deal with
this sort of situation, as we’ll soon see.

Flexible Grid Tracks
Thus far, all our grid tracks have been inflexible—their size determined by a length
measure or the grid container’s dimensions, but unaffected by any other considera‐
tions. Flexible grid tracks, by contrast, can be based on the amount of space in the

12 | Grid Layout

grid container not consumed by inflexible tracks, or alternatively, can be based on the
actual content of the entire track.

Fractional units
If you want to divide up whatever space is available by some fraction and distribute
the fractions to various columns, the fr unit is here for you.

In the simplest case, you can divide up the whole container by equal fractions. For
example, if you want four columns, you could say

grid-template-columns: 1fr 1fr 1fr 1fr;

In this very limited case, that’s equivalent to saying

grid-template-columns: 25% 25% 25% 25%;

The result either way is shown in Figure 12.

Figure 12. Dividing the container into four columns

Now suppose we want to add a fifth column, and redistribute the column size so
they’re all still equal. With percentages, we’d have to rewrite the entire value to be five
instances of 20%. With fr, though, we can just add another 1fr to the value and have
everything done for us automatically:

grid-template-columns: 1fr 1fr 1fr 1fr 1fr;

The way fr units work is that all of the fr values are added together, with the avail‐
able space divided by that total. Then each track gets the number of those fractions
indicated by its number.

What that meant for the first of the previous examples is that when there were four fr
values, their numbers were added together to get a total of four. The available space
was thus divided by four, and each column got one of those fourths. When we added
a fifth 1fr, the space was divided by five, and each column got one of those fifths.

Placing Grid Lines | 13

You are not required to always use 1 with your fr units! Suppose you want to divide
up a space such that there are three columns, with the middle column twice as wide
as the other two. That would look like this:

grid-template-columns: 1fr 2fr 1fr;

Again, these are added up and then 1 is divided by that total, so the base fr in this
case is 0.25. The first and third tracks are thus 25% the width of the container,
whereas the middle column is half the container’s width, because it’s 2fr, which is
twice 0.25, or 0.5.

You aren’t limited to integers, either. A recipe card for apple pie could be laid out
using these columns:

grid-template-columns: 1fr 3.14159fr 1fr;

I’ll leave the math on that one as an exercise for the reader. (Lucky you! Just remem‐
ber to start with 1 + 3.14159 + 1, and you’ll have a good head start.)

This is a convenient way to slice up a container, obviously, but there’s more here than
just replacing percentages with something more intuitive. Fractional units really
come into their own when there are some fixed columns and some flexible space.
Consider, for example, the following, which is illustrated in Figure 13:

grid-template-columns: 15em 1fr 10%;

Figure 13. Giving the center column whatever’s available

What happened there is that the browser assigned the first and third tracks to their
inflexible widths, and then gave whatever was left in the grid container to the center
track. This means that for a 1,000-pixel-wide grid container whose font-size is the
usual browser default of 16px, the first column will be 240 pixels wide and the third
will be 100 pixels wide. That totals 340 pixels, leaving 660 pixels unassigned to inflexi‐
ble tracks. The fractional units total one, so 660 is divided by one, yielding 660 pixels,
all of which are given to the single 1fr track. If the grid container’s width is increased
to 1,400 pixels, the third column will be 140 pixels wide and the center column 1,020
pixels wide.

14 | Grid Layout

Just like that, we have a mixture of fixed and flexible columns. We can keep this
going, splitting up any flexible space into as many fractions as we like. Consider this:

width: 100em; grid-template-columns: 15em 4.5fr 3fr 10%;

In this case, the columns will be sized as shown in Figure 14.

Figure 14. Flexible column sizing

Yes, admittedly, I put a thumb on the scales for Figure 14: the fr total and width value
were engineered to yield nice, round numbers for the various columns. This is purely
to aid understanding, of course. If you want to work through the process with
less tidy numbers, consider using 92.5em or 1234px for the width value in the previ‐
ous example.

In cases where you want to define a minimum or maximum size for a given track,
minxmax() can be quite useful in some situations. To extend the previous example,
suppose the third column should never be less than 5em wide, no matter what. The
CSS would then be

grid-template-columns: 15em 4.5fr minmax(5em,3fr) 10%;

Now the layout will have two flexible columns at its middle, down to the point that
the third column reaches 5em wide. Below that point, the layout will have three inflex‐
ible columns (15em, 5em, and 10% wide, respectively) and a single flexible column that
will get all the leftover space, if there is any. Once you run the math, it turns out that
up to 30.5556em wide, the grid will have one flexible column. Above that width, there
will be two such columns.

You might think that this works the other way—for example, if you wanted to make a
column track flexible up to a certain point, and then become fixed after, you would
declare a minimum fr value. This won’t work, sadly, because fr units are not allowed
in the min position of a minmax() expression. So any fr value provided as a minimum
will invalidate the declaration. (In earlier implementations, a minimum fr was set to
zero. In future implentations, fr values will likely be allowed to be minimum sizes.)

Placing Grid Lines | 15

Speaking of setting to zero, let’s look at a situation where the minimum value is
explicitly set to 0, like this:

grid-template-columns: 15em 1fr minmax(0,500px) 10%;

Figure 15 illustrates the narrowest grid width at which the third column can remain
500 pixels wide. Any narrower, and the minmaxed column will be narrower than 500
pixels. Any wider, and the second column, the fr column, will grow beyond zero
width while the third column stays at 500 pixels wide.

Figure 15. Minmaxed column sizing

If you look closely, you’ll see the 1fr label next to the boundary between the 15em and
minmax(0,500px) columns. That’s there because the 1fr is placed with its left edge on
the second column grid line, and has no width, because there is no space left to flex.
Similarly, the minmax is placed on the third column grid line. It’s just that, in this spe‐
cific situation, the second and third column grid lines are in the same place (which is
why the 1fr column has zero width).

If you ever run into a case where the minimum value is greater than the maximum
value, then the whole thing is replaced with the minimum value. Thus,
minmax(500px,200px) would be treated as a simple 500px. You probably wouldn’t do
this so obviously, but this feature is useful when mixing things like percentages and
fractions. Thus, you could have a column that’s minmax(10%,1fr) that would be flexi‐
ble down to the point where the flexible column was less than 10% of the grid con‐
tainer’s width, at which point it would stick at 10%.

Fractional units and minmaxes are usable on rows just as easily as columns; it’s just
that rows are rarely sized in this way. You could easily imagine setting up a layout
where the masthead and footer are fixed tracks, while the content is flexible down to a
certain point. That might look something like this:

grid-template-rows: 3em minmax(5em,1fr) 2em;

16 | Grid Layout

That works okay, but it’s a lot more likely that you’ll want to size that row by the
height of its content, not some fraction of the grid container’s height. The next section
shows exactly how to make that happen.

Content-aware tracks
It’s one thing to set up grid tracks that take up fractions of the space available to them,
or that occupy fixed amounts of space. But what if you want to line up a bunch of
pieces of a page and you can’t guarantee how wide or tall they might get? This is
where min-content and max-content come in.

What these keywords mean is simple to state, but not necessarily simple to describe
in full. max-content means, in effect, “take up the maximum amount of space needed
for this content.” For large blocks of text (like a blog post), this would generally mean
taking as much room as is available, in order to maximize the space for that content.

min-content, by contrast, means “take up the bare minimum space needed for this
content.” With text, that means squeezing the width down to the point that the
longest word (or widest inline element, if there are things like images or form inputs)
sits on a line by itself. That would lead to a lot of linebreaks in a very skinny, very tall
grid element.

What’s so powerful about these sizing keywords is that they apply to the entire grid
track they define. For example, if you size a column to be max-content, then the
entire column track will be as wide as the widest content within it. This is easiest to
illustrate with a grid of images (12 in this case) with the grid declared as follows and
shown in Figure 16.

#gallery {display: grid;
 grid-template-columns: max-content max-content max-content max-content;
 grid-template-rows: max-content max-content max-content;}

Looking at the columns, we can see that each column track is as wide as the widest
image within that track. Where a bunch of portrait images happened to line up, the
column is more narrow; where a landscape image showed up, the column was made
wide enough to fit it. The same thing happened with the rows. Each row is as tall as
the tallest image within it, so wherever a row happened to have all short images, the
row is also short.

The advantage here is that this works for any sort of content, no matter what’s in
there. So let’s say we add captions to the photos. All of the columns and rows will
resize themselves as needed to handle both text and images, as shown in Figure 17.

Obviously, this isn’t a full-fledged design—the images are out of place, and there’s no
attempt to constrain the caption widths. In fact, that’s exactly what we should expect
from max-content values for the column widths. Since it means “make this column
wide enough to hold all its content,” that’s what we got.

Placing Grid Lines | 17

Figure 16. Sizing grid tracks by content

Figure 17. Sizing grid tracks around mixed content

What’s important to realize is that this will hold even if the grid tracks have to spill
out of the grid container. That means that even if we’d assigned something like width:
250px to the grid container, the images and captions would be laid out just the same.
That’s why things like max-content tend to appear in minmax() statements. Consider
the following, where grids with and without minmax() appear side by side. In both
cases, the grid container is represented by an orange background (see Figure 18):

18 | Grid Layout

#g1 {display: grid;
 grid-template-columns: max-content max-content max-content max-content;
 }
#g2 {display: grid;
 grid-template-columns: minmax(0,max-content) minmax(0,max-content)
 minmax(0,max-content) minmax(0,max-content);
 }

Figure 18. Sizing grid tracks with and without minmax()

In the first instance, the grid items completely contain their contents, but they spill
out of the grid container. In the second, the minmax() directs the browser to keep
the columns within the range of 0 and max-content, so they’ll all be fit into the grid
container if possible. A variant on this would be to declare minmax(min-content,
max-content), which leads to a slightly different result than the 0, max-content
approach.

If you’re wondering what happens if you min-content both the columns and the
rows, it’s pretty much the same as applying min-content to the columns and leaving
the rows alone. This happens because the grid specification directs browsers to
resolve column sizing first, and row sizing after that.

There’s one more keyword you can use with grid track sizing, which is auto. As a
minimum, it’s treated as the minimum size for the grid item, as defined by min-width
or min-height. As a maximum, it’s treated the same as max-content. You might think
this means it can be used only in minmax() statements, but this is not the case. You
can use it anywhere, and it will take on either a minimum or maximum role. Which
one it takes on depends on the other track values around it, in ways that are frankly
too complicated to get into here. As with so many other aspects of CSS, using auto is
essentially letting the browser do what it wants. Sometimes that’s fine, but in general
you’ll probably want to avoid it.

Placing Grid Lines | 19

There is a caveat to that last statement: auto values allow grid items
to be resized by the align-content and justify-content proper‐
ties, a topic we’ll discuss in a later section. Since auto values are the
only track-sizing values that permit this, there may be very good
reasons to use auto after all.

Speaking of things to avoid, you’ve probably been wondering about the repetitive grid
template values, and what happens if you need more than three or four grid tracks.
Will you have to write out every single track width individually? Indeed not, as we’ll
see in the next section.

Repeating Grid Lines
If you have a situation where you want to set up a bunch of grid lines, you probably
don’t want to have to type out every single one of them. Fortunately, repeat() is here
to make sure you don’t have to.

Let’s say we want to set up a column grid line every 5 ems, and set up 10 column
tracks. Here’s how to do that:

#grid {display: grid;
 grid-template-columns: repeat(10, 5em);}

That’s it. Done. Ten column tracks, each one 5em wide, for a total of 50 ems of column
tracks. It sure beats typing 5em 10 times!

Any track-sizing value can be used in a repeat, from min-content and max-content
to fr values to auto, and so on, and you can put together more than one sizing value.
Suppose we want to define a column structure such that there’s a 2em track, then a 1fr
track, and then another 1fr track—and, furthermore, we want to repeat that pattern
three times. Here’s how to do that, with the result shown in Figure 19:

#grid {display: grid;
 grid-template-columns: repeat(3, 2em 1fr 1fr);}

Figure 19. Repeating a track pattern

20 | Grid Layout

Notice how the last column track is a 1fr track, whereas the first column track is 2em
wide. This is an effect of the way the repeat() was written. It’s easy to add another
2em track at the end, in order to balance things out, simply by making this change:

#grid {display: grid;
 grid-template-columns: repeat(3, 2em 1fr 1fr) 2em;}

See that extra 2em at the end of the value? That adds one more column track after the
three repeated patterns. This highlights the fact that repeat can be combined with
any other track-sizing values—even other repeats—in the construction of a grid. The
one thing you can’t do is nest a repeat inside another repeat.

Other than that, just about anything goes within a repeat() value. Here’s an example
taken straight from the grid specification:

#grid {
 display: grid;
 grid-template-columns: repeat(4, 10px [col-start] 250px [col-end]) 10px;}

In this case, there are four repetitions of a 10-pixel track, a named grid line, a 250-
pixel track, and then another named grid line. Then, after the four repetitions, a final
10-pixel column track. Yes, that means there will be four column grid lines named
col-start, and another four named col-end, as shown in Figure 20. This is accepta‐
ble; grid-line names are not required to be unique. (We’ll see how to handle this sort
of thing in a later section.)

Figure 20. Repeated columns with named grid lines

One thing to remember, if you’re going to repeat named lines, is that if you place two
named lines next to each other, they’ll be merged into a single, double-named grid
line. In other words, the following two declarations are equivalent:

grid-template-rows: repeat(3, [top] 5em [bottom]);
grid-template-rows: [top] 5em [bottom top] 5em [top bottom] 5em [bottom];

If you’re concerned about having the same name applied to multi‐
ple grid lines, don’t be: there’s nothing preventing it, and it can even
be helpful in some cases. We’ll explore ways to handle such situa‐
tions in a later section.

Placing Grid Lines | 21

Auto-filling tracks
There’s even a way to set up a simple pattern and repeat it until the grid container is
filled. This doesn’t have quite the same complexity as regular repeat() (at least not
yet) but it can still be pretty handy.

For example, suppose we want to have the previous row pattern repeat as many times
as the grid container will comfortably accept:

grid-template-rows: repeat(auto-fill, [top] 5em [bottom]);

That will define a row line every 5 ems until there’s no more room. Thus, for a grid
container that’s 11 ems tall, the following is equivalent:

grid-template-rows: [top] 5em [bottom top] 5em [bottom];

If the grid container’s height is increased past 15 ems, but is less than 20 ems, then
this is an equivalent declaration:

grid-template-rows: [top] 5em [bottom top] 5em [top bottom] 5em [bottom];

The limitation with auto-repeating is that it can take only an optional grid-line name,
a fixed track size, and another optional grid-line name. So [top] 5em [bottom] rep‐
resents about the maximum value pattern. You can drop the named lines and just
repeat 5em, or just drop one of the names. It’s not possible to repeat multiple fixed
track sizes, nor can you repeat flexible track sizes. (Which makes sense: how many
times would a browser repeat 1fr to fill out a grid container?)

You might wish you could auto-repeat multiple track sizes in order
to define “gutters” around your content columns. This is unneces‐
sary because grids have a concept of (and properties to define)
track gutters, which we’ll cover in a later section.

Furthermore, you can have only one auto-repeat in a given track template. Thus, the
following would not be permissible:

grid-template-columns: repeat(auto-fill, 4em) repeat(auto-fill, 100px);

It makes sense that this isn’t permitted, once you look at it. If the first fills up the grid
container with 4-em column tracks, where is there room for any repeated 100-pixel
column tracks?

However, you can combine fixed-repeat tracks with auto-fill tracks. For example, you
could start with three wide columns, and then fill the rest of the grid container with
narrow tracks (assuming there’s space for them). That would look something like this:

grid-template-columns: repeat(3, 20em) repeat(auto-fill, 2em);

22 | Grid Layout

www.allitebooks.com

http://www.allitebooks.org

You can flip that around, too:

grid-template-columns: repeat(auto-fill, 2em) repeat(3, 20em);

That works because the grid layout algorithm assigns space to the fixed tracks first,
and then fills up whatever space is left with auto-repeated tracks. The end result
of that example is to have one or more auto-filled 2-em tracks, and then three 20-em
tracks.

With auto-fill, you will always get at least one column, even if it won’t fit into the
grid container for some reason. You’ll also get as many tracks as will fit, even if some
of the tracks don’t have content in them. As an example, suppose you set up an auto-
fill that placed five columns, but only the first three of them actually ended up with
grid items in them. The other two would remain in place, holding open layout space.

If you use auto-fit, on the other hand, then tracks that don’t contain any grid items
will be dropped. Suppose the following:

grid-template-columns: repeat(auto-fit, 20em);

If there’s room for five column tracks in the grid container (i.e., it’s more than 100
ems wide), but two tracks don’t have any grid items to go into them, those empty grid
tracks will be dropped, leaving the three column tracks that do contain grid items.
The leftover space is handled in accordance with the values of align-content and
justify-content (discussed in a later section).

There’s a reason this section hasn’t had any figures: as of early 2016,
auto-fill and auto-fit had not been publicly implemented,
though most grid-supporting browsers had announced plans to
support them soon. Test thoroughly before use!

Grid Areas
Do you remember ASCII art? Well, it’s back, and thanks to the grid-template-areas
property, you can use it to create complete grid templates!

grid-template-areas

Values: none | <string>

Initial value: none

Applies to: Grid containers

Placing Grid Lines | 23

Inherited: No

Computed value: As declared

We could go through a wordy description of how this works, but it’s a lot more fun to
just show it. The following rule has the result shown in Figure 21:

#grid {display: grid;
 grid-template-areas:
 "h h h h"
 "l c c r"
 "l f f f";}

Figure 21. A simple set of grid areas

That’s right: the letters in the string values are used to define how areas of the grid are
shaped. Really! And you aren’t even restricted to single letters! For example, we could
expand the previous example like so:

#grid {display: grid;
 grid-template-areas:
 "header header header header"
 "leftside content content rightside"
 "leftside footer footer footer";}

The grid layout would be the same as that shown in Figure 21, though the name of
each area would be different (e.g., footer instead of f).

In defining template areas, the whitespace is collapsed, so you can use it (as I did in
the previous example) to visually line up columns of names in the value of grid-
template-areas. You could line them up with spaces or tabs, whichever will annoy
your coworkers the most. Or you can just use a single space to separate each identi‐
fier, and not worry about the names lining up with each other. You don’t even have to
linebreak between strings; the following works just as well as a pretty-printed version:

grid-template-areas: "h h h h" "l c c r" "l f f f";

What you can’t do is merge those separate strings into a single string and have it
mean the same thing. Every new string (as delimited by the double quote marks)

24 | Grid Layout

defines a new row in the grid. So the previous example, like the examples before it,
defines three rows. If we merged them all into a single string, like so:

grid-template-areas:
 "h h h h
 l c c r
 l f f f";

…then we’d have a single row of twelve columns, starting with the four-column area h
and ending with the three-column area f. The linebreaks aren’t significant in any way,
except as whitespace that separates one identifier from another.

If you look at these values closely, you may come to realize that each individual iden‐
tifier represents a grid cell. Let’s bring back our first example from this section, and
consider the result shown in Figure 22:

#grid {display: grid;
 grid-template-areas:
 "h h h h"
 "l c c r"
 "l f f f";}

Figure 22. Grid cells with identifiers

This is exactly the same layout result, but here, we’ve shown how each grid identifier
in the grid-template-areas value corresponds to a grid cell. Once all the cells are
identified, the browser merges any adjacent cells with the same name into a single
area that encloses all of them—as long as they describe a rectangular shape! If you try
to set up more complicated areas, the entire template is invalid. Thus, the following
would result in no grid areas being defined:

#grid {display: grid;
 grid-template-areas:
 "h h h h"
 "l c c r"
 "l l f f";}

See how l outlines an “L” shape? That simple change causes the entire grid-
template-areas value to be dropped as invalid. A future version of grid layout may
allow for nonrectangular shapes, but for now, this is what we have.

Placing Grid Lines | 25

If you have a situation where you want to only define some grid cells to be part of
grid areas, but leave others unlabeled, you can use one or more . characters to fill in
for those unnamed cells. Let’s say you just want to define some header, footer, and
sidebar areas, and leave the rest unnamed. That would look something like this, with
the result shown in Figure 23:

#grid {display: grid;
 grid-template-areas:
 "header header header header"
 "left right"
 "footer footer footer footer";}

Figure 23. A grid with some unnamed grid cells

The two grid cells in the center of the grid are not part of a named area, having been
represented in the template by null cell tokens (the . identifiers). Where each of
those ... sequences appears, we could have used one or more null tokens—so
left . . right or left right would have worked just as well.

You can be as simple or creative with your cell names as you like. If you want to call
your header steve and your footer podiatrist, go for it. You can even use any Uni‐
code character above codepoint U+0080, so ConHugeCo©®™ and åwësømë are com‐
pletely valid area identifiers.

Now, to size the grid tracks created by these areas, we bring in our old friends grid-
template-columns and grid-template-rows. Let’s add both to the previous example,
with the result shown in Figure 24:

#grid {display: grid;
 grid-template-areas:
 "header header header header"
 "left right"
 "footer footer footer footer";
 grid-template-columns: 1fr 20em 20em 1fr;
 grid-template-rows: 40px 10em 3em;}

26 | Grid Layout

Figure 24. Named areas and sized tracks

Thus, the columns and rows created by naming the grid areas are given track sizes. If
we give more track sizes than there are area tracks, that will simply add more tracks
past the named areas. Therefore, the following CSS will lead to the result shown in
Figure 25:

#grid {display: grid;
 grid-template-areas:
 "header header header header"
 "left right"
 "footer footer footer footer";
 grid-template-columns: 1fr 20em 20em 1fr 1fr;
 grid-template-rows: 40px 10em 3em 20px;}

Figure 25. Adding more tracks beyond the named areas

So, given that we’re naming areas, how about mixing in some named grid lines? As it
happens, we already have: naming a grid area automatically adds names to the grid
lines at its start and end. For the header area, there’s an implicit header-start name
on its first column-grid line and its first row-grid line, and header-end for its second
column- and row-grid lines. For the footer area, the footer-start and footer-end
names were automatically assigned to its grid lines.

Grid lines extend throughout the whole grid area, so a lot of these names are coinci‐
dent. Figure 26 shows the naming of the lines created by the following template:

 grid-template-areas:
 "header header header header"

Placing Grid Lines | 27

 "left right"
 "footer footer footer footer";

Figure 26. Implicit grid-line names made explicit

Now let’s mix it up even more by adding a couple of explicit grid-line names to our
CSS. Given the following rules, the first column-grid line in the grid would add the
name begin, and the second row-grid line in the grid would add the name content.

#grid {display: grid;
 grid-template-areas:
 "header header header header"
 "left right"
 "footer footer footer footer";
 grid-template-columns: [begin] 1fr 20em 20em 1fr 1fr;
 grid-template-rows: 40px [content] 1fr 3em 20px;}

Again: those grid-line names are added to the implicit grid-line names created by the
named areas. Interestingly enough, grid-line names never replace other grid-line
names. Instead, they just keep piling up.

Even more interesting, this implicit-name mechanism runs in reverse. Suppose you
don’t use grid-template-areas at all, but instead set up some named grid lines like
so, as illustrated in Figure 27:

 grid-template-columns:
 [header-start footer-start] 1fr
 [content-start] 1fr [content-end] 1fr
 [header-end footer-end];
 grid-template-rows:
 [header-start] 3em
 [header-end content-start] 1fr
 [content-end footer-start] 3em
 [footer-end];

28 | Grid Layout

Figure 27. Implicit grid-area names made explicit

Because the grid lines use the form of name-start/name-end, the grid areas they
define are implicitly named. To be frank, it’s clumsier than doing it the other way, but
the capability is there in case you ever want it.

Bear in mind that you don’t need all four grid lines to be named in order to create a
named grid area, though you probably do need them all to create a named grid area
where you want it to be. Consider the following simple example:

 grid-template-columns: 1fr [content-start] 1fr [content-end] 1fr;
 grid-template-rows: 3em 1fr 3em;

This will still create a grid area named content. It’s just that the named area will be
placed into a new row after all the defined rows. What’s odd is that an extra, empty
row will appear after the defined rows but before the row containing content. This
has been confirmed to be the intended behavior. Thus, if you try to create a named
area by naming the grid lines and miss one or more of them, then your named area
will effectively hang off to one side of the grid instead of being a part of the overall
grid structure.

So, again, you should probably stick to explicitly naming grid areas and letting the
grid-line names happen implicitly, as opposed to the other way around.

Attaching Elements to the Grid
Believe it or not, we’ve gotten this far without talking about how grid items are
actually attached to a grid, once it’s been defined.

Using Column and Row Lines
There are a couple of ways to go about this, depending on whether you want to refer
to grid lines or grid areas. We’ll start with four simple properties that attach an ele‐
ment to grid lines.

Attaching Elements to the Grid | 29

grid-row-start, grid-row-end, grid-column-start, grid-column-end

Values: auto | <custom-ident> | [<integer> && <custom-ident>?] | [span &&
[<integer> || <custom-ident>]]

Initial value: auto

Applies to: Grid items and absolutely positioned elements, if their containing block is a grid
container

Inherited: No

Computed value: As declared

What these properties do is let you say, “I want the edge of the element to be attached
to grid line such-and-so.” As with so much of grid layout, it’s a lot easier to show than
to describe, so ponder the following styles and their result (Figure 28):

.grid {display: grid; width: 50em;
 grid-template-rows: repeat(5, 5em);
 grid-template-columns: repeat(10, 5em);}
.one {
 grid-row-start: 2; grid-row-end: 4;
 grid-column-start: 2; grid-column-end: 4;}
.two {
 grid-row-start: 1; grid-row-end: 3;
 grid-column-start: 5; grid-column-end: 10;}
.three {
 grid-row-start: 4;
 grid-column-start: 6;}

Here, we’re using grid-line numbers to say where and how the elements should be
placed within the grid. Column numbers count from left to right, and row numbers
from top to bottom. Note that if you omit ending grid lines, as was the case
for .three, then the next grid lines in sequence are used for the end lines.

Thus, the rule for .three in the previous example is exactly equivalent to the follow‐
ing:

.three {
 grid-row-start: 4; grid-row-end: 5;
 grid-column-start: 6; grid-column-end: 7;}

30 | Grid Layout

Figure 28. Attaching elements to grid lines

There’s another way to say that same thing, as it happens: you could replace the end‐
ing values with span 1, or even just plain span, like this:

.three {
 grid-row-start: 4; grid-row-end: span 1;
 grid-column-start: 6; grid-column-end: span;}

If you supply span with a number, you’re saying, “span across this many grid cells.” So
we could rewrite our earlier example like this, and get exactly the same result:

#grid {display: grid;
 grid-template-rows: repeat(5, 5em);
 grid-template-columns: repeat(10, 5em);}
.one {
 grid-row-start: 2; grid-row-end: span 2;
 grid-column-start: 2; grid-column-end: span 2;}
.two {
 grid-row-start: 1; grid-row-end: span 2;
 grid-column-start: 5; grid-column-end: span 5;}
.three {
 grid-row-start: 4; grid-row-end: span 1;
 grid-column-start: 6; grid-column-end: span;}

If you leave out a number for span, it’s set to be 1. You can’t use zero or negative num‐
bers for span; only positive integers.

An interesting feature of span is that you can use it for both ending and starting grid
lines. The precise behavior of span is that it counts grid lines in the direction “away”
from the grid line where it starts. In other words, if you define a start grid line and set
the ending grid line to be a span value, it will search toward the end of the grid. Con‐

Attaching Elements to the Grid | 31

versely, if you define an ending grid line and make the start line a span value, then it
will search toward the start of the grid.

That means the following rules will have the result shown in Figure 29:

#grid {display: grid;
 grid-rows: repeat(4, 2em); grid-columns: repeat(5, 5em);}
.box01 {grid-row-start: 1; grid-column-start: 3; grid-column-end: span 2;}
.box02 {grid-row-start: 2; grid-column-start: span 2; grid-column-end: 3;}
.box03 {grid-row-start: 3; grid-column-start: 1; grid-column-end: span 5;}
.box04 {grid-row-start: 4; grid-column-start: span 1; grid-column-end: 5;}

Figure 29. Spanning grid lines

In contrast to span numbering, you aren’t restricted to positive integers for your
actual grid-line values. Negative numbers will simply count backward from the end of
explicitly defined grid lines. Thus, to place an element into the bottom-right grid cell
of a defined grid, regardless of how many columns or rows it might have, you can just
say this:

grid-column-start: -1;
grid-row-start: -1;

Note that this doesn’t apply to any implicit grid tracks, a concept we’ll get to in a bit,
but only to the grid lines you explicitly define via one of the grid-template-* prop‐
erties (e.g., grid-template-rows).

We aren’t restricted to grid-line numbers, as it happens. If there are named grid lines,
we can refer to those instead of (or in conjunction with) numbers. If you have multi‐
ple instances of a grid-line name, then you can use numbers to identify which
instance of the grid-line name you’re talking about. Thus, to start from the fourth
instance of a row grid named mast-slice, you can say mast-slice 4. Take a look at
the following, illustrated in Figure 30, for an idea of how this works.

#grid {display: grid;
 grid-template-rows: repeat(5, [R] 4em);
 grid-template-columns: 2em repeat(5, [col-A] 5em [col-B] 5em) 2em;}
.one {
 grid-row-start: R 2; grid-row-end: 5;
 grid-column-start: col-B; grid-column-end: span 2;}

32 | Grid Layout

.two {
 grid-row-start: R; grid-row-end: span R 2;
 grid-column-start: col-A 3; grid-column-end: span 2 col-A;}
.three {
 grid-row-start: 9;
 grid-column-start: col-A -2;}

Figure 30. Attaching elements to named grid lines

Notice how span changes when we add a name: where we said span 2 col-A, that
caused the grid item to span from its starting point (the third col-A) across another
col-A and end at the col-A after that. This means the grid item actually spans four
grid cells, since col-A appears on every other column grid line.

Again, negative numbers count backward from the end of a sequence, so col-A -2
gets us the second-from-last instance of a grid line named col-A. Because there are
no end-line values declared for .three, they’re both set to span 1. That means the
following is exactly equivalent to the .three in the previous example:

.three {
 grid-row-start: 9; grid-row-end: span 1;
 grid-column-start: col-A -2; grid-row-end: span 1;}

There’s an alternative way to use names with named grid lines—specifically, the
named grid lines that are implicitly created by grid areas. For example, consider the
following styles, illustrated in Figure 31:

grid-template-areas:
 "header header header header"
 "leftside content content rightside"
 "leftside footer footer footer";
#masthead {grid-row-start: header;
 grid-column-start: header; grid-row-end: header;}
#sidebar {grid-row-start: 2; grid-row-end: 4;
 grid-column-start: leftside / span 1;}

Attaching Elements to the Grid | 33

#main {grid-row-start: content; grid-row-end: content;
 grid-column-start: content;}
#navbar {grid-row-start: rightside; grd-row-end: 3;
 grid-column-start: rightside;}
#footer {grid-row-start: 3; grid-row-end: span 1;
 grid-column-start: footer; grid-row-end: footer;}

Figure 31. Another way of attaching elements to named grid lines

What happens if you supply a custom identifier (i.e., a name you defined) is that the
browser looks for a grid line with that name plus either -start or -end added on,
depending on whether you’re assigning a start line or an end line. Thus, the following
are equivalent:

grid-column-start: header; grid-column-end: header;
grid-column-start: header-start; grid-column-end: header-end;

This works because, as was mentioned with grid-template-areas, explicitly creating
a grid area implicitly creates the named -start and -end grid lines that surround it.

The final value possibility, auto, is kind of interesting. According to the Grid Layout
specification, if one of the grid-line start/end properties is set to auto, that indicates
“auto-placement, an automatic span, or a default span of one.” In practice, what this
tends to mean is that the grid line that gets picked is governed by the grid flow, a con‐
cept we have yet to cover (but will soon!). For a start line, auto usually means that the
next available column or row line will be used. For an end line, auto usually means a
one-cell span. In both cases, the word “usually” is used intentionally: as with any
automatic mechanism, there are no absolutes.

Row and Column Shorthands
There are two shorthand properties that allow you to more compactly attach an ele‐
ment to grid lines.

34 | Grid Layout

grid-row, grid-column

Values: <grid-line> [/ <grid-line>]?

Initial value: auto

Applies to: Grid items and absolutely positioned elements, if their containing block is a grid
container

Inherited: No

Computed value: As declared

Note: Is equivalent to the value syntax for grid-column-start et al.

The primary benefit of these properties is that they make it a lot simpler to declare
the start and end grid lines to be used for laying out a grid item. For example:

#grid {display: grid;
 grid-template-rows: repeat(10, [R] 1.5em);
 grid-template-columns: 2em repeat(5, [col-A] 5em [col-B] 5em) 2em;}
.one {
 grid-row: R 3 / 7;
 grid-column: col-B / span 2;}
.two {
 grid-row: R / span R 2;
 grid-column: col-A 3 / span 2 col-A;}
.three {
 grid-row: 9;
 grid-column: col-A -2;}

That’s a whole lot easier to read than having each start and end value in its own prop‐
erty, honestly. Other than being more compact, the behavior of these properties is
more or less what you’d expect. If you have two bits separated by a solidus, the first
part defines the starting grid line and the second part defines the ending grid line.

If you have only one bit with no solidus, it defines the starting grid line. The ending
grid line depends on what you said for the starting line. If you supply a name for the
starting grid line, then the ending grid line is given that same name. Thus, the follow‐
ing are equivalent:

grid-column: col-B;
grid-column: col-B / col-B;

Attaching Elements to the Grid | 35

That will, of course, span from one instance of that grid-line name to the next,
regardless of how many grid cells are spanned.

In cases where only one name is given for grid-column or grid-row, it is also used
for the second (the end line). If a single number is given, then the second number
(the end line) is set to auto. That means the following pairs are equivalent:

grid-row: 2;
grid-row: 2 / auto;

grid-column: header;
grid-column: header / header;

There’s a subtle behavior built into the handling of grid-line names in grid-row and
grid-column that pertains to implicitly named grid lines. If you recall, defining a
named grid area creates -start and -end grid lines. That is, given a grid area with a
name of footer, there are implicitly created footer-start grid lines to its top and
left, and footer-end grid lines to its bottom and right.

In that case, if you refer to those grid lines by the area’s name, the element will still be
placed properly. Thus, the following styles have the result shown in Figure 32:

#grid {display: grid;
 grid-template-areas:
 "header header"
 "sidebar content"
 "footer footer";
 grid-template-rows: auto 1fr auto;
 grid-template-columns: 25% 75%;}
#header {grid-row: header / header; grid-column: header;}
#footer {grid-row: footer; grid-column: footer-start / footer-end;}

Figure 32. Attaching to implicit grid lines via grid-area names

You can always explicitly refer to the implicitly named grid lines, but if you just refer
to the grid area, things still work out. If you refer to a grid-line name that doesn’t cor‐
respond to a grid area, then it falls back to the behavior discussed previously. In
detail, it’s the same as saying line-name 1, so the following two are equivalent:

36 | Grid Layout

grid-column: jane / doe;
grid-column: jane 1 / doe 1;

This is why it’s risky to name grid lines the same as grid areas. Consider the following:

 grid-template-areas:
 "header header"
 "sidebar content"
 "footer footer"
 "legal legal";
 grid-template-rows: auto 1fr [footer] auto [footer];
 grid-template-columns: 25% 75%;

This explicitly sets grid lines named footer above the “footer” row and below the
“legal” row…and now there’s trouble ahead. Suppose we add this:

#footer {grid-column: footer; grid-row: footer;}

For the column lines, there’s no problem. footer gets expanded to footer / footer.
The browser looks for a grid area with that name and finds it, so it translates
footer / footer to footer-start / footer-end. The #footer element is attached
to those implicit grid lines.

For grid-row, everything starts out the same. footer becomes footer / footer,
which is translated to footer-start / footer-end. But that means the #footer will
only be as tall as the “footer” row. It will not stretch to the second explicitly named
footer grid line below the “legal” row, because the translation of footer to footer-
end (due to the match between the grid-line name and the grid-area name) takes
precedence.

The upshot of all this: it’s generally a bad idea to use the same name for grid areas and
grid lines. You might be able to get away with it in some scenarios, but you’re almost
always better off keeping your line and area names distinct, so as to avoid tripping
over name-resolution conflicts.

The Implicit Grid
Up to this point, we’ve concerned ourselves solely with explicitly defined grids: we’ve
talked about the row and column tracks we define via properties like grid-template-
columns, and how to attach grid items to the cells in those tracks.

But what happens if we try to place a grid item, or even just part of a grid item,
beyond that explicitly created grid? For example, consider the following simple grid:

#grid {display: grid;
 grid-template-rows: 2em 2em;
 grid-template-columns: repeat(6, 4em);}

Attaching Elements to the Grid | 37

Two rows, six columns. Simple enough. But suppose we define a grid item to sit in
the first column and go from the first grid line to the fourth:

.box01 {grid-column: 1; grid-row: 1 / 3;}

Now what? There are only two rows bounded by three grid lines, and we’ve told the
browser to go beyond that, from line 1 to line 4.

What happens is that another row line is created to handle the situation. This grid
line, and the new row track it creates, are both part of the implicit grid. Here are a few
examples of grid items that create implicit grid lines (and tracks) and how they’re laid
out (see Figure 33):

.box01 {grid-column: 1; grid-row: 1 / 3;}

.box02 {grid-column: 2; grid-row: 3 / span 2;}

.box03 {grid-column: 3; grid-row: span 2 / 3;}

.box04 {grid-column: 4; grid-row: span 2 / 5;}

.box05 {grid-column: 5; grid-row: span 4 / 5;}

.box06 {grid-column: 6; grid-row: -1 / span 3;}

.box07 {grid-column: 7; grid-row: span 3 / -1;}

Figure 33. Creating implicit grid lines and tracks

There’s a lot going on there, so let’s break it down. First off, the explicit grid is repre‐
sented by the light-gray box behind the various numbered boxes; all the dashed lines
represent the implicit grid.

So, what about those numbered boxes? box1 adds an extra grid line after the end of
the explicit grid, as we discussed before. box2 starts on the last line of the explicit grid,
and spans forward two lines, so it adds yet another implicit grid line. box3 ends on

38 | Grid Layout

the last explicit grid line (line 3) and spans back two lines, thus starting on the first
explicit grid line.

box4 is where things really get interesting. It ends on the fifth row line, which is to say
the second implicit grid line. It spans back three lines—and yet, it still starts on the
same grid line as box3. This happens because spans have to start counting within the
explicit grid. Once they start, they can continue on into the implicit grid (as happened
with box2), but they cannot start counting within the implicit grid.

Thus, box4 ends on row-line 5, but its span starts with grid-line 3 and counts back
two lines (span 2) to arrive at line 1. Similarly, box5 ends on line 5, and spans back
four lines, which means it starts on row-line –2. Remember: span counting must start
in the explicit grid. It doesn’t have to end there.

After those, box6 is pretty straightforward: it starts on the last explicit row line (line
3), and spans out to the sixth row line—adding yet another implicit row line. The
point of having it here is to show that negative grid-line references are with respect to
the explicit grid, and count back from its end. They do not refer to negatively indexed
implicit lines that are placed before the start of the explicit grid.

If you want to start an element on an implicit grid line before the explicit grid’s start,
then the way to do that is shown by box7: put its end line somewhere in the explicit
grid, and span back past the beginning of the explicit grid. And you may have
noticed: box7 occupies an implicit column track. The original grid was set up to
create six columns, which means seven column lines, the seventh being the end of the
explicit grid. When box7 was given grid-column: 7, that was equivalent to grid-
column: 7 / span 1 (since a missing end line is always assumed to be span 1). That
necessitated the creation of an implicit column line in order to hold the grid item in
the implicit seventh column.

Now let’s take those principles and add named grid lines to the mix. Consider the fol‐
lowing, illustrated in Figure 34:

#grid {display: grid;
 grid-template-rows: [begin] 2em [middle] 2em [end];
 grid-template-columns: repeat(5, 5em);}
.box01 {grid-column: 1; grid-row: 2 / span end 2;}
.box02 {grid-column: 2; grid-row: 2 / span final;}
.box03 {grid-column: 3; grid-row: 1 / span 3 middle;}
.box04 {grid-column: 4; grid-row: span begin 2 / end;}
.box05 {grid-column: 5; grid-row: span 2 middle / begin;}

What you can see at work there, in several of the examples, is what happens with
grid-line names in the implicit grid: every implicitly created line has the name that’s
being hunted. Take box2, for example. It’s given an end line of final, but there is no
line with that name. Thus the span-search goes to the end of the explicit grid and,

Attaching Elements to the Grid | 39

having not found the name it’s looking for, creates a new grid line, to which it attaches
the name final.

Figure 34. Named implicit grid lines and tracks

Similarly, box3 starts on the first explicit row line, and then needs to span three
middle named lines. It searches forward and finds one, then goes looking for the
other two. Not finding any, it attaches the name middle to the first implicit grid line,
and then does the same for the second implicit grid line. Thus, it ends two implicit
grid lines past the end of the explicit grid.

When you get right down to it, the implicit grid is a delightfully baroque fallback
mechanism. It’s generally best practice to stick to the explicit grid, and to make sure
the explicit grid covers everything you want to do. If you find you need another row,
don’t just run off the edge of the grid—adjust your grid template’s values instead!

Error Handling
There are a few cases that need to be covered, as they fall under the general umbrella
of “what grids do when things go pear-shaped.”

First, what if you accidentally put the start line after the end line? Say, something like
this:

grid-row-start: 5;
grid-row-end: 2;

All that happens is probably what was meant in the first place: the values are
swapped. Thus, you end up with this:

grid-row-start: 2;
grid-row-end: 5;

40 | Grid Layout

Second, what if both the start and the end lines are declared to be spans of some vari‐
ety? For example:

grid-column-start: span;
grid-column-end: span 3;

If this happens, the end value is dropped and replaced with auto. That means you’d
end up with this:

grid-column-start: span; /* 'span' is equal to 'span 1' */
grid-column-end: auto;

That would cause the grid item to have its ending edge placed automatically, accord‐
ing to the current grid flow (a subject we’ll soon explore), and the starting edge to be
placed one grid line earlier.

Third, what if the only thing directing placement of the grid item is a named span? In
other words:

grid-row-start: span footer;
grid-row-end: auto;

This is not permitted, so the span footer in this case is replaced with span 1.

Using Areas
Attaching by row lines and column lines is great, but what if you could refer to a grid
area with a single property? Behold: grid-area.

grid-area

Values: <grid-line> [/ <grid-line>]{0,3}

Initial value: See individual properties

Applies to: Grid items and absolutely positioned elements, if their containing block is a grid
container

Inherited: No

Computed value: As declared

Note: Is equivalent to the value syntax for grid-column-start et al.

Attaching Elements to the Grid | 41

Let’s start with the easier use of grid-area: assigning an element to a previously
defined grid area. Makes sense, right? Let’s bring back our old friend grid-template-
areas, put it together with grid-area and some markup, and see what magic results
(as shown in Figure 35):

#grid {display: grid;
 grid-template-areas:
 "header header header header"
 "leftside content content rightside"
 "leftside footer footer footer";}
#masthead {grid-area: header;}
#sidebar {grid-area: leftside;}
#main {grid-area: content;}
#navbar {grid-area: rightside;}
#footer {grid-area: footer;}

<div id="grid">
 <div id="masthead">…</div>
 <div id="main">…</div>
 <div id="navbar">…</div>
 <div id="sidebar">…</div>
 <div id="footer">…</div>
</div>

Figure 35. Assigning elements to grid areas

That’s all it takes: set up some named grid areas to define your layout, and then drop
grid items into them with grid-area. So simple, and yet so powerful.

As you might have noticed, the sizing of the column and row tracks was omitted
from that CSS. This was done entirely for clarity’s sake. In an actual design, the rule
probably would look more like this:

 grid-template-areas:
 "header header header header"
 "leftside content content rightside"
 "leftside footer footer footer";

42 | Grid Layout

www.allitebooks.com

http://www.allitebooks.org

 grid-template-rows: 200px 1fr 3em;
 grid-template-columns: 20em 1fr 1fr 10em;

There is another way to use grid-area that refers to grid lines instead of grid areas.
Fair warning: it’s likely to be confusing at first, for a couple of reasons.

Here’s an example of a grid template that defines some grid lines, and some grid-
area rules that reference the lines, as illustrated in Figure 36:

#grid {display: grid;
 grid-template-rows:
 [r1-start] 1fr [r1-end r2-start] 2fr [r2-end];
 grid-template-columns:
 [col-start] 1fr [col-end main-start] 1fr [main-end];}
.box01 {grid-area: r1 / main / r1 / main;}
.box02 {grid-area: r2-start / col-start / r2-end / main-end;}
.box03 {grid-area: 1 / 1 / 2 / 2;}

Figure 36. Assigning elements to grid lines

As you can see, the elements were placed as directed. Note the ordering of the grid-
line values, however. They’re listed in the order row-start, column-start, row-end,
column-end. If you diagram that in your head, you’ll quickly realize that the values go
anticlockwise around the grid item—the exact opposite of the TRBL (Top, Right, Bot‐
tom, Left) pattern we’re used to from margins, padding, borders, and so on. Further‐
more, this means the column and row references are not grouped together, but are
instead split up.

Yes, this is intentional. No, I don’t know why.

If you supply fewer than four values, the missing values are taken from those you do
supply. If there are only three values, then the missing grid-column-end is the same
as grid-column-start if it’s a name; if the start line is a number, the end line is set to
auto. The same holds true if you give only two values, except that the now-missing
grid-row-end is copied from grid-row-start if it’s a name; otherwise, it’s set
to auto.

From that, you can probably guess what happens if only one value is supplied: if it’s a
name, use it for all four values; if it’s a number, the rest are set to auto.

Attaching Elements to the Grid | 43

This one-to-four replication pattern is actually how giving a single grid-area name
translates into having the grid item fill that area. The following are equivalent:

grid-area: footer;
grid-area: footer / footer / footer / footer;

Now recall the behavior discussed in the previous section about grid-column and
grid-row: if a grid line’s name matches the name of a grid area, then it’s translated
into a -start or -end variant, as appropriate. That means the previous example is
translated to the following:

grid-area: footer-start / footer-start / footer-end / footer-end;

And that’s how a single grid-area name causes an element to be placed into the corre‐
sponding grid area.

Grid Item Overlap
One thing we’ve been very careful to do in our grid layouts thus far is to avoid over‐
lap. Rather like positioning, it’s absolutely (get it?) possible to make grid items overlap
each other. Let’s take a simple case, illustrated in Figure 37:

#grid {display: grid;
 grid-template-rows: 50% 50%;
 grid-template-columns: 50% 50%;}
.box01 {grid-area: 1 / 1 / 2 / 3;}
.box02 {grid-area: 1 / 2 / 3 / 2;}

Figure 37. Overlapping grid items

Thanks to the grid numbers that were supplied, the two grid items overlap in the
upper-right grid cell. Which is on top of the other depends on the layering behavior
discussed later, but for now, just take it as given that they do layer when overlapping.

Overlap isn’t restricted to situations involving raw grid numbers, of course. In the fol‐
lowing case, the sidebar and the footer will overlap, as shown in Figure 38. (Assuming
the footer comes later than the sidebar in the markup, then in the absence of other
styles, the footer will be on top of the sidebar.)

44 | Grid Layout

#grid {display: grid;
 grid-template-areas:
 "header header"
 "sidebar content"
 "footer footer";}
#header {grid-area: header;}
#sidebar {grid-area: sidebar / sidebar / footer-end / sidebar;}
#footer {grid-area: footer;}

Figure 38. Overlapping sidebar and footer

I bring this up in part to warn you about the possibility of overlap, and also to serve
as a transition to the next topic. It’s a feature that sets grid layout apart from position‐
ing, in that it can sometimes help avoid overlap: the concept of grid flow.

Grid Flow
For the most part, we’ve been explicitly placing grid items on the grid. If items aren’t
explicitly placed, then they’re automatically placed into the grid. Following the grid
flow in effect, an item is placed in the first area that will fit it. The simplest case is
simply filling a grid track in sequence, one grid item after another, but things can get
a lot more complex than that, expecially if there is a mixture of explicitly and auto‐
matically placed grid items—the latter must work around the former.

There are primarily two grid-flow models, row-first and column-first, though you can
enhance either by specifying a dense flow. All this is done with the property grid-
auto-flow.

grid-auto-flow

Values: [row | column] || dense

Initial value: row

Grid Flow | 45

Applies to: Grid containers

Inherited: No

Computed value: As declared

To see how these values work, consider the following markup:

<ol id="grid">
1
2
3
4
5

To that markup, let’s apply the following styles:

#grid {display: grid; width: 45em; height: 8em;
 grid-auto-flow: row;}
#grid li {grid-row: auto; grid-column: auto;}

Assuming a grid with a column line every 15 ems and a row line every 4 ems, we get
the result shown in Figure 39.

Figure 39. Row-oriented grid flow

This probably seems pretty normal, the same sort of thing you’d get if you floated all
the boxes, or if all of them were inline blocks. That’s why row is the default value.
Now, let’s try switching the grid-auto-flow value to column, as shown in Figure 40:

#grid {display: grid; width: 45em; height: 8em;
 grid-auto-flow: column;}
#grid li {grid-row: auto; grid-column: auto;}

So with grid-auto-flow: row, each row is filled in before starting on the next row.
With grid-auto-flow: column, each column is filled first.

46 | Grid Layout

Figure 40. Column-oriented grid flow

What needs to be stressed here is that the list items weren’t explicitly sized. By default,
they were resized to attach to the defined grid lines. This can be overridden by assign‐
ing explicit sizing to the elements. For example, if we make the list items be 7 ems
wide and 1.5 ems tall, we’ll get the result shown in Figure 41:

#grid {display: grid; width: 45em; height: 8em;
 grid-auto-flow: column;}
#grid li {grid-row: auto; grid-column: auto;
 width: 7em; height: 1.5em;}

Figure 41. Explicitly sized grid items

If you compare that to the previous figure, you’ll see that the corresponding grid
items start in the same place in each figure; they just don’t end in the same places.
This illustrates that what’s really placed in grid flow is grid areas, to which the grid
items are then attached.

This is important to keep in mind if you auto-flow elements that are wider than their
assigned column or taller than their assigned row, as can very easily happen when
turning images or other intrinsically sized elements into grid items. Let’s say we want
to put a bunch of images, each a different size, into a grid that’s set up to have a col‐
umn line every 50 horizontal pixels, and a row line every 50 vertical pixels. This grid
is illustrated in Figure 42, along with the results of flowing a series of images into that
grid by either row or column.

#grid {display: grid;
 grid-template-rows: repeat(3, 50px);
 grid-template-columns: repeat(4, 50px);
 grid-auto-rows: 50px;
 grid-auto-columns: 50px;
}
img {grid-row: auto; grid-column: auto;}

Grid Flow | 47

Figure 42. Flowing images in grids

Notice how some of the images overlap others? That’s because each image is attached
to the next grid line in the flow, without taking into account the presence of other
grid items. We didn’t set up images to span more than one grid track when they
needed it, so overlap occurred.

This can be managed with class names or other identifiers. We could class images as
tall or wide (or both) and specify that they get more grid tracks. Here’s some CSS to
add to the previous example, with the result shown in Figure 43:

img.wide {grid-column: auto / span 2;}
img.tall {grid-row: auto / span 2;}

Figure 43. Giving images more track space

48 | Grid Layout

This does cause the images to keep spilling down the page, but there’s no overlapping.

However, notice how there are gaps in that last grid? That happened because the
placement of some grid items across grid lines didn’t leave enough room for other
items in the flow. In order to illustrate this, and the two flow patterns, more clearly,
let’s try an example with numbered boxes (Figure 44).

Figure 44. Illustrating flow patterns

Follow across the rows of the first grid, counting along with the numbers. In this par‐
ticular flow, the grid items are laid out almost as if they were leftward floats. Almost,
but not quite: notice that grid item 13 is actually to the left of grid item 11. That
would never happen with floats, but it can with grid flow. The way row flow (if we
may call it that) works is that you go across each row from left to right, and if there’s
room for a grid item, you put it there. If a grid cell has been occupied by another grid
item, you skip over it. So the cell next to item 10 didn’t get filled, because there wasn’t
room for item 11. Item 13 went to the left of item 11 because there was room for it
there when the row was reached.

The same basic mechanisms hold true for column flow, except in this case you work
from top to bottom. Thus, the cell below item 9 is empty because item 10 wouldn’t fit
there. It went into the next column and spanned four grid cells. The items after it,
since they were just one grid cell in size, filled in the cells after it in column order.

Grid flow works left-to-right, top-to-bottom in languages that have
that writing pattern. In right-to-left languages, such as Arabic and
Hebrew, the row-oriented flow would be right-to-left, not left-to-
right.

Grid Flow | 49

If you were just now wishing for a way to pack grid items as densely as possible,
regardless of how that affected the ordering, good news: you can! Just add the key‐
word dense to your grid-auto-flow value, and that’s exactly what will happen. We
can see the result in Figure 45, which shows the results of grid-auto-flow: row
dense and grid-auto-flow: dense column side by side.

Figure 45. Illustrating dense flow patterns

In the first grid, item 12 appears in the row above item 11 because there was a
cell that fit it. For the same reason, item 11 appears to the left of item 10 in the second
grid.

In effect, what happens with dense grid flow is that for each grid item, the browser
scans through the entire grid in the given flow direction (row or column), starting
from the flow’s starting point (the top-left corner, in LTR—left-to-right—languages),
until it finds a place where that grid item will fit. This can make things like photo
galleries more compact, and works great as long as you don’t have a specific order in
which the images need to appear.

Now that we’ve explored grid flow, I have a confession to make: in order to make the
last couple of grid items look right, I included some CSS that I didn’t show you.
Without it, the items hanging off the edge of the grid would have looked quite a bit
different than the other items—much shorter in row-oriented flow, and much nar‐
rower in column-oriented flow. We’ll see why, and the CSS I used, in the next section.

50 | Grid Layout

Automatic Grid Lines
So far, we’ve almost entirely seen grid items placed into a grid that was explicitly
defined. But in the last section we had situations where grid items ran off the edge of
the explicitly defined grid. What happens when a grid item goes off the edge? Rows or
columns are added as needed to satisfy the layout directives of the items in question
(see “The Implicit Grid” on page 37). So, if an item with a row span of 3 is added after
the end of a row-oriented grid, three new rows are added after the explicit grid.

By default, these automatically added rows are the absolute minimum size needed. If
you want to exert a little more control over their sizing, then grid-auto-rows and
grid-auto-columns are for you.

grid-auto-rows, grid-auto-columns

Values: <track-breadth> | minmax(<track-breadth> , <track-breadth>)

Initial value: auto

Applies to: Grid containers

Inherited: No

Computed value: Depends on the specific track sizing

Note <track-breadth> is a stand-in for <length> | <percentage> | <flex> | min-
content | max-content

For any automatically created row or column tracks, you can provide a single track
size or a minmaxed pair of track sizes. Let’s take a look at a reduced version of the
grid-flow example from the previous section: we’ll set up a 2 x 2 grid, and try to put
five items into it. In fact, let’s do it twice: once with grid-auto-rows, and once
without, as illustrated in Figure 46:

.grid {display: grid;
 grid-template-rows: 80px 80px;
 grid-template-columns: 80px 80px;}
#g1 {grid-auto-rows: 80px;}

As you can see, without sizing the automatically created row, the grid item is placed
in a row that’s exactly as tall as the grid item’s content, and not a pixel more. It’s still

Automatic Grid Lines | 51

just as wide as the column into which it’s placed, because that has a size (80px). The
row, lacking an explicit height, defaults to auto, with the result shown.

Figure 46. Grids with and without auto-row sizing

If we flip it around to columns, the same basic principles apply (see Figure 47):

.grid {display: grid; grid-auto-flow: column;
 grid-template-rows: 80px 80px;
 grid-template-columns: 80px 80px;}
#g1 {grid-auto-columns: 80px;}

Figure 47. Grids with and without auto-column sizing

52 | Grid Layout

In this case, because the flow is column-oriented, the last grid item is placed into a
new column past the end of the explicit grid. In the second grid, where there’s no
grid-auto-columns, that fifth item is as tall as its row (80px), but has an auto width,
so it’s just as wide as it needs to be and no wider. Of course, if a sixth item were added
and it had wider content, then the column would be sized to fit that content, thus
widening the fifth item.

So now you know what I used in the grid-auto-flow figures in the previous section:
I silently made the auto-rows and auto-columns the same size as the explicitly sized
columns, in order to not have the last couple of items look weird. Let’s bring back one
of those figures, only this time the grid-auto-rows and grid-auto-columns styles
will be removed. As you can see in Figure 48, the last few items in each grid are
shorter or narrower than the rest, due to the lack of auto-track sizing.

Figure 48. A previous figure with auto-track sizing removed

And now you know…the rest of the story.

The grid Shorthand
At long last, we’ve come to the shorthand property grid. It might just surprise you,
though, because it’s not like other shorthand properties.

The grid Shorthand | 53

grid

Values: none | subgrid | [<grid-template-rows> / <grid-template-columns>] | [<line-
names>? <string> <track-size>? <line-names>?]+ [/ <track-list>]? | [<grid-
auto-flow> [<grid-auto-rows> [/ <grid-auto-columns>]?]?]]

Initial value: See individual properties

Applies to: Grid containers

Inherited: No

Computed value: See individual properties

The syntax is a little bit migraine-inducing, I admit, but we’ll step through it a piece at
a time.

Let’s get to the elephant in the room right away: grid allows you to either define a
grid template or you can set the grid’s flow and auto-track sizing in a compact syntax.
You can’t do both at the same time.

Furthermore, whichever you don’t define is reset to its defaults, as is normal for a
shorthand property. So if you define the grid template, then the flow and auto tracks
will be returned to their default values. This includes grid gutters, a topic we haven’t
even covered yet. You can’t set the gutters with grid, but it will reset them anyway.

Yes, this is intentional. No, I don’t know why.

So let’s talk about creating a grid template using grid. The values can get fiendishly
complex, and take on some fascinating patterns, but can be very handy. As an exam‐
ple, the following rule is equivalent to the set of rules that follows it:

grid:
 "header header header header" 3em
 ". content sidebar ." 1fr
 "footer footer footer footer" 5em /
 2em 3fr minmax(10em,1fr) 2em;

grid-template-areas:
 "header header header header"
 ". content sidebar ."
 "footer footer footer footer";
grid-template-rows: 3em 1fr 5em;
grid-template-columns: 2em 3fr minmax(10em,1fr) 2em;

54 | Grid Layout

Notice how the value of grid-template-rows is broken up and scattered around the
strings of grid-template-areas. That’s how row sizing is handled in grid when you
have grid-area strings present. Take those strings out, and you end up with the fol‐
lowing:

grid:
 3em 1fr 5em / 2em 3fr minmax(10em,1fr) 2em;

In other words, the row tracks are separated by a solidus (/) from the column tracks.

Remember that with grid, undeclared shorthands are reset to their defaults. That
means the following two rules are equivalent:

#layout {display: grid;
 grid: 3em 1fr 5em / 2em 3fr minmax(10em,1fr) 2em;}

#layout {display: grid;
 grid: 3em 1fr 5em / 2em 3fr minmax(10em,1fr) 2em;
 grid-auto-rows: auto;
 grid-auto-columns: auto;
 grid-auto-flow: row;}

Therefore, make sure your grid declaration comes before anything else related to
defining the grid. That means that if we wanted a dense column flow, we’d write
something like this:

#layout {display: grid;
 grid: 3em 1fr 5em / 2em 3fr minmax(10em,1fr) 2em;
 grid-auto-flow: dense column;}

Now, let’s bring the named grid areas back, and add some extra row grid-line names
to the mix. A named grid line that goes above a row track is written before the string,
and a grid line that goes below the row track comes after the string and any track siz‐
ing. So let’s say we want to add main-start and main-stop above and below the mid‐
dle row, and page-end at the very bottom:

grid:
 "header header header header" 3em
 [main-start] ". content sidebar ." 1fr [main-stop]
 "footer footer footer footer" 5em [page-end] /
 2em 3fr minmax(10em,1fr) 2em;

That creates the grid shown in Figure 49, with the implicitly created named grid lines
(e.g., footer-start) along with the explicitly named grid lines we wrote into the CSS.

You can see how grid can get very complicated very quickly. It’s a very powerful syn‐
tax, and it’s surprisingly easy to get used to once you’ve had just a bit of practice. On
the other hand, it’s also easy to get things wrong and have the entire value be invalid,
thus preventing the appearance of any grid at all.

The grid Shorthand | 55

Figure 49. Creating a grid with the grid shorthand

For the other use of grid, it’s a merging of grid-auto-flow, grid-auto-rows, and
grid-auto-columns. The following rules are equivalent:

#layout {grid-auto-flow: dense rows;
 grid-auto-rows: 2em;
 grid-auto-columns: minmax(1em,3em);}

#layout {grid: dense rows 2em / minmax(1em,3em);}

That’s certainly a lot less typing for the same result! But once again, I have to remind
you: if you write this, then all the column and row track properties will be set to their
defaults. Thus, the following rules are equivalent:

#layout {grid: dense rows 2em / minmax(1em,3em);}

#layout {grid: dense rows 2em / minmax(1em,3em);
 grid-template-rows: auto;
 grid-template-columns: auto;}

So once again, it’s important to make sure your shorthand comes before any proper‐
ties it might otherwise override.

Subgrids
There’s another possible value for grid, which is subgrid. It might be used something
like this:

#grid {display: grid;
 grid: repeat(auto-fill, 2em) / repeat(10, 1% 8% 1%);}
.module {display: grid;
 grid: subgrid;}

56 | Grid Layout

What happens inside each module element is that its grid items (i.e., its child ele‐
ments) use the grid defined by #grid to align themselves.

This is potentially really useful, because you can imagine having a module that spans
three of its parent’s column patterns and containing child elements that are aligned to
and laid out using the “master” grid. This is illustrated in Figure 50.

Figure 50. Aligning subgridded items

The problem is that, as of this writing, subgrid is an “at-risk” feature of grid layout,
and may be dropped entirely. That’s why it rates just this small section, instead of a
more comprehensive examination.

Opening Grid Spaces
So far, we’ve seen a lot of grid items jammed right up against one another, with no
space between them. There are a number of ways to mitigate this, as we’ll talk about
in this section, starting with gutters.

Grid Gutters (or Gaps)
Simply put, a gutter is a space between two grid tracks. It’s created as if by expanding
the grid line between them to have actual width. It’s much like border-spacing in
table styling—both because it creates space between grid cells and because you can set
only a single spacing value for each axis, via the properties grid-row-gap and grid-
column-gap.

grid-row-gap, grid-column-gap

Values: <length>

Initial value: 0

Applies to: Grid containers

Inherited: No

Opening Grid Spaces | 57

Computed value: An absolute length

Right up front: as the value syntax shows, you can supply only a length for these
properties; what it’s less clear about is that the lengths must be non-negative. It’s not
possible to supply a percentage, a fractional value via fr, nor a minmax of some sort.
If you want your columns to be separated by 1 em, then it’s simple enough: grid-
column-gap: 1em. That’s pretty much as fancy as it gets. All the columns in the grid
will be pushed apart by 1 em, as illustrated in Figure 51.

#grid {display: grid;
 grid-template-rows: 5em 5em;
 grid-template-columns: 15% 1fr 1fr;
 grid-column-gap: 1em;}

Figure 51. Creating column gutters

In terms of sizing the tracks in a grid, gutters are treated as if they’re grid tracks.
Thus, given the following styles, the fractional grid rows will each be 140 pixels tall.

#grid {display: grid; height: 500px;
 grid-template-rows: 100px 1fr 1fr 75px;
 grid-row-gap: 15px;}

We get 140 pixels for each fraction row’s height because there are a total of 500 pixels
of height. From that, we subtract the two row tracks (100 and 75) to get 325. From
that result, we subtract the three 15-pixel gutters, which totals 45 pixels; this yields
280 pixels. That divided in half (because the fractional rows have equal fractions) gets
us 140 pixels each. If the gutter value were increased to 25px, then the fractional rows
would have 250 pixels to divide between them, making each 125 pixels tall.

Of course, track sizing can be much more complicated than this; the example used all
pixels because it makes the math simple. You can always mix units however you’d like,
including minmaxing your actual grid tracks. This is one of the main strengths of
grid layout.

58 | Grid Layout

Grid gutters can be changed from their declared size by the effects
of align-content and justify-content. This will be covered in a
later section.

There is, as you might have already suspected, a shorthand that combines row and
column gap lengths into a single property.

grid-gap

Values: <grid-row-gap> <grid-column-gap>

Initial value: 0 0

Applies to: Grid containers

Inherited: No

Computed value: As declared

Not a lot more to say than that, really: supply two non-negative lengths, and you’ll
have defined the row gutters and column gutters, in that order. Here’s an example, as
shown in Figure 52:

#grid {display: grid;
 grid-template-rows: 5em 5em;
 grid-template-columns: 15% 1fr 1fr;
 grid-gap: 12px 2em;}

Figure 52. Defining grid gutters

Opening Grid Spaces | 59

Grid Items and the Box Model
Now we can create a grid, attach items to the grid, and even create gutters between
the grid tracks. But what happens if we style the element that’s attached to the grid
with, say, margins? Or if it’s absolutely positioned? How do these things interact with
the grid?

Let’s take margins first. The basic principle at work is that an element is attached to
the grid by its margin edges. That means you can push the visible parts of the element
inward from the grid area it occupies by setting positive margins—and pull it out‐
ward with negative margins. For example, these styles will have the result shown in
Figure 53:

#grid {display: grid;
 grid-template-rows: repeat(2, 100px);
 grid-template-columns: repeat(2, 200px);}
.box02 {margin: 25px;}
.box03 {margin: -25px 0;}

Figure 53. Grid items with margins

This worked as it did because the items had both their width and height set to auto,
so they could be stretched as needed to make everything work out. If width and/or
height have non-auto values, then they’ll end up overriding margins to make all the
math work out. This is much like what happens with right and left margins when ele‐
ment sizing is overconstrained: eventually, one of the margins gets overridden.

60 | Grid Layout

Consider an element with the following styles placed into a 200-pixel-wide by 100-
pixel-tall grid area:

.exel {width: 150px; height: 100px;
 padding: 0; border: 0;
 margin: 10px;}

Going across the element first, it has 10 pixels of margin to either side, and its width
is 150px, giving a total of 170 pixels. Something’s gotta give, and in this case it’s the
right margin (in left-to-right languages), which is changed to 40px to make every‐
thing work—10 pixels on the left margin, 150 pixels on the content box, and 40 pixels
on the right margin equals the 200 pixels of the grid area’s width.

On the vertical axis, the bottom margin is reset to -10px. This compensates for the
top margin and content height totalling 110 pixels, when the grid area is only 100 pix‐
els tall.

Margins on grid items are ignored when calculating grid-track
sizes. That means that no matter how big or small you make a grid
item’s margins, it won’t change the sizing of a min-content column,
for example, nor will increasing the margins on a grid item cause
fr-sized grid tracks to change size.

As with block layout, you can selectively use auto margins to decide which margin
will have its value changed to fit. Suppose we wanted the grid item to align to the
right of its grid area. By setting the item’s left margin to auto, that would happen:

.exel {width: 150px; height: 100px;
 padding: 0; border: 0;
 margin: 10px; margin-left: auto;}

Now the element will add up 160 pixels for the right margin and content box, and
then give the difference between that and the grid area’s width to the left margin,
since it’s been explicitly set to auto. This has the result shown in Figure 54, where
there are 10 pixels of margin on each side of the exel item, except the left margin,
which is (as we just calculated) 40 pixels.

Figure 54. Using auto margins to align items

Opening Grid Spaces | 61

That might seem familiar from block-level layout, where you can use auto left and
right margins to center an element in its containing block, as long as you’ve given it
an explicit width. Where grid layout differs is that you can do the same thing on the
vertical axis; that is, given an element with an absolute height, you can vertically cen‐
ter it by setting the top and bottom margins to auto. Figure 55 shows a variety of
auto margin effects on elements that naturally have explicit heights and widths:
images.

.i01 {margin: 10px;}

.i02 {margin: 10px; margin-left: auto;}

.i03 {margin: auto 10px auto auto;}

.i04 {margin: auto;}

.i05 {margin: auto auto 0 0;}

.i06 {margin: 0 auto;}

Figure 55. Various auto-margin alignments

There are other ways to align grid items, notably with properties
like justify-self, which don’t depend on having explicit height
and width values. These will be covered in the next section.

62 | Grid Layout

This is a lot like how margins and element sizes operate when elements are absolutely
positioned. Which leads us to the next question: what if a grid item is also absolutely
positioned? For example:

.exel {grid-row: 2 / 4; grid-column: 2 / 5;
 position: absolute;
 top: 1em; bottom: 15%;
 left: 35px; right: 1rem;}

The answer is actually pretty elegant: if you’ve defined grid-line starts and ends, that
grid area is used as the containing block and positioning context, and the grid item is
positioned within that context. That means the offset properties (top et al.) are calcu‐
lated in relation to the declared grid area. Thus, the previous CSS would have the
result shown in Figure 56.

Figure 56. Absolutely positioning a grid item

Everything you know about absolutely positioned elements regarding offsets, mar‐
gins, element sizing, and so on applies within this formatting context. It’s just that in
this case, the formatting context is defined by a grid area.

There is a wrinkle that absolute positioning introduces: it changes the behavior of the
auto value for grid-line properties. If, for example, you set grid-column-end: auto
for an absolutely positioned grid item, the ending grid line will actually create a new
and special grid line that corresponds to the padding edge of the grid container itself.
This is true even if the explicit grid is smaller than the grid container, as can happen.

Opening Grid Spaces | 63

To see this in action, we’ll modify the previous example as follows, with the result
shown in Figure 57:

.exel {grid-row: 1 / auto; grid-column: 2 / auto;
 position: absolute;
 top: 1em; bottom: 15%;
 left: 35px; right: 1rem;}

Figure 57. Auto values and absolute positioning

Note how the positioning context now starts at the top of the grid container, and
stretches all the way to the right edge of the grid container, even though the grid itself
ends well short of that edge.

One implication of this behavior is that if you absolutely position an element that’s a
grid item, but you don’t give it any gridline start or end values, then it will use the
inner padding edge of the grid container as its positioning context. It does this
without having to set the grid container to position: relative, or any of the other
usual tricks to establish a positioning context.

Note that absolutely positioned grid items do not participate in figuring out grid cell
and track sizing. As far as the grid layout is concerned, the positioned grid item
doesn’t exist. Once the grid is set up, then the grid item is positioned with respect to
the grid lines that define its positioning context.

64 | Grid Layout

As of early 2016, browsers did not support any of this absolute
positioning behavior. The only way to re-create it was to relatively
position the element establishing the grid area, and absolutely posi‐
tion a child element within it. That’s how the absolute-positioning
figures in this section were created. The special auto behavior was
also not supported.

Aligning and Grids
If you have any familiarity with flexbox, you’re probably aware of the various align‐
ment properties and their values. Those same properties are also available in grid lay‐
out, and have very similar effects.

First, a quick refresher. The properties that are available and what they affect are sum‐
marized in Table 1.

Table 1. Justify and align values

Property Aligns Applied to

justify-self A grid item in the inline (horizontal) direction Grid items

justify-items All grid items in the inline (horizontal) direction Grid container

justify-content The entire grid in the inline (horizontal) direction Grid container

align-self A grid item in the block (vertical) direction Grid items

align-items All grid items in the block (vertical) direction Grid container

align-content The entire grid in the block (vertical) direction Grid container

As Table 1 shows, the various justify-* properties change alignment along the
inline axis—in English, this will be the horizontal direction. The difference is whether
a property applies to a single grid item, all the grid items in a grid, or the entire grid.
Similarly, the align-* properties affect alignment along the block axis; in English,
this is the vertical direction.

Aligning and Justifying Individual Items
It’s easiest to start with the *-self properties, because we can have one grid show var‐
ious justify-self property values, while a second grid shows the effects of those
same values when used by align-self. (See Figure 58.)

Aligning and Grids | 65

Figure 58. Self alignment in the inline and block directions

Each grid item in Figure 58 is shown with its grid area (the dashed blue line) and a
label identifying the property value that’s applied to it. Each deserves a bit of com‐
mentary.

First, though, realize that for all of these values, any element that doesn’t have an
explicit width or height will “shrink-wrap” its content, instead of using the default
grid-item behavior of filling out the entire grid area.

start and end cause the grid item to be aligned to the start or end edge of its grid
area, which makes sense. Similarly, center centers the grid item within its area along
the alignment axis, without the need to declare margins or any other properties,
including height and width.

left and right have the expected results for horizontal alignment, but if they’re
applied to elements via align-self (which is vertical alignment), they’re treated
as start.

self-start and self-end are more interesting. self-start aligns a grid item with
the grid-area edge that corresponds to the grid item’s start edge. So in Figure 58, the
self-start and self-end boxes were set to direction: rtl. That set them to use
right-to-left language direction, meaning their start edges were their right edges, and
their end edges their left. You can see in the first grid that this right-aligned self-
start and left-aligned self-end. In the second grid, however, the RTL direction is
irrelevant to block-axis alignment. Thus, self-start was treated as start, and self-
end was treated as end.

The last value, stretch, is interesting. To understand it, notice how the other boxes in
each grid “shrink-wrap” themselves to their content. stretch, on the other hand,
directs the element to stretch from edge to edge in the given direction—align-self:

stretch causes the grid item to stretch vertically, and justify-self: stretch causes
horizontal stretching. This is as you might expect, but bear in mind that it works only

66 | Grid Layout

if the element’s size properties are set to auto. Thus, given the following styles, the
first example will stretch vertically, but the second will not:

.exel01 {align-self: stretch; height: auto;}

.exel02 {align-self: stretch; height: 50%;}

Because the second example sets a height value that isn’t auto (which is the default
value), it cannot be resized by stretch. The same holds true for justify-self and
width.

There are two more values that can be used to align grid items, but they are suffi‐
ciently interesting to merit their own explanation. These permit the alignment of a
grid item’s first or last baseline with the highest or lowest baseline in the grid track.
For example, suppose you wanted a grid item to be aligned so the baseline of its last
line was aligned with the last baseline in the tallest grid item sharing its row track.
That would look like the following:

.exel {align-self: last-baseline;}

Conversely, to align its first baseline with the lowest first baseline in the same row
track, you’d say this:

.exel {align-self: baseline;}

As of early 2016, no browsers supported baseline and last-
baseline alignment in grid layout.

In a situation where a grid element doesn’t have a baseline, or it’s asked to baseline-
align itself in a direction where baselines can’t be compared, then baseline is treated
as start and last-baseline is treated as end.

There are two values that were intentionally skipped in this section:
flex-start and flex-end. These values are supposed to be used
only in flexbox layout, and are defined to be equivalent to start
and end in any other layout context, including grid layout.

Aligning and Justifying All Items
Now let’s consider align-items and justify-items. These properties accept all the
same values we saw in the previous section, and have the same effect, except they
apply to all grid items in a given grid container, and must be applied to a grid con‐
tainer instead of to individual grid items.

Aligning and Grids | 67

Thus, you could set all of the grid items in a grid to be center-aligned within their
grid areas as follows, with a result like that depicted in Figure 59:

#grid {display: grid;
 align-items: center; justify-items: center;}

Figure 59. Centering all the grid items

As you can see, that horizontally and vertically centers every grid item within its
given grid area. Furthermore, it causes any grid item without an explicit width and
height to “shrink-wrap” its content rather than stretch out to fill their grid area. If a
grid item has an explicit height and width, then those will be honored, and the item
centered within its grid area.

Beyond aligning and justifying every grid item, it’s possible to distribute the grid
items, or even to justify or align the entire grid, using align-content and justify-
content. There is a small set of distributive values for these properties. Figure 60
illustrates the effects of each value as applied to justify-content, with each grid
sharing the following styles:

.grid {display: grid; padding: 0.5em; margin: 0.5em 1em; width: auto;
 grid-gap: 0.75em 0.5em; border: 1px solid;
 grid-template-rows: 4em;
 grid-template-columns: repeat(5, 6em);}

68 | Grid Layout

Figure 60. Distributing grid items horizontally

This works just as well in column tracks as it does in row tracks, as Figure 61 illus‐
trates, as long as you switch to align-content. This time, the grids all share these
styles:

.grid {display: grid; padding: 0.5em;
 grid-gap: 0.75em 0.5em; border: 1px solid;
 grid-template-rows: repeat(4, 3em);
 grid-template-columns: 5em;}

The way this distribution works is that the grid tracks, including any gutters, are all
sized as usual. Then, if there is any leftover space within the grid container—that is, if
the grid tracks don’t reach all the way from one edge of the grid container to the other
—then the remaining space is distributed according to the value of justify-content
(in the horizontal) or align-content (in the vertical).

This space distribution is carried out by resizing the grid gutters. If there are no
declared gutters, there will be gutters. If there are already gutters, their sizes are
altered as required to distribute the grid tracks.

Note that because space is distributed only when the tracks don’t fill out the grid con‐
tainer, the gutters can only increase in size. If the tracks are larger than the container,
which can easily happen, there is no leftover space to distribute (negative space turns
out to be indivisible).

There is another distribution value, very new as of this writing, which wasn’t shown
in the previous figures. stretch takes any leftover space and applies it equally to the
grid tracks, not the gutters. So if there are 400 pixels of leftover space and eight grid
tracks, each grid track is increased by 50 pixels. The grid tracks are not increased pro‐
portionally, but equally. As of early 2016, there was no browser support for this value
in terms of grid distribution.

Aligning and Grids | 69

Figure 61. Distributing grid items vertically

We’ll round out this section with examples of justifying, as opposed to distributing,
grid tracks. Figure 62 shows the possibilities when justifying horizontally.

Figure 62. Justifying the grid horizontally

In these cases, the set of grid tracks is taken as a single unit, and justified by the value
of justify-content. That alignment does not affect the alignment of individual grid

70 | Grid Layout

items; thus, you could end-justify the whole grid with justify-content: end while
having individual grid items be left-, center-, or start-justified (among other options)
within their grid areas.

As you might expect by now, being able to justify-content horizontally means you
can align-content vertically. Figure 63 shows each value in action.

Figure 63. Aligning the grid vertically

Of course, left and right don’t make sense in a vertical context, so they’re treated as
start. The others have the effect you’d expect from their names.

Layering and Ordering
As we saw in a previous section, it’s entirely possible to have grid items overlap each
other, whether because negative margins are used to pull a grid item beyond the edges
of its grid area, or simply because the grid areas of two different grid items share grid
cells. By default, the grid items will visually overlap in document source order: grid
items later in the document source will appear in front of grid items earlier in the
document source. Thus we see the following result in what’s depicted in Figure 64.
(Assume the number in each class name represents the grid item’s source order.)

#grid {display: grid; width: 80%; height: 20em;
 grid-rows: repeat(10, 1fr); grid-columns: repeat(10, 1fr);}
.box01 {grid-row: 1 / span 4; grid-column: 1 / span 4;}
.box02 {grid-row: 4 / span 4; grid-column: 4 / span 4;}
.box03 {grid-row: 7 / span 4; grid-column: 7 / span 4;}
.box04 {grid-row: 4 / span 7; grid-column: 3 / span 2;}
.box05 {grid-row: 2 / span 3; grid-column: 4 / span 5;}

Layering and Ordering | 71

Figure 64. Grid items overlapping in source order

If you want to assert your own stacking order, then z-index is here to help. Just as in
positioning, z-index places elements relative to each other on the z-axis, which is
perpendicular to the display surface. Positive values are closer to you, and negative
values further away. So to bring the second box to the “top,” as it were, all you need is
to give it a z-index value higher than any other (with the result shown in Figure 65):

.box02 {z-index: 10;}

Figure 65. Elevating a grid item

Another way you can affect the ordering of grid items is by using the order property.
Its effect is essentially the same as it is in flexbox—you can change the order of grid
items within a grid track by giving them order values. This affects not only place‐
ment within the track, but also paint order if they should overlap. For example, we
could change the previous example from z-index to order, as shown here, and get
the same result shown in Figure 65:

.box02 {order: 10;}

In this case, box02 appears “on top of ” the other grid items because its order places it
after the rest of them. Thus, it’s drawn last. Similarly, if those grid items were all

72 | Grid Layout

placed in sequence in a grid track, the order value for box02 would put it at the end
of the sequence. This is depicted in Figure 66.

Figure 66. Changing grid-item order

Remember that just because you can rearrange the order of grid items this way,
it doesn’t necessarily mean you should. As the Grid Layout specification says (section
4.2):

As with reordering flex items, the order property must only be used when the visual
order needs to be out-of-sync with the speech and navigation order; otherwise the
underlying document source should be reordered instead.

So the only reason to use order to rearrange grid item layout is if you need to have
the document source in one order and layout in the other. This is already easily possi‐
ble by assigning grid items to areas that don’t match source order, of course.

This is not to say that order is useless and should always be shunned; there may well
be times it makes sense. But unless you find yourself nearly forced into using it by
specific circumstances, think very hard about whether it’s the best solution.

Summary
Grid layout is complex and powerful, so don’t be discouraged if you feel over‐
whelmed. It takes some time to get used to how grid operates, especially since so
many of its features are nothing like what we’ve dealt with before. Much of those fea‐
tures’ power comes directly from their novelty—but like any powerful tool, it can be
difficult and frustrating to learn to use. I got frustrated and confused as I wrote about
grid, going down blind alleys and falling victim to two decades of instincts that had
been honed on a layout-less CSS.

I hope I was able to steer you past some of those pitfalls, but still, remember the
wisdom of Master Yoda: “You must unlearn what you have learned.” When coming to
grid layout, there has never been greater need to put aside what you think you
know about layout and learn anew. Over time, your patience and persistence will be
rewarded.

Summary | 73

https://www.w3.org/TR/css-grid-1/#order-property

About the Author
Eric A. Meyer has been working with the Web since late 1993 and is an internation‐
ally recognized expert on the subjects of HTML, CSS, and web standards. A widely
read author, he is also the founder of Complex Spiral Consulting, which counts
among its clients America Online; Apple Computer, Inc.; Wells Fargo Bank; and Mac‐
romedia, which described Eric as “a critical partner in our efforts to transform Mac‐
romedia Dreamweaver MX 2004 into a revolutionary tool for CSS-based design.”

Beginning in early 1994, Eric was the visual designer and campus web coordinator for
the Case Western Reserve University website, where he also authored a widely
acclaimed series of three HTML tutorials and was project coordinator for the online
version of the Encyclopedia of Cleveland History and the Dictionary of Cleveland Biog‐
raphy, the first encyclopedia of urban history published fully and freely on the Web.

Author of Eric Meyer on CSS and More Eric Meyer on CSS (New Riders), CSS: The
Definitive Guide (O’Reilly), and CSS 2.0 Programmer’s Reference (Osborne/McGraw-
Hill), as well as numerous articles for the O’Reilly Network, Web Techniques, and
Web Review, Eric also created the CSS Browser Compatibility Charts and coordinated
the authoring and creation of the W3C’s official CSS Test Suite. He has lectured to a
wide variety of organizations, including Los Alamos National Laboratory, the New
York Public Library, Cornell University, and the University of Northern Iowa. Eric
has also delivered addresses and technical presentations at numerous conferences,
among them An Event Apart (which he cofounded), the IW3C2 WWW series, Web
Design World, CMP, SXSW, the User Interface conference series, and The Other
Dreamweaver Conference.

In his personal time, Eric acts as list chaperone of the highly active css-discuss mail‐
ing list, which he cofounded with John Allsopp of Western Civilisation, and which is
now supported by evolt.org. Eric lives in Cleveland, Ohio, which is a much nicer city
than you’ve been led to believe. For nine years he was the host of “Your Father’s
Oldsmobile,” a big-band radio show heard weekly on WRUW 91.1 FM in Cleveland.

You can find more detailed information on Eric’s personal web page.

Colophon
The animals on the cover of Grid Layout in CSS are salmon (salmonidae), which is a
family of fish consisting of many different species. Two of the most common salmon
are the Pacific salmon and the Atlantic salmon.

Pacific salmon live in the northern Pacific Ocean off the coasts of North America and
Asia. There are five subspecies of Pacific salmon, with an average weight of 10 to 30
pounds. Pacific salmon are born in the fall in freshwater stream gravel beds, where

http://www.complexspiral.com
http://bit.ly/css-tdg-3e
http://bit.ly/css-tdg-3e
http://www.css-discuss.org
http://www.css-discuss.org
http://evolt.org
http://www.meyerweb.com/eric

they incubate through the winter and emerge as inch-long fish. They live for a year or
two in streams or lakes and then head downstream to the ocean. There they live for a
few years, before heading back upstream to their exact place of birth to spawn and
then die.

Atlantic salmon live in the northern Atlantic Ocean off the coasts of North America
and Europe. There are many subspecies of Atlantic salmon, including the trout and
the char. Their average weight is 10 to 20 pounds. The Atlantic salmon family has a
life cycle similar to that of its Pacific cousins, and also travels from freshwater gravel
beds to the sea. A major difference between the two, however, is that the Atlantic sal‐
mon does not die after spawning; it can return to the ocean and then return to the
stream to spawn again, usually two or three times.

Salmon, in general, are graceful, silver-colored fish with spots on their backs and fins.
Their diet consists of plankton, insect larvae, shrimp, and smaller fish. Their unusu‐
ally keen sense of smell is thought to help them navigate from the ocean back to the
exact spot of their birth, upstream past many obstacles. Some species of salmon
remain landlocked, living their entire lives in freshwater.

Salmon are an important part of the ecosystem, as their decaying bodies provide fer‐
tilizer for streambeds. Their numbers have been dwindling over the years, however.
Factors in the declining salmon population include habitat destruction, fishing, dams
that block spawning paths, acid rain, droughts, floods, and pollution.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

www.allitebooks.com

http://www.allitebooks.org

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us

	Grid Layout
	Creating a Grid Container
	Basic Grid Terminology
	Placing Grid Lines
	Fixed-Width Grid Tracks
	Flexible Grid Tracks
	Repeating Grid Lines
	Grid Areas

	Attaching Elements to the Grid
	Using Column and Row Lines
	Row and Column Shorthands
	The Implicit Grid
	Error Handling
	Using Areas
	Grid Item Overlap

	Grid Flow
	Automatic Grid Lines
	The grid Shorthand
	Subgrids

	Opening Grid Spaces
	Grid Gutters (or Gaps)
	Grid Items and the Box Model

	Aligning and Grids
	Aligning and Justifying Individual Items
	Aligning and Justifying All Items

	Layering and Ordering
	Summary

	About the Author

