
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

www.dummies.com
www.dummies.com
www.dummies.com/cheatsheet/html5canvas
http://www.allitebooks.org

HTML5 Canvas
FOR

DUMmIES
‰

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

by Don Cowan

HTML5 Canvas
FOR

DUMmIES
‰

www.allitebooks.com

http://www.allitebooks.org

HTML5 Canvas For Dummies®

Published by
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey
Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.
Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!,
The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affili-
ates in the United States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMI-
TATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTAND-
ING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL
BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMA-
TION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READ-
ERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.
For technical support, please visit www.wiley.com/techsupport.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.
Library of Congress Control Number is available from the publisher.
ISBN 978-1-118-38535-7 (pbk); ISBN 978-1-118-41747-8 (ebk); ISBN 978-1-118-42082-9 (ebk);
978-1-118-45964-5 (ebk)
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

About the Author
Don Cowan is a software designer, developer, and author with a history of
pioneering work in a number of computing and mobile technologies, includ-
ing programming languages, database systems, software architecture, graph-
ics, and user interface. He’s currently focused on developing software and
writing books on the latest mobile and web platforms including Android,
HTML5, and graphics capabilities such as HTML5 Canvas. As a developer
and project manager at AT&T, Don worked on software and telecommunica-
tions systems all over the world including Brazil, the Netherlands, Germany,
Japan, and South Africa.

Don also has a fine arts and graphics background. His paintings, etchings,
and prints have sold around the world.

Don is a founding member of marketimpacts.com and is currently its
Director of Software Engineering. He earned his Bachelor’s degree in
Mathematics from Northwestern University and Master’s degree in Computer
Science from the University of Illinois.

Follow Don on Twitter (@donkcowan) or read his blog at www.donkcowan.
com/blog.

www.allitebooks.com

http://marketimpacts.com
http://www.donkcowan.com/blog
http://www.donkcowan.com/blog
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Dedication
To my daughter, Alana, and son, David, for their encouragement, support,
and understanding. I love you both.

To my life partner, Christie Harrison, for her help and patience during the
many months of my focus on this book. You’re the best and I love you.

To our dog, Daisy. On top of her usual duties as our best friend, she performed
beautifully as model and actress for two book chapters. And I love you, too.

To the Wiley team of editors for their patience and skill. Our collaboration
was a high point in my life.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Author’s Acknowledgments
Thanks to my agent, Carole Jelen, for discovering this opportunity and believ-
ing in me. You’re a true professional.

Thanks to Wiley Acquisitions Editor Katie Feltman for giving me the chance
to take on this exciting project. You were a huge help throughout the devel-
opment and writing process.

Thanks to Wiley Senior Project Editor Kim Darosett, who is at the center of the
action and makes sense of it all. Without you, I would have been lost in the woods.

Thanks to Wiley Copy Editor Debbye Butler who has managed to make a tech
guy look like a polished author. Magic.

Thanks to Wiley Technical Editor Kelly Francis who has the eagle eyes to
spot my errors and suggest just the right improvements. You’re the best.

Thanks to Wiley Project Coordinator Patrick Redmond. All the pieces came
together smoothly. You did a great job.

Thanks to Jack Fuller, a successful author and friend who took the time to
lend his support and share his expertise. You’re my author hero.

Thanks to Wayne Smith, a fellow techie and friend who gave just the right advice.

Thanks to David Highland, a friend and very smart guy who gave the right
help at the right times.

And finally, thanks to all the relatives and friends who encouraged and supported
me. You gave me hope during all those hours hunched over my keyboard.

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.
Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial

Senior Project Editor: Kim Darosett
Senior Acquisitions Editor: Katie Feltman
Copy Editor: Debbye Butler
Technical Editor: McClellan C. Francis
Editorial Manager: Leah Michael
Editorial Assistant: Leslie Saxman
Sr. Editorial Assistant: Cherie Case
Cover Photo: © merrymoonmary / iStockphoto
Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services

Project Coordinator: Patrick Redmond
Layout and Graphics: Carl Byers,

Jennifer Creasey, Joyce Haughey
Proofreader: Sossity R. Smith
Indexer: Infodex Indexing Services, Inc.
Special Help

Rebecca Whitney

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Kathleen Nebenhaus, Vice President and Executive Publisher
Composition Services

Debbie Stailey, Director of Composition Services

http://dummies.custhelp.com
http://www.the5thwave.com

Contents at a Glance
Introduction .. 1

Part I: Looking at Canvas ... 5
Chapter 1: A Quick Glimpse Behind the Canvas .. 7
Chapter 2: Setting Up Your Canvas Platform ... 21

Part II: Drawing on Canvas .. 39
Chapter 3: Creating Objects ... 41
Chapter 4: Enhancing Objects .. 81
Chapter 5: Transforming Objects .. 115
Chapter 6: Moving Objects ... 135

Part III: Breathing Life into Your Canvas 169
Chapter 7: Mastering the Art of Canvas .. 171
Chapter 8: Introducing User Interaction ... 193
Chapter 9: Creating Engaging Imagery and Motion ... 217
Chapter 10: Sounding Off with Audio .. 249

Part IV: Developing More Complex Applications 273
Chapter 11: Grabbing Attention with Video ... 275
Chapter 12: Enhancing Canvas Applications.. 301

Part V: The Part of Tens ... 333
Chapter 13: Ten Great Canvas Applications... 335
Chapter 14: Ten Great Tools .. 339

Index .. 343

Table of Contents
Introduction ... 1

About This Book .. 1
Foolish Assumptions ... 2
Conventions Used in This Book ... 2
How This Book Is Organized .. 3

Part I: Looking at Canvas .. 3
Part II: Drawing on Canvas .. 3
Part III: Breathing Life into Your Canvas... 3
Part IV: Developing More Complex Applications............................... 3
Part V: The Part of Tens .. 3
Bonus Chapter: Gaming with Canvas .. 3
eCheat Sheet ... 3

Icons Used in This Book ... 4
Where to Go From Here .. 4

Part I: Looking at Canvas .. 5

Chapter 1: A Quick Glimpse Behind the Canvas7
Displaying Your Canvas on the Stage of the World Wide Web 7

Client devices ... 9
Remote devices .. 15

Seeing a Canvas Application in Action ... 16
Using your browser to display a sample Canvas 16
Using the sample code .. 17

Chapter 2: Setting Up Your Canvas Platform . .21
Testing Canvas Performance on Your System ... 21
Tuning Your Display .. 23

Understanding pixels... 24
Adjusting your display .. 25
Turning on browser GPU hardware acceleration 27

Testing Your Application on Mobile Devices .. 28
Measuring Web Browser Support for HTML5 Canvas 29

Examining HTML5 Canvas support ... 29
Testing the browsers you use .. 30

xiv HTML5 Canvas For Dummies

Using Text Editors ... 31
Standard text editors ... 31
Alternatives to standard text editors .. 32
Saving HTML5 Canvas application files .. 34

Using Code Debuggers .. 35
Firefox Firebug ... 35
Firerainbow ... 37
Other browsers’ debugging tools .. 37

Part II: Drawing on Canvas ... 39

Chapter 3: Creating Objects .41
Positioning Objects on a Canvas ... 41

Defining a web page to hold your Canvas... 41
Defining your Canvas ... 44
Absolute positioning ... 47
Relative positioning ... 48

Drawing Rectangles ... 50
Defining Object Attributes .. 51

Colors .. 53
Gradients ... 56
Patterns ... 61
Transparency ... 64
Shadows .. 66
Clipping ... 68

Displaying Text .. 70
Font attributes .. 70
Text baseline .. 71
Text alignment.. 74

Drawing Lines ... 76
Line attributes .. 77
Line caps ... 78
Line joins ... 78
Line construction ... 78

Chapter 4: Enhancing Objects .81
Drawing Multi-Sided Shapes ... 81
Drawing Curves .. 85

Arcs .. 85
Circles .. 89
Rounded corners ... 92
Bezier curves .. 95
Quadratic curves ... 97
Multi-segment curves .. 100

xv Table of Contents

Compositing Objects ... 102
Compositing options ... 105
Creating a table to hold the examples .. 106
Drawing the composite shapes .. 106

Randomizing Shapes ... 107
Displaying Images .. 110

Chapter 5: Transforming Objects .115
Translating ... 115
Saving Canvas States ... 118
Scaling ... 119
Mirroring ... 121
Rotating ... 125
Applying a Transform Matrix ... 129

Scaling objects ... 132
Skewing objects .. 132
Translating objects .. 133

Chapter 6: Moving Objects .135
The Basics of Movement .. 135

Using multiple Canvas elements .. 137
Creating the background .. 138
Drawing a moving object .. 139

Creating Circular Motion .. 141
Basic aspects .. 143
Unique aspects ... 144

Creating Oscillation ... 144
Basic aspects .. 148
Unique aspects ... 149

Adjusting Movement for Acceleration, Gravity, Friction, and Bounce 151
Basic aspects .. 156
Unique aspects ... 157

Part III: Breathing Life into Your Canvas 169

Chapter 7: Mastering the Art of Canvas .171
Creating Appealing Canvas Spaces ... 171

Choosing the size and proportions of your Canvas 172
Resizing and rescaling your Canvas .. 172
Dividing your Canvas with the rule of thirds 176
Using the golden ratio in your design ... 177

xvi HTML5 Canvas For Dummies

Creating Complex Shapes and Images .. 179
Basic aspects .. 185
Key aspects ... 185

Getting the Most Out of Color .. 187
Using online color tools .. 187
Combining colors ... 189

Creating Textures .. 190

Chapter 8: Introducing User Interaction . .193
Responding to User Events .. 193

The Document Object Model (DOM), event listeners,
and callbacks .. 202

Event listener response areas .. 203
DOM event definitions ... 205
Canvas event listeners .. 205
Browser window event listeners.. 206

Handling Key Events ... 206
Discovering key codes .. 207
Handling a key press ... 208

Handling Mouse Events .. 209
Dragging and Dropping Objects .. 210

Mouse down events ... 211
Mouse move events ... 212
Mouse up events .. 213

Displaying Information for the User .. 214

Chapter 9: Creating Engaging Imagery and Motion 217
Developing an Application Look and Feel .. 217

Defining dimensions of appearance and motion 224
Defining the visual dimensions of your application 224
Using an image as a background.. 227

Prompting User Interaction .. 228
Using motion to attract attention .. 228
Responding to interaction .. 229

Managing Animations .. 230
Animation frame rates ... 230
Defining your animation control function 231
Defining your main animation drawing function 235
Calculating and displaying the animation frame rate 235
Moving objects at controlled speeds .. 236
Defining and storing image sequences .. 237
Moving images across a background .. 239

xvii Table of Contents

Testing Browser Animation Performance .. 241
Creating the base code.. 246
Defining an animation control function to stress the browser 246
Drawing browser performance stressing images 247

Chapter 10: Sounding Off with Audio .249
Including Audio in Your Canvas Application ... 249
Creating Audio Recordings .. 257

Recording or downloading audio .. 257
Creating supported audio file types .. 258

Controlling Audio Recordings .. 258
Audio attributes ... 259
Audio functions .. 261
Audio events ... 262

Defining Audio Elements ... 263
Defining audio elements using HTML tags 263
Defining audio elements with JavaScript code 265

Responding to User Interaction ... 266
Responding to Canvas area interaction .. 266
Responding to audio player interaction ... 270

Defining Other Application Components ... 270

Part IV: Developing More Complex Applications 273

Chapter 11: Grabbing Attention with Video . .275
Including Video in Your Application ... 275
Creating Video Recordings ... 283

Recording or downloading your video ... 284
Creating supported video file types .. 284

Controlling Video Recordings .. 285
Video attributes ... 286
Video functions .. 287
Video events ... 288

Defining Video Elements ... 289
Defining elements using HTML tags .. 289
Defining elements using JavaScript code.. 291

Using Animation to Draw Video Frames ... 292
Starting the video ... 292
Setting up the animation loop .. 292
Drawing the video images ... 293

xviii HTML5 Canvas For Dummies

Responding to User Interaction ... 295
Responding to Canvas area interaction .. 295
Responding to video player interaction ... 298

Defining Other Application Components ... 299

Chapter 12: Enhancing Canvas Applications .301
Aspects of Enhancement .. 319

Reasons for enhancement .. 319
Techniques of enhancement .. 319
Application of enhancement .. 320

Constructing an Application Base ... 320
On load function .. 320
Animation setup function ... 320
Animation loop ... 321
Drawing function .. 321
Object movement... 321
Object drawing ... 321
Playing audio .. 322
User interaction ... 322

Enhancing Background Canvas Layers ... 322
Shading a background ... 322
Creating reflected light on a background 323
Creating simulated background movement 324

Creating Multiple and Multifaceted Objects .. 325
Storing variables in an array .. 325
Using randomized object characteristics 326
Spawning new objects ... 328

Creating Object Tails ... 329
Creating Layered Audio .. 330
Managing Performance ... 332

Part V: The Part of Tens .. 333

Chapter 13: Ten Great Canvas Applications .335
Bomomo .. 335
Canvas Cycle .. 336
Chrome Experiments .. 336
Grow a Face .. 337
Burn Canvas ... 337
Canvas Sketch .. 337
Canvas 3D Engine .. 337

xix Table of Contents

Canvas Raytracer ... 337
Pocket Full of Canvas .. 338
Plasma Tree .. 338

Chapter 14: Ten Great Tools .339
Audacity .. 339
Can I Use ... 340
EaselJS ... 340
Electrotank ... 340
Firebug .. 341
Gamepad API .. 341
HTML5 Test .. 341
Kuler .. 341
Micro Video Converter ... 341
WebGL ... 342

Index ... 343

xx HTML5 Canvas For Dummies

Introduction

T
o me, HTML5 Canvas is one of the most exciting Internet advancements
since the development of the first web browsers in the 1990s. Canvas

integrates motion graphics with browsers so that any web developers who
are willing to develop JavaScript code can add compelling motion graphics
and animation to their websites.

The browser-based graphics of Canvas differ from server-based graphics.
The code to generate a Canvas display is executed on the client device by the
browser, not on the server computer by the server host operating system.
This means that you can add Canvas capabilities directly to your web pages
without having to write server-side code.

In this book, you explore not only the technical aspects of Canvas, but the
artistic aspects as well. You discover how to create compelling images that
will capture your viewers’ imaginations.

The HTML5 Canvas standard is gaining wide acceptance and implementation
in the major browsers. This means that work you put into developing Canvas
applications will produce results for many years or decades to come.

About This Book
HTML5 Canvas For Dummies is a beginner’s guide to developing browser-
based graphics applications. You don’t need prior experience in computer
graphics.

Canvas application code is written in HTML and JavaScript. Some experience
in these languages is useful but not essential. I’ve designed the examples in
the book to be as self-explanatory as possible. If you have programming expe-
rience but have not yet used JavaScript, you should still be able to understand
and work with the code.

The HTML code needed to run the examples is minimal, and it’s fairly easy to
add Canvas code to the HTML of an existing website.

The examples are all self-contained. You can run an example without having
to include it in a website. The examples (and source code) are available at
www.dummies.com/go/html5canvas, and starting the Canvas application
is as easy as clicking on an example file. You can easily access the code for
reference or to use it for your own applications.

http://www.dummies.com/go/html5canvas

2 HTML5 Canvas For Dummies

The examples are structured as mini-labs. It’s easy to modify the code and
observe the results on the Canvas display. This is a great way to learn, espe-
cially for graphics applications. The possibilities are infinite. You’re encour-
aged to try experiments and see what happens.

Foolish Assumptions
Because you bought this book (for which I humbly thank you, by the way),
I assume only two things about you: You are interested in finding out more
about HTML5 Canvas, and you have a basic understanding of computer
programming. Knowing JavaScript is helpful but not essential; you can learn
what you need to know as you move through the book. Canvas applications
are programmed mostly in JavaScript. There is a small amount of HTML to
define Canvas areas on your web pages.

To begin developing Canvas applications, you need the following:

 ✓ A computer that runs a web browser that supports JavaScript code.
Examples are

 • Windows XP (32 bit), Vista (32 or 64 bit), Windows 7 (32 or 64 bit),
or Windows 8 (32 or 64 bit)

 • Mac OS X

 • Linux (i386)

 ✓ A text editor, such as Notepad for Windows or TextEdit for Mac. (Text
editors are described in more detail in Chapter 2.)

 ✓ A code debugger such as Firefox Firebug. (See Chapter 2 for details on
where you can download free code debuggers.)

Conventions Used in This Book
Code examples in this book use a monospace font to make them stand out
from other text. An example is

context.strokeStyle = “black”;

URL web references are in the same monospace font, for example:

www.mozilla.org/firefox

3 Introduction

How This Book Is Organized
HTML5 Canvas For Dummies is divided into five parts, which I describe in the
following sections.

Part I: Looking at Canvas
Part I introduces Canvas, gives you a glimpse at how it works, and explains
how to set up your Canvas development platform.

Part II: Drawing on Canvas
Part II introduces the basics of drawing on Canvas. You find out how to
create and enhance basic objects as well as the fundamentals of adding
movement and animation to your Canvas applications.

Part III: Breathing Life into Your Canvas
Part III steps up development and deals with artistic elements such as color,
lifelike movement, and multimedia.

Part IV: Developing More Complex Applications
Part IV moves into more complex applications such as working in 3D.

Part V: The Part of Tens
Part V lists ten great HTML5 Canvas applications/websites and ten great
Canvas development tools.

Bonus Chapter: Gaming with Canvas
If you’re interested in finding out more about gaming, check out the “Gaming
with Canvas” bonus chapter available as a PDF at www.dummies.com/go/
html5canvas. This chapter shows you how to develop a Canvas arcade game.

eCheat Sheet
To give you a quick overview of the key points in this book, I’ve created an
eCheat Sheet, which you can find online at www.dummies.com/cheatsheet/
html5canvas. The eCheat Sheet lists Canvas functions and parameters in an
easy to use format.

http://www.dummies.com/go/html5canvas
http://www.dummies.com/go/html5canvas
http://www.dummies.com/cheatsheet/html5canvas
http://www.dummies.com/cheatsheet/html5canvas

4 HTML5 Canvas For Dummies

Icons Used in This Book

 This icon indicates a helpful pointer you probably don’t want to skip.

 This icon represents something to keep in mind as you develop your Canvas
applications.

 This icon indicates information that’s helpful but not essential to developing
your applications. However, because this is a technical book, you like techni-
cal stuff, right?

 This icon alerts you to potential problems you may encounter. It’s a good
idea to digest these pieces of information.

Where to Go From Here
I suggest starting with Chapter 1. There is progressive detail with each chapter
building on the previous chapters. That said, I’ve tried to make each chapter as
self-contained as possible — and you have the option of checking out the table
of contents, skipping over chapters that don’t interest you or that cover some-
thing you already know, and zeroing in on chapters that interest you the most.
However you proceed, let your inner artist free and have some creative fun!

 Occasionally, we have updates to our technology books. If this book does
have technical updates, they will be posted at www.dummies.com/go/
html5canvasupdates.

http://www.dummies.com/go/html5canvasupdates
http://www.dummies.com/go/html5canvasupdates

Part I
Looking at Canvas

In this part . . .

P
art I introduces you to HTML5 Canvas and the devel-
opment platform to assemble as a base for creating

your applications. I take a quick look behind Canvas to
show you how the major pieces fit together and how it all
works. I also show you what software and hardware you
need and where to find these components.

1
A Quick Glimpse Behind

the Canvas
In This Chapter
▶ Displaying a Canvas on the World Wide Web
▶ Using JavaScript to draw on your Canvas
▶ Looking at how it all works

D
evelopers of the Canvas standard could have named their new creation
anything they wanted. They could have called it an area, pad, space, or

any number of other possibilities. They chose Canvas, with its obvious artistic
implications. There is significant technical detail behind the implementation
of Canvas, but at its core, the intent is to provide a new way to satisfy the
urge for expression not so different from that behind prehistoric drawings
on cave walls.

HTML5 Canvas is a digital version of the surfaces that have teased the imagi-
nation of mankind for thousands of years. Adding the power of computing
to traditional media concepts creates an amazing combination. No need to
imagine horses galloping or geese flying. Now they can move.

In this chapter, you get a first look at how HTML5 Canvas works and how to
create your own compelling Canvas applications. You get a glimpse behind
the Canvas to see what makes it tick.

Displaying Your Canvas on the
Stage of the World Wide Web

Traditional artists working with traditional canvases face a tough task getting
their work out into the world. They have to create their paintings, find galleries
to show them, hope people notice them, and then maybe sell a few. This is
a slow process indeed compared to the global exposure given to an HTML5
Canvas application.

8 Part I: Looking at Canvas

Your Canvas application will sit within the framework of the Internet and
World Wide Web. It will have instant and automatic distribution. Get a little
buzz going and it could be seen by millions.

So what exactly is HTML5 Canvas? Well, stated briefly, HTML5 Canvas is a
standard for applications written in JavaScript that run within a web page
downloaded from a server and displayed by a browser on a client device.
That’s quite a mouthful and a bit difficult to absorb. As they say, a picture is
worth a thousand words. Figure 1-1 shows how all the HTML5 Canvas pieces
fit together.

Figure 1-1: HTML5 Canvas on the World Wide Web.

www.allitebooks.com

http://www.allitebooks.org

9 Chapter 1: A Quick Glimpse Behind the Canvas

Client devices
Client devices include computers such as desktop PCs and mobile devices
such as smartphones, tablets, and laptops. The client device is where your
web browser resides and your Canvas is displayed. The website defining
your Canvas is hosted on a server. Your web pages are downloaded from the
server and displayed by your web browser.

Web browsers
Web browsers are software applications that construct and display web
pages based on HyperText Markup Language (HTML) instructions. Major web
browsers and their download sites are described next.

Desktop browsers
Desktop browsers can be downloaded from these developer sites:

 ✓ Internet Explorer: www.windows.microsoft.com/en-US/internet-
explorer/downloads/ie

 ✓ Firefox: www.mozilla.org/firefox

 ✓ Chrome: www.google.com/chrome

 ✓ Safari: www.apple.com/support/safari

 ✓ Opera: www.opera.com

Five great things about HTML5 Canvas
Canvas is a much anticipated feature of HTML5.
Here are just a few of the great things about it:

 ✓ It’s interactive . HTML5 Canvas can listen
for and respond to user actions. Moving a
mouse, pressing a button, tracing with a
finger — these can all be sensed by your
JavaScript code and used to drive applica-
tion actions.

 ✓ It’s animated . Objects can be made to move
on an HTML5 Canvas . . . from simple bounc-
ing balls to complex animations.

 ✓ It’s accessible . All the major browsers
now support HTML5 Canvas. Your Canvas
application can be used on devices ranging
from large computers to smartphones and
tablets.

 ✓ It’s flexible . An HTML5 Canvas can be
used to display text, lines, shapes, images,
videos . . . all with or without animation. It’s
a super-flexible medium.

 ✓ It’s growing rapidly . HTML5 and the Canvas
feature are steadily gaining popularity.

http://www.windows.microsoft.com/en-US/internet-explorer/downloads/ie
http://www.windows.microsoft.com/en-US/internet-explorer/downloads/ie
http://www.mozilla.org/firefox
http://www.google.com/chrome/
http://www.apple.com/support/safari
http://www.opera.com/

10 Part I: Looking at Canvas

Mobile browsers
Mobile browsers are loaded on to mobile devices as apps that are downloaded
from stores that are specific to the brand of device. To find browsers on app
stores, search the store for browser or for a specific browser name, such as

 ✓ Internet Explorer

 ✓ Firefox

 ✓ Chrome

 ✓ Safari

 ✓ Opera

Websites and web pages
Websites are made up of web pages defined by HTML elements called tags.
HTML tags define web page layout and content, including your Canvas.
Listing 1-1 shows the code used to create the display in Figure 1-2. This is a
simple example, but it demonstrates the basics needed to create a Canvas
display.

Figure 1-2: A simple Canvas display.

11 Chapter 1: A Quick Glimpse Behind the Canvas

Listing 1-1: Saying Hi on a Canvas
<!DOCTYPE HTML>
<html>
<head>
<script>

// WINDOW LOAD function.
window.onload = function()
{
 // CANVAS definition standard variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // MESSAGE details centered on canvas.
 var mText = “Hi!”
 var xPos = canvas.width/2;
 var yPos = canvas.height/2;

 // TEXT format details.
 context.font = “80pt Comic Sans MS”;
 context.fillStyle = “lime”;
 context.textAlign = “center”;
 context.textBaseline = “middle”;

 // FILL text.
 context.fillText(mText, xPos, yPos);
}
</script>
</head>
<body>

<div style = “width:200px; height:200px;
 margin:0 auto; padding:5px;”>

<!-- CANVAS area definition -->
<canvas id = “canvasArea”
 width = “200” height =”200”
 style = “border:2px solid black”>
<!-- MESSAGE if browser doesn’t support canvas -->
Your browser doesn’t currently support HTML5 Canvas.
Please check www.caniuse.com/#feat=canvas for
information on browser support for canvas.
</canvas>

</div>
</body>
</html>

12 Part I: Looking at Canvas

Here are some of the HTML tags used in Listing 1-1 and throughout the book:

 ✓ <!DOCTYPE HTML>: Declares the document for a web page

 ✓ <html>: Delineates HTML code

 ✓ <head>: Defines code containing information about your web page

 ✓ <script>: Delineates code areas such as your Canvas JavaScript

 ✓ <body>: Defines the main area of your webpage

 ✓ <div>: Provides web page formatting information

 ✓ <canvas>: Defines the Canvas area

HTML5
HTML5 is the latest version of the HyperText Markup Language. HTML
defines how web pages function and how they’re displayed. HTML5 contains
many new and exciting features added to the previous version, HTML4. Major
aspects of HTML5 include:

 ✓ Improved interaction with the user: Provides for fancier forms and
more flexible user input.

 ✓ Improved support of audio and video: Provides native support for
audio and video.

 ✓ Geolocation: Your application can determine where the client device is
located if the device has location-sensing hardware.

 ✓ Client-side data storage: Your application can temporarily store data on
the client device.

 ✓ Canvas: Powerful graphics display. Canvas is one of the most antici-
pated and important new HTML5 features.

For a complete list of new HTML5 features, visit

www.w3.org/TR/html5-diff/#new-elements

Canvas
The Canvas feature of HTML5 enables you to add dynamic displays within
defined areas of your web pages. These displays can include sophisticated
shapes, colors, text, video, audio, animation, and more. It’s limited only, as
they say, by your imagination.

http://www.w3.org/TR/html5-diff/#new-elements

13 Chapter 1: A Quick Glimpse Behind the Canvas

 The initial versions of Canvas were implemented by individual browser devel-
opers. The Apple WebKit browser was the first in 2004, followed by the
Gecko (Firefox) browser in 2005 and the Opera browser in 2006. The HTML5
implementation of Canvas creates a common standard across all browsers.
The most recent releases of all major web browsers support HTML5 Canvas.

To define Canvas areas (single or multiple) within your web page, use the
new HTML5 <canvas> tag. Identify each Canvas with a unique id, as in this
example from Listing 1-1:

<canvas id = “canvasArea”
 width = “200” height =”200”
 style = “border:2px solid black”>
</canvas>

JavaScript code
It’s your JavaScript code that will draw images on your Canvas. Without
JavaScript, a Canvas is just a blank space.

 JavaScript, developed by Netscape in the mid-1990s, is a different language
than Java, although its developers were influenced by Java, which was devel-
oped by Sun Microsystems in the early 1990s.

Here is the JavaScript from Listing 1-1 that created the display in Figure 1-2:

The evolution of computer graphics
Computer graphics have been around since as
far back as the 1960s. In the 1970s, video games
began a push in the sophistication of graphics
that continues today. However, until the intro-
duction of Canvas, browser-based graphics
relied mainly on vector manipulation. Vector
graphics, such as Scalable Vector Graphics
(SVG), draw images based on lines and curves
defined by sets of data. Canvas, by contrast,
is a “bit map” technology in which images

are drawn based on the definition of the indi-
vidual pixels (picture elements) of objects. This
provides a greater degree of control over the
display images. In practical terms, the Canvas
bit map technology results in faster and more
efficient rendering of displays that have large
numbers of objects. This makes the develop-
ment of browser applications such as games
much more feasible.

14 Part I: Looking at Canvas

// WINDOW LOAD function.
window.onload = function()
{
 // CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // MESSAGE details centered on canvas.
 var mText = “Hi!”
 var xPos = canvas.width/2;
 var yPos = canvas.height/2;

 // TEXT format details.
 context.font = “80pt Comic Sans MS”;
 context.fillStyle = “lime”;
 context.textAlign = “center”;
 context.textBaseline = “middle”;

 // FILL text.
 context.fillText(mText, xPos, yPos);
}

 The JavaScript code in the sample listings is structured to be as easy as pos-
sible to understand. The focus of this book is on Canvas features and capa-
bilities, not on programming languages. I’ve commented the code heavily and
avoided complex coding structures. For a concise JavaScript language refer-
ence, see

http://docs.webplatform.org/wiki/javascript/tutorials

Device drivers
A device driver, which is usually built into client computers, smartphones,
and tablets, is a software/firmware layer between an application and a
device, such as a display. The display driver does the work of displaying the
individual pixels that form the images on your Canvas.

Displays
Displays can be built into the client device or function as separate devices
attached to the client. There’s a huge variety of displays ranging from those
that are measured in feet to those measured in inches. Displays are made
up of individual picture elements (pixels), each of which is controlled by the
device driver to show a color specified by software on the client device, such
as your Canvas application code.

http://docs.webplatform.org/wiki/javascript/tutorials

15 Chapter 1: A Quick Glimpse Behind the Canvas

Images
Canvas images are constructed pixel by pixel (bit mapped), as opposed to
vector graphics, which are drawn based on points along specified lines. The
dimensions of a Canvas are specified in pixels, and the images you create
with your application code are based on pixel dimensions.

Remote devices
A remote device is located away from the client device containing your HTML
and JavaScript code.

Internet Protocol
Client devices communicate with servers and other devices around the world
via the Internet Protocol suite. Internet Protocol is the communications glue
that holds the Internet and World Wide Web together. It’s a layered structure
of messaging and rules for exchanging information across telecommunica-
tions systems.

Servers
Servers are the computing devices that host the website that contains your
Canvas application. Even though the task of constructing and displaying a
web page and Canvas is delegated to the client device, the server plays an
important role. The server stores your HTML and JavaScript code and down-
loads it to the client when a user selects one of your web pages for display.
The server can also host images and data that can be retrieved and used by
your Canvas application.

The Interplanetary Internet
The World Wide Web may need a new name.
It’s about to reach out beyond our planet. NASA
is developing a technology that extends the
Internet and web to extraterrestrial locations.
Known as the “Interplanetary Internet,” it uses

Disruption-Tolerant Networking (DTN) to sus-
tain super long-distance connections without
data loss. Get ready to draw images of “ET” on
your Canvas. (Search for DTN on www.nasa.
gov to get the latest updates.)

16 Part I: Looking at Canvas

Seeing a Canvas Application in Action
One of the great things about developing Canvas applications is how quickly
you can see your work produce results. Here’s an overview of the Canvas
development sequence, which is covered in detail in Chapter 2:

 1. Create your HTML5 and JavaScript code using a text editor.

 For example, you can use a text editor such as Notepad on a PC or
TextEdit on a Mac.

 2. Save your Notepad or TextEdit file in a directory on your computer
with the .HTML or .HTM extension.

 3. Double-click the .HTML or .HTM file in your directory to display your
Canvas.

 Your Canvas appears in your default browser.

To get you jump-started with this process, access the examples for this book,
as described in the following sections. The examples are self-contained, and
each one includes all the code necessary to display a Canvas.

Using your browser to display a sample Canvas
You can download the sample applications in this book two ways:

HTML5 Canvas applications
The applications for HTML5 Canvas are limit-
less. Here are a few important ones:

 ✓ Advertising: The interactivity and animation
of HTML5 Canvas are ideal for attracting the
attention needed for successful advertising.

 ✓ Art & decoration: HTML5 Canvas provides
intricate control of color and images for
creating artistic and decorative surfaces.

 ✓ Education & training: Text, images, videos,
diagrams, and other HTML5 Canvas fea-
tures can be combined to produce effective
education and training applications.

 ✓ Entertainment: The web is growing as
a platform for delivering entertainment.
HTML5 Canvas video, images, and graphics
are a great base for developing entertaining
applications.

 ✓ Gaming: The HTML5 Canvas fine grain,
pixel level control of displays, and the many
methods for creating animation offer lots of
possibilities for gaming applications.

 ✓ Data representation: HTML5 Canvas pro-
vides features to combine the power of
access to global data sources with the
imagery of graphs and charts.

17 Chapter 1: A Quick Glimpse Behind the Canvas

 ✓ Download the files from http://www.dummies.com/go/html5canvas.
After the download has completed, double-click the downloaded folder
to open it and access the individual .HTM files. You can then move these
files to any other folder you choose. To start an individual example,
double-click the .HTM file.

 ✓ Access individual example web pages: Go to http://donkcowan.com/
html5-canvas-for-dummies#examples/ and click individual example
page links.

As an example, to display the Canvas in Figure 1-2, access the code from
Listing 1-1, as follows:

 1. Point your browser to http://donkcowan.com/html5-canvas-
for-dummies#examples/ to access the sample code for individual
listings in the book.

 You should see a list of samples, including Listing 1-1 Saying Hi on
Canvas.

 2. Click the listing (for example, Listing 1-1 Saying Hi on Canvas).

 You should see the Canvas display appear (refer to Figure 1-2). That’s it —
a simple two-step process to reach the sample code.

Using the sample code
The example listings have a number of uses:

 ✓ Experimenting with the code: The sample code is a great way to under-
stand how Canvas JavaScript code functions. Modify the code and watch
the effect on the display.

 ✓ Using the code to seed your applications: The samples provide a base
for developing your own applications.

 ✓ Referencing the code: It’s easy to forget how to code a particular
Canvas task. A quick check of the sample code can be a big aid during
application development.

To use the sample code directly on http://donkcowan.com/html5-
canvas-for-dummies#examples/, do the following:

 1. Use your browser to access the sample listings from the book.

 Follow the two preceding steps to access the sample you’re interested in.

 2. Right-click (Ctrl+click on the Mac) on the page displaying the Canvas.

 The menu of options for the web page appears (see Figure 1-3.)

http://www.dummies.com/go/html5canvas
http://donkcowan.com/html5-canvas-for-dummies#examples/
http://donkcowan.com/html5-canvas-for-dummies#examples/
http://donkcowan.com/html5-canvas-for-dummies#examples/
http://donkcowan.com/html5-canvas-for-dummies#examples/
http://donkcowan.com/html5-canvas-for-dummies#examples/
http://donkcowan.com/html5-canvas-for-dummies#examples/

18 Part I: Looking at Canvas

Figure 1-3: Canvas displays a menu of options.

 3. Click View Page Source to display the HTML and JavaScript code gen-
erating the Canvas display.

 4. Highlight the code that you want to copy.

 5. Right-click (Ctrl+click on the Mac) on the page displaying the code
and select Copy from the options, as shown in Figure 1-4.

 6. Open your text editor and paste the code into your application.

 Right-click (Ctrl+click on the Mac) the page displaying the code and
select Paste from the options.

Figure 1-4: The Canvas code menu of options.

19 Chapter 1: A Quick Glimpse Behind the Canvas

To download, save, and then use the sample code on your computer, do the
following:

 1. Download the Zip file from www.dummies.com/go/html5canvas and
store the files where you want them on your computer.

 Move the entire folder or individual file to a new location if you choose to.

 2. Right-click (Ctrl+click on the Mac) the desired file and select Open
With your text editor (Notepad, for example) from the options, as
shown in Figure 1-5.

 The file containing the code from the sample application opens in the
text editor.

For your convenience, the image, audio, and video files referenced by the
sample JavaScript code are stored on a server at www.marketimpacts.com.
This means that the sample applications will execute without your having to
adjust the code for file location.

The image, audio, and video files are also available in the Zip file you down-
loaded from www.dummies.com/go/html5canvas. To reference image,
audio, or video files that you reuse from the download or create yourself,
you’ll need to change the JavaScript file references to point to the server
where you store the files. I explain this process in more detail in Chapter 4.

Figure 1-5: Opening the code file on your computer.

http://www.dummies.com/go/html5
http://www.marketimpacts.com
http://www.dummies.com/go/html5canvas

20 Part I: Looking at Canvas

Why develop for HTML5 Canvas
HTML5 Canvas is an attractive platform for soft-
ware development. Here are five reasons why.

 ✓ Develop once, run anywhere: HTML5
Canvas is supported by recent releases of
the major web browsers, which run on a
wide variety of devices from large comput-
ers to mobile devices. Code written using
HTML5 tags and JavaScript code will work
on all these devices.

 ✓ Toolkit availability: The tools needed
to develop a Canvas application are not
extensive or expensive — a computer,
browser, text editor, and code debugger.
For advanced development, such as sophis-
ticated games, a number of third-party
libraries are available to facilitate coding.

 ✓ It’s a well-accepted standard: Although it
will take time for all the features of HTML5
to be implemented in all browsers, HTML5
Canvas is a solid and accepted standard
that will be around for many, many years.

 ✓ Demand for interaction and animation:
Web users today want to interact with web-
sites and see entertaining movement and
animation. HTML5 Canvas gives developers
a solid platform for serving these needs.

 ✓ The mobile market: HTML5 Canvas is
increasingly supported on mobile devices.
It offers a way to develop applications for
smartphones and tablets without having to
program for individual operating systems
such as iOS and Android.

2
Setting Up Your Canvas Platform

In This Chapter
▶ Understanding the tools you need to develop a Canvas application
▶ Testing and tuning your system for Canvas applications
▶ Checking browser support for HTML5 and Canvas
▶ Choosing a text editor
▶ Exploring tools for editing and debugging your HTML5 and JavaScript code

G
ood news! The tools you need to start developing HTML5 Canvas
applications aren’t extensive or expensive. The basic tools you need

are a web browser, a text editor, and a code debugger, all of which are likely
already installed on your computer or available through free downloads.

In this chapter, you find out about the hardware and software needed to run
Canvas applications and how to set up your Canvas development platform.

Testing Canvas Performance on Your System
The hardware and software you use will affect the performance of your
Canvas applications. Components of your system that can significantly
impact performance include the

 ✓ Central Processing Unit (CPU): Performs calculations for the operating
system and applications

 ✓ Random Access Memory (RAM): Integrated circuit memory that allows
direct, rapid access to any data

 ✓ Graphics Processing Unit (GPU): Integrated circuit dedicated to display-
ing images on a screen

 ✓ Web browser brand and version: Constructs web pages for display
based on HTML and JavaScript code

 ✓ Web browser support for GPU hardware acceleration: Off-loads com-
puting related to screen displays from the CPU to the GPU

22 Part I: Looking at Canvas

Most of today’s desktop and laptop computers run HTML and JavaScript
code fast enough to produce smooth, good-looking results. However, the
performance of Canvas applications varies across hardware systems and
browser software. To test your system for Canvas performance, do the
following:

 1. Point your browser to http://donkcowan.com/html5-canvas-
for-dummies#examples/, and click the link for Listing 9-2.

 You see a Canvas application with rotating concentric circles, as shown
in Figure 2-1. (The details of this application are covered in Chapter 9.)

 2. Check the frame rate (in frames per second) at the lower left of the
Canvas area.

 The frame rate tells you how many times per second your system is able
to draw the moving circles. This performance is influenced by your com-
puter hardware and browser software.

Figure 2-1: Canvas performance test application.

http://donkcowan.com/html5-canvas-for-dummies#examples/
http://donkcowan.com/html5-canvas-for-dummies#examples/

23 Chapter 2: Setting Up Your Canvas Platform

Table 2-1 shows the results running on my computer, which has the following
profile:

 ✓ Windows 7 Operating System

 ✓ Intel Quad i7 M620 CPU (Central Processing Unit)

 ✓ 2.67 GHz (Gigahertz cycle time)

 ✓ 8GB RAM (Gigabytes of Random Access Memory)

 ✓ NVIDIA Quadro FX 2800M GPU (Graphics Processing Unit)

 ✓ GPU hardware acceleration enabled on supported browsers

Table 2-1 Canvas Performance on a PC
Browser Version GPU

Acceleration
Frames per Second

Internet Explorer 9 Yes 250
Chrome 20 Yes 200
Safari 5 Yes 110
Opera 11 No 70
Firefox 13 No 80

After testing a number of Canvas applications on my computer, I found
that some using animation heavily don’t perform well on browsers scoring
fewer than 200 frames per second. How well your browser displays a Canvas
depends on the specifics of the Canvas application and on your computer.

 In Table 2-1, you can see there’s quite a bit of variation between browsers . . .
an order of magnitude between the faster and slower browsers. Browser per-
formance changes with new browser releases. Because of the gaining popu-
larity of HTML5 Canvas, browser developers are motivated to continually
improve the performance of Canvas on their products.

Tuning Your Display
Canvas applications create images by manipulating individual pixels on a
portion of the display screen — the Canvas area. Pixel manipulation is at the
heart of HTML5 Canvas. Pixels are the raw material onto which your Canvas
images are projected. Get to know them and love them.

24 Part I: Looking at Canvas

Understanding pixels
Without using a magnifying glass, you can’t differentiate individual pixels.
Even though they’re thousands of small “bit players,” you should have a
basic understanding of their characteristics and how they function:

 ✓ Pixel structure: The term pixel comes from a combination of the terms
picture and element. A pixel is the smallest application-controllable
element on a display screen. Displays create a pixel color by combin-
ing three or four basic subpixel colors such as red, green, and blue …
or cyan, magenta, yellow, and black. In your JavaScript code, you can
define thousands of colors that are generated by the display hardware
using varying proportions of these basic subpixel colors.

 The arrangement of the red, green, and blue subpixels on a computer
monitor screen is shown in Figure 2-2. Typically, the hardware combines
a horizontal group of three subpixels to create a single color pixel that
becomes part of the display image.

 To define the dimensions of a Canvas for your applications, choose
a height and width in pixels. A Canvas that is 400 pixels wide and 200
pixels high contains 80,000 pixels, for example.

Figure 2-2: Display pixels.

25 Chapter 2: Setting Up Your Canvas Platform

 ✓ Display resolution: The display resolution is the number of pixels on
the screen. Resolution is usually expressed in width and height such as
“1440 x 900,” meaning 1,440 pixels wide by 900 pixels high. Most comput-
ers have display resolutions that are at least 1024 x 600 pixels. That’s
a total of 614,400 pixels. Higher-end tablet devices can also reach this
resolution.

 ✓ Pixel density: The width and height in inches of a display can vary inde-
pendently of the resolution in pixels. In other words, some displays have
more pixels per square inch than others. This measurement is called
PPI (pixels per inch), or pixel density. The greater the pixel density for
a given screen size, the greater the perceived quality of the display. It’s
counterintuitive, but for displays, bigger isn’t necessarily better. A larger
display with a lower pixel density might appear less “sharp.” Even small
displays with a high pixel density can produce amazing images.

Adjusting your display
Your Graphics Processing Unit (GPU), also referred to as a video card, is the
hardware and firmware that control display pixels. The video driver is soft-
ware that allows programs such as your JavaScript code to interface with the
GPU. The GPU, the driver, and their settings can have a significant impact on
the quality of your Canvas displays.

On many systems, you can check and adjust the performance of your GPU
by using a control panel. Figure 2-3 shows the control panel for an NVDIA
video card.

Consider taking the following actions to improve the performance of your
graphics system:

 ✓ Adjust your GPU settings. Adjust the settings for your Graphics
Processing Unit by using a control panel such as the one shown in
Figure 2-3. Which settings are available depends on the brand and model
of your GPU.

 ✓ Enable GPU acceleration. For Nvidia Control Panel in Figure 2-3, this is
controlled on the Set PhysX configuration tab under 3D Settings. Click
the Enabled radio button to turn it on.

 ✓ Adjust image settings for performance versus quality. These settings
are shown in Figure 2-3. For the Nvidia Control Panel, a rotating object
shows the effect of your choice. Choose a setting that looks best to you
on your computer.

26 Part I: Looking at Canvas

 To locate your CPU control panel:

 • On a PC: Choose Start➪Control Panel➪Your GPU Control Panel.

 • On a Mac: Choose ➪System Preferences➪Displays➪Your GPU
Control Panel.

 ✓ Turn off other applications. If other applications are running, they’ll use
CPU cycles and reduce the performance of your Canvas application.

 ✓ Install the latest video drivers. Not having the latest release can nega-
tively affect your Canvas performance. Check the manufacturer’s web-
site for information on the latest driver releases.

 If you want to upgrade your GPU, many options are available. An Internet
search for GPU or video cards will list a wide variety of manufacturers and
retailers. You don’t necessarily want to design a Canvas application tuned to
the most powerful user devices. If you’re developing an application that will
be available on the Internet, it will be viewed by users with a wide variety of
devices.

Figure 2-3: The Graphics Processing Unit control panel.

27 Chapter 2: Setting Up Your Canvas Platform

Turning on browser GPU hardware acceleration
Most web browsers have implemented GPU hardware acceleration in recent
releases. Using acceleration, functions that would normally be performed by
your application software code in the CPU are delegated to hardware in the
GPU. This can result in dramatic increases in the performance of graphics
displays.

You can’t be certain whether viewers of your Canvas application will have
hardware acceleration turned on for their browsers. However, because motion
graphics are becoming much more common on web pages, browser support
for hardware acceleration is improving, and more users are enabling it.

Follow these steps (as of this writing) to turn on browser GPU hardware
acceleration (GPU hardware acceleration is automatically turned on by the
Safari browser):

Internet Explorer
 1. Click the Tools icon at the upper right of the browser screen.

 2. Select Internet Options from the drop-down menu.

 3. In the Internet Options dialog box, click the Advanced tab.

 4. To turn on acceleration, uncheck the Use Software Rendering box.

 5. Restart your browser.

Chrome
 1. Enter about:flags in the browser search bar address box and search on

that page.

 2. Click the Enable link under Override Software Rendering List.

 3. Click the Enable link under GPU Compositing on All Pages.

 4. Restart your browser.

Opera
 1. Enter about:config in the browser search bar address box and search

on that page.

 2. Enter acceleration in the search bar of the config page and press enter.

 3. Change the Enable Hardware Acceleration box to 1.

 4. Restart your browser.

28 Part I: Looking at Canvas

Firefox
 1. Enter about:config in the browser search bar address box and search

on that page.

 2. Enter render in the filter box and look for gfx.font_rendering.
directwrite.enabled.

 3. Double-click this entry to toggle the value to True.

 4. Restart your browser.

Testing Your Application on Mobile Devices
Since the introduction of the iPhone in 2007, followed by Android, Windows,
and others, websites can now be easily viewed on a wide variety of mobile
devices. Although you don’t need a mobile device to develop an HTML5
Canvas application, you might want to test your application on a smartphone
or tablet to see how it performs.

Mobile screen resolutions range from about 160 x 100 pixels for smaller
smartphones to around 1024 x 600 pixels for larger tablets. At the low end of
the range, viewing a website can be difficult. On the higher-end smartphones
and tablets, accessing websites is becoming easy and common.

Mobile devices generally lag computers in their support for HTML5 and
Canvas. You can test the level of HTML5 support for your mobile devices by
going to www.html5test.com, as shown in Figures 2-5 through 2-7.

Even if your device shows as supporting Canvas, not all websites using
Canvas will necessarily work on your phone or tablet. If a Canvas application
uses WebGL, or other additional features that are not supported on your
device, the application won’t function.

 Keep in mind that average mobile device processors and video hardware
aren’t as powerful as those in desktop or laptop computers. This means that
a Canvas application may not work as well on your mobile device as it does
on your desktop or laptop.

To test your mobile device for Canvas performance, follow the same steps in
the earlier section “Testing Canvas Performance on Your System” and note
the frame rate for your phone.

www.allitebooks.com

http://www.html5test.com/
http://www.allitebooks.org

29 Chapter 2: Setting Up Your Canvas Platform

Table 2-2 shows the results running on my smartphone, which has the
following profile:

 ✓ Samsung Galaxy Nexus SCH 1515

 ✓ 1.2 GHz Dual-Core Processor

 ✓ Android 4.0 Operating System

Table 2-2 Canvas Performance on a Smartphone
Browser Version Frames per Second

Chrome Mobile Beta 20
Opera Mobile 12 8
Android 4 9
Dolphin HD 8 14

Measuring Web Browser Support
for HTML5 Canvas

Web browser support for HTML5 Canvas is a work in progress. Browser
developers are continuing to add HTML5 feature support and performance
improvements.

Examining HTML5 Canvas support
HTML5 is the fifth and latest version of the markup language for displaying
content on the World Wide Web. HTML standards are defined by the World
Wide Web Consortium (W3C), which is targeting 2014 for the completion of
the HTML5 recommendation. It will likely take some years after that for all
web browsers to support the complete set of HTML5 features.

The world, however, isn’t waiting for completion of the standard to begin
using HTML5. Many HTML5 features, including Canvas, are already imple-
mented in recent releases of the major browsers.

The table in Figure 2-4 from www.caniuse.com/#feat=canvas shows the
level of implementation for HTML5 Canvas for the major browsers as of this
writing.

http://www.caniuse.com/#feat=canvas

30 Part I: Looking at Canvas

Courtesy Alexis Deveria.

Figure 2-4: Browser support for HTML5 Canvas.

Testing the browsers you use
Test the browsers on your computers and mobile devices for HTML5 support
by using the HTML5 Test at www.html5test.com. It produces an overall
rating for a browser version on a scale of 0-500 and checks ratings for indi-
vidual features. An overall rating of over 400 is a decent score. These ratings
will rise as browser developers add HTML5 functionality.

To test your Canvas applications on the major browsers, load recent versions
of Internet Explorer, Firefox, Chrome, Safari, and Opera onto your computer.
Open your completed application with each browser to check its performance.
(See Chapter 1 for details on where to download these browsers.)

http://www.html5test.com/

31 Chapter 2: Setting Up Your Canvas Platform

Using Text Editors
HTML5 Canvas application code is represented by sequences of text charac-
ters. Use a text editor to create and edit your code. You can’t use a word pro-
cessor, such as Microsoft Word, because it inserts special control characters
to give the document the desired formatting, such as you see in this book. A
text editor doesn’t insert formatting characters.

Standard text editors
Computers usually come with a standard text editor already installed, such as
Notepad (shown Figure 2-5) with Windows, and TextEdit (shown in Figure 2-6)
with Mac OS X. They provide basic, no-frills text editing.

Figure 2-5: Windows Notepad text editor.

32 Part I: Looking at Canvas

Figure 2-6: Mac OS X TextEdit text editor.

Alternatives to standard text editors
There are many alternatives to standard text editors. These enhanced editors
provide features such as:

 ✓ Colored element and indentation highlighting: For easier differentia-
tion of code elements

 ✓ Find and replace: For easier multiple changes to the same piece of code

 ✓ Drag-and-drop: To more easily rearrange your code

 ✓ Split screen editing: To be able to edit multiple files side-by-side

 ✓ Zoom controls: To make your code larger or smaller

33 Chapter 2: Setting Up Your Canvas Platform

Here are a few popular ones you may want to check out:

 ✓ Notepad++: Shown in Figure 2-7, Notepad++ is one of the most popular
alternatives to standard Windows Notepad. It’s free and can be down-
loaded from www.notepad-plus-plus.org.

 ✓ jEdit: Shown in Figure 2-8, jEdit is a popular text editor that can be used
with Windows, Mac OS, Unix, and Linux. jEdit is free and can be down-
loaded from www.jedit.org.

Figure 2-7: Notepad++ text editor.

http://www.notepad-plus-plus.org/
http://www.jedit.org/

34 Part I: Looking at Canvas

Figure 2-8: The jEdit text editor.

Saving HTML5 Canvas application files
 After you’ve entered the HTML5 Canvas application code in your favorite text

editor, save the file with the .htm or .html extension. To do this, click Save
and then, in the Save As dialog box, select All Files from the Save As Type
drop-down list, and append .htm or .html to the filename (see Figure 2-9).
Then click Save.

With the .htm or .html file extension, when you click the filename, your
default browser opens the file as a web page, and your Canvas is displayed.
To edit your code, open the file with a text editor, such as Notepad or jEdit.

35 Chapter 2: Setting Up Your Canvas Platform

Figure 2-9: Saving HTML5 Canvas application files.

Using Code Debuggers
It’s virtually impossible to develop Canvas applications without a code
debugger. HTML and JavaScript are interpreted languages, so there’s no
compiler used to check for syntax errors. Program code is executed by the
browser. Your code can also contain logic errors and other problems that are
difficult to diagnose.

As a result, when your code contains errors, you’ll often see nothing happen.
Your Canvas simply remains blank. You’ll have no indication where to look
for the cause of failure. This is, in fact, usually what happens the first time
you run your application code. You see nothing. Yikes, what do you do now?

Code debuggers to the rescue. A debugger lets you set code breakpoints
(places where execution stops) and examine application variables during
execution. You can step through your code and follow exactly what’s happen-
ing to determine where failures occur and what’s causing them.

Firefox Firebug
Shown in Figure 2-10, the Firefox Firebug browser extension is a popular and
powerful debugging tool. It’s free, and you can download and add it to your
Firefox browser by following these steps:

36 Part I: Looking at Canvas

Firerainbow add-on provides color-coded syntax highlighting.

Figure 2-10: Firefox Firebug debugger extension with the Firerainbow add-on.

 1. If you don’t have the latest version of Firefox installed on your com-
puter, go to www.firefox.com. Click Firefox Free Download and
install the browser.

 2. Using the Firefox browser, go to www.getfirebug.com, and then
click the Install Firebug button.

 It’s important to use Firefox in this step so that Firebug will be automati-
cally installed as a Firefox extension.

 3. Start Firebug in the Firefox browser by choosing Tools➪Web
Developer➪Firebug➪Open Firebug.

http://www.firefox.com/
http://www.getfirebug.com/

37 Chapter 2: Setting Up Your Canvas Platform

 There’s currently no way to save changes to your code by using Firebug. It’s
necessary when using Firebug for debugging to make any code changes using
your text editor. When debugging, I open side-by-side windows with Firefox/
Firebug in one window and my text editor in the other. It’s easy to make
changes in the text editor window, save them, and then run the test in the
Firefox window using Firebug.

 Every so often, your operating system might think that the text editor file
you’re trying to save is being used by another program. In this instance,
it’s necessary to delete the file before resaving it. Just make sure you have
your code safely in the open text editor window before you delete the file.
Otherwise, you’ll lose all your valuable work!

Firerainbow
Firerainbow is an add-on to Firebug that provides color-coded syntax high-
lighting for easier differentiation of programming elements. You can down-
load it for free at http://firerainbow.binaryage.com. You can see the
effect of Firerainbow in the lower left window of Figure 2-10.

Other browsers’ debugging tools
The other major browsers also provide JavaScript debugging tools. To access
these tools, follow these steps for individual browsers:

Chrome
 1. Open the browser.

 2. Choose Tools➪Developer Tools.

 3. Click the Scripts tab.

Internet Explorer
 1. Open the browser.

 2. Choose Tools➪Developer Tools.

 3. Click the Script tab.

Opera
 1. Open the browser.

 2. Open the webpage at http://dev.opera.com/articles/view/
opera-developer-tools.

http://firerainbow.binaryage.com/
http://dev.opera.com/articles/view/opera-developer-tools
http://dev.opera.com/articles/view/opera-developer-tools

38 Part I: Looking at Canvas

 3. Drag the Developer Console button to your toolbar.

 4. Click the Developer Console button you just created.

 5. Click the JS tab.

Safari
 1. Open the browser.

 2. Open the web page http://extensions.apple.com.

 3. Click Install Now for the Firebug Lite extension.

 4. Click the Firebug Lite button you just created.

 5. Click the Script tab.

http://extensions.apple.com/

Part II
Drawing on

Canvas

In this part . . .

I
n Part II, I explain the basics of drawing on your
Canvas. You discover how to create, enhance, and

transform fundamental objects such as text, lines, rectan-
gles, circles, and images. I also cover the basics of creat-
ing moving and animated objects.

3
Creating Objects

In This Chapter
▶ Creating a web page to hold your Canvas
▶ Positioning and drawing objects on your Canvas
▶ Creating basic shapes like lines and rectangles
▶ Displaying text
▶ Defining object characteristics like colors and shadows

I
t’s time to start creating on your Canvas, beginning with basic objects
that you’ll be turning into objets d’art. In this chapter, you discover how

to draw basic objects and enhance them with colors, patterns, shadows, and
more. In later chapters, you find out how to build on these basic objects to
create more complex structures, make them move, and interact with viewers.

Positioning Objects on a Canvas
Every artist faces the challenge of making that first mark on a blank canvas.
First though, you need to figure out where your virtual Canvas is and how
you get at it.

Defining a web page to hold your Canvas
You need to do a couple things before you start working on your Canvas.
Like a painter needs to mount his canvas on a frame, your Canvas has to be
“mounted” on a web page. Listing 3-1 shows the basic HTML code to hold
one or more Canvases and the JavaScript code you’ll write to draw on those
Canvases. Listing 3-1 displays the simple web page shown in Figure 3-1.

42 Part II: Drawing on Canvas

Listing 3-1: Web Page HTML Code
<!DOCTYPE HTML> <!-- HTML document -->
<html> <!-- Beginning of HTML code -->
<head> <!-- Header -->
<script> <!-- JavaScript code -->

<!-- Place your JavaScript code here. -->
</script> <!-- End of JavaScript code -->
</head> <!-- End of header -->

<body> <!-- Body of web page -->

<!-- Formatting for contents -->
<div Style = “width:200px; height:200px;
 margin:0 auto; padding:5px;”>

<!-- Place your Canvas definitions here. -->

<!-- Place other web page contents here. -->
Web page contents.
</div> <!-- End of formatting -->
</body> <!-- End of body -->
</html> <!-- End of html document -->

Figure 3-1: Web page display.

A full discussion of HTML tags and website design is well beyond the scope
of this book. So in this section, I give you a basic description of the HTML
code needed to display your Canvas.

The layout of a web page is delineated by using a notation called tags. Tags
are enclosed in angle brackets < > that tell the browser you’re defining an
aspect of your web page.

43 Chapter 3: Creating Objects

Each web page element is defined using a start tag, such as <head> and, in
most cases, an end tag such as </head>. Some elements don’t need an end
tag because they contain all their defining information in the start tag.

Between the start and end tags, there can be:

 ✓ Other elements, such as a Canvas

 ✓ Attributes, such as dimensions

 ✓ Content, such as text and images

 Tag information is used by the browser to format web page segments. The
tags themselves are not displayed.

To define a web page and position a Canvas within it, take these steps:

 1. Define a document type tag.

 All HTML documents must start with the <!DOCTYPE HTML> tag.
There’s no end tag used for document type, so it looks like this:
 <!DOCTYPE HTML>
 .
 Place all your other HTML tags and content here.
 .

 2. Define HTML tags.

 The <HTML> and </HTML> tags delineate the beginning and end of the
web page and are positioned as follows:
<HTML>
 .
 Define your web page here.
 .
</HTML>

 3. Define header tags.

 The <head> and </head> tags enclose the code that contains informa-
tion about the web page. I recommended that you place your JavaScript
code in the header as is done in Listing 3-1 and all the code samples in
this book:
<head>
 .
 Place your <script> tags and JavaScript code here.
 .
</head>

44 Part II: Drawing on Canvas

 4. Define script tags.

 The <script> and </script> tags enclose the code that will be used
to control actions on the screen. Place the JavaScript that draws on your
Canvas inside the script tags:
<script>
 .
 Place your JavaScript code here.
 .
</script>

 5. Define body tags.

 The <body> and </body> tags delineate the main area of the web page
to be displayed:
<body>
 .
 Define the display area of your web page,
including your Canvas, here.
 .
</body>

 6. Define formatting tags.

 Formatting tags, such as the <div> and </div> tags in Listing 3-1, pro-
vide the browser with instructions on how to format content, such as:
<div style = “width:500px; height:200px; margin:0 auto; padding:5px;”>
</div>

Defining your Canvas
The two-dimensional space on which your application draws objects is
referred to as the 2D Canvas context. That’s quite a mouthful. The word con-
text indicates that your Canvas contains more information than just object
positioning. Your JavaScript code will add contextual information such as
color and shadows. Using the 2D Canvas context, you’ll be able to create
interesting and powerful images.

The code in Listing 3-2 displays the Canvas shown in Figure 3-2. Listing 3-2
includes a compressed version of the element tags shown in Listing 3-1. This
compression is done to conserve space in code listings in this book.

45 Chapter 3: Creating Objects

Figure 3-2: Displaying a Canvas.

Listing 3-2: Code to Display a Canvas
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition standard variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. MESSAGE details. Center on canvas.
 var mText = “Hi!”
 var xPos = canvas.width/2;
 var yPos = canvas.height/2;

 // A3. TEXT format details.
 context.font = “80pt Comic Sans MS”;
 context.fillStyle = “lime”;
 context.textAlign = “center”;
 context.textBaseline = “middle”;

 // A4. FILL text.
 context.fillText(mText, xPos, yPos);
}
</script> </head> <body>
<div style = “width:500px; height:200px; margin:0 auto; padding:5px;”>

<!-- A5. CANVAS area definition. -->
<canvas id = “canvasArea” width = “500” height = “200”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

46 Part II: Drawing on Canvas

To display a Canvas within a web page, use the following steps in developing
your code:

 1. Define your Canvas by using <canvas> and </canvas> tags.

 Add HTML5 <canvas> and </canvas> tags to Listing 3-1. Don’t worry
about whether you’re referring to the correct Canvas feature. There’s
only one HTML5 Canvas!

 You can, however, have more than one Canvas defined for your applica-
tion. Identify each Canvas with a unique id, as shown in this example
from A5 of Listing 3-2:
<canvas id = “canvasArea”>
.
.
.
</canvas>

 You could have another with a different id:
<canvas id = “canvasArea2”>
.
.
.
</canvas>

 In Listing 3-1 and other examples in this book, the Canvas is the only
content. In most real applications, a Canvas will be positioned within
other web page content.

 2. Add specifications inside the <canvas> tag detailing the dimensions
of the Canvas and style of the Canvas border.

 Here’s an example:
width = “500” height = “200”
style = “border:2px solid black”

 For more information on style options, see www.w3.org/TR/CSS2.

 3. Between the <canvas> and </canvas> tags, add the text that will be
displayed if HTML5 Canvas isn’t supported by the browser displaying
your web page.

 For example:
Your browser doesn’t currently support HTML5 Canvas.

 4. Create a window onload function that will be initiated when the web
page is loaded. The onload function is the starting point for executing
JavaScript code in your application.

http://www.w3.org/TR/CSS2/

47 Chapter 3: Creating Objects

 Here’s an example in A of Listing 3-2:
window.onload = function(){ . . . }

 5. Use a JavaScript statement to create a variable identifying a specific
Canvas. Within that statement, use the getElementById() function
to retrieve the Canvas element.

 Here’s an example in A1 of Listing 3-2:
var canvas = document.getElementById(“canvasArea”);

 6. Use a JavaScript statement to create a variable referring to the 2D con-
text for that Canvas. Use the getContext() function to retrieve the
context.

 Here’s an example in A1 of Listing 3-2:
var context = canvas.getContext(“2d”);

 7. Refer to the context variable in subsequent JavaScript statements to
draw on the Canvas.

 Here’s an example in A3 of Listing 3-2:
context.fillStyle = “black”;

 The string of references to get from your JavaScript code to your Canvas
is a bit confusing. The following shorthand should help you remember the
sequence:

JavaScript code➪Context variable➪Canvas variable➪Canvas tag.

Absolute positioning
In a 2D space, positions are refer-
enced using x and y coordinates. The
x axis extends horizontally, and the
y axis extends vertically. As shown
in Figure 3-3, the center has a posi-
tion x = 0 and y = 0. This can also be
expressed as (0, 0).

 This method of positioning objects,
known as the Cartesian coordinate
system, goes all the way back to the
17th century. The word Cartesian
comes from the work of the French
mathematician and philosopher Rene
Descartes (1596–1650). The Cartesian

Figure 3-3: Cartesian coordinate space.

48 Part II: Drawing on Canvas

coordinate system, shown in Figure
3-3, specifies a point in a plane using
a pair of numbers indicating dis-
tances from the intersection of the x
and y axes.

Unlike a standard Cartesian coordi-
nate space, the Canvas space doesn’t
have visible negative points. Using
negative coordinates won’t cause
your application to fail, but objects
positioned using negative coordinate
points won’t appear in the display.

Also, as shown in Figure 3-4, the
x and y coordinate positions on a
Canvas progress from (0, 0) to the
right and downward to the maximum
dimensions of the Canvas space. Therefore, a Canvas that is 400 pixels wide
by 200 pixels high has a maximum pixel position of (399, 199).

 If you’ve used Cartesian coordinates in the past, you may forget that on a
Canvas space, y coordinates increase downward instead of upward. (I have
a mathematics background, so this happens to me all the time.) If you make
this mistake, you may be mystified about why you’re seeing incorrect Canvas
images. Add the y coordinate direction to your checklist of common coding
errors.

Relative positioning
In addition to specifying numbered pixel positions, such as (240, 145),
variables, such as (xPos, yPos), can be used for positioning. Furthermore,
these location variables can be defined relative to other variables. This
allows positioning relative to locations on the Canvas other than the (0, 0)
point used for absolute positioning. Relative positioning by using variable
names has a number of advantages over absolute positioning:

 ✓ Better documentation of the meaning of object positions

 ✓ Improved code understandability

 ✓ Enhances the ability to reuse code, such as drawing multiple objects
with the same function

 ✓ Improved flexibility in changing the position of objects on the Canvas,
such as when creating object motion or animation

Figure 3-4: Canvas coordinate space.

49 Chapter 3: Creating Objects

To use relative positioning, as shown in Figure 3-5, follow these steps:

 1. Define variables to hold anchor position coordinates and values.

 These variables will be used to calculate object positions. For example,
you might want to position objects relative to a starting position with a
delta offset:
var xStart = 240; var yStart = 145;
var delta1 = 35; var delta2 = 40;

 2. Define variables to hold your object x and y coordinate positions.

 Use the variables from Step 1 to calculate the x and y coordinates for an
object, such as:
var xPos = xStart + delta1;
var yPos = yStart + delta2;

 3. Use position variables to reference object locations.

 Use your calculated x and y coordinates from Step 2 in JavaScript state-
ments, such as those used to display text on your Canvas:
var mText = “Text to be displayed.”
context.fillText(mText, xPos, yPos);

Figure 3-5: Relative positioning on a Canvas.

50 Part II: Drawing on Canvas

Drawing Rectangles
Rectangles are one of the most common and easiest to draw Canvas objects.
The code in Listing 3-3 created the rectangles shown in Figure 3-6.

Listing 3-3: Drawing Rectangles
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition standard variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. LAYOUT of first rectangle.
 var xPos = 20; var yPos = 20;
 var width = 100; var height = 50;

 // A3. DISPLAY rectangles.
 context.fillStyle = “hotpink”;
 context.fillRect (xPos, yPos, width, height);
 context.lineWidth = 4;
 context.strokeStyle = “royalblue”;
 context.strokeRect (xPos+130, yPos, width, height);
 context.fillStyle = “darkorange”;
 context.fillRect (xPos+260, yPos, width, height);
 context.clearRect (xPos+285, yPos+10, width-50, height-20);
}
</script> </head> <body>
<div style = “width:400px; height:90px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea”
 width = “400” height = “90” style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

Figure 3-6: Rectangles.

51 Chapter 3: Creating Objects

 In this section and those that follow, I won’t be discussing the standard code
to display a web page and Canvas (as demonstrated in Listings 3-1 and 3-2).
Other than changes to the dimensions of the Canvas in the <div> and
<canvas> tags, the code is the same for each listing.

To create a rectangle, follow these steps:

 1. Define variables to control positioning.

 As shown in A2 of Listing 3-3, define variables used to draw the rect-
angles, such as positioning coordinates:
var xPos = 20; var yPos = 20;

 2. Using references to the Canvas context, define attributes of the
rectangles.

 For example, here’s a fill color shown in A2:
context.fillStyle = “hotpink”;

 You can find a more complete discussion of object attributes in the next
section.

 3. Create your rectangles using the function for the type of rectangle
desired:

 • fillRect(): A rectangle that’s filled as specified in attributes
such as fillStyle. An example is the first rectangle in Figure 3-6:

 context.fillRect(xPos, yPos, width, height);

 • strokeRect(): A rectangle that’s outlined as specified in attri-
butes such as strokeStyle and lineWidth. An example is the
second rectangle in Figure 3-6:

 context.strokeRect(xPos+130, yPos, width, height);

 • clearRect(): A rectangle that creates a cleared space. This is
demonstrated in the third rectangle of Figure 3-6:

 context.clearRect(xPos+285, yPos+10, width-50, height-20);

Defining Object Attributes
The choices you make for object attributes can help your Canvas application
stand out and attract users. The attributes discussed in this section include

 ✓ Colors: Fill your object with any of thousands of color variations.

 ✓ Gradients: Vary the colors within an object.

52 Part II: Drawing on Canvas

 ✓ Patterns: Fill your object with a repeated pattern.

 ✓ Transparency: Let another image or background show through your
object.

 ✓ Shadows: Generate shadows below, above, or to the side of your
objects.

 ✓ Clipping: Set a mask that will remove designated portions of your object.

You can apply these attributes to a variety of object types, such as lines, cir-
cles, rectangles, and multi-sided shapes. To assign an attribute to an object,
follow these steps:

 1. Define the attribute in the Canvas context.

 For example, set the fillStyle for objects to be drawn in black:
context.fillStyle = “black”;

 2. Create objects that you want to have the attribute.

 When an object is drawn, the existing context attributes are applied. So,
say that after the statement in Step 1, you use the following function:
context.fillText(“Hi”, xPos, yPos);

 The result is that the word Hi is drawn in black on the Canvas at posi-
tion x = xPos, y = yPos.

 After the fillStyle is set to black, you can draw a single object or
multiple objects by using this style. As long as the context fillStyle
attribute is set to black, objects drawn will have a black fillStyle.

 3. Change the attribute for other objects.

 To change the fillStyle of the next objects drawn, add code to
change the fillStyle attribute. For example, changing the fillStyle
to orange:
context.fillStyle = “orange”;

53 Chapter 3: Creating Objects

 The terms fillStyle and fillText are similar, which creates a bit of con-
fusion. The term fillStyle is an attribute that is assigned a value using an =
operation. The term fillText is a function that is executed using the param-
eters inside parentheses (). Another way to understand this distinction is to
remember that the attributes will not appear on the Canvas until an object is
drawn using a function.

Colors
Apply color to object fills and strokes (lines) by using the fillStyle and
strokeStyle context attributes. For example:

context.fillStyle = “orange”;
context.strokeStyle = “red”;

You can specify the color of an object in a number of ways, including

Color Specification Example

Color keywords cornflowerblue

Hexadecimal values #6495ED

RGB (red, green, blue) rgb(100, 149, 237)

HSL (hue, saturation, lightness) hsl(219, 58%, 93%)

Color keywords
There are basic and extended keywords for a wide variety of colors, as
shown in Figure 3-7. See www.w3.org/TR/css3-color/#svg-color for
additional details.

Hexadecimal values
Using a hexadecimal representation for red, green, and blue values allows the
creation of more than 16 million different colors. This is useful when design-
ing color variations or matching a very specific color. As an example, the
extended color “cornflowerblue” has a hexadecimal value of “#6495ED”.

http://www.w3.org/TR/css3-color/#23svg-color

54 Part II: Drawing on Canvas

Figure 3-7: Colors and keywords.

55 Chapter 3: Creating Objects

 Hexadecimal numbers use a base of 16 symbols to represent values, to allow
specifying larger numbers with the same number of symbols as a number
system with a smaller base, such as the familiar base 10 system of digits 0
through 9. To convert a number between base systems, you can use a con-
version website such as

www.statman.info/conversions/hexadecimal.html

RGB and HSL values
Colors can also be defined by using numeric values for combinations of RGB
(red, green, blue) or HSL (hue, saturation, lightness). HSL is also referred to
as HSV (hue, saturation, value).

RGB specifies numbers for the level of red, green, and blue in numbers from
0 to 255:

rgb(24,50,150)

For example, to create a fillStyle using this color:

context.fillStyle = “rgb(24,50,150)”

HSL specifies a number for hue and percentages for saturation and lightness:

hsl(30,50%,75%)

 ✓ Hue indicates the position on a circular color wheel starting with red at
the zero degree point and wrapping back to red at 360 degrees.

 ✓ Saturation indicates the amount of color from 0% to 100%.

 ✓ Lightness indicates the purity of color from 0% to 100%.

To create a fillStyle with the hsl format, use the following line:

context.fillStyle = “hsl(30, 50%, 75%)”

The best way to understand the real meaning of these numbers is to experi-
ment with a color design tool such as http://kuler.adobe.com (shown in
Figure 3-8).

http://www.statman.info/conversions/hexadecimal.html
http://kuler.adobe.com/

56 Part II: Drawing on Canvas

© 2012 with express permission from Adobe Systems Incorporated.

Figure 3-8: Color picker.

Gradients
Gradients create transitions between colors, and they can be linear or radial:

 ✓ Linear gradients transition their colors, as shown in the first three
squares and line at the bottom of Figure 3-9.

 ✓ Radial gradients transition their colors as shown in the last two squares
in Figure 3-9.

The objects in Figure 3-9 were created by using the code in Listing 3-4.

57 Chapter 3: Creating Objects

Figure 3-9: Linear and radial gradients.

Listing 3-4: Creating Gradients
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition standard variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. LAYOUT of first object.
 var xPos = 20; var yPos = 20; var gap = 20;
 var width = 80; var height = 80;

 // A3. ATTRIBUTES.
 context.shadowOffsetX = 4;
 context.shadowOffsetY = 4;
 context.shadowBlur = 3;
 context.shadowColor = “gray”;
 context.lineWidth = 4;

 // A4. LINEAR HORIZONTAL gradient.
 var gradLH = context.createLinearGradient(
 20, // Start x
 0, // Start y
 100, // End x
 0); // End y

 // A5. LINEAR VERTICAL gradient.
 var gradLV = context.createLinearGradient(
 0, // Start x
 0, // Start y
 0, // End x
 100); // End y

(continued)

58 Part II: Drawing on Canvas

Listing 3-4 (continued)
 // A6. LINEAR DIAGONAL gradient.
 var gradLD = context.createLinearGradient(
 xPos+(2*width)+(2*gap), // Start x
 yPos, // Start y
 xPos+220+width, // End x
 yPos+height); // End y

 // A7. CENTERED RADIAL gradient.
 var gradRC = context.createRadialGradient(
 xPos+(3*width)+(3*gap)+(width/2), // Inner circle x
 yPos+(height/2), // Inner circle y
 5, // Inner circle radius
 xPos+(3*width)+(3*gap)+(width/2), // Outer circle x
 yPos+(height/2), // Outer circle y
 50); // Outer circle radius

 // A8. OFFSET RADIAL gradient.
 var gradRO = context.createRadialGradient(
 xPos+(4*width)+(4*gap)+(width/4), // Inner circle x
 yPos+(height/2), // Inner circle y
 15, // Inner circle radius
 xPos+(4*width)+(4*gap)+(width/2), // Outer circle x
 yPos+(height/2), // Outer circle y
 40); // Outer circle radius

 // A9. COLORS.
 gradLH.addColorStop(0, “deeppink”);
 gradLH.addColorStop(.3, “orange”);
 gradLH.addColorStop(.6, “lime”);
 gradLH.addColorStop(1, “yellow”);
 gradLV.addColorStop(0, “red”);
 gradLV.addColorStop(.4, “blueviolet”);
 gradLV.addColorStop(1, “gold”);
 gradLD.addColorStop(0, “fuchsia”);
 gradLD.addColorStop(.5, “orange”);
 gradLD.addColorStop(1, “springgreen”);
 gradRC.addColorStop(0, “red”);
 gradRC.addColorStop(.5, “turquoise”);
 gradRC.addColorStop(1, “olive”);
 gradRO.addColorStop(0, “yellow”);
 gradRO.addColorStop(.7, “magenta”);
 gradRO.addColorStop(1, “limegreen”);

 // A10. LINEAR gradient objects.
 context.fillStyle = gradLH;
 context.fillRect (xPos+(0*width)+(0*gap), yPos, width, height);
 context.fillStyle = gradLV;
 context.fillRect (xPos+(1*width)+(1*gap), yPos, width, height);

59 Chapter 3: Creating Objects

 context.fillStyle = gradLD;
 context.fillRect (xPos+(2*width)+(2*gap), yPos, width, height);
 context.strokeStyle = gradLD;
 context.beginPath();
 context.moveTo (xPos, yPos+height+gap);
 context.lineTo (xPos+(5*width)+(4*gap), yPos+height+gap);
 context.stroke();

 // A11. RADIAL gradient objects.
 context.fillStyle = gradRC;
 context.fillRect (xPos+(3*width)+(3*gap), yPos, width, height);
 context.fillStyle = gradRO;
 context.fillRect (xPos+(4*width)+(4*gap), yPos, width, height);
}
</script> </head> <body>
<div style = “width:525px; height:150px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “525” height =”150”

 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

To create gradients, follow these steps:

 1. Create gradient variables by using either createLinearGradient()
or createRadialGradient(), depending on whether you want a
linear or radial shape to your color transitions.

 The createLinearGradient() function has four parameters, which
specify x and y starting and ending positions:
var gradLH = context.createLinearGradient(StartX, StartY, EndX, EndY);

 Set the value of the x and y coordinates to determine the angle of the
gradient and influence the size of color bands generated. The x and y
coordinates are relative to the top-left corner of the Canvas.

 • To create a horizontal gradient, set the y parameters to zero.

 • To create a vertical gradient, set the x parameters to zero.

 See A4–5 in Listing 3-4 for linear horizontal (gradLH) and linear vertical
(gradLV) gradient code examples:
var gradLH = context.createLinearGradient(20, 0, 100, 0);
var gradLV = context.createLinearGradient(0, 0, 0, 100);

60 Part II: Drawing on Canvas

 These two statements generated the first two objects in Figure 3-9. Use
the code in Listing 3-4 to experiment with different values for these
parameters and observe the results.

 The createRadialGradient() function has six parameters, defining
the x position, y position, and radius for two circles:
var gradRC = context.createRadialGradient(
 innerCircleX, innerCircleY, innerCircleRadius,
 outerCircleX, outerCircleY, outerCircleRadius,);

 To create a radial gradient centered in an object, the x and y values must
be set to the desired position within the object. A7–8 in Listing 3-4 dem-
onstrate centering a radial in a square (gradRC) and placing one offset
to the side (gradRO). Here’s the centered radial gradient:
var gradRC = context.createRadialGradient(
 xPos+(3*width)+(3*gap)+(width/2), // Inner circle x
 yPos+(height/2), // Inner circle y
 5, // Inner circle radius

 xPos+(3*width)+(3*gap)+(width/2), // Outer circle x
 yPos+(height/2), // Outer circle y
 50); // Outer circle radius

 The gradient x and y parameters are positions relative to the top-left
corner of the Canvas, not the object using the gradient. To make the gradi-
ent positioning relative to an object, the x and y values must be adjusted
to lie within the object. (See A6–8 in Listing 3-4.)

 2. Use the addColorStop() function to add colors to the gradient.

 The first parameter determines where a color begins. The second
parameter determines the color.

 Here’s an example in code section A9 of Listing 3-4:
gradLH.addColorStop(0, “deeppink”);
gradLH.addColorStop(.3, “orange”);
gradLH.addColorStop(.6, “lime”);
gradLH.addColorStop(1, “yellow”);

 3. Set the fillStyle to the gradient that has been defined.

 Here’s an example in code sections A10–11 of Listing 3-4:
context.fillStyle = gradLH;

61 Chapter 3: Creating Objects

 In addition to using gradients with simple shapes like squares and lines,
gradients can be applied to more complex, multi-sided shapes. The
process is the same. After the fillStyle has been set to a gradient,
objects drawn will use that gradient.

 4. Create the object using the appropriate function.

 The object will be filled with the gradient because the context has been
set with the gradient fillStyle in Step 3. Sections A10–11 in Listing 3-4
demonstrate creating a number of objects with a gradient applied. One
example is
context.fillRect(xPos+(2*width)+(2*gap), yPos, width, height);

Patterns
Patterns create repeated images. The patterns in Figure 3-10 were created
with the code in Listing 3-5.

Figure 3-10: Objects with patterns.

62 Part II: Drawing on Canvas

Listing 3-5: Using Patterns
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition standard variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. IMAGE variables and sources.
 var smallImage = new Image();
 smallImage.src = “http://marketimpacts.com/storage/Strawberry50px.png”;

 // B. PATTERN creation.
 smallImage.onload = function()
 {
 // B1. ATTRIBUTES.
 context.shadowOffsetX = 4; context.shadowOffsetY = 4;
 context.shadowBlur = 10; context.shadowColor = “lavender”;

 // B2. REPEAT pattern variables.
 var repeatPattern = context.createPattern(smallImage, “repeat”);
 var noRepeatPattern = context.createPattern(smallImage, “no-repeat”);
 var repeatXPattern = context.createPattern(smallImage, “repeat-x”);
 var repeatYPattern = context.createPattern(smallImage, “repeat-y”);

 // B3. PATTERN objects.
 context.fillStyle = repeatPattern;
 context.fillRect (125, 125, 325, 325);
 context.strokeRect (125, 125, 325, 325);
 context.fillStyle = noRepeatPattern;
 context.fillRect (0, 0, 100, 100);
 context.strokeRect (0, 0, 100, 100);
 context.fillStyle = repeatXPattern;
 context.fillRect (125, 0, 350, 100);
 context.strokeRect (125, 0, 350, 100);
 context.fillStyle = repeatYPattern;
 context.fillRect (0, 125, 100, 350);
 context.strokeRect (0, 125, 100, 350);
 }
}
</script> </head> <body>
<div style = “width:500px; height:500px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “500” height = “500”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

63 Chapter 3: Creating Objects

As shown in Figure 3-10, four types of patterns can be generated:

 ✓ Repeat: The object is filled with the repeated image, as shown in the
lower right of Figure 3-10.

 ✓ No Repeat: The image is drawn only once in the object, as shown in the
upper left of Figure 3-10.

 ✓ Repeat X: The image is repeated across the horizontal length of the
object, as shown in the upper right of Figure 3-10.

 ✓ Repeat Y: The image is repeated down the vertical height of the object,
as shown in the lower left of Figure 3-10.

 As of this writing, the major browsers have different implementations of
pattern generation. The Repeat pattern is consistent across browsers.

The browser creates patterns by starting at the upper left of the Canvas at
position (0, 0). Notice in Figure 3-10 that even when patterns are drawn
inside a space that does not start at (0, 0), the pattern is drawn using the
(0, 0) starting point. You can change this starting point by translating the
(0, 0) point to another position, as explained in Chapter 5.

To use patterns, do the following:

 1. Create a variable to hold the image and reference the source on a
website.

 In the Listing 3-5, a 50 pixel square image of a ball is used. This is shown
in code section A2:
var smallImage = new Image();
smallImage.src = “http://marketimpacts.com/storage/Strawberry50px.png”;

 2. Create the function to be executed when the image is loaded.

 Here’s an example in code section B of Listing 3-5:
smallImage.onload = function()
{ . . . }

 3. Define any attributes you want applied to the image.

 For example, in B1 of Listing 3-5, shadow attributes are established:
context.shadowOffsetX = 4; context.shadowOffsetY = 4;
context.shadowBlur = 10; context.shadowColor = “gray”;

64 Part II: Drawing on Canvas

 4. Create pattern variables by using the createPattern() function.

 An example is shown in B2 of Listing 3-5:
var repeatPattern = context.createPattern(smallImage,”repeat”);

 5. Finally, create the objects using the pattern.

 In B3 of Listing 3-5, the fillStyle attribute is used to establish the
type of repetition, and the fillRect() function is used to fill the
objects with the pattern. The strokeRect() function is used in the
example to show the outline of the rectangle being filled. One example is
context.fillStyle = repeatPattern;
context.strokeRect (125, 125, 325, 325);
context.fillRect (125, 125, 325, 325);

 Objects including rectangles, circles, lines, and those that are complex
and multi-sided can be filled with patterns. Once the fillStyle has
been set to a pattern, that pattern will be used when an object is drawn.

Transparency
Object transparency is created by using the globalAlpha attribute. This
attribute indicates the degree of transparency from 0 to 1, where 0 is fully
transparent and 1 is fully opaque. Figure 3-11 shows objects created by the
code in Listing 3-6 using varying degrees of globalAlpha.

 To create color blends using transparency, overlap images as demonstrated
in Figure 3-11.

 The term alpha comes from the concept of “alpha channels” developed in
the late 1970s to carry information about how to modify an original image,
or channel. It’s called globalAlpha because it applies globally to the entire
Canvas context to which it’s assigned.

Figure 3-11: Object transparency.

65 Chapter 3: Creating Objects

Listing 3-6: Using Transparency
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition standard variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. LAYOUT of first object.
 var xPos = 20; var yPos = 20; var gap = -20;
 var width = 80; var height = 80;

 // A3. SHADOW attributes.
 context.shadowOffsetX = 4; context.shadowOffsetY = 4;
 context.shadowBlur = 3; context.shadowColor = “gray”;

 // A4. OBJECTS with global alpha.
 context.globalAlpha = 1;
 context.fillStyle = “orange”;
 context.fillRect (xPos+(0*width)+(0*gap), yPos, width, height);
 context.globalAlpha = .5;
 context.fillStyle = “blue”;
 context.fillRect (xPos+(1*width)+(1*gap), yPos, width, height);
 context.globalAlpha = .25;
 context.fillStyle = “red”;
 context.fillRect (xPos+(2*width)+(2*gap), yPos, width, height);
 context.globalAlpha = .25;
 context.fillStyle = “limegreen”;
 context.fillRect (xPos+(3*width)+(3*gap), yPos, width, height);
 context.globalAlpha = .4;
 context.fillStyle = “magenta”;
 context.fillRect (xPos+(4*width)+(4*gap), yPos, width, height);
 context.globalAlpha = .25;
 context.fillStyle = “gold”;
 context.fillRect (xPos+(5*width)+(5*gap), yPos, width, height);
 context.globalAlpha = .4;
 context.fillStyle = “turquoise”;
 context.fillRect (xPos+(6*width)+(6*gap), yPos, width, height);
}
</script> </head> <body>
<div style = “width:490px; height:125px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea”
 width = “490” height = “125” style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

66 Part II: Drawing on Canvas

To create transparency in an object, do the following:

 1. Set the context globalAlpha attribute to the desired level of
transparency.

 After you set this attribute, whatever colors are used to fill an object or
stroke will be altered when the object is created. This is demonstrated
in A4 of Listing 3-6, which includes this example:
context.globalAlpha = .5;

 2. Set the fillStyle for the objects that you will draw.

 In the following sample code from A4, the fillStyle is set to blue, and
the globalAlpha setting from Step 1 example will make the blue 50%
transparent.
context.fillStyle = “blue”;

 An alternative way to set the transparency is to use a fourth parameter
in an rgb specification for a color. For example, use the following code
to set the color blue to a 50% transparency level:
context.fillStyle = “rgb(0,0,255,.5)”

 3. Create the object.

 Use the appropriate function to create your object. In code section A4 in
Listing 3-6, the transparency will be applied to a rectangle:
context.fillRect(xPos+(1*width)+(1*gap), yPos, width, height);

Shadows
To create shadows, as demonstrated in Figure 3-12 and Listing 3-7, follow
these steps:

 1. Set shadow attributes in the Canvas context.

 Set context shadow attributes as in A3–5 of Listing 3-7:

 • Shadow x and y offsets: The distance of the shadow from the
original object.

 • Shadow blur: The amount of blurring applied.

 • Shadow color: The color of the shadow, which can be different
than the color of the original object.

 An example is
context.shadowOffsetX = 4; context.shadowOffsetY = 4;
context.shadowBlur = 3; context.shadowColor = “gray”;

67 Chapter 3: Creating Objects

 2. Draw the objects that you want to have a shadow.

 Draw objects with shadow attributes defined to generate the accompa-
nying shadows as is shown in this example from A3–5 of Listing 3-7:
context.fillRect(x1Pos, yPos, length, height);

Figure 3-12: Object shadows.

Listing 3-7: Creating Shadows
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition standard variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. LAYOUT parameters.
 var x1Pos = 25; var x2Pos = 175; var x3Pos = 325;
 var yPos = 10;
 var length = 100; var height = 25;

 // A3. RECTANGLE with shadow.
 context.shadowOffsetX = 4;
 context.shadowOffsetY = 4;
 context.shadowBlur = 3;
 context.fillStyle = “deeppink”;
 context.shadowColor = “gray”;
 context.fillRect (x1Pos, yPos, length, height);

 // A4. RECTANGLE with shadow.
 context.shadowOffsetX = 8;
 context.shadowOffsetY = 8;
 context.shadowBlur = 3;
 context.strokeStyle = “aqua”;
 context.shadowColor = “lightgreen”;
 context.lineWidth = 9;
 context.strokeRect (x2Pos, yPos, length, height);

(continued)

68 Part II: Drawing on Canvas

Listing 3-7 (continued)

 // A5. RECTANGLE with shadow.
 context.shadowOffsetX = 30;
 context.shadowOffsetY = 30;
 context.shadowBlur = 9;
 context.fillStyle = “darkorange”;
 context.shadowColor = “greenyellow”;
 context.fillRect (x3Pos, yPos, length, height);
}
</script> </head> <body>
<div style = “width:500px; height:80px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea”
 width = “500” height = “80” style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

Clipping
Clipping is a function that restricts the area of a Canvas that can be drawn on
to the size and shape of an object. For example, Figure 3-13 shows how a rect-
angular clipping region was used to eliminate portions of text. Notice that the
sides, top, and bottom of the words “Hi there!” have been shaved off by the
clipping region. The code in Listing 3-8 created this display.

Figure 3-13: Clipping objects.

Listing 3-8: Clipping Objects
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition standard variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

69 Chapter 3: Creating Objects

 // A2. MESSAGE details. Center on canvas.
 var mText = “Hi there!”
 var xPos = canvas.width/2; var yPos = canvas.height/2;

 // A3. TEXT format details.
 context.font = “60pt Comic Sans MS”;
 context.fillStyle = “hotpink”;
 context.textAlign = “center”;
 context.textBaseline = “middle”;

 // A4. CLIPPING region.
 context.rect(40, 40, 320, 50);
 context.clip();

 // A5. FILL text.
 context.fillText(mText, xPos, yPos);
}
</script> </head> <body>
<div style = “width:500px; height:90px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea”
 width = “400” height = “150” style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

To establish a clipping region, follow these steps:

 1. Create a clipping shape by using the appropriate function.

 Use a function such as the rect() function to create the clipping shape:
rect(xPos, yPos, width, height)

 Here’s an example from A4 of Listing 3-8:
context.rect(40, 40, 320, 50);

 Other shapes, such as a circle, can also be used to establish the clipping
region.

 2. Use the clip() function to create a clipping region.

 Code section A4 of Listing 3-8 demonstrates this:
context.clip();

 The clipping region will have the shape of the area created in Step 1.

 3. Draw the shape to be clipped by using the appropriate function.

 Here’s an example from code section A5 in Listing 3-8:
context.fillText(mText, xPos, yPos);

 Thus, the shape created in Step 1 is used to clip the shape created in
Step 3.

70 Part II: Drawing on Canvas

Displaying Text
You’ve already seen an example of displaying text in a Canvas application
in Chapter 1. It’s a common and important function. Text even has its own
Application Programming Interface (API).

To display text, first set the characteristics of the text by assigning values to
the appropriate context attributes, such as:

context.font = “italic bold 12px Arial”;
context.fillStyle = “black”;
context.textAlign = “center”;

Then apply the fillText() method to the context passing as parameters
the text to be displayed and its coordinates on the Canvas:

context.fillText(mText, xPos, yPos);

An example is shown earlier in Figure 3-2, which was generated using the
code in Listing 3-2.

Font attributes
You can set a number of font properties by using context.font: style,
weight, size, and face. These are based on Cascading Style Sheet (CSS) speci-
fications. Not all values are required. If values aren’t specified, the defaults
are applied. The format of the statement to assign font attributes is

context.font = “style weight size face”;

For example:

context.font = “italic bold 20px arial”;

Font style
Styles available include:

 ✓ normal (the default)

 ✓ italic

 ✓ oblique (similar to italic, usually associated with sans-serif faces)

 ✓ inherit (style comes from the parent element)

71 Chapter 3: Creating Objects

Font weight
Weights available include

 ✓ normal (the default)

 ✓ bold | bolder

 ✓ lighter

 ✓ 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900

 ✓ inherit (weight comes from the parent element)

Font size
Font sizes can be specified in:

 ✓ px (pixels) for exact size

 ✓ pt (points) for exact size

 ✓ em (ems) 1 em is equal to the font size set for the web page

Canvas font sizes are normally specified in pixels or points. The range of font
sizes available depends on the browser displaying the web page. Most brows-
ers support sizes in the hundreds of pixels. If you’re using large sizes, test
your application on the major browsers to verify they can handle your text.

Font face
Font faces, also referred to as type faces, give text their individual appear-
ance. The font faces supported depend on the browser displaying the web
page. Browsers don’t support the wide variety of font faces found on word
processors. One way to deal with this restricted selection is to specify a font
family name for the font face: sans-serif, serif, or monospace. If you want to
specify an individual font name, some choices that are generally supported
by browsers are

 ✓ Sans-serif: Arial, Verdana

 ✓ Serif: Georgia, Times New Roman, Times

 ✓ Monospace: Courier New, Courier

Text baseline
The textBaseline attribute controls the vertical positioning of text relative
to a virtual baseline upon which most letters in a line of text sit. The attribute
instructs the browser what position on the text to place along the baseline.
The baseline in Figure 3-14 is shown as a red line across the Canvas.

72 Part II: Drawing on Canvas

Figure 3-14: Text baselines.

 Some of the textBaseline attributes produce counterintuitive results. For
example, using the top value places text lower on the Canvas than using the
bottom value.

The code in Listing 3-9 produced Figure 3-13, which shows the positioning
options for textBaseline:

 ✓ top: The baseline is above the text.

 ✓ hanging: The baseline is above the text.

 ✓ middle: The baseline is through the middle of the text.

 ✓ alphabetic: The baseline is at the base of letters without a lower loop,
such as the letter e.

 ✓ ideographic: The baseline is below the text, touching the bottom of
characters with a descending loop, such as g.

 ✓ bottom: The baseline is below the text.

Listing 3-9: Using Text Baselines
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition standard variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. TEXT variables.
 var xPos = 75; var yPos = canvas.height/2;

 // A3. ATTRIBUTES.
 context.font = “10pt Arial”; context.fillStyle = “black”;
 context.textAlign = “right”; context.strokeStyle = “hotpink”;
 context.lineWidth = 1;

 // A4. BASELINE.
 context.beginPath();

73 Chapter 3: Creating Objects

 context.moveTo(0, yPos);
 context.lineTo(canvas.width, yPos);
 context.stroke();

 // A5. TEXT BASELINE examples.
 context.textBaseline = “top”;
 context.fillText(“|top”, xPos*1, yPos);
 context.textBaseline = “hanging”;
 context.fillText(“|hanging”, xPos*2, yPos);
 context.textBaseline = “middle”;
 context.fillText(“|middle”, xPos*3, yPos);
 context.textBaseline = “alphabetic”;
 context.fillText(“|alphabetic”, xPos*4, yPos);
 context.textBaseline = “ideographic”;
 context.fillText(“|ideographic”, xPos*5, yPos);
 context.textBaseline = “bottom”;
 context.fillText(“|bottom”, xPos*6, yPos);
}
</script> </head> <body>
<div style = “width:500px; height:50px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “500” height = “50”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

 There are some textBaseline implementation differences between browsers.
Watch for these variations, especially when using the hanging or ideographic
attributes. If your application requires very precise positioning, test your font
face with your characters by using Listing 3-9.

To test the text baseline using Listing 3-9, follow these steps:

 1. Change the font attribute in A3:

context.font = “10pt Verdana”;

 2. Change the text in A5:

context.fillText(“New text to test.”, xPos*1, yPos);

To set the textBaseline in your application, use the following steps:

 1. Set the textBaseline attribute in the Canvas context.

 An example from A5 of Listing 3-9 is
context.textBaseline = “middle”;

 2. Use the fillText() function to display text.

 An example from A5 of Listing 3-9 is
context.fillText(“middle”, xPos*3, yPos);

74 Part II: Drawing on Canvas

Text alignment
The textAlign attribute controls the horizontal
positioning of text relative to a virtual vertical
line running through the center of a word. The
attribute instructs the browser what position on
the text to place along the vertical center point.
The vertical center point in Figure 3-15 is shown
as a red line down the Canvas.

 This produces some counterintuitive results. For
example, using the left value places text farther
to the right on the Canvas than when using the
right value.

The code in Listing 3-10 produced Figure 3-15, which shows the positioning
options for textAlign:

 ✓ right: The alignment line is to the right of the text.

 ✓ end: The alignment line is to the right of the text.

 ✓ center: The alignment line is through the center of the text.

 ✓ left: The alignment line is to the left of the text.

 ✓ start: The alignment line is to the left of the text.

Listing 3-10: Using Text Alignments
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition standard variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. TEXT variables.
 var xPos = canvas.width/2;
 var yPos = 30;

 // A3. ATTRIBUTES.
 context.font = “15pt Arial”;
 context.fillStyle = “black”;
 context.strokeStyle = “hotpink”;
 context.lineWidth = 1;

 // A4. CENTERLINE.
 context.beginPath();

Figure 3-15: Text alignment.

75 Chapter 3: Creating Objects

 context.moveTo(xPos, 0);
 context.lineTo(xPos, canvas.height);
 context.stroke();

 // A5. TEXT BASELINE examples.
 context.textAlign = “right”;
 context.fillText(“right”, xPos, yPos*1);
 context.textAlign = “end”;
 context.fillText(“end”, xPos, yPos*2);
 context.textAlign = “center”;
 context.fillText(“center”, xPos, yPos*3);
 context.textAlign = “left”;
 context.fillText(“left”, xPos, yPos*4);
 context.textAlign = “start”;
 context.fillText(“start”, xPos, yPos*5);
}
</script> </head> <body>
<div style = “width:200px; height:175px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “200” height = “175”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

 There are some textAlign implementation differences between browsers.
If your application requires very precise positioning, test your font face with
your characters using Listing 3-10.

To test text alignment using Listing 3-10, follow these steps:

 1. Change the font attribute in A3:

context.font = “10pt Verdana”;

 2. Change the text in A5:

context.fillText(“New text to test.”, xPos*1, yPos);

To set the textAlign attribute in your application, use the following steps:

 1. Set the textAlign attribute in the Canvas context.

 An example from A5 of Listing 3-10 is
context.textAlign = “center”;

 2. Use the fillText() function to display text.

 An example from A5 of Listing 3-10 is
context.fillText(“center”, xPos, yPos*3);

76 Part II: Drawing on Canvas

Drawing Lines
Drawing a line is a basic Canvas function that you’ll use to create objects
from simple, single line segments to complex, multiple segment shapes.
Figure 3-16 shows examples of lines created by the code in Listing 3-11. The
lines to the left demonstrating end caps are single segment, simple lines. The
three objects to the right demonstrating join options are a bit more complex
and use multiple line segments.

Figure 3-16: Drawing lines.

Listing 3-11: Drawing Lines
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition standard variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. VARIABLES.
 var width = 60; var height = 75; var gap = 50;

 // A3. ATTRIBUTES of lines.
 context.strokeStyle = “red”; context.lineWidth = 20;
 context.shadowOffsetX = 4; context.shadowOffsetY = 4;
 context.shadowBlur = 7; context.shadowColor = “gray”;

 // A4. DRAW lines.
 // xStart yStart cap
 // ------ ------ -------
 drawLine(25, 25, “butt”);
 drawLine(25, 75, “square”);
 drawLine(25, 125, “round”);

 // A5. DRAW joins.
 // xStart yStart join

77 Chapter 3: Creating Objects

 // --------------------- ------ -------
 drawJoin(175+(0*gap)+(0*width), 120, “miter”);
 drawJoin(175+(1*gap)+(1*width), 120, “bevel”);
 drawJoin(175+(2*gap)+(2*width), 120, “round”);

 // B. LINE DRAWING function.
 function drawLine(xStart, yStart, cap)
 {
 // B1. ATTRIBUTES of lines.
 context.lineCap = cap;

 // B2. DRAW lines.
 context.beginPath();
 context.moveTo(xStart, yStart);
 context.lineTo(xStart+1.5*width, yStart);
 context.stroke();
 }
 // C. LINE JOINING function.
 function drawJoin(xStart, yStart, join)
 {
 // C1. ATTRIBUTES of lines.
 context.lineCap = “round”;

 // C2. DRAW lines.
 context.beginPath();
 context.moveTo(xStart, yStart);
 context.lineTo(xStart+(width/2), yStart-height);
 context.lineTo(xStart+width, yStart);
 context.lineJoin = join;
 context.stroke();
 }
}
</script> </head> <body>
<div style = “width:500px; height:160px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “500” height = “160”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

Line attributes
A number of attributes can be used in drawing a line. Two examples as shown
in code segment A3 of Listing 3-11 (in the preceding section) are

context.strokeStyle = “red”;
context.lineWidth = 20;

78 Part II: Drawing on Canvas

Attributes that can be used for lines include

 ✓ Colors: Fill your line with any of thousands of color variations.

 ✓ Gradients: Vary the colors within a line.

 ✓ Patterns: Fill your line with a repeated pattern.

 ✓ Transparency: Let another image or background show through your line.

 ✓ Shadows: Generate shadows below, above, or to the side of your line.

 ✓ Clipping: Set a mask that will remove designated portions of your line.

 ✓ Width: Set the width of your line.

 ✓ Caps: Control the shape of the caps on the ends of your line.

 ✓ Joins: Set a mask that will remove designated portions of your object.

Line caps
As shown earlier in Figure 3-16, there are three types of line caps:

 ✓ butt: The line is square ended without adding any length.

 ✓ square: The line is square ended with added length.

 ✓ round: The line is round ended with added length.

Line joins
As shown earlier in Figure 3-16, there are three types of line joins:

 ✓ miter: The lines are joined with a pointed tip.

 ✓ bevel: The lines are joined with a squared tip.

 ✓ round: The lines are joined with a rounded tip.

Line construction
To construct a line, use these steps:

 1. Define functions to draw lines.

 In most of your applications, you’ll be drawing lots of different kinds
of lines. It’s a good practice to define functions for appropriate groups

www.allitebooks.com

http://www.allitebooks.org

79 Chapter 3: Creating Objects

of line types. In Listing 3-11, two functions are defined, drawLine() in
code section B to draw simple, single segment lines, and drawJoin() in
code section C to draw examples of joining two lines:
function drawLine(xStart, yStart, cap)
{ . . . }
function drawJoin(xStart, yStart, join)
{ . . . }

 2. Use the beginPath() method to start a new line path.

 This method doesn’t actually draw the line; it just says “clear the decks;
we’re starting a new line.” And remember, you have to include a refer-
ence to the Canvas context, as in B2 of Listing 3-11:
context.beginPath();

 3. Use the moveTo() function to move to the beginning position of the
line.

 Specify as parameters the x and y coordinates for the start of the line as
in B2 and C2:
context.moveTo(xStart, yStart);

 4. Use the lineTo() function to define a line.

 Specify as parameters the x and y coordinates of the endpoint of the
line. Use multiple lineTo() functions used to create multiple line seg-
ments as in C2:
context.lineTo(xStart+(width/2), yStart-height);
context.lineTo(xStart+width, yStart);

 5. Use the stroke() function to draw the line segment(s).

 The stroke will be made using the attributes currently defined in the
Canvas context as in B2 and C2:
context.stroke();

80 Part II: Drawing on Canvas

4
Enhancing Objects

In This Chapter
▶ Drawing multi-sided shapes
▶ Drawing curves
▶ Overlapping shapes
▶ Creating randomized shapes
▶ Displaying images

I
t’s time to start getting a bit fan-
cier with your Canvas objects. The

preceding chapters show you how to
draw basic objects. In this chapter, you
discover how to make more complex
objects and how to place them on the
Canvas in more sophisticated ways.

Drawing Multi-Sided Shapes
To create multi-sided shapes, you
extend the number of lines drawn in
a path. (See Chapter 3 for details
on creating lines.) As an example,
Listing 4-1 shows the code used to
create the objects in Figure 4-1.

Figure 4-1: Multi-sided shapes.

82 Part II: Drawing on Canvas

Listing 4-1: Drawing Multi-Sided Shapes
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. ATTRIBUTES of shapes.
 context.strokeStyle = “black”;
 context.lineCap = “round”; context.lineWidth = 4;
 context.shadowOffsetX = 3; context.shadowOffsetY = 3;
 context.shadowBlur = 5; context.shadowColor = “gray”;

 // A3. SHAPE 1.
 var xPos = 50; var yPos = 40;
 var fLength = 20; var cLength = 2;
 var color = “blue”
 drawShape(xPos, yPos, fLength, cLength, color);

 // A4. SHAPE 2.

 var xPos = 150; var yPos = 40;
 var fLength = 20; var cLength = 4;
 var color = “green”
 drawShape(xPos, yPos, fLength, cLength, color);

 // A5. SHAPE 3.
 var xPos = 100; var yPos = 125;
 var fLength = 20; var cLength = .5;
 var color = “purple”
 drawShape(xPos, yPos, fLength, cLength, color);

 // B. DRAW shape function.
 function drawShape(xPos, yPos, fLength, cLength, color)
 {

83 Chapter 4: Enhancing Objects

 // B1. CALCULATE short length.
 var sLength = fLength/cLength;

 // B2. PATH segments.
 context.beginPath();
 context.moveTo(xPos-(sLength), yPos-(fLength));
 context.lineTo(xPos+(sLength), yPos-(fLength));
 context.lineTo(xPos+(fLength), yPos-(sLength));
 context.lineTo(xPos+(fLength), yPos+(sLength));
 context.lineTo(xPos+(sLength), yPos+(fLength));
 context.lineTo(xPos-(sLength), yPos+(fLength));
 context.lineTo(xPos-(fLength), yPos+(sLength));
 context.lineTo(xPos-(fLength), yPos-(sLength));
 context.lineTo(xPos-(sLength), yPos-(fLength));

 // B3. DRAW shape.
 context.fillStyle = color;
 context.fill();
 context.stroke();
 }
}
</script> </head> <body>
<div style = “width:200px; height:200px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “200” height = “200”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

To create a multi-sided shape, follow these steps:

 1. Set object attributes that you want to apply to all the shapes you’ll draw.

 Here’s sample code from A2 of Listing 4-1:
context.strokeStyle = “black”;
context.lineWidth = 4;

84 Part II: Drawing on Canvas

 2. Define key shape characteristics and call the function used to create
the shapes.

 See the example shown in A3–5 of Listing 4-1. The characteristics from
this coding example include the x and y coordinate positions of the
shape, the lengths used to calculate line segments, and the fill color:
var xPos = 50; var yPos = 40;
var fLength = 20; var cLength = 2;
var color = “blue”

 3. Define a function to create shapes.

 Create a function to draw your shapes as is done in code segment B of
Listing 4-1. It’s a good programming practice to isolate repetitive code in
a separate function. Exactly what code is included depends on the needs
of your application and how you choose to partition functionality.
function drawShape(xPos, yPos, fLength, cLength, color)
{ . . . }

 Call this function to create individual shapes as in A3–5:
drawShape(xPos, yPos, fLength, cLength, color);

 4. Within the shape-creating function, calculate any variables needed for
shape adjustments.

 For example, here’s the variable sLength in B1 of Listing 4-1:
var sLength = fLength/cLength;

 5. Within the shape-creating function, define the individual line segments
that will form the shape.

 Here is a sample from B2 of Listing 4-1:
context.beginPath();
context.moveTo(xPos-(sLength), yPos-(fLength));
context.lineTo(xPos+(sLength), yPos-(fLength));
context.lineTo(xPos+(fLength), yPos-(sLength));

 6. Create the shape.

 Finally, create the shape, as in B3 of Listing 4-1:
context.fillStyle = color;
context.fill();
context.stroke();

Notice that the shapes created in Figure 4-1 demonstrate quite a bit of varia-
tion based on the variables used to calculate line segments.

85 Chapter 4: Enhancing Objects

Drawing Curves
Learning the techniques to draw curves is important because without them,
creating complex non-linear paths would be virtually impossible. By specifying
just a few parameters, you can draw complex and interesting shapes.

Curves can take a number of forms, as described in the following sections:

 ✓ Arcs

 ✓ Circles

 ✓ Rounded corners

 ✓ Bezier curves

 ✓ Quadratic curves

 ✓ Multi-segment curves

Arcs
An arc is a section of a virtual circle. When drawing an arc, you don’t draw
the circle; rather, you draw as though the circle were there. Figure 4-2 shows
the aspects of arcs and circles used to draw an arc.

Arcs are formed by the arc() function, which takes six parameters:

arc(x, y, radius, startAngle, endAngle, anticlockwise)

There are some very counterintuitive aspects to the way these parameters
are defined and used, so read the following parameter definitions carefully:

 ✓ X: The x coordinate of the center of the virtual circle used to form the
arc. Note that this is not the point at which drawing of the arc begins. In
Figure 4-2, if you were drawing an arc from point S to point E, the start-
ing point for drawing would be S, not the coordinates (x,y). The arc
is, however, positioned on the Canvas using the (x,y) coordinates.
Another way to say this is that the arc will never touch the (x,y) point
on the Canvas.

 ✓ Y: The y coordinate of the center of the arc virtual circle.

 ✓ Radius: The radius of the virtual circle containing the arc. The radius is
used to determine the distance from (x,y) for every point on the arc as
it is drawn.

86 Part II: Drawing on Canvas

Figure 4-2: Arc parameters and calculations.

 ✓ startAngle: The position on the virtual circle in radians of the start point
for drawing the arc. The zero point for measurement is at the 3 o’clock
position on the circle (not 12 o’clock as you might assume). If you’re
using degree as a reference for the angle, convert degrees to radians
with the Math.PI() function:
startAngle = angleInDegrees * Math.PI/180

 For reasons I won’t fully explore here, using radians instead of degrees
for the angle parameters is considered more efficient. Radians are a
more mathematical concept than degrees.

 ✓ endAngle: The position on a circle in radians of the endpoint for drawing
the arc.

87 Chapter 4: Enhancing Objects

 ✓ anticlockwise: Indicates whether the arc should be drawn in a clockwise
or anticlockwise direction. A value of true draws the arc in an anti-
clockwise direction, and a value of false draws the arc in a clockwise
direction. This is a bit confusing, but this is how the parameter is config-
ured. Figure 4-2 shows calculations for a clockwise direction.

 Figure 4-3 shows arcs drawn by the code in Listing 4-2. The code to draw
the arcs is contained in the drawArc() function in code section B of the
listing. In addition to the six parameters needed by the arc() function,
two additional parameters are added to the drawArc() function:
lineColor and fillColor.

Figure 4-3: Arcs.

Listing 4-2: Drawing Arcs
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. ARCS.
 // x y radius startAngle endAngle antiC line fill
 // ---- --- ------ ---------- -------- ----- ------ --------
 drawArc (60, 15, 40, 0, 180, false, “aqua”, “yellow”);
 drawArc (150, 70, 60, 0, 100, true, “green”, “white”);
 drawArc (250, 15, 50, 350, 170, false, “red”, “pink”);
 drawArc (360, 60, 50, 350, 20, true, “blue”, “purple”);

 // B. DRAW arc function.
 function drawArc(xPos, yPos, radius, startAngle, endAngle,
 anticlockwise, lineColor, fillColor)
 {

(continued)

88 Part II: Drawing on Canvas

Listing 4-2 (continued)
 // B1. ANGLES in radians.
 var startAngle = startAngle * (Math.PI/180);
 var endAngle = endAngle * (Math.PI/180);

 // B2. RADIUS.
 var radius = radius;

 // B3. ATTRIBUTES.
 context.strokeStyle = lineColor;
 context.fillStyle = fillColor;
 context.lineWidth = 8;

 // B4. SHAPE.
 context.beginPath();
 context.arc(xPos, yPos, radius, startAngle, endAngle, anticlockwise);
 context.fill();
 context.stroke();
 }
}
</script> </head> <body>
<div style = “width:440px; height:140px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “440” height = “140”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

Follow these steps to draw an arc:

 1. Create a function to draw your arcs.

 Create a function that will do the repetitive tasks of generating your
arcs, as in code section B of Listing 4-2:
function drawArc(xPos, yPos, radius, startAngle, endAngle,
 anticlockwise, lineColor, fillColor)
{ . . . }

 Then call the function using various parameter values, such as this
statement from code section A2:
drawArc(60, 15, 40, 0, 180, false, “aqua”, “yellow”);

 2. Calculate angles in radians.

 If you’re starting with angles in degrees, as is the case in Listing 4-2, con-
vert the angles to radians as is done in B1:
var startAngle = startAngle * (Math.PI/180);
var endAngle = endAngle * (Math.PI/180);

89 Chapter 4: Enhancing Objects

 3. Set the values and attributes of the arc to be drawn.

 Here’s an example from code sections B2–3:
var radius = radius;
context.strokeStyle = lineColor;
context.fillStyle = fillColor;
context.lineWidth = 8;

 4. Draw the arcs.

 Set the arc path using the beginPath() and arc() functions. Then use
the fill() and stroke() functions to create the arc fill and line. It’s
not necessary to use both the fill() and stroke() functions as is
done in B4 of Listing 4-2. If you want to create only a fill or only a stroke,
use only that function.
context.beginPath();
context.arc(xPos, yPos, radius, startAngle, endAngle, anticlockwise);
context.fill();
context.stroke();

Circles
A circle is simply an arc that ends where it started. As in the old saying, it
goes “full circle.” Figure 4-2 shows the aspects of arcs and circles used to
draw a circle. Circles are formed using the arc() function, which takes six
parameters:

arc(x, y, radius, startAngle, endAngle, anticlockwise)

Here’s the lowdown on these parameters:

 ✓ X: The x coordinate of the center of the circle.

 ✓ Y: The y coordinate of the center of the circle.

 ✓ Radius: The radius of the circle.

 ✓ startAngle: The position on the circle in radians of the start point for
drawing the arc. Because a full circle is being drawn, it doesn’t matter
what starting and ending angles are used as long as they designate the
same point.

 ✓ endAngle: The position on the circle in radians of the endpoint for
drawing the arc.

 ✓ Anticlockwise: Indicates whether the arc should be drawn in a clock-
wise or anticlockwise direction. Because a full circle is being drawn, it
doesn’t matter whether the true or false value is used.

90 Part II: Drawing on Canvas

Figure 4-4 shows circles drawn by the code in Listing 4-3. The code to draw
the circles is contained in the drawCircle() function in code section B. In
addition to the parameters needed by the arc() function, two additional
parameters are added to the drawCircle() function: lineColor and
fillColor.

Figure 4-4: Circles.

Listing 4-3: Drawing Circles
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. CIRCLES.
 // x y radius line fill
 // ---- ---- ------ ------ --------
 drawCircle(60, 15, 40, “aqua”, “yellow”);
 drawCircle(150, 70, 60, “green”, “white”);
 drawCircle(250, 15, 50, “red”, “pink”);
 drawCircle(360, 60, 50, “blue”, “purple”);

 // B. DRAW circle function.
 function drawCircle(xPos, yPos, radius, lineColor, fillColor)
 {
 // B1. ANGLES in radians.
 var startAngle = 0 * (Math.PI/180);
 var endAngle = 360 * (Math.PI/180);

 // B2. RADIUS.

91 Chapter 4: Enhancing Objects

 var radius = radius;

 // B3. ATTRIBUTES.
 context.strokeStyle = lineColor;
 context.fillStyle = fillColor;
 context.lineWidth = 8;

 // B4. SHAPE.
 context.beginPath();
 context.arc(xPos, yPos, radius, startAngle, endAngle, false);
 context.fill();
 context.stroke();
 }
}
</script> </head> <body>
<div style = “width:440px; height:140px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “440” height = “140”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

To draw circles, do the following:

 1. Create a function to draw your circles.

 Create a function that will do the repetitive tasks of generating your
circles, as in code section B of Listing 4-3:
function drawCircle(xPos, yPos, radius, lineColor, fillColor)
{ . . . }

 Then, as in A2 of Listing 4-3, call the drawCircle() function various
parameter values, such as:
drawCircle(60, 15, 40, “aqua”, “yellow”);

 2. Calculate angles in radians.

 Because the circle is starting and ending in the same position, the start
and end angles can be the same for every circle and set in the function
drawCircle(), as is done in B1 of Listing 4-3:
var startAngle = 0 * (Math.PI/180);
var endAngle = 360 * (Math.PI/180);

92 Part II: Drawing on Canvas

 3. Set the values and attributes of the arc to be drawn.

 Here’s an example from code sections B2–3:
var radius = radius;
context.strokeStyle = lineColor;
context.fillStyle = fillColor;
context.lineWidth = 8;

 4. Draw the circles.

 Set the arc path using the beginPath() and arc() functions. Then use
the fill() and stroke() functions to create the arc fill and line. It’s
not necessary to use both the fill() and stroke() functions as is
done in B4 of Listing 4-3. If you want to create only a fill or only a stroke,
use only that function.

 Notice that the last parameter in the arc() function, which is the
anticlockwise parameter, is set to false. This will cause all circles to be
drawn in a clockwise direction. Also notice that portions of the circles
lie outside the Canvas area. This doesn’t cause the code to fail; the
points outside the Canvas area will simply not be displayed.
context.beginPath();
context.arc(xPos, yPos, radius, startAngle, endAngle, false);
context.fill();
context.stroke();

Rounded corners
Figure 4-5 shows a rounded corner drawn by the code in Listing 4-4. To draw
a rounded corner, use the arcto() function, which has five parameters:

arcto(xBeginning, yBeginning, xEnd, yEnd, radius)

Here’s more on these parameters:

 ✓ xBeginning: X coordinate of the beginning of the corner arc

 ✓ yBeginning: Y coordinate of the beginning of the corner arc

 ✓ xEnd: X coordinate of the end of the corner arc

 ✓ yEnd: Y coordinate of the end of the corner arc

 ✓ Radius: Radius of the corner arc

93 Chapter 4: Enhancing Objects

Figure 4-5: Rounded corners.

Listing 4-4: Drawing Rounded Corners
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. LAYOUT parameters.
 var xPos = 25; var yPos = 25; var width = 150;
 var height = 75; var radius = 30;

 // A3. ATTRIBUTES of lines and arc.
 context.strokeStyle = “red”; context.lineWidth = 20;
 context.lineCap = “square”; context.shadowOffsetX = 3;
 context.shadowOffsetY = 3; context.shadowBlur = 5;
 context.shadowColor = “gray”;

 // A4. STARTING point.
 context.beginPath();
 context.moveTo(xPos, yPos);

 // A5. TOP line path.
 context.lineTo(xPos+width-radius, yPos);

 // A6. CORNER arc path.
 context.arcTo(xPos+width, yPos, xPos+width, yPos+radius, radius);

 // A7. SIDE line path.

(continued)

94 Part II: Drawing on Canvas

Listing 4-4 (continued)
 context.lineTo(xPos+width, yPos+height);

 // A8. DRAW image.
 context.stroke();
}
</script> </head> <body>
<div style = “width:200px; height:125px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “200” height = “125”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

Follow these steps to create a rounded corner:

 1. Define variables you’ll use to calculate the positions of the lines and
arc that will be used to construct the corner.

 Examples from A2 of Listing 4-4 include
var xPos = 25; var yPos = 25; var width = 150;
var height = 75; var radius = 30;

 2. Set the attributes of the lines and arc.

 Here are examples from A3 of Listing 4-4:
context.strokeStyle = “red”;
context.lineWidth = 20;

 3. Set the starting point for the shape.

 Here’s an example from A4 of Listing 4-4:
context.beginPath();
context.moveTo(xPos, yPos);

 4. Form the lines that intersect with the rounded corner.

 See code sections A5 and A7 in Listing 4-4:
context.lineTo(xPos+width-radius, yPos);
context.lineTo(xPos+width, yPos+height);

 5. Using the arcto() function, form the arc that creates the rounded
corner.

 Here’s an example in code section A6 of Listing 4-4:
context.arcTo(xPos+width, yPos, xPos+width, yPos+radius, radius);

95 Chapter 4: Enhancing Objects

 6. Draw the shape.

 Finally, draw the entire shape as in A8 of Listing 4-4:
context.stroke();

Bezier curves
A Bezier curve (named after the French engineer Pierre Bezier) is a path
between two points that’s shaped by control points lying outside what would
be the straight line between the two points. Figure 4-6 shows a Bezier curve
drawn by the code in Listing 4-5. The start point (S) and endpoint (E) are also
shown along with the control points (1 and 2) used to form the curve.

Figure 4-6: A Bezier curve.

 Essentially, the control points “pull” the line toward them. The code in
Listing 4-5 is constructed so that you can easily experiment with the control
points in section A2 to see how moving them changes the shape of the line.
The mathematics of how the curve is drawn is beyond the scope of this book.
However, watching how the curve responds to control point changes is the
best way to understand the dynamics of the curve (something like a baseball
player learning to throw a ball by watching how it moves through the air
rather than digesting the mathematics of every type of throw).

96 Part II: Drawing on Canvas

Listing 4-5: Drawing Bezier Curves
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. LAYOUT parameters.
 var xStart = 50; var yStart = 25;
 var xControl1 = 175; var yControl1 = 50;
 var xControl2 = 25; var yControl2 = 125;
 var xEnd = 125; var yEnd = 175;

 // A3. ATTRIBUTES of curve.
 context.strokeStyle = “orange”; context.lineWidth = 7;
 context.shadowOffsetX = 3; context.shadowOffsetY = 3;
 context.shadowBlur = 5; context.shadowColor = “gray”;

 // A4. STARTING point.
 context.beginPath();
 context.moveTo(xStart, yStart);

 // A5. BEZIER curve.
 context.bezierCurveTo(xControl1, yControl1,
 xControl2, yControl2, xEnd, yEnd);
 // A6. DRAW curve.
 context.stroke();

 // A7. DISPLAY control points.
 displayPoint(xStart, yStart, “S”);
 displayPoint(xControl1, yControl1, “1”);
 displayPoint(xControl2, yControl2, “2”);
 displayPoint(xEnd, yEnd, “E”);

 // B. DISPLAY POINT function.
 function displayPoint(xPos, yPos, text)
 {
 // B1. ATTRIBUTES.
 context.font = “10pt Arial”;
 context.fillStyle = “black”;
 context.textAlign = “center”;
 context.textBaseline = “middle”;
 context.shadowColor = “white”;

 // B2. DISPLAY text.
 context.fillText(text, xPos, yPos);

97 Chapter 4: Enhancing Objects

 }
}
</script> </head> <body>
<div style = “width:200px; height:200px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “200” height = “200”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

To draw a Bezier curve, do the following:

 1. Define the variables required to form the curve.

 Code section A2 of Listing 4-5 is an example:
var xStart = 50; var yStart = 25;
var xControl1 = 175; var yControl1 = 50;
var xControl2 = 25; var yControl2 = 125;
var xEnd = 125; var yEnd = 175;

 2. Define the attributes for the curve.

 Here is an example from A3 of Listing 4-5:
context.strokeStyle = “orange”;
context.lineWidth = 7;

 3. Set the starting point for the curve.

 Here’s an example in code section A4:
context.beginPath();
context.moveTo(xStart, yStart);

 4. Define the Bezier curve itself.

 See the code in section A5. This requires two control points and an
endpoint:
context.bezierCurveTo(xControl1, yControl1,
 xControl2, yControl2, xEnd, yEnd);

 5. Draw the curve using the stroke() function.

 Here’s an example in code section A6:
context.stroke();

Quadratic curves
A quadratic curve is a form of Bezier curve. Instead of using two control points,
as shown earlier, in Figure 4-6, a quadratic curve uses only one, as shown in
Figure 4-7. (The code that generated this curve is shown in Listing 4-6.)

98 Part II: Drawing on Canvas

Figure 4-7: A Quadratic curve.

Listing 4-6: Drawing Quadratic Curves
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. LAYOUT parameters.
 var xStart = 50; var yStart = 25; var xControl1 = 175;
 var yControl1 = 50; var xEnd = 125; var yEnd = 175;

 // A3. ATTRIBUTES of curve.
 context.strokeStyle = “orange”; context.lineWidth = 7;
 context.shadowOffsetX = 3; context.shadowOffsetY = 3;
 context.shadowBlur = 5; context.shadowColor = “gray”;

 // A4. STARTING point.
 context.beginPath();
 context.moveTo(xStart, yStart);

 // A5. QUADRATIC curve.

99 Chapter 4: Enhancing Objects

 context.quadraticCurveTo(xControl1, yControl1, xEnd, yEnd);

 // A6. DRAW curve.
 context.stroke();

 // A7. DISPLAY control points.
 displayPoint(xStart, yStart, “S”);
 displayPoint(xControl1, yControl1, “1”);
 displayPoint(xEnd, yEnd, “E”);

 // B. DISPLAY POINT function.
 function displayPoint(xPos, yPos, text)
 {
 // B1. ATTRIBUTES.
 context.font = “10pt Arial”; context.fillStyle = “black”;
 context.textAlign = “center”; context.textBaseline = “middle”;
 context.shadowColor = “white”;

 // B2. DISPLAY text.
 context.fillText(text, xPos, yPos);
 }
}
</script> </head> <body>
<div style = “width:200px; height:200px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “200” height = “200”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

To draw a quadratic curve, do the following:

 1. Define the variables required to form the curve.

 Code section A2 of Listing 4-6 is an example:
var xStart = 50; var yStart = 25; var xControl1 = 175;
var yControl1 = 50; var xEnd = 125; var yEnd = 175;

 2. Define the attributes for the curve.

 Here are some examples from A3 of Listing 4-6:
context.strokeStyle = “orange”;
context.lineWidth = 7;

 3. Define the starting point for the curve.

 Here’s an example in code section A4:
context.beginPath();
context.moveTo(xStart, yStart);

100 Part II: Drawing on Canvas

 4. Define the Quadratic curve itself.

 See the example in code section A5. This requires two control points
and an endpoint:
context.quadraticCurveTo(xControl1, yControl1, xEnd, yEnd);

 5. Finally, draw the curve using the stroke() function.

 See code section A5:
context.stroke();

Multi-segment curves
Drawing curves using a function with more than two control points is too
mathematically complex and processor-cycle consuming to be practical. So,
to create curves with additional control points, string together Bezier curves
(or other types of curves), as shown in Figure 4-8 and earlier, in Listing 4-7.

Figure 4-8: Multi-segment curves.

101 Chapter 4: Enhancing Objects

Listing 4-7: Drawing Multi-Segment Curves
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. CURVES.
 // xS yS xC1 yC1 xC2 yC2 xE yE color
 // ---- ---- ---- ---- ---- ---- ---- ---- -------
 drawCurve(15, 15, 150, 50, 50, 50, 100, 100, “green”);
 drawCurve(100, 100, 175, 175, 75, 175, 190, 190, “blue”);
 drawCurve(15, 50, 100, 50, 50, 100, 60, 125, “red”);
 drawCurve(60, 125, 175, 175, 75, 175, 80, 190, “orange”);
 drawCurve(175, 25, 100, 50, 75, 100, 150, 100, “purple”);
 drawCurve(150, 100, 200, 125, 100, 175, 190, 150, “pink”);
}
// B. DRAW CURVE function.
function drawCurve(xStart, yStart, xControl1, yControl1,
 xControl2, yControl2, xEnd, yEnd, color)
{
 // B1. ATTRIBUTES.
 context.strokeStyle = color; context.lineWidth = 9;
 context.lineCap = “round” context.shadowOffsetX = 3;
 context.shadowOffsetY = 3; context.shadowBlur = 5;
 context.shadowColor = “gray”;

 // B2. STARTING point.
 context.beginPath();
 context.moveTo(xStart, yStart);

 // B3. BEZIER curve.
 context.bezierCurveTo(xControl1, yControl1,
 xControl2, yControl2,
 xEnd, yEnd);
 // B4. DRAW curve.
 context.stroke();
}
</script> </head> <body>
<div style = “width:200px; height:200px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “200” height = “200”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

102 Part II: Drawing on Canvas

To draw multi-segment curves, do the following:

 1. Create a function to draw your curves.

 Create a function that will do the repetitive tasks of generating your
curves, as in code section B of Listing 4-7:
function drawCurve(xStart, yStart, xControl1, yControl1,
 xControl2, yControl2, xEnd, yEnd, color)
{ . . . }

 Call the function to draw a curve, as in section A2:
// xS yS xC1 yC1 xC2 yC2 xE yE color
// ---- ---- ---- ---- ---- ---- ---- ---- -------
drawCurve(15, 15, 150, 50, 50, 50, 100, 100, “green”);
drawCurve(100, 100, 175, 175, 75, 175, 190, 190, “blue”);

 2. Define the attributes for the curve.

 Here are some examples from B1 of Listing 4-7:
context.strokeStyle = “color”;
context.lineWidth = 9;

 3. Define the starting point for the curve.

 See the code section B2:
context.beginPath();
context.moveTo(xStart, yStart);

 4. Define the curve itself.

 See the example in B3. In this example, it is a Bezier curve that requires
two control points and an endpoint:
context.bezierCurveTo(xControl1, yControl1,
 xControl2, yControl2,
 xEnd, yEnd);

 5. Draw the curve using the stroke() function.

 See code section B4:
context.stroke();

Compositing Objects
Compositing is a word you don’t hear often. It’s the verb associated with the
noun composite. Figure 4-9 shows examples of the composite options gener-
ated by the code in Listing 4-8.

103 Chapter 4: Enhancing Objects

Figure 4-9: Composite shapes.

Listing 4-8: Compositing Shapes
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. DRAW individual shapes examples.
 drawShapes(“source-over”);
 drawShapes(“source-in”);
 drawShapes(“source-out”);
 drawShapes(“source-atop”);
 drawShapes(“destination-over”);
 drawShapes(“destination-in”);
 drawShapes(“destination-out”);
 drawShapes(“destination-atop”);
 drawShapes(“lighter”);

(continued)

104 Part II: Drawing on Canvas

Listing 4-8 (continued)
 drawShapes(“copy”);
 drawShapes(“xor”);
}
// B. DRAW function.
function drawShapes(type)
{
 // B1. CANVAS ID.
 canvas = document.getElementById(type);
 context = canvas.getContext(“2d”);

 // B2. VARIABLES.
 var squareOffset = 15; var squareSide = 70;
 var circleOffset = 73; var circleRadius = 35;

 // B3. SQUARE.
 context.fillStyle = “blue”;
 context.fillRect(squareOffset, squareOffset, squareSide, squareSide);

 // B4. COMPOSITE attribute.
 context.globalCompositeOperation = type;

 // B5. CIRCLE.
 context.fillStyle = “red”;
 context.beginPath();
 context.arc(circleOffset, circleOffset, circleRadius, 0, Math.PI*2, true);
 context.fill();
}
</script>
<style type=”text/css”> td {text-align:center;}
</style> </head> <body>

<!-- C. TABLE of composite shapes. -->
<table border=”0” align=”center”>
<tr> <td>
<canvas id=”source-over” width=”120” height=”110”>
</canvas>
<l>source-over</l>
</td> <td>
<canvas id=”source-in” width=”120” height=”110”>
</canvas>
<l>source-in</l>
</td> <td>
<canvas id=”source-out” width=”120” height=”110”>
</canvas>
<l>source-out</l>
</td> <td>
<canvas id=”source-atop” width=”120” height=”110”>
</canvas>
<l>source-atop</l>
</td> </tr> <tr> <td>
<canvas id=”destination-over” width=”120” height=”110”>
</canvas>
<l>destination-over</l>

105 Chapter 4: Enhancing Objects

</td> <td>
<canvas id=”destination-in” width=”120” height=”110”>
</canvas>
<l>destination-in</l>
</td> <td>
<canvas id=”destination-out” width=”120” height=”110”>
</canvas>
<l>destination-out</l>
</td> <td>
<canvas id=”destination-atop” width=”120” height=”110”>
</canvas>
<l>destination-atop</l>
</td> </tr> <tr> <td>
<canvas id=”lighter” width=”120” height=”110”>
</canvas>
<l>lighter</l>
</td> <td>
<canvas id=”copy” width=”120” height=”110”>
</canvas>
<l>copy</l>
</td> <td>
<canvas id=”xor” width=”120” height=”110”>
</canvas>
<l>xor</l>
</td> </tr> </table> </body> </html>

In the following sections, I discuss the various compositing options and show
you how to draw composite shapes.

Compositing options
Compositing is performed based on the setting for the attribute global
CompositeOperation. You have 11 compositing options to control how
objects appear when placed relative to one another (refer to Figure 4-9):

 ✓ source-over

 ✓ source-in

 ✓ source-out

 ✓ source-atop

 ✓ destination-over

 ✓ destination-in

 ✓ destination-out

 ✓ destination-atop

 ✓ lighter

 ✓ copy

 ✓ xor

106 Part II: Drawing on Canvas

The source object is the object drawn first and is a blue square in the exam-
ples in Figure 4-9. The destination shape, a red circle in the examples, is
drawn second after the globalCompositeOperation attribute is set.

 Not all browsers implement all of the compositing options in the same way.
If compositing is an important part of your application, make sure you test
your code on the major browsers.

Creating a table to hold the examples
To display examples of multiple compositing options, I created a table using
HTML code, as shown in section C of Listing 4-8:

<table border=”0” align=”center”>
<tr>
<td>
<canvas id=”source-over” width=”120” height=”110”>
</canvas>
<l>source-over</l>
</td>
<td>
<canvas id=”source-in” width=”120” height=”110”>
</canvas>
<l>source-in</l>
</td>
.
.
.
</table>

 I used a table to prevent the composite option chosen for one set of objects
from interfering with the options chosen for other sets. This example also
demonstrates the use of multiple Canvas areas on a single web page.

Drawing the composite shapes
To use compositing drawing shapes, do the following:

 1. Create a function to draw your objects.

 Create a function that will do the repetitive tasks of drawing your
objects, as in code section B of Listing 4-8:
function drawShapes(type)
{ . . . }

107 Chapter 4: Enhancing Objects

 The function, which takes the compositing type as a parameter, is called
from section A1, as follows:
drawShapes(“source-over”);
drawShapes(“source-in”);

 2. Based on the compositing type, retrieve the Canvas ID and 2D context.

 See code section B1 of Listing 4-8:
canvas = document.getElementById(type);
context = canvas.getContext(“2d”);

 3. Define any variables needed to create the shapes.

 See the example in code section B2:
var squareOffset = 15; var squareSide = 70;

 4. Draw the destination shape (the first, or bottom, shape).

 In Listing 4-8, this is the blue square:
context.fillRect(squareOffset, squareOffset,squareSide, squareSide);

 5. Set the composite type as an attribute for the context.

 See the example in B4:
context.globalCompositeOperation = type;

 6. Draw the source shape (the second, or top, shape).

 In Listing 4-8 code, in section B5, the source shape is the red circle:
context.beginPath();
context.arc(circleOffset,circleOffset,circleRadius,0,Math.PI*2,true);
context.fill();

 The two shapes are displayed according to the composite attribute set
in Step 5.

Randomizing Shapes
Randomizing shapes is useful for creating interesting and varied Canvas
images. It’s also a powerful tool for imitating the variations found in nature.
Figure 4-10 is an example of randomly sized, colored, and positioned circles.
The code used to create the circles is in Listing 4-9.

108 Part II: Drawing on Canvas

Figure 4-10: Random circles.

Listing 4-9: Randomizing Circles
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. PARAMETERS for circles.
 var numCircles = 500;
 var maxRadius = 20;
 var minRadius = 3;
 var colors =
 [“aqua”, “black”, “blue”, “fuchsia”, “green”, “cyan”, “lime”, “maroon”,
 “navy”, “olive”, “purple”, “red”, “silver”, “teal”, “yellow”, “azure”,
 “gold”, “bisque”, “pink”, “orange”];
 var numColors = colors.length;

 // A3. CREATE circles.
 for(var n=0; n<numCircles; n++)
 {
 // A4. RANDOM values for circle characteristics.
 var xPos = Math.random() * canvas.width;
 var yPos = Math.random() * canvas.height;
 var radius = minRadius + (Math.random() * (maxRadius-minRadius));
 var colorIndex = Math.random() * (numColors-1);
 colorIndex = Math.round(colorIndex);
 var color = colors[colorIndex];

 // A5. DRAW circle.
 drawCircle(context, xPos, yPos, radius, color);
 }

109 Chapter 4: Enhancing Objects

};
// B. CIRCLE drawing function.
function drawCircle(context, xPos, yPos, radius, color)
{
 //B1. PARAMETERS for shadow and angles.
 var startAngle = (Math.PI/180)*0;
 var endAngle = (Math.PI/180)*360;
 context.shadowColor = “gray”;
 context.shadowOffsetX = 1;
 context.shadowOffsetY = 1;
 context.shadowBlur = 5;

 //B2. DRAW CIRCLE
 context.beginPath();
 context.arc(xPos, yPos, radius, startAngle, endAngle, false);
 context.fillStyle = color;
 context.fill();
}
</script> </head> <body>
<div style = “width:500px; height:150px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “500” height = “150”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

To create a randomized object, use the Math.random() function to gener-
ate a random number between 0 and 1. Then apply that number to a variable
used to produce a random shape. In Listing 4-9, a random number is gener-
ated based on the width of the Canvas:

var xPos = Math.random() * canvas.width;

To include randomized objects in your application, do the following:

 1. Create a function to draw your objects.

 Create a function that will do the repetitive tasks of generating your
objects, which are circles in code section B of Listing 4-9:
function drawCircle(context, xPos, yPos, radius, color)
{ . . . }

 The function is called, as in A5:
drawCircle(context, xPos, yPos, radius, color);

110 Part II: Drawing on Canvas

 2. Create code to repeatedly call the draw function.

 See A3 of Listing 4-9:
for(var n=0; n<numCircles; n++)
{ . . . }

 3. Set variables that you will use to generate random shape
characteristics.

 For example, as shown in A2 of Listing 4-9, maximum and minimum
radius can be used to generate randomly sized circles:
var maxRadius = 20;
var minRadius = 3;

 4. Use the Math.random() function to generate values that you use as
parameters for drawing your objects.

 See the example in A4:
var yPos = Math.random() * canvas.height;
var radius = minRadius + (Math.random() * maxRadius - minRadius);

 5. Draw randomized shapes.

 Draw your objects as in code section B of Listing 4-9, which draws a
circle based on parameters for random position, radius, and color:
context.beginPath();
context.arc(xPos, yPos, radius, startAngle, endAngle, false);
context.fillStyle = color;
context.fill();

Displaying Images
Images are a great way to add dimensionality to your Canvas application. They
can be anything from photographs to illustrations and graphics. Figure 4-11
shows a series of images created by the code in Listing 4-10.

Figure 4-11: Images.

111 Chapter 4: Enhancing Objects

 The second image is drawn by enlarging the first one, which produces fuzzi-
ness. The third image is drawn using a larger source image, which eliminates
this distortion. The fourth image also contains distortion, because it’s a
“blow-up” of a section of the third image. Use source image sizes that, as a
rule, closely match the size of the displayed image.

Listing 4-10: Displaying Images
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. IMAGE sources.
 var smallImage = new Image();
 var largeImage = new Image();
 smallImage.src = “http://marketimpacts.com/storage/Strawberry50px.png”;
 largeImage.src = “http://marketimpacts.com/storage/Strawberry100px.png”;

 // A3. VARIABLES.
 var smallImageXPos = 40; var smallImageYPos = 55;
 var smallImageWidth = 75; var smallImageHeight = 75;
 var largeImageXPos = 225; var largeImageYPos = 10;
 var sourceCropX = 25; var sourceCropY = 25;
 var sourceCropWidthX = 50; var sourceCropWidthY = 50;
 var imageWidth = 80; var imageHeight = 80;

 // A4. ATTRIBUTES.
 context.shadowOffsetX = -3; context.shadowOffsetY = 3;
 context.shadowBlur = 8; context.shadowColor = “gray”;

 // B. LOAD image of small ball.
 smallImage.onload = function()
 {
 // B1. DRAW image.
 context.drawImage(smallImage, smallImageXPos, smallImageYPos);

 // B2. DRAW image with resizing.
 context.drawImage(smallImage, smallImageXPos+80, smallImageYPos-25,
 smallImageWidth, smallImageHeight);
 }
 // C. LOAD image of large ball.
 largeImage.onload = function()
 {
 // C1. DRAW image.

(continued)

112 Part II: Drawing on Canvas

Listing 4-10 (continued)
 context.drawImage(largeImage, largeImageXPos, largeImageYPos);

 // C2. DRAW image with cropping.
 context.drawImage (largeImage, sourceCropX, sourceCropY,
 sourceCropWidthX, sourceCropWidthY,
 largeImageXPos+140, largeImageYPos+10,
 imageWidth, imageHeight);
 }
}
</script> </head> <body>
<div style = “width:500px; height:125px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “500” height = “125”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

To display images, do the following:

 1. Store the images that your application will access on a server.

 Most often, you’ll use the same server hosting your website, but it can
be any server accessible via the Internet.

 2. Load the image files from the server.

 Code section A2 in Listing 4-10 contains the code to load images into
your application.

 First, create variables to hold your images, such as:
var smallImage = new Image();

 Next, access the source for your images, such as
“http://marketimpacts.com/storage/Strawberry50px.png”;

 Finally, create functions that will be invoked when your images load,
such as shown in code sections B and C:
largeImage.onload = function()
{ . . . }

 3. Set the variables and attributes you’ll use for drawing your images on
the Canvas.

 See these examples from A3 and A4 in Listing 4-10:
var smallImageXPos = 40; var smallImageYPos = 55;
context.shadowColor = “gray”;

113 Chapter 4: Enhancing Objects

 4. Draw your images on the Canvas using the drawImage() function.

 This function has different parameters for drawing:

 • Images the same size and composition as the original

 • Images that are resized from the original

 • Images that are cropped from the original

 To draw an image the same size and composition as the original, use
drawImage(), as shown in B1 and C1 of Listing 4-10. The parameters are
drawImage(image, xPosition, yPosition);

 This code draws the image with its upper left corner at (xPosition,
yPosition) using the original image dimensions.

 5. Resize images.

 To draw an image using different dimensions than the original, use
drawImage() as shown in B2 of Listing 4-10:
drawImage(image, xPosition, yPosition, width, height);

 This line draws image at (xPosition, yPosition) using width and
height.

 6. Crop images.

 To draw an image with cropping, use drawImage(), as shown in B2 of
Listing 4-10:
drawImage(image, sourceCropX, sourceCropY, xPosition, yPosition,
 width, height);

 This code draws an image at (xPosition, yPosition) using
width and height with cropping of the original image starting at
(sourceCropX, sourceCropY).

114 Part II: Drawing on Canvas

5
Transforming Objects

In This Chapter
▶ Applying a transform matrix
▶ Using Canvas states
▶ Using the transform matrix for rotation, scaling, mirroring, and skewing objects
▶ Applying multiple transforms

W
e’ve all witnessed transformations. A child grows up. A house is
remodeled. Something is the same, yet different. This is the concept

behind transforming Canvas objects.

Transforming objects allows you to create a new object based on the origi-
nal. The new object can look very different from the original or only slightly
changed. Transforming is a powerful tool because it creates change based on
a small set of instructions.

Translating
I’m not talking about translating from English to French. Canvas translation
means moving, or translating, the (0,0) point of the Canvas to a new position.
A better word for translating Canvas positions might be shifting.

Figure 5-1 and Listing 5-1 demonstrate using translation to change the position
on a Canvas for drawing a sequence of squares. The first (gray) square is
drawn in the original (0,0) position in the upper-left corner of the Canvas.
Each subsequent colored square is drawn by translating the Canvas to a new
(0,0) position relative to the previous square. The translation is done by
moving a specified amount horizontally and vertically.

116 Part II: Drawing on Canvas

Figure 5-1: Translated Canvas positions.

Listing 5-1: Translating Canvas Positions
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. SIZE of square.
 var size = 35;

 // A3. DISPLAY squares.
 // translateH translateV color
 // ---------- ---------- --------
 drawSquare(0, 0, “gray”);
 drawSquare(size, size, “red”);
 drawSquare(size, size, “orange”);
 drawSquare(size, -size, “blue”);
 drawSquare(size, 0, “pink”);
 drawSquare(size, -size, “purple”);
 drawSquare(2*size, size, “green”);

 // B. DRAW SQUARE function.
 function drawSquare(translateH, translateV, color)
 {
 // B1. COLOR.
 context.fillStyle = color;

 // B2. TRANSLATE canvas.
 context.translate(translateH, translateV);

 // B3. SQUARE display.

117 Chapter 5: Transforming Objects

 context.fillRect(0, 0, size, size);
 }
}
</script> </head> <body>
<div style = “width:300px; height:125px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “300” height = “125”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

To perform a translation, do the following:

 1. Define variables that will be used to calculate the translation.

 For example, in A2 of Listing 5-1, a size variable is defined:
var size = 35;

 2. Define a function that will include Canvas translation.

 Often translation is included as part of a function that you define to
draw objects. For example, in code section B of Listing 5-1, a function
is defined that will draw a square at different positions on your Canvas
based on parameters for horizontal position, vertical position, and color:
function drawSquare(translateH, translateV, color)
 { . . . }

 Call this function and provide the appropriate parameters, such as size
and color in code section A3:
// translateH translateV color
// ---------- ---------- --------
drawSquare(0, 0, “gray”);
drawSquare(size, size, “red”);

 3. Define a call to the translate() function.

 Use the translate() function as shown in code B2 of Listing 5-1. This
function has two parameters, the horizontal and vertical translation
distances:
context.translate(translateH, translateV);

 The translate() function is applied to the Canvas context. This
means that any subsequent actions performed on the context will be
oriented to the shifted (0,0) position.

 4. Draw your object using the translated position.

 As in code B3, the fillRect() function uses the new (0,0) position as
shown in the first two parameters representing the (x,y) coordinates
of the new square:
context.fillRect(0, 0, size, size);

118 Part II: Drawing on Canvas

 Note that translation is performed from the current (0,0) position, not the
original upper-left Canvas corner (0,0) position. Experiment with values in
the example to see how they affect the placement of squares.

But wait, what if you want to perform a translation based on the original
(0,0) position? You might not want the translations to build on each other.
There’s an easy solution, and it’s up in the next section.

Saving Canvas States
Many methods of transforming objects work by changing the shape or posi-
tion of the Canvas, such as in the translation example in Listing 5-1.

Imagine drawing a shape on the surface of a balloon. As you add more air
to the balloon, the shape gets bigger. Let air out, and it gets smaller. This is
similar to what takes place when you’re transforming objects on a Canvas.

Because of this dynamic, any objects drawn after the Canvas is changed will
reflect those shape changes. If multiple changes to the Canvas are made, they
become additive. For example, the second change is added on top of the first,
the third on top of the second, and so forth. This can lead to unpredictable
and unwanted impacts on shapes drawn.

The solution to this potential problem is to save and then restore the Canvas
context as you’re drawing objects. To do so, follow these steps:

 1. Save the context.

 Canvas contexts are saved in an array that is managed like a stack of
dinner plates. When you save your context, like a dinner plate being
put away, it is put on the top of the stack. You can save as many versions
of your context as you like. Your stack of dinner plates doesn’t have
limits like the ones in your cabinet at home. To save your context, use
this statement:
context.save();

 Make sure that you use the correct context name in applications where
you have more than one Canvas. It’s easy to reference the wrong context
and see very strange things happen on your Canvas. I’ve done it many
times. So be careful with your context names.

 2. Restore the context.

 Use the following statement to restore the Canvas context:
context.restore();

 This removes the top plate, your Canvas, from the stack and restores
those attributes.

119 Chapter 5: Transforming Objects

You see an example of this practice in Listing 5-2 in the next section.

Scaling
Scaling allows you to change the dimensions of your Canvas. This is useful
when you want to do things such as using the same sequence of code to draw
objects with varying dimensions. Figure 5-2 and Listing 5-2 demonstrate scaling.

Figure 5-2: Scaled objects.

Listing 5-2: Scaling Objects
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. DISPLAY squares.
 // xPos yPos scaleH scaleV color save
 // ---- ---- ------ ------ -------- -----
 drawSquare(25, 25, 1.4, 1.4, “purple”, true);
 drawSquare(25, 25, 1.0, 1.1, “red”, true);
 drawSquare(25, 25, 0.7, 0.7, “orange”, true);
 drawSquare(100, 25, 1.4, 1.4, “purple”, false);
 drawSquare(100, 25, 1.0, 1.1, “red”, false);
 drawSquare(100, 25, 0.7, 0.7, “orange”, false);

 // B. DRAW SQUARE function.

(continued)

120 Part II: Drawing on Canvas

Listing 5-2 (continued)
 function drawSquare(xPos, yPos, scaleH, scaleV, color, save)
 {
 // B1. SAVE context.
 if (save) {context.save();}

 // B2. ATTRIBUTES & VARIABLES.
 context.fillStyle = color; var size = 35;

 // B3. TRANSLATE position.
 context.translate(xPos, yPos);

 // B4. SCALE canvas.
 context.scale(scaleH, scaleV);

 // B5. SQUARE display.
 context.fillRect(0, 0, size, size);

 // B6. RESTORE context.
 if (save) {context.restore();}
 }
}
</script> </head> <body>
<div style = “width:450px; height:160px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “450” height = “160”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

To draw objects on a scaled Canvas, follow these steps:

 1. Define a function that will include Canvas scaling.

 Often scaling is included as part of a function that you define to draw
objects. For example, in code section B of the example, a function is
defined that will draw a square at different sizes and positions on your
Canvas based on parameters for position, scaling factors, and color:
function drawSquare(xPos, yPos, scaleH, scaleV, color, save)
{ . . . }

 Call this function and provide the appropriate parameters as in A2 of the
example:
// xPos yPos scaleH scaleV color save
// ---- ---- ------ ------ -------- -----
drawSquare(25, 25, 1.4, 1.4, “purple”, true);
drawSquare(25, 25, 1.0, 1.1, “red”, true);

121 Chapter 5: Transforming Objects

 2. Save and restore Canvas context states.

 You’ll likely want to use context save() and restore() when scaling
a Canvas to change its dimensions. In the example, the leftmost set of
three objects stacked one on top of the other were drawn using save()
and restore(). The three objects to the right of those are the same
objects drawn without using save() and restore(). The example uses
a parameter to determine whether to use save() and restore() in
code sections B1 and B6:
if (save) {context.save();}
.
.
.
if (save) {context.restore();}

 3. Translate to the object on the Canvas.

 Because the entire Canvas is being scaled, you need to translate the
(0,0) position to the upper-left corner of the object you’re scaling. If
you don’t do this, the result will be that the whole object is moved to a
new position. Use the translate() function to reposition to the (x,y)
coordinates of your object, as in this statement from B3 of Listing 5-2:
context.translate(xPos, yPos);

 4. Scale objects with the scale() function.

 Here’s an example in B4 of Listing 5-2:
context.scale(scaleH, scaleV);

 The scaleH and scaleV parameters provide numbers used to multiply
against the horizontal and vertical dimension of an object. So, to decrease
the horizontal dimension by 50 percent and double the vertical dimension,
use the following statement:
context.scale(.5, 2.0);

 5. Draw your object by using the appropriate function.

 Here’s B5 of the example:
context.fillRect(0, 0, size, size);

Mirroring
Mirroring objects allows you to create effects like reflected images. Figure 5-3
and Listing 5-3 demonstrate this. The silver ball has a reflected image on the
surface below it. The background of blues and oranges is created using a
gradient that enhances the reflected imagery.

122 Part II: Drawing on Canvas

Figure 5-3: Mirrored object.

Listing 5-3: Mirroring Objects
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. IMAGE variable and source.
 var ball = new Image();
 smallImage.src = “http://marketimpacts.com/storage/SilverBall100px.png”;

 // A3. BALL variables.
 var ballXPos = 75; var ballYPos = 15;
 var ballWidth = 90; var ballHeight = 90;

 // A4. REFLECTION variables.
 var reflectAdj = 3.5;
 var reflectAlpha = .4;
 var reflectY = (2*ballYPos) + (2*(ballHeight-reflectAdj));

 // A5. GRADIENT for surface.
 var gradLV = context.createLinearGradient(0, 0, 0, canvas.height);

 // B. LOAD image of ball.

123 Chapter 5: Transforming Objects

 ball.onload = function()
 {
 // B1. COLORS for surface.
 gradLV.addColorStop(0, “lightskyblue”);
 gradLV.addColorStop(.3, “orange”);
 gradLV.addColorStop(1, “blue”);

 // B2. DRAW surface.
 context.fillStyle = gradLV;
 context.fillRect(0, 0, canvas.width, canvas.height);

 // B3. DRAW original image at specific size.
 context.drawImage(ball, ballXPos, ballYPos, ballWidth, ballHeight);

 // B4. TRANSLATE Y position to base of image.
 context.translate(0, reflectY);

 // B5. SCALE to create reflected image.
 context.scale(1,-1);

 // B6. TRANSPARENCY of reflected image.
 context.globalAlpha = reflectAlpha;

 // B7. DRAW reflected image.
 context.drawImage(ball, ballXPos, ballYPos, ballWidth, ballHeight);
 }
}
</script> </head> <body>
<div style = “width:400px; height:210px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “400” height =”210”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

To mirror an object over a background image, do the following:

 1. Load an image by creating a variable to hold the image and specifying
the location of the source of the image.

 See the example in A2 of Listing 5-3. Then create the function to be exe-
cuted when the image is loaded, as in code section B:
ball.onload = function()
{ . . . }

 The object you’re mirroring doesn’t have to be a loaded image as is used
in the example. It could be a simple circle or rectangle. I use an image in
the example to demonstrate how mirroring can add interest to Canvas
images.

124 Part II: Drawing on Canvas

 2. Set image and reflection variables.

 Set variables for the original and reflected objects, as in A3–4:
var ballXPos = 75; var ballYPos = 15;
var ballWidth = 90; var ballHeight = 90;
var reflectAdj = 3.5; var reflectAlpha = .4;
var reflectY = (2*ballYPos) + (2*(ballHeight-reflectAdj));

 • The reflectAdj variable adjusts for any distance between the
bottom of the image object and the bottom edge of the image.
For example, the image for the ball in Figure 5-3 is not fitted pre-
cisely against the edges of the loaded image. There is a small
buffer space between the two. If this space isn’t accounted for, the
reflected image will not be positioned properly. Experiment with
the reflectAdj value to see how the reflection changes position.

 • The reflectY variable sets the point at which the reflection is
created based on the object position, height, and reflection
adjustment.

 • The reflectAlpha variable sets the level of transparency for the
reflected image.

 • The ballXPos and ballYPos variables set the position of the
image on the Canvas.

 • The ballWidth and ballHeight parameters set the dimensions
of the image.

 3. Create an optional gradient for the background using the create
LinearGradient() function.

 Here’s an example from A5:
var gradLV = context.createLinearGradient(0, 0, 0, canvas.height);

 The colors for the gradient are created by using the addColorStop()
function, as in B1:
gradLV.addColorStop(0,”lightskyblue”);

 4. Using the gradient, fill a rectangle to create the background image.

 This example is from B2:
context.fillStyle = gradLV;
context.fillRect(0, 0, canvas.width, canvas.height);

 5. Draw the image of the object to be reflected.

 Here’s an example from B3:
context.drawImage(ball, ballXPos, ballYPos, ballWidth, ballHeight);

 6. Use the translate() function to adjust the (0,0) point of the Canvas
vertically so that the reflected image will be drawn in the correct
position.

125 Chapter 5: Transforming Objects

 Here’s an example in B4 of Listing 5-3:
context.translate(0,reflectY);

 The horizontal x axis is left unadjusted because the reflection will be
done only in the downward vertical direction.

 7. Use the scale() function to adjust the (0,0) point of the Canvas verti-
cally so that the reflected image will be drawn in the correct position.

 Here’s an example from B5 of Listing 5-3:
context.scale(1,-1);

 The scale of the horizontal x axis is left unchanged because the reflec-
tion will be done only in the vertical direction. This statement is the
heart of creating the reflection.

 8. Use the globalAlpha attribute to control the level of transparency for
the reflected object.

 Here’s B6 of the example:
context.globalAlpha = reflectAlpha;

 The reflectAlpha variable in the example is set to .4, meaning that
the reflected object will appear at 40 percent as opaque as the original.

 9. Draw the objects on the Canvas with the drawImage() function.

 Here are examples in B3 and B7:
context.drawImage(ball, ballXPos, ballYPos, ballWidth, ballHeight);

 To create objects of a known height that can be used to calculate the
reflection, the optional width and height parameters are used.

 Even though the same set of parameters is used for the reflected image as
the original image, when the reflected object is drawn, the translate()
function, scale() function, and transparency setting will have changed
the Canvas context, so the result of the drawImage() function is the
reflected ball. Also note that other types of objects such as text, rect-
angles, and multi-sided shapes can also be used for mirroring. They
require their own specific methods for drawing images.

Rotating
Rotating a Canvas facilitates drawing images and varying angles. It appears
on the Canvas as though the object itself is rotating, when in fact, it is the
Canvas on which the object is drawn that is rotating.

Rotating an object is demonstrated in Figure 5-4, which was produced by
Listing 5-4. The pinwheel effect in the example is created by rotating a filled
Bezier curve around a point at the center of the Canvas.

126 Part II: Drawing on Canvas

Figure 5-4: Rotating an object.

In addition to creating still images such as the one shown in Figure 5-4, the
rotate() function can be used in conjunction with other functions to create
animated motion (see Chapter 6).

At the heart of rotating an object is the rotate() function, as shown in B3 of
Listing 5-4:

context.rotate(angleInRadians);

The Canvas context is rotated by the angle in radians. When the next object
is drawn, it is placed in a new position.

Listing 5-4: Rotating Objects
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. ANGLE or rotation.

127 Chapter 5: Transforming Objects

 var angle = 40;

 // A3. DRAW surface.
 context.fillStyle = “silver”;
 context.fillRect(0, 0, canvas.width, canvas.height);

 // A4. TRANSLATE to rotation point.
 context.translate(canvas.width/2, canvas.height/2);

 // A5. DRAW curves.
 drawBezier(angle, “darkturquoise”); drawBezier(angle, “deeppink”);
 drawBezier(angle, “gold”); drawBezier(angle, “mediumvioletred”);
 drawBezier(angle, “yellow”); drawBezier(angle, “teal”);
 drawBezier(angle, “chartreuse”); drawBezier(angle, “magenta”);
 drawBezier(angle, “red”);
}
// B. BEZIER curve drawing function.
function drawBezier(angle, color)
{
 // B1. ATTRIBUTES.
 context.fillStyle = color; context.lineWidth = 7;
 context.shadowOffsetX = 3; context.shadowOffsetY = 3;
 context.shadowBlur = 5; context.shadowColor = “gray”;

 // B2. SHAPE parameters.
 var xStart = 0; var yStart = 0;
 var xControl1 = 90; var yControl1 = 20;
 var xControl2 = -60; var yControl2 = 60;
 var xEnd = 60; var yEnd = 60;

 // B3. ROTATE.
 var angleInRadians = angle * Math.PI/180;
 context.rotate(angleInRadians);

 // B4. STARTING point.
 context.beginPath();
 context.moveTo(xStart, yStart);

 // B5. BEZIER curve.
 context.bezierCurveTo(xControl1, yControl1, xControl2, yControl2,

xEnd, yEnd);
 // B6. DRAW curve.
 context.fill();
}
</script> </head> <body>
<div style = “width:200px; height:200px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “200” height = “200”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

128 Part II: Drawing on Canvas

To rotate a Canvas and draw images at new positions, do the following:

 1. Define a function that will include Canvas rotation.

 Often rotation is included as part of a function that you define to draw
objects. For example, in code section B of Listing 5-4, a function is
defined that will draw a Bezier curve at different positions on your
Canvas based on parameters for angle and color:
function drawBezier(angle, color)
{ . . . }

 Call this function and provide the appropriate parameters, as in A5 of
the example:
drawBezier(angle, “darkturquoise”);
drawBezier(angle, “deeppink”);

 2. Set the angle of rotation for each new curve drawn.

 See A2 of the example:
var angle = 40;

 Pass the angle to the drawing function as in B:
function drawBezier(angle, color)

 Finally, convert the angle to radians as in B3:
var angleInRadians = angle * Math.PI/180;

 3. Set the point on the Canvas around which you rotate the object.

 In code section A4 of the example, the rotation point is set to the center
of the Canvas:
context.translate(canvas.width/2, canvas.height/2);

 4. Set parameters for the shape you will draw.

 In the example, the object — a Bezier curve — is being rotated around
the starting point of the curve. Because the point of rotation has been
translated to the proper position on the Canvas context, the Bezier
curve starts at the (0,0) position, as defined in B2:
var xStart = 0; var yStart = 0;

 How the parameters for a shape are set depends on the type of shape
you rotate and where the center of rotation is placed. For example, to
rotate a rectangle around its center, place the center of rotation in the
middle of the rectangle and calculate the shape parameters from that
position:
var xStart = -rectWidth/2; var yStart = -rectHeight/2;

129 Chapter 5: Transforming Objects

 5. Rotate the Canvas context before drawing the object.

 This is done in B3 in the example:
context.rotate(angleInRadians);

 6. Use the moveTo() function to set the starting point for drawing your
object.

 See B4 of the example:
context.moveTo(xStart, yStart);

 Note that the starting point in this example is the (0,0) point of the
Canvas.

 7. Draw the object using the appropriate functions.

 In the example code B5-6, a filled Bezier curve is used:
context.bezierCurveTo(xControl1, yControl1,
 xControl2, yControl2,
 xEnd, yEnd);
context.fill();

Applying a Transform Matrix
Canvas has a special function, setTransform(), that can be used to apply
multiple effects to objects. The function uses a set of parameters, called the
transform matrix, to calculate Canvas adjustments:

setTransform(scaleX, skewY, skewX, scaleY, translateX, translateY)

 Look closely at these parameters. Does something look slightly off? It should.
The matrix of parameters would make more sense if skewY and scaleY were
interchanged. Nevertheless, this is the order of parameters that must be
used. Now that you’re aware of this slight confusion factor, hopefully it won’t
trip you up like it did me!

As the parameter names imply, they are change factors for the X (horizontal)
and Y (vertical) dimensions of an object:

 ✓ Scale: Expands/contracts vertically/horizontally

 ✓ Skew: Shifts vertically/horizontally

 ✓ Translate: Moves vertically/horizontally

130 Part II: Drawing on Canvas

Figure 5-5 and Listing 5-5 demonstrate applying the setTransform() func-
tion. Each object in Figure 5-5 demonstrates a different combination of the
parameters. Some combinations to note are

 ✓ Scaling: The scale of three of the rectangles was changed. (The aqua,
orange, and pink rectangles.)

 ✓ Skewing: Five of the rectangles were skewed. (The green, red, yellow,
orange, and pink rectangles.)

 ✓ Translating: All the rectangles used translating for placement on the
Canvas.

Figure 5-5: Applying the setTransform() function.

Listing 5-5: Applying the setTransform() Function
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. BACKGROUND.
 context.fillStyle = “silver”;
 context.fillRect(0, 0, canvas.width, canvas.height);

 // A3. DRAW rectangles. Note abbreviations:
 // sc:scale sk:skew tr:translate

131 Chapter 5: Transforming Objects

 // X:horizontal axis Y:vertical axis
 //
 // scX scY skX skY trX trY color
 // --- --- --- --- --- --- --------
 drawRect(1.0, 1.0, 0.0, 0.0, 25, 25, “blue”);
 drawRect(1.0, 1.0, 0.2, 0.0, 125, 25, “green”);
 drawRect(1.0, 1.0, 0.0, 0.2, 225, 25, “red”);
 drawRect(1.0, 1.0, 0.2, 0.2, 325, 25, “yellow”);
 drawRect(1.2, 1.0, 0.0, 0.0, 25, 110, “purple”);
 drawRect(1.0, 1.2, 0.0, 0.0, 125, 110, “aqua”);
 drawRect(1.2, 1.2, 0.2, 0.2, 225, 110, “orange”);
 drawRect(1.3, 1.3, -.2, -.2, 325, 110, “pink”);
}
// B. DRAW rectangle function.
function drawRect(scaleX, scaleY, skewX, skewY, translateX, translateY, color)
{
 // B1. ATTRIBUTES & VARIABLES.
 var width = 60; var height = 40;
 context.shadowOffsetX = 4; context.shadowOffsetY = 4;
 context.shadowBlur = 5; context.shadowColor = “gray”;
 context.fillStyle = color;

 // B2. TRANSFORM matrix.
 context.setTransform(scaleX, skewY, skewX, scaleY, translateX, translateY);

 // B3. DISPLAY rectangle.
 context.fillRect(0, 0, width, height);
}
</script> </head> <body>
<div style = “width:425px; height:200px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “425” height =”200”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

To apply a transform matrix, use the following steps:

 1. Define a function that will include the transform matrix.

 Often a transform matrix is included as part of a function that you define
to draw objects. For example, in code section B of the example, a function
is defined that will draw a rectangle using a transform matrix on your
Canvas based on parameters for scale, skew, translation, and color:
function drawRect(scaleX, scaleY, skewX, skewY, translateX, translateY,
 color)
{. . . }

132 Part II: Drawing on Canvas

 Call this function and provide the appropriate parameters as in A3 of the
example:
// sc:scale sk:skew tr:translate
// X:horizontal axis Y:vertical axis
//
// scX scY skX skY trX trY color
// --- --- --- --- --- --- --------
drawRect(1.0, 1.0, 0.0, 0.0, 25, 25, “blue”);
drawRect(1.0, 1.0, 0.2, 0.0, 125, 25, “green”);

 2. Apply the setTransform() function to the Canvas context.

 See B2 of the example:
context.setTransform(scaleX, skewY,
 skewX, scaleY,
 translateX, translateY);

 3. Draw your objects using the appropriate functions.

 In the example, a rectangle is drawn in B3:
context.fillRect(0, 0, width, height);

Scaling objects
To scale an object, use a positive or negative number for the scaleX and/
or scaleY parameters. This number indicates a percentage of scaling of the
dimension that will be applied. For example, the purple rectangle has a value
of 1.2 for the scaleX parameter:

 // scX scY skX skY trX trY color
 // --- --- --- --- --- --- --------
 drawRect(1.2, 1.0, 0.0, 0.0, 25, 110, “purple”);

This value expands the X dimension of the rectangle to the right by 20 percent.

Skewing objects
To skew an object, use a positive or negative number for the skewX and/or
skewY parameters. This number indicates a percentage of skewing of the
dimension that will be applied. For example, the green rectangle has a value
of 0.2 for the skewX parameter:

 // scX scY skX skY trX trY color
 // --- --- --- --- --- --- --------
 drawRect(1.0, 1.0, 0.2, 0.0, 125, 25, “green”);

133 Chapter 5: Transforming Objects

This value shifts the X dimension of the bottom of the rectangle to the right
by 20 percent.

Translating objects
To translate an object, use a positive number for the translateX and/or
translateY parameters. This number indicates a position on the Canvas.
For example, the blue rectangle has a value of 25 for the translateX and
translateY parameters:

 // scX scY skX skY trX trY color
 // --- --- --- --- --- --- --------
 drawRect(1.0, 1.0, 0.0, 0.0, 25, 25, “blue”);

This places the upper-left corner of the rectangle on the Canvas at the
(25,25) coordinate position.

134 Part II: Drawing on Canvas

6
Moving Objects

In This Chapter
▶ Moving objects on your Canvas
▶ Creating circular motion
▶ Creating real-world effects such as acceleration, gravity, bouncing, and friction

T
he concept of moving an object can be deceptively simple. Just change the
position from point A to point B. But ask a scientist how easy it is to move

a rocket into orbit. It’s much harder than just defining point A and point B. In
the real world, objects have to contend with forces such as gravity, friction,
and acceleration. In this chapter, you discover how to mimic these factors and
integrate them with the basics of moving from one point to another.

The Basics of Movement
Even without considering factors such as gravity and friction, moving an
object on a Canvas takes a bit of work. Figure 6-1 and Listing 6-1 demonstrate
moving a circle linearly from the left of the Canvas to the right.

Figure 6-1: Moving circle.

136 Part II: Drawing on Canvas

Listing 6-1: Moving a Circle
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvasC = document.getElementById(“canvasCircle”);
 contextC = canvasC.getContext(“2d”);
 canvasBG = document.getElementById(“canvasBackground”);
 contextBG = canvasBG.getContext(“2d”);

 // A2. PARAMETERS.
 var xPos = 50; var yPos = canvasC.height/2;
 var radius = 40; var endXPos = canvasC.width-75;
 var change = 10; var startAngle = (Math.PI/180)*0;
 var interval = 80; var endAngle = (Math.PI/180)*360;

 // A3. BACKGROUND canvas filled with color.
 contextBG.fillStyle = “silver”;
 contextBG.fillRect(0,0,canvasBG.width,canvasBG.height);

 // A4. INTERVAL for drawing.
 var intervalID = setInterval(drawCircle,interval);

 // B. DRAW CIRCLE function.
 function drawCircle()
 {
 // B1. CLEAR Canvas for each image.
 // Note: Comment out to see all images.
 //contextC.clearRect(0,0,canvasC.width,canvasC.height);

 // B2. ATTRIBUTES of the circle.
 contextC.strokeStyle = “red”; contextC.lineWidth = 4;
 contextC.shadowOffsetX = 3; contextC.shadowOffsetY = 3;
 contextC.shadowBlur = 5; contextC.shadowColor = “gray”;

 // B3. POSITION change.
 xPos += change;

 // B4. STOP if reached end.
 if(xPos > endXPos) {clearInterval(intervalID)};

 // B5. DRAW circle.
 contextC.beginPath();
 contextC.arc(xPos, yPos, radius, startAngle, endAngle, true);
 contextC.stroke();
 }

137 Chapter 6: Moving Objects

}
</script> </head> <body> <div>

<!-- C. CANVAS ELEMENTS -->
<canvas id = “canvasCircle” width = “400” height =”125”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>
<canvas id = “canvasBackground” width = “400” height =”125”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>
</div> </body> </html>

To explain Listing 6-1, I cover three key aspects:

 ✓ Using multiple Canvas elements to create moving an object across a
background

 ✓ Creating that background

 ✓ Using animation to draw the moving object

Using multiple Canvas elements
In most applications that involve movement, you’ll be moving an object across
a background. The background might be a simple color (refer to Listing 6-1), an
image, or a collection of objects constructed by your application. If you use a
single Canvas for the background and the moving object, you’ll have to redraw
the background every time the object moves, consuming valuable computing
resources.

A much better approach is to use separate Canvas elements for the background
and moving objects. You can change the content of the moving object Canvas
independently of the background Canvas. You can change one without having
to change the other.

This will become particularly important in more complex applications where
you will use multiple Canvas elements to control backgrounds, moving
objects, text displays, and other visual components.

To define multiple Canvas elements for your application, do the following:

138 Part II: Drawing on Canvas

 1. Define multiple Canvas tags.

 Define multiple Canvas tags using unique IDs and z-index values, as
shown in code section D of Listing 6-1:
<canvas id = “canvasCircle” width = “400” height =”125”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
</canvas>
<canvas id = “canvasBackground” width = “400” height =”125”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
</canvas>

 In this example, both Canvases are the same size. This will not always be
the case. You might have smaller Canvases positioned in different loca-
tions above the background.

 The z-index parameter in the style attribute of the Canvas elements
determines how the Canvases are layered. Canvases are “stacked” in
ascending order. So in the example, canvasCircle is drawn on top of
canvasBackground.

 2. Define multiple Canvas contexts.

 To draw on these separate Canvas areas, define multiple Canvas contexts,
as in A1 of the example:
canvasC = document.getElementById(“canvasCircle”);
contextC = canvasC.getContext(“2d”);
canvasBG = document.getElementById(“canvasBackground”);
contextBG = canvasBG.getContext(“2d”);

Creating the background
A background Canvas can be anything from a simple color field to an area
containing its own moving objects. In the example shown in A3 of Listing 6-1,
a rectangle filled with a single color is used. To create this background, do
the following:

 1. Set the attributes of the background.

 In the example, a single color is used:
contextBG.fillStyle = “silver”;

 2. Draw the background with the appropriate function.

 In the example, a rectangle the size of the Canvas is filled with the color
defined in the fillStyle:
contextBG.fillRect(0,0,canvasBG.width,canvasBG.height);

139 Chapter 6: Moving Objects

Drawing a moving object
On the top Canvas, referenced through contextC, draw the moving circle
using the following steps:

 1. Set parameters for the moving object.

 Set parameters such as those in A2 of Listing 6-1. Examples are the start-
ing position, ending position, and radius of the object to be moved:
var xPos = 50; var yPos = canvasC.height/2;
var radius = 40; var endXPos = canvasC.width-75;

 Note that the Canvas context referenced is canvasC, the context for the
moving circle.

 2. Set a time interval and function call.

 Use the setInterval() function to do a number of things, as shown
in A4:
var intervalID = setInterval(drawCircle,interval);

 • drawCircle: Defines the function to be called after every interval.
In this case, the function is drawCircle(), which will draw the
red circle in Figure 6-1. This is termed a callback to the specified
function.

 • Interval: Sets the number of milliseconds between calls to the
drawCircle() function — that is, how often the image is moved
and drawn.

 Setting the best interval for your moving object should be influenced
by two important factors. The first is the power of device computing
compared to the amount of drawing needed at each interval.
If the interval is set too low, the device hardware may have dif-
ficulty keeping up and you will see sporadic delays in drawing the
new images.

 The second factor is the fluidity of object movement. If the interval
is set too high, the movement will appear halting and artificial.

 • intervalID: Defines the variable used in the drawCircle()
function to terminate the setInterval() function at the end of
the drawing sequence.

 There is another, similar function that creates only a single call to the
specified function after the specified interval, the setTimeout()
function. You can use this function if you’re moving an object just once.

140 Part II: Drawing on Canvas

 3. Clear the Canvas used for drawing images if you want to see only a
single image for each interval.

 This option is coded in B1 of the example:
contextC.clearRect(0,0,canvasC.width,canvasC.height);

 Normally, you’ll want to clear the Canvas because you’ll be animating
the movement of an object across the Canvas.

 4. Set the attributes of the shape you’re drawing.

 For example, set the color and line width, as shown in B2:
contextC.strokeStyle = “red”;

 5. Change the position of the object on the Canvas using variables that
control alterations to object coordinates.

 In B3 of the example, the x coordinate is shifted by the variable change:
xPos += change;

 The speed at which an object moves across the screen is determined by
the combination of the interval and change parameters. For example,
your object can move faster by doing either or both of the following:

 • Decreasing the interval

 • Increasing the change

 6. Stop the movement of your object when the limit of a variable has
been reached.

 In B4 of the example, the x coordinate position xPos is checked for
reaching the limit specified in the variable endXPos:
if(xPos > endXPos) {clearInterval(intervalID)};

 The mechanism for stopping calls to the drawing function is the clear
Interval() function. As shown above, the intervalID created when
the setInterval() function was called is passed to the clear
Interval() function.

 Use different intervalIDs to independently control multiple moving
objects.

 7. Draw the object.

 In B5 of the example, the object is a circle:
contextC.beginPath();
contextC.arc(xPos, yPos, radius, startAngle, endAngle, true);
contextC.stroke();

141 Chapter 6: Moving Objects

Creating Circular Motion
Developing an application to create circular motion has a lot in common with
creating linear motion. To avoid unnecessary repetition, this discussion of
circular motion is divided into two sections, basic and unique aspects. Basic
aspects are those that have already been explained and will be touched on
lightly. Unique aspects are new topics and will be covered in more depth.

Figure 6-2 and Listing 6-2 demonstrate moving a ball in a circular motion
around the center of the Canvas.

Figure 6-2: Circular motion.

Listing 6-2: Creating Circular Motion
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvasBall = document.getElementById(“canvasBall”);
 contextBall = canvasBall.getContext(“2d”);
 canvasBG = document.getElementById(“canvasBackground”);

(continued)

142 Part II: Drawing on Canvas

Listing 6-2 (continued)
 contextBG = canvasBG.getContext(“2d”);

 // A2. PARAMETERS.
 var xPos = canvasBall.width/2; var change = 20;
 var yPos = canvasBall.height/2; var interval = 50;
 var count = 0; var max = 100;
 var radius = 90;

 // A3. BACKGROUND canvas filled with color.
 contextBG.fillStyle = “deeppink”;
 contextBG.fillRect(0, 0, canvasBG.width, canvasBG.height);

 // A4. BALL IMAGE loaded from website.
 var ball = new Image();
 ball.src = “http://marketimpacts.com/storage/SilverBall50px.png”;

 // B. LOAD IMAGE of ball.
 ball.onload = function()
 {
 // B1. CENTER rotation.
 contextBall.translate(xPos,yPos);

 // B2. INTERVAL for drawing.
 var intervalID = setInterval(drawBall,interval);

 // C. DRAW IMAGE function.
 function drawBall()
 {
 // C1. CLEAR Canvas for each ball image.
 // Note: Comment out to see all images.
 contextBall.clearRect(-canvasBall.width/2, -canvasBall.height/2,
 canvasBall.width, canvasBall.height);

 // C2. STOP if reached end.
 count += 1;
 if(count > max) {clearInterval(intervalID)};

 // C3. ROTATE image.
 contextBall.rotate(((Math.PI)/180)*change);

 // C4. DRAW image.
 contextBall.drawImage(ball,radius,0);
 }
 }
}
</script> </head> <body> <div>

<!-- D. CANVAS DEFINITIONS -->

143 Chapter 6: Moving Objects

<canvas id = “canvasBall” width = “200” height =”200”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>
<canvas id = “canvasBackground” width = “200” height =”200”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>
</div> </body> </html>

Basic aspects
The basic aspects are common to many applications involving movement.
Use the following steps to cover these bases:

 1. Define multiple Canvas elements.

 Define one Canvas for the background and another for the moving ball,
as in D of Listing 6-2. Define Canvas contexts for each as in A1:
canvasBall = document.getElementById(“canvasBall”);
contextBall = canvasBall.getContext(“2d”);

 2. Create the background.

 Fill the background as in code section A3. The example uses a solid color:
contextBG.fillStyle = “deeppink”;
contextBG.fillRect(0,0,canvasBG.width,canvasBG.height);

 Other background options are images and objects created by the
application.

 3. Set the parameters for moving your object.

 Here’s the code from A2:
var xPos = canvasBall.width/2; var change = 20;
var yPos = canvasBall.height/2; var interval = 50;

 4. Set the time interval and function to call for creating the moving object.

 See code section B2:
var intervalID = setInterval(drawBall,interval);

 5. Clear the moving object Canvas if you want only each new image to
appear.

 Here’s an example from C1:
contextBall.clearRect(-canvasBall.width/2, -canvasBall.height/2,
 canvasBall.width, canvasBall.height);

144 Part II: Drawing on Canvas

 6. Define a variable and source for the image of the moving object.

 See the code section A4. Define the function to be called when the image
is loaded, as in code section B:
var ball = new Image();
ball.src = “http://marketimpacts.com/storage/SilverBall50px.png”;

ball.onload = function() { . . . }

 7. Draw the object using the appropriate functions.

 In the example, the image of a ball is used, as in C4:
contextBall.drawImage(ball, radius, 0);

Unique aspects
Use the following steps to create rotation:

 1. Use the translate() function to move the (0,0) point of the Canvas
to the center of rotation for the object.

 Here’s an example in B1 of Listing 6-2:
contextBall.translate(xPos,yPos);

 2. Rotate the Canvas using the rotate() function.

 The amount of rotation is determined by the variable change, as in C3:
contextBall.rotate(((Math.PI)/180)*change);

 3. Stop the rotation based on a variable reaching a limit. See

 See the example in code section C2:
count += 1;
if(count > max) {clearInterval(intervalID)};

 If you don’t want to stop the rotation in your application, omit this code.

Creating Oscillation
Oscillation is a repetitive variation around a central value. In the real world,
the entity oscillating can be an object, sound wave, electrical current, or even
an economic factor. Common oscillations involve a clock pendulum, a bounc-
ing spring, and the sound of the conversations we hear all around us.

145 Chapter 6: Moving Objects

The circularly rotating image from Figure 6-2 (in the preceding section) is a
simple oscillation. The repetitive variation is the image movement around a
central point, returning to the starting point once for every revolution.

Figure 6-3 and Listing 6-3 build on circular motion to create a simulation of a
planet moving in an oscillating elliptical orbit around a sun.

Figure 6-3: Oscillating elliptical motion.

146 Part II: Drawing on Canvas

Listing 6-3: Creating Oscillating Motion
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS contexts.
 canvasPlanet = document.getElementById(“canvasPlanet”);
 contextPlanet = canvasPlanet.getContext(“2d”);
 canvasBG = document.getElementById(“canvasBackground”);
 contextBG = canvasBG.getContext(“2d”);

 // A2. PARAMETERS.
 var change = .6; var xPos = canvasPlanet.width/2;
 var interval = 33; var yPos = canvasPlanet.height/2;
 var radius = 0; var angle = 0;
 var radiusMin = 100; var radiusMax = 175;
 var numStars1 = 2000; var colorStar1 = “white”;
 var numStars2 = 400; var colorStar2 = “gray”;
 var numStars3 = 30; var colorStar3 = “darkgray”;
 var planetSize = 12; var sunSize = 45;
 var imageCount = 0; var imageQuant = 2;

 // A3. BACKGROUND Canvas color.
 contextBG.fillStyle = “black”;
 contextBG.fillRect(0, 0, canvasBG.width, canvasBG.height);

 // A4. STARS drawing.
 for(var n=0; n<numStars1; n++)
 {
 var xStar = Math.random()*canvasBG.width;
 var yStar = Math.random()*canvasBG.height;
 contextBG.fillStyle = colorStar2;
 contextBG.fillRect(xStar, yStar, 1, 1);
 }
 for(var n=0; n<numStars2; n++)
 {
 var xStar = Math.random()*canvasBG.width;
 var yStar = Math.random()*canvasBG.height;
 contextBG.fillStyle = colorStar2;
 contextBG.fillRect(xStar, yStar, 2, 2);
 }
 for(var n=0; n<numStars3; n++)
 {
 var xStar = Math.random()*canvasBG.width;
 var yStar = Math.random()*canvasBG.height;
 contextBG.fillStyle = colorStar3;
 contextBG.fillRect(xStar, yStar, 3, 3);
 }
 // A5. IMAGE references.
 var planet = new Image();

147 Chapter 6: Moving Objects

 planet.src = “http://marketimpacts.com/storage/Planet.png”;
 var sun = new Image();
 sun.src = “http://marketimpacts.com/storage/Sun.png”;

 // B. SUN image load function.
 sun.onload = function()
 {
 // B1. DRAW image.
 contextBG.drawImage(sun, 200, 175, sunSize, sunSize);

 // B2. COUNT increment.
 imageCount ++;

 // B3. CHECK for all images loaded.
 if(imageCount == imageQuant)

 // B4. ANIMATION start.
 {var intervalID = setInterval(drawPlanet, interval)}
 }
 // C. PLANET image load function.
 planet.onload = function()
 {
 // C1. TRANSLATE to rotation point.
 contextPlanet.translate(xPos, yPos);

 // C2. COUNT increment.
 imageCount ++;

 // C3. CHECK for all images loaded.
 if(imageCount == imageQuant)

 // C4. ANIMATION start.
 {var intervalID = setInterval(drawPlanet, interval)}
 }
 // D. DRAW IMAGE function.
 function drawPlanet()
 {
 // D1. CLEAR Canvas for each image.
 // Note: Comment out to see all images.
 contextPlanet.clearRect(-canvasPlanet.width/2, -canvasPlanet.height/2,
 canvasPlanet.width, canvasPlanet.height);
 // D2. RADIUS calculation
 var angleR = (Math.PI/180)*angle;
 var calcAS = radiusMax * Math.sin(angleR);
 var calcBC = radiusMin * Math.cos(angleR);
 radius = (radiusMax * radiusMin) / Math.sqrt((calcAS*calcAS)+
 (calcBC*calcBC));
 // D3. ROTATE image.
 contextPlanet.rotate(((Math.PI)/180)*-change);
 angle = angle + change;

(continued)

148 Part II: Drawing on Canvas

Listing 6-3 (continued)
 // D4. DRAW PLANET.
 contextPlanet.drawImage(planet, radius, 0, planetSize,planetSize);
 }
}
</script> </head> <body> <div>

<!-- E. CANVAS DEFINITIONS -->
<canvas id = “canvasPlanet” width = “400” height =”400”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
</canvas>
<canvas id = “canvasBackground” width = “400” height =”400”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>
</div> </body> </html>

Basic aspects
The basics of creating a moving object have been discussed in depth earlier
in this chapter. I touch on them briefly here:

 1. Define multiple Canvas elements.

 Define one Canvas for the background and another for the moving
object, as in code section E of Listing 6-3. Define contexts for each
Canvas as in A1:
canvasPlanet = document.getElementById(“canvasPlanet”);
contextPlanet = canvasPlanet.getContext(“2d”);

 2. Set the parameters you want to use for moving and drawing your
object.

 Here’s an example from code section A2:
var change = .6; var xPos = canvasPlanet.width/2;
var interval = 33; var yPos = canvasPlanet.height/2;

 3. Create the background.

 Fill the background as in code section A3. The example uses a solid
color:
contextBG.fillStyle = “black”;
contextBG.fillRect(0, 0, canvasBG.width, canvasBG.height);

 4. Set the time interval and function to call for creating the moving object.

 Here’s an example from C4:
intervalID = setInterval(drawPlanet, interval);

149 Chapter 6: Moving Objects

 5. Clear the moving object Canvas if you only want each new image to
appear for each interval:

 Here’s an example from code section D1:
contextBL.clearRect(0,0,canvasBL.width,canvasBL.height);

 If you want to see all the objects drawn, you can remove or comment
out this statement, as was done earlier, to produce Figure 6-3.

 6. Draw your object using the appropriate functions.

 The moving planet in the example is drawn using the drawImage()
function:
contextPlanet.drawImage(planet, radius, 0, planetSize, planetSize);

Unique aspects
A couple of aspects transform simple circular motion into an interesting
simulation. One is aesthetic and the other scientific.

Creating an interesting background
The background could, of course, have been left black. But what fun would that
be? To generate the sun and stars background in Listing 6-3, follow these steps:

 1. Create random star locations.

 Listing 6-3 uses the technique of randomized position calculation to
create a star field using the code in A4:
var xStar = Math.random()*canvasBG.width;
var yStar = Math.random()*canvasBG.height;

 2. Create a variety of star sizes and colors.

 Three sizes of stars and a bit of color variation are used in A2 and A4 to
generate the image of the vastness of space:
var numStars1 = 2000; var colorStar1 = “white”;
var numStars2 = 400; var colorStar2 = “gray”;
var numStars3 = 30; var colorStar3 = “darkgray”;

 3. Create stars.

 Fill a rectangle using the fillRect() function:
contextBG.fillStyle = colorStar2;
contextBG.fillRect(xStar, yStar, 1, 1);

 Note that the stars are drawn as squares because of their extremely
small size. It’s simply not possible to draw a rounded-edge pixel.
However, you have to look closely to see they are squares and not circles.

150 Part II: Drawing on Canvas

 4. Create a sun.

 And what sense would it make for a planet to be orbiting, well, nothing?
So a sun is loaded in A5 and drawn in B:
var sun = new Image();
sun.src = “http://marketimpacts.com/storage/Sun.png”;
sun.onload = function()
{contextBG.drawImage(sun, 200, 175, sunSize, sunSize)}

Loading multiple images
In the example in Listing 6-3, two images are used in creating the Canvas display.
Both images — the sun and planet — must be loaded from the server before
the animation can be started. This is a common aspect of Canvas animations.
To ensure that all images are loaded and ready to go, follow the next set of
steps.

 If you don’t count image loads using these techniques, the results are unpre-
dictable. Depending on the speed with which the browser loads images, you
may or may not see them on your Canvas.

 1. Create an onload function for each image.

 As in code sections B and C, define the function to be called when the
image is loaded from the server:
sun.onload = function() { . . . }
planet.onload = function() { . . . }

 2. Take actions based on the particular image.

 In the example, when the sun is loaded, it’s drawn on the background
Canvas, as in code section B1:
contextBG.drawImage(sun, 200, 175, sunSize, sunSize);

 When the planet is loaded, the position on the planet Canvas is trans-
lated to the correct rotation point for simulated orbiting, as in code
section C1:
contextPlanet.translate(xPos, yPos);

 3. Increment the count of images.

 Increment a counter as in B2 and C2:
imageCount ++;

 4. When all images are loaded, start the animation.

 Check the image count, and when the images are loaded, call the
setInterval() function, as in B3-4 and C3-4:
if(imageCount == imageQuant)
 {var intervalID = setInterval(drawPlanet, interval)}

151 Chapter 6: Moving Objects

Drawing the oscillating object
In Listing 6-3, a planet is drawn orbiting the sun. To create this motion, use
the following steps:

 1. Calculate the radius of rotation.

 This is the heart of creating the oscillation pattern you see earlier, in
Figure 6-3. Changing a circular motion into an elliptical motion requires
recalculating the radius before drawing every image. The formula for
calculating a radius based on an angle of rotation in radians is
radius = (radiusMax * radiusMin) / √ x

 where
x = (radiusMax * sin(angleInRadians)) 2 +
 (radiusMin * cos(angleInRadians)) 2

 Use this code to calculate the radius based on this formula:
var angleR = (Math.PI/180)*angle;
var calcAS = radiusMax * Math.sin(angleR);
var calcBC = radiusMin * Math.cos(angleR);
radius = (radiusMax * radiusMin) / Math.sqrt((calcAS*calcAS) +

(calcBC*calcBC));

 2. Rotate the image.

 Rotate the image of the planet based on the change parameter and
increment the angle for the next rotation:
contextPlanet.rotate(((Math.PI)/180) * -change);
angle = angle + change;

 Experiment with the code in Listing 6-3 to see the effect of changing the
radiusMax and radiusMin values. You’ll see the ellipse change its oblong
shape, becoming alternately thinner and fatter. You can also vary the speed
of oscillation using variables in A2:

 ✓ interval: The time in milliseconds between drawing the planet images

 ✓ change: The distance between each planet image

Adjusting Movement for Acceleration,
Gravity, Friction, and Bounce

In this section, you find out how to model the real-world forces of accelera-
tion, gravity, friction, and bounce. Most Canvas applications don’t need to
achieve high degrees of accuracy in mimicking these forces. You can con-
struct them to have the appearance of the real world.

152 Part II: Drawing on Canvas

 It is possible to incorporate formulas and techniques to create the very accu-
rate models that might be required for scientific applications. This section
touches on these topics, but their full treatment is outside the scope of this
book.

Figure 6-4 and Listing 6-4 demonstrate the impact of real-world forces on a
metal ball moving across a wooden table with rubber bumper sides. This
is something you might find in applications modeling pool tables or pin-
ball machines. The application includes parameters that you can modify to
change the effect of these forces.

Figure 6-4: Modeling momentum, acceleration, gravity, friction, and bounce.

153 Chapter 6: Moving Objects

Listing 6-4: Adjusting Movement for Acceleration, Gravity, Friction,
 and Bounce
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition variables.
 canvasBL = document.getElementById(“canvasBall”);
 contextBL = canvasBL.getContext(“2d”);
 canvasBG = document.getElementById(“canvasBackground”);

 contextBG = canvasBG.getContext(“2d”);

 // A2. PARAMETERS.
 var xVector = -15; var yVector = -30;
 var yVectorMin = -20; var yVectorMax = -30;
 var ballX = 300; var ballY = 450;
 var interval = 30; var radius = 15;
 var frictionL = .01; var frictionC = 0;
 var gravityL = 0; var gravityC = 0;
 var accelerL = .008; var accelerC = .001;
 var damping = .03; var incline = .25;
 var imageCount = 0; var imageQuant = 2;
 var feetPerPixel = .01; var ballImage;

 // A3. ATTRIBUTES of ball.
 contextBL.shadowOffsetX = -2;
 contextBL.shadowOffsetY = 3;
 contextBL.shadowBlur = 5;
 contextBL.shadowColor = “black”;

 // A4. IMAGE sources.
 var wood = new Image();
 wood.src = “http://marketimpacts.com/storage/Wood.jpg”;
 var silverBall = new Image();
 silverBall.src = “http://marketimpacts.com/storage/SilverBall50px.png”;

 // A5. GRAVITY calculation.
 gravityL = .0322*(interval/feetPerPixel);

 // B. BALL image load function.
 silverBall.onload = function()
 {
 // B1. BALL variable setting.
 ballImage = silverBall;

 // B2. COUNT increment.
 imageCount ++;

 // B3. CHECK for all images loaded.

(continued)

154 Part II: Drawing on Canvas

Listing 6-4 (continued)
 if(imageCount == imageQuant)

 // B4. ANIMATION start.
 {var intervalID = setInterval(drawBall, interval)}
 }
 // C. BACKGROUND image load function.
 wood.onload = function()
 {
 // C1. BACKGROUND fill.
 contextBG.drawImage(wood, 0, 0, canvasBG.width, canvasBG.height);

 // C2. GRAVITY adjustment for incline.
 gravityL *= Math.sin(incline*(Math.PI/180));

 // C3. Y VECTOR random value.
 yVector = yVectorMin + (Math.random()*(yVectorMax-yVectorMin));

 // C4. COUNT increment.
 imageCount ++;

 // C5. CHECK for all images loaded.
 if(imageCount == imageQuant)

 // C6. ANIMATION start.
 {var intervalID = setInterval(drawBall, interval)}
 }
 // D. DRAW BALL function.
 function drawBall()
 {
 // D1. MOVE ball.
 moveBall();

 // D2. CLEAR Canvas to show only moving ball.
 contextBL.clearRect(0,0,canvasBL.width, canvasBL.height);

 // D3. DRAW ball.
 contextBL.drawImage(silverBall, ballX-radius, ballY-radius,
 2*radius, 2*radius);
 // D4. SIDE BOUNCE.
 if (ballX < radius || ballX > canvasBL.width-radius)

 // D5. REVERSE x vector.
 {xVector *= -1*(1-damping)}

 // D6. CEILING & FLOOR BOUNCE.
 if (ballY < radius || ballY > canvasBL.height-radius)
 {
 // D7. REVERSE y vector.

155 Chapter 6: Moving Objects

 yVector *= -1*(1-damping);

 // D8. FLOOR bounce check.
 if((yVector < 0) && (yVector < -gravityL))

 // D9. GRAVITY reduction.
 {yVector += gravityL}
 }
 }
 // E. MOVE BALL function.
 function moveBall()
 {
 // E1. FRICTION adjustment.
 frictionL = frictionL - frictionC;
 if(frictionL < 0) {frictionL = 0}

 // E2. ACCELERATION adjustment.
 accelerL = accelerL - accelerC;
 if(accelerL < 0) {accelerL = 0}

 // E3. GRAVITY adjustment.
 gravityL = gravityL - gravityC;
 if(gravityL < 0) {gravityL = 0}

 // E4. FRICTION/ACCELERATION factor.
 faFactor = (1-frictionL)*(1+accelerL);

 // E5. X VECTOR change.
 xVector = xVector*faFactor;

 // E6. X POSITION change.
 ballX += xVector;

 // E7. Y vector & coordinate change
 // if ball is above floor.
 if((ballY+radius)<(canvasBL.height))
 {
 // E8. GRAVITY adjustment.
 var adjGravityL = Math.min(gravityL, (canvasBL.height-ballY));

 // E9. Y VECTOR change.
 yVector = (yVector*faFactor) + adjGravityL;
 }
 // E10. Y POSITION change.
 ballY += yVector;

 // E11. BOUNDS check & adjustment.
 if((ballX+(radius-1)) > canvasBL.width)
 {ballX=(canvasBL.width-(radius-1))}

(continued)

156 Part II: Drawing on Canvas

Listing 6-4 (continued)
 if((ballX-(radius-1)) < 0)
 {ballX=(radius-1)}
 if((ballY+(radius-1)) > canvasBL.height)
 {ballY=(canvasBL.height-(radius-1))
 if(yVector < (gravityL+radius))
 {gravityL = .9*gravityL}}
 if((ballY-(radius-1)) < 0)
 {ballY=(radius-1)}
 }
}
</script> </head> <body> <div>

<!-- F. CANVAS DEFINITIONS -->
<canvas id = “canvasBall” width = “350” height =”500”
 style = “border:6px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
</canvas>
<canvas id = “canvasBackground” width = “350” height =”500”
 style = “border:6px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>
</div> </body> </html>

Basic aspects
The basics of creating and moving an object have been discussed in depth in
previous sections. Follow these steps to address them:

 1. Define multiple Canvas elements, one for the background and one for
the moving object.

 Define one Canvas for the background and another for the moving ball,
as in F of Listing 6-4. Define variables for each Canvas as in A1:
 canvasBL = document.getElementById(“canvasBall”);
 contextBL = canvasBL.getContext(“2d”);

 2. Create the background.

 Fill the background as in code section C1:
contextBG.drawImage(wood, 0, 0, canvasBG.width,
 canvasBG.height);

 3. Set the parameters and attributes for moving and drawing the object.

 Here are examples from A2–3:
contextBL.shadowOffsetX = -2;
contextBL.shadowOffsetY = 3;

157 Chapter 6: Moving Objects

 4. Load images for the object and background.

 Load images from your website as in A4:
var wood = new Image();
wood.src = “http://marketimpacts.com/storage/Wood.jpg”;

 5. Set the time interval and function to call for creating the moving object.

 When all images have been loaded, use the setInterval() function to
start the animation. Here’s an example from B4:
intervalID = setInterval(drawBall, interval);

 6. Clear the moving object Canvas if you want only each new image to
appear.

 Here’s the code from D2:
contextBL.clearRect(0, 0, canvasBL.width, canvasBL.height);

 If you want to see all the objects drawn, you can remove or comment
out this statement.

 7. Draw your object using the appropriate functions.

 The moving circle in the example is drawn using the arc() function in D3:
contextBL.drawImage(silverBall, ballX-radius, ballY-radius,
 2*radius, 2*radius);

Unique aspects
You need to deal with a number of new aspects when introducing real-world
forces on your moving object, as discussed in the following sections.

Using a vector for object motion
A vector is a quantity possessing both magnitude and direction. This is an
essential concept in moving an object around a space. Every time you move
an object, you need to provide information on which direction and how far
the object will go.

To use a vector to move an object, follow these steps:

 1. Define x and y vector variables.

 In the example, the vectors are defined with their initial values in A2:
var xVector = -15; var yVector = -30;

158 Part II: Drawing on Canvas

 2. Define x and y position variables.

 The current x and y position coordinates are defined with their initial
values:
var ballX = 300; var ballY = 450;

 3. Change the object position with vector values.

 To move an object in your two-dimensional Canvas space, calculate new
x and y coordinates using a vector value for each coordinate, as shown
in Figure 6-5.

Figure 6-5: Using a vector to change position.

 To move the ball from the current to next position, add the vector
values to the current position values, as in E6 and E10:
ballX += xVector;
ballY += yVector;

Handling bounces
To bounce an object off a vertical or horizontal surface, which is depicted in
Figure 6-6, implement the following steps:

 1. Detect touching a surface.

 To detect the surface, check the position of the ball x coordinate for a
wall touch and the ball y coordinates for a floor/ceiling touch.

159 Chapter 6: Moving Objects

Figure 6-6: Bouncing off a vertical surface.

 Check for a touch at a distance of the radius of the ball so that the ball
will appear to bounce when the surface of the ball touches the edge of
the Canvas.

 This is demonstrated in D4 and D6 of the example:
if (ballX < radius || ballX > canvasBL.width-radius)
if (ballY < radius || ballY > canvasBL.height-radius)

 Note that the < expressions check for touching the left/top of the Canvas
and the > expressions check for touching the right/bottom of the Canvas.

 2. Change direction if the object touches a surface.

 If a touch of a surface occurs, change the direction of the ball by revers-
ing the direction of the x vector if there’s a touch of the x coordinate,
and the y vector if there’s a touch of the y coordinate.

160 Part II: Drawing on Canvas

 Change the vector direction by multiplying the vector by –1. This works
for vertical and horizontal surfaces. For angled surfaces, calculation of
the angle of bounce is more complex.

 While changing direction, apply a damping factor to account for the loss
of energy from the bounce. The damping factor is defined (in A2 of the
example) as a variable between 0 and 1:
var damping = .03;

 Damping simulates the loss of energy that takes place when an object
bounces off a surface. Think of the bounce of a tennis ball. When the ball
is new, it bounces higher than after it’s been used for a while. Expressed
in terms of damping, the tennis ball has a higher damping factor as it
ages.

 Change in direction is demonstrated in D5 and D7 of the example:
xVector *= -1 * (1-damping);
yVector *= -1 * (1-damping);

The force of gravity for objects
near the surface of Earth

Gravity is the force between two objects that
pulls them together. We think of gravity as pull-
ing down because of our position on Earth.
Objects out in the universe can be pulled in any
direction by gravitational interaction with other
objects.

The formula for the force of gravity is

 F = G (m1 × m2) / r2

where:

 G = Gravitational Constant ≈ 6.674 × 10-11

 m1 = mass of the object 1

 m2 = mass of the object 2

 r = distance between the objects

Because the size of Earth dwarfs the size of
objects on the planet, only the mass of Earth is
meaningful in the gravity formula. This is why

when two balls of different sizes are dropped
from the same height, they fall at the same
speed and reach the ground at the same time.
(If they have very different shapes, friction from
air might affect their speed.)

For objects near the surface of Earth, the dis-
tance between Earth and the object is insignifi-
cant in the calculation. The size of Earth is huge
relative to other objects. If you’re simulating a
rocket moving far enough from Earth’s surface,
you would need to account for decreases in
gravity. For objects staying near the surface,
distance doesn’t matter.

Therefore, the force of gravity can be approxi-
mated as a constant for your Canvas applica-
tions. This calculation comes out to an increase
in speed of falling objects every second of
approximately 32.2 feet/second.

161 Chapter 6: Moving Objects

Calculating gravity for your application
When simulating gravity for earthbound objects in your Canvas application,
adjust the object’s y coordinate in each drawing interval. In Listing 6-4, this is
every time the drawBall() function is called in A10 by the setInterval()
function. Gravity “pulls” to increase the y coordinate. So to account for grav-
ity, increase the y coordinate by the necessary number of pixels.

You can take one of two approaches, or a combination approach, to setting
gravity for an application:

 ✓ Scientific: Based on calculations, as explained in this section.

 ✓ Aesthetic: Based on how the result looks. Unless you’re trying to simu-
late movement with scientific accuracy, what’s truly important is how
the user perceives movement and reacts to your simulation. So, you can
adjust the gravity factor to fine-tune its effect.

For the sample application in Listing 6-4, I used a scientific approach and this
formula, as shown in code section A5:

gravityL = .0322*(interval/feetPerPixel);

To determine the number of gravity adjustment pixels in a scientific manner,
use the following steps:

 1. Decide how many feet a single pixel on your Canvas represents.

 The feet per pixel (FPP) ratio you choose can vary widely. For a “close-
up” scene, a pixel might represent only a fraction of a single foot. For a
“distance” scene, a pixel might represent many feet. It all depends on
what you’re simulating.

 In the Listing 6-4 example, a ball is rolling on a simulated wooden surface
five feet high. The Canvas is 500 pixels in height. Therefore, you can
calculate the feet per pixel dimension of your Canvas this way:

 FPP = height in feet / height in pixels

 = 5 feet / 500 pixels

 = .01 feet/pixel

 2. Calculate gravity in pixels per second (PPS).

 Gravity pulls down on your ball at 32.2 feet/sec2. (See the earlier sidebar
on calculating gravity for objects near the surface of Earth.) This means
that the speed of the ball increases by 32.2 feet/sec every second. So
after 2 seconds, the speed would be increased by 64.2 feet/sec. Also,
in the first second, the 32.2 feet/sec is not reached until the end of that
second. Given these factors, I used 32.2 feet/sec as an approximation.

162 Part II: Drawing on Canvas

 Use the following formula to calculate the pixels per second (PPS) increase
in the y coordinate of your ball that’s necessary to account for gravity:

 PPS = 32.2 feet/sec / FPP

 = 32.2 feet/sec / .01 feet/pixel

 = 3220 pixels/sec

 3. Translate pixels per second into pixels per frame.

 Now translate PPS into pixels per frame (PPF) of your animation to
determine how many pixels to add to the y coordinate of your ball in
every animation frame. Let’s say your animation frame interval (FI)
equals 30 milliseconds. That is, you’re moving your ball every 30 milli-
seconds. Next calculate your frame rate (FR) using the formula:

 FR = 1,000 milliseconds/second / FI

 = 1,000 milliseconds/second / 30 milliseconds/frame

 = 33.3 frames/second

 Now calculate pixels per frame (PPF) using the following formula:

 PPF = PPS / FR

 = 3220 pixels/sec / 33.33 frames/sec

 = 96.6 pixels per frame

 4. Combine formulas for a simplified calculation.

 Good news. Here’s a handy way to combine these formulas to create a
simplified formula for Earth gravity for your application:

 PPF = PPS / FR

 = (32.2/FPP) / (1000/FI)

 = (32.2/FPP) × (FI/1000)

 = (32.2/1000) × (FI/FPP)

 = .0322 × (FI/FPP)

 Where:

 FI = Frame Interval (in milliseconds)

 FPP = Feet per Pixel

 For this example of simulating a bouncing ball in front of a house, Earth
gravity pixels per frame calculate as follows:

 PPF = .0322 × (FI/FPP)

 = .0322 × (30/.01)

 = 96.6

163 Chapter 6: Moving Objects

Estimating friction for your objects
Friction is a force that resists the motion of one material against another.
Those materials can be solids, liquids, or gases. In your Canvas application,
friction pushes against your x and y vectors slowing motion.

Precisely modeling the friction of one object against another is beyond the
scope of this book. Each set of object combinations requires its own, com-
plex, analysis. For example:

 ✓ Rubber covered baseball against air

 ✓ Flat plastic hockey puck against frozen water

 ✓ Glass marble against a concrete sidewalk

 ✓ Smooth stone falling through water

Fortunately, for most Canvas applications, it’s sufficient to use an estimate of
friction in the form of a percent reduction in the movement of an object. This
is referred to as the coefficient of friction.

To develop the coefficient of friction for your objects, follow these steps:

 1. Guess at an initial value.

 Most often, friction will reduce movement by a small number of percent-
age points. Start with an estimate in the range of 1 percent to 2 percent
unless you’re simulating moving relatively rough surfaces against one
another. In Listing 6-4, this value is set in code section A2:
var frictionL = .01

 2. Observe the behavior of real-world objects.

 Observe real-world objects similar to those you’re modeling. Watch how
they move in real life so that you can compare them to your Canvas
simulation.

 3. Apply friction to the object vector.

 Apply the coefficient of friction to the x and y vectors for your object.
In Listing 6-4, friction is combined with acceleration and then applied to
the vectors, as in code sections E4, E5, and E9:
faFactor = (1-frictionL)*(1+accelerL);
xVector = xVector*faFactor;
yVector = (yVector*faFactor)+adjGravityL;

 4. Adjust the value to reflect the reality you’re simulating.

 Experiment with different values for the coefficient of friction, frictionL,
in your working application. Observe the results and modify the coefficient
to help produce the results you want.

164 Part II: Drawing on Canvas

 You might decide you don’t want to model reality precisely. Don’t get
hung up on what’s “real” unless you’re developing a scientific applica-
tion that needs to model natural forces as closely as possible. Most
Canvas applications are as much art as they are science.

Estimating acceleration for your objects
Acceleration is the rate at which the velocity of your object changes over
time. Precisely modeling acceleration is beyond the scope of this book. Like
friction, each type of acceleration requires its own complex analysis. For
example, acceleration of:

 ✓ A baseball off a bat

 ✓ A rocket burning fuel

 ✓ A sailboat pushed by the wind

Fortunately, for most Canvas applications, it’s sufficient to use an estimate of
acceleration in the form of a percent increase in the movement of an object.
To develop an acceleration factor for your objects, follow these steps:

 1. Guess at an initial value.

 Start with an estimate in the range of 1 percent to 5 percent unless
you’re simulating a rapidly accelerating object like a rocket. In Listing
6-4, this value is set in code section A2:
var accelerL = .008;

 2. Observe the behavior of real-world objects.

 Observe real-world objects like those you’re modeling. Watch how they
move in real life and compare them to your Canvas simulation.

 3. Set the object’s starting vector values.

 The initial values you set for the x and y vectors for your object will
determine its initial velocity. Velocity is the speed of an object in a given
direction. This is, in effect, an instant acceleration to a starting velocity.

 In the Listing 6-4 code A2, the starting x vector is set as a fixed value:
var xVector = -15;

 The y vector is set as a random value between a minimum and maximum
in order to create variation in the path of the ball — just to add a bit of
fun. The minimum and maximum values are set in A2:
var yVectorMin = -20; var yVectorMax = -30;

165 Chapter 6: Moving Objects

 The y vector itself is calculated in C3:
yVector = yVectorMin + (Math.random() * (yVectorMax-yVectorMin));

 4. Apply acceleration to the object vector.

 Apply the acceleration factor to the x and y vectors for your object. In
the example, acceleration is combined with friction and then applied to
the vectors, as in code sections E4, E5, and E9:
faFactor = (1-frictionL)*(1+accelerL);
xVector = xVector*faFactor;
yVector = (yVector*faFactor)+adjGravityL;

 5. Adjust the value to model the reality you want to simulate.

 Experiment with different values for acceleration in your working appli-
cation. Observe the results and modify the coefficient to help produce
the results you want.

Modeling the combined natural forces
As shown in Figure 6-7, a number of forces act on a moving object.
Momentum and acceleration act to move the object in the vector direc-
tion it’s already pointed. Friction pushes back against the vector, trying to
decrease both the xVector and yVector components. Gravity pulls down
against only the yVector.

Figure 6-7: The forces of momentum, friction, acceleration, and gravity.

166 Part II: Drawing on Canvas

To model the combined effect of these forces, use the following steps:

 1. Define variables for force levels and change factors.

 Here’s code section A2 of Listing 6-4:
var frictionL = .01; var frictionC = 0;
var gravityL = 0; var gravityC = 0;
var accelerL = .008; var accelerC = .001;

 The change factors variables (those ending in C) are modeled to reduce
the level of the factor (those variables ending in L) over time. For example,
if you were modeling a rocket moving into outer space, the effects of
gravity and friction would decrease as the rocket moves farther away
from Earth.

 2. Calculate gravity.

 Use the 32 feet/sec approximation to calculate the force of gravity based
on the animation interval and feet per pixel scale of the animation image,
as in code section A5:
gravityL = .0322*(interval/feetPerPixel);

 3. Adjust gravity for the incline.

 Adjust the level of gravity for the incline of the table on which the ball
moves. The adjustment is based on the sine of the angle of incline. This
is shown in C2:
gravityL *= Math.sin(incline*(Math.PI/180))

 4. Change force levels as the simulation progresses, with a check to
prevent the factor from dropping below zero.

 This is modeled in Listing 6-4 in E1–3. Here is the example for friction:
frictionL = frictionL - frictionC;
if(frictionL < 0) {frictionL = 0}

 This modeling can be made more complex if moving your application
objects requires adjustments for additional influences. In the example of
modeling a rocket, you might model friction and gravity as a function of
distance from Earth.

 5. Combine friction and acceleration.

 For convenience, combine the forces of friction and acceleration,
because these affect both the x and y vectors. Acceleration is a positive
force, and friction a negative force. In the example, this is done in E4:
faFactor = (1-frictionL)*(1+accelerL);

 6. Change the xVector of the object using the friction/acceleration factor.

 Here’s an example in E5:
xVector = xVector*faFactor;

167 Chapter 6: Moving Objects

 7. Add the x vector to the position of the object.

 Here’s an example in E6:
 ballX += xVector;

 8. Before updating the yVector, check to see whether the object is on
the floor.

 If this check isn’t applied, the ball continues sinking out of sight. Yikes! If
the ball is on the floor, don’t update the y vector.

 To detect an “on floor” condition, test to see whether the edge of the
ball touches the edge of the Canvas, as in E7:
if((ballY+radius) < canvasBL.height)
{
 . . . update y vector . . .
}4

 9. Adjust gravity for near floor condition. That is:

 As the object approaches the floor, decrease gravity to prevent the
object from being pushed through the floor by gravity.

 This can happen if the value for gravity is large relative to the speed of
the object. Adjust gravity to the minimum of the gravity level and the
distance between the object and the floor, as in E8 of the example:
var adjGravityL = Math.min(gravityL, (canvasBL.height-ballY));

 10. Update the y vector using the friction/acceleration factor and adjusted
gravity.

 Here’s an example in E9:
yVector = (yVector*faFactor) + adjGravityL;

 11. Add the y vector to the position of the object.

 Here’s an example in E10:
ballY += yVector;

 12. Check for out -of -bounds conditions and move the object inside the
Canvas, if necessary.

 At high object speeds, it’s possible that after the object has moved, its
new position will be outside the bounds of the Canvas. Here’s how the
right edge condition is handled in E11:
if((ballX+(radius-1)) > canvasBL.width)
 {ballX=(canvasBL.width-(radius-1))}

 The adjustment of –1 pixel is necessary to keep the ball from being
trapped against a Canvas edge.

168 Part II: Drawing on Canvas

Part III
Breathing Life into

Your Canvas

In this part . . .

I
n Part III, I show you how to breathe life into your
Canvas. I demonstrate how to use Canvas composition

and color. You also discover how to have your application
interact with the user. I show you techniques for creating
lifelike movement and how to use multimedia such
as audio.

7
Mastering the Art of Canvas

In This Chapter
▶ Creating appealing Canvas spaces
▶ Creating composite images
▶ Getting the most out of color and texture

C
reating a work of art is a challenging task. It takes a combination of
technique, artistic vision, persistence, and a bit of courage. I happen to

believe that we all have an inner artist that just needs a little encouragement
to find its way out into the world.

Whether something is a work of art or just another image can be a subjective
judgment. What’s beautiful art to one person can be mundane and boring to
another. However, many paintings, sculptures, and other objects are widely
recognized as art. Possibly the most famous is Leonardo da Vinci’s Mona
Lisa. This painting, and many others, have been admired, analyzed, and
praised by experts and ordinary viewers around the world.

In this chapter, you discover techniques for layout, composition, and the
use of color that will help you create artful Canvas spaces and objects to fill
them. As any good artist would, use these techniques as guidelines and apply
your own creativity and self-expression to develop Canvas masterpieces.

Creating Appealing Canvas Spaces
When beginning a Canvas project, you’re faced with the first fundamental
design decision: what width and height to choose for your Canvas space.
Additionally, you need to decide where to place your shapes and designs on
the Canvas to create a visually appealing layout. You can find out more about
how to make these decisions in the following sections.

172 Part III: Breathing Life into Your Canvas

Choosing the size and proportions of your Canvas
Almost any size and proportioned Canvas can be made artful. Some Canvases
might have to be functional and fit into a specific space on a web page.
Others might be the defining aspect of a web page and drive the placement of
other elements. Still others might be more functional in nature, such as many
of the Canvases used in this book, which were sized to fit as compactly as
possible on a page with text.

The proportions of your Canvas — its relative width and height — influence
other aspects such as object placement. So take some time to consider these
elements:

 ✓ The purpose of the Canvas. It might be to

 • Attract attention

 • Provide a game

 • Explain something

 • Enhance the web page

 ✓ The characteristics of the objects you’ll place on the Canvas:

 • Quantity

 • Size

 • Movement and interaction

 ✓ The Canvas orientation:

 • Portrait (vertical)

 • Landscape (horizontal)

 • Square

 If you’re unsure where to begin with your dimensions, consider using a rect-
angle, as shown in Figure 7-1, that has the relative proportions 13 x 8 (or 8 x
13 for a portrait orientation). These dimensions are called the divine propor-
tion. They create a space for very balanced and appealing images.

Resizing and rescaling your Canvas
After choosing your starting dimensions and as you progress through your
development, you can alter the size and shape of your Canvas. Figure 7-2 and
Listing 7-1 demonstrate resizing and rescaling. (This code is based on Listing
4-9, which draws randomized circles. See Chapter 4 for a discussion of this
listing and the randomizing code.)

173 Chapter 7: Mastering the Art of Canvas

Figure 7-1: Divine proportion rectangular Canvas.

Figure 7-2: Resized and rescaled Canvas.

Listing 7-1: Resizing and Rescaling a Canvas
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS definition standard variables.
 canvas = document.getElementById(“canvasArea”);
 context = canvas.getContext(“2d”);

 // A2. PARAMETERS for circles.
 var numCircles = 300;
 var maxRadius = 20; var minRadius = 3;
 var colors =
 [“aqua”, “black”, “blue”, “fuchsia”, “green”, “cyan”, “lime”,

(continued)

174 Part III: Breathing Life into Your Canvas

Listing 7-1 (continued)
 “maroon”, “navy”, “olive”, “purple”, “red”, “silver”, “teal”,
 “yellow”, “azure”, “gold”, “bisque”, “pink”, “orange”];
 var numColors = colors.length;

 // A3. RESIZE & RESCALE Canvas.
 canvas.width = 400; canvas.height = 100;
 context.scale(.7, .7);

 // A4. CREATE circles.
 for(var n=0; n<numCircles; n++)
 {
 // A5. RANDOM values for circle characteristics.
 var xPos = Math.random()*canvas.width;
 var yPos = Math.random()*canvas.height;
 var radius = minRadius+(Math.random()* (maxRadius-minRadius));
 var colorIndex = Math.random()*(numColors-1);
 colorIndex = Math.round(colorIndex);
 var color = colors[colorIndex];

 // A6. DRAW circle.
 drawCircle(context, xPos, yPos, radius, color);
 }
};
// B. CIRCLE drawing function.
function drawCircle(context, xPos, yPos, radius, color)
{
 //B1. PARAMETERS for shadow and angles.
 var startAngle = (Math.PI/180)*0;
 var endAngle = (Math.PI/180)*360;
 context.shadowColor = “gray”;
 context.shadowOffsetX = 1;
 context.shadowOffsetY = 1;
 context.shadowBlur = 5;

 //B2. DRAW CIRCLE
 context.beginPath();
 context.arc(xPos, yPos, radius, startAngle, endAngle, false);
 context.fillStyle = color;
 context.fill();
}
</script> </head> <body>

<!-- C. CANVAS definition -->
<div style = “width:200px; height:200px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “200” height = “200”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.

175 Chapter 7: Mastering the Art of Canvas

You can change the size and dimensions of your Canvas in two ways: resize
and rescale.

Resizing
Resizing changes the width and/or height dimensions of the Canvas space.
This can be done by using HTML code or Java code.

 ✓ Change the characteristics in HTML code. Alter element characteristics
defining the width and height in HTML tags. For example, to change the
Canvas dimensions to 400 x 100, you can change the code in C of Listing
7-1 to this:
<div style = “width:400px; height:100px; margin:0 auto; padding:5px;”>
<canvas id = “canvasArea” width = “200” height = “200”
 style = “border:2px solid black”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div>

 ✓ Change the characteristics in Java code. Alter the width and height
characteristics of the Canvas using a reference to the Canvas in Java
code, as in A3 of the example:
canvas.width = 400; canvas.height = 100;

 You should understand the order in which HTML code parameters and
JavaScript parameters are applied. JavaScript code is executed after the
browser has used HTML to configure the web page. Therefore, JavaScript
resizing trumps HTML resizing. Rescaling via JavaScript, discussed in the
following section, is based on the HTML parameters (instead of on replacing
them). So JavaScript rescaling doesn’t trump HTML rescaling — it uses the
HTML scale as a base to work from.

Rescaling
Rescaling changes the dimensions of the objects within the Canvas in addi-
tion to the overall dimensions of the Canvas space.

To rescale your Canvas, use the scale() function (described in Chapter 5),
as in A3 of Listing 7-1:

context.scale(.7, .7);

 Note that if you use different scaling factors for the x and y coordinates of the
scale() function, your objects will be distorted from their original shape.

Experiment with the code in Listing 7-1 to see the effects from different scal-
ing values. If you try using the parameters (.7, .3), you see oval shapes
instead of circles. If you want ovals, great. If not, look out!

176 Part III: Breathing Life into Your Canvas

Dividing your Canvas with the rule of thirds
After you’ve decided on a starting size and dimensions for your Canvas, what
comes next?

One way to proceed is to segment your Canvas into virtual sub-spaces that
you can use to guide your placement of shapes and designs. A popular seg-
mentation strategy is termed the rule of thirds. Divide your Canvas into three
sections vertically and horizontally, as shown in Figure 7-3.

Figure 7-3: Subdividing a Canvas using the rule of thirds.

The design idea behind the rule of thirds is to place interesting elements
along the lines and line intersections of the sub-divided space. An example of
this is shown in Figure 7-4. Note how prominent features like the bicycle tires
are placed at line intersections or near the lines themselves.

 You don’t have to actually draw the dividing lines on your Canvas. You can
imagine their rough placement in your mind and let them be one guide when
drawing your Canvas objects. A Canvas is a space with width and height pixel
dimensions. Because all elements are located precisely where your code
specifies, you should have at least an idea of your design before you start
coding. Of course, changes and adjustments can be made as you code, but
you should have a starting point for your design.

177 Chapter 7: Mastering the Art of Canvas

Figure 7-4: Example of using the rule of thirds.

If you’re developing an application that involves significant object movement,
the rule of thirds can be helpful for designing the background image and the
placement of any stationary objects.

The rule of thirds works for several reasons:

 ✓ The magic number 3: In mathematics and the arts, three is considered
to be a very balanced and harmonious number. Two and four are prob-
ably very jealous.

 ✓ Manageable number of sub-spaces: The horizontal and vertical sub-
division by three creates a very manageable number of nine sub-spaces.
Not too many, not too few.

 ✓ Reasonable distances from the edges: Objects squashed up against the
Canvas edges can look crowded and out of place. The subdivision lines
and intersections tend to pull objects away from the edges.

 ✓ Pleasing placement: The lines and intersections are at pleasing dis-
tances from one another.

Using the golden ratio in your design
How can you resist trying something named the golden ratio? This relation-
ship between two numbers has been in use for at least 2,400 years, dating
back to Pythagoras and Euclid in ancient Greece.

178 Part III: Breathing Life into Your Canvas

Figure 7-5 demonstrates the golden ratio with a pair of adjacent rectangles
where the ratio of sides a to b is the same as the ratio of sides a+b to a, or
about 1.61:

a/b = (a+b)/a = 1.61803…

Figure 7-5: The golden ratio.

The golden ratio can be applied repeatedly to create a grid structure, as
shown in Figure 7-6. Each smaller rectangle is divided into approximate
golden ratio relationships. The dimensions also follow the Fibonacci
sequence where each number is the sum of the previous two:

0, 1, 1, 2, 3, 5, 8, 13 …

The Fibonacci sequence has been used to help explain numerical relation-
ships in science, nature, financial markets, and many other domains.

One example from nature is the nautilus shell, shown in Figure 7-7. There is
controversy over the extent to which shapes like the nautilus shell conform
to the ratio. For example, I had to adjust the overall dimensions of the nauti-
lus image in Figure 7-7 slightly to fit it onto the grid.

For the purposes of designing Canvas spaces, the main point is that the golden
ratio is another tool for creating pleasing layouts and spatial relationships.

179 Chapter 7: Mastering the Art of Canvas

Figure 7-6: The golden ratio grid.

Figure 7-7: The golden ratio is applied.

Creating Complex Shapes and Images
After you’ve chosen your Canvas dimensions and possibly a grid structure to
guide your layout, it’s time to populate your Canvas with objects and images.

180 Part III: Breathing Life into Your Canvas

Most applications will use complex objects to generate a more interesting
result than can be achieved with simple objects such as single lines, rect-
angles, and circles. Figure 7-8 and Listing 7-2 demonstrate building complex
shapes and organizing them into an appealing image.

Figure 7-8: Complex images.

181 Chapter 7: Mastering the Art of Canvas

Listing 7-2: Creating Complex Images
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS contexts.
 canvasBike = document.getElementById(“canvasBike”);
 contextBike = canvasBike.getContext(“2d”);
 canvasBG = document.getElementById(“canvasBackground”);
 contextBG = canvasBG.getContext(“2d”);

 // A2. PARAMETERS.
 var width = 280; var height = 200;
 var gap = 10; var hubRadius = 5;
 var pedalRadius = 15; var tireWidth = 3;
 var rimRadius = 40; var rimWidth = 8;
 var spokeWidth = 1; var spokeNum = 50;
 var spokeInterval = 20; var spokeColor = “silver”;
 var wheelFOffsetX = 80; var wheelFOffsetY = -5;
 var wheelROffsetX = -60; var wheelROffsetY = -5;
 var strutFOffsetX = 50; var strutFOffsetY = -80;
 var strutROffsetX = -30; var strutROffsetY = -80;
 var braceFOffsetX = 55; var braceFOffsetY = -58;
 var handleOffsetX = 49; var handleOffsetY = -79;
 var bikeX = (width/2)-13;
 var bikeY = (height/2)+40;
 var startAngle = (Math.PI/180)*0;
 var endAngle = (Math.PI/180)*360;

 // A3. BACKGROUND color.
 contextBG.fillStyle = “black”;
 contextBG.fillRect(0, 0, canvasBG.width, canvasBG.height);

 // A4. DRAW BIKES.
 // row col floor wall chassis backRim frontRim type
 // --- --- --------- --------- --------- --------- --------- -----------
 drawBike(1, 1,”#4B0082”,”#2F4F4F”,”#FF1493”,”#0000FF”,”#7FFF00”,”Custom”);
 drawBike(1, 2,”#8C0CE8”,”#E8160C”,”#1000FF”,”#FF5C0D”,”#FF00CC”,”Analogous”);
 drawBike(2, 1,”#B2159E”,”#4C2DFF”,”#FFDE50”,”#0000FF”,”#7FFF00”,”Triad”);
 drawBike(2, 2,”#050099”,”#FFBD00”,”#CC0200”,”#CC5800”,”#40FF00”,”Primary”);
 drawBike(3, 1,”#FF6571”,”#57CC4D”,”#BC3BFF”,”#FFEE4D”,”#73FFF9”,”Pastel”);
 drawBike(3, 2,”#FF9000”,”#F600FF”,”#04CC00”,”#FFEB00”,”#CC0100”,”Neon”);

 // B. DRAW BIKE function.
 function drawBike(row,col,floor,wall,chassis,backRim,frontRim,colorScheme)
 {

(continued)

182 Part III: Breathing Life into Your Canvas

Listing 7-2 (continued)
 // B1. TRANSLATE to corner of drawing area.
 contextBG.save();
 contextBG.translate (((col*gap)+((col-1)*width)),
 ((row*gap)+((row-1)*height)));
 contextBike.save();
 contextBike.translate(((col*gap)+((col-1)*width)),
 ((row*gap)+((row-1)*height)));
 // B2. FLOOR.
 contextBG.fillStyle = floor;
 contextBG.fillRect(0, height/2, width, height/2);

 // B3. WALL.
 contextBG.fillStyle = wall;
 contextBG.fillRect(0, 0, width, height*.65);

 // B4. COLOR SCHEME ID.
 contextBG.font = “bold 15pt arial”;
 contextBG.fillStyle = “white”;
 contextBG.strokeStyle = “white”;
 contextBG.textAlign = “left”;
 contextBG.fillText(colorScheme, 10, 21);

 // B5. TRANSLATE to center of pedals.
 contextBike.translate(bikeX, bikeY);

 // B6. WHEELS.
 wheel(wheelFOffsetX, wheelFOffsetY, frontRim);
 wheel(wheelROffsetX, wheelROffsetY, backRim);

 // B7. CHASSIS.
 chassisPart(0, 0, wheelROffsetX, wheelROffsetY, 3, chassis);
 chassisPart(0, 0, strutROffsetX, strutROffsetY, 6, chassis);
 chassisPart(strutROffsetX, strutROffsetY, strutFOffsetX, strutFOffsetY,
 9, chassis);
 chassisPart(strutFOffsetX, strutFOffsetY, wheelFOffsetX, wheelFOffsetY,
 6, chassis);
 chassisPart(0, 0, braceFOffsetX, braceFOffsetY, 6, chassis);

 // B8. CHAIN
 chassisPart(0, -pedalRadius, wheelROffsetX, wheelROffsetY-hubRadius,
 3, “gray”);
 chassisPart(0, pedalRadius, wheelROffsetX, wheelROffsetY+hubRadius,
 3, “gray”);
 chassisPart(wheelROffsetX, wheelROffsetY, strutROffsetX, strutROffsetY,
 3, chassis);
 // B9. SEAT.
 chassisPart(strutROffsetX-1, strutROffsetY-5,
 strutROffsetX-5, strutROffsetY-16, 5, “silver”);

183 Chapter 7: Mastering the Art of Canvas

 chassisPart(strutROffsetX-20, strutROffsetY-19,
 strutROffsetX+8, strutROffsetY-19, 8, “black”);

 // B10. HANDLE BAR.
 chassisPart(strutFOffsetX-1, strutFOffsetY-5,
 strutFOffsetX-5, strutFOffsetY-16, 5, “silver”);
 chassisPart(strutFOffsetX-5, strutFOffsetY-16,
 strutFOffsetX+8, strutFOffsetY-14, 7, “silver”);
 chassisPart(strutFOffsetX+8, strutFOffsetY-14,
 strutFOffsetX+11, strutFOffsetY-20, 7, “black”);

 // B11. PEDAL HUB.
 contextBike.beginPath();
 contextBike.arc(0, 0, pedalRadius, startAngle, endAngle, false);
 contextBike.fillStyle = “silver”;
 contextBike.strokeStyle = “gray”;
 contextBike.lineWidth = 1;
 contextBike.fill();
 contextBike.stroke();

 // B12. PEDALS.
 chassisPart(-15, -15, +15, +15, 5, “darkgray”);
 chassisPart(-20, -15, -10, -15, 6, “black”);
 chassisPart(+20, +15, +10, +15, 6, “black”);

 // B13. RESTORE CONTEXTS.
 contextBG.restore();
 contextBike.restore();

 // C. WHEEL function.
 function wheel(xPos, yPos, color)
 {
 // C1. TRANSLATE to center of the wheel.
 contextBike.save();
 contextBike.translate(xPos, yPos);

 // C2. GRADIENT.
 var grad = contextBike.createRadialGradient(0, 0, rimRadius-rimWidth,
 0, 0, rimRadius);
 grad.addColorStop(.5, “darkgray”);
 grad.addColorStop(1, color);

 // C3. SPOKES.
 contextBike.save();
 for(s=0; s<=spokeNum; s++)
 {
 contextBike.rotate(((Math.PI)/180)*spokeInterval);
 contextBike.strokeStyle = spokeColor;
 contextBike.lineWidth = spokeWidth;

(continued)

184 Part III: Breathing Life into Your Canvas

Listing 7-2 (continued)
 contextBike.beginPath();
 contextBike.moveTo(0, 0);
 contextBike.lineTo(0, rimRadius);
 contextBike.stroke();
 }
 contextBike.restore();

 // C4. RIM.
 contextBike.fillStyle = grad;
 contextBike.beginPath();
 contextBike.arc(0,0,rimRadius,startAngle,endAngle,false);
 contextBike.strokeStyle = grad;
 contextBike.lineWidth = rimWidth;
 contextBike.stroke();

 // C5. TIRE.
 contextBike.beginPath();
 contextBike.arc(0,0,rimRadius+(rimWidth/2),startAngle,endAngle,false);
 contextBike.strokeStyle = “black”;
 contextBike.lineWidth = tireWidth;
 contextBike.stroke();

 // C6. RESTORE context.
 contextBike.restore();
 }
 // D. CHASSIS PART function.
 function chassisPart(xStart, yStart, xEnd, yEnd, width, color)
 {
 contextBike.strokeStyle = color;
 contextBike.lineWidth = width;
 contextBike.lineCap = “round”;
 contextBike.beginPath();
 contextBike.moveTo(xStart, yStart);
 contextBike.lineTo(xEnd, yEnd);
 contextBike.stroke();
 }
 }
}
</script> </head> <body> <div>

<!-- E. CANVAS DEFINITIONS -->
<canvas id = “canvasBike” width = “590” height =”640”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
</canvas>
<canvas id = “canvasBackground” width = “590” height =”640”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>
</div> </body> </html>

185 Chapter 7: Mastering the Art of Canvas

To build composite images, follow the steps in the next few sections.

Basic aspects
The basics of creating objects have been discussed in depth in previous sec-
tions, including defining Canvas elements, creating a background, setting
parameters and drawing basic objects. To address them, follow these steps:

 1. Define multiple Canvas elements. Define one Canvas for the back-
ground and another for the main image.

 See the example in code block E of Listing 7-2. Define contexts for each
Canvas as in this example from code section A1:
canvasBike = document.getElementById(“canvasBike”);
contextBike = canvasBike.getContext(“2d”);

 2. Create the background.

 Fill the background as in code section A3. The example uses a solid
color:
contextBG.fillStyle = “black”;
contextBG.fillRect(0, 0 ,canvasBG.width, canvasBG.height);

 3. Set parameters and attributes you want to use for drawing your
objects.

 See the example in A2:
var width = 280; var height = 200;
var gap = 10; var hubRadius = 5;

 4. Draw your object using the appropriate function.

 For example:

 • Lines: As in code C3 & D of Listing 7-2

 • Rectangles: As in code B2–3

 • Text: As in code B4

 • Circles: As in code C4–5

Key aspects
A number of aspects that are not new to drawing complex objects take on
special significance. These include creating layered Canvases, using the
translate() function and drawing complex objects. To address them,
follow these steps:

186 Part III: Breathing Life into Your Canvas

 1. Create layered Canvas spaces.

 As is the case in Listing 7-2, drawing composite objects often requires
manipulating the Canvas context, such as using translation (described
in Chapter 5) to move to a new position or using rotation to draw new
objects. It’s helpful to organize objects into separate groups, each using
its own Canvas for drawing.

 The code in Listing 7-2 separates Canvas layers as follows:

 • Background (canvasBG, contextBG): Black framing, walls, floors

 • Bike (canvasBike, contextBike): Bicycles, text

 2. To help simplify drawing a complex object, choose a focal point for
the object, and translate the Canvas context to that point.

 In Listing 7-2, translation is used to:

 • Move to the corner of the individual bicycle section frame (code sec-
tion B1). From this point, the text, wall, floor, and bicycle are drawn.

 • Move to the center of the pedal circle of the bicycle image (code
section B5). From this point, the individual parts of the bicycle are
drawn, including the wheels, chassis, chain, seat, and handlebar.

 • Move to the center of the wheel (code section C1). From this point,
the spokes, rim, and tire are drawn.

 Before each translation, save the Canvas context, as in B1 and C1, and
then restore the context after the drawing is finished, as in B13. If you
don’t do this, you might get some truly wild results. If you see objects
being drawn in radically wrong places, it’s often because you haven’t
saved and restored the Canvas context properly.

 3. After your position on a Canvas is shifted using translation, use rela-
tive positioning from the new (0,0) point to draw your objects.

 An example is C3 from Listing 7-2. To draw each wheel spoke,
contextBike is rotated around the center of the wheel:
contextBike.save();
for(s=0; s<=spokeNum; s++)
 {
 contextBike.rotate(((Math.PI)/180)*spokeInterval);
 contextBike.strokeStyle = spokeColor;
 contextBike.lineWidth = spokeWidth;
 contextBike.beginPath();
 contextBike.moveTo(0,0);
 contextBike.lineTo(0, rimRadius);
 contextBike.stroke();
 }
contextBike.restore();

 Note that contextBike is saved before the rotations begin and
restored after they are complete.

187 Chapter 7: Mastering the Art of Canvas

 4. Organize your object drawing into appropriate functions.

 For example, in Listing 7-2:

 • drawBike() in code section B calls the wheel() and
chassisPart() functions to create a bicycle.

 • wheel() in code section C draws circles and spoke lines.

 • chassisPart() in code section D draws lines.

 Without creating these kinds of functions, you might see your code size
and complexity get out of hand. Always be alert to the possibility of cre-
ating a new function for specialized object types.

Getting the Most Out of Color
Your options for color selection and combination are vast. There are millions
of different colors when you include all the variations of hue, saturation, and
lightness. One approach to creating your color palette is trial and error. If
you have a good color sense, this might work quite well for you. Pick a start-
ing base color and go from there. Another option is to use tools such as web-
sites and books dedicated to exploring and combining colors.

Using online color tools
One of the most popular and useful color tools is the kuler.adobe.com
website, at kuler.adobe.com/#create/formacolor. Figure 7-9 shows
the kuler web page for creating your own combination of colors. Also on the
website are color themes created by an active community of designers who
contribute their ideas.

Using kuler, you can easily experiment with different colors and color combi-
nations. The web page is divided into two main areas, a color wheel centered
at the top and a series of five color sample squares and values across the
bottom. As you move the controls for the color wheel (the little circles) and
samples (the little triangles), you’ll see your colors change as well as their
numeric values:

 ✓ HSV: Hue, Saturation, Value (lightness). Specifies the color, amount of
color, and amount of black/white.

 ✓ RGB: Red, Green, Blue proportions.

 ✓ CMYK: Cyan, Magenta, Yellow, Black proportions.

 ✓ LAB: Lightness and a/b color space.

 ✓ HEX: The six-digit hexadecimal number specifying the color, including
hue, saturation, and value.

http://kuler.adobe.com/#create/formacolor

188 Part III: Breathing Life into Your Canvas

© 2012 with express permission from Adobe Systems Incorporated.

Figure 7-9: The Adobe kuler color tool.

Hue
Hue is determined by position in the color wheel. For example, in Figure 7-9,
the red square base color in the center relates to the double circle at the 3
o’clock position on the color wheel. The blue square to the right of the red
square relates to the filled-in circle at the 5 o’clock position, and so forth.

Saturation
Saturation is determined by the amount of color. For example, the red color
in Figure 7-9 is fully saturated, as indicated by the middle number 100 in the
HSV row just below the color square. The pink color to the far left has very
little saturation, as indicated by the number 26 as its HSV saturation value.

Lightness (value)
Lightness (value) is determined by the amount of white in the color. The blue
color to the right of the red in Figure 7-9 has very little white, as indicated by
the 20 value number in its HSV row.

189 Chapter 7: Mastering the Art of Canvas

Combining colors
Earlier in this chapter, Figure 7-8 and Listing 7-2 demonstrate combining
colors in different ways.

Analogous
Analogous colors come from the same region of the color wheel. In Figure 7-8,
the colors are all on the same half of the wheel as red, from 12 o’clock to
6 o’clock.

Triad
Triad colors come from three regions that are equally spaced one from
another. In Figure 7-8, purple, yellow, and blue/green.

Primary
From a technical perspective, primary colors are those that can be combined
to make a useful group of other colors. Some examples are

 ✓ Red, green, blue

 ✓ Red, yellow, blue

 ✓ Cyan, magenta, yellow, black

Artists often combine these to create images (such as the one in the exam-
ple) that have a basic color feel. Usually the colors have a high level of satu-
ration and lightness.

Pastel
Pastel colors have higher levels of lightness and lower levels of saturation.
You might refer to this as “less color.”

Neon
Neon color combinations are aggressive color combinations with high color
saturation.

Custom
The custom example is included to emphasize that you are free to experi-
ment and create your own combinations. The example uses a background of
low lightness with the bicycle in more saturated tones.

190 Part III: Breathing Life into Your Canvas

Creating Textures
Textures are generated by using repeated patterns. The patterns can vary
from simple squares or rectangles that are repeated in a grid to sophisticated
patterns generated by algorithms.

Figure 7-10 and Listing 7-3 demonstrate creating a texture from a small
Canvas repeated as a pattern.

Figure 7-10: Texture.

Listing 7-3: Creating Texture
<!DOCTYPE HTML> <html> <head> <script>

// A. WINDOW LOAD function.
window.onload = function()
{
 // A1. CANVAS contexts.
 canvasObjects= document.getElementById(“canvasObjects”);
 contextObjects = canvasObjects.getContext(“2d”);
 canvasTexture = document.getElementById(“canvasTexture”);
 contextTexture = canvasTexture.getContext(“2d”);

 // A2. TEXTURE creation.
 // color x y w h
 // ------------ - - - -
 contextTexture.fillStyle = “grey”; contextTexture.fillRect(0, 0, 1, 1);
 contextTexture.fillStyle = “grey”; contextTexture.fillRect(0, 1, 1, 1);
 contextTexture.fillStyle = “lightgrey”; contextTexture.fillRect(0, 2, 1, 1);
 contextTexture.fillStyle = “lightgrey”; contextTexture.fillRect(1, 0, 1, 1);
 contextTexture.fillStyle = “grey”; contextTexture.fillRect(1, 1, 1, 1);
 contextTexture.fillStyle = “grey”; contextTexture.fillRect(1, 2, 1, 1);
 contextTexture.fillStyle = “darkgrey”; contextTexture.fillRect(2, 0, 1, 1);
 contextTexture.fillStyle = “darkgrey”; contextTexture.fillRect(2, 1, 1, 1);
 contextTexture.fillStyle = “grey”; contextTexture.fillRect(2, 2, 1, 1);

191 Chapter 7: Mastering the Art of Canvas

 // A3. PATTERN set to texture Canvas.
 var pattern = contextObjects.createPattern(canvasTexture, “repeat”);

 // A4. FILLSTYLE set to pattern.
 contextObjects.fillStyle = pattern;

 // A5. OBJECTS filled with fillStyle pattern.
 contextObjects.fillRect(0, 0, canvasObjects.width, canvasObjects.height);
}
</script> </head> <body> <div>

<!-- B. CANVAS DEFINITIONS -->
<canvas id = “canvasObjects” width = “400” height =”100”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
</canvas>
<canvas id = “canvasTexture” width = “3” height =”3”
 style = “position:absolute; left:auto; top:auto; z-index: 1”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>
</div> </body> </html>

To create a texture, follow these steps:

 1. Define multiple Canvas elements. Define one Canvas for the texture
and another for the main image.

 See the example in section B of Listing 7-3:
<canvas id = “canvasObjects” width = “400” height =”100”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
</canvas>
<canvas id = “canvasTexture” width = “3” height =”3”
 style = “position:absolute; left:auto; top:auto; z-index: 1”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>

 Here are some aspects to note about texture Canvases:

 • The texture Canvas is very small in this example, only a 3-pixel
square. You can make it any size and dimension you want. The
larger the texture Canvas, the larger the repeated texture image.

 • Don’t include a border in the texture Canvas style unless you want
it to show as part of the texture.

 • If you’re using multiple textures, define multiple Canvas elements,
one for each texture.

192 Part III: Breathing Life into Your Canvas

 Next, define contexts for each Canvas, as in A1:
canvasObjects =document.getElementById(“canvasObjects”);
contextObjects=canvasObjects.getContext(“2d”);
canvasTexture =document.getElementById(“canvasTexture”);
contextTexture=canvasTexture.getContext(“2d”);

 2. Create a bit sequence of colors by filling each pixel in the texture
Canvas.

 In the example in A2, this is accomplished using the fillStyle() func-
tion to set a color and the fillRect() function a width and height of 1
to color each pixel:
// color x y w h
// ------------ - - - -
contextTexture.fillStyle=”grey”; contextTexture.fillRect(0, 0, 1, 1);
contextTexture.fillStyle=”grey”; contextTexture.fillRect(0, 1, 1, 1);
contextTexture.fillStyle=”lightgrey”; contextTexture.fillRect(0, 2, 1, 1);
contextTexture.fillStyle=”lightgrey”; contextTexture.fillRect(0, 2, 1, 1);

 For larger texture Canvas areas, consider developing code to create
your bit sequence using loops and algorithms.

 3. Create a pattern using the createPattern() function with the
canvasTexture and repeat parameters.

 Here’s an example from A3:
var pattern = contextObjects.createPattern(canvasTexture, “repeat”);

 The repeat parameter will cause the canvasTexture to be repeated
to completely fill an object.

 4. Create a fill style using the pattern.

 Set the fillStyle to the pattern created for the context containing
the objects to be filled as in A4:
contextObjects.fillStyle = pattern;

 5. Fill your objects using the appropriate function.

 See the example for fillRect() in A5:
contextObjects.fillRect(0, 0, canvasObjects.width, canvasObjects.height);

Other types of objects, such as lines, circles, and multi-sided objects, can be
filled with a pattern using their associated functions. See Chapter 3 for more
on patterns.

8
Introducing User Interaction

In This Chapter
▶ Structuring code to detect user events
▶ Responding to key presses
▶ Tracking mouse events
▶ Dragging and dropping objects

A
dding user interaction to your application contributes a vital element to
bringing your Canvas alive. People naturally want to be involved. They

would rather have a conversation with someone than be lectured to. They
would rather learn by doing than by just listening. They would rather be part
of something than just standing to the side and observing.

HTML5 Canvas gives you the tools you need to prompt and detect user
actions to help pull those users into the virtual world you’ve created. And
the more interaction your application has with a user, the more likely it is to
accomplish its purpose.

Responding to User Events
A user event occurs when someone presses a key on the keyboard, uses the
mouse, or touches the screen (if it’s touch sensitive). The device’s operat-
ing system notifies the browser of the event, and the browser then calls any
application functions that you have designated to handle that event. The
sequence is illustrated in Figure 8-1.

To make this all work, you have to tell the browser which application func-
tions to invoke for each type of event you want to respond to.

Figure 8-2 and Listing 8-1 demonstrate this mechanism with an application
that lets the user experiment with the effect of simulated real-world forces
such as gravity and friction on a bouncing ball. The application responds to
mouse clicks, mouse movement, and a number of key presses, as explained
by the legend in Figure 8-2 and code section K in Listing 8-1.

194 Part III: Breathing Life into Your Canvas

Figure 8-1: User interaction processing.

Try the application yourself. You should feel yourself being drawn in to the
experience. How will the application react to this change? What will happen if
I do this? How close can I get the ball to act like it would in the real world? The
interaction becomes like a small game that encourages the user to continue.

Figure 8-2: User interaction.

195 Chapter 8: Introducing User Interaction

Listing 8-1: Responding to User Interaction
<!DOCTYPE HTML> <html> <head> <script>

// A. PARAMETERS.
 var interval = 40; var intervalT = 70;
 var intervalI = 5; var intervalB = 5;
 var radius = 10; var radiusT = 25;
 var radiusI = 5; var radiusB = 5;
 var frictionS = .01; var frictionB = 0;
 var frictionL = 0; var frictionC = 0;
 var frictionI = .01; var frictionT = .05;
 var gravityS = .1; var gravityB = .0;
 var gravityL = 0; var gravityC = 0;
 var gravityI = .01; var gravityT = .2;
 var accelerS = .03; var accelerB = .01;
 var accelerL = 0; var accelerC = .001;
 var accelerI = .01; var accelerT = .1;
 var damping = .20; var dampingT = .50;
 var dampingI = .10; var dampingB = 0;
 var xVectorCur = 25; var yVectorCur = 10;
 var ballXCur = 20; var ballYCur = 20;
 var intervalID = 0;
 var startAngle = (Math.PI/180)*0;
 var endAngle = (Math.PI/180)*360;
 var dragMouse = 0;

// B. WINDOW LOAD function.
window.onload = function()
{
 // B1. CANVAS contexts.
 canvasBL = document.getElementById(“canvasBall”);
 contextBL = canvasBL.getContext(“2d”);
 canvasBG = document.getElementById(“canvasBackground”);
 contextBG = canvasBG.getContext(“2d”);

 // B2. MOUSE listeners.
 canvasBL.addEventListener(“mousedown”, mouseDown, false);
 canvasBL.addEventListener(“mousemove”, mouseMove, false);
 canvasBL.addEventListener(“mouseup”, mouseUp, false);

 // B3. BOUNCE BALL.
 bouncingBall(ballXCur, ballYCur, xVectorCur, yVectorCur);
}
// C. KEY functions.
document.onkeydown = function(event)
{
 // C1. KEY code.
 var key = event.keyCode;

(continued)

196 Part III: Breathing Life into Your Canvas

Listing 8-1 (continued)
 // C2. RESTART using s key.
 if (key == 83) {clearInterval(intervalID);
 bouncingBall(ballXCur, ballYCur, xVectorCur, yVectorCur);
 }
 // C3. ACCELERATION change using the a key.
 if (key == 65) {accelerS += accelerI;
 if (accelerS > accelerT) {accelerS = accelerB};
 clearInterval(intervalID);
 bouncingBall(ballXCur, ballYCur, xVectorCur, yVectorCur);
 }
 // C4. GRAVITY change using the g key.
 if (key == 71) {gravityS += gravityI;
 if (gravityS > gravityT) {gravityS = gravityB};
 clearInterval(intervalID);
 bouncingBall(ballXCur, ballYCur, xVectorCur, yVectorCur);
 }
 // C5. FRICTION change using the f key.
 if (key == 70) {frictionS += frictionI;
 if (frictionS > frictionT) {frictionS = frictionB};
 clearInterval(intervalID);
 bouncingBall(ballXCur, ballYCur, xVectorCur, yVectorCur);
 }
 // C6. DAMPING change using the d key.
 if (key == 68) {damping += dampingI;
 if (damping > dampingT) {damping = dampingB};
 clearInterval(intervalID);
 bouncingBall(ballXCur, ballYCur, xVectorCur, yVectorCur);
 }
 // C7. INTERVAL change using the i key.
 if (key == 73) {interval += intervalI;
 if (interval > intervalT) {interval = intervalB};
 clearInterval(intervalID);
 bouncingBall(ballXCur, ballYCur, xVectorCur, yVectorCur);
 }
 // C8. RADIUS change using the r key.
 if (key == 82) {radius += radiusI;
 if (radius > radiusT) {radius = radiusB};
 clearInterval(intervalID);
 bouncingBall(ballXCur, ballYCur, xVectorCur, yVectorCur);
 }
}
// D. MOUSE DOWN.
function mouseDown(event)
{
 // D1. MOUSE event.
 mouseEvent(event);

 // D2. DRAGGING on.
 dragMouse = 1;

197 Chapter 8: Introducing User Interaction

 // D3. CLEAR canvas to show only moving ball.
 contextBL.clearRect(0, 0, canvasBL.width, canvasBL.height);
 clearInterval(intervalID);

 // D4. DRAW ball.
 contextBL.beginPath();
 contextBL.arc(ballXCur, ballYCur, radius, startAngle, endAngle, true);
 contextBL.closePath();
 contextBL.fill();
}
// E. MOUSE MOVE.
function mouseMove(event)
{
 // E1. DRAG check.
 if (dragMouse == 1)
 {
 // E2. MOUSE event.
 mouseEvent(event);

 // E3. CLEAR canvas to show only moving ball.
 contextBL.clearRect(0, 0, canvasBL.width, canvasBL.height);
 clearInterval(intervalID);

 // E4. DRAW ball.
 contextBL.beginPath();
 contextBL.arc(ballXCur, ballYCur, radius, startAngle, endAngle, true);
 contextBL.closePath();
 contextBL.fill();
 }
}
// F. MOUSE UP.
function mouseUp(event)
{
 // F1. MOUSE event.
 mouseEvent(event);

 // F2. DRAGGING off.
 dragMouse = 0;

 // F3. BOUNCE bal.
 clearInterval(intervalID);
 bouncingBall(ballXCur, ballYCur, xVectorCur, yVectorCur);
}
// G. MOUSE EVENT.
function mouseEvent(event)
{
 // G1. BROWSERS except Firefox.
 if (event.x != undefined && event.y != undefined)

(continued)

198 Part III: Breathing Life into Your Canvas

Listing 8-1 (continued)
 {
 ballXCur = event.x;
 ballYCur = event.y;
 }
 // G2. FIREFOX.
 else
 {
 ballXCur = event.clientX + document.body.scrollLeft +
 document.documentElement.scrollLeft;
 ballYCur = event.clientY + document.body.scrollTop +
 document.documentElement.scrollTop;
 }
 // G3. CURSOR position.
 ballXCur -= canvasBL.offsetLeft;
 ballYCur -= canvasBL.offsetTop;
}
// H. BOUNCING BALL function.
function bouncingBall(ballX, ballY, xVector, yVector)
{
 // H1. RESET VARIABLES.
 frictionL = frictionS;
 gravityL = gravityS;
 accelerL = accelerS;

 // H2. ATTRIBUTES of ball.
 contextBL.shadowOffsetX = 3; contextBL.shadowOffsetY = 3;
 contextBL.shadowBlur = 5; contextBL.shadowColor = “gray”;
 contextBL.fillStyle = “gold”;

 // H3. BACKGROUND Canvas with text.
 background();

 // H4. START DRAWING balls.
 intervalID = setInterval(drawBall,interval);

 // I. DRAW BALL function.
 function drawBall()
 {
 // I1. MOVE ball.
 moveBall();

 // I2. CLEAR Canvas to show only moving ball.
 contextBL.clearRect(0, 0, canvasBL.width, canvasBL.height);

 // I3. DRAW ball.
 contextBL.beginPath();
 contextBL.arc(ballX, ballY, radius, startAngle, endAngle, true);
 contextBL.closePath();
 contextBL.fill();

199 Chapter 8: Introducing User Interaction

 // I4. SIDE BOUNCE.
 if (ballX < radius || ballX > canvasBL.width-radius)

 // I5. REVERSE x vector.
 {xVector *= -1*(1-damping)}

 // I6. CEILING & FLOOR BOUNCE.
 if (ballY < radius || ballY > canvasBL.height-radius)
 {
 // I7. REVERSE y vector.
 yVector *= -1*(1-damping);

 // I8. FLOOR bounce check.
 if((yVector < 0) && (yVector < -gravityL))

 // I9. GRAVITY reduction.
 {yVector += gravityL}
 }
 }
 // J. MOVE BALL function.
 function moveBall()
 {
 // J1. FRICTION adjustment.
 frictionL = frictionL - frictionC;
 if(frictionL < 0) {frictionL = 0}

 // J2. ACCELERATION adjustment.
 accelerL = accelerL - accelerC;
 if(accelerL < 0) {accelerL = 0}

 // J3. GRAVITY adjustments.
 gravityL = gravityL - gravityC;
 if(gravityL < 0) {gravityL = 0}

 // J4. FRICTION & ACCELERATION factor.
 faFactor = (1-frictionL) * (1+accelerL);

 // J5. X VECTOR change.
 xVector = xVector * faFactor;

 // J6. X POSITION change.
 ballX += xVector;

 // J7. Y vector & coordinate change if ball is above floor.
 if((ballY+radius) < canvasBL.height)
 {
 // J8. GRAVITY adjustment.
 var adjGravityL = Math.min(gravityL, (canvasBL.height-ballY));

(continued)

200 Part III: Breathing Life into Your Canvas

Listing 8-1 (continued)
 // J9. Y VECTOR change.

 yVector = (yVector*faFactor) + adjGravityL;
 }
 // J10. Y POSITION change.
 ballY += yVector;

 // J11. BOUNDS check & adjustment.
 if((ballX+(radius-1))>canvasBL.width) {ballX=(canvasBL.width-(radius-1))}
 if((ballX-(radius-1))<0) {ballX=(radius-1)}
 if((ballY+(radius-1))>canvasBL.height){ballY=(canvasBL.height-(radius-1))
 if(yVector < (gravityL+radius)) {gravityL=.9*gravityL}}
 if((ballY-(radius-1))<0) {ballY=(radius-1)}
 }
 // K. BACKGROUND.
 function background()
 {
 // K1. ATTRIBUTES.
 contextBG.font = “11pt courier”;
 contextBG.textAlign = “left”;
 contextBG.textBaseline = “middle”;

 // K2. VARIABLES.
 var xPos1 = 15; var xPos2 = 175; var xPos3 = 275;
 var yPos = 20;

 // K3. COLOR FILL.
 contextBG.fillStyle = “silver”;
 contextBG.fillRect(0, 0, canvasBG.width, canvasBG.height);

 // K4. FIX decimal points.
 accelerL = accelerL.toFixed(2); gravityL = gravityL.toFixed(2);
 frictionL = frictionL.toFixed(2); dampingL = damping;
 dampingL = dampingL.toFixed(2);

 // K5. TEXT.
 contextBG.fillStyle = “darkslategrey”;
 contextBG.fillText(“Key Factor”, xPos1, yPos*1);
 contextBG.fillText(“Value”, xPos2, yPos*1);
 contextBG.fillText(“--- -------------”, xPos1, yPos*2);
 contextBG.fillText(“-----”, xPos2, yPos*2);
 contextBG.fillText(“a - acceleration:”, xPos1, yPos*3);
 contextBG.fillText(accelerL, xPos2, yPos*3);
 contextBG.fillText(“g - gravity:”, xPos1, yPos*4);
 contextBG.fillText(gravityL, xPos2, yPos*4);
 contextBG.fillText(“f - friction:”, xPos1, yPos*5);
 contextBG.fillText(frictionL, xPos2, yPos*5);
 contextBG.fillText(“d - damping:”, xPos1, yPos*6);

201 Chapter 8: Introducing User Interaction

 contextBG.fillText(dampingL, xPos2, yPos*6);
 contextBG.fillText(“i - interval:”, xPos1, yPos*7);
 contextBG.fillText(interval, xPos2, yPos*7);
 contextBG.fillText(“r - radius:”, xPos1, yPos*8);
 contextBG.fillText(radius, xPos2, yPos*8);
 contextBG.fillText(“s - start bounce”, xPos1, yPos*9);
 contextBG.fillText(“Press key to cycle”, xPos3, yPos*1);
 contextBG.fillText(“through factor”, xPos3, yPos*2);
 contextBG.fillText(“values.”, xPos3, yPos*3);
 contextBG.fillText(“Click, hold and drag”, xPos3, yPos*5);
 contextBG.fillText(“to move ball”, xPos3, yPos*6);
 contextBG.fillText(“starting position.”, xPos3, yPos*7);
 }
}
</script> </head> <body> <div>

<!-- L. CANVAS DEFINITIONS -->
<canvas id = “canvasBall” width = “500” height =”250”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
</canvas>
<canvas id = “canvasBackground” width = “500” height =”250”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

The application in Listing 8-1 is an adaptation of the code in Listing 6-4, from
Chapter 6. The discussion in this chapter focuses on the code added to
handle user interaction. For details about the code that moves the ball and
bounces it off the Canvas edges, refer to Chapter 6.

To include these ball-bounce functions in your application, follow these
steps:

 1. Define parameters that will be used in the application.

 See the parameters defined in code section A of Listing 8-1:
var interval = 40; var intervalT = 70;
var intervalI = 5; var intervalB = 5;
var radius = 10; var radiusT = 25;

 2. Define a function that is called to handle the setup of your animation.

 See the function defined in code section H of Listing 8-1:
function bouncingBall(ballX, ballY, xVector, yVector)
{ . . . }

202 Part III: Breathing Life into Your Canvas

 3. At the appropriate places in your application, call the animation setup
function.

 See the calls to the animation setup function in B3 and F3:
bouncingBall(ballXCur, ballYCur, xVectorCur, yVectorCur);

 4. Define a function that will be invoked for each animation frame.

 Take a look at the animation function defined in code section I:
function drawBall() { . . . }

 5. Use the setInterval() function to generate calls to your animation
function at your specified time interval.

 Here’s an example in code H4:
intervalID = setInterval(drawBall,interval);

 See Chapter 6 for more on the setInterval function.

 6. Define functions that are called from the animation function.

 For example, define the function to move a ball, as in code section J:
function moveBall() { . . . }

The Document Object Model (DOM),
event listeners, and callbacks
The Document Object Model (DOM)
is a standard for interacting with
objects in HTML documents. Your
Canvas is one of those objects.

 The term document comes from
the history of the World Wide
Web, which at its inception in the
late 1980s was focused on creat-
ing a structure of linked hypertext
documents. Today, we think more in
terms of web pages. The term docu-
ment stuck and eventually contrib-
uted to the name Document Object
Model when the concept was devel-
oped in the mid-1990s.

When a browser reads the HTML
code defining your web page and
Canvas, it creates a DOM tree struc-
ture in memory, as shown in Figure
8-3. The DOM is then used by the Figure 8-3: Document Object Model.

203 Chapter 8: Introducing User Interaction

web browser as the place in which to store information about handling user
events.

To configure your code to respond to user events, do the following:

 1. Register event listeners to inform the browser about which functions
should be called back (thus the term callback) when specified event
types occur.

 By registering an event listener for the “mousedown” event, you’re
telling the browser to notify you, by calling the callback function
mouseDown, when the mouse button is pressed.

 In Listing 8-1, listeners for mouse events are registered in code section B2:
canvasBL.addEventListener(“mousedown”, mouseDown, false);

 A listener function for key events is registered in code section C:
document.onkeydown = function(event) { . . . }

 Notice that the JavaScript form of how functions are specified for mouse
and key events is different. Mouse events are registered as separate func-
tions for individual actions, such as mousedown and mouseup. The mouse
events are being associated with the Canvas area, as opposed to the
full browser window. The key event is registered as associated with the
browser window (see Figure 8-4, in the following section.) A single func-
tion is used to handle all key events in which the event keycode is used
to determine which key has been pressed. This function is defined as an
anonymous function as a convenient way to define code passed as a call-
back function. This is a JavaScript coding preference.

 2. Define functions in your application that will be called by the browser
when the events occur. (These are the callback functions.)

 In Listing 8-1, callback functions are defined in code sections C, D, E, and
F. For example, here is the function that is called when the user clicks
the mouse button:
function mouseDown(event) { . . . }

 Confused? Try this simple analogy. Event listeners and callbacks func-
tion similarly to leaving a message in someone’s voice mail. Your message
resembles a callback function. You tell the person you’re calling what you
want them to do. They’re always listening for notifications that they have
messages. When they hear the voice-mail notification tone, they pick up your
message and, of course, do exactly as you requested.

Event listener response areas
You can register event listeners to respond to actions associated with your
Canvas area or the browser window area, as shown in Figure 8-4. Which you

204 Part III: Breathing Life into Your Canvas

use for a given event type depends on how you want your application to
interact with the user. The application in Listing 8-1 uses Canvas area event
listeners for mouse events and browser window event listeners for keyboard
events.

Figure 8-4: Response areas.

One factor to consider in deciding which type of event listener to use is how
the user would intuitively expect the application to respond. In the applica-
tion in Listing 8-1, because the purpose of clicking the mouse is to have the
ball react, it makes sense that the mouse pointer should be somewhere on
the Canvas. The user might, however, want a pressed key to work no matter
where the pointer is located on the browser window.

Here’s a summary of the two options:

 ✓ Event listeners registered for the Canvas will cause the associated func-
tion to be called when focus is on the Canvas, such as when the mouse
pointer is positioned over the Canvas.

 ✓ Event listeners registered for the browser window will cause the asso-
ciated function to be called when focus is on the window, such as when
the mouse pointer is positioned anywhere over the window, not neces-
sarily over the Canvas.

You can test this distinction using the application in Listing 8-1. If you posi-
tion the mouse cursor on the browser window outside the Canvas and press

205 Chapter 8: Introducing User Interaction

the S key, you see the Canvas display react. However, if you click with your
mouse, nothing happens. To get the application to react to the mouse, the
pointer has to be positioned inside the Canvas. After you move the pointer
and then click the mouse, you see the application react as the ball moves to
the pointer position.

DOM event definitions
There are a large number of event types to which your application can
respond using event listeners and callback functions. A full description of
all event types is beyond the scope of this book. This chapter focuses on a
select group of events to demonstrate the event listener and callback mecha-
nisms. The full list and details of DOM events are controlled by the interna-
tional standards organization World Wide Web Consortium (W3C). For more
information, see:

www.w3.org/TR/DOM-Level-3-Events/#event-definitions

Canvas event listeners
Common Canvas events that are targeted for interaction include these:

click dblclick focus focusin

focusout keydown keypress keyup

mousedown mouseenter mousemove mouseover

mouseup mousewheel pause scroll

touchend touchmove touchstart volumechange

This chapter focuses on mousedown, mousemove, and mouseup to demon-
strate handling user events.

To define an event listener for a Canvas event, follow these steps:

 1. Define an event listener using the addEventListener() function to
associate the listener with a Canvas.

 This function has the following format:
addEventListener(eventType, eventFunction, false)

 When an eventType takes place, the eventFunction is called. The third
parameter, shown here as false, is no longer used by newer browser
releases but is required in older releases, so it’s best to include it.

http://www.w3.org/TR/DOM-Level-3-Events/#event-definitions

206 Part III: Breathing Life into Your Canvas

 Listing 8-1 defines three listeners for mouse events on canvasBL in
code section B2:
canvasBL.addEventListener(“mousedown”,mouseDown,false);
canvasBL.addEventListener(“mousemove”,mouseMove,false);
canvasBL.addEventListener(“mouseup” ,mouseUp ,false);

 2. Define the callback functions associated with the event listeners.

 Define a function for each event listener callback. For example, the
mouseDown() function is defined in code section D:
function mouseDown(event)
{
 Code to handle the mouse down event goes here.
 }

Browser window event listeners
Common browser window events that are targeted for interaction include:

altKey click ctrlKey dblclick

keydown keypress keyup mousedown

mousemove mouseout mouseover mouseup

shiftkey

To define an event listener for a browser window event, follow these steps:

 1. Define a browser window document reference by using the appropri-
ate event type.

 For example, see the code in section C of Listing 8-1:
document.onkeydown = function(event)

 2. Define the code to be executed when the callback is initiated.

 For example, when the keydown event is detected, the browser executes
this code in code section C:
{
 Code for response to the keydown event.
}

Handling Key Events
Key events are generated when users press any key on their keyboard. In
most applications, actions taken after a key is pressed depend on the specific
key used.

207 Chapter 8: Introducing User Interaction

Discovering key codes
Each key is assigned a keyCode that’s passed to the application function via
the key event. Table 8-1 lists the codes for keyboard keys.

Table 8-1 Key Codes
Key Code Key Code Key Code

a 65 0 48 Backspace 8
b 66 1 49 Pause/Break 19
c 67 2 50 Caps Lock 20
d 68 3 51 Esc 27
e 69 4 52 Page Up 33
f 70 5 53 Page Down 34
g 71 6 54 End 35
h 72 7 55 Home 36
i 73 8 56 ← 37
j 74 9 57 ↑ 38
k 75 F1 112 → 38
l 76 F2 113 ↓ 40
m 77 F3 114 Insert 45
n 78 F4 115 Delete 46
o 79 F5 116 Left Windows key 91
p 80 F6 117 Right Windows key 92
q 81 F7 118 Select1 key 93
r 82 F8 119 ; (semicolon) 186
s 83 F9 120 = (equal sign) 187
t 84 F10 121 , (comma) 188
u 85 F11 122 – (dash) 189
v 86 F12 123 . (period) 190
w 87 0 (numpad) 96 * (multiply) 106
x 88 1 (numpad) 97 + (add) 107
y 89 2 (numpad) 98 – (subtract,

on numpad)
109

z 90 3 (numpad) 99 . (decimal point on
numpad)

110

(continued)

208 Part III: Breathing Life into Your Canvas

Table 8-1 (continued)
Key Code Key Code Key Code

Tab 9 4 (numpad) 100 / (divide) 111
Enter 13 5 (numpad) 101 Num Lock 144
Shift 16 6 (numpad) 102 Scroll Lock 145
Ctrl 17 7 (numpad) 103 / (forward slash) 191
Alt 18 8 (numpad) 104 \ (back slash) 220

9 (numpad) 105 [(open bracket) 219
] (close bracket) 221
‘ (single quote) 222

1See www.ehow.com/facts_7392123_select-key-
computer-keyboard.html

Handling a key press
Your application can respond to as many keys as you want — one or dozens.
In Listing 8-1, code section C takes actions based on seven different keys: s, a,
g, f, d, i, and r.

To respond to key presses in your application, follow these steps:

 1. Define a callback function to respond to any key press.

 In Listing 8-1, this function is defined in section C:
document.onkeydown = function(event){ . . . }

 2. Within that function, first access the event and keycode.

 See section C1 of the example:
var key = event.keyCode;

 3. Test for specific key presses by using the codes in Table 8-1.

 In the example from code section C3, the letter a key press (code 65)
triggers a change in acceleration of the bouncing ball:
if (key == 65) { . . . }

 4. For each key you want your application to respond to, define the
actions to be taken.

http://www.ehow.com/facts_7392123_select-key-computer-keyboard.html
http://www.ehow.com/facts_7392123_select-key-computer-keyboard.html

209 Chapter 8: Introducing User Interaction

 In Listing 8-1, for the a key, acceleration is increased and checked for
terminal value, and the bouncing ball re-initiated:
// Increase acceleration by accelerI.
accelerS += accelerI;

// Check for terminal acceleration.
if (accelerS > accelerT)

 // If over terminal maximum, set to minimum base.
 {accelerS = accelerB};

// Stop current bouncing ball.
clearInterval(intervalID);

// Start new bouncing ball.
bouncingBall(ballXCur, ballYCur, xVectorCur, yVectorCur);}

Handling Mouse Events
Mouse events — such as presses, releases, and movements — can be used for
a variety of application functions, including

 ✓ Dragging and dropping objects

 ✓ Drawing shapes

 ✓ Painting object colors

 ✓ Clicking on objects such as buttons and shapes

In Listing 8-1, code sections D–F use mouse events to drag and drop a ball.

To respond to mouse events, follow these steps:

 1. Define a callback function for each type of mouse event your applica-
tion will respond to.

 In Listing 8-1, these functions are defined in section B2, for example:
canvasBL.addEventListener(“mousedown”,mouseDown,false);

 When the mouse button is clicked, control is passed to the callback
function:
function mouseDown(event) { … }

 See the next section, “Dragging and Dropping Objects,” for an example of
using mouse events.

210 Part III: Breathing Life into Your Canvas

 2. Define a function to determine the position of the mouse pointer on
the Canvas.

 In Listing 8-1, the mouseEvent() function is defined for this in code sec-
tion G.

 As of this writing, as shown in the following chunk of code, the Firefox
browser must be handled a bit differently than other browsers. In
JavaScript, the undefined property indicates that no value has been
assigned to a variable. Because event.x and event.y are undefined
by Firefox, the following chunk of code causes execution in the else{}
statement a method of finding the x and y coordinates that works for
Firefox:
function mouseEvent(event)
{
 // Find cursor position in browsers except Firefox.
 if (event.x != undefined && event.y != undefined)
 {
 ballXCur = event.x;
 ballYCur = event.y;
 }
 // Find cursor position in Firefox browser.
 else
 {
 ballXCur = event.clientX + document.body.scrollLeft +
 document.documentElement.scrollLeft;
 ballYCur = event.clientY + document.body.scrollTop +
 document.documentElement.scrollTop;
 }
 // Set cursor position within Canvas.
 ballXCur -= canvasBL.offsetLeft;
 ballYCur -= canvasBL.offsetTop;
}

 3. In each of your mouse handling callback functions, define the actions
to take in response to the mouse activity.

 For example, drag and drop objects, as explained in the next section.

Dragging and Dropping Objects
Dragging and dropping objects involves coordinating three types of mouse
events:

 ✓ Mouse down: Select the object.

 ✓ Mouse move: Move the object.

 ✓ Mouse up: Release the object.

In Listing 8-1, code sections D–F define these functions.

211 Chapter 8: Introducing User Interaction

Mouse down events
A mouse down event is typically used to select an object or position on a
Canvas. In code section D of Listing 8-1, a click of the mouse moves the ball
to the position of the mouse pointer. To use a mouse down event to initiate
dragging and dropping, follow these steps:

 1. Define an event listener for the Canvas that you want to detect the
mouse down condition.

 See code section B2 of Listing 8-1:
canvasBL.addEventListener(“mousedown”, mouseDown, false);

 2. Define a function that will contain the code to be executed when the
mouse is clicked.

 See code section D of the example:
function mouseDown(event) { . . . }

 3. Within the mouseDown() function, use your mouse event function (see
code section G) to determine the position of the mouse on your Canvas.

 See code section D1 in Listing 8-1:
mouseEvent(event);

 4. Turn on an indicator that will tell other code sections that a drag-and-
drop operation is in progress.

 This is shown in D2 of the example:
dragMouse = 1;

 5. Clear the Canvas.

 Clear the Canvas so that only the ball at the new position is drawn, as in D3:
contextBL.clearRect(0,0,canvasBL.width,canvasBL.height);

 6. Stop the animation that is currently in progress so that you can start a
new animation when the object is released.

 In code section D3, this is done using the clearInterval() function
and the intervalID of the animation:
clearInterval(intervalID);

 7. Draw the object at the mouse position.

 In the example, this has the effect of moving the ball to the cursor posi-
tion as shown in code D4:
contextBL.beginPath();
contextBL.arc(ballXCur, ballYCur, radius, startAngle, endAngle, true);
contextBL.closePath();
contextBL.fill();

212 Part III: Breathing Life into Your Canvas

Mouse move events
A mouse move event is typically used to move an object or draw a line or
color. In code section E in Listing 8-1, if the dragging indicator is on, the ball
is redrawn at the new position. Follow these steps to handle a mouse move
event:

 1. Define an event listener for the Canvas that you want to detect the
mouse move condition.

 See code section B2 of Listing 8-1:
canvasBL.addEventListener(“mousemove”, mouseMove, false);

 2. Define a function that will contain the code to be executed when the
mouse is moved.

 See code section D of the example:
function mouseMove(event) { . . . }

 3. Check the dragging indicator for the on condition.

 If the dragging indicator is on, continue with the steps below. This is
shown in E1 of the example:
if (dragMouse == 1)

 4. Within the mouseMove() function, use your mouse event function
(code section G) to determine the position of the mouse on your
Canvas.

 See code section E2:
mouseEvent(event);

 5. Clear the Canvas.

 Clear the Canvas so that only the ball at the new position is drawn, as
in E3:
contextBL.clearRect(0,0,canvasBL.width,canvasBL.height);

 6. Stop the animation that is currently in progress so that you can start a
new animation when the object is released.

 In code E3, this is done using the clearInterval() function and the
intervalID of the animation:
clearInterval(intervalID);

 7. Draw the object at the mouse position.

 In the example, this has the effect of moving the ball to the cursor posi-
tion as shown in code E4:

213 Chapter 8: Introducing User Interaction

contextBL.beginPath();
contextBL.arc(ballXCur, ballYCur, radius, startAngle, endAngle, true);
contextBL.closePath();
contextBL.fill();

Mouse up events
A mouse up event is typically used to drop an object and restart any paused
animations. In code section F of Listing 8-1, the dragging indicator is turned
off, and the bouncing ball is restarted:

 1. Define a listener for the Canvas that you want to detect the mouse
down condition.

 See code section B2 of Listing 8-1:
canvasBL.addEventListener(“mouseup”, mouseUp, false);

 2. Define a function that will contain the code to be executed when the
mouse is released.

 See code section F of the example:
function mouseUp(event) { . . . }

 3. Determine the mouse position.

 Within the mouseUp() function, use your mouse event function (code
section G) to determine the position of the mouse on your Canvas, as
shown in F1:
mouseEvent(event);

 4. Turn on an indicator that will tell other code sections that a drag and
drop operation is in progress.

 This is shown in F2 of the example:
dragMouse = 0;

 5. Stop the animation that is currently in progress so that you can start a
new animation when the object is released.

 In code F3, this is done using the clearInterval() function and the
intervalID of the animation:
clearInterval(intervalID);

 6. Restart the animation.

 Draw the object at the mouse position. In the example, this has the
effect of moving the ball to the cursor position as shown in code F3:
bouncingBall(ballXCur, ballYCur, xVectorCur, yVectorCur);

214 Part III: Breathing Life into Your Canvas

Displaying Information for the User
One important way to interact with your application user is through text that
conveys information about the application and assists in the user/application
feedback loop. Figure 8-2 (earlier in this chapter) shows the text used by the
sample application to display information about how to use the bouncing ball
application and the current values of key application parameters.

To display Canvas application information, follow these steps:

 1. Define a Canvas to display your text.

 Define a Canvas using the HTML Canvas tag as in code section L of
Listing 8-1:
<canvas id = “canvasBackground” width = “500” height =”250”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>

 2. Define a context for your text display Canvas.

 As in code section B1, define a context for references to the text display
Canvas:
canvasBG = document.getElementById(“canvasBackground”);
contextBG = canvasBG.getContext(“2d”);

 3. Separate the code that will display your text into a function that is
called from other areas of your application.

 In Listing 8-1, this function is defined in code section K:
function background() { . . . }

 4. Call the background function when you want to update the text.

 See code section H3 of the sample:
background();

 5. Set the attributes of the text, such as font and alignment.

 Within the background display function, as in code section K1 of the
example, set attributes:
contextBG.font = “11pt courier”;
contextBG.textAlign = “left”;
contextBG.textBaseline = “middle”;

215 Chapter 8: Introducing User Interaction

 6. Set any variables needed to position the text.

 See code section K2:
var xPos1 = 15; var xPos2 = 175; var xPos3 = 275; var yPos = 20;

 7. Fill the background color.

 If you’re not using other Canvases to create a background for the text,
fill a rectangle with a color, as in code section K3:
contextBG.fillStyle = “silver”;
contextBG.fillRect(0, 0, canvasBG.width, canvasBG.height);

 8. If you want to make sure that fractional numbers are limited to a fixed
number of decimal places, use the toFixed() function.

 See code section K4 where variables are limited to 2 decimal places:
accelerL = accelerL.toFixed(2);
gravityL = gravityL.toFixed(2);

 9. Use the fillStyle attribute to set the color of your text.

 See code section K5:
contextBG.fillStyle = “darkslategrey”;

 10. Use the fillText() function to display the text.

 See code section K5 of Listing 8-1:
contextBG.fillText(“g - gravity:”, xPos1, yPos*4);
contextBG.fillText(gravityL, xPos2, yPos*4);
contextBG.fillText(“f - friction:”, xPos1, yPos*5);
contextBG.fillText(frictionL, xPos2, yPos*5);

216 Part III: Breathing Life into Your Canvas

9
Creating Engaging Imagery

and Motion
In This Chapter
▶ Designing imagery and movement to fit your objectives
▶ Encouraging users to interact with your application
▶ Creating moving background images
▶ Creating an application to test browser performance

T
he speed and precision of browser rendering of Canvas images is increas-
ing rapidly. Newer browser versions are being developed with a strong

emphasis on graphics capabilities. Browsers are leveraging graphics process-
ing unit acceleration and the use of multiple CPU cores.

However, simply achieving greater speed and resolution of your Canvas
images isn’t normally sufficient to create a compelling and successful applica-
tion. In the final analysis, what really matters is how users react to your appli-
cation. In this chapter, you discover techniques for creating engaging imagery
and motion that fits and enhances your Canvas application objectives.

Developing an Application Look and Feel
A Canvas application is a mixture of art and science, presenting both oppor-
tunities and challenges. The images, shapes, colors, and movements that you
use in your application are important. Figure 9-1 and Listing 9-1 demonstrate
a background scene intended to be relaxing and fun to watch. Clouds drift by,
changing shape, transparency, and position. It’s almost a game all by itself.
Watch the clouds and see what comes next. Chill out.

In the following sections, I show you how to design and manage the compo-
nents for a successful look and feel to your application.

218 Part III: Breathing Life into Your Canvas

Figure 9-1: Clouds moving across a landscape.

Listing 9-1: Drawing Clouds Moving across a Landscape
<!DOCTYPE HTML> <html> <head> <script>

// A. ANIMATION variables.
 var animType = 1; var interval = 16; var moveAdj = 1; var lastTime = 0;

// B. CLOUDS variables.
 var clouds = new Array();
 var cloudsSpace = 1.8; var cloudsCount = 5; var cloudsLoad = 0;
 var cloudsWidth = 200; var cloudsTop = -10; var cloudsWMin = 150;
 var cloudsWMax = 350; var cloudsHMin = 40; var cloudsHMax = 180;
 var cloudsAMin = .3; var cloudsAMax = .8; var cloudsMMin = .004;
 var cloudsMMax = .05;

// C. FRAME RATE variables.
 var fpsCounter = 0; var fpsDisplay = 50; var fpsDisplayX = 60;
 var fpsDisplayY = 340; var fpsPromptX = 249; var fpsPromptY = 340;
 var fpsExplX = 65; var fpsExplY = 100; var fpsExplYD1 = 6;
 var fpsExplYD2 = 2; var fpsOffset = 95; var fps = 0;

219 Chapter 9: Creating Engaging Imagery and Motion

 var fpsMultMax = 20; var fpsWidthL = 1; var fpsScreen = -1;
 var fpsAlphaL = .5; var fpsAlphaE = .8; var fpsLineCt = 5;
 var fpsLineSp = 18;
 var fpsColor = “white”;
 var fpsColorE = “darkblue”;
 var fpsColorL = “blue”;
 var fpsFont = “12pt arial”;
 var fpsFontE = “11pt arial”;
 var fpsTitle = “Frame Rate:”;
 var fpsPrompt1 = “Click or touch for more information.”
 var fpsPrompt2 = “Click or touch for less information.”
 var fpsLine1 = “This is an HTML5 Canvas demonstration of moving”
 var fpsLine2 = “clouds of random sizes, shapes, transparencies”
 var fpsLine3 = “and speeds across a background image.”
 var fpsLine4 = “The Frame Rate displayed below tracks the”
 var fpsLine5 = “number of animation frames per second.”

// D. WINDOW LOAD function.
window.onload = function()
{
 // D1. CANVAS contexts.
 canvasBG = document.getElementById(“canvasBackground”);
 contextBG = canvasBG.getContext(“2d”);
 canvasFR = document.getElementById(“canvasFrameRate”);
 contextFR = canvasFR.getContext(“2d”);
 canvasCL = document.getElementById(“canvasClouds”);
 contextCL = canvasCL.getContext(“2d”);

 // D2. IMAGE definitions.
 var sky = new Image();
 sky.src = “http://marketimpacts.com/storage/RiverScene2.jpg”;
 var cloud0 = new Image();
 cloud0.src = “http://marketimpacts.com/storage/Cloud0.gif”;
 var cloud1 = new Image();
 cloud1.src = “http://marketimpacts.com/storage/Cloud1.gif”;
 var cloud2 = new Image();
 cloud2.src = “http://marketimpacts.com/storage/Cloud2.gif”;
 var cloud3 = new Image();
 cloud3.src = “http://marketimpacts.com/storage/Cloud3.gif”;
 var cloud4 = new Image();
 cloud4.src = “http://marketimpacts.com/storage/Cloud4.gif”;

 // D3. CLOUD image load functions.
 cloud0.onload = function(){createCloud(0, cloud0); cloudsLoad++;}
 cloud1.onload = function(){createCloud(1, cloud1); cloudsLoad++;}
 cloud2.onload = function(){createCloud(2, cloud2); cloudsLoad++;}
 cloud3.onload = function(){createCloud(3, cloud3); cloudsLoad++;}
 cloud4.onload = function(){createCloud(4, cloud4); cloudsLoad++;}

(continued)

220 Part III: Breathing Life into Your Canvas

Listing 9-1 (continued)
 // D4. EVENT listeners.
 canvasFR.addEventListener(“mousedown”, screenChange, false);
 canvasFR.addEventListener(“touchstart”,screenChange, false);
 canvasFR.addEventListener(“touchmove”, screenChange, false);
 canvasFR.addEventListener(“touchend”, screenChange, false);

 // D5. SCREEN CHANGE event.
 function screenChange(event) {fpsScreen = -fpsScreen;}

 // E. SKY image load function.
 sky.onload = function()
 {
 // E1. DRAW background image.
 contextBG.drawImage(sky, 0, 0, canvasBG.width, canvasBG.height);
 // E2. START moving cloud scene.
 cloudScene();
 }
}
// F. CREATE CLOUD function.
function createCloud(number, image)
{
 clouds[number] = {};
 clouds[number].xPos = number*cloudsWidth;
 clouds[number].yPos = cloudsTop;
 clouds[number].width = cloudsWMin+(Math.random()*(cloudsWMax-cloudsWMin));
 clouds[number].height = cloudsHMin+(Math.random()*(cloudsHMax-cloudsHMin));
 clouds[number].alpha = cloudsAMin+(Math.random()*(cloudsAMax-cloudsAMin));
 clouds[number].move = cloudsMMin+(Math.random()*(cloudsMMax-cloudsMMin));
 clouds[number].image = image;
}
// G. CLOUD SCENE function.
function cloudScene()
{
 // G1. START animation clouds using setInterval.
 if(animType == 0)
 {intervalID = setInterval(drawClouds,interval);}

 // G2. START animation clouds using requestAnimationFrame.
 if(animType == 1)
 {
 // G3. ANIMATION loop.
 (function animLoop()
 {
 // G4. REQUEST ANIMATION FRAME
 requestAnimFrame(animLoop);

 // G5. DRAW clouds.
 drawClouds();
 }
) ();
 }

221 Chapter 9: Creating Engaging Imagery and Motion

 // H. DRAW CLOUDS function.
 function drawClouds()
 {
 // H1. FRAME RATE calculation.
 var date = new Date();
 var time = date.getTime();
 var timeDiff = time - lastTime;
 fps = 1000/Math.max(timeDiff, 1);
 lastTime = time;

 // H2. FRAME COUNTER increment.
 fpsCounter++;

 // H3. FRAME RATE display.
 if((fpsCounter > fpsDisplay) && (timeDiff > 1))
 {
 // H4. COUNTER reset.
 fpsCounter = 0;

 // H5. DISPLAY frame rate and click prompt.
 frameRateDisplay();
 }
 // H6. FRAME RATE adjustment calculation.
 var fpsTarget = 1000/interval;
 var fpsDiff = fpsTarget - fps;
 var fpsMult = fpsDiff/Math.max(fps, 1);
 var fpsAdjust = Math.min(fpsMult, fpsMultMax);

 // H7. CLEAR canvas.
 contextCL.clearRect(0,0, canvasCL.width, canvasCL.height);

 // H8. LOOP through clouds.
 for(var c=0; c<(clouds.length); c++)
 {
 // H9. CLOUDS LOAD check.
 if(cloudsLoad >= cloudsCount)
 {
 // H10. ADJUSTMENT calculation.
 var moveAdjust = fpsAdjust * clouds[c].move * moveAdj;

 // H11. CHANGE x position.
 clouds[c].xPos += (clouds[c].move + moveAdjust);

 // H12. OFF CANVAS condition check.
 if(clouds[c].xPos > canvasCL.width)
 {
 // H13. CREATE cloud.
 createCloud(c, clouds[c].image);

 // H14. STAGE cloud for canvas entry.
 clouds[c].xPos = -cloudsWidth * cloudsSpace;
 }

(continued)

222 Part III: Breathing Life into Your Canvas

Listing 9-1 (continued)
 // H15. TRANSPARENCY setting.
 contextCL.globalAlpha = clouds[c].alpha;

 // H16. DRAW cloud image.
 contextCL.drawImage(clouds[c].image, clouds[c].xPos, clouds[c].yPos,
 clouds[c].width, clouds[c].height);
 }
 }
 // I. FRAME RATE DISPLAY function.
 function frameRateDisplay()
 {
 // I1. CLEAR frame speed canvas.
 contextFR.clearRect(0, 0, canvasFR.width, canvasFR.height);

 // I2. MORE INFO prompt.
 if(fpsScreen == -1)
 {
 // I3. ATTRIBUTES of text.
 contextFR.font = fpsFont; contextFR.fillStyle = fpsColor;

 // I4. DISPLAY text.
 contextFR.fillText(fpsPrompt1, fpsPromptX, fpsPromptY);
 }
 // I5. EXPLANATION text.
 if(fpsScreen == 1)
 {
 // I6. ATTRIBUTES of counter.
 contextFR.font = fpsFont; contextFR.fillStyle = fpsColor;

 // I7. FIX precision of fps.
 fps = fps.toFixed(0);

 // I8. COUNTER text.
 contextFR.fillText(fpsTitle, fpsDisplayX, fpsDisplayY);
 contextFR.fillText(fps, fpsDisplayX + fpsOffset, fpsDisplayY);

 // I9. LESS info prompt.
 contextFR.fillText(fpsPrompt2,fpsPromptX, fpsPromptY);
 // I10. LINE drawing.
 contextFR.strokeStyle = fpsColorL;
 contextFR.globalAlpha = fpsAlphaL;
 contextFR.lineWidth = fpsWidthL;
 contextFR.beginPath();
 contextFR.moveTo(fpsExplX-10, fpsExplY + fpsExplYD1);
 contextFR.lineTo(fpsExplX-10, fpsExplY + fpsExplYD2 +
 (fpsLineCt * fpsLineSp));
 contextFR.stroke();

223 Chapter 9: Creating Engaging Imagery and Motion

 // I11. TEXT display.
 explanationText(fpsLine1, 1); explanationText(fpsLine2, 2);
 explanationText(fpsLine3, 3); explanationText(fpsLine4, 4);
 explanationText(fpsLine5, 5);
 }
 }
 // J. EXPLANATION TEXT function.
 function explanationText(text, lineNumber)
 {
 // J1. SPACING of line.
 var lineSpace = lineNumber * fpsLineSp;

 // J2. ATTRIBUTES of text.
 contextFR.globalAlpha = fpsAlphaE; contextFR.font = fpsFontE;
 contextFR.fillStyle = fpsColorE;

 // J3. DISPLAY text.
 contextFR.fillText(text, fpsExplX, fpsExplY + lineSpace);
 }
 }
}
// K. REQUEST ANIMATION FRAME function.
 window.requestAnimFrame = (function()
 {
 // K1. RETURN function available.
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||

 // K2. FALLBACK setTimeout function.
 function(callback) {window.setTimeout(callback, interval);};
 })();
</script> </head> <body> <div>

<!-- L. CANVAS DEFINITIONS -->
<canvas id = “canvasClouds” width = “500” height =”350”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
</canvas>
<canvas id = “canvasFrameRate” width = “500” height =”350”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 3”>
</canvas>
<canvas id = “canvasBackground” width = “500” height =”350”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

224 Part III: Breathing Life into Your Canvas

Defining dimensions of appearance and motion
The look and feel of an application can be hard to quantify. To tackle this
tricky topic, I’ve devised four dimensions to help you define the look and feel
of your application:

 ✓ Abstract ↔ Realistic

 ✓ Muted ↔ Colorful

 ✓ Simple ↔ Complex

 ✓ Relaxing ↔ Active

You can use these dimensions to set objectives for your design. For example,
you might want to develop a particle movement demonstration that’s

Abstract, Colorful, Simple, Relaxing

Or an adventure game that is

Realistic, Muted, Complex, Active

These decisions will drive your choices of imagery and motion.

 There aren’t right and wrong answers to the questions of where to fit in these
dimensions. It’s simply a technique for helping you think about key aspects
of your application and make conscious choices for your design. You can
make your Canvas application virtual world anything you want.

Defining the visual dimensions of your application
Figure 9-2 provides a series of images for reference in defining visual dimen-
sions. They’re versions of the background image that’s used in the Listing 9-1
sample application. I created this group of images by using image processing
tools in Adobe Photoshop. Each image is rated on a scale of 1 to 10 for each
of the four dimensions described in the preceding section.

Figure 9-3 shows how the Listing 9-1 example can be plotted on a scale of 1 to
10 for each of the four visual dimensions. To define the dimensions of appear-
ance and motion for your application, follow these steps:

 1. Choose and/or define the dimensions of appearance and motion.

 Keep in mind that the four dimensions I defined in the preceding sec-
tion and in Figure 9-3 may not work for your application. For example,
you might be developing an application that’s all buttons, selectors, and
other types of control. If you need different dimensions, create your own
by using the four I’ve included as a starting point.

225 Chapter 9: Creating Engaging Imagery and Motion

Figure 9-2: Versions of an image.

226 Part III: Breathing Life into Your Canvas

 2. Choose a point on the abstract/realistic scale.

 In Figure 9-2, the range of the 1-to-10 scale is represented by the abstract
Glowing Edges image at one end of the scale and the realistic Original
photograph at the other end of the scale. I chose to be at an 8. I used a
Paint Daubs filter to take the edge off pure realism.

 3. Choose a point on the muted/colorful scale.

 The range of this scale is represented by the muted Chalk and Charcoal
image at a 1 and the high color Saturation image at a 10. I chose a
level of 9. I saturated the colors in the image but not to the full extent
possible.

 4. Choose a point on the simple/complex scale.

 The range of this scale is represented by the simple Smudge Stick image
at a 1 and the highly detailed Glowing Edges image at a 10. I chose a level
of 5. Using Paint Daubs, I cut back on some of the detail to give the scene
a bit of a dreamy quality.

 5. Choose a point on the relaxing/active scale.

 The range of this scale is represented by the Diffuse Glow image at a 1
and the Glowing Edges images at a 10. I used the relaxing Paint Daubs
image.

Figure 9-3 summarizes the dimensions of the sample application in Listing 9-1.

Figure 9-3: Visual dimensions of the moving clouds application in
Listing 9-1.

227 Chapter 9: Creating Engaging Imagery and Motion

Using an image as a background
One tool for defining the appearance of your application is the use of a back-
ground image. You can use a photograph, an image you create with a drawing
program, or a mixture of the two.

Use these steps to draw a static image as part of your application background:

 1. Use a tool such as Adobe Photoshop or Adobe Illustrator to create
your background image.

 2. Upload the image to a server.

 Typically, you use the server hosting the website containing your
Canvas application.

 3. Define a Canvas to hold the image.

 As shown in code section L of Listing 9-1, define a Canvas:
<canvas id = “canvasBackground” width = “500” height =”350”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>

 4. Define a Canvas variable and context.

 As shown in code section D1 of Listing 9-1, define a Canvas variable and
context:
canvasBG = document.getElementById(“canvasBackground”);
contextBG = canvasBG.getContext(“2d”);

 5. Define the image variable and source for the image.

 See code section D2:
var sky = new Image();
sky.src = “http://marketimpacts.com/storage/RiverScene2.jpg”;

 6. Define a function that will draw the image after it’s loaded from the
source server.

 See code section E:
sky.onload = function()
{
 contextBG.drawImage(sky, 0, 0, canvasBG.width, canvasBG.height);
}

228 Part III: Breathing Life into Your Canvas

Prompting User Interaction
An important aspect of engaging users is getting them to interact with your
application. If you can entice users to click on or touch your Canvas, you’ll
improve your chances of retaining their interest and achieving the goals of
your application. Figure 9-4 shows the screen that’s displayed if someone
clicks or touches the Canvas created by Listing 9-1.

In the following sections, I show you how to generate user interaction.

Figure 9-4: Additional information displayed after click or touch by user.

Using motion to attract attention
Canvas applications have a powerful tool for attracting attention — motion.
A well-designed animation can be an effective way to start interacting with
users.

 Animations on web pages are not new. Unfortunately, animations are often
mishandled and create annoying, distracting movement. This can cause web
page visitors to move on instead of engaging in interaction. The opposite of
what you want.

229 Chapter 9: Creating Engaging Imagery and Motion

Responding to interaction
If your Canvas application captures the attention of a user who then clicks
on the screen or presses a key, you should make something happen. In the
example in Listing 8-1 (in Chapter 8), you see interaction using the mouse and
keyboard. In Listing 9-1, when the user touches or clicks on the Canvas area,
additional explanatory text is alternately displayed and removed.

To change text displays on a Canvas in response to user interaction, follow
these steps:

 1. Define a variable that will keep track of which screen version is being
displayed.

 Listing 9-1 has only two screen versions:

 • Initial screen prompt: See Figure 9-1; fpsScreen = -1.

 • Additional information screen: See Figure 9-4; fpsScreen = 1.

 The variable is defined in code section C:
var fpsScreen = -1;

 2. Define a Canvas to contain display information.

 See code section L in Listing 9-1:
<canvas id = “canvasFrameRate” width = “500” height =”350”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 3”>
</canvas>

 3. Define a Canvas variable and context for reference by your code.

 See code section D1:
canvasFR = document.getElementById(“canvasFrameRate”);
contextFR = canvasFR.getContext(“2d”);

 4. Define event listeners for mouse and touch events.

 Event listeners define the user actions that will trigger calls to a speci-
fied function, as in code section D4 for mouse and touch events:
canvasFR.addEventListener(“mousedown”, screenChange, false);
canvasFR.addEventListener(“touchstart”, screenChange, false);
canvasFR.addEventListener(“touchmove”, screenChange, false);
canvasFR.addEventListener(“touchend”, screenChange, false);

 5. Define the function that will be called when a user event takes place.

 See code section D5:
function screenChange(event) {fpsScreen = -fpsScreen;}

230 Part III: Breathing Life into Your Canvas

 Because Listing 9-1 has only two versions of the screen display, this
function is straightforward. It toggles the fpsScreen variable between
its two values.

 6. Test the variable used to track the status of interaction with the user
and take the appropriate actions for each status type.

 See code sections I2 and I5 of the example:
if(fpsScreen == -1)
{ . . . code responding to this screen status}
.
.
.
if(fpsScreen == 1)
{ . . . code responding to this screen status}

Managing Animations
As your applications become more sophisticated, you’ll need better control
over object movement. In the following sections, you find out how to move
objects at controlled speeds with fluid motion. Figure 9-1 and Listing 9-1
demonstrate moving clouds across a background image and are used for
examples in the following sections.

Animation frame rates
The number of Canvas frames per second (fps) that your application draws is
referred to as the frame rate. The human brain retains an image the eye sees
for about one-fifteenth of a second, or about 66 milliseconds (ms). If the next
image in an animation sequence is shown in less than 66 ms (a frame rate of
15 fps), the brain blends the images, and the illusion of motion is created. In
the following sections, you see how to create optimal frame rate performance
to create smooth-looking animations.

The minimum effective frame rate
The minimum useful frame rate is the rate needed so that motion will be per-
ceived as smooth and natural. At 15 fps, although motion is perceived, it’s
seen as choppy and unnatural. Early silent films had this frame rate, and the
motion was choppy.

 Through experimentation and development in film and television, it was
determined that in order for our brains to perceive fluid motion, the mini-
mum frame rate required is 24 frames per second (an interval of 41 ms.).

231 Chapter 9: Creating Engaging Imagery and Motion

The maximum useful frame rate
The maximum useful frame rate is tied to the refresh rate of displays. The
refresh rate is the number of times per second the display is changed. The
normal refresh rate for LCD displays is 60 cycles per second. This equates
to an interval between display changes of 16.66 ms. Therefore, a frame rate
of over 60 (or a frame interval of less than 16.66 ms) will be “wasted.” Your
application can redraw a Canvas more than 60 frames per second, but not all
of the redraws will appear on the screen.

The desired frame rate
Because 60 fps will be fully used by LCD displays and produces the most fluid
motion, it is seen at the best frame rate for Canvas applications. So use 60 fps
as the frame rate for your application if you can. If you have to go below this
rate, keep your animation frame rate above 24 fps. To summarize:

 ✓ 60 fps/16 ms interval: Maximum useful and most desirable frame rate.

 ✓ 24 fps/41 ms interval: Minimum effective frame rate.

 In designing your animation drawing functions, keep in mind that you have
between 16 and 41 ms to draw a single frame on your Canvas. How much
your application can do within this time interval depends on the speed of the
computing device running the browser. This limitation may not be much of
a factor for simpler Canvas applications where 16–41 ms is plenty of time to
draw your images. As your applications increase in complexity, however, you
may need to improve the efficiency of your code to keep the frame rate at
optimal levels.

Defining your animation control function
You find out about basic animation sequences in Chapter 6 and how to use
the setInterval() function to generate callbacks to your animation code
at specified time intervals. Now you build on that knowledge with more-
sophisticated animation timing. You see how to let the browser call your ani-
mation code at optimized intervals and how to create motion at a controlled
speed regardless of the length of the animation interval.

Using the requestAnimationFrame() function
The requestAnimationFrame() function tells the browser to call a desig-
nated function in your application at optimal time intervals determined by
system activity. Most browsers use 60 fps as the target frame rate. The actual
frame rate will vary from about 50 to 70, depending on system activity.

232 Part III: Breathing Life into Your Canvas

There are a number of advantages to using requestAnimationFrame()
instead of setInterval():

 ✓ Consistent optimum frame rate: As discussed in the preceding section,
60 fps is the optimum frame rate based on today’s display technology.

 ✓ Callback efficiency: If you use setInterval() with a specific callback
interval, not all of your callbacks will be executed — because of interfer-
ence from other processes. When using requestAnimationFrame(),
100 percent of your callbacks will be executed.

 ✓ CPU efficiency: Because the browser is determining the optimum call-
back interval and you’re not wasting any callback requests, request
AnimationFrame() uses fewer CPU cycles than setInterval().

 ✓ Power consumption: Better CPU efficiency means lower power con-
sumption. This is an especially important factor for battery-powered
devices.

 ✓ Background activity eliminated: When a window using request
AnimationFrame() is minimized, the browser stops executing call-
backs. This results in zero CPU cycles used by your application in a min-
imized window. When you’re using setInterval(), your application
will continue to request callbacks even when minimized.

 ✓ Smoother animation: Because of the greater efficiency of request
AnimationFrame(), your application animations should appear
smoother.

The requestAnimationFrame() function is experimental and still in devel-
opment. The W3C web page for timing control of script-based animations
contains the latest status of the feature and suggested code for calling the
function at www.w3.org/TR/animation-timing.

Although requestAnimationFrame() is still in development, all the major
browsers have implemented it in their latest releases. Because of the advan-
tages I just discussed, I recommend using it by following these steps:

 1. (Optional) Define a variable to turn on requestAnimationFrame()
code.

 This step is optional. The purpose is to give your application the flexibil-
ity of using either requestAnimationFrame() or setInterval(). As
in code section A of Listing 9-1, define your variable:
var animType = 1;

 If the variable is set to 1, your code will use requestAnimation
Frame(). If it is set to 0, your code will use setInterval().

http://www.w3.org/TR/animation-timing

233 Chapter 9: Creating Engaging Imagery and Motion

 2. Define a timing interval in milliseconds that will be used if the
requestAnimationFrame() function is not available on a browser.

 Here’s an example in code section A:
interval = 16;

 3. Define an animation loop by using requestAnimationFrame().

 If animType is set to 1, execute an animation loop as in code sections
G2–G5:
if(animType == 1)
{
 (function animLoop()
 {
 requestAnimFrame(animLoop);
 drawClouds();
 }
) ();
}

 This is essentially a recursive function that calls itself via the browser.
The animLoop() function will be called by the browser in the range of
60 times per second (once every 16 ms). Within the animLoop() func-
tion, call the function you’re using to draw your animation scene. In
Listing 9-1, that is the drawClouds() function.

 4. Define an implementation of the requestAnimationFrame() function.

 This step is necessary because of the temporary, experimental nature of
requestAnimationFrame(). When the official definition of request
AnimationFrame() settles down and the major browsers develop a
uniform version of the function, this step will not be needed. For now,
use the following code as in section K of the example:
window.requestAnimFrame = (function()
{
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||

 function(callback)
 {window.setTimeout(callback, interval)};
})();

 This code will use the individual browser implementations of request
AnimationFrame() and, if none is supported by the browser, revert to
a setTimeout() function by using the interval defined in your applica-
tion. The code is based on an implementation by Paul Irish.

234 Part III: Breathing Life into Your Canvas

 5. Define your main animation drawing function.

 This is the function that is called from your animation loop in Step 3 and
carries out your animation drawing as in code section H of the example:
function drawClouds()
 { . . . }

Using the setInterval() function
In addition to implementing the requestAnimationFrame() approach to
animation, you can include code with setInterval() by following these
steps:

 1. (Optional) Define a variable to turn on setInterval() code.

 This step is optional. The purpose is to give your application the flexibil-
ity of using either requestAnimationFrame() or setInterval(). As
in code section A of Listing 9-1, define your variable:
var animType = 0;

 If the variable is set to 1, your code will use requestAnimation
Frame(). If it’s set to 0, your code will use setInterval().

 2. Define a timing interval in milliseconds that will be used by the
setInterval() function.

 Here’s an example in code section A:
interval = 16;

 3. Define code to invoke the setInterval() function.

 If animType is set to 0, execute the setInterval() function as in code
section G1:
if(animType == 0)
 {intervalID = setInterval(drawClouds, interval);}

 The setInterval() function will call the drawClouds() function
as close as possible to every interval milliseconds. Due to other
activities within a user’s browser and computer, not every call to
setInterval() will be satisfied. The intervalID is returned by the
setInterval() function and can be used to terminate the callbacks.

 4. Define your main animation drawing function.

 This is the function that is called from the setInterval() function in
Step 3 and carries out your animation drawing as in code section H of
Listing 9-1:
function drawClouds()
 { . . . }

235 Chapter 9: Creating Engaging Imagery and Motion

Defining your main animation drawing function
Your main animation drawing code is invoked as a callback function by the
setInterval(), setTimeout(), or requestAnimationFrame() function,
as described in the preceding section. Within the main animation function,
your application draws a single frame for display on your Canvas or can-
vases. You can call as many other functions from within this main function
as you like. In Listing 9-1, the main animation drawing function is draw
Clouds() in code section H:

function drawClouds()
 { . . . }

Calculating and displaying the animation frame rate
Displaying the frame rate of your application is useful for gaining a sense of
how efficiently your application is performing and whether you’re staying
in the 24–60 fps optimum frame rate range. To display the frame rate, follow
these steps:

 1. Define a Canvas for displaying the frame rate.

 It’s useful to implement a separate Canvas for displaying the frame rate.
You can layer it anywhere you like in relation to the other canvases in your
application by using the z-index attribute. This lets you adjust for the
best visibility and prevent it from interfering with other images or anima-
tions. In the sample application, this Canvas is defined in code section L:
<canvas id = “canvasFrameRate” width = “500” height =”350”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
</canvas>

 2. Define a variable and context that you’ll use for referencing the
Canvas in your code.

 See section D1:
canvasFR = document.getElementById(“canvasFrameRate”);
contextFR = canvasFR.getContext(“2d”);

 3. Calculate the frame rate in frames per second (fps) by using the
Date() and getTime() functions.

 See code section H1:
var date = new Date();
var time = date.getTime();
var timeDiff = time - lastTime;
fps = 1000/Math.max(timeDiff, 1);
lastTime = time;

236 Part III: Breathing Life into Your Canvas

 The Math.max(timeDiff, 1) function is used to prevent division by
zero when timeDiff = 0.

 4. Use a counter and time difference to control the frame rate display
frequency.

 If you display the frame rate at every frame interval, you’ll see the
number changing so often that it will be difficult to understand what’s
taking place. To avoid this, use a counter to limit how often the frame
rate display is changed, as in code section C and H2–H5 of the example:
var fpsCounter = 0;
 .
 .
 .
fpsCounter++;
 if((fpsCounter > fpsDisplay) && (timeDiff > 1))
 {
 fpsCounter = 0;
 frameRateDisplay;
 }

 5. Display the frame rate.

 As in code section I, display the frame rate:
function frameRateDisplay()
{ . . . }

 6. Display the frame rate explanatory text.

 There is no built-in function to display multi-line text. It’s helpful to
implement your own support function as is done in code section J of the
example:
function explanationText(text, lineNumber)
{ . . . }

Moving objects at controlled speeds
The timing of callbacks from the browser to your main animation drawing
function will vary depending on activity on the host browser and computer.
In many applications, you move objects at a set speed regardless of the varia-
tion in callback intervals. To do this, adjust the distance you move an object
based on the variation of the actual frame rate from your targeted frame rate.

Use the following steps to make these adjustments:

 1. If you want to be able to turn your adjustment code on and off,
include a variable that will be used during object moves.

237 Chapter 9: Creating Engaging Imagery and Motion

 In Listing 9-1, this variable is defined in code section A:
var moveAdj = 1;

 2. Define a target drawing interval in milliseconds.

 See code section A:
var interval = 16;

 3. Define variables for frames per second and time tracking.

 Define variables as in code sections A and C:
var lastTime = 0;
var fps = 0;

 4. Define a variable to limit the fps adjustment.

 If your animation is paused and then restarted, this can cause a very
large difference between animation frame times. If you calculate an
adjustment based on this difference, you can see large and disruptive
movements in your objects. To eliminate these disruptions, define a
variable that will be used as a cutoff for adjustments. This variable is
defined in code section C:
var fpsMultMax = 20;

 5. Calculate an adjustment factor for object movement.

 Based on the previous variables, calculate the factor by which you’ll
adjust object movement, as in code section H6:
var fpsTarget = 1000/interval;
var fpsDiff = fpsTarget - fps;
var fpsMult = fpsDiff/Math.max(fps, 1);
var fpsAdjust = Math.min(fpsMult, fpsMultMax);

 The Math.max(fps, 1) function is used to prevent division by zero.

 6. When changing the position of an object, apply the adjustment factor.

 See code sections H10 and H11 in Listing 9-1:
var moveAdjust = fpsAdjust * clouds[c].move * moveAdj;
clouds[c].xPos += (clouds[c].move + moveAdjust);

 Note that if the variable moveAdj is set to 0, no adjustment will be made.

Defining and storing image sequences
One technique for adding interest to an application is to move images across
a background image. The Listing 9-1 application uses this technique to move
clouds across a landscape.

238 Part III: Breathing Life into Your Canvas

This moving imagery is based on a set of images you create and store on a
server. To define and store a series of images, follow these steps:

 1. Use a tool such as Adobe Illustrator to create images with a transpar-
ent background and save them as .gif files.

 Figure 9-5 shows the images created for use in Listing 9-1.

Figure 9-5: Images for moving clouds.

 2. Upload the .gif images to a server.

 Normally the images you download to your Canvas application will be
stored on the server hosting the website containing the application.
Upload your images to a folder on the server.

 3. Define an array to hold the images in your application.

 Define an images array as in code section B:
var clouds = new Array();

 4. Define variables that will be used to characterize each image.

 In code section B, this includes a number of minimum (Min) and maxi-
mum (Max) variables that will be used to create random characteristics
in Step 7:
var clouds = new Array();
var cloudsSpace = 1.8;
var cloudsCount = 5; var cloudsLoad = 0;
var cloudsWidth = 200; var cloudsTop = -10;
var cloudsWMin = 150; var cloudsWMax = 350;
var cloudsHMin = 40; var cloudsHMax = 180;
var cloudsAMin = .3; var cloudsAMax = .8;
var cloudsMMin = .004; var cloudsMMax = .05;

 5. Define a variable and source for each image.

239 Chapter 9: Creating Engaging Imagery and Motion

 As in code section D2, define a variable and server location for each
image. One example is
var cloud0 = new Image();
cloud0.src = “http://marketimpacts.com/storage/Cloud0.gif”;

 6. Define a function that will be called for each image after it’s success-
fully loaded from the server.

 Here’s one example from code section D3 in Listing 9-1:
cloud0.onload = function() {createCloud(0, cloud0);}

 In the example, this function calls the image definition function
described in Step 7.

 7. Define a function that will place an image in an array and generate
image characteristics that will be used when drawing the image on
your Canvas.

 In code section F of Listing 9-1, the Math.random() function is used to
generate random characteristics for the width, height, alpha (transpar-
ency), and move distance:
function createCloud(number, image)
{
 clouds[number] = {};
 clouds[number].xPos = number*cloudsWidth;
 clouds[number].yPos = cloudsTop;
 clouds[number].width = cloudsWMin+(Math.random()*
 (cloudsWMax-cloudsWMin));
 clouds[number].height = cloudsHMin+(Math.random()*
 (cloudsHMax-cloudsHMin));
 clouds[number].alpha = cloudsAMin+(Math.random()*
 (cloudsAMax-cloudsAMin));
 clouds[number].move = cloudsMMin+(Math.random()*
 (cloudsMMax-cloudsMMin));
 clouds[number].image = image;
}

 Using random characteristics is a powerful way to generate interesting
scenes based on a limited number of images.

Moving images across a background
During each animation cycle, change the position of each image and draw it
on the Canvas. In the Listing 9-1 example, clouds are drawn moving across
the background image of a sky. As illustrated in Figure 9-6, the images are
recycled with changed and randomized characteristics.

240 Part III: Breathing Life into Your Canvas

Figure 9-6: Moving recycled images across a background.

To create your moving images animation, follow these steps:

 1. Using the clearRect() function, clear the Canvas you’re using to
draw your images.

 See code section H7 of Listing 9-1:
contextCL.clearRect(0,0, canvasCL.width, canvasCL.height);

 2. Loop through the images in your array.

 Loop through the entire array as in code section H8:
for(var c = 0; c < (clouds.length); c++) { . . . }

 3. Change the position of each image.

 Change the coordinate(s) of each image. In code section H11 of Listing
9-1, clouds are being moved only horizontally, so there is only an x coor-
dinate, clouds[c].xPos, to adjust. There is no vertical movement and
thus no y coordinate to change. The base move distance is stored in the
clouds array as clouds[c].move. The move distance is adjusted by
the frames per second adjustment factor fpsAdjust if the moveAdj
variable is set to 1. As explained earlier, this creates a consistent cloud
speed under varying frame rates in code sections H10 and H11:
var moveAdjust = fpsAdjust * clouds[c].move * moveAdj;
clouds[c].xPos += (clouds[c].move + moveAdjust);

 4. Check to see whether objects have moved past the width of the
Canvas.

 See code section H12 in Listing 9-1:
if(clouds[c].xPos > canvasC1.width)

241 Chapter 9: Creating Engaging Imagery and Motion

 5. Create a new object.

 After an object has moved off the Canvas, it can be recycled. That is, its
position in the object array can be filled with a new object. In the sample
code H13, a new cloud is defined using a new set of randomized charac-
teristics using the createCloud() function:
createCloud(c, clouds[c].image);

 The createCloud() function, discussed earlier, is located in code sec-
tion F of the example.

 6. Position the new object for re-entry onto the Canvas.

 Set the coordinate(s) of the new object so that it will begin moving onto
the Canvas during the position changes in Step 3. In the example, only
the x coordinate is used to move the clouds. In code section H14, the x
coordinate is set to a distance to the left of the background image:
clouds[c].xPos = -cloudsWidth * cloudsSpace;

 7. Set transparency for the Canvas based on the attribute stored in the
object array.

 See code section H15 for the cloud:
contextCL.globalAlpha = clouds[c].alpha;

 8. Use the appropriate function to draw the object on your Canvas.

 In code sample H16, the drawImage() function is used to draw each
cloud:
contextC1.drawImage(clouds[c].image, clouds[c].xPos, clouds[c].yPos,
 clouds[c].width, clouds[c].height);

Testing Browser Animation Performance
Browser developers are continually improving the performance of Canvas
animations. Better browser performance allows you to do more in your ani-
mation functions, which can translate into better graphics and more move-
ment. It’s important to keep abreast of browser enhancements and current
performance levels.

Figure 9-7 and Listing 9-2 demonstrate an application that stresses browser
performance and shows the resulting frame rate of the animation. You can use
this application as is, or adapt the code for inclusion in your applications.

242 Part III: Breathing Life into Your Canvas

Figure 9-7: Testing browser animation performance.

Listing 9-2: Testing Browser Animation Performance
<!DOCTYPE HTML> <html> <head> <script>

// A. ANIMATION variables.
 var interval = 1; var lastTime = 0;

// B. GRADIENT variables.
 var gradC1X = -140; var gradC1Y = 0; var gradC1R = 15;
 var gradC2X = 0; var gradC2Y = 0; var gradC2R = 350;
 var gradSAngle = (Math.PI/180)*0;
 var gradEAngle = (Math.PI/180)*360;
 var gradRadius = 350;

// C. FRAME RATE variables.
 var fpsCounter = 0; var fpsDisplay = 50;
 var fpsDisplayX = 60; var fpsDisplayY = 340;
 var fpsPromptX = 200; var fpsPromptY = 340;
 var fpsExplX = 65; var fpsExplY = 100;
 var fpsExplYD1 = 6; var fpsExplYD2 = 2;
 var fpsOffset = 100; var fps = 0;
 var fpsMultMax = 20; var fpsColor = “white”;
 var fpsColorE = “white”; var fpsColorL = “white”;
 var fpsWidthL = 1; var fpsScreen = -1;
 var fpsAlphaL = .5; var fpsAlphaE = 1;
 var fpsFont = “bold 12pt arial”;
 var fpsFontE = “bold 11pt arial”;
 var fpsTitle = “Frame Rate:”;
 var fpsPrompt1 = “Click or touch for more information.”

243 Chapter 9: Creating Engaging Imagery and Motion

 var fpsPrompt2 = “Click or touch for less information.”
 var fpsLine1 = “This is an HTML5 Canvas demonstration of drawing”
 var fpsLine2 = “rotating concentric circular gradients “
 var fpsLine3 = “in order to test browser performance.”
 var fpsLine4 = “The Frame Rate displayed below tracks the”
 var fpsLine5 = “number of animation frames per second.”
 var fpsLineCt = 5;
 var fpsLineSp = 18;

// D. WINDOW LOAD function.
window.onload = function()
{
 // D1. CANVAS contexts.
 canvasFR = document.getElementById(“canvasFrameRate”);
 contextFR = canvasFR.getContext(“2d”);
 canvasGR = document.getElementById(“canvasGradient”);
 contextGR = canvasGR.getContext(“2d”);

 // D2. EVENT listeners.
 canvasFR.addEventListener(“mousedown”, screenChange, false);
 canvasFR.addEventListener(“touchstart”, screenChange, false);
 canvasFR.addEventListener(“touchmove”, screenChange, false);
 canvasFR.addEventListener(“touchend”, screenChange, false);

 // D3. SCREEN CHANGE event.
 function screenChange(event) {fpsScreen = -fpsScreen;}

 // D4. START moving cloud scene.
 frameRateTest();
}
// E. CLOUD SCENE function.
function frameRateTest()
{
 // E1. TRANSLATE to middle of canvas.
 contextGR.translate(canvasGR.width/2, canvasGR.height/2);

 // E2. START animation.
 var intervalID = setInterval(drawFrameRate,interval);

 // F. DRAW FRAME RATE function.
 function drawFrameRate()
 {
 // F1. FRAME RATE calculation.
 var date = new Date();
 var time = date.getTime();
 var timeDiff = time - lastTime;
 fps = 1000/Math.max(timeDiff, 1);
 lastTime = time;

 // F2. FRAME COUNTER increment.
 fpsCounter++;

(continued)

244 Part III: Breathing Life into Your Canvas

Listing 9-2 (continued)
 // F3. FRAME RATE display.
 if((fpsCounter > fpsDisplay) && (timeDiff > 1))
 {
 // F4. COUNTER reset.
 fpsCounter = 0;

 // F5. DISPLAY frame rate and click prompt.
 frameRateDisplay();
 }
 // F6. CLEAR canvas.
 contextGR.clearRect(-canvasGR.width /2, -canvasGR.height/2,
 canvasGR.width /2, canvasGR.height/2);
 // F7. ROTATE canvas.
 contextGR.rotate(((Math.PI)/180));

 // F8. GRADIENT definition.
 var gradRO = contextGR.createRadialGradient(gradC1X, gradC1Y, gradC1R,
 gradC2X, gradC2Y, gradC2R);
 // F9. COLOR stops for gradient.
 gradRO.addColorStop(1, “silver”);
 gradRO.addColorStop(.9, “lightseagreen”);
 gradRO.addColorStop(.8, “purple”);
 gradRO.addColorStop(.7, “magenta”);
 gradRO.addColorStop(.6, “gold”);
 gradRO.addColorStop(.5, “darkturquoise”);
 gradRO.addColorStop(.4, “orange”);
 gradRO.addColorStop(.3, “lime”);
 gradRO.addColorStop(.2, “hotpink”);
 gradRO.addColorStop(.1, “springgreen”);
 gradRO.addColorStop(0, “yellow”);

 // F10. FILL set to gradient.
 contextGR.fillStyle = gradRO;

 // F11. DRAW circle with gradient fill.
 contextGR.beginPath();
 contextGR.arc(0, 0, gradRadius, gradSAngle, gradEAngle, false);
 contextGR.fill();

 // G. FRAME RATE DISPLAY function.
 function frameRateDisplay()
 {
 // G1. CLEAR frame speed canvas.
 contextFR.clearRect(0, 0, canvasFR.width, canvasFR.height);

 // G2. ATTRIBUTES of counter.
 contextFR.font = fpsFont;
 contextFR.fillStyle = fpsColor;

245 Chapter 9: Creating Engaging Imagery and Motion

 // G3. FIX precision of fps.
 fps = fps.toFixed(0);

 // G4. COUNTER text.
 contextFR.fillText(fpsTitle, fpsDisplayX, fpsDisplayY);
 contextFR.fillText(fps, fpsDisplayX + fpsOffset, fpsDisplayY);
 // G5. MORE INFO prompt.
 if(fpsScreen == -1)
 {
 // G6. ATTRIBUTES of text.
 contextFR.font = fpsFont;
 contextFR.fillStyle = fpsColor;

 // G7. DISPLAY text.
 contextFR.fillText(fpsPrompt1,fpsPromptX, fpsPromptY);
 }
 // G8. EXPLANATION text.
 if(fpsScreen == 1)
 {
 // G9. LESS info prompt.
 contextFR.fillText(fpsPrompt2,fpsPromptX, fpsPromptY);
 // G10. LINE drawing.
 contextFR.strokeStyle = fpsColorL;
 contextFR.globalAlpha = fpsAlphaL;
 contextFR.lineWidth = fpsWidthL;
 contextFR.beginPath();
 contextFR.moveTo(fpsExplX-10, fpsExplY + fpsExplYD1);
 contextFR.lineTo(fpsExplX-10, fpsExplY + fpsExplYD2 +
 (fpsLineCt * fpsLineSp));
 contextFR.stroke();

 // G11. TEXT display.
 explanationText(fpsLine1, 1); explanationText(fpsLine2, 2);
 explanationText(fpsLine3, 3); explanationText(fpsLine4, 4);
 explanationText(fpsLine5, 5);
 }
 }
 // H. EXPLANATION TEXT function.
 function explanationText(text, lineNumber)
 {
 // H1. SPACING of line.
 var lineSpace = lineNumber * fpsLineSp;

 // H2. ATTRIBUTES of text.
 contextFR.globalAlpha = fpsAlphaE; contextFR.font = fpsFontE;
 contextFR.fillStyle = fpsColorE;

(continued)

246 Part III: Breathing Life into Your Canvas

Listing 9-2 (continued)
 // H3. DISPLAY text.

 contextFR.fillText(text, fpsExplX, fpsExplY + lineSpace);
 }
 }
}
</script> </head> <body> <div>

<!-- I. CANVAS DEFINITIONS -->
<canvas id = “canvasGradient” width = “500” height =”350”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
</canvas>
<canvas id = “canvasFrameRate” width = “500” height =”350”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 3”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

Creating the base code
The application in Listing 9-2 is based on the code from Listing 9-1. Before
explaining how the two applications differ, I briefly touch on the code
adapted from Listing 9-1.

To create the base code for testing browser performance, follow these steps:

 1. Define canvases and contexts as in Listing 9-2, code sections D1 and I.

 2. Define an animation function as in code section F of Listing 9-2.

 3. Calculate the frame rate as in Listing 9-2, code section F1.

 4. Define a function for frame rate display as in Listing 9-2, code section G.

 5. Prompt user interaction as in Listing 9-2, code sections D2, D3, G6,
and G7.

 6. Display a supplemental information screen as in Listing 9-2, code sec-
tions G8 and H.

Defining an animation control
function to stress the browser
The animation control function in Listing 9-2 differs from the one in Listing 9-1.
The browser animation testing application only includes animation control
via the setInterval() function. There is no option for using the request
AnimationFrame() function. This is because the purpose of the application
is to place a stress on browser performance, not to let the browser control the
animation rate via the requestAnimationFrame() function.

247 Chapter 9: Creating Engaging Imagery and Motion

To define an animation control function that places a stress on the browser,
follow these steps:

 1. Define a variable specifying an animation interval that is less than a
browser can satisfy.

 This will cause the browser to return control to your callback function
as rapidly as possible, thus demonstrating its maximum performance. In
the example Listing 9-2, this is done in code section A, where the inter-
val is set to 1 ms:
var interval = 1;

 2. Define the setInterval() function call.

 Define the function call to setInterval(), as in code section E2:
var intervalID = setInterval(drawFrameRate,interval);

 3. Define the function that will perform animations when called at the
interval specified in the setInterval() function.

 See code section F of the example:
function drawFrameRate()
{ . . . }

Drawing browser performance stressing images
The purpose of the application in Listing 9-2 is to stress the browser so that
differences between browsers will show up in the displayed frame rate. If not
enough work is being done for each animation frame, all browsers will perform
at roughly the same level. They will all be able to keep up with the demands
placed on them by the application code. In this application, you want to stress
the browser. In the typical application, you want the code to be able to execute
without stressing the browser. I’ve included this application in the book so that
you can test browser performance under stressful situations. To see the applica-
tion in action, open it in different browsers and watch the displayed frame rate.

In Listing 9-2, I’ve chosen a drawing function that places unusual stress on
browsers. That is, drawing a radial, rotating, offset, multiple gradient with ten
color levels. The browser (coupled with the graphics processing unit) has to
generate shading between the gradients. In Listing 9-2, the gradients fill the
Canvas. This means that every pixel on the Canvas has to be recalculated
for each animation frame. The result is a psychedelic swirling circle. Be
careful — don’t let it hypnotize you.

To draw a radial, rotating, offset, multi-level gradient that stresses browser
performance, follow these steps:

 1. Translate the (0,0) position to the center of the Canvas to facilitate
drawing the rotating circle that will contain the gradient.

248 Part III: Breathing Life into Your Canvas

 See code section E1 of Listing 9-2:
contextGR.translate(canvasGR.width/2, canvasGR.height/2);

 2. Clear the Canvas.

 Clear the gradient display Canvas as in code section F6:
contextGR.clearRect(-canvasGR.width /2, -canvasGR.height/2,
 canvasGR.width /2, canvasGR.height/2);

 3. To give the animation the appearance of movement, rotate the Canvas.

 See code section F7:
contextGR.rotate(((Math.PI)/180));

 4. Define the gradient that will fill the rotating circle.

 In Listing 9-2, this is a radial, offset gradient defined in code sections B
and F8:
var gradC1X = -140; var gradC1Y = 0; var gradC1R = 15;
var gradC2X = 0; var gradC2Y = 0; var gradC2R = 350;

var gradRO = contextGR.createRadialGradient(gradC1X, gradC1Y, gradC1R,
 gradC2X, gradC2Y, gradC2R);

 5. Add the gradient colors.

 Add colors to the gradient as in code section F9:
gradRO.addColorStop(1, “silver”);
gradRO.addColorStop(.9, “lightseagreen”);
gradRO.addColorStop(.8, “purple”);
gradRO.addColorStop(.7, “magenta”);
. . .

 Including a large number of colors helps stress browser performance.

 6. Set the fillStyle to the gradient just created.

 See code section F10:
contextGR.fillStyle = gradRO;

 7. Use the arc() function to draw a circle and fill it with the gradient, as
in code sections B and F11:

var gradSAngle = (Math.PI/180)*0;
var gradEAngle = (Math.PI/180)*360;
var gradRadius = 350;

contextGR.beginPath();
contextGR.arc(0, 0, gradRadius, gradSAngle, gradEAngle, false);
contextGR.fill();

 It’s the fill() function that puts a heavy load on the browser and
graphics processing unit, which must recalculate and draw every gradi-
ent image pixel.

10
Sounding Off with Audio

In This Chapter
▶ Configuring Canvas spaces to include audio
▶ Defining audio elements
▶ Using built-in playback controls or creating your own custom controls
▶ Responding to user interaction with audio

H
TML5 takes a big step forward in handling browser-based audio.
HTML5 audio doesn’t require the use of a plug-in utility for audio

playback; player capabilities are built into the browser. In addition, you can
integrate audio elements with Canvas applications to create powerful combi-
nations of effects.

In this chapter, you find out how to blend audio with Canvas capabilities
described in previous chapters, such as objects, text, images, and user
interaction.

Including Audio in Your Canvas Application
First the good news: You have lots of options for adding audio to your Canvas
applications. Now the challenge: You have lots of options for adding audio to
your Canvas applications. This chapter helps you understand these options
and make good design and implementation choices.

You can implement audio in your Canvas applications in two ways:

 ✓ With HTML tags: Using HTML is the more traditional method. You
define the audio file and player with HTML tags. Changes to audio play-
back are controlled using an audio player displayed with your Canvas.

 ✓ With JavaScript code: Audio is triggered by events and dynamically
loaded within your application. You can generate audio as a result of
application events such as colliding objects or the user clicking an
object. Playback is controlled by your JavaScript code.

250 Part III: Breathing Life into Your Canvas

When designing your Canvas application, you can offer users two ways to
control audio playback:

 ✓ Using an audio player: An audio player with standard controls for play-
back position, volume, pause, and mute.

 ✓ Using custom controls: Custom controls integrated with your Canvas
graphics.

The application in Listing 10-1 and
shown in Figure 10-1 demonstrates
how to use these audio playback
options. This application plays the
following audio:

 ✓ Water in the background: In
the application, the audio for
the background sound of water
is defined with HTML. The user
can control playback with either
the player control bar below
the Canvas area or by clicking
text within the Canvas area (via
JavaScript).

 ✓ Sounds of animals: My dog
Daisy barks, and the pelican
(don’t know his name) squawks
when clicked. These recordings
are defined and controlled via
JavaScript without any associ-
ated HTML tags. Notice that the
application user can trigger the
animal sounds by clicking the
mouse on the animal images so
that they both play simultane-
ously over the water sound.

 As of this writing, multiple simultane-
ous sounds may not work on all your
mobile devices’ browsers. In my test of the Listing 10-1 application on mobile
browsers, I found that the latest versions of desktop browsers could produce
multiple simultaneous sounds while working with only certain mobile brows-
ers such as Chrome and Opera. As mobile browser developers continue to
improve HTML5 implementation, this situation is likely to change.

Figure 10-1: Using audio in an application.

251 Chapter 10: Sounding Off with Audio

Listing 10-1: Using Audio in an Application
<!DOCTYPE HTML> <html> <head>

<!-- A. STYLE for audio player. -->
<style type=”text/css” media=”screen”>
#audio1 {display: inline;
 float: left;
 margin-top: 510px;
 width: 304px;}
#audio2 {width: 304px;}
</style>
<script>

// B. VARIABLES.
 // B1. COORDINATES.
 var xPos = 0; var yPos = 0;
 var dogX1 = 1; var dogX2 = 150;
 var dogY1 = 250; var dogY2 = 450;
 var birdX1 = 150; var birdX2 = 230;
 var birdY1 = 150; var birdY2 = 250;
 var menuX = 15; var menuY = 85;
 var volumeX = 60;

 // B2. MENU.
 var menuWidth = 100; var menuHeight = 24;

 // B3. VOLUME.
 var volumeLevel = 0; var volumeIncr = .1;
 var volumeInit = .7;
 var volumeDog = .9; var volumePelican = .9;

 // B4. AUDIO ELEMENTS.
 var audio2EL; var audio3EL;
 var audio4EL; var audioType;

 // B5. FONT.
 var textFont = “12pt arial”;
 var textColor = “white”;

 // B6. PROMPT COORDINATES.
 var promptY = menuY + (0 * menuHeight);
 var soundY = menuY + (1 * menuHeight);
 var playerY = menuY + (2 * menuHeight);
 var volumeY = menuY + (3 * menuHeight);
 var pauseY = menuY + (4 * menuHeight);
 var loopY = menuY + (5 * menuHeight);

(continued)

252 Part III: Breathing Life into Your Canvas

Listing 10-1 (continued)
 // B7. TEXT.
 var promptText = “CLICK or TOUCH”;
 var volumeText = “Volume”;

 var soundText1 = “Sound ON/off”;
 var playerText1 = “Player VISIBLE/hidden”;
 var pauseText1 = “Pause/PLAY”;
 var loopText1 = “Loop ON/off”;

 var soundText2 = “Sound on/OFF”;
 var playerText2 = “Player visible/HIDDEN”;
 var pauseText2 = “PAUSED/Play”;
 var loopText2 = “Loop on/OFF”;

 var soundText = soundText1;
 var playerText = playerText1;
 var pauseText = pauseText1;
 var loopText = loopText1;

 // B8. FILES.
 var server = “http://marketimpacts.com/storage/”;
 var backgroundFile = “Pelican2”;
 var backgroundType = “.jpg”;
 var dogAudFile = “Dog”;
 var pelicanAudFile = “Pelican”;

 // B9. IMAGES.
 var backgroundImage = new Image();

// C. WINDOW LOAD function.
window.onload = function()
{
 // C1. CANVAS definition standard variables.
 canvasIM = document.getElementById(“canvasImage”);
 contextIM = canvasIM.getContext(“2d”);
 canvasTX = document.getElementById(“canvasText”);
 contextTX = canvasTX.getContext(“2d”);

 // C2. RETRIEVE AUDIO element for player.
 audio2EL = document.getElementById(“audio2”);

 // C3. CREATE AUDIO element for animal sounds.
 audio3EL = document.createElement(“audio”);
 audio4EL = document.createElement(“audio”);

 // C4. AUDIO FILE type settings.
 audioType = audioExtensionType(audio3EL);

 // C5. AUDIO FILE source settings.
 audio3EL.setAttribute(“src”,server + pelicanAudFile + “.” + audioType);
 audio4EL.setAttribute(“src”,server + dogAudFile + “.” + audioType);

253 Chapter 10: Sounding Off with Audio

 // C6. INITIALIZE settings.
 volumeLevel = volumeInit;
 audio2EL.volume = volumeLevel;
 audio3EL.volume = volumeDog;
 audio4EL.volume = volumePelican;
 audio2EL.muted = false;
 audio2EL.paused = false;
 audio2EL.loop = true;
 audio2EL.play();

 // C7. LISTENERS.
 canvasTX.addEventListener(“mousedown”, clickTouch, false);
 canvasTX.addEventListener(“touchstart”, clickTouch, false);
 canvasTX.addEventListener(“touchmove”, clickTouch, false);
 canvasTX.addEventListener(“touchend”, clickTouch, false);

 // C8. GRAPHICS.
 backgroundImage.src = server + backgroundFile + backgroundType;
 backgroundImage.onload = function()
 {
 // C9. IMAGE drawing.
 contextIM.drawImage(backgroundImage,0,0,canvasIM.width,canvasIM.height);

 // C10. TEXT display.
 textDisplay();
 }
 // C11. PLAYER state change functions.
 audio2EL.onpause = function()
 {
 pauseText = pauseText2;
 textDisplay();
 }
 audio2EL.onplay = function()
 {
 pauseText = pauseText1;
 textDisplay();
 }
 audio2EL.onvolumechange = function()
 {
 volumeLevel = audio2EL.volume;
 if(audio2EL.muted) {soundText = soundText2}
 else {soundText = soundText1}
 textDisplay();
 }
}
// D. CLICK/TOUCH function.
function clickTouch(event)
{
 // D1. COORDINATES retrieval.
 clickTouchEvent(event);

(continued)

254 Part III: Breathing Life into Your Canvas

Listing 10-1 (continued)
 // D2. SOUND on/off.
 if(positionTest(1))
 {
 // D3. STATUS change.
 audio2EL.muted = !audio2EL.muted;

 // D4. TEXT change.
 if(audio2EL.muted) {soundText = soundText2}
 else {soundText = soundText1}
 textDisplay();
 }
 // D5. PLAYER visible/hidden.
 if(positionTest(2))
 {
 // D6. STATUS change.
 audio2EL.controls = !audio2EL.controls;

 // D7. TEXT change.
 if(audio2EL.controls) {playerText = playerText1}
 else {playerText = playerText2}
 textDisplay();
 }
 // D8. LOOP on/off.
 if(positionTest(5))
 {
 // D9. STATUS change.
 audio2EL.loop = !audio2EL.loop;

 // D10. TEXT change.
 if(audio2EL.loop) {loopText = loopText1}
 else {loopText = loopText2}
 textDisplay();
 }
 // D11. PAUSE on/off.
 if(positionTest(4))
 {
 // D12. STATUS change & TEXT change.
 if(audio2EL.paused) {audio2EL.play(); pauseText = pauseText1;}
 else {audio2EL.pause(); pauseText = pauseText2;}
 textDisplay();
 }
 // D13. VOLUME change.
 if(positionTest(3))
 {
 // D14. INCREMENT volume level.
 volumeLevel += volumeIncr;

 // D15. LIMIT.
 if(volumeLevel >1) {volumeLevel = 0}

255 Chapter 10: Sounding Off with Audio

 // D16. TEXT display.
 textDisplay();

 // D17. PLAYER setting.
 audio2EL.volume = volumeLevel;
 }
 // D18. BIRD event.
 if(objectTest(birdX1, birdX2, birdY1, birdY2)) {audio3EL.play()}

 // D19. DOG event.
 if(objectTest(dogX1, dogX2, dogY1, dogY2)) {audio4EL.play()}
}
// E. CLICK/TOUCH EVENT function.
function clickTouchEvent(event)
{
 // E1. BROWSERS except Firefox.
 if (event.x != undefined && event.y != undefined)
 {xPos = event.x; yPos = event.y;}

 // E2. FIREFOX.
 else
 { xPos = event.clientX + document.body.scrollLeft +
 document.documentElement.scrollLeft;
 yPos = event.clientY + document.body.scrollTop +
 document.documentElement.scrollTop;
 }
 // E3. CURSOR position.
 xPos -= canvasTX.offsetLeft; yPos -= canvasTX.offsetTop;
}
// F. TEXT DISPLAY function.
function textDisplay()
{
 // F1. CLEAR canvas.
 contextTX.clearRect(0, 0, canvasTX.width, canvasTX.height);

 // F2. ATTRIBUTES.
 contextTX.font = textFont;
 contextTX.fillStyle = textColor;

 // F3. FIX precision of volume.
 var volumeLev = volumeLevel.toFixed(1);

 // F4. DISPLAY text.
 contextTX.fillText(promptText, menuX, promptY);
 contextTX.fillText(soundText, menuX, soundY);
 contextTX.fillText(playerText, menuX, playerY);
 contextTX.fillText(volumeText, menuX, volumeY);
 contextTX.fillText(pauseText, menuX, pauseY);
 contextTX.fillText(loopText, menuX, loopY);
 contextTX.fillText(volumeLev, menuX + volumeX, volumeY);
}

(continued)

256 Part III: Breathing Life into Your Canvas

Listing 10-1 (continued)
// G. POSITION TEST function.
function positionTest(position)
{
 // G1. INITIALIZE return value to false.
 var returnValue = false;

 // G2. TEST position.
 if (
 (xPos > (menuX)) &&
 (xPos < (menuX + menuWidth)) &&
 (yPos > (menuY + (position * menuHeight) - (menuHeight/2))) &&
 (yPos < (menuY + (position * menuHeight) + (menuHeight/4)))
)
 {returnValue = true;}

 // G3. RETURN returnValue.
 return returnValue;
}
// H. OBJECT TEST function.
function objectTest(x1, x2, y1, y2)
{
 // H1. INITIALIZE return value to false.
 var returnValue = false;

 // H2. TEST position.
 if ((xPos > x1) && (xPos < x2) && (yPos > y1) && (yPos < y2))
 {returnValue = true;}

 // H3. RETURN returnValue.
 return returnValue;
}
// I. AUDIO EXTENSION TYPE function.
function audioExtensionType(audioElement)
{
 // I1. INITIALIZE return type.
 var returnType = “”;

 // I2. TYPE test and setting.
 if (audioElement.canPlayType(“audio/wav”) == “probably”){returnType = “wav”;}
 if (audioElement.canPlayType(“audio/ogg”) == “probably”){returnType = “ogg”;}
 if (audioElement.canPlayType(“audio/mp3”) == “probably”){returnType = “mp3”;}
 if (audioElement.canPlayType(“audio/wav”) == “maybe”) {returnType = “wav”;}
 if (audioElement.canPlayType(“audio/ogg”) == “maybe”) {returnType = “ogg”;}
 if (audioElement.canPlayType(“audio/mp3”) == “maybe”) {returnType = “mp3”;}

 // I3. RETURN type.
 return returnType;
}
</script> </head> <body> <div>

257 Chapter 10: Sounding Off with Audio

<!-- J. CANVAS elements -->
<canvas id = “canvasImage”
 width = “300” height = “500”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
</canvas>
<canvas id = “canvasText”
 width = “300” height = “500”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>
</div>
<!-- K. AUDIO element -->
<div id=audio1>
<audio id=”audio2” controls autoplay loop>
<source src=”http://marketimpacts.com/storage/WaterLapping_02.mp3”>
<source src=”http://marketimpacts.com/storage/WaterLapping_02.ogg”>
<source src=”http://marketimpacts.com/storage/WaterLapping_02.wav”>
Your browser doesn’t currently support the audio element.
</audio> </div> </body> </html>

Creating Audio Recordings
Creating great audio is by itself a big topic. Audio can vary from basic record-
ings made with handheld devices to sophisticated recordings made in stu-
dios with rooms full of high-priced equipment. I’ve done both, and either
end of the spectrum can produce good results. Covering all the ins and outs
of audio recording is beyond the scope of this book, but you can check out
Home Recording For Musicians For Dummies and PC Recording Studios For
Dummies, both written by Jeff Strong (Wiley). In the following sections, I give
you a starter guide to creating audio recordings.

Recording or downloading audio
You can acquire or create recordings in several different ways:

 ✓ Digital recorder: It doesn’t have to be a digital device, but creating a
digital file while recording makes a better quality recording. It’s also
easier to access than an analog file.

 ✓ Desktop sound recorder app: Use a built-in sound-recording applica-
tion, or download one for your desktop computer. One open source
recording application is at
http://audacity.sourceforge.net

http://audacity.sourceforge.net/

258 Part III: Breathing Life into Your Canvas

 ✓ Smartphone sound recorder app: Download a sound recorder app for
your smartphone and use it to create digitally recorded sounds. To
transfer the recorded files to your computer, you can then use a USB
connection or e-mail the files from your smartphone:

 iPhone: www.bluemic.com/mikey_digital/

 Android: https://play.google.com/store/apps/
details?id=com.needom.recorder

 ✓ Soundtrack from a video recorder: Extract the soundtrack from a
recorded video, and import it into your computer, as described at www.
aoamedia.com/audioextractor.htm.

 ✓ Downloaded recordings: Use a website such as www.audiosparx.
com to purchase/download audio recordings. Make sure you check the
permissions for the recordings to verify you can legally include them in
your application.

Creating supported audio file types
 As of this writing, different browsers support different audio file types. Three

major types supported include mp3, ogg, and wav. To make sure that your
application will function in any of the major browsers, include an audio file
for each audio recording for each of these supported file types.

To create supported file types, follow these steps:

 1. Create copies of your recordings in each supported file type (mp3,
ogg, and wav).

 Use software such as www.audacity.sourceforge.net to create the
alternative file types from your original recording.

 2. Upload your audio files to a folder on a server.

 Usually the server used is the one hosting the website containing your
application.

 To track the latest browser audio file support status, see

http://en.wikipedia.org/wiki/HTML5_Audio

Controlling Audio Recordings
When included in your Canvas application, each audio recording has a
number of properties that can be accessed and modified. By manipulating
these properties with HTML, JavaScript, and onscreen player controls, you
can control audio:

http://www.bluemic.com/mikey_digital/
https://play.google.com/store/apps/details?id=com.needom.recorder
https://play.google.com/store/apps/details?id=com.needom.recorder
http://www.aoamedia.com/audioextractor.htm
http://www.aoamedia.com/audioextractor.htm
http://www.audiosparx.com/
http://www.audiosparx.com/
http://www.audacity.sourceforge.net/
http://en.wikipedia.org/wiki/HTML5_Audio

259 Chapter 10: Sounding Off with Audio

 ✓ Files: File source locations on a server

 ✓ Player: Whether the player controls are visible and their status

 ✓ Playback: Playback volume, muting, pause, play, and loop control

As shown in Figure 10-2, a number of entities (applications, users, browsers)
affect audio, and there’s a lot of communication (events, attributes, func-
tions, interactions) back and forth between these entities. Reference Figure
10-2 as you read through this chapter for help in understanding this flow of
activity and information.

Figure 10-2: Controlling audio recordings.

Audio attributes
The attributes of an audio recording describe aspects of the audio files,
player, and playback.

Table 10-1 lists the most commonly used audio attributes and indicates
whether they can be accessed via HTML and/or JavaScript.

260 Part III: Breathing Life into Your Canvas

 For a more complete list, visit www.w3.org/TR/webaudio/#AudioParam.

Table 10-1 Accessing Commonly Used Audio Attributes
Attribute HTML JavaScript What It Specifies

autoplay autoplay true, false That the audio will start
playing as soon as it is
ready

controls controls true, false That audio controls
should be displayed

duration Floating-point
number

The length of the audio
recording in seconds

ended true, false Whether the playback
has completed

id “name” The name used to refer-
ence the audio element

loop loop true, false That the audio will con-
tinually restart when it
finishes

muted muted true, false Whether the sound of
the audio should be off
(muted)

paused true, false Whether the sound
should be temporarily
stopped

preload auto,
metadata,
none

auto,
metadata,
none

How the audio should
be loaded when the web
page containing it loads

src “URL” “URL” The location of the audio
file using a character
string

volume Floating-point
number

The level of sound
between 0 and 1 (for
example, .5)

To access or manipulate audio attributes, or both, follow these steps:

 1. Set the initial audio attributes by using the parameters of the
<audio> tag.

http://www.w3.org/TR/webaudio/#AudioParam

261 Chapter 10: Sounding Off with Audio

 For more on the <audio> tag, see the section “Defining audio elements
using HTML tags,” later in this chapter.

 Here’s an example of setting the initial audio attributes in code section K
of Listing 10-1:
<audio id=”audio2” controls autoplay loop>

 2. Test the value of an attribute in JavaScript by referencing the associ-
ated audio element.

 Audio elements are used by the browser to store your audio attri-
butes. (For more on using JavaScript to manipulate audio elements, see
“Defining audio elements with JavaScript code,” later in this chapter.) To
access the value of an attribute, append the attribute name to the appro-
priate audio element with dot syntax (separating the attribute and value
with a period), as in this example of accessing the muted attribute using
JavaScript from code section D4:
if(audio2EL.muted)

 3. Change the value of a property in JavaScript using an assignment
statement.

 To change the value of an attribute using JavaScript, append the attri-
bute name to the appropriate audio element with dot syntax and use an
assignment operator with the new value, as in this example of setting
the muted property from code section C6 of Listing 10-1:
audio2EL.muted = false;

 4. Set the src attribute using the setAttribute() function.

 As of this writing, the setAttribute() function is only working prop-
erly on all browsers for setting the src attribute. Conversely, setting the
src attribute using the technique in Step 3 is also not working properly.
Therefore, use the setAttribute() function to set the src attribute
and the method in Step 3 to set the other attributes. Here’s an example
from code section C5 using the setAttribute() function:
audio3EL.setAttribute(“src”,server+pelicanAudFile+”.”+audioType);

Audio functions
Browsers have several built-in standard audio functions that return informa-
tion or cause an action with your audio file or player.

Table 10-2 lists commonly used audio functions.

262 Part III: Breathing Life into Your Canvas

Table 10-2 Commonly Used Audio Functions
Function Parameter Return What It Does

canPlay
Type()

File MIME
type

maybe,
probably,
“”

Determines whether
a given type of audio
file is supported by the
browser

load() none none Specifies that the audio
start playing as soon as
it’s ready

pause() none none Pauses the playback
play() none none Starts playing the audio

file

To use an audio function, use dot syntax to append the function to the name
of the appropriate audio element. Here’s an example to start playing audio
from D18 of Listing 10-1:

audio3EL.play();

Audio events
Audio events are triggered by circumstances related to the audio file and
audio player. When the device operating system and browser detect these
circumstances, event handlers look for application functions that have been
registered via JavaScript as callback functions for the given event. Control is
then passed to any registered callback functions.

Table 10-3 lists commonly referenced audio events.

Table 10-3 Commonly Used Audio Events
This Event Type Is Dispatched When This Happens

canplay The audio can start playing but might be interrupted by
buffering.

canplaythrough The audio can be played to the end without having to
pause for buffering.

ended Playback has stopped because the end of the file has
been reached.

error An error has occurred while accessing the audio file.
pause Playback has been paused.

263 Chapter 10: Sounding Off with Audio

This Event Type Is Dispatched When This Happens

play The play() function has been initiated, or the auto-
play attribute has caused playback to begin.

playing Playback has started. The timing of this event may
differ from the play event because of file load delays.

volumechange Either the volume attribute or the muted attribute has
changed.

Each event type has a browser event handler. The name of the event handler
is created by appending on to the front of the type. For example, the event
handler for pause is onpause.

To detect and respond to events such as those listed in Table 10-3, follow
these steps:

 1. Define a function in your application that will be called when a given
event takes place.

 Append the event handler to the audio element using dot syntax, and
then assign this combination to your callback function. Here’s an exam-
ple for handling a pause event from code section C11 of Listing 10-1:
audio2EL.onpause = function () { . . . }

 2. Respond when the callback is triggered.

 Within the function called, take the appropriate action, as in this exam-
ple for handling a pause event, also from code section C11:
{pauseText=pauseText2; textDisplay()}

Defining Audio Elements
Audio elements act as an intermediary between your HTML/JavaScript code
and audio recordings. An audio element is a component of an HTML docu-
ment, which describes the structure of the web page containing your Canvas
application using the Document Object Model (DOM) conventions.

Defining audio elements using HTML tags
Defining audio elements using HTML will cause the audio player to display
on the web page if the controls parameter is included in the <audio>
tag settings. You can include all the information necessary in your HTML to
play and control audio. You can use JavaScript code to gain greater control

264 Part III: Breathing Life into Your Canvas

over HTML tag–defined audio. For example, in the Listing 10-1 application,
the user can control the background sound of water with the audio player
defined in HTML or with the Canvas area text controls.

To define audio elements using HTML tags, follow these steps:

 1. Define an HTML5 <audio> tag enclosed in a <div> for the audio
recording you’re associating with an audio player (such as the water
background in Listing 10-1).

 The <div> enables you to control where the player will be placed on
the web page relative to the Canvas. The <audio> tag defines the ini-
tial player settings, source files for the audio recording, and a message
that will be displayed if the audio element isn’t supported by the user’s
browser. Include an audio recording for each of the supported file types:
mp3, ogg, and wav.

 If you’re going to dynamically load an audio recording via JavaScript
code (such as the animal sounds in Listing 10-1), you don’t need to
define an <audio> or <div> tag, as shown in this step.

 The code to define <audio> and <div> elements is shown in code sec-
tion K of Listing 10-1:
<div id= audio1>
<audio id=”audio2” controls autoplay loop>
 <source src=”http://marketimpacts.com/storage/WaterLapping_02.mp3”>
 <source src=”http://marketimpacts.com/storage/WaterLapping_02.ogg”>
 <source src=”http://marketimpacts.com/storage/WaterLapping_02.wav”>
Your browser doesn’t support the audio element.
</audio>
</div>

 2. Use a <style> tag to control where the audio player is placed on the
web page.

 The ID #audio1 refers to the <audio> element, and the ID #audio2
refers to the <div> element defined in Step 1. The following sample
code, located in code section A of Listing 10-1, places the audio player
below the Canvas area using the margin-top parameter:
<style type=”text/css” media=”screen”>
#audio1 {display: inline;
float: left; margin-top: 510px;
width: 304px;}
#audio2 {width: 304px;}
</style>

 3. Using the getElementById() function, retrieve the audio element
that you defined in Step 1.

 Here’s an example in code section C2 of Listing 10-1:
audio2EL = document.getElementById(“audio2”);

265 Chapter 10: Sounding Off with Audio

 4. Initialize settings for the audio element and player.

 Here’s an example in code section C6 of Listing 10-1:
volumeLevel = volumeInit;
audio2EL.volume = volumeLevel;
audio2EL.muted = false;
audio2EL.paused = false;
audio2EL.loop = true;
audio2EL.play();

Defining audio elements with JavaScript code
Defining audio elements using JavaScript code is particularly useful for play-
ing audio as a result of dynamic events such as:

 ✓ Object interactions: For example, colliding and exploding objects

 ✓ User interactions: For example, in response to user clicks and touches

To define audio elements using JavaScript code, follow these steps:

 1. Define audio recording variables for server names and filenames.

 See code section B8 of Listing 10-1:
var server = “http://marketimpacts.com/storage/”;
var dogAudFile = “Dog”;
var pelicanAudFile = “Pelican”;

 2. Create audio elements using the createElement(“audio”) function.

 Create elements as shown in code section C3:
audio3EL = document.createElement(“audio”);
audio4EL = document.createElement(“audio”);

 3. Determine the file type supported by the user’s browser:

 Using the canPlayType() function, test the audioElement parameter
for each type of audio and return the appropriate result.

 Here is a sample from code sections C4 and I of Listing 10-1:
audioType = audioExtensionType(audio3EL);

function audioExtensionType(audioElement)
{
 var returnType = “”;
 if(audioElement.canPlayType(“audio/wav”)==”probably”)
 {returnType = “wav”;}
 if(audioElement.canPlayType(“audio/wav”)==”maybe”)
 {returnType = “wav”;}
 return returnType;
 . . .
}

266 Part III: Breathing Life into Your Canvas

 4. Using the setAttribute() function, set the source of each file loca-
tion on the server.

 Here’s an example from code section C5 in Listing 10-1:
audio3EL.setAttribute(“src”,
server + pelicanAudFile + “.” + audioType);
audio4EL.setAttribute(“src”,
server + dogAudFile + “.” + audioType);

 5. Initialize settings for audio elements.

 See code section C6:
audio3EL.volume = volumeDog;
audio4EL.volume = volumePelican;

Responding to User Interaction
Users can interact with your application to affect audio playback in two ways:
through the Canvas area or audio player. To keep your Canvas display in
sync with the audio player (if you’re using one), when one is altered, change
the other. In the application in Listing 10-1, this means keeping the audio
player for the background sound in sync with Canvas text.

Understanding this section of code requires some non-linear thinking.
Responding to user interaction is very event driven — the user is clicking and
touching, and your code is responding.

 Normally, you probably wouldn’t have a complete set of controls in both the
Canvas area and a visible audio player. I did this in the Listing 10-1 applica-
tion to demonstrate the range of audio capabilities.

Responding to Canvas area interaction
To respond to Canvas area interaction, define listeners for mouse and touch
events and take the appropriate actions when your callback function is given
control. Follow these steps:

 1. Define listeners for user interaction events. Use the addEvent
Listener() function to specify the function to be called when a
user event take place.

 Listeners are your “lookouts” for Canvas user interaction. This is how
you know when the user clicks or touches your Canvas.

 In Listing 10-1, the clickTouch() function (explained in Step 2) is spec-
ified for mouse and touch events in code section C7:

267 Chapter 10: Sounding Off with Audio

canvasTX.addEventListener(“mousedown”, clickTouch, false);
canvasTX.addEventListener(“touchstart”, clickTouch, false);
canvasTX.addEventListener(“touchmove”, clickTouch, false);
canvasTX.addEventListener(“touchend”, clickTouch, false);

 2. Define the callback function to be invoked when an event listener is
triggered.

 Within that callback function, first determine the position on the
Canvas of the click/touch by using the clickTouchEvent() function
(explained in Step 3). Then handle each type of event per Steps 4 and 5.
In Listing 10-1, the callback function is defined in code section D:
function clickTouch(event)
{
 // Determine position on Canvas of click/touch.
 clickTouchEvent(event);

 // Code to handle each control selection.
}

 3. Create a function that will determine the x and y coordinate positions
of a click or touch event.

 See code section E of Listing 10-1:
function clickTouchEvent(event)
{
 // E1. BROWSERS except Firefox.
 if (event.x != undefined && event.y != undefined)
 {
 xPos = event.x;
 yPos = event.y;
 }

 // E2. FIREFOX.
 else
 {
 xPos = event.clientX + document.body.scrollLeft +
 document.documentElement.scrollLeft;
 yPos = event.clientY + document.body.scrollTop +
 document.documentElement.scrollTop;
 }
 // E3. CURSOR position.
 xPos -= canvasTX.offsetLeft;
 yPos -= canvasTX.offsetTop;
}

 4. Using the positionTest() function (explained in Step 6), determine
which audio controls should be altered; then make changes using the
appropriate audio function.

268 Part III: Breathing Life into Your Canvas

 Refer to code sections D2–D17 in Listing 10-1. Here is one example from
D2–D4:
if(positionTest(1))
{
 audio2EL.muted = !audio2EL.muted;
 if(audio2EL.muted) {soundText = soundText2}
 else {soundText = soundText1}
 textDisplay();
}

 This code example tests for selection of the Sound On/Off control and,
if selected, changes the muted attribute of the audio element and alters
the display text to the appropriate setting.

 5. Play the sound associated with an object.

 This is where you trigger sounds that are typically not associated with an
audio player. You might want to play sounds of colliding objects or, as in
the Listing 10-1 application, trigger the sound associated with an image.

 Using the objectTest() function (explained in Step 7), determine
which object has been selected by the user; then make changes using the
appropriate audio function, as shown in code sections D18–19. Here is an
example from D18 of my very wet dog Daisy barking for more attention:
if(objectTest(dogX1, dogX2, dogY1, dogY2))
{audio4EL.play();}

 6. Test to see whether the x and y coordinate positions selected on the
Canvas by the user are within a given position in the audio controls
area of the Canvas. Return a value of true or false depending on the
results.

 See code section G in Listing 10-1:
function positionTest(position)
{
 var returnValue = false;
 if (
 (xPos > (menuX)) &&
 (xPos < (menuX + menuWidth)) &&
 (yPos > (menuY + (position * menuHeight) – (menuHeight/2))) &&
 (yPos < (menuY + (position * menuHeight) + (menuHeight/4)))
)
 {returnValue = true;}
 return returnValue;
}

 7. Test to see whether the x and y coordinate positions selected on
the Canvas by the user are within a rectangular area of the Canvas
defined by coordinate parameters x1, x2, y1, and y2. Return true or
false depending on the results.

269 Chapter 10: Sounding Off with Audio

 You can see an example in code section H of Listing 10-1:
function objectTest(x1, x2, y1, y2)
{
 var returnValue = false;
 if ((xPos > x1) && (xPos < x2) &&
(yPos > y1) && (yPos < y2))
 {returnValue = true;}
 return returnValue;
}

 8. Using a call to the textDisplay() function (defined in Step 9),
change the text display after values have changed.

 In the example, this is done in code sections C10, C11, D4, D7, D10, D12,
and D16:
textDisplay();

 9. Display the text that defines the status of the audio player settings.

 This text is also used to define the areas for user interaction to change
player settings.

 You can also control player settings with button images. See Listing 11-1,
in Chapter 11, for an example of using button control images.

 In Listing 10-1, the text display function is defined in code section F:
function textDisplay()
{
 // F1. CLEAR canvas.
 contextTX.clearRect(0, 0, canvasTX.width, canvasTX.height);

 // F2. ATTRIBUTES.
 contextTX.font = textFont;
 contextTX.fillStyle = textColor;

 // F3. FIX precision of volume.
 var volumeLev = volumeLevel.toFixed(1);

 // F4. DISPLAY text.
 contextTX.fillText(promptText, menuX, promptY);
 contextTX.fillText(soundText, menuX, soundY);
 contextTX.fillText(playerText, menuX, playerY);
 contextTX.fillText(volumeText, menuX, volumeY);
 contextTX.fillText(pauseText, menuX, pauseY);
 contextTX.fillText(loopText, menuX, loopY);
 contextTX.fillText(volumeLev, menuX + volumeX, volumeY);
}

270 Part III: Breathing Life into Your Canvas

Responding to audio player interaction
To be able to respond to changes a user makes in an audio player, you must
define a callback function that will gain control when specific player changes
are made. When a user changes settings in the audio player, reflect these
changes in the appropriate settings within your application.

To respond to audio player interaction, follow these steps:

 1. For each audio player function you’re tracking in your application,
define a listener that will be called when the user changes the control.

 Here’s an example from code section C11 of Listing 10-1:
audio2EL.onpause = function () { . . . }

 2. Change variables tracking the audio player value.

 Within the function defined in Step 1, change the appropriate variable,
as in this example from code section C11 in Listing 10-1:
pauseText = pauseText1;

 3. Change the display text.

 Using a call to the textDisplay() function defined in code section F,
change the custom controls display.

 In Listing 10-1, this is done in code sections C10, C11, D4, D7, D10, D12,
and D16:
textDisplay();

Defining Other Application Components
You can combine audio with other Canvas capabilities. In the Listing 10-1
example, two Canvas areas are defined:

 ✓ Background image: Creates a backdrop for demonstrating audio
capabilities

 ✓ Text display: Provides custom controls for audio playback

Use the following steps to define these Canvases:

 1. Upload your image file to a folder on a server.

 In the sample application in Listing 10-1, this is a background image.
Usually the server used is the one hosting the website containing your
application.

271 Chapter 10: Sounding Off with Audio

 2. Define variables and load functions for images.

 In the sample application, the background image variable is defined in
code section B9 and is drawn after it is loaded in code section C9:
var backgroundImage = new Image();
backgroundImage.src = server + backgroundFile +
backgroundType;
backgroundImage.onload = function()
 {contextIM.drawImage(backgroundImage, 0, 0,
 canvasIM.width, canvasIM.height);}

 3. Define the function that contains the main sequence of code that’s
called when the web page is loaded.

 See code section C of Listing 10-1:
window.onload = function() { . . . }

 4. Define Canvas elements.

 In the code section J of Listing 10-1, there is a Canvas for the background
image and a Canvas for the text:
<canvas id = “canvasImage”
width = “300” height = “500”
 style = “border:2px solid black; position:absolute;
 left:auto;
top:auto; z-index: 1”>
</canvas>
<canvas id = “canvasText”
width = “300” height = “500”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas>

 5. Define Canvas variables and contexts.

 In Listing 10-1, these variables and contexts are defined in code
section C1:
canvasIM = document.getElementById(“canvasImage”);
contextIM = canvasIM.getContext(“2d”);
canvasTX = document.getElementById(“canvasText”);
contextTX = canvasTX.getContext(“2d”);

272 Part III: Breathing Life into Your Canvas

Part IV
Developing More

Complex
Applications

In this part . . .

I
n Part IV, you discover how to combine the fundamen-
tals from the first three parts with advanced tech-

niques to create more complex, enhanced applications,
such as a Canvas fireworks display. You also find out how
to put your personal stamp of creativity on your Canvas
application.

11
Grabbing Attention with Video

In This Chapter
▶ Configuring Canvas spaces to include video
▶ Defining video elements
▶ Creating custom playback controls
▶ Responding to user interaction

I
t’s no secret — video is a powerful medium. According to Google, 72
hours of video are presently being uploaded to YouTube every minute.

Three billion hours of YouTube video are watched each month. And when a
video goes viral, it can spread around the world at an astonishing rate, reach-
ing tens of millions of viewers in just days.

HTML5 video builds on this success. Like HTML5 audio (described in Chapter
10), HTML5 video is a big advance over HTML4. Playing video doesn’t require
the use of a plug-in utility; player capabilities are built into the browser. The
inclusion of video in Canvas enables you to manipulate video images or dis-
play them without modification.

In this chapter, you find out how to blend video with the Canvas capabilities
described in previous chapters, such as objects, images, and user interaction.

Including Video in Your Application
You can implement video in your Canvas applications in two ways:

 ✓ Using HTML tags: You define the video file and player using HTML tags.
Users can control video playback by using a video player displayed with
your Canvas.

 ✓ Using JavaScript code: Video is triggered by events and dynamically
loaded within your application. You can generate video as a result of
application events such as colliding objects or the user clicking an
object. Your JavaScript code controls playback.

276 Part IV: Developing More Complex Applications

You can allow users to control video playback in two ways:

 ✓ Using a video player: A video player with standard controls for play-
back position and pause

 ✓ Using custom controls: Custom controls integrated with your Canvas
graphics

The application shown in Figure 11-1 and defined in Listing 11-1 demonstrates
using custom controls via JavaScript code.

 As of this writing, there are some inconsistencies across browsers in video
implementation. I’m finding that automatic video replay isn’t working in the
Opera browser and video playback can be a bit choppy in Internet Explorer.
These issues should abate as HTML5 standards and implementations move
forward.

Figure 11-1: Using video in an application.

277 Chapter 11: Grabbing Attention with Video

Listing 11-1: Using Video in an Application
<!DOCTYPE HTML> <html> <head> <script>

// A. VARIABLES.

 // A1. ANIMATION.
 var xPos = 0; var yPos = 0;
 var interval = 15;
 var startAngle = (Math.PI/180)*0;
 var endAngle = (Math.PI/180)*360;

 // A2. AUDIO.
 var volumeX = 60; var volumeOffsetX = 21;
 var volumeInit = .7; var volumeOffsetY = 30;
 var volumeLevel = 0; var volumeIncr = .1;

 // A3. VIDEO.
 var videoWidth = 250; var videoHeight = 200;
 var videoX = 335; var videoY = 20;
 var video1EL; var video1Type;

 // A4. FILES.
 var server = “http://marketimpacts.com/storage/”;
 var video = “DaisyDiving”;
 var backgroundFile = “DaisyWaiting”;
 var soundOffFile = “PlayerSoundOff”;
 var soundOnFile = “PlayerSoundOn”;
 var pauseFile = “PlayerPause”;
 var playFile = “PlayerPlay”;
 var repeatOnFile = “PlayerRepeatOn”;
 var repeatOffFile = “PlayerRepeatOff”;
 var soundLevelFile = “PlayerSoundLevel”;
 var buttonFileType = “.png”;
 var backgroundType = “.jpg”;

 // A5. IMAGES.
 var backgroundImage = new Image(); var soundOffImage = new Image();
 var soundOnImage = new Image(); var pauseImage = new Image();
 var playImage = new Image(); var repeatOnImage = new Image();
 var repeatOffImage = new Image(); var soundLevelImage = new Image();

 // A6. BUTTONS.
 var playButton = new Image(); var repeatButton = new Image();
 var soundButton = new Image(); var levelButton = new Image();
 var buttonsX = 360; var buttonsY = 375;
 var buttonInit = false; var buttonLoad = false;
 var buttonCount = 0; var buttonQuant = 7;
 var buttonWidth = 50; var buttonHeight = 50;
 var textFont = “12pt arial”; var textColor = “black”;

(continued)

278 Part IV: Developing More Complex Applications

Listing 11-1 (continued)
// B. WINDOW LOAD function.
window.onload = function()
{
 // B1. CANVAS definition standard variables.
 canvasIM = document.getElementById(“canvasImage”);
 contextIM = canvasIM.getContext(“2d”);
 canvasVI = document.getElementById(“canvasVideo”);
 contextVI = canvasVI.getContext(“2d”);
 canvasBT = document.getElementById(“canvasButtons”);
 contextBT = canvasBT.getContext(“2d”);

 // B2. CREATE video elements.
 video1EL = document.createElement(“video”);

 // B3. VIDEO FILE setup.
 videoType = videoExtensionType(video1EL);
 video1EL.setAttribute(“src”, server + video + “.” + videoType);
 video1EL.addEventListener(“canplaythrough”, videoDisplay, false);

 // B4. SETTINGS initialization.
 volumeLevel = volumeInit; video1EL.volume = volumeLevel;
 video1EL.muted = false; video1EL.paused = false;
 video1EL.loop = true;

 // B5. GRADIENT for halo around video.
 video1Gradient = contextVI.createRadialGradient(
 videoWidth/2, videoHeight/2, .7*videoHeight,
 videoWidth/2, videoHeight/2, 0);
 video1Gradient.addColorStop(0, “white”);
 video1Gradient.addColorStop(.05, “white”);
 video1Gradient.addColorStop(.20, “white”);
 video1Gradient.addColorStop(.50, “transparent”);
 video1Gradient.addColorStop(1, “transparent”);

 // B6. TRANSLATE video canvas to video location.
 contextVI.translate(videoX, videoY);

 // B7. PLAY video.
 video1EL.play();

 // B8. MOUSE/TOUCH listeners.
 canvasBT.addEventListener(“mousedown”, clickTouch, false);
 canvasBT.addEventListener(“touchstart”, clickTouch, false);
 canvasBT.addEventListener(“touchmove”, clickTouch, false);
 canvasBT.addEventListener(“touchend”, clickTouch, false);

 // B9. BACKGROUND IMAGE.
 backgroundImage.src = server + backgroundFile + backgroundType;
 backgroundImage.onload = function()
 {contextIM.drawImage(backgroundImage, 0, 0, canvasIM.width, canvasIM.height)}

279 Chapter 11: Grabbing Attention with Video

 // B10. BUTTON/TEXT display.
 buttonTextDisplay();

 // B11. BUTTON SOURCES.
 soundOffImage.src = server + soundOffFile + buttonFileType;
 soundOnImage.src = server + soundOnFile + buttonFileType;
 pauseImage.src = server + pauseFile + buttonFileType;
 playImage.src = server + playFile + buttonFileType;
 repeatOnImage.src = server + repeatOnFile + buttonFileType;
 repeatOffImage.src = server + repeatOffFile + buttonFileType;
 soundLevelImage.src = server + soundLevelFile + buttonFileType;

 // B12. BUTTON LOAD functions.
 soundOffImage.onload = function() {buttonIncrement()}
 soundOnImage.onload = function() {buttonIncrement()}
 pauseImage.onload = function() {buttonIncrement()}
 playImage.onload = function() {buttonIncrement()}
 repeatOnImage.onload = function() {buttonIncrement()}
 repeatOffImage.onload = function() {buttonIncrement()}
 soundLevelImage.onload = function() {buttonIncrement()}
}
// C. BUTTON INCREMENT function.
function buttonIncrement()
{
 // C1. INCREMENT.
 buttonCount++;

 // C2. TEST for all buttons loaded.
 if(buttonCount = buttonQuant)
 {
 // C3. SET buttons loaded variable.
 buttonLoad = true;

 // C4. DISPLAY buttons and text.
 buttonTextDisplay();
 }
}
// D. VIDEO DISPLAY function.
function videoDisplay()
{
 // D1. CLIPPING circle around video.
 contextVI.beginPath();
 contextVI.arc(videoWidth/2, videoHeight/2, videoHeight/2,
 startAngle, endAngle, false);
 contextVI.fill();
 contextVI.clip();

 // D2. ANIMATION loop function.
 (function animLoop()
 {
 // D3. REQUEST ANIMATION FRAME
 requestAnimFrame(animLoop);

(continued)

280 Part IV: Developing More Complex Applications

Listing 11-1 (continued)
 // D4. DRAW video.
 drawVideo();
 }
) ();
}
// E. DRAW VIDEO function.
function drawVideo()
{
 // E1. IMAGE drawing of video frame.
 contextVI.drawImage(video1EL, 0, 0, videoWidth, videoHeight);

 // E2. GRADIENT CIRCLE for halo around video.
 contextVI.fillStyle = video1Gradient;
 contextVI.beginPath();
 contextVI.arc(videoWidth/2, videoHeight/2, videoHeight,
 startAngle, endAngle, false);
 contextVI.fill();

 // E3. BUTTON load check.
 if(buttonLoad && !buttonInit)
 {
 // E4. INITIALIZE buttons when all have loaded.
 playButton = pauseImage;
 repeatButton = repeatOnImage;
 soundButton = soundOnImage;
 levelButton = soundLevelImage;

 // E5. BUTTON LOAD status.
 buttonInit = true;

 // E6. DRAW buttons.
 buttonTextDisplay();
 }
}
// F. CLICK/TOUCH function.
function clickTouch(event)
{
 // F1. COORDINATES retrieval.
 clickTouchEvent(event);

 // F2. SOUND on/off.
 if(positionTest(2))
 {
 // F3. STATUS change.
 video1EL.muted = !video1EL.muted;

 // F4. BUTTON change.
 if(video1EL.muted) {soundButton = soundOffImage}
 else {soundButton = soundOnImage }
 buttonTextDisplay();
 }

281 Chapter 11: Grabbing Attention with Video

 // F5. REPEAT on/off.
 if(positionTest(1))
 {
 // F6. STATUS change.
 video1EL.loop = !video1EL.loop;

 // F7. BUTTON change.
 if(video1EL.loop) {repeatButton = repeatOnImage; video1EL.play()}
 else {repeatButton = repeatOffImage};
 buttonTextDisplay();
 }
 // F8. PAUSE on/off.
 if(positionTest(0))
 {
 // F9. STATUS change & BUTTON change.
 if(video1EL.paused) {video1EL.play(); playButton = pauseImage}
 else {video1EL.pause(); playButton = playImage }
 buttonTextDisplay();
 }
 // F10. VOLUME change.
 if(positionTest(3))
 {
 // F11. INCREMENT volume level.
 volumeLevel += volumeIncr;

 // F12. LIMIT.
 if(volumeLevel > 1.01){volumeLevel = 0}

 // F13. TEXT display.
 buttonTextDisplay();

 // F14. PLAYER volume setting.
 video1EL.volume = volumeLevel;
 }
}
// G. CLICK/TOUCH EVENT function.
function clickTouchEvent(event)
{
 // G1. BROWSERS except Firefox.
 if (event.x != undefined && event.y != undefined)
 {xPos = event.x; yPos = event.y;}

 // G2. FIREFOX.
 else
 { xPos = event.clientX + document.body.scrollLeft +
 document.documentElement.scrollLeft;
 yPos = event.clientY + document.body.scrollTop +
 document.documentElement.scrollTop;
 }
 // G3. CURSOR position.
 xPos -= canvasBT.offsetLeft; yPos -= canvasBT.offsetTop;
}

(continued)

282 Part IV: Developing More Complex Applications

Listing 11-1 (continued)
// H. BUTTON/TEXT DISPLAY function.
function buttonTextDisplay()
{
 // H1. CLEAR canvas.
 contextBT.clearRect(0, 0, canvasBT.width, canvasBT.height);

 // H2. BUTTON LOAD check.
 if(buttonLoad)
 {
 // H3. BUTTON DISPLAY.
 contextBT.drawImage(playButton, buttonsX + (buttonWidth * 0),
 buttonsY, buttonWidth, buttonHeight);
 contextBT.drawImage(repeatButton, buttonsX + (buttonWidth * 1),
 buttonsY, buttonWidth, buttonHeight);
 contextBT.drawImage(soundButton, buttonsX + (buttonWidth * 2),
 buttonsY, buttonWidth, buttonHeight);
 contextBT.drawImage(levelButton, buttonsX + (buttonWidth * 3),
 buttonsY, buttonWidth, buttonHeight);
 }
 // H4. VOLUME.
 contextBT.font = textFont;
 contextBT.fillStyle = textColor;
 var volumeLev = volumeLevel.toFixed(1);
 contextBT.fillText(volumeLev, buttonsX + volumeOffsetX + (buttonWidth * 3),
 buttonsY + volumeOffsetY);
}
// I. POSITION TEST function.
function positionTest(position)
{
 // I1. INITIALIZE return value to false.
 var returnValue = false;

 // I2. TEST position.
 if (
 (yPos > (buttonsY)) &&
 (yPos < (buttonsY + buttonHeight)) &&
 (xPos > (buttonsX + (position * buttonWidth))) &&
 (xPos < (buttonsX + (position * buttonWidth) + buttonWidth))
)
 {returnValue = true;}

 // I3. RETURN returnValue.
 return returnValue;
}
// J. VIDEO EXTENSION TYPE function.
function videoExtensionType(videoElement)
{
 // J1. INITIALIZE return type.
 var returnType = “”;

283 Chapter 11: Grabbing Attention with Video

 // J2. TYPE test and setting.
 if (videoElement.canPlayType(“video/webm”)==”probably”){returnType = “webm”}
 if (videoElement.canPlayType(“video/ogg”)==”probably”){returnType = “ogg” }
 if (videoElement.canPlayType(“video/mp4”)==”probably”){returnType = “mp4” }
 if (videoElement.canPlayType(“video/webm”)==”maybe”){returnType = “webm”}
 if (videoElement.canPlayType(“video/ogg”) ==”maybe”){returnType = “ogg” }
 if (videoElement.canPlayType(“video/mp4”)==”maybe”){returnType = “mp4” }

 // J3. RETURN type.
 return returnType;
}
// K. REQUEST ANIMATION FRAME function.
 window.requestAnimFrame = (function()
 {
 // K1. RETURN function available.
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||

 // K2. FALLBACK setTimeout function.
 function(callback) {window.setTimeout(callback, interval)};
 })();
</script> </head> <body> <div>

<!-- L. CANVAS elements -->
<canvas id = “canvasImage” width = “600” height = “450”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
</canvas>
<canvas id = “canvasVideo” width = “600” height = “450”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 2”>
</canvas>
<canvas id = “canvasButtons” width = “600” height = “450”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 3”>
You’re browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

Creating Video Recordings
Making your own video is a lot easier now that video recorders are included
with many smartphone models. This is one big reason behind the explosion
in uploads to YouTube and other video sites.

284 Part IV: Developing More Complex Applications

Use the information in the following section as a starter guide to creating
your video recordings.

Recording or downloading your video
You can create or acquire videos in a number of ways:

 ✓ Smartphone: Many smartphones have built-in apps that you can use
to create your videos. You can transfer the recorded files via a USB
connection to your computer or e-mail smaller files from your phone to
your PC.

 ✓ Camcorder: Camcorders generally produce better video quality than
smartphones. Many camcorder models have motion stabilization and
other advanced features and offer a USB connection to transfer videos
to your computer.

 ✓ Desktop video recording application: Use a built-in video recording
application or download one for your desktop computer. One video
recording option is available at www.innoheim.com/camverce.php.

 ✓ Downloaded videos: Use a website such as www.gettyimages.com/
footage to purchase and download videos. Make sure you check the
permissions for the recordings to verify you can legally include them in
your application.

Creating supported video file types
 As of this writing, different browsers support different video file types. Three

major types supported include mp4, ogg, and webm. To make sure that your
application will function in any of the major browsers, include a video file for
each of the supported file types.

 To track the latest browser video file support status, see http://
en.wikipedia.org/wiki/HTML5_video#Browser_support.

To create supported file types, follow these steps:

 1. Create copies of your video recordings in each supported file type
(mp4, ogg, and webm).

 Use software such as www.mirovideoconverter.com to create the
alternative file types from your original recording.

 2. Upload your video files to a folder on a server.

 Usually, you use the server hosting the website containing your
application.

http://www.innoheim.com/camverce.php
http://www.GettyImages.com/footage
http://www.GettyImages.com/footage
http://en.wikipedia.org/wiki/HTML5_video#Browser_support
http://en.wikipedia.org/wiki/HTML5_video#Browser_support

285 Chapter 11: Grabbing Attention with Video

Controlling Video Recordings
When included in your application, each video recording will have a number
of properties that can be accessed and modified. By manipulating these prop-
erties using HTML, JavaScript, and onscreen player controls, you can control
video:

 ✓ Files: File source locations on a server

 ✓ Player: Visibility, whether the player controls are visible, and their status

 ✓ Playback: Playback volume, muting, pause, play, loop control

As shown in Figure 11-2, several entities (applications, users, browsers) affect
video, and there is a lot of communication (events, attributes, functions,
interactions) back and forth between these entities. Reference Figure 11-2 as
you read through this chapter for help in understanding this flow of activity
and information.

Figure 11-2: Controlling video recordings.

286 Part IV: Developing More Complex Applications

Video attributes
The attributes of a video recording describe aspects of the video files, player,
and playback. Table 11-1 lists the most commonly used attributes and shows
whether they can be accessed via HTML and/or JavaScript.

 For a more complete list, see www.w3.org/wiki/HTML/Elements/video.

Table 11-1 Commonly Used Video Attributes and
 How They Can Be Accessed
Attribute HTML JavaScript Description

autoplay autoplay true, false Specifies that the video
will start playing as soon
as it is ready.

controls controls true, false Specifies that video con-
trols should be displayed.

duration Floating point
number

Specifies the length of
the video recording in
seconds.

ended true,
false

Specifies whether the
playback has completed.

id “name” Specifies a name used
to reference the video
element.

loop loop true,
false

Specifies that the video
will continually restart
when it finishes.

muted muted true,
false

Specifies whether the
sound of the video should
be off (muted.)

paused true,
false

Specifies whether the
video should be temporar-
ily stopped.

preload auto,
metadata,
none

auto,
metadata,
none

Specifies how the video
should be loaded when
the web page containing
it loads.

src “URL” “URL” Specifies the location of
the video file using a char-
acter string.

volume Floating point
number

Specifies the level of sound
between 0 and 1 (for exam-
ple, .5).

http://www.w3.org/wiki/HTML/Elements/video

287 Chapter 11: Grabbing Attention with Video

To access and/or manipulate video attributes, follow these steps:

 1. Set the initial video attributes using the parameters of the
<video> tag.

<video id=”video1” controls autoplay loop>

 For more on the <video> tag, see the section “Defining Video Elements,”
later in this chapter.

 2. Test the value of an attribute in JavaScript by referencing the associ-
ated video element.

 Video elements are used by the browser to store your video attributes.
(See the section “Defining video elements using HTML,” for more on
using HTML video definitions.) To access the value of an attribute,
append the attribute name to the appropriate video element with
dot syntax, as in this example of accessing the muted attribute using
JavaScript from code section F4 of Listing 11-1:
if(video1EL.muted)

 3. Change the value of a property in JavaScript using an assignment
statement.

 To change the value of an attribute using JavaScript, append the attri-
bute name to the appropriate video element with dot syntax and use an
assignment operator with the new value, as in this example of setting
the muted property from code section F3:
video1EL.muted = !video1EL.muted;

 4. Set the src attribute using the setAttribute() function.

 As of this writing, the setAttribute() function is only working
properly on all browsers for setting the src attribute. Setting the src
attribute using the technique in Step 3 is also not working properly.
Therefore, use the setAttribute() function to set the src attribute
and the method in Step 3 to set the other attributes. Here is an example
from sample code section B3 using the setAttribute() function:
video1EL.setAttribute(“src”, server + video + “.” + video1Type);

Video functions
There are a number of standard video functions built into the browser that
return information or cause an action with your video file or player. Table
11-2 lists the commonly used video functions.

288 Part IV: Developing More Complex Applications

Table 11-2 Commonly Used Video Functions
Function Parameter Return Description

canPlay
Type()

File MIME
type

maybe,
probably,
“”

Determines whether a given
type of video file is supported
by the browser.

load() none none Specifies that the video will
start playing as soon as it is
ready.

pause() none none Pauses the playback.
play() none none Starts playing the video file.

To use a video function, append the function to the name of the video ele-
ment associated with the video file you want to affect using dot syntax.
Here’s an example to start playing video from B7 of Listing 11-1:

video1EL.play();

Video events
Video events are triggered by circumstances related to the video file and
video player. When the device operating system and the browser detect
these circumstances, event handlers look for application functions that have
been registered via JavaScript as callback functions for the given event.
Control is then passed to any registered callback functions.

Table 11-3 lists commonly used video events.

Table 11-3 Commonly Used Video Events
This Event Type Is Dispatched When This Happens

canplay The video can start playing but might be interrupted by
buffering.

canplaythrough The video can be played through to the end without
having to pause for buffering.

ended Playback has stopped because the end of the file has
been reached.

error An error has occurred accessing the video file.
pause Playback has been paused.
play The play() function has been initiated, or the autoplay

attribute has initiated playback.

289 Chapter 11: Grabbing Attention with Video

This Event Type Is Dispatched When This Happens

playing Playback has started. The timing of this event may differ
from the play event due to file load delays.

volumechange Either the volume attribute or the muted attribute has
changed.

Each event type has a browser event handler. The name of the event handler
is created by appending on to the front of the event type. Therefore, the
event handler for pause is onpause.

To detect and respond to events such as those listed in Table 11-3, follow
these steps:

 1. Register a callback function for a video element event handler.

 Define a function in your application that is to be called when a given
event takes place.

 Register a callback using the addEventListener() function, as in
code section B3:
video1EL.addEventListener(“canplaythrough”, videoDisplay, false);

 2. Respond when the callback is triggered.

 Within the function called in Step 1, take the appropriate action, as in this
example for handling a canplaythrough event from code section D:
function videoDisplay() { . . . code to respond to callback }

Defining Video Elements
Video elements act as an intermediary between your HTML/JavaScript code
and video recordings. A video element is a component of an HTML docu-
ment, which describes the structure of the web page containing your Canvas
application using the Document Object Model (DOM) conventions.

Defining elements using HTML tags
Defining video elements using HTML will cause the video player to display on
the web page. You can include all the information necessary in your HTML
to play and control video. And you can have further control over HTML tag–
defined video with JavaScript code.

 The video in Listing 11-1 is defined using JavaScript only, so you won’t see
HTML tags for it. If you’re displaying a video within your Canvas area, as in
the example application, it will be more typical to use only JavaScript.

290 Part IV: Developing More Complex Applications

If you do want to define video elements using HTML tags, here’s the way to
do it:

 1. Define an HTML5 <video> tag enclosed in a <div> for the video
recording you’re associating with a video player, such as the water
background in Listing 11-1.

 Here’s the lowdown on the tags:

 • The <div> enables you to control where the player will be placed
on your web page relative to your Canvas.

 • The <video> tag defines the initial player settings, source files for
the video recording, and a message that will be displayed if the
video element isn’t supported by the user’s browser. Include
a video recording for each of the supported file types: mp4, ogg,
and webm.

 An example of the code to define <video> and <div> elements is
<div id = video0>
<video id = “video1” controls autoplay loop>
<source src = “http://marketimpacts.com/storage/Daisy2.mp4”>
<source src = “http://marketimpacts.com/storage/Daisy2.ogg”>
<source src = “http://marketimpacts.com/storage/Daisy2.webm”>
Your browser doesn’t support the video element.
</video>
</div>

 2. Define the video player location on the web page. Use a <style>
tag placed after the <head> tag to control where the video player is
placed on the web page.

 The ID #video0 refers to the <div> element defined in Step 1. The fol-
lowing sample code places the video player below the Canvas area using
the margin-top parameter:
<style type=”text/css” media=”screen”>
#video0 {display:inline; float:left; margin-top:510px; width:304px;}
</style>

 3. Using the getElementById() function, retrieve the video element
defined in Step 1.

 Here’s an example from Listing 11-1:
video1EL = document.getElementById(“video1”);

 4. Initialize settings for the video element and player.

 Here’s an example:
volumeLevel = volumeInit; video2EL.volume = volumeLevel;
video2EL.muted = false; video2EL.paused = false;
video2EL.loop = true; video2EL.play();

291 Chapter 11: Grabbing Attention with Video

Defining elements using JavaScript code
Defining video elements using JavaScript code gives you complete control
over placing and manipulating your video frames on your Canvas area. In the
Listing 11-1 application, I’ve used these capabilities to play a video inside a
“thought bubble” that my dog Daisy has as she waits for me to throw her a
ball. (She loves to swim, as you can see if you watch the video.) JavaScript
code is used to clip the video frames to a round shape and place a circle with
a gradient over the frames to render the bubble appearance.

You have access to every bit in the video frame. You can do shaping and
enhancement as I’ve done. You can also change the bit to alter the appear-
ance of the images, such as changing image colors.

To define video elements using JavaScript code, follow these steps:

 1. Define video recording variables for server names and filenames.

 Here’s an example from code section A4 of Listing 11-1:
var server = “http://marketimpacts.com/storage/”;
var video = “DaisyDiving”;

 2. Create video elements using the createElement(“video”) function.

 Create elements as shown in code section B2:
video1EL = document.createElement(“video”);

 3. Determine the file type supported by the user’s browser. Using the
canPlayType() function, test the videoElement parameter for each
type of video and return the appropriate result.

 Here is a sample from code sections B3 and J of Listing 11-1:
videoType = videoExtensionType(video1EL);
. . .
function videoExtensionType(videoElement)
{
 var returnType = “”;
 if(videoElement.canPlayType(“video/mp4”) == “probably”)
 {returnType=”webm”;}
 . . .
 if(videoElement.canPlayType(“video/mp4”) == “maybe”)
 {returnType=”webm”;}
 . . .
 return returnType;
}

 4. Using the setAttribute() function, set the source of each video file
located on the server.

 In Listing 11-1, there’s only one video file, as in code section B3:
video1EL.setAttribute(“src”, server + video + “.” + videoType);

292 Part IV: Developing More Complex Applications

 5. Initialize video element settings.

 Initialize settings for video elements, as in code section B4:
video1EL.volume = volumeLevel;

Using Animation to Draw Video Frames
The video doesn’t play directly on the Canvas. When a video is started, the
individual frame images are stored in the video element. The drawImage()
function is then used to draw these frames on a Canvas. This multistep pro-
cess gives you access to the video frames in your application. You can draw
them on your Canvas without modification (as is done in Listing 11-1), or
alter the pixels before drawing.

To animate your video images on a Canvas, follow the steps described in the
following sections.

Starting the video
Follow these steps to tell the browser to begin playing the video and to notify
your JavaScript code when play can continue without interruption:

 1. Add an event listener for the canplaythrough condition.

 This event listener transfers control to the function you specify when
enough of the video has loaded that it should be able to play without
interruption. The canplaythrough event listener is added in code sec-
tion B3 of Listing 11-1 specifying the videoDisplay callback function:
video1EL.addEventListener(“canplaythrough”, videoDisplay, false);

 2. Play the video. Use the play() function to cause the browser to begin
playing the video file and transfer control to your event listener call-
back function in Step 1 when enough is loaded to play the video with-
out interruption.

 In Listing 11-1, this code is in section B7:
video1EL.play();

Setting up the animation loop
You found out all about animation loops in previous chapters. Here, you use
an animation loop to draw frames from a video on your Canvas:

293 Chapter 11: Grabbing Attention with Video

 1. Define the callback function to be executed when the video is loaded.

 In Listing 11-1, the callback function is videoDisplay() in code sec-
tion D:
function videoDisplay() { . . . }

 2. Within the callback function, do any Canvas context path creation
related to the video that doesn’t have to be repeated during every ani-
mation frame.

 During execution of the animation loop, you will want to do as little
drawing as possible so that the video frames can be drawn fast enough
to keep up with the callbacks, producing a smooth-looking video. So,
before starting the animation loop, perform path creation that can be
done once and not repeated for each frame. In Listing 11-1 code section
D1, a clipping circle is set up around the video frames to help simulate
the doggie thought bubble:
 contextVI.beginPath();
 contextVI.arc(videoWidth/2, videoHeight/2, videoHeight/2,
 startAngle, endAngle, false);
 contextVI.fill();
 contextVI.clip();

 3. Within the callback function, start your animation loop.

 Start the animation loop using the requestAnimationFrame() func-
tion as in code section D2–D4. This section of code is shown here:
(function animLoop()
{
 requestAnimFrame(animLoop);
 drawVideo();
}
) ();

Drawing the video images
During each animation frame callback from the browser, your designated
function (drawVideo() in Listing 11-1) is given control. This is when you
draw the individual video frames and anything else you want to include
during your animation cycle. In Listing 11-1, I’ve drawn the video, an imagi-
nary bubble surrounding it, and the video control buttons. Follow these steps
to draw your individual video frame images:

 1. Define the drawing function that will be executed during each anima-
tion frame.

294 Part IV: Developing More Complex Applications

 In Listing 11-1, this is the drawVideo() function in code section E:
function drawVideo();

 2. If you want to, modify pixels in the video frame.

 It’s at this point that you can modify the pixels of the individual Canvas
video image if you want to. In Listing 11-1, the image is on the contextVI
Canvas starting at the coordinates (videoX, videoY) with width video
Width and height videoHeight. The Listing 11-1 application doesn’t
directly modify any image pixels. Instead, it uses a gradient per Step 4 to
shade the edges of the thought bubble around the video frame.

 3. Within the drawVideo() function, draw a single video frame using
the drawImage() function.

 Here’s an example from code section E1 of Listing 11-1:
contextVI.drawImage(video1EL, videoX, videoY, videoWidth, videoHeight);

 4. Draw other objects you want in the frame.

 This is where I drew the gradient on top of the video image to enhance
the bubble appearance in code sections E2:
contextVI.fillStyle = video1Gradient;
contextVI.beginPath();
contextVI.arc(videoWidth/2, videoHeight/2, videoHeight,
 startAngle, endAngle, false);
contextVI.fill();

 To keep as much processing out of the animation loop as possible, the
gradient video1Gradient used in the preceding code block is defined
in code section B5:
video1Gradient = contextVI.createRadialGradient(
 videoWidth/2, videoHeight/2,.7*videoHeight,
 videoWidth/2, videoHeight/2, 0);
video1Gradient.addColorStop(0, “white”);
video1Gradient.addColorStop(.05, “white”);
video1Gradient.addColorStop(.20, “white”);
video1Gradient.addColorStop(.50, “transparent”);
video1Gradient.addColorStop(1, “transparent”);

 To facilitate drawing in the animation loop, contextVI is translated to
the position of the video in the overall image in code section B6:
contextVI.translate(videoX, videoY);

 5. Draw control buttons when loaded. Check to see whether the buttons
have been loaded but not yet initialized. Set initial values and display
them.

295 Chapter 11: Grabbing Attention with Video

 Here’s an example from code section E3:
if(buttonLoad && !buttonInit)
{
// E6. INITIALIZE buttons when all have loaded.
 playButton = pauseImage;
 repeatButton = repeatOnImage;
 soundButton = soundOnImage;
 levelButton = soundLevelImage;

 // E7. BUTTON LOAD status.
 buttonInit = true;

 // E8. DRAW buttons.
 buttonTextDisplay();
}

Responding to User Interaction
There are two ways the user can interact with your application to affect
video playback: through the Canvas area or video player. To keep your
Canvas display in sync with the video player (if you’re using one), when one
is altered, change the other. In the Listing 11-1 example, this means keeping
the video player for the background sound in sync with Canvas text.

Keep in mind that this section of code requires some non-linear thinking.
Responding to user interaction is very event driven: The user clicking and
touching, and your code is responding.

 Normally, you probably wouldn’t have a complete set of controls in both the
Canvas area and a visible video player. In the Listing 11-1 example I used only
Canvas area controls. In Listing 10-1 example demonstrating audio, I used
both Canvas area and a visible video player.

Responding to Canvas area interaction
To respond to Canvas area interaction, define listeners for mouse and touch
events and take the appropriate actions when your callback function is given
control. Follow these steps:

 1. Define video control graphics.

 In the Listing 11-1 example, I used buttons as graphics for controlling
video playback. To include graphic elements for control, define their
sources and load functions as in code sections A4, A5, A6, B11, B12 and
C. Here is the sample code for the play button from those sections:

296 Part IV: Developing More Complex Applications

var playFile = “PlayerPlay”;
var playImage = new Image();
var playButton = new Image();
playImage.src = server + playFile + buttonFileType;
playImage.onload = function() {buttonIncrement()}
function buttonIncrement()
{
 buttonCount++;
 if(buttonCount = buttonQuant) {buttonLoad = true; buttonTextDisplay()}
}

 2. Define listeners for user interaction events.

 Listeners are your “lookouts” for Canvas user interaction. This is
how you know when the user clicks or touches your Canvas. Use the
addEventListener() function to specify the function to be called
when a user event takes place. In Listing 11-1, the clickTouch() func-
tion defined in Step 3 is specified for mouse and touch events in code
section B8:
canvasBT.addEventListener(“mousedown”, clickTouch, false);
canvasBT.addEventListener(“touchstart”, clickTouch, false);
canvasBT.addEventListener(“touchmove”, clickTouch, false);
canvasBT.addEventListener(“touchend”, clickTouch, false);

 3. Define the callback function that will respond to interaction events.

 Define the callback function to be invoked when an event listener is trig-
gered. Within that function, first determine the position on the Canvas of
the click/touch using the clickTouchEvent() function defined in Step
4. Then handle each type of event per Steps 5 and 6. In Listing 11-1, the
callback function is defined in code section F:
function clickTouch(event)
{
 // Determine position on Canvas of click/touch.
 clickTouchEvent(event);

 // Code to handle each control selection.
}

 4. Determine the Canvas location of a click/touch event. Create a func-
tion that will determine the x and y coordinate positions of a click or
touch event.

 Here’s an example from code section G of Listing 11-1:
function clickTouchEvent(event)
{
 // G1. BROWSERS except Firefox.
 if (event.x != undefined && event.y != undefined)
 {xPos = event.x; yPos = event.y;}

 // G2. FIREFOX.
 else

297 Chapter 11: Grabbing Attention with Video

 {xPos = event.clientX + document.body.scrollLeft +
 document.documentElement.scrollLeft;
 yPos = event.clientY + document.body.scrollTop +
 document.documentElement.scrollTop}

 // G3. CURSOR position.
 xPos -= canvasTX.offsetLeft; yPos -= canvasTX.offsetTop;
}

 5. Change the selected video controls.

 Using the positionTest() function defined in Step 6, determine which
video controls should be altered; then make changes using the appro-
priate video function, as shown in code sections F2–F14. Here is one
example from F2–F4:
if(positionTest(2))
{
 video1EL.muted = !video1EL.muted;
 if(video1EL.muted) {soundButton = soundOffImage}
 else {soundButton = soundOnImage }
 buttonTextDisplay();
}

 This code tests for selection of the Sound On/Off control and, if selected,
changes the muted attribute of the video element and alters the button
to the appropriate setting.

 6. Test for player control position. Test to see whether the x and y coor-
dinate positions selected on the Canvas by the user are within a given
position in the video controls area of the Canvas. Return a value of
true or false depending on the results.

 See code section I:
function positionTest(position)
{
 // I1. INITIALIZE return value to false.
 var returnValue = false;

 // I2. TEST position.
 if (
 (yPos > (buttonsY)) &&
 (yPos < (buttonsY + buttonHeight)) &&
 (xPos > (buttonsX + (position * buttonWidth))) &&
 (xPos < (buttonsX + (position * buttonWidth) + buttonWidth))
)
 {returnValue = true;}

 // I3. RETURN returnValue.
 return returnValue;
}

298 Part IV: Developing More Complex Applications

 7. Change the display buttons and text. Using a call to the buttonText-
Display() function (defined in Step 8), change the display after
values have changed.

 In Listing 11-1, this is done in code sections B10, C4, E6, F4, F7, F8, F9
and F13:
buttonTextDisplay();

 8. Display the text that defines the status of the video player settings.

 This text is also used to define the areas for user interaction to change
player settings.

 In Listing 11-1, the text display function is defined in code section H:
function buttonTextDisplay()
{
 // H1. CLEAR canvas.
 contextBT.clearRect(0, 0, canvasBT.width, canvasBT.height);

 // H2. BUTTON LOAD check.
 if(buttonLoad)
 {
 // H3. BUTTON DISPLAY.
 contextBT.drawImage(playButton, buttonsX + (buttonWidth * 0),
 buttonsY, buttonWidth, buttonHeight);
 . . .
 }
 // H4. VOLUME.
 contextBT.font = textFont;
 contextBT.fillStyle = textColor;
 var volumeLev = volumeLevel.toFixed(1);
 contextBT.fillText(volumeLev, buttonsX + volumeOffsetX +
 (buttonWidth * 3), buttonsY + volumeOffsetY);
}

Responding to video player interaction
In order to respond to changes a user makes in a video player, define a call-
back function that will gain control when specific player changes are made.
When a user changes settings in the video player, reflect these changes in the
appropriate settings within your application.

To respond to video player interaction, follow these steps:

 1. For each video player function you’re tracking in your application,
define a listener that will be called when the user changes the control.

 Here’s an example:
Video1EL.onpause = function () { . . . }

299 Chapter 11: Grabbing Attention with Video

 2. Change variables tracking the video player value.

 Within the function defined in Step 1, change the appropriate variable:
pauseText = pauseText1;

 3. Using a call to the buttonTextDisplay() function (defined in Step 8
in the preceding section), change the custom controls display.

 Here’s an example:
buttonTextDisplay();

Defining Other Application Components
You can combine video with other Canvas capabilities. In the Listing 11-1
example, a Canvas is defined for a background image, as demonstrated in the
following steps:

 1. Upload your image file to a folder on a server.

 In the sample application, this is a background and button images.
Usually the server used is the one hosting the website containing your
application.

 2. Define variables and load functions for images.

 In the sample application in Listing 11-1, the background and button
image variable is defined in code section A4 and drawn after it is loaded
in code section B9:
var backgroundImage = new Image();
backgroundImage.src = server + backgroundFile + backgroundType;
backgroundImage.onload = function()
{contextIM.drawImage(backgroundImage,0,0,canvasIM.width,canvasIM.height)}

 3. Define the function to be called when your web page is loaded.

 Define the function that contains the main sequence of code that’s called
when the web page is loaded, as in code section B of the example:
window.onload = function() { . . . }

 4. Define Canvas elements.

 In the example code section L, a Canvas is defined for the background
image:
<canvas id = “canvasImage” width = “300” height = “500”
 style = “border:2px solid black; position:absolute;
 left:auto; top:auto; z-index: 1”>
</canvas>

300 Part IV: Developing More Complex Applications

 5. Define Canvas variable and context.

 In the example, these are defined in code section B1:
 canvasIM = document.getElementById(“canvasImage”);
 contextIM = canvasIM.getContext(“2d”);

12
Enhancing Canvas Applications

In This Chapter
▶ Enhancing Canvas applications
▶ Creating image overlays
▶ Using multiple and multifaceted objects
▶ Layering sounds
▶ Managing performance

T
o me, this is a very exciting chapter. It’s an opportunity to build an appli-
cation that demonstrates what Canvas can really do. Options for enhanc-

ing Canvas applications are virtually limitless — and every application can
benefit from different enhancement techniques. My objective for this chapter
is to spark your thinking about innovative ways you can enhance your own
applications. Get creative. Don’t limit your thinking. Go for it.

In this chapter, I use two elements to approach the topic of enhancement:

 ✓ The use of an enhanced application example: Listing 12-1 and Figure
12-1 demonstrate an application that simulates a fireworks display. It
builds on techniques covered in previous chapters.

 ✓ A discussion of key aspects of enhancement: A look at some general
principles of enhancement and how they’ve been applied to Listing 12-1.

302 Part IV: Developing More Complex Applications

Figure 12-1: Fireworks — an enhanced Canvas application.

Listing 12-1: Fireworks — an Enhanced Canvas Application
<!DOCTYPE HTML> <html> <head> <script>

// A. VARIABLES.

 // A1. ANIMATION.
 var interval = 15; var intervalT = 70;
 var intervalI = 5; var intervalB = 5;
 var showBG = false; var intervalID = 0;
 var xStart = 350; var yStart = 400;
 var xVecStart = -1; var yVecStart = -.5;
 var lastTime = 1; var fps = 0;
 var animType = 1; var moveAdj = 1;
 var fpsCounter = 0; var fpsDisplay = 1000;
 var fpsMaxAdj = 5; var fpsMaxPct = 300;
 var partLimit = 100; var mute = false;
 var fire = true; var key;
 var reqAnimOn = false;

303 Chapter 12: Enhancing Canvas Applications

 // A2. ENVIRONMENT.
 var frictionS = .02; var frictionB = 0;
 var frictionL = 0; var frictionT = .09;
 var frictionI = .01;
 var gravityS = .003; var gravityB = .0;
 var gravityL = 0; var gravityT = .01;
 var gravityI = .001;
 var sunset = 1; var sunsetT = 10;
 var sunsetI = 1; var sunsetB = 1;
 var sunsetHorizon = 60; var sunsetFactor = 600;
 var skyNight = 0; var skyCount = 0;
 var skyAlpha = .2; var skyInterval = 0;
 var smokeOn = 1; var smokeFactor = 1200;
 var smokeLimit = 250; var smokeStart = 375;
 var smokeGrad = 0; var smokeColor = “hotpink”;
 var cityScapeY = 350;

 // A3. FIREWORKS.
 var massMin = 1; var massMax = 2;
 var lifeMin = 75; var lifeMax = 150;
 var glowMin = 150; var glowMax = 250;
 var sizeMin = 1; var sizeMax = 3;
 var quantMin = 5; var quantMax = 30;
 var decayMin = .1; var decayMax = 1;
 var spreadMin = 0; var spreadMax = 30;
 var radMin = .5; var radMax = 2;
 var newMin = 30; var newMax = 100;
 var newCount = 0; var newCreate = 0;
 var wait = 300; var waitT = 1000;
 var waitI = 100; var waitB = 100;
 var accelerS = .01; var accelerB = .0;
 var accelerL = 0; var accelerT = .1;
 var accelerI = .01;
 var altitMin = 300; var serialExpl = 10;
 var tailJitter = 2; var fadeJitter = 5;
 var angleJitter = 1; var vectJitter = 2;
 var tailMin = 500; var glowMin = 100;
 var explThrot = .8; var launchThrot = .7;
 var xLaunchLeft = 8; var xLaunchRight = 4;
 var yLaunchLower = 2; var yLaunchUpper = 3;

 var colors =
 [“aqua”, “red”, “blue”, “fuchsia”,”crimson”, “cyan”, “lime”, “lightpink”,
 “chartreuse”, “greenyellow”, “olive”, “purple”,”red”, “deeppink”,
 “silver”,”teal”, “yellow”, “azure”, “hotpink”, “gold”, “pink”, “orange”,
 “lawngreen”, “white”, “salmon”, “magenta”, “springgreen”, “orchid”,
 “green”, “green”, “green”, “green”, “green”, “green”, “green”, “green”];

(continued)

304 Part IV: Developing More Complex Applications

Listing 12-1 (continued)
 var numColors = colors.length;

 var launchColors =
 [“aliceblue”, “azure”, “blanchedalmond”, “gainsboro”, “lavender”,
 “lightcyan”, “mistyrose”, “silver”, “white”, “lightblue”, “lightskyblue”,
 “paleturquoise”, “red”, “orangered”, “gold”, “yellow”];

 var numLaunchColors = launchColors.length;

 var part = new Array();

 var pathX = new Array();
 var pathY = new Array();

 // A4. TRAFFIC.
 var trafficXMin = 0; var trafficXMax = 700;
 var trafficY = 400; var trafficChange = 6;
 var trafficColors =
 [“bisque”, “bisque”, “bisque”, “bisque”,
 “black”, “black”, “black”, “black”, “black”];

 var numTrafficColors = trafficColors.length;

 // A5. TEXT.
 var welcomeText = “Welcome to a night of fireworks!
 Press the Ctrl key to enable & display menu.”;
 var welcomeFont = “10pt arial”;
 var welcomeColor = “purple”;
 var menuFont = “9pt courier”;
 var menuColor = “slateblue”;
 var fpsDisplayX = 625; var fpsDisplayY = 20;
 var fpsXOffset = 40; var numYOffset = 20;

 // A6. FILES.
 var server = “http://marketimpacts.com/storage/”;
 var cityScapeType = “.png”;
 var cityScapeFile = “NightCityScape1000px”;
 var darkSkyType = “.png”;
 var darkSkyFile = “DarkSky1000px”;
 var expl1AudFile = “Fireworks”;
 var expl2AudFile = “FireworksMultiple”;
 var expl3AudFile = “FireworksBassBoost”;
 var expl4AudFile = “FireworksLowPitch”;
 var expl5AudFile = “FireworksSlow”;
 var crowdAudFile = “FireworksCrowd”;
 var crowd2AudFile = “FireworksCrowd2”;

 // A7. AUDIO.
 var crowdVolume = .2;
 var explVolumeMin = .2; var explVolumeMax = .5;
 var explNumMin = 1; var explNumMax = 4;

305 Chapter 12: Enhancing Canvas Applications

 var audio1EL; var audio5EL;
 var audio2EL; var audio6EL;
 var audio3EL; var audio7EL;
 var audio4EL;

// B. WINDOW LOAD function.
window.onload = function()
{
 // B1. CANVAS contexts.
 canvasFW = document.getElementById(“canvasFireworks”);

 contextFW = canvasFW.getContext(“2d”);
 canvasTR = document.getElementById(“canvasTraffic”);
 contextTR = canvasTR.getContext(“2d”);
 canvasSK = document.getElementById(“canvasSky”);
 contextSK = canvasSK.getContext(“2d”);
 canvasDS = document.getElementById(“canvasDarkSky”);
 contextDS = canvasDS.getContext(“2d”);
 canvasIM = document.getElementById(“canvasImage”);
 contextIM = canvasIM.getContext(“2d”);
 canvasBG = document.getElementById(“canvasBackground”);
 contextBG = canvasBG.getContext(“2d”);
 canvasFS = document.getElementById(“canvasFrameSpeed”);
 contextFS = canvasFS.getContext(“2d”);
 canvasSM = document.getElementById(“canvasSmoke”);
 contextSM = canvasSM.getContext(“2d”);

 // B2. AUDIO files.
 audio1EL = document.createElement(“audio”);
 audio2EL = document.createElement(“audio”);
 audio3EL = document.createElement(“audio”);
 audio4EL = document.createElement(“audio”);
 audio5EL = document.createElement(“audio”);
 audio6EL = document.createElement(“audio”);
 audio7EL = document.createElement(“audio”);
 audioType = audioExtensionType(audio1EL);
 audio1EL.setAttribute(“src”,server + crowdAudFile + “.” + audioType);
 audio2EL.setAttribute(“src”,server + expl1AudFile + “.” + audioType);
 audio3EL.setAttribute(“src”,server + expl2AudFile + “.” + audioType);
 audio4EL.setAttribute(“src”,server + expl3AudFile + “.” + audioType);
 audio5EL.setAttribute(“src”,server + expl4AudFile + “.” + audioType);
 audio6EL.setAttribute(“src”,server + expl5AudFile + “.” + audioType);
 audio7EL.setAttribute(“src”,server + crowd2AudFile + “.” + audioType);

 // B3. CROWD audio settings.
 audio1EL.volume = crowdVolume; audio1EL.loop = true; audio1EL.play();
 audio7EL.volume = crowdVolume; audio7EL.loop = true; audio7EL.play();

 // B4. CITY image source.
 var cityNight = new Image();
 cityNight.src = server + cityScapeFile + cityScapeType;

(continued)

306 Part IV: Developing More Complex Applications

Listing 12-1 (continued)
 // B5. CITY image load function.
 cityNight.onload = function()
 {
 // B6. DRAW image.
 contextIM.drawImage(cityNight, 0, cityScapeY, canvasIM.width,
 canvasIM.height-cityScapeY);
 // B7. WELCOME text.
 contextIM.fillStyle = welcomeColor;
 contextIM.font = welcomeFont;
 contextIM.textAlign = “center”;

 contextIM.textBaseline = “middle”;
 contextIM.fillText(welcomeText ,canvasIM.width/2, canvasIM.height-15);
 }
 // B8. SKY image source.
 var darkSky = new Image();
 darkSky.src = server + darkSkyFile + darkSkyType;

 // B9. SKY image load function.
 darkSky.onload = function()
 {
 var test1 = darkSky;
 contextDS.drawImage(darkSky, 0, 0, canvasDS.width, canvasDS.height);
 var test2 = darkSky;
 }
 // C. FIREWORKS start.
 fireworks();
}
// D. KEY functions.
document.onkeydown = function(event)
{
 // D1. EVENT.
 event = event || window.event;

 // D2. KEY code.
 key = event.keyCode;

 // D3. MENU toggle using the Ctrl key.
 if (key == 17) {
 showBG = !showBG;
 clearInterval(intervalID);
 fire = false; fireworks();
 }
 // D4. GRAVITY change using the g key.
 if ((key == 71) && (showBG)) {gravityS += gravityI;
 if (gravityS > gravityT) {gravityS = gravityB};
 clearInterval(intervalID);
 fire = false; fireworks();
 }

307 Chapter 12: Enhancing Canvas Applications

 // D5. FRICTION change using the f key.
 if ((key == 70) && (showBG)) {frictionS += frictionI;
 if (frictionS > frictionT){frictionS = frictionB};
 clearInterval(intervalID);
 fire = false; fireworks();
 }
 // D6. INTERVAL change using the i key.
 if ((key == 73) && (showBG)) {interval += intervalI;
 if (interval > intervalT) {interval = intervalB};
 clearInterval(intervalID);
 fire = false; fireworks();
 }
 // D7. WAIT change using the w key.
 if ((key == 87) && (showBG)) {wait += waitI;
 if (wait > waitT) {wait = waitB};
 clearInterval(intervalID);
 fire = false; fireworks();
 }
 // D8. SUNSET change using the s key.
 if ((key == 83) && (showBG)) {sunset += sunsetI;
 if (sunset > sunsetT) {sunset = sunsetB};
 skyAlpha = 0;
 clearInterval(intervalID);
 fire = false; fireworks();
 }
 // D9. MUTE change using the m key.
 if ((key == 77) && (showBG)) {mute = !mute; background();
 if(mute) {muting(true)} else {muting(false)}
 }
 // D10. LAUNCH fireworks using the l key.
 if ((key == 76) && (showBG)) {
 clearInterval(intervalID);
 fireworks();
 }
}
// E. FIREWORKS function.
function fireworks()
{
 // E1. RESET variables.
 frictionL = frictionS;
 gravityL = gravityS;
 accelerL = accelerS;
 newMax = wait;
 newCount = 0;
 newCreate = 0;

 // E2. BACKGROUND text shown if turned on.
 contextBG.clearRect(0, 0, canvasBG.width, canvasBG.height);
 if(showBG) {background()}

(continued)

308 Part IV: Developing More Complex Applications

Listing 12-1 (continued)
 // E3. SMOKE generation.
 smoke();

 // E4. MUTING.
 if(mute) {muting(true)} else {muting(false)}

 // E5. TRAFFIC clear.
 contextTR.clearRect(0, 0, canvasTR.width, canvasTR.height);

 // E6. START DRAWING fireworks using setInterval.
 if(animType == 0) {intervalID = setInterval(drawFireworks,interval)}

 // E7. START DRAWING fireworks using request animation frame.
 if((animType == 1) && !reqAnimOn)
 {
 // E8. ANIMATION ON indicator.
 reqAnimOn = true;

 // E9. ANIMATION LOOP.
 (function animloop(){requestAnimFrame(animloop); drawFireworks()})();
 }
}
// F. DRAW FIREWORKS function.
function drawFireworks()
{
 // F1. SUNSET increment & check for change.
 skyInterval = sunset*sunsetFactor;
 skyCount = skyCount + interval;
 if(skyCount > skyInterval)
 {
 // F2. SKY ALPHA increase if reached skyInterval.
 skyAlpha = skyAlpha + .01;
 if(skyAlpha > 1) {skyApha = 1}
 skyCount = 0;

 // F3. SKY alpha setting.
 contextSK.globalAlpha = skyAlpha;
 if(skyNight == 1) {contextSK.globalAlpha = 1}

 // F4. SKY gradient.
 var skyGrad = contextSK.createLinearGradient(0, 0, 0, canvasSK.height-
 sunsetHorizon);
 skyGrad.addColorStop(0, “black”);
 skyGrad.addColorStop(.8, “black”);
 skyGrad.addColorStop(1, “transparent”);

 // F5. SKY fill.
 contextSK.fillStyle = skyGrad;
 contextSK.clearRect(0, 0, canvasSK.width, canvasSK.height);
 contextSK.fillRect(0, 0, canvasSK.width, canvasSK.height);
 }

309 Chapter 12: Enhancing Canvas Applications

 // F6. INCREMENT count for new fireworks.
 newCount++;

 // F7. CHECK for creating a new fireworks.
 if(newCount > newCreate)
 {
 // F8. RESET counter for launch of new fireworks.
 newCount = 0;

 // F9. INTERVAL for launching next new fireworks.
 newCreate = newMin+(Math.random()*(newMax-newMin));

 // F10. NEW FIREWORKS if particle limit not exceeded.
 if(part.length < partLimit) {newFireworks()}
 }
 // F11. PROCESS individual particles.
 var partLength = part.length;
 for(var p=0; p<partLength; p++)
 {
 // F12. AGE increase.
 part[p].age++;

 // F13. END OF LIFE check.
 if (part[p].age > (part[p].life + part[p].glow))
 {
 // F14. REMOVE particle.
 part.splice(p,1); pathX.splice(p,1); pathY.splice(p,1);

 // F15. SMOKE generation.
 smoke();
 }
 // F16. ALIVE check.
 if (part[p].age < part[p].life)

 // F17. MOVE particle.
 {moveParticle(p)}

 // F18. EXPLOSION CRITERIA check.
 if ((part[p].age > part[p].life) && (part[p].explode == 1) &&
 (part[p].yPos < altitMin) && ((part[p].quant+ part.length) <
 partLimit))
 {
 // F19. EXPLODE particle.
 part[p].explode = 0; explodeParticle(p);
 }
 }
 // F20. CLEAR fireworks canvas.
 contextFW.clearRect(0,0,canvasFW.width, canvasFW.height);

 // F21. LOOP through particles.
 partLength = part.length-1;
 for(var p=0; p<partLength; p++)

(continued)

310 Part IV: Developing More Complex Applications

Listing 12-1 (continued)
 // F22. DRAW particle.
 {drawParticle(p)}

 // F23. TRAFFIC loop.
 for(var t=0; t<trafficChange; t++)
 {
 // F24. COLOR.
 var colorIndex = Math.random()*(numTrafficColors-1);
 colorIndex = Math.round(colorIndex);
 contextTR.fillStyle = trafficColors[colorIndex];

 // F25. POSITION.
 var trafficXPos = trafficXMin + (Math.random()*(trafficXMax-trafficXMin));

 // F26. DRAW.
 contextTR.fillRect(trafficXPos, trafficY, 1, 1);
 }
}
// G. DRAW PARTICLE function.
function drawParticle(p)
{
 // G1. ALIVE check.
 if (part[p].age < part[p].life)
 {
 // G2. LOOP through path.
 var pathLength = Math.min(1*pathX[p].length, tailMin);
 for(var t=0; t<pathLength; t++)
 {
 // G3. COLOR setting.
 contextFW.fillStyle = part[p].color;

 // G4. TRANSPARENCY setting.
 var ga = 1/(part[p].decay*t);
 contextFW.globalAlpha = ga;

 // G5. X POSITION/JITTER setting.
 var x = pathX[p][t] + (tailJitter*Math.random());

 // G6. Y POSITION setting.
 var y = pathY[p][t];

 // G7. DRAW particle.
 contextFW.fillRect(x, y, part[p].size, part[p].size);
 }
 }
 // G8. GLOW check.
 if ((part[p].age > part[p].life) &&
 (part[p].age < (part[p].life+part[p].glow)))
 {
 // G9. STILL GLOWING variable.
 var stillGlowing = 0;

311 Chapter 12: Enhancing Canvas Applications

 // G10. LOOP through tail.
 for(var t=0; t<Math.min(pathX[p].length, glowMin); t++)
 {
 // G11. COLOR setting.
 contextFW.fillStyle = part[p].color;

 // G12. TRANSPARENCY setting.
 var ga = 1/(.5*(t + (part[p].age)-(part[p].life)));
 contextFW.globalAlpha = ga;

 // G13. X POSITION/JITTER setting.
 var x = pathX[p][t] + (fadeJitter*Math.random());

 // G14. Y POSITION setting.
 var y = pathY[p][t];

 // G15. DRAW particle.
 contextFW.fillRect(x, y, part[p].size, part[p].size);

 // G16. STILL GLOWING setting.
 stillGlowing = ga;
 }
 // G17. GLOWING check.
 if(stillGlowing < .003)
 {
 // G18. REMOVE particle.
 part.splice(p,1); pathX.splice(p,1); pathY.splice(p,1);

 // G19. SMOKE generation.
 smoke();
 }
 }
}
// H. MOVE PARTICLE function.
function moveParticle(p)
{
 // H1. ANIMATION RATE check.
 var date = new Date();
 var time = date.getTime();
 var timeDiff = time - lastTime;
 fps = 1000/timeDiff;
 lastTime = time;

 // H2. FRAME COUNTER increment.
 fpsCounter++;

 // H3. FRAME RATE display.
 if((fpsCounter > fpsDisplay) && (timeDiff > 20))
 {
 // H4. CLEAR frame speed canvas.
 contextFS.clearRect(0, 0, canvasFS.width, canvasFS.height);

(continued)

312 Part IV: Developing More Complex Applications

Listing 12-1 (continued)
 // H5. ATTRIBUTES of display.
 contextFS.font = menuFont;
 contextFS.fillStyle = menuColor;
 fps = fps.toFixed(0);

 // H6. COUNTER reset.
 fpsCounter = 0;

 // H7. PARTICLE COUNT.
 var particleCount = part.length;

 // H8. SHOW BACKGROUND check.
 if(showBG)
 {
 // H9. DISPLAY frame rate and particle count.
 contextFS.fillText(“fps:”, fpsDisplayX, fpsDisplayY);
 contextFS.fillText(fps, fpsDisplayX + fpsXOffset, fpsDisplayY);
 contextFS.fillText(“num:”, fpsDisplayX, fpsDisplayY + numYOffset);
 contextFS.fillText(particleCount, fpsDisplayX + fpsXOffset,
 fpsDisplayY + numYOffset);
 }
 }
 // H10. FPS factor.
 var fpsTarget = 1000/interval;
 var fpsDiff = fpsTarget - fps;
 var fpsPercent = fpsDiff/fps;
 var fpsAdjustX = 0;
 var fpsAdjustY = 0;
 if(fpsDiff > Math.abs(fpsMaxAdj))
 {
 var adjust = Math.min(fpsPercent, fpsMaxPct/100);
 fpsAdjustX = adjust * part[p].xVec * moveAdj;
 fpsAdjustY = adjust * part[p].yVec * moveAdj;
 }
 // H11. FRICTION & ACCELERATION factor.
 faFactor = (1-((frictionL/(part[p].mass+accelerL))));

 // H12. VECTOR & POSITION change.
 part[p].xVec *= faFactor;
 part[p].xPos += (part[p].xVec + fpsAdjustX);
 part[p].yVec *= faFactor;
 part[p].yVec += gravityL/2;
 part[p].yPos += (part[p].yVec + fpsAdjustY);

 // H13. PATH recording.
 pathX[p].unshift(part[p].xPos);
 pathY[p].unshift(part[p].yPos);
}
// I. NEW FIREWORKS function.
function newFireworks()
{

313 Chapter 12: Enhancing Canvas Applications

 // I1. FIRE check.
 if(fire)
 {
 // I2. ADD new particle to array.
 var newPart = part.length;
 part[newPart] = {};

 // I3. PATH arrays.
 pathX[newPart] = new Array();
 pathY[newPart] = new Array();

 // I4. AGE.
 part[newPart].age = 0;

 // I5. POSITION.
 part[newPart].xPos = xStart;
 part[newPart].yPos = yStart;

 // I6. X VECTOR.
 part[newPart].xVec = xLaunchRight-(Math.random()*(xLaunchLeft));

 // I7. X VECTOR THROTTLE.
 part[newPart].xVec = part[newPart].xVec * launchThrot;

 // I8. Y VECTOR.
 part[newPart].yVec = -(yLaunchLower+Math.random()*(yLaunchUpper));

 // I9. Y VECTOR THROTTLE.
 part[newPart].yVec = part[newPart].yVec * launchThrot;

 // I10. COLOR.
 var colorIndex = Math.random()*(numLaunchColors-1);
 colorIndex = Math.round(colorIndex);
 var newColor = launchColors[colorIndex];
 part[newPart].color = newColor;

 // I11. CHARACTERISTICS.
 part[newPart].mass = massMin +(Math.random()*(massMax-massMin));
 part[newPart].life = lifeMin +(Math.random()*(lifeMax-lifeMin));
 part[newPart].size = sizeMin +(Math.random()*(sizeMax-sizeMin));
 part[newPart].quant = quantMin+(Math.random()*(quantMax-quantMin));
 part[newPart].radius= radMin +(Math.random()*(radMax-radMin));
 part[newPart].glow = part[newPart].life+glowMin +
 (Math.random()*(glowMax-glowMin));
 part[newPart].decay = 1;

 // I12. EXPLODE at end of life.
 part[newPart].explode = 1;
 }
 // I13. FIRE set to true.
 else {fire = true}
}

(continued)

314 Part IV: Developing More Complex Applications

Listing 12-1 (continued)
// J. EXPLODE PARTICLE function.
function explodeParticle(particle)
{
 // J1. CHARACTERISTICS using random factor.
 var mass = massMin + (Math.random()*(massMax-massMin));
 var life = lifeMin + (Math.random()*(lifeMax-lifeMin));
 var glow = glowMin + (Math.random()*(glowMax-glowMin));
 var size = sizeMin + (Math.random()*(sizeMax-sizeMin));
 var decay = decayMin + (Math.random()*(decayMax-decayMin));
 var quant = quantMin + (Math.random()*(quantMax-quantMin));
 var radius = radMin + (Math.random()*(radMax-radMin));
 var colorIndex = Math.random()*(numColors-1);
 colorIndex = Math.round(colorIndex);
 var newColor = colors[colorIndex];
 var vectJitterN = Math.random()*vectJitter;

 // J2. SPREAD of new particles in degrees.
 var spread = 360/(part[particle].quant);

 // J3. NEW PARTICLES generation.
 for (var i=1; i<(part[particle].quant); i++)
 {
 // J4. ADD to particle array.
 var newPart = part.length;
 part[newPart] = {};

 // J5. PATH arrays.
 pathX[newPart] = new Array();
 pathY[newPart] = new Array();

 // J6. POSITION using current position.
 part[newPart].xPos = part[particle].xPos;
 part[newPart].yPos = part[particle].yPos;

 // J7. ANGLE.
 var angle = (Math.PI/180)*i*spread;
 angle = (angleJitter*Math.random())+angle;

 // J8. SPEED LIMIT.
 var speedLimit = 1;

 // J9. JITTER SHAPING for selected colors.
 if(newColor == “red”) {vectJitterN = 0 }
 if(newColor == “gold”) {vectJitterN = 1 }
 if(newColor == “orange”) {vectJitterN = .5}

 // J10. X VECTOR ANGLE.
 part[newPart].xVec = part[particle].xPos + (part[particle].radius *
 Math.cos(angle));
 // J11. X VECTOR JITTER.
 part[newPart].xVec = part[newPart].xVec - part[newPart].xPos +
 (vectJitterN*Math.random()) - (vectJitterN*Math.random());

315 Chapter 12: Enhancing Canvas Applications

 // J12. X VECTOR THROTTLE.
 part[newPart].xVec = part[newPart].xVec * explThrot;

 // J13. Y VECTOR ANGLE.
 part[newPart].yVec = part[particle].yPos + (part[particle].radius *
 Math.sin(angle));
 // J14. Y VECTOR JITTER.
 part[newPart].yVec = part[newPart].yVec - part[newPart].yPos +
 (vectJitterN*Math.random()) - (vectJitterN*Math.random());

 // J15. Y VECTOR THROTTLE.
 part[newPart].yVec = part[newPart].yVec * explThrot;

 // J16. CHARACTERISTICS of new particle.
 part[newPart].age = 0;
 part[newPart].mass = mass;
 part[newPart].life = life;
 part[newPart].glow = glow + (Math.random()*(glow/1));
 part[newPart].size = size;
 part[newPart].decay = decay;
 part[newPart].quant = quant;
 part[newPart].radius = radius;
 part[newPart].color = newColor;

 // J17. COLOR VARIETY check.
 if(newColor == “green”)
 {
 // J18. RANDOM color setting.
 var colorIndex = Math.random()*(numColors-1);
 colorIndex = Math.round(colorIndex);
 var newColorV = colors[colorIndex];
 part[newPart].color = newColorV;
 }
 // J19. EXPLODE turned off.
 part[newPart].explode = 0;

 // J20. SERIAL EXPLOSION check.
 if(part[particle].quant < serialExpl)
 {
 // J21. EXPLOSION turned on.
 part[newPart].explode = 1;

 // J22. PREVENT further explosions.
 part[newPart].quant = serialExpl;
 }
 }
 // J23. SMOKE generation.
 smoke();

 // J24. SOUND of explosion.
 if(part[particle].quant < serialExpl)
 {

(continued)

316 Part IV: Developing More Complex Applications

Listing 12-1 (continued)
 // J25. MULTIPLE explosions.
 soundExplosion(audio3EL);
 }
 else
 {
 // J26. SINGLE randomly chosen explosion.
 var r = explNumMin + (Math.random()*(explNumMax-explNumMin));
 var n = Math.round(r);

 // J27. SWITCH to explosion.
 switch(n)
 {
 case 1: soundExplosion(audio2EL); break;
 case 2: soundExplosion(audio4EL); break;
 case 3: soundExplosion(audio5EL); break;
 case 4: soundExplosion(audio6EL); break;
 }
 }
}
// K. SOUND EXPLOSION function.
function soundExplosion(element)
{
 element.volume = explVolumeMin+(Math.random()*(explVolumeMax-explVolumeMin));
 element.play();
}
// L. SMOKE function.
function smoke()
{if (smokeOn == 1)
 {
 // L1. TRANSPARENCY setting.
 contextSM.globalAlpha = Math.min(part.length, smokeLimit)/smokeFactor;

 // L2. GRADIENT settings.
 smokeGrad = contextSK.createLinearGradient(0, 0, 0, smokeStart);
 smokeGrad.addColorStop(0, “transparent”);
 smokeGrad.addColorStop(.4, smokeColor);
 smokeGrad.addColorStop(.8, smokeColor);
 smokeGrad.addColorStop(1, “transparent”);
 contextSM.fillStyle = smokeGrad;

 // L3. CLEAR and FILL canvas.
 contextSM.clearRect(0,0, canvasSM.width, canvasSM.height);
 contextSM.fillRect(0,0, canvasSM.width, canvasSM.height);
 }
}
// M. BACKGROUND text function.
function background()
{
 // M1. ATTRIBUTES.
 contextBG.font = menuFont;
 contextBG.textAlign = “left”;

317 Chapter 12: Enhancing Canvas Applications

 contextBG.textBaseline = “middle”;
 contextBG.fillStyle = menuColor;

 // M2. POSITIONS.
 var xPos1 = 15; var xPos2 = 120; var xPos3 = 250; var yPos = 13;

 // M3. CLEAR canvas.
 contextBG.clearRect(0, 0, canvasBG.width, canvasBG.height);

 // M4. FIX decimal points.
 var gravityFix = gravityL.toFixed(3);
 var frictionFix = frictionL.toFixed(3);

 // M5. TEXT display.
 contextBG.fillText(“Key Factor”, xPos1, yPos*1);
 contextBG.fillText(“Value”, xPos2, yPos*1);
 contextBG.fillText(“--- ---------”, xPos1, yPos*2);
 contextBG.fillText(“-----”, xPos2, yPos*2);
 contextBG.fillText(“g - gravity:”, xPos1, yPos*3);
 contextBG.fillText(gravityFix, xPos2, yPos*3);
 contextBG.fillText(“f - friction:”, xPos1, yPos*4);
 contextBG.fillText(frictionFix, xPos2, yPos*4);
 contextBG.fillText(“i - interval:”, xPos1, yPos*5);
 contextBG.fillText(interval, xPos2, yPos*5);
 contextBG.fillText(“w - wait:”, xPos1, yPos*6);
 contextBG.fillText(wait, xPos2, yPos*6);
 contextBG.fillText(“s - sunset:”, xPos1, yPos*7);
 contextBG.fillText(sunset, xPos2, yPos*7);
 contextBG.fillText(“m - mute:”, xPos1, yPos*8);
 contextBG.fillText(mute, xPos2, yPos*8);
 contextBG.fillText(“l - launch”, xPos1, yPos*9);
}
// N. REQUEST ANIMATION FRAME function.
 window.requestAnimFrame = (function(callback){
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function(callback){
 window.setTimeout(callback, interval);};})();

// O. AUDIO EXTENSION TYPE function.
function audioExtensionType(audioElement)
{
 // O1. INITIALIZE return type.
 var returnType = “”;

 // O2. TYPE test and setting.
 if (audioElement.canPlayType(“audio/wav”)==”probably”){returnType = “wav”;}
 if (audioElement.canPlayType(“audio/ogg”)==”probably”){returnType = “ogg”;}
 if (audioElement.canPlayType(“audio/mp3”)==”probably”){returnType = “mp3”;}

(continued)

318 Part IV: Developing More Complex Applications

Listing 12-1 (continued)
 if (audioElement.canPlayType(“audio/wav”)==”maybe”){returnType = “wav”;}
 if (audioElement.canPlayType(“audio/ogg”)==”maybe”){returnType = “ogg”;}
 if (audioElement.canPlayType(“audio/mp3”)==”maybe”){returnType = “mp3”;}

 // O3. RETURN type.
 return returnType;
}
// P. MUTING function.
function muting(setting)
{
 audio1EL.muted = setting; audio5EL.muted = setting;
 audio2EL.muted = setting; audio6EL.muted = setting;
 audio3EL.muted = setting; audio7EL.muted = setting;
 audio4EL.muted = setting;
}
</script> </head> <body> <div>

<!-- Q. CANVAS DEFINITIONS -->
<canvas id = “canvasTraffic”

 width = “700” height =”500” style = “border:2px solid black;
 position:absolute; left:auto; top:auto; z-index: 5”>
</canvas>
<canvas id = “canvasFrameSpeed”
 width = “700” height =”500” style = “border:2px solid black;
 position:absolute; left:auto; top:auto; z-index: 7”>
</canvas>
<canvas id = “canvasFireworks”
 width = “700” height =”500” style = “border:2px solid black;
 position:absolute; left:auto; top:auto; z-index: 6”>
</canvas>
<canvas id = “canvasSmoke”
 width = “700” height =”500” style = “border:2px solid black;
 position:absolute; left:auto; top:auto; z-index: 5”>
</canvas>
<canvas id = “canvasSky”
 width = “700” height =”500” style = “border:2px solid black;
 position:absolute; left:auto; top:auto; z-index: 2”>
</canvas>
<canvas id = “canvasDarkSky”
 width = “700” height =”500” style = “border:2px solid black;
 position:absolute; left:auto; top:auto; z-index: 1”>
</canvas>
<canvas id = “canvasImage”
 width = “700” height =”500” style = “border:2px solid black;
 position:absolute; left:auto; top:auto; z-index: 3”>
</canvas>
<canvas id = “canvasBackground”
 width = “700” height =”500” style = “border:2px solid black;
 position:absolute; left:auto; top:auto; z-index: 4”>
Your browser doesn’t currently support HTML5 Canvas.
</canvas> </div> </body> </html>

319 Chapter 12: Enhancing Canvas Applications

Aspects of Enhancement
To make your application truly shine , you can add and enhance objects,
colors, images, sound, and user interaction. In this section, I show you how
to attract and retain user attention.

Before I dive into the details of the fireworks application in Listing 12-1, the
following sections give you an overview of why and how enhancements were
used in its development.

Reasons for enhancement
 Stated briefly, add enhancements and complexity to your application when

it’s appropriate, not just for their own sake.

When I developed the Listing 12-1 application, early versions had an artificial
feel to them. The fireworks were too uniform and not realistic. The back-
ground was a bit flat. Exploding fireworks didn’t make any noise. I added
enhancements until the Canvas fireworks display had the look and feel of a
real and interesting fireworks display.

I added enhancements to the fireworks application to:

 ✓ Generate interest: Enhancements and complexity can help draw atten-
tion to a Canvas. People like fireworks. Variations in color, motion, and
sound enhance the experience and keep the viewer’s attention.

 ✓ Create emotion: Combinations of sights and sounds evoke the emotion
of a good fireworks display.

 ✓ Simulate reality: The world is a complex place. Fireworks displays have
lots of varied colors, sounds, and movement.

 ✓ Serve a purpose: The fundamental purpose of the application is to help
you understand Canvas development technology. I added enough com-
plexity for the application to serve as a foundation for this chapter.

Techniques of enhancement
The Listing 12-1 application uses a number of techniques to add complexity:

 ✓ Multiplicity: Fireworks are made of multiple particles, each moving on
its own trajectory. Explosions spawn new particles.

 ✓ Variation: Variations in fireworks size, color, motion, and sound help
simulate the real thing.

320 Part IV: Developing More Complex Applications

 ✓ Layering: Multiple Canvases are used to layer fireworks on top of back-
ground images.

 ✓ Randomization: Random variations in size, color, motion, and sound
add to the realism of the overall effect.

Application of enhancement
The preceding techniques are applied to a number of Canvas elements in the
fireworks application:

 ✓ Images: Images of fireworks, car traffic, and a background scene are
blended for an overall impression.

 ✓ Objects: Fireworks particles are generated using a variety of sizes and
colors.

 ✓ Motion: Particle paths have varied trajectories, speeds, and life spans.
Real world forces of friction, acceleration, and gravity are simulated.

 ✓ Color: Particle colors are chosen randomly from a colors array.

 ✓ Sound: Multiple background sound tracks are played and multiple explod-
ing fireworks sounds are layered over each other and the background.

Constructing an Application Base
The Listing 12-1 application is built on a number of fundamental Canvas capa-
bilities that have been explained in detail in previous chapters. Following is a
list of these components and references to their code sections in Listing 12-1.

On load function
The onload function is called when the application is opened in a browser
window. The main code is in section B of Listing 12-1. The onload function is
called only once, so it’s here that you perform actions that are only required
a single time:

 ✓ Defining canvas elements: B1, Q

 ✓ Defining images and audio variables: A6, A7, B2–B9, O

 ✓ Calling the setup function: C

Animation setup function
The animation setup function is called to initialize variables and start anima-
tion. The animation setup function in the example is fireworks() in code

321 Chapter 12: Enhancing Canvas Applications

section E. It’s called multiple times from code sections D and once from code
section B5. It includes

 ✓ Initializing variables: E1

 ✓ Displaying text: E2

 ✓ Initializing muting: E4

 ✓ Starting an animation loop: E6–E9

Animation loop
The animation loop instructs the browser to call the specified drawing func-
tion once for each animation frame:

 ✓ Defining the setInterval option: E6

 ✓ Defining the requestAnimationFrame option: E7–E9, N

Drawing function
The drawing function creates images on Canvases that the viewer sees as ani-
mated movement. In Listing 12-1, the drawing function is drawFireworks()
in code section F:

 ✓ Making time-dependent scene changes: F1–F10

 ✓ Processing individual objects: F11–F26

Object movement
During each animation frame, each object is moved to its new position. In
Listing 12-1, this is done in the moveParticle() function in code section H:

 ✓ Adjusting for animation time interval variations: H1, H10, H12

 ✓ Adjusting for real world forces: H11, H12

 ✓ Changing position and vector: H12

Object drawing
In the example, fireworks particles are drawn as small rectangles in code sec-
tion G:

 ✓ Setting object attributes: G3, G4, G11, G12

 ✓ Drawing on a Canvas: G7, G15

322 Part IV: Developing More Complex Applications

Playing audio
In the example, the sound of a crowd is played as a background and the
sounds of explosions are played to coincide with fireworks.

 ✓ Defining audio elements and their sources: A6, A7, B2, B3

 ✓ Determining audio extension types: O

 ✓ Setting audio attributes: B2, D9, E4, P

 ✓ Playing audio files: B3, K

User interaction
Users are given the option of displaying a menu of keystrokes in code section
D, and information is displayed in code section M:

 ✓ Handling key presses: D1–D10

 ✓ Displaying information: M1–M5

Enhancing Background Canvas Layers
Although not the focus of attention, background Canvas layers can have a
powerful influence on the overall impact of an application. Following are
techniques for enhancing your background scenes.

Shading a background
In the sample application in Listing 12-1, the sky of the background image
is progressively shaded to simulate nightfall. Follow these steps to shade a
background:

 1. Check for shading conditions.

 In the example in code section F1, a sky change counting interval is
checked during each animation frame:
skyInterval = sunset * sunsetFactor;
skyCount = skyCount + interval;
if(skyCount > skyInterval) { . . . }

 2. Define transparency.

 If the counting interval conditions in Step 1 are met, globalAlpha is
increased by 1%, as in code sections F2 and F3:

323 Chapter 12: Enhancing Canvas Applications

skyAlpha = skyAlpha + .01;
if(skyAlpha > 1) {skyAlpha = 1}
skyCount = 0;
contextSK.globalAlpha = skyAlpha;
if(skyNight == 1) {contextSK.globalAlpha = 1}

 3. Define a gradient that contains the color to be used for shading.

 In the example, a transparent portion of the gradient is used to feather
in simulated evening dusk. The gradient is defined in code section F4:
var skyGrad = contextSK.createLinearGradient(0, 0, 0, canvasSK.height-
 sunsetHorizon);
skyGrad.addColorStop(0, “black”);
skyGrad.addColorStop(.8, “black”);
skyGrad.addColorStop(1, “transparent”);

 4. Clear and fill the Canvas.

 Finally, clear and fill the Canvas with the gradient and globalAlpha, as
in code section F5:
contextSK.fillStyle = skyGrad;
contextSK.clearRect(0,0, canvasSK.width, canvasSK.height);
contextSK.fillRect(0,0, canvasSK.width, canvasSK.height);

Creating reflected light on a background
In Listing 12-1, a simulation of reflected light is used to emulate the light cast
on smoke created by exploding fireworks. This adds to the sense of depth
and realism. To simulate reflected light, use these steps:

 1. Call a light reflection function at the appropriate times.

 In the example, the smoke() function is called in a number of code sec-
tions to produce a smoke effect that looks as real as possible. This is an
example of coding for aesthetics, not for only technical accuracy. See
code E3, F15, G19, and J23:
smoke();

 2. Set transparency.

 The amount of reflected light should be based on a combination of fac-
tors related to activity in the animation. In the example code section L1,
globalAlpha transparency is calculated by dividing the particle length
by the variable smokeFactor. The variable smokeLimit limits the
amount of light.
contextSM.globalAlpha = Math.min(part.length, smokeLimit)/smokeFactor;

324 Part IV: Developing More Complex Applications

 3. Define a gradient to shape the reflected light.

 Here an example from code section L2:
smokeGrad = contextSK.createLinearGradient(0, 0, 0, smokeStart);
smokeGrad.addColorStop(0, “transparent”);
smokeGrad.addColorStop(.4, smokeColor);
smokeGrad.addColorStop(.8, smokeColor);
smokeGrad.addColorStop(1, “transparent”);
contextSM.fillStyle = smokeGrad;

 4. Clear and fill a Canvas with the light.

 Here’s an example in code section L3:
contextSM.clearRect(0,0, canvasSM.width, canvasSM.height);
contextSM.fillRect(0,0, canvasSM.width, canvasSM.height);

Creating simulated background movement
Adding a bit of movement to a background improves the realism of what
would otherwise be a scene. In Listing 12-1, the background image of the San
Francisco skyline is interesting, but without some movement can look arti-
ficial and “dead.” Because it’s a background, it’s not necessary to be totally
accurate in simulated movement. In the example, I added a simple line of
single pixel colors, some of which are changed during each animation frame
to simulate the twinkling of auto headlights in the distance.

To simulate movement on a background, use these steps:

 1. Define an array of colors for your objects.

 Choose a color for the headlights (bisque in the example) and a back-
ground color (black in the example). These colors will be alternately
drawn on the Canvas to simulate the auto headlights. Multiple array
entries for the same color are used to control the ratio of colors chosen
in Step 4.
var trafficColors = [“bisque”, “bisque”, “bisque”, “bisque”,
 “black”, “black”, “black”, “black”, “black”];
var numTrafficColors = trafficColors.length;

 2. Clear the Canvas you’ll use for your simulated background.

 Here’s an example in code section E5:
contextTR.clearRect(0, 0, canvasTR.width, canvasTR.height);

 This makes the Canvas fully transparent, allowing the layers underneath
to show through. In the example, simulated traffic will appear to be on
top of these layers.

325 Chapter 12: Enhancing Canvas Applications

 3. Loop through the objects.

 Use a for() loop to process the number of light changes made (per the
trafficChange variable) in each animation frame, as in F23:
for(var t=0; t<trafficChange; t++) { . . . }

 4. Set the color of the object.

 Use the Math.random() function to select a color from the colors
array, as in code section F24:
var colorIndex = Math.random()*(numTrafficColors-1);
colorIndex = Math.round(colorIndex);
contextTR.fillStyle = trafficColors[colorIndex];

 5. Set the Canvas position of the object.

 Use the Math.random() function to select a position on the x axis, as in
code section F25:
var trafficXPos = trafficXMin + (Math.random()*(trafficXMax-trafficXMin));

 6. Draw the object.

 Use the fillRect() function to draw the pixel (or pixels), as in code
section F26:
contextTR.fillRect(trafficXPos, trafficY, 1, 1);

Creating Multiple and Multifaceted Objects
Increasing the number of objects and number of object characteristics
can enhance the impact of your application. In the fireworks example in
Listing 12-1, each fireworks particle is treated as an object that has multiple
characteristics.

Storing variables in an array
In an application with multiple objects, using an array for variable storage
and organization quickly becomes essential. Use these steps to store your
variables in an array:

 1. Define an array to hold your objects and their characteristics.

 In Listing 12-1, the part array for fireworks particles is defined in code
section A3:
var part = new Array();

326 Part IV: Developing More Complex Applications

 2. Add objects to the array.

 In the example, new fireworks particles are added to the end of the par-
ticles array, as in code sections I2 and J4:
var newPart = part.length;
part[newPart] = {};

 3. Define object characteristics.

 For each object characteristic you’re defining for a new object, add a
variable to the object array using dot syntax, as in this example from
code section I5:
part[newPart].xPos = xStart;
part[newPart].yPos = yStart;

 In Listing 12-1, particle characteristics are defined in code sections I3–
I12 and J4–J22 for position, age, vectors, color, mass, life, size, quantity
(for explosion), radius (for explosion), glow, decay indicator, and explo-
sion indicator.

 4. Delete each object at the end of its life.

 First, check for the conditions you use to limit the life of your object. In
the example, particle life span is the sum of the life and glow after it
dies out. If the conditions are met, use the splice() function to remove
the entry from your array, as in code section F13–F14 of the example:
if(part[p].age > (part[p].life + part[p].glow)) {part.splice(p,1) . . .}

Using randomized object characteristics
The world is a very non-uniform place. Nothing travels in an exactly straight
path. No two objects are exactly the same. Events don’t take place at exact
intervals. So if one goal of your application is to simulate the real world, you
need a way to mimic the non-uniformity of nature. You’re in luck. There’s a
function you can use to introduce any level of non-uniformity (randomness)
you choose. It’s the Math.random() function.

In Listing 12-1, Math.random() is used extensively to introduce random
variation in variables such as size, quantities, speed, direction, life span,
sounds, and colors.

Randomizing variables
You can randomize any numeric variable by following these steps:

 1. For each variable to be randomized, define a minimum and maximum
value.

327 Chapter 12: Enhancing Canvas Applications

 Here’s an example from code section A3:
var lifeMin = 75; var lifeMax = 150;

 2. Calculate a random value by adding the random difference between
the maximum and minimum values to the minimum value.

 Here’s an example from code section I11:
part[newPart].life = lifeMin + (Math.random()*(lifeMax-lifeMin));

Using random jitter
Jitter is a special form of random variation that doesn’t require minimum and
maximum values. The Math.random() function is simply applied directly to
a variable. This is typically used to create small random variations, as in this
example from code section J1 to generate small variations in the vector of
particles:

var vectJitterN = Math.random()*vectJitter;

Randomizing non-numeric variables
Randomizing non-numeric variables requires a different technique than
numeric variables. Instead of applying the Math.random() function directly
to a variable, the variables, such as colors in Listing 12-1, are stored in an
array, and the Math.random() function is used to choose a random entry in
the array.

Use these steps to randomize non-numeric values:

 1. Define an array to hold the variable values.

 Store your variable values in an array, as in this example of a colors
array from code section A3:
var colors = [“aqua”, “red”, “blue”, “fuchsia”, . . .];

 2. Define the length of the array.

 Define the length of the array, as in A3:
var numColors = colors.length;

 3. Use the Math.random() function to select a value from the array.

 Here’s an example from code section J18:
var colorIndex = Math.random()*(numColors-1);
colorIndex = Math.round(colorIndex);
var newColor = colors[colorIndex];
part[newPart].color = newColor;

328 Part IV: Developing More Complex Applications

Spawning new objects
Spawning refers to the creation of new objects as the result of animation
events. For example, in the Listing 12-1 fireworks application, new objects
are created based on time elapsing and the explosion of previously created
fireworks.

Time dependent object spawning
In the example, new fireworks are launched after an animation frame count
if the maximum number of particles has not been reached. To perform time
dependent object spawning, follow these steps:

 1. Define time dependent spawning variables.

 In the example, the following variables are defined in code section A3:
var wait = 300; // Initial wait between fireworks launch.
var newMin = 30; // Minimum wait between fireworks launch.
var newMax = 100; // Maximum wait between fireworks launch.
var partLimit = 100; // Maximum number of particles.
var newCount = 0; // Count of animation frames between launches.
var newCreate = 0; // Frame count trigger for fireworks launch.

 2. Check for spawning conditions.

 In code section E1 and F6–F10, the newCount frame counter is incre-
mented and checked for reaching the newCreate trigger for fireworks
launch. The newCreate variable is reset to a new random number, and
if the partLimit hasn’t been reached, newFireworks() is called to
create a fireworks particle for launch:
newMax = wait;
newCount++;
if(newCount > newCreate)
{
 newCount = 0;
 newCreate = newMin+(Math.random()*(newMax-newMin));
 if(part.length < partLimit) {newFireworks()}
}

Event dependent object spawning
In Listing 12-1, new objects are created when a fireworks explodes. The gen-
erated objects create the familiar spread of new fireworks particles. To per-
form event dependent object spawning, follow these steps:

 1. Define the event dependent spawning variables.

 In the example, the explode variable associated with each particle in the
part array is set to indicate an explosion should take place. This is done
when the particle is created in code sections I12 and J21:
part[newPart].explode = 1;

329 Chapter 12: Enhancing Canvas Applications

 2. Check for spawning conditions.

 In the example code section F18–F19, a number of conditions are checked,
including the particle age, explode setting, yPos, and partLimit. If all
conditions are met, the explodeParticle() function is called:
if ((part[p].age>part[p].life) && (part[p].explode == 1) &&
 (part[p].yPos<altitMin) && ((part[p].quant+part.length)<partLimit))
 {part[p].explode = 0; explodeParticle(p)}

Creating Object Tails
Object tails follow behind an object as it moves across a Canvas. In the
sample application in Listing 12-1, object tails are used to simulate fireworks
as they die out over time. To create an object tail, use these steps:

 1. Define arrays to store tail positions.

 In Listing 12-1, arrays are defined for the x and y coordinates in code
section A3:
var pathX = new Array(); var pathY = new Array();

 2. Store object coordinates as the object moves.

 Store the coordinates of the object to generate a tail, as in code
section H13:
pathX[p].unshift(part[p].xPos);
pathY[p].unshift(part[p].yPos);

 3. Check conditions you’re using to determine if the tail should be
drawn.

 In the example, the age of the particle is checked against the life and
glow variables in code section G8:
if ((part[p].age > part[p].life) &&
 (part[p].age < (part[p].life + part[p].glow))) { . . . }

 4. Loop through tail coordinates.

 In the example code section G10, the tail is drawn until the minimum of
the length of the path or the glowMin is reached:
for(var t=0; t<tailLength; t++) { . . . }

 5. Set the color of the tail particle.

 In the example, the color variable is used in code section G11:
contextFW.fillStyle = part[p].color;

330 Part IV: Developing More Complex Applications

 6. Set the transparency of the tail particle using the globalAlpha
attribute.

 In example code section G12, globalAlpha is set based on a formula
using the age and life of the particle:
var ga = 1/(.5*(t + (part[p].age)-(part[p].life)));
contextFW.globalAlpha = ga;

 7. Set the x and y coordinates of the tail particle based on the particle
path.

 In example code sections G13 and G14, the x coordinate is varied from
the path using a random jitter factor. The y coordinate is based on the
path without modification:
var x = pathX[p][t] + (fadeJitter*Math.random());
var y = pathY[p][t];

 8. Using the fillRect() function and the size variable for the particle,
draw the tail.

 Here’s an example from Listing 12-1 code section G15:
contextFW.fillRect(x, y, part[p].size, part[p].size);

 9. Set an indicator based on the globalAlpha setting.

 Here’s an example from code section G16:
stillGlowing = ga;

 10. Check to see if the glowing indicator has dropped below a minimum
level.

 See this example in code section G17:
if(stillGlowing < .003) { . . . }

 11. If the glowing indicator has dropped below the minimum, remove the
particle and path coordinates from their arrays.

 Here’s an example in code section G18:
part.splice(p,1); pathX.splice(p,1); pathY.splice(p,1);

Creating Layered Audio
You know how to play audio. Playing multiple audio tracks one on top of the
other is useful for enhancing application realism. Canvas audio enables you

331 Chapter 12: Enhancing Canvas Applications

to play simultaneous audio files, but not with the same audio element. To
layer multiple audio sounds, follow these steps:

 1. Define the elements, sources, and attributes of multiple audio files.

 See these examples from sample code sections A7 and B2:
var audio2EL;
var audio3EL;
audio2EL = document.createElement(“audio”);
audio3EL = document.createElement(“audio”);
audio2EL.setAttribute(“src”,server + expl1AudFile + “.” + audioType);
audio3EL.setAttribute(“src”,server + expl2AudFile + “.” + audioType);

 2. Set a variable for a random explosion sound number.

 In the fireworks application, the sounds of explosions are varied to add
to animation realism. To do this, the Math.random() function was used
to generate a random number for designating an audio file in code sec-
tion J26:
var r = explNumMin + (Math.random()*(explNumMax-explNumMin));
var n = Math.round(r);

 3. Use the switch() function to select and play an audio file.

 Here’s an example from code section J27:
switch(n)
{
case 1: soundExplosion(audio2EL); break;
case 2: soundExplosion(audio4EL); break;
case 3: soundExplosion(audio5EL); break;
case 4: soundExplosion(audio6EL); break;
}

 4. Using a reference to the volume attribute of the selected audio element,
set the volume level. Then use the play() function to start the playback.

 In the fireworks application, the Math.random() function was used to
create variation in volume levels.

 The code to set volume and start playback is contained in the sound
Explosion() function in code section K:
function soundExplosion(element)
{
 element.volume = explVolumeMin+(Math.random()*
 (explVolumeMax-explVolumeMin));
 element.play();
}

332 Part IV: Developing More Complex Applications

Managing Performance
As you add enhancements and complexity to your applications, performance
may suffer. There are only a limited number of processor cycles available to
your application code during each animation frame interval. The number of
cycles available depends on the speed of the computer’s CPU/GPU, the effi-
ciency of the browser, and the length of your application animation interval.

Which code segments stress performance depends on the individual applica-
tion. This list describes some common examples of object characteristics
that can affect performance:

 ✓ Quantity: In Listing 12-1, the number of fireworks particles

 ✓ Complexity: In Listing 12-1, the characteristics of the fireworks particles,
such as color, size, and lifespan

 ✓ Movement: In Listing 12-1, the trajectory and random fluctuation in
movement of the fireworks particles

The fireworks example displays, in the upper right corner, the frames-per-second
animation rate and number of active fireworks particles. This important infor-
mation is used in monitoring and adjusting application performance.

To avoid application performance degradation, follow these steps:

 1. Define limits on object animation.

 Here are some examples of limits in Listing 12-1, defined in code sections
A1 and A3:
var lifeMax = 150; // Limits the life of a particle.
var glowMax = 250; // Limits the afterglow of a particle.
var quantMax = 30; // Limits the number of explosion particles.
var newMax = 100; // Limits the interval between new fireworks.
var partLimit = 100; // Limits the number of active particles.

 2. Use limits during animation.

 In the example, these limits are used as follows in the indicated code
sections:
if(newCount > newCreate) // F7
newCreate = newMin+(Math.random()*(newMax-newMin)); // F9
if(part.length < partLimit) {newFireworks()} // F10
part[newPart].life = lifeMin+ (Math.random()*(lifeMax-lifeMin)); // I11
part[newPart].quant = quantMin+(Math.random()*(quantMax-quantMin)); // I11
part[newPart].glow = part[newPart].life+glowMin+
 (Math.random()*(glowMax-glowMin)); // I11
var life = lifeMin + (Math.random()*(lifeMax-lifeMin)); // J1
var glow = glowMin + (Math.random()*(glowMax-glowMin)); // J1
var quant = quantMin + (Math.random()*(quantMax-quantMin)); // J1

Part V
The Part of Tens

In this part . . .

I
n Part V, I list ten Canvas applications and ten tools for
Canvas development that can help you build on the

knowledge and skills you acquired by reading this book.
HTML5 Canvas is evolving into an important part of the
World Wide Web and is supported by a growing global
cadre of developers. Welcome aboard. Enjoy the ride. I
look forward to seeing your apps join the ranks of those
you find in these final chapters.

13
Ten Great Canvas Applications

In This Chapter
▶ Having some fun on Canvas
▶ Seeing interesting, moving backgrounds
▶ Using some fancy painting apps
▶ Watching sophisticated 3D simulation

T
he number of interesting and entertaining Canvas applications grows
steadily every day. Developers are connecting Canvas with activity on

the web, experimenting with new techniques, and blending art with science.

In this chapter, I list a few of the best sites I’ve found, including some that are
themselves Canvas application collections and great places to quickly scan
for new apps.

 To check out an application’s source code, right-click (Ctrl+click on the Mac)
and select View Page Source.

Bomomo
Bomomo (shown in Figure 13-1) is a painting application that combines
controlled artistry with the semi-random movement of multi-faceted paint
brushes. It’s as though you have little Canvas processors on your fingertips.
And it’s very cool. Try it out at http://bomomo.com.

http://bomomo.com/

336 Part V: The Part of Tens

Figure 13-1: Bomomo drawing.

Canvas Cycle
The Canvas Cycle app demonstrates a series of scenes featuring moving
images such as water and snow. It’s a good way to get a quick perspective on
the variety of backgrounds that can be created using Canvas. Get the picture
at www.effectgames.com/demos/canvascycle/.

Chrome Experiments
Google is sponsoring a website that contains a collection of some of the
best developer experiments using Canvas and related technologies. To find
Canvas experiments, search the site for “Canvas.” Maybe they’d include one
of your masterpieces. Check them out at www.chromeexperiments.com.

http://www.effectgames.com/demos/canvascycle/
http://www.chromeexperiments.com/

337 Chapter 13: Ten Great Canvas Applications

Grow a Face
Why would anyone want to grow a face? There are plenty of reasons: to have
a little fun, get some ideas for graphics, and get some help creating faces
you might use in your own applications. Watch the evolution at http://
growaface.com.

Burn Canvas
This is an open source demonstration project of pixel-based modification
of a Canvas. Click and watch the burn at http://guciek.github.com/
burn_canvas.html.

Canvas Sketch
This application demonstrates how traditional drawing programs can be
implemented using HTML5 Canvas. Create your masterpiece at http://
gartic.uol.com.br/sketch/.

Canvas 3D Engine
This site demonstrates how 2D Canvas can simulate 3D without the use
of WebGL. Click on the floating squares to see images appear at http://
peterned.home.xs4all.nl/3d/.

Canvas Raytracer
This site shows how you can draw sophisticated surfaces and reflections on
a Canvas without WebGL or high computational loads. Raytracing is a tech-
nique for creating images reflected on virtual surfaces, as shown in Figure 13-2.
Click the Random and Render buttons to see the scene perspective change at
http://jupiter909.com/mark/jsrt.html.

http://growaface.com/
http://growaface.com/
http://guciek.github.com/burn_canvas.html
http://guciek.github.com/burn_canvas.html
http://gartic.uol.com.br/sketch/
http://gartic.uol.com.br/sketch/
http://peterned.home.xs4all.nl/3d/
http://peterned.home.xs4all.nl/3d/
http://jupiter909.com/mark/jsrt.html

338 Part V: The Part of Tens

Figure 13-2: Raytracer drawing.

Pocket Full of Canvas
This application demonstrates a number of Canvas effects alongside the code
that generates them. It’s a great demo and also useful for your toolkit. See it at
www.nihilogic.dk/labs/pocket_full_of_canvas/#presets/hsl.js.

Plasma Tree
Have fun mimicking the branching growth of colorful trees. See them grow at:
http://openrise.com/lab/PlasmaTree/.

http://www.nihilogic.dk/labs/pocket_full_of_canvas/#presets/hsl.js
http://openrise.com/lab/PlasmaTree/

14
Ten Great Tools

In This Chapter
▶ Making your development life easier
▶ Converting audio and video files to different formats
▶ Testing code
▶ Working with colors
▶ Exploring more sophisticated 3D

T
here aren’t enough hours in the day to do everything by ourselves. We
all need to leverage the work of others.

In this chapter, I list ten tools that can enhance your life as a Canvas applica-
tion developer.

Audacity
Until all browsers support all audio file types, you need to include multiple
versions of your audio files in your applications. Audacity (shown in Figure
14-1) is a free, open-source cross-platform software tool for converting an
audio file to multiple formats, including MP3, OGG, and WAV. You can down-
load the free software at http://audacity.sourceforge.net.

http://audacity.sourceforge.net/

340 Part V: The Part of Tens

Figure 14-1: Audacity editing.

Can I Use
This website provides the latest status of browser support for a wide variety of
features and capabilities, including HTML5 Canvas. See http://caniuse.com.

EaselJS
EaselJS is one of a number of JavaScript libraries that can be used to help
simplify Canvas JavaScript development. See www.createjs.com/#!/
EaselJS. Search your favorite search engine for Canvas JavaScript libraries
to see other examples.

Electrotank
Electrotank provides a suite of software products that support the develop-
ment of multiplayer social games for desktop and mobile devices. See www.
electrotank.com.

http://caniuse.com/
http://www.createjs.com/#!/EaselJS
http://www.createjs.com/#!/EaselJS
http://www.electrotank.com/
http://www.electrotank.com/

341 Chapter 14: Ten Great Tools

Firebug
Firebug (http://getfirebug.com/) is a free software tool for debugging
JavaScript and HTML code. It provides capabilities to set breakpoints, check
variable values, and follow code execution. You can include as an add-on to
most browsers, including Firefox, Chrome, Internet Explorer, and Opera. For
additional information on installing it in various browsers, check out www.
makeuseof.com/tag/install-firebug-for-browsers-other-than-
firefox/.

Gamepad API
The Gamepad API is a specification for using game controllers via Canvas
JavaScript code. See https://wiki.mozilla.org/GamepadAPI.

HTML5 Test
The html5test website tests desktop and mobile browsers for the status of
their support for HTML5 features, including Canvas. It rates individual features
and gives a score for the browser as a whole. See http://html5test.com.

Kuler
The Kuler website is an Adobe tool for developing color palettes and experi-
menting with color combinations. See http://kuler.adobe.com.

Micro Video Converter
As is the case with audio, until all browsers support all video file types, you
need to include multiple versions of your video files in your applications.
Micro Video Converter is a free, open-source cross-platform software tool for
converting a video file to multiple formats, including MP4, OGG, and WebM.
See www.mirovideoconverter.com.

http://getfirebug.com/
http://www.makeuseof.com/tag/install-firebug-for-browsers-other-than-firefox/
http://www.makeuseof.com/tag/install-firebug-for-browsers-other-than-firefox/
http://www.makeuseof.com/tag/install-firebug-for-browsers-other-than-firefox/
https://wiki.mozilla.org/GamepadAPI
http://html5test.com/
http://kuler.adobe.com/
http://www.mirovideoconverter.com/

342 Part V: The Part of Tens

WebGL
HTML5 Canvas doesn’t currently support an integrated, 3D context. WebGL is
a cross-platform, royalty-free web standard for a 3D graphics API. WebGL is
growing as the de facto standard for Canvas 3D. For more information, see
www.khronos.org/webgl.

The WebGL example in Figure 14-2 is from http://carvisualizer.plus
360degrees.com/threejs/. Check it out to experiment with different car
models, colors, and viewpoints.

Figure 14-2: WebGL example.

http://www.khronos.org/webgl/
http://carvisualizer.plus360degrees.com/threejs/
http://carvisualizer.plus360degrees.com/threejs/

• Symbols and
Numerics •
< > (angle brackets), in HTML tags, 42
2D Canvas context, 44
3D graphics

Canvas 3D Engine application, 337
drawing, 342
in games, BC31–BC32
simulating, 337, BC31–BC32
WebGL tool, 337

• A •
absolute positioning, 47–48
acceleration, modeling in animation,

164–165
addColorStop() function, 60
aligning text, 74–75
alpha attribute, 64
alphabetic text baselines, 72
analogous colors, 189
angle brackets <>, in HTML tags, 42
animation

control function, defining, 231–234
drawing function, defining, 235
fire, 337
prompting user interaction, 228
setup function, 320–321, BC25
with sprites, BC28–BC31
tree growth, 338

animation, adjusting for real-world forces
acceleration, 164–165
basic steps, 156–157
bounce, 158–160
friction, 163–164
gravity, 160–162
illustration, 152
modeling combined forces, 165–167

overview, 151–152
sample code, 153–156
using vectors for object motion, 157–158

animation, basics of motion
creating backgrounds, 138
dimensions of appearance and

motion, 224
drawing moving objects, 139–140
image sequences, defining and storing,

237–239
images, as background, 227
moving circle, 135–137
multiple Canvas elements, 137–138
overview, 217
redraw interval, specifying, 139–140
speed, controlling, 140, 236–237
timeout, specifying, 139–140
versions of an image, 225
visual dimensions, 224–226

animation, circular motion
illustration, 141
overview, 141
sample code, 141–143
steps involved, 143–144

animation, clouds
defining and storing image sequences,

237–239
illustration, 218
moving across a background, 239–241
sample code, 218–223

animation, frame rate
calculating, 235–236
definition, 230
desired rate, 231
displaying, 235–236
frame rates, 230–231
maximum useful rate, 231
minimum effective rate, 230
rotation, 144

Index

344 HTML5 Canvas For Dummies

animation, oscillation
creating a background, 149–150
drawing an oscillating object, 151
illustration, 145
loading multiple images, 150
overview, 144–145
radius of rotation, calculating, 151
sample code, 146–148
speed of rotation, controlling, 151
steps involved, 148–151

animation, testing browser performance
creating base code, 242–246
illustration, 242
overview, 241
sample code, 242–246
stressing the browser, 246–248

animation loop, 321, BC25
anticlockwise parameter, 87
appearance, dimensions of, 224
Apple WebKit browser, 13. See also web

browsers
applications, audio in

browser audio file support status, 258
combining with Canvas capabilities,

270–271
HTML tags, 249
JavaScript code, 249
sample code, 251–257
supported audio file types, creating, 258

applications, constructing a base
animation loop, 321
animation setup function, 320–321
drawing function, 321
object drawing, 321
object movement, 321
onload function, 320
playing audio, 322
user interaction, 322

applications, developing. See also game
application, base

advantages of Canvas, 20
overview, 16–20
sample code, 16–19

applications, enhancing
applying enhancement, 320
audio, 320
color, 320
common Canvas elements, 320
images, 320

layering, 320
motion, 320
multiplicity, 319
objects, 320
reasons for, 319
sound, 320
techniques for, 319–320
variation, 319

applications, for Canvas. See also tools for
Canvas

3D simulation, 337
animated burn, 337
animated tree growth, 338
backgrounds, 336
Bomomo, 335–336
Burn Canvas, 337
Canvas 3D Engine, 337
Canvas Cycle, 336
Canvas Raytracer, 337–338
Canvas Sketch, 337
Chrome Experiments, 336
developer experiments, examples of, 336
Grow a Face, 337
painting, 335–336
Plasma Tree, 338
Pocket Full of Canvas, 338
raytracing, 337–338
special effects, 338
using drawing programs with Canvas, 337

arc attribute
audio, 260
video, 286

arc() function
drawing arcs, 85
drawing circles, 89
overview, 85–87

arc parameters and calculations, 86
arcs. See drawing arcs
arcto() function, 94–95
attributes. See also object attributes;

specific attributes
alpha, 64
arc, 260, 286
audio, 259–261
autoplay, 260, 286
controls, 260, 286
duration, 260, 286
ended, 260, 286

345 Index

fillStyle, 53
fonts, 71–73
globalAlpha, 64
globalCompositeOperation, 105–106
id, 260, 286
loop, 260, 286
muted, 260, 286
object, 51–53
paused, 260, 286
preload, 260, 286
strokeStyle, 53
textAlign, 74
textBaseline, 71–72
video, 286
volume, 260, 286

Audacity, 339–340
audio

attributes, 259–261
events, 262–263
functions, 261–262
layering, 330–331
playing, 322

audio elements, defining
with HTML tags, 263–265
with JavaScript code, 265–266

audio files
browser support status, 258
converting, 339–340
sample code, 19
supported file types, creating, 258

audio, in applications
browser audio file support status, 258
combining with Canvas capabilities,

270–271
enhancing applications, 320
HTML tags, 249
JavaScript code, 249
sample code, 251–257
supported audio file types, creating, 258

audio playback
audio player, 250
custom controls, 250
example, 250
multiple simultaneous sounds, 250
responding to audio player interaction,

270
responding to user interaction, 266–269

audio player, 250

audio recordings, controlling
audio attributes, 259–261
audio events, 262–263
audio functions, 261–262
overview, 258–259

audio recordings, creating
desktop sound recorders, 257
digital recorders, 257
downloading, 258
overview, 257
smartphone sound recorders, 258

autoplay attribute
audio, 260
video, 286

• B •
backgrounds, creating

advanced steps, 149–150
basic steps, 138
Canvas Cycle application, 336
in games, BC27

backgrounds, enhancing
reflected light, 323–324
shading, 322–323
simulated movement, 324–325

beginPath() method, 79
bevel joins, 78
Bezier, Pierre, 95
Bezier curves. See drawing Bezier curves
bit mapped images, 15
<body> tag, 12, 44
bold font option, 71
Bomomo, 335–336
bottom text baselines, 72
bounce, modeling in animation, 158–160
breakpoints, 35
browsers. See web browsers
Burn Canvas, 337
butt caps, 78

• C •
callbacks

definition, 139
events, 203

Can I Use, 340

346 HTML5 Canvas For Dummies

canplay event
audio, 262
video, 288

canplaythrough event
audio, 262
video, 288

canPlayType() function, 262, 288
Canvas. See also developing applications

advantages of, 9
areas, defining, 13
browser support, status, 340
browser support, testing, 29–30, 341
definition, 8
dimensions, specifying, 24
name origin, 7
overview, 12–13
performance testing, 21–23
tools and utilities. See applications for

Canvas; tools for Canvas
uses for, 16

Canvas 3D Engine, 337
Canvas components. See also HTML5

client devices, 9–12
device drivers, 14
displays, 14
HTML5, 12–15
images, 15
Internet Protocol, 15
JavaScript code, 13–14
remote devices, 15–16
servers, 15
web browsers, 9–10
web pages, 10
websites, 10

Canvas Cycle, 336
Canvas Raytracer, 337–338
Canvas Sketch, 337
<canvas> tag, 12
caps (lines), 78
Cartesian coordinate system, 47–48
center, text alignment option, 74
Central Processing Unit (CPU),

performance testing, 21–23
change variable, 151
Chrome browser

debugger, 37
downloading, 9

enabling GPU hardware acceleration,
27–28

overall rating, 30
Chrome Experiments, 336
circles

animated, 135–137
drawing. See drawing circles

client devices, Canvas component, 9–12
clipping objects

definition, 68
lines, 78
sample code, 68–69
steps involved, 69
uses for, 52

clouds
defining and storing image sequences,

237–239
illustration, 218
moving across a background, 239–241
sample code, 218–223

CMYK color, 187
code debuggers. See debuggers
code examples. See sample code
collisions, in games, BC34–BC36
color-coded syntax debugging, 37
colors

analogous, 189
assigning to objects, 53–56
blends, transparency, 64
CMYK, 187
combining, 189
custom, 189
design tool for, 55–56
enhancing applications, 320
experimenting with, 341
HEX, 187
hexadecimal values, 53, 55
HSL (hue, saturation, lightness), 55
HSV (hue, saturation, value), 55, 187–188
hue, 55, 188
keywords, 53–54
LAB, 187
lightness, 55, 188
lines, 53, 78
neon, 189
object fills, 53
online resources, 187

347 Index

online tools, 187–188
pastel, 189
primary, 189
RGB (red, green, blue), 55, 187
saturation, 55, 188
transitions. See gradients
triad, 189
uses for, 51

composition, Canvas. See also layout, Canvas
Fibonacci sequence, 178
golden ratio, 177–179
layers, 186–187
nautilus shell example, 178–179
rule of thirds, 176–177

computer graphics, 13
constructing an application base. See also

enhancing applications
animation loop, 321
animation setup function, 320–321
drawing function, 321
object drawing, 321
object movement, 321
onload function, 320
playing audio, 322
user interaction, 322

constructing lines, 78–79. See also drawing
lines

controls attribute
audio, 260
video, 286

converting
audio files, 339–340
degrees to radians, 86
video files, 341

copy option, 105
CPU (Central Processing Unit),

performance testing, 21–23
createLinearGradient() function,

59–61
createRadialGradient() function,

59–61

• D •
debuggers

breakpoints, 35
Chrome browser, 37
color-coded syntax, 37

Firefox Firebug, 35–37
Firerainbow, 37
Internet Explorer browser, 37
Opera browser, 37–38
overview, 35
Safari browser, 38

debugging HTML and JavaScript, 341
degrees, converting to radians, 86
Descartes, Rene, 47–48
desired frame rate, 231
desktop browsers, 9
desktop sound recorders, 257
destination shape, 106
destination-atop option, 105
destination-in option, 105
destination-out option, 105
destination-over option, 105
developer experiments, examples of, 336
developing applications

advantages of Canvas, 20
overview, 16–20

developing applications, sample code
audio files, 19
copying and pasting, 17–19
downloading, 16–17, 19
image files, 19
uses for, 17–19
video files, 19

device drivers, 14
digital recorders, 257
dimensions of appearance and motion, 224
displaying

animation frame rate, 235–236
application information, 214–215

displaying images
fuzziness and distortion, 111
illustration, 110
overview, 110–111
sample code, 111–112
steps involved, 112–113

displaying text. See also fonts
baseline, specifying, 7, 71–72
overview, 70
textBaseline attribute, 71–72

displays
Canvas dimensions, specifying, 24
GPU (Graphics Processing Unit), 25–26
overview, 14

348 HTML5 Canvas For Dummies

displays (continued)
pixel colors, 24–25
pixel density, 25
pixels, 24–25
resolution, 25
subpixel colors, 24–25
video drivers, 25–26

Disruption-Tolerant Networking (DTN), 15
distortion, displaying images, 111
<div> tag, 12, 44
divine proportions, 172, 173
<!DOCTYPE HTML> tag, 12, 43
documents, definition, 202
DOM (Document Object Model), 202–205
drawArc() function, 87
drawCircle() function, 139–140
drawing. See also drawing multi-sided

shapes
moving objects, 139–140. See also

animation
objects, 321
oscillating objects, 151. See also oscillation
types of curves, 85. See also specific types

drawing arcs
anticlockwise parameter, 87
arc() function, 85–87
arc parameters and calculations, 86
converting degrees to radians, 86
drawArc() function, 87
endAngle parameter, 86
fillColor parameter, 87
lineColor parameter, 87
PI() function, 86
radius parameter, 85
sample code, 87–88
startAngle parameter, 86
steps involved, 88–89
x parameter, 85
y parameter, 85

drawing Bezier curves. See also drawing
quadratic curves

overview, 95
sample code, 96–97
steps involved, 97

drawing circles
anticlockwise parameter, 89
arc() function, 89
drawCircle() function, 90

endAngle parameter, 89
fillColor parameter, 90
illustration, 90
lineColor parameter, 90
overview, 89
radius parameter, 89
sample code, 90–91
startAngle parameter, 89
steps involved, 91–92
x parameter, 89
y parameter, 89

drawing function, 321, BC26
drawing lines

attributes, 77–78
beginPath() method, 79
bevel joins, 78
butt caps, 78
caps, 78
clipping, 78
color, 53
colors, 78
construction, 78–79
gradients, 78
joins, 78
line attributes, 77–78
lineTo() function, 79
miter joins, 78
moveTo() function, 79
overview, 76–77
patterns, 78
round caps, 78
round joins, 78
shadows, 78
stroke() function, 79
transparency, 78
width, 78

drawing multi-segment curves
illustration, 100
overview, 100
sample code, 101
steps involved, 101

drawing multi-sided shapes
illustration, 82
overview, 81
sample code, 82–83
steps involved, 83–84

drawing programs, used with Canvas, 337

349 Index

drawing quadratic curves. See also
drawing Bezier curves

illustration, 98
overview, 97
sample code, 98–99
steps involved, 99–100

drawing rectangles
sample code, 50
steps involved, 51

drawing rounded corners
arcto() function, 94–95
illustration, 93
radius parameter, 92
sample code, 93–94
steps involved, 94–95
xBeginning parameter, 92
xEnd parameter, 92
yBeginning parameter, 92
yEnd parameter, 92

drawVideo() function, 293–295
DTN (Disruption-Tolerant Networking), 15
duration attribute

audio, 260
video, 286

• E •
EaselJS, 340
editors. See text editors
Electrotank, 340
em, font size, 71
end, text alignment option, 74
endAngle parameter

drawing arcs, 86
drawing circles, 89

ended attribute
audio, 260
video, 286

ended event
audio, 262
video, 288

enhancing applications. See also
constructing an application base;
fireworks; multiple and multifaceted
objects

applying enhancement, 320
audio, 320
color, 320

common Canvas elements, 320
images, 320
layering, 320
motion, 320
multiplicity, 319
objects, 320
reasons for, 319
sound, 320
techniques for, 319–320
variation, 319

enhancing backgrounds
reflected light, 323–324
shading, 322–323
simulated movement, 324–325

error event
audio, 262
video, 288

event listeners
browser windows, 206
Canvas, 205–206
defining, 205–206
response areas, 203–205

events
audio, 262–263
callbacks, 203
canplay, 262, 288
canplaythrough, 262, 288
DOM (Document Object Model), 202–205
ended, 262, 288
error, 262, 288
event listeners, 202–206
pause, 262, 288
play, 263, 288
playing, 263, 289
video, 288–289
volumechange, 263, 289

events, keystroke
discovering key codes, 207–208
overview, 206
responding to a key press, 208–209

events, mouse
dragging and dropping objects, 210–213
Firefox browser, 210
mouse down events, 211
mouse move events, 212–213
mouse up events, 212–213
overview, 209
responding to, 209–210

350 HTML5 Canvas For Dummies

events, responding to
overview, 193–194
sample code, 195–201
steps involved, 201–202

examples of code. See sample code

• F •
faces, fonts, 71
Fibonacci sequence, 178
fillColor parameter

drawing arcs, 87
drawing circles, 90

fills, color, 53
fillStyle attribute, 53
fillText() function, 53, 73
Firebug, 35–37, 341
Firefox browser. See also web browsers

downloading, 9
enabling GPU hardware acceleration, 28
overall rating, 30

Firerainbow, 37
fireworks

illustration, 302
sample code, 302–318

fonts. See also text, displaying
attributes, 71–73
bold, 71
em size, 71
faces, 71
inherit, 70
italic, 70
monospace, 71
normal, 70
oblique, 70
pt size, 71
px size, 71
sans-serif, 71
serif, 71
size, 71
style, 70
weight, 71

frame rates, 22, 230–231
friction, modeling in animation, 163–164
functions
addColorStop(), 60
arc(), 85–87, 89
arcto(), 94–95

audio, 262
canPlayType(), 262, 288
createLinearGradient(), 59–61
createRadialGradient(), 59–61
drawArc(), 87
drawCircle(), 139–140
drawVideo(), 293–295
fillText(), 53, 73
getContext(), 47
getElementById(), 47
lineTo(), 79
load(), 262, 288
moveTo(), 79
onload, 46
pause(), 262, 288
PI(), 86
play(), 262, 288
random(), 109–110
requestAnimationFrame(), 231–234
rotate(), 126–127, 144
scale(), 175
setInterval(), 234
setTimeout(), 139–140
setTransform(), 129
stroke(), 79

fuzziness, displaying images, 111

• G •
game application, base

animation loop, BC25
animation setup function, BC25
backgrounds, creating, BC27
drawing function, BC26
new object creation, BC26
object drawing, BC26–BC27
object movement, BC26
onload function, BC25
playing audio, BC27
user interaction, BC27

game application, components
3D simulation, BC31–BC32
animation with sprites, BC28–BC31
collisions, BC34–BC36
keeping score, BC36–BC37
managing difficulty levels, BC32–BC33
starting a new game, BC37–BC38
tossing objects, BC33–BC34

351 Index

game controllers, 341
Gamepad API, 341
gaming

ballpark game, sample code, BC2–BC23
essential elements, BC24–BC25
multiplayer social games, 340
overview, BC1
types of, BC24

Gecko browser, 13. See also web browsers
getContext() function, 47
getElementById() function, 47
globalAlpha attribute, 64
globalCompositeOperation attribute,

105–106
golden ratio, 177–179
GPU (Graphics Processing Unit)

adjusting image settings, 25
control panel, locating, 26
display tuning, 25–26
enabling hardware acceleration, 25, 27–28
installing video drivers, 26
performance testing, 21–23
tuning, 25–26
turning off other applications, 26
upgrading, 26

gradients
definition, 56
linear, 56
lines, 78
radial, 56
uses for, 51

gradients, creating
sample code, 57–59
steps involved, 59–61

graphics. See images; drawing multi-sided
shapes

gravity
formula for, 160
simulating in animations, 161–162

Grow a Face, 337

• H •
hanging text baselines, 72
hardware acceleration, enabling, 27–28
<head> tag, 12, 43
hexadecimal color values, 53, 55
hexadecimal numbers, 187

“Hi,” sample code, 11
HSL (hue, saturation, lightness), 55
HSV (hue, saturation, value), 55, 187–188
.htm filename, 34
HTML code parameters, order of

operations with JavaScript, 175. See
also tags

HTML5. See also Canvas
Canvas component, 12–15
new features, 12

HTML5 Canvas. See Canvas
HTML5 Test, 341
.html filename, 34
<html> tag, 12, 43
hue, 55, 188

• I •
icons used in this book, 4
id attribute

audio, 260
video, 286

ideographic text baselines, 72
image files, sample code, 19
image sequences, defining and storing,

237–239
images. See also computer graphics;

drawing multi-sided shapes
as background, 227
bit mapped, 15
Canvas component, 15
enhancing applications, 320
vector graphics, 15
versions of, 225

images, complex
creating, 185–187
overview, 179–180
sample code, 181–184

inherit, font style, 70
Internet, Interplanetary, 15. See also online

resources
Internet Explorer browser. See also web

browsers
debugger, 37
downloading, 9
enabling GPU hardware acceleration, 27
overall rating, 30

Internet Protocol, 15

352 HTML5 Canvas For Dummies

interval variable, 151
intervalID parameter, 139–140
italic, font style, 70

• J •
JavaScript

audio in applications, 249
Canvas component, 13–14
defining audio elements, 265–266
development tools, 340
order of operations with HTML, 175
overview, 13–14
sample code, 14

JEdit text editor, 33–34
jitter, 327
joins (lines), 78

• K •
keeping game scores, BC36–BC37
key codes, discovering, 207–208
keystroke events

discovering key codes, 207–208
overview, 206
responding to a key press, 208–209

keywords, color, 53–54
Kuler website, 341

• L •
LAB color, 187
layering

audio, 330–331
a Canvas, 186–187
enhancing applications, 320

layout, Canvas. See also composition,
Canvas

characteristics of objects, 172
divine proportions, 172, 173
orientation, 172
overview, 171
purpose of the Canvas, 172
relative height and width, 172

resizing and rescaling, 172–175
sample code, resizing and rescaling,

172–175
size and proportion, 172

left, text alignment option, 74
lighter option, 105
lightness, 55, 188
linear gradients, 56
lineColor parameter

drawing arcs, 87
drawing circles, 90

lines. See drawing lines
lineTo() function, 79
load() function, 262, 288
look and feel, developing

clouds in a landscape, 218–223
dimensions of appearance and motion, 224
images, as background, 227
overview, 217
versions of an image, 225
visual dimensions, 224–226

loop attribute
audio, 260
video, 286

• M •
maximum useful frame rate, 231
Micro Video Converter, 341
middle text baselines, 72
minimum effective frame rate, 230
mirroring objects

illustration, 122
overview, 121
sample code, 122–123
steps involved, 123–125

miter joins, 78
mobile browsers, 10
mobile devices

performance testing, 28–29
screen resolution, 28
testing applications on, 28–29

monitors. See displays
monospace fonts, 71

353 Index

motion. See also animation; translating
objects

dimensions of, 224
enhancing applications, 320
objects, 321

mouse events
dragging and dropping objects, 210–213
Firefox browser, 210
mouse down events, 211
mouse move events, 212–213
mouse up events, 212–213
overview, 209
responding to, 209–210

moveTo() function, 79
movies. See playing video
moving (animating) objects. See animation;

motion
moving (translating) objects. See motion;

translating objects
multi-segment curves. See drawing multi-

segment curves
multi-sided shapes. See drawing multi-

sided shapes
multiplayer social games, 340
multiple and multifaceted objects. See also

enhancing applications
jitter, 327
randomized object characteristics, 326–327
spawning new objects, 328–329
storing variables in an array, 325–326

multiplicity, enhancing applications, 319
music. See audio
muted attribute

audio, 260
video, 286

• N •
nautilus shell example, 178–179
neon color, 189
no repeat patterns, 63
normal, font style, 70
Notepad text editor, 31–32
Notepad++ text editor, 33

• O •
object attributes

assigning to objects, 52–53
fillStyle, 53
strokeStyle, 53
summary of, 51–52. See also specific

attributes
object tails, creating, 329–330
objects. See also multiple and multifaceted

objects
drawing, 321
drawing, in games, BC26–BC27
enhancing applications, 320
movement, 321
movement, in games, BC26
tossing, in games, BC33–BC34

oblique, font style, 70
online resources

kuler web page, 187–188
using color, 187–188

onload function
constructing an application base, 320
defining a Canvas, 46
game application base, BC25

Opera browser. See also web browsers
debugger, 37–38
downloading, 9
enabling GPU hardware acceleration, 27
history of, 13
overall rating, 30

orientation, Canvas, 172
oscillation

creating a background, 149–150
drawing an oscillating object, 151
illustration, 145
loading multiple images, 150
overview, 144–145
radius of rotation, calculating, 151
sample code, 146–148
speed of rotation, controlling, 151
steps involved, 148–151

354 HTML5 Canvas For Dummies

• P •
painting application, 335–336
parameters
anticlockwise, 87
endAngle, 86, 89
fillColor, 87, 90
intervalID, 139–140
lineColor, 87, 90
radius, 85, 89, 92
scaleX, 132
scaleY, 132
skewX, 132
skewY, 132
startAngle, 86, 89
translateX, 133
translateY, 133
x, 85, 89
xBeginning, 92
xEnd, 92
y, 85, 89
yBeginning, 92
yEnd, 92

pastel colors, 189
patterns

definition, 61
lines, 78
no repeat, 63
repeat, 63
repeat X, 63
repeat Y, 63
repeating images, 61
uses for, 52

patterns, creating
sample code, 62
steps involved, 63–64

pause event
audio, 262
video, 288

pause() function, 262, 288
paused attribute

audio, 260
video, 286

performance
avoiding degradation, 332
managing, 332
object characteristics affecting, 332
testing, 21–23

PI() function, 86
pictures. See images; drawing multi-sided

shapes
pixel colors, 24–25
pixel density, 25
pixels, 24–25
Plasma Tree, 338
play event

audio, 263
video, 288

play() function, 262, 288
playing audio

audio player, 250
custom controls, 250
example, 250
in games, BC27
multiple simultaneous sounds, 250
responding to audio player

interaction, 270
responding to user interaction, 266–269

playing event
audio, 263
video, 289

playing video
Canvas area interaction, 295–298
controlling, 276
responding to user interaction, 295–299
video player interaction, 298–299

Pocket Full of Canvas, 338
positioning a Canvas on a web page

2D Canvas context, 44
absolute positioning, 47–48
Cartesian coordinate system, 47–48
overview, 44
relative positioning, 48–49
sample code, 45
steps involved, 46–47
x and y coordinates, 47–48
y coordinate direction error, 48

355 Index

positioning shapes on a Canvas. See
drawing

preload attribute
audio, 260
video, 286

primary colors, 189
pt, font size, 71
px, font size, 71

• Q •
quadratic curves. See drawing quadratic

curves

• R •
radial gradients, 56
radius of rotation, calculating, 151
radius parameter

drawing arcs, 85
drawing circles, 89
drawing rounded corners, 92

RAM (Random Access Memory),
performance testing, 21–23

random() function, 109–110
randomized object characteristics, 326–327
randomizing shapes

illustration, 108
overview, 107
random() function, 109–110
sample code, 108–109
steps involved, 109–110

raytracing, 337–338
rectangles. See drawing rectangles
redraw interval, specifying, 139–140
reflected light, background, 323–324
reflecting images. See mirroring objects
relative positioning, 48–49
Remember icon, 4
remote devices, 15–16
repeat patterns, 63
repeat X and Y patterns, 63
requestAnimationFrame() function,

231–234

resizing and rescaling a Canvas, 172–175.
See also scaling objects

resolution
display tuning, 25
mobile devices, 28

RGB (red, green, blue), 55, 187
right, text alignment option, 74
rotate() function, 126–127, 144
rotating objects

illustration, 126
overview, 125
rotate() function, 126–127
rotation radius, calculating, 151
sample code, 126–127
speed, controlling, 151
steps involved, 128–129

round caps, 78
round joins, 78
rounded corners. See drawing rounded

corners
rule of thirds, 176–177

• S •
Safari browser. See also web browsers

debugger, 38
downloading, 9
overall rating, 30

sample code
adjusting animation for real-world forces,

153–156
animation, testing browser performance,

242–246
audio files, 19
audio in applications, 251–257
ballpark game, BC2–BC23
circular motion, 141–143
clipping objects, 68–69
clouds, 218–223
complex images and shapes, 181–184
compositing shapes, 103–105
copying and pasting, 17–19
displaying images, 111–112
downloading, 16–17, 19

356 HTML5 Canvas For Dummies

sample code (continued)
events, responding to, 195–201
fireworks, 302–318
gradients, creating, 57–59
image files, 19
JavaScript code, 14
mirroring objects, 122–123
moving circle, 136–137
oscillation, 146–148
patterns, creating, 62
positioning a Canvas on a web page, 45
randomizing shapes, 108–109
resizing and rescaling a Canvas, 172–175
rotating objects, 126–127
saying “Hi,” 11
scaling objects, 119–120
shadows, creating, 67–68
text, aligning, 74–75
text, baselines, 72–73
texture, creating, 190–191
transform matrix, 130–131
translating objects, 116–117
transparency, creating, 65
uses for, 17–19
video files, 19
web pages, creating, 42

sample code, developing Canvas
applications

audio files, 19
copying and pasting, 17–19
downloading, 16–17, 19
image files, 19
uses for, 17–19
video files, 19

sample code, drawing
arcs, 87–88
Bezier curves, 96–97
circles, 90–91
multi-segment curves, 101
multi-sided shapes, 82–83
quadratic curves, 98–99
rectangles, 50
rounded corners, 93–94

sans-serif fonts, 71
saturation, 55

saturation, color, 188
saving

Canvas files, 34–35, 37
Canvas state, 118–119

Scalable Vector Graphics (SVG), 13
scale() function, 175
scaleX parameter, 132
scaleY parameter, 132
scaling objects

illustration, 119
overview, 119
resizing and rescaling a Canvas, 172–175
sample code, 119–120
steps involved, 120–121
transform matrix, 129–130, 132

scorekeeping, games, BC36–BC37
screen resolution. See resolution
<script> tag, 12, 44
serif fonts, 71
servers, Canvas component, 15
setInterval() function, 234
setTimeout() function, 139–140
setTransform() function, 129
shading backgrounds, 322–323
shadows

lines, 78
uses for, 52

shadows, creating
sample code, 67–68
steps involved, 66–67

shapes, complex. See also images
creating, 185–187
overview, 179–180
sample code, 181–184

shifting objects. See translating objects
sketching. See drawing
skewing, transform matrix, 129–130, 132
skewX parameter, 132
skewY parameter, 132
smartphone sound recorders, 258
smartphones. See mobile devices
sound. See audio
source objects, 106
source-atop option, 105
source-in option, 105

357 Index

source-out option, 105
source-over option, 105
spawning new objects, 328–329
special effects, 338
spinning objects. See rotating objects
sprites, animation with, BC28–BC31
start, text alignment option, 74
startAngle parameter

drawing arcs, 86
drawing circles, 89

stroke() function, 79
strokes. See drawing lines
strokeStyle attribute, 53
subpixel colors, 24–25
SVG (Scalable Vector Graphics), 13
system requirements, 2

• T •
tablets. See mobile devices
tags. See also specific tags
<body> tag, 12, 44
<canvas> tag, 12
definition, 10
<div> tag, 12, 44
<!DOCTYPE HTML> tag, 12, 43
<head> tag, 12, 43
<html> tag, 12
<HTML> tag, 43
<script> tag, 12, 44
start and end, 43

tags, uses for
in audio applications, 249
defining audio elements, 263–265
defining Canvas area, 12
defining web pages, 41–44
delineating code areas, 12
delineating HTML code, 12
delineating main web page areas, 12
identifying web page documents, 12
web page information, 12

Technical Stuff icon, 4
testing

applications on mobile devices, 28–29
baselines in browsers, 73

browser support for Canvas, 29–30, 341
browsers, overall ratings, 30

testing, animations in browsers
creating base code, 242–246
illustration, 242
overview, 241
sample code, 242–246
stressing the browser, 246–248

testing, performance
Canvas, 21–23
CPU (Central Processing Unit), 21–23
GPU (Graphics Processing Unit), 21–23
on mobile devices, 28–29
RAM (Random Access Memory), 21–23
web browsers, 21–23

text, aligning
center, 74
end, 74
left, 74
overview, 74
positioning options, 74
right, 74
sample code, 74–75
start, 74
textAlign attribute, 74

text, baselines
alphabetic, 72
bottom, 72
hanging, 72
ideographic, 72
middle, 72
positioning options, 72
sample code, 72–73
specifying, 71–72
testing in browsers, 73
top, 72

text, displaying. See also fonts
baseline, specifying, 7, 71–72
overview, 70
textBaseline attribute, 71–72

text editors
enhanced features, 32–34
file in use by another program, 37
JEdit, 33–34
Notepad, 31–32

358 HTML5 Canvas For Dummies

text editors (continued)
Notepad++, 33
saving Canvas files, 34–35, 37
standard, 31–32
TextEdit, 31–32

textAlign attribute, 74
textBaseline attribute, 71–72
TextEdit text editor, 31–32
texture, creating

overview, 190
sample code, 190–191
steps involved, 191–192

3D graphics
Canvas 3D Engine application, 337
drawing, 342
in games, BC31–BC32
simulating, 337, BC31–BC32
WebGL tool, 337

timeout, moving objects, 139–140
Tip icon, 4
tools for Canvas. See also applications for

Canvas
3D graphics, 342
Audacity, 339–340
audio file conversion, 339–340
browser Canvas support, status, 340
browser Canvas support, testing, 341
Can I Use, 340
color experiments, 341
debugging HTML and JavaScript, 341
EaselJS, 340
Electrotank, 340
Firebug, 341
game controllers, 341
Gamepad API, 341
HTML5 Test, 341
JavaScript development, 340
kuler website, 341
Micro Video Converter, 341
multiplayer social games, 340
video file conversion, 341
WebGL, 342

top text baselines, 72

transform matrix
applying, steps involved, 131–132
illustration, 130
overview, 129
sample code, 130–131
scaleX parameter, 132
scaleY parameter, 132
scaling, 129–130, 132
setTransform() function, 129
skewing, 129–130, 132
skewX parameter, 132
skewY parameter, 132
translateX parameter, 133
translateY parameter, 133

transforming objects
See also mirroring objects
See also rotating objects
See also scaling objects
See also transform matrix
See also translating objects
overview, 115
saving Canvas state, 118–119

transitions. See gradients
translateX parameter, 133
translateY parameter, 133
translating objects

illustration, 116
overview, 115
sample code, 116–117
steps involved, 117–118
transform matrix, 129–130, 133

transparency
alpha attribute, 64
color blends, 64
lines, 78
uses for, 52

transparency, creating
overview, 64
sample code, 65
steps involved, 66

triad colors, 189
2D Canvas context, 44
type faces. See fonts, faces

359 Index

• U •
user events. See events
user interaction. See also events

constructing an application base, 322
in games, BC27
prompting with motion, 228
responding to, 229–230

• V •
variation, enhancing applications, 319
vector graphic images, 15
vectors

definition, 157
for object motion, 157–158

video animations
drawing video images, 293–295
setting up the animation loop, 292–293
starting the video, 292

video card. See GPU (Graphics Processing
Unit)

video drivers
definition, 25
installing, 26

video elements, defining
with HTML tags, 289–290
with JavaScript code, 291–292

video files
format conversion, 341
sample code, 19

video in applications
browser inconsistencies, 276
browser video file support status, 284
combining with Canvas capabilities,

299–300
HTML tags, 275
JavaScript code, 275
sample code, 277–283
supported video file types, creating, 284

video playback
Canvas area interaction, 295–298
controlling, 276

responding to user interaction, 295–299
video player interaction, 298–299

video recorders, audio recordings, 258
video recordings, controlling

overview, 285
video attributes, 286–287
video events, 288–289
video functions, 287–288

video recordings, creating
camcorder, 284
desktop video recorder, 284
downloading, 284
smartphone recording, 284

visual dimensions, 224–226
volume attribute

audio, 260
video, 286

volumechange event
audio, 263
video, 289

• W •
Warning icon, 4
web browsers. See also specific browsers

audio file support status, 258
Canvas component, 9–10
desktop, 9
enabling GPU hardware acceleration,

27–28
mobile, 10
performance testing, 21–23
window event listeners, 206

web browsers, Canvas support
status, 340
testing, 29–30, 341

web browsers, stress testing animations
creating base code, 242–246
illustration, 242
overview, 241
sample code, 242–246
stressing the browser, 246–248

360 HTML5 Canvas For Dummies

web pages. See also online resources
Canvas component, 10
HTML tags for, 12

web pages, creating
overview, 41
sample code, 42

WebGL, 342
WebKit browser, 13. See also web

browsers
websites, 10

• X •
x and y coordinates, 47–48
x parameter

drawing arcs, 85
drawing circles, 89

xBeginning parameter, 92
xEnd parameter, 92
xor option, 105

• Y •
y coordinate direction error, 48
y parameter

drawing arcs, 85
drawing circles, 89

yBeginning parameter, 92
yEnd parameter, 92

Apple & Mac

iPad 2 For Dummies,
3rd Edition
978-1-118-17679-5

iPhone 4S For Dummies,
5th Edition
978-1-118-03671-6

iPod touch For Dummies,
3rd Edition
978-1-118-12960-9

Mac OS X Lion
For Dummies
978-1-118-02205-4

Blogging & Social Media

CityVille For Dummies
978-1-118-08337-6

Facebook For Dummies,
4th Edition
978-1-118-09562-1

Mom Blogging
For Dummies
978-1-118-03843-7

Twitter For Dummies,
2nd Edition
978-0-470-76879-2

WordPress For Dummies,
4th Edition
978-1-118-07342-1

Business

Cash Flow For Dummies
978-1-118-01850-7

Investing For Dummies,
6th Edition
978-0-470-90545-6

Job Searching with Social
Media For Dummies
978-0-470-93072-4

QuickBooks 2012
For Dummies
978-1-118-09120-3

Resumes For Dummies,
6th Edition
978-0-470-87361-8

Starting an Etsy Business
For Dummies
978-0-470-93067-0

Cooking & Entertaining

Cooking Basics
For Dummies, 4th Edition
978-0-470-91388-8

Wine For Dummies,
4th Edition
978-0-470-04579-4

Diet & Nutrition

Kettlebells For Dummies
978-0-470-59929-7

Nutrition For Dummies,
5th Edition
978-0-470-93231-5

Restaurant Calorie Counter
For Dummies,
2nd Edition
978-0-470-64405-8

Digital Photography

Digital SLR Cameras &
Photography For Dummies,
4th Edition
978-1-118-14489-3

Digital SLR Settings
& Shortcuts
For Dummies
978-0-470-91763-3

Photoshop Elements 10
For Dummies
978-1-118-10742-3

Gardening

Gardening Basics
For Dummies
978-0-470-03749-2

Vegetable Gardening
For Dummies,
2nd Edition
978-0-470-49870-5

Green/Sustainable

Raising Chickens
For Dummies
978-0-470-46544-8

Green Cleaning
For Dummies
978-0-470-39106-8

Health

Diabetes For Dummies,
3rd Edition
978-0-470-27086-8

Food Allergies
For Dummies
978-0-470-09584-3

Living Gluten-Free
For Dummies,
2nd Edition
978-0-470-58589-4

Hobbies

Beekeeping
For Dummies,
2nd Edition
978-0-470-43065-1

Chess For Dummies,
3rd Edition
978-1-118-01695-4

Drawing For Dummies,
2nd Edition
978-0-470-61842-4

eBay For Dummies,
7th Edition
978-1-118-09806-6

Knitting For Dummies,
2nd Edition
978-0-470-28747-7

Language &
Foreign Language

English Grammar
For Dummies,
2nd Edition
978-0-470-54664-2

French For Dummies,
2nd Edition
978-1-118-00464-7

German For Dummies,
2nd Edition
978-0-470-90101-4

Spanish Essentials
For Dummies
978-0-470-63751-7

Spanish For Dummies,
2nd Edition
978-0-470-87855-2

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Connect with us online at www.facebook.com/fordummies or @fordummies

Eric Tyson
Bestselling author of Personal Finance For
Dummies and Mutual Funds For Dummies

Learn to:
Develop and manage a portfolio

Invest in stocks, bonds, mutual,
funds, and real estate

Open a small business

Investing

6th Edition
Making Everything Easier!™

Andy Rathbone
Author of all previous editions of
Windows For Dummies

Learn to:
• lanosreP ize your Windows 7 desktop

with your own photos

• W pu deepS indows with built-in
shortcuts

• lno ot sgninraw swodniW ezimotsuC y
give the notices you want

• evoM your files from your old PC to a
Windows 7 computer

Windows® 7

™

Jamie Combs
Professor at the Herron School of Art & Design

Brenda Hoddinott
Award-winning artist and art educator

Learn to:
• Draw animals, people, still life, and more

• Master shading, blending, composition,
and perspective

• Create your drawings from simple
geometric shapes to finished artwork

Drawing

2nd Edition
Making Everything Easier!™

Edward C. Baig
Bob “Dr. Mac” LeVitus

• Set up your iPad, browse the Web,
and download apps

• View and send e-mail, listen to music,
watch movies, and make FaceTime® calls

• Capture photos, record video, play
games, read your favorite books and
magazines, and text with iMessage

IN FULL COLOR!

Learn to:

iPad
®

 2
3rd Edition

Covers the iPad 2, iPad, and iOS 5!

Math & Science

Algebra I For Dummies,
2nd Edition
978-0-470-55964-2

Biology For Dummies,
2nd Edition
978-0-470-59875-7

Chemistry For Dummies,
2nd Edition
978-1-1180-0730-3

Geometry For Dummies,
2nd Edition
978-0-470-08946-0

Pre-Algebra Essentials
For Dummies
978-0-470-61838-7

Microsoft Office

Excel 2010 For Dummies
978-0-470-48953-6

Office 2010 All-in-One
For Dummies
978-0-470-49748-7

Office 2011 for Mac
For Dummies
978-0-470-87869-9

Word 2010
For Dummies
978-0-470-48772-3

Music

Guitar For Dummies,
2nd Edition
978-0-7645-9904-0

Clarinet For Dummies
978-0-470-58477-4

iPod & iTunes
For Dummies,
9th Edition
978-1-118-13060-5

Pets

Cats For Dummies,
2nd Edition
978-0-7645-5275-5

Dogs All-in One
For Dummies
978-0470-52978-2

Saltwater Aquariums
For Dummies
978-0-470-06805-2

Religion & Inspiration

The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies,
2nd Edition
978-1-118-07778-8

Spirituality For Dummies,
2nd Edition
978-0-470-19142-2

Self-Help & Relationships

Happiness For Dummies
978-0-470-28171-0

Overcoming Anxiety
For Dummies,
2nd Edition
978-0-470-57441-6

Seniors

Crosswords For Seniors
For Dummies
978-0-470-49157-7

iPad 2 For Seniors
For Dummies, 3rd Edition
978-1-118-17678-8

Laptops & Tablets
For Seniors For Dummies,
2nd Edition
978-1-118-09596-6

Smartphones & Tablets

BlackBerry For Dummies,
5th Edition
978-1-118-10035-6

Droid X2 For Dummies
978-1-118-14864-8

HTC ThunderBolt
For Dummies
978-1-118-07601-9

MOTOROLA XOOM
For Dummies
978-1-118-08835-7

Sports

Basketball For Dummies,
3rd Edition
978-1-118-07374-2

Football For Dummies,
2nd Edition
978-1-118-01261-1

Golf For Dummies,
4th Edition
978-0-470-88279-5

Test Prep

ACT For Dummies,
5th Edition
978-1-118-01259-8

ASVAB For Dummies,
3rd Edition
978-0-470-63760-9

The GRE Test For
Dummies, 7th Edition
978-0-470-00919-2

Police Officer Exam
For Dummies
978-0-470-88724-0

Series 7 Exam
For Dummies
978-0-470-09932-2

Web Development

HTML, CSS, & XHTML
For Dummies, 7th Edition
978-0-470-91659-9

Drupal For Dummies,
2nd Edition
978-1-118-08348-2

Windows 7

Windows 7
For Dummies
978-0-470-49743-2

Windows 7
For Dummies,
Book + DVD Bundle
978-0-470-52398-8

Windows 7 All-in-One
For Dummies
978-0-470-48763-1

Gary McCord
CBS golf analyst and Champions Tour winner

Learn to:
• Master your grip, stance, and swing

• Improve your game with tips from
the pros

• Overcome the game’s mental
challenges with tricks and exercises

Golf

4th Edition
Making Everything Easier!™

Joshua Waldman, MBA
Consultant and entrepreneur

Learn to:
Harness the power of Twitter, Facebook,
LinkedIn, and more to research and
identify job opportunities

Create a winning strategy for securing
a position

Build your personal brand online

Job Searching
with Social Media

Making Everything Easier!™

Carolyn Abram
Leah Pearlman
Coauthors of all previous editions of
Facebook For Dummies

Learn to:
Create your profile and find new and old
friends

Set your security so only certain people
see your profile and posts

Upload high definition photos and tag
your friends

Stay connected on the go with Facebook
mobile

Facebook
4th Edition

Making Everything Easier!™

David D. Busch

Use all the features of your new Canon®,
Nikon®, Sony®, Pentax®, or Olympus® dDSLR

Shift out of your camera’s automatic
mode for better pictures

Fine-tune your photos with Adobe®
Photoshop®

IN FULL COLOR!

Learn to:

Digital SLR Cameras

& Photography

4th Edition
Making Everything Easier!™

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Connect with us online at www.facebook.com/fordummies or @fordummies

Wherever you are
in life, Dummies
makes it easier.

Visit us at Dummies.com and connect with us online at
 www.facebook.com/fordummies or @fordummies

From fashion to Facebook®,
wine to Windows®,
and everything in between,
Dummies makes it easier.

Math & Science

Algebra I For Dummies,
2nd Edition
978-0-470-55964-2

Biology For Dummies,
2nd Edition
978-0-470-59875-7

Chemistry For Dummies,
2nd Edition
978-1-1180-0730-3

Geometry For Dummies,
2nd Edition
978-0-470-08946-0

Pre-Algebra Essentials
For Dummies
978-0-470-61838-7

Microsoft Office

Excel 2010 For Dummies
978-0-470-48953-6

Office 2010 All-in-One
For Dummies
978-0-470-49748-7

Office 2011 for Mac
For Dummies
978-0-470-87869-9

Word 2010
For Dummies
978-0-470-48772-3

Music

Guitar For Dummies,
2nd Edition
978-0-7645-9904-0

Clarinet For Dummies
978-0-470-58477-4

iPod & iTunes
For Dummies,
9th Edition
978-1-118-13060-5

Pets

Cats For Dummies,
2nd Edition
978-0-7645-5275-5

Dogs All-in One
For Dummies
978-0470-52978-2

Saltwater Aquariums
For Dummies
978-0-470-06805-2

Religion & Inspiration

The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies,
2nd Edition
978-1-118-07778-8

Spirituality For Dummies,
2nd Edition
978-0-470-19142-2

Self-Help & Relationships

Happiness For Dummies
978-0-470-28171-0

Overcoming Anxiety
For Dummies,
2nd Edition
978-0-470-57441-6

Seniors

Crosswords For Seniors
For Dummies
978-0-470-49157-7

iPad 2 For Seniors
For Dummies, 3rd Edition
978-1-118-17678-8

Laptops & Tablets
For Seniors For Dummies,
2nd Edition
978-1-118-09596-6

Smartphones & Tablets

BlackBerry For Dummies,
5th Edition
978-1-118-10035-6

Droid X2 For Dummies
978-1-118-14864-8

HTC ThunderBolt
For Dummies
978-1-118-07601-9

MOTOROLA XOOM
For Dummies
978-1-118-08835-7

Sports

Basketball For Dummies,
3rd Edition
978-1-118-07374-2

Football For Dummies,
2nd Edition
978-1-118-01261-1

Golf For Dummies,
4th Edition
978-0-470-88279-5

Test Prep

ACT For Dummies,
5th Edition
978-1-118-01259-8

ASVAB For Dummies,
3rd Edition
978-0-470-63760-9

The GRE Test For
Dummies, 7th Edition
978-0-470-00919-2

Police Officer Exam
For Dummies
978-0-470-88724-0

Series 7 Exam
For Dummies
978-0-470-09932-2

Web Development

HTML, CSS, & XHTML
For Dummies, 7th Edition
978-0-470-91659-9

Drupal For Dummies,
2nd Edition
978-1-118-08348-2

Windows 7

Windows 7
For Dummies
978-0-470-49743-2

Windows 7
For Dummies,
Book + DVD Bundle
978-0-470-52398-8

Windows 7 All-in-One
For Dummies
978-0-470-48763-1

Gary McCord
CBS golf analyst and Champions Tour winner

Learn to:
• Master your grip, stance, and swing

• Improve your game with tips from
the pros

• Overcome the game’s mental
challenges with tricks and exercises

Golf

4th Edition
Making Everything Easier!™

Joshua Waldman, MBA
Consultant and entrepreneur

Learn to:
Harness the power of Twitter, Facebook,
LinkedIn, and more to research and
identify job opportunities

Create a winning strategy for securing
a position

Build your personal brand online

Job Searching
with Social Media

Making Everything Easier!™

Carolyn Abram
Leah Pearlman
Coauthors of all previous editions of
Facebook For Dummies

Learn to:
Create your profile and find new and old
friends

Set your security so only certain people
see your profile and posts

Upload high definition photos and tag
your friends

Stay connected on the go with Facebook
mobile

Facebook
4th Edition

Making Everything Easier!™

David D. Busch

Use all the features of your new Canon®,
Nikon®, Sony®, Pentax®, or Olympus® dDSLR

Shift out of your camera’s automatic
mode for better pictures

Fine-tune your photos with Adobe®
Photoshop®

IN FULL COLOR!

Learn to:

Digital SLR Cameras

& Photography

4th Edition
Making Everything Easier!™

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Connect with us online at www.facebook.com/fordummies or @fordummies

Wherever you are
in life, Dummies
makes it easier.

Visit us at Dummies.com and connect with us online at
 www.facebook.com/fordummies or @fordummies

From fashion to Facebook®,
wine to Windows®,
and everything in between,
Dummies makes it easier.

• DIY
• Consumer Electronics
• Crafts
• Software
• Cookware

• Hobbies
• Videos
• Music
• Games
• and More!

For more information, go to Dummies.com®
and search the store by category.

 Dummies products
make life easier!

Connect with us online at
www.facebook.com/fordummies or @fordummies

www.dummies.com/go/mobile
www.dummies.com/go/iphone/apps

	HTML5 Canvas For Dummies
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Conventions Used in This Book
	How This Book Is Organized
	Icons Used in This Book
	Where to Go From Here

	Part I: Looking at Canvas
	Chapter 1: A Quick Glimpse Behind the Canvas
	Displaying Your Canvas on the Stage of the World Wide Web
	Seeing a Canvas Application in Action

	Chapter 2: Setting Up Your Canvas Platform
	Testing Canvas Performance on Your System
	Tuning Your Display
	Testing Your Application on Mobile Devices
	Measuring Web Browser Support for HTML5 Canvas
	Using Text Editors
	Using Code Debuggers

	Part II: Drawing on Canvas
	Chapter 3: Creating Objects
	Positioning Objects on a Canvas
	Drawing Rectangles
	Defining Object Attributes
	Displaying Text
	Drawing Lines

	Chapter 4: Enhancing Objects
	Drawing Multi-Sided Shapes
	Drawing Curves
	Compositing Objects
	Randomizing Shapes
	Displaying Images

	Chapter 5: Transforming Objects
	Translating
	Saving Canvas States
	Scaling
	Mirroring
	Rotating
	Applying a Transform Matrix

	Chapter 6: Moving Objects
	The Basics of Movement
	Creating Circular Motion
	Creating Oscillation
	Adjusting Movement for Acceleration, Gravity, Friction, and Bounce

	Part III: Breathing Life into Your Canvas
	Chapter 7: Mastering the Art of Canvas
	Creating Appealing Canvas Spaces
	Creating Complex Shapes and Images
	Getting the Most Out of Color
	Creating Textures

	Chapter 8: Introducing User Interaction
	Responding to User Events
	Handling Key Events
	Handling Mouse Events
	Dragging and Dropping Objects
	Displaying Information for the User

	Chapter 9: Creating Engaging Imagery and Motion
	Developing an Application Look and Feel
	Prompting User Interaction
	Managing Animations
	Testing Browser Animation Performance

	Chapter 10: Sounding Off with Audio
	Including Audio in Your Canvas Application
	Creating Audio Recordings
	Controlling Audio Recordings
	Defining Audio Elements
	Responding to User Interaction
	Defining Other Application Components

	Part IV: Developing More Complex Applications
	Chapter 11: Grabbing Attention with Video
	Including Video in Your Application
	Creating Video Recordings
	Controlling Video Recordings
	Defining Video Elements
	Using Animation to Draw Video Frames
	Responding to User Interaction
	Defining Other Application Components

	Chapter 12: Enhancing Canvas Applications
	Aspects of Enhancement
	Constructing an Application Base
	Enhancing Background Canvas Layers
	Creating Multiple and Multifaceted Objects
	Creating Object Tails
	Creating Layered Audio
	Managing Performance

	Part V: The Part of Tens
	Chapter 13: Ten Great Canvas Applications
	Bomomo
	Canvas Cycle
	Chrome Experiments
	Grow a Face
	Burn Canvas
	Canvas Sketch
	Canvas 3D Engine
	Canvas Raytracer
	Pocket Full of Canvas
	Plasma Tree

	Chapter 14: Ten Great Tools
	Audacity
	Can I Use
	EaselJS
	Electrotank
	Firebug
	Gamepad API
	HTML5 Test
	Kuler
	Micro Video Converter
	WebGL

	Index

