Regular

JavaScript and TypeScript

Jérg Krause

ApreSS®
(v allitebooks oo

http://www.allitebooks.org

Introducing
Regular Expressions

Jorg Krause

Apress-

www.allitebooks.cond

http://www.allitebooks.org

Introducing Regular Expressions

Jorg Krause
Berlin, Germany

ISBN-13 (pbk): 978-1-4842-2507-3 ISBN-13 (electronic): 978-1-4842-2508-0
DO0I110.1007/978-1-4842-2508-0

Library of Congress Control Number: 2016962076
Copyright © 2017 by Jorg Krause

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Technical Reviewer: Massimo Nardone

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,
Jonathan Gennick, Todd Green, Celestin Suresh John, Nikhil Karkal, Robert Hutchinson,
James Markham, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen

Copy Editor: Kim Burton-Weisman

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www. springer.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at www. apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www. apress . com. For detailed information about how to locate your book’s source code, go to
WwW.apress.com/source-code/.

Printed on acid-free paper

www.allitebooks.cond

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

Contents at a Glance

About the AUhOFccccseeminiiseenmnnse s ix
Introductioncccciunmssemnnmmsssnnsnmsssssnsnnsssssnsnnnssssnnnnnsssnnnnenssnnnnnnnsnnnnns xi
Chapter 1: Introducing Regular EXpressions.......ccuuseessmsssseasssssssnnns 1
Chapter 2: Recognizing Patterns........ccccccnnmnsemmmmnsssesnnmsssssssnsssssnnns 5
Chapter 3: The JavaScript Functions...........cccusemmmssenmmssenssssanssssans 19
Chapter 4: Examples of Patterns...........cccccinisnemmmnnsssensnnnssseasnnnn. 25
APPENUiXariiissnnnrnrsssnnnmmssssnnnsnssssnnnssssssnnnsnssssnnnssssssnnsnsssssnnsnsssssnnnnnss 43
INA@X.ueeetiiissnnnnnnsssnnnnnssssnnnnnssssnnnnsssssnnnnnssssnnnnsssssnnnnnssssnnnnsssssnnnnnsssnnnns 47
iii

www.allitebooks.cond

http://www.allitebooks.org

Contents

About the AULROFccoveeeiiirremerirr e m e rnmmn e ix

LT T (] Xi

Chapter 1: Introducing Regular EXpressions.......cc.useusrnsssssnssssssnnns 1

Copy or Scaffold?ccovvrerniererre s 2
HOW D0ES IEWOIK? ...ttt sn e snssnn e 3
ResoIVINg EXPreSSiONS........ccvvevververrersensessessesssssesssssessessssssssssssssssssssssenss 4
Chapter 2: Recognizing Patterns.........cccccvnmsnssemsmsnnnnsssssssssssssssnnns 5
BaSICS....cucorierrirrerisse e 5
Characters, Lines, and TEXL..........ccoorerererererererenesesese e sese e e seesesenens 5
Terms for Regular EXPressions..........ccuceeevsersessessessssssssssssssssssssssssssssssnnes 6
MEtaCharaCters..........coo i 6
I T 6
ChAracter ClASSES......c.cvurererereserereseseesesesesesesesesesssssesesesesssesssesssssssssssss s s ssssssssnanas 6
REfBIBNCES........ceereccetrece s 7
Metacharacters OVEIVIBWcccvcreerrersessessesses s sss e s e snssessnsnnns 7
Start, End, and BOUNAANIEScccevereerereeneerenseeree e ssessessessssssssessssssssssssssssssssssassannes 7

FY LT 1 T T OO 8

L (00 1 T T T TS 9
Character CIASSEScuccerrerreressessessssessssessessssessssessessssesssssssessssssssssnsenns 9
0NE OUL OF MANY ...t re s e rae e sae e sae e sae e s e sae e saenesaenanaens 9

1 L2020 10
) 10

\%

www.allitebooks.cond

http://www.allitebooks.org

vi

CONTENTS

Date and TIME........cocornnnn s —————— 11
3] (] 10 LTS 1
ADDFEVIALIONSceeuereeeirereserresesesesse e sre e se s e e sn s sre e sseennens 12
Repetition Operatorsccocvvvveererrerrerser s 12
COMMON OPEIATOIS....ccueeerererereereresereresseresersesersesesaesesesssessesessesesaesessesssnssassesaens 13
SUMMEAIY ...eeeeereeereeserererreresserss e ssesesseresserss e sae e saesssasssssessssessssesasssssesnsesssssassssaens 14
S LT E L 1T L0 R 14
REfBreNCeS ..o 14
GIOUPS .eeereerereses e s s e st st s e st st se e se st se e s e s e e s e e s e s e e e e e e e s n s e 15
SIMPIE GIOUPS .vveveeeerrerreeererrsesese s e ss s s ss s e s san s sesssnsasssnenes 15
ENcIoSing CharaClers.........cccerrnenenrnnsesesssssesesssss s sss s ssssssesssessssesssnes 16
NON-CoUNtING GrOUPScovveecererereesrsssseesessssesese s sesess s sesssssssesssssssessssssssssnsenes 17
Lookahead REferencCes..........cummrermnsernnsesmnesssss s sasnes 17
Chapter 3: The JavaScript Functions..........c.ccccinmnnssennnnnsssnsnnnsssnnn 19
The REgEXP ODJECTccveriererierer st 19
MEENOAS.....c i ————————— 19
o (00 1C] TSP 20
Dynamic Propertiescccevrverneininsirsis st 21
The Literal FOrm ... 22
L Lo 10 T 0 (0] 1 22
String FUNCLIONSco.eeeeer e 22
(=T T T 23
Chapter 4: Examples of Patterns...........ccoinnssemmmmnsssnnnnsssssssssssssnnns 25
Web and NetWOrK.........occvrinnnss s 25
HTIML TAOS -.ececeeeceeeeneeesesnsee e se s e s se s ss e se s ss s se s nns 25
IP AQAFBSSES ... s 26
MaC AUrESSES ... 27
OO 28

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

0T Y T T OO 30
POt NUMDEIS.....cccitcctti bbb s 30
Manipulating Data............ccoceeriernnmiennsere e 31
REMOVE SPACEScveeeerrrreeererreeeses s se s ss s s se s sssesssssssssnnsnns 31
Simulation of a Variable DiStance.............ccoeeerrerrresesesessssssssss e 32
File EXEBNSIONS.......cccccccccesccc e 33
Non-Printable Characters ... 33
Hexadecimal DigitS fOr COIOrScccuvverererrneseserrnesesesrs s ses e sessssssesessnns 33
Form Validation ... 33
BMAUL....coiii i ———————————— 33
Date EXPIESSIONSccvereerrerterierierieste e e sresse e s sesae e ssesae s e sae s e e e s e s e s e sae e e saesaesaennns 35
SEHNG PASSWOIUS.....ccveereeereerereererereseraesersesessesessesassessssesssssssesessessssesassessensssesasaens 37
ISBIN......ceeuereeessesessesessessessessessesssssssessesse s e s s s ssesse e s st ssssessessessssssssssessensssesssssesnes 38
CUITENCIES wouvvvrescssssssssissss s s bbb 38
NUMDEE RANGES ..o ss e ss e s sr st ssesaesa e sa e snesnesnns 38
Floating Point NUMDEIScoveviieire e ss s e s s e nens 39
Thousands DIVIAETcccvvrrnssnsssisi s 39
Credit Cards.......ocvvrrmenssriss s 39
GEO COOTAINALES ...cocvvreiscssr i 41
GUIL/UUIDoeeeeeereeesessesseseeses s sessessesssssssss s sse s s s ssessssssssssessensssssssssesnes 42
PEICENTAGES.eiveeeertereerte e a e e r e r e e e r e e e n e naenen 42
APPENAiX.stierrssrssnnnnnssmmssssssssnnnnnsssssssssssssnnsnssssssssssssnnnnnnsssssssssssnnnnns 43
INA@X.ciiieirieessmsssmss s s s s s s s s s 47
vii

www.allitebooks.cond

http://www.allitebooks.org

About the Author

Jorg Krause has been working with software and
software technology since the early 1980s, beginning
with a ZX 81 and taking his first steps as a programmer
in BASIC and assembly language. He studied
information technology at Humboldt University, Berlin,
but left early, in the 1990s, to start his own company.
He has worked with Internet technology and software
development since the early days, when CompuServe
and FidoNet dominated. He’s been with Microsoft
technologies and software since Windows 95.

In 1998, he worked on one of the first commercial
e-commerce solutions, and wrote his first book in
Germany, eCommerce and Online Marketing, published
by Carl Hanser Verlag, Munich. Due to the book’s wide
success, he began working as a freelance consultant
and author to share his experience and knowledge with others. He has written several
books for major publishers such as Apress, Hanser, Addison Wesley, and others, as well
as several self-published books—for a total of over 60 titles. He also publishes articles
in magazines and speaks at major conferences in Germany. Currently, Jérg works as an
independent consultant, software developer, and author in Berlin, Germany.

In his occasional spare time, Jorg enjoys reading thrillers and science fiction novels,
and going on a round of golf.

ix

vww . allitebooks.con

http://www.allitebooks.org

Introduction

This book explains regular expressions in JavaScript. Such expressions are search
pattern - instructions to search within text. This can be really complex but even powerful.

JAVASCRIPT VS. ECMASCRIPT

| use the name JavaScript in this book, although it’s officially called ECMAScript.
The book is based on the version ES5. Because JavaScript is valid TypeScript and
ECMAScript 6 (ES6) is compatible with ES5, all code snippets in this book will run
using TypeScript or new versions ov JavaScript, too.

Who Should Read this Book?

This book is aimed at beginners and web developers who are new to the Web. JavaScript
mainly serves the front-end developers. Maybe you are also a web designer, who
discovered JavaScript as an excellent way to upgrade your web pages with dynamic
elements. Here, you are dealing with texts, forms, and the presentation of database
content—that is, everything that constitutes a dynamic web site. You will need to know at
least one of these, namely for the creation of a professional user interface, in particular a
clear form.

In any case, I tried to avoid prerequisites or conditions for readers of this book. You
do not need to be a computer scientist, you do not need perfect command of a particular
language, don’t need to know rocket science. No matter in the context in which you have
encountered Jade, you will be able to understand this book. However, developers will get
the most benefit from this book.

o JavaScript To understand all the examples, you need a working environment for
executing scripts. This can take place in a browser, on a website, or by using Node.js.

xi

www.allitebooks.cond

http://www.allitebooks.org

INTRODUCTION

What You Should Know

Readers of this series need hardly any requirements. Knowledge of some HTML cannot
harm, however, and it doesn’t hurt to already have seen a static HTML page (the source
code, of course). I assume that you have access to a current operating system—on which
there is an editor with which you can create web pages.

How to Read the Text

I will not dictate how you should read this text. In the first draft of the structure, I tried
several variations and found that there is no ideal form. However, readers tend to
consume smaller chunks of information in independent chapters with focused content.
This book follows this trend by reducing information to small focused issues without the
“blah-blah” to inflate the volume.

Beginners should read the text as a narrative from the first page to the last page.
Those who are already somewhat familiar with the information can safely skip certain
sections.

Conventions Used in the Book

The theme is not easy to master technically, because scripts are often too wide. It would
be nice if you could support the best optical reading form. I have therefore included extra
line breaks to aid readability, but that’s not required in your development environment’s
editor.

In general, each program code is set to a non-proportional font. In addition, scripts
have line numbers:

1 body {
2 color: black;
3}

If you need to enter something in the prompt or in a dialog box, this part of the
statement is in bold:

$ bower install bootstrap

The first character is the prompt, which is not entered. In the book, I use the Linux
prompt from the bash shell. The commands will work, without exception, unchanged—
even on Windows. The only difference is the C:> command prompt or something similar
at the beginning of a line. Usually, the instructions are related to relative paths or no paths
at all, so the actual prompt shouldn’t matter, despite the fact that you are in your working
folder.

xii

www.allitebooks.cond

http://www.allitebooks.org

INTRODUCTION

Expressions and command lines are sometimes peppered with all types of
characters; in almost all cases, this depends on each character. Often, I'll discuss the use
of certain characters in precisely such an expression. Then the “important” characters
have line breaks to set them apart. They also have line numbers, which are used to
reference the affected symbol in the text exactly (note the : (colon) character in line 2):

1 a.test {

2 thover {

3 color: red
4 }

5}

The font is non-proportional so that the characters are countable. Opening and
closing parentheses are always by themselves.

Symbols

To facilitate the orientation in the search for a solution, there is a whole range of symbols
that are used in the text.

Qt Tip Thisisatip.

o Information This is information.
A Warning This is a warning.

xiii

CHAPTER 1

Introducing Regular
Expressions

To get a head start on introducing regular expressions, I'll start with an example. It’s
one that you've experienced hundreds of times. When you enter customer data online,
many web forms ask you for an email address. To avoid an incorrectly typed address,
an immediate validation makes sense. One way would be to split the string in parts
(before and after the @ character), analyzing the positions of the dots and the number of
characters after the last dot (that’s the top-level domain).

After a few ifs and loops, you're almost done. Or you simply use a regular expression:

“[_a-zA-70-9-1+(\.[_a-zA-Z0-9-]+)* @ [a-zA-Z0-9-]+\.([azA-Z]{2,3})$

Did you get that? If this is your first time with regular expressions, it is probably hard
toread.

Regular expressions are a form of pattern recognition in regular text (read:
string). Regular expressions compare the pattern with the text. The whole expression,
encapsulated as an object in a script or programming language, would return either true
or false. The result obviously tells the caller whether the comparison was successful
or not. Hence, the expression can be better understood if you see it in the context of an
actual language. Because this book is dedicated to JavaScript, the usage in that language
would look like this:

var email = "joerg@krause.net";
console.log(check(email));

if (email.match(/~[_a-zA-Z0-9-]1+(\.[_a-zA-Z0-9-]+)*@[a-zA-Z0-9-]+\\
-([a-zA-2]{2,3})$/)) {

1

2

3

4

5 function check(email) {
6

7

8 return true;
9

} else {
10 return false;
11 }
12}

© Jorg Krause 2017
J. Krause, Introducing Regular Expressions, DOI 10.1007/978-1-4842-2508-0_1

CHAPTER 1 " INTRODUCING REGULAR EXPRESSIONS

Here the expression is made by using typical literals as a boundary /expression/
and the comparison is made by the match function that each string object provides. Be
aware that the slashes must not be put in quotes. It’s a literal that creates an object.

% A Test Environment For the first steps, it is helpful to use a JavaScript test console
that is available online. | recommend using Repl.it."

Working Area
contains your
code

Figure 1-1. The example in Repl.it

o REPL The term REPL is an abbreviation for Read-Eval-Print-Loop. It's a method of
working interactively with a script language. Read more about it on Wikipedia.?

Copy or Scaffold?

I'm going to show many useful expressions in Chapter 4. This first chapter, however,
shows both trivial and non-trivial expressions that are ready to use. Because the
expressions are sometimes tricky and hard to read, you can download all examples.

Q Website Visit this book’s support website.®

'https://repl.it/languages/JavaScript
*https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
Shttp://www. joergkrause.de/?p=219

https://repl.it/languages/JavaScript
https://en.wikipedia.org/wiki/Read–eval–print_loop
http://dx.doi.org/10.1007/978-1-4842-2508-0_4
http://www.joergkrause.de/?p=219
https://repl.it/languages/JavaScript
https://en.wikipedia.org/wiki/Read–eval–print_loop
http://www.joergkrause.de/?p=219

CHAPTER 1 " INTRODUCING REGULAR EXPRESSIONS

If you want to become a professional JavaScript developer, regular expressions are
a part of your toolset. You should try to understand the expressions completely and start
creating your own.

How Does It Work?

You might be curious to know how the preceding expression works.

If you start analyzing such expressions, you'd best start with the extraction of special
characters. These include one of the following in this particular expression: *, $, +,
*, 2, [1, ().Allother characters do not possess a special meaning here. Regular
characters are a minority. Usually, such patterns use placeholders and descriptive
characters more than actual letters in a word.

Here is an overview of the special characters:

" lets the recognition start at the beginning. If you write “x, the

expression will match the letter “x” only if it appears at the very
first character.

$ lets you define where the pattern ends.

* is a placeholder that means no or any number of characters.
+is a placeholder that means one or any number of characters.
? is a placeholder that means no or one character.

[a-z] defines one character out of group of letters or digits. You
can use uppercase letters, lowercase letters, or digits by simply
placing them in the brackets, or you can define them as a range,
as shown in the example.

() groups characters or strings of characters. You can use the set
operators *, +, and ? in such a group, too.

{} is a repetition marker that defines the character before the
braces. It can be repeated multiple times. The range can be
defined by numbers; if the start and the end are given separately,
the numbers are written with a comma ({3, 7}).

\ (the backslash) masks metacharacters and special characters so
that they do no longer possess a special meaning.

. represents exactly one character. If you actually need a dot, just
write \. .

Now you can easily split the expression quite well. The @ character represents itself
and the first step splits the expression:

1~ _a-zA-Z0-9-]+(\.[_a-zA-Z0-9-]+)*

2 @

3 [a-zA-Z0-9-]+\.([a-zA-Z]{2,3})$

CHAPTER 1 " INTRODUCING REGULAR EXPRESSIONS

The part before the @ character must have at least one character. This is forced by the first
character definition [_a-zA-Z0-9-], with all acceptable characters together with the + sign.
Then, the expression might be followed by an actual dot \ ., which by itself can be followed by
one or more characters. The whole “dot plus more characters” group is optional and can be
repeated endlessly (*). The second part is similar. The set definition is missing the underscore
character, which may not appear in regular domain names. The dot is not optional (no set
operator) and the remaining part can be two or three characters long (that’s ignoring the new
domain names with four or more characters, but I think you get the idea).

Resolving Expressions

The expression might appear here, but it’s still far from being perfect.

There are a few cases where the expression may reject acceptable email addresses
and also accept irregular ones. An expression is still hard to explain. Because you’'ll be
challenged with more complex examples soon, I'll use another layout here:

1 " // Start at the beginning

2 [_a-zA-Z0-9-] // Define a group

3 + // One or more times

4 (// Group 1

5 \. // a "real" dot

6 [_a-zA-Z0-9-] // Another group

7 + // One or more times

8) // /* End group 1 */

9 * // Group optional or multiple times
10 @ // The @ character

11 [a-zA-Z0-9-] // Character definition

12 + // On or multiple times

13 \. // A "real" dot

14 (// Group 2

15 [a-zA-Z] // A character definition

16 {2,3} // Two or three characters
17) // /* End group 2 */

18 % // End of text must come now

That'’s a lot easier, isn’t it? Unfortunately, you can’t write it in that way in JavaScript.
I'm going to use this form only to break down tricky expressions. If you struggle with an
expression in this book, just try to resolve the pattern by putting each character on one
line and write down what it means.

CHAPTER 2

Recognizing Patterns

In this chapter, I'm going to show basic techniques using simple examples. This is
probably not enough for daily use, but it’s a good basis for your own experiments.

Basics

What happens if an expression is being evaluated? Actually it’s always the goal to search
a text portion within another, often larger, text. The text searched may come from a
formula, a file, a database, or it may be just a string. But that’s not the point. You can use
a simple search function for that, and most often, such a simple search is more efficient.
Regular expressions define properties within the search text. That way, you don’t need
to change the search term again and again, but give a range of variations. Search and
replace may come to a whole new level.

o Pattern Regular expressions recognize a string with text by using a pattern.

When searching, an expression is used to resolve a comparison between strings.
The comparison resolves into true or false, depending on the outcome. To get parts of a
search pattern for further examination, such pattern recognition tasks can return groups
of parts that have been found. There are also repetitions of groups to be reused within the
expression to create more complex properties. Later, I'll show how this can be used. For
now, I'll show several examples to explain the creation of properties in a pattern.

Characters, Lines, and Text

I have already used terms such as character and text. Important in the context of regular
expressions is the term line, too. Lines end with a line break (that’s where you hit the
Enter key in text processor). Many termination characters use line breaks. Files are often
read line by line. That’s why regular expressions handle lines explicitly. You need this
knowledge to search beyond line endings.

© Jorg Krause 2017 5
J. Krause, Introducing Regular Expressions, DOI 10.1007/978-1-4842-2508-0_2

CHAPTER 2 ' RECOGNIZING PATTERNS

A Line Breaks If you have text that doesn’t contain any line breaks, you don’t need
the metacharacters for line begin and end. They simply do nothing.

Terms for Regular Expressions

Here I'm going to explain the more special terms.

Metacharacters

Within a regular expression, you can define special properties with metacharacters. Some
of these you already know—particularly the ~ for the beginning and $ for the end position
in the search text.

" and $ are called metacharacters. If you want to look for a metacharacter as a regular
character, you have to put a backslash in front of it:

\$, \~

The backslash destroys the special meaning. Hence, the backslash itself is a
metacharacter, too. If you look for the backslash in particular, you write \\.
A more thorough explanation of all metacharacters follows shortly.

Literals

Any language for programming has several literals to express things apart from keywords,
such as numbers, operators, or text. JavaScript is no exception here. Regular expressions
in JavaScript use / (forward slash) as a literal character.

/[abc]/
The expression can be assigned to a variable or used directly as a parameter.

1 war patt = /abc/;
2 var s = /abc/.toString();
3 console.log(s);

Character Classes

If you look for strings or single characters, it’s often very efficient to use character classes.
Character classes are written in square brackets, such as [abc]. The whole expression
represents one (1) character out of the class. In the example, it’s either a, or b, or c. It’s
neither ab nor bc. You must use a repetition operator to tell the expression engine to look
for more appearances of the characters from such a class.

CHAPTER 2 ' RECOGNIZING PATTERNS

It’s possible to write any character you're looking for one by one, or create groups by
using the dash. The expression [a-c] would also hit the letter b.

References

Parts of successfully found text portions are stored in temporary memory cells. You can
reference to them later in the same expression. The references use a backslash followed
by the storage location. It looks like \4, for example.

Metacharacters Overview

The following is a complete list of the meta characters available in JavaScript’s regular
expressions.

Start, End, and Boundaries
The most important ones you already know from the introduction chapter:
e " isthe beginning (or start)
e $istheend
e \bdefines the boundary of a word
e \Bdefines no boundary

What does that mean? If you look for the word “auto’; the “a” must be at the
beginning, while “0” is the end. To search this string exactly (and nothing before and
after), your expression is ~“auto$. If the word you're looking for is anywhere in the text, the
expression is simply auto.

var patt = /"auto$/;
console.log(patt.test("auto"));
console.log(patt.test("automatic"));

var patt2 = /auto/;
console.log(patt.test("That's our automobile, it's an BMW."));

VT B~ W N R

The output shows the result, as seen in Figure 2-1.

Figure 2-1. Output of the script

CHAPTER 2 ' RECOGNIZING PATTERNS

The end is mostly the end of a line. This might not be the case if some additional
switches are set. Switches are outside the expression and control the regex engine. You
can find more about them in Chapter 3.

Word boundaries are transitions from a word to surrounding parts. A word in Latin
text ends with the appearance of a space or punctuation, such as a comma, semicolon,
or period. The special symbol \b looks for such a transition. It does not exactly represent
a character; it’s more something in between. That’s what I meant with the term property
in the introduction. Regular expressions describe the properties of a search text, not the
actual search term.

The expression /\bco recognizes “co” in the sentence “It is complicated.” The space
before the “co...” creates the word boundary. The expression will find nothing in the
sentence “Oncology is difficult” —even if “co” is in the text as well.

Any Character

Often you'll look for a character at a particular position, but it doesn’t matter which
character. It’s painful to handle the whole supply of characters in classes. That’s why there
is another metacharacter:

e . isany character, exactly

Now you can look for “auto” in different contexts:

” u ” o«

. .utolooks for “auto’, “Auto’, “automatic’, and so on, but also for
“distributor”. The latter is possibly not expected.

var patt = /.uto/;
console.log(patt.test("auto"));
console.log(patt.test("automatic"));
console.log(patt.test("distributor"));

o R S R

The output shows the result, as seen in Figure 2-2.

Figure 2-2. Output of the script

http://dx.doi.org/10.1007/978-1-4842-2508-0_3

CHAPTER 2 ' RECOGNIZING PATTERNS

No Characters

If you're not looking for anything, a regular expression doesn’t seem useful. But it is.
Imagine you're looking for empty lines in a file. That’s what you'd find using just the end
character:

°$

Yes, it’s that easy, because the expression defines that the only characters are the line
start and end. Hence, the line must be empty. And that’s what you're looking for. Empty
means here “nothing in between.”

A single " as a search pattern does not make any sense. It just declares that there must
be a beginning. That’s a property any line possesses. Any text will match this pattern.

Character Classes

Character classes define groups of classes.

One out of Many

Character classes are written in square brackets. Without other operators, it’s always just
one position in the pattern. Groups are built by a dash and multiple groups are simply
written concatenated. Any character in the class will be treated “as is” and loses its special
meaning as a metacharacter.

e [aeiou] defines a vowel in English
e [a-f] defines the letters a, b, ¢, d, e, f (lowercase only)
e [a-fA-F0-9] defines all digits for hexadecimal numbers
The order is only important in groups. Simply put, the expressions [a-fA-F] and

[A-Fa-f] are identical.

var patt = /[a-f]+/;
console.log(patt.test("Auto"));
console.log(patt.test("42"));
console.log(patt.test("12 Days"));
console.log(patt.test("borrow"));

Ui b W N

CHAPTER 2 ' RECOGNIZING PATTERNS

The output shows the result, as seen in Figure 2-3.

Figure 2-3. Output of the script

Negations

A whole character class can be negated against the complete inventory of characters by
using the metacharacter ". It has a different meaning and nothing in common with the
start line metacharacter that uses the same sign. It’s simply a different context. Some
characters have a different meaning depending on the context. That’s why it is crucial to
separate the parts of regular expressions carefully. You must understand the context of
the character.

e [70-9] includes everything but digits (that includes characters
such as #, *, or %).

. [“aeiou] defines all consonants, but also a lot more, such as
digits.

The special meaning of ~ works only if it is the very first character after the opening
bracket. If it is somewhere else in the class, it’s just a common character of its own:

o [1"@5$%"8&/()=] defines all the characters on a keyboard’s
number keys in Shift level.

Digits
Seeking digits is a common task. Numbers are formed by digits and use a leading sign, a
decimal point, and thousands mark. The following expressions might be helpful:

e [0-7] are digits of octal numbers (base 8)

e [0-9+-.] are decimal numbers with a sign and decimal point

e [a-fA-F0-9] are hexadecimal digits

10

CHAPTER 2 ' RECOGNIZING PATTERNS

Date and Time

The following expressions show how to recognize fragments of date and time within text:
e [0-9/] Date (American format, such as 4/22/2016).
e [0-9:] Time, such as 7:44
e [0-9:amp] Time with “am” or “pm”

The last example is often too simple, as it allows “a9” or “pOm”.
The others are weak, because the time 26:99 would be found as well.

1 war patt = /[0-9:amp]/;
2 console.log(patt.test("12am"));
3 console.log(patt.test("4:17"));

The output shows the result, as seen in Figure 2-4.

Figure 2-4. Output of the script

A Limitations These examples show that simple regular expressions have clear
limitations. While it is possible to write expressions that match the range of complex values
perfectly, the effort can be huge. You can find better examples in the appendix.

Strings
By using character classes, you can easily distinguish between lowercase and uppercase
letters:

e [gG]reen, [rR]ed

If a name might not be written in a distinct way you can use classes:

e M[ae][iy]er matches “Meyer’, “Mayer’, “Maier’, and “Meier”.

11

CHAPTER 2 ' RECOGNIZING PATTERNS

Abbreviations

Metacharacters are commonly formed as abbreviations, as listed and described in
Table 2-1.

Table 2-1. Metacharacter Abbreviations

Abbreviation Description

\t Tabulator

\n New line

\1 Return (carriage return)

\f Form feed

\v Vertical tabulator

\s White space (not visible in print, includes \t, space, \n, \1, \f)

S Negation of \s

\w Word character (letters that form words, such asin [_a-zA-Z0-9])
W The negation of \w

\d Digits, like [0-9]

D Negation of \d

\b Word boundary, start, or end of a word; all not in the \w definition.
B Negation of \b

\0 Nul (nil) character (physical 0)

XXX Character value, written as an octal number

\xdd Character value, written as an hexadecimal number

\UXXXX Unicode character, written as hex number

\CXXX Control, ASCII value

Repetition Operators

All metacharacters shown so far have one thing in common: they address exactly one
character. If you need a number of occurrences, you use repetition operators. Some
specials ones were mentioned in the introduction. Here I'll give a more complete
description. But let’s start with some simple examples:

e a*defines no or any occurrence of "a", such as "a", "aaaa", and
So on.

e a+defines one or any number of "a", such as "a", "aa", and so on.

n_mn nn non

e a?definesnoorone "a", suchas"" or "a" exactly.

12

CHAPTER 2 ' RECOGNIZING PATTERNS

Common Operators

Common operators use a range within a number of characters. The following expressions
use common operators:

e {min, max} Declares min characters that are required and max
characters that are allowed

e {wert} The exact number
e {,max} The minimum can be omitted (zero to max)
e {min,} The maximum can be omitted as well; min to any number

e {,}Bothranges can be omitted (see the next paragraph for more
about this construct)

Of course, you can always use this expression instead of the shorthand *, +, and ?.
The verbose format would look like this:

e {,}means*
e {0,1} means?
e {1,}means+

These operators are very good for text with a clearly defined length, such as zip
codes:

1 <form>

2 <input type="text" name="zip" value="">

3 <input type="submit">
4 </form>

The following script checks whether the zip codes entered by the user make sense:

1 <script>

2 wvar re = /"[0-9]{5}$/;

3 var field = "12683";

4 var checkzip = re.exec(feld);

5 if(!checkzip) {

6 alert("The zip code " + checkplz + " is not correct.");
7 } else {

8 console.log(checkplz)

9 }

10 </script>

13

CHAPTER 2 ' RECOGNIZING PATTERNS

The output shows the result, as seen in Figure 2-5.

["12683", index: ©, input: '12683']

Figure 2-5. Output of the script

Summary

Table 2-2. Repetition Operators

Operator Meaning Description

? 0-1 None or one

* 0-00 None or any

+ 1-o0 One or any

{num} Number Exactly num

{min, } Min - Minimum min

{,max} 0 - Max None or a maximum of max

{min, max} Min - Max Minimal min and maximum of max

Special Operators

The “or” operator is a special operator written as |. For instance, /green|red/ matches
“green” in “green apple” and “red” in “red apple’; but it does not match “red or green

apple”

References

The elements shown so far look easy, right? More complex combinations of
metacharacters and classes are not yet flexible enough. What's really missing (when
compared with traditional programming languages) are loops. When investigating strings
in particular, a consecutive character-by-character search is quite helpful.

To get something similar in regular expressions, you can use references. That’s some
sort of a special metacharacter, such as \1, \2, and so on. These numbered parts reference
groups of characters found earlier in the search text. Groups that count are written in
parentheses (...).

14

CHAPTER 2 ' RECOGNIZING PATTERNS

It’s sometimes hard to read the parentheses in the right way, because now you
have all sorts of braces that can even appear nested. The best way is a simple pragmatic
approach: just count the opening (left) parentheses. That’s what matters. The block of the
first one is referenced by \1, the second by \2, and so on. JavaScript supports up to nine
references. Other languages may support more.

Q Be careful Within character classes, you cannot use references. That’s because
the backslash has no special meaning herein. However, the part that is being formed by a
character class can be put in parentheses and act as a reference.

The expression /apple(,)\sorange\1/ will match “apple, orange,” in the string
“apple, orange, cherry, peach” The comma is bound in the first group and hence
it’s present after “orange” as well. Watch the \s in the middle, too. It’s the space
metacharacter.

Groups

The groups used for references can be used for repetition operators, too. Using groups for
references is merely a side effect.

Simple Groups

If you want to repeat a group of characters, just use parentheses: (ab)+ finds a match in

"abc", "abcabc", and so on, but not in "aacbb".

var patt = /(ab)+/;
console.log(patt.test("abc"));
console.log(patt.test("abcabc"));
console.log(patt.test("aacbb"));

B S A

The output shows the result, as seen in Figure 2-6.

Figure 2-6. Output of the script

15

CHAPTER 2 ' RECOGNIZING PATTERNS

Enclosing Characters

Expressions are a frequently used search pattern, where a text is enclosed by a pair
of identical characters. That'’s often the literal appearance of strings in programming
languages or the tags in HTML. Watch these text fragments:

e “Word Word” shall be found
e “Word Word’ shall not be found
e ‘Word Word’ shall be found

A possible solution for a regular expression could look like this:
/(" DAy A\ag/

How does that work? The expression starts with ~ and then follows either a " (double
quote) or a' (single quote) ["']. The whole part is enclosed in parentheses so it counts
for a reference and shall appear once {1}. Then, any number of characters can follow . *
until immediately before the end $, when the very same quote must appear. That’s written
by \1. This clearly shows the nature of references.

They do not repeat the definition; they repeat the part being found by the references

group.

var patt = /~(["']){1}.*\1$/;

console.log(patt.test("\"Word Word\""));
console.log(patt.test("\"Word Word\'"));
console.log(patt.test("\ 'Word Word\'"));

B wWw N R

The output shows the result, as seen in Figure 2-7.

Figure 2-7. Output of the script

Because this very constructed example looks for quoted words by just repeating a
word twice, it would be a nice exercise to handle exactly this. Instead of quotes, we're
looking for two identical words:

Ab((\w+)\s+\2)+/

Because words have word boundaries, a \b starts the expression.

16

CHAPTER 2 ' RECOGNIZING PATTERNS

Then a group starts, and in it, another group that looks for word characters (\w) that
have to appear one or more times (+). That is followed by a one or more spaces (\s+). The
whole group is repeated once again (\2). The repeated part is the inner group, because
the 2 refers to the second opening parenthesis.

_var patt = /Ab((\w+)\s+\2)+/;
console.log(patt.test("Script Script istdoppelt"));

Non-Counting Groups

Sometimes it’s hard to read an expression with many parentheses, from which only a few
(or just one) are being used as a reference. For this, you can write (:..) to form a non-
counting group.

Lookahead References

Looking back to a reference is only one part of the deal. Sometimes a match is valid,
if another character follows. That can be achieved by lookahead references. Two
metacharacter combinations are useful for this:

e ?=Apositive lookahead; the following character must match

e ?! Anegative lookahead; the following character must not match

var patt = /(\d{1,3})(?=d)/;
var text = "Duration: 16d";
var test = patt.exec(text);
console.log("Days: " + test[0]);

B W N R

The output shows the result, as seen in Figure 2-8.

Figure 2-8. Output of the script

This example looks for numbers with one to three digits, which are immediately
followed by the letter “d” The letter “d” itself is not part of the match—it just has to be
there to make the digits match.

17

CHAPTER 2 ' RECOGNIZING PATTERNS

LOOKAHEAD AND LOOKBEHIND

You may imagine that if there is something looking ahead, it may also be looking
behind. Regular expressions of several languages and platforms have this feature.
However, JavaScript does not support lookbehind references.

18

CHAPTER 3

The JavaScript Functions)

JavaScript provides an object named RegExp. You can create an instance by using new or
the literal //.

The RegExp Object

I'll start with an overview and follow it with several examples.

Methods

Apart from the RegExp object, you can use several built-in string functions in JavaScript to
deal with regular expressions. The object knows these methods:

e exec(): Executes the test and returns the first hit.
e test(): Executes the test and returns either true or false.
e toString(): Returns the expression as a string.

The exec method returns an object that has the following content:
e An array with the groups (counting groups only):

— The first capture is in index [0]
— Ifthere are more groups, these follow in [1] .. [n]

e A property named index contains the position of the first hit,
its value is zero based.

e Aproperty named input contains the searched text.

The RegExp object itself contains some more information. Of course, you find the
definition of the expression, but also a way to iterate to further results (because exec
returns just the first one).

© Jorg Krause 2017 19
J. Krause, Introducing Regular Expressions, DOI 10.1007/978-1-4842-2508-0_3

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER 3 ' THE JAVASCRIPT FUNCTIONS

OOption g If you expect multiple hits, you should use option g, which means “global”
and continues searching after the first hit.

The following script contains a very simple expression that leads to multiple hits.

The subsequent call of the very same expression runs through all hits by increasing an
internal pointer. That forces the do-loop to iterate.

W oo~NOUVT B WN B

RN
N R O

var text = "Than Ann answers all questions again.";
var patt = /a/g;

var match = patt.exec(text);

console.log(match[0] + " found at " + match.index);

match = patt.exec(text);
do {
match = patt.exec(text);
if (!match) break;
console.log(match[0] +
" found at " + match.index);
} while(true);

The output shows the result, as seen in Figure 3-1.
found

found
found

found

Figure 3-1. Output of the script

Properties

Here are some more properties help keep the expression quite flexible:

20

e constructor: A function that creates the RegExp object.

e global: Checks for option g (Boolean), global.

e ignoreCase: Checks for option i (Boolean), case insensitive.
e lastIndex: Index of the last hit.

e multiline: Checks for option m (Boolean), multiline.

e source: The expression itself.

CHAPTER 3 I THE JAVASCRIPT FUNCTIONS

The following script shows the lastIndex property in action:

1 wvar text = "Than Ann answers all questions again.";

2 var patt = /a/g;

3 var match = patt.exec(text);

4 console.log(match[o] + " found at " + match.index);

5

6 match = patt.exec(text);

7 do {

8 match = patt.exec(text);

9 if (!match) break;

10 console.log(match[0] + " found at " + match.index);
11 console.log("Further search at " + patt.lastIndex);
12} while(true);

The output shows the result, as seen in Figure 3-2.

a found at 2

a found at 17
Further search at 18
a found at 31

Further search at 32
a found at 33
Further search at 34

Figure 3-2. Output of the script

Dynamic Properties

If there are groups in the expression, they appear as dynamic properties. The names are
$1 to $9, respectively. If you don’t want a group being catched this way, consider using a
non-counting group (?:).

var patt = /(abc)|(def)/;
var text = "anton def";
console.log(patt.test(text));
console.log(RegExp.$1);

S wWw N R

The second output (line 4) returns the content of first match. That’s def, actually.

21

CHAPTER 3 " THE JAVASCRIPT FUNCTIONS
The Literal Form
The literal form is the easiest way to create an expression:

1 var patt = /web/i;
2 patt.test("Look for our Web courses!");

This simply returns true. Without the i at the end, the result is false. The i
suppresses case sensitivity and makes “Web” match “web” and vice versa. You can even
combine this with exec:

1 /web/i.exec("Look for our Web courses!");

This will return an object with the hit “Web” at first position and the value 13 for the

index. If there is no hit, exec simply returns null. Use if(//.exec("")) to handle this,

because JavaScript will treat null as false. Using the new operator, it would look like this:

1 var patt = new RegExp("web");

'& Literals and Regex While // is valid for RegExp, a regular string will work here as
well—Dbut only here.

Execution Options

Some options are already shown. The options are not part of the expression; instead, they
modify the behavior of the regex engine.

var pattern = /[A-Z]/i;

These are all the available options:
e 1i:Searches case insensitive
e g:Searches globally, even if a hit was already found

e m:Searches over multiple lines (without this, a line end stops the
search)

String Functions

Regular expressions are not limited to the RegExp object. Some regular string functions
can handle these expressions, too.

22

CHAPTER 3 I THE JAVASCRIPT FUNCTIONS

Overview
The following functions are enhanced to handle expressions:
e search
e replace
e match
e split

N

~Nourhs WN R

N

var str = "Look for our Web courses!";
var res = str.search(/Web/i);
console.log(res);

The res variable contains 13. That’s the index of the hit. Without a hit, you get -1.

If you need a Boolean value, just use match:

var str = "Look for our Web courses!";
var res = str.match(/Web/);
if (res) {
console.log("Hit");
} else {
console.log("No Hit");
}

Here you get Hit on the console. It’s quite similar using replace:
var str = "Look for our Web courses!";

var res = str.replace(/Web/i, ".NET");
console.log(res);

The res variable now contains Look for our .NET courses!.

23

CHAPTER 4

Examples of Patterns

You have to do some tasks again and again in your life as a developer. This chapter
contains several useful examples.

Web and Network

The expressions in this section are dedicated to web and network environments.

HTML Tags

This is how you look for an HTML tag with the fixed name DIV:
/<DIVA\b[">]*>(.*?)<\/DIV>/1i

And this expression looks for any tag:
/<([A-Z][A-Z0-9]*)\b[">]*>(.*?)<\/\1>/1

Once again, I'm using a \1 reference on the first hit to find the matching closing tag.
1 wvar patt = /<([A-Z][A-Z0-91*)\b[">T*>(.*?)<\/\1>/1;
2 wvar html = "Ww want write bold and <i>italic</i> here";

3 console.log(patt.exec(html));

The output shows the result, as seen in Figure 4-1.

© Jorg Krause 2017 25
J. Krause, Introducing Regular Expressions, DOI 10.1007/978-1-4842-2508-0_4

CHAPTER 4 * EXAMPLES OF PATTERNS

["bold",

index: 14,
input: 'We want write bold and <i»italic</i> here"]

Figure 4-1. Output of the script

Figure 4-1 shows only the first hit. Execute again to get further hits.

IP Addresses

With IP addresses, you can see how you get the regex engine’s limitations. Search patterns
are not that good with numbers. With some real effort, it’s still possible, but conventional
programming might be a better option. Let’s start with a naive approach first:

\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b

That works, but also does for 999.999.999.999. And that’s definitely not a valid IP. But
how do you limit the range to 0-255? Because the four parts are identical, it’s all about
creating a pattern for just one part and then use references. The trick needed is to stop
thinking in numbers and treat the digits separately. The unit goes from 0 to 9, but if the
hundreds are greater than 250, it only goes from 0 to 5. For the tens, it’s similar: 0 to 9, or
for numbers from 200, it’s 0 to 5. So we can get a range of numbers from 0 to exactly 255.
And here you go:

/\b(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.
(25[0- 5]|z[o 4][o- 9]|[o1]>[o 9][0-9]12)\.
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]2)\.
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\b/

The expression reveals the segments as single groups. If the groups are not required,
the whole expression can be shortened:

/\b(?:(?:25[0 5112 [0
I

4][0-9]|[01]2[0-9][0-9]?)\.){3}
(?:25[0-5]|2[0-4 [

]]
0-9]|[01]2[0-9][0-9]?)\b/

That wasn’t bad, but it probably looks somewhat scary. Again, dealing with number
ranges is not the strength of regular expressions.

26

CHAPTER 4 © EXAMPLES OF PATTERNS

Mac Addresses

MAC addresses are hardware-related identifiers that usually identify network endpoints.
It's a 48-bit number that manufacturers burn into the hardware.

o Some hardware allows this number to be overwritten by software or settings, so it
can be spoofed to be honest. If you use regular expressions to identify such numbers, keep
this in mind.

The general form is a series of two hexadecimal digits, divided by colons, spaces,
dashes, or even nothing. In a pretty form, it looks like this: CB:35:2F:00:7C:Al. Here is the
expression:

/7[0-9A-F]{2}([-:]?[0-9A-F]{2}){5}$/i

The following expression checks for the same, but returns all parts as groups for
further investigation:
/M([\NA-FI{2})[-:
([\dA-F1{2})[-:
([\dA-F1{2})[-:
([\dA-F]{2})[-:
([\dA-F]{2})[-:
([\dA-F]{2})$/i

— e e
N N

To get access to the groups’ content, you'll need a loop in JavaScript:

var patt = /~([\dA-F]{2})[-: 12([\dA-FI{2})[-: 12([\dA-FI{2})[-: T?(\
[\dA-FI{2})[-:]?([\dA-F]{2})[-: 12([\dA-F]{2})$/i;
var mac = "CB:35:2F:00:7C:A1";
mac = patt.exec(mac)
for(i = 1; i < mac.length; i++) {
console.log(mac[i]);

}

~Nouvihs WN R

27

CHAPTER 4 * EXAMPLES OF PATTERNS

The output shows the result, as seen in Figure 4-2.

Figure 4-2. Output of the script

URL

The next expression checks a string for the common URL (Unified Resource Locator)
format. The URL starts with the protocol (sometimes called schema) and here we allow
http, https, and ftp, respectively. Casing doesn’t matter. The divider between protocol
and the data is ://. The first attempt is simple, but it will accept a few invalid forms and
it rejects special forms of valid ones. The main disadvantage is that the URL can contain
user credentials in the format (https://joergs:password @joergkrause.de/regex/).
Anyway, sometimes it’s quite enough:

/7 ([Hh][TE][TtI[Ppl[Ss]? | [FFI[TtI[Pp]):\/\/(.+)$/
A more comprehensive form would look like this (embedded in a script):

var patt = /A((([hH][tTI[tTI[pP]1[sSI?|[FFI[tTI[PPI)\:\/\/)2([\w\.\-]N
FOV AWNABENSN-T4) ¥@) 2 (CCLANSN DN NN VAN, @5 T4) (VL [M\ sV
AOSVW'NVANN,@;]+ * (N [a-zA-Z2]1{2,4})) | ((([01]?\d{1,2}|2[0-4]\d]| 25\
[o-5])\){3}([01]2\d{1,2}|2[0-4]\d|25[0-5]))) (\b\:(6553[0-5] |655[0-2\
\d|65[0-4]\d{2}|6[0-41\d{3}|[1-5]\d{4a}|[1-9]1\d{0,3}|0)\b) 2 ((\/[*\/]\
WA NN/ SN = \-@]*) ¥ [AN ANV NN o {3\ s\x7F-\x\
FF1)2)$/;

var url = "http://www. joergkrause.de:8080/index.php?id=0";
console.log(patt.test(url));

O oo~NOUVT B WN PR

That'’s definitely worth further investigation. Let’s split the expression into the
relevant parts:

/" // Start
(//
(/1l
//
[hH][tT][tT][pP][sS]? // http
// or
[fF1[tT][pP] /7 ftp

Nouvihs WN R

28

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45

)

\:

\/\/

[\w\.\-]+
(Ve LW ABBNSN-T+) *@

(

)
|
(

)

(IMNSNODNSNNNNV AN, @; 0]+)
OV ISV OOV, @50]+)*
(\.[a-zA-Z]{2,4}) // Top level domain

(

([o1]2\d{1,2}|2[0-4]\d]|25][
([o1]2\d{1,2}|2[0-4]\d]|25]

)

(\b\:

)$/

(6553[0-5]
| 7/
655[0-2]\d
| 7/
65[0-4]\d{2}
| 7/
6[0-4]\d{3}
| 7/
[1-5]\d{4}
| 7/
[1-9]\d{0,3}]|0)\b

)?
(
(VAN N2 NN/ 8B\ S =~ \-@]*)*

[NV NNV < { P\ s \X7F-\XFF]
)?

0
0

5
5

]
]

)
)

CHAPTER 4

\O){3}

1/
//

//
//

//
//

//
//

//

//

//

//

//

//

1/

//
//

EXAMPLES OF PATTERNS

:// token

Domain

Parts of domain*

IP address

Port number:
upper part

ten thousends
thousends
Hundreds

Tens

Ones

path or file

Actually, the domain defines the characters that are not allowed, rather than the

ones that are allowed. The top level is limited to two to four characters, which excludes
some newer domains. So in reality, this expression may need further tweaking.

29

CHAPTER 4 * EXAMPLES OF PATTERNS

Query String

The part after the URL is called the qguery string. The divider is the question mark ?. This
query string usually has a specific format, which is what the following expression is
looking for:

/(["2=8]+)(=(["&]*))?/g

This is another example of the limits of regular expressions. You need some code
to make it work properly. Doing it completely in regular expressions would be become
extremely complex. Sometimes, it’s better to use a simple expression in conjunction with
simple code to get things done, rather than using a huge expression or some complex
code on its own.

var uri = "http://joergkrause.de/index.php?cat=1138prod=26058query=a\
press';
var queryString = {};
uri.replace(
7([2=81+) (=(["8]*)) /g,
function($0, $1, $2, $3) { queryString[$1] = $3; }
);
for (var i in queryString){
if (!queryString[i]) continue;

console.log(i + " = " + queryString[i]);

CQwWwoo~NOUVT A~ WN R

1}

This code assumes that the query string has a chain of key=value pairs. The output
shows the result, as seen in Figure 4-3.

cat = 113

prod = 2605
query = udemy

Figure 4-3. Output of the script

Port Numbers

Port numbers go from 1 to 65535. This is once again a number-check exercise, which I'm
going to explain further later in this chapter. But first I'll show the final expression:

"(4915[0-1]
|491[0-4]\d
|490\d\d
|4[0-8]\d{3}

30

CHAPTER 4 © EXAMPLES OF PATTERNS

1-3]\d{4}
2-9]\d{3}
[1-9]\d{2}
0[3-9]\d
02[4-9])%

N e L]

In JavaScript, it could be used like this (\d is the metacharacter for a digit):

1 wvar patt = /~(4915[0-1]

2 |491[0-4]\d

3 |490\d\d

4 [4[0-8]\d{3}

5 |[1-3]\d{4}

6 |[2-9]\d{3}

7 |1[1-9]\d{2}

8 |10[3-9]\d

9 |102[4-9])$/;

0 wvar port = 1384;

11 console.log(patt.test(port));
12 port = 75000;

13 console.log(patt.test(port));

The output shows true (1384 is valid) and then false (75000 is not valid).

Manipulating Data

JavaScript’s replace function supports regular expressions directly. That’s the common
way to change data based on search patterns.

Remove Spaces

Spaces can be removed quite easily. Try searching for “[\t]+ and replace the spaces
with nothing. If you look for the spaces at the end, use this: [\t]+$. If you want to
remove spaces at the beginning and the end, use this: “[\t]+|[\t]+$. Instead of
declaring all space chars individually, such asin [\t] (space and tab only), you can even
add more, such as line breaks: [\t\r\n]. The latter can be abbreviated with the space
metacharacter (\s).

var patt = /[\t]+/g;

var text = "HereeweehaveemanyeeseSpaces\tandeTabsetoo";
text = text.replace(patt, "");

console.log(text);

S wWw N e

The o character in the listing is just to make the spaces visible in print. The output
shows the result, as seen in Figure 4-4.

31

CHAPTER 4 * EXAMPLES OF PATTERNS

HerewehavemanySpacesandTabstoo

Figure 4-4. Output of the script

Simulation of a Variable Distance

If the distance between the parts that you're looking for is a variable, the expression is a
bit more challenging. Imagine that you're looking for two words close together, but the
actual distance is not a constant value.

The pattern needs a definition for the first word and for the second, and then
something for the space in between. For the undefined part of a word, the word border
\w+ is helpful. The other parts use the opposite \W+ metacharacter (no word character).
\b is the border itself and claims no character.

The no expression looks like this:

\bthere\W+(?: \w+\W+){1,5}?here\b

The {1,5}? quantifier defines the tolerance of the distance. So this expression
recognizes two identical words within a distance of one to five other words. Have a look at
the text itself:

here and there is like there and here

The expression will find the words “there” and “here” (two words distance) in the
middle of the sentence.
If you look for the opposite way, as well an OR operator, | is sufficient:

\b(?:there\W+(?:\w+\W+){1,6}?here |here\W+(?:\w+\W+){1,6}?there)\b
If you want pairs of words, this could be written even more simply:
\b(word1|word2 |word3) (?:\W+\w+){1,6}? \W+(word1|word2|word3)\b

If you look for exact matches of the same word, you can simplify the expression
further by using references:

var patt = /\b(there)\W+(?:\w+\W+){1,5}?\1\b/;
2 wvar text = "here and there is like there and here";
3 console.log(patt.test(text));

This results in true. If you use “here” instead, you'll get false (“here” is six words
apart).

32

CHAPTER 4 © EXAMPLES OF PATTERNS

File Extensions

The following expression looks for file extensions:

/7 (NI T [w] [mM] [aA]) [(DN TON TmM] [pP][31))$/

The actual example looks for *.wma and *.mp3. That’s helpful for file upload
scenarios.

Non-Printable Characters

This expression looks for non-printable characters:

/[\x00-\x1F\x7F]/

Hexadecimal Digits for Colors
Digits for color codes in CSS and HTML use the hexadecimal form (#FFFFFF or #333):

/°#(\d{6}) | "#([A-F]{6}) | "#([A-F]|[0-9]){6}/

Form Validation

Forms typically contain fields for URL, email, dates, or phone numbers. Wherever the
form comes from, regular expressions can further refine the checks.

eMail

In this book, I started with an example for checking an email address. There are zillions of
variations that you can find. Let’s start with a simple one, which I'll refine further:

\b[A-Z0-9. %+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b

This is short, pretty, and—wrong. It does not recognize perfectly valid addresses. It
even let some invalid ones slip through. Whatever you do for improvement, you first need
your requirements. A regular expression that handles all valid forms of an email actually
doesn’t exist. But, 99.9% is often good enough, isn’t it?

The first special part of the pattern is the usage of word boundaries (\b), which is the
basis to find addresses within larger texts. If it is not a requirement, you can replace the
boundaries with ~ and $, respectively.

33

CHAPTER 4 © EXAMPLES OF PATTERNS

L& Using functions and options Removing spaces has been discussed already. If you
can use functions such as trim(), it’s often the better option. Dealing with letter cases is
best handled with the //1i option, rather than extended character classes like [A-Za-z].

A critical part of email addresses is the top-level domain. As long as you want to
only get .com or .net, life is easy. But newer top-level domains include extensions such
as .museum and .berlin. The list is huge, and new top-level domain names become
available all the time. So either you regularly extend your expression or you accept
everything (that means joerg@krause.geeknet would be perfectly valid).

You can, of course, limit the number of characters. Use {2,4} or extend it to {2,6}.
The more letters you allow, the more valid top-level domains that you can catch—and a
lot more invalid ones, too. Using only the top levels from the early stages of the Internet,
this looks easy:

"[A-Z0-9. %+-]+@[A-Z0-9.-]+\. ¢ ¢
(?:[A-Z]{2}|com|org|net|edu|gov|mil)$

The country names are handled by [A-Z]{1, 2}, which is usually acceptable. As long
asyou don'’t care about “xx” or “yy’, the extension is easy:

1 "~[A-Z0-9. %+-]+@[A-Z0-9.-]+
2 \.(?:[A-Z]{2}|com|org|net|edu|gov|mil|biz
3 |info|mobi|name|aero|asia|jobs|museum)$”

A little more work happens if you add subdomains, such as in joerg@server.firma.
provider.com. Because the simple form accepts dots, it would also allow this email
address to pass. Unfortunately, the address joerg@firma... de is accepted as valid as well.
The following expression prevents this:

\b[A-Z0-9. %+-1+@(?:[A-Z0-9-]+\.)+[A-Z]{2,4}\b

Since the dot becomes part of the character definition, each dot must have at least
one character before it.

So things are going to get complex. To make it right, taking a look at the Internet
standard’s definition is a good idea. For email, it’s the RFC 5322. From this document, I
have extracted the following syntax definition:

(?:[a-z0-91#$%8 " *+/=2~ ~{|}~-]+
(2:\.[a-Z0-9 1 #$%&" *+/=2~ “{|}~-]+)*
| "(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]

| \\[\x01-\x09\x0b\x0c\x0e-\x7f])*")

@ (?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-20-9]
(?:[a-z0-9-]*[a-z0-9])?
| \[(?:(?:25[0-5]]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}

(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?

coO~N OV B WN R

w
=

http://mailto:joerg@krause.geeknet/
http://mailto:joerg@krause.geeknet/

CHAPTER 4 © EXAMPLES OF PATTERNS

9 |[a-z0-9-]*[a-z0-9]:
10 (?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]
11 | \\[\x01-\x09\x0b\x0c\x0e-\x7f])+)
12 \])

The @ sign purposefully splits the expression into two parts. It also includes checking
for an IP address. That's rarely used but perfectly valid. For the name, another odd part
is acceptable. The " and \ characters are valid if there is a backslash beforehand. This is
extremely unusual, but RFC 5322 says it’s allowed.

While it seems rather complicated, the expression in itself is weak. Again, it handles
valid top-level domains, not as they are defined, but more globally. If we reduce the
requirements a bit and disallow IP addresses and odd characters in names, it becomes a
lot easier to read:

1 [a-z0-9M#$%&" *+/=2~ “{|}~-1+(2:\.[a-Z0-9 #$%&" *+/=2~ “{|}~-]1+)*
2 @
3 (?:[a-z0-9](?:[a-2z0-9-]*[a-20-9])?\.)+[a-20-9](?:[a-20-9-]*[a-20-9])?

Now I'm going to combine this with the part shown earlier:

[a-z0-91#$%&" *+/=2~ “{|}~-1+(2:\.[a-z0-9 1 #$%&" *+/=2~ “{|}~-1+)*
@
(?:[a-20-9](?:[a-20-9-]*[a-z0-9])?\.)+
(?:[A-Z]{2}|com|org|net|edu|gov|mil
|biz|info|mobi|name|aero
|asia|jobs|museum|berlin)\b

AUV B~ W N

A Watch Top-Level Domains! Again, watch for the list of currently valid top-level
domains. A complete list can be found on the IANA website.! As you can see,
.bananarepublic is a valid top-level domain, and so is .wtf. Right, WTF.

Date Expressions

For American date formats, I'll start with a naive form:
~(29]20)\d\d[- /.](0[1-9]|1[022])[- /.](0[1-9]|[12][0-9]|3[01])$

The dividers are variable (2015-07-13 or 2015/07/13). They can be mixed, as well
(2015/07-13). The mixed issue can be solved with a reference:

“(19]20)\d\d([- /.1)(o[1-9]|2[012])\2(0[1-9]|[22][0-9]|3[01])$

'http://data.iana.org/TLD/tlds-alpha-by-domain.txt

35

http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt

CHAPTER 4 * EXAMPLES OF PATTERNS

For the German form of a date, another expression is required:
(o[1-9]|[12][0-9][3[01])[.](0[1-9][2[012])[.](19]20)\d\d

That'’s the hassle—for each form, you need another expression. Consider combining
your expression with the | (OR) operator.

The years are limited from 1900 to 2099. The month can be 01 to 09 or 10, 11, 12. Days
are in the tens and go from 01 to 31. The divider is fixed to ., but you can easily change that.

It isn’t perfect, however, because this expression allows 31.02.2016. Yet, we all know
that the February never has 31 days, which is also the case for some of the other months.
Of course, you can handle it month by month. But checking for leap years is a real
challenge in regular expressions. In a programming language it’s easy: check whether you
can divide the year by 4 but not by 100. That’s it.

If a pattern has to be recognized, regular expressions are easy and powerful. If some
logic comes into play, things get hairy. So let’s use a combination of regular expression
and code:

1 function check form(date)
2 {
3 var pattern = /(0[1-9]|[22][0-9]|3[02])[.](0[21-9]]|2[012])[.](29]2\
4 0)\d\d/;
5 if(date.match(pattern))
6 {
7 var date array = date.split('.');
8 var day = date_array[o0];
9 // Monate sind intern 0-11
10 var month = date array[1] - 1;
11 var year = date array[2];
12 // Priifung an JavaScript iibergeben
13 source = new Date(year,month,day);
14 if(year != source.getFullYear())
15
16 console.log('Year wrong!');
17 return false;
18 }
19
20 if(month != source.getMonth())
21 {
22 console.log('Month wrong!"');
23 return false;
24 }
25
26 if(day != source.getDate())
27
28 console.log('Day wrong!');
29 return false;
30 }
31 }

CHAPTER 4 © EXAMPLES OF PATTERNS

32 else

33 {

34 alert('Pattern wrong!");
35 return false;

36 }

37

38 return true;

39 1}

So the expression is doing the rough part and the code needs further refinement.
If you're thrilled by regular expressions and you want to shine in front of your
colleagues, you can at least handle the months like this:

~(d{o}|
(31(?!(FEB|APR|JUN|SEP|NOV)))
| ((30]29)(?!FEB))
| (29(?=FEB(((1[6-9]][2-9]\d)(0[48]|[2468][048]|[13579][26])
| ((16][2468][048]][3579][26])00)))))
| (29(?=FEB(((0[48]|[2468][048]|[13579][26])
| ((16][2468][048]|[3579][26])00)))))
|(0?[1-9])|1\d|2[0-8])
(JAN|FEB|MAR|MAY|APR|JUL|JUN|AUG|OCT|SEP|NOV|DEC)
((1[6-9]1[2-9]\d)\d{2}|\d{2}|d{0})$

QW oo~NOUVI B WN R

[N

This is a very nifty example of the usage of back references. There is no character
between the day and the month, which means it also recognizes strings such as
“23MAR2017"

Ll‘ Use Functions You should always consider using functions if they drastically
simplify your expressions.

String Passwords
The following expression requires a password with these properties:
e 1lowercase letter
e luppercase letter
e 1digit
e 1 special char

e Atleast 6 and max 50 characters long

/((2=.9\d) (2=.*[a-2]) (2= *¥[A-Z]) (2=. *[\W_]).{6,50}) /1

37

CHAPTER 4 * EXAMPLES OF PATTERNS

ISBN

The ISBN (International Standard Book Number) is a unique identifier for books. These
numbers look like ISBN 9-783738-62519-6 or 9-783738-62519-6.

/" (ISBN)?\d-\d{3,6}-\d{3,6}-\d$/

The trailing number is a check value, which you can’t handle with regular
expressions. Using code is a lot easier here.

Currencies

With currency, there is a combination of digits and a currency symbol. The $ (dollar)
character is a particular challenge, because it’s also a metacharacter:

"\$[+-12([0-9]+|[0-9]{1,3}(,[0-9]{3})*) (\.[0-9]{1,2})?$

Number Ranges

Number ranges are always challenging. Assume that you want to check for 1 to 248.
Something like [1-248] doesn’t work. You must create a chain and check digit by digit.

The digits use either [0-9] or the \d metacharacter. For 1 to 99, you'd do this:
1?[1-9]|[1-9][0-9]

1to 199 is easier: 1[0-9][0-9]. And 1\d{2} works, too. Now let’s handle a range from

200 to 248. The numbers higher than 40 need special treatment. First, let’s look at 200 to
239:

2[0-3][0-9]

And now 240 to 248:
24[0-8]

Altogether, it looks like this:
1[1-9][0-9]|2[0-3][0-9]|24[0-8]

Here are some commonly used ranges:
e 000..255:"([01][0-9][0-9]|2[0-4][0-9]]|25[0-5])%
e 00r000..255: " ([01]2[0-9]?[0-9]|2[0-4][0-9]|25[0-5])%
e 00r000..127: “(0?[0-9]2[0-9]|1[01][0-9]|12[0-7])$
e 0.999:"([0-9]|[1-9][0-9]|[1-9][0-9][0-9])$

38

CHAPTER 4 © EXAMPLES OF PATTERNS

e 000.999: "[0-9]{3}%

e 00r000..999: "[0-9]{1,3}$

e 1.999:"([1-9]|[2-9][0-9]|[1-9][0-9][0-9])$

e 001..999: “(00[1-9]|0[1-9][0-9]|[21-9][0-9][0-9])$

e 10r001..999: “(0{0,2}[1-9]]0?[1-9][0-9]|[12-9][0-9][0- 9])$
e 00r00.59: "[0-5]?[0-9]%

e 00r000..366: " (0?[0-9]2[0-9]|[1-2][0-9][0-9]|3[0-5]
[0- 9]|36[0-6])%

Floating Point Numbers

Floats are as challenging as integers. You need to handle the thousands divider (a dot (.)
in Germany and a comma (,) in the United States) and the decimal point (a comma (,) in
Germany and a dot (.) in the United States). Let’s start with a simple version (US format):

[-+]?[0-9]*[.]1?[0-9]+

Using the * makes everything before the decimal point optional. That would allow
“-.6", which is probably fine, although odd. This is a better example:

[-+12([0-9][. 1[0-9]+[[0-9]+)
Writing a power, looks like this:
“(-?2[2-91(.\d+)2) ((\s?[X*]\s?10[E~T([+-]12\d+)) | (E([+-12\d+)))$

This matches 1.7e5 or 22e"10.

Thousands Divider

The thousands divider uses a comma (US format):

(2:7(2:-)2(2:\d{1,3}, (2:\d{3},)X\d{3}) (2:\.\d+) 28| " (2:-)2\d*(2:\ . \d+) ?9$)

Credit Cards

Credit cards have a very regular structure and are handled well by regular expressions.

e Visa: "4[0-9]{12}(?:[0-9]{3}) ?$ All Visa numbers start with “4
and have 16 digits.

e MasterCard: "5[1-5][0-9]{14}$ All MasterCard numbers start
with 51 to 55 and are 16 digits.

39

CHAPTER 4 ' EXAMPLES OF PATTERNS
e American Express: “3[47][0-9]{13}$ American Express starts
with 34 or 37 (Gold) and have 15 digits.

e Diners Club: "3(?:0[0-5]|[68][0-9])[0-9]{11}$ Diners Club
starts with 300 to 305 or 36 or 38. They use 14 digits.

The following expressions make the deal:

~(?:4[0-9]{12}(?:[0-91{3})? # Visa
| s[1-5][0-9]{14} # MasterCard
| 3[47][0-9]{13} # American Express

| 3(?:0[0-5]|[68][0-9])[0-9]{11} # Diners Club
)$

Ui b WN R

Cards have also have check digits that use the Luhn algorithm. It definitely requires a
piece of code:

function valid credit card(value) {
// Add the former expression here
if (/["0-9-\s]+/.test(value)) return false;

1
2
3
4
5 // The LUHn algorithm

6 var nCheck = 0, nDigit = 0, bEven = false;
7 value = value.replace(/\D/g, "");

8
9
0

for (var n = value.length - 1; n »>= 0; n--) {
1 var cDigit = value.charAt(n),
11 nDigit = parselnt(cDigit, 10);
12
13 if (bEven) {
14 if ((nDigit *= 2) > 9) nDigit -= 9;
15 }
16
17 nCheck += nDigit;
18 bEven = !bEven;
19 }
20
21 return (nCheck % 10) == 0;
22}
23
24 console.log(valid credit card('4012888888881881"'));

You can use the previous expression shown to replace the \d+. The expression

accepts only the numbers—not the spaces or dashes added to improve readability. Strip
these characters before you start your check procedure.

40

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER 4 © EXAMPLES OF PATTERNS

A Test Data To check your code, you need credit card numbers. It’s always a very
bad idea to use actual credit card numbers, however. That’s why the credit card issuers
have test numbers that will be never possessed by anyone.

Table 4-1. Test Ranges for Credit Cards

Credit Card Type Credit Card Number
American Express 378282246310005
American Express 371449635398431
AmEx Corporate 378734493671000
Diners Club 30569309025904
Diners Club 38520000023237
MasterCard 5555555555554444
MasterCard 5105105105105100
Visa 4111111111111111
Visa 4012888888881881
Visa 4222222222222

Geo Coordinates

Once again, let’s start with a simple example:

"[0-9]{1,2}°[0-9]{1,2}[0-9]{1,2} [NnSs] [0-9]{1,2}°[0-9]{1,2}[0-9]{1,2}
[WwEe]$

This handles the traditional forms, such as in 52°31'27” N 13°24'37” E.
For other schemas, it could look like this:

1 wvar ck lat = /~(-?[1-8]2\d(?:\.\d{1,18})?

2 |90(?:\.0{1,18})?)[EW]?$/1i;

3 war ck lon = /~(-2(2:1[0-7]|[2-9])2\d(?:\.\d{1,18})?
4 |180(?:\.0{1,18})?)[NS]?$/1;

5

6 function check_lat_lon(lat, lon){

7 var validlat = ck lat.test(lat);

41

CHAPTER 4 * EXAMPLES OF PATTERNS

8 var validlon = ck lon.test(lon);
9 return (validlLat && validlon);
0 }

11

12 console.log(check lat lon("13E", "52N"));

The scripts uses the i operator for the cardinal points.

Guid/UUID

A guid is a global unique identifier, a 2"128 number, written in 32 hex digits. A typical
pattern can look like this:

¢ [{hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh}]
[hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh]

e [hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh]
[0xhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh]

The letter h means hex digit (0-F). This is how you check for it:

1 /~((?-1i:0x)?[A-F0-9]{32}]
2 [A-F0-9]{8}-
3 [A-Fo-9]{4}-
4 [A-Fo-9]{4}-
5 [A-Fo-9]{4}-
6 [A-F0-9]{12}|
7 \{[A-F0-9]{8}-
8 [A-Fo-9]{4}-
9 [A-F0-9]{4}-
A-F0-9]{4}-
A-FO-9]{12}\})$/i

[N
[N
——

Again, the i option is used because you can write hex with an “a” as well as with “A”.

Percentages

Here we start with a simple pattern for US format numbers:
(2170*$) (2170*\.0*$) "\d{1,2}(\.\d{1,4})?$
In German, you would use this expression:

(2170%$) (2170*%,0%$) "\d{1,2}(,\d{1,4})?%

42

Appendix

As a quick reference, here you will find all the metacharacters and their descriptions.

Table A-1. Characters

Abbreviation Description
Any character
[] One out of an inventory of characters
[°] One not in the inventory of characters
The dot
\ Masking special chars
\\ The backslash

Table A-2. Groups

Abbreviation Description
O Counting group.
(?:) Non-counting groups.
(2=) Lookahead reference. Matches if the
next character matches.
(?=1) Negative lookahead reference.
Matches if the next character does not
match.
© Jorg Krause 2017 43

J. Krause, Introducing Regular Expressions, DOI 10.1007/978-1-4842-2508-0

APPENDIX

Table A-3. Operators

Operator Meaning Description

? 0-1 Zero or one character(s)

* 0-o Zero or any number of characters

+ 1-o0 One or any number of characters

{zahl} number Exact “number” of characters

{min,} min - co Minimum number of characters

{,max} 0 - Max No or maximum of number of characters
{min, max} Min - Max Minimum up to maximum characters

B Start; with option “m” the beginning of a line
$ End; with option “m” the end of a line

Logical OR

Table A-4. Abbreviations

Abbreviation Description

\t Tabulator character

\n Newline

\1 Return (carriage return)

\f Form feed (page break)

\v Vertical tabulator

\s White space (non-printable character, such as \t, space, \n, \r, \f)

S Negation of \s

\w Word character (character from that one build words, especially
[La-zA-Z0-9]

W The negation of \w

\d Digit, same as [0-9]

D Negation of \d

\b Word boundary, start and end of word found by recognizing all
chars not part of \w.

B Negation of \b

\0 Null character (physical 0)

XXX Character value, represented as octal number

\xdd Character value, represented as hexadecimal number

\UXXXX Unicode character in hexadecimal form

\CXXX Control character, ASCII value

44

APPENDIX

Table A-5. JavaScript Functions

Name Description

exec RegExp method, checks and returns an array

test RegExp method, checks and returns a Boolean

match String method, array or null

search String method, index of first hit or -1

replace String method, replaced string or same if no hit
split String method, array

//o Literal of the RegExp objects (o=Option, see Table A-7)

Table A-6. Options

Abbreviation Description

Global, continue after first hit
m Multiline, treat line breaks as regular characters
i Ignore case sensitivity

45

Index

A B

Abbreviation, 44

C

Character classes, 9
date and time, 11
digits, 10
negations, 10
one out of many, 9
strings, 11

Character classes, 6-7

Characters, 43

Credit cards, 39-40
test ranges, 41

Currencies, 38

D

Date expressions, 35-37

E

eMail, 33-35

Enclosing characters, 16

exec method, 19

Expressions, 5
resolving, 4

F

File extensions, 33

Floating point numbers, 39

Form validation, 33
credit cards, 39-41
currencies, 38

© Jorg Krause 2017

date expressions, 35-37
eMail, 33-35

floating point numbers, 39
Geo Coordinates, 41
Guid/UUID, 42

ISBN, 38

number ranges, 38-39
percentages, 42

string passwords, 37
thousands divider, 39

G

Global unique identifier, 42
Groups, 43
enclosing characters, 16
non-counting groups, 17
simple groups, 15

H

HTML tags, 25-26

International Standard Book
Number (ISBN), 38
IP Addresses, 26

J, K

JavaScript, 1-4, 6-7, 15, 18
JavaScript functions, 45
RegExp Object
dynamic properties, 21
execution options, 22
literal form, 22

47

J. Krause, Introducing Regular Expressions, DOI 10.1007/978-1-4842-2508-0

INDEX

JavaScript functions (cont.)
methods, 19-20
properties, 20-21

string functions, 22-23

L

Literals, 6

Mac Addresses, 27-28
Manipulating data

File Extensions, 33

hexadecimal digits for colors, 33

non-printable characters, 33

remove spaces, 31

simulation of variable distance, 32
Metacharacters, 6-7, 12

any character, 8

no characters, 9

start, end, and boundaries, 7-8

N

Non-counting groups, 17
Non-printable characters, 33
Number ranges, 38-39

(0

Operators, 44

P

Port numbers, 30-31

Q

Query String, 30

48

R

References, 14, 17
RegExp method, 45
RegExp Object
dynamic properties, 21
execution options, 22
literal form, 22
methods, 19-20
properties, 20-21
Regular expressions, 1-6, 8, 18
terms
character classes, 6-7
literals, 6
metacharacters, 6
references, 7
Repetition operators, 12
common operators, 13
special operators, 14
summary, 14

S, T

Special characters, 3
String method, 45
String functions, 22-23
String passwords, 37

U Vv

URL, 28-29

W XY,Z
Web and network
HTML tags, 25-26
IP addresses, 26
Mac Addresses, 27-28
port numbers, 30-31
query Ssring, 30
URL, 28-29

www.allitebooks.cond

http://www.allitebooks.org

	Contents at a Glance
	Contents
	About the Author
	Introduction
	Chapter 1: Introducing Regular Expressions
	Copy or Scaffold?
	How Does It Work?
	Resolving Expressions

	Chapter 2: Recognizing Patterns
	Basics
	Characters, Lines, and Text

	Terms for Regular Expressions
	Metacharacters
	Literals
	Character Classes
	References

	Metacharacters Overview
	Start, End, and Boundaries
	Any Character
	No Characters

	Character Classes
	One out of Many
	Negations
	Digits
	Date and Time
	Strings

	Abbreviations
	Repetition Operators
	Common Operators
	Summary
	Special Operators

	References
	Groups
	Simple Groups
	Enclosing Characters
	Non-Counting Groups

	Lookahead References

	Chapter 3: The JavaScript Functions
	The RegExp Object
	Methods
	Properties
	Dynamic Properties
	The Literal Form
	Execution Options

	String Functions
	Overview

	Chapter 4: Examples of Patterns
	Web and Network
	HTML Tags
	IP Addresses
	Mac Addresses
	URL
	Query String
	Port Numbers

	Manipulating Data
	Remove Spaces
	Simulation of a Variable Distance
	File Extensions
	Non-Printable Characters
	Hexadecimal Digits for Colors

	Form Validation
	eMail
	Date Expressions
	String Passwords
	ISBN
	Currencies
	Number Ranges
	Floating Point Numbers
	Thousands Divider
	Credit Cards
	Geo Coordinates
	Guid/UUID
	Percentages

	Index

