
www.ebook3000.com

http://www.ebook3000.org

Introduction toComputing
Using Python

Second Edition

www.ebook3000.com

http://www.ebook3000.org

Introduction toComputing
Using Python

An Application Development Focus

Second Edition

Ljubomir Perkovic
DePaul University

www.ebook3000.com

http://www.ebook3000.org

VICE PRESIDENT AND DIRECTOR Laurie Rosatone
SENIOR DIRECTOR Don Fowley
SENIOR ACQUISITIONS EDITOR Bryan Gambrel
PROJECT SPECIALIST Marcus Van Harpen
EDITORIAL ASSISTANT Jessy Moor
EXECUTIVE MARKETING MANAGER Dan Sayre
SENIOR CONTENT MANAGER Elle Wagner
SENIOR PRODUCTION EDITOR John Curley
PROOFREADER Betty Pessagno
COMPOSITOR B. Praveen Kumar for SPi Global
COVER PHOTO ©simon2579/iStockphoto

This book was set in TEX Gyre Termes 10 and TEX Gyre Heros 10 by Ljubomir Perković and printed and bound
by Quad Graphics/Versailles. The cover was printed by Quad Graphics/Versailles.

This book is printed on acid-free paper. ∞

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live and
work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and
community and charitable support. For more information, please visit our website:
www.wiley.com/go/citizenship.

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030-5774,
(201) 748-6011, fax (201) 748-6008, website www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their
courses during the next academic year. These copies are licensed and may not be sold or transferred to a third
party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and
a free of charge return mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to adopt
this textbook for use in your course, please accept this book as your complimentary desk copy. Outside of the
United States, please contact your local sales representative.

Library of Congress Cataloging-in-Publication Data

Perkovic, Ljubomir.
Introduction to computing using Python : an application development focus / Ljubomir Perkovic, DePaul
University. – Second edition.

pages cm
Includes index.
ISBN 978-1-118-89094-3 (pbk.)
1. Python (Computer program language) 2. Object-oriented programming (Computer science) 3. Computer
programming. I. Title.
QA76.73.P98P47 2015
005.1’17–dc23 2015008087

ISBN: 978-1-118-89094-3

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel

To my father, Milan Perković (1937–1970),

who did not get the chance to complete his book.

www.ebook3000.com

http://www.ebook3000.org

Contents

Preface xix

Online Textbook Supplements xx
For Students: How to Read This Book xx
Overview of the Book xxi
What Is New in This Edition? xxiv
For Instructors: How to Use This Book xxv

1
Introduction to Computer Science 1

1.1 Computer Science 2
What Do Computing Professionals Do? 2
Models, Algorithms, and Programs. 3
Tools of the Trade 3
What Is Computer Science? 4

1.2 Computer Systems 4
Computer Hardware 4
Operating Systems 5
Networks and Network Protocols 6
Programming Languages 7
Software Libraries 7

1.3 Python Programming Language 8
Short History of Python 8
Setting Up the Python Development Environment 8

1.4 Computational Thinking 9
A Sample Problem 9
Abstraction and Modeling 10
Algorithm . 10
Data Types 11
Assignments and Execution Control Structures 12

Chapter Summary . 13

vii

www.ebook3000.com

http://www.ebook3000.org

viii Contents

2
Python Data Types 15

2.1 Expressions, Variables, and Assignments 16
Algebraic Expressions and Functions 16
Boolean Expressions and Operators 18
Variables and Assignments 20
Variable Names 22

2.2 Strings . 23
String Operators 23
Indexing Operator 25

2.3 Lists and Tuples . 27
List Operators 27
Lists Are Mutable, Strings Are Not 29
Tuples, or “Immutable Lists” 29
List and Tuple Methods 31

2.4 Objects and Classes 33
Object Type 33
Valid Values for Number Types 35
Operators for Number Types 36
Creating Objects 37
Implicit Type Conversions 38
Explicit Type Conversions. 39
Class Methods and Object-Oriented Programming 40

2.5 Python Standard Library. 41
Module math 41
Module fractions 42

Case Study: Turtle Graphics 43
Chapter Summary . 43
Solutions to Practice Problems 44
Exercises . 45

3
Imperative Programming 51

3.1 Python Programs 52
Our First Python Program. 52
Python Modules 54
Built-In Function print() 54
Interactive Input with input() 55
Function eval(). 56

Contents ix

3.2 Execution Control Structures 57
One-Way Decisions. 57
Two-Way Decisions 60
Iteration Structures 62
Nesting Control Flow Structures 65
Function range() 66

3.3 User-Defined Functions 67
Our First Function 67
Function Input Arguments. 68
print() versus return 70
Function Definitions Are “Assignment” Statements 71
Comments. 72
Docstrings . 72

3.4 Python Variables and Assignments 74
Mutable and Immutable Types 75
Assignments and Mutability 76
Swapping . 77

3.5 Parameter Passing 78
Immutable Parameter Passing 79
Mutable Parameter Passing 80

Case Study: Automating Turtle Graphics 81
Chapter Summary . 81
Solutions to Practice Problems 82
Exercises . 85
Problems . 86

4
Text Data, Files, and Exceptions 91

4.1 Strings, Revisited 92
String Representations. 92
The Indexing Operator, Revisited 94
String Methods 95

4.2 Formatted Output 98
Function print() 98
String Method format() 100
Lining Up Data in Columns 102
Getting and Formatting the Date and Time 105

4.3 Files. 107
File System 107
Opening and Closing a File 109
Patterns for Reading a Text File 112
Writing to a Text File 115

www.ebook3000.com

http://www.ebook3000.org

x Contents

4.4 Errors and Exceptions 116
Syntax Errors 116
Built-In Exceptions 117

Case Study: Image Files 119
Chapter Summary . 119
Solutions to Practice Problems 120
Exercises . 121
Problems . 124

5
Execution Control Structures 127

5.1 Decision Control and the if Statement 128
Three-Way (and More!) Decisions 128
Ordering of Conditions 130

5.2 for Loop and Iteration Patterns 131
Loop Pattern: Iteration Loop 131
Loop Pattern: Counter Loop 132
Loop Pattern: Accumulator Loop 134
Accumulating Different Types 135
Loop Patterns: Nested Loop 137

5.3 More on Lists: Two-Dimensional Lists 139
Two-Dimensional Lists 140
Two-Dimensional Lists and the Nested Loop Pattern 141

5.4 while Loop. 143
while Loop Usage 143

5.5 More Loop Patterns 145
Iteration Patterns: Sequence Loop 145
Loop Pattern: Infinite Loop 147
Loop Pattern: Loop and a Half 147

5.6 Additional Iteration Control Statements 149
break Statement 149
continue Statement 150
pass Statement 151

Case Study: Image Processing 151
Chapter Summary . 151
Solutions to Practice Problems 152
Exercises . 155
Problems . 157

Contents xi

6
Containers and Randomness 165

6.1 Dictionaries . 166
User-Defined Indexes as Motivation for Dictionaries 166
Dictionary Class Properties 167
Dictionary Operators 169
Dictionary Methods 170
A Dictionary as a Substitute for the Multiway if Statement. . . . 173
Dictionary as a Collection of Counters 173
tuple Objects Can Be Dictionary Keys 176

6.2 Sets . 177
Using the set Constructor to Remove Duplicates 178
set Operators 179
set Methods 180

6.3 Character Encodings and Strings 181
Character Encodings 181
ASCII . 182
Unicode . 183
UTF-8 Encoding for Unicode Characters 185

6.4 Module random . 186
Choosing a Random Integer 187
Choosing a Random “Real” 188
Shuffling, Choosing, and Sampling at Random. 189

Case Study: Games of Chance. 190
Chapter Summary . 190
Solutions to Practice Problems 190
Exercises . 194
Problems . 195

7
Namespaces 203

7.1 Encapsulation in Functions. 204
Code Reuse 204
Modularity (or Procedural Decomposition) 205
Encapsulation (or Information Hiding) 205
Local Variables 205
Namespaces Associated with Function Calls 206
Namespaces and the Program Stack 207

www.ebook3000.com

http://www.ebook3000.org

xii Contents

7.2 Global versus Local Namespaces 211
Global Variables 211
Variables with Local Scope 212
Variables with Global Scope 212
Changing Global Variables Inside a Function 214

7.3 Exceptional Control Flow 215
Exceptions and Exceptional Control Flow 215
Catching and Handling Exceptions 216
The Default Exception Handler 218
Catching Exceptions of a Given Type 218
Multiple Exception Handlers 219
Controlling the Exceptional Control Flow 220

7.4 Modules as Namespaces 223
Module Attributes 223
What Happens When Importing a Module 224
Module Search Path 224
Top-Level Module 226
Different Ways to Import Module Attributes 228

7.5 Classes as Namespaces 230
A Class Is a Namespace 230
Class Methods Are Functions Defined in the Class Namespace . . 231

Case Study: Debugging with a debugger 231
Chapter Summary . 232
Solutions to Practice Problems 232
Exercises . 233
Problems . 236

8
Object-Oriented Programming 239

8.1 Defining a New Python Class. 240
Methods of Class Point 240
A Class and Its Namespace 241
Every Object Has an Associated Namespace 242
Implementation of Class Point 242
Instance Variables 243
Instances Inherit Class Attributes 244
Class Definition, More Generally 245
Documenting a Class 246
Class Animal. 247

8.2 Examples of User-Defined Classes 248
Overloaded Constructor Operator 248
Default Constructor 249
Playing Card Class 250

Contents xiii

8.3 Designing New Container Classes. 251
Designing a Class Representing a Deck of Playing Cards 251
Implementing the Deck (of Cards) Class 252
Container Class Queue 254
Implementing a Queue Class 255

8.4 Overloaded Operators 256
Operators Are Class Methods 257
Making the Class Point User Friendly 258
Contract between the Constructor and the repr() Operator . . . 260
Making the Queue Class User Friendly 262

8.5 Inheritance . 264
Inheriting Attributes of a Class 264
Class Definition, in General 267
Overriding Superclass Methods 267
Extending Superclass Methods 270
Implementing a Queue Class by Inheriting from list 271

8.6 User-Defined Exceptions 272
Raising an Exception 273
User-Defined Exception Classes 274
Improving the Encapsulation of Class Queue 274

Case Study: Indexing and Iterators 275
Chapter Summary . 275
Solutions to Practice Problems 276
Exercises . 279
Problems . 281

9
Graphical User Interfaces 291

9.1 Basics of tkinter GUI Development 292
Widget Tk: The GUI Window. 292
Widget Label for Displaying Text 292
Displaying Images 294
Packing Widgets 295
Arranging Widgets in a Grid 297

9.2 Event-Based tkinter Widgets 299
Button Widget and Event Handlers 299
Events, Event Handlers, and mainloop() 301
The Entry Widget 302
Text Widget and Binding Events 305
Event Patterns and the tkinter Class Event 306

9.3 Designing GUIs . 308
Widget Canvas 308
Widget Frame as an Organizing Widget 311

www.ebook3000.com

http://www.ebook3000.org

xiv Contents

9.4 OOP for GUIs . 313
GUI OOP Basics. 313
Shared Widgets Are Assigned to Instance Variables 315
Shared Data Are Assigned to Instance Variables 317

Case Study: Developing a Calculator 318
Chapter Summary . 319
Solutions to Practice Problems 319
Exercises . 323
Problems . 324

10
Recursion 329

10.1 Introduction to Recursion 330
Functions that Call Themselves 330
Stopping Condition 331
Properties of Recursive Functions 332
Recursive Thinking 332
Recursive Function Calls and the Program Stack 334

10.2 Examples of Recursion. 336
Recursive Number Sequence Pattern 336
Fractals . 338
Virus Scanner 342
Linear recursion 345

10.3 Run Time Analysis 347
The Exponent Function 347
Counting Operations 349
Fibonacci Sequence 349
Experimental Analysis of Run Time 351

10.4 Searching . 354
Linear Search. 354
Binary Search 354
Linear versus Binary Search 356
Uniqueness Testing. 357
Selecting the kth Largest (Smallest) Item. 358
Computing the Most Frequently Occurring Item 359

Case Study: Tower of Hanoi 359
Chapter Summary . 360
Solutions to Practice Problems 360
Exercises . 362
Problems . 363

Contents xv

11
The Web and Search 371

11.1 The World Wide Web 372
Web Servers and Web Clients 372
“Plumbing” of the WWW 373
Naming Scheme: Uniform Resource Locator 373
Protocol: HyperText Transfer Protocol 374
HyperText Markup Language 375
HTML Elements 376
Tree Structure of an HTML Document. 377
Anchor HTML Element and Absolute Links 377
Relative Links. 378

11.2 Python WWW API 379
Module urllib.request 379
Module html.parser 381
Overriding the HTMLParser Handlers 383
Module urllib.parse 384
Parser That Collects HTTP Hyperlinks 385

11.3 String Pattern Matching 387
Regular Expressions 387
Python Standard Library Module re 390

Case Study: Web Crawler 391
Chapter Summary . 392
Solutions to Practice Problems 392
Exercises . 394
Problems . 395

12
Databases and Data Processing 399

12.1 Databases and SQL 400
Database Tables. 400
Structured Query Language 402
Statement SELECT 402
Clause WHERE 404
Built-In SQL Functions 406
Clause GROUP BY 406
Making SQL Queries Involving Multiple Tables 407
Statement CREATE TABLE 409
Statements INSERT and UPDATE 409

www.ebook3000.com

http://www.ebook3000.org

xvi Contents

12.2 Database Programming in Python 410
Database Engines and SQLite 410
Creating a Database with sqlite3 411
Committing to Database Changes and Closing the Database . . . 412
Querying a Database Using sqlite3 413

12.3 Functional Language Approach 415
List Comprehension 415
MapReduce Problem-Solving Framework 417
MapReduce, in the Abstract 420
Inverted Index 421

12.4 Parallel Computing 423
Parallel Computing 423
Class Pool of Module multiprocessing 424
Parallel Speedup 427
MapReduce, in Parallel 428
Parallel versus Sequential MapReduce 429

Case Study: Data Interchange 431
Chapter Summary . 432
Solutions to Practice Problems 432
Exercises . 435
Problems . 436

Case Studies 441

CS.2 Turtle Graphics 442
Classes Screen and Turtle 442
Solution to the Practice Problem 446
Problems . 446

CS.3 Automating Turtle Graphics. 448
Function jump(). 448
Solution to the Practice Problem 450
Problems . 450

CS.4 Processing Image Files 452
Class Image in Module PIL.Image 452
Image Size, Format, and Mode 453
Image Class Methods 454
Creating and Saving a New Image 455
Solution to the Practice Problem 456
Problems . 457

CS.5 Image-Processing Algorithms 458
Accessing Pixels. 458
Copying an Image 459
Rotating an Image by 90 Degrees 459
Applying an Image Filter 461
Solutions to Practice Problems 463
Problems . 464

Contents xvii

CS.6 Games of Chance 465
Blackjack . 465
Creating and Shuffling the Deck of Cards 466
Dealing a Card 467
Computing the Value of a Hand 467
Comparing the Player’s and the House’s Hands 468
Main Blackjack Function 468
Problems . 469

CS.7 Debugging with a Debugger 471
Debugging Commands 471
Analyzing the Program Stack 474
Solution to the Practice Problem 476
Problems . 477

CS.8 Indexing and Iterators 479
Overloading the Indexing Operators 479
Iterators and OOP Design Patterns 481
Solutions to Practice Problems 484
Problems . 484

CS.9 Developing a Calculator 486
The Calculator Buttons and Passing Arguments to Handlers . . . 486
Implementing the “Unofficial” Event Handler click() 488
Solution to the Practice Problem 490
Problems . 490

CS.10 Tower of Hanoi 492
The Recursive Solution 493
Classes Peg and Disk 495
Problems . 497

CS.11 Web Crawlers 498
Recursive Crawler, Version 0.1 498
Recursive Crawler, Version 0.2 500
The Web Page Content Analysis 502
Solution to the Practice Problem 504
Problems . 505

CS.12 Data Interchange 506
Serialization and Data Interchange Formats. 506
JSON (JavaScript Object Notation) 506
Data Compression 508
I/O Streams 510
Solution to the Practice Problems 512
Problems . 513

Index 514

www.ebook3000.com

http://www.ebook3000.org

Preface
This textbook is an introduction to programming, computer application development, and
the science of computing. It is meant to be used in a college-level introductory programming
course. More than just an introduction to programming, the book is a broad introduction to
computer science concepts and to the tools used for modern computer application develop-
ment.

The computer programming language used in the book is Python, a language that has a
gentler learning curve than most. Python comes with powerful software libraries that make
complex tasks—such as developing a graphics application or finding all the links in a web
page—a breeze. In this textbook, we leverage the ease of learning Python and the ease of
using its libraries to do more computer science and to add a focus on modern application
development. The result is a textbook that is a broad introduction to the field of computing
and modern application development.

The textbook’s pedagogical approach is to introduce computing concepts and Python
programming in a breadth-firstmanner. Rather than covering computing concepts and Python
structures one after another, the book’s approach is more akin to learning a natural language,
starting from a small general-purpose vocabulary and then gradually extending it. The pre-
sentation is in general problem oriented, and computing concepts, Python structures, algo-
rithmic techniques, and other tools are introduced when needed, using a “right tool at the
right moment” model.

The book uses the imperative-first and procedural-first paradigm but does not shy away
from discussing objects early. User-defined classes and object-oriented programming are
covered later, when they can be motivated and students are ready. The last three chapters of
the textbook and the associated case studies use the context of web crawling, search engines,
and data mining to introduce a broad array of topics. These include foundational concepts
such as recursion, regular expressions, depth-first search, data compression, and Google’s
MapReduce framework, as well as practical tools such as GUI widgets, HTML parsers,
SQL, JSON, I/O streams, and multicore programming.

This textbook can be used in a course that introduces computer science and program-
ming to computer science majors. Its broad coverage of foundational computer science top-
ics as well as current technologies will give the student a broad understanding of the field
and a confidence to develop “real” modern applications that interact with the web and/or a
database. The textbook’s broad coverage also makes it ideal for students who need to master
programming and key computing concepts but will not takemore than one or two computing
courses.

xix

www.ebook3000.com

http://www.ebook3000.org

xx Preface

The Book’s Technical Features
The textbook has a number of features that engage students and encourage them to get their
hands dirty. For one, the book makes heavy use of examples that use the Python interactive
shell. Students can easily reproduce these one-liners on their own. After doing so, students
will likely continue experimenting further using the immediate feedback of the interactive
shell.

Throughout the textbook, there are inline practice problems whose purpose is to rein-
force concepts just covered. The solutions to these problems appear at the end of the corre-
sponding chapter or case study, allowing students to check their solution or take a peek in
case they are stuck.

The textbook uses Caution boxes towarn students of potential pitfalls. It also usesDetour
boxes to briefly explore interesting but tangential topics. The large number of boxes, practice
problems, figures, and tables create visual breaks in the text, making reading the volume
more approachable for students.

Finally, the textbook contains a large number of end-of-chapter problems, many ofwhich
are unlike problems typically found in an introductory textbook.

The E-Book Edition of the textbook includes additional material consisting of 11 case
studies. Each case study is associated with a chapter (2 through 12) and showcases the
concepts and tools covered in the chapter in context. The case studies include additional
problems, including practice problems with solutions.

Online Textbook Supplements
These textbook supplements are available on the textbook web site:

• PowerPoint slides for each chapter
• Learning objectives for each section
• Code examples appearing in the book
• Exercise and problem solutions (for instructors only)
• Exam problems (for instructors only)

For Students: How to Read This Book
This book is meant to help you master programming and develop computational thinking
skills. Programming and computational thinking are hands-on activities that require a com-
puter with a Python integrated development environment as well as a pen and paper for
“back-of-the-envelope” calculations. Ideally, you should have those tools next to you as you
read this book.

The book makes heavy use of small examples that use Python’s interactive shell. Try
running those examples in your shell. Feel free to experiment further. It’s very unlikely the
computer will burst into flames if you make a mistake!

You should also attempt to solve all the practice problems as they appear in the text.
Problem solutions appear at the end of the corresponding chapter. If you get stuck, it’s OK
to peek at the solution; after doing so, try solving the problem without peeking.

The text uses Caution boxes to warn you of potential pitfalls. These are very important
and should not be skipped. The Detour boxes, however, discuss topics that are only tangen-

Preface xxi

tially related to the main discussion. You may skip those if you like. Or you may go further
and explore the topics in more depth if you get intrigued.

At some point while reading this text, you may get inspired to develop your own app,
whether a card game or an app that keeps track of a set of stock market indexes in real time.
If so, just go ahead and try it! You will learn a lot.

Overview of the Book
This textbook consists of 12 chapters that introduce computing concepts and Python pro-
gramming in a breadth-first manner. The E-Book Edition also includes case studies that
showcase concepts and tools covered in the chapters in context.

Tour of Python and Computer Science
Chapter 1 introduces the basic computing concepts and terminology. Starting with a dis-
cussion of what computer science is and what developers do, the concepts of modeling,
algorithm development, and programming are defined. The chapter describes the computer
scientist’s and application developer’s toolkit, from logic to systems, with an emphasis on
programming languages, the Python development environment, and computational think-
ing.

Chapter 2 covers core built-in Python data types: the integer, Boolean, floating-point,
string, list, and tuple types. To illustrate the features of the different types, the Python interac-
tive shell is used. Rather than being comprehensive, the presentation focuses on the purpose
of each type and the differences and similarities between the types. This approach motivates
a more abstract discussion of objects and classes that is ultimately needed for mastering the
proper usage of data types. Case Study CS.2 takes advantage of this discussion to introduce
Turtle graphics classes that enable students to do simple, fun graphics interactively.

Chapter 3 introduces imperative and procedural programming, including basic execu-
tion control structures. This chapter presents programs as a sequence of Python statements
stored in a file. To control how the statements are executed, basic conditional and iterative
control structures are introduced: the one-way and two-way if statements as well as the
simplest for loop patterns of iterating through an explicit sequence or a range of numbers.
The chapter introduces functions as a way to neatly package a small application; it also
builds on the material on objects and classes covered in Chapter 2 to describe how Python
does assignments and parameter passing. Case Study CS.3 uses the visual context of Turtle
graphics to motivate automation through programs and abstraction through functions.

The first three chapters provide a shallow but broad introduction to Python program-
ming and computers science. Core Python data types and basic execution control structures
are introduced so students can write simple but complete programs early. Functions are in-
troduced early as well to help students conceptualize what a program is doing, that is, what
inputs it takes and what output it produces. In other words, abstraction and encapsulation of
functions is used to help students better understand programs.

Focus on Algorithmic Thinking
Chapter 4 covers text and file processing in more depth. It continues the coverage of strings
from Chapter 2 with a discussion of string value representations, string operators and meth-
ods, and formatted output. File input/output (I/O) is introduced as well and, in particular,
the different patterns for reading text files. Finally, the context of file I/O is used to motivate

www.ebook3000.com

http://www.ebook3000.org

xxii Preface

a discussion of exceptions and the different types of exceptions in Python. Case Study CS.4
discusses how image files (typically stored as binary files rather than text files) are read and
written and how images can be processed using Python.

Chapter 5 covers execution control structures and loop patterns in depth. Basic condi-
tional and iteration structures were introduced in Chapter 3 and then used in Chapter 4 (e.g.,
in the context of reading files). Chapter 5 starts with a discussion of multiway conditional
statements. The bulk of the chapter is spent on describing the different loop patterns: the
various ways for loops and while loops are used. Multidimensional lists are introduced as
well, in the context of the nested loop pattern. More than just covering Python loop struc-
tures, this core chapter describes the different ways that problems can be broken down.
Thus, the chapter fundamentally is about problem solving and algorithms. Case Study CS.5
looks underneath the hood of image processing and describes how classic image processing
algorithms can be implemented.

Chapter 6 completes the textbook’s coverage of Python’s built-in container data types
and their usage. The dictionary, set, and tuple data types are motivated and introduced. This
chapter also completes the coverage of strings with a discussion of character encodings and
Unicode. Finally, the concept of randomness is introduced in the context of selecting and
permuting items in containers. Case Study CS.6 makes use of concepts introduced in this
chapter to show how a blackjack application can be developed.

Chapters 4 through 6 represent the second layer in the breadth-first approach this text-
book takes. One of themain challenges students face in an introductory programming course
is mastering conditional and iteration structures and, more generally, the computational
problem-solving and algorithm development skills. The critical Chapter 5, on patterns of
applying execution control structures, appears after students have been using basic condi-
tional statements and iteration patterns for several weeks and have gotten somewhat com-
fortable with the Python language. Having gained some comfort with the language and basic
iteration, students can focus on the algorithmic issues rather than less fundamental issues,
such as properly reading input or formatting output.

Managing Program Complexity
Chapter 7 shifts gears and focuses on the software development process itself and the prob-
lem of managing larger, more complex programs. It introduces namespaces as the founda-
tion for managing program complexity. The chapter builds on the coverage of functions and
parameter passing in Chapter 3 to motivate the software engineering goals of code reuse,
modularity, and encapsulation. Functions, modules, and classes are tools that can be used to
achieve these goals, fundamentally because they define separate namespaces. The chapter
describes how namespaces are managed during normal control flow and during exceptional
control flow, when exceptions are handled by exception handlers. Case Study CS.7 builds
on this chapter’s content to show how to use a debugger to find bugs in a program or, more
generally, to analyze the execution of the program.

Chapter 8 covers the development of new classes in Python and the object-oriented pro-
gramming (OOP) paradigm. The chapter builds on Chapter 7’s uncovering of how Python
classes are implemented through namespaces to explain how new classes are developed. The
chapter introduces the OOP concepts of operator overloading—central to Python’s design
philosophy—and inheritance—a powerful OOP property that will be used in Chapters 9 and
11. Through abstraction and encapsulation, classes achieve the desirable software engineer-
ing goals of modularity and code reuse. The context of abstraction and encapsulation is then
used to motivate user-defined exception classes. Case Study CS.8 goes one step further and
illustrates the implementation of iterative behavior in user-defined container classes.

Preface xxiii

Chapter 9 introduces graphical user interfaces (GUIs) and showcases the power of the
OOP approach for developing GUIs. It uses the Tk widget toolkit, which is part of the
Python Standard Library. The coverage of interactive widgets provides the opportunity to
discuss the event-driven programming paradigm. In addition to introducing GUI develop-
ment, the chapter also showcases the power of OOP to achieve modular and reusable pro-
grams. Case Study CS.9 illustrates this in the context of implementing a basic calculator
GUI.

The broad goal of Chapters 7 though 9 is to introduce students to the issues of program
complexity and code organization. They describe how namespaces are used to achieve func-
tional abstraction and data abstraction and, ultimately, encapsulated, modular, and reusable
code. Chapter 8 provides a comprehensive discussion of user-defined classes and OOP. The
full benefit of OOP, however, is best seen in context, which is what Chapter 9 is about.
Additional contexts and examples of OOP are shown in later chapters and specifically in
Sections 11.2, 12.3, and 12.4 as well as in Case Study CS.10. Chapters 7 though 9 provide
a foundation for the students’ future education in data structures and software engineering
methodologies.

Crawling through Foundations and Applications
Chapters 10 through 12, the last three chapters of the textbook, cover a variety of advanced
topics, from fundamental computer science concepts like recursion, regular expressions,
data compression, and depth-first search, to practical and contemporary tools like HTML
parsers, JSON, SQL, and multicore programming. The theme used to motivate and connect
these topics is the development of web crawlers, search engines, and data mining apps.
The theme, however, is loose, and each individual topic is presented independently to allow
instructors to develop alternate contexts and themes for this material as they see fit.

Chapter 10 introduces foundational computer science topics: recursion, search, and the
run-time analysis of algorithms. The chapter starts with a discussion of how to think recur-
sively. This skill is then put to use on a wide variety of problems from drawing fractals to
virus scanning. This last example is used to illustrate depth-first search. The benefits and
pitfalls of recursion lead to a discussion of algorithm run-time analysis, which is then used
in the context of analyzing the performance of various list search algorithms. This chap-
ter puts the spotlight on the theoretical aspects of computing and forms a basis for future
coursework in data structures and algorithms. Case Study CS.10 considers the Tower of
Hanoi problem and shows how to develop a visual application that illustrates the recursive
solution.

Chapter 11 introduces the World Wide Web as a central computing platform and as a
huge source of data for innovative computer application development. HTML, the language
of the web, is briefly discussed before tools to access resources on the web and parse web
pages are covered. To grab the desired content fromweb pages and other text content, regular
expressions are introduced. A benefit of touching HTML parsing and regular expressions
in an introductory course is that students will be familiar with their uses in context before
rigorously covering them in a formal languages course. Case Study CS.11 makes use of the
different topics covered in this chapter to show how a basic web crawler can be developed.

Chapter 12 covers databases and the processing of large data sets. The database lan-
guage SQL is briefly described as well as a Python’s database application programming
interface in the context of storing data grabbed from a web page. Given the ubiquity of
databases in today’s computer applications, it is important for students to get an early ex-
posure to them and their use (if for no other reason than to be familiar with them before
their first internship). The coverage of databases and SQL is introductory only and should

www.ebook3000.com

http://www.ebook3000.org

xxiv Preface

be considered merely a basis for a later database course. This chapter also considers how
to leverage the multiple cores available on computers to process big data sets more quickly.
Google’s MapReduce problem-solving framework is described and used as a context for
introducing list comprehensions and the functional programming paradigm. This chapter
forms a foundation for further study of databases, programming languages, and data min-
ing. Case Study CS.12 uses this last context to discuss data interchange or how to format
and save data so that it is accessible, easily and efficiently, to any program that needs it.

What Is New in This Edition?
The big change between the first and second editions of the textbook is a structural one.
A clear separation now exists between the foundational material covered in a chapter and
the case study illustrating the concepts covered in the chapter. The case studies have been
moved out of the chapters and are now grouped together in the E-Book Edition of the text-
book. There are two benefits from this structural change. First, the coverage of the textbook
chapters is now more focused on foundational material. The streamlined content, together
with a switch to a Black&White format, allows the new Print Edition of the textbook to
be priced less than the previous one. The second benefit of moving the case studies to the
E-Book Edition is that the move gives more space for the case studies to be enriched. Four
new case studies appear in the new edition, and there is now a case study associated with
every chapter of the textbook (except the “non-technical” introductory chapter).

In addition to this structural change, new material has been added, some material has
been moved, errata have been corrected, and the presentation has been improved.We outline
these changes next.

In Chapter 2, we have added coverage of the tuple type (covered in Chapter 6 in the
first edition). This move is justified because the tuple type is a key built-in type in Python
that is used by many Standard Library modules and Python applications. For example, tuple
objects are used by the image processing modules discussed in the case studies associated
with Chapters 4 and 5. Because the tuple type is very similar to the list type, this additional
content adds very little to the time needed to cover Chapter 2.

In Chapter 3, the presentation of functions has been improved. In particular, there are
more examples and practice problems to help illustrate the passing of different numbers and
types of function parameters. The Chapter 4 case study has been replaced with a new one on
processing image files. The new case study gives students an exciting opportunity to see the
textbook material in the context of visual media. Also, the material on processing and for-
mating date and time strings has been moved to Section 4.2. The important Chapter 5 has, in
the second edition, an associated case study on implementing image processing algorithms.
This material again uses the attractive context of visual media to illustrate fundamental con-
cepts such as nested loops.

Chapter 6 no longer includes coverage of the tuple type (moved to Chapter 2). Chapter 7
has, in the second edition, an associated case study on debugging and the use of a debugger.
It effectively uses the concepts covered in the chapter to provide students with a new tool
that will help themwith debugging. Chapters 8 and 9 have changed only slightly. Chapter 10
has a deeper and more explicit coverage of linear recursion and its relationship to iteration.
Chapter 11 has few changes. Finally, Chapter 12 has, in the second edition, an associated
case study on data interchange which will help students gain practical experience working
with data sets.

Finally, about 60 practice and end-of-chapter problems have been added to the book.

Preface xxv

For Instructors: How to Use This Book
The material in this textbook was developed for a two quarter course sequence introducing
computer science and programming to computer science majors. The book therefore has
more than enough material for a typical 15-week course (and probably just the right amount
of material for a class of well-prepared and highly motivated students).

The first six chapters of the textbook provide a comprehensive coverage of impera-
tive/procedural programming in Python. They are meant to be covered in order, but it is
possible to cover Chapter 5 before Chapter 4. Furthermore, the topics in Chapter 6 may be
skipped and then introduced as needed.

Chapters 7 through 9 are meant to be covered in order to effectively showcase OOP. It is
important to cover Chapter 7 before Chapter 8 because it demystifies Python’s approach to
class implementation and allows the more efficient coverage of OOP topics such as operator
overloading and inheritance. It is also beneficial, though not necessary, to cover Chapter 9
after Chapter 8 because it provides a context in which OOP is shown to provide great ben-
efits.

Chapters 9 through 12 are all optional, depend only on Chapters 1 through 6—with the
few exceptions noted—and contain topics that can, in general, be skipped or reordered at
the discretion of the course instructor. Exceptions are Section 9.4, which illustrates the OOP
approach to GUI development, as well as Sections 11.2, 12.3, and 12.4, all of which make
use of user-defined classes. All these should follow Chapter 8.

Instructors using this book in a course that leaves OOP to a later course can cover Chap-
ters 1 through 7 and then choose topics from the non-OOP sections of Chapters 9 through
12. Instructors wishing to cover OOP should use Chapters 1 through 9 and then choose
topics from Chapters 10 through 12.

Acknowledgments
The material for the first edition of this textbook was developed over three years in the con-
text of teaching the CSC 241/242 course sequence (Introduction to Computer Science I
and II) at DePaul University. In those three years, six separate cohorts of computer science
freshmen moved through the course sequence. I used the different cohorts to try different
pedagogical approaches, reorder and reorganize the material, and experiment with topics
usually not taught in a course introducing programming. The continuous reorganization
and experimentation made the course material less fluid and more challenging than nec-
essary, especially for the early cohorts. Amazingly, students maintained their enthusiasm
through the low points in the course, which in turn helped me maintain mine. I thank them
all wholeheartedly for that.

I would like to acknowledge the faculty and administration of DePaul’s School of Com-
puting for creating a truly unique academic environment that encourages experimentation
and innovation in education. Some of them also had a direct role in the creation and shap-
ing of this textbook. Associate Dean Lucia Dettori scheduled my classes so I had time to
write. Curt White, an experienced textbook author, encouraged me to start writing and put
in a good word for me with publishing house John Wiley & Sons. Massimo DiPierro, the
creator of the web2py web framework and a far greater Python authority than I will ever be,
created the first outline of the content of the CSC241/242 course sequence, which was the
initial seed for the book. Iyad Kanj taught the first iteration of CSC241 and selflessly allowed
me to mine the material he developed. Amber Settle is the first person other than me to use
this textbook in her course; thankfully, she had great success, though that is at least as much

www.ebook3000.com

http://www.ebook3000.org

xxvi Preface

due to her excellence as a teacher. Craig Miller has thought more deeply about fundamen-
tal computer science concepts and how to explain them than anyone I know; I have gained
some of his insights through many interesting discussions, and the textbook has benefited
from them. Finally, Marcus Schaefer improved the textbook by doing a thorough technical
review of more than half of the book.

My course lecture notes would have remained just that if Nicole Dingley, a Wiley book
rep, had not suggested that I make them into a textbook. Nicole put me in contact withWiley
editor Beth Golub, who made the gutsy decision to trust a foreigner with a strange name
and no experience writing textbooks to write a textbook. Wiley senior designer Madelyn
Lesure, along with my friend and neighbor Mike Riordan, helped me achieve the simple and
clean design of the text. Finally, Wiley senior editorial assistant Samantha Mandel worked
tirelessly on getting my draft chapters reviewed and into production. Samantha has been
a model of professionalism and good grace throughout the process, and she has offered
endless good ideas for making the book better.

The final version of the book is similar to the original draft in surface only. The vast im-
provement over the initial draft is due to the dozens of reviewers, many of them anonymous.
The kindness of strangers has made this a better book and has given me a new appreciation
for the reviewing process. The reviewers have been kind enough not only to find problems
but also offer solutions. For their careful and systematic feedback, I am grateful. Some of the
reviewers, including David Mutchler (Rose-Hulman Institute of Technology), who offered
his name and email for further correspondence, went beyond the call of duty and helped
excavate the potential that lay buried in my early drafts. Jonathan Lundell also provided a
technical review of the last chapters in the book. Because of time constraints, I was not able
to incorporate all the valuable suggestions I received from them, and the responsibility for
any any omissions in the textbook are entirely my own.

I would like to thank, in particular, the following faculty whomade use of the first edition
in their courses and gave me invaluable feedback: Ankur Agrawal (Manhattan College), Al-
bert Chan (Fayetteville State University), Gabriel Ferrer (Hendrix College), David G. Kay
(University of California, Irvine), Gerard Ryan (New Jersey Institute of Technology), Srid-
har Seshadri (University of Texas at Arlington), Richard Weiss (Evergreen State College),
and Michal Young (University of Oregon). I have tried my best to incorporate their sugges-
tions in this second edition.

Finally, I would like to thank my spouse, Lisa, and daughters, Marlena and Eleanor, for
the patience they had with me. Writing a book takes a huge amount of time, and this time
can only come from “family time” or sleep since other professional obligations have set
hours. The time I spent writing this book resulted in my being unavailable for family time
or my being crabby from lack of sleep, a real double whammy. Luckily, I had the foresight
to adopt a dog when I started working on this project. A dog namedMuffin inevitably brings
more joy than any missing from me... So, thanks to Muffin.

About the Author
Ljubomir Perkovic is an associate professor at the School of Computing of DePaul Univer-
sity in Chicago. He received a Bachelor’s degree in mathematics and computer science from
Hunter College of the City University of New York in 1990. He obtained his Ph.D. in algo-
rithms, combinatorics, and optimization from the School of Computer Science at Carnegie
Mellon University in 1998.

Professor Perkovic started teaching the introductory programming sequence for majors
at DePaul in the mid-2000s. His goal was to share with beginning programmers the ex-

Preface xxvii

citement that developers feel when working on a cool new app. He incorporated into the
course concepts and technologies used in modern application development. The material
he developed for the course forms the basis of this book.

His research interests include computational geometry, distributed computing, graph
theory and algorithms, and computational thinking. He has received a Fulbright Research
Scholar award for his research in computational geometry and a National Science Foun-
dation grant for a project to expand computational thinking across the general education
curriculum.

www.ebook3000.com

http://www.ebook3000.org

CHAPTER

1Introduction to
Computer Science
1.1 Computer Science 2

1.2 Computer Systems 4

1.3 Python Programming Language 8

1.4 Computational Thinking 9

Chapter Summary 13

IN THIS INTRODUCTORY CHAPTER, we provide the context for the book
and introduce the key concepts and terminology that we will be using
throughout. The starting point for our discussion are several questions.
What is computer science? What do computer scientists and computer
application developers do? And what tools do they use?

Computers, or more generally computer systems, form one set of
tools. We discuss the different components of a computer system
including the hardware, the operating system, the network and the
Internet, and the programming language used to write programs. We
specifically provide some background on the Python programming
language, the language used in this book.

The other set of tools are the reasoning skills, grounded in logic and
mathematics, required to develop a computer application. We introduce
the idea of computational thinking and illustrate how it is used in the
process of developing a small web search application.

The foundational concepts and terminology introduced in this chapter
are independent of the Python programming language. They are relevant
to any type of application development regardless of the hardware or
software platform or programming language used.

1

www.ebook3000.com

http://www.ebook3000.org

2 Chapter 1 Introduction to Computer Science

1.1 Computer Science
This textbook is an introduction to programming. It is also an introduction to Python, the
programming language. But most of all, it is an introduction to computing and how to look
at the world from a computer science perspective. To understand this perspective and define
what computer science is, let’s start by looking at what computing professionals do.

What Do Computing Professionals Do?
One answer is to say: they write programs. It is true that many computing professionals
do write programs. But saying that they write programs is like saying that screenwriters
(i.e., writers of screenplays for movies or television series) write text. From our experience
watchingmovies, we know better: screenwriters invent aworld and plots in it to create stories
that answer the movie watcher’s need to understand the nature of the human condition.Well,
maybe not all screenwriters.

So let’s try again to define what computing professionals do. Many actually do notwrite
programs. Even among those who do, what they are really doing is developing computer
applications that address a need in some activity we humans do. Such computing profession-
als are often called computer application developers or simply developers. Some developers
even work on applications, like computer games, that are not that different from the imagi-
nary worlds, intricate plots, and stories that screenwriters create.

Not all developers develop computer games. Some create financial tools for investment
bankers, and others create visualization tools for doctors (see Table 1.1 for other examples.)

What about the computing professionals who are not developers? What do they do?
Some talk to clients and elicit requirements for computer applications that clients need.

Table 1.1 The range of
computers science.
Listed are examples of
human activities and, for
each activity, a software
product built by computer
application developers
that supports performing
the activity.

Activity Computer Application
Defense Image processing software for target detection and

tracking
Driving GPS-based navigation software with traffic views on

smartphones and dedicated navigation hardware
Education Simulation software for performing dangerous or

expensive biology laboratory experiments virtually
Farming Satellite-based farm management software that keeps

track of soil properties and computes crop forecasts
Films 3D computer graphics software for creating

computer-generated imagery for movies
Media On-demand, real-time video streaming of television

shows, movies, and video clips
Medicine Patient record management software to facilitate

sharing between specialists
Physics Computational grid systems for crunching data

obtained from particle accelerators
Political activism Social network technologies that enable real-time

communication and information sharing
Shopping Recommender system that suggests products that

may be of interest to a shopper
Space exploration Mars exploration rovers that analyze the soil to find

evidence of water

Section 1.1 Computer Science 3

Others are managers who oversee an application development team. Some computing pro-
fessionals support their clients with newly installed software and others keep the software
up to date. Many computing professionals administer networks, web servers, or database
servers. Artistic computing professionals design the interfaces that clients use to interact
with an application. Some, such as the author of this textbook, like to teach computing, and
others offer information technology (IT) consulting services. Finally, more than a few com-
puting professionals have become entrepreneurs and started new software businesses, many
of which have become household names.

Regardless of the ultimate role they play in the world of computing, all computing pro-
fessionals understand the basic principles of computing, how computer applications are
developed, and how they work. Therefore, the training of a computing professional always
starts with the mastery of a programming language and the software development process.
In order to describe this process in general terms, we need to use slightly more abstract
terminology.

Models, Algorithms, and Programs
To create a computer application that addresses a need in some area of human activity, de-
velopers invent a model that represents the “real-world” environment in which the activity
occurs. The model is an abstract (imaginary) representation of the environment and is de-
scribed using the language of logic and mathematics. The model can represent the objects
in a computer game, stock market indexes, an organ in the human body, or the seats on an
airplane.

Developers also invent algorithms that operate in the model and that create, transform,
and/or present information. An algorithm is a sequence of instructions, not unlike a cooking
recipe. Each instruction manipulates information in a very specific and well-defined way,
and the execution of the algorithm instructions achieves a desired goal. For example, an
algorithm could compute collisions between objects in a computer game or the available
economy seats on an airplane.

The full benefit of developing an algorithm is achieved with the automation of the ex-
ecution of the algorithm. After inventing a model and an algorithm, developers implement
the algorithm as a computer program that can be executed on a computer system. While
an algorithm and a program are both descriptions of step-by-step instructions of how to
achieve a result, an algorithm is described using a language that we understand but that can-
not be executed by a computer system, and a program is described using a language that we
understand and that can be executed on a computer system.

At the end of this chapter, in Section 1.4, we will take up a sample task and go through
the steps of developing a model and an algorithm implementing the task.

Tools of the Trade
We already hinted at a few of the tools that developers use when working on computer ap-
plications. At a fundamental level, developers use logic and mathematics to develop models
and algorithms. Over the past half century or so, computer scientists have developed a vast
body of knowledge—grounded in logic and mathematics—on the theoretical foundations
of information and computation. Developers apply this knowledge in their work. Much of
the training in computer science consists of mastering this knowledge, and this textbook is
the first step in that training.

The other set of tools developers use are computers, of course, or more generally com-
puter systems. They include the hardware, the network, the operating systems, and also the

www.ebook3000.com

http://www.ebook3000.org

4 Chapter 1 Introduction to Computer Science

programming languages and programming language tools. We describe all these systems
in more detail in Section 1.2. While the theoretical foundations often transcend changes in
technology, computer system tools are constantly evolving. Faster hardware, improved op-
erating systems, and new programming languages are being created almost daily to handle
the applications of tomorrow.

What Is Computer Science?
We have described what application developers do and also the tools that they use. What
then is computer science? How does it relate to computer application development?

While most computing professionals develop applications for users outside the field of
computing, some are studying and creating the theoretical and systems tools that developers
use. The field of computer science encompasses this type of work. Computer science can
be defined as the study of the theoretical foundations of information and computation and
their practical implementation on computer systems.

While application development is certainly a core driver of the field of computer sci-
ence, its scope is broader. The computational techniques developed by computer scientists
are used to study questions on the nature of information, computation, and intelligence.
They are also used in other disciplines to understand the natural and artificial phenomena
around us, such as phase transitions in physics or social networks in sociology. In fact, some
computer scientists are now working on some of the most challenging problems in science,
mathematics, economics, and other fields.

We should emphasize that the boundary between application development and computer
science (and, similarly, between application developers and computer scientists) is usually
not clearly delineated. Much of the theoretical foundations of computer science have come
out of application development, and theoretical computer science investigations have often
led to innovative applications of computing. Thus many computing professionals wear two
hats: the developer’s and the computer scientist’s.

1.2 Computer Systems
A computer system is a combination of hardware and software that work together to execute
application programs. The hardware consists of physical components—that is, components
that you can touch, such as a memory chip, a keyboard, a networking cable, or a smartphone.
The software includes all the nonphysical components of the computer, including the op-
erating system, the network protocols, the programming language tools, and the associated
application programming interface (API).

Computer Hardware
The computer hardware refers to the physical components of a computer system. It may
refer to a desktop computer and include the monitor, the keyboard, the mouse, and other
external devices of a computer desktop and, most important, the physical “box” itself with
all its internal components.

The core hardware component inside the box is the central processing unit (CPU) . The
CPU is where the computation occurs. The CPU performs computation by fetching program
instructions and data and executing the instructions on the data. Another key internal com-
ponent is main memory, often referred to as random access memory (RAM). That is where
program instructions and data are stored when the program executes. The CPU fetches in-

Section 1.2 Computer Systems 5

structions and data from main memory and stores the results in main memory.
The set of wirings that carry instructions and data between the CPU andmain memory is

commonly called a bus. The bus also connects the CPU and main memory to other internal
components such as the hard drive and the various adapters to which external devices (such
as the monitor, the mouse, or the network cables) are connected.

The hard drive is the third core component inside the box. The hard drive is where files
are stored. Main memory loses all data when the computer is shut down; the hard drive,
however, is able to store a file whether the computer is powered on or off. The hard drive
also has a much, much higher capacity than main memory.

The term computer systemmay refer to a single computer (desktop, laptop, smartphone,
or pad). It may also refer to a collection of computers connected to a network (and thus
to each other). In this case, the hardware also includes any network wiring and specialized
network hardware such as routers.

It is important to understand that most developers do not work with computer hardware
directly. It would be extremely difficult to write programs if the programmer had to write
instructions directly to the hardware components. It would also be very dangerous because
a programming mistake could incapacitate the hardware. For this reason, there exists an
interface between application programs written by a developer and the hardware.

Operating Systems
An application program does not directly access the keyboard, the computer hard drive, the
network (and the Internet), or the display. Instead it requests the operating system (OS) to
do so on its behalf. The operating system is the software component of a computer system
that lies between the hardware and the application programs written by the developer. The
operating system has two complementary functions:

1. The OS protects the hardware from misuse by the program or the programmer and
2. The OS provides application programs with an interface through which programs

can request services from hardware devices.
In essence, the OS manages access to the hardware by the application programs executing
on the machine.

DETOUR
Origins of Today’s Operating Systems

The mainstream operating systems on the market today are Microsoft Windows
and UNIX and its variants, including Linux and Apple OS X.

The UNIX operating systemwas developed in the late 1960s and early 1970s by
Ken Thompson at AT&T Bell Labs. By 1973, UNIX was reimplemented by Thomp-
son and Dennis Ritchie using C, a programming language just created by Ritchie.
As it was free for anyone to use, C became quite popular, and programmers ported
C and UNIX to various computing platforms. Today, there are several versions of
UNIX, including Apple’s Mac OS X.

The origin of Microsoft’s Windows operating systems is tied to the advent of
personal computers. Microsoft was founded in the late 1970s by Paul Allen and
Bill Gates. When IBM developed the IBM Personal Computer (IBM PC) in 1981,
Microsoft provided the operating system called MS DOS (Microsoft Disk Operating
System). Since then Microsoft has added a graphical interface to the operating

www.ebook3000.com

http://www.ebook3000.org

6 Chapter 1 Introduction to Computer Science

system and renamed it Windows. The latest version is Windows 7.
Linux is a UNIX-like operating sytem developed in the early 1990s by Linus Tor-

valds. His motivation was to build a UNIX-like operating system for personal com-
puters since, at the time, UNIX was restricted to high-powered workstations and
mainframe computers. After the initial development, Linux became a community-
based, open source software development project. That means that any devel-
oper is welcome to join in and help in the further development of the Linux OS.
Linux is one of the best examples of successful open-source software develop-
ment projects.

Networks and Network Protocols
Many of the computer applications we use daily require the computer to be connected to the
Internet. Without an Internet connection, you cannot send an email, browse the web, listen
to Internet radio, or update your software. In order to be connected to the Internet, though,
you must first connect to a network that is part of the Internet.

A computer network is a system of computers that can communicate with each other.
There are several different network communication technologies in use today, some of which
are wireless (e.g., Wi-Fi) and others that use network cables (e.g., Ethernet).

An internetwork is the connection of several networks. The Internet is an example of an
internetwork. The Internet carries a vast amount of data and is the platform upon which the
World Wide Web (WWW) and email are built.

DETOUR
Beginning of the Internet

On October 29, 1969, a computer at the University of California at Los Angeles
(UCLA) made a network connection with a computer at the Stanford Research In-
stitute (SRI) at Stanford University. The ARPANET, the precursor to today’s Internet,
was born.

The development of the technologies that made this network connection pos-
sible started in the early 1960s. By that time, computers were becoming more
widespread and the need to connect computers to share data became apparent.
The Advanced Research Projects Agency (ARPA), an arm of the U.S. Department
of Defense, decided to tackle the issue and funded network research at several
American universities. Many of the networking technologies and networking con-
cepts in use today were developed during the 1960s and then put to use on October
29, 1969.

The 1970s saw the development of the TCP/IP network protocol suite that is still
in use today. The protocol specifies, among other things, how data travels from one
computer on the Internet to another. The Internet grew rapidly during the 1970s and
1980s but was not widely used by the general public until the early 1990s, when
the World Wide Web was developed.

Section 1.2 Computer Systems 7

Programming Languages
What distinguishes computers from other machines is that computers can be programmed.
What this means is that instructions can be stored in a file on the hard drive, and then loaded
into main memory and executed on demand. Because machines cannot process ambiguity
the way we (humans) can, the instructions must be precise. Computers do exactly what they
are told and cannot understand what the programmer “intended” to write.

The instructions that are actually executed are machine language instructions. They are
represented using binary notation (i.e., a sequence of 0s and 1s). Because machine language
instructions are extremely hard to work with, computer scientists have developed program-
ming languages and language translators that enable developers to write instructions in a
human readable language and then translate them into machine language. Such language
translators are referred to as assemblers, compilers, or interpreters, depending on the pro-
gramming language.

There are many programming languages out there. Some of them are specialized lan-
guages meant for particular applications such as 3Dmodeling or databases. Other languages
are general-purpose and include C, C++, C#, Java, and Python.

While it is possible to write programs using a basic text editor, developers use Inte-
grated Development Environments (IDEs) that provide a wide array of services that support
software development. They include an editor to write and edit code, a language translator,
automated tools for creating binary executables, and a debugger.

DETOUR
Computer Bugs

When a program behaves in a way that was not intended, such as crashing, freezing
the computer, or simply producing erroneous output, we say that the program has a
bug (i.e., an error). The process of removing the error and correcting the program is
called debugging. A debugger is a tool that helps the developer find the instructions
that cause the error.

The term “bug” to denote an error in a system predates computers and computer
science. Thomas Edison, for example, used the term to describe faults and errors
in the engineering of machines all the way back in the 1870s. Interestingly, there
have also been cases of actual bugs causing computer failures. One example, as
reported by computing pioneer Grace Hopper in 1947, is the moth that caused the
Mark II computer at Harvard, one of the earliest computers, to fail.

Software Libraries
A general-purpose programming language such as Python consists of a small set of general-
purpose instructions. This core set does not include instructions to download web pages,
draw images, play music, find patterns in text documents, or access a database. The reason
why is essentially because a “sparser” language is more manageable for the developer.

Of course, there are application programs that need to access web pages or databases.
Instructions for doing so are defined in software libraries that are separate from the core
language, and they must be explicitly imported into a program in order to be used. The
description of how to use the instructions defined in a library is often referred to as the
application programming interface (API).

www.ebook3000.com

http://www.ebook3000.org

8 Chapter 1 Introduction to Computer Science

1.3 Python Programming Language
In this textbook, we introduce the Python programming language and use it to illustrate
core computer science concepts, learn programming, and learn application development in
general. In this section, we give some background on Python and how to set up a Python
IDE on your computer.

Short History of Python
The Python programming language was developed in the late 1980s by Dutch programmer
Guido van Rossum while working at CWI (the Centrum voor Wiskunde en Informatica in
Amsterdam, Netherlands). The language was not named after the large snake species but
rather after the BBC comedy seriesMonty Python’s Flying Circus. Guido van Rossum hap-
pens to be a fan. Just like the Linux OS, Python eventually became an open source software
development project. However, Guido van Rossum still has a central role in deciding how the
language is going to evolve. To cement that role, he has been given the title of “Benevolent
Dictator for Life” by the Python community.

Python is a general-purpose language that was specifically designed to make programs
very readable. Python also has a rich library making it possible to build sophisticated ap-
plications using relatively simple-looking code. For these reasons, Python has become a
popular application development language and also the preferred “first” programming lan-
guage.

!
CAUTION

Python 2 versus Python 3

There are currently two major versions of Python in use. Python 2 was originally
made available in 2000; its latest release is 2.7. Python 3 is a new version of Python
that fixes some less-than-ideal design decisions made in the early development
of the Python language. Unfortunately, Python 3 is not backward compatible with
Python 2. This means that a program written using Python 2 usually will not execute
properly with a Python 3 interpreter.

In this textbook, we have chosen to use Python 3 because of its more consistent
design. To learn more about the difference between the two releases, see:

http://wiki.python.org/moin/Python2orPython3

Setting Up the Python Development Environment
If you do not have Python development tools installed on your computer already, you will
need to download a Python IDE. The official list of Python IDEs is at

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

We illustrate the IDE installation using the standard Python development kit that in-
cludes the IDLE IDE. You may download the kit (for free) from:

http://python.org/download/

Listed there are installers for all mainstream operating systems. Choose the appropriate one
for your system and complete the installation.

To get started with Python, you need to open a Python interactive shell window. The
IDLE interactive shell included with the Python IDE is shown in Figure 1.1.

http://wiki.python.org/moin/Python2orPython3
http://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://python.org/download

Section 1.4 Computational Thinking 9

Figure 1.1 The IDLE IDE.
The IDLE Integrated
Development Environment
is included in the standard
implementation of Python.
Shown is the IDLE
interactive shell. At the >>>
prompt, you can type single
Python instructions. The
instruction is executed by
the Python interpreter when
the Enter/Return key is
pressed.

The interactive shell expects the user to type a Python instruction. When the user types
the instruction print('Hello world') and then presses the Enter/Return key on the
keyboard, a greeting is printed:

Python 3.2.1 (v3.2.1:ac1f7e5c0510, Jul 9 2011, 01:03:53)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "copyright", "credits" or "license()" for more information.
>>> print('Hello world')
Hello world

The interactive shell is used to execute single Python instructions like print('Hello world').
A program typically consists of multiple instructions that must be stored in a file before be-
ing executed.

1.4 Computational Thinking
In order to illustrate the software development process and introduce the software develop-
ment terminology, we consider the problem of automating a web search task. To model the
relevant aspects of the task and describe the task as an algorithm, we must understand the
task from a “computational” perspective. Computational thinking is a term used to describe
the intellectual approach through which natural or artificial processes or tasks are under-
stood and described as computational processes. This skill is probably the most important
one you will develop in your training as a computer scientist.

A Sample Problem
We are interested in purchasing about a dozen prize-winning novels from our favorite online
shopping web site. The thing is, we do not want to pay full price for the books. We would
rather wait and buy the books on sale. More precisely, we have a target price for each book
and will buy a book only when its sale price is below the target. So, every couple of days,
we visit the product web page of every book on our list and, for each book, check whether
the price has been reduced to below our target.

www.ebook3000.com

http://www.ebook3000.org

10 Chapter 1 Introduction to Computer Science

As computer scientists, we should not be satisfied with manually visiting web page after
web page. We would rather automate the search process. In other words, we are interested
in developing an application that visits the web pages of the books on our list and finds the
books whose price is below the target. To do this, we need to describe the search process in
computational terms.

Abstraction and Modeling
We start by simplifying the problem statement. The “real world” that is the context for the
problem contains information that is not really relevant. For example, it is not necessarily
important that the products are books, let alone prize-winning novels. Automating the search
process would be the same if the products were climbing gear or fashion shoes.

It also is not important that there are 12 products on our list. More important is that there
is a list (of products); our application should be able to handle a list of 12, 13, 11, or any
number of products. The additional benefit of ignoring the “dozen novels” detail is that the
application we end up with will be reusable on an arbitrarily long list of arbitrary products.

What are the relevant aspects of the problem? One is that each product has an associated
web page that lists its price. Another is that we have a target price for each product. Finally,
the web itself is a relevant aspect as well. We can summarize the relevant information as
consisting of:

a. the web
b. a list that contains addresses of product web pages
c. a list that contains target prices

Let’s call the first list Addresses and the second Targets.
We need to be a bit more precise with the descriptions of our lists because it is not clear

how addresses in list Addresses correspond to target prices in list Targets. We clarify
this by numbering the products 0, 1, 2, 3, . . . (computer scientists start counting from 0)
and then ordering the addresses and targets so the web page address and target price of a
product are in the same position in their respective list, as shown in Figure 1.2.

Figure 1.2 Lists of web
page addresses and
target prices. The web
page address and target
price for product 0 are first
in their respective lists. For
product 1, they are both
second, for product 2,
they are third, etc.

Product 0 1 2 ...

Addresses Prod. 0 address Prod. 1 address Prod. 2 address ...

Targets Prod. 0 target Prod. 1 target Prod. 2 target ...

The process of distilling the relevant aspects of a problem is called abstraction. It is
a necessary step, so the problem is described precisely, using the language of logic and
mathematics. The result of abstraction is a model that represents all the relevant aspects of
the problem.

Algorithm
The search application we want to develop should “visit” product web pages “one after
another” and, for each product, “check” whether the price has been reduced to below the
target price. While this description of how the application should work may be clear to us, it
is not quite precise enough. For example, what do we mean by “visit,” “one after another,”

Section 1.4 Computational Thinking 11

and “check”?
When we “visit” a web page, we are really downloading it and displaying it in our

browser (or reading it). When we say that we are going to visit pages “one after another,”
we need to be clear that each page will be visited exactly once; we also should be explicit
about the order in which the pages will be visited. Finally, in order to “check” whether the
price has been reduced enough, we need to first find the price in the web page.

To facilitate the eventual implementation of the search process as a computer program,
we need to describe the search using more precise step-by-step instructions or, in other
words, an algorithm. The algorithm should consist of an unambiguous description of the
steps that, when executed on a specified input, produce the desired output.

We start the development of the algorithm by clearly specifying the input data (i.e., the
information we start with) and the output data (i.e., the information we desire to obtain):
Input: An ordered list of web page addresses called Addresses and an ordered list of

target prices called Targets of the same size

Output: (Printed on the screen.) Web page addresses for products whose price is less than
the target price

Now we can describe the algorithm:

1 Let N be the number of products in list Addresses.
2

3 For every product I = 0, 1, ..., N-1, execute these statements:
4

5 Let ADDR be the address in list Addresses for product I
6

7 Download the web page whose address is ADDR and
8 let PAGE be the content of this web page
9

10 Find in PAGE the current price of product I and
11 let CURR be this value
12

13 Let TARG be the product I target price from list Targets
14

15 If CURR < TARG:
16 Print ADDR

This description of the algorithm is not real code that can be executed on a computer. It is
simply a precise description of what we need to do to acomplish a task and is often refered
to as pseudocode. An algorithm can also be described using actual executable code. In the
rest of this book, we will describe our algorithms using Python programs.

Data Types
The description of the search algorithm includes references to various data:

a. N, the number of products
b. ADDR, the address of a web page
c. PAGE, the content of a web page
d. CURR and TARG, the current and target prices
e. The lists Addresses and Targets

www.ebook3000.com

http://www.ebook3000.org

12 Chapter 1 Introduction to Computer Science

The names N, I, ADDR, PAGE, CURR, and TARG are called variables, just as in algebra. The
names Addresses and Targets are also variables. The purpose of variables is to store
values so that they can be retrieved later. For example, the value of ADDR, set in line 5 of the
algorithm, is retrieved to be printed in line 16.

Let’s take a closer look at the type of values these data can have. The number of products
N will be a nonnegative integer value. The current price CURR and the target price TARG will
be positive numbers likely using decimal point notation; we describe them as positive non-
integer numbers. What about the “value” of the web page address ADDR and the “value” of
the web page content? Both are best described as sequences of characters (we ignore non-
text content). Finally, we have the two lists. The list of addresses Addresses is an ordered
sequence of addresses (which are character sequences), whereas the list of target prices
Targets is an ordered sequence of prices (which are numbers).

The data type refers to the range of values data can have (e.g., integer, non-integer num-
ber, sequence of characters, or list of other values) and also to the operations that can be
performed on the data. In the algorithm, we perform the following operations, among others,
on the data:

a. We compare numbers CURR and TARG
b. We find the address of product I in list Addresses
c. We search the web page content for a price
d. We create a sequence 0, 1, 2, ..., N-1 from integer N
In case a., we make the assumption that number types can be compared. In case b., we

assume that we can retrieve product I from list Addresses. In case c., we assume that we
can search a sequence of characters and look for something that looks like a price. In case
d., we assume that we can create a sequence from 0 up to and not including an integer.

The point we are making is this: An algorithm consists of instructions that manipulate
data and how the data is allowed to be manipulated depends on the data type. Consider case
d., for example. While this operation makes sense for integer data type N, it does not make
sense at all for, say, the web page address data ADDR. So the integer data type supports the
operation of creating a sequence, whereas the “character sequence” data type does not.

So, in order to be able to think “computationally,” we really need to know what types of
data we can use and what operations can be performed on that data. Because we will think
“computationally” in the context of Python programming, we will need to know the data
types and the operations that Python supports. Our first order of business is thus to learn
Python’s core data types and, in particular, the different operations that these data types
support. This will be the topic of Chapter 2.

Assignments and Execution Control Structures
In addition to different types of data, the product search algorithm we developed uses differ-
ent kinds of instructions. Several instructions in the algorithm assign a value to a variable:

a. In line 1, we assign a value to variable N.
b. In line 5, we assign a value to variable ADDR.
c. In line 8, we assign a value to variable PAGE.
d. In line 11, we assign a value to variable CURR.
e. In line 13, we assign a value to variable TARG.

While the values assigned to the variables are of different types, the same kind of instruction
is used to do the assignment. This kind of instruction is called an assignment statement.

Chapter 1 Chapter Summary 13

A different kind of instruction is used in line 15. This instruction compares the current
price CURR with the target price TARG; if the value of CURR is less than the value of TARG—
and only then—the statement in line 16 is executed (and the value of ADDR is printed). The
If instruction in line 15 is a kind of instruction referred to as a conditional control structure.

Line 3 illustrates yet another kind of instruction. This instruction will repeatedly execute
the statements in lines 5 to 16, once for every value of I. So, the statements 5 to 16 will be
executed for I equal to 0, and then again for I equal to 1, and then again for I equal to 2,
and so on. After the statements 5 to 16 have been executed for I equal to N-1, the execution
of the instruction in line 3 is complete. This instruction is referred to as an iteration control
structure. The word iteration means “the action of repeating a process.” The process that is
repeated in our algorithm is the execution of statements in lines 5 to 16.

Conditional and iteration control structures are together referred to as execution con-
trol structures. Execution control structures are used to control the flow of execution of
the statements in a program. In other words, they determine the order in which the state-
ments are executed, under what conditions, and how many times. Together with assignment
statements, execution control structures are the fundamental building blocks for describing
computational solutions to problems and developing algorithms. We introduce Python’s ex-
ecution control structures in Chapter 3, after having reviewed Python’s core data types in
Chapter 2.

Chapter Summary
This chapter introduces the field of computer science, the work computer scientists and
developers do, and the tools that computer scientists and developers use.

Computer science studies, on one hand, the theoretical foundations of information and
computation and, on the other, the hands-on techniques to implement applications on com-
puter systems. Computer application developers use the concepts and techniques of com-
puter science in the context of application development. They formulate abstract representa-
tions that model a particular real or imaginary environment, create algorithms that manipu-
late data in the model, and then implement the algorithm as a program that can be executed
on a computer system.

The computer science tools include the abstract tools of math and logic and the concrete
computer system tools. Computer system tools include the hardware and the software. In
particular, they include the programming language and the programming language tools
through which the developer ultimately controls the different system components.

The abstract tools that computer scientists use are the computational thinking skills,
based on logic and mathematics, that are necessary to describe problems, tasks, and pro-
cesses through the lens of abstraction and computation. In order to be able to do this, we
need to master a language of abstraction and computation. The best way to do this, of course,
is to master a programming language. In effect, the programming language is the glue that
connects the system and the abstract tools of a developer. That is why mastery of a program-
ming language is the core skill of a computer scientist.

www.ebook3000.com

http://www.ebook3000.org

CHAPTER

2Python Data
Types
2.1 Expressions, Variables, and Assignments 16

2.2 Strings 23

2.3 Lists and Tuples 27

2.4 Objects and Classes 33

2.5 Python Standard Library 41

Case Study: Turtle Graphics 43

Chapter Summary 43

Solutions to Practice Problems 44

Exercises 45

IN THIS CHAPTER, we introduce a very small subset of Python. While
small, it is broad enough to start doing interesting things right away. In the
next chapters we fill in the details. We begin by using Python as a
calculator that evaluates algebraic expressions. We then introduce
variables as a way to “remember” results of such evaluations. Finally we
show how Python works with values other than numbers: values to
represent logical values true and false, text values, and lists of values.

Having seen the core types of data supported by Python, we take a
step back and define precisely the concept of a data type and that of an
object that stores a value of a given type. With data stored in objects, we
can ignore how the data is represented and stored in the computer and
work only with the abstract but familiar properties that the object’s type
makes explicit. This idea of abstracting important properties is a central
one in computer science to which we come back several times.

In addition to the core, built-in data types, Python comes with a large
library of additional types organized into modules. We use two math
modules to illustrate usage of the Python Standard Library.

15

www.ebook3000.com

http://www.ebook3000.org

16 Chapter 2 Python Data Types

2.1 Expressions, Variables, and Assignments
Let’s start with something familiar. We use the Python IDE interactive shell as a calculator
to evaluate Python expressions, starting with simple algebraic expressions. Our goal is to
illustrate how Python is intuitive and usually behaves the way you would expect.

Algebraic Expressions and Functions
At the interactive shell prompt >>> , we type an algebraic expression, such as 3 + 7, and hit
the Enter key on the keyboard to view the result of evaluating the expression:

>>> 3 + 7
10

Let’s try expressions that use different algebraic operators:

>>> 3 * 2
6
>>> 5 / 2
2.5
>>> 4 / 2
2.0

In the first two expressions, integers are added or multiplied and the result is an integer,
which is what you expect. In the third expression, an integer is divided by another and
the result is shown in decimal point notation. This is because when an integer is divided by
another, the result is not necessarily an integer. The rule in Python is to return a number with
a decimal point and a fractional part, even when the result is an integer. This is illustrated
in the last expression, where integer 4 is divided by 2 and the result shown is 2.0 rather than
2.

Values without the decimal point are said to be of type integer or simply int. Values
with decimal points and fractional parts are said to be of type floating point or simply float.
Let us continue evaluating expressions using values of both types:

>>> 2 * 3 + 1
7
>>> (3 + 1) * 3
12
>>> 4.321 / 3 + 10
11.440333333333333
>>> 4.321 / (3 + 10)
0.3323846153846154

Multiple operators are used in these expressions, which raises the question: In what order
should the operations be evaluated? The standard algebra precedence rules apply in Python:
Multiplication and division take precedence over addition and subtraction and, just as in al-
gebra, parentheses are used when we want to explicitly specify the order in which operations
should take place. If all else fails, expressions are evaluated from using the left-to-right eval-
uation rule. This last rule is used in the next expression, where the addition is executed after
the subtraction:

>>> 3 - 2 + 1
2

Section 2.1 Expressions, Variables, and Assignments 17

All the expressions we have evaluated so far are plain algebraic expressions involving num-
ber values (of type int or type float), algebraic operators (such as +, -, /, and *), and
parentheses. When you hit the Enter key, the Python interpreter will read the expression
and evaluate it in a way that you expect. Here is one more, slightly unusual, example of an
algebraic expression:

>>> 3
3

Python evaluates expression 3 to . . . 3.
The two types of number values, int and float, have somewhat different properties.

For example, when two int values are added, subtracted, or multiplied, the result is an int
value. If at least one float value appears in the expression, however, the result is always a
float value. Note that a float value is also obtained when two integer values (e.g., 4 and
2) are divided.

Several other algebraic operators are commonly used. To compute 24, you need to use
the exponentiation operator **:

>>> 2**3
8
>>> 2**4
16

So xy is computed using the Python expression x**y.
In order to obtain the integer quotient and the remainder when two integer values are

divided, operators // and % are used. The // operator in expression a//b returns the integer
quotient obtained when integer a is divided by integer b. The % operator in expression a%b
computes the remainder obtained when integer a is divided by integer b. For example:

>>> 14 // 3
4
>>> 14 % 3
2

In the first expression, 14 // 3 evaluates to 4 because 3 goes into 14 four times. In the
second expression, 14 % 3 evaluates to 2 because 2 is the remainder when 14 is divided by
3.

Python also supports mathematical functions of the kind you have used in an algebra
class. Recall that, in algebra, the notation

f(x) = x + 1

is used to define function f() that takes an input, denoted by x, and returns a value, which
is x + 1 in this case. In order to use this function on input value 3, for example, you would
use the notation f(3), which evaluates to 4.

Python functions are similar. For example, the Python function abs() can be used to
compute the absolute value of a number value:

>>> abs(-4)
4
>>> abs(4)
4
>>> abs(-3.2)
3.2

www.ebook3000.com

http://www.ebook3000.org

18 Chapter 2 Python Data Types

Some other functions that Python makes available are min() and max(), which return
the minimum or maximum, respectively, of the input values:

>>> min(6, -2)
-2
>>> max(6, -2)
6
>>> min(2, -4, 6, -2)
-4
>>> max(12, 26.5, 3.5)
26.5

Practice Problem
2.1

Write Python algebraic expressions corresponding to the following statements:
(a) The sum of the first five positive integers
(b) The average age of Sara (age 23), Mark (age 19), and Fatima (age 31)
(c) The number of times 73 goes into 403
(d) The remainder when 403 is divided by 73
(e) 2 to the 10th power
(f) The absolute value of the difference between Sara’s height (54 inches) and Mark’s

height (57 inches)
(g) The lowest price among the following prices: $34.99, $29.95, and $31.50

Boolean Expressions and Operators
Algebraic expressions evaluate to a number, whether of type int or float or one of the
other number types that Python supports. In an algebra class, expressions other than alge-
braic expressions are also common. For example, the expression 2 < 3 does not evaluate to
a number; it evaluates to either True or False (True in this case). Python can also evaluate
such expressions, which are called Boolean expressions. Boolean expressions are expres-
sions that evaluate to one of two Boolean values: True or False. These values are said to
be of Boolean type, a type just like int and float and denoted bool in Python.

Comparison operators (such as < or >) are commonly used operators in Boolean ex-
pressions. For example:

>>> 2 < 3
True
>>> 3 < 2
False
>>> 5 - 1 > 2 + 1
True

The last expression illustrates that algebraic expressions on either side of a comparison
operators are evaluated before the comparison is made. As we will see later in this chapter,
algebraic operators take precedence over comparison operators. For example, in 5 - 1 >
2 + 1, the operators - and + are evaluated first, and then the comparison is made between
the resulting values.

Section 2.1 Expressions, Variables, and Assignments 19

In order to check equality between values, the comparison operator == is used. Note that
the operator has two = symbols, not one. For example:

>>> 3 == 3
True
>>> 3 + 5 == 4 + 4
True
>>> 3 == 5 - 3
False

There are a few other logical comparison operators:

>>> 3 <= 4
True
>>> 3 >= 4
False
>>> 3 != 4
True

The Boolean expression 3 <= 4 uses the <= operator to test whether the expression on
the left (3) is less than or equal to the expression of the right (4). The Boolean expression
evaluates to True, of course. The >= operator is used to test whether the operand on the
left is greater than or equal to the operand on the right. The expression 3 != 4 uses the !=
(not equal) operator to test whether the expressions on the left and right evaluate to different
values.

Practice Problem
2.2

Translate the following statements into Python Boolean expressions and evaluate them:
(a) The sum of 2 and 2 is less than 4.
(b) The value of 7 // 3 is equal to 1 + 1.
(c) The sum of 3 squared and 4 squared is equal to 25.
(d) The sum of 2, 4, and 6 is greater than 12.
(e) 1387 is divisible by 19.
(f) 31 is even. (Hint: what does the remainder when you divide by 2 tell you?)
(g) The lowest price among $34.99, $29.95, and $31.50 is less than $30.00.

Just as algebraic expression can be combined into larger algebraic expression, Boolean
expressions can be combined together using Boolean operators and , or , and not to form
larger Boolean expressions. The and operator applied to two Boolean expressions will eval-
uate to True if both expressions evaluate to True; if either expression evaluates to False,
then it will evaluate to False:

>>> 2 < 3 and 4 > 5
False
>>> 2 < 3 and True
True

Both expressions illustrate that comparison operators are evaluated before Boolean opera-
tors. This is because comparison operators take precedence over Boolean operators, as we
will see later in this chapter.

www.ebook3000.com

http://www.ebook3000.org

20 Chapter 2 Python Data Types

The or operator applied to two Boolean expressions evaluates to False only when both
expressions are false. If either one is true or if both are true, then it evaluates to True.

>>> 3 < 4 or 4 < 3
True
>>> 3 < 2 or 2 < 1
False

The not operator is a unary Boolean operator, which means that it is applied to a single
Boolean expression (as opposed to the binary Boolean operators and and or). It evaluates
to False if the expression is true or to True if the expression is false.

>>> not (3 < 4)
False

DETOUR
George Boole and Boolean Algebra

George Boole (1815–1864) developed Boolean algebra, the foundation upon which
the digital logic of computer hardware and the formal specification of programming
languages are built.

Boolean algebra is the algebra of values true and false. Boolean algebra in-
cludes operators and, or, and not, which can be used to create Boolean expres-
sions, expressions that evaluate to true or false. The truth tables below define how
these operators evaluate.

p q p and q
true true true
true false false
false true false
false false false

p q p or q
true true true
true false true
false true true
false false false

p not p
true false
false true

Variables and Assignments
Let us continue with our algebra theme for a bit more. As we already know from algebra, it
is useful to assign names to values, and we call those names variables. For example, value
3 may be assigned to variable x in an algebra problem as follows: x = 3. The variable x
can be thought of as a name that enables us to retrieve value 3 later on. In order to retrieve
it, we just need to evaluate x in an expression.

The same can be done in Python. A value can be assigned to a variable:

>>> x = 4

The statement x = 4 is called an assignment statement. The general format of an assignment
statement is:

<variable> = <expression>

An expression we refer to as <expression> lies on the right-hand side of the = operator; it
can be an algebraic, Boolean, or other kind of expression. On the left-hand side is a variable
referred to as <variable>. The assignment statement assigns to <variable> the value
that <expression> evaluates to. In the last example, x is assigned value 4.

Section 2.1 Expressions, Variables, and Assignments 21

Once a value has been assigned to a variable, the variable can be used in a Python
expression:

>>> x
4

When Python evaluates an expression containing a variable, it will evaluate the variable to
its assigned value and then perform the operations in the expression:

>>> 4 * x
16

An expression involving variables may appear on the right side of an assignment statement:

>>> counter = 4 * x

In statement counter = 4 * x, x is first evaluated to 4, then the expression 4 * 4 is
evaluated to 16, and then 16 gets assigned to variable counter:

>>> counter
16

So far, we have defined two variable names: x with value 4 and counter with value 16.
What about, say, the value of variable z that has not been assigned yet? Let’s see:

>>> z
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
z

NameError: name 'z' is not defined

Not sure what we expected . . . but here we got our first (and, unfortunately, not the last)
error message. It turns out that if a variable—z in this case—has not been assigned a value,
it just does not exist. When Python tries to evaluate an unassigned name, an error will occur
and a message (such as name 'z' is not defined) is printed out. We will learn more
about errors (also called exceptions) in Chapter 4.

Practice Problem
2.3

Write Python statements that correspond to the actions below and execute them:
(a) Assign integer value 3 to variable a.
(b) Assign 4 to variable b.
(c) Assign to variable c the value of expression a * a + b * b.

You may remember from algebra that the value of a variable can change. The same is
true with Python variables. For example, suppose that the value of variable x is initially 4:

>>> x
4

Now let’s assign value 7 to variable x:

>>> x = 7
>>> x
7

So the assignment statement x = 7 changed the value of x from 4 to 7.

www.ebook3000.com

http://www.ebook3000.org

22 Chapter 2 Python Data Types

!
CAUTION

Assignment and Equality Operators

Be careful to distinguish the assignment statement = and the equality operator ==.
This is an assignment statement that assigns 7 to variable x:

>>> x = 7

The following, however, is a Boolean expression that compares the value of variable
x with number 7 and returns True if they are equal:

>>> x == 7
True

The expression evaluates to True because variable x has value 7.

Variable Names
The characters making up a variable name can be lowercase and uppercase letters from the
alphabet (a through z and A through Z), the underscore character (_), and, except for the
first character, digits 0 through 9:

• myList and _list are OK, but 5list is not.
• list6 and l_2 are OK, but list-3 is not.
• mylist and myList are different variable names.

Even when a variable name is “legal” (i.e., follows the rules), it might not be a “good” name.
Here are some generally accepted conventions for designing good names:

• A name should be meaningful: Name price is better than name p.
• For a multiple-word name, use either the underscore as the delimiter (e.g., temp_var
and interest_rate) or camelCase capitalization (e.g., tempVar, TempVar, interestRate
or InterestRate); pick one style and use it consistently throughout your program.

• Shorter meaningful names are better than longer ones.

In this textbook, all variable names start with a lowercase character.

DETOUR
Variable Names in Python 3 and Beyond

The restriction on the characters used for variable names is true only for Python
versions before 3.0. Those versions of Python use the ASCII character encoding
(which includes characters in the English alphabet only and is described in more
detail in Chapter 6) as the default character set.

Starting with Python 3.0, the Unicode character encoding (also discussed in
Chapter 6) is the default character encoding. With this change, many more charac-
ters (e.g., Cyrillic, Chinese, or Arabic characters) can be used in variable names.
The change reflects the important social and economic role that globalization has
in today’s world.

Section 2.2 Strings 23

At this moment, most programming languages still require names of variables
and other objects to use the ASCII character encoding. For this reason, while this
textbook follows the Python 3.0 and later standards, we restrict ourselves to the
ASCII character encoding when devising variable names.

The names below are used as reserved keywords of the Python language. You cannot
use them other than as Python commands.

False break else if not while
None class except import or with
True continue finally in pass yield
and def for is raise
as del from lambda return
assert elif global nonlocal try

2.2 Strings
In addition to number and Boolean types, Python supports a large number of other, more
complex, types. The Python string type, denoted str, is used to represent and manipulate
text data or, in other words, a sequence of characters, including blanks, punctuation, and
various symbols. A string value is represented as a sequence of characters that is enclosed
within quotes:

>>> 'Hello, World!'
'Hello, World!'
>>> s = 'hello'
>>> s
'hello'

The first expression, 'Hello, world!', is an expression that contains just one string value
and it evaluates to itself, just as expression 3 evaluates to 3. The statement s = 'hello'
assigns string value 'hello' to variable s. Note that s evaluates to its string value when
used in an expression.

String Operators
Python provides operators to process text (i.e., string values). Like numbers, strings can be
compared using comparison operators: ==, !=, < , >, and so on. Operator ==, for example,
returns True if the strings on either side of the operator have the same value:

>>> s == 'hello'
True
>>> t = 'world'
>>> s != t
True
>>> s == t
False

www.ebook3000.com

http://www.ebook3000.org

24 Chapter 2 Python Data Types

While == and != test whether or not two strings are equal, the comparison operators <
and > compare strings using the dictionary order:

>>> s < t
True
>>> s > t
False

(For now, we appeal to intuition when referring to dictionary order; we define it precisely
in Section 6.3.)

The + operator, when applied to two strings, evaluates to a new string that is the con-
catenation (i.e., the joining) of the two strings:

>>> s + t
'helloworld'
>>> s + ' ' + t
'hello world'

In the second example, the names s and t are evaluated to the string values 'hello' and
'world', respectively, which are then concatenated with the single blank space string ' '.
If we can add two strings, can we, perhaps, multiply them?

>>> 'hello ' * 'world'

Traceback (most recent call last):
File "<pyshell#146>", line 1, in <module>

'hello ' * 'world'
TypeError: cannot multiply sequence by non-int of type 'str'

Well . . . it doesn’t look like we can. If you take a moment and think about it, it is not really
clear what multiplying two strings would mean anyway. Adding them (i.e., concatenating
them) makes more sense. Overall, the design of the Python programming language and the
meaning of the standard operators (+, *, /, etc.) for various types of values (integer, floating
point, Boolean, string, etc.) is intuitive. So, intuitively, what do you think should happen
when a string gets multiplied by an integer? Let’s try it:

>>> 3 * 'A'
'AAA'
>>> 'hello ' * 2
'hello hello '
>>> 30 * '-'
'------------------------------'

Multiplying a string s by an integer k gives us a string obtained by concatenating k copies of
string s. Note how we easily obtained a line (useful for presenting your simple text output,
say) by multiplying string '-' 30 times.

With the in operator, we can check whether a character appears in a string:

>>> s = 'hello'
>>> 'h' in s
True
>>> 'g' in s
False

Section 2.2 Strings 25

Usage Explanation
x in s True if string x is a substring of string s, and false otherwise
x not in s False if string x is a substring of string s, and true otherwise
s + t Concatenation of string s and string t
s * n, n * s Concatenation of n copies of s
s[i] Character of string s at index i
len(s) Length of string s

Table 2.1 String operators.
Only a few commonly used
string operators are shown;
many more are available.
To obtain the full list in your
interactive shell, use the
help() documentation
function:
>>> help(str)

The in operator also can be used to check whether a string appears in another:

>>> 'll' in s
True

Since 'll' appears in string s, we say that 'll' is a substring of s.
The length of a string can be computed using the len() function:

>>> len(s)
5

In Table 2.1, we summarize the usage and explanation for commonly used string operators.

Practice Problem
2.4

Start by executing the assignment statements:

>>> s1 = 'ant'
>>> s2 = 'bat'
>>> s3 = 'cod'

Write Python expressions using s1, s2, and s3 and operators + and * that evaluate to:
(a) 'ant bat cod'
(b) 'ant ant ant ant ant ant ant ant ant ant '
(c) 'ant bat bat cod cod cod'
(d) 'ant bat ant bat ant bat ant bat ant bat ant bat ant bat '
(e) 'batbatcod batbatcod batbatcod batbatcod batbatcod '

Indexing Operator
The individual characters of a string can be accessed using the indexing operator []. We
define the concept of an index first. The index of a character in a string is the character’s
offset (i.e., position in the string) with respect to the first character. The first character has
index 0, the second has index 1 (because it is one away from the first character), the third
character has index 2, and so on. The indexing operator [] takes a nonnegative index i and
returns a string consisting of the single character at index i (see Figure 2.1):

>>> s[0]
'h'
>>> s[1]
'e'
>>> s[4]
'o'

www.ebook3000.com

http://www.ebook3000.org

26 Chapter 2 Python Data Types

Figure 2.1 The string
index and index operator.
Index 0 refers to the first
character, while index i
refers to the character that
is i positions to the right
of the first character.
Expression s[0], using
the indexing operator [],
evaluates to string 'h';
s[1] evaluates to 'e';
s[4] evaluates to 'o'.

s h e l l o

Index 0 1 2 3 4

s[0] h e l l o

s[1] h e l l o

s[4] h e l l o

Practice Problem
2.5

Start by executing the assignment:

s = '0123456789'

Now write expressions using string s and the indexing operator that evaluate to:
(a) '0'
(b) '1'
(c) '6'
(d) '8'
(e) '9'

Negative indexes may be used to access the characters from the back (right side) of the
string. For example, the last character and second to last can be retrieved using negative
indexes −1 and −2, respectively (see also Figure 2.2):

>>> s[-1]
'o'
>>> s[-2]
'l'

Figure 2.2 Index operator
using negative indexes.
The index −1 refers to the
last character; so s[-1]
evaluates to string 'o'.
s[-2] evaluates to 'l'.

Negative Index −5 −4 −3 −2 −1

s h e l l o

Index 0 1 2 3 4

s[-1] h e l l o

s[-2] h e l l o

Section 2.3 Lists and Tuples 27

We have only scratched the surface of the text-processing capabilities of Python. We
will come back to strings and text processing several times in this textbook. For now, we
continue our tour of Python’s data types.

2.3 Lists and Tuples
In many situations we organize data into a list: a shopping list, a list of courses, a list of
contacts on your cell phone, a list of songs in your audio player, and so on. In Python, lists
are usually stored in a type of object called a list. A list is a sequence of objects. The objects
can be of any type: numbers, strings, even other lists. For example, here is how we would
assign to the variable pets the list of strings representing several pets:

>>> pets = ['goldfish', 'cat', 'dog']

The variable pets evaluates to the list:

>>> pets
['goldfish', 'cat', 'dog']

In Python, a list is represented as a comma-separated sequence of objects enclosed within
square brackets. An empty list is represented as []. Lists can contain items of different
types. For example, the list named things in

>>> things = ['one', 2, [3, 4]]

has three items: the first is string 'one', the second is integer 2, and the third item is list
[3, 4].

List Operators
Most of the string operators we have seen in the previous section can be used on lists in
similar ways. For example, the items in the list may be accessed individually using the
indexing operator, just as individual characters can be accessed in a string:

>>> pets[0]
'goldfish'
>>> pets[2]
'dog'

Figure 2.3 illustrates the list pets along with the indexing of the list items. Negative indexes
can be used too:

>>> pets[-1]
'dog'

Negative index −3 −2 −1

pets 'goldfish' 'cat' 'dog'

Index 0 1 2

Figure 2.3 A list of string
objects. List pets is a
sequence of objects. The
first object, at index 0, is
string 'goldfish'. Positive
and negative indexes can
be used, just like for strings.

www.ebook3000.com

http://www.ebook3000.org

28 Chapter 2 Python Data Types

Table 2.2 List operators
and functions. Only some
of the commonly used list
operators are shown here.
To obtain the full list in your
interactive shell, use the
help() documentation
function:
>>> help(list)

Usage Explanation
x in lst True if object x is in list lst, false otherwise
x not in lst False if object x is in list lst, true otherwise
lstA + lstB Concatenation of lists lstA and lstB
lst * n, n * lst Concatenation of n copies of list lst
lst[i] Item at index i of list lst
len(lst) Length of list lst
min(lst) Smallest item in list lst
max(lst) Largest item in list lst
sum(lst) Sum of items in list lst

The length of a list (i.e., the number of items in it) is computed using function len():

>>> len(pets)
3

Like strings, lists can be “added,” meaning that they can be concatenated. They can also be
“multiplied” by an integer k, which means that k copies of the list are concatenated:

>>> pets + pets
['goldfish', 'cat', 'dog', 'goldfish', 'cat', 'dog']
>>> pets * 2
['goldfish', 'cat', 'dog', 'goldfish', 'cat', 'dog']

If you want to check whether string 'rabbit' is in the list, you can use the in operator
in a Boolean expression that evaluates to True if string 'rabbit' appears in list pets:

>>> 'rabbit' in pets
False
>>> 'dog' in pets
True

In Table 2.2 we summarize the usage of some of the string operators. We include in
the table functions min(), max(), and sum(), which can take a list as input and return the
smallest item, the largest item, or the sum of the items, respectively, in the list:

>>> lst = [23.99, 19.99, 34.50, 120.99]
>>> min(lst)
19.99
>>> max(lst)
120.99
>>> sum(lst)
199.46999999999997

Practice Problem
2.6

First execute the assignment

words = ['bat', 'ball', 'barn', 'basket', 'badminton']

Now write two Python expressions that evaluate to the first and last, respectively, word in
words, in dictionary order.

Section 2.3 Lists and Tuples 29

Lists Are Mutable, Strings Are Not
An important property of lists is that they are mutable. What that means is that the content
of a list can be changed. For example, suppose that we want to be more specific about the
type of cat in list pets. We would like pets[1] to evaluate to 'cymric cat' instead of
just plain 'cat'. To do this, we assign 'cymric cat' to pets[1]:

>>> pets[1] = 'cymric cat'
>>> pets
['goldfish', 'cymric cat', 'dog']

So, the list no longer contains the string 'cat' at index 1; instead, it contains the string
'cymric cat'.

While lists are mutable, strings are not. What that means is that we cannot change the
individual characters of a string value. For example, suppose that we misspelled the type of
cat:

>>> myCat = 'cymric bat'

We would like to correct the mistake by changing the character at index 7 from a 'b' to a
'c'. Let’s try:

>>> myCat[7] = 'c'
Traceback (most recent call last):
File "<pyshell#35>", line 1, in <module>
myCat[7] = 'c'

TypeError: 'str' object does not support item assignment

The error message essentially says that individual characters (items) of a string cannot
be changed (assigned to). We say that strings are immutable. Does that mean that we are
stuck with a misspelled value for myCat? No, not at all. We can simply reassign a brand new
value to variable myCat:

>>> myCat = 'cymric cat'
>>> myCat
'cymric cat'

We will discuss assignments to strings and lists—and other immutable and mutable
types—further in Section 3.4.

Tuples, or “Immutable Lists”
In addition to lists, Python also supports tupleswhich, in many ways, behave like lists except
that tuples are immutable. A tuple object contains a sequence of values separated by commas
and enclosed in parentheses (()) instead of brackets ([]):

>>> days = ('Mo', 'Tu', 'We')
>>> days
('Mo', 'Tu', 'We')

The parentheses are optional in simple expressions like this assignment:

>>> days = 'Mo', 'Tu', 'We', 'Th'
>>> days
('Mo', 'Tu', 'We', 'Th')

All operators shown in Table 2.2 can be used on tuples as well as lists. For example:

www.ebook3000.com

http://www.ebook3000.org

30 Chapter 2 Python Data Types

>>> 'Fr' in days
False
>>> week = days + ('Fr', 'Sa', 'Su')
>>> week
('Mo', 'Tu', 'We', 'Th', 'Fr', 'Sa', 'Su')
>>> len(week)
7
>>> 2*week
('Mo', 'Tu', 'We', 'Th', 'Fr', 'Sa', 'Su', 'Mo', 'Tu', 'We', 'Th',
'Fr', 'Sa', 'Su')

In particular, the indexing operator can be used to access tuple items using the item’s offset
as the index, just like in lists:

>>> days[2]
'We'

However, any attempt to change a tuple results in an error:

>>> days[4] = 'th'
Traceback (most recent call last):
File "<pyshell#261>", line 1, in <module>

days[4] = 'th'
TypeError: 'tuple' object does not support item assignment

So, as in lists, items in tuples are ordered and can be accessed using an index (offset). Unlike
lists, tuples are immutable: once a tuple is created, it cannot be changed. To learn more
about operators that can be used on tuples, read the online documentation or simply use the
documentation function help(). We’ll have to wait a bit to understand when one should
use a tuple instead of a list to store a sequence of data. We will see examples illustrating that
in Sections 3.4, 3.5, and 6.1.

!
CAUTION

One-Item Tuple

Suppose we need to create a one-item tuple, such as:

>>> days = ('Mo')

Let’s evaluate the value and type of the object days:

>>> days
'Mo'
>>> type(days)
<class 'str'>

What we got is no tuple at all! It’s just string 'Mo'. The parentheses were essen-
tially ignored. Let’s do another example to clarify what’s going on:

>>> t = (3)
>>> t
3
>>> type(3)

Section 2.3 Lists and Tuples 31

<class 'int'>

It’s clear that the parentheses are treated as parentheses should be in an arithmetic
expression. In fact, the same was true when we evaluated ('Mo'); while surround-
ing strings with parentheses may seem odd, the Python string operators * and + do
sometimes require us to use them to indicate the order in which string operations
should be evaluated, as the next example shows:

>>> ('Mo'+'Tu')*3
'MoTuMoTuMoTu'
>>> 'Mo'+('Tu'*3)
'MoTuTuTu'

How do we create a one element tuple? What differentiates the parentheses in
a general tuple from parentheses in an expression is that enclosed in the tuple
parentheses will be comma-separated items. So, the commas make the difference,
and all we need to do is add a comma after the first, and only, item to get a one-item
tuple object:

>>> days = ('Mo',)

Let’s check that we got a tuple object:

>>> days
('Mo',)
>>> type(days)
<class 'tuple'>

List and Tuple Methods
We have seen functions that operate on lists such as, for example, the min() function:

>>> numbers = [6, 9, 4, 22]
>>> min(numbers)
4

In expression min(numbers), we say that function min() is calledwith one input argument,
the list numbers.

There are also functions that are called on lists. For example, to add 'guinea pig' to
list pets, we would call function append() on list pets as follows:

>>> pets.append('guinea pig')
>>> pets
['goldfish', 'cymric cat', 'dog', 'guinea pig']

Let’s do this again and add another 'dog' to list pets:

>>> pets.append('dog')
>>> pets
['goldfish', 'cymric cat', 'dog', 'guinea pig', 'dog']

Note the special way the function append() is called:

www.ebook3000.com

http://www.ebook3000.org

32 Chapter 2 Python Data Types

Table 2.3 Some list
methods. Functions
append(), insert(),
pop(), remove(),
reverse(), and sort()
modify the list lst. To
obtain the full listing of list
methods in your interactive
shell, use the help()
documentation function:
>>> help(list)

Usage Explanation
lst.append(item) Adds item to the end of list lst
lst.count(item) Returns the number of occurrences of item in list lst
lst.index(item) Returns the index of the first occurrence of item in list

lst
lst.insert(index, item) Inserts item into list just before index index
lst.pop() Removes last item in the list
lst.remove(item) Removes first occurrence of item in the list
lst.reverse() Reverses the order of items in the list
lst.sort() Sorts the list

pets.append('guinea pig')

This should be interpreted as follows: function append() is called on list pets with input
'guinea pig'. The effect of executing the statement pets.append('guinea pig') is
that the input argument 'guinea pig' is added at the end of list pets.

The function append() is a list function. What this means is that function append()
cannot be called on its own; it always has to be called on some list lst, using the notation
lst.append(). We will refer to such functions as methods.

Another example of a list method is the count()method. When called on a list with an
input argument, it returns the number of times the input argument appears in the list:

>>> pets.count('dog')
2

Again, we say that method count() is called on list pets (with input argument 'dog').
To remove the first occurrence of 'dog', we can use the list method remove():

>>> pets.remove('dog')
>>> pets
['goldfish', 'cymric cat', 'guinea pig', 'dog']

The list method reverse() reverses the order of the objects:

>>> pets.reverse()
>>> pets
['dog', 'guinea pig', 'cymric cat', 'goldfish']

Some commonly used list methods are shown in Table 2.3. You can view a listing of all
list methods in the interactive shell using the help() documentation function:

>>> help(list)
Help on class list in module builtins:
...

The sort() method sorts the items in the list in increasing order, using the ordering
that “naturally” applies to the objects in the list. Since list pets contains string objects, the
order will be lexicographical (i.e., dictionary order):

>>> pets.sort()
>>> pets
['cymric cat', 'dog', 'goldfish', 'guinea pig']

A list of numbers would be sorted using the usual increasing number order:

Section 2.4 Objects and Classes 33

>>> lst = [4, 2, 8, 5]
>>> lst.sort()
>>> lst
[2, 4, 5, 8]

What would happen if we tried to sort a list containing numbers and strings? Since
strings and integers cannot be compared, the list cannot be sorted and an error would occur.
Check it.

Practice Problem
2.7

Given the list of student homework grades

>>> grades = [9, 7, 7, 10, 3, 9, 6, 6, 2]

write:
(a) An expression that evaluates to the number of 7 grades
(b) A statement that changes the last grade to 4
(c) An expression that evaluates to the maximum grade
(d) A statement that sorts the list grades
(e) An expression that evaluates to the average grade

Before moving on, let’s discuss the methods that can be used on tuples. We have said
that tuples behave like lists except that they are immutable. Looking at Table 2.3, you will
note that all but two list methods modify the list they are called on. The two methods are
count() and index() and they happen to be the only two tuple methods.

2.4 Objects and Classes
We have so far seen how to use several types of values that Python supports: int, float,
bool, str, list, and tuple. Our presentation has been informal to emphasize the often-
intuitive approach Python uses to manipulate values. Intuition takes us only so far, though.
At this point, we step back for a moment to understand more formally what we mean by a
type, and by operators and methods supported by the type.

In Python, every value, whether a simple integer value (such as 3) or a more complex
value (such as the string 'Hello, World!' or the list ['hello', 4, 5]) is stored in
memory as an object. It is useful to think of an object as a container for the value that sits
inside your computer’s memory.

The container idea captures the motivation behind objects. The actual representation
and processing of, say, integer values on a computer system is quite complicated. Doing
arithmetic with integer values, however, is quite straightforward. Objects are containers for
values, integer or other, that hide the complexity of integer storage and processing and pro-
vide the programmer with only the information she needs: the value of the object and what
kind of operations can be applied to it.

Object Type
Every object has associated with it a type and a value. We illustrate this in Figure 2.4 with
four objects: an integer object with value 3, a floating point object with value 3.0, a string
object with value 'Hello World', and a list object with value [1, 1, 2, 3, 5, 8].

www.ebook3000.com

http://www.ebook3000.org

34 Chapter 2 Python Data Types

Figure 2.4 Four objects.
Illustrated are four objects of
different types. Each object
has a type and a value.

3 3.0 'Hello World' [1,1,2,3,5,8]

type: int type: float type: str type: list

An object’s type indicates what kind of values the object can hold and what kind of
operations can be performed on the object. The types we have seen so far include the inte-
ger (int), floating point (float), Boolean (bool), string (str), and list (list) types. The
Python type() function can be used to determine an object’s type:

>>> type(3)
<class 'int'>
>>> type(3.0)
<class 'float'>
>>> type('Hello World')
<class 'str'>
>>> type([1, 1, 2, 3, 5, 8])
<class 'list'>

When used on a variable, the type() function will return the type of the object the variable
refers to:

>>> a = 3
>>> type(a)
<class 'int'>

!
CAUTION

Variables Do Not Have a Type

It is important to note that a variable does not have a type. A variable is just a name.
Only the object it refers to has a type. So, when we see

>>> type(a)
<class 'int'>

it really means that the object that variable a currently refers to is of type integer.
We emphasize currently because the type of object that a refers to may change.

For example, if we assign 3.0 to a:

a = 3.0

then a will refer to a float value:

>>> type(a)
<class 'float'>

The Python programming language is said to be object-oriented because values are al-
ways stored in objects. In programming languages other than Python, values of certain types
are not stored in abstract entities such as objects but explicitly in memory. The term class
is used to refer to types whose values are stored in objects. Because every value in Python
is stored in an object, every Python type is a class. In this book, we will use class and type
interchangeably.

Section 2.4 Objects and Classes 35

Earlier in this chapter, we introduced several Python number types informally. To illus-
trate the concept of the object’s type, we now discuss their behaviors more precisely.

Valid Values for Number Types
Every object has a value that must be legal for the object’s type. For example, an integer
object can have value 3 but not 3.0 or 'three'. The integer values can be arbitrarily large.
For example, we can create an integer object whose value is 21024:

>>> x = 2**1024
>>> x
17976931348623159077293051907890247336179769789423065727343008
...
7163350510684586298239947245938479716304835356329624224137216

Actually, there is a limit to how large the value stored in an integer object can be: The value
is limited by the available computer memory. This is simply because it is not possible to
store an integer value that has more digits than can be stored in the computer memory.

The Python floating point (float) type is used to represent real numbers as fractions
with finite decimal representations:

>>> pi = 3.141592653589793
>>> 2.0**30
1073741824.0

While integer values can have an arbitrarily large number of digits (limited only by the size
of the computer memory), the number of bits used to represent float values is limited,
typically to 64 bits on today’s laptop and desktop computers. This implies several things.
First, this means that very, very large numbers cannot be represented:

>>> 2.0**1024
Traceback (most recent call last):
File "<pyshell#92>", line 1, in <module>
2.0**1024

OverflowError: (34, 'Result too large')

An error occurs when we attempt to define a float value that requires more bits than is
available to represent float values. (Note that this can occur only with floating point values;
the integer value 2**1024 is OK, as we have already seen.) Also, smaller fractional values
will only be approximated rather than represented exactly:

>>> 2.0**100
1.2676506002282294e+30

What does this notation mean? This notation is called scientific notation, and it represents
the value 1.2676506002282294 · 1030. Compare this with the full precision of the corre-
sponding integer value:

>>> 2**100
1267650600228229401496703205376

Small fractional values will also be approximated:

>>> 2.0**-100
7.888609052210118e-31

www.ebook3000.com

http://www.ebook3000.org

36 Chapter 2 Python Data Types

and very small values are approximated by 0:

>>> 2.0**-1075
0.0

Operators for Number Types
Python provides operators and built-in mathematical functions like abs() and min() to
construct algebraic expressions. Table 2.4 lists the arithmetic expression operators available
in Python.

Table 2.4 Number-type
operators. Listed are the
operators that can be used
on number objects (e.g.,
bool, int, float). If one of
the operands is a float,
the result is always a float
value; otherwise, the result
is an int value, except for
the division (/) operator,
which always gives a
float value.

Operation Description Type (if x and y are integers)
x + y Sum Integer
x - y Difference Integer
x * y Product Integer
x / y Division Float
x // y Integer division Integer
x % y Remainder of x // y Integer
-x Negative x Integer
abs(x) Absolute value of x Integer
x**y x to the power y Integer

For every operation other than division (/), the following holds: If both operands x and
y (or just x for unary operations - and abs()) are integers, the result is an integer. If one of
the operands is a float value, the result is a float value. For division (/), the result is a
float value, regardless of the operands.

Comparison operators are used to compare values. There are six comparison operations
in Python, as shown in Table 2.5. Note that in Python, comparisons can be chained arbitrar-
ily:

>>> 3 <= 3 < 4
True

When an expression contains more than one operator, evaluating the expression requires
that an order is specified. For example, does the expression 2 * 3 + 1 evaluate to 7 or 8?

>>> 2 * 3 + 1
7

The order in which operators are evaluated is defined either explicitly using parentheses or
implicitly using either the operator precedence rules or the left-to-right evaluation rule if
the operators have the same precedence. The operator precedence rules in Python follow

Table 2.5 Comparison
operators. Two numbers of
the same or different type
can be compared with the
comparison operators.

Operation Description
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
== Equal
!= Not equal

Section 2.4 Objects and Classes 37

Operator Description
[expressions...] List definition
x[], x[index:index] Indexing operator
** Exponentiation
+x, -x Positive, negative signs
*, /, //, % Product, division, integer division, remainder
+, - Addition, subtraction
in, not in, <, <=, >, >=,
<>, !=, ==

Comparisons, including membership and
identity tests

not x Boolean NOT
and Boolean AND
or Boolean OR

Table 2.6 Operator
precedence. The operators
are listed in order of
precedence from highest on
top to lowest at the bottom;
operators in the same row
have the same precedence.
Higher-precedence
operations are performed
first, and equal precedence
operations are performed in
left-to-right order.

the usual algebra rules and are illustrated in Table 2.6. Note that relying on the left-to-right
rule is prone to human error, and good developers prefer to use parentheses instead. For
example, rather than relying on the left-to-right rule to evaluate expression:

>>> 2 - 3 + 1
0

a good developer would use parentheses to clearly indicate her intent:

>>> (2 - 3) + 1
0

Practice Problem
2.8

In what order are the operators in the following expressions evaluated?
(a) 2 + 3 == 4 or a >= 5
(b) lst[1] * -3 < -10 == 0
(c) (lst[1] * -3 < -10) in [0, True]
(d) 2 * 3**2
(e) 4 / 2 in [1, 2, 3]

Creating Objects
To create an integer object with value 3 (and assign it to variable x), we can use this state-
ment:

>>> x = 3

Note that the type of the integer object that is created is not explicitly specified. Python also
supports a way to create objects that makes the object type explicit:

>>> x = int(3)
>>> x
3

The function int() is called a constructor; it is used to explicitly instantiate an integer
object. The value of the object is determined by the function argument: The object created
with int(3) has value 3. If no argument is given, a default value is given to the object.

www.ebook3000.com

http://www.ebook3000.org

38 Chapter 2 Python Data Types

>>> x = int()
>>> x
0

So the default value for integers is 0.
The constructor functions for the floating point, list, and string types are float(),

list(), and str(), respectively. We illustrate their usage with no argument to determine
the default values for those types. For float objects, the default value is 0.0:

>>> y = float()
>>> y
0.0

The default values for strings and lists are, respectively, '' (the empty string) and [] (the
empty list):

>>> s = str()
>>> s
''
>>> lst = list()
>>> lst
[]

Implicit Type Conversions
If an algebraic or logical expression involves operands of different types, Pythonwill convert
each operand to the type that contains the others. For example, True is converted to 1 before
integer addition is executed to give an integer result:

>>> True + 5
6

The reason for this seemingly strange behavior is that the Boolean type is really just a “sub-
type” of the integer type, as illustrated in Figure 2.5. Boolean values True and False typi-
cally behave like values 1 and 0, respectively, in almost all contexts.

Figure 2.5 Number types
conversions. In an
arithmetic expression with
operands of different types,
values are converted to the
type that contains the
others, where containment
is as shown. Conversion
from integer to float may
result in an overflow.

bool int float

Because integers can be written using decimal-point notation (3 is 3.0) but not vice
versa (2.65 cannot be represented as an integer), the int type is contained in the float type,
as shown in Figure 2.5. Consider, for example, the expression 3 + 0.35 in which an int
value and a float value are added. The float type contains the int type so 3 is converted
to 3.0 before floating point addition of two float values is done:

>>> 3 + 0.35
3.35

Section 2.4 Objects and Classes 39

!
CAUTION

Conversion from int to float

Recall that the range of values that int objects can have is much larger than the
range of float objects. While the int type is contained in the float type, this
doesn’t imply that int values can always be converted to a float value. For ex-
ample, the expression 2**10000+3 evaluates without difficulties to an int value,
but its conversion to float results in an overflow:

>>> 2**10000+3.0
Traceback (most recent call last):
File "<pyshell#139>", line 1, in <module>
2**10000+3.0

OverflowError: Python int too large to convert to C double

Explicit Type Conversions
Type conversions can also be done explicitly using the constructor functions we just intro-
duced. For example, the int() constructor creates an integer from a float input argument;
it does so by removing the fractional part of the argument:

>>> int(3.4)
3
>>> int(-3.6)
-3

The float() constructor applied to an integer will change the representation to a floating
point one, unless an overflow occurs.

>>> float(3)
3.0

The conversion from string to a number type will work only if it makes sense (i.e., the
string is a valid representation of a value of the type); otherwise it results in an error:

>>> int('3.4')
Traceback (most recent call last):
File "<pyshell#123>", line 1, in <module>
int('3.4')

ValueError: invalid literal for int() with base 10: '3.4'
>>> float('3.4')
3.4

The string constructor str(), when applied to a number, returns the string representa-
tion of the number:

>>> str(2.72)
'2.72'

www.ebook3000.com

http://www.ebook3000.org

40 Chapter 2 Python Data Types

Practice Problem
2.9

What is the type of the object that these expressions evaluate to?
(a) False + False
(b) 2 * 3**2.0
(c) 4 // 2 + 4 % 2
(d) 2 + 3 == 4 or 5 >= 5

Class Methods and Object-Oriented Programming
One way to think of a type (i.e., class) is to see it as the set of all operators and methods that
can be applied to objects of the class. The list class, for example, can be defined by the
operators and methods of the list class, some of which were shown in Figures 2.2 and 2.3.
We have used, for example, listmethods append(), count(), and remove() as follows:

>>> pets = ['goldfish', 'cat', 'dog']
>>> pets.append('guinea pig')
>>> pets.append('dog')
>>> pets
['goldfish', 'cat', 'dog', 'guinea pig', 'dog']
>>> pets.count('dog')
2
>>> pets.remove('dog')
>>> pets
['goldfish', 'cat', 'guinea pig', 'dog']
>>> pets.reverse()
>>> pets
['dog', 'guinea pig', 'cat', 'goldfish']

To see all the methods supported by the class list, use the help() documentation tool:

>>> help(list)

We now formally explain the notation used in the previous method calls. In every case,
we have a list object, pets, followed by a dot (.), followed by the method (function) call.
The meaning of, say,

pets.append('guinea pig')

is: The listmethod append() is called on the list object petswith string input 'guinea
pig'. In general, the notation

o.m(x,y)

means that method m is called on object o with inputs x and y. The method m should be a
method of the class object o belongs to.

Every operation done in Python is a method invocation of this format. You may wonder
because expression x + y does not seem to fit this format, but as we will see in Chap-
ter 8, it does. This approach to manipulating data, where the data is stored in objects and
methods are invoked on objects, is called object-oriented programming (OOP). OOP is a
powerful approach to code organization and development. We will learn a lot more about it
in Chapter 8.

Section 2.5 Python Standard Library 41

2.5 Python Standard Library
The core Python programming language comes with functions such as max() and sum()
and classes such as int, str, and list. While those are by no means all the built-in Python
functions and classes, the core Python language is deliberately small for efficiency and ease-
of-use purposes. In addition to the core functions and classes, Python has many, many more
functions and classes defined in the Python Standard Library. The Python Standard Library
consists of thousands of functions and classes organized into components called modules.

Each module contains a set of functions and/or classes related to a particular application
domain. More than 200 built-in modules together form the Python Standard Library. Each
module in the Standard Library contains functions and classes to support application pro-
gramming in a certain domain. The Standard Library includes modules to support, among
others:

• Network programming

• Web application programming

• Graphical user interface (GUI) development

• Database programming

• Mathematical functions

• Pseudorandom number generators

We will eventually use all of these modules. Right now we will see how to use the math and
fraction modules.

Module math
The core Python language supports only basic mathematical operators; we have learned
about them earlier in this chapter. For other mathematical functions such as the square root
function or the trigonometric functions, the math module is required. The math module is a
library of mathematical constants and functions. To use a math module function, the module
must first be explicitly imported:

>>> import math

The import statement makes available all the math functions defined in module math.
(We leave the more detailed explanation of how the import statement works for the next
chapter and also Chapter 6.)

The square root function sqrt() is defined in module math, but we cannot use it like
this:

>>> sqrt(3)
Traceback (most recent call last):
File "<pyshell#28>", line 1, in <module>
sqrt(3)

NameError: name 'sqrt' is not defined

Clearly, the Python interpreter doesn’t know about sqrt, the name of the square root func-
tion. We must tell the interpreter explicitly where (i.e., which module) to look for it:

>>> math.sqrt(3)
1.7320508075688772

www.ebook3000.com

http://www.ebook3000.org

42 Chapter 2 Python Data Types

Table 2.7 Module math.
Listed are some functions
and constants in the
module. After importing the
module, you can obtain the
full list in your interactive
shell using the help()
function:
>>> help(math)

Function Explanation
sqrt(x)

√
x

ceil(x) dxe (i.e., the smallest integer≥ x)
floor(x) bxc (i.e., the largest integer ≤ x)
cos(x) cos(x)
sin(x) sin(x)
log(x, base) logbase(x)
pi 3.141592653589793
e 2.718281828459045

Table 2.7 lists some of the commonly used functions defined in the math module. Also
shown are twomathematical constants defined in themodule. The value of variable math.pi
is an approximation for the mathematical constant π, and the value of math.e is an approx-
imation for the Euler constant e.

Practice Problem
2.10

Write Python expressions corresponding to the following:
(a) The length of the hypotenuse in a right triangle whose other two sides have lengths a

and b
(b) The value of the expression that evaluates whether the length of the above hypotenuse

is 5
(c) The area of a disk of radius a
(d) The value of the Boolean expression that checks whether a point with coordinates x

and y is inside a circle with center (a, b) and radius r

Module fractions
The fractions module makes available a new type of number: the Fraction type. The
Fraction type is used to represent fractions and do rational arithmetic, such as:

1

2
+

3

4
=

5

4

To use the fractions module, we first need to import it:

>>> import fractions

To create a Fraction object, we use the Fraction() constructor with two arguments: a
numerator and a denominator. Here is how we can define 3

4 and 1
2 :

>>> a = fractions.Fraction(3, 4)
>>> b = fractions.Fraction(1, 2)

Note howwemust specifywhere the class Fractions is defined: in the fractionsmodule.
When we evaluate expression a, we get

>>> a
Fraction(3, 4)

Note that a does not evaluate to 0.75.

Chapter 2 Case Study: Turtle Graphics 43

As with other numbers, Fraction objects can be added, and the result is a Fraction
object:

>>> c = a + b
>>> c
Fraction(5, 4)

What is the difference between the float type and the fractions.Fraction type? We
mentioned earlier that float values are stored in the computer using a limited number of
bits, typically 64 of them. That means that the range of values that float objects can store
is limited. For example, 0.51075 cannot be represented as a float value and thus evaluates
to 0:

>>> 0.5**1075
0.0

The range of values representable with fractions.Fraction objects is much, much
larger and limited only by the available memory, just as for the int type. So we can easily
compute 1

2

1075:

>>> fractions.Fraction(1, 2)**1075
Fraction(1, 404804506614621236704990693437834614099113299528284236
713802716054860679135990693783920767402874248990374155728633623822
779617474771586953734026799881477019843034848553132722728933815484
186432682479535356945490137124014966849385397236206711298319112681
620113024717539104666829230461005064372655017292012526615415482186
989568)

Why not always use the fractions.Fraction type? Because expressions involving float
values evaluate much, much faster than expressions involving fractions.Fraction val-
ues.

Case Study: Turtle Graphics
In Case Study CS.2, we use a graphics tool to (visually) illustrate the concepts covered in
this chapter: objects, classes and classmethods, object-oriented programming, andmodules.
The tool, Turtle graphics, allows a user to draw lines and shapes in a way that is similar to
using a pen on paper.

Chapter Summary
This chapter is an overview of Python concepts and its core built-in data types.

We introduce the interactive shell as a way to evaluate expressions. We start first with
algebraic expressions that evaluate to a number and then Boolean expressions that evaluate
to values True or False. We also introduce variables and the assignment statement, which
is used to give a variable name to a value.

This chapter introduces the core Python built-in types: int, float, bool, str, list,
and tuple. We go over the built-in number operators and explain the difference between
the number types int, float, and bool. We introduce the string (str) operators (we leave
string methods for Chapter 4); we cover, in particular, the important indexing operator. For
the list and tuple types, we introduce both their operators and methods.

www.ebook3000.com

http://www.ebook3000.org

44 Chapter 2 Python Data Types

After defining several built-in classes, we step back and define the concept of an object
and of a class. We then use those concepts to define class constructors and type conversion.

Python’s Standard Library includes many modules that contain functions and types be-
yond the built-in ones. We introduce the useful math module that gives us access to many
classic math functions.

Solutions to Practice Problems
2.1 The expressions are:
(a) 1 + 2 + 3 + 4 + 5
(b) (23 + 19 + 31) / 3)
(c) 403 // 73
(d) 403 % 73
(e) 2**10
(f) abs(54 - 57)
(g) min(34.99, 29.95, 31.50)

2.2 The Boolean expressions are:
(a) 2 + 2 < 4 which evaluates to False
(b) 7 // 3 == 1 + 1 which evaluates to True
(c) 3**2 + 4**2 == 25 which evaluates to True
(d) 2 + 4 + 6 > 12 which evaluates to False
(e) 1387 % 19 == 0 which evaluates to True
(f) 31 % 2 == 0 which evaluates to False
(g) min(34.99, 29.95, 31.50) < 30.00 evaluates to True

2.3 The sequence of statements in the interactive shell is:

>>> a = 3
>>> b = 4
>>> c = a * a + b * b

2.4 The expressions are:
(a) s1 + ''+ s2 + ''+ s3
(b) 10 * (s1 + '')
(c) s1 + '' + 2 * (s2 + '') + 2 * (s3 + '') + s3
(d) 7 * (s1 + ''+ s2 + '')
(e) 3 * (2 * s2 + s3 + '')

2.5 The expressions are:
(a) s[0], (b) s[1], (c) s[6], (d) s[8], and (e) s[9].

2.6 The expressions are min(words) and max(words).

2.7 The method calls are:
(a) grades.count(7)
(b) grades[-1] = 4

Chapter 2 Exercises 45

(c) max(grades)
(d) grades.sort()
(e) sum(grades) / len(grades)

2.8 The order is indicated using parentheses:
(a) ((2 + 3) == 4) or (a >= 5)
(b) (((lst[1]) * (-3)) < (-10)) == 0
(c) (((lst[1]) * (-3)) < (-10)) in [0, True]
(d) 2 * (3**2)
(e) (4 / 2) in [1, 2, 3]

2.9 Check these solutions for yourself by evaluating all the expressions in the interactive
shell.
(a) While the two operands are Boolean, the + operator is an int operator, not a bool

operator. The result (0) is an int value.
(b) A float value.
(c) An int value.
(d) The expressions on both sides of the or operator evaluate to bool values, so the result

is a bool value.

2.10 The expressions are:
(a) math.sqrt(a**2 + b**2)
(b) math.sqrt(a**2 + b**2) == 5
(c) math.pi * a**2
(d) (x - a)**2 + (y - b)**2 < r**2

Exercises
2.11 Write Python expressions corresponding to these statements:
(a) The sum of negative integers −7 through −1
(b) The average age of a group of kids at a summer camp given than 17 are 9 years old,

24 are 10 years old, 21 are 11 years old, and 27 are 12 years old
(c) 2 to the power −20
(d) The number of times 61 goes into 4356
(e) The remainder when 4365 is divided by 61

2.12 Start by evaluating, in the interactive shell, the assignment:

>>> s1 = '-'
>>> s2 = '+'

Now write string expressions involving s1 and s2 and string operators + and * that evaluate
to:
(a) '-+'
(b) '-+-'
(c) '+––'
(d) '+––+––'

www.ebook3000.com

http://www.ebook3000.org

46 Chapter 2 Python Data Types

(e) '+––+––+––+––+––+––+––+––+––+––+'
(f) '+–+++––+–+++––+–+++––+–+++––+–+++––'

Try to make your string expressions as succinct as you can.

2.13 Start by running, in the shell, the following assignment statement:

>>> s = 'abcdefghijklmnopqrstuvwxyz'

Now write expressions using string s and the indexing operator that evaluate to 'a', 'c',
'z', 'y', and 'q'.

2.14 Start by executing

s = 'goodbye'

Then write a Boolean expression that checks whether:
(a) The first character of string s is 'g'
(b) The seventh character of s is 'g'
(c) The first two characters of s are 'g' and 'a'
(d) The next to last character of s is 'x'
(e) The middle character of s is 'd'
(f) The first and last characters of string s are equal
(g) The last four characters of string s match the string 'tion'

Note: These seven statements should evaluate to True, False, False, False, True, False,
and False, respectively.

2.15 Write Python expressions corresponding to these statements:
(a) The number of characters in the word "anachronistically" is 1 more than the number

of characters in the word "counterintuitive."
(b) The word "misinterpretation" appears earlier in the dictionary than the word "misrep-

resentation."
(c) The letter "e" does not appear in the word "floccinaucinihilipilification."
(d) The number of characters in the word "counterrevolution" is equal to the sum of the

number of characters in words "counter" and "resolution."

2.16 Write the corresponding Python assignment statements:
(a) Assign 6 to variable a and 7 to variable b.
(b) Assign to variable c the average of variables a and b.
(c) Assign to variable inventory the list containing strings 'paper', 'staples', and

'pencils'.
(d) Assign to variables first, middle and last the strings 'John', 'Fitzgerald',

and 'Kennedy'.
(e) Assign to variable fullname the concatenation of string variables first, middle,

and last. Make sure you incorporate blank spaces appropriately.

2.17 Using variables defined in Exercise 2.16, write Boolean expressions corresponding to
the following logical statements and evaluate the expressions:
(a) The sum of 17 and −9 is less than 10.
(b) The length of list inventory is more than five times the length of string fullname.
(c) c is no more than 24.

Chapter 2 Exercises 47

(d) 6.75 is between the values of integers a and b.
(e) The length of string middle is larger than the length of string first and smaller than

the length string last.
(f) Either the list inventory is empty or it has more than 10 objects in it.

2.18 Write Python statements corresponding to the following:
(a) Assign to variable flowers a list containing strings 'rose', 'bougainvillea',

'yucca', 'marigold', 'daylilly', and 'lilly of the valley'.
(b) Write a Boolean expression that evaluates to True if string 'potato' is in list flowers,

and evaluate the expression.
(c) Assign to list thorny the sublist consisting of the first three objects in list flowers.
(d) Assign to list poisonous the sublist consisting of just the last object of list flowers.
(e) Assign to list dangerous the concatenation of lists thorny and poisonous.

2.19 Start by assigning to variable answers a list containing an arbitrary sequence of strings
'Y' and 'N'. For example:

answers = ['Y', 'N', 'N', 'Y', 'N', 'Y', 'Y', 'Y', 'N', 'N', 'N']

Write Python statements corresponding to the following:
(a) Assign to variable numYes the number of occurrences of 'Y' in list answers.
(b) Assign to variable numNo the number of occurrences of 'N' in list answers.
(c) Assign to variable percentYes the percentage of strings in answers that are 'Y'.
(d) Sort the list answers.
(e) Assign to variable f the index of the first occurrence of 'Y' in sorted list answers.

2.20 Write an expression involving a three-letter string s that evaluates to a string whose
characters are the characters of s in reverse order. If s is 'top', the expression should
evaluate to 'pot'.

2.21 Write an expression involving strings s and t containing the last name and the first
name, respectively, of a person that evaluates to the person’s initials. If the two strings con-
tained the first and last name of this book’s author, the expression would evaluate to 'LP'.

2.22 The range of a list of numbers is the largest difference between any two numbers in the
list. Write a Python expression that computes the range of a list of numbers lst. If the list
lst is, say, [3, 7, -2, 12], the expression should evaluate to 14 (the difference between
12 and −2).

2.23 Start by assigning to variables monthsL and monthsT a list and a tuple, respectively,
both containing strings 'Jan', 'Feb', 'Mar', and 'May', in that order. Then attempt the
following with both containers:
(a) Insert string 'Apr' between 'Mar' and 'May'.
(b) Append string 'Jun'.
(c) Pop the container.
(d) Remove the second item in the container.
(e) Reverse the order of items in the container.
(f) Sort the container.

Note: when attempting these on tuple monthsT you should expect errors.

www.ebook3000.com

http://www.ebook3000.org

48 Chapter 2 Python Data Types

2.24 Start by assigning to variable grades a list containing an arbitrary sequence of grades
(strings) 'A', 'B', 'C', 'D', and 'F'. For example:

grades = ['B','B','F','C','B','A','A','D','C','D','A','A','B']

Write a sequence of Python statements that ultimately produce a list count that contains
the numbers of occurrences of each grade in list grades in alphabetic order. For the given
example, the list count should be [4, 4, 2, 2, 1].

2.25 Repeat Problem 2.24 with the following modification: variable grades is defined to
be of type tuple rather than of type list:

grades = ('B','B','F','C','B','A','A','D','C','D','A','A','B')

Variable count should still refer to a list.

2.26 A dartboard of radius 10 and the wall it is hanging on are represented using the two-
dimensional coordinate system, with the board’s center at coordinate (0, 0). Variables x and
y store the x- and y-coordinate of a dart hit. Write an expression using variables x and y
that evaluates to True if the dart hits (is within) the dartboard, and evaluate the expression
for these dart coordinates:
(a) (0, 0)

(b) (10, 10)

(c) (6,−6)
(d) (−7, 8)

2.27 A ladder put up right against a wall will fall over unless put up at a certain angle less
than 90 degrees. Given variables length and angle storing the length of the ladder and the
angle that it forms with the ground as it leans against the wall, write a Python expression
involving length and angle that computes the height reached by the ladder. Evaluate the
expression for these values of length and angle:
(a) 16 feet and 75 degrees
(b) 20 feet and 0 degrees
(c) 24 feet and 45 degrees
(d) 24 feet and 80 degrees

Note: You will need to use the trig formula:

height = length ∗ sin(angle)

The math module sin() function takes its input in radians. You will thus need to convert
the angle given in degrees to the angle given in radians using:

radians =
π ∗ degrees

180

2.28 Write the relevant Python expression or statement, involving a list of numbers lst
and using list operators and methods for these specifications:
(a) An expression that evaluates to the index of the middle element of lst
(b) An expression that evaluates to the middle element of lst
(c) A statement that sorts the list lst in descending order
(d) A statement that removes the first number of list lst and puts it at the end

Note: If a list has even length, then the middle element is defined to be the rightmost of the
two elements in the middle of the list.

Chapter 2 Exercises 49

2.29 Add one or more pairs of parentheses to each expression so that it evaluates to True.
(a) 0 == 1 == 2
(b) 2 + 3 == 4 + 5 == 7
(c) 1 < -1 == 3 > 4

For each expression, explain in what order the operators were evaluated.

2.30 Using an example of your own, explicitly convert some string to a list. Describe, in
your own words, the behavior of the list constructor on a string input.

2.31 In this chapter we have covered some, but not all, methods of class list. Using the
following interactive session as an aid, explain in your own words what the list methods
extend(), copy(), and clear() do.

>>> lst = [2, 3, 4]
>>> lst.extend([5, 6])
>>> lst
[2, 3, 4, 5, 6]
>>> lst2 = lst.copy()
>>> lst2
[2, 3, 4, 5, 6]
>>> lst.clear()
>>> lst
[]
>>> lst2
[2, 3, 4, 5, 6]

www.ebook3000.com

http://www.ebook3000.org

CHAPTER

3Imperative
Programming
3.1 Python Programs 52

3.2 Execution Control Structures 57

3.3 User-Defined Functions 67

3.4 Python Variables and Assignments 74

3.5 Parameter Passing 78

Case Study: Automating Turtle Graphics 81

Chapter Summary 81

Solutions to Practice Problems 82

Exercises 85

Problems 86

IN THIS CHAPTER, we discuss how to develop Python programs. A
Python program is a sequence of Python statements that are executed in
order. To achieve different program behavior depending on a condition, we
introduce a few decision and iteration control flow structures that control
whether and how many times particular statements are executed.

As we develop more code, we will note that, often, the same group of
Python statements is used repeatedly and implements a task that can be
described abstractly. Python gives developers the ability to wrap code into
functions so that the code can be executed with just one function call. One
benefit of functions is code reuse. Another is that they simplify the
developer’s job by (1) hiding the code implementing the function from the
developer and (2) making explicit the abstract task achieved by the code.
This chapter introduces how Python functions are defined and how
parameters are passed when functions are called.

The concepts covered in this chapter are fundamental programming
language concepts, not just Python concepts. This chapter also introduces
the process of breaking down problems into steps that can be described
computationally using Python statements.

51

www.ebook3000.com

http://www.ebook3000.org

52 Chapter 3 Imperative Programming

3.1 Python Programs
In Chapter 2, we used the interactive shell to evaluate Python expressions and execute single
Python statements. A Python program that implements a computer application is a sequence
of multiple Python statements. This sequence of Python statements is stored in one or more
files created by the developer using an editor.

Our First Python Program
In order to write your first program, you will need to use the editor that is included in the
Python IDE you are using. How the editor is opened depends on the IDE. For example, if
you are using the IDLE Python IDE, click on the File tab in the IDLE window and then
on the New Window button. This will open up a new window, which you will use to type
your first Python program.

Module: hello.py
1 line1 = 'Hello Python developer...'
2 line2 = 'Welcome to the world of Python!'
3 print(line1)
4 print(line2)

This program consists of four statements, one in each line. Lines 1 and 2 have assignment
statements and lines 3 and 4 are calls to the print() function. Once you have typed the
program, you will want to execute it. You can do so using your Pyton IDE; again, the steps
you need to take to run your program will depend on the type of IDE you are using. For
example, if you are using the IDLE IDE, just hit key F5 on your keyboard (or, using your
mouse, click on the Run tab of the IDLE shell windowmenu and then on the Run Module
button). You will be asked to save the program in a file. The file name must have the suffix
'.py'. After you have saved the file (as hello.py, say, in a folder of your choice), the
program is executed, and this is printed in the interactive shell:

>>> ========================= RESTART ==========================
>>>
Hello Python developer...
Welcome to the world of Python!

The Python interpreter has executed all the statements in the program in order, from line
1 to line 4. Figure 3.1 shows the flowchart of this program. A flowchart is a diagram that
illustrates the flow of execution of a program. In this first example, the flowchart shows that
the four statements are executed in order from top to bottom.

!
CAUTION

Restarting the Shell

When we executed hello.py, the Python interpreter printed this line before the
actual program output:

>>> ======================== RESTART =========================
...

Section 3.1 Python Programs 53

This line indicates that the Python shell got restarted. Restarting the shell has the
effect of erasing all the variables that have been defined in the shell so far. This is
necessary because the program must execute in a blank-slate, default shell envi-
ronment.

The interactive shell can also be restarted directly. In IDLE, you would do so
by clicking on the Shell tag in the IDLE window and then on the Restart Shell
button. In the next example, we restart the shell after variable x has been assigned
3 and expression x has evaluated to 3:

>>> x = 3
>>> x
3
>>> ======================== RESTART =========================
>>> x
Traceback (most recent call last):
File "<pyshell#4>", line 1, in <module>

x
NameError: name 'x' is not defined
>>>

In the restarted shell, note that x is no longer defined.

An application program is typically run from outside a software development environ-
ments such as IDLE, so it is important to know how to execute Python programs at the
command line. An easy way to run your program is to run this command at the prompt of a
command line window:

> python hello.py
Hello Python developer...
Welcome to the world of Python!

(Make sure you run the program from within the folder containing the Python program.)

line1 = 'Hello Python developer...'

line2 = 'Welcome to the world of Python!'

print(line1)

print(line2)

Figure 3.1 First program
flowchart. Each statement
of the program is inside its
own box; the program
execution flow is shown
using arrows connecting
the boxes.

www.ebook3000.com

http://www.ebook3000.org

54 Chapter 3 Imperative Programming

DETOUR
Editors

An editor like Microsoft Word is a poor choice for writing and editing programs.
A specialized editor for programmers comes with tools to facilitate and speed up
the program development process. Such a software development environment is
called an Integrated Development Environment (IDE).

Several IDEs can be used to develop Python programs. Each has features that
are helpful for Python programming, including automatic indentation, abilities to
run/debug Python code from within the editor, and easy access to the Python Stan-
dard Library. Three popular IDEs are IDLE (which is included with the Python de-
velopment kit), Komodo, and PyDev with Eclipse.

Python Modules
The file hello.py we have created and saved is an example of a user-defined Python mod-
ule. In Chapter 2, we have used the term module to describe the built-in Standard Library
components math, fractions, and turtle. Those are built-in Python modules. What is
common between hello.py and the built-in modules we have seen?

A module is simply a file containing Python code. Every file containing Python code
and whose file name ends in .py is a Python module. The file hello.py we created is a
module, and so are files math.py, fractions.py and turtle.py hidden in some folder
on your computer and implementing the corresponding Standard Library components.

The code in a module is, of course, meant to be executed. For example, when we ran
hello.py by hitting F5 , the code in the module got executed, from beginning to end.
Whenwe execute an import statement on amodule such as math or turtle, it is equivalent
to hitting F5 (well, not quite, but we will handle that in Chapter 7). When we execute

>>> import math

the code in the file math.py gets executed. That Python code just happens to define a bunch
of math functions.

Built-In Function print()
Our first program has two lines of code in which the function print() is used. This function
prints, within the interactive shell, whatever argument is given to it. For example, if given a
number, it prints the number:

>>> print(0)
0

Similarly, if given a list, it prints it:

>>> print([0, 0, 0])
[0, 0, 0]

A string argument is printed without the quotes:

>>> print('zero')
zero

Section 3.1 Python Programs 55

If the input argument contains an expression, the expression is evaluated and the result is
printed:

>>> x = 0
>>> print(x)
0

Note that, in our first program, each print() statement "printed" its argument on a
separate line.

Interactive Input with input()
Often an executing program needs to interact with the user. The input() function is used
for that purpose. It is always used on the right side of an assignment statement, as in:

>>> x = input('Enter your first name: ')

When Python executes this input() function, it will first print its input argument (string
'Enter your first name: ') in the shell:

Enter your first name:

and then it will interrupt the execution and wait for the user to type something at the key-
board. The printed string 'Enter your first name: ' is essentially a prompt. When
the user types something and hits the Enter/Return key on her keyboard, the execution
will resume and whatever the user has typed will be assigned to variable name:

>>> name = input('Enter your first name: ')
Enter your first name: Ljubomir
>>> name
'Ljubomir'

Note that Python treats as a string whatever the user types (e.g., Ljubomir in the example).
The input() function is meant to be used in a program. We illustrate this with a more

personalized version of the hello.py greeting program. The next program asks the user to
enter his first and last name and then prints a personalized greeting on the screen.

Module: input.py
1 first = input('Enter your first name: ')
2 last = input('Enter your last name: ')
3 line1 = 'Hello '+ first + ' ' + last + '...'
4 print(line1)
5 print('Welcome to the world of Python!')

When we run this program, the statement in line 1 is executed first; it prints the message
'Enter your first name: ' and interrupts the execution of the program until the user
types something using the keyboard and presses the Enter/Return key. Whatever the user
typed is assigned to variable first. Line 2 is similar. In line 3, string concatenation is used
to create the greeting string printed in line 4. Here is a sample execution of the program:

>>>
Enter your first name: Ljubomir
Enter your last name: Perkovic
Hello Ljubomir Perkovic...
Welcome to the world of Python!

www.ebook3000.com

http://www.ebook3000.org

56 Chapter 3 Imperative Programming

!
CAUTION

Function input() Returns a String

We just saw that when the input function is called, whatever the user types is treated
as a string. Let’s check what happens when the user enters a number:

>>> x = input('Enter a value for x: ')
Enter a value for x: 5
>>> x
'5'

The Python interpreter treats the value entered as a string '5', not integer 5. We
check this:

>>> x == 5
False
>>> x == '5'
True

The input() function will always treat whatever the user types as a string.

Function eval()

If you expect the user to enter a value that is not a string, you need to explicitly ask Python
to evaluate what the user types as a Python expression using the eval() function.

The function eval() takes a string as input and evaluates the string as if it were a Python
expression. Here are some examples:

>>> eval('3')
3
>>> eval('3 + 4')
7
>>> eval('len([3, 5, 7, 9])')
4

The function eval() can be used together with the function input() when we expect the
user to type an expression (a number, a list, etc.) when requested. All we need to do is wrap
the eval() function around the input() function: The effect is that whatever the user types
will be evaluated as an expression. For example, here is how we would ensure that a number
entered by the user is treated as a number:

>>> x = eval(input('Enter x: '))
Enter x: 5

We check that x is indeed a number and not a string:

>>> x == 5
True
>>> x == '5'
False

Section 3.2 Execution Control Structures 57

Practice Problem
3.1

Implement a program that requests the current temperature in degrees Fahrenheit from the
user and prints the temperature in degrees Celsius using the formula

celsius =
5

9
(fahrenheit− 32)

Your program should execute as follows:

>>>
Enter the temperature in degrees Fahrenheit: 50
The temperature in degrees Celsius is 10.0

3.2 Execution Control Structures
A Python program is a sequence of statements that are executed in succession. In the short
programs we have seen so far, the same sequence of statements is executed, in order starting
from the statement in line 1 and regardless of the values input by the user, if any. That
is not what we usually experience when using an application on a computer. Computer
applications usually do different things depending on the values input. For example, the
game you just finished playing may stop or continue running, depending on whether you
click on the Exit or the Play Again button. We now introduce Python statements that can
control which statements are executed and which statements should be executed repeatedly.

One-Way Decisions
Suppose we want to develop a program that asks the user to enter the current temperature
and then prints an appropriate message only if it is more than 86 degrees. This program
would behave as shown if the user enters 87:

>>>
Enter the current temperature: 87
It is hot!
Be sure to drink liquids.

The program would behave as shown if the user enters 67:

>>>
Enter the current temperature: 67

In other words, if the temperature is 86 or less, no message is printed. If the temperature is
more than 86, then the message

It is hot!
Be sure to drink liquids.

is printed.
To achieve the described behavior (i.e., the conditional execution of a code fragment)

there has to be a way to control whether to execute a fragment of code based on a condition.
If the condition is true, then the code fragment is executed; otherwise it is not.

www.ebook3000.com

http://www.ebook3000.org

58 Chapter 3 Imperative Programming

Figure 3.2 Flowchart for
program oneWay. The
input() statement is
executed first, and the value
entered by the user is
assigned name temp.
The if statement checks
condition temp > 86.
If true, the two print()
statements are executed
and the program terminates;
if false, the program just
terminates.

temp = input('Enter the current temperature: ')

temp > 86:

print('It is hot!')

print('Be sure to drink liquids')

True

False

The if statement is used to implement conditional execution. Here is how we would use
the if statement to implement the desired program:

Module: oneWay.py
1 temp = eval(input('Enter the current temperature: '))
2

3 if temp > 86:
4 print('It is hot!')
5 print('Be sure to drink liquids.')

(Note the use of a blank line to make the program more readable.) The if statement encom-
passes line 3 through 5 in the program. In line 3, the if keyword is followed by the condition
temp > 86. If the condition evaluates to True, the indented statements below line 3 are ex-
ecuted. If the condition temp > 86 evaluates to False, those indented statements are not
executed. Figure 3.2 illustrates (using dashed lines) the two possible execution flows for the
program.

Now suppose that we need to add a feature to our program: We would like the program
to print 'Goodbye!' before terminating, whether or not the temperature input by the user
is high. The program would need to behave as follows:

>>>
Enter the current temperature: 87
It is hot!
Be sure to drink liquids.
Goodbye.

or as follows

>>>
Enter the current temperature: 67
Goodbye.

Section 3.2 Execution Control Structures 59

temp = input('Enter the current temperature: ')

temp > 86:

print('It is hot!')

print('Be sure to drink liquids.')

print('Goodbye.')

True

False

Figure 3.3 Flowchart for
program oneWay2.
Regardless of whether the
if statement condition is
true or false, the statement
print('Goodbye.') is
executed after the if
statement.

A print('Goodbye') needs to be executed after the if statement. This means that the
print('Goodbye') statement must be placed in the program (1) below the indented if
block of code and (2) with the same indentation as the first line of the if statement:

Module: oneWay2.py
1 temp = eval(input('Enter the current temperature: '))
2

3 if temp > 86:
4 print('It is hot!')
5 print('Be sure to drink liquids.')
6

7 print('Goodbye.')

After line 3 of this program is executed, either the indented block of code in lines 4 and
5 is executed, or it is not. Either way, the execution resumes with the statement in line 7.
The flowchart corresponding to program oneWay2.py is shown in Figure 3.3.

In general, the format of an if statement is:

if <condition>:
<indented code block>

<non-indented statement>

The first line of an if statement consists of the if keyword, followed by Boolean expression
<condition> (i.e., an expression that evaluates to True or False), followed by a colon,
which indicates the end of the condition. Below the first line and indented with respect to
the if keyword will be the block of code that is executed if condition evaluates to True.

If <condition> evaluates to False, the indented block of code is skipped. In either
case, regardless of whether the indented code has been executed, the execution continues
with the Python statement <non-indented statement> directly below, andwith the same
indentation as, the first line of the if statement.

www.ebook3000.com

http://www.ebook3000.org

60 Chapter 3 Imperative Programming

!
CAUTION

Indentation

In Python, proper indentation of Python statements is critical. Compare

if temp > 86:

print('Its hot!')
print('Be sure to drink liquids.')

print('Goodbye.')

with

if temp > 86:

print('It is hot!')
print('Be sure to drink liquids.')
print('Goodbye.')

In the first code fragment, the statement print('Goodbye.') has the same
indentation as the first line of the if statement. It is therefore a statement that is
executed after the if statement, regardless of whether the if statement condition
is true or false.

In the second code fragment, the statement print('Goodbye.') is indented
with respect to the first line of the if statement. It is therefore part of the block that
is executed only if the if statement condition is true.

Practice Problem
3.2

Translate these conditional statements into Python if statements:
(a) If age is greater 62, print 'You can get your pension benefits'.
(b) If name is in list ['Musial', 'Aaraon', 'Williams', 'Gehrig', 'Ruth'],

print 'One of the top 5 baseball players, ever!'.
(c) If hits is greater than 10 and shield is 0, print 'You are dead...'.
(d) If at least one of the Boolean variables north, south, east, and west is True, print

'I can escape.'.

Two-Way Decisions
In a one-way decision if statement, an action is performed only if a condition is true. Then,
whether the condition is true or false, execution resumes with the statement following the
if statement. In other words, no special action is performed if the condition is false.

Sometimes, however, that is not what we want.Wemay need to perform one action when
the condition is true and another if the condition is false. Continuing with the temperature
example, suppose we would like to print an alternative message if the value of temp is not
greater than 86. We can achieve this behavior with a new version of the if statement, one
that uses the else clause. We use program twoWay.py to illustrate this.

Section 3.2 Execution Control Structures 61

Module: twoWay.py1 temp = eval(input('Enter the current temperature: '))
2

3 if temp > 86:
4

5 print('It is hot!')
6 print('Be sure to drink liquids.')
7

8 else:
9

10 print('It is not hot.')
11 print('Bring a jacket.')
12

13 print('Goodbye.')

When line 3 of the program is executed, there are two cases. If the value of temp is
greater than 86, the indented block

print('It is hot!')
print('Be sure to drink liquids.')

is executed. If temp is not greater than 86, the indented block below else is executed in-
stead:

print('It is not hot.')
print('Bring a jacket.')

In both cases, execution resumes with the statement following, and indented the same
as, the if/else statement (i.e., the statement in line 13). The flowchart illustrating the two
possible execution flows is shown in Figure 3.4.

temp = input('Enter the current temperature: ')

temp > 86:

print('It is not hot.') print('It is hot!')

print('Bring a jacket.') print('Be sure to drink liquids.')

print('Goodbye.')

TrueFalse

Figure 3.4 Flowchart for
program twoWay. If the
condition temp > 86 is
true, the body of the if
statement gets executed;
if false, the body of the
else clause gets executed.
In both cases, execution
resumes with the
statements after the
if/else pair of statements.

www.ebook3000.com

http://www.ebook3000.org

62 Chapter 3 Imperative Programming

The more general version of the if statement has the following format:

if <condition>:
<indented code block 1>

else:
<indented code block 2>

<non-indented statement>

The indented code section <indented code block 1> is executed if <condition> eval-
uates to True; if <condition> evaluates to False, the indented code section <indented
code block 2> is executed instead. After executing one or the other code block, execution
resumes with the statement <non-indented statement>.

Practice Problem
3.3

Translate these into Python if/else statements:
(a) If year is divisible by 4, print 'Could be a leap year.'; otherwise print 'Definitely not

a leap year.'
(b) If list ticket is equal to list lottery, print 'You won!'; else print 'Better luck next

time...'

Practice Problem
3.4

Implement a program that starts by asking the user to enter a login id (i.e., a string). The
program then checks whether the id entered by the user is in the list ['joe', 'sue',
'hani', 'sophie'] of valid users. Depending on the outcome, an appropriate message
should be printed. Regardless of the outcome, your function should print 'Done.' before
terminating. Here is an example of a successful login:

>>>
Login: joe
You are in!
Done.

And here is one that is not:

>>>
Login: john
User unknown.
Done.

Iteration Structures
In Chapter 2 we introduced strings and lists. Both are sequences of objects. A string can
be viewed as a sequence of one-character strings; a list is a sequence of objects of any type
(strings, numbers, even other lists). A task that is common to all sequences is to perform an
action on every object in the sequence. For example, you could go down your list of contacts
and send a party invite to contacts living nearby. Or you could go through a shopping list to
check that you purchased everything on it. Or you could go through the characters of your
name in order to spell it.

Section 3.2 Execution Control Structures 63

Let’s use this last example. Suppose we would like to implement a short program that
spells the string entered by the user:

>>>
Enter a word: Lena
The word spelled out:
L
e
n
a

The program first requests the user to enter a string. Then, after printing the line 'The word
spelled out:', the characters of the string entered by the user are printed one per line.
We can start the implementation of this program as follows:

name = input('Enter a word: ')
print('The word spelled out:')
...

In order to complete this program, we need a method that will allow us to execute a print()
statement for every character of the string name. The Python for loop statement can be used
to do exactly this. This program implements the behavior we want:

Module: spelling.py
1 name = input('Enter a word: ')
2 print('The word spelled out: ')
3

4 for char in name:
5 print(char)

The for loop statement encompasses lines 4 and 5 of the program. In line 4, char is
a variable name. The for loop statement will repeatedly assign characters of string name
to variable char. If name is string 'Lena', char will first have value 'L', then 'e', then
'n', and finally 'a'. For each value of char, the indented print statement print(char) is
executed. Figure 3.5 illustrates the workings of this loop.

a L e n a

Iteration 1: char = L

Iteration 2: char = e

Iteration 3: char = n

Iteration 4: char = a

Figure 3.5 Iteration
through a string. The
variable char is assigned
'L' in iteration 1, 'e' in
iteration 2, 'n' in iteration 3,
and 'a' in iteration 4; in
every iteration, the current
value of char is printed. So
when char is 'L', 'L' gets
printed; when char is 'e',
'e' gets printed, and so on.

www.ebook3000.com

http://www.ebook3000.org

64 Chapter 3 Imperative Programming

The for loop can also be used to iterate over the items of a list. In the next example, we
use, in the interactive shell, a for loop to iterate over string objects representing my pets:

>>> animals = ['fish', 'cat', 'dog']
>>> for animal in animals:

print(animal)

fish
cat
dog

The for loop executes the indented section print(animal) three times, once for each
value of animal; the value of animal is first 'fish', then 'cat', and finally 'dog', as
illustrated in Figure 3.6.

Figure 3.6
Iteration through a list.
The value of variable
animal is set to 'fish' in
iteration 1, then to 'cat' in
iteration 2, and finally to
'dog'. In each iteration, the
value of animal is printed.

0 1 2

animals 'fish' 'cat' 'dog'

Iteration 1: animal = 'fish'

Iteration 2: animal = 'cat'

Iteration 3: animal = 'dog'

!
CAUTION

The for Loop Variable

The variable char in

for char in name:
print(char)

and the variable animal in

for animal in animals:
print(animal)

are just variable names, chosen to make the program more meaningful. We could
have just as easily written the loops with, say, variable name x:

for x in name:
print(x)

for x in animals:
print(x)

Note: If we change the name of the for loop variable, we also need to change any
occurrence of it in the body of the for loop.

Section 3.2 Execution Control Structures 65

In general, the for loop statement has this format:

for <variable> in <sequence>:
<indented code block >

<non-indented code block>

The for loop will successively assign objects from <sequence> to <variable>, in order
as they appear from left to right. The <indented code block>, typically called the body
of the for loop, is executed once for every value of <variable>. We say that the for
loop iterates through the objects in the sequence. After <indented code block> has been
executed for the last time, execution resumes with the statements after the for loop; they
will be below, and use the same indentation as, the first line of the for loop statement.

Nesting Control Flow Structures
Let’s use the for loop to write a program that combines a for loop and an if statement.
We would like to write an application that starts by asking the user to enter a phrase. After
the user has done so, the program will print all the vowels in the phrase, and no other letter.
The program should behave like this:

>>>
Enter a phrase: test case
e
a
e

This program will consist of several components. We need an input() statement to
read in the phrase, a for loop to iterate over the characters of the input string, and, in every
iteration of the for loop, an if statement to check whether the current character is a vowel.
If so, it gets printed. Next is the complete program.

Module: for.py
1 phrase = input('Enter a phrase: ')
2

3 for c in phrase:
4 if c in 'aeoiuAEIOU':
5 print(c)

Note that we combined a for loop and an if statement and that indentation is used
to specify the body of each. The if statement body is just print(c) while the for loop
statement body is:

if c in 'aeiouAEIOU':
print(c)

Practice Problem
3.5

Implement a program that requests from the user a list of words (i.e., strings) and then prints
on the screen, one per line, all four-letter strings in the list.

>>>
Enter word list: ['stop', 'desktop', 'top', 'post']
stop
post

www.ebook3000.com

http://www.ebook3000.org

66 Chapter 3 Imperative Programming

Function range()
We just saw how the for loop is used to iterate over the items of a list or the characters of
a string. It is often necessary to iterate over a sequence of numbers in a given range, even if
the list of numbers is not explicitly given. For example, we may be searching for a divisor
of a number. Or we could be iterating over the indexes 0, 1, 2, . . . of a sequence object. The
built-in function range() can be used together with the for loop to iterate over a sequence
of numbers in a given range. Here is how we can iterate over the integers 0, 1, 2, 3, 4:

>>> for i in range(5):
print(i)

0
1
2
3
4

Function range(n) is typically used to iterate over the integer sequence 0, 1, 2, . . . , n− 1.
In the last example, variable i is set to 0 in the first iteration; in the following iterations, i
gets assigned values 1, 2, 3, and finally 4 (as n = 5). As in previous for loop examples, the
indented code section of the for loop is executed in every iteration, for every value of i.

Practice Problem
3.6

Write the for loop that will print these sequences of numbers, one per line, in the interactive
shell.
(a) Integers from 0 to 9 (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
(b) Integers from 0 to 1 (i.e., 0, 1)

The range() function can also be used to iterate over more complex sequences of num-
bers. If we would like the sequence to start at a nonzero number start and end before
number end, we make the function call range(start,end). For example, this for loop
iterates over the sequence 2, 3, 4:

>>> for i in range(2, 5):
print(i)

2
3
4

In order to generate sequences that use a step size other than 1, a third argument can be used.
The function call range(start, end, step) can be used to iterate over the sequence of
integers starting at start, using a step size of step and ending before end. For example,
the next loop will iterate over the sequence 1, 4, 7, 10, 13:

>>> for i in range(1, 14, 3):
print(i)

The sequence printed by the for loop starts at 1, uses a step size of 3, and ends before 14.
Therefore it will print 1, 4, 7, 10, and 13.

Section 3.3 User-Defined Functions 67

Practice Problem
3.7

Write the for loop that will print the following sequences of numbers, one per line.
(a) Integers from 3 up to and including 12
(b) Integers from 0 up to but not including 9, but with a step of 2 instead of the default

of 1 (i.e., 0, 2, 4, 6, 8)
(c) Integers from 0 up to but not including 24 with a step of 3
(d) Integers from 3 up to but not including 12 with a step of 5

3.3 User-Defined Functions
We have already seen and used several built-in Python functions. The function len(), for
example, takes a sequence (a string or a list, say) and returns the number of items in the
sequence:

>>> len('goldfish')
8
>>> len(['goldfish', 'cat', 'dog'])
3

Function max() can take two numbers as input and returns the maximum of the two:

>>> max(4, 7)
7

Function sum() can take a list of numbers as input and returns the sum of the numbers:

>>> sum([4, 5, 6, 7])
22

Some functions can even be called without arguments:

>>> print()

In general, a function takes 0 or more input arguments and returns a result. One of the
useful things about functions is that they can be called, using a single-line statement, to
complete a task that really requires multiple Python statements. Even better, usually the
developer using the function does not need to know what those statements are. Because
developers do not need to worry about how functions work, functions simplify the devel-
opment of programs. For this reason, Python and other programming languages make it
possible for developers to define their own functions.

Our First Function
We illustrate how functions are defined in Python by developing a Python function named
f that takes a number x as input and computes and returns the value x2 +1. We expect this
function to behave like this:

>>> f(9)
82
>>> 3 * f(3) + 4
34

www.ebook3000.com

http://www.ebook3000.org

68 Chapter 3 Imperative Programming

Function f() can be defined in a Python module as:

Module: ch3.py
1 def f(x):
2 res = x**2 + 1
3 return res

In order to use function f() (to compute, say, f(3) or f(9)), we first have to execute this
function definition statement by running the module containing it (e.g., by pressing F5).
After the function definition statement has been executed, function f() can be used.

You can also define function f() directly in the interactive shell in this way:

>>> def f(x):
res = x**2 + 1
return res

After you have defined function f(), you can use it just like any other built-in function.
The Python function definition statement has this general format:

def <function name> (<0 or more variables>):
<indented function body>

A function definition statement starts with the def keyword. Following it is the name of
the function; in our example, the name is f. Following the name and in parentheses are the
variable names that stand in for the input arguments, if any. In function f(), the x in

def f(x):

has the same role as x in the math function f(x): to serve as the name for the input value.
The first line of the function definition ends with a colon. Below and indented is the body

of the function, a set of Python statements that implement the function. They are executed
whenever the function is called. If a function is to return a value, then the return statement
is used to specify the value to be returned. In our case, the value of variable res is returned.
The execution of a function ends when the return statement is executed or when the last
statement in the function body is executed.

Practice Problem
3.8

Define, directly in the interactive shell, function perimeter() that takes, as input, the ra-
dius of a circle (a nonnegative number) and returns the perimeter of the circle. A sample
usage is:

>>> perimeter(1)
6.283185307179586
>>> perimeter (2)
12.566370614359172

Remember that you will need the value of π (defined in module math) to compute the
perimeter.

Function Input Arguments
The function f() is defined to take a single input argument, and variable x is the variable
name that refers to the input argument. To define a function with more than one argument,

Section 3.3 User-Defined Functions 69

we need to have a distinct variable name for every input argument.
For example, if wewant to define a function called squareSum() that takes two numbers

x and y as input and returns the sum of their squares x2 + y2, we need to define function
squareSum() so there is a variable name for input argument x, say x, and another variable
name for input argument y, say y:

Module: ch3.py
1 def squareSum(x, y):
2 return x**2 + y**2

(Note that we chose to implement function squareSum() using a single return statement,
unlike the implementation of f() which uses an additional assignment statement.)

Practice Problem
3.9

Implement function average() that takes two numbers as input and returns the average of
the numbers. You shouldwrite your implementation in amodule youwill name average.py.
A sample usage is:

>>> average(1,3)
2.0
>>> average(2, 3.5)
2.75

The functions we have defined so far all take one or more numbers as input arguments.
Functions can take other types of input arguments, of course, including strings and lists.

Practice Problem
3.10

Implement function noVowel() that takes a string s as input and returns True if no char-
acter in s is a vowel, and False otherwise (i.e., some character in s is a vowel).

>>> noVowel('crypt')
True
>>> noVowel('cwm')
True
>>> noVowel('car')
False

Practice Problem
3.11

Implement function allEven() that takes a list of integers and returns True if all integers
in the list are even, and False otherwise.

>>> allEven([8, 0, -2, 4, -6, 10])
True
>>> allEven([8, 0, -1, 4, -6, 10])
False

Not all functions need to return a value, as we will see in the next example.

www.ebook3000.com

http://www.ebook3000.org

70 Chapter 3 Imperative Programming

print() versus return

As another example of a user-defined function, we develop a personalized hello() func-
tion. It takes as input a name (a string) and prints a greeting:

>>> hello('Sue')
Hello, Sue!

We implement this function in the same module as function f():

Module: ch3.py
1 def hello(name):
2 print('Hello, '+ name + '!')

When function hello() is called, it will print the concatenation of string 'Hello, ', the
input string, and string '!'.

Note that function hello() prints output on the screen; it does not return anything.
What is the difference between a function calling print() or returning a value?

!
CAUTION

Statement return versus Function print()

A common mistake is to use the print() function instead of the return statement
inside a function. Suppose we had defined our first function f() in this way:

def f(x):
print(x**2 + 1)

It would seem that such an implementation of function f() works fine:

>>> f(2)
5

However, when used in an expression, function f() will not work as expected:

>>> 3 * f(2) + 1
5
Traceback (most recent call last):
File '<pyshell#103>', line 1, in <module>
3 * f(2) + 1

TypeError: unsupported operand type(s) for *:
'int' and 'NoneType'

When evaluating f(2) in the expression 3 * f(2) + 1, the Python interpreter
evaluates (i.e., executes) f(2), which prints the value 5. You can actually see this
5 in the line before the “Traceback” error line.

So f() prints the computed value, but it does not return it. This means that f(2)
returns nothing and thus evaluates to nothing in an expression. Actually, Python has
a name for the “nothing” type: It is the 'NoneType' referred to in the error message
shown. The error itself is caused by the attempt to multiply an integer value with
“nothing.”

That said, it is perfectly OK to call print() inside a function, as long as the
intent is to print rather than return a value.

Section 3.3 User-Defined Functions 71

Practice Problem
3.12

Write function negatives() that takes a list as input and prints, one per line, the negative
values in the list. The function should not return anything.

>>> negatives([4, 0, -1, -3, 6, -9])
-1
-3
-9

Function Definitions Are “Assignment” Statements
To illustrate that function definitions are really ordinary Python statements, similar in fact
to assignment statements, we use this short program:

Module: dynamic.py
1 s = input('Enter square or cube: ')
2 if s == 'square':
3 def f(x):
4 return x*x
5 else:
6 def f(x):
7 return x*x*x

In it, function f() is defined within a Python program, just as an assignment statement
can be in a program. The actual definition of f() depends on the input entered by the user
at execution time. By typing cube at the prompt, function f() is defined to be the cubic
function:

>>>
Enter square or cube: cube
>>> f(3)
27

If, however, the user types square, then f() would be the quadratic function.

!
CAUTION

First Define the Function, Then Use It

Python does not allow calling a function before it is defined, just as a variable cannot
be used in an expression before it is assigned.

Knowing this, try to figure out why running this module would result in an error:

print(f(3))

def f(x):
return x**2 + 1

Answer: When a module is executed, the Python statements are executed top to
bottom. The print(f(3)) statement will fail because the name f is not defined
yet.

www.ebook3000.com

http://www.ebook3000.org

72 Chapter 3 Imperative Programming

Will we get an error when running this module?

def g(x):
return f(x)

def f(x):
return x**2 + 1

Answer: No, because functions f() and g() are not executed when the module is
run, they are just defined. After they are defined, they can both be executed without
problems.

Comments
Python programs should be well documented for two reasons:

1. The user of the program should understand what the program does.
2. The developer who develops and/or maintains the code should understand how the

program works.
Documentation for the program developer and the future maintainer is important because
undocumented code is harder to maintain, even by the programmer who wrote the code.
Such documentation is done mainly using comments written by the function developer right
next the program.

A comment is anything that follows the # symbol in a line. Here is howwe add comments
to explain the implementation of function f():

Module: ch3.py
1 def f(x):
2 res = x**2 + 1 # compute x**2 + 1 and store value in res
3 return res # return value of res

The comment—anything that follows # in the line—is ignored by Python.
While comments are necessary, it is also important not to overcomment. Comments

should not make it difficult to read the program. Ideally, your programs should use mean-
ingful variable names and simple, well-designed code so the program is, or is almost, self-
explanatory. Comments should be used to identify the main components of the program and
explain the trickier parts.

Docstrings
Functions should also be documented for the function users. The built-in functions we have
seen so far all have documentation that can be viewed using function help(). For example:

>>> help(len)
Help on built-in function len in module builtins:

len(...)
len(object) -> integer

Return the number of items of a sequence or mapping.

Section 3.3 User-Defined Functions 73

If we use help on our first function f(), surprisingly we get some documentation as well.

>>> help(f)
Help on function f in module __main__:

f(x)

In order to get somethingmore useful, however, the function developer needs to add a special
comment to the function definition, one that will be picked up by the help() tool. This
comment, called a docstring, is a string that should describe what the function does and
must be placed directly below the first line of a function definition. Here is how we would
add docstring 'returns x**2 + 1' to our function f():

Module: ch3.py
1 def f(x):
2 'returns x**2 + 1'
3 res = x**2 + 1 # compute x**2 + 1 and store value in res
4 return res # return value of res

Let’s also add a docstring to our function hello():

Module: ch3.py
1 def hello(name):
2 'a personalized hello function'
3 print('Hello,' + name + ' !')

With the docstrings in place, the help() function will use them as part of the func-
tion documentation. For example, the docstring 'returns x**2 + 1' is displayed when
viewing the documentation for function f():

>>> help(f)
Help on function f in module __main__:

f(x)
returns x**2 + 1

Similarly, the docstring is displayed when viewing the documentation for hello():

>>> help(hello)
Help on function hello in module __main__:

hello(name)
a personalized hello function

Practice Problem
3.13

Add appropriate docstrings to functions average() and negatives() from Practice Prob-
lems 3.9 and 3.12. Check your work using the help() documentation tool. You should get,
for example:

>>> help(average)
Help on function average in module __main__:

average(x, y)
returns average of x and y

www.ebook3000.com

http://www.ebook3000.org

74 Chapter 3 Imperative Programming

3.4 Python Variables and Assignments
Functions are either called from within the interactive shell or by another program, which
we will refer to as the calling program. In order to be able to design functions, we need to
understand how values created in the calling program—or the interactive shell—are passed
as input arguments to the function. To do this, however, we first need to understand exactly
what happens in an assignment statement.

Let’s consider this question in the context of the assignment a = 3. First, let’s note that
before executing this assignment, the identifier a does not exists:

>>> a
Traceback (most recent call last):
File "<pyshell#15>", line 1, in <module>
a

NameError: name 'a' is not defined

When the assignment

>>> a = 3

is executed, the integer object 3 and its name a are created. Python will store the name in a
table maintained by Python. This is illustrated in Figure 3.7.

Figure 3.7 Assignments to
new variables. The int
object (with value) 3 is
assigned to variable a,
the float object 3.0 is
assigned to b, the str
object 'hello' is assigned
to c, and the list object
[2, 3, 5, 8, 11] is
assigned to d.

a b c d

3 3.0 'hello' [2,3,5,8,11]

The variable a now refers to the integer object with value 3:

>>> a
3

Figure 3.7 shows that additional variables are in the table: variable b referring to float
object 3.0, variable c referring to str object 'hello', and variable d referring to list
object [2, 3, 5, 8, 11]. In other words, it illustrates that these assignments have also
been made:

>>> b = 3.0
>>> c = 'hello'
>>> d = [2, 3, 5, 8, 11]

In general, a Python assignment statement has this syntax:

<variable> = <expression>

The <expression> to the right of the = assignment operator is evaluated, and the re-
sulting value is stored in an object of the appropriate type; then the object is assigned to
<variable>, which is said to refer to the object or to be bound to the object.

Section 3.4 Python Variables and Assignments 75

Mutable and Immutable Types
Subsequent assignments to a, such as

>>> a = 6

will reuse the existing name a. The result of this assignment is that variable a will refer to
another object, integer object 6. The int object 3 no longer is referred to by a variable, as
shown in Figure 3.8.

a b c d

6 3 3.0 'hello' [2,3,5,8,11]

Figure 3.8 Assigning an
immutable object to an
existing variable. The int
object 6 is assigned to
existing variable a; the int
object 3 is no longer
assigned to a variable and
can no longer be accessed.

The important thing to note is that the assignment a = 6 did not change the value of the
integer object 3. Instead, a new integer object 6 is created, and variable a now refers to it. In
fact, there is no way to change the value of the object containing value 3. This illustrates an
important feature of Python: Python int objects cannot be changed. Integer objects are not
the only objects that cannot be modified. Types whose objects cannot be modified are called
immutable. All Python number types (bool, int, float, and complex) are immutable.

We saw in Chapter 2 that a list object can change. For example:

>>> d = [2, 3, 5, 8, 11]
>>> d[3] = 7
>>> d
[2, 3, 5, 7, 11]

The list d is modified in the second statement: the entry at index 3 is changed to 7, as shown
in Figure 3.9. Types whose objects can be modified are called mutable types. The list type

d
Before:

[2,3,5,8,11]

d
After:

[2,3,5,7,11]

Figure 3.9 Lists are
mutable. The assignment
d[3] = 7 replaces the
object at index 3 of d with
new int object 7.

is mutable. The number types are immutable. What about the string type?

>>> c = 'hello'
>>> c[1] = 'i'
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
c[1] = 'i'

TypeError: 'str' object does not support item assignment

We cannot modify a character of string object. The string type is immutable.

www.ebook3000.com

http://www.ebook3000.org

76 Chapter 3 Imperative Programming

Assignments and Mutability
We often have the situation when multiple variables refer to the same object. (This is, in
particular, the case when a value is passed as an input to a function.) We need to understand
what happens when one of the variables is assigned another object. For example, suppose
we do:

>>> a = 3
>>> b = a

The first assignment creates an integer object with value 3 and gives it name a. In the second
assignment, the expression a evaluates to the integer object 3, which then receives another
name, b, as shown in Figure 3.10:

Figure 3.10 Multiple
references to the same
object. The assignment
b = a evaluates the
expression to the right of
the = sign to object 3 and
assigns that object to
variable b.

a b

3

Variables a and b both refer to the same integer object 3. Now, what happens when we assign
something else to a?

>>> a = 6

The assignment a = 6 does not change the value of the object from 3 to 6 because the int
type is immutable. Variable a should now refer to a new object with value 6. What about b?

>>> a
6
>>> b
3

Variable b still refers to the object with value 3, as shown in Figure 3.11:

Figure 3.11 Multiple
assignments and
mutability. If a and b refer
to the same object 3 and
then object 6 is assigned to
a, b will still refer to object 3.

a b

6 3

The point is this: If two variables refer to the same immutable object, that modifying
one variable will not affect the other.

Now let’s consider what happens with lists. We start by assigning a list to a and then
assigning a to b.

>>> a = [3, 4, 5]
>>> b = a

Section 3.4 Python Variables and Assignments 77

We expect a and b to refer to the same list. That is indeed the case, as shown in Figure 3.12:

a b

[3,4,5]

Figure 3.12 Multiple
assignments on a mutable
object. Both a and b refer
to the same list; the
assignment b[1] = 8
and the assignment
a[-1] = 16 will change the
same list, so any change to
the list referred by b will
change the list referred to by
a and vice versa.Now let’s see what happens when we assign a new object to b[1]:

>>> b[1] = 8
>>> b
[3, 8, 5]
>>> a
[3, 8, 5]

As we saw in Chapter 2, lists can be modified. The list b is modified by the assignment b[1]
= 8. But because variable a is bound to the same list, a will be changed as well. Similarly,
changes to list a will modify list b: assignment a[-1] = 16 will make new object 16 be
the last object in lists a and b.

Practice Problem
3.14

Draw a diagram representing the state of names and objects after this execution:

>>> a = [5, 6, 7]
>>> b = a
>>> a = 3

Swapping
Wenow consider a fundamental assignment problem. Let a and b refer to two distinct integer
values:

>>> a = 6
>>> b = 3

Suppose we need to swap the values of a and b. In other words, after the swap, a will refer
to 3 and b will refer to 6, as shown in Figure 3.13.

Before:
a b

6 3

After:
a b

6 3

Figure 3.13 Swapping
values. Variables a and b
swap the objects they refer
to; Python supports the
multiple assignment
statement, which makes
swapping easy.

www.ebook3000.com

http://www.ebook3000.org

78 Chapter 3 Imperative Programming

If we start by assigning the value of b to a:

a = b

then variable a will refer to the same object that variable b refers to. So we will have both
a and b refer to 3, and we would have “lost” integer object 6. Before we execute a = b, we
must save a reference to 6 and then assign that to b at the end:

>>> temp = a # temp refers to 6
>>> a = b # a refers to 3
>>> b = temp # b refers to 6

In Python, there is a much simpler way to achieve the swap. Python supports the multiple
assignment statement:

>>> a = 6
>>> b = 3
>>> a, b = b, a
>>> a
3
>>> b
6

In the multiple assignment statement a, b = b, a, the two expressions on the right of =
are evaluated to two objects and then each is assigned to the corresponding variable.

Before we move on from our discussion of Python assignments, we note another cool
Python feature. A value can be assigned to several variables simultaneously:

>>> i = j = k = 0

The three variables i, j, and k are all set to 0.

Practice Problem
3.15

Suppose a nonempty list team has been assigned. Write a Python statement or statements
that swap the first and last value of the list. So, if the original list is:

>>> team = ['Ava', 'Eleanor', 'Clare', 'Sarah']

then the resulting list should be:

>>> team
['Sarah', 'Eleanor', 'Clare', 'Ava']

3.5 Parameter Passing
With a better understanding of how assignments happen in Python, we can understand how
input arguments are passed in function calls. Functions are either called from within the
interactive shell or by another program. We refer to either as the calling program. The input
arguments in a function call are names of objects created in the calling program. These
names may refer to objects that are mutable or immutable.We consider each case separately.

Section 3.5 Parameter Passing 79

Immutable Parameter Passing
We use the function g() to discuss the effect of passing a reference to an immutable object
in a function call.

Module: ch3.py
1 def g(x):
2 x = 5

Let’s start by assigning integer 3 to variable name a:

>>> a = 3

In this assignment statement, integer object 3 is created and given name a, as shown in
Figure 3.14:

interactive shell

a

3

Figure 3.14 An
assignment in the main
program. Integer object
3 is assigned name a in
the main program, the
interactive shell.

This figure illustrates that name a has been defined in the context of the interactive shell.
It refers to an integer object whose value is 3. Now let’s call function g() with name a as
the input argument:

>>> g(a)

When this function call is made, the argument a is evaluated first. It evaluates to integer
object 3. Now, recall that function g() was defined as:

def g(x):
x = 5

The name x in def g(x): is now set to refer to the input integer object 3. In effect, it is as
if we have executed the assignment x = a:

interactive shell

a

3

function g()

x
Figure 3.15 Parameter
passing. The function call
g(a) passes the reference
a as the input argument.
Variable x, defined at the
beginning of the execution
of g(), will be assigned this
reference. Both a and x will
refer to the same object.

Thus, at the start of the execution of g(a), two variables refer to the single object 3:
variable a defined in the interactive shell and variable x defined in function g() (see Fig-
ure 3.15).

www.ebook3000.com

http://www.ebook3000.org

80 Chapter 3 Imperative Programming

During the execution of g(a), variable x is assigned 5. Since integer objects are im-
mutable, x no longer refers to 3 but to new integer object 5, as shown in Figure 3.16. Variable
a, however, still refers to object 3.

Figure 3.16 Immutable
parameter passing. When
x = 5 is executed, x will
refer to a new integer object
with value 5. The integer
object with value 3 is
unchanged. The name a
in the main program, the
interactive shell, still refers
to it.

interactive shell

a

3

function g()

x

5

The point of this example is this. The function g() did not, and cannot, modify the value
of a in the interactive shell. In general, when calling and executing a function, the function
will not modify the value of any variable passed as a function argument if the variable refers
to an immutable object.

What if, however, we pass a reference to a mutable object?

Mutable Parameter Passing
We use the next function to see what happens when the name of a mutable object is passed
as the argument of a function call.

Module: ch3.py
1 def h(lst):
2 lst[0] = 5

Consider what happens when we execute:

>>> myList = [3, 6, 9, 12]
>>> h(myList)

In the assignment statement, a list object is created and assigned name myList. Then
the function call h(myList) is made. When function h() starts executing, the list referred
to by myList will be assigned to variable name lst defined in the function definition of
h(). So we have the situation illustrated in Figure 3.17.

Figure 3.17 Mutable
parameter passing. The
function call h() passes
the reference to a list as an
argument. So name myList
in the interactive shell and
name lst in h() now refer
to the same list.

interactive shell

myList

[3,6,9,12]

function h()

lst

While executing function h(), lst[0] is assigned 5 and so lst[0] will refer to new
object 5. Since lists are mutable, the list object referred to by lst changes. Because variable
myList in the interactive shell refers to the same list object, it means that the list object
referred to by myList changes as well. We illustrate this in Figure 3.18.

Chapter 3 Case Study: Automating Turtle Graphics 81

function f()

myList

[5,6,9,12]

function h()

lst
Figure 3.18 Functions can
modify mutable
arguments. Since lists are
mutable, the assignment
lst[0] = 5 replaces the
list entry at index 0 to 5.
Since name myList in
the main program, the
interactive shell, refers to
the same list, the change
will be visible in the main
program.This example illustrates that when a mutable object, like list object [3,6,9,12], is

passed as an argument in a function call, it may be modified by the function.

Practice Problem
3.16

Implement function swapFL() that takes a list as input and swaps the first and last ele-
ments of the list. You may assume the list will be nonempty. The function should not return
anything.

>>> ingredients = ['flour', 'sugar', 'butter', 'apples']
>>> swapFL(ingredients)
>>> ingredients
['apples', 'sugar', 'butter', 'flour']

Case Study: Automating Turtle Graphics
It is very common for the same fragment of code to be used repeatedly in different parts of
a program. In Case Study CS.3, we show the benefit of wrapping such a fragment of code
into a function and replacing with a function call every instance of the code fragment in the
program. The case study effectively illustrates the basic software engineering concepts of
(functional) encapsulation and abstraction.

Chapter Summary
Chapter 3 introduces tools for writing Python programs and basic program development
concepts. We start by writing very simple interactive programs that use built-in functions
print(), input(), and eval(). Then, to create programs that execute differently depend-
ing on the input entered by the user, we introduce the if statement. We describe its one-way
and two-way decision formats.

We introduce next the for loop statement, in its simplest form: as a way to iterate over
the items of a list or the characters of a string. We also introduce the range() function,
which enables iteration over a sequence of integers in a given range.

A focus of this chapter is how to define new functions in Python. The syntax of a function
definition statement is introduced. We pay special attention to parameter passing (i.e., how
parameters are passed when calling a function). To understand parameter passing, we take a
closer look at how assignments work. Finally, we introduce the ways to document a function,
through comments and a docstring.

www.ebook3000.com

http://www.ebook3000.org

82 Chapter 3 Imperative Programming

Solutions to Practice Problems
3.1 An input() statement is used to request a temperature. The value entered by the user
is treated as a string. One way to convert the string value to a number is with the eval()
function, which evaluates the string as an expression. An arithmetic expression is used for
the conversion from degrees Fahrenheit to degrees Celsius, and the result is then printed.

fahr = eval(input('Enter the temperature in degrees Fahrenheit: '))
cels = (fahr - 32) * 5 / 9
print('The temperature in degrees Celsius is', cels)

3.2 The if statement in the interactive shell is shown without the result of the execution:

>>> if age > 62:
print('You can get your pension benefits!')

>>> if name in ['Musial','Aaron','Williams','Gehrig','Ruth']:
print('One of the top 5 baseball players, ever!')

>>> if hits > 10 and shield == 0:
print('You\'re dead ...')

>>> if north or south or east or west:
print('I can escape.')

3.3 The if statement in the interactive shell is shown without the result of the execution:

>>> if year % 4 == 0:
print('Could be a leap year.')

else:
print('Definitely not a leap year.')

>>> if ticket == lottery:
print('You won!')

else:
print('Better luck next time...')

3.4 List users is defined first. The id is then requested using function input(). The con-
dition id in users is used in an if statement to determine the appropriate message:

users = ['joe', 'sue', 'hani', 'sophie']
id = input('Login: ')
if id in users:

print('You are in!')
else:

print('User unknown.')
print('Done.')

Figure 3.19 presents the flowchart describing the different execution flows of this program.

3.5 We use a for loop to iterate through the words in the list. For each word, we check
whether it has length 4; if so, we print it.

wordList = eval(input('Enter word list: '))
for word in wordList:
if len(word) == 4:
print(word)

Chapter 3 Solutions to Practice Problems 83

users = ['joe','sue','hani','sophie']

id = input('Login: ')

id in users

print('User unknown.') print('You are in!')

print('Done.')

TrueFalse

Figure 3.19 Program
flowchart. The solid arrows
show the execution flow that
always occurs. The dashed
arrows show the possible
execution flows that occur
depending on a condition.

3.6 The for loops are:

>>> for i in range(10):
print(i)

>>> for i in range(2):
print(i)

3.7 We omit the complete for loop:
(a) range(3, 13), (b) range(0, 10, 2), (c) range(0, 24, 3), and (d) range(3,
12, 5).

3.8 The perimeter of a circle of radius r is 2πr. The math function needs to be imported so
that the value math.pi can be obtained:

import math
def perimeter(radius):

return 2 * math.pi * radius

3.9 The function average() takes two inputs. We use variable names x and y to refer to
the input arguments. The average of x and y is (x+y)/2:

def average(x, y):
return (x + y) / 2

3.10 We need to use a for loop to check whether or not each character of the input string
is a vowel. If yes, we can return False immediately. We can return True only after all the
characters have been checked, that is, when the for loop has completed execution.

def noVowel(s):
'return True if string s contains no vowel, False otherwise'
for c in s:

if c in 'aeiouAEIOU':
return False

return True

www.ebook3000.com

http://www.ebook3000.org

84 Chapter 3 Imperative Programming

3.11 A for loop is used to check whether or not each number in the list is even. If not, we
can return False right away. We can return True only after the for loop has completed
execution.

def allEven(numList):
'return True is all integers in numList are even, False otherwise'
for num in numList:

if num%2 != 0:
return False

return True

3.12 The function should iterate over all numbers in the list and test each to determine
whether it is negative; if so, the number is printed.

def negatives(lst):
'prints the negative numbers in list lst'
for i in lst:

if i < 0:
print(i)

3.13 The docstrings are shown in the solutions of the respective Practice Problems.

3.14 When variable a is assigned 3, a is bound to the new object 3. Variable b is still bound
to the list object.

a b

[5,6,7] 3

3.15 The multiple assignment statement is the easiest way to achieve the swap:

>>> team[0], team[-1] = team[-1], team[0]

Another way would be to use a temporary variable temp:

>>> temp = team[0]
>>> team[0] = team[-1]
>>> team[-1] = temp

3.16 This function just wraps the swapping code we developed in the previous practice
problem.

def swapFL(lst):
lst[0], lst[-1] = lst[-1], lst[0]

Chapter 3 Exercises 85

Exercises

3.17 Use the eval() function to evaluate these strings as Python expressions:
(a) '2 * 3 + 1'
(b) 'hello'
(c) "'hello' + ' ' + 'world!'"
(d) "'ASCII'.count('I')"
(e) 'x = 5'

Which evaluations result in an error? Explain why.

3.18 Assume a, b, and c have been defined in the interactive shell as shown:

>>> a, b, c = 3, 4, 5

Within the interactive shell, write if statements that print 'OK' if:
(a) a is less than b.
(b) c is less than b.
(c) The sum of a and b is equal to c.
(d) The sum of the squares a and b is equal to c squared.

3.19 Repeat the previous problem with the additional requirement that 'NOT OK' is printed
if the condition is false.

3.20 Write a for loop that iterates over a list of strings lst and prints the first three char-
acters of every word. If lst is the list ['January', 'February', 'March'] then the
following should be printed:

Jan
Feb
Mar

3.21 Write a for loop that iterates over a list of numbers lst and prints the even numbers
in the list. For example, if lst is [2, 3, 4, 5, 6, 7, 8, 9], then the numbers 2, 4, 6,
and 8 should be printed.

3.22 Write a for loop that iterates over a list of numbers lst and prints the numbers in the
list whose square is divisible by 8. For example, if lst is [2, 3, 4, 5, 6, 7, 8, 9],
then the numbers 4 and 8 should be printed.

3.23 Write for loops that use the function range() and print the following sequences:
(a) 0 1
(b) 0
(c) 3 4 5 6
(d) 1
(e) 0 3
(f) 5 9 13 17 21

www.ebook3000.com

http://www.ebook3000.org

86 Chapter 3 Imperative Programming

Problems
Note: In the programs that use interactive input of nonstring values, you will need to use
the function eval() to force Python to treat the user’s input as a Python expression (rather
than just a string).

3.24 Implement a program that requests a list of words from the user and then prints each
word in the list that is not 'secret'.

>>>
Enter list of words: ['cia','secret','mi6','isi','secret']
cia
mi6
isi

3.25 Implement a program that requests a list of student names from the user and prints
those names that start with letters A through M.

>>>
Enter list: ['Ellie', 'Steve', 'Sam', 'Owen', 'Gavin']
Ellie
Gavin

3.26 Implement a program that requests a nonempty list from the user and prints on the
screen a message giving the first and last element of the list.

>>>
Enter a list: [3, 5, 7, 9]
The first list element is 3
The last list element is 9

3.27 Implement a program that requests a positive integer n from the user and prints the
first four multiples of n.

>>>
Enter n: 5
0
5
10
15

3.28 Implement a program that requests an integer n from the user and prints on the screen
the squares of all numbers from 0 up to, but not including, n.

>>>
Enter n: 3
0
1
4

3.29 Implement a program that requests a positive integer n and prints on the screen all the
positive divisors of n. Note: 0 is not a divisor of any integer, and n divides itself.

Chapter 3 Problems 87

>>>
Enter n: 49
1
7
49

3.30 Implement a program that requests four numbers (integer or floating-point) from the
user. Your program should compute the average of the first three numbers and compare the
average to the fourth number. If they are equal, your program should print 'Equal' on the
screen.

>>>
Enter first number: 4.5
Enter second number: 3
Enter third number: 3
Enter last number: 3.5
Equal

3.31 Implement a program that requests the user to enter the x and y coordinates (each
between−10 and 10) of a dart and computes whether the dart has hit the dartboard, a circle
with center (0, 0) and radius 8. If so, string It is in! should be printed on the screen.

>>>
Enter x: 2.5
Enter y: 4
It is in!

3.32 Write a program that requests a positive four-digit integer from the user and prints its
digits. You are not allowed to use the string data type operations to do this task. Your pro-
gram should simply read the input as an integer and process it as an integer, using standard
arithmetic operations (+, *, -, /, %, etc).

>>>
Enter n: 1234
1
2
3
4

3.33 Implement function reverse_string() that takes as input a three-letter string and
returns the string with its characters reversed.

>>> reverse_string('abc')
'cba'
>>> reverse_string('dna')
'and'

3.34 Implement function pay() that takes as input two arguments: an hourly wage and the
number of hours an employee worked in the last week. Your function should compute and
return the employee’s pay. Any hours worked beyond 40 is overtime and should be paid at
1.5 times the regular hourly wage.

www.ebook3000.com

http://www.ebook3000.org

88 Chapter 3 Imperative Programming

>>> pay(10, 35)
350
>>> pay(10, 45)
475.0

3.35 The probability of getting n heads in a row when tossing a fair coin n times is 2−n.
Implement function prob() that takes a nonnegative integer n as input and returns the
probability of n heads in a row when tossing a fair coin n times.

>>> prob(1)
0.5
>>> prob(2)
0.25

3.36 Implement function reverse_int() that takes a three-digit integer as input and re-
turns the integer obtained by reversing its digits. For example, if the input is 123, your
function should return 321. You are not allowed to use the string data type operations to
do this task. Your program should simply read the input as an integer and process it as an
integer using operators such as // and %. You may assume that the input integer does not
end with the 0 digit.

>>> reverse_int(123)
321
>>> reverse_int(908)
809

3.37 Implement function points() that takes as input four numbers x1, y1, x2, y2 that
are the coordinates of two points (x1, y1) and (x2, y2) in the plane. Your function should
compute:

• The slope of the line going through the points, unless the line is vertical
• The distance between the two points

Your function should print the computed slope and distance in the following format. If the
line is vertical, the value of the slope should be string 'infinity'. Note: Make sure you
convert the slope and distance values to a string before printing them.

>>> points(0, 0, 1, 1)
The slope is 1.0 and the distance is 1.41421356237
>>> points(0, 0, 0, 1)
The slope is infinity and the distance is 1.0

3.38 Implement function abbreviation() that takes a day of the week as input and returns
its two-letter abbreviation.

>>> abbreviation('Tuesday')
'Tu'

3.39 The computer game function collision() checks whether two circular objects col-
lide; it returns True if they do and False otherwise. Each circular object will be given by
its radius and the (x, y) coordinates of its center. Thus the function will take six numbers
as input: the coordinates x1 and y1 of the center and the radius r1 of the first circle, and the
coordinates x2 and y2 of the center and the radius r2 of the second circle.

Chapter 3 Problems 89

>>> collision(0, 0, 3, 0, 5, 3)
True
>>> collision(0, 0, 1.4, 2, 2, 1.4)
False

3.40 Implement function partition() that splits a list of soccer players into two groups.
More precisely, it takes a list of first names (strings) as input and prints the names of those
soccer players whose first name starts with a letter between and including A and M.

>>> partition(['Eleanor', 'Evelyn', 'Sammy', 'Owen', 'Gavin'])
Eleanor
Evelyn
Gavin

3.41 Write function lastF() that takes as input two strings of the form 'FirstName' and
'LastName', respectively, and returns a string of the form 'LastName, F.'. (Only the
initial should be output for the first name.)

>>> lastF('Albert', 'Camus')
'Camus, A.'

3.42 Implement function avg() that takes as input a list that contains lists of numbers. Each
number list represents the grades a particular student received for a course. For example,
here is an input list for a class of four students:

[[95, 92, 86, 87], [66, 54], [89, 72, 100], [33, 0, 0]]

The function avg should print, one per line, every student’s average grade. You may assume
that every list of grades is nonempty, but youmay not assume that every student has the same
number of grades.

>>> avg([[95, 92, 86, 87], [66, 54], [89, 72, 100], [33, 0, 0]])
90.0
60.0
87.0
11.0

3.43 The computer game function hit() takes five numbers as input: the x and y coordi-
nates of the center and the radius of a circle C, and the x and y coordinates of a point P .
The function should return True if point P is inside or on circle C and False otherwise.

>>> hit(0, 0, 3, 3, 0)
True
>>> hit(0, 0, 3, 4, 0)
False

3.44 Write a function distance() that takes as input a number: the time elapsed (in sec-
onds) between the flash and the sound of thunder. Your function should return the distance
to the lightning strike in kilometers. The speed of sound is approximately 340.29meters per
second; there are 1000 meters in one kilometer.

>>> distance(3)
1.0208700000000002

www.ebook3000.com

http://www.ebook3000.org

CHAPTER

4Text Data, Files,
and Exceptions
4.1 Strings, Revisited 92

4.2 Formatted Output 98

4.3 Files 107

4.4 Errors and Exceptions 116

Case Study: Image Files 119

Chapter Summary 119

Solutions to Practice Problems 120

Exercises 121

Problems 124

IN THIS CHAPTER, we focus on the Python tools and problem-solving
patterns for processing text and files.

We take a running start by continuing the discussion of the string
class we began in Chapter 2. We discuss, in particular, the extensive set
of string methods that give Python powerful text-processing capabilities.
We then go over the text-processing tools Python provides to control the
format of output text. We focus, in particular, on tools for interpreting and
creating strings that contain date and time data.

After having mastered text processing, we cover files and file
input/output (I/O) (i.e., how to read from and write to files from within a
Python program). Much of today’s computing involves the processing of
text content stored in files. We define several patterns for reading files that
prepare the file content for processing.

Working with data coming interactively from the user or from a file
introduces a source of errors for our program that we cannot really control.
We go over the common errors that can occur and introduce the concept
of an exception and the default exceptional control flow.

91

www.ebook3000.com

http://www.ebook3000.org

92 Chapter 4 Text Data, Files, and Exceptions

4.1 Strings, Revisited
In Chapter 2 we introduced the string class str. Our goal then was to show that Python
supported values other than numbers. We showed how string operators make it possible to
write string expressions and process strings in a way that is as familiar as writing algebraic
expressions. We also used strings to introduce the indexing operator [].

In this section we cover strings and what can be done with them in more depth.We show,
in particular, a more general version of the indexing operator and many of the commonly
used string methods that make Python a strong text-processing tool.

String Representations
We already know that a string value is represented as a sequence of characters that is en-
closed within quotes, whether single or double quotes:

>>> "Hello, World!"
'Hello, World!'
>>> 'hello'
'hello'

!
CAUTION

Forgetting Quote Delimiters

A common mistake when writing a string value is to forget the quotes. If the quotes
are omitted, the text will be treated as a name (e.g., a variable name), not a string
value. Since, typically, there will be no value assigned to the variable, an error will
result. Here is an example:

>>> hello
Traceback (most recent call last):
File "<pyshell#35>", line 1, in <module>
hello

NameError: name 'hello' is not defined

The error message reported that name hello is not defined. In other words, the
expression hello was treated as a variable, and the error was the result of trying
to evaluate it.

If quotes delimit a string value, how do we construct strings that contain quotes? If the
text contains a single quote, we can use double quote delimiters, and vice versa:

>>> excuse = 'I am "sick"'
>>> fact = "I'm sick"

If the text contains both type of quotes, then the escape sequence \' or \" is used to indicate
that a quote is not the string delimiter but is part of the string value. So, if we want to create
the string value

I'm "sick".

we would write:

>>> excuse = 'I\'m "sick"'

Section 4.1 Strings, Revisited 93

Let’s check whether this worked:

>>> excuse
'I\'m "sick"'

Well, this doesn’t seem to work. We would like to see: I'm "sick". Instead we still see
the escape sequence \'. To have Python print the string nicely, with the escape sequence \'
properly interpreted as an apostrophe, we need to use the print()function. The print()
function takes as input an expression and prints it on the screen; in the case of a string
expression, the print() function will interpret any escape sequence in the string and omit
the string delimiters:

>>> print(excuse)

I'm "sick"

In general, an escape sequence in a string is a sequence of characters starting with a \ that
defines a special character and that is interpreted by function print().

String values defined with the single- or double-quote delimiters must be defined in a
single line. If the string is to represent multiline text, we have two choices. One is to use
triple quotes, as we do in this poem by Emily Dickinson:

>>> poem = '''
To make a prairie it takes a clover and one bee, -
One clover, and a bee,
And revery.
The revery alone will do
If bees are few.
'''

Let’s see what the variable poem evaluates to:

>>> poem
'\nTo make a prairie it takes a clover and one bee, -\nOne clover
, and a bee,\nAnd revery.\nThe revery alone will do\nIf bees are
few.\n'

We have here another example of a string containing an escape sequence. The escape se-
quence \n stands in for a new line character. When it appears in a string argument of the
print() function, the new line escape sequence \n starts a new line:

>>> print(poem)

To make a prairie it takes a clover and one bee, -
One clover, and a bee,
And revery.
The revery alone will do
If bees are few.

Another way to create a multiline string is to encode the new line characters explicitly:

>>> poem = '\nTo make a prairie it takes a clover and one bee, -\n
One clover, and a bee,\nAnd revery.\nThe revery alone
will do\nIf bees are few.\n'

www.ebook3000.com

http://www.ebook3000.org

94 Chapter 4 Text Data, Files, and Exceptions

The Indexing Operator, Revisited
In Chapter 2, we introduced the indexing operator []:

>>> s = 'hello'
>>> s[0]
'h'

The indexing operator takes an index i and returns the single-character string consisting of
the character at index i.

The indexing operator can also be used to obtain a slice of a string. For example:

>>> s[0:2]
'he'

The expression s[0:2] evaluates to the slice of string s starting at index 0 and ending
before index 2. In general, s[i:j] is the substring of string s that starts at index i and ends
at index j-1. Here are more examples, also illustrated in Figure 4.1:

>>> s[3:4]
'l'
>>> s[-3:-1]
'll'

The last example shows how to get a slice using negative indexes: The substring obtained
starts at index−3 and ends before index−1 (i.e., at index−2). If the slice we want starts at
the first character of a string, we can drop the first index:

>>> s[:2]
'he'

In order to obtain a slice that ends at the last character of a string, we must drop the second
index:

>>> s[-3:]
'llo'

Figure 4.1 Slicing. s[0:2]
evaluates to the slice of
string s starting at index 0
and ending before index 2.
Expression s[:2] evaluates
to the same slice.
Expression s[3:4] is
equivalent to s[3].
Expression s[-3:-1] is the
slice of string s that starts at
index −3 and ends before
index −1.

-5 -4 -3 -2 -1Reverse Index

s h e l l o

Index 0 1 2 3 4

s[0:2] h e l l o

s[3:4] h e l l o

s[-3:-1] h e l l o

Section 4.1 Strings, Revisited 95

Practice Problem
4.1

Start by executing the assignment:

s = '0123456789'

Now write expressions using string s and the indexing operator that evaluate to:
(a) '234'
(b) '78'
(c) '1234567'
(d) '0123'
(e) '789'

!
CAUTION

Slicing Lists

The indexing operator is one of many operators that are shared between the string
and the list classes. The indexing operator can also be used to obtain a slice of a
list. For example, if pets is defined as

>>> pets = ['goldfish', 'cat', 'dog']

we can get slices of pets with the indexing operator:

>>> pets[:2]
['goldfish', 'cat']
>>> pets[-3:-1]
['goldfish', 'cat']
>>> pets[1:]
['cat', 'dog']

A slice of a list is a list. In other words, when the indexing operator is applied to
a list with two arguments, it will return a list. Note that this is unlike the case when
the indexing operator is applied to a list with only one argument, say an index i; in
that case, the item of the list at index i is returned.

String Methods
The string class supports a large number of methods. These methods provide the developer
with a text-processing toolkit that simplifies the development of text-processing applica-
tions. Here we cover some of the more commonly used methods.

We start with the string method find(). When it is invoked on string s with one string
input argument target, it checks whether target is a substring of s. If so, it returns the
index (of the first character) of the first occurrence of string target; otherwise, it returns -1.
For example, here is how method find() is invoked on string message using target string
'top secret':

>>> message = '''This message is top secret and should not
be divulged to anyone without top secret clearance'''
>>> message.find('top secret')
16

www.ebook3000.com

http://www.ebook3000.org

96 Chapter 4 Text Data, Files, and Exceptions

Index 16 is output bymethod find() since string 'top secret' appears in string message
starting at index 16.

The method count(), when called by string s with string input argument target, re-
turns the number of times target appears as a substring of s. For example:

>>> message.count('top secret')
2

The value 2 is returned because string 'top secret' appears twice in message.
The function replace(), when invoked on string s, takes two string inputs, old and

new, and outputs a copy of string s with every occurrence of substring old replaced by
string new. For example:

>>> message.replace('top', 'no')
'This message is no secret and should not\n
be divulged to anyone without no secret clearance'

Has this changed the string message? Let’s check:

>>> print(message)
This message is top secret and should not
be divulged to anyone without top secret clearance

So string messagewas not changed by the replace()method. Instead, a copy of message,
with appropriate substring replacements, got returned. This string cannot be used later on
because we have not assigned it a variable name. Typically, the replace() method would
be used in an assignment statement like this:

>>> public = message.replace('top', 'no')
>>> print(public)
This message is no secret and should not
be divulged to anyone without no secret clearance

Recall that strings are immutable (i.e., they cannot be modified). This is why string
method replace() returns a (modified) copy of the string invoking the method rather than
changing the string. In the next example, we showcase a few other methods that return a
modified copy of the string:

>>> message = 'top secret'
>>> message.capitalize()
'Top secret'
>>> message.upper()
'TOP SECRET'

Method capitalize(), when called by string s, makes the first character of s uppercase;
method upper() makes all the characters uppercase.

The very useful string method split() can be called on a string in order to obtain a list
of words in the string:

>>> 'this is the text'.split()
['this', 'is', 'the', 'text']

In this statement, the method split() uses the blank spaces in the string 'this is the
text' to create word substrings that are put into a list and returned. The method split()
can also be called with a delimiter string as input: The delimiter string is used in place of

Section 4.1 Strings, Revisited 97

the blank space to break up the string. For example, to break up the string

>>> x = '2;3;5;7;11;13'

into a list of number, you would use ';' as the delimiter:

>>> x.split(';')
['2', '3', '5', '7', '11', '13']

Finally, another useful string method is translate(). It is used to replace certain char-
acters in a string with others based on amapping of characters to characters. Such a mapping
is constructed using a special type of string method that is called not by a string object but
by the string class str itself:

>>> table = str.maketrans('abcdef', 'uvwxyz')

The variable table refers to a “mapping” of characters a,b,c,d,e,f to characters u,v,w,x,y,z,
respectively. We discuss this mapping more thoroughly in Chapter 6. For our purposes here,
it is enough to understand its use as an argument to the method translate():

>>> 'fad'.translate(table)
'zux'
>>> 'desktop'.translate(table)
'xysktop'

The string returned by translate() is obtained by replacing characters according to the
mapping described by table. In the last example, d and e are replaced by x and y, but the
other characters remain the same because mapping table does not include them.

A partial list of string methods is shown in Table 4.1. Many more are available, and to
view them all, use the help() tool:

>>> help(str)
...

Usage Returned Value
s.capitalize() A copy of string s with the first character capitalized if

it is a letter in the alphabet
s.count(target) The number of occurrences of substring target in

string s
s.find(target) The index of the first occurrence of substring target in

string s
s.lower() A copy of string s converted to lowercase
s.replace(old, new) A copy of string s in which every occurrence of

substring old, when string s is scanned from left to
right, is replaced by substring new

s.translate(table) A copy of string s in which characters have been
replaced using the mapping described by table

s.split(sep) A list of substrings of strings s, obtained using delimiter
string sep; the default delimiter is the blank space

s.strip() A copy of string s with leading and trailing blank
spaces removed

s.upper() A copy of string s converted to uppercase

Table 4.1 String methods.
Only some of the commonly
used string methods are
shown. Since strings are
immutable, none of these
methods mutates string s.
Methods count() and
find() return an integer,
method split() returns a
list, and the remaining
methods return a (usually)
modified copy of string s.

www.ebook3000.com

http://www.ebook3000.org

98 Chapter 4 Text Data, Files, and Exceptions

Practice Problem
4.2

Assuming that variable forecast has been assigned string

'It will be a sunny day today'

write Python statements corresponding to these assignments:
(a) To variable count, the number of occurrences of string 'day' in string forecast.
(b) To variable weather, the index where substring 'sunny' starts.
(c) To variable change, a copy of forecast in which every occurrence of substring

'sunny' is replaced by 'cloudy'.

4.2 Formatted Output
The results of running a program are typically shown on the screen or written to a file.
Either way, the results should be presented in a way that is visually effective. The Python
output formatting tools help achieve that. In this section we learn how to format output
using features of the print() function and the string format() method. We also look at
how strings containing a date and time are interpreted and created.

Function print()
The print() function is used to print values onto the screen. Its input is an object and it
prints a string representation of the object’s value. (We explain where this string represen-
tation comes from in Chapter 8.)

>>> n = 5
>>> print(n)
5

Function print() can take an arbitrary number of input objects, not necessarily of the
same type. The values of the objects will be printed in the same line, and blank spaces (i.e.,
characters ' ') will be inserted between them:

>>> r = 5/3
>>> print(n, r)
5 1.66666666667
>>> name = 'Ida'
>>> print(n, r, name)
5 1.66666666667 Ida

The blank space inserted between the values is just the default separator. If we want to
insert semicolons between values instead of blank spaces, we can do that too. The print()
function takes an optional separation argument sep, in addition to the objects to be printed:

>>> print(n, r, name, sep=';')
5;1.66666666667;Ida

The argument sep=';' specifies that semicolons should be inserted to separate the printed
values of n, r, and name.

In general, when the argument sep=<some string> is added to the arguments of the
print() function, the string <some string>will be inserted between the values. Here are

Section 4.2 Formatted Output 99

some common uses of the separator. If we want to print each value separated by the string
', ' (comma and blank space) we would write:

>>> print(n, r, name, sep=', ')
5, 1.66666666667, Ida

If wewant to print the values in separate lines, the separator should be the new line character,
'\n':

>>> print(n, r, name, sep='\n')
5
1.66666666667
Ida

Practice Problem
4.3

Write a statement that prints the values of variables last, first, and middle in one line,
separated by a horizontal tab character. (The Python escape sequence for the horizontal tab
character is \t.) If the variables are assigned like this:

>>> last = 'Smith'
>>> first = 'John'
>>> middle = 'Paul'

the output should be:

Smith John Paul

The print() function supports another formatting argument, end, in addition to sep.
Normally, each successive print() function call will print in a separate line:

>>> for name in ['Joe', 'Sam', 'Tim', 'Ann']:
print(name)

Joe
Sam
Tim
Ann

The reason for this behavior is that, by default, the print() statement appends a new line
character (\n) to the arguments to be printed. Suppose that the output we really want is:

Joe! Sam! Tim! Ann!

(We just saw our good friends, and we are in an exclamatory kind of mood.) When the
argument end=<some string> is added to the arguments to be printed, the string <some
string> is printed after all the arguments have been printed. If the argument end=<some
string> is missing, then the default string '\n', the new line character, is printed instead;
this causes the current line to end. So, to get the screen output in the format we want, we
need to add the argument end = '! ' to our print() function call:

>>> for name in ['Joe', 'Sam', 'Tim', 'Ann']:
print(name, end='! ')

Joe! Sam! Tim! Ann!

www.ebook3000.com

http://www.ebook3000.org

100 Chapter 4 Text Data, Files, and Exceptions

Practice Problem
4.4

Write function even() that takes a positive integer n as input and prints on the screen all
numbers between, and including, 2 and n divisible by 2 or by 3, using this output format:

>>> even(17)
2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16,

String Method format()
The sep argument can be added to the arguments of a print() function call to insert the
same string between the values printed. Inserting the same separator string is not always
what we want. Consider the problem of printing the day and time in the way we expect to
see time, given these variables:

>>> weekday = 'Wednesday'
>>> month = 'March'
>>> day = 10
>>> year = 2010
>>> hour = 11
>>> minute = 45
>>> second = 33

What we want is to call the print() function with the preceding variables as input argu-
ments and obtain something like:

Wednesday, March 10, 2010 at 11:45:33

It is clear that we cannot use a separator argument to obtain such an output. One way to
achieve this output would be to use string concatenation to construct a string in the right
format:

>>> print(weekday+', '+month+' '+str(day)+', '+str(year)
+' at '+str(hour)+':'+str(minute)+':'str(second))

SyntaxError: invalid syntax (<pyshell#36>, line 1)

Ooops, I made a mistake. I forgot a + before str(second). That fixes it (check it!) but
we should not be satisfied. The reason why I messed up is that the approach I used is very
tedious and error prone. There is an easier, and far more flexible, way to format the output.
The string (str) class provides a powerful class method, format(), for this purpose.

The format() string method is invoked on a string that represents the format of the
output. The arguments of the format() function are the objects to be printed. To explain
the use of the format() function, we start with a small version of our date and time example,
in which we only want to print the time:

>>> '{0}:{1}:{2}'.format(hour, minute, second)
'11:45:33'

The objects to be printed (hour, minute, and second) are arguments of the format()
method. The string invoking the format() function—that is, the string '{0}:{1}:{2}'—
is the format string: It describes the output format. All the characters outside the curly
braces—that is, the two colons (':')—are going to be printed as is. The curly braces {0},
{1}, and {2} are placeholders where the objects will be printed. The numbers 0, 1, and 2

Section 4.2 Formatted Output 101

explicitly indicate that the placeholders are for the first, second, and third arguments of the
format() function call, respectively. See Figure 4.2 for an illustration.

' {0} : {1} : {2} '.format (hour, minute, second) Figure 4.2 Output
formatting. The arguments
of the format() function
are printed at the positions
indicated by the curly brace
placeholders.

Figure 4.3 shows what happens when we move the indexes 0, 1, and 2 in the previous
example:

>>> '{2}:{0}:{1}'.format(hour, minute, second)
'33:11:45'

' {2} : {0} : {1} '.format (hour, minute, second) Figure 4.3 Explicit
placeholder mapping.

The default, when no explicit number is given inside the curly braces, is to assign the first
placeholder (from left to right) to the first argument of the format() function, the second
placeholder to the second argument, and so on, as shown in Figure 4.4:

>>> '{}:{}:{}'.format(hour, minute, second)
'11:45:33'

' {} : {} : {} '.format (hour, minute, second) Figure 4.4 Default
placeholder mapping.

Let’s go back to our original goal of printing the date and time. The format string we need
is '{}, {} {}, {} at {}:{}:{}' assuming that the format() function is called on
variables weekday, month, day, year, hours, minutes, seconds in that order.

We check this (see also Figure 4.5 for the illustration of the mapping of variables to
placeholders):

>>> print('{}, {} {}, {} at {}:{}:{}'.format(weekday, month,
day, year, hour, minute, second))

Wednesday, March 10, 2010 at 11:45:33

'{}, {} {}, {} at {}:{}:{}'.format(weekday,month,day,year,hour,minute,second) Figure 4.5 Mapping of day
and time variables to
placeholders.

www.ebook3000.com

http://www.ebook3000.org

102 Chapter 4 Text Data, Files, and Exceptions

Practice Problem
4.5

Assume variables first, last, street, number, city, state, zipcode have already
been assigned. Write a print statement that creates a mailing label:

John Doe
123 Main Street
AnyCity, AS 09876

assuming that:

>>> first = 'John'
>>> last = 'Doe'
>>> street = 'Main Street'
>>> number = 123
>>> city = 'AnyCity'
>>> state = 'AS'
>>> zipcode = '09876'

Lining Up Data in Columns
We now consider the problem of presenting data “nicely” lined up in columns. To motivate
the problem, just think about how the From, Subject and Date fields in your email client are
organized, or how the train or airline departure and arrival information is shown on screens.
As we start dealing with larger amount of data, we too sometimes will need to present results
in column format.

To illustrate the issues, let’s consider the problem of properly lining up values of func-
tions i2, i3 and 2i for i = 1, 2, 3, . . . Lining up the values properly is useful because it
illustrates the very different growth rates of these functions:

i i**2 i**3 2**i
1 1 1 2
2 4 8 4
3 9 27 8
4 16 64 16
5 25 125 32
6 36 216 64
7 49 343 128
8 64 512 256
9 81 729 512
10 100 1000 1024
11 121 1331 2048
12 144 1728 4096

Now, how can we obtain this output? In our first attempt, we add a sep argument to the
print() function to insert an appropriate number of spaces between the values printed in
each row:

>>> print('i i**2 i**3 2**i')
>>> for i in range(1,13):

print(i, i**2, i**3, 2**i, sep=' ')

Section 4.2 Formatted Output 103

The output we get is:

i i**2 i**3 2**i
1 1 1 2
2 4 8 4
3 9 27 8
4 16 64 16
5 25 125 32
6 36 216 64
7 49 343 128
8 64 512 256
9 81 729 512
10 100 1000 1024
11 121 1331 2048
12 144 1728 4096

While the first few rows look OK, we can see that the entries in the same column are not
properly lined up. The problem is that a fixed-size separator pushes entries farther to the
right as the number of digits in the entry increases. A fixed-size separator is not the right
tool for the job. The proper way to represent a column of numbers is to have all the unit digits
line up. What we need is a way to fix the width of each column of numbers and print the
values right-justified within these fixed-width columns. We can do that with format strings.

Inside the curly braces of a format string, we can specify how the value mapped to
the curly brace placeholder should be presented; we can specify its field width, alignment,
decimal precision, type, and so on.

We can specify the (minimum) field width with a decimal integer defining the number
of character positions reserved for the value. If not specified or if the specified field width
is insufficient, then the field width will be determined by the number of digits/characters in
the displayed value. Here is an example:

>>> '{0:3},{1:5}'.format(12, 354)
' 12, 354'

In this example, we are printing integer values 12 and 354. The format string has a
placeholder for 12 with '0:3' inside the braces. The 0 refers to the first argument of the
format() function (12), as we’ve seen before. Everything after the ':' specifies the for-
matting of the value. In this case, 3 indicates that the width of the placeholder should be 3.
Since 12 is a two-digit number, an extra blank space is added in front. The placeholder for
354 contains '1:5', so an extra two blank spaces are added in front.

When the field width is larger than the number of digits, the default is to right-justify—
that is, push the number value to the right. Strings are left-justified. In the next example, a
field of width 10 characters is reserved for each argument first and last. Note that extra
blanks are added after the string value:

>>> first = 'Bill'
>>> last = 'Gates'
>>> '{:10}{:10}'.format(first, last)
'Bill Gates '

The precision is a decimal number that specifies how many digits should be displayed
before and after the decimal point of a floating-point value. It follows the field width and a
period separates them. In the next example, the field width is 8 but only four digits of the

www.ebook3000.com

http://www.ebook3000.org

104 Chapter 4 Text Data, Files, and Exceptions

Table 4.2 Integer
presentation types. They
allow an integer value to be
output in different formats.

Type Explanation
b Outputs the number in binary
c Outputs the Unicode character corresponding to the integer value
d Outputs the number in decimal notation (default)
o Outputs the number in base 8
x Outputs the number in base 16, using lowercase letters for the

digits above 9
X Outputs the number in base 16, using uppercase letters for the

digits above 9

floating-point value are displayed:

>>> '{:8.4}'.format(1000 / 3)
' 333.3'

Compare this with the unformatted output:

>>> 1000 / 3
333.3333333333333

The type determines how the value should be presented. The available integer presenta-
tion types are listed in Table 4.2. We illustrate the different integer type options on integer
value 10:

>>> n = 10
>>> '{:b}'.format(n)
'1010'
>>> '{:c}'.format(n)
'\n'
>>> '{:d}'.format(n)
'10'
>>> '{:x}'.format(n)
'a'

Two of the presentation-type options for floating-point values are f and e. The type
option f displays the value as a fixed-point number (i.e., with a decimal point and fractional
part).

>>> '{:6.2f}'.format(5 / 3)
' 1.67'

In this example, the format specification ':6.2f' reserves a minimum width of 6 with
exactly two digits past the decimal point for a floating-point value represented as a fixed-
point number. The type option e represents the value in scientific notation in which the
exponent is shown after the character e:

>>> '{:e}'.format(5 / 3)
'1.666667e+00'

This represents 1.666667 · 100.
Now let’s go back to our original problem of presenting the values of functions i2, i3,

and 2i for i = 1, 2, 3, . . . up to at most 12. We specify a minimum width of 3 for the values
i and 6 for the values of i2, i3, and 2i to obtain the output in the desired format.

Section 4.2 Formatted Output 105

Module: ch4.py1 def growthrates(n):
2 'prints values of below 3 functions for i = 1, ..., n'
3 print(' i i**2 i**3 2**i')
4 formatStr = '{0:2d} {1:6d} {2:6d} {3:6d}'
5 for i in range(2, n+1):
6 print(formatStr.format(i, i**2, i**3, 2**i))

Practice Problem
4.6

Implement function roster() that takes a list containing student information and prints
out a roster, as shown below. The student information, consisting of the student’s last name,
first name, class, and average course grade, will be stored in that order in a list. Therefore,
the input list is a list of lists. Make sure the roster printed out has 10 slots for every string
value and 8 for the grade, including 2 slots for the decimal part.

>>> students = []
>>> students.append(['DeMoines', 'Jim', 'Sophomore', 3.45])
>>> students.append(['Pierre', 'Sophie', 'Sophomore', 4.0])
>>> students.append(['Columbus', 'Maria', 'Senior', 2.5])
>>> students.append(['Phoenix', 'River', 'Junior', 2.45])
>>> students.append(['Olympis', 'Edgar', 'Junior', 3.99])
>>> roster(students)
Last First Class Average Grade
DeMoines Jim Sophomore 3.45
Pierre Sophie Sophomore 4.00
Columbus Maria Senior 2.50
Phoenix River Junior 2.45
Olympia Edgar Junior 3.99

Getting and Formatting the Date and Time
Programs often need to interpret or produce strings that contain a date and time. In addition,
they may also need to obtain the current time. The current date and time are obtained by
“asking” the underlying operating system. In Python, the time module provides an API to
the operating system time utilities as well as tools to format date and time values. To see
how to use it, we start by importing the time module:

>>> import time

Several functions in the time module return some version of the current time. The time()
function returns the time in seconds since the epoch:

>>> time.time()
1268762993.335

You can check the epoch for your computer system using another function that returns
the time in a format very different from time():

>>> time.gmtime(0)
time.struct_time(tm_year=1970, tm_mon=1, tm_mday=1, tm_hour=
0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=1, tm_isdst=0)

www.ebook3000.com

http://www.ebook3000.org

106 Chapter 4 Text Data, Files, and Exceptions

DETOUR Epoch, Time, and UTC Time

Computers keep track of time by keeping track of the number of seconds since a
certain point in time, the epoch. On UNIX- and Linux-based computers (including
Mac OS X), the epoch starts at 00:00:00 of January 1, 1970, Greenwich time.

In order to keep track of the correct number of seconds since the epoch, com-
puters need to know how long a second takes. Every computer has in its central
processing unit (CPU) a quartz clock for this purpose (and also to control the length
of the “clock cycle”). The problem with quartz clocks is that they are not “perfect”
and will deviate from “real time” after a while. This is a problem with today’s net-
worked computers because many Internet applications require the computers to
agree on time (at least within a small error).

Today’s networked computers keep synchronizing their quartz clocks with time
servers across the Internet whose job is to serve the “official time” called the Co-
ordinated Universal Time, or UTC time. UTC is the average time of about a dozen
atomic clocks and is supposed to track the mean solar time (based on Earth’s ro-
tation around the sun) at the Royal Observatory in Greenwich, England.

With time servers across the Internet serving this internationally agreed stan-
dard time, computers can agree on what time it is (within a small error).

The type, time.struct_time, of the object returned by function gmtime() is a tuple-
like type. Although the type is unfamiliar to us, it is not difficult to see that the epoch (i.e.,
the time and date 0 seconds since the epoch) is 00:00:00 on January 1, 1970 UTC. It is
UTC time because the function gmtime(), if given integer input s, returns the UTC time
s seconds since the start of the epoch. If no argument is given to the function gmtime(), it
will return the current UTC time. The related function localtime() returns the local time
zone current time instead:

>>> time.localtime()
time.struct_time(tm_year=2010, tm_mon=3, tm_mday=16, tm_hour=
13, tm_min=50, tm_sec=46, tm_wday=1, tm_yday=75, tm_isdst=1)

The output format is not very readable (and is not designed to be). Module time provides
a formatting function strftime() that outputs time in the desired format. This function
takes a format string and the time returned by gmtime() or localtime() and outputs the
time in a format described by the format string. Here is an example, illustrated in Figure 4.6:

>>> time.strftime('%A %b/%d/%y %I:%M %p', time.localtime())
'Tuesday Mar/16/10 02:06 PM'

Figure 4.6 Mapping
directives. The directives
%A, %b, %d, %y, %I, %M, and
%p map to date and time
values in the output string
according to the map
described in Table 4.3.

%A %b / %d / %y %I : %M %p

Tuesday Mar / 16 / 10 02 : 06 PM

Section 4.3 Files 107

In this example, strftime() prints the time returned by time.localtime() in the for-
mat specified by the format string '%A %b/%d/%y %I:%M %p'. The format string includes
directives %A, %b, %d, %y, %I, %M, and %p that specify what date and time values to output at
the directive’s location, using the mapping shown in Table 4.3. All the other characters (/,
:, and the blank spaces) of the format string are copied to the output as is.

Directive Output
%a Abbreviated weekday name
%A Full weekday name
%b Abbreviated month name
%B Full month name
%d The day of the month as a decimal number between 01 and 31
%H The hours as a number between 00 and 23
%I The hours as a number between 01 and 12
%M The minutes as a number between 00 and 59
%p AM or PM
%S Seconds as a number between 00 and 61
%y Year without century as a number between 00 and 99
%Y Year as a decimal number
%Z Time zone name

Table 4.3 Time format
string directives. Only
some of the commonly used
directives for formatting date
and time values are shown.

Practice Problem
4.7

Start by setting t to be the local time 1, 500, 000, 000 seconds from the start of January 1,
1970 UTC:

>>> import time
>>> t = time.localtime(1500000000)

Construct the next strings by using the string time format function strftime():
(a) 'Thursday, July 13 2017'
(b) '09:40 PM Central Daylight Time on 07/13/2017'
(c) 'I will meet you on Thu July 13 at 09:40 PM.'

4.3 Files
A file is a sequence of bytes stored on a secondary memory device, such as a disk drive.
A file could be a text document or spreadsheet, an HTML file, or a Python module. Such
files are referred to as text files. Text files contain a sequence of characters that are encoded
using some encoding (ASCII, utf-8, etc.). A file also can be an executable application (like
python.exe), an image, or an audio file. These files are referred to as binary files because
they are just a sequence of bytes and there is no encoding.

All files are managed by the file system, which we introduce next.

File System
The file system is the component of a computer system that organizes files and provides
ways to create, access, and modify files. While files may be physically stored on various

www.ebook3000.com

http://www.ebook3000.org

108 Chapter 4 Text Data, Files, and Exceptions

Figure 4.7 Mac OS X file
system organization. The
file system consists of text
files (e.g., example.txt and
chin.txt) and binary files
(e.g., date) and folders (the
blue rectangles) organized
into a tree hierarchy; the
root of tree is a folder
named /. The figure shows
only a fragment of a file
system that usually consists
of thousands of folders and
many more files.

/

Applications

Firefox.app Python 3.1

bin

date

Users

Shared lperkovic

example.txt chin.txt

var

secondary (hardware) memory devices, the file system provides a uniform view of the files
that hides the differences between how files are stored on the different hardware devices.
The effect is that reading or writing files is the same, whether the file is on a hard drive,
flash memory stick, or DVD-RW.

Files are grouped together into directories or folders. A folder may contain other folders
in addition to (regular) files. The file system organizes files and folders into a tree structure.
The MAC OS X file system organization is illustrated in Figure 4.7. It is a convention in
computer science to draw hierarchical tree structures upside down with the root of the tree
on top.

The folder on top of the hierarchy is called the root directory. In UNIX, Mac OS X,
and Linux file systems, the root folder is named /; in the MS Windows OS, every hardware
device will have its own root directory (e.g., C:\). Every folder and file in a file system
has a name. However, a name is not sufficient to locate a file efficiently. Every file can be
specified using a pathname that is useful for locating the file efficiently. The file pathname
can be specified in two ways.

The absolute pathname of a file consists of the sequence of folders, starting from the
root directory, that must be traversed to get to the file. The absolute pathname is represented
as a string in which the sequence of folders is separated by forward (/) or backward (\)
slashes, depending on the operating system.

For example, the absolute pathname of folder Python 3.1 is

/Applications/Python 3.1

while the absolute pathname of file example.txt is

/Users/lperkovic/example.txt

This is the case on UNIX, Mac OS X, and Linux boxes. On aWindows machine, the slashes
are backward and the “first slash,” the name of the root folder, is instead C:\.

Every command or program executed by the computer system has associated with it a
current working directory. When using the command shell, the current working directory
is typically listed at the shell prompt. When executing a Python module, the current work-
ing directory is typically the folder containing the module. After running a Python module
from within the interactive shell (e.g., by pressing F5 in the IDLE interactive shell), the
folder containing the module becomes the current working directory for the interactive shell
commands that follow.

The relative pathname of a file is the sequence of directories that must be traversed,
starting from the current working directory, to get to the file. If the current working directory
is Users, the relative pathname of file example.txt in Figure 4.7 is

Section 4.3 Files 109

lperkovic/example.txt

If the current working directory is lperkovic, the relative pathname of executable file date
is

../../bin/date

The double-period notation (..) is used to refer to the parent folder, which is the folder
containing the current working directory.

Opening and Closing a File
Processing a file consists of these three steps:

1. Opening a file for reading or writing
2. Reading from the file and/or writing to the file
3. Closing the file
The built-in function open() is used to open a file, whether the file is a text file or a

binary file. In order to read file example.txt, we must first open it:

infile = open('example.txt', 'r')

The function open() takes three string arguments: a file name and, optionally, a mode and
an encoding; we will not discuss the encoding argument until Chapter 6. The file name is
really the pathname (absolute or relative) of the file to be opened. In the last example, the
file relative pathname is example.txt. Python will look for a file named example.txt in
the current working directory (recall that this will be the folder containing the module that
was last imported); if no such file exists, an exception occurs. For example:

>>> infile = open('sample.txt')
Traceback (most recent call last):
File "<pyshell#339>", line 1, in <module>
infile = open('sample.txt')

IOError: [Errno 2] No such file or directory: 'sample.txt'

The file name could also be the absolute path of the file such as, for example

/Users/lperkovic/example.txt

on a UNIX box or

C:/Users/lperkovic/example.txt

on a Windows machine.

!
CAUTION

Backslashes or Forward Slashes in File System Paths?

In UNIX, Linux, and Mac OS X systems, the forward slash / is used as the delimiter
in a path. In Microsoft Window systems, the backslash \ is used:

C:\Users\lperkovic\example.txt

That said, Python will accept the forward slash / in paths on a Windows system.
This is a nice feature because the backslash \ inside a string is interpreted as the
start of an escape sequence.

www.ebook3000.com

http://www.ebook3000.org

110 Chapter 4 Text Data, Files, and Exceptions

The mode is a string that specifies how we will interact with the opened file. In function
call open('example.txt', 'r'), the mode 'r' indicates that the opened file will be
read from; it also specifies that the file will be read from as a text file.

In general, the mode string may contain one of r, w, a, or r+ to indicate whether the
file should be opened for reading, writing, appending, or reading and writing, respectively.
If missing, the default is r. In addition, t or b could also appear in the mode string: t
indicates that the file is a text file, while b indicates it is a binary file. If neither is present,
the file will be opened as a text file. So open('example.txt', 'r') is equivalent to
open('example.txt', 'rt'), which is equivalent to open('example.txt'). This is
all summarized in Table 4.4.

Table 4.4 File mode. The
file mode is a string that
describes how the file will
be used: read from, written
to, or both, byte by byte or
using a text encoding.

Mode Description
r Reading mode (default)
w Writing mode; if the file already exists, its content is wiped out
a Append mode; writes are appended to the end of the file
r+ Reading and writing mode (beyond the scope of this book)
t Text mode (default)
b Binary mode

The difference between opening a file as a text or binary file is that binary files are treated
as a sequence of bytes and are not decoded when read or encoded when written to. Text files,
however, are treated as encoded files using some encoding.

The open() function returns an object of an Input or Output Stream type that supports
methods to read and/or write characters. We refer to this object as a file object. Different
modes will give us file objects of different file types. Depending on the mode, the file type
will support all or some of the methods described in Table 4.5.

The separate read methods are used to read the content of the file in different ways. We
show the difference between the three on file example.txt whose content is:

File: example.txt 1 The 3 lines in this file end with the new line character.
2

3 There is a blank line above this line.

We start by opening the file for reading as a text input stream:

>>> infile = open('example.txt')

Table 4.5 File methods.
File objects such as those
returned by the open()
function support these
methods.

Method Usage Explanation
infile.read(n) Read n characters from the file infile or until the end of

the file is reached, and return characters read as a string
infile.read() Read characters from file infile until the end of the file

and return characters read as a string
infile.readline() Read file infile until (and including) the new line

character or until end of file, whichever is first, and return
characters read as a string

infile.readlines() Read file infile until the end of the file and return the
characters read as a list lines

outfile.write(s) Write string s to file outfile
file.close() Close the file

Section 4.3 Files 111

With every opened file, the file system will associate a cursor that points to a character
in the file. When the file is first opened, the cursor typically points to the beginning of the
file (i.e., the first character of the file), as shown in Figure 4.8. When reading the file, the
characters that are read are the characters that start at the cursor; if we are writing to the file,
then anything we write will be written starting at the cursor position.

We now use the read() function to read just one character. The read() function will
return the first character in the file as a (one-character) string.

>>> infile.read(1)
'T'

After the character 'T' is read, the cursor will move and point to the next character, which
is 'h' (i.e., the first unread character); see Figure 4.8. Let’s use the read() function again,
but now to read five characters at a time. What is returned is a string of the five characters
following the character 'T' we initially read:

>>> infile.read(5)
'he 3 '

The function readline() will read characters from the file up to the end of the line (i.e.,
the new line character \n) or until the end of the file, whichever happens first. Note that in
our case the last character of the string returned by readline() is the new line character:

>>> infile.readline()
'lines in this file end with the new line character.\n'

The cursor now points to the beginning of the second line, as shown in Figure 4.8. Finally,
we use the read() function without arguments to read the remainder of the file:

>>> infile.read()
'\nThere is a blank line above this line.\n'

The cursor now points at the “End-Of-File” (EOF) character, which indicates the end of the
file.

Initially:
The 3 lines in this file end with the new line character.

There is a blank line above this line.
^

After read(1):
The 3 lines in this file end with the new line character.

There is a blank line above this line.
^

After read(5):
The 3 lines in this file end with the new line character.

There is a blank line above this line.
^

After readline():
The 3 lines in this file end with the new line character.

There is a blank line above this line.^

After read():
The 3 lines in this file end with the new line character.

There is a blank line above this line.

^

Figure 4.8 Reading file
example.txt. When a file
is read, the cursor will move
as the characters are read
and always point to the first
unread character. After
read(1), the character 'T'
is read and the cursor will
move to point at 'h'. After
read(5), the string 'he 3
' is read and the cursor will
move to point at 'l'. After
readline(), the rest of the
first line is read and the
cursor moves to point at the
beginning of the second line
which happens to be empty
(except for the new line
character.)

www.ebook3000.com

http://www.ebook3000.org

112 Chapter 4 Text Data, Files, and Exceptions

To close the opened file that infile refers to, you just do:

infile.close()

Closing a file releases the file system resources that keep track of information about the
opened file (i.e., the cursor position information).

!
CAUTION

Line Endings

If a file is read from or written to as a binary file, the file is just a sequence of
bytes and there are no lines. An encoding must exist to have a code for a new
line (i.e., a new line character). In Python, the new line character is represented by
the escape sequence \n. However text file formats are platform dependent, and
different operating systems use a different byte sequence to encode a new line:

• MS Windows uses the \r\n 2-character sequence.
• Linux/UNIX and Mac OS X use the \n character.
• Mac OS up to version 9 uses the \r character.

Python translates platform-dependent line-ends into \n when reading and trans-
lates \n back to platform-dependent line-ends when writing. By doing this, Python
becomes platform independent.

Patterns for Reading a Text File
Depending on what you need to do with a file, there are several ways to access the file
content and prepare it for processing. We describe several patterns to open a file for reading
and read the content of the file. We will use the file example.txt again to illustrate the
patterns:

1 The 3 lines in this file end with the new line character.
2

3 There is a blank line above this line.

One way to access the text file content is to read the content of the file into a string
object. This pattern is useful when the file is not too large and string operations will be used
to process the file content. For example, this pattern can be used to search the file content
or to replace every occurrence of a substring with another.

We illustrate this pattern by implementing function numChars(), which takes the name
of a file as input and returns the number of characters in the file.We use the read() function
to read the file content into a string:

Module: ch4.py
1 def numChars(filename):
2 'returns the number of characters in file filename'
3 infile = open(filename, 'r')
4 content = infile.read()
5 infile.close()
6

7 return len(content)

Section 4.3 Files 113

When we run this function on our example file, we obtain:

>>> numChars('example.txt')
98

Practice Problem
4.8

Write function stringCount() that takes two string inputs—afile name and a target string—
and returns the number of occurrences of the target string in the file.

>>> stringCount('example.txt', 'line')
4

The file reading pattern we discuss next is useful when we need to process the words
of a file. To access the words of a file, we can read the file content into a string and use the
string split() function, in its default form, to split the content into a list of words. (So, our
definition of a word in this example is just a contiguous sequence of nonblank characters.)
We illustrate this pattern on the next function, which returns the number of words in a file.
It also prints the list of words, so we can see the list of words.

Module: ch4.py
1 def numWords(filename):
2 'returns the number of words in file filename'
3 infile = open(filename, 'r')
4 content = infile.read() # read the file into a string
5 infile.close()
6

7 wordList = content.split() # split file into list of words
8 print(wordList) # print list of words too
9 return len(wordList)

Shown is the output when the function is run on our example file:

>>> numWords('example.txt')
['The', '3', 'lines', 'in', 'this', 'file', 'end', 'with',
'the', 'new', 'line', 'character.', 'There', 'is', 'a',
'blank', 'line', 'above', 'this', 'line.']

20

In function numWords(), the words in the list may include punctuation symbols, such as
the period in 'line.'. It would be nice if we removed punctuation symbols before splitting
the content into words. Doing so is the aim of the next problem.

Practice Problem
4.9

Write function words() that takes one input argument—a file name—and returns the list
of actual words (without punctuation symbols !,.:;?) in the file.

>>> words('example.txt')
['The', '3', 'lines', 'in', 'this', 'file', 'end', 'with',
'the', 'new', 'line', 'character', 'There', 'is', 'a',
'blank', 'line', 'above', 'this', 'line']

www.ebook3000.com

http://www.ebook3000.org

114 Chapter 4 Text Data, Files, and Exceptions

Sometimes a text file needs to be processed line by line. This is done, for example, when
searching a web server log file for records containing a suspicious IP address. A log file is
a file in which every line is a record of some transaction (e.g., the processing of a web page
request by a web server). In this third pattern, the readlines() function is used to obtain
the content of the file as a list of lines. We illustrate the pattern on a simple function that
counts the number of lines in a file by returning the length of this list. It also will print the
list of lines so we can see what the list looks like.

Module: ch4.py
1 def numLines(filename):
2 'returns the number of lines in file filename'
3 infile = open(filename, 'r') # open the file and read it
4 lineList = infile.readlines() # into a list of lines
5 infile.close()
6

7 print(lineList) # print list of lines
8 return len(lineList)

Let’s test the function on our example file. Note that the new line character \n is included
in each line:

>>> numLines('example.txt')
['The 3 lines in this file end with the new line character.\n',
'\n', 'There is a blank line above this line.\n']

3

All file processing patterns we have seen so far read the whole file content into a string
or a list of strings (lines). This approach is OK if the file is not too large. If the file is large,
a better approach would be to process the file line by line; that way we avoid having the
whole file in main memory. Python supports iteration over lines of a file object. We use this
approach to print each line of the example file:

>>> infile = open('example.txt')
>>> for line in infile:

print(line,end='')

The 3 lines in this file end with the new line character.

There is a blank line above this line.

In every iteration of the for loop, the variable line will refer to the next line of the file.
In the first iteration, variable line refers to the line 'The three lines in ...'; in the
second, it refers to '\n'; and in the final iteration, it refers to 'There is a blank ...'.
Thus, at any point in time, only one line of the file needs to be kept in memory.

Practice Problem
4.10

Implement function myGrep() that takes as input two strings, a file name and a target string,
and prints every line of the file that contains the target string as a substring.

>>> myGrep('example.txt', 'line')
The 3 lines in this file end with the new line character.
There is a blank line above this line.

Section 4.3 Files 115

Writing to a Text File
In order to write to a text file, the file must be opened for writing:

>>> outfile = open('test.txt', 'w')

If there is no file test.txt in the current working directory, the open() function will create
it. If a file text.txt exists, its content will be erased. In both cases, the cursor will point
to the beginning of the (empty) file. (If we wanted to add more content to the (existing) file,
we would use the mode 'a' instead of 'w'.)

Once a file is opened for writing, function write() is used to write strings to it. It will
write the string starting at the cursor position. Let’s start with a one-character string:

>>> outfile.write('T')
1

The value returned is the number of characters written to the file. The cursor now points to
the position after T, and the next write will be done starting at that point.

>>> outfile.write('his is the first line.')
22

In this write, 22 characters are written to the first line of the file, right after T. The cursor
will now point to the position after the period.

>>> outfile.write(' Still the first line...\n')
25

Everything written up until the new line character is written in the same line. With the '\n'
character written, what follows will go into the second line:

>>> outfile.write('Now we are in the second line.\n')
31

The \n escape sequence indicates that we are done with the second line and will write the
third line next. To write something other than a string, it needs to be converted to a string
first:

>>> outfile.write('Non string value like '+str(5)+' must be
converted first.\n')

49

Here is where the string format() function is helpful. To illustrate the benefit of using
string formatting, we print an exact copy of the previous line using string formatting:

>>> outfile.write('Non string value like {} must be converted
first.\n'.format(5))

49

Just as for reading, we must close the file after we are done writing:

>>> outfile.close()

The file test.txtwill be saved in the current working directory and will have this content:

1 This is the first line. Still the first line...
2 Now we are in the second line.
3 Non string value like 5 must be converted first.
4 Non string value like 5 must be converted first.

www.ebook3000.com

http://www.ebook3000.org

116 Chapter 4 Text Data, Files, and Exceptions

!
CAUTION

Flushing the Output

When a file is opened for writing, a buffer is created in memory. All writes to the file
are really writes to this buffer; nothing is written onto the disk, at least not just yet.

The reason for not writing to disk is that writing to secondary memory such as
a disk takes a long time, and a program making many writes would be very slow if
each write had to be done onto the secondary memory. What this means though is
that no file is created in the file system until the file and the writes are flushed. The
close() function will flush writes from the buffer to the file on disk before closing,
so it is critical not to forget to close the file. You can also flush the writes without
closing the file using the flush() function:

>>> outfile.flush()

4.4 Errors and Exceptions
We usually try to write programs that do not produce errors, but the unfortunate truth is that
even programs written by the most experienced developers sometimes crash. And even if a
program is perfect, it could still produce errors because the data coming from outside the
program (interactively from the user or from a file) is malformed and causes errors in the
program. This is a big problemwith server programs, such as web, mail, and gaming servers:
We definitely do not want an error caused by a bad user request to crash the server. Next we
study some of the types of errors that can occur before and during program execution.

Syntax Errors
Two basic types of errors can occur when running a Python program. Syntax errors are
errors that are due to the incorrect format of a Python statement. These errors occur while
the statement or program is being translated to machine language and before it is being
executed. A component of Python’s interpreter called a parser discovers these errors. For
example, expression:

>>> (3+4]
SyntaxError: invalid syntax

is an invalid expression that the parser cannot process. Here are some more examples:

>>> if x == 5
SyntaxError: invalid syntax
>>> print 'hello'
SyntaxError: invalid syntax
>>> lst = [4;5;6]
SyntaxError: invalid syntax
>>> for i in range(10):
print(i)
SyntaxError: expected an indented block

Section 4.4 Errors and Exceptions 117

In each of these statements, the error is due to an incorrect syntax (format) of a Python
statement. So these errors occur before Python has even a chance of executing the statement
on the given arguments, if any.

Practice Problem
4.11

Explain what causes the syntax error in each statement just listed. Then write a correct
version of each Python statement.

Built-In Exceptions
We now focus on errors that occur during the execution of the statement or program. They
do not occur because of a malformed Python statement or program but rather because the
program execution gets into an erroneous state. Here are some examples. Note that in each
case, the syntax (i.e., the format of the Python statement) is correct.

An error caused by a division by 0:

>>> 4 / 0
Traceback (most recent call last):
File "<pyshell#52>", line 1, in <module>
4 / 0

ZeroDivisionError: division by zero

An error caused by an invalid list index:

>>> lst = [14, 15, 16]
>>> lst[3]
Traceback (most recent call last):
File "<pyshell#84>", line 1, in <module>
lst[3]

IndexError: list index out of range

An error caused by an unassigned variable name:

>>> x + 5
Traceback (most recent call last):
File "<pyshell#53>", line 1, in <module>
x + 5

NameError: name 'x' is not defined

An error caused by incorrect operand types:

>>> '2' * '3'
Traceback (most recent call last):
File "<pyshell#54>", line 1, in <module>

'2' * '3'
TypeError: cant multiply sequence by non-int of type 'str'

An error caused by an illegal value:

>>> int('4.5')
Traceback (most recent call last):
File "<pyshell#80>", line 1, in <module>
int('4.5')

ValueError: invalid literal for int() with base 10: '4.5'

www.ebook3000.com

http://www.ebook3000.org

118 Chapter 4 Text Data, Files, and Exceptions

In each case, an error occurs because the statement execution got into an invalid state.
Dividing by 0 is invalid and so is using a list index that is outside of the range of valid
indexes for the given list. When this happens, we say that the Python interpreter raises an
exception. What this means is that an object gets created, and this object contains all the
information relevant to the error. For example, it will contain the error message that indicates
what happened and the program (module) line number at which the error occurred. (In the
preceding examples, the line number is always 1 because there is only one statement in an
interactive shell statement “program.”)When an error occurs, the default is for the statement
or program to crash and for error information to be printed.

The object created when an error occurs is called an exception. Every exception has a
type (a type as in int or list) that is related to the type of error. In the last examples, we
saw these exception types: ZeroDivisionError, IndexError, NameError, TypeError,
and ValueError. Table 4.6 describes these and a few other common errors.

Let’s see a few more examples of exceptions. An OverflowError object is raised when
a floating-point expression evaluates to a floating-point value outside the range of values
representable using the floating-point type. In Chapter 3, we saw this example:

>>> 2.0**10000
Traceback (most recent call last):
File "<pyshell#92>", line 1, in <module>
2.0**10000

OverflowError: (34, 'Result too large')

Interestingly, overflow exceptions are not raised when evaluating integer expressions:

>>> 2**10000
199506311688075838488374216268358508382349683188619245485200894985
... # many more lines of numbers
0455803416826949787141316063210686391511681774304792596709376

(You may recall that values of type int are, essentially, unbounded.)
The KeyboardInterrupt exception is somewhat different from other exceptions be-

cause it is interactively and explicitly raised by the program user. By hitting Ctrl - C during
the execution of a program, the user can interrupt a running program. This will cause the

Table 4.6 Common
exception types. When an
error occurs during program
execution, an exception
object is created. The type
of this object depends
on the type of error that
occured. Only a few of the
built-in exception types are
listed.

Exception Explanation
KeyboardInterrupt Raised when user hits Ctrl-C, the interrupt key
OverflowError Raised when a floating-point expression evaluates

to a value that is too large
ZeroDivisionError Raised when attempting to divide by 0
IOError Raised when an I/O operation fails for an

I/O-related reason
IndexError Raised when a sequence index is outside the range

of valid indexes
NameError Raised when attempting to evaluate an unassigned

identifier (name)
TypeError Raised when an operation or function is applied to

an object of the wrong type
ValueError Raised when an operation or function has an

argument of the right type but incorrect value

Chapter 4 Case Study: Image Files 119

program to get into an erroneous, interrupted, state. The exception raised by the Python inter-
preter is of type KeyboardInterrupt. Users typically hit Ctrl - C to interrupt a program
(when, for example, it runs too long):

>>> for i in range(2**100):
pass

The Python statement pass does nothing (for real)! It is used wherever code is required to
appear (as in the body of a for loop) but no action is to be done. By hitting Ctrl - C , we
stop the program and get a KeyboardInterrupt error message:

>>> for i in range(2**100):
pass

KeyboardInterrupt

An IOError exception is raised when an input/output operation fails. For example, we
could be trying to open a file for reading but a file with the given name does not exist:

>>> infile = open('exaple.txt')
Traceback (most recent call last):
File "<pyshell#55>", line 1, in <module>
infile = open('exaple.txt')

IOError: [Errno 2] No such file or directory: 'exaple.txt'

An IOError exception is also raised when a user attempts to open a file she is not permitted
to access.

Case Study: Image Files
Our focus in this chapter has been on text processing and on reading and writing text files
using Python. In Case Study CS.4, we see how image files (typically stored as binary files
rather than text files) are read and written and how images can be processed using Python.
We also take this opportunity to show how one installs Python modules that are not in the
Python Standard Library but are listed in the Python Package Index (PyPi), the official third-
party software repository for Python.

Chapter Summary
In this chapter we introduce Python text-processing and file-processing tools.

We revisit the string str class that was introduced in Chapter 2 and describe the different
ways string values can be defined, using single, double, or triple quotes. We describe how
to use escape sequences to define special characters in strings. Finally, we introduce the
methods supported by the class str, as only string operators were covered in Chapter 2.

A string method we focus on is method format(), which is used to control the format
of the string when printed using the print() function. We explain the syntax of format
strings that describe the output format. After having mastered string output formatting, you
will be able to focus on more complex aspects of your programs rather than on achieving
the desired output format. We also introduce the valuable Standard Library module time
that provides functions to obtain the time and also formatting functions that output time in

www.ebook3000.com

http://www.ebook3000.org

120 Chapter 4 Text Data, Files, and Exceptions

a desired format.
This chapter also introduces file-processing tools. We first explain the concepts of a file

and of a file system. We introduce methods to open and close a file and methods read(),
to read a file, and write(), to write a string to a file. Depending on how a file will be
processed, there are different patterns for reading a file, and we describe them.

Programming errors were discussed informally in previous chapters. Because of the
higher likelihood of errors when working with files, we formally discuss what errors are and
define exceptions. We list the different types of exceptions students are likely to encounter.

Solutions to Practice Problems
4.1 The expressions are:
(a) s[2:5], (b) s[7:9], (c) s[1:8], (d) s[:4], and (e) s[7:] (or s[-3:]).

4.2 The method calls are:
(a) count = forecast.count('day')
(b) weather = forecast.find('sunny')
(c) change = forecast.replace('sunny', 'cloudy')

4.3 The tab character is used as the separator.

>>> print(last, first, middle, sep='\t')

4.4 The function range() is used to iterate over integers from 2 to n; each such integer is
tested and, if divisible by 2 or 3, printed with a end = ', ' argument.

def even(n)
for i in range(2, n+1):

if i%2 == 0 or i%3 == 0:
print(i, end=', ')

4.5 We only need to place a comma and two new line characters appropriately:

>>> fstring = '{} {}\n{} {}\n{}, {} {}'
>>> print(fstring.format(first,last,number,street,city,state,zipcode))

4.6 The solution uses the floating-point presentation type f:

def roster(students):
'prints average grade for a roster of students'
print('Last First Class Average Grade')
for student in students:

print('{:10}{:10}{:10}{:8.2f}'.format(student[0],
student[1], student[2], student[3]))

4.7 The format strings are obtained as shown:
(a) time.strftime('%A, %B %d %Y', t)
(b) time.strftime('%I:%M %p %Z Central Daylight Time on %m/%d/%Y',t)
(c) time.strftime('I will meet you on %a %B %d at %I:%M %p.', t)

4.8 Making the file content into a string allows the use of string functions to count the

Chapter 4 Exercises 121

number of occurrences of substring target.

def stringCount(filename, target):
'returns the number of occurrences of target in file filename'
infile = open(filename)
content = infile.read()
infile.close()
return content.count(target)

4.9 To remove punctuation from a text, one can use the string translate() method to
replace every punctuation character with the empty string '':

def words(filename):
'returns the list of words in file filename'
infile = open(filename, 'r')
content = infile.read()
infile.close()
table = str.maketrans('!,.:;?', 6*' ')
content=content.translate(table)
content=content.lower()
return content.split()

4.10 Iterating over the lines of the file does the job:

def myGrep(filename, target):
'prints every line of file filename containing string target'
infile = open(filename)
for line in infile:

if target in line:
print(line, end='')

4.11 The causes of the syntax errors and the correct versions are as follows:
(a) The left parenthesis and the right bracket do not match. The intended expression is

probably either (3+4) (evaluating to integer 7) or [3+4] (evaluating to a list contain-
ing integer 7).

(b) The column is missing; the correct expression is if x == 5:.
(c) print() is a function and thus must be called with parentheses and with arguments,

if any, inside them; the correct expression is print('hello').
(d) The objects in a list are separated by commas: lst=[4,5,6] is correct.
(e) The statement(s) in the body of a for loop must be indented.

>>> for i in range(3):
print(i)

Exercises
4.12 Start by running, in the interactive shell, this assignment statement:

>>> s = 'abcdefghijklmnopqrstuvwxyz'

www.ebook3000.com

http://www.ebook3000.org

122 Chapter 4 Text Data, Files, and Exceptions

Now write expressions using string s and the indexing operator that evaluate to 'bcd',
'abc', 'defghijklmnopqrstuvwx', 'wxy', and 'wxyz'.

4.13 Let string s be defined as:

s = 'abcdefghijklmnopqrstuvwxyz'

Write Python Boolean expressions that correspond to these propositions:
(a) The slice consisting of the second and third character of s is 'bc'.
(b) The slice consisting of the first 14 characters of s is 'abcdefghijklmn'.
(c) The slice of s excluding the first 14 characters is 'opqrstuvwxyz'.
(d) The slice of s excluding the first and last characters is 'bcdefghijklmnopqrstuvw'.

4.14 Translate each part into a Python statement:
(a) Assign to variable log the next string, which happens to be a fragment of a log of a

request for a text file from a web server:
128.0.0.1 - - [12/Feb/2011:10:31:08 -0600] "GET /docs/test.txt HTTP/1.0"

(b) Assign to variable address the substring of log that ends before the first blank space
in log, using the string method split() and the indexing operator.

(c) Assign to variable date the splice of string log containing the date (12/Feb ...
-6000), using the indexing operator on string log.

4.15 For each of the below string values of s, write the expression involving s and the string
methods split() that evaluates to list:

['10', '20', '30', '40', '50', '60']

(a) s = '10 20 30 40 50 60'
(b) s = '10,20,30,40,50,60'
(c) s = '10&20&30&40&50&60'
(d) s = '10 - 20 - 30 - 40 - 50 - 60'

4.16 Implement a program that requests three words (strings) from the user. Your program
should print Boolean value True if the words were entered in dictionary order; otherwise
nothing is printed.

>>>
Enter first word: bass
Enter second word: salmon
Enter third word: whitefish
True

4.17 Translate each part into a Python statement using appropriate string methods:
(a) Assign to variable message the string 'The secret of this message is that

it is secret.'
(b) Assign to variable length the length of string message, using operator len().
(c) Assign to variable count the number of times the substring 'secret' appears in

string message, using string method count().
(d) Assign to variable censored a copy of string message with every occurrence of

substring 'secret' replaced by 'xxxxxx', using string method replace().

Chapter 4 Exercises 123

4.18 Suppose variable s has been assigned in this way:

s = '''It was the best of times, it was the worst of times; it
was the age of wisdom, it was the age of foolishness; it was the
epoch of belief, it was the epoch of incredulity; it was ...'''

(The beginning of A Tale of Two Cities by Charles Dickens.) Then do the following, in order:

(a) Write a sequence of statements that produce a copy of s, named newS, in which char-
acters ., ,, ;, and \n have been replaced by blank spaces.

(b) Remove leading and trailing blank spaces in newS (and name the new string newS).
(c) Make all the characters in newS lowercase (and name the new string newS).
(d) Compute the number of occurrences in newS of string 'it was'.
(e) Change every occurrence of was to is (and name the new string newS).
(f) Split newS into a list of words and name the list listS.

4.19 Write Python statements that print the next formatted outputs using the already as-
signed variables first, middle, and last:

>>> first = 'Marlena'
>>> last = 'Sigel'
>>> middle = 'Mae'

(a) Sigel, Marlena Mae
(b) Sigel, Marlena M.
(c) Marlena M. Sigel
(d) M. M. Sigel
(e) Sigel, M.

4.20 Given string values for the sender, recipient, and subject of an email, write a string
format expression that uses variables sender, recipient, and subject and that prints as
shown here:

>>> sender = 'tim@abc.com'
>>> recipient = 'tom@xyz.org'
>>> subject = 'Hello!'
>>> print(???) # fill in
From: tim@abc.com
To: tom@xyz.org
Subject: Hello!

4.21 Write Python statements that print the values of π and the Euler constant e in the
shown formats:

(a) pi = 3.1, e = 2.7
(b) pi = 3.14, e = 2.72
(c) pi = 3.141593e+00, e = 2.718282e+00
(d) pi = 3.14159, e = 2.71828

www.ebook3000.com

mailto:tim@abc.com
mailto:tom@xyz.org
mailto:tim@abc.com
mailto:tom@xyz.org
http://www.ebook3000.org

124 Chapter 4 Text Data, Files, and Exceptions

Problems

4.22 Write a function month() that takes a number between 1 and 12 as input and returns
the three-character abbreviation of the corresponding month. Do this without using an if
statement, just string operations. Hint: Use a string to store the abbreviations in order.

>>> month(1)
'Jan'
>>> month(11)
'Nov'

4.23 Write a function average() that takes no input but requests that the user enter a
sentence. Your function should return the average length of a word in the sentence.

>>> average()
Enter a sentence: A sample sentence
5.0

4.24 Implement function cheer() that takes as input a team name (as a string) and prints
a cheer as shown:

>>> cheer('Huskies')
How do you spell winner?
I know, I know!
H U S K I E S !
And that's how you spell winner!
Go Huskies!

4.25 Write function vowelCount() that takes a string as input and counts and prints the
number of occurrences of vowels in the string.

>>> vowelCount('Le Tour de France')
a, e, i, o, and u appear, respectively, 1, 3, 0, 1, 1 times.

4.26 The cryptography function crypto() takes as input a string (i.e., the name of a file in
the current directory). The function should print the file on the screen with this modification:
Every occurrence of string 'secret' in the file should be replaced with string 'xxxxxx'.

File: crypto.txt >>> crypto('crypto.txt')
I will tell you my xxxxxx. But first, I have to explain
why it is a xxxxxx.

And that is all I will tell you about my xxxxxx.

4.27 Write a function fcopy() that takes as input two file names (as strings) and copies
the content of the first file into the second.

File: example.txt >>> fcopy('example.txt','output.txt')
>>> open('output.txt').read()
'The 3 lines in this file end with the new line character.\n\n
There is a blank line above this line.\n'

Chapter 4 Problems 125

4.28 Implement function links() that takes as input the name of an HTML file (as a
string) and returns the number of hyperlinks in that file. To do this you will assume that
each hyperlink appears in an anchor tag. You also need to know that every anchor tag ends
with the substring .

Test your code on HTML file twolinks.html or any HTML file downloaded from the
web into the folder where your program is.

File: twolinks.html>>> links('twolinks.html')
2

4.29 Write a function stats() that takes one input argument: the name of a text file. The
function should print, on the screen, the number of lines, words, and characters in the file;
your function should open the file only once.

File: example.txt>>> stats('example.txt')
line count: 3
word count: 20
character count: 98

4.30 Implement function distribution() that takes as input the name of a file (as a
string). This one-line filewill contain letter grades separated by blanks. Your function should
print the distribution of grades, as shown.

File: grades.txt>>> distribution('grades.txt')
6 students got A
2 students got A-
3 students got B+
2 students got B
2 students got B-
4 students got C
1 student got C-
2 students got F

4.31 Implement function duplicate() that takes as input the name (a string) of a file in the
current directory and returns True if the file contains duplicate words and False otherwise.

File: Duplicates.txt

File: noDuplicates.txt

>>> duplicate('Duplicates.txt')
True
>>> duplicate('noDuplicates.txt')
False

4.32 The function censor() takes the name of a file (a string) as input. The function should
open the file, read it, and then write it into file censored.txtwith this modification: Every
occurrence of a four-letter word in the file should be replaced with string 'xxxx'.

File: example.txt>>> censor('example.txt')

Note that this function produces no output, but it does create file censored.txt in the
current folder.

www.ebook3000.com

http://www.ebook3000.org

CHAPTER

5Execution Control
Structures
5.1 Decision Control and the if Statement 128

5.2 for Loop and Iteration Patterns 131

5.3 More on Lists: Two-Dimensional Lists 139

5.4 while Loop 143

5.5 More Loop Patterns 145

5.6 Additional Iteration Control Statements 149

Case Study: Image Processing 151

Chapter Summary 151

Solutions to Practice Problems 152

Exercises 155

Problems 157

THIS CHAPTER COVERS, in more depth, the Python statements and
techniques that provide control over what code blocks will be executed
when and how often.

We start the discussion with the Python decision control structure, the
if statement. The if statement was introduced in Chapter 3 in its
one-way and two-way formats. We introduce here the general format: a
multiway decision control structure that allows an arbitrary number of
conditions and associated alternative code blocks to be defined.

We provide next an in-depth coverage of the Python iteration control
structures and techniques. Two Python statements provide the ability to
execute a block of code repeatedly: the for loop and the while loop. Both
are used in many different ways. The bulk of this chapter is spent on the
different iteration patterns, and when and how to use them.

Understanding different iteration patterns is really about
understanding different approaches to breaking up problems and solving
them iteratively. This chapter is thus fundamentally about problem solving.

127

www.ebook3000.com

http://www.ebook3000.org

128 Chapter 5 Execution Control Structures

5.1 Decision Control and the if Statement
The if statement is the fundamental decision control structure that enables alternative code
blocks to be executed based on some conditions. In Chapter 3 we introduced the Python if
statement. We first saw it in its simplest form, the one-way decision format:

if <condition>:
<indented code block>

<non-indented statement>

The statements in <indented code block> are executed only if <condition> is True;
if <condition> is False, no alternative code block is executed. Either way, execution
resumes with the statement <non-indented statement> that is below and with the same
indentation as the if statement.

The two-way decision format of the if statement is used when two alternative code
blocks have to be executed depending on a condition:

if <condition>:
<indented code block 1>

else:
<indented code block 2>

<non-indented statement>

If condition is true, <indented code block 1> is executed; otherwise, <indented
code block 2> is executed. Note that the conditions under which the two code blocks get
executed are mutually exclusive. In either case, execution again resumes with the statement
<non-indented statement>.

Three-Way (and More!) Decisions
Themost general format of the Python if statement is the multiway (three or more) decision
control structure:

if <condition1>:
<indented code block 1>

elif <condition2>:
<indented code block 2>

elif <condition3>:
<indented code block 3>

else: # there could be more elif statements
<indented code block last>

<non-indented statement>

This statement is executed in this way:

• If <condition1> is true, then <indented code block 1> is executed.
• If <condition1> is false but <condition2> is true, then <indented code block
2> is executed.

• If <condition1> and <condition2> are false but <condition3> is true, then
<indented code block 3> is executed.

• If no condition is true, then <indented code block last> is executed.

In all cases, the execution will resume with the statement <non-indented statement>.

Section 5.1 Decision Control and the if Statement 129

The elif keyword stands for “else if”. An elif statement is followed by a condition just
like the if statement. An arbitrary number of elif statements can follow one if statement,
and an else statement may follow them all (but is optional). Associated with every if
and elif statement, and also with the optional else statement, is an indented code block.
Python will execute the code block of the first condition that evaluates to True; no other
code block is executed. If no condition evaluates to True and an else statement exists, the
code block of the else statement is executed.

In function temperature() shown next, we expand the temperature example from
Chapter 3 to illustrate the three-way if statement:

Module: ch5.py
1 def temperature(t):
2 'prints message based on temperature value t'
3 if t > 86:
4 print('It is hot!')
5 elif t > 32:
6 print('It is cool.')
7 else: # t <= 32
8 print('It is freezing!')

For a given value of t, the indented code block of the first condition that is true is exe-
cuted; if neither the first nor second condition is true, then the indented code corresponding
to the else statement is executed:

>>> temperature(87)
It is hot!
>>> temperature(86)
It is cool.
>>> temperature(32)
It is freezing!

The flowchart of the possible executions of this function is shown in Figure 5.1.

temp > 86

print('It is hot!')

temp > 32

print('It is freezing!') print('It is cool.')

True

False

True

False

Figure 5.1 Flowchart of
function temperature().
First checked is the
condition t > 86. If
true, then the statement
print('It is hot!') is
executed. If false, then
the condition t > 32 is
checked. If true, then the
statement print('It is
cool!') is executed. If
false, then the statement
print('It is
freezing!') is executed.

www.ebook3000.com

http://www.ebook3000.org

130 Chapter 5 Execution Control Structures

Ordering of Conditions
There is an issue with multiway decision structures that does not exist with one- or two-
way if statements. The order in which the conditions appear in a multiway if statement is
important. To see this, try to figure out what is wrong with the order of the conditions in the
next implementation of the function temperature().

def temperature(t):
if t > 32:

print('It is cool.')
elif t > 86:

print('It is hot!')
else:

print('It is freezing!')

The problem with this implementation is that 'It is cool' will be printed for all
values of t greater than 32. So, if t is 104, what is printed is 'It is cool.'. In fact, 'It
is hot!' will never get printed, no matter how high the value of t is. The issue is that
conditions t > 32 and t > 86 are not mutually exclusive, as conditions corresponding to
code blocks in a two-way decision structure are.

One way to fix the wrong implementation is to make the conditions mutually exclusive
explicitly:

def temperature(t):
if 32 < t <= 86: # add t <= 86 condition

print('It is cool.')
elif t > 86:

print('It is hot!')
else: t <= 32

print('It is freezing!')

However, explicitly making the conditions mutually exclusive can make the code unnec-
essarily complicated. Another way to fix the wrong implementation is by implicitlymaking
the conditions mutually exclusive, as we did in the original implementation of function
temperature(). Let’s explain this.

The temperature() application should have three distinct code blocks, each corre-
sponding to a particular temperature range: t > 86◦, 32◦ < t ≤ 86◦, and t ≤ 32◦. One of
these ranges must become the first condition of the three-way if statement, say t > 86.

Any subsequent condition in a three-way if statement will be tested only if the first
condition fails (i.e., the value of t is no more than 86). Therefore, any subsequent condition
includes, implicitly, condition t <= 86. So, the explicit second condition t > 32 is really
32 < t <= 86. Similarly, the implicit condition for the else statement is t <= 32 because
it is executed only if t is at most 32.

Practice Problem
5.1

Implement function myBMI() that takes as input a person’s height (in inches) and weight
(in pounds) and computes the person’s Body Mass Index (BMI). The BMI formula is:

bmi =
weight ∗ 703
height2

Your functions should print the string 'Underweight' if bmi < 18.5, 'Normal' if 18.5 <=
bmi < 25, and Overweight if bmi >= 25.

Section 5.2 for Loop and Iteration Patterns 131

>>> myBMI(190, 75)
Normal
>>> myBMI(140, 75)
Underweight

5.2 for Loop and Iteration Patterns
In Chapter 3, we introduced the for loop. In general, the for loop has this structure:

for <variable> in <sequence>:
<indented code block>

<non-indented statement>

The variable <sequence>must refer to an object that is a string, list, range, or any con-
tainer type that can be iterated over—we will see what this means in Chapter 8. When
Python runs the for loop, it assigns successive values in <sequence> to <variable>
and executes the <indented code block> for every value of <variable>. After the
<indented code block> has been executed for the last value in <sequence>, execution
resumes with statement <non-indented statement> that is below the indented block
and has the same indentation as the first line of the for loop statement.

The for loop, and loops in general, have many uses in programming, and there are
different ways to use loops. In this section, we describe several basic loop usage patterns.

Loop Pattern: Iteration Loop
So far in this book, we have used the for loop to iterate over the items of a list:

>>> l = ['cat', 'dog', 'chicken']
>>> for animal in l:

print(animal)

cat
dog
chicken

We have used it to iterate over the characters of a string:

>>> s = 'cupcake'
>>> for c in s:

if c in 'aeiou':
print(c)

u
a
e

Iterating through an explicit sequence of values and performing some action on each
value represents the simplest usage pattern for a for loop. We call this usage pattern the
iteration loop pattern. This is the loop pattern we have used most so far in this book. We
include, as our final example of an iteration loop pattern, the code from Chapter 4 that reads

www.ebook3000.com

http://www.ebook3000.org

132 Chapter 5 Execution Control Structures

a file line by line and prints each line in the interactive shell:

>>> infile = open('test.txt', 'r')
>>> for line in infile:

print(line, end='')

In this example, the iteration is not over characters of a string or items of a list but over the
lines of the file-like object infile. Even though the container is different, the basic iteration
pattern is the same.

Loop Pattern: Counter Loop
Another loop pattern we have been using is iterating over a sequence of integers specified
with the function range():

>>> for i in range(10):
print(i, end=' ')

0 1 2 3 4 5 6 7 8 9

We use this pattern, which we name the counter loop pattern, when we need to execute a
block of code for every integer in some range. For example, we may want to find (and print)
all even numbers from 0 up to some integer n:

>>> n = 10
>>> for i in range(n):

if i % 2 == 0:
print(i, end = ' ')

0 2 4 6 8

Practice Problem
5.2

Write a function named powers() that takes a positive integer n as input and prints, on the
screen, all the powers of 2 from 21 to 2n.

>>> powers(6)
2 4 8 16 32 64

A very common reason to iterate over a sequence of consecutive integers is to generate
the indexes of a sequence, whether the sequence is a list, string, or other. We illustrate this
with a new pets list.

>>> pets = ['cat', 'dog', 'fish', 'bird']

We can print the animals in the list using the iteration loop pattern:

>>> for animal in pets:
print(animal)

cat
dog
fish
bird

Section 5.2 for Loop and Iteration Patterns 133

Instead of iterating through the items of list pets, we could also iterate through the indexes
of list pets and achieve the same result:

>>> for i in range(len(pets)): # i is assigned 0, 1, 2, . . .
print(pets[i]) # print object at index i

cat
dog
fish
bird

Note how the range() and len() functions work in tandem to generate the indexes 0, 1,
2, and 3 of list pets. The execution of the loop is illustrated in Figure 5.2.

pets 'cat' 'dog' 'fish' 'bird'

i = 0 'cat'

i = 1 'dog'

i = 2 'fish'

i = 3 'bird'

Figure 5.2 Counter
pattern. In the for loop,
variable i is successively
assigned values 0, 1, 2,
and 3. For every value of i,
the list object pets[i] is
printed: string 'cat' when
i is 0, 'dog' when i is 1,
and so on.

The second approach, using iteration through list indexes, is more complicated and less
intuitive than the approach that iterates through list items. Why would one use it?

Well, there are situations when it is necessary to iterate through a sequence by index
rather than by value. For example, consider the problem of checking whether a list lst of
numbers is sorted in increasing order. To do this it suffices to check that each number in the
list is smaller than the next one—if there is a next one. Let’s try to implement this approach
by iterating through the items of the list:

for item in lst:
now compare item with the next object in list lst

We’re stuck. How do we compare a list item with the one following it? The problem is that
we do not really have a way to access the object in list lst that is after object item.

If we iterate through the list by list index rather than by list item, we do have a way: The
object that follows the item at index i must be at index i+ 1:

for i in range(len(lst)):
compare lst[i] and lst[i+1]

The next question to resolve is how to compare lst[i] and lst[i+1]. If condition
lst[i] < lst[i+1] is true, we do not need to do anything but go check the next adjacent
pair in the next iteration of the loop. If the condition is false—that is, lst[i] >= lst[i+1]
is true—then we know that list lst cannot be in increasing order and we can immediately
return false. So, we only need a one-way if statement inside the loop:

for i in range(len(lst)):
if lst[i] >= lst[i+1]:

return False

www.ebook3000.com

http://www.ebook3000.org

134 Chapter 5 Execution Control Structures

In this loop, variable i gets assigned indexes of list lst. For every value of i, we check
whether the object at position i is greater than or equal to the object at position i+1. If that is
the case, we can return False. If the for loop terminates, that means that every consecutive
pair of objects in list lst is in increasing order and therefore the whole list is increasing.

It turns out that we have made a mistake in this code. Note that we compare list items at
index 0 and 1, 1 and 2, 2 and 3, all the way to items at index len(lst)-1 and len(lst).
But there is no item at index len(lst). In other words, we do not need to compare the last
list item with the “next item” in the list. What we need to do is shorten the range over which
the for loop iterates by 1.

Here is our final solution in the form of a function that takes as input a list and returns
True if the list is sorted in increasing order and False otherwise:

Module: ch5.py
1 def sorted(lst):
2 'returns True if sequence lst is increasing, False otherwise'
3 for i in range(0, len(lst)-1): # i = 0, 1, 2, ..., len(lst)-2
4 if lst[i] > lst[i+1]:
5 return False
6 return True

Practice Problem
5.3

Write function arithmetic() that takes a list of integers as input and returns True if they
form an arithmetic sequence. (A sequence of integers is an arithmetic sequence if the dif-
ference between consecutive items of the list is always the same.)

>>> arithmetic([3, 6, 9, 12, 15])
True
>>> arithmetic([3, 6, 9, 11, 14])
False
>>> arithmetic([3])
True

Loop Pattern: Accumulator Loop
A common pattern in loops is to accumulate “something” in every iteration of the loop.
Given a list of numbers numList, for example, we might want to sum the numbers up. To
do this using a for loop, we first need to introduce a variable mySum that will hold the sum.
This variable is initialized to 0; then a for loop can be used to iterate through the numbers
in numList and add them to mySum. For example:

>>> numList = [3, 2, 7, -1, 9]
>>> mySum = 0 # initializing the accumulator
>>> for num in numList:

mySum = mySum + num # adding to the accumulator

>>> mySum # the sum of numbers in numList
20

Section 5.2 for Loop and Iteration Patterns 135

numList 3 2 7 -1 9 mySum = 0

num = 3 mySum = mySum + num = 3

num = 2 mySum = mySum + num = 5

num = 7 mySum = mySum + num = 12

num = -1 mySum = mySum + num = 11

num = 9 mySum = mySum + num = 20

Figure 5.3 Accumulator
pattern. The for loop
iterates over the numbers
in list numList. In every
iteration, the current number
is added to the accumulator
mySum using the assignment
mySum = mySum + num.

The execution of the previous for loop example is illustrated in Figure 5.3. The variable
mySum serves as the accumulator. In this case, it is an integer accumulator initialized to 0
because we are summing integers and 0 is the identity for addition (i.e., 0 doesn’t affect
addition). Every value of num is added to the accumulator with the assignment

mySum = mySum + num

In the expression to the right of the assignment operator =, the value of num and the current
value of the accumulator mySum are added together. The assignment then puts the result of
this addition back into the accumulator mySum. We say that mySum is incremented by the
value of num. This operation is so common that there is a shortcut for it:

mySum += num

Let’s recompute the sum using this shortcut:

>>> mySum = 0
>>> for num in numList:

mySum += num

We refer to the pattern of this for loop as the accumulator loop pattern.

Accumulating Different Types
We illustrate the accumulator pattern with several more examples. Recall that in Chapter 2
we introduced the built-in function sum() that can be used to add up the values in a list:

>>> sum(numList)
20

So, writing a for loop to sum up the numbers in a list was not really necessary. Usually,
however, a built-in function is not available. What if, for example, we wanted to multiply all
the numbers in the list? An approach similar to the one we used for the sum might work:

>>> myProd = 0 # initializing the product
>>> for num in numList: # num gets values from numList

myProd = myProd * num # myProd is multiplied by num
>>> myProd # what went wrong?
0

www.ebook3000.com

http://www.ebook3000.org

136 Chapter 5 Execution Control Structures

What went wrong? We initialized the accumulator product myProd to 0; the problem is that
0 times anything is 0. When we multiply myProd by every value in numList, we will always
get 0 back. The value 0 was a good choice for initializing a sum because 0 is the identity for
the addition operator. The identity value for the product operator is 1:

>>> myProd = 1
>>> for num in numList:

myProd = myProd * num

>>> myProd
-378

Practice Problem
5.4

Implement function factorial() that takes as input a nonnegative integer and returns its
factorial. The factorial of a nonnegative integer n, denoted n!, is defined in this way:

n! =

{
1 if n = 0
n× (n− 1)× (n− 2)× ...× 2× 1 if n > 0

So, 0! = 1, 3! = 6, and 5! = 120.

>>> factorial(0)
1
>>> factorial(3)
6
>>> factorial(5)
120

In our first two examples of accumulator patterns, the accumulators were of a number
type. If we accumulate (concatenate) characters into a string, the accumulator should be a
string. What string value should the accumulator be initialized to? It has to be a value that is
the identity for string concatenation (i.e., has the property: When concatenated with some
character, the resulting string should just be the character). The empty string '' (not the
blank space!) is thus the identity for string concatenation.

Practice Problem
5.5

An acronym is a word formed by taking the first letters of the words in a phrase and then
making a word from them. For example, RAM is an acronym for random access memory.
Write a function acronym() that takes a phrase (i.e., a string) as input and then returns the
acronym for that phrase. Note: The acronym should be all uppercase, even if the words in
the phrase are not capitalized.

>>> acronym('Random access memory')
'RAM'
>>> acronym('central processing unit')
'CPU'

If we accumulate objects into a list, the accumulator should be a list. What is the identity
for list concatenation? It is the empty list [].

Section 5.2 for Loop and Iteration Patterns 137

Practice Problem
5.6

Write function divisors() that takes a positive integer n as input and returns the list of
all positive divisors of n.

>>> divisors(1)
[1]
>>> divisors(6)
[1, 2, 3, 6]
>>> divisors(11)
[1, 11]

Loop Patterns: Nested Loop
Suppose we would like to develop a function nested() that takes one positive integer n as
input and prints, on the screen, these n lines:

0 1 2 3 ... n-1
0 1 2 3 ... n-1
0 1 2 3 ... n-1
...
0 1 2 3 ... n-1

For example:

>>> n = 5
>>> nested(n)
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

As we have seen, in order to print one line, it suffices to do:

>>> for i in range(n):
print(i,end=' ')

0 1 2 3 4

In order to get n such lines (or 5 lines in this case), all we need to do is repeat the loop n
times (or 5 times in this case). We can do that with an additional outer for loop, which will
repeatedly execute the for loop:

>>> for j in range(n): # outer loop iterates 5 times
for i in range(n): # inner loop prints 0 1 2 3 4

print(i, end = ' ')

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Oops, this is not what we wanted. The statement print(i, end=' ') forces all the num-
bers in one line. What we want is to start a new line after each sequence 0 1 2 3 4 has
been printed. In other words, we need to call function print() with no arguments every

www.ebook3000.com

http://www.ebook3000.org

138 Chapter 5 Execution Control Structures

time the inner loop

for i in range(n):
print(i, end = ' ')

has been executed. Here is our final solution:

Module: ch5.py
1 def nested(n):
2 'prints n lines each containing values 0 1 2 ... n-1'
3 for j in range(n): # repeat n times:
4 for i in range(n): # print 0, 1, ..., n-1
5 print(i, end = ' ')
6 print() # move cursor to next line

Note that we needed to use a variable name in the outer for loop different from the variable
name in the inner for loop (i).

In this program, a loop statement is contained inside another loop statement. We refer to
this type of loop pattern as a nested loop pattern. A nested loop pattern may contain more
than two nested loops.

Practice Problem
5.7

Write a function xmult() that takes two lists of integers as input and returns a list containing
all products of integers from the first list with the integers from the second list.

>>> xmult([2], [1, 5])
[2, 10]
>>> xmult([2, 3], [1, 5])
[2, 10, 3, 15]
>>> xmult([3, 4, 1], [2, 0])
[6, 0, 8, 0, 2, 0]

Suppose now we would like to write another function, nested2(), that takes one posi-
tive integer n and prints, on the screen, these n lines:

0
0 1
0 1 2
0 1 2 3
...
0 1 2 3 ... n-1

For example:

>>> nested2(5)
0
0 1
0 1 2
0 1 2 3
0 1 2 3 4

What needs to be changed in function nested() to create this output? In nested(), the
complete line 0 1 2 3 ... n-1 is printed for every value of variable j. What we now

Section 5.3 More on Lists: Two-Dimensional Lists 139

want is to:

• Print 0 when j is 0.
• Print 0 1 when j is 1.
• Print 0 1 2 when j is 2, and so on.

Inner loop variable i needs to iterate not over range(n) but over values 0, 1, 2, . . . , j, that
is, over range(j+1). This suggests this solution:

Module: ch5.py
1 def nested2(n):
2 'prints n lines 0 1 2 ... j for j = 0, 1, ..., n-1'
3 for j in range(n): # j = 0, 1, ..., n-1
4 for i in range(j+1): # print 0 1 2 ... j
5 print(i, end=' ')
6 print() # move to next line

Practice Problem
5.8

One way to sort a list of n different numbers in increasing order is to execute n− 1 passes
over the numbers in the list. Each pass compares all adjacent numbers in the list and swaps
them if they are out of order. At the end of the first pass, the largest item will be the last in
the list (at index n−1). Therefore, the second pass can stop before reaching the last element,
as it is already in the right position; the second pass will place the second largest item in the
next to last position. In general, pass i will compare pairs at indexes 0 and 1, 1 and 2, 2 and
3, . . . , and i − 1 and i; at the end of the pass, the ith largest item will be at index n − i.
Therefore, after pass n− 1, the list will be in increasing order.

Write a function bubbleSort() that takes a list of numbers as input and sorts the list
using this approach.

>>> lst = [3, 1, 7, 4, 9, 2, 5]
>>> bubblesort(lst)
>>> lst
[1, 2, 3, 4, 5, 7, 9]

5.3 More on Lists: Two-Dimensional Lists
Lists we have seen so far can be viewed as one-dimensional tables. For example, the list

>>> l = [3, 5, 7]

can be viewed as the table

3 5 7

A one-dimensional table can easily be represented in Python as a list. But what about
two-dimensional tables like the next one?

www.ebook3000.com

http://www.ebook3000.org

140 Chapter 5 Execution Control Structures

4 7 2 5

5 1 9 2

8 3 6 6

A two-dimensional table such as this is represented in Python as a list of lists, also
referred to as a two-dimensional list.

Two-Dimensional Lists
A two-dimensional table can be viewed as consisting of a bunch of rows (or one-dimensional
tables). That is exactly how two-dimensional tables are represented in Python: a list of list
elements, with each list element corresponding to a row of the table. For example, the pre-
ceding two-dimensional table is represented in Python as:

>>> t = [[4, 7, 2, 5], [5, 1, 9, 2], [8, 3, 6, 6]]
>>> t
[[4, 7, 2, 5], [5, 1, 9, 2], [8, 3, 6, 6]]

List t is illustrated in Figure 5.4; note that t[0] corresponds to the first row of the table,
t[1] corresponds to the second row, and t[2] corresponds to the third row. We check this:

>>> t[0]
[4, 7, 2, 2]
>>> t[1]
[5, 1, 9, 2]

So far there really is nothing new here: We knew that a list could contain another list.
What is special here is that each list element is of the same size. Now, how dowe access (read
or write) individual table items? An item in a two-dimensional table is typically accessed
by using its “coordinates” (i.e., its row index and column index). For example, the value
8 in the table is in row 2 (counting from the topmost row and starting with index 0) and
column 0 (counting from the leftmost column). In other words, 8 is located at index 0 of of
list t[2], or at t[2][0] (see Figure 5.4). In general, the item located in row i and column

Figure 5.4
Two-dimensional list. List
t represents a 2D table. The
first row of the table is t[0],
the second is t[1], and the
third is t[2]. The items in
the first row are t[0][0],
t[0][1], t[0][2], and
t[0][3]. The items in the
second row are t[1][0],
t[1][1], t[1][2],
t[1][3], and so on.

t[0][0] t[0][1] t[0][2] t[0][3]

t[0] 4 7 2 5

t[1][0] t[1][1] t[1][2] t[1][3]

t[1] 5 1 9 2

t[2][0] t[2][1] t[2][2] t[2][3]

t[2] 8 3 6 6

Section 5.3 More on Lists: Two-Dimensional Lists 141

j of a two-dimensional list t is accessed with the expression t[i][j]:

>>> t[2][0] # the element in row 2, column 0
8
>>> t[0][0] # the element in row 0, column 0
4
>>> t[1][2] # the element in row 1, column 2
9

To assign a value to the entry in row i and column j, we simply use the assignment statement.
For example:

>>> t[2][3] = 7

The entry in row 2 and column 3 of t is now 7:

>>> t
[[4, 7, 2, 5], [5, 1, 9, 2], [8, 3, 6, 7]]

Sometimes we need to access all entries of a two-dimensional list in some order and not
just a single entry at a specified row and column. To visit entries of a two-dimensional list
systematically, the nested loop pattern is used.

Two-Dimensional Lists and the Nested Loop Pattern
When we printed the value of two-dimensional list t, the output we got was a list of lists
rather than a table with rows in different lines. Often it is nice to print the content of a two-
dimensional list so it looks like a table. The next approach uses the iteration pattern to print
each row of the table in a separate line:

>>> for row in t:
print(row)

[4, 7, 2, 5]
[5, 1, 9, 2]
[8, 3, 6, 7]

Suppose that instead of printing each row of the table as a list, we would like to have a
function print2D() that prints the items in t as shown next:

>>> print2D(t)
4 7 2 5
5 1 9 2
8 3 6 7

We use the nested loop pattern to implement this function. The outer for loop is used to
generate the rows, while the inner for loop iterates over the items in a row and prints them:

Module: ch5.py
1 def print2D(t):
2 'prints values in 2D list t as a 2D table'
3 for row in t:
4 for item in row: # print item followed by
5 print(item, end=' ') # a blank space
6 print() # move to next line

www.ebook3000.com

http://www.ebook3000.org

142 Chapter 5 Execution Control Structures

Let’s consider one more example. Suppose we need to develop function incr2D() that
increments the value of every number in a two-dimensional list of numbers:

>>> print2D(t)
4 7 2 5
5 1 9 2
8 3 6 7
>>> incr2D(t)
>>> print2D(t)
5 8 3 6
6 2 10 3
9 4 7 8

Clearly, the function incr2D() will need to execute:

t[i][j] += 1

for every row index i and column index j of an input two-dimensional list t. We can use
the nested loop pattern to generate all combinations of row and column index.

The outer loop should generate the row indexes of t. To do this we need to know the
number of rows in t. It is simply len(t). The inner loop should generate the column indexes
of t. We are hitting a snag here. How do we find out how many columns t has? Well, it is
actually the number of items in a row, and since we assume that all rows have the same
number of items, we can arbitrarily pick the first row to obtain the number of columns:
len(t[0]). Now we can implement the function:

Module: ch5.py
1 def incr2D(t):
2 'increments each number in 2D list of numbers t'
3 nrows = len(t) # number of rows
4 ncols = len(t[0]) # number of columns
5

6 for i in range(nrows): # i is the row index
7 for j in range(ncols): # j is the column index
8 t[i][j] += 1

The nested loop pattern is used in this program to access the items of two-dimensional
list t row by row, from left to right, top to bottom. First accessed are the items in row 0—
t[0][0], t[0][1], t[0][2], and t[0][3], in that order—as illustrated in Figure 5.5.
After that, items in row 1 are accessed, from left to right, and then items in row 2, and so
on.

Figure 5.5 Nested loop
pattern. The outer for loop
generates row indexes. The
inner for loop generates
column indexes. The arrow
illustrates the execution of
the inner for loop for the
first-row index (0).

j=0 j=1 j=2 j=3

i=0 4 7 2 5

i=1 5 1 9 2

i=2 8 3 6 7

Section 5.4 while Loop 143

Practice Problem
5.9

Write a function add2D() that takes two two-dimensional lists of same size (i.e., same num-
ber of rows and columns) as input arguments and increments every entry in the first list with
the value of the corresponding entry in the second list.

>>> t = [[4, 7, 2, 5], [5, 1, 9, 2], [8, 3, 6, 6]]
>>> s = [[0, 1, 2, 0], [0, 1, 1, 1], [0, 1, 0, 0]]
>>> add2D(t,s)
>>> for row in t:

print(row)

[4, 8, 4, 5]
[5, 2, 10, 3]
[8, 4, 6, 6]

5.4 while Loop
In addition to for loops, there is another, more general iteration control structure in Python:
the while loop. In order to understand how the while loop works, we start by reviewing
how a one-way if statement works:

if <condition>:
<indented code block>

<non-indented statement>

Recall that the <indented code block> is executed when <condition> is true; after
the <indented code block> has been executed, the program execution continues with
<non-indented statement>. If <condition> is false, program execution goes straight
to <non-indented statement>.

The format of a while statement is similar to the format of a one-way if statement:

while <condition>:
<indented code block>

<non-indented statement>

Just as for an if statement, in a while statement, the <indented code block> is
executed if <condition> is true. But after the <indented code block> has been exe-
cuted, program execution goes back to checking whether <condition> is true. If so, then
the <indented code block> is executed again. As long as <condition> is true, the
<indented code block> keeps getting executed, again and again. When <condition>
evaluates to false, then the execution jumps to the <non-indented statement>. The
while loop flowchart in Figure 5.6 illustrates the possible execution paths.

while Loop Usage
When is the while loop useful? We illustrate that with the next problem. Suppose we have
the silly idea to compute the first multiple of 73 that is greater than 3, 951. One way to solve
this problem is to successively generate positive multiples of 73 until we get to a number
greater than 3, 951. A for loop implementation of this idea would start with:

for multiple in range(73, ???, 73)}:
...

www.ebook3000.com

http://www.ebook3000.org

144 Chapter 5 Execution Control Structures

Figure 5.6 while
statement flowchart.
The conditional block will
repeatedly get executed,
as long as the condition
evaluates to true. When the
condition evaluates to false,
the statement that follows
the while loop gets
executed.

<indented code block> <condition>

<non-indented statement>

True

False

We are trying to use function range() to generate the sequence of multiples of 73:
73, 146, 219, . . . But when do we stop? In other words, what do we replace ??? with?

A while loop is perfect for situations in which we need to iterate but we do not know
how many times. In our case, we need to keep generating multiples of 73 as long as the
multiples are ≤ 3, 951. In other words, while multiple ≤ 73, we generate the next multiple.
Let’s translate that into Python:

while multiple <= 3951:
multiple += 73

The variable multiple needs to be initialized before the while loop. We can initialize
it to the first positive multiple of 73, which is 73. In every iteration of the while loop, the
condition multiple <= 3951 is checked. If true, multiple is incremented to the next
multiple of 73:

>>> bound = 3951
>>> multiple = 73
>>> while multiple <= bound:

multiple += 73

>>> multiple
4015

When the while loop condition evaluates to False, the execution of the loop stops. The
value of multiple is then greater than bound. Since the previous value of multiple was
not greater, it will have the value we want: the smallest multiple greater than bound.

Practice Problem
5.10

Write a function interest() that takes one input, a floating-point interest rate (e.g., 0.06
which corresponds to a 6% interest rate). Your function should compute and return how
long (in years) it will take for an investment to double in value. Note: The number of years
it takes for an investment to double does not depend on the value of the initial investment.

>>> interest(0.07)
11

Section 5.5 More Loop Patterns 145

5.5 More Loop Patterns
With the while loop in hand, as well as a few additional loop control structures we will
introduce, we can develop a few more useful loop patterns.

Iteration Patterns: Sequence Loop
Some problems, particularly coming from science, engineering, and finance, can be solved
by generating a sequence of numbers that eventually reaches a desired number. We illustrate
this pattern on the well-known Fibonacci number sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

The Fibonacci number sequence starts with integers 1 and 1 and goes on forever by applying
this rule: The current number in the sequence is the sum of the previous two numbers in the
sequence.

DETOUR
Fibonacci Numbers

The Fibonacci sequence is named after Leonardo of Pisa, known as Fibonacci,
who introduced it to the Western world. The sequence was actually known much
earlier among Indian mathematicians.

Fibonacci developed the sequence as a model for the growth of an idealized
rabbit population. He assumed that (1) rabbits are able to mate at the age of one
month and (2) it takes one month for baby rabbits to be born. The number of rabbit
pairs at the end of month i is described by the ith Fibonacci number in this way:

• Initially, at the beginning of month 1, there is only one 1 pair.
• At the end of the month 1, the pair mates but there is still just 1 pair.
• At the end of month 2, the original pair produces a pair of rabbits and mates
again, so now there are 2 pairs.

• At the end of month 3, the original pair produces a pair of rabbits again and
mates again. The second pair mates but has no offspring yet. Now there are
3 pairs.

• At the end of month 4, the original pair and the second pair produces a pair
of rabbits each, so now there are 5 pairs.

A natural problem is to compute the ith Fibonacci number. Problem 5.32 at the end of
this chapter asks you to do just that. Right now we are going to solve a slightly different
problem. We would like to compute the first Fibonacci number greater than some given
integer bound. We will do that by generating the sequence of Fibonacci numbers and stop-
ping when we reach a number greater than bound. So, if our current Fibonacci number is
current, our while loop condition will be

while current <= bound:

If the condition is true, we need to generate the next Fibonacci number or, in other words,
the next value of current. To do this, we need keep track of the Fibonacci number that

www.ebook3000.com

http://www.ebook3000.org

146 Chapter 5 Execution Control Structures

comes before current. So we need to have another variable, say, previous, in addition to
a variable current for the current Fibonacci number. Before the while loop, we initialize
previous and current to the first and second Fibonacci numbers:

Module: ch5.py
1 def fibonacci(bound):
2 'returns the smallest Fibonacci number greater than bound'
3 previous = 1 # first Fibonacci number
4 current = 1 # second Fibonacci number
5 while current <= bound:
6 # current becomes previous, and new current is computed
7 previous, current = current, previous+current
8 return current

Note the use of the multiple assignment statement to compute the new values for current
and previous.

In function fibonacci(), the loop is used to generate a sequence of numbers until a
condition is satisfied. We refer to this loop pattern as the sequence loop pattern. In the next
problem, we apply the sequence loop pattern to approximate the value of the mathematical
constant e, called the Euler constant.

Practice Problem
5.11

It is known that the precise value of e is equal to this infinite sum:

1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+ . . .

An infinite sum is impossible to compute. We can get an approximation of e by computing
the sum of the first few terms in the infinite sum. For example, eo = 1

0! = 1 is a (lousy)
approximation for e. The next sum, e1 = 1

0! +
1
1! = 2, is better but still quite bad. The next

one, e2 = 1
0! +

1
1! +

1
2! = 2.5, looks better. The next few sums show that we are heading in

the right direction:

e3 =
1

0!
+

1

1!
+

1

2!
+

1

3!
= 2.6666 . . .

e4 =
1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
= 2.7083 . . .

Now, because, e4 − e3 = 1
4! >

1
5! +

1
6! +

1
7! + . . . , we know that e4 is within 1

4! of the
actual value for e. This gives us a way to compute an approximation of e that is guaranteed
to be within a given range of the true value of e.

Write a function approxE() that takes as input a float value error and returns a value
that approximates constant e to within error. You will do this by generating the sequence
of approximation e0, e1, e2, . . . until the difference between the current approximation
and the previous one is no greater than error.

>>> approxE(0.01)
2.7166666666666663
>>> approxE(0.000000001)
2.7182818284467594

Section 5.5 More Loop Patterns 147

Loop Pattern: Infinite Loop
The while loop can be used to create an infinite loop, which is a loop that runs “forever”:

while True:
<indented code block>

Because True is always true, <indented code block>will get executed again and again.
Infinite loops are useful when the program is meant to provide a service indefinitely. A

web server (i.e., a program that serves web pages) is an example of a program that provides
a service. It repeatedly receives web page requests from your—and other people’s—web
browser and sends back the requested web page. The next example illustrates the use of the
infinite loop pattern in a much simpler “greeting service.”

We would like to write a function hello2() that repeatedly requests users to input their
name and then, when users have done so and pressed Return , greets them:

>>> hello2()
What is your name? Sam
Hello Sam
What is your name? Tim
Hello Tim

Here is a straightforward implementation that uses the infinite loop pattern:

Module: ch5.py
1 def hello2():
2 '''a greeting service; it repeatedly requests the name
3 of the user and then greets the user'''
4 while True:
5 name = input('What is your name? ')
6 print('Hello {}'.format(name))

How do you stop a program that uses the infinite loop pattern? Any running program, in-
cluding one that runs an infinite loop, can be broken—more precisely, interrupted—from
outside the program (externally) by typing (simultaneously) Ctrl - C on the keyboard. That
is how you should stop the execution of the above hello2() function.

Loop Pattern: Loop and a Half
A while loop should also be used when a program must repeatedly process some input
values until a flag is reached. (A flag is an arbitrary value that is chosen to indicate the end
of the input.)

More specifically, consider the problem of developing a function cities() that repeat-
edly requests city names (i.e., strings) from the user and accumulates them in a list. The
user indicates the end of the input by entering the empty string, at which point the function
should return the list of all cities entered by the user. Here is the behavior we expect to see:

>>> cities()
Enter city: Lisbon
Enter city: San Francisco
Enter city: Hong Kong
Enter city:
['Lisbon', 'San Francisco', 'Hong Kong']
>>>

www.ebook3000.com

http://www.ebook3000.org

148 Chapter 5 Execution Control Structures

If the user enters no city, the empty list should be returned:

>>> cities()
Enter city:
[]

Clearly, function cities() should be implemented using a loop that interactively asks
the user to enter a city in every iteration. Since the number of iterations is not known, we
need to use a while loop. The condition of this while loop should check whether the user
entered the empty string. That means that the user should be asked to enter the first city
before even entering the while loop. We will, of course, also need to ask the user to enter
a city in every iteration of the while loop:

Module: ch5.py
1 def cities():
2 '''returns the list of cities that are interactively entered
3 by the user; the empty string ends the interactive input'''
4 lst = []
5

6 city = input('Enter city: ') # ask user to enter first city
7

8 while city != '': # if city is not the flag value
9 lst.append(city) # append city to list

10 city = input('Enter city: ') # and ask user once again
11

12 return lst

Note that the function uses the accumulator loop pattern to accumulate the cities into a list.
In function cities(), there are two input() function calls: one before the while

loop statement and one inside the while loop code block. A way to eliminate one of those
“redundant” statements and make the code more intuitive is to use an infinite loop and an
if statement inside the body of the while loop. The if statement would test whether the
user entered the flag value:

Module: ch5.py
1 def cities2():
2 '''returns the list of cities that are interactively entered
3 by the user; the empty string ends the interactive input'''
4 lst = []
5

6 while True: # forever repeat:
7 city = input('Enter city: ') # ask user to enter city
8

9 if city == '': # if city is the flag value
10 return lst # return list
11

12 lst.append(city) # append city to list

When executing function cities2(), the last iteration of the while loop is the one during
which the user enters the empty string. In this iteration, only “half” of the body of the for
loop is executed; the statement lst.append(city) is skipped. For this reason, the loop
pattern in cities2() is commonly referred to as the loop-and-a-half pattern.

Section 5.6 Additional Iteration Control Statements 149

DETOUR
More Loop Patterns

In this book we describe the core loop patterns only. Other loop patterns have
been proposed. If you want to see more, this website keeps track of loop patterns
proposed by various computer scientists:

http://max.cs.kzoo.edu/patterns/Repetition.shtml

5.6 Additional Iteration Control Statements
We end this chapter by introducing several Python statements that provide further control
over iteration. We use simple examples so that we can clearly illustrate how they work.

break Statement
The break statement can be added to the code block of a loop (whether a for loop or
a while loop). When it is executed, the current loop iteration is stopped and the loop is
exited. Execution then resumes with the statement that follows the loop statement. If the
break statement appears in the code block of a loop of a nested loop pattern, only the
innermost loop containing the break is exited.

To illustrate the usage of the break statement, we start with another implementation
of the function that prints the numbers in a two-dimensional list of numbers in a 2D table
format:

Module: ch5.py
1 def print2D2(table):
2 'prints values in 2D list of numbers t as a 2D table'
3 for row in table:
4 for num in row:
5 print(num, end=' ')
6 print()

Let’s test the code:

>>> table = [[2, 3, 0, 6], [0, 3, 4, 5], [4, 5, 6, 0]]
>>> print2D2(table)
2 3 0 6
0 3 4 5
4 5 6 0

Suppose that instead of printing the complete row, we want to print only those numbers
in the row up to, and not including, the first 0 entry in the row. A function before0() doing
this would behave as follows:

>>> before0(table)
2 3

4 5 6

www.ebook3000.com

http://max.cs.kzoo.edu/patterns/Repetition.shtml
http://www.ebook3000.org

150 Chapter 5 Execution Control Structures

To implement before0(), we modify the implementation of print2D() by adding an
if statement, inside the inner for loop code block, that checks whether the current value of
num is 0. If so, the break statement is executed. This will terminate the inner for loop. Note
that the break statement does not terminate the outer for loop; execution thus resumes at
the next row of the table.

Module: ch5.py
1 def before0(table):
2 '''prints values in 2D list of numbers t as a 2D table;
3 only values in row up to first 0 are printed'''
4 for row in table:
5

6 for num in row: # inner for loop
7 if num == 0: # if num is 0
8 break # terminate inner for loop
9 print(num, end=' ') # otherwise print num

10

11 print() # move cursor to next line

The break statement does not affect the outer for loop, which will iterate through all the
rows of the table regardless of whether the break statement has been executed.

continue Statement
The continue statement can be added to the code block of a loop, just like the break
statement. When the continue statement is executed, the current, innermost loop iteration
is stopped, and execution resumes with the next iteration of the current, innermost loop
statement. Unlike the break statement, the continue statement does not terminate the
innermost loop; it only terminates the current iteration of the innermost loop.

To illustrate the usage of the continue statement, we modify the print2D2() func-
tion to skip the printing of 0 values in the table. The modified function, which we call
ignore0(), should behave like this:

>>> table = [[2, 3, 0, 6], [0, 3, 4, 5], [4, 5, 6, 0]]
>>> ignore0(table)
2 3 6
3 4 5
4 5 6

Note that the 0 values in the table are ignored. Let’s implement ignore0():

Module: ch5.py
1 def ignore0(table):
2 '''prints values in 2D list of numbers t as a 2D table;
3 0 values are no printed'''
4 for row in table:
5

6 for num in row: # inner for loop
7 if num == 0: # if num is 0, terminate
8 continue # current inner loop iteration
9 print(num, end=' ') # otherwise print num

10

11 print() # move cursor to next line

Chapter 5 Case Study: Image Processing 151

pass Statement
In Python, every function definition def statement, if statement, or for or while loop
statement must have a body (i.e., a nonempty indented code block). A syntax error while
parsing the program would occur if the code block is missing. In the rare occasion when the
code in the blocks really doesn’t have to do anything, we still have to put some code in it.
For this reason Python provides the pass statement, which does nothing but is still a valid
statement.

In the next example we illustrate its usage, in a code fragment that prints the value of n
only if the value of n is odd.

if n % 2 == 0:
pass # do nothing for even number n

else:
print(n) # print odd number n only

If the value of n is even, the first code block is executed. The block is just a pass statement,
which does nothing.

The pass statement is used when the Python syntax requires code (bodies of functions
and execution control statements). The pass statement is also useful when a code body has
not yet been implemented.

Case Study: Image Processing
In Case Study CS.5 we learned how to process images using Python. We saw, in particular,
how to copy, rotate, crop, and blur an image. In Case Study CS.5, we take a look underneath
the hood and see how such image-processing tools can be implemented.

Chapter Summary
This key chapter covers the Python control flow structures in depth.

We start by revisiting the if control flow construct introduced in Chapter 2.We describe
its most general format, the multiway decision structure that uses the elif statement. While
one- and two-way conditional structures are defined with only one condition, multiway con-
ditional structures have, in general, multiple conditions. If the conditions are not mutually
exclusive, the order in which the conditions appear in the multiway if statement is impor-
tant, and care must be taken to ensure that the order will give the desired behavior.

The bulk of this chapter describes the different ways that iteration structures are used.
First covered are the fundamental iteration, counter, accumulator, and nested loop patterns.
These are not only the most common loop patterns, but they are also the building blocks for
more advanced loop patterns. The nested loop pattern is particularly useful for processing
two-dimensional lists, which we introduce in this chapter.

Before describing more advanced iteration patterns, we introduce another Python loop
construct, the while loop. It is more general than the for loop construct and can be used
to implement loops that would be awkward to implement using the for loop. Using the
while loop construct, we describe the sequence, infinite, interactive, and loop-and-a-half
loop patterns.

At the end of the chapter, we introduce several more iteration control statements (break,
continue, and pass) that give a bit more control over iteration structures and code devel-
opment.

www.ebook3000.com

http://www.ebook3000.org

152 Chapter 5 Execution Control Structures

The decision and iteration control flow structures are the building blocks used to de-
scribe algorithmic solutions to problems. How to effectively apply these structures when
solving a problem is one of the fundamental skills of a computing professional. Master-
ing multiway conditional structures and understanding when and how to apply the iteration
patterns described in this chapter are the first steps toward developing this skill.

Solutions to Practice Problems
5.1 After computing the BMI, we use a multiway if statement to decide what to print:

def myBMI(weight, height):
'prints BMI report'
bmi = weight * 703 / height**2
if bmi < 18.5:
print('Underweight')

elif bmi < 25:
print('Normal')

else: # bmi >= 25
print('Overweight')

5.2 We need to print 21, 22, 23, . . . , 2n (i.e., 2i for all integers i from 1 to n). To iterate
over the range from 1 up to (and including) n, we use function call range(1, n+1):

def powers(n):
'prints 2**i for i = 1, 2, ..., n'
for i in range(1, n+1):
print(2**i, end=' ')

5.3 We need to check that the difference between adjacent list values are all the same.
One way to do this is to check that they are all equal to the difference between the first
two list items, l[0] and l[1]. So, we need to check that l[2]-l[1], l[3]-l[2], . . . ,
l[n-1]-l[n-2], where n is the size of list l, are all equal to diff = l[1] - l[0]. Or,
to put it another way, we need to check that l[i+1] - l[i] = diff for i = 1, 2, . . . ,
n− 2, values obtained by iterating through range(1, len(l)-1):

def arithmetic(lst):
'''returns True if list lst contains an arithmetic sequence,

False otherwise'''
if len(lst) < 2: # a sequence of length < 2 is arithmetic

return True
checking that difference between successive items is equal
to the difference between the first two numbers
diff = lst[1] - lst[0]
for i in range(1, len(lst)-1):

if lst[i+1] - lst[i] != diff:
return False

return True

5.4 We need to multiply (accumulate) integers 1, 2, 3, . . . , n. The accumulator res is
initialized to 1, the identity for multiplication. Then we iterate over sequence 2, 3, 4, . . . , n

Chapter 5 Solutions to Practice Problems 153

and multiply res by each number in the sequence:

def factorial(n):
'returns n!'
res = 1
for i in range(2, n+1):

res *= i
return res

5.5 In this problem we would like to iterate over the words of the phrase and accumulate the
first letter in every word. So we need to break the phrase into a list of words using the string
split() method and then iterate over the words in this list. We will add the first letter of
every word to the accumulator string res.

def acronym(phrase):
'returns the acronym of the input string phrase'
splits phrase into a list of words
words = phrase.split()
accumulate first character, as an uppercase, of every word
res = ''
for w in words:

res = res + w[0].upper()
return res

5.6 Divisors of n include 1, n, and perhaps more numbers in between. To find them, we
can iterate over all integers given by range(1, n+1) and check each integer whether it is
a divisor of n.

def divisors(n):
'returns the list of divisors of n'
res = []
for i in range(1, n+1):

if n % i == 0:
res.append(i)

return res

5.7 We will use the nested loop pattern to multiply every integer in the first list with every
integer in the second list. The outer for loopwill iterate over the integers in the first list. Then,
for every such integer i, the inner for loop will iterate over the integers of the second list,
and each such integer is multiplied by i; the product is accumulated into a list accumulator.

def xmult(l1, l2):
'''returns the list of products of items in list l1

with items in list l2'''
l = []
for i in l1:

for j in l2:
l.append(i*j)

return l

5.8 As discussed in the problem statement, in the first pass you need to successively compare
items at indexes 0 and 1, 1 and 2, 2 and 3, . . . , up to len(lst)-2 and len(lst)-1. We can

www.ebook3000.com

http://www.ebook3000.org

154 Chapter 5 Execution Control Structures

do this by generating the sequence of integers from 0 up to but not including len(lst)-1.
In the second pass, we can stop the pairwise comparisonswith the pair of items at indexes

len(lst)-3 and len(lst)-2, so the indexes we need in the second pass go from 0 up to
but not including len(lst)-2. This suggests that we should use the outer loop to generate
the upper bounds len(lst)-1 for pass 1, len(lst)-2 for pass 2, down to 1 (when the
final comparison between the first two list items is made).

The inner loop implements a pass that compares adjacent list items up to items at indexes
i-1 and i and swaps improperly ordered items:

def bubblesort(lst):
'sorts list lst in nondecreasing order'
for i in range(len(lst)-1, 0, -1):

perform pass that ends at
i = len(lst)-1, len(lst)-2, ..., 1
for j in range(i):

compare items at index j and j+1
for every j = 0, 1, ..., i-1
if lst[j] > lst[j+1]:

swap numbers at index j and j+1
lst[j], lst[j+1] = lst[j+1], lst[j]

5.9 We use the nested loop pattern to generate all pairs of column and row indexes and add
up the corresponding entries:

def add2D(t1, t2):
'''t1 and t2 are 2D lists with the same number of rows and

same number of equal sized columns

add2D increments every item t1[i][j] by t2[i][j]'''
nrows = len(t1) # number of rows
ncols = len(t1[0]) # number of columns
for i in range(nrows): # for every row index i

for j in range(ncols): # for every column index j
t1[i][j] += t2[i][j]

5.10 First note that the number of years required for an investment to double in value does
not depend on the amount invested. So we can assume the original investment is $100. We
use a while loop to add the yearly interest to the investment x. The while loop condition
will check whether x < 200. What the problem asks is how many times we have executed
the while loop. To count it, we use the counter loop pattern:

def interest(rate):
'''returns the number of years for investment

to double for the given rate'''
amount = 100 # initial account balance
count = 0
while amount < 200:

while investment not doubled in value
count += 1 # add one more year
amount += amount*rate # add interest

return count

Chapter 5 Exercises 155

5.11 We start by assigning the first approximation (1) to prev and the second (2) to current.
The while loop condition is then current - prev > error. If the condition is true, then
we need to generate new values for prev and current. The value of current becomes
previous, and the new current value is then previous + 1/factorial(???). What
should ??? be? In the first iteration, it should be 2 because the third approximation is the
value of the second + 1

2! . In the next iteration, it should be 3, then 4, and so on. We obtain
this solution:

def approxE(error):
'returns approximation of e within error'
prev = 1 # approximation 0
current = 2 # approximation 1
i = 2 # index of next approximation
while current-prev > error:

while difference between current and previous
approximation is too large

current approximation
prev = current # becomes previous

compute new approximation
current = prev + 1/factorial(i) # based on index i
i += 1 # index of next approximation

return current

Exercises
5.12 Implement function test() that takes as input one integer and prints 'Negative',
'Zero', or 'Positive' depending on its value.

>>> test(-3)
Negative
>>> test(0)
Zero
>>> test(3)
Positive

5.13 Read every exercise 5.14 to 5.22 and decide what loop pattern should be used in each.

5.14 Write function mult3() that takes as input a list of integers and prints only the mul-
tiples of 3, one per line.

>>> mult3([3, 1, 6, 2, 3, 9, 7, 9, 5, 4, 5])
3
6
3
9
9

5.15 Implement the function vowels() that takes as input a string and prints the indexes of
all vowels in the string.Hint:Avowel can be defined as any character in string 'aeiouAEIOU'

www.ebook3000.com

http://www.ebook3000.org

156 Chapter 5 Execution Control Structures

>>> vowels('Hello WORLD')
1
4
7

5.16 Implement function indexes() that takes as input a word (as a string) and a one-
character letter (as a string) and returns a list of indexes at which the letter occurs in the
word.

>>> indexes('mississippi', 's')
[2, 3, 5, 6]
>>> indexes('mississippi', 'i')
[1, 4, 7, 10]
>>> indexes('mississippi', 'a')
[]

5.17 Write function doubles() that takes as input a list of integers and outputs the integers
in the list that are exactly twice the previous integer in the list, one per line.

>>> doubles([3, 0, 1, 2, 3, 6, 2, 4, 5, 6, 5])
2
6
4

5.18 Implement function four_letter() that takes as input a list of words (i.e., strings)
and returns the sublist of all four letter words in the list.

>>> four_letter(['dog', 'letter', 'stop', 'door', 'bus', 'dust'])
['stop', 'door', 'dust']

5.19 Write a function inBoth() that takes two lists and returns True if there is an item
that is common to both lists and False otherwise.

>>> inBoth([3, 2, 5, 4, 7], [9, 0, 1, 3])
True

5.20 Write a function intersect() that takes two lists, each containing no duplicate val-
ues, and returns a list containing values that are present in both lists (i.e., the intersection of
the two input lists).

>>> intersect([3, 5, 1, 7, 9], [4, 2, 6, 3, 9])
[3, 9]

5.21 Implement the function pair() that takes as input two lists of integers and one integer
n and prints the pairs of integers, one from the first input list and the other from the second
input list, that add up to n. Each pair should be printed.

>>> pair([2, 3, 4], [5, 7, 9, 12], 9)
2 7
4 5

5.22 Implement the function pairSum() that takes as input a list of distinct integers lst
and an integer n, and prints the indexes of all pairs of values in lst that sum up to n.

Chapter 5 Problems 157

>>> pairSum([7, 8, 5, 3, 4, 6], 11)
0 4
1 3
2 5

Problems
5.23 Write function pay() that takes as input an hourly wage and the number of hours an
employee worked in the last week. The function should compute and return the employee’s
pay. Overtime work should be paid in this way: Any hours beyond 40 but less than or equal
60 should be paid at 1.5 times the regular hourly wage. Any hours beyond 60 should be paid
at 2 times the regular hourly wage.

>>> pay(10, 35)
350
>>> pay(10, 45)
475.0
>>> pay(10, 61)
720.0

5.24 Write function case() that takes a string as input and returns 'capitalized', 'not
capitalized', or 'unknown', depending on whether the string starts with an uppercase
letter, lowercase letter, or something other than a letter in the English alphabet, respectively.

>>> case('Android')
'capitalized'
>>> case('3M')
'unknown'

5.25 Implement function leap() that takes one input argument—a year—and returns True
if the year is a leap year and False otherwise. (A year is a leap year if it is divisible by 4 but
not by 100, unless it is divisible by 400 in which case it is a leap year. For example, 1700,
1800 and 1900 are not leap years but 1600 and 2000 are.)

>>> leap(2008)
True
>>> leap(1900)
False
>>> leap(2000)
True

5.26 Rock, Paper, Scissors is a two-player game in which each player chooses one of three
items. If both players choose the same item, the game is tied. Otherwise, the rules that
determine the winner are:
(a) Rock always beats Scissors (Rock crushes Scissors)
(b) Scissors always beats Paper (Scissors cut Paper)
(c) Paper always beats Rock (Paper covers Rock)

Implement function rps() that takes the choice ('R', 'P', or 'S') of player 1 and the
choice of player 2, and returns −1 if player 1 wins, 1 if player 2 wins, or 0 if there is a tie.

www.ebook3000.com

http://www.ebook3000.org

158 Chapter 5 Execution Control Structures

>>> rps('R', 'P')
1
>>> rps('R', 'S')
-1
>>> rps('S', 'S')
0

5.27 Write function letter2number() that takes as input a letter grade (A, B, C, D, F,
possibly with a − or +) and returns the corresponding number grade. The numeric values
for A, B, C, D, and F are 4, 3, 2, 1, 0. A+ increases the number grade value by 0.3 and a−
decreases it by 0.3.

>>> letter2number('A-')
3.7
>>> letter2number('B+')
3.3
>>> letter2number('D')
1.0

5.28 Write function geometric() that takes a list of integers as input and returns True if
the integers in the list form a geometric sequence. A sequence a0, a1, a2, a3, a4, . . . , an−2,
an − 1 is a geometric sequence if the ratios a1/a0, a2/a1, a3/a2, a4/a3, . . . , an−1/an−2
are all equal.

>>> geometric([2, 4, 8, 16, 32, 64, 128, 256])
True
>>> geometric([2, 4, 6, 8])
False

5.29 Write function lastfirst() that takes one argument—a list of strings of the format
<LastName, FirstName>—and returns a list consisting two lists:
(a) A list of all the first names
(b) A list of all the last names

>>> lastfirst(['Gerber, Len', 'Fox, Kate', 'Dunn, Bob'])
[['Len', 'Kate', 'Bob'], ['Gerber', 'Fox', 'Dunn']]

5.30 Develop the function many() that takes as input the name of a file in the current
directory (as a string) and outputs the number of words of length 1, 2, 3, and 4. Test your
function on file sample.txt.

File: sample.txt >>> many('sample.txt')
Words of length 1 : 2
Words of length 2 : 5
Words of length 3 : 1
Words of length 4 : 10

5.31 Write a function subsetSum() that takes as input a list of positive numbers and a
positive number target. Your function should return True if there are three numbers in
the list that add up to target. For example, if the input list is [5, 4, 10, 20, 15, 19]
and target is 38, then True should be returned since 4 + 15 + 19 = 38. However, if

Chapter 5 Problems 159

the input list is the same but the target value is 10, then the returned value should be False
because 10 is not the sum of any three numbers in the given list.

>>> subsetSum([5, 4, 10, 20, 15, 19], 38)
True
>>> subsetSum([5, 4, 10, 20, 15, 19], 10)
False

5.32 Implement function fib() that takes a nonnegative integer n as input and returns the
nth Fibonacci number.

>>> fib(0)
1
>>> fib(4)
5
>>> fib(8)
34

5.33 Implement a function mystery() that takes as input a positive integer n and answers
this question: How many times can n be halved (using integer division) before reaching 1?
This value should returned.

>>> mystery(4)
2
>>> mystery(11)
3
>>> mystery(25)
4

5.34 Write a function statement() that takes as input a list of floating-point numbers, with
positive numbers representing deposits to and negative numbers representing withdrawals
from a bank account. Your function should return a list of two floating-point numbers; the
first will be the sum of the deposits, and the second (a negative number) will be the sum of
the withdrawals.

>>> statement([30.95, -15.67, 45.56, -55.00, 43.78])
[120.29, -70.67]

5.35 Implement function pixels() that takes as input a two-dimensional list of nonnega-
tive integer entries (representing the values of pixels of an image) and returns the number of
entries that are positive (i.e., the number of pixels that are not dark). Your function should
work on two-dimensional lists of any size.

>>> l = [[0, 156, 0, 0], [34, 0, 0, 0], [23, 123, 0, 34]]
>>> pixels(l)
5
>>> l = [[123, 56, 255], [34, 0, 0], [23, 123, 0], [3, 0, 0]]
>>> pixels(l)
7

5.36 Implement function prime() that takes a positive integer as input and returns True
if it is a prime number and False otherwise.

www.ebook3000.com

http://www.ebook3000.org

160 Chapter 5 Execution Control Structures

>>> prime(2)
True
>>> prime(17)
True
>>> prime(21)
False

5.37 Write function mssl() (minimum sum sublist) that takes as input a list of integers.
It then computes and returns the sum of the maximum sum sublist of the input list. The
maximum sum sublist is a sublist (slice) of the input list whose sum of entries is largest.
The empty sublist is defined to have sum 0. For example, the maximum sum sublist of the
list

[4, -2, -8, 5, -2, 7, 7, 2, -6, 5]
is [5, -2, 7, 7, 2] and the sum of its entries is 19.

>>> l = [4, -2, -8, 5, -2, 7, 7, 2, -6, 5]
>>> mssl(l)
19
>>> mssl([3,4,5])
12
>>> mssl([-2,-3,-5])
0

In the last example, the maximum sum sublist is the empty sublist because all list items are
negative.

5.38 Write function collatz() that takes a positive integer x as input and prints the Collatz
sequence starting at x. A Collatz sequence is obtained by repeatedly applying this rule to
the previous number x in the sequence:

x =

{
x/2 if x is even
3x+ 1 if x is odd.

Your function should stop when the sequence gets to number 1. Note: It is an open question
whether the Collatz sequence of every positive integer always ends at 1.

>>> collatz(10)
10
5
16
8
4
2
1

5.39 Write function exclamation() that takes as input a string and returns it with this
modification: Every vowel is replaced by four consecutive copies of itself and an exclama-
tion mark (!) is added at the end.

>>> exclamation('argh')
'aaaargh!'
>>> exclamation('hello')
'heeeelloooo!'

Chapter 5 Problems 161

5.40 The constant π is an irrational number with value approximately 3.1415928 . . . The
precise value of π is equal to this infinite sum:

π = 4/1− 4/3 + 4/5− 4/7 + 4/9− 4/11 + . . .

We can get a good approximation of π by computing the sum of the first few terms.Write
a function approxPi() that takes as input a float-value error and approximates constant π
within error by computing the preceding sum, term by term, until the difference between
the current sum and the previous sum (with one less term) is no greater than error. The
function should return the new sum.

>>> approxPi(0.01)
3.1465677471829556
>>> approxPi(0.0000001)
3.1415927035898146

5.41 A polynomial of degree n with coefficients a0, a1, a2, a3, . . . , an is the function

p(x) = a0 + a1x+ a2x
2 + a3 ∗ x3 + . . . + an ∗ xn

This function can be evaluated at different values of x. For example, if p(x) = 1+2x+
x2, then p(2) = 1+2 ∗ 2+ 22 = 9. If p(x) = 1+ x2 + x4, then p(2) = 21 and p(3) = 91.

Write a function poly() that takes as input a list of coefficients a0, a1, a2, a3, . . . , an
of a polynomial p(x) and a value x. The function will return p(x), which is the value of the
polynomial when evaluated at x. Note that the usage below is for the three examples shown.

>>> poly([1, 2, 1], 2)
9
>>> poly([1, 0, 1, 0, 1], 2)
21
>>> poly([1, 0, 1, 0, 1], 3)
91

5.42 Implement function primeFac() that takes as input a positive integer n and returns a
list containing all the numbers in the prime factorization of n. (The prime factorization of
a positive integer n is the unique list of prime numbers whose product is n.)

>>> primeFac(5)
[5]
>>> primeFac(72)
[2, 2, 2, 3, 3]

5.43 Implement function evenrow() that takes a two-dimensional list of integers and re-
turns True if each row of the table sums up to an even number and False otherwise (i.e.,
if some row sums up to an odd number).

>>> evenrow([[1, 3], [2, 4], [0, 6]])
True
>>> evenrow([[1, 3, 2], [3, 4, 7], [0, 6, 2]])
True
>>> evenrow([[1, 3, 2], [3, 4, 7], [0, 5, 2]])
False

www.ebook3000.com

http://www.ebook3000.org

162 Chapter 5 Execution Control Structures

5.44 A substitution cipher for the digits 0, 1, 2, 3, . . . , 9 substitutes each digit in 0, 1, 2,
3, . . . , 9 with another digit in 0, 1, 2, 3, . . . , 9. It can be represented as a 10-digit string
specifying how each digit in 0, 1, 2, 3, . . . , 9 is substituted. For example, the 10-digit string
'3941068257' specifies a substitution cipher in which digit 0 is substituted with digit 3, 1
with 9, 2 with 4, and so on. To encrypt a nonnegative integer, substitute each of its digits
with the digit specified by the encryption key.

Implement function cipher() that takes as input a 10-digit string key and a digit string
(i.e., the clear text to be encrypted) and returns the encryption of the clear text.

>>> encrypt('3941068257', '132')
'914'
>>> encrypt('3941068257', '111')
'999'

5.45 The function avgavg() takes as input a list whose items are lists of three numbers.
Each three-number list represents the three grades a particular student received for a course.
For example, here is an input list for a class of four students:

[[95,92,86], [66,75,54],[89, 72,100],[34,0,0]]

The function avgavg() should print, on the screen, two lines. The first line will contain a
list containing every student’s average grade. The second line will contain just one number:
the average class grade, defined as the average of all student average grades.

>>> avgavg([[95, 92, 86], [66, 75, 54],[89, 72, 100], [34, 0, 0]])
[91.0, 65.0, 87.0, 11.333333333333334]
63.5833333333

5.46 An inversion in a sequence is a pair of entries that are out of order. For example, the
characters F and D form an inversion in string 'ABBFHDL' because F appears before D; so
do characters H and D. The total number of inversions in a sequence (i.e., the number of
pairs that are out of order) is a measure of how unsorted the sequence is. The total number
of inversions in 'ABBFHDL' is 2. Implement function inversions() that takes a sequence
(i.e., a string) of uppercase characters A through Z and returns the number of inversions in
the sequence.

>>> inversions('ABBFHDL')
2
>>> inversions('ABCD')
0
>>> inversions('DCBA')
6

5.47 Write function d2x() that takes as input a nonnegative integer n (in the standard
decimal representation) and an integer x between 2 and 9 and returns a string of digits that
represents the base-x representation of n.

>>> d2x(10, 2)
'1010'
>>> d2x(10, 3)
'101'
>>> d2x(10, 8)
'12'

Chapter 5 Problems 163

5.48 Let list1 and list2 be two lists of integers. We say that list1 is a sublist of list2
if the elements in list1 appear in list2 in the same order as they appear in list1, but
not necessarily consecutively. For example, if list1 is defined as

[15, 1, 100]

and list2 is defined as

[20, 15, 30, 50, 1, 100]

then list1 is a sublist of list2 because the numbers in list1 (15, 1, and 100) appear in
list2 in the same order. However, list

[15, 50, 20]

is not a sublist of list2.
Implement function sublist() that takes as input lists list1 and list2 and returns

True if list1 is a sublist of list2, and False otherwise.

>>> sublist([15, 1, 100], [20, 15, 30, 50, 1, 100])
True
>>> sublist([15, 50, 20], [20, 15, 30, 50, 1, 100])
False

5.49 The Heron method is a method the ancient Greeks used to compute the square root of
a number n. The method generates a sequence of numbers that represent better and better
approximations for

√
n. The first number in the sequence is an arbitrary guess; every other

number in the sequence is obtained from the previous number prev using the formula

1

2
(prev+

n

prev
)

Write function heron() that takes as input two numbers: n and error. The function should
start with an initial guess of 1.0 for

√
n and then repeatedly generate better approximations

until the difference (more precisely, the absolute value of the difference) between successive
approximations is at most error.

>>> heron(4.0, 0.5)
2.05
>>> heron(4.0, 0.1)
2.000609756097561

www.ebook3000.com

http://www.ebook3000.org

CHAPTER

6Containers and
Randomness
6.1 Dictionaries 166

6.2 Sets 177

6.3 Character Encodings and Strings 181

6.4 Module random 186

Case Study: Games of Chance 190

Chapter Summary 190

Solutions to Practice Problems 190

Exercises 194

Problems 195

THE FOCUS OF THIS CHAPTER is on the other built-in container classes
available in Python. While lists are useful general-purpose containers,
there are situations when they are awkward or inefficient to use. For this
reason, Python provides other built-in container classes.

In a dictionary container, values stored in the container can be
indexed using user-specified indexes we call keys. Dictionaries have many
different uses, including counting, and they are general-purpose
containers just as list containers are. In addition to dictionaries, we also
explain when and how to use the set built-in container classes.

We also come back to strings one more time and look at them as
containers of characters. In today’s interconnected world, text is created in
one place and read in another, and computers have to be able to deal with
encoding and decoding characters from different writing systems. We
introduce Unicode as the current standard for encoding characters.

In order to introduce a whole new class of problems and applications,
including computer games, we end this chapter with a discussion of how
to generate “random” numbers.

165

www.ebook3000.com

http://www.ebook3000.org

166 Chapter 6 Containers and Randomness

6.1 Dictionaries
We start the chapter by introducing the very important dictionary container built-in type.

User-Defined Indexes as Motivation for Dictionaries
Supposewe need to somehow store employee records for a companywith 50,000 employees.
Ideally, we would like to be able to access each employee’s record using only the employee’s
Social Security Number (SSN) or ID number, like this:

>>> employee[987654321]
['Yu', 'Tsun']
>>> employee[864209753]
['Anna', 'Karenina']
>>> employee[100010010]
['Hans', 'Castorp']

At index 987654321 of the container named employee is stored the first and last name of the
employee with SSN 987-65-4321, Yu Tsun. The first and last name are stored in a list, which
could contain additional information, such as address, date of birth, position, and so on. At
index 864209753 and 100010010 will be stored the records for ['Anna', 'Karenina']
and ['Hans', 'Castorp']. In general, stored at index i will be the record (first and last
name) of the employee with SSN i.

If employee were a list, it would have to be a very big list. It would need to be
larger than the integer value of the largest employee SSN. Since SSNs are 9-digit numbers,
employee would need to be as large as 1, 000, 000, 000. That’s big. Even if our system can
accommodate a list so large, it would be a huge waste: Most of the list will be empty. Only
50, 000 list positions will be used. There is one more problem with lists: SSNs are not really
integer values since they are typically denoted using dashes, such as 987-65-4321, and can
start with a 0, such as 012-34-5678. Values like 987-65-4321 and 012-34-5678 are better
represented as string values '012-34-5678' or '987-65-4321'.

The issue is that list items are meant to be accessed using an integer index that repre-
sents the item’s position in a collection. What we want is something else: We would like to
access items using “user-defined indexes,” such as '012-34-5678' or '987-65-4321', as
illustrated in Figure 6.1.

Figure 6.1 Motivation for a
dictionary. A dictionary is a
container that stores items
that are accessible using
“user-specified” indexes.

index '987-65-4321' '864-20-9753' '100-01-0010'

item ['Anna','Karenina'] ['Yu','Tsun'] ['Hans','Castorp']

Python has a built-in container type called a dictionary that enables us to use “user-
defined indexes”. Here is how we can define a dictionary named employee that behaves as
we would like:

>>> employee = {
'864-20-9753': ['Anna', 'Karenina'],
'987-65-4321': ['Yu', 'Tsun'],
'100-01-0010': ['Hans', 'Castorp']}

We wrote the assignment statement using multiple lines to clearly emphasize that “index”
'864-20-9753' corresponds to value ['Anna', 'Karenina'], index '987-65-4321'

Section 6.1 Dictionaries 167

corresponds to value ['Yu', 'Tsun'], and so on. Let’s check that the dictionary employee
works as we want:

>>> employee['987-65-4321']
['Yu', 'Tsun']
>>> employee['864-20-9753']
['Anna', 'Karenina']

The dictionary employee differs from a list in that an item in a dictionary is accessed using a
user-specified “index” rather than the index representing the items position in the container.
We discuss this more precisely next.

Dictionary Class Properties
The Python dictionary type, denoted dict, is a container type, just like list and str. A
dictionary contains (key, value) pairs. The general format of the expression that evaluates
to a dictionary object is:

{<key 1>:<value 1>, <key 2>:<value 2>, ..., <key i>:<value i>}

This expression defines a dictionary containing i key:value pairs. The key and the value are
both objects. The key is the “index” that is used to access the value. So, in our dictionary
employee, '100-01-0010' is the key and ['Hans', 'Castorp'] is the value.

The (key, value) pairs in a dictionary expression are separated by commas and enclosed
in curly braces (as opposed to square brackets, [], used for lists.) The key and value in each
(key, value) pair are separated by a colon (:) with the key being to the left and the value to
the right of the colon. Keys can be of any type as long as the type is immutable. So string
and number objects can be keys, whereas objects of type list cannot. The value can be of
any type.

We often say that a keymaps to its value or is the index of the value. Because dictionaries
can be viewed as a mapping from keys to values, they are often referred to as maps. For
example, here is a dictionary mapping day abbreviations 'Mo', 'Tu', 'We', and 'Th' (the
keys) to the corresponding days 'Monday', 'Tuesday', 'Wednesday', and 'Thursday'
(the values):

>>> days = {'Mo':'Monday', 'Tu':'Tuesday', 'We':'Wednesday',
'Th':'Thursday'}

The variable days refers to a dictionary, illustrated in Figure 6.2, with four (key, value)
pairs. The (key, value) pair 'Mo':'Monday' has key 'Mo' and value 'Monday', the (key,
value) pair 'Tu':'Tuesday' has key 'Tu' and value 'Tuesday', etc.

key 'Mo' 'Tu' 'We' 'Th'

value 'Monday' 'Tuesday' 'Wednesday' 'Thursday'

Figure 6.2 Dictionary
days. The dictionary
maps string keys 'Mo',
'Tu', 'We', and 'Th' to
string values 'Monday',
'Tuesday', and so on.

Values in the dictionary are accessed by key, not index (or offset). To access value
'Wednesday' in dictionary days, we use key 'We'

>>> days['We']
'Wednesday'

www.ebook3000.com

http://www.ebook3000.org

168 Chapter 6 Containers and Randomness

and not index 2

>>> days[2]
Traceback (most recent call last):
File "<pyshell#27>", line 1, in <module>
days[2]

KeyError: 2

The KeyError exception tells us that we are using an illegal, in this case undefined, key.
The (key, value) pairs in the dictionary are not ordered, and no ordering assumption can

be made. For example, we could define a dictionary d as:

>>> d = {'b':23, 'a':34, 'c':12}

However, when we evaluate d, we may not get the (key, value) pairs in the order in which
they were defined:

>>> d
{'a': 34, 'c': 12, 'b': 23}

Dictionaries are mutable, like lists. A dictionary can be modified to contain a new (key,
value) pair:

>>> days['Fr'] = 'friday'
>>> days
{'Fr': 'friday', 'Mo': 'Monday', 'Tu': 'Tuesday',
'We': 'Wednesday', 'Th': 'Thursday'}

This implies that dictionaries have dynamic size. The dictionary can also be modified so
that an existing key refers to a new value:

>>> days['Fr'] = 'Friday'
>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'Tu': 'Tuesday',
'We': 'Wednesday', 'Th': 'Thursday'}

An empty dictionary can be defined using the default dict() constructor or simply as:

>>> d = {}

Practice Problem
6.1

Write a function birthState() that takes as input the full name of a recent U.S. president
(as a string) and returns his birth state. You should use this dictionary to store the birth state
for each recent president:

{'Barack Hussein Obama II':'Hawaii',
'George Walker Bush':'Connecticut',
'William Jefferson Clinton':'Arkansas',
'George Herbert Walker Bush':'Massachussetts',
'Ronald Wilson Reagan':'Illinois',
'James Earl Carter, Jr':'Georgia'}

>>> birthState('Ronald Wilson Reagan')
'Illinois'

Section 6.1 Dictionaries 169

Dictionary Operators
The dictionary class supports some of the same operators that the list class supports. We
already saw that the indexing operator ([]) can be used to access a value using the key as
the index:

>>> days['Fr']
'Friday'

The indexing operator can also be used to change the value corresponding to a key or to add
a new (key, value) pair to the dictionary:

>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'Tu': 'Tuesday',
'We': 'Wednesday', 'Th': 'Thursday'}
>>> days['Sa'] = 'Sat'
>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'Tu': 'Tuesday',
'We': 'Wednesday', 'Th': 'Thursday', 'Sa': 'Sat'}

The length of a dictionary (i.e., the number of (key, value) pairs in it) can be obtained using
the len function:

>>> len(days)
6

The in and not in operators are used to check whether an object is a key in the dictionary:

>>> 'Fr' in days
True
>>> 'Su' in days
False
>>> 'Su' not in days
True

Table 6.1 shows some of the operators that can be used with dictionaries.

Operation Explanation
k in d True if k is a key in dictionary d, else False
k not in d False if k is a key in dictionary d, else True
d[k] Value corresponding to key k in dictionary d
len(d) Number of (key, value) pairs in dictionary d

Table 6.1 Class dict
operators. The usage and
explanation for commonly
used dictionary operators
are shown.

There are operators that the list class supports but the class dict does not. For ex-
ample, the indexing operator [] cannot be used to get a slice of a dictionary. This makes
sense: A slice implies an order, and there is no order in a dictionary. Also not supported are
operators + and *, among others.

Practice Problem
6.2

Implement function rlookup() that provides the reverse lookup feature of a phone book.
Your function takes, as input, a dictionary representing a phone book. In the dictionary,
phone numbers (keys) are mapped to individuals (values). Your function should provide a
simple user interface through which a user can enter a phone number and obtain the first
and last name of the individual assigned that number.

www.ebook3000.com

http://www.ebook3000.org

170 Chapter 6 Containers and Randomness

>>> rphonebook = {'(123)456-78-90':['Anna','Karenina'],
'(901)234-56-78':['Yu', 'Tsun'],
'(321)908-76-54':['Hans', 'Castorp']}

>>> rlookup(rphonebook)
Enter phone number in the format (xxx)xxx-xx-xx: (123)456-78-90
('Anna', 'Karenina')
Enter phone number in the format (xxx)xxx-xx-xx: (453)454-55-00
The number you entered is not in use.
Enter phone number in the format (xxx)xxx-xx-xx:

Dictionary Methods
While the list and dict class share quite a few operators, there is only one method that
they share: pop(). This method takes a key, and if the key is in the dictionary, it removes
the associated (key, value) pair from the dictionary and returns the value:

>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'Tu': 'Tuesday',
'We': 'Wednesday', 'Th': 'Thursday', 'Sa': 'Sat'}
>>> days.pop('Tu')
'Tuesday'
>>> days.pop('Fr')
'Friday'
>>> days
{'Mo': 'Monday', 'We': 'Wednesday', 'Th': 'Thursday',
'Sa': 'Sat'}

We now introduce some more dictionary methods. When dictionary d1 calls method
update() with input argument dictionary d2, all the (key, value) pairs of d2 are added to
d1, possibly writing over (key, value) pairs of d1. For example, suppose we have a dictionary
of our favorite days of the week:

>>> favorites = {'Th':'Thursday', 'Fr':'Friday','Sa':'Saturday'}

We can add those days to our days dictionary:

>>> days.update(favorites)
>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'We': 'Wednesday',
'Th': 'Thursday', 'Sa': 'Saturday'}

The (key, value) pair 'Fr':'Friday' has been added to days and the (key, value) pair
'Sa':'Saturday' has replaced the pair 'Sa':'Sat', originally in dictionary days. Note
that only one copy of (key, value) pair 'Th':'Thursday' can be in the dictionary.

Particularly useful dictionary methods are keys(), values(), and items(): They re-
turn the keys, values, and (key, value) pairs, respectively, in the dictionary. To illustrate how
to use these methods, we use dictionary days defined as:

>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'We': 'Wednesday',
'Th': 'Thursday', 'Sa': 'Saturday'}

Section 6.1 Dictionaries 171

The method keys() returns the keys of the dictionary:

>>> keys = days.keys()
>>> keys
dict_keys(['Fr', 'Mo', 'We', 'Th', 'Sa'])

The container object returned by method keys() is not a list. Let’s check its type:

>>> type(days.keys())
<class 'dict_keys'>

OK, it’s a type we have not seen before. Do we really have to learn everything there is to
know about this new type? At this point, not necessarily. We only really need to understand
its usage. So, how is the object returned by the keys() method used? It is typically used to
iterate over the keys of the dictionary, for example:

>>> for key in days.keys():
print(key, end=' ')

Fr Mo We Th Sa

Thus, the dict_keys class supports iteration. In fact, when we iterate directly over a dic-
tionary, as in:

>>> for key in days:
print(key, end=' ')

Fr Mo We Th Sa

the Python interpreter translates the statement for key in days to the statement for key
in days.keys() before executing it.

Table 6.2 lists some of the commonly used methods that the dictionary class supports;
as usual, you can learn more by looking at the online documentation or by typing

>>> help(dict)
...

in the interpreter shell. The dictionary methods values() and items() shown in Table 6.2
also return objects that we can iterate over. The method values() is typically used to iterate
over the values of a dictionary:

>>> for value in days.values():
print(value, end=', ')

Friday, Monday, Wednesday, Thursday, Saturday,

Operation Explanation
d.items() Returns a view of the (key, value) pairs in d as tuples
d.get(k) Returns the value of key k, equivalent to d[k]
d.keys() Returns a view of the keys of d
d.pop(k) Removes the (key, value) pair with key k from d and

returns the value
d.update(d2) Adds the (key, value) pairs of dictionary d2 to d
d.values() Returns a view of the values of d

Table 6.2 Methods of the
dict class. Listed are
some commonly used
methods of the dictionary
class. d refers to a
dictionary.

www.ebook3000.com

http://www.ebook3000.org

172 Chapter 6 Containers and Randomness

The method items() returns a container that contains tuple objects, one for each (key,
value) pair:

>>> days.items()
dict_items([('We', 'Wednesday'), ('Mo', 'Monday'),

('Th', 'Thursday'), ('Tu', 'Tuesday')])

This method is typically used to iterate over the (key, value) pairs of the dictionary:

>>> for item in days.items():
print(item, end='; ')

('Fr', 'Friday'); ('Mo', 'Monday'); ('We', 'Wednesday');
('Th', 'Thursday'); ('Sa', 'Saturday');

DETOUR
View Objects

The objects returned by methods keys(), values(), and items() are referred
to as view objects. View objects provide a dynamic view of the dictionary’s keys,
values, and (key, value) pairs, respectively. What this means is that when the dic-
tionary changes, the view reflects these changes.

For example, suppose we define dictionary days and view keys as:

>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'We': 'Wednesday',
'Th': 'Thursday', 'Sa': 'Saturday'}
>>> keys = days.keys()
>>> keys
dict_keys(['Fr', 'Mo', 'We', 'Th', 'Sa'])

The name keys refers to a view of the keys of dictionary days. Now let’s delete a
key (and associated value) in dictionary days:

>>> del(days['Mo'])
>>> days
{'Fr': 'Friday', 'We': 'Wednesday', 'Th': 'Thursday',
'Sa': 'Saturday'}

Note that the view keys has changed as well:

>>> keys
dict_keys(['Fr', 'We', 'Th', 'Sa'])

The container objects returned by keys(), value(), and items() have types that also
support various setlike operations, like union and intersection. These operations allow us
to, say, combine the keys of two dictionaries or find the values common to both dictionaries.
We discuss those operations in more detail in Section 6.2, when we cover the set built-in
type.

Section 6.1 Dictionaries 173

A Dictionary as a Substitute for the Multiway if Statement
When we introduced dictionaries at the start of this section, our motivation was the need for
a container with user-defined indexes. We now show alternate uses for dictionaries.

Suppose we would like to develop a small function, named complete(), that takes the
abbreviation of a day of week, such as 'Tu', and returns the corresponding day, which for
input 'Tu' would be 'Tuesday':

>>> complete('Tu')
'Tuesday'

One way to implement the function would be to use a multiway if statement:

def complete(abbreviation):
'returns day of the week corresponding to abbreviation'
if abbreviation == 'Mo':

return 'Monday'
elif abbreviation == 'Tu':

return 'Tuesday'
elif ...

...
else: # abbreviation must be Su

return 'Sunday'

We omit part of the implementation, because it is long, because you should be able to finish
it, and also because it is tedious to read and write. We also omit it because it is not an
effective way to implement the function.

The main problem with the implementation is that it is simply overkill to use a seven-
way if statement to implement what is really a “mapping” from day abbreviations to the
corresponding days. We now know how to implement such a mapping using a dictionary.
Here is a better implementation of function complete():

Module: ch6.py
1 def complete(abbreviation):
2 'returns day of the week corresponding to abbreviation'
3

4 days = {'Mo': 'Monday', 'Tu':'Tuesday', 'We': 'Wednesday',
5 'Th': 'Thursday', 'Fr': 'Friday', 'Sa': 'Saturday',
6 'Su':'Sunday'}
7

8 return days[abbreviation]

Dictionary as a Collection of Counters
An important application of the dictionary type is its use in computing the number of oc-
currences of “things” in a larger set. A search engine, for example, may need to compute
the frequency of each word in a web page in order to calculate its relevance with respect to
search engine queries.

On a smaller scale, suppose that we would like to count the frequency of each name in
a list of student names such as:

>>> students = ['Cindy', 'John', 'Cindy', 'Adam', 'Adam',
'Jimmy', 'Joan', 'Cindy', 'Joan']

www.ebook3000.com

http://www.ebook3000.org

174 Chapter 6 Containers and Randomness

Figure 6.3 Dynamically
created counters.
Counters are created
dynamically, in the course
of iterating over the list
students. When the first
item, 'Cindy', is visited, a
counter for string 'Cindy'
is created. When the second
item, 'John', is visited,
a counter for 'John' is
created. When the third
item, 'Cindy', is visited,
the counter corresponding
to 'Cindy' is incremented.

After visiting 'Cindy':
key 'Cindy'

value 1

After visiting 'John':
key 'Cindy' 'John'

value 1 1

After visiting 'Cindy':
key 'Cindy' 'John'

value 2 1

More precisely, we would like to implement a function frequency() that takes a list such
as students as input and computes the number of occurrences of each distinct list item.

As usual, there are different ways to implement function frequency(). However, the
best way is to have a counter for each distinct item in the list and then iterate over the items
in the list: For each visited item, the corresponding counter is incremented. In order for this
to work, we need to answer three questions:

1. How do we know how many counters we need?
2. How do we store all the counters?
3. How do we associate a counter with a list item?

The answer to the first question is not to worry about how many counters we need but
to create them dynamically, as needed. In other words, we create a counter for an item
only when, in the course of iterating over the list, we encounter the item for the first time.
Figure 6.3 illustrates the states of the counters after visiting the first, second, and third name
in list students.

Practice Problem
6.3

Draw the state of the counters after visiting the next three names in list students. Make a
drawing after visiting 'Adam', another after visiting the second 'Adam', and still another
after visiting 'Jimmy' using Figure 6.3 as your model.

Figure 6.3 gives us an insight on how to answer the second question: We can use a
dictionary to store the counters. Each item counter will be a value in the dictionary, and
the item itself will be the key corresponding to the value. For example, the string 'Cindy'
would be the key and the corresponding value would be its counter. The dictionary mapping
of keys to values also answers the third question.

Now we can also decide what the function frequency() should return: a dictionary
mapping each distinct item in the list to the number of times it occurs in the list. Here is an
example usage of this function:

>>> students = ['Cindy', 'John', 'Cindy', 'Adam', 'Adam',
'Jimmy', 'Joan', 'Cindy', 'Joan']

Section 6.1 Dictionaries 175

>>> frequency(students)
{'John': 1, 'Joan': 2, 'Adam': 2, 'Cindy': 3, 'Jimmy': 1}

In the dictionary returned by the call frequency(students), shown in Figure 6.4, the keys
are the distinct names in the list students and the values are the corresponding frequencies:
so 'John' occurs once, 'Joan' occurs twice, and so on.

key 'Cindy' 'John' 'Adam' 'Jimmy' 'Joan'

value 3 1 2 1 2

Figure 6.4 Dictionary as a
container of counters.
This dictionary is the
output of running function
frequency() on list
students.

With all the pieces of the puzzle in place, we can now implement the function:

Module: ch6.py
1 def frequency(itemList):
2 'returns frequency of items in itemList'
3 counters = {} # initialize dictionary of counters
4

5 for item in itemList:
6

7 if item in counters: # counter for item already exists
8 counters[item] += 1 # so increment it
9 else: # counter for item is created

10 counters[item] = 1 # an initialized to 1
11

12 return counters

The dictionary counters is initialized to an empty dictionary in line 3. The for loop iterates
through the list of items itemList, and for every item:

• Either the counter corresponding to the item is incremented,
• Or, if no counter exists yet for the item, a counter corresponding to the item is created
and initialized to 1.

Note the use of an accumulator pattern to accumulate frequency counts.

Practice Problem
6.4

Implement function wordcount() that takes as input a text—as a string— and prints the
frequency of each word in the text. You may assume that the text has no punctuation and
words are separated by blank spaces.

>>> text = 'all animals are equal but some \
animals are more equal than others'
>>> wordCount(text)
all appears 1 time.
animals appears 2 times.
some appears 1 time.
equal appears 2 times.
but appears 1 time.
are appears 2 times.

www.ebook3000.com

http://www.ebook3000.org

176 Chapter 6 Containers and Randomness

others appears 1 time.
than appears 1 time.
more appears 1 time.

tuple Objects Can Be Dictionary Keys
In Practice Problem 6.2, we defined a dictionary that maps phone numbers to (the first and
last name of) individuals:

>>> rphonebook = {'(123)456-78-90':['Anna','Karenina'],
'(901)234-56-78':['Yu', 'Tsun'],
'(321)908-76-54':['Hans', 'Castorp']}

We used this dictionary to implement a reverse phone book lookup application: Given a
phone number, the app returns the individual that number is assigned to. What if, instead,
we wanted to build an app that implements a standard phone book lookup: Given a person’s
first and last name, the app would return the phone number assigned to that individual.

For the standard lookup app, a dictionary such as rphonebook is not appropriate. What
we need is a mapping from individuals to phone numbers. So let’s define a new dictionary
that is, effectively, the inverse of the mapping of rphonebook:

>>> phonebook = {['Anna','Karenina']:'(123)456-78-90',
['Yu', 'Tsun']:'(901)234-56-78',
['Hans', 'Castorp']:'(321)908-76-54'}

Traceback (most recent call last):
File "<pyshell#242>", line 1, in <module>
phonebook = {['Anna','Karenina']:'(123)456-78-90',

TypeError: unhashable type: 'list'

Oops, we have a problem. The problem is that we are trying to define a dictionary whose
keys are list objects. Recall that the list type is mutable and that dictionary keys must be
of a type that is immutable.

To the rescue comes the built-in tuple class. Because tuple objects are immutable,
they can be used as dictionary keys. Let’s get back to our original goal of constructing a
dictionary that maps (the first and last name of) individuals to phone numbers. We can now
use tuple objects as keys, instead of list objects:

>>> phonebook = {('Anna','Karenina'):'(123)456-78-90',
('Yu', 'Tsun'):'(901)234-56-78',
('Hans', 'Castorp'):'(321)908-76-54'}

>>> phonebook
{('Hans', 'Castorp'): '(321)908-76-54',
('Yu', 'Tsun'): '(901)234-56-78',
('Anna', 'Karenina'): '(123)456-78-90'}

Let’s check that the indexing operator works as we want:

>>> phonebook[('Hans', 'Castorp')]
'(321)908-76-54'

Now you can implement the standard phone book lookup tool.

Section 6.2 Sets 177

Practice Problem
6.5

Implement function lookup() that implements a phone book lookup application. Your
function takes, as input, a dictionary representing a phone book. In the dictionary, tuples
containing first and last names of individual (the keys) are mapped to strings containing
phone numbers (the values). Here is an example:

>>> phonebook = {('Anna','Karenina'):'(123)456-78-90',
('Yu', 'Tsun'):'(901)234-56-78',
('Hans', 'Castorp'):'(321)908-76-54'}

Your function should provide a simple user interface through which a user can enter the first
and last name of an individual and obtain the phone number assigned to that individual.

>>> lookup(phonebook)
Enter the first name: Anna
Enter the last name: Karenina
(123)456-78-90
Enter the first name: Yu
Enter the last name: Tsun
(901)234-56-78

6.2 Sets
In this section, we introduce another built-in Python container type. The set class has all
the properties of a mathematical set. It is used to store an unordered collection of items, with
no duplicate items allowed. The items must be immutable objects. The set type supports
operators that implement the classical set operations: set membership, intersection, union,
symmetric difference, and so on. It is thus useful whenever a collection of items is modeled
as a mathematical set. It is also useful for duplicate removal.

A set is defined using the same notation that is used for mathematical sets: a sequence
of items separated by commas and enclosed in curly braces: { }. Here is how we would
assign the set of three phone numbers (as strings) to variable phonebook1:

>>> phonebook1 = {'123-45-67', '234-56-78', '345-67-89'}

We check the value and type of phonebook1:

>>> phonebook1
{'123-45-67', '234-56-78', '345-67-89'}
>>> type(phonebook1)
<class 'set'>

If we had defined a set with duplicate items, they would be ignored:

>>> phonebook1 = {'123-45-67', '234-56-78', '345-67-89',
'123-45-67', '345-67-89'}

>>> phonebook1
{'123-45-67', '234-56-78', '345-67-89'}

www.ebook3000.com

http://www.ebook3000.org

178 Chapter 6 Containers and Randomness

Using the set Constructor to Remove Duplicates

The fact that sets cannot have duplicates gives us the first great application for sets: removing
duplicates from a list. Suppose we have a list with duplicates, such as this list of ages of
students in a class:

>>> ages = [23, 19, 18, 21, 18, 20, 21, 23, 22, 23, 19, 20]

To remove duplicates from this list, we can convert the list to a set, using the set constructor.
The set constructor will eliminate all duplicates because a set is not supposed to have them.
By converting the set back to a list, we get a list with no duplicates:

>>> ages = list(set(ages))
>>> ages
[18, 19, 20, 21, 22, 23]

There is, however, one major caveat: The elements have been reordered.

!
CAUTION

Empty Sets

To instantiate an empty set, we may be tempted to do this:

>>> phonebook2 = {}

When we check the type of phonebook2, however, we get a dictionary type:

>>> type(phonebook2)
<class 'dict'>

The problem here is that curly braces ({}) are used to define dictionaries as well,
and {} represents an empty dictionary. If that is that case, then two questions are
raised:

1. How does Python then differentiate between set and dictionary notation?
2. How do we create an empty set?

The answer to the first question is this: Even though both sets and dictionaries
are denoted using curly braces enclosing a comma-separated sequence of items,
the items in dictionaries are (key, value) pairs of objects separated by colons (:),
whereas the items in sets are not separated by colons.

The answer to the second question is that we have to use the set constructor
explicitly when creating an empty set:

>>> phonebook2 = set()

We check the value and type of phonebook2 to make sure that we have an empty
set:

>>> phonebook2
set()
>>> type(phonebook2)
<class 'set'>

Section 6.2 Sets 179

set Operators
The set class supports operators that correspond to the usual mathematical set operations.
Some are operators that can also be used with list, string, and dictionary types. For example,
the in and not in operators are used to test set membership:

>>> '123-45-67' in phonebook1
True
>>> '456-78-90' in phonebook1
False
>>> '456-78-90' not in phonebook1
True

The len() operator returns the size of the set:

>>> len(phonebook1)
3

Comparison operators ==, !=, <, <=, >, and >= are supported as well, but their meaning is
set-specific. Two sets are “equal” if and only if they have the same elements:

>>> phonebook3 = {'345-67-89','456-78-90'}
>>> phonebook1 == phonebook3
False
>>> phonebook1 != phonebook3
True

As shown in Figure 6.5, sets phonebook1 and phonebook3 do not contain the same ele-
ments.

phonebook1

123-45-67

234-56-78
345-67-89 456-78-90

phonebook3 phonebook2
Figure 6.5 Three phone
book sets. The Venn
diagram of sets
phonebook1, phonebook2,
and phonebook3 is shown.

A set is “less than or equal to” another set if it is a subset of it, and a set is “less than
another set” if it is a proper subset of it. So, for example:

>>> {'123-45-67', '345-67-89'} <= phonebook1
True

As Figure 6.5 shows, the set {'123-45-67', '345-67-89'} is a subset of set phonebook1.
However, phonebook1 is not a proper subset of phonebook1:

>>> phonebook1 < phonebook1
False

The mathematical set operations union, intersection, difference, and symmetric differ-
ence are implemented as set operators |, &, -, and ^, respectively. Each set operation takes
two sets and returns a new set. The union of two sets contains all elements that are in either
set:

>>> phonebook1 | phonebook3
{'123-45-67', '234-56-78', '345-67-89', '456-78-90'}

www.ebook3000.com

http://www.ebook3000.org

180 Chapter 6 Containers and Randomness

The intersection of two sets contains all elements that are in both sets:

>>> phonebook1 & phonebook3
{'345-67-89'}

The difference between two sets contains all elements that are in the first set but not the
second one:

>>> phonebook1 - phonebook3
{'123-45-67', '234-56-78'}

The symmetric difference of two sets contains all elements that are either in the first set or
in the second set, but not both:

>>> phonebook1 ^ phonebook3
{'123-45-67', '234-56-78', '456-78-90'}

Use Figure 6.5 to check that the set operators work as expected.
Before we move on to discussing the set class methods, we summarize in Table 6.3 the

commonly used set operators that we just covered.

Table 6.3 Class set
operators. Shown are the
usage and explanation
for commonly used set
operators.

Operation Explanation
x in s True if x is in set s, else False
x not in s False if x is in set s, else True
len(s) Returns the size of set s
s == t True if sets s and t contain the same elements, False

otherwise
s != t True if sets s and t do not contain the same elements,

False otherwise
s <= t True if every element of set s is in set t, False otherwise
s < t True if s <= t and s != t
s | t Returns the union of sets s and t
s & t Returns the intersection of sets s and t
s - t Returns the difference between sets s and t
s ^ t Returns the symmetric difference of sets s and t

set Methods
In addition to operators, the set class supports a number of methods. The set method
add() is used to add an item to a set:

>>> phonebook3.add('123-45-67')
>>> phonebook3
{'123-45-67', '345-67-89', '456-78-90'}

The method remove() is used to remove an item from a set:

>>> phonebook3.remove('123-45-67')
>>> phonebook3
{'345-67-89', '456-78-90'}

Finally, the method clear() is used to empty a set:

>>> phonebook3.clear()

Section 6.3 Character Encodings and Strings 181

We check that phonebook3 is indeed empty:

>>> phonebook3
set()

To learn more about the set class, read the online documentation or use the help() docu-
mentation function.

Practice Problem
6.6

Implement function sync() that takes a list of phone books (where each phone book is a
set of phone numbers) as input and returns a phone book (as a set) containing the union of
all the phone books.

>>> phonebook4 = {'234-56-78', '456-78-90'}
>>> phonebooks = [phonebook1, phonebook2, phonebook3, phonebook4]
>>> sync(phonebooks)
{'234-56-78', '456-78-90', '123-45-67', '345-67-89'}

6.3 Character Encodings and Strings
The string type, str, is the Python type for storing text values. In Chapters 2 and 4, we have
seen how to create string objects and manipulate them using string operators and methods.
The assumption then was that we were dealing with string objects containing English text.
That assumption helped make string processing intuitive, but it also hid the complexity and
richness of string representations. We now discuss the complexity of text representations
that is due to the huge number of symbols and characters in the world languages we speak
and write. We discuss specifically what kind of characters strings can contain.

Character Encodings
String objects are used to store text, that is, a sequence of characters. The characters could
be upper- and lowercase letters from the alphabet, digits, punctuation marks, and possibly
symbols like the dollar sign ($). As we saw in Chapter 2, in order to create a variable whose
value is the text ’An apple costs $0.99!’, we just need to do:

>>> text = 'An apple costs $0.99!'

The variable text then evaluates to the text:

>>> text
'An apple costs $0.99!'

While all this may sound very clean and straightforward, strings are somewhat messy. The
problem is that computers deal with bits and bytes, and string values need to be somehow
encoded with bits and bytes. In other words, each character of a string value needs to be
mapped to a specific bit encoding, and this encoding should map back to the character.

But why should we care about this encoding? As we saw in Chapters 2 and 4, manipulat-
ing strings is quite intuitive, and we certainly did not worry about how strings are encoded.
Most of the time, we do not have to worry about it. However, in a global Internet, documents
created in one location may need to be read in another. We need to know how to work with

www.ebook3000.com

http://www.ebook3000.org

182 Chapter 6 Containers and Randomness

characters from other writing systems, whether they are characters from other languages,
such as French, Greek, Arabic, or Chinese, or symbols from various domains, such as math,
science, or engineering. As importantly, we need to understand how strings are represented
because, as computer scientists, we do like to know what is below the hood.

ASCII
For many years, the standard encoding for characters in the English language was ASCII en-
coding. The American Standard Code for Information Interchange (ASCII) was developed
in the 1960s. It defines a numeric code for 128 characters, punctuation, and a few other
symbols common in the American English language. Table 6.4 shows the decimal ASCII
codes for the printable characters.

Let’s explain what the entries of this table mean. The decimal ASCII code for lowercase
a is 97. The & sign is encoded with decimal ASCII code 38. ASCII codes 0 through 32 and
127 include nonprintable characters, such as backspace (decimal code 8), horizontal tab
(decimal code 9), and line feed (decimal code 10). You can explore the ASCII encodings
using the Python function ord(), which returns the decimal ASCII code of a character:

>>> ord('a')
97

The sequence of characters of a string value (such as 'dad') is encoded as a sequence of
ASCII codes 100, 97, and 100. What is stored in memory is exactly this sequence of codes.
Of course, each code is stored in binary. As ASCII decimal codes go from 0 to 127, they
can be encoded with seven bits; because a byte (eight bits) is the smallest memory storage
unit, each code is stored in one byte.

For example, the decimal ASCII code for lowercase a is 97, which corresponds to binary
ASCII code 1100001. So, in the ASCII encoding, character a is encoded in a single byte with
the first bit being a 0 and the remaining bits being 1100001. The resulting byte 01100001
can be described more succinctly using a two-digit hex number 0x61 (6 for the leftmost
four bits, 0110, and 1 for the rightmost 4 bits, 0001). In fact, it it common to use hex ASCII
codes (as a shorthand for ASCII binary codes).

Table 6.4 ASCII encoding.
Printable ASCII characters
and their corresponding
decimal codes are shown.
The character for decimal
code 43, for example, is the
operator +. The character
for decimal code 32 is
the blank space, which is
displayed as a blank space.

32 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ' 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 x
41) 57 9 73 I 89 Y 105 i 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _ 111 o

Section 6.3 Character Encodings and Strings 183

The symbol &, for example, is encoded with decimal ASCII code 38, which corresponds
to binary code 0100110 or hex code 0x26.

Practice Problem
6.7

Write a function encoding() that takes a string as input and prints the ASCII code—in
decimal, hex, and binary notation—of every character in it.

>>> encoding('dad')
Char Decimal Hex Binary
d 100 64 1100100
a 97 61 1100001
d 100 64 1100100

The function chr() is the inverse of function ord(). It takes a numeric code and returns
the character corresponding to it.

>>> chr(97)
'a'

Practice Problem
6.8

Write function char(low, high) that prints the characters corresponding to ASCII deci-
mal codes i for all values of i from low up to and including high.

>>> char(62, 67)
62 : >
63 : ?
64 : @
65 : A
66 : B
67 : C

Unicode
ASCII is an American standard. As such, it does not provide for characters not in the Ameri-
can English language. There is no French ‘é’, Greek ‘Δ’, or Chinese ‘世’ in ASCII encoding.
Encodings other than ASCII were developed to handle different languages or groups of lan-
guages. This raises a problem, however:With the existence of different encodings, it is likely
that some encodings are not installed on a computer. In a globally interconnected world, a
text document that was created on one computer will often need to be read on another, a
continent away.What if the computer reading the document does not have the right encoding
installed?

Unicode was developed to be the universal character-encoding scheme. It covers all char-
acters in all written languages, modern or ancient, and includes technical symbols from sci-
ence, engineering, and mathematics, punctuation, and so on. In Unicode, every character
is represented by an integer code point. The code point is not necessarily the actual byte
representation of the character, however; it is just the identifier for the particular character.

For example, the code point for lowercase ‘k’ is the integer with hex value 0x006B,

www.ebook3000.com

http://www.ebook3000.org

184 Chapter 6 Containers and Randomness

which corresponds to decimal value 107. As you can see in Table 6.4, 107 is also the ASCII
code for letter ‘k’. Unicode conveniently uses a code point for ASCII characters that is equal
to their ASCII code.

How do you incorporate Unicode characters into a string? To include character ‘k’, for
example, you would use the Python escape sequence \u006B:

>>> '\u006B'
'k'

In the next example, the escape sequence \u0020 is used to denote the Unicode character
with code point 0x0020 (in hex, corresponding to decimal 32). This is, of course, the blank
space (see Table 6.4):

>>> 'Hello\u0020World !'
'Hello World !'

We now try a few examples in several different languages. Let’s start with my name in
Cyrillic:

>>> '\u0409\u0443\u0431\u043e\u043c\u0438\u0440'
'Љубомир'

Here is ‘Hello World!’ in Greek:

>>> '\u0393\u03b5\u03b9\u03b1\u0020\u03c3\u03b1\u03c2
\u0020\u03ba\u03cc\u03c3\u03bc\u03bf!'

'Γεια σας κόσμο!'

Finally, let’s write ‘Hello World!’ in Chinese:

>>> chinese = '\u4e16\u754c\u60a8\u597d!'
>>> chinese
'世界您好!'

DETOUR
String Comparisons, Revisited

Now that we know how strings are represented, we can understand how string
comparison works. First, the Unicode code points, being integers, give a natural
ordering to all the characters representable in Unicode. So, for example, the blank
space ‘ ’ is earlier in this ordering than Cyrillic character ‘Љ’ because the Unicode
code point for ‘ ’ (which is 0x0020) is a smaller integer than the Unicode code point
for ‘Љ’ (which is 0x0409):

>>> '\u0020' > '\u0409'
False
>>> '\u0020' < '\u0409'
True

Unicode was designed so that for any pair of characters from the same alpha-
bet, one that is earlier in the alphabet than the other will have a smaller Unicode
code point. For example, ‘a’ is before ‘d’ in the alphabet, and the code point for ‘a’
is smaller than the code point for ‘d’. In this way, the Unicode characters form an
ordered set of characters that is consistent with all the alphabets Unicode covers.

Section 6.3 Character Encodings and Strings 185

When two strings are compared, we have said that the comparison is done
using dictionary order. Another name for dictionary order is lexicographic order.
This order can be precisely defined, now that we understand that characters come
from an ordered set (Unicode). The word

a1a2a3 . . . ak

appears earlier in the lexicographic order than word

b1b2b3 . . . bl

if either:

• a1 = b1, a2 = b2, . . . , ak = bk, and k < l, or
• for the smallest index i for which ai and bi are different, the Unicode code
point for ai is smaller than the Unicode code point for bi.

Let’s check that the basic string operators work on this string.

>>> len(chinese)
5
>>> chinese[0]
'世'

String operators work regardless of the alphabet used in the string. Now let’s see whether
the ord() and chr() functions extend from ASCII to Unicode:

>>> ord(chinese[0])
19990
>>> chr(19990)
'世'

They do! Note that 19990 is the decimal value of hex value 0x4e16, which is of course
the Unicode code point of character 世. Thus, the built-in function ord() really takes a
Unicode character and outputs the decimal value of its Unicode code point, and chr() does
the inverse. The reason they both also work for ASCII characters is that the Unicode code
points for ASCII characters are, by design and as noted, the ASCII codes.

UTF-8 Encoding for Unicode Characters
AUnicode string is a sequence of code points that are numbers from 0 to 0x10FFFF. Unlike
ASCII codes, however, Unicode code points are not what is stored in memory. The rule for
translating a Unicode character or code point into a sequence of bytes is called an encoding.

There is not just one but several Unicode encodings: UTF-8, UTF-16, and UTF-32.
UTF stands for Unicode Transformation Format, and each UTF-x defines a different way to
map a Unicode code point to a byte sequence. UTF-8 has become the preferred encoding
for e-mail, web pages, and other applications where characters are stored or sent across a
network. In fact, the default encoding when you write Python 3 programs is UTF-8. One
of the features of UTF-8 is: Every ASCII character (i.e., every symbol in Table 6.4) has
a UTF-8 encoding that is exactly the 8-bit (1-byte) ASCII encoding. This means that an

www.ebook3000.com

http://www.ebook3000.org

186 Chapter 6 Containers and Randomness

ASCII text is a Unicode text encoded with the UTF-8 encoding.
In some situations, your Python program will receive text without a specified encoding.

This happens, for example, when the program downloads a text document from the World
Wide Web (as we will see in Chapter 11). In that case, Python has no choice but to treat the
“text” as a sequence of raw bytes stored in an object of type bytes. This is because files
downloaded from the web could be images, video, audio, and not just text.

Consider this content of a text file downloaded from the web:

>>> content
b'This is a text document\nposted on the\nWWW.\n'

Variable content refers to an object of type bytes. As you can verify, the letter b in the
front of the “string” indicates that:

>>> type(content)
<class 'bytes'>

To decode it to a string encoded using the UTF-8 Unicode encoding, we need to use the
decode() method of the bytes class:

>>> content.decode('utf-8')
'This is a text document\nposted on the\nWWW.\n'

If the method decode() is called without arguments, the default, platform-dependent en-
coding is used, which is UTF-8 for Python 3 (or ASCII for Python 2).

DETOUR
Files and Encodings

The third, optional, argument to the open() function, used to open a file, is the
encoding to use when reading, or writing, the text file. If not specified, the default
platform-dependent encoding will be used. This argument should be used only in
text mode; an error will occur if used for binary files. Let’s open file chinese.txt
by explicitly specifying the UTF-8 encoding:

>>> infile = open('chinese.txt', 'r', encoding='utf-8')
>>> print(infile.read())
你好世界!

(translation: Hello World!)

6.4 Module random
Random numbers are useful for running simulations in science, engineering, and finance.
They are needed in modern cryptographic protocols that provide computer security, com-
munication privacy, and authentication. They also are a necessary component in games of
chance, such as poker or blackjack, and help make computer games less predictable.

Truly random numbers are not easy to obtain. Most computer applications that require
random numbers use numbers generated by a pseudorandom number generator instead. The
“pseudo” in “pseudorandom” means fake, or not real. Pseudorandom number generators are

Section 6.4 Module random 187

programs that produce a sequence of numbers that “look” random and are good enough for
most applications that need random numbers.

In Python, pseudorandom number generators and associated tools are available through
the random module. As usual, if we need to use functions in the random module, we need
to import it first:

>>> import random

Next we describe a few functions in the random module that are particularly useful.

Choosing a Random Integer
We start with function randrange(), which takes a pair of integers a and b and returns
some number in the range from—and including—a up to—and not including—b with each
number in the range equally likely. Here is how we would use this function to simulate
several (six-sided) die tosses:

>>> random.randrange(1,7)
2
>>> random.randrange(1,7)
6
>>> random.randrange(1,7)
5
>>> random.randrange(1,7)
1
>>> random.randrange(1,7)
2

Practice Problem
6.9

Implement function guess() that takes as input an integer n and implements a simple,
interactive number guessing game. The function should start by choosing a random num-
ber in the range from 0 up to but not including n. The function will then repeatedly ask
the user to guess the chosen number; When the user guesses correctly, the function should
print a 'You got it.'message and terminate. Each time the user guesses incorrectly, the
function should help the user by printing message 'Too low.', or 'Too high.'.

>>> guess(100)
Enter your guess: 50
Too low.
Enter your guess: 75
Too high.
Enter your guess: 62
Too high.
Enter your guess: 56
Too low.
Enter your guess: 59
Too high.
Enter your guess: 57
You got it!

www.ebook3000.com

http://www.ebook3000.org

188 Chapter 6 Containers and Randomness

DETOUR
Randomness

We usually think of the result, heads or tails, of a coin toss as a random event.
Most games of chance depend on the generation of random events (die tosses,
card shuffling, roulette spins, etc.). The problem with these methods of generating
random events is that they are not appropriate for generating randomness quickly
enough for a running computer program. It is, in fact, not easy to get a computer
program to generate truly random numbers. For this reason, computer scientists
have developed deterministic algorithms called pseudorandom number generators
that generate numbers that “appear” random.

Choosing a Random “Real”
Sometimes what we need in an application is not a random integer but a random number
chosen from a given number interval. The function uniform() takes two numbers a and b
and returns a float number x such that a ≤ x ≤ b (assuming a ≤ b), with each float
value in the range equally likely. Here is how we would use it to obtain several random
numbers between 0 and 1:

>>> random.uniform(0,1)
0.9896941090637834
>>> random.uniform(0,1)
0.3083484771618912
>>> random.uniform(0,1)
0.12374451518957152

Practice Problem
6.10

There is a way to estimate the value of mathematical constant π by throwing darts at a dart-
board. It is not a good way to estimate π, but it is fun. Suppose that you have a dartboard of
radius 1 inside a 2× 2 square on the wall. Now throw darts at random and suppose that out
of n darts that hit the square, k hit the dartboard (see Figure 6.6.)

Figure 6.6 Dartboard
inside a square. Shown are
10 random dart hits with 8
lying inside the dartboard. In
this case, the estimate for π
would be: 4∗8

10
= 3.2.

·
·

·

·· ·
·
·
·

·
2

2

Because the darts were randomly thrown, the ratio k/n should approximate the ratio of
the area of the dartboard (π × 12) and the area of the square surrounding it (22). In other
words, we should have:

k

n
≈ π

4

Section 6.4 Module random 189

The formula can be rewritten so that it can be used to estimate π:

π ≈ 4k

n

Implement function approxPi() that takes as input an integer n, simulates n random
dart throws into the 2×2 square containing the dartboard, counts the number of darts hitting
the dartboard, and returns an estimate of π based on the count and n. Note: In order to sim-
ulate a random dart hit into the square, you just need to obtain random x and y coordinates
of the hit.

>>> approxPi(1000)
3.028
>>> approxPi(100000)
3.1409600000000002
>>> approxPi(1000000)
3.141702
>>>

Shuffling, Choosing, and Sampling at Random
Let’s illustrate a few more functions from the random module. The function shuffle()
shuffles, or permutes, the objects in a sequence not unlike how a deck of cards is shuffled
prior to a card game like blackjack. Each possible permutation is equally likely. Here is how
we can use this function to shuffle a list twice:

>>> lst = [1,2,3,4,5]
>>> random.shuffle(lst)
>>> lst
[3, 4, 1, 5, 2]
>>> random.shuffle(lst)
>>> lst
[1, 3, 2, 4, 5]

The function choice() allows us to choose an item from a container uniformly at ran-
dom. Given list

>>> lst = ['cat', 'rat', 'bat', 'mat']

here is how we would choose a list item uniformly at random:

>>> random.choice(lst)
'mat'
>>> random.choice(lst)
'bat'
>>> random.choice(lst)
'rat'
>>> random.choice(lst)
'bat'

If, instead of needing just one item, we want to choose a sample of size k, with every
sample equally likely, we would use the sample() function. It takes as input the container
and the number k.

www.ebook3000.com

http://www.ebook3000.org

190 Chapter 6 Containers and Randomness

Here is how we would choose random samples of list lst of size 2 or 3:

>>> random.sample(lst, 2)
['mat', 'bat']
>>> random.sample(lst, 2)
['cat', 'rat']
>>> random.sample(lst, 3)
['rat', 'mat', 'bat']

Case Study: Games of Chance
Games of chance such as poker and blackjack have transitioned to the digital age very suc-
cessfully. In Case Study CS.6, we show how to develop a blackjack application. As we
develop this application, we make use of several concepts introduced in this chapter: sets,
dictionaries, Unicode characters, and of course randomness through card shuffling.

Chapter Summary
This chapter starts by introducing several built-in Python container classes that complement
the string and list classes we have been using so far.

The dictionary class dict is a container of (key, value) pairs. One way to view a dictio-
nary is to see it as as a container that stores values that are accessible through user-specified
indexes called keys. Another is to see it as a mapping from keys to values. Dictionaries are
as useful as lists in practice. A dictionary can be used, for example, as a substitute for a
multiway conditional structure or as a collection of counters.

In some situations, the mutability of lists is a problem. For example, we cannot use lists
as keys of a dictionary because lists are mutable. We introduce the built-in class tuple,
which is essentially an immutable version of class list. We use tuple objects when we
need an immutable version of a list.

The last built-in container class covered in this book is the class set that implements
a mathematical set, that is, a container that supports mathematical set operations, such as
union and intersection. As all elements of a set must be distinct, sets can be used to easily
remove duplicates from other containers.

In this chapter, we also complete the coverage of Python’s built-in string type str that
we started in Chapter 2 and continued in Chapter 4. We describe the range of characters
that a string object can contain. We introduce the Unicode character encoding scheme, the
default in Python 3 (but not Python 2), which enables developers to work with strings that
use non-American English characters.

Finally, this chapter introduces the Standard Library module random. The module sup-
ports functions that return pseudorandom numbers, which are needed in simulations and
computer games. We also introduce randommodule functions shuffle(), choice(), and
sample() that enable us to do shuffling and sampling on container objects.

Solutions to Practice Problems
6.1 The function takes a president’s name (president) as input. This name maps to a
state. The mapping of presidents’ names to states is best described using a dictionary. After

Chapter 6 Solutions to Practice Problems 191

the dictionary is defined, the function simply returns the value corresponding to the key
president:

def birthState(president):
'returns the birth state of the given president'

states = {'Barack Hussein Obama II':'Hawaii',
'George Walker Bush':'Connecticut',
'William Jefferson Clinton':'Arkansas',
'George Herbert Walker Bush':'Massachussetts',
'Ronald Wilson Reagan':'Illinois',
'James Earl Carter, Jr':'Georgia'}

return states[president]

6.2 The reverse lookup service is implemented with an infinite, interactive loop pattern.
In each iteration of this loop, the user is requested to enter a number. The phone number
entered by the user is mapped, using the phone book, to a name. This name is then printed.

def rlookup(phonebook):
'''implements an interactive reverse phone book lookup service

phonebook is a dictionary mapping phone numbers to names'''
while True:

number = input('Enter phone number in the\
format (xxx)xxx-xx-xx: ')

if number in phonebook:
print(phonebook[number])

else:
print('The number you entered is not in use.')

6.3 See Figure 6.7.

key 'Cindy' 'John' 'Adam'

value 2 1 1

key 'Cindy' 'John' 'Adam'

value 2 1 2

key 'Cindy' 'John' 'Adam' 'Jimmy'

value 2 1 2 1

Figure 6.7 Counters
states. When string 'Adam'
is visited, (key, value) pair
('Adam', 1) is added
to the dictionary. When
another string 'Adam'
is visited, the value in this
same (key, value) pair is
incremented by one.
Another (key, value) pair
is added when visiting
string 'Jimmy'.

6.4 The first thing to do is split the text and obtain a list of words. Then the standard pattern
for counting using a dictionary of counter is used.

www.ebook3000.com

http://www.ebook3000.org

192 Chapter 6 Containers and Randomness

def wordCount(text):
'prints frequency of each word in text'

wordList = text.split() # split text into list of words
counters = {} # dictionary of counters

for word in wordList:
if word in counters: # counter for word exists

counters[word] += 1
else: # counter for word doesn't exist

counters[word] = 1

for word in counters: # print word counts
if counters[word] == 1:

print('{:8} appears {} time.'.format(word,\
counters[word]))

else:
print('{:8} appears {} times.'.format(word,\

counters[word]))

6.5 The infinite loop pattern is used to provide a long-running service. In every iteration,
the user is asked to enter a first and a last name, which are then used to build a tuple object.
This object is used as a key for the phone book dictionary. If the dictionary contains a value
corresponding to this key, the value is printed; otherwise, an error message is printed.

def lookup(phonebook):
'''implements interactive phone book service using the input

phonebook dictionary'''
while True:

first = input('Enter the first name: ')
last = input('Enter the last name: ')

person = (first, last) # construct the key

if person in phonebook: # if key is in dictionary
print(phonebook[person]) # print value

else: # if key not in dictionary
print('The name you entered is not known.')

6.6 The goal is to obtain the union of all the sets appearing in a list. The accumulator pattern
is the right loop pattern for doing this. The accumulator should be a set that is initialized to
be empty:

def sync(phonebooks):
'returns the union of sets in phonebooks'
res = set() # initialize the accumulator

for phonebook in phonebooks:
res = res | phonebook # accumulate phonebook into res

return res

Chapter 6 Solutions to Practice Problems 193

6.7 The iteration pattern is used to iterate over the characters of the string. In each iteration,
the ASCII code of the current character is printed:

def encoding(text):
'prints ASCII codes of characters in S, one per line'
print('Char Decimal Hex Binary') # print column headings

for c in text:
code = ord(c) # compute ASCII code
print character and its code in decimal, hex, and binary
print(' {} {:7} {:4x} {:7b}'.format(c,code,code,code))

6.8 We use a counter loop pattern to generate integers from low to high. The character
corresponding to each integer is printed:

def char(low, high):
'''prints the characters with ASCII codes

in the range from low to high'''
for i in range(low, high+1):

print integer ASCII code and corresponding character
print('{} : {}'.format(i, chr(i)))

6.9 The randrange() function of the randommodule is used to generate the secret number
to be guessed. An infinite loop and a loop-and-a-half pattern are used to implement the
interactive service:

import random
def guess(n):

'an interactive number guessing game'
secret = random.randrange(0,n) # generate secret number

while True:
user enters a guess
guess = eval(input('Enter you guess: '))
if guess == secret:

print('You got it!')
break

elif guess < secret:
print('Too low.')

else: # guess > secret
print('Too high.')

6.10 Each random dart throw hit is simulated by choosing, uniformly at random, an x and
a y coordinate between −1 and 1. If the resulting point (x, y) is within distance 1 from the
origin (0, 0) (i.e., the center of the dartboard), the point represents a hit. An accumulator
loop pattern is used to add up all the “hits.”

import random
def approxPi(total):

'return approximate value of pi based on "dart throwing"'
count = 0 # counts darts hitting dartboard
for i in range(total):

www.ebook3000.com

http://www.ebook3000.org

194 Chapter 6 Containers and Randomness

x = random.uniform(-1,1) # x-coordinate of dart
y = random.uniform(-1,1) # y coordinate of dart
if x**2+y**2 <= 1: # if dart hit dartboard

count += 1 # increment count
return 4*count/total

Exercises
6.11 Implement function easyCrypto() that takes as input a string and prints its encryp-
tion defined as follows: Every character at an odd position i in the alphabet will be encrypted
with the character at position i + 1, and every character at an even position i will be en-
crypted with the character at position i − 1. In other words, ‘a’ is encrypted with ‘b’, ‘b’
with ‘a’, ‘c’ with ‘d’, ‘d’ with ‘c’, and so on. Lowercase characters should remain lowercase,
and uppercase characters should remain uppercase.

>>> easyCrypto('abc')
bad
>>> easyCrypto('Z00')
YPP

6.12 Redo Problem 5.27 using a dictionary instead of a multiway if statement.

6.13 Define a dictionary called agencies that stores a mapping of acronyms CCC, FCC,
FDIC, SSB, WPA (the keys) to the federal government agencies ‘Civilian Conservation
Corps’, ‘Federal Communications Commission’, ‘Federal Deposit Insurance Corporation’,
‘Social Security Board’, and ‘Works Progress Administration’ (the values) created by Pres-
ident Roosevelt during the New Deal. Then:
(a) Add the map of acronym SEC to ‘Securities and Exchange Commission’.
(b) Change the value of key SSB to ‘Social Security Administration’.
(c) Remove the (key, value) pairs with keys CCC and WPA.

6.14 Repeat Exercise 6.13 with this change: Before making changes to agencies, define
acronyms to be the view of its keys. After making the changes, evaluate acronyms.

6.15 The dictionary used in Practice Problem 6.5 assumes that only one person can have
a certain first and last name. In a typical phone book, however, there can be more than one
person with the same first and last name. A modified dictionary that maps a (last name, first
name) tuple to a list of phone numbers could be used to implement a more realistic phone
book. Reimplement the lookup() function from Practice Problem 6.5 so that it can take
such a dictionary (i.e., with list values) as input and return all the numbers that a (last name,
first name) tuple maps to.

6.16 Using a counter loop pattern, construct sets mult3, mult5, and mult7 of nonnegative
multiples of 3, 5, and 7, respectively, less than 100. Then, using these three sets, write set
expressions that return
(a) Multiples of 35
(b) Multiples of 105
(c) Multiples of 3 or 7

Chapter 6 Problems 195

(d) Multiples of 3 or 7, but not both
(e) Multiples of 7 that are not multiples of 3

6.17 Write a function hexASCII() that prints the correspondence between the lowercase
characters in the alphabet and the hexadecimal representation of their ASCII code. Note: A
format string and the format string method can be used to represent a number value in hex
notation.

>>> hexASCII()
a:61 b:62 c:63 d:64 e:65 f:66 g:67 h:68 i:69 j:6a k:6b l:6c m:6d
n:6e o:6f p:70 q:71 r:72 s:73 t:74 u:75 v:76 w:77 x:78 y:79 z:7a

6.18 Implement function coin() that returns 'Heads' or 'Tails'with equal probability.

>>> coin()
'Heads'
>>> coin()
'Heads'
>>> coin()
'Tails'

6.19 Using an online translator such as Google Translate, translate the phrase ‘My name is
Ada’ intoArabic, Japanese, and Serbian. Then copy and paste the translations into your inter-
active shell and assign them as strings to variable names arabic, japanese, and serbian.
Finally, for each string, print the Unicode code point of each character in the string using an
iteration loop pattern.

Problems
6.20 Write function reverse() that takes as input a phone book, that is, a dictionary map-
ping names (the keys) to phone numbers (the values). The function should return another
dictionary representing the reverse phone book mapping phone numbers (the keys) to the
names (the values).

>>> phonebook = {'Smith, Jane':'123-45-67',
'Doe, John':'987-65-43','Baker,David':'567-89-01'}

>>> reverse(phonebook)
{'123-45-67': 'Smith, Jane', '567-89-01': 'Baker,David',
'987-65-43': 'Doe, John'}

6.21 Write function ticker() that takes a string (the name of a file) as input. The file
will contain company names and stock (ticker) symbols. In this file, a company name will
occupy a line, and its stock symbol will be in the next line. Following this line will be a line
with another company name, and so on. Your program will read the file and store the name
and stock symbol in a dictionary. Then it will provide an interface to the user so that the
user can obtain the stock symbol for a given company. Test your code on the NASDAQ 100
list of stock given in file nasdaq.txt.

File: nasdaq.txt>>> ticker('nasdaq.txt')
Enter Company name: YAHOO

www.ebook3000.com

http://www.ebook3000.org

196 Chapter 6 Containers and Randomness

Ticker symbol: YHOO
Enter Company name: GOOGLE INC
Ticker symbol: GOOG
...

6.22 The mirror image of string vow is string wov, and the mirror image wood is string
boow. The mirror image of string bed cannot be represented as a string, however, because
the mirror image of e is not a valid character.

Develop function mirror() that takes a string and returns its mirror image but only if
the mirror image can be represented using letters in the alphabet.

>>> mirror('vow')
'wov'
>>> mirror('wood')
'boow'
>>> mirror('bed')
'INVALID'

6.23 You would like to produce a unique scary dictionary but have a hard time finding the
thousands of words that should go into such a dictionary. Your brilliant idea is to write a
function scaryDict() that reads in an electronic version of a scary book, say Frankenstein
by Mary Wollstonecraft Shelley, picks up all the words in it, writes them in alphabetical
order in a new file called dictionary.txt, and prints them as well. You can eliminate
one- and two-letter words because none of them are scary.

You will notice that punctuation in the text makes this exercise a bit more complicated.
You can handle it by replacing punctuation with blanks or empty strings.

File: frankenstein.txt >>> scaryDict('frankenstein.txt')
abandon
abandoned
abbey
abhor
abhorred
abhorrence
abhorrent
...

6.24 Implement function names() that takes no input and repeatedly asks the user to enter
the first name of a student in a class. When the user enters the empty string, the function
should print for every name the number of students with that name.

>>> names()
Enter next name: Valerie
Enter next name: Bob
Enter next name: Valerie
Enter next name: Amelia
Enter next name: Bob
Enter next name:
There is 1 student named Amelia
There are 2 students named Bob
There are 2 students named Valerie

Chapter 6 Problems 197

6.25 Write function different() that takes a two-dimensional table as input and returns
the number of distinct entries in the table.

>>> t = [[1,0,1],[0,1,0]]
>>> different(t)
2
>>> t = [[32,12,52,63],[32,64,67,52],[64,64,17,34],[34,17,76,98]]
>>> different(t)
10

6.26 Write function week() that takes no arguments. It will repeatedly ask the user to enter
an abbreviation for a day of the week (Mo, Tu, We, Th, Fr, Sa, or Su) and then print the
corresponding day.

>>> week()
Enter day abbreviation: Tu
Tuesday
Enter day abbreviation: Su
Sunday
Enter day abbreviation: Sa
Saturday
Enter day abbreviation:

6.27 At the end of this and other textbooks, there usually is an index that lists the pages
where a certain word appears. In this problem, you will create an index for a text but, instead
of page number, you will use the line numbers.

You will implement function index() that takes as input the name of a text file and a
list of words. For every word in the list, your function will find the lines in the text file where
the word occurs and print the corresponding line numbers (where the numbering starts at
1). You should open and read the file only once.

File: raven.txt>>> index('raven.txt', ['raven', 'mortal', 'dying', 'ghost',
'ghastly', 'evil','demon'])

ghost 9
dying 9
demon 122
evil 99, 106
ghastly 82
mortal 30
raven 44, 53, 55, 64, 78, 97, 104, 111, 118, 120

6.28 Implement function translate() that provides a rudimentary translation service.
The function input is a dictionary mapping words in one language (the first language) to
corresponding words in another (the second language). The function provides a service that
lets users type a phrase in the first language interactively and then obtain a translation into
the second language, by pressing the Enter/Return key. Words not in the dictionary should
be translated as ____.

6.29 In your class, many students are friends. Let’s assume that two students sharing a friend
must be friends themselves; in other words, if students 0 and 1 are friends and students 1
and 2 are friends, then students 0 and 2 must be friends. Using this rule, we can partition

www.ebook3000.com

http://www.ebook3000.org

198 Chapter 6 Containers and Randomness

the students into circles of friends.
To do this, implement a function networks() that takes two input arguments. The first

is the number n of students in the class. We assume students are identified using integers
0 through n − 1. The second input argument is a list of tuple objects that define friends.
For example, tuple (0, 2) defines students 0 and 2 as friends. Function networks() should
print the partition of students into circles of friends as illustrated:

>>> networks(5, [(0, 1), (1, 2), (3, 4)])
Social network 0 is {0, 1, 2}
Social network 1 is {3, 4}

6.30 Implement function simul() that takes as input an integer n and simulates n rounds
of Rock, Paper, Scissors between players Player 1 and Player 2. The player who wins the
most rounds wins the n-round game, with ties possible. Your function should print the result
of the game as shown. (You may want to use your solution to Problem 5.26.)

>>> simul(1)
Player 1
>>> simul(1)
Tie
>>> simul(100)
Player 2

6.31 Craps is a dice-based game played in many casinos. Like blackjack, a player plays
against the house. The game starts with the player throwing a pair of standard, six-sided
dice. If the player rolls a total of 7 or 11, the player wins. If the player rolls a total of 2, 3, or
12, the player loses. For all other roll values, the player will repeatedly roll the pair of dice
until either she rolls the initial value again (in which case she wins) or 7 (in which case she
loses)
(a) Implement function craps() that takes no argument, simulates one game of craps,

and returns 1 if the player won and 0 if the player lost.

>>> craps()
0
>>> craps()
1
>>> craps()
1

(b) Implement function testCraps() that takes a positive integer n as input, simulates
n games of craps, and returns the fraction of games the player won.

>>> testCraps(10000)
0.4844
>>> testCraps(10000)
0.492

6.32 You may know that the streets and avenues of Manhattan form a grid. A random walk
through the grid (i.e., Manhattan) is a walk in which a random direction (N, E, S, or W) is
chosen with equal probability at every intersection. For example, a random walk on a 5×11
grid starting (5, 2) could visit grid points (6, 2), (7, 2), (8, 2), (9, 2), (10, 2), back to (9, 2)
and then back to (10, 2) before leaving the grid.

Chapter 6 Problems 199

Write function manhattan() that takes the number of rows and columns in the grid,
simulates a random walk starting in the center of the grid, and computes the number of
times each intersection has been visited by the random walk. Your function should print the
table line by line once the random walk moves outside the grid.

>>> manhattan(5, 11)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

6.33 Write function diceprob() that takes as input a possible result r of a roll of pair of
dice (i.e. an integer between 2 and 12) and simulates repeated rolls of a pair of dice until 100
rolls of r have been obtained. Your function should print how many rolls it took to obtain
100 rolls of r.

>>> diceprob(2)
It took 4007 rolls to get 100 rolls of 2
>>> diceprob(3)
It took 1762 rolls to get 100 rolls of 3
>>> diceprob(4)
It took 1058 rolls to get 100 rolls of 4
>>> diceprob(5)
It took 1075 rolls to get 100 rolls of 5
>>> diceprob(6)
It took 760 rolls to get 100 rolls of 6
>>> diceprob(7)
It took 560 rolls to get 100 rolls of 7

6.34 The two-player card game War is played with a standard deck of 52 cards. A shuffled
deck is evenly split among the two players who keep their decks face-down. The game con-
sists of battles until one of the players runs out of cards. In a battle, each player reveals the
card on top of their deck; the player with the higher card takes both cards and adds them
face-down to the bottom of her stack. If both cards have the same value, a war occurs.

In a war, each player lays, face-down, their top three cards and picks one of them. The
player who picks the higher valued card adds all eight cards to the bottom of her deck. In
case of another tie, wars are repeated until a player wins and collects all cards on the table. If
a player runs out of cards before laying down three cards in a war, he is allowed to complete
the war, using his last card as his pick.

In War, the value of a number card is its rank, and the values of cards with rank A, K, Q,
and J are 14, 13, 12, and 11, respectively.

(a) Write a function war() that simulates one game of war and returns a tuple containing
the number of battles, wars, and two-round wars in the game. Note: When adding
cards to the bottom of a player’s deck, make sure to shuffle the cards first to add
additional randomness to the simulation.

(b) Write a function warStats() that takes a positive integer n as input, simulates n
games of war, and computes the average number of battles, wars, and two-round wars.

6.35 Develop a simple game that teaches kindergartners how to add single-digit numbers.

www.ebook3000.com

http://www.ebook3000.org

200 Chapter 6 Containers and Randomness

Your function game() will take an integer n as input and then ask n single-digit addition
questions. The numbers to be added should be chosen randomly from the range [0, 9] (i.e.,
0 to 9 inclusive). The user will enter the answer when prompted. Your function should print
'Correct' for correct answers and 'Incorrect' for incorrect answers. After n questions,
your function should print the number of correct answers.

>>> game(3)
8 + 2 =
Enter answer: 10
Correct.
6 + 7 =
Enter answer: 12
Incorrect.
7 + 7 =
Enter answer: 14
Correct.
You got 2 correct answers out of 3

6.36 The Caesar cipher is an encryption technique in which every letter of the message
is replaced by the letter that is a fixed number of positions down the alphabet. This “fixed
number” is referred to as the key, which can have any value from 1 to 25. If the key is 4, for
example, then letter A would be replaced by E, B by F, C by G, and so on. Characters at the
end of the alphabet, W, X, Y, and Z would be replaced by A, B, C, and D.

Write function caesar that takes as input a key between 1 and 25 and the name (i.e., a
string) of a text file. Your function should encode the file content with a Caesar cipher using
the input key and write the encrypted content into a new file cipher.txt (and return the
encrypted content as well).

File: clear.txt >>> caesar(3,'clear.txt')
"Vsb Pdqxdo (Wrs vhfuhw)\n\n1. Dozdbv zhdu d gdun frdw.\n2. Dozdbv
zhdu brxu djhqfb'v edgjh rq brxu frdw.\n"

6.37 George Kingsley Zipf (1902–1950) observed that the frequency of the kth most com-
mon word in a text is roughly proportional to 1/k. This means that there is a constant value
C such that for most words w in the text the following is true:

If word w is kth most common then freq(w) ∗ k ≈ C

Here, by frequency of word w, freq(w), we mean the number of times the word occurs
in the text divided by the total number of words in the text.

Implement function zipf() that takes a file name as input and verifies Zipf’s obser-
vation by printing the value freq(w) ∗ k for the first 10 most frequent words w in the file.
Ignore capitalization and punctuation when processing the file.

File: frankenstein.txt >>> zipf('frankenstein.txt')
0.0557319552019
0.0790477076165
0.113270715149
0.140452498306
0.139097394747
0.141648177917
0.129359248582

Chapter 6 Problems 201

0.119993091629
0.122078888284
0.134978942754

www.ebook3000.com

http://www.ebook3000.org

CHAPTER

7
Namespaces
7.1 Encapsulation in Functions 204

7.2 Global versus Local Namespaces 211

7.3 Exceptional Control Flow 215

7.4 Modules as Namespaces 223

7.5 Classes as Namespaces 230

Case Study: Debugging with a debugger 231

Chapter Summary 232

Solutions to Practice Problems 232

Exercises 233

Problems 236

THIS CHAPTER presents namespaces as a fundamental construct for
managing program complexity. As computer programs increase in
complexity, it becomes necessary to adopt a modular approach and
develop them using several smaller components that are developed,
tested, and debugged individually. These components—whether they are
functions, modules, or classes—must work together as a program but they
also should not interfere, in unintended ways, with each other.

Modularity and “noninterference” (usually called encapsulation) are
made possible thanks to the fact that each component has its own
namespace. Namespaces organize the naming scheme in functions,
modules, and classes so that names defined inside a component are not
visible to other components. Namespaces play a key role in the execution
of function calls and the normal control flow of a program. We contrast this
with the exceptional control flow that is caused by a raised exception. We
introduce exception handling as a way to control this control flow.

This chapter covers concepts and techniques that fundamentally deal
with program design. We apply them in Chapter 8 to create new classes
and in Chapter 10 to understand how recursive functions execute.

203

www.ebook3000.com

http://www.ebook3000.org

204 Chapter 7 Namespaces

7.1 Encapsulation in Functions
In Chapter 3, we introduced functions as wrappers that package a fragment of code. To recall
the reasons for wrapping code into functions—and then using those functions—we take as
an example the function jump() from the Case Study CS.3:

Module: turtlefunctions.py
1 def jump(t, x, y):
2 'makes turtle t jump to coordinates (x, y)'
3 t.penup()
4 t.goto(x, y)
5 t.pendown()

The function jump() provides a succinct way to make the turtle object t (i.e., the pen) move
to a new location (on the drawingg surface) without leaving a trace. In Chapter 3, we used
jump() multiple times in the function emoticon() that draws a smiley face:

Module: turtlefunctions.py
1 def emoticon(t, x, y):
2 'directs turtle t to draw a smiley face with chin at (x, y)'
3 t.pensize(3) # set turtle heading and pen size
4 t.setheading(0)
5 jump(t, x, y) # move to (x, y) and draw head
6 t.circle(100)
7 jump(t, x+35, y+120) # move and draw right eye
8 t.dot(25)
9 jump(t, x-35, y+120) # move and draw left eye

10 t.dot(25)
11 jump(t, x-60.62, y+65) # move and draw smile
12 t.setheading(-60)
13 t.circle(70, 120) # 120 degree section of a circle

The functions jump() and emoticon() illustrate some of the benefits of functions: code
reuse, encapsulation, and modularity. We explain each in more detail.

Code Reuse
A fragment of code that is used multiple times in a program—or by multiple programs—
can be packaged in a function. That way, the programmer types the code fragment only
once, inside a function definition, and then calls the function wherever the code fragment
is needed. The program ends up being shorter, with a single function call replacing a code
fragment, and clearer, because the name of the function can bemore descriptive of the action
being performed by the code fragment. Debugging also becomes easier because a bug in
the code fragment will need to be fixed only once.

In function emoticon(), we use function jump() four times, making the emoticon()
function shorter and more readable. We also make it easier to modify: Any change to how
the jump should be donewill need to be implemented only once, inside the jump() function.
In fact, the function emoticon() would not even need to be modified.

We saw another example of code reuse in Case Study CS.6, where we developed a black-
jack application. Because shuffling a standard deck of 52 cards and dealing a card to a
game participant is common to most card games, we implemented each action in a separate,
reusable function (shuffledDeck() and dealCard()).

Section 7.1 Encapsulation in Functions 205

Modularity (or Procedural Decomposition)
The complexity of developing a large program can be dealt with by breaking down the
program into smaller, simpler, self-contained pieces. Each smaller piece (e.g., function)
can be designed, implemented, tested, and debugged independently.

For example, we broke the problem of drawing a smiley face into two functions. The
function jump() is independent of the function emoticon() and can be tested and de-
bugged independently. Once function jump() has been developed, the function emoticon()
is easier to implement. We also used the modular approach to develop the blackjack appli-
cation using five functions in Case Study CS.6.

Encapsulation (or Information Hiding)
When using a function in a program, typically the developer does not need to know its
implementation details, but only what it does. In fact, removing the implementation details
from the developer’s radar makes her job easier.

The developer of the function emoticon() does not need to know how function jump()
works, just that it lifts turtle (i.e., pen) t and drops it at coordinates (x, y). This simplifies
the process of developing function emoticon(). Another benefit of encapsulation is that if
the implementation of function jump() changes (and is made more efficient, for example),
the function emoticon() would not have to change.

In the blackjack application, the functions that shuffle the deck and compute the value
of a hand encapsulate the code doing the actual work. The benefit here is that the main
blackjack program contains meaningful function calls, such as

deck = shuffledDeck() # get shuffled deck

and

dealCard(deck, player) # deal to player first

rather than code that is harder to read.

Local Variables
There is a potential danger when the developer using a function does not know its imple-
mentation details. What if, somehow, the execution of the function inadvertently affects the
calling program (i.e., the program that made the function call)? For example, the developer
could accidentally use a variable name in the calling program that happens to be defined and
used in the executing function. In order to achieve encapsulation, those two variables should
be separate. Variable names defined (i.e., assigned) inside a function should be “invisible”
to the calling program: They should be variables that exist only locally, in the context of
the execution of the function, and they should not affect variables of the same name in the
calling program. This invisibility is achieved thanks to the fact that variables defined inside
functions are local variables.

We illustrate this with the next function:

Module: ch7.py
1 def double(y):
2 x = 2
3 print('x = {}, y = {}'.format(x,y))
4 return x*y

www.ebook3000.com

http://www.ebook3000.org

206 Chapter 7 Namespaces

After running the module ch7, we check that names x and y have not been defined in the
interpreter shell:

>>> x
Traceback (most recent call last):
File "<pyshell#37>", line 1, in <module>
x

NameError: name 'x' is not defined
>>> y
Traceback (most recent call last):
File "<pyshell#38>", line 1, in <module>
y

NameError: name 'y' is not defined

Now let’s execute double():

>>> res = double(3)
x = 2, y = 3

During the execution of the function, variables x and y exist: y is assigned 3, and then x is
assigned 2. However, after the execution of the function, the names x and y do not exist in
the interpreter shell:

>>> x
Traceback (most recent call last):
File "<pyshell#40>", line 1, in <module>
x

NameError: name 'x' is not defined
>>> y
Traceback (most recent call last):
File "<pyshell#41>", line 1, in <module>
y

NameError: name 'y' is not defined

Clearly x and y exist only during the execution of the function.

Namespaces Associated with Function Calls
Actually, something even stronger is true: The names x and y that are defined during the
execution of double() are invisible to the calling program (the interpreter shell in our
example) even during the execution of the function. To convince ourselves of this, let’s
define values x and y in the shell and then execute function double() again:

>>> x,y = 20,30
>>> res = double(4)
x = 2, y = 4

Let’s check whether the variables x and y (defined in the interpreter shell) have changed:

>>> x,y
(20, 30)

No, they have not. This example shows that there are two separate pairs of variable names x
and y: the pair defined in the interpreter shell and the pair defined during the execution of the
function. Figure 7.1 illustrates that the interpreter shell and the executing function double()

Section 7.1 Encapsulation in Functions 207

interpreter shell

x y

20 30 4 2

function call double(4)

y x
Figure 7.1 Namespaces.
Variable names x and y are
defined in the interpreter
shell. During the execution
of double(4), separate
local variables y and x get
defined in the namespace
of the function call.

each has its own, separate space for names. Each space is called a namespace. The interpreter
shell has its namespace. Each function call creates a new namespace. Different function calls
will have different corresponding namespaces. The net effect is that each function call has
its own “execution area” so it does not interfere with the execution of the calling program
or other functions.

Names that are assigned during the execution of a function call are said to be local
names, and they are local with respect to a function call. Names that are local to a function
exist only in the namespace associated with the function call. They:

• Are only visible to the code inside the function.

• Do not interfere with names defined outside of the function, even if they are the same.

• Exist only during the execution of the function; they do not exist before the function
starts execution and they no longer exist after the function completes execution.

Practice Problem
7.1

Define functions f() and g() in this way:

>>> def f(y):
x = 2
print('In f(): x = {}, y = {}'.format(x,y))
g(3)
print('In f(): x = {}, y = {}'.format(x,y))

>>> def g(y):
x = 4
print('In g(): x = {}, y = {}'.format(x,y))

Using Figure 7.1 as your model, show graphically the variables names, their values, and the
namespaces of functions f() and g() during the execution of function g() when this call
is made:

>>> f(1)

Namespaces and the Program Stack
We know that a new namespace is created for every function call. If we call a function
that in turn calls a second function that in turn calls a third function, there would be three
namespaces, one for each function call. We now discuss how these namespaces are managed

www.ebook3000.com

http://www.ebook3000.org

208 Chapter 7 Namespaces

by the operating system (OS). This is important because without OS support for managing
namespaces, function calls could not be made.

We use this module as our running example:

Module: stack.py
1 def h(n):
2 print('Start h')
3 print(1/n)
4 print(n)
5

6 def g(n):
7 print('Start g')
8 h(n-1)
9 print(n)

10

11 def f(n):
12 print('Start f')
13 g(n-1)
14 print(n)

After we run the module, we make the function call f(4) from the shell:

>>> f(4)
Start f
Start g
Start h
0.5
2
3
4

Figure 7.2 illustrates the execution of f(4).

Figure 7.2 Execution of
f(4). The execution starts
in the namespace of
function call f(4), where
n is 4. Function call g(3)
creates a new namespace
in which n is 3; function g()
executes using that value
of n. Function call h(2)
creates another namespace
in which n is 2; function h()
uses that value of n. When
the execution of h(2)
terminates, the execution of
g(3) and its corresponding
namespace, in which n is
3, is restored. When g(3)
terminates, the execution of
f(4) is restored.

n = 4
print('Start f')
g(n-1)

n = 3
print('Start g')
h(n-1)

n = 2
print('Start h')
print(1/n)
print(n)

print(n)
print(n)

Running f(4)

Running g(3)

Back to f(4)

Running h(2)

Back to g(3)

Section 7.1 Encapsulation in Functions 209

Figure 7.2 shows the three different namespaces and the different value that n has in
each. To understand how these namespaces are managed, we go through the execution of
f(4) carefully.

When we start executing f(4), the value of n is 4. When the function call g(3) is made,
the value of n in the namespace of the function call g(3) is 3. However, the old value of
n, 4, is still needed because the execution of f(4) is not complete; line 14 will need to be
executed after g(3) is done.

Before the execution of g(3) gets started, the underlying OS stores all the information
necessary to complete the execution of f(4):

• The value of variable n (in this case, the value n = 4)
• The line of code where the execution of f(4) should resume (in this case, line 14)

This information is stored by the OS in an area of main memory called the program stack.
It is referred to as a stack because the OS will push the information on top of the program
stack before executing g(3), as shown in Figure 7.3.

}
Stack frame for f(4)

n = 4
line 14

Program stack

Figure 7.3 Stack frame. A
function call stores its local
variables in its stack frame;
if another function is called,
then the line to be executed
next is stored too.

The program stack area storing the information related to a specific unfinished function
call is called the stack frame.

When function call g(3) starts executing, the value of n is 3. During the execution of
g(3), function h() is called on input n-1 = 2. Before the call is made, the stack frame
corresponding to g(3) is pushed onto the program stack, as shown in Figure 7.4.

}
Stack frame for g(3)

n = 3
line 9

}
Stack frame for f(4)

n = 4
line 14

Program stack

Figure 7.4 Program stack.
If a function is called inside
another function, the stack
frame for the called function
is stored on top of the stack
frame of the calling function.

In Figure 7.5, we again illustrate the execution of function call f(4), but this timewe also
show how the OS uses the program stack to store the namespace of an unfinished function
call so that it can restore the namespace when the function call resumes. In the top half of
Figure 7.5, the sequence of function calls is illustrated with black arrows. Each call has a
corresponding “push” of a frame to the program stack, shown with blue arrows.

Now let’s resume our careful analysis of the execution of f(4). When h(2) executes,
n is 2 and values 1/n = 0.5 and n = 2 are printed. Then h(2) terminates. At this point,
the execution should return to function call g(3). So the namespace associated with g(3)
needs to get restored and the execution of g(3) should continue from where it left off. The

www.ebook3000.com

http://www.ebook3000.org

210 Chapter 7 Namespaces

Figure 7.5 Execution of
f(4), part 2. The function
call f(4) executes in its
own namespace. When
function call g(3) is made,
the namespace of f(4) is
pushed onto the program
stack. The call g(3) runs in
its own namespace. When
the call h(2) is made, the
namespace of g(3) is also
pushed onto the program
stack. When function call
h(2) terminates, the
namespace of g(3) is
restored by popping the top
stack frame of the program
stack; its execution
continues from the line
stored in the stack frame
(i.e., line 9). When g(3)
terminates, the namespace
of f(4) and its execution
are restored by popping the
program stack again.

n = 4
print('Start f')
g(n-1)

n = 3
print('Start g')
h(n-1)

n = 2
print('Start h')
print(1/n)
print(n)

print(n)
print(n)

Running f(4)

Namespace f(4)

Running g(3)

Back to f(4)

Namespace g(3)

Program stack

Program stack

Running h(2)

Back to g(3)

Namespace h(2)

Program stack

Program stack

line 14
n = 4

line 14
n = 4

n = 4

line 14

n = 3

line 9

n = 4

line 14

n = 3

line 9

OS will do this by popping a frame from the top of the program stack and using the values
in the frame to:

• Restore the value of n to 3 (i.e., restore the namespace).
• Continue the execution of g(3) starting with line 9.

Executing line 9 will result in the printing of n = 3 and the termination of g(3). As shown in
Figure 7.5, the program stack is then popped again to restore the namespace of function call
f(4) and to continue the execution of f(4) starting at line 14. This results in the printing
of n = 4 and the termination of f(4).

DETOUR
Program Stacks and Buffer Overflow Attacks

The program stack is an essential component of an OS’s main memory. The pro-
gram stack contains a stack frame for every function call. A stack frame is used to
store variables (like n) that are local with respect to the function call. Also, when a
call to another function is made, the stack frame is used to store the line number
(i.e., memory address) of the instruction where execution should be resumed, once
that other function terminates.

The program stack also presents a vulnerability in a computer system, one that
is often exploited in a type of computer system attack known as the buffer overflow

Section 7.2 Global versus Local Namespaces 211

attack. The vulnerability is that the input argument of a function call, say the 4 in
f(4), may be written into the program stack, as illustrated in Figure 7.5. In other
words, the OS allocates a small space in the program stack to store the expected
input argument (in our case, an integer value).

A malicious user could call the function with an argument that is much larger
than the allocated space. This argument could contain nefarious code and would
also overwrite one of the existing line numbers in the program stack with a new line
number. This new line number would, of course, point to the nefarious code.

Eventually, the executing program will pop the stack frame containing the over-
written line number and start executing instructions starting from that line.

7.2 Global versus Local Namespaces
We have seen that every function call has a namespace associated with it. This namespace
is where names defined during the execution of the function live. We say that the scope of
these names (i.e., the space where they live) is the namespace of the function call.

Every name (whether a variable name, function name, or type name—and not just a
local name) in a Python program has a scope, that is, a namespace where it lives. Outside
of its scope, the name does not exist, and any reference to it will result in an error. Names
assigned inside (the body of) a function are said to have local scope (local with respect to
a function call), which means that their namespace is the one associated with the function
call.

Names assigned in the interpreter shell or in a module outside of any function are said
to have global scope. Their scope is the namespace associated with the shell or the whole
module. Variables with global scope are referred to as global variables.

Global Variables
When you execute a Python statement in the interpreter shell, you are doing so in a name-
space associated with the shell. In this context, this namespace is the global namespace, and
the variables defined in it, such as a in

>>> a = 0
>>> a
0

are global variables whose scope is global.
When you execute a module, whether from within or from outside your integrated de-

velopment environment, there is a namespace associated with the executing module. This
namespace is the global namespace during the execution of the module. Any variable that is
defined in the module outside of any function, such as a in the one-line module scope.py

Module: scope.py
1 # a really small module
2 a = 0

is a global variable.

www.ebook3000.com

http://www.ebook3000.org

212 Chapter 7 Namespaces

Variables with Local Scope
We use a sequence of examples to illustrate the difference between global and local scopes.
Our first example is this strange module:

Module: scope1.py
1 def f(b): # f has global scope, b has local scope
2 a = 6 # this a has scope local to function call f()
3 return a*b # this a is the local a
4

5 a = 0 # this a has global scope
6 print('f(3) = {}'.format(f(3)))
7 print('a is {}'.format(a)) # global a is still 0

When we run this module, the function definition is executed first, and then the last three
lines of the module are executed in succession. Names f and a have global scope. When
function f(3) is called in line 6, local variables b and then a get defined in the namespace
of the function call f(3). The local variable a is unrelated to the global name a, as shown
in Figure 7.6.

Figure 7.6 Local variables.
In line 5, integer 0 is
assigned to global variable
name a. During execution of
function call f(3) in line 6,
a separate variable a, local
with respect to the function
call, gets defined and is
assigned integer 3.

module scope1

a

0 3 6

function f()

b a

This is printed when the module executes:

>>>
f(3) = 18
a is 0

Note that when evaluating the product a*b while executing f(3), the local name a is used.

Variables with Global Scope
To get our next example, we remove line 2 from module scope1:

Module: scope2.py
1 def f(b):
2 return a*b # this a is the global a
3

4 a = 0 # this a has global scope
5 print('f(3) = {}'.format(f(3)))
6 print('a is {}'.format(a)) # global a is still 0

When we run the module scope2, function call f(3) will be made. Figure 7.7 shows the
variable names, and the namespaces they are defined in, when function call f(3) executes.

When the product a*b is evaluated during the execution of f(3), no local variable a
exists in the namespace associated with function call f(3). The variable a that is used is

Section 7.2 Global versus Local Namespaces 213

module scope2

a

0 3

function f()

b
Figure 7.7 Global
variables. During the
execution of function call
f(3) in line 5, variable a is
evaluated when computing
the product a*b. Because
no name a exists in the
function call namespace,
the name a defined in the
global namespace is used.

now the global variable a, whose value is 0. When you run this example, you get:

>>>
f(3) = 0
a is 0

How does the Python interpreter decide whether to evaluate a name as a local or as a global
name?

Whenever the Python interpreter needs to evaluate a name (of a variable, function, etc.),
it searches for the name definition in this order:

1. First the enclosing function call namespace
2. Then the global (module) namespace
3. Finally the namespace of module builtins
In our first example, module scope1, name a in product a*b evaluated to a local name;

in the second example, module scope2, because no name a was defined in the local name-
space of the function call, a evaluates to the global name a.

Built-in names (such as sum(), len(), print(), etc.) are names that are predefined
in the module builtins that Python automatically imports upon start-up. (We discuss this
built-in module in more detail in Section 7.4.) Figure 7.8 shows the different namespaces
that exist when the function call f(3) gets executed in module scope2.

function f()

b

global namespace

a f

module builtins

print

3

0 f()

printf()

Figure 7.8 Searching for a
name definition. Three
namespaces exist during
the execution of f(3) when
running module scope2.
Whenever the Python
interpreter needs to evaluate
a name, it starts the search
for the name in the local
namespace. If the name is
not found there, it continues
the search in the global
namespace. If the name is
not found there either, the
name search then moves to
the builtins namespace.

www.ebook3000.com

http://www.ebook3000.org

214 Chapter 7 Namespaces

Figure 7.8 illustrates how names are evaluated during the execution of statement print(a*b)
in line 2 of function f()while executing f(3). The execution of print(a*b) involves three
name searches, all starting with the local namespace of function call f(3):

1. The Python interpreter first searches for name a. First, it looks in the local namespace
of function f(3). Since it is not there, it looks next in the global namespace, where
it finds name a.

2. The search for name b starts and ends in the local namespace.
3. The search for (function) name print starts in the local namespace, continues through

the global namespace, and ends, successfully, in the namespace ofmodule builtins.

Changing Global Variables Inside a Function
In our last example, we consider this situation: Suppose that in function f() of module
scope1, the intention of statement a = 0 was to modify the global variable a. As we saw
in module scope1, the statement a = 0 inside function f() will instead create a new local
variable of the same name. If our intention was to have the function change the value of a
global variable, then we must use the global reserved keyword to indicate that a name is
global. We use this module to explain the keyword global:

Module: scope3.py
1 def f(b):
2 global a # all references to a in f() are to the global a
3 a = 6 # global a is changed
4 return a*b # this a is the global a
5

6 a = 0 # this a has global scope
7 print('f(3) = {}'.format(f(3)))
8 print('a is {}'.format(a)) # global a has been changed to 6

In line 3, the assignment a = 6 changes the value of the global variable a because the
statement global a specifies that the name a is global rather than local. This concept is
illustrated in Figure 7.9.

Figure 7.9 Keyword
global. During execution
of f(3), the assignment
a = 6 is executed. Because
name a is defined to refer to
the global name a, it is the
global a that gets assigned.
No name a is created in the
local namespace of the
function call.

module scope3

a

0 3 6

function f()

b

When you run the module, the modified value of global variable a is used to compute
f(3):

>>>
f(3) = 18
a is 6

Section 7.3 Exceptional Control Flow 215

Practice Problem
7.2

For each name in the next module, indicate whether it is a global name or whether it is local
in f(x) or local in g(x).

Module: fandg.py

1 def f(y):
2 x = 2
3 return g(x)
4

5 def g(y):
6 global x
7 x = 4
8 return x*y
9

10 x = 0
11 res = f(x)
12 print('x = {}, f(0) = {}'.format(x, res))

7.3 Exceptional Control Flow
While the focus of the discussion in this chapter has been on namespaces, we have also
touched on another fundamental topic: how the operating system and namespaces support
the “normal” execution control flow of a program, especially function calls. We consider,
in this section, what happens when the “normal” execution control flow gets interrupted by
an exception and ways to control this exceptional control flow. This section also continues
the discussion of exceptions we started in Section 4.4.

Exceptions and Exceptional Control Flow
Error objects are called exceptions because when they are created, the normal execution
flow of the program (as described by, say, the program’s flowchart) is interrupted, and the
execution switches to the so called exceptional control flow (which the flowchart typically
does not show as it is not part of the normal program execution). The default exceptional
control flow is to stop the program and print the error message contained in the exception
object.

We illustrate this using the functions f(), g(), and h() we defined in Section 7.1. In
Figure 7.2, we illustrated the normal flow of execution of function call f(4). In Figure 7.10,
we illustrate what happens when we make the function call f(2) from the shell.

The execution runs normally all the way to function call h(0). During the execution of
h(0), the value of n is 0. Therefore, an error state occurs when the expression 1/n is evalu-
ated. The interpreter raises a ZeroDivisionError exception and creates a ZeroDivisionError
exception object that contains information about the error.

The default behavior when an exception is raised is to interrupt the function call in which
the error occurred. Because the error occurred while executing h(0), the execution of h(0)
is interrupted. However, the error also occurred during the execution of function calls g(1)
and f(2), and the execution of both is interrupted as well. Thus, statements shown in gray
in Figure 7.10 are never executed.

www.ebook3000.com

http://www.ebook3000.org

216 Chapter 7 Namespaces

Figure 7.10 Execution of
f(2). The normal execution
control flow of function
call f(2) from the shell is
shown with black arrows:
f(2) calls g(1), which, in
turn, calla h(0). When the
evaluation of expression
1/n = 1/0 is attempted,
a ZeroDivisionError
exception is raised. The
normal execution control
flow is interrupted: Function
call h(0) does not run to
completion, and neither
do g(1) or f(2). The
exceptional control flow is
shown with a dashed arrow.
Statements that are not
executed are shown in
gray. Since call f(2) is
interrupted, the error
information is output in
the shell.

>>> f(2)
n = 2
print('Start f')
g(n-1)

n = 1
print('Start g')
h(n-1)

n = 0
print('Start h')
print(1/n)
print(n)

print(n)
print(n)

f(2)
crashes
>>>

Running shell Running f(2)

Running g(1)

Running h(0)

When execution returns to the shell, the information contained in the exception object
is printed in the shell:

Traceback (most recent call last):
File "<pyshell#116>", line 1, in <module>
f(2)

File "/Users/me/ch7.py", line 13, in f
g(n-1)

File "/Users/me/ch7.py", line 8, in g
h(n-1)

File "/Users/me/ch7.py", line 3, in h
print(1/n)

ZeroDivisionError: division by zero

In addition to the type of error and a friendly error message, the output also includes a
traceback, which consists of all the function calls that got interrupted by the error.

Catching and Handling Exceptions
Some programs should not terminate when an exception is raised: server programs, shell
programs, and pretty much any program that handles requests. Since these programs receive
requests from outside the program (interactively from the user or from a file), it is difficult
to ensure that the program will not enter an erroneous state because of malformed input.
These programs need to continue providing their service even if internal errors occur. What
this means is that the default behavior of stopping the program when an error occurs and
printing an error message must be changed.

We can change the default exceptional control flow by specifying an alternate behavior
when an exception is raised. We do this using the try/except pair of statements. The next

Section 7.3 Exceptional Control Flow 217

small application illustrates how to use them:

Module: age1.py
1 strAge = input('Enter your age: ')
2 intAge = int(strAge)
3 print('You are {} years old.'.format(intAge))

The application asks the user to interactively enter her age. The value entered by the
user is a string. This value is converted to an integer before being printed. Try it!

This program works fine as long as the user enters her age in a way that makes the
conversion to an integer possible. But what if the user types “fifteen” instead?

>>>
Enter your age: fifteen
Traceback (most recent call last):
File "/Users/me/age1.py", line 2, in <module>
intAge = int(strAge)

ValueError: invalid literal for int() with base 10: 'fifteen'

A ValueError exception is raised because string 'fifteen' cannot be converted to an
integer.

Instead of “crashing” while executing the statement age = int(strAge), wouldn’t it
be nicer if we could tell users that they were supposed to enter their age using decimal digits.
We can achieve this using the next try and except pair of statements:

Module: age2.py
1 try:
2 # try block --- executed first; if an exception is
3 # raised, the execution of the try block is interrupted
4 strAge = input('Enter your age: ')
5 intAge = int(strAge)
6 print('You are {} years old.'.format(intAge))
7 except:
8 # except block --- executed only if an exception
9 # is raised while executing the try block

10 print('Enter your age using digits 0-9!')

The try and except statements work in tandem. Each has an indented code block below it.
The code block below the try statement, from line 2 to line 6, is executed first. If no errors
occur, then the code block below except is ignored:

>>>
Enter your age: 22
You are 22 years old.

If, however, an exception is raised during the execution of a try code block (say, strAge
cannot be converted to an integer), the Python interpreter will skip the execution of the re-
maining statements in the try code block and execute the code block of the except state-
ment (i.e., line 9) instead:

>>>
Enter your age: fifteen
Enter your age using digits 0-9!

Note that the first line of the try block got executed but not the last.

www.ebook3000.com

http://www.ebook3000.org

218 Chapter 7 Namespaces

The format of a try/except pair of statements is:

try:
<indented code block 1>

except:
<indented code block 2>

<non-indented statement>

The execution of <indented code block 1> is attempted first. If it goes through with-
out any raised exceptions, then <indented code block 2> is ignored and execution con-
tinues with <non-indented statement>. If, however, an exception is raised during the
execution of <indented code block 1>, then the remaining statements in <indented
code block 1> are not executed; instead <indented code block 2> is executed. If
<indented code block 2> runs to completion without a new exception being raised,
then the execution continues with <non-indented statement>.

The code block <indented code block 2> is referred to as the exception handler
because it handles a raised exception. We will also say that an except statement catches an
exception.

The Default Exception Handler
If a raised exception is not caught by an except statement (and thus not handled by a user-
defined exception handler), the executing program will be interrupted and the traceback and
information about the error are output. We saw this behavior when we ran module age1.py
and entered the age as a string:

>>>
Enter your age: fifteen
Traceback (most recent call last):
File "/Users/me/age1.py", line 2, in <module>
intAge = int(strAge)

ValueError: invalid literal for int() with base 10: 'fifteen'

This default behavior is actually the work of Python’s default exception handler. In other
words, every raised exception will be caught and handled, if not by a user-defined handler
then by the default exception handler.

Catching Exceptions of a Given Type
In the module age2.py, the except statement can catch an exception of any type. The
except statement could also bewritten to catch only a certain type of exception, say ValueError
exceptions:

Module: age3.py
1 try:
2 # try block
3 strAge = input('Enter your age: ')
4 intAge = int(strAge)
5 print('You are {} years old.'.format(intAge))
6 except ValueError:
7 # except block --- executed only if a ValueError
8 # exception is raised in the try block
9 print('Enter your age using digits 0-9!')

Section 7.3 Exceptional Control Flow 219

If an exception is raised while executing the try code block, then the exception handler is
executed only if the type of the exception object matches the exception type specified in the
corresponding except statement (ValueError in this case). If an exception is raised that
does match the type specified in the except statement, then the except statement will not
catch it. Instead, the default exception handler will handle it.

Multiple Exception Handlers
There could be not just one but several except statements following one try statement,
each with its own exception handler. We illustrate this with the next function readAge(),
which attempts to open a file, read the first line, and convert it to an integer in a single try
code block.

Module: ch7.py
1 def readAge(filename):
2 '''converts first line of file filename to
3 an integer and prints it'''
4 try:
5 infile = open(filename)
6 strAge = infile.readline()
7 age = int(strAge)
8 print('age is', age)
9 except IOError:

10 # executed only if an IOError exception is raised
11 print('Input/Output error.')
12 except ValueError:
13 # executed only if a ValueError exception is raised
14 print('Value cannot be converted to integer.')
15 except:
16 # executed if an exception other than IOError
17 # or ValueError is raised
18 print('Other error.')

Several types of exceptions could be raised while executing the try code block in function
readAge. The file might not exist:

>>> readAge('agg.txt')
Input/Output error.

In this case, what happened was that an IOError exception got raised while executing the
first statement of the try code block; the remaining statements in the code section were
skipped and the IOError exception handler got executed.

Another error could be that the first line of the file age.txt does not contain something
that can be converted to an integer value:

File: age.txt>>> readAge('age.txt')
Value cannot be converted to integer

The first line of file age.txt is 'fifteen\n', so a ValueError exception is raised when
attempting to convert it to an integer. The associated exception handler prints the friendly
message without interrupting the program.

The last except statement will catch any exception that the first two except statements
did not catch.

www.ebook3000.com

http://www.ebook3000.org

220 Chapter 7 Namespaces

DETOUR
Maiden Flight of Ariane 5

On June 4, 1996, the Ariane 5 rocket developed over many years by the European
Space Agency flew its first test flight. Seconds after the launch, the rocket exploded.

The crash happened when an overflow exception got raised during a conversion
from floating point to integer. The cause of the crash was not the unsuccessful con-
version (it turns out that it was of no consequence); the real cause was that the ex-
ception was not handled. Because of this, the rocket control software crashed and
shut the rocket computer down. Without its navigation system, the rocket started
turning uncontrollably, and the onboard monitors made the rocket self-destruct.

This was probably one of the most expensive computer bugs in history.

Practice Problem
7.3

Create a “wrapper” function safe-open() for the open() function. Recall that when open()
is called to open a file that doesn’t exist in the current working directory, an exception is
raised:

>>> open('ch7.px', 'r')

Traceback (most recent call last):
File "<pyshell#19>", line 1, in <module>
open('ch7.px', 'r')

IOError: [Errno 2] No such file or directory: 'ch7.px'

If the file exist, a reference to the opened file object is returned:

>>> open('ch7.py', 'r')
<_io.TextIOWrapper name='ch7.py' encoding='US-ASCII'>

When safe-open() is used to open a file, a reference to the opened file object should be
returned if no exception is raised, just like for the open() function. If an exception is raised
while trying to open the file, safe-open() should return None.

>>> safe-open('ch7.py', 'r')
<_io.TextIOWrapper name='ch7.py' encoding='US-ASCII'>
>>> safe-open('ch7.px', 'r')
>>>

Controlling the Exceptional Control Flow
We started this section with an example illustrating how a raised exception interrupts the
normal flow of a program. We now look at ways to manage the exceptional flow using
appropriately placed exception handlers. We again use the functions f(), g(), and h()
defined in module stack.py, shown next, as our running example.

Section 7.3 Exceptional Control Flow 221

Module: stack.py1 def h(n):
2 print('Start h')
3 print(1/n)
4 print(n)
5

6 def g(n):
7 print('Start g')
8 h(n-1)
9 print(n)

10

11 def f(n):
12 print('Start f')
13 g(n-1)
14 print(n)

In Figure 7.10, we showed how the evaluation of f(2) causes an exception to be raised. The
ZeroDivisionError exception is raised when an attempt is made to evaluate 1/0 while
executing h(0). Since the exception object is not caught in function calls h(0), g(1), and
f(2), these function calls are interrupted, and the default exception handler handles the
exception, as shown in Figure 7.10.

Supposewewould like to catch the raised exception and handle it by printing 'Caught!'
and then continuing with the normal flow of the program. We have several choices where
to write a try code block and catch the exception. One approach is to to put the outermost
function call f(2) in a try block (see also Figure 7.11):

>>> try:
f(2)

except:
print('Caught!')

>>> try:

f(2)
n = 2
print('S...')
g(n-1)

n = 1
print('S...')
h(n-1)

n = 0
print('Start h')
print(1/n)
print(n)

print(n)
print(n)

except:
print('Caught!')

Running shell
Running f(2)

Running g(1)

Running h(0)

Figure 7.11 Execution of
f(2) with an exception
handler. We run f(2) in
a try code block. The
execution runs normally
until an exception is raised
while executing h(0). The
normal flow of execution is
interrupted: Function call
h(0) does not run to
completion, and neither do
g(1) or f(2). The dashed
arrow shows the exceptional
execution flow. Statements
that are not executed are
shown in gray. The except
statement corresponding to
the try block catches the
exception, and the matching
handler handles it.

www.ebook3000.com

http://www.ebook3000.org

222 Chapter 7 Namespaces

The execution in Figure 7.11 parallels the one illustrated in Figure 7.10 until the point
when function call f(2), made from the shell, is interrupted because of a raised exception.
Because the function call was made in a try block, the exception is caught by the cor-
responding except statement and handled by its exception handler. The resulting output
includes the string 'Caught!' printed by the handler:

Start f
Start g
Start h
Caught!

Compare this to the execution shown in Figure 7.10, when the default exception handler
handled the exception.

In the previous example, we chose to implement an exception handler at the point where
function f(2) is called. This represents a design decision by the developer of function f()
that it is up to the function user to worry about handling exceptions.

In the next example, the developer of function h makes the design decision that func-
tion h() should handle any exception that occur during its execution. In this example, the
function h() is modified so that its code is inside a try block:

Module: stack2.py
1 def h(n):
2 try:
3 print('Start h')
4 print(1/n)
5 print(n)
6 except:
7 print('Caught!')

(Functions f() and g() remain the same as in stack.py.) When we run f(2), we get:

>>> f(2)
Start f
Start g
Start h
Caught!
1
2

Figure 7.12 illustrates this execution. The execution parallels the one in Figure 7.11
until the exception is raised when evaluating 1/0. Since the evaluation is now inside a try
block, the corresponding except statement catches the exception. The associated handler
prints 'Caught!'. When the handler is done, the normal execution control flow resumes,
and function call h(0) runs to completion as do g(1) and f(2).

Practice Problem
7.4

What statements in module stack.py are not executed when running f(2), assuming these
modifications are made in stack.py:
(a) Add a try statement that wraps the line print(1/n) in h() only.
(b) Add a try statement that wraps the three lines of code in g().
(c) Add a try statement that wraps the line h(n-1) in g() only.

In each case, the exception handler associated with the try block just prints 'Caught!'.

Section 7.4 Modules as Namespaces 223

>>> f(2)
n = 2
print('Start f')
g(n-1)

n = 1
print('Start g')
h(n-1)

n = 0
try:
print('Start h')
print(1/n)
print(n)
except:
print('Caught!')

print(n)
print(n)

Running shell Running f(2)

Running g(1)

Running h(0)

Figure 7.12 Execution of
f(2) with an exception
handler inside h(). The
normal execution flow is
shown with black arrows.
When an attempt is made
to evaluate 1/n = 1/0, a
ZeroDivisionError
exception is raised and the
normal flow of execution is
interrupted. The dashed
arrow shows the exceptional
flow of execution, and
statements that are not
executed are shown in
gray. Since the exception
occurred in a try block,
the corresponding except
statement catches the
exception, and its
associated handler handles
it. The normal flow of
execution then resumes,
with h(0), g(1), and h(2)
all running to completion.

7.4 Modules as Namespaces
So far, we have used the term module to describe a file containing Python code. When the
module is executed (imported), then the module is (also) a namespace. This namespace
has a name, which is the name of the module. In this namespace will live the names that
are defined in the global scope of the module: the names of functions, values, and classes
defined in the module. These names are all referred to as the module’s attributes.

Module Attributes
As we have already seen, to get access to all the functions in the Standard Library module
math, we import the module:

>>> import math

Once a module is imported, the Python built-in function dir() can be used to view all the
module’s attributes:

>>> dir(math)
['__doc__', '__file__', '__name__', '__package__', 'acos',
'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil',

'copysign', 'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs',
'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'hypot', 'isinf',
'isnan', 'ldexp', 'log', 'log10', 'log1p', 'modf', 'pi', 'pow',
'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

www.ebook3000.com

http://www.ebook3000.org

224 Chapter 7 Namespaces

(The list may be slightly different depending on the version of Python you are using.) You
can recognize many of the math functions and constants we have been using. Using the
familiar notation to access the names in the module, you can view the objects these names
refer to:

>>> math.sqrt
<built-in function sqrt>
>>> math.pi
3.141592653589793

We can now understand what this notation really means: math is a namespace and the ex-
pression math.pi, for example, evaluates the name pi in the namespace math.

DETOUR
“Other” Imported Attributes

The output of the dir() function shows that there are attributes in the math names-
pace module that are clearly not math functions or constants: __doc__, __file__,
__name__, and __package__. These names exist for every imported module.
These names are defined by the Python interpreter at import time and are kept
by the Python interpreter for bookkeeping purposes.

The name of the module, the absolute pathname of the file containing the mod-
ule, and the module docstring are stored in variables __name__, __file__, and
__doc__, respectively.

What Happens When Importing a Module
When the Python interpreter executes an import statement, it:

1. Looks for the file corresponding to the module.
2. Runs the module’s code to create the objects defined in the module.
3. Creates a namespace where the names of these objects will live.

We discuss the first step in detail next. The second step consists of executing the code in the
module. This means that all Python statements in the imported module are executed from
top to bottom. All assignments, function definitions, class definitions, and import statements
will create objects (whether integer or string objects, or functions, or modules, or classes)
and generate the attributes (i.e., names) of the resulting objects. The names will be stored
in a new namespace whose name is typically the name of the module.

Module Search Path
Now we look into how the interpreter finds the file corresponding to the module to be im-
ported. An import statement only lists a name, the name of the module, without any direc-
tory information or .py suffix. Python uses a Python search path to locate the module. The
search path is simply a list of directories (folders) where Python will look for modules. The
variable name path defined in the Standard Library module sys refers to this list. You can
thus see what the (current) search path is by executing this in the shell:

>>> import sys
>>> sys.path
['/Users/me/Documents', ...]

Section 7.4 Modules as Namespaces 225

(We omit the long list of directories containing the Standard Library modules.) The module
search path always contains the directory of the top-level module, which we discuss next,
and also the directories containing the Standard Librarymodules. At every import statement,
Python will search for the requested module in each directory in this list, from left to right.
If Python cannot find the module, then an ImportError exception is raised.

For example, suppose we want to import the module example.py that is stored in home
directory /Users/me (or whatever directory you saved the file example.py in):

Module: example.py
1 'an example module'
2 def f():
3 'function f'
4 print('Executing f()')
5

6 def g():
7 'function g'
8 print('Executing g()')
9

10 x = 0 # global var

Before we import the module, we run function dir() to check what names are defined in
the shell namespace:

>>> dir()
['__builtins__', '__doc__', '__name__', '__package__']

The function dir(), when called without an argument, returns the names in the current
namespace, which in this case is the shell namespace. It seems that only “bookkeeping”
names are defined. (Read the next Detour about the name __builtins__.)

Now let’s try to import the module example.py:

>>> import example
Traceback (most recent call last):
File "<pyshell#24>", line 1, in <module>
import example

ImportError: No module named example

It did not work because directory /Users/me is not in list sys.path. So let’s append it:

>>> import sys
>>> sys.path.append('/Users/me')

and try again:

>>> import example
>>> example.f
<function f at 0x15e7d68>
>>> example.x
0

It worked. Let’s run dir() again and check that the module example has been imported:

>>> dir()
['__builtins__', '__doc__', '__name__', '__package__', 'example',
'sys']

www.ebook3000.com

http://www.ebook3000.org

226 Chapter 7 Namespaces

DETOUR
Module builtins

The name __builtins__ refers to the namespace of the builtinsmodule, which
we referred to in Figure 7.8.

The builtins module contains all the built-in types and functions and is usu-
ally imported automatically upon starting Python. You can check that by listing the
attributes of module builtins using the dir() function:

>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', ..., 'vars', 'zip']

Note: Use dir(__builtins__), not dir('__builtins__').

Practice Problem
7.5

Find the random module in one of the directories listed in sys.path, open it, and find the
implementations of functions randrange(), random(), and sample(). Then import the
module into the interpreter shell and view its attributes using the dir() function.

Top-Level Module
A computer application is a program that is typically split across multiple files (i.e., mod-
ules). In every Python program, one of the modules is special: It contains the “main pro-
gram” by which we mean the code that starts the application. This module is referred to
as the top-level module. The remaining modules are essentially “library” modules that are
imported by the top-level module and contain functions and classes that are used by the
application.

We have seen that when a module is imported, the Python interpreter creates a few
“bookkeeping” variables in the module namespace. One of these is variable __name__.
Python will set its value in this way:

• If the module is being run as a top-level module, attribute __name__ is set to the
string __main__.

• If the file is being imported by another module, whether the top-level or other, at-
tribute __name__ is set to the module’s name.

We use the next module to illustrate how __name__ is assigned:

Module: name.py
1 print('My name is {}'.format(__name__))

When this module is executed by running it from the shell (e.g., by hitting F5 in the IDLE
shell), it is run as the main program (i.e., the top-level module):

>>>
My name is __main__

So the __name__ attribute of the imported module is set to __main__.

Section 7.4 Modules as Namespaces 227

DETOUR
Top-Level Module and the Module Search Path

In the last subsection, we mentioned that the directory containing the top-level mod-
ule is listed in the search path. Let’s check that this is indeed the case. First run
the previous module name.py that was saved in, say, directory /Users/me. Then
check the value of sys.path:

>>> import sys
>>> sys.path
['/Users/me', '/Users/me/Documents', ...]

Note that directory /Users/me is in the search path.

The module name is also the top-level module when it is run at the command line:

> python name.py
My name is __main__

If, however, another module imports module name, then module name will not be top
level. In the next import statement, the shell is the top-level program that imports the module
name.py:

>>> import name
My name is name

Here is another example. The next module has only one statement, a statement that
imports module name.py:

Module: import.py1 import name

When module import.py is run from the shell, it is run as the main program that imports
module name.py:

>>>
My name is name

In both cases, the __name__ attribute of the imported module is set to the name of the
module.

The __name__ attribute of a module is useful for writing code that should be executed
only when the module is run as the top-level module. This would be the case, for example,
if the module is a “library” module that contains function definitions and we want to add
to it debugging code that should be executed only when the module is run as the top-level
module. All we need to do is make the debugging code a code block of this if statement:

if __name__ == '__main__':
code block

If the module is run as a top-level module, the code block will be executed; otherwise it will
not.

www.ebook3000.com

http://www.ebook3000.org

228 Chapter 7 Namespaces

Practice Problem
7.6

Add code to module example.py that calls the functions defined in the module and prints
the values of variables defined in the module. The code should execute when the module is
run as a top-level module only, such as when it is run from the shell:

>>>
Testing module example:
Executing f()
Executing g()
0

Different Ways to Import Module Attributes
We now describe three different ways to import a module and its attributes, and we discuss
the relative benefits of each. We again use the module example as our running example:

Module: example.py
1 'an example module'
2 def f():
3 print('Executing f()')
4

5 def g():
6 print('Executing g()')
7

8 x = 0 # global var

One way to get access to functions f() or g(), or global variable x, is to:

>>> import example

This import statement will find the file example.py and run the code in it. This will in-
stantiate two function objects and one integer object and create a namespace, called example,
where the names of the created objected will be stored. In order to access and use the module
attributes, we need to specify the module namespace:

>>> example.f()
Executing f()

As we have seen, calling f() directly would result in an error. Therefore, the import state-
ment did not bring name f into the namespace of module __main__ (the module that im-
ported example); it only brings the name of the module example, as illustrated in Fig-
ure 7.13.

Figure 7.13 Importing a
module. The statement
import example creates
name example in the calling
module namespace which
will refer to the namespace
associated with the
imported module example.

namespace __main__

example

f() g() 0

module example

f g x

Section 7.4 Modules as Namespaces 229

namespace __main__

f

f() g() 0

module example

f g x
Figure 7.14 Importing a
module attribute. Module
attributes can be imported
into the calling module
namespace. The statement
from example import f
creates name f in the
calling module namespace
that refers to the appropriate
function object.

Instead of importing the name of the module, it is also possible to import the names of
the needed attributes themselves using the from command:

>>> from example import f

As illustrated in Figure 7.14, from copies the name of attribute f to the scope of the main
program, the module doing the import, so that f can be referred to directly, without having
to specify the module name.

>>> f()
Executing f()

Note that this code copies only the name of attribute f, not that of attribute g (see Fig-
ure 7.14). Referring to g directly results in an error:

>>> g()
Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
g()

NameError: name 'g' is not defined

Finally, is is also possible to use from to import all the attributes of a module using the
wild card *:

>>> from example import *
>>> f()
Executing f()
>>> x
0

Figure 7.15 shows that all the attributes of example are copied to the namespace __main__.

namespace __main__

f g x

f() g() 0

module example

f g x
Figure 7.15 Importing all
the module’s attributes.
The statement
from example import *
imports all the attributes of
example into the calling
module namespace.

Which way is best? That might not be the right question. Each of the three approaches
has some benefits. Just importing the module name has the benefit of keeping the names in
the module in a namespace separate from the main module. This guarantees that there will

www.ebook3000.com

http://www.ebook3000.org

230 Chapter 7 Namespaces

be no clash between a name in the main module and the same name in the imported module.
The benefit of importing individual attributes from the module is that we do not have to

use the namespace as a prefix when we refer to the attribute. This helps make the code less
verbose and thus more readable. The same is true when all module attributes are imported
using import *, with the additional benefit of doing it succinctly. However, it is usually
not a good idea to use import * because we may inadvertently import a name that clashes
with a global name in the main program.

7.5 Classes as Namespaces
In Python, a namespace is associated with every class. In this section we explain what that
means. We discuss, in particular, how Python uses namespaces in a clever way to implement
classes and class methods.

But first, why should we care how Python implements classes? We have been using
Python’s built-in classes without ever needing to look below the hood. There will be times,
however, when we will want to have a class that does not exist in Python. Chapter 8 ex-
plains how to develop new classes. There it will be very useful to know how Python uses
namespaces to implement classes.

A Class Is a Namespace
Underneath the hood, a Python class is essentially a plain old namespace. The name of
the namespace is the name of the class, and the names stored in the namespace are the
class attributes (e.g., the class methods). For example, the class list is a namespace called
list that contains the names of the methods and operators of the list class, as shown in
Figure 7.16.

Figure 7.16 The
namespace list and its
attributes. The class list
defines a namespace that
contains the names of all
list operators and methods.
Each name refers to the
appropriate function object.

Namespace list

__add__ count pop sort
...

__add__()__add__() count()count() pop()pop() sort()sort()

Recall that to access an attribute of an imported module, we need to specify the name-
space (i.e., the module name) in which the attribute is defined:

>>> import math
>>> math.pi
3.141592653589793

Similarly, the attributes of the class list can be accessed by using list as the namespace:

>>> list.pop
<method 'pop' of 'list' objects>
>>> list.sort
<method 'sort' of 'list' objects>

Chapter 7 Case Study: Debugging with a debugger 231

Just as for any other namespace, you can use the built-in function dir() to find out all the
names defined in the list namespace:

>>> dir(list)
['__add__', '__class__', '__contains__', '__delattr__',
...,
'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

These are names of the operators and methods of the list class.

Class Methods Are Functions Defined in the Class Namespace
We now look at how class methods are implemented in Python. We continue to use the class
list as our running example. Suppose, for example, that you would like to sort this list:

>>> lst = [5,2,8,1,3,6,4,7]

In Chapter 2, we learned how to do this:

>>> lst.sort()

We know now that function sort() is really a function defined in the namespace list.
In fact, when the Python interpreter executes the statement

>>> lst.sort()

the first thing it will do is translate the statement to

>>> list.sort(lst)

Try executing both statements and you will see that the result is the same!
When method sort() is invoked on the list object lst, what really happens is that the

function sort(), defined in namespace list, is called on list object lst. More generally,
Python automatically maps the invocation of a method by an instance of a class, such as

instance.method(arg1, arg2, ...)

to a call to a function defined in the class namespace and using the instance as the first
argument:

class.method(instance, arg1, arg2, ...)

where class is the type of instance. This last statement is the statement that is actually
executed.

Let’s illustrate this with a few more examples. The method invocation lst.append(9)
on list lst gets translated by the Python interpreter to function call list.append(lst,
9). The method invocation d.keys() by dictionary d gets translated to dict.keys(d).

From these examples, you can see that the implementation of every class method must
include an additional input argument, corresponding to the instance calling the method.

Case Study: Debugging with a debugger
In Case Study CS.7, we show how to use a debugger to find bugs in a program or, more
generally, to analyze the execution of the program. To do this, the debugger provides a way
to stop the execution of a program at any program statement and to inspect the value of
the program variables at that point. This includes, in particular, the variables stored in the

www.ebook3000.com

http://www.ebook3000.org

232 Chapter 7 Namespaces

frames of the program stack.

Chapter Summary
This chapter covers programming language concepts and constructs that are key to manag-
ing program complexity. The chapter builds on the introductory material on functions and
parameter passing from Sections 3.3 and 3.5 and sets up a framework that will be useful
when learning how to develop new Python classes in Chapter 8 and when learning how
recursive functions execute in Chapter 10.

One of themain benefits of functions—encapsulation—follows from the black box prop-
erty of functions: Functions do not interfere with the calling program other than through the
input arguments (if any) and returned values (if any). This property of functions holds be-
cause a separate namespace is associated with each function call, and thus a variable name
defined during the execution of the function call is not visible outside of that function call.

The normal execution control flow of a program, in which functions call other functions,
requires the management of function call namespaces by the OS through a program stack.
The program stack is used to keep track of the namespaces of active function calls. When an
exception is raised, the normal control flow of the program is interrupted and replaced by
the exceptional control flow. The default exceptional control flow is to interrupt every active
function call and output an error message. In this chapter, we introduce exception handling,
using the try/except pair of statements, as a way to manage the exceptional control flow
and, when it makes sense, use it as part of the program.

Namespaces are associated with imported modules as well as classes and, as shown in
Chapter 8, objects as well. The reason for this is the same as for functions: Components of
a program are easier to manage if they behave like black boxes that do not interfere with
each other in unintended ways. Understanding Python classes as namespaces is particularly
useful in the next chapter, where we learn how to develop new classes.

Solutions to Practice Problems
7.1 During the execution of g(3), function call f(1) has not terminated yet and has a
namespace associated with it; in this namespace, local variable names y and x are defined,
with values 1 and 2, respectively. Function call g(3) also has a namespace associated with
it, containing different variable names y and x, referring to values 3 and 4, respectively.

The namespaces are shown graphically in the following figure.

function f()

y x

1 2 3 4

function g()

y x

Chapter 7 Exercises 233

7.2 The answers are shown as inline comments:

def f(y): # f is global, y is local to f()
x = 2 # x is local to f()
return g(x) # g is global, x is local to f()

def g(y): # g is global, y is local to g()
global x # x is global
x = 4 # x is global
return x*y # x is global, y is local to g()

x = 0 # x is global
res = f(x) # res, f and x are global
print('x = {}, f(0) = {}'.format(x, res)) # same here

7.3 The function should take the same arguments as the open() function. The statements
that open the file and return the reference to the opened file should be in the try code
section. The exception handler should just return None.

def safe-open(filename, mode):
'returns handle to file filename, or None if error occurred'
try:

try block
infile = open(filename, mode)
return infile

except:
exept block
return None

7.4 These statements are not executed:
(a) Every statement is executed.
(b) The last statements in h() and g().
(c) The last statements in h().

7.5 OnWindows, the folder containing the module random is C:\\Python3x\lib, where
x can be 1, 2, or other digit, depending on the version of Python 3 you are using; on a Mac,
it is /Library/Frameworks/Python.Framework/Versions/3.x/lib/python31.

7.6 This code is added at the end of file example.py:

if __name__ == '__main__':
print('Testing module example:')
f()
g()
print(x)

Exercises
7.7 Using Figure 7.5 as your model, illustrate the execution of function call f(1) as well
as the state of the program stack. Function f() is defined in module stack.py.

www.ebook3000.com

http://www.ebook3000.org

234 Chapter 7 Namespaces

7.8 What is the problem with the next program?

Module: probA.py
1 print(f(3))
2 def f(x):
3 return 2*x+1

Does the next program exhibit the same problem?

Module: probB.py
1 def g(x):
2 print(f(x))
3

4 def f(x):
5 return 2*x+1
6

7 g(3)

7.9 The blackjack application developed in Case Study CS.6 consists of five functions.
Therefore, all variables defined in the program are local. However, some of the local vari-
ables are passed as arguments to other functions, and the objects they refer to are therefore
(intentionally) shared. For each such object, indicate in which function the object was cre-
ated and which functions have access to it.

7.10 This exercise relates to modules one, two, and three:

Module: one.py
1 import two
2

3 def f1():
4 two.f2()
5

6 def f4():
7 print('Hello!')

Module: two.py 1 import three
2

3 def f2():
4 three.f3()

Module: three.py 1 import one
2

3 def f3():
4 one.f4()

When module one is imported into the interpreter shell, we can execute f1():

>>> import one
>>> one.f1()
Hello!

Chapter 7 Exercises 235

(For this to work, list sys.path should include the folder containing the three modules.)
Using Figure 7.13 as your model, draw the namespaces corresponding to the three imported
modules and also the shell namespace. Show all the names defined in the three imported
namespaces as well as the objects they refer to.

7.11 After importing one in the previous problem, we can view the attributes of one:

>>> dir(one)
['__builtins__', '__doc__', '__file__', '__name__', '__package__',
'f1', 'f4', 'two']

However, we cannot view the attributes of two in the same way:

>>> dir(two)
Traceback (most recent call last):
File "<pyshell#202>", line 1, in <module>
dir(two)

NameError: name 'two' is not defined

Why is that? Note that importing module one forces the importing of modules two and
three. How can we view their attributes using function dir()?

7.12 Using Figure 7.2 as your model, illustrate the execution of function call one.f1().
Function f1() is defined in module one.py.

7.13 Modify the module blackjack.py from Case Study CS.6 so that when the module
is run as the top module, the function blackjack() is called (in other words, a blackjack
game starts). Test your solution by running the program from your system’s command-line
shell:

> python blackjack.py
House: 7 ♣ 8 ♦
You: 10 ♣ J ♠

Hit or stand? (default: hit):

7.14 Let list lst be:

>>> lst = [2,3,4,5]

Translate the next list method invocations to appropriate calls to functions in namespace
list:
(a) lst.sort()
(b) lst.append(3)
(c) lst.count(3)
(d) lst.insert(2, 1)

7.15 Translate the following string method invocations to functions calls in namespace str:
(a) 'error'.upper()
(b) '2,3,4,5'.split(',')
(c) 'mississippi'.count('i')
(d) 'bell'.replace('e', 'a')
(e) ' '.format(1, 2, 3)

www.ebook3000.com

http://www.ebook3000.org

236 Chapter 7 Namespaces

Problems
7.16 The first input argument of function index() in Problem 6.27 is supposed to be the
name of a text file. If the file cannot be found by the interpreter or if it cannot be read as a
text file, an exception will be raised. Reimplement function index() so that the message
shown here is printed instead:

>>> index('rven.txt', ['raven', 'mortal', 'dying', 'ghost'])
File 'rven.txt' not found.

7.17 In Problem 6.35, you were asked to develop an application that asks users to solve
addition problems. Users were required to enter their answers using digits 0 through 9.

Reimplement the function game() so that it handles nondigit user input by printing a
friendly message like “Please write your answer using digits 0 though 9. Try again!” and
then giving the user another opportunity to enter an answer.

>>> game(3)
8 + 2 =
Enter answer: ten
Please write your answer using digits 0 though 9. Try again!
Enter answer: 10
Correct.

7.18 The blackjack application developed in Case Study CS.6 includes the dealCard()
function that pops the top card from the deck and passes it to a game participant. The deck
is implemented as a list of cards, and popping the top card from the deck corresponds to
popping the list. If the function is called on an empty deck, an attempt to pop an empty list
is made, and an IndexError exception is raised.

Modify the blackjack application by handling the exception raised when trying to deal
a card from an empty deck. Your handler should create a new shuffled deck and deal a card
from the top of this new deck.

7.19 Implement function inValues() that asks the user to input a set of nonzero floating-
point values.When the user enters a value that is not a number, give the user a second chance
to enter the value. After two mistakes in a row, quit the program. When the user enters 0,
the function should return the sum of all correctly entered values. Use exception handling
to detect improper inputs.

>>> inValues()
Please enter a number: 4.75
Please enter a number: 2,25
Error. Please re-enter the value.
Please enter a number: 2.25
Please enter a number: 0
7.0
>>> inValues()
Please enter a number: 3.4
Please enter a number: 3,4
Error. Please re-enter the value.
Please enter a number: 3,4
Two errors in a row. Quitting ...

Chapter 7 Problems 237

7.20 In Problem 7.19, the program quits only when the user makes two mistakes in a row.
Implement the alternative version of the program that quits when the user makes the second
mistake, even if it follows a correct entry by the user.

7.21 If you type Ctrl - C while the shell is executing the input() function, a KeyboardInterrupt
exception will be raised. For example:

>>> x = input() # Typing Ctrl-C
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyboardInterrupt

Create a wrapper function safe_input() which works just like function input() except
that it returns nothing when an exception is raised.

>>> x = safe_input() # Typing Ctrl-C
>>> x # x is None
>>> x = safe_input() # Typing 34
34
>>> x # x is 34
'34'

www.ebook3000.com

http://www.ebook3000.org

CHAPTER

8Object-Oriented
Programming
8.1 Defining a New Python Class 240

8.2 Examples of User-Defined Classes 248

8.3 Designing New Container Classes 251

8.4 Overloaded Operators 256

8.5 Inheritance 264

8.6 User-Defined Exceptions 272

Case Study: Indexing and Iterators 275

Chapter Summary 275

Solutions to Practice Problems 276

Exercises 279

Problems 281

THIS CHAPTER DESCRIBES how to implement new Python classes and
introduces object-oriented programming (OOP).

There are several reasons why programming languages such as
Python enable developers to define new classes. Classes that are
custom-built for a particular application will make the application program
more intuitive and easier to develop, debug, read, and maintain.

The ability to create new classes also enables a new approach to
structuring application programs. A function exposes to the user its
behavior but encapsulates (i.e., hides) its implementation. Similarly, a
class exposes to the user the methods that can be applied to objects of
the class but encapsulates how the data contained in the objects is stored
and how the class methods are implemented. This property of classes is
achieved thanks to fine-grained, customized namespaces that are
associated with every class and object. OOP is a software development
paradigm that achieves modularity and code portability by organizing
application programs around components that are classes and objects.

239

www.ebook3000.com

http://www.ebook3000.org

240 Chapter 8 Object-Oriented Programming

8.1 Defining a New Python Class
We now explain how to define a new class in Python. The first class we develop is the class
Point, a class that represents points in the plane or, if you prefer, on a map. More precisely,
an object of type Point corresponds to a point in the two-dimensional plane. Recall that
each point in the plane can be specified by its x-axis and y-axis coordinates as shown in
Figure 8.1.

Figure 8.1 A point in the
plane. An object of type
Point represents a point in
the plane. A point is defined
by its x and y coordinates.

x-axis

y-axis

x

y
(x, y)

Before we implement the class Point, we need to decide how it should behave, that is,
what methods it should support.

Methods of Class Point
Let’s describe howwewould like to use the class Point. To create a Point object, we would
use the default constructor of the Point class. This is no different from using the list()
or int() default constructors to create a list or integer object.

>>> point = Point()

(Just a reminder: We have not implemented the class Point yet; the code here is only meant
to illustrate how we want the class Point to behave.)

Once we have a Point object, we would set its coordinates using the methods setx()
and sety():

>>> point.setx(3)
>>> point.sety(4)

At this point, Point object point should have its coordinates set. We could check this
using method get():

>>> point.get()
(3, 4)

The method get()would return the coordinates of point as a tuple object. Now, to move
point down by three units, we would use method move():

>>> point.move(0,-3)
>>> point.get()
(3, 1)

We should also be able to change the coordinates of point:

>>> point.sety(-2)
>>> point.get()
(3, -2)

We summarize the methods we want class Point to support in Table 8.1.

Section 8.1 Defining a New Python Class 241

Usage Explanation
point.setx(xcoord) Sets the x coordinate of point to xcoord
point.sety(ycoord) Sets the y coordinate of point to ycoord
point.get() Returns the x and y coordinates of point as a tuple

(x, y)
point.move(dx, dy) Changes the coordinates of point from the current (x,

y) to (x+dx, y+dy)

Table 8.1 Methods of class
Point. The usage for the
four methods of class Point
is shown; point refers to an
object of type Point.

A Class and Its Namespace
As we learned in Chapter 7, a namespace is associated with every Python class, and the
name of the namespace is the name of the class. The purpose of the namespace is to store
the names of the class attributes. The class Point should have an associated namespace
called Point. This namespace would contain the names of class Point methods, as shown
in Figure 8.2.

class Point namespace

setx sety get move

setx() sety() get() move()

Figure 8.2 Class Point
and its attributes. When
class Point is defined, a
namespace associated with
the class is defined too; this
namespace contains the
class attributes.

Figure 8.2 shows how each name in namespace Point refers to the implementation of
a function. Let’s consider the implementation of function setx().

In Chapter 7, we learned that Python translates a method invocation like

>>> point.setx(3)

to

>>> Point.setx(point, 3)

So function setx() is a function that is defined in the namespace Point. It takes not one but
two arguments: the Point object that is invoking the method and an x-coordinate. There-
fore, the implementation of setx() would have to be something like:

def setx(point, xcoord):
implementation of setx

Function setx() would somehow have to store the x-coordinate xcoord so that it can
later be retrieved by, say, method get(). Unfortunately, the next code will not work

def setx(point, xcoord):
x = xcoord

because x is a local variable that will disappear as soon as function call setx() terminates.
Where should the value of xcoord be stored so that it can be retrieved later?

www.ebook3000.com

http://www.ebook3000.org

242 Chapter 8 Object-Oriented Programming

Every Object Has an Associated Namespace
We know that a namespace is associated with every class. It turns out that not only classes
but every Python object has its own, separate namespace. When we instantiate a new object
of type Point and give it name point, as in

>>> point = Point()

a new namespace called point gets created, as shown in Figure 8.3(a).

Figure 8.3 The namespace
of an object. (a) Every
Point object has a
namespace. (b) The
statement point.x = 3
assigns 3 to variable x
defined in namespace
point.

object point namespace

(a)

object point namespace

x

3

(b)

Because a namespace is associated with object point, we can use it to store values:

>>> point.x = 3

This statement creates name x in namespace point and assigns it integer object 3, as shown
in Figure 8.3(b).

Now let’s get back to implementing the method setx(). We now have a place to the x-
coordinate of a Point object. We store it the namespace associated with it. Method setx()
would be implemented in this way:

def setx(point, xcoord):
point.x = xcoord

Implementation of Class Point
We are now ready to write the implementation of class Point:

Module: ch8.py
1 class Point:
2 'class that represents points in the plane'
3 def setx(self, xcoord):
4 'set x coordinate of point to xcoord'
5 self.x = xcoord
6 def sety(self, ycoord):
7 'set y coordinate of point to ycoord'
8 self.y = ycoord
9 def get(self):

10 'return a tuple with x and y coordinates of the point'
11 return (self.x, self.y)
12 def move(self, dx, dy):
13 'change the x and y coordinates by dx and dy'
14 self.x += dx
15 self.y += dy

Section 8.1 Defining a New Python Class 243

The reserved keyword class is used to define a new Python class. The class statement
is very much like the def statement. A def statement defines a new function and gives the
function a name; a class statement defines a new type and gives the type a name. (They
are both also similar to the assignment statement that gives a name to an object.)

Following the class keyword is the name of the class, just as the function name follows
the def statement. Another similarity with function definitions is the docstring below the
class statement: It will be processed by the Python interpreter as part of the documentation
for the class, just as for functions.

A class is defined by its attributes. The class attributes (i.e., the four methods of class
Point) are defined in an indented code block just below the line

class Point:

The first input argument of each class method refers to the object invoking the method.
We have already figured out the implementation of method setx():

def setx(self, xcoord):
'sets x coordinate of point'
self.x = xcoord

We made one change to the implementation. The first argument that refers to the Point
object invoking method setx() is named self rather than point. The name of the first
argument can be anything really; the important thing is that it always refers to the object
invoking the method. However, the convention among Python developers is to use name
self for the object that the method is invoked on, and we follow that convention.

The method sety() is similar to setx(): It stores the y-coordinate in variable y, which
is also defined in the namespace of the invoking object. Method get() returns the values
of names x and y defined in the namespace of the invoking object. Finally, method move()
changes the values of variables x and y associated with the invoking object.

You should now test your new class Point. First execute the class definition by running
module ch8.py. Then try this, for example:

>>> a = Point()
>>> a.setx(3)
>>> a.sety(4)
>>> a.get()
(3, 4)

Practice Problem
8.1

Add method getx() to the class Point; this method takes no input and returns the x coor-
dinate of the Point object invoking the method.

>>> a.getx()
3

Instance Variables
Variables defined in the namespace of an object, such as variables x and y in the Point
object a, are called instance variables. Every instance (object) of a class will have its own
namespace and therefore its own separate copy of an instance variable.

www.ebook3000.com

http://www.ebook3000.org

244 Chapter 8 Object-Oriented Programming

For example, suppose we create a second Point object b as follows:

>>> b = Point()
>>> b.setx(5)
>>> b.sety(-2)

Instances a and b will each have its own copies of instance variables x and y, as shown in
Figure 8.4.

Figure 8.4 Instance
variables. Each object of
type Point has its own
instance variables x and y,
stored in the namespace
associated with the object.

object a

yx

43

object b

x y

5 -2

In fact, instance variables x and y can be accessed by specifying the appropriate instance:

>>> a.x
3
>>> b.x
5

They can, of course, be changed directly as well:

>>> a.x = 7
>>> a.x
7

Instances Inherit Class Attributes
Names a and b refer to objects of type Point, so the namespaces of a and b should have
some relationship with the namespace Point that contains the class methods that can be
invoked on objects a and b. We can check this, using Python’s function dir(), which we
introduced in Chapter 7 and which takes a namespace and returns a list of names defined in
it:

>>> dir(a)
['__class__', '__delattr__', '__dict__', '__doc__', '__eq__',
...
'__weakref__', 'get', 'move', 'setx', 'sety', 'x', 'y']

(We omit a few lines of output.)
As expected, instance variable names x and y appear in the list. But so do the methods

of the Point class: setx, sety, get, and move. We will say that object a inherits all the
attributes of class Point, just as a child inherits attributes from a parent. Therefore, all the
attributes of class Point are accessible from namespace a. Let’s check this:

>>> a.setx
<bound method Point.setx of <__main__.Point object at 0x14b7ef0>>

Section 8.1 Defining a New Python Class 245

object a

yx

object b

x y

class Point

setx sety get move
Figure 8.5 Instance and
class attributes. Each
object of type Point has its
own instance attributes x
and y. They all inherit the
attributes of class Point.

The relationship between namespaces a, b, and Point is illustrated in Figure 8.5. It is
important to understand that the method names setx, sety, get, and move are defined in
namespace Point, not in namespace a or b. Thus, the Python interpreter uses this procedure
when it evaluates expression a.setx:

1. It first attempts to find name setx in object (namespace) a.
2. If name setx does not exist in namespace a, then it attempts to find setx in name-

space Point (where it will find it).

Class Definition, More Generally
The format of the class definition statement is:

class <Class Name>:
<class variable 1> = <value>
<class variable 2> = <value>
...
def <class method 1>(self, arg11, arg12, ...):

<implementation of class method 1>
def <class method 2>(self, arg21, arg22, ...):

<implementation of class method 2>
...

(We will see a more general version in later sections.)
The first line of a class definition consists of the class keyword followed by <Class

Name>, the name of the class. In our example, the name was Point.
The definitions of the class attributes follow the first line. Each definition is indented

with respect to the first line. Class attributes can be class methods or class variables. In
class Point, four class methods were defined, but no class variable. A class variable is one
whose name is defined in the namespace of the class.

Practice Problem
8.2

Start by defining the class Test and then creating two instances of Test in your interpreter
shell:

>>> class Test:
version = 1.02

>>> a = Test()
>>> b = Test()

www.ebook3000.com

http://www.ebook3000.org

246 Chapter 8 Object-Oriented Programming

The class Test has only one attribute, the class variable version that refers to float value
1.02.

(a) Draw the namespaces associated with the class and the two objects, the names—if
any—contained in them, and the value(s) the name(s) refer to.

(b) Execute these statements and fill in the question marks:

>>> a.version
???
>>> b.version
???
>>> Test.version
???
>>> Test.version=1.03
>>> a.version
???
>>> Point.version
???
>>> a.version = 'Latest!!'
>>> Point.version
???
>>> b.version
???
>>> a.version
???

(c) Draw the state of the namespaces after this execution. Explain why the last three
expressions evaluate the way they did.

Documenting a Class

In order to get usable documentation from the help() tool, it is important to document a
new class properly. The class Point we defined has a docstring for the class and also one
for every method:

>>> help(Point)
Help on class Point in module __main__:

class Point(builtins.object)
| class that represents a point in the plane
|
| Methods defined here:
|
| get(self)
| returns the x and y coordinates of the point as a tuple
|
...

(We omit the rest of the output.)

Section 8.1 Defining a New Python Class 247

Class Animal
Before we move on to the next section, let’s put into practice everything we have learned
so far and develop a new class called Animal that abstracts animals and supports three
methods:

• setSpecies(species): Sets the species of the animal object to species.

• setLanguage(language): Sets the language of the animal object to language.

• speak(): Prints a message from the animal as shown below.

Here is how we want the class to behave:

>>> snoopy = Animal()
>>> snoopy.setpecies('dog')
>>> snoopy.setLanguage('bark')
>>> snoopy.speak()
I am a dog and I bark.

We start the class definition with the first line:

class Animal:

Now, in an indented code block, we define the three class methods, starting with method
setSpecies(). Even though the method setSpecies() is used with one argument (the
animal species), it must be defined as a function that takes two arguments: the argument
self that refers to the object invoking the method and the species argument:

def setSpecies(self, species):
self.species = species

Note that we named the instance variable species the same as the local variable species.
Because the instance variable is defined in the namespace self and the local variable is de-
fined in the local namespace of the function call, there is no name conflict.

The implementation of method setLanguage() is similar to the implementation of
setSpecies. The method speak() is used without input arguments; therefore, it must be
defined with just input argument self. Here is the final implementation:

Module: ch8.py
1 class Animal:
2 'represents an animal'
3

4 def setSpecies(self, species):
5 'sets the animal species'
6 self.spec = species
7

8 def setLanguage(self, language):
9 'sets the animal language'

10 self.lang = language
11

12 def speak(self):
13 'prints a sentence by the animal'
14 print('I am a {} and I {}.'.format(self.spec, self.lang))

www.ebook3000.com

http://www.ebook3000.org

248 Chapter 8 Object-Oriented Programming

Practice Problem
8.3

Implement class Rectangle that represents rectangles. The class should support methods:

• setSize(width, length): Takes two number values as input and sets the length
and the width of the rectangle

• perimeter(): Returns the perimeter of the rectangle
• area(): Returns the area of the rectangle

>>> rectangle = Rectangle(3,4)
>>> rectangle.perimeter()
14
>>> rectangle.area()
12

8.2 Examples of User-Defined Classes
In order to get more comfortable with the process of designing and implementing a new
class, in this section we work through the implementation of several more classes. But first,
we explain how to make it easier to create and initialize new objects.

Overloaded Constructor Operator
We take another look at the class Point we developed in the previous section. To create a
Point object at (x, y)-coordinates (3, 4), we need to execute three separate statements:

>>> a = Point()
>>> a.setx(3)
>>> a.sety(4)

The first statement creates an instance of Point; the remaining two lines initialize the point’s
x- and y-coordinates. That’s quite a few steps to create a point at a certain location. It would
be nicer if we could fold the instantiation and the initialization into one step:

>>> a = Point(3,4)

We have already seen types that allow an object to be initialized when created. Integers
can be initialized when created:

>>> x = int(93)
>>> x
93

So can objects of type Fraction from the built-in fractions module:

>>> import fractions
>>> x = fractions.Fraction(3,4)
>>> x
Fraction(3, 4)

Constructors that take input arguments are useful because they can initialize the state of the
object at the moment the object is instantiated.

Section 8.2 Examples of User-Defined Classes 249

In order to be able to use a Point() constructor with input arguments, wemust explicitly
add a method called __init__() to the implementation of class Point. When added to a
class, it will be automatically called by the Python interpreter whenever an object is created.
In other words, when Python executes

Point(3,4)

it will create a “blank” Point object first and then execute

self.__init__(3, 4)

where self refers to the newly created Point object. Note that since __init__() is a
method of the class Point that takes two input arguments, the function __init__() will
need to be defined to take two input arguments as well, plus the obligatory argument self:

Module: ch8.py
1 class Point:
2 'represents points in the plane'
3 def __init__(self, xcoord, ycoord):
4 'initializes point coordinates to (xcoord, ycoord)'
5 self.x = xcoord
6 self.y = ycoord
7

8 # implementations of methods setx(), sety(), get(), and move()

!
CAUTION

Function __init__() Is Called Every Time an Object Is Created

Because the __init__() method is called every time an object is instantiated,
the Point() constructor must now be called with two arguments. This means that
calling the constructor without an argument will result in an error:

>>> a = Point()
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>

a = Point()
TypeError: __init__() takes exactly 3 positional arguments
(1 given)

It is possible to rewrite the __init__() function so that it can handle two argu-
ments, or none, or one. Read on.

Default Constructor
We know that constructors of built-in classes can be used with or without arguments:

>>> int(3)
3
>>> int()
0

We can do the same with user-defined classes. All we need to do is specify the default values
of the input arguments xcoord and ycoord if input arguments are not provided. In the next

www.ebook3000.com

http://www.ebook3000.org

250 Chapter 8 Object-Oriented Programming

reimplementation of the __init__() method, we specify default values of 0:

Module: ch8.py
1 class Point:
2 'represents points in the plane'
3

4 def __init__(self, xcoord=0, ycoord=0):
5 'initializes point coordinates to (xcoord, ycoord)'
6 self.x = xcoord
7 self.y = ycoord
8

9 # implementations of methods setx(), sety(), get(), and move()

This Point constructor can now take two input arguments

>>> a = Point(3,4)
>>> a.get()
(3, 4)

or none

>>> b = Point()
>>> b.get()
(0, 0)

or even just one

>>> c = Point(2)
>>> c.get()
(2, 0)

The Python interpreter will assign the constructor arguments to the local variables xcoord
and ycoord from left to right.

Playing Card Class
In Chapter 6, we developed a blackjack application. We used strings such as '3 ♠' to
represent playing cards. Now that we know how to develop new types, it makes sense to
develop a Card class to represent playing cards.

This class should support a two-argument constructor to create Card objects:

>>> card = Card('3', '\u2660')

The string '\u2660' is the escape sequence that represents Unicode character♠. The class
should also support methods to retrieve the rank and suit of the Card object:

>>> card.getRank()
'3'
>>> card.getSuit()
'♠'

That should be enough. We want the class Card to support these methods:

• Card(rank, suit): Constructor that initializes the rank and suit of the card
• getRank(): Returns the card’s rank
• getSuit(): Returns the card’s suit

Section 8.3 Designing New Container Classes 251

Note that the constructor is specified to take exactly two input arguments. We choose not
to provide default values for the rank and suit because it is not clear what a default playing
card would really be. Let’s implement the class:

Module: cards.py
1 class Card:
2 'represents a playing card'
3

4 def __init__(self, rank, suit):
5 'initialize rank and suit of playing card'
6 self.rank = rank
7 self.suit = suit
8

9 def getRank(self):
10 'return rank'
11 return self.rank
12

13 def getSuit(self):
14 'return suit'
15 return self.suit

Note that the method __init__() is implemented to take two arguments, which are the
rank and suit of the card to be created.

Practice Problem
8.4

Modify the class Animal we developed in the previous section so that it supports a two,
one, or no input argument constructor:

>>> snoopy = Animal('dog', 'bark')
>>> snoopy.speak()
I am a dog and I bark.
>>> tweety = Animal('canary')
>>> tweety.speak()
I am a canary and I make sounds.
>>> animal = Animal()
>>> animal.speak()
I am a animal and I make sounds.

8.3 Designing New Container Classes
Although Python provides a diverse set of container classes, there will always be a need to
develop container classes tailored for specific applications. We illustrate this with a class
that represents a deck of playing cards and also with the classic queue container class.

Designing a Class Representing a Deck of Playing Cards
We again use the blackjack application from Chapter 6 to motivate our next class. In the
blackjack program, the deck of cards was implemented using a list. To shuffle the deck, we

www.ebook3000.com

http://www.ebook3000.org

252 Chapter 8 Object-Oriented Programming

used the shuffle()method from the randommodule, and to deal a card, we used the list
method pop(). In short, the blackjack application was written using nonapplication-specific
terminology and operations.

The blackjack program would have been more readable if the list container and opera-
tions were hidden and the program was written using a Deck class and Deck methods. So
let’s develop such a class. But first, how would we want the Deck class to behave?

First, we should be able to obtain a standard deck of 52 cards using a default constructor:

>>> deck = Deck()

The class should support a method to shuffle the deck:

>>> deck.shuffle()

The class should also support a method to deal the top card from the deck.

>>> card = deck.dealCard()
>>> (card.getRank(), card.getSuit())
('9', '♠')
>>> card = deck.dealCard()
>>> (card.getRank(), card.getSuit())
('J', '♦')
>>> card = deck.dealCard()
>>> (card.getRank(), card.getSuit())
('10', '♦')

The methods that the Deck class should support are:

• Deck(): Constructor that initializes the deck to a standard deck of 52 playing cards

• shuffle(): Shuffles the deck

• dealCard(): Pops and returns the card at the top of the deck

Implementing the Deck (of Cards) Class
Let’s implement the Deck class, starting with the Deck constructor. Unlike the two examples
from the previous section (classes Point and Card), the Deck constructor does not take
input arguments. It still needs to be implemented because its job is to create the 52 playing
cards of a deck and store them somewhere.

To create the list of the 52 standard playing cards, we can use a nested loop that is similar
to the one we used in function shuffledDeck() of the blackjack application. There we
created a set of suits and a set of ranks

suits = {'\u2660', '\u2661', '\u2662', '\u2663'}
ranks = {'2','3','4','5','6','7','8','9','10','J','Q','K','A'}

and then used a nested for loop to create every combination of rank and suit

for suit in suits:
for rank in ranks:

create card with given rank and suit and add to deck

We need a container to store all the generated playing cards. Because the ordering of
cards in a deck is relevant and the deck should be allowed to change, we choose a list just
as we did in the blackjack application in Chapter 6.

Section 8.3 Designing New Container Classes 253

Nowwe have some design decisions to make. First, should the list containing the playing
cards be an instance or class variable? Because every Deck object should have its own list
of playing cards, the list clearly should be an instance variable.

We have another design question to resolve: Where should the sets suits and ranks
be defined? They could be local variables of the __init__() function. They could also be
class variables of the class Deck. Or they could be instance variables. Because the sets will
not be modified and they are shared by all Deck instances, we decide to make them class
variables.

Take a look at the implementation of the method __init__() in module cards.py.
Because the sets suits and ranks are class variables of the class Deck, they are defined in
namespace Deck. Therefore, in order to access them in lines 12 and 13, you must specify a
namespace:

for suit in Deck.suits:
for rank in Deck.ranks:

add Card with given rank and suit to deck

We now turn our attention to the implementation of the two remaining methods of class
Deck. The method shuffle() should just call random module function shuffle() on
instance variable self.deck.

For method dealCard(), we need to decide where the top of the deck is. Is it at the
beginning of list self.deck or at the end of it? We decide to go for the end. The complete
class Deck is:

Module: cards.py
1 from random import shuffle
2 class Deck:
3 'represents a deck of 52 cards'
4

5 # ranks and suits are Deck class variables
6 ranks = {'2','3','4','5','6','7','8','9','10','J','Q','K','A'}
7

8 # suits is a set of 4 Unicode symbols representing the 4 suits
9 suits = {'\u2660', '\u2661', '\u2662', '\u2663'}

10

11 def __init__(self):
12 'initialize deck of 52 cards'
13 self.deck = [] # deck is initially empty
14

15 for suit in Deck.suits: # suits and ranks are Deck
16 for rank in Deck.ranks: # class variables
17 # add Card with given rank and suit to deck
18 self.deck.append(Card(rank, suit))
19

20 def dealCard(self):
21 'deal (pop and return) card from the top of the deck'
22 return self.deck.pop()
23

24 def shuffle(self):
25 'shuffle the deck'
26 shuffle(self.deck)

www.ebook3000.com

http://www.ebook3000.org

254 Chapter 8 Object-Oriented Programming

Practice Problem
8.5

Modify the constructor of the class Deck so that the class can also be used for card games
that do not use the standard deck of 52 cards. For such games, we would need to provide the
list of cards explicitly in the constructor. Here is a somewhat artificial example:

>>> deck = Deck(['1', '2', '3', '4'])
>>> deck.shuffle()
>>> deck.dealCard()
'3'
>>> deck.dealCard()
'1'

Container Class Queue
A queue is a container type that abstracts a queue, such as a queue of shoppers in a super-
market waiting at the cashier’s. In a checkout queue, shoppers are served in a first-in first-out
(FIFO) fashion. A shopper will put himself at the end of the queue and the first person in
the queue is the next one served by the cashier. More generally, all insertions must be at the
rear of the queue, and all removals must be from the front.

We now develop a basic Queue class that abstracts a queue. It will support very restric-
tive accesses to the items in the queue: method enqueue() to add an item to the rear of the
queue and method dequeue() to remove an item from the front of the queue. As shown in
Table 8.2, the Queue class will also support method isEmpty() that returns true or false
depending on whether the queue is empty or not. The Queue class is said to be a FIFO
container type because the item removed is the item that entered the queue earliest.

Before we implement the Queue class, we illustrate its usage. We start by instantiating
a Queue object:

>>> fruit = Queue()

We then insert a fruit (as a string) into it:

>>> fruit.enqueue('apple')

Let’s insert a few more fruits:

>>> fruit.enqueue('banana')
>>> fruit.enqueue('coconut')

We can then dequeue the queue:

>>> fruit.dequeue()
'apple'

The method dequeue() should both remove and return the item at the front of the queue.

Table 8.2 Queue methods.
A queue is a container of a
sequence of items; the only
accesses to the sequence
are enqueue(item) and
dequeue() .

Method Description
enqueue(item) Add item to the end of the queue
dequeue() Remove and return the element at the front of the queue
isEmpty() Returns True if the queue is empty, False otherwise

Section 8.3 Designing New Container Classes 255

front/rear

fruit 'apple'

front rear

fruit 'apple' 'banana'

front rear

fruit 'apple' 'banana' 'coconut'

front rear

fruit 'banana' 'coconut'

front/rear

fruit 'coconut'

Index 0 1 2

Figure 8.6 Queue
operations. Shown is the
state of the queue fruit
after the statements:
fruit.enqueue('apple')
fruit.enqueue('banana')
fruit.enqueue('coconut')
fruit.dequeue()
fruit.dequeue()

We dequeue two more times to get back an empty queue:

>>> fruit.dequeue()
'banana'
>>> fruit.dequeue()
'coconut'
>>> fruit.isEmpty()
True

Figure 8.6 shows the sequence of states the queue fruit went through as we executed the
previous commands.

Implementing a Queue Class
Let’s discuss the implementation of the Queue class. The most important question we need
to answer is how are we going to store the items in the queue. The queue can be empty or
contain an unbounded number of items. It also has to maintain the order of items, as that
is essential for a (fair) queue. What built-in type can be used to store, in order, an arbitrary
number of items and allow insertions on one end and deletions from the other?

The list type certainly satisfies these constraints, and we go with it. The next question
is: When and where in the Queue class implementation should this list be created? In our
example, it is clear that we expect that the default Queue constructor gives us an empty
queue. This means that we need to create the list as soon as the Queue object is created—
that is, in an __init__() method:

def __init__(self):
'instantiates an empty list that will contain queue items'
self.q = []

... # remainder of class definition

www.ebook3000.com

http://www.ebook3000.org

256 Chapter 8 Object-Oriented Programming

Nowwemove to the implementation of the three Queuemethods. Themethod isEmpty()
can be implemented easily just by checking the length of list self.q:

def isEmpty(self):
'returns True if queue is empty, False otherwise'
return (len(self.q) == 0)

The method enqueue() should put items into the rear of list self.q, and the method
dequeue() should remove items from the front of list self.q. We now need to decide
what is the front of the list self.q. We can choose the front to be the leftmost list element
(i.e., at index 0) or the rightmost one (at index −1). Both will work, and the benefit of each
depends on the underlying implementation of the built-in class list—which is beyond the
scope of this chapter.

In Figure 8.6, the first element of the queue is shown on the left, which we usually
associate with index 0, and we thus do the same in our implementation. Once we make this
decision, the Queue class can be implemented:

Module: ch8.py
1 class Queue:
2 'a classic queue class'
3

4 def __init__(self):
5 'instantiates an empty list'
6 self.q = []
7

8 def isEmpty(self):
9 'returns True if queue is empty, False otherwise'

10 return (len(self.q) == 0)
11

12 def enqueue (self, item):
13 'insert item at rear of queue'
14 return self.q.append(item)
15

16 def dequeue(self):
17 'remove and return item at front of queue'
18 return self.q.pop(0)

8.4 Overloaded Operators
There are a few inconveniences with the user-defined classes we have developed so far. For
example, suppose you created a Point object:

>>> point = Point(3,5)

and then tried to evaluate it:

>>> point
<__main__.Point object at 0x15e5410>

Not very user-friendly, is it? By the way, the code says that point refers to an object of type
Point—where Point is defined in the namespace of the top module—and that its object
ID—memory address, effectively—is 0x15e5410, in hex. In any case, probably that is not

Section 8.4 Overloaded Operators 257

the information we wanted to get when we evaluated point.
Here is another problem. To obtain the number of characters in a string or the number

of items in a list, dictionary, tuple, or set, we use the len() function. It seems natural to use
the same function to obtain the number of items in a Queue container object. Unfortunately,
we do not get that:

>>> fruit = Queue()
>>> fruit.enqueue('apple')
>>> fruit.enqueue('banana')
>>> fruit.enqueue('coconut')
>>> len(fruit)
Traceback (most recent call last):
File "<pyshell#356>", line 1, in <module>
len(fruit)

TypeError: object of type 'Queue' has no len()

The point we are making is this: The classes we have developed so far do not behave
like built-in classes. For user-defined classes to be useful and easy to use, it is important to
make themmoremore familiar (i.e., more like built-in classes). Fortunately, Python supports
operator overloading, which makes this possible.

Operators Are Class Methods
Consider the operator +. It can be used to add numbers:

>>> 2 + 4
6

It can also be used to concatenate lists and strings:

>>> [4, 5, 6] + [7]
[4, 5, 6, 7]
>>> 'strin' + 'g'
'string'

The + operator is said to be an overloaded operator. An overloaded operator is an op-
erator that has been defined for multiple classes. For each class, the definition—and thus
the meaning—of the operator is different. So, for example, the + operator has been defined
for the int, list, and str classes. It implements integer addition for the int class, list
concatenation for the list class, and string concatenation for the str class. The question
now is: How is operator + defined for a particular class?

Python is an object-oriented language, and, as we have said, any “evaluation,” including
the evaluation of an arithmetic expression like 2 + 4, is really a method invocation. To see
what method exactly, you need to use the help() documentation tool. Whether you type
help(int), help(str), or help(list), you will see that the documentation for the +
operator is:

...
| __add__(...)
| x.__add__(y) <==> x+y
...

This means that whenever Python evaluates expression x + y, it first substitutes it with
expression x.__add__(y), amethod invocation by object xwith object y as input argument,

www.ebook3000.com

http://www.ebook3000.org

258 Chapter 8 Object-Oriented Programming

and then evaluates the new, method invocation, expression. This is true no matter what x and
y are. So you can actually evaluate 2 + 3, [4, 5, 6] + [7] and 'strin'+ 'g' using
invocations to method __add__() instead:

>>> int(2).__add__(4)
6
>>> [4, 5, 6].__add__([7])
[4, 5, 6, 7]
>>> 'strin'.__add__('g')
'string'

DETOUR
Addition Is Just a Function, After All

The algebraic expression

>>> x+y

gets translated by the Python interpreter to

>>> x.__add__(y)

which is a method invocation. In Chapter 7, we learned that this method invocation
gets translated by the interpreter to

>>> type(x).__add__(x,y)

(Recall that type(x) evaluates to the class of object x.) This last expression is the
one that really gets evaluated.

This is true, of course, for all operators: Any expression or method invocation is
really a call by a function defined in the namespace of the class of the first operand.

The + operator is just one of the Python overloaded operators; Table 8.3 shows some
others. For each operator, the corresponding function is shown as well as an explanation
of the operator behavior for the number types, the list type, and the str type. All the
operators listed are also defined for other built-in types (dict, set, etc.) and can also be defined
for user-defined types, as shown next.

Note that the last operator listed is the overloaded constructor operator, which maps to
function __init__(). We have already seen how we can implement an overloaded con-
structor in a user-defined class. We will see that implementing other overloaded operators
is very similar.

Making the Class Point User Friendly
Recall the example we started this section with:

>>> point = Point(3,5)
>>> point
<__main__.Point object at 0x15e5410>

What would we prefer point to evaluate to instead? Suppose that we want:

>>> point
Point(3, 5)

Section 8.4 Overloaded Operators 259

Operator Method Number List and String
x + y x.__add__(y) Addition Concatenation
x - y x.__sub__(y) Subtraction —
x * y x.__mul__(y) Multiplication Self-concatenation
x / y x.__truediv__(y) Division —
x // y x.__floordiv__(y) Integer division —
x % y x.__mod__(y) Modulus —
x == y x.__eq__(y) Equal to
x != y x.__ne__(y) Unequal to
x > y x.__gt__(y) Greater than
x >= y x.__ge__(y) Greater than or equal to
x < y x.__lt__(y) Less than
x <= y x.__le__(y) Less than or equal to
repr(x) x.__repr__() Canonical string representation
str(x) x.__str__() Informal string representation
len(x) x.__len__() — Collection size
<type>(x) <type>.__init__(x) Constructor

Table 8.3 Overloaded
operators. Some of the
commonly used overloaded
operators are listed, along
with the corresponding
methods and behaviors for
the number, list, and string
types.

To understand howwe can achieve this, we first need to understand that whenwe evaluate
point in the shell, Python will display the string representation of the object. The default
string representation of an object is its type and address, as in

<__main__.Point object at 0x15e5410>

To modify the string representation for a class, we need to implement the overloaded
operator repr() for the class. The operator repr() is called automatically by the interpreter
whenever the object must be represented as a string. One example of when that is the case is
when the object needs to be displayed in the interpreter shell. So the familiar representation
[3, 4, 5] of a list lst containing numbers 3, 4, and 5

>>> lst
[3, 4, 5]

is really the display of the string output by the call repr(lst)

>>> repr(lst)
'[3, 4, 5]'

All built-in classes implement overloaded operator repr() for this purpose. To modify
the default string representation of objects of user-defined classes, we need to do the same.
We do so by implementing the method corresponding to operator repr() in Table 8.3,
method __repr__().

To get a Point object displayed in the format Point(<x>, <y>), all we need to do is
add the next method to the class Point:

Module: ch8.py
1 class Point:
2

3 # other Point methods
4

5 def __repr__(self):
6 'return canonical string representation Point(x, y)'
7 return 'Point({}, {})'.format(self.x, self.y)

www.ebook3000.com

http://www.ebook3000.org

260 Chapter 8 Object-Oriented Programming

Now, when we evaluate a Point object in the shell, we get what we want:

>>> point = Point(3,5)
>>> point
Point(3, 5)

!
CAUTION

String Representations of Objects

There are actually two ways to get a string representation of an object: the over-
loaded operator repr() and the string constructor str().

The operator repr() is supposed to return the canonical string representation
of the object. Ideally, but not necessarily, this is the string representation you would
use to construct the object, such as '[2, 3, 4]' or 'Point(3, 5)'.

In other words, the expression eval(repr(o)) should give back the original
object o. The method repr() is automatically called when an expression evaluates
to an object in the interpreter shell and this object needs to be displayed in the shell
window.

The string constructor str() returns an informal, ideally very readable, string
representation of the object. This string representation is obtained by method call
o.__str__(), if method __str__() is implemented. The Python interpreter calls
the string constructor instead of the overloaded operator repr() whenever the
object is to be “pretty printed” using function print(). We illustrate the difference
with this class:

class Representation:
def __repr__(self):

return 'canonical string representation'
def __str__(self):

return 'Pretty string representation.'

Let’s test it:

>>> rep = Representation()
>>> rep
canonical string representation
>>> print(rep)
Pretty string representation.

Contract between the Constructor and the repr() Operator
The last caution box stated that the output of the overloaded operator repr() should be the
canonical string representation of the object. The canonical string representation of Point
object Point(3, 5) is 'Point(3, 5)'. The output of the repr() operator for the same
Point object is:

>>> repr(Point(3, 5))
'Point(3, 5)'

Section 8.4 Overloaded Operators 261

It seems we have satisfied the contract between the constructor and the representation op-
erator repr(): They are the same. Let’s check:

>>> Point(3, 5) == eval(repr(Point(3, 5)))
False

What did we do wrong?
The problem is not with the constructor or operator repr() but with the operator ==: It

does not consider two points with the same coordinates necessarily equal. Let’s check:

>>> Point(3, 5) == Point(3, 5)
False

The reason for this somewhat strange behavior is that for user-defined classes the default
behavior for operator == is to return True only when the two objects we are comparing are
the same object. Let’s show that this is indeed the case:

>>> point = Point(3,5)
>>> point == point
True

As shown in Table 8.3, the method corresponding to the overloaded operator == is
method __eq__(). To change the behavior of overloaded operator ==, we need to implement
method __eq__() in class Point. We do so in this final version of class Point:

Module: ch8.py
1 class Point:
2 'class that represents a point in the plane'
3

4 def __init__(self, xcoord=0, ycoord=0):
5 'initializes point coordinates to (xcoord, ycoord)'
6 self.x = xcoord
7 self.y = ycoord
8 def setx(self, xcoord):
9 'sets x coordinate of point to xcoord'

10 self.x = xcoord
11 def sety(self, ycoord):
12 'sets y coordinate of point to ycoord'
13 self.y = ycoord
14 def get(self):
15 'returns the x and y coordinates of the point as a tuple'
16 return (self.x, self.y)
17 def move(self, dx, dy):
18 'changes the x and y coordinates by i and j, respectively'
19 self.x += dx
20 self.y += dy
21 def __eq__(self, other):
22 'self == other is they have the same coordinates'
23 return self.x == other.x and self.y == other.y
24 def __repr__(self):
25 'return canonical string representation Point(x, y)'
26 return 'Point({}, {})'.format(self.x, self.y)

www.ebook3000.com

http://www.ebook3000.org

262 Chapter 8 Object-Oriented Programming

The new implementation of class Point supports the == operator in a way that makes sense

>>> Point(3, 5) == Point(3, 5)
True

and also ensures that the contract between the constructor and the operator repr() is sat-
isfied:

>>> Point(3, 5) == eval(repr(Point(3, 5)))
True

Practice Problem
8.6

Implement overloaded operators repr() and == for the Card class. Your new Card class
should behave as shown:

>>> Card('3', '♠') == Card('3', '♠')
True
>>> Card('3', '♠') == eval(repr(Card('3', '♠')))
True

Making the Queue Class User Friendly
We nowmake the class Queue from the previous section friendlier by overloading operators
repr(), ==, and len(). In the process we find it useful to extend the constructor.

We start with this implementation of Queue:

Module: ch8.py
1 class Queue:
2 'a classic queue class'
3

4 def __init__(self):
5 'instantiates an empty list'
6 self.q = []
7

8 def isEmpty(self):
9 'returns True if queue is empty, False otherwise'

10 return (len(self.q) == 0)
11

12 def enqueue (self, item):
13 'insert item at rear of queue'
14 return self.q.append(item)
15

16 def dequeue(self):
17 'remove and return item at front of queue'
18 return self.q.pop(0)

Let’s first take care of the “easy” operators. What does it mean for two queues to be
equal? It means that they have the same elements in the same order. In other words, the
lists that contain the items of the two queues are the same. Therefore, the implementation
of operator __eq__() for class Queue should consist of a comparison between the lists

Section 8.4 Overloaded Operators 263

corresponding to the two Queue objects we are comparing:

def __eq__(self, other):
'''returns True if queues self and other contain

the same items in the same order'''
return self.q == other.q

The overloaded operator function len() returns the number of items in a container. To
enable its use on Queue objects, we need to implement the correspondingmethod __len__()
(see Table 8.3) in the Queue class. The length of the queue is of course the length of the
underlying list self.q:

def __len__(self):
'return number of items in queue'
return len(self.q)

Let’s now tackle the implementation of the repr() operator. Suppose we construct a
queue like this:

>>> fruit = Queue()
>>> fruit.enqueue('apple')
>>> fruit.enqueue('banana')
>>> fruit.enqueue('coconut')

What do we want the canonical string representation to look like? How about:

>>> fruit
Queue(['apple', 'banana', 'coconut'])

Recall that when implementing the overloaded operator repr(), ideally we should sat-
isfy the contract between it and the constructor. To satisfy it, we should be able to construct
the queue as shown:

>>> Queue(['apple', 'banana', 'coconut'])
Traceback (most recent call last):
File "<pyshell#404>", line 1, in <module>
Queue(['apple', 'banana', 'coconut'])

TypeError: __init__() takes exactly 1 positional argument (2 given)

We cannot because we have implemented the Queue constructor so it does not take any
input arguments. So, we decide to change the constructor, as shown next. The two benefits
of doing this are that (1) the contract between the constructor and repr() is satisfied and
(2) newly created Queue objects can now be initialized at instantiation time.

Module: ch8.py
1 class Queue:
2 'a classic queue class'
3

4 def __init__(self, q=None):
5 'initialize queue based on list q, default is empty queue'
6 if q == None:
7 self.q = []
8 else:
9 self.q = q

10

11 # methods enqueue, dequeue, and isEmpty defined here

www.ebook3000.com

http://www.ebook3000.org

264 Chapter 8 Object-Oriented Programming

12

13 def __eq__(self, other):
14 '''return True if queues self and other contain
15 the same items in the same order'''
16 return self.q == other.q
17

18 def __len__(self):
19 'returns number of items in queue'
20 return len(self.q)
21

22 def __repr__(self):
23 'return canonical string representation of queue'
24 return 'Queue({})'.format(self.q)

Practice Problem
8.7

Implement overloaded operators len(), repr(), and == for the Deck class. Your new Deck
class should behave as shown:

>>> len(Deck()))
52
>>> Deck() == Deck()
True
>>> Deck() == eval(repr(Deck()))
True

8.5 Inheritance
Code reuse is a fundamental software engineering goal. One of the main reasons for wrap-
ping code into functions is to more easily reuse the code. Similarly, a major benefit of orga-
nizing code into user-defined classes is that the classes can then be reused in other programs,
just as it is possible to use a function in the development of another. A class can be (re)used
as is, something we have been doing since Chapter 2. A class can also be “extended” into a
new class through class inheritance. In this section, we introduce the second approach.

Inheriting Attributes of a Class
Suppose that in the process of developing an application, we find that it would be very
convenient to have a class that behaves just like the built-in class list but also supports a
method called choice() that returns an item from the list, chosen uniformly at random.

More precisely, this class, whichwe refer to as MyList, would support the samemethods
as the class list and in the same way. For example, we would be able to create a MyList
container object:

>>> mylst = MyList()

We also would be able to append items to it using list method append(), compute the
number of items in it using overloaded operator len(), and count the number of occurrences

Section 8.5 Inheritance 265

of an item using list method count():

>>> mylst.append(2)
>>> mylst.append(3)
>>> mylst.append(5)
>>> mylst.append(3)
>>> len(mylst)
4
>>> mylst.count(3)
2

In addition to supporting the same methods that the class list supports, the class
MyList should also support method choice() that returns an item from the list, with each
item in the list equally likely to be chosen:

>>> mylst.choice()
5
>>> mylst.choice()
2
>>> mylst.choice()
5

One way to implement the class MyList is the approach we took when developing
classes Deck and Queue. A list instance variable self.lst would be used to store the
items of MyList:

import random
class MyList:

def __init__(self, initial = []):
self.lst = initial

def __len__(self):
return len(self.lst)

def append(self, item):
self.lst.append(self, item)

implementations of remaining "list" methods

def choice(self):
return random.choice(self.lst)

This approach to developing class MyListwould require us to write more than 30 meth-
ods. It would take a while and be tedious. Wouldn’t it be nicer if we could define class
MyList in a much shorter way, one that essentially says that class MyList is an “extension”
of class list with method choice() as an additional method? It turns out that we can:

Module: ch8.py
1 import random
2 class MyList(list):
3 'a subclass of list that implements method choice'
4

5 def choice(self):
6 'return item from list chosen uniformly at random'
7 return random.choice(self)

This class definition specifies that class MyList is a subclass of the class list and thus

www.ebook3000.com

http://www.ebook3000.org

266 Chapter 8 Object-Oriented Programming

supports all the methods that class list supports. This is indicated in the first line

class MyList(list):

The hierarchical structure between classes list and MyList is illustrated in Figure 8.7.

Figure 8.7 Hierarchy of
classes list and MyList.
Some of the attributes of
class list are listed, all of
which refer to appropriate
functions. Class MyList is a
subclass of class list and
inherits all the attributes of
class list. It also defines
an additional attribute,
method choice(). The
object referred to by mylst
inherits all the class
attributes from its class,
MyList, which includes the
attributes from class list.

__main__ namespace

mylst class MyList

choice

class list

__init__ append __len__ count
... ...

[2, 3, 5, 3]

Figure 8.7 shows a MyList container object called mylst that is created in the inter-
preter shell (i.e., in the __main__ namespace):

>>> mylst = MyList([2, 3, 5, 3])

The object mylst is shown as a “child” of class MyList. This hierarchical representation
illustrates that object mylst inherits all the attributes of class MyList. We saw that objects
inherit the attributes of their class in Section 8.1.

Figure 8.7 also shows class MyList as a “child” of class list. This hierarchical repre-
sentation illustrates that class MyList inherits all the attributes of list. You can check that
using the built-in function dir():

>>> dir(MyList)
['__add__', '__class__', '__contains__', '__delattr__',
...
'append', 'choice', 'count', 'extend', 'index', 'insert',
'pop', 'remove', 'reverse', 'sort']

What this means is that object mylst will inherit not only method choice() from class
MyList but also all the attributes of list. You can, again, check that:

>>> dir(mylst)
['__add__', '__class__', '__contains__', '__delattr__',
...
'append', 'choice', 'count', 'extend', 'index', 'insert',
'pop', 'remove', 'reverse', 'sort']

The class MyList is said to be a subclass of class list. The class list is the superclass
of class MyList.

Section 8.5 Inheritance 267

Class Definition, in General
Whenwe implemented classes Point, Animal, Card, Deck, and Queue, we used this format
for the first line of the class definition statement:

class <Class Name>:

To define a class that inherits attributes from an existing class <Super Class>, the first
line of the class definition should be:

class <Class Name>(<Super Class>):

It is also possible to define a class that inherits attributes from more than just one existing
class. In that case, the first line of the class definition statement is:

class <Class Name>(<Super Class 1>, <Super Class 2>, ...):

Overriding Superclass Methods
We illustrate class inheritance using another simple example. Suppose that we need a class
Bird that is similar to the class Animal from Section 8.1. The class Bird should support
methods setSpecies() and setLanguage(), just like class Animal:

>>> tweety = Bird()
>>> tweety.setSpecies('canary')
>>> tweety.setLanguage('tweet')

The class Bird should also support a method called speak(). However, its behavior differs
from the behavior of the Animal method speak():

>>> tweety.speak()
tweet! tweet! tweet!

Here is another example of the behavior we expect from class Bird:

>>> daffy = Bird()
>>> daffy.setSpecies('duck')
>>> daffy.setLanguage('quack')
>>> daffy.speak()
quack! quack! quack!

Let’s discuss how to implement class Bird. Because class Bird shares attributes with
existing class Animal (birds are animals, after all), we develop it as a subclass of Animal.
Let’s first recall the definition of class Animal from Section 8.1:

Module: ch8.py
1 class Animal:
2 'represents an animal'
3

4 def setSpecies(self, species):
5 'sets the animal species'
6 self.spec = species
7

8 def setLanguage(self, language):
9 'sets the animal language'

10 self.lang = language
11

www.ebook3000.com

http://www.ebook3000.org

268 Chapter 8 Object-Oriented Programming

12 def speak(self):
13 'prints a sentence by the animal'
14 print('I am a {} and I {}.'.format(self.spec, self.lang))

If we define class Bird as a subclass of class Animal, it will have the wrong behavior
for method speak(). So the question is this: Is there a way to define Bird as a subclass of
Animal and change the behavior of method speak() in class Bird?

There is, and it is simply to implement a new method speak() in class Bird:

Module: ch8.py
1 class Bird(Animal):
2 'represents a bird'
3

4 def speak(self):
5 'prints bird sounds'
6 print('{}! '.format(self.language) * 3)

Class Bird is defined to be a subclass of Animal. Therefore, it inherits all the attributes
of class Animal, including the Animal method speak(). There is a method speak() de-
fined in class Bird, however; this method replaces the inherited Animal method. We say
that the Bird method overrides the superclass method speak().

Now, when method speak() is invoked on a Bird object like daffy, how does the
Python interpreter decide which method speak() to invoke? We use Figure 8.8 to illustrate
how the Python interpreter searches for attribute definitions.

Figure 8.8 Namespaces
associated with classes
Animal and Bird, object
daffy, and the shell.
Omitted are the values of
instance variables and
implementations of class
methods.

__main__ namespace

daffy class Bird

speak

class Animal

setSpecies setLanguage speak

object daffy

spec lang

When the interpreter executes

>>> daffy = Bird()

it creates a Bird object named daffy and a namespace, initially empty, associated with it.
Now let’s consider how the Python interpreter finds the definition of setSpecies() in:

>>> daffy.setSpecies('duck')

Section 8.5 Inheritance 269

The interpreter looks for the definition of attribute setSpecies starting with the name-
space associated with object daffy and continuing up the class hierarchy. It does not find the
definition in the namespace associated with object daffy or in the namespace associated
with class Bird. Eventually, it does find the definition of setSpecies in the namespace
associated with class Animal.

The search for the method definition when the interpreter evaluates

>>> daffy.setLanguage('quack')

also ends with the namespace of class Animal.
However, when the Python interpreter executes

>>> daffy.speak()
quack! quack! quack!

the interpreter finds the definition of method speak() in class Bird. In other words, the
search for attribute speak never reaches the class Animal. It is the Bird method speak()
that is executed.

!
CAUTION

Attribute Names Issues

Now that we understand how object attributes are evaluated by the Python inter-
preter, we can discuss the problems that can arise with carelessly chosen attribute
names. Consider, for example, this class definition

class Problem:
def value(self, v):

self.value = v

and try:

>>> p = Problem()
>>> p.value(9)
>>> p.value
9

So far, so good. When executing p.value(9), the object p does not have an in-
stance variable value, and the attribute search ends with the function value() in
class Problem. An instance variable value is then created in the object itself, and
that is confirmed by the evaluation of the statement that follows, p.value.

Now suppose we try:

>>> p.value(3)
Traceback (most recent call last):
File "<pyshell#324>", line 1, in <module>
p.value(9)

TypeError: 'int' object is not callable

What happened? The search for attribute value started and ended with the object
p: The object has an attribute called value. That attribute refers to an integer object,
9, which cannot be called like a function.

www.ebook3000.com

http://www.ebook3000.org

270 Chapter 8 Object-Oriented Programming

Extending Superclass Methods
We have seen that a subclass can inherit a method from a superclass or override it. It is also
possible to extend a superclass method. We illustrate this using an example that compares
the three inheritance patterns.

When designing a class as a subclass of another class, inherited attributes are handled
in several ways. They can be inherited as is, they can be replaced, or they can be extended.
The next module shows three subclasses of class Super. Each illustrates one of the ways an
inherited attribute is handled.

Module: ch8.py
1 class Super:
2 'a generic class with one method'
3 def method(self): # the Super method
4 print('in Super.method')
5

6 class Inheritor(Super):
7 'class that inherits method'
8 pass
9

10 class Replacer(Super):
11 'class that overrides method'
12 def method(self):
13 print('in Replacer.method')
14

15 class Extender(Super):
16 'class that extends method'
17 def method(self):
18 print('starting Extender.method')
19 Super.method(self) # calling Super method
20 print('ending Extender.method')

In class Inheritor, attribute method() is inherited as is. In class Replacer, it is com-
pletely replaced. In Extender, attribute method() is overridden, but the implementation
of method() in class Extender calls the original method() from class Super. Effectively,
class Extender adds additional behavior to the superclass attribute.

In most cases, a subclass will inherit different attributes in different ways, but each in-
herited attribute will follow one of these patterns.

Practice Problem
8.8

Implement a class Vector that supports the same methods as the class Pointwe developed
in Section 8.4. The class Vector should also support vector addition and product operations.
The addition of two vectors

>>> v1 = Vector(1, 3)
>>> v2 = Vector(-2, 4)

is a new vector whose coordinates are the sum of the corresponding coordinates of v1 and
v2:

>>> v1 + v2
Vector(-1, 7)

Section 8.5 Inheritance 271

The product of v1 and v2 is the sum of the products of the corresponding coordinates:

>>> v1 * v2
10

In order for a Vector object to be displayed as Vector(., .) instead of Point(., .),
you will need to override method __repr__().

Implementing a Queue Class by Inheriting from list
The class Queue we developed in Sections 8.3 and 8.4 is just one way to design and imple-
ment a queue class. Another implementation becomes natural after we recognize that every
Queue object is just a “thin wrapper” for a list object. So why not design the Queue class
so that every Queue object is a list object? In other words, why not design the Queue class
as a subclass of list? So let’s do it:

Module: ch8.py
1 class Queue2(list):
2 'a queue class, subclass of list'
3

4 def isEmpty(self):
5 'returns True if queue is empty, False otherwise'
6 return (len(self) == 0)
7

8 def dequeue(self):
9 'remove and return item at front of queue'

10 return self.pop(0)
11

12 def enqueue (self, item):
13 'insert item at rear of queue'
14 return self.append(item)

Note that because variable self refers to a Queue2 object, which is a subclass of list, it
follows that self is also a list object. So list methods like pop() and append() are
invoked directly on self. Note also that methods __repr__() and __len__() do not need
to be implemented because they are inherited from the list superclass.

Developing class Queue2 involved a lot less work than developing the original class
Queue. Does that make it better?

!
CAUTION

Inheriting Too Much

While inheriting a lot is desirable in real life, there is such a thing as too much inher-
itance in OOP. While straightforward to implement, class Queue2 has the problem
of inheriting all the list attributes, including methods that violate the spirit of a
queue. To see this, consider this Queue2 object:

>>> q2
[5, 7, 9]

www.ebook3000.com

http://www.ebook3000.org

272 Chapter 8 Object-Oriented Programming

The implementation of Queue2 allows us to remove items from the middle of the
queue:

>>> q2.pop(1)
7
>>> q2
[5, 9]

It also allows us to insert items into the middle of the queue:

>>> q2.insert(1,11)
>>> q2
[5, 11, 9]

So 7 got served before 5 and 11 got into the queue in front of 9, violating queue
rules. Due to all the inherited list methods, we cannot say that class Queue2
behaves in the spirit of a queue.

8.6 User-Defined Exceptions
There is one problem with the implementation of class Queue we developed in Section 8.4.
What happens when we try to dequeue an empty queue? Let’s check. We first create an
empty queue:

>>> queue = Queue()

Next, we attempt to dequeue it:

>>> queue.dequeue()
Traceback (most recent call last):
File "<pyshell#185>", line 1, in <module>
queue.dequeue()

File "/Users/me/ch8.py",
line 156, in dequeue
return self.q.pop(0)

IndexError: pop from empty list

An IndexError exception is raised because we are trying to remove the item at index 0
from empty list self.q. What is the problem?

The issue is not the exception: Just as for popping an empty list, there is no other sensible
thing to dowhenwe are trying to dequeue an empty queue. The issue is the type of exception.
An IndexError exception and the associated message 'pop from empty list' are of
little use to the developer who is using the Queue class and who may not know that Queue
containers use list instance variables.

Much more useful to the developer would be an exception called EmptyQueueError
with a message like 'dequeue from empty queue'. In general, often it is a good idea to
define your own exception type rather than rely on a generic, built-in exception class like
IndexError. A user-defined class can, for example, be used to customize handling and the
reporting of errors.

Section 8.6 User-Defined Exceptions 273

In order to obtain more useful error messages, we need to learn two things:
1. How to define a new exception class
2. How to raise an exception in a program

We discuss how to do the latter first.

Raising an Exception
In our experience so far, when an exception is raised during the execution of a program, it
is raised by the Python interpreter because an error condition occurred. We have seen one
type of exception not caused by an error: It is the KeyboardInterrupt exception, which
typically is raised by the user. The user would raise this exception by simultaneously clicking
keys Ctrl - c to terminate an infinite loop, for example:

>>> while True:
pass

Traceback (most recent call last):
File "<pyshell#210>", line 2, in <module>
pass

KeyboardInterrupt

(The infinite loop is interrupted by a KeyboardInterrupt exception.)
In fact, the user can raise all types of exceptions, not just KeyboardInterrupt excep-

tions. The raise Python statement forces an exception of a given type to be raised. Here is
how we would raise a ValueError exception in the interpreter shell:

>>> raise ValueError()
Traceback (most recent call last):
File "<pyshell#24>", line 1, in <module>
raise ValueError()

ValueError

Recall that ValueError is just a class that happens to be an exception class. The raise
statement consists of the keyword raise followed by an exception constructor such as
ValueError(). Executing the statement raises an exception. If it is not handled by the
try/except clauses, the program is interrupted and the default exception handler prints
the error message in the shell.

The exception constructor can take an input argument that can be used to provide infor-
mation about the cause of the error:

>>> raise ValueError('Just joking ...')
Traceback (most recent call last):
File "<pyshell#198>", line 1, in <module>
raise ValueError('Just joking ...')

ValueError: Just joking ...

The optional argument is a stringmessage that will be associatedwith the object: It is, in fact,
the informal string representation of the object, that is, the one returned by the __str__()
method and printed by the print() function.

In our two examples, we have shown that an exception can be raised regardless of
whether it makes sense or not. We make this point again in the next Practice Problem.

www.ebook3000.com

http://www.ebook3000.org

274 Chapter 8 Object-Oriented Programming

Practice Problem
8.9

Reimplement method dequeue() of class Queue so that a KeyboardInterrupt excep-
tion (an inappropriate exception type in this case) with message 'dequeue from empty
queue' (an appropriate error message, actually) is raised if an attempt to dequeue an empty
queue is made:

>>> queue = Queue()
>>> queue.dequeue()
Traceback (most recent call last):
File "<pyshell#30>", line 1, in <module>
queue.dequeue()

File "/Users/me/ch8.py", line 183, in dequeue
raise KeyboardInterrupt('dequeue from empty queue')

KeyboardInterrupt: dequeue from empty queue

User-Defined Exception Classes
We now describe how to define our own exception classes.

Every built-in exception type is a subclass of class Exception. In fact, all we have to
do to define a new exception class is to define it as a subclass, either directly or indirectly,
of Exception. That’s it.

As an example, here is howwe could define a new exception class MyError that behaves
exactly like the Exception class:

>>> class MyError(Exception):
pass

(This class only has attributes that are inherited from Exception; the pass statement is
required because the class statement expects an indented code block.) Let’s check that we
can raise a MyError exception:

>>> raise MyError('test message')
Traceback (most recent call last):
File "<pyshell#247>", line 1, in <module>
raise MyError('test message')

MyError: test message

Note that we were also able to associate error message 'test message'with the exception
object.

Improving the Encapsulation of Class Queue
We started this section by pointing out that dequeueing an empty queue will raise an excep-
tion and print an error message that has nothing to do with queues. We now define a new
exception class EmptyQueueError and reimplement method dequeue() so that it raises
an exception of that type if it is invoked on an empty queue.

We choose to implement the new exception class without any additional methods:

Module: ch8.py
1 class EmptyQueueError(Exception):
2 pass

Chapter 8 Case Study: Indexing and Iterators 275

Shown next is the new implementation of class Queue, with a new version of method
dequeue(); no other Queue method is modified.

Module: ch8.py
1 class Queue:
2 'a classic queue class'
3 # methods __init__(), enqueue(), isEmpty(), __repr__(),
4 # __len__(), __eq__() implemented here
5

6 def dequeue(self):
7 if len(self) == 0:
8 raise EmptyQueueError('dequeue from empty queue')
9 return self.q.pop(0)

With this new Queue class, we get a more meaningful error message when attempting
to dequeue an empty queue:

>>> queue = Queue()
>>> queue.dequeue()
Traceback (most recent call last):
File "<pyshell#34>", line 1, in <module>
queue.dequeue()

File "/Users/me/ch8.py", line 186, in dequeue
raise EmptyQueueError('dequeue from empty queue')

EmptyQueueError: dequeue from empty queue

We have effectively hidden away the implementation details of class Queue.

Case Study: Indexing and Iterators
In Case Study CS.8, we will learn how to make a container class feel more like a built-
in class. We will see how to enable indexing of items in the container and how to enable
iteration, using a for loop, over the items in the container.

Chapter Summary
In this chapter, we describe how to develop new Python classes. We also explain the benefits
of the object-oriented programming (OOP) paradigm and discuss core OOP concepts that
we will make use of in this chapter and in the chapters that follow.

A new class in Python is defined with the class statement. The body of the class state-
ment contains the definitions of the attributes of the class. The attributes are the class meth-
ods and variables that specify the class properties and what can be done with instances of the
class. The idea that a class object can be manipulated by users through method invocations
alone and without knowledge of the implementation of these methods is called abstraction.
Abstraction facilitates software development because the programmer works with objects
abstractly (i.e., through “abstract” method names rather than “concrete” code).

In order for abstraction to be beneficial, the “concrete” code and data associated with
objects must be encapsulated (i.e., made “invisible” to the program using the object). En-
capsulation is achieved thanks to the fact that (1) every class defines a namespace in which
class attributes (variables and methods) live, and (2) every object has a namespace that

www.ebook3000.com

http://www.ebook3000.org

276 Chapter 8 Object-Oriented Programming

inherits the class attributes and in which instance attributes live.
In order to complete the encapsulation of a new, user-defined class, it may be necessary

to define class-specific exceptions for it. The reason is that if an exception is thrown when
invoking a method on an object of the class, the exception type and error message should
be meaningful to the user of the class. For this reason, we introduce user-defined exceptions
in this chapter as well.

OOP is an approach to programming that achieves modular code through the use of
objects and by structuring code into user-defined classes. While we have been working with
objects since Chapter 2, this chapter finally shows the benefits of the OOP approach.

In Python, it is possible to implement operators such as + and == for user-defined classes.
The OOP property that operators can have different, and new, meanings depending on the
type of the operands is called operator overloading (and is a special case of the OOP concept
of polymorphism). Operator overloading facilitates software development because (well-
defined) operators have intuitive meanings and make the code look sparser and cleaner.

A new, user-defined class can be defined to inherit the attributes of an already existing
class. This OOP property is referred to as class inheritance. Code reuse is, of course, the
ultimate benefit of class inheritance. We will make heavy use of class inheritance when
developing graphical user interfaces in Chapter 9 and HTML parsers in Chapter 11.

Solutions to Practice Problems
8.1 The method getx() takes no argument, other than self and returns xcoord, defined
in namespace self.

def getx(self):
'return x coordinate'
return self.xcoord

8.2 The drawing for part (a) is shown in Figure 8.9(a). For part (b), you can fill in the
question marks by just executing the commands. The drawing for part (c) is shown in Fig-
ure 8.9(c). The last statement a.version returns string 'test'. This is because the assign-
ment a.version creates name version in namespace a.

Figure 8.9 Solution for
Practice Problem 8.2.

object a object b

class Test

version

(a)

object a

version

object b

class Test

version

(c)

8.3 When created, a Rectangle object has no instance variables. The method setSize()
should create and initialize instance variables to store the width and length of the rectangle.

Chapter 8 Solutions to Practice Problems 277

These instance variables are then used by methods perimeter() and area(). Shown next
is the implementation of class Rectangle.

class Rectangle:
'class that represents rectangles'
def setSize(self, xcoord, ycoord):

'constructor'
self.x = xcoord
self.y = ycoord

def perimeter(self):
'returns perimeter of rectangle'
return 2 * (self.x + self.y)

def area(self):
'returns area of rectangle'
return self.x * self.y

8.4 An __init__()method is added to the class. It includes default values for input argu-
ments species and language:

def __init__(self, species='animal', language='make sounds'):
'constructor'
self.spec = species
self.lang = language

8.5 Since we allow the constructor to be used with or without a list of cards, we need to
implement the function __init__()with one argument and have a default value for it. This
default value should really be a list containing the standard 52 playing cards, but this list
has not been created yet. We choose instead to set the default value to None, a value of type
NoneType and used to represent no value. We can thus start implementing the __init__()
as shown:

def __init__(self, cardList=None):
'constructor'
if cardList != None: # input deck provided

self.deck = cardList
else: # no input deck

self.deck is a list of 52 standard playing cards

8.6 The string returned by operator repr() must look like a statement that constructs a
Card object. Operator == returns True if and only if the two cards being compared have the
same rank and suit.

class Card:

other Card methods

def __repr__(self):
'return formal representation'
return "Card('{}', '{}')".format(self.rank, self.suit)

www.ebook3000.com

http://www.ebook3000.org

278 Chapter 8 Object-Oriented Programming

def __eq__(self, other):
'self = other if rank and suit are the same'
return self.rank == other.rank and self.suit == other.suit

8.7 The implementations are shown next. The operator == decides that two decks are equal
if they have the same cards and in the same order.

class Deck:
other Deck methods
def __len__(self):

'returns size of deck'
return len(self.deck)

def __repr__(self):
'returns canonical string representation'
return 'Deck({})'.format(self.deck)

def __eq__(self, other):
'''returns True if decks have the same cards

in the same order'''
return self.deck == other.deck

8.8 The complete implementation of the Vector class is:

class Vector(Point):
'a 2D vector class'
def __mul__(self, v):

'vector product'
return self.x * v.x + self.y * v.y

def __add__(self, v):
'vector addition'
return Vector(self.x+v.x, self.y+v.y)

def __repr__(self):
'returns canonical string representation'
return 'Vector{}'.format(self.get())

8.9 If the length of the Queue object (i.e., self) is 0, a KeyboardInterrupt exception is
raised:

def dequeue(self):
'''removes and returns item at front of the queue

raises KeyboardInterrupt exception if queue is empty'''
if len(self) == 0:

raise KeyboardInterrupt('dequeue from empty queue')

return self.q.pop(0)

Chapter 8 Exercises 279

Exercises
8.10 Add method distance() to the class Point. It takes another Point object as input
and returns the distance to that point (from the point invoking the method).

>>> c = Point()
>>> c.setx(0)
>>> c.sety(1)
>>> d = Point()
>>> d.setx(1)
>>> d.sety(0)
>>> c.distance(d)
1.4142135623730951

8.11 Add to class Animal methods setAge() and getAge() to set and retrieve the age of
the Animal object.

>>> flipper = Animal()
>>> flipper.setSpecies('dolphin')
>>> flipper.setAge(3)
>>> flipper.getAge()
3

8.12 Add to class Point methods up(), down(), left(), and right() that move the
Point object by 1 unit in the appropriate direction. The implementation of each should not
modify instance variables x and y directly but rather indirectly by calling existing method
move().

>>> a = Point(3, 4)
>>> a.left()
>>> a.get()
(2, 4)

8.13 Add a constructor to class Rectangle so that the length and width of the rectangle
can be set at the time the Rectangle object is created. Use default values of 1 if the length
or width is not specified.

>>> rectangle = Rectangle(2, 4)
>>> rectange.perimeter()
12
>>> rectangle = Rectangle()
>>> rectangle.area()
1

8.14 Translate these overloaded operator expressions to appropriate method calls:
(a) x > y
(b) x != y
(c) x % y
(d) x // y
(e) x or y

www.ebook3000.com

http://www.ebook3000.org

280 Chapter 8 Object-Oriented Programming

8.15 Overload appropriate operators for class Card so that you can compare cards based
on rank:

>>> Card('3', '♠') < Card('8', '♦')
True
>>> Card('3', '♠') > Card('8', '♦')
False
>>> Card('3', '♠') <= Card('8', '♦')
True
>>> Card('3', '♠') >= Card('8', '♦')
False

8.16 Implement a class myInt that behaves almost the same as the class int, except when
trying to add an object of type myInt. Then, this strange behavior occurs:

>>> x = myInt(5)
>>> x * 4
20
>>> x * (4 + 6)
50
>>> x + 6
'Whatever ...'

8.17 Implement your own string class myStr that behaves like class str except that:

• The addition (+) operator returns the sum of the lengths of the two strings (instead of
the concatenation).

• The multiplication (*) operator returns the product of the lengths of the two strings.

The two operands, for both operators, are assumed to be strings; the behavior of your im-
plementation can be undefined if the second operand is not a string.

>>> x = myStr('hello')
>>> x + 'universe'
13
>>> x * 'universe'
40

8.18 Develop a class myList that is a subclass of the built-in list class. The only difference
between myList and list is that the sortmethod is overridden. myList containers should
behave just like regular lists, except as shown next:

>>> x = myList([1, 2, 3])
>>> x
[1, 2, 3]
>>> x.reverse()
>>> x
[3, 2, 1]
>>> x[2]
1
>>> x.sort()
You wish...

Chapter 8 Problems 281

8.19 Suppose you execute the next statements using class Queue2 from Section 8.5:

>>> queue2 = Queue2(['a', 'b', 'c'])
>>> duplicate = eval(repr(queue2))
>>> duplicate
['a', 'b', 'c']
>>> duplicate.enqueue('d')
Traceback (most recent call last):
File "<pyshell#22>", line 1, in <module>
duplicate.enqueue('d')

AttributeError: 'list' object has no attribute 'enqueue'

Explain what happened and offer a solution.

Problems
8.20 Develop a class BankAccount that supports these methods:

• __init__(): Initializes the bank account balance to the value of the input argument,
or to 0 if no input argument is given

• withdraw(): Takes an amount as input and withdraws it from the balance

• deposit(): Takes an amount as input and adds it to the balance

• balance(): Returns the balance on the account

>>> x = BankAccount(700)
>>> x.balance()
700.00
>>> x.withdraw(70)
>>> x.balance()
630.00
>>> x.deposit(7)
>>> x.balance()
637.00

8.21 Implement a class Polygon that abstracts regular polygons and supports class meth-
ods:

• __init__(): A constructor that takes as input the number of sides and the side length
of a regular n-gon (n-sided polygon) object

• perimeter(): Returns the perimeter of n-gon object

• area(): returns the area of the n-gon object

Note: The area of a regular polygon with n sides of length s is

s2n

4 tan(πn)

www.ebook3000.com

http://www.ebook3000.org

282 Chapter 8 Object-Oriented Programming

>>> p2 = Polygon(6, 1)
>>> p2.perimeter()
6
>>> p2.area()
2.5980762113533165

8.22 Implement class Worker that supports methods:

• __init__(): Constructor that takes as input the worker’s name (as a string) and the
hourly pay rate (as a number)

• changeRate(): Takes the new pay rate as input and changes the worker’s pay rate to
the new hourly rate

• pay(): Takes the number of hours worked as input and prints 'Not Implemented'

Next develop classes HourlyWorker and SalariedWorker as subclasses of Worker. Each
overloads the inherited method pay() to compute the weekly pay for the worker. Hourly
workers are paid the hourly rate for the actual hours worked; any overtime hours above 40
are paid double. Salaried workers are paid for 40 hours regardless of the number of hours
worked. Because the number of hours is not relevant, the method pay() for salaried workers
should also be callable without an input argument.

>>> w1 = Worker('Joe', 15)
>>> w1.pay(35)
Not implemented
>>> w2 = SalariedWorker('Sue', 14.50)
>>> w2.pay()
580.0
>>> w2.pay(60)
580.0
>>> w3 = HourlyWorker('Dana', 20)
>>> w3.pay(25)
500
>>> w3.changeRate(35)
>>> w3.pay(25)
875

8.23 Create a class Segment that represents a line segment in the plane and supports meth-
ods:

• __init__(): Constructor that takes as input a pair of Point objects that represent
the endpoints of the line segment

• length(): Returns the length of the segment
• slope(): Returns the slope of the segment or None if the slope is unbounded

>>> p1 = Point(3,4)
>>> p2 = Point()
>>> s = Segment(p1, p2)
>>> s.length()
5.0
>>> s.slope()
0.75

Chapter 8 Problems 283

8.24 Implement a class Person that supports these methods:

• __init__(): A constructor that takes as input a person’s name (as a string) and birth
year (as an integer)

• age(): Returns the age of the person
• name(): Returns the name of the person

Use function localtime() from the Standard Library module time to compute the age.

8.25 Develop a class Textfile that provides methods to analyze a text file. The class
Textfile will support a constructor that takes as input a file name (as a string) and instan-
tiates a Textfile object associated with the corresponding text file. The Textfile class
should support methods nchars(), nwords(), and nlines() that return the number of
characters, words, and lines, respectively, in the associated text file. The class should also
support methods read() and readlines() that return the content of the text file as a string
or as a list of lines, respectively, just as we would expect for file objects.

Finally, the class should support method grep() that takes a target string as input and
searches for lines in the text file that contain the target string. The method returns the lines
in the file containing the target string; in addition, the method should print the line number,
where line numbering starts with 0.

File: raven.txt>>> t = Textfile('raven.txt')
>>> t.nchars()
6299
>>> t.nwords()
1125
>>> t.nlines()
126
>>> print(t.read())
Once upon a midnight dreary, while I pondered weak and weary,
...
Shall be lifted - nevermore!
>>> t.grep('nevermore')
75: Of `Never-nevermore.`
89: She shall press, ah, nevermore!
124: Shall be lifted - nevermore!

8.26 Add method words() to class Textfile from Problem 8.25. It takes no input and
returns a list, without duplicates, of words in the file.

8.27 Add method occurrences() to class Textfile from Problem 8.25. It takes no input
and returns a dictionary mapping each word in the file (the key) to the number of times it
occurs in the file (the value).

8.28 Add method average() to class Textfile from Problem 8.25. It takes no input and
returns, in a tuple object, (1) the average number of words per sentence in the file, (2) the
number of words in the sentence with the most words, and (3) the number of words in the
sentence with the fewest words. You may assume that the symbols delimiting a sentence are
in '!?.'.

8.29 Implement class Hand that represents a hand of playing cards. The class should have a
constructor that takes as input the player ID (a string). It should support method addCard()

www.ebook3000.com

http://www.ebook3000.org

284 Chapter 8 Object-Oriented Programming

that takes a card as input and adds it to the hand and method showHand() that displays the
player’s hand in the format shown.

>>> hand = Hand('House')
>>> deck = Deck()
>>> deck.shuffle()
>>> hand.addCard(deck.dealCard())
>>> hand.addCard(deck.dealCard())
>>> hand.addCard(deck.dealCard())
>>> hand.showHand()
House: 10 ♥ 8 ♠ 2 ♠

8.30 Reimplement the blackjack application from Case Study CS.6 using classes Card and
Deck developed in this chapter and class Hand from Problem 8.29.

8.31 Implement class Date that support methods:

• __init__(): Constructor that takes no input and initializes the Date object to the
current date

• display(): Takes a format argument and displays the date in the requested format

Use function localtime() from the Standard Library module time to obtain the current
date. The format argument is a string

• ’MDY’ : MM/DD/YY (e.g., 02/18/09)

• ’MDYY’ : MM/DD/YYYY (e.g., 02/18/2009)

• ’DMY’ : DD/MM/YY (e.g., 18/02/09)

• ’DMYY’ : DD/MM/YYYY (e.g., 18/02/2009)

• ’MODY’ : Mon DD, YYYY (e.g., Feb 18, 2009)

You should use methods localtime() and strftime() from Standard Library module
time.

>>> x = Date()
>>> x.display('MDY')
'02/18/09'
>>> x.display('MODY')
'Feb 18, 2009'

8.32 Develop a class Craps that allows you to play craps on your computer. (The craps
rules are described in Problem 6.31.) Your class will support methods:

• __init__(): Starts by rolling a pair of dice. If the value of the roll (i.e., the sum of
the two dice) is 7 or 11, then a winning message is printed. If the value of the roll is 2,
3, or 12, then a losing message is printed. For all other roll values, a message telling
the user to throw for point is printed.

• forPoint(): Generates a roll of a pair of dice and, depending on the value of the
roll, prints one of three messages as appropriate (and as shown):

Chapter 8 Problems 285

>>> c = Craps()
Throw total: 11. You won!
>>> c = Craps()
Throw total: 2. You lost!
>>> c = Craps()
Throw total: 5. Throw for Point.
>>> c.forPoint()
Throw total: 6. Throw for Point.
>>> c.forPoint()
Throw total: 5. You won!
>>> c = Craps()
Throw total: 4. Throw for Point.
>>> c.forPoint()
Throw total: 7. You lost!

8.33 Implement class Pseudorandom that is used to generate a sequence of pseudorandom
integers using a linear congruential generator. The linear congruential method generates a
sequence of numbers starting from a given seed number x. Each number in the sequence will
be obtained by applying a (math) function f(x) on the previous number x in the sequence.
The precise function f(x) is defined by three numbers: a (the multiplier), c (the increment),
andm (the modulus):

f(x) = (ax+ c) mod m

For example, if m = 31, a = 17, and c = 7, the linear congruential method would
generate the next sequence of numbers starting from seed x = 12:

12, 25, 29, 4, 13, 11, 8, 19, 20, . . .

because f(12) = 25, f(25) = 29, f(29) = 4, and so on. The class Pseudorandom should
support methods:

• __init__(): Constructor that takes as input the values a, x, c, andm and initializes
the Pseudorandom object

• next(): Generates and returns the next number in the pseudorandom sequence

>> x = pseudorandom(17, 12, 7, 31)
>>> x.next()
25
>>> x.next()
29
>>> x.next()
4

8.34 Implement the container class Stat that stores a sequence of numbers and provides
statistical information about the numbers. It supports an overloaded constructor that initial-
izes the container and the methods shown.

>>> s = Stat()
>>> s.add(2) # adds 2 to the Stat container
>>> s.add(4)

www.ebook3000.com

http://www.ebook3000.org

286 Chapter 8 Object-Oriented Programming

>>> s.add(6)
>>> s.add(8)
>>> s.min() # returns minimum value in container
2
>>> s.max() # returns maximum value in container
8
>>> s.sum() # returns sum of values in container
20
>>> len(s) # returns number of items in container
4
>>> s.mean() # returns average of items in container
5.0
>>> 4 in s # returns True if in the container
True
>>> s.clear() # Empties the sequence

8.35 A stack is a sequence container type that, like a queue, supports very restrictive access
methods: All insertions and removals are from one end of the stack, typically referred to as
the top of the stack. Implement container class Stack that implements a stack. It should be
a subclass of object, support the len() overloaded operator, and support the methods:

• push(): Take an item as input and push it on top of the stack
• pop(): Remove and return the item at the top of the stack
• isEmpty(): Return True if the stack is empty, False otherwise

You should also insure that the stack can be printed as shown. A stack is often referred to
as a last-in first-out (LIFO) container because the last item inserted is the first removed.

>>> s = Stack()
>>> s.push('plate 1')
>>> s.push('plate 2')
>>> s.push('plate 3')
>>> s
['plate 1', 'plate 2', 'plate 3']
>>> len(s)
3
>>> s.pop()
'plate 3'
>>> s.pop()
'plate 2'
>>> s.pop()
'plate 1'
>>> s.isEmpty()
True

8.36 Write a container class called PriorityQueue. The class should support methods:

• insert(): Takes a number as input and adds it to the container
• min(): Returns the smallest number in the container
• removeMin(): Removes the smallest number in the container

Chapter 8 Problems 287

• isEmpty(): Returns True if container is empty, False otherwise

The overloaded operator len() should also be supported.

>>> pq = PriorityQueue()
>>> pq.insert(3)
>>> pq.insert(1)
>>> pq.insert(5)
>>> pq.insert(2)
>>> pq.min()
1
>>> pq.removeMin()
>>> pq.min()
2
>>> len(pq)
3
>>> pq.isEmpty()
False

8.37 Implement classes Square and Triangle as subclasses of class Polygon from Prob-
lem 8.21. Each will overload the constructor method __init__ so it takes only one argu-
ment l (the side length), and each will override method area() that computes the area
using a simpler implementation. The method __init__ should make use of the superclass
__init__ method, so no instance variables (l and n) are defined in subclasses. Note: The
area of an equilateral triangle of side length s is s2 ∗

√
3/4.

>>> s = Square(2)
>>> s.perimeter()
8
>>> s.area()
4
>>> t = Triangle(3)
>>> t.perimeter()
9
>>> t.area()
6.3639610306789285

8.38 Implement two subclasses of class Person described in Problem 8.24. The class
Instructor supports methods:

• __init__(): Constructor that takes the person’s degree in addition to name and birth
year

• degree(): Returns the degree of the instructor

The class Student, also a subclass of class Person, supports:

• __init__(): Constructor that takes the person’s major in addition to name and birth
year

• major(): Returns the major of the student

Your implementation of the three classes should behave as shown in the next code:

www.ebook3000.com

http://www.ebook3000.org

288 Chapter 8 Object-Oriented Programming

>>> x = Instructor('Smith', 1963, 'PhD')
>>> x.age()
45
>>> y = Student('Jones', 1987, 'Computer Science')
>>> y.age()
21
>>> y.major()
'Computer Science'
>>> x.degree()
'PhD'

8.39 Consider the class tree hierarchy:

Animal

Mammal

Cat Dog Primate

Hacker

Implement six classes to model this taxonomywith Python inheritance. In class Animal,
implement method speak() that will be inherited by the descendant classes of Animal.
Complete the implementation of the six classes so that they exhibit this behavior:

>>> garfield = Cat()
>>> garfield.speak()
Meeow
>>> dude = Hacker()
>>> dude.speak()
Hello world!

8.40 In Problem 8.20, there are some problemswith the implementation of the class BankAccount,
and they are illustrated here:

>>> x = BankAccount(-700)
>>> x.balance()
-700
>>> x.withdraw(70)
>>> x.balance()
-770
>>> x.deposit(-7)
>>> x.balance()
Balance: -777

The problems are: (1) a bank account with a negative balance can be created, (2) the with-
drawal amount is greater than the balance, and (3) the deposit amount is negative.Modify the
code for the BankAccount class so that a ValueError exception is thrown for any of these
violations, together with an appropriate message: 'Illegal balance', 'Overdraft', or
'Negative deposit'.

Chapter 8 Problems 289

>>> x = BankAccount2(-700)
Traceback (most recent call last):
...
ValueError: Illegal balance

8.41 In Problem 8.40, a generic ValueError exception is raised if any of the three vio-
lations occur. It would be more useful if a more specific, user-defined exception is raised
instead. Define new exception classes NegativeBalanceError, OverdraftError, and
DepositError that would be raised instead. In addition, the informal string representa-
tion of the exception object should contain the balance that would result from the negative
balance account creation, the overdraft, or the negative deposit.

For example, when trying to create a bank account with a negative balance, the error
message should include the balance that would result if the bank account creation was al-
lowed:

>>> x = BankAccount3(-5)
Traceback (most recent call last):
...
NegativeBalanceError: Account created with negative balance -5

When a withdrawal results in a negative balance, the error message should also include the
balance that would result if the withdrawal was allowed:

>>> x = BankAccount3(5)
>>> x.withdraw(7)
Traceback (most recent call last):
...
OverdraftError: Operation would result in negative balance -2

If a negative deposit is attempted, the negative deposit amount should be included in the
error message:

>>> x.deposit(-3)
Traceback (most recent call last):
...
DepositError: Negative deposit -3

Finally, reimplement the class BankAccount to use these new exception classes instead of
ValueError.

www.ebook3000.com

http://www.ebook3000.org

CHAPTER

9Graphical User
Interfaces
9.1 Basics of tkinter GUI Development 292

9.2 Event-Based tkinter Widgets 299

9.3 Designing GUIs 308

9.4 OOP for GUIs 313

Case Study: Developing a Calculator 318

Chapter Summary 319

Solutions to Practice Problems 319

Exercises 323

Problems 324

THIS CHAPTER INTRODUCES graphical user interface (GUI)
development.

When you use a computer application—whether it is a web browser,
an email client, a computer game, or your Python integrated development
environment (IDE)—you typically do so through a GUI, using a mouse and
a keyboard. There are two reasons for using a GUI: A GUI gives a better
overview of what an application does, and it makes it easier to use the
application.

In order to develop GUIs, a developer will require a GUI application
programming interface (API) that provides the necessary GUI toolkit.
There are several GUI APIs for Python; in this text we use tkinter, a
module that is part of Python’s Standard Library.

Beyond the development of GUIs using tkinter, this chapter also
covers fundamental software development techniques that are naturally
used in GUI development. We introduce event-driven programming, an
approach for developing applications in which tasks are executed in
response to events (such as button clicks). We also learn that GUIs are
ideally developed as user-defined classes, and we take the opportunity to
once again showcase the benefit of object-oriented programming (OOP).

291

www.ebook3000.com

http://www.ebook3000.org

292 Chapter 9 Graphical User Interfaces

9.1 Basics of tkinter GUI Development
A graphical user interface (GUI) consists of basic visual building blocks such as buttons,
labels, text entry forms, menus, check boxes, and scroll bars, among others, all packed inside
a standard window. The building blocks are commonly referred to as widgets. In order to
develop GUIs, a developer will require a module that makes such widgets available. We will
use the module tkinter that is included in the Standard Library.

In this section, we explain the basics of GUI development using tkinter: how to create
a window, how to add text or images to it, and how to manipulate the look and location of
widgets.

Widget Tk: The GUI Window
In our first GUI example, we build a bare-bones GUI that consists of a window and nothing
else. To do this we import the class Tk from module tkinter and instantiate an object of
type Tk:

>>> from tkinter import Tk
>>> root = Tk()

A Tk object is a GUIwidget that represents the GUIwindow; it is createdwithout arguments.
If you execute the preceding code, you will notice that creating a Tk() widget did not

get you a window on the screen. To get the window to appear, the Tk method mainloop()
needs to be invoked on the widget:

>>> root.mainloop()

You should now see a window like the one in Figure 9.1.

Figure 9.1 A tkinter GUI
window. The window can
be minimized and closed,
and looks and feels like
any other window in the
underlying operating
system.

This GUI window is just that: a window and nothing else. To display text or pictures
inside this window, we need to use the tkinter widget Label.

Widget Label for Displaying Text
The widget Label can be used to display text inside a window. Let’s illustrate its usage by
developing a GUI version of the classic “Hello World!” application. To get started, we need
to import the class Label in addition to class Tk from tkinter:

>>> from tkinter import Tk, Label
>>> root = Tk()

We then create a Label object that displays the text “Hello GUI world!”:

>>> hello = Label(master = root, text = 'Hello GUI world!')

Section 9.1 Basics of tkinter GUI Development 293

The first argument in this Label constructor, named master, specifies that the Label
widget will live inside widget root. A GUI typically contains many widgets organized in a
hierarchical fashion. When a widget X is defined to live inside widget Y, widget Y is said
to be the master of widget X.

The second argument, named text, refers to the text displayed by the Label widget.
The text argument is one of about two dozen optional constructor arguments that specify
the look of a Label widget (and of other tkinter widgets as well). We list some of those
optional arguments in Table 9.1 and show their usage in this section.

While the Label constructor specifies that the label widget lives inside widget root,
it does not specify where in the widget root the label should be placed. There are several
ways to specify the geometry of the GUI (i.e., the placement of the widgets inside their
master); we discuss them in more detail later in this section. One simple way to specify
the placement of a widget inside its master is to invoke method pack() on the widget. The
method pack() can take arguments that specify the desired position of the widget inside its
master; without any arguments, it will use the default position, which is to place the widget
centered and against the top boundary of its master:

>>> hello.pack() # hello is placed against top boundary of master
>>> root.mainloop()

Just as in our first example, the mainloop() method will get the GUI shown in Figure 9.2
started:

Figure 9.2 A text label.
The Label widget created
with the text argument will
display a text label. Note
that the label is packed
against the top boundary of
its master, the window itself.

As Table 9.1 illustrates, the text argument is only one of a number of optional widget
constructor arguments that define the look of a widget. We showcase some of the other
options in the next three GUI examples.

Option Description
text Text to display
image Image to display
width Width of widget in pixels (for images) or characters (for

text); if omitted, size is calculated based on content
height Height of widget in pixels (for images) or characters (for

text); if omitted, size is calculated based on content
relief Border style; possibilities are FLAT (default), GROOVE,

RAISED, RIDGE, and SUNKEN, all defined in tkinter
borderwidth Width of border, default is 0 (no border)
background Background color name (as a string)
foreground Foreground color name (as a string)
font Font descriptor (as a tuple with font family name, font

size, and—optionally—a font style)
padx,pady Padding added to the widget along the x- or y-axis

Table 9.1 tkinter widget
options. Shown are some
of the tkinter widget
options that can be used
to specify the look of the
widget. The values for the
options are passed as input
arguments to the widget
constructor. The options
can be used to specify the
look of all tkinter widgets,
not just widget Label.
The usage of the options
in this table is illustrated
throughout this section.

www.ebook3000.com

http://www.ebook3000.org

294 Chapter 9 Graphical User Interfaces

Displaying Images
A Labelwidget can be used to display more than just text. To display an image, an argument
named image should be used in the Label constructor instead of a text argument. The
next example program places a GIF image inside a GUI window. (The example uses file
peace.gif, which should be in the same folder as module peace.py.)

File: peace.gif

Module: peace.py

1 from tkinter import Tk, Label, PhotoImage
2 root = Tk() # the window
3 # transform GIF image to a format tkinter can display
4 photo = PhotoImage(file='peace.gif')
5

6 peace = Label(master=root,
7 image=photo,
8 width=300, # width of label, in pixels
9 height=180) # height of label, in pixels

10 peace.pack()
11 root.mainloop()

The resulting GUI is shown in Figure 9.3. The constructor argument imagemust refer to an
image in a format that tkinter can display. The PhotoImage class, defined in the module
tkinter, is used to transform a GIF image into an object with such a format. Arguments
width and height specify the width and height of the label in pixels.

Figure 9.3 An image label.
With the image argument, a
Label widget displays an
image. Options width and
height specify the width
and height of the label, in
pixels. If the image is
smaller than the label, white
padding is added around it.

DETOUR
GIF and Other Image Formats

GIF is just one among many image file formats that have been defined. You are
probably familiar with the Joint Photographic Experts Group (JPEG) format used
primarily for photographs. Other commonly used image formats include Bitmap Im-
age File (BMP), Portable Document Format (PDF), and Tagged Image File Format
(TIFF).

In order to display images in formats other than GIF, the Python Imaging Library
(PIL) can be used. It contains classes that load images in one of 30+ formats and
convert them to tkinter-compatible image object. The PIL also contains tools for
processing images. For more information, go to

www.pythonware.com/products/pil/

Note: At the time of writing, the PIL was not updated to support Python 3.

http://www.pythonware.com/products/pil

Section 9.1 Basics of tkinter GUI Development 295

Packing Widgets
The tkinter geometry manager is responsible for the placement of widgets within their
master. If multiple widgetsmust be laid out, the placement will be computed by the geometry
manager using sophisticated layout algorithms (that attempt to ensure that the layout looks
good) and using directives given by the programmer. The size of a master widget containing
one or more widgets is based on their size and placement. Furthermore, the size and layout
will be dynamically adjusted as the GUI window is resized by the user.

The method pack() is one of the three methods that can be used to provide directives
to the geometry manager. (We will see another one, method grid(), later in this section.)
The directives specify the relative position of widgets within their master.

To illustrate how to use the directives and also to show additional widget constructor
options, we develop a GUI with with two image labels and a text label, shown in Figure 9.4:

Figure 9.4 Multiple
widgets GUI. Three Label
widgets are packed inside
the GUI window; the peace
image is pushed left, the
smiley face is pushed right,
and the text is pushed down.

The optional argument side of method pack() is used to direct the tkinter geometry
manager to push a widget against a particular border of its master. The value of side can be
TOP, BOTTOM, LEFT, or RIGHT, which are constants defined in module tkinter; the default
value for side is TOP. In the implementation of the preceding GUI, we use the side option
to appropriately pack the three widgets:

File: peace.gif,smiley.gif

Module: smileyPeace.py

1 from tkinter import Tk,Label,PhotoImage,BOTTOM,LEFT,RIGHT,RIDGE
2 # GUI illustrates widget constructor options and method pack()
3 root = Tk()
4

5 # label with text "Peace begins with a smile."
6 text = Label(root,
7 font = ('Helvetica', 16, 'bold italic'),
8 foreground='white', # letter color
9 background='black', # background color

10 padx=25, # widen label 25 pixels left and right
11 pady=10, # widen label 10 pixels up and down
12 text='Peace begins with a smile.')
13 text.pack(side=BOTTOM) # push label down
14

15 # label with peace symbol image
16 peace = PhotoImage(file='peace.gif')
17 peaceLabel = Label(root,
18 borderwidth=3, # label border width
19 relief=RIDGE, # label border style
20 image=peace)
21 peaceLabel.pack(side=LEFT) # push label left

www.ebook3000.com

http://www.ebook3000.org

296 Chapter 9 Graphical User Interfaces

22 # label with smiley face image
23 smiley = PhotoImage(file='smiley.gif')
24 smileyLabel = Label(root,
25 image=smiley)
26 smileyLabel.pack(side=RIGHT) # push label right
27

28 root.mainloop()

Table 9.2 lists two other options for method pack(). The option expand, which can be
set to True or False, specifies whether the widget should be allowed to expand to fill any
extra space inside the master. If option expand is set to True, option fill can be used to
specify whether the expansion should be along the x-axis, the y-axis, or both.

Table 9.2 Some packing
options. In addition to
option side, method
pack() can take options
fill and expand.

Option Description
side Specifies the side (using constants TOP, BOTTOM, LEFT, or RIGHT defined in

tkinter) the widget will be pushed against; the default is TOP
fill Specifies whether the widget should fill the width or height of the space

given to it by the master; options include 'both', 'x', 'y', and 'none'
(the default)

expand Specifies whether the widget should expand to fill the space given to it; the
default is False, no expansion

The GUI program smileyPeace.py also showcases a few widget constructor options
we have not seen yet. A RIDGE-style border of width 3 around the peace symbol is specified
using options borderwith and relief. Also, the text label (a quote by Mother Theresa)
is constructed with options that specify white lettering (option foreground) on a black
background (option background) with extra padding of 10 pixels up and down (option
pady) and of 25 pixels left and right (option padx). The font option specifies that the text
font should be a bold, italic, Helvetica font of size 16 points.

Practice Problem
9.1

Write a program peaceandlove.py that creates this GUI:

File: peace.gif

The “Peace & Love” text label should be pushed to the left and have a black background
of size to fit 5 rows of 20 characters. If the user expands the window, the label should remain
right next to the left border of the window. The peace symbol image label should be pushed
to the right. However, when the user expands the window, white padding should fill the
space created. The picture shows the GUI after the user manually expanded it.

Section 9.1 Basics of tkinter GUI Development 297

!
CAUTION

Forgetting the Geometry Specification

It’s a common mistake to forget to specify the placement of the widgets. A widget
appears in aGUI window only after it has been packed in its master. This is achieved
by invoking, on the widget, the method pack(), the method grid(), which we
discuss shortly, or the method place(), which we do not go over.

Arranging Widgets in a Grid
We now consider a GUI that has more than just a couple of labels. How would you go about
developing the phone dial GUI shown in Figure 9.5?

Figure 9.5 Phone dial GUI.
This GUI’s labels are stored
in a 4× 3 grid. Method
grid() is more suitable
than pack() for placing
widgets in a grid. Rows
(resp. columns) are indexed
top to bottom (resp. left to
right) starting from index 0.

We already know how to create each individual phone dial “button” using a Label
widget. What is not clear at all is how to get all 12 of them arranged in a grid.

If we need to place several widgets in a gridlike fashion, method grid() is more ap-
propriate than method pack(). When using method grid(), the master widget is split into
rows and columns, and each cell of the resulting grid can store a widget. To place a widget
in row r and column c, method grid() is invoked on the widget with the row r and column
c as input arguments, as shown in this implementation of the phone dial GUI:

Module: phone.py
1 from tkinter import Tk, Label, RAISED
2 root = Tk()
3 labels = [['1', '2', '3'], # phone dial label texts
4 ['4', '5', '6'], # organized in a grid
5 ['7', '8', '9'],
6 ['*', '0', '#']]
7

8 for r in range(4): # for every row r = 0, 1, 2, 3
9 for c in range(3): # for every row c = 0, 1, 2

10 # create label for row r and column c
11 label = Label(root,
12 relief=RAISED, # raised border
13 padx=10, # make label wide
14 text=labels[r][c]) # label text
15 # place label in row r and column c
16 label.grid(row=r, column=c)
17

18 root.mainloop()

www.ebook3000.com

http://www.ebook3000.org

298 Chapter 9 Graphical User Interfaces

In lines 5 through 8, we define a two-dimensional list that stores in row r and column
c the text that will be put on the label in row r and column c of the phone dial. Doing this
facilitates the creation and proper placement of the labels in the nested for loop in lines 10
through 19. Note the use of the method grid() with row and column input arguments.

Table 9.3 shows some options that can be used with the grid() method.

Table 9.3 Some grid()
method options. The
columnspan (i.e., rowspan)
option is used to place a
widget across multiple
columns (i.e., rows).

Option Description
column Specifies the column for the widget; default is column 0
columnspan Specifies how many columns the widgets should occupy
row Specifies the row for the widget; default is row 0
rowspan Specifies how many rows the widgets should occupy

!
CAUTION

Mixing pack() and grid()

The methods pack() and grid() use different methods to compute the layout of
the widgets. Those methods do not work well together, and each will try to optimize
the layout in its own way, trying to undo the other algorithm’s choices. The result is
that the program may never complete execution.

The short story is this: You must use one or the other for all widgets with the
same master.

Practice Problem
9.2

Implement function cal() that takes as input a year and a month (a number between 1 and
12) and starts up a GUI that shows the corresponding calendar. For example, the calendar
shown is obtained using:

>>> cal(2012, 2)

To do this, you will need to compute (1) the day of the week (Monday, Tuesday, . . .) on
which the first day of the month falls and (2) the number of days in the month (taking into
account leap years). The function monthrange() defined in the module calendar returns
exactly those two values:

>>> from calendar import monthrange
>>> monthrange(2012, 2) # year 2012, month 2 (February)
(2, 29)

The returned value is a tuple. The first value in the tuple, 2, corresponds to Wednesday
(Monday is 0, Tuesday is 1, etc.). The second value, 29, is the number of days in February
of year 2012, a leap year.

Section 9.2 Event-Based tkinter Widgets 299

DETOUR
Do You Want to Learn More?

This chapter is only an introduction to GUI development using tkinter. A compre-
hensive overview of GUI development and tkinter would fill a whole textbook. If
you want to learn more, start with the Python documentation at

http://docs.python.org/py3k/library/tkinter.html

There are also other free, online resources that you can use to learn more. The
“official” list of these resources is at

http://wiki.python.org/moin/TkInter

Two particularly useful resources (although they use Python 2) are at

http://www.pythonware.com/library/tkinter/introduction/
http://infohost.nmt.edu/tcc/help/pubs/tkinter/

9.2 Event-Based tkinter Widgets
We now explore the different types of widgets available in tkinter. In particular, we study
those widgets that respond to mouse clicks and keyboard inputs by the user. Such widgets
have an interactive behavior that needs to be programmed using a style of programming
called event-driven programming. In addition to GUI development, event-driven program-
ming is also used in the development of computer games and distributed client/server ap-
plications, among others.

Button Widget and Event Handlers
Let’s start with the classic button widget. The class Button from module tkinter repre-
sents GUI buttons. To illustrate its usage, we develop a simple GUI application, shown in
Figure 9.6, that contains just one button.

Figure 9.6 GUI with one
Button widget. The text
“Click it” is displayed on top
of the button. When the
button is clicked, the day
and time information is
printed.

The application works in this way: When you press the button “Click it”, the day and
time of the button click is printed in the interpreter shell:

>>>
Day: 07 Jul 2011
Time: 23:42:47 PM

www.ebook3000.com

http://docs.python.org/py3k/library/tkinter.html
http://wiki.python.org/moin/TkInter
http://www.pythonware.com/library/tkinter/introduction
http://infohost.nmt.edu/tcc/help/pubs/tkinter
http://www.ebook3000.org

300 Chapter 9 Graphical User Interfaces

You can click the button again (and again) if you like:

>>>
Day: 07 Jul 2011
Time: 23:42:47 PM

Day: 07 Jul 2011
Time: 23:42:50 PM

Let’s implement this GUI. To construct a button widget, we use the Button constructor.
Just as for the Label constructor, the first argument of the Button constructor must refer to
the button’s master. To specify the text that will be displayed on top of the button, the text
argument is used, again just as for a Label widget. In fact, all the options for customizing
widgets shown in Table 9.1 can be used for Button widgets as well.

The one difference between a button and a label is that a button is an interactive widget.
Every time a button is clicked, an action is performed. This “action” is actually implemented
as a function, which gets called every time the button is clicked. We can specify the name
of this function using a command option in the Button constructor. Here is how we would
create the button widget for the GUI just shown:

root = Tk()
button = Button(root, text='Click it', command=clicked)

When the button is clicked, the function clicked() will be executed. Now we need to
implement this function. When called, the function should print the current day and time
information. We use the module time, covered in Section 4.2, to obtain and print the local
time. The complete GUI program is then:

Module: clickit.py 1 from tkinter import Tk, Button
2 from time import strftime, localtime
3

4 def clicked():
5 'prints day and time info'
6 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n',
7 localtime())
8 print(time)
9

10 root = Tk()
11

12 # create button labeled 'Click it' and event handler clicked()
13 button = Button(root,
14 text='Click it', # text on top of button
15 command=clicked) # button click event handler
16 button.pack()
17 root.mainloop()

The function clicked() is said to be an event handler; what it handles is the event of
the button “Click it” being clicked.

In the first implementation of clicked(), the day and time information is printed in
the shell. Suppose we prefer to print the message in its own little GUI window, as shown in
Figure 9.7, instead of the shell.

Section 9.2 Event-Based tkinter Widgets 301

Figure 9.7 Window
showinfo(). The function
showinfo() from module
tkinter.messagebox
displays a message in a
separate window. Clicking
the “OK” button makes the
window disappear.

In module tkinter.messagebox, there is a function named showinfo that prints a
string in a separate window. So, we can just replace the original function clicked() with:

Module: clickit.py
1 from tkinter.messagebox import showinfo
2

3 def clicked():
4 'prints day and time info'
5 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n',
6 localtime())
7 showinfo(message=time)

Practice Problem
9.3

Implement a GUI app that contains two buttons labeled “Local time” and “Greenwich time”.
When the first button is pressed, the local time should be printed in the shell. When the sec-
ond button is pressed, the Greenwich Mean Time should be printed.

>>>
Local time
Day: 08 Jul 2011
Time: 13:19:43 PM

Greenwich time
Day: 08 Jul 2011
Time: 18:19:46 PM

You can obtain the current Greenwich Mean Time using the function gmtime() from mod-
ule time.

Events, Event Handlers, and mainloop()
Having seen the workings of the interactive Buttonwidget, it is now a good time to explain
how a GUI processes user-generated events, such as button clicks. When a GUI is started
with the mainloop() method call, Python starts an infinite loop called an event loop. The
event loop is best described using pseudocode:

while True:
wait for a an event to occur
run the associated event handler function

In other words, at any point in time, the GUI is waiting for an event. When an event such
as a button click occurs, the GUI executes the function that is specified to handle the event.
When the handler terminates, the GUI goes back to waiting for the next event.

www.ebook3000.com

http://www.ebook3000.org

302 Chapter 9 Graphical User Interfaces

A button click is just one type of event that can occur in a GUI. Movements of the mouse
and pressing keys on the keyboard in an entry field also generate events the can be handled
by the GUI. We see examples of this later in this section.

DETOUR
Short History of GUIs

The first computer system with a GUI was the Xerox Alto computer developed in
1973 by researchers at Xerox PARC (Palo Alto Research Center) in Palo Alto, Cal-
ifornia. Founded in 1970 as a research and development division of Xerox Corpo-
ration, Xerox PARC was responsible for developing many now-common computer
technologies, such as laser printing, Ethernet, and the modern personal computer,
in addition to GUIs.

The Xerox Alto GUI was inspired by the text-based hyperlinks clickable with
a mouse in the On-Line System developed by researchers at Stanford Research
Institute International in Menlo Park, California, led by Douglas Engelbart. The Xe-
rox Alto GUI included graphical elements such as windows, menus, radio buttons,
check boxes, and icons, all manipulated using a mouse and a keyboard.

In 1979, Apple Computer’s cofounder Steve Jobs visited Xerox PARC, where
he learned of the mouse-controlled GUI of the Xerox Alto. He promptly integrated
it, first into the Apple Lisa in 1983 and then in the Macintosh in 1984. Since then,
all major operating systems have supported GUIs.

The Entry Widget
In our next GUI example, we introduce the Entry widget class. It represents the classic,
single-line text box you would find in a form. The GUI app we want to build asks the user
to enter a date and then computes the weekday corresponding to it. The GUI should look as
shown in Figure 9.8:

Figure 9.8 Weekday
application. The app
requests the user to type a
data in the format MMM DD,
YYYY, as in “Jan 21, 1967”.

After the user types “Jan 21, 1967” in the entry box and clicks the button “Enter”, a new
window, shown in Figure 9.9, should pop up:

Figure 9.9 Pop-up window
of the weekday app. When
the user enters the date and
presses button “Enter”, the
weekday corresponding to
the date is shown in the
pop-up window.

Section 9.2 Event-Based tkinter Widgets 303

It is clear that the GUI should have a Label and a Button widget. For a text entry box,
we need to use the Entry widget defined in tkinter. The Entry widget is appropriate for
entering (and displaying) a single line of text. The user can enter text inside the widget using
the keyboard. We can now start the implementation of the GUI:

Module: day.py
1 # import statements and
2 # event handler compute() that computes and displays the weekday
3

4 root = Tk()
5

6 # label
7 label = Label(root, text='Enter date')
8 label.grid(row=0, column=0)
9

10 # entry
11 dateEnt = Entry(root)
12 dateEnt.grid(row=0, column=1)
13

14 # button
15 button = Button(root, text='Enter', command=compute)
16 button.grid(row=1, column=0, columnspan=2)
17

18 root.mainloop()

In line 13, we create an Entry widget. Note that we are using method grid() to place
the three widgets. The only thing left to do is to implement the event-handling function
compute(). Let’s first describe what this function needs to do:

1. Read the date from the entry dateEnt.
2. Compute the weekday corresponding to the date.
3. Display the weekday message in a pop-up window.
4. Erase the date from entry dateEnt.

The last step is a nice touch: We delete the date just typed in to make it easier to enter a new
date.

To read the string that is inside an Entry widget, we can use the Entrymethod get().
It returns the string that is inside the entry. To delete the string inside an Entry widget,
we need to use the Entry method delete(). In general, it is used to delete a substring of
the string inside the Entry widget. Therefore, it takes two indexes first and last, and it
deletes the substring starting at index first and ending before index last. Indexes 0 and
END (a constant defined in tkinter) are used to delete the whole string inside an entry.
Table 9.4 shows the usage of these and other Entry methods.

Method Description
e.get() Returns the string inside the entry e
e.insert(index, text) Inserts text into entry e at the given index; if index

is END, it appends the string
e.delete(from, to) Deletes the substring in entry e from index from

up to and not including index to; delete(0, END)
deletes all the text in the entry

Table 9.4 Some Entry
methods. Listed are three
core methods of class
Entry. The constant END is
defined in tkinter and
refers to the index past the
last character in the entry.

www.ebook3000.com

http://www.ebook3000.org

304 Chapter 9 Graphical User Interfaces

Armed with the method of the Entry widget class, we can now implement the event-
handling function compute():

Module: day.py
1 from tkinter import Tk, Button, Entry, Label, END
2 from time import strptime, strftime
3 from tkinter.messagebox import showinfo
4

5 def compute():
6 '''display day of the week corresponding to date in dateEnt;
7 date must have format MMM DD, YYYY (e.g., Jan 21, 1967)'''
8

9 global dateEnt # dateEnt is a global variable
10

11 # read date from entry dateEnt
12 date = dateEnt.get()
13

14 # compute weekday corresponding to date
15 weekday = strftime('%A', strptime(date, '%b %d, %Y'))
16

17 # display the weekday in a pop-up window
18 showinfo(message = '{} was a {}'.format(date, weekday))
19

20 # delete date from entry dateEnt
21 dateEnt.delete(0, END)
22

23 # rest of program

In line 9, we specify that dateEnt is a global variable. While that is not strictly neces-
sary (we are not assigning to dateEnt inside function compute()), it is a warning so the
programmer maintaining the code is aware that dateEnt is not a local variable.

In line 15, we use two functions frommodule time to compute the weekday correspond-
ing to a date. Function strptime() takes as input a string containing a date (date) and a
format string ('%b %d, %Y'), which uses directives from Table 4.3. The function returns
the date in an object of type time.struct_time. Recall from Section 4.2 that function
strftime() takes such an object and a format string ('%A') and returns the date formatted
according to the format string. Since the format string contains only the directive %A that
specifies the date weekday, only the weekday is returned.

Practice Problem
9.4

Implement a variation of GUI program day.py called day2.py. Instead of displaying the
weekday message in a separate pop-up window, insert it in front of the date in the entry box,
as shown. Also add a button labeled “Clear” that erases the entry box.

Section 9.2 Event-Based tkinter Widgets 305

Text Widget and Binding Events
Next we introduce the Text widget, which is used to interactively enter multiple lines of
text in a way similar to entering text in a text editor. The Text widget class supports the
same methods get(), insert(), and delete() that class Entry does, albeit in a different
format (see Table 9.5).

Method Description
t.insert(index, text) Insert text into Text widget t before index index
t.get(from, to) Return the substring in Text widget t from index

from up to but not including index to
t.delete(from, to) Delete the substring in Text widget t between index

from up to but not including index to

Table 9.5 Some Text
methods. Unlike indexes
used for Entry methods,
indexes used in Text
methods are of the form
row.column (e.g., index 2.3
refers to the fourth character
in the third row).

We use a Text widget to develop an application that looks like a text editor, but “se-
cretly” records and prints every keystroke the user types in the Text widget. For example,
suppose you were to type the sentence shown in Figure 9.10:

Figure 9.10 Key logger
application. The key logger
GUI consists of a Text
widget. When the user types
text inside the text box, the
keystrokes are recorded and
printed in the shell.

This would be printed in the shell:

>>>
char = Shift_L
char = T
char = o
char = p
char = space
char = s
char = e
char = c
char = r
char = e
char = t
...

(We omit the rest of the characters.) This application is often referred to as a keylogger.
We now develop this GUI app. To create a Text widget big enough to contain five rows

of 20 characters, we use the width and height widget constructor options:

from tkinter import Text
t = Text(root, width=20, height=5)

In order to record every keystroke when we type inside the Text widget text, we need
to somehow associate an event-handling function with keystrokes. We achieve this with the

www.ebook3000.com

http://www.ebook3000.org

306 Chapter 9 Graphical User Interfaces

bind()method, whose purpose is to “bind” (or associate) an event type to an event handler.
For example, the statement

text.bind('<KeyPress>', record)

binds a keystroke, an event type described with string '<KeyPress>', to the event handler
record().

In order to complete the keylogger application, we need to learn a bit more about event
patterns and the tkinter Event class.

Event Patterns and the tkinter Class Event
In general, the first argument of the bind() method is the type of event we want to bind.
The type of event is described by a string that is the concatenation of one or more event
patterns. An event pattern has the form

<modifier-modifier-type-detail>

Table 9.6 shows some possible values for the modifier, type, and detail. For our keylogger
application, the event pattern will consist of just a type, KeyPress. Here are some other
examples of event patterns and associated target events:

• <Control-Button-1>: Hitting Ctrl and the left mouse button simultaneously
• <Button-1><Button-3>: Clicking the left mouse button and then the right one

• <KeyPress-D><Return>: Hitting the keyboard key D and then Enter/Return
• <Buttons1-Motion>: Mouse motion while holding left mouse button

The second argument to method bind() is the event-handling function. This function
must be defined by the developer to take exactly one argument, an object of type Event.
The class Event is defined in tkinter. When an event (like a key press) occurs, the Python
interpreter will create an object of type Event associated with the event and call the event-
handling function with the Event object passed as the single argument.

An Event object has many attributes that store information about the event that caused
its instantiation. For a key press event, for example, the Python interpreter will create an

Table 9.6 Some event
pattern modifiers, types,
and details. An event
pattern is a string, delimited
by symbols < and >
consisting of up to two
modifiers, one type, and up
to one detail, in that order.

Modifier Description

Control Ctrl key
Button1 Left mouse button
Button3 Right mouse button
Shift Shift key
Type
Button Mouse button
Return Enter/Return key
KeyPress Press of a keyboard key
KeyRelease Release of a keyboard key
Motion Mouse motion
Detail
<button number> 1, 2, or 3 for left, middle, and right button, respectively
<key symbol> Key letter symbol

Section 9.2 Event-Based tkinter Widgets 307

Event object and assign the pressed key symbol and (Unicode) number to attributes keysym
and keysum_num.

Therefore, in our keyLogger application, the event-handling function record() should
take this Event object as input, read the key symbol and number information stored in it, and
display them in the shell. This will achieve the desired behavior of continuously displaying
the keystrokes made by the GUI user.

Module: keyLogger.py
1 from tkinter import Tk, Text, BOTH
2

3 def record(event):
4 '''event handling function for key press event;
5 input event is of type tkinter.Event'''
6 print('char = {}'.format(event.keysym)) # print key symbol
7

8 root = Tk()
9

10 text = Text(root,
11 width=20, # set width to 20 characters
12 height=5) # set height to 5 rows of characters
13

14 # Bind a key press event with the event handling function record()
15 text.bind('<KeyPress>', record)
16

17 # widget expands if the master does
18 text.pack(expand=True, fill=BOTH)
19

20 root.mainloop()

Other Event object attributes are set by the Python interpreter, depending on the type
of event. Table 9.7 shows some of the attributes. The table also shows, for each attribute, the
type of event that will cause it to be defined. For example, the num attribute will be defined
by a ButtonPress event, but not by a KeyPress or KeyRelease event.

Attribute Event Type Description
num ButtonPress, ButtonRelease Mouse button pressed
time all Time of event
x all x-coordinate of mouse
y all y-coordinate of mouse
keysym KeyPress, KeyRelease Key pressed as string
keysym_num KeyPress, KeyRelease Key pressed as Unicode number

Table 9.7 Some Event
attributes. A few attributes
of class Event are shown.
The type of event that
causes the attribute to be
defined is also shown. All
event types will set the time
attribute, for example.

Practice Problem
9.5

In the original day.py program, the user has to click button “Enter” after typing a date in
the entry box. Requiring the user to use the mouse right after typing his name using the
keyboard is an inconvenience. Modify the program day.py to allow the user just to press
the Enter/Return keyboard key instead of clicking the button “Enter”.

www.ebook3000.com

http://www.ebook3000.org

308 Chapter 9 Graphical User Interfaces

!
CAUTION Event-Handling Functions

There are two distinct types of event-handling functions in tkinter. A function
buttonHandler() that handles clicks on a Button widget is one type:

Button(root, text='example', command=buttonHandler)

Function buttonhandler() must be defined to take no input arguments.
A function eventHandler() that handles an event type is:

widget.bind('<event type>', eventHandler)

Function eventHandler() must be defined to take exactly one input argument
that is of type Event.

9.3 Designing GUIs
In this section, we continue to introduce new types of interactive widgets. We discuss how to
design GUIs that keep track of some values that are read or modified by event handlers. We
also illustrate how to design GUIs that contain multiple widgets in a hierarchical fashion.

Widget Canvas
The Canvas widget is a fun widget that can display drawings consisting of lines and ge-
ometrical objects. You can think of it as a primitive version of turtle graphics. (In fact,
turtle graphics is essentially a tkinter GUI.)

We illustrate the Canvas widget by building a very simple pen drawing application.
The application consists of an initially empty canvas. The user can draw curves inside the
canvas using the mouse. Pressing the left mouse button starts the drawing of the curve.
Mouse motion while pressing the button moves the pen and draws the curve. The curve is
complete when the button is released. A scribble done using this application is shown in
Figure 9.11.

Figure 9.11 Pen drawing
app. This GUI implements
a pen drawing application.
A left mouse button press
starts the curve. You then
draw the curve by moving
the mouse while pressing
the left mouse button. The
drawing stops when the
button is released.

We get started by first creating a Canvas widget of size 100 × 100 pixels. Since the
drawing of the curve is to be started by pressing the left mouse button, we will need to
bind the event type <Button-1> to an event-handling function. Furthermore, since mouse
motion while holding down the left mouse button draws the curve, we will also need to bind
the event type <Button1-Motion> to another event-handling function.

Section 9.3 Designing GUIs 309

This is what we have so far:

Module: draw.py
1 from tkinter import Tk, Canvas
2

3 # event handlers begin and draw here
4

5 root = Tk()
6

7 oldx, oldy = 0, 0 # mouse coordinates (global variables)
8

9 # canvas
10 canvas = Canvas(root, height=100, width=150)
11

12 # bind left mouse button click event to function begin()
13 canvas.bind("<Button-1>", begin)
14

15 # bind mouse motion while pressing left button event
16 canvas.bind("<Button1-Motion>", draw)
17

18 canvas.pack()
19 root.mainloop()

We now need to implement the handlers begin() and draw() that will actually draw
the curve. Let’s discuss the implementation of draw() first. Every time the mouse is moved
while pressing the left mouse button, the handler draw() is called with an input argument
that is an Event object storing the new mouse position. To continue drawing the curve, all
we need to do is connect this new mouse position to the previous one with a straight line.
The curve that is displayed will effectively be a sequence of very short straight line segments
connecting successive mouse positions.

The Canvasmethod create_line() can be used to draw a straight line between points.
In its general form, it takes as input a sequence of (x, y) coordinates (x1, y1, x2, y2,
. . . , xn, yn) and draws a line segment from point (x1, y1) to point (x2, y2), an-
other one from point (x2, y2) to point (x3, y3), and so on. So, to connect the old mouse
position at coordinates (oldx, oldy) to the new one at coordinates (newx, newy), we
just need to execute:

canvas.create_line(oldx, oldy, newx, newy)

The curve is thus drawn by repeatedly connecting the new mouse position to the old
(previous) mouse position. This means that there must be an “initial” old mouse position
(i.e., the start of the curve). This position is set by the event handler begin() called when
the left mouse button is pressed:

Module: draw.py
1 def begin(event):
2 'initializes the start of the curve to mouse position'
3

4 global oldx, oldy
5 oldx, oldy = event.x, event.y

In handler begin(), the variables oldx and oldy receive the coordinates of the mouse
when the left mouse button is pressed. These global variables will be constantly updated

www.ebook3000.com

http://www.ebook3000.org

310 Chapter 9 Graphical User Interfaces

inside handler draw() to keep track of the last recorded mouse position as the curve is
drawn. We can now implement event handler draw():

Module: draw.py
1 def draw(event):
2 'draws a line segment from old mouse position to new one'
3 global oldx, oldy, canvas # x and y will be modified
4 newx, newy = event.x, event.y # new mouse position
5

6 # connect previous mouse position to current one
7 canvas.create_line(oldx, oldy, newx, newy)
8

9 oldx, oldy = newx, newy # new position becomes previous

Before we move on, we list in Table 9.8 some methods supported by widget Canvas.

Table 9.8 Some Canvas
methods. Only a few
methods of tkinter widget
class Canvas are listed.
Every object drawn in the
canvas has a unique ID
(which happens to be an
integer).

Method Description
create_line(x1, y1, x2, y2, ...) Creates line segments connecting points

(x1,y1), (x2,y2), . . . ; returns the ID
of the item constructed

create_rectangle(x1, y1, x2, y2) Creates a rectangle with vertexes at (x1,
y1) and (x2, y2); returns the ID of the
item constructed

create_oval(x1, y1, x2, y2) Creates an oval that is bounded by a
rectangle with vertexes at (x1, y1) and
(x2, y2); returns the ID of the item
constructed

delete(ID) Deletes item identified with ID
move(item, dx, dy) Moves item right dx units and down dy

units

!
CAUTION

Storing State in a Global Variable

In program draw.py, the variables oldx and oldy store the coordinates of the
mouse’s last position. These variables are initially set by function begin() and
then updated by function draw(). Therefore the variables oldx, oldy cannot be
local variables to either function and have to be defined as global variables.

The use of global variables is problematic because the scope of global variables
is the whole module. The larger the module and the more names it contains, the
more likely it is that we inadvertently define a name twice in the module. This is
even more likely when variables, functions, and classes are imported from another
module. If a name is defined multiple times, all but one definition will be discarded,
which then typically results in very strange bugs.

In the next section, we learn how to develop GUIs as new widget classes using
OOP techniques. One of the benefits is that we will be able to store the GUI state
in instance variables rather than in global variables.

Section 9.3 Designing GUIs 311

Practice Problem
9.6

Implement program draw2.py, a modification of draw.py that supports deletion of the last
curve drawn on the canvas by pressing Ctrl and the left mouse button simultaneously. In or-
der to do this, you will need to delete all the short line segments created by create_line()
that make up the last curve. This in turn means that you must store all the segments forming
the last curve in some type of container.

Widget Frame as an Organizing Widget
Wenow introduce the Framewidget, an important widget whose primary purpose is to serve
as the master of other widgets and facilitate the specification of the geometry of a GUI. We
make use of it in another graphics GUI we call plotter shown in Figure 9.12. The plotter
GUI allows the user to draw by moving a pen horizontally or vertically using the buttons
to the right of the canvas. A button click should move the pen 10 pixels in the direction
indicated on the button.

Figure 9.12 Plotter App.
This GUI presents a canvas
and four buttons controlling
the pen moves. Each button
will move the pen 10 units in
the indicated direction.

It is clear that the plotter GUI consists of a Canvas widget and four Button widgets.
What is less clear is how to specify the geometry of the widgets inside their master (i.e.,
the window itself). Neither the pack()method nor the grid()method can be used to pack
the canvas and button widgets directly in the window so that they are displayed as shown in
Figure 9.12.

To simplify the geometry specification, we can use a Frame widget whose sole purpose
is to be the master of the four button widgets. The hierarchical packing of the widgets is
then achieved in two steps. The first step is to pack the four button widgets into their Frame
master using method grid(). Then we simply pack the Canvas and the Framewidgets next
to each other.

Module: plotter.py
1 from tkinter import Tk, Canvas, Frame, Button, SUNKEN, LEFT, RIGHT
2

3 # event handlers up(), down(), left(), and right()
4

5 root = Tk()
6

7 # canvas with border of size 100 x 150
8 canvas = Canvas(root, height=100, width=150,
9 relief=SUNKEN, borderwidth=3)

10 canvas.pack(side=LEFT)
11

www.ebook3000.com

http://www.ebook3000.org

312 Chapter 9 Graphical User Interfaces

12 # frame to hold the 4 buttons
13 box = Frame(root)
14 box.pack(side=RIGHT)
15

16 # the 4 button widgets have Frame widget box as their master
17 button = Button(box, text='up', command=up)
18 button.grid(row=0, column=0, columnspan=2)
19 button = Button(box, text='left',command=left)
20 button.grid(row=1, column=0)
21 button = Button(box, text='right', command=right)
22 button.grid(row=1, column=1)
23 button = Button(box, text='down', command=down)
24 button.grid(row=2, column=0, columnspan=2)
25

26 x, y = 50, 75 # pen position, initially in the middle
27

28 root.mainloop()

The four button event handlers are supposed tomove the pen in the appropriate direction.
We only show the handler for the up button, leaving the implementation of the remaining
three handlers as an exercise:

Module: plotter.py
1 def up():
2 'move pen up 10 pixels'
3 global y, canvas # y is modified
4 canvas.create_line(x, y, x, y-10)
5 y -= 10

DETOUR
Why Does the y Coordinate Decrease When Moving Up?

The function up() is supposed to move the pen at position (x, y) up by 10 units.
In a typical coordinate system, that means that y should be increased by 10 units.
Instead, the value of y is decreased by 10 units.

The reason for this is that the coordinate system in a canvas is not quite the
same as the coordinate system we are used to. The origin, that is, the position at
coordinates (0, 0), is at the top left corner of the canvas. The x coordinates increase
to the right and the y coordinates increase to the bottom of the canvas. Therefore,
moving up means decreasing the y coordinate, which is what we do in function
up().

While peculiar, the Canvas coordinate system follows the screen coordinate
system. Every pixel on your screen has coordinates defined with respect to the
upper left corner of the screen, which has coordinates (0, 0). Why does the screen
coordinate system use such a system?

It has to do with the order in which pixels are refreshed in a television set, the
precursor of the computer monitor. The top line of pixels is refreshed first from left
to right, and then the second, third, and so on.

Section 9.4 OOP for GUIs 313

Practice Problem
9.7

Complete the implementation of functions down(), left(), and right() in program
plotter.py .

9.4 OOP for GUIs
So far in this chapter, the focus of our presentation has been on understanding how to use
tkinter widgets. We developed GUI applications to illustrate the usage of the widgets.
To keep matters simple, we have not concerned ourselves about whether our GUI apps can
easily be reused.

To make a GUI app or any program reusable, it should be developed as a component (a
function or a class) that encapsulates all the implementation details and all the references to
data (and widgets) defined in the program. In this section, we introduce the OOP approach
to designing GUIs. This approach will make our GUI applications far easier to reuse.

GUI OOP Basics
In order to illustrate the OOP approach to GUI development, we reimplement the application
clickit.py. This application presents a GUI with a single button; when clicked, a window
pops up and displays the current time. Here is our original code (with the import statements
and comments removed so we can focus on the program structure):

Module: clickit.py
1 def clicked():
2 'prints day and time info'
3 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n',
4 localtime())
5 showinfo(message=time)
6

7 root = Tk()
8 button = Button(root,
9 text='Click it',

10 command=clicked) # button click event handler
11 button.pack()
12 root.mainloop()

This program has a few undesirable properties. The names button and clicked have
global scope. (We ignore the windowwidget root as it is really “outside of the application,”
as we will see soon.) Also, the program is not encapsulated into a single named component
(function or class) that can be cleanly referred to and incorporated into a larger GUI.

The key idea of the OOP approach to GUI development is to develop the GUI app as
a new, user-defined widget class. Widgets are complicated beasts, and it would be an over-
whelming task to implement a widget class from scratch. To the rescue comes OOP in-
heritance. We can ensure that our new class is a widget class simply by having it inherit
attributes from an existing widget class. Because our new class has to contain another wid-
get (the button), it should inherit from a widget class that can contain other widgets (i.e.,
the Frame class).

The reimplementation of the GUI clickit.py therefore consists of defining a new
class, say ClickIt, that is a subclass of Frame. A ClickIt widget should contain inside

www.ebook3000.com

http://www.ebook3000.org

314 Chapter 9 Graphical User Interfaces

of it just one button widget. Since the button must be part of the GUI from the GUI start-up,
it will need to be created and packed at the time the ClickIt widget is instantiated. This
means that the button widget must be created and packed in the ClickIt constructor.

Now, what will be the master of the button? Since the button should be contained in the
instantiated ClickIt widget, its master is the widget itself (self).

Finally, recall that we have always specified a master when creating a widget. We also
should be able to specify the master of a ClickIt widget, so we can create the GUI in this
way:

>>> root = Tk()
>>> clickit = Clickit(root) # create ClickIt widget inside root
>>> clickit.pack()
>>> root.mainloop()

Therefore, the ClickIt constructor should be defined to take one argument, its master wid-
get. (By the way, this code shows why we chose not to encapsulate the window widget root
inside the class ClickIt.)

With all the insights we have just made, we can start our implementation of the ClickIt
widget class, in particular its constructor:

Module: ch9.py
1 from tkinter import Button, Frame
2 from tkinter.messagebox import showinfo
3 from time import strftime, localtime
4

5 class ClickIt(Frame):
6 'GUI that shows current time'
7

8 def __init__(self, master):
9 'constructor'

10 Frame.__init__(self, master)
11 self.pack()
12 button = Button(self,
13 text='Click it',
14 command=self.clicked)
15 button.pack()
16

17 # event handling function clicked()

There are three things to note about the constructor __init__(). First note in line 10
that the ClickIt __init__() constructor extends the Frame __init__() constructor. We
are doing that for two reasons:

1. We want the ClickIt widget to get initialized just like a Frame widget so it is a
full-fledged Frame widget.

2. We want the ClickIt widget to be assigned a master the same way any Frame wid-
get is assigned a master; we thus pass the master input argument of the ClickIt
constructor to the Frame constructor.

The next thing to note is that button is not a global variable, as it was in the original
program clickit.py. It is simply a local variable, and it cannot affect names defined in
the program that uses class ClickIt. Finally note that we defined the button event handler
to be self.clicked, which means that clicked() is a method of class ClickIt. Here is

Section 9.4 OOP for GUIs 315

its implementation:

Module: ch9.py
1 def clicked(self):
2 'prints day and time info'
3 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n',
4 localtime())
5 showinfo(message=time)

Because it is a class method, the name clicked is not global, as it was in the original
program clickit.py.

The class ClickIt therefore encapsulates the code and the names clicked and button.
This means that neither of these names is visible to a program that uses a ClickIt widget,
which relieves the developer from worrying about whether names in the program will clash
with them. Furthermore, the developer will find it extremely easy to use and incorporate
a ClickIt widget in a larger GUI. For example, the next code incorporates the ClickIt
widget in a window and starts the GUI:

>>> root = Tk()
>>> app = Clickit(root)
>>> app.pack()
>>> root.mainloop()

Shared Widgets Are Assigned to Instance Variables
In our next example, we reimplement the GUI application day.py as a class. We use it
to illustrate when to give widgets instance variable names. The original program day.py
(again without import statements or comments) is:

Module: day.py
1 def compute():
2 global dateEnt # dateEnt is a global variable
3

4 date = dateEnt.get()
5 weekday = strftime('%A', strptime(date, '%b %d, %Y'))
6 showinfo(message = '{} was a {}'.format(date, weekday))
7 dateEnt.delete(0, END)
8

9 root = Tk()
10

11 label = Label(root, text='Enter date')
12 label.grid(row=0, column=0)
13

14 dateEnt = Entry(root)
15 dateEnt.grid(row=0, column=1)
16

17 button = Button(root, text='Enter', command=compute)
18 button.grid(row=1, column=0, columnspan=2)
19

20 root.mainloop()

www.ebook3000.com

http://www.ebook3000.org

316 Chapter 9 Graphical User Interfaces

In this implementation, names compute, label, dateEnt, and button have global
scope. We reimplement the application as a class called Day that will encapsulate those
names and the code.

The Day constructor should be responsible for creating the label, entry, and button wid-
gets, just as the ClickIt constructor was responsible for creating the button widget. There
is one difference, though: The entry dateEnt is referred to in the event handler compute().
Because of that, dateEnt cannot just be a local variable of the Day constructor. Instead, we
make it an instance variable that can be referred from the event handler:

Module: ch9.py
1 from tkinter import Tk, Button, Entry, Label, END
2 from time import strptime, strftime
3 from tkinter.messagebox import showinfo
4

5 class Day(Frame):
6 'an application that computes weekday corresponding to a date'
7

8 def __init__(self, master):
9 Frame.__init__(self, master)

10 self.pack()
11

12 label = Label(self, text='Enter date')
13 label.grid(row=0, column=0)
14

15 self.dateEnt = Entry(self) # instance variable
16 self.dateEnt.grid(row=0, column=1)
17

18 button = Button(self, text='Enter',
19 command=self.compute)
20 button.grid(row=1, column=0, columnspan=2)
21

22 def compute(self):
23 '''display weekday corresponding to date in dateEnt; date
24 must have format MMM DD, YYYY (e.g., Jan 21, 1967)'''
25 date = self.dateEnt.get()
26 weekday = strftime('%A', strptime(date, '%b %d, %Y'))
27 showinfo(message = '{} was a {}'.format(date, weekday))
28 self.dateEnt.delete(0, END)

The Label and Buttonwidgets do not need to be assigned to instance variables because
they are never referenced by the event handler. They are simply given names that are local
to the constructor. The event handler compute() is a class method just like clicked() in
ClickIt. In fact, event handlers should always be class methods in a user-defined widget
class.

The class Day therefore encapsulates the four names that were global in program day.py.
Just as for the ClickIt class, it becomes very easy to incorporate a Day widget into a GUI.
To make our point, let’s run a GUI that incorporates both:

>>> root = Tk()
>>> day = Day(root)
>>> day.pack()

Section 9.4 OOP for GUIs 317

Figure 9.13 Two
user-defined widgets in a
GUI. A user-defined widget
class can be used just like a
built-in widget class.

>>> clickit = ClickIt(root)
>>> clickit.pack()
>>> root.mainloop()

Figure 9.13 shows the resulting GUI, with a Day widget above a ClickIt widget.

Practice Problem
9.8

Reimplement the GUI application keylogger.py as a new, user-defined widget class. You
will need to decide whether it is necessary to assign the Text widget contained in this GUI
to an instance variable or not.

Shared Data Are Assigned to Instance Variables
To further showcase the encapsulation benefit of implementing a GUI as a user-defined
widget class, we reimplement the GUI application draw.py. Recall that this application
provides a canvas that the user can draw on using the mouse. The original implementation
is this:

Module: draw.py
1 from tkinter import Tk, Canvas
2

3 def begin(event):
4 'initializes the start of the curve to mouse position'
5 global oldx, oldy
6 oldx, oldy = event.x, event.y
7

8 def draw(event):
9 'draws a line segment from old mouse position to new one'

10 global oldx, oldy, canvas # x and y will be modified
11 newx, newy = event.x, event.y # new mouse position
12 canvas.create_line(oldx, oldy, newx, newy)
13 oldx, oldy = newx, newy # new position becomes previous
14

15 root = Tk()
16

17 oldx, oldy = 0, 0 # mouse coordinates (global variables)
18

19 canvas = Canvas(root, height=100, width=150)
20 canvas.bind("<Button-1>", begin)
21 canvas.bind("<Button1-Motion>", draw)
22 canvas.pack()
23

24 root.mainloop()

www.ebook3000.com

http://www.ebook3000.org

318 Chapter 9 Graphical User Interfaces

In the original implementation draw.py, we needed to use global variables oldx and
oldy to keep track of the mouse position. This was because event handlers begin() and
draw() referred to them. In the reimplementation as a new widget class, we can store the
mouse coordinates in instance variables instead.

Similarly, because canvas is referred to by event handler draw(), we must make it an
instance variable as well:

Module: ch9.py
1 from tkinter import Canvas, Frame, BOTH
2 class Draw(Frame):
3 'a basic drawing application'
4

5 def __init__(self, parent):
6 Frame.__init__(self, parent)
7 self.pack()
8

9 # mouse coordinates are instance variables
10 self.oldx, self.oldy = 0, 0
11

12 # create canvas and bind mouse events to handlers
13 self.canvas = Canvas(self, height=100, width=150)
14 self.canvas.bind("<Button-1>", self.begin)
15 self.canvas.bind("<Button1-Motion>", self.draw)
16 self.canvas.pack(expand=True, fill=BOTH)
17

18 def begin(self,event):
19 'handles left button click by recording mouse position'
20 self.oldx, self.oldy = event.x, event.y
21

22 def draw(self, event):
23 '''handles mouse motion, while pressing left button, by
24 connecting previous mouse position to the new one'''
25 newx, newy = event.x, event.y
26 self.canvas.create_line(self.oldx, self.oldy, newx, newy)
27 self.oldx, self.oldy = newx, newy

Practice Problem
9.9

Reimplement the plotter GUI application as a user-defined widget class that encapsulates
the state of the plotter (i.e., the pen position). Think carefully about which widgets need to
be assigned to instance variables.

Case Study: Developing a Calculator
In Case Study CS.9, we implement a basic calculator GUI. We use OOP techniques to im-
plement it as a user-defined widget class, from scratch. In the process, we explain how to
write a single event-handling function that handles many different buttons.

Chapter 9 Solutions to Practice Problems 319

Chapter Summary
In this chapter, we introduce the development of GUIs in Python.

The specific Python GUI API we use is the Standard Library module tkinter. This
module defines widgets that correspond to the typical components of a GUI, such as buttons,
labels, text entry forms, and so on. In this chapter, we explicitly cover widget classes Tk,
Label, Button, Text, Entry, Canvas, and Frame. To learn about other tkinter widget
classes, we give pointers to online tkinter documentation.

There are several techniques for specifying the geometry (i.e., the placement) of widgets
in a GUI. We introduce the widget class methods pack() and grid(). We also illustrate
how to facilitate the geometry specification of more complex GUIs by organizing the wid-
gets in a hierarchical fashion.

GUIs are interactive programs that react to user-generated events such as mouse button
clicks, mouse motion, or keyboard key presses. We describe how to define the handlers
that are executed in response to these events. Developing event handlers (i.e., functions
that respond to events) is a style of programming called event-driven programming. We
encounter it again when we discuss the parsing of HTML files in Chapter 11.

Finally, and perhaps most important, we use the context of GUI development to show-
case the benefits of OOP. We describe how to develop GUI applications as new widget
classes that can be easily incorporated into larger GUIs. In the process, we apply OOP con-
cepts such class inheritance, modularity, abstraction, and encapsulation.

Solutions to Practice Problems
9.1 The width and height options can be used to specify the width and height of the text
label. (Note that a width of 20 means that 20 characters can fit inside the label.) To allow
padding to fill the available space around the peace symbol widget, the method pack() is
called with options expand = True and fill = BOTH.

Module: peaceandlove.py
1 from tkinter import Tk, Label, PhotoImage, BOTH, RIGHT, LEFT
2 root = Tk()
3

4 label1 = Label(root, text="Peace & Love", background='black',
5 width=20, height=5, foreground='white',
6 font=('Helvetica', 18, 'italic'))
7 label1.pack(side=LEFT)
8

9 photo = PhotoImage(file='peace.gif')
10

11 label2 = Label(root, image=photo)
12 label2.pack(side=RIGHT, expand=True, fill=BOTH)
13

14 root.mainloop()

9.2 Using iteration makes the creation of all the labels manageable. The first row of "days
of the week" labels can be best done by creating the list of days of the week, iterating over
this list, creating a label widget for each, and placing it in the appropriate column of row 0.
The relevant code fragment is shown next.

www.ebook3000.com

http://www.ebook3000.org

320 Chapter 9 Graphical User Interfaces

Module: ch9.py 1 days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
2 # create and place weekday labels
3 for i in range(7):
4 label = Label(root, text=days[i])
5 label.grid(row=0, column=i)

Iteration is also used to create and place the number labels. Variables week and weekday
keep track of the row and column, respectively.

Module: ch9.py
1 # obtain the day of the week for the first of the month and
2 # the number of days in the month
3 weekday, numDays = monthrange(year, month)
4 # create calendar starting at week (row) 1 and day (column) 1
5 week = 1
6 for i in range(1, numDays+1): # for i = 1, 2, ..., numDays
7 # create label i and place it in row week, column weekday
8 label = Label(root, text=str(i))
9 label.grid(row=week, column=weekday)

10

11 # update weekday (column) and week (row)
12 weekday += 1
13 if weekday > 6:
14 week += 1
15 weekday = 0

9.3 Two buttons should be created instead of one. The next code fragment shows the separate
event-handling functions for each button.

Module: twotimes.py
1 def greenwich():
2 'prints Greenwich day and time info'
3 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n',
4 gmtime())
5 print('Greenwich time\n' + time)
6

7 def local():
8 'prints local day and time info'
9 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n',

10 localtime())
11 print('Local time\n' + time)
12

13 # Local time button
14 buttonl = Button(root, text='Local time', command=local)
15 buttonl.pack(side=LEFT)
16

17 # Greenwich mean time button
18 buttong = Button(root,text='Greenwich time', command=greenwich)
19 buttong.pack(side=RIGHT)

Chapter 9 Solutions to Practice Problems 321

9.4 We only describe the changes from program day.py. The event-handling function
compute() for button “Enter” should be modified to:

def compute():
global dateEnt # warning that dateEnt is a global variable
read date from entry dateEnt
date = dateEnt.get()
compute weekday corresponding to date
weekday = strftime('%A', strptime(date, '%b %d, %Y'))
display the weekday in a pop-up window
dateEnt.insert(0, weekday+' ')

The event-handling function for button “Clear” should be:

def clear():
'clears entry datEnt'
global dateEnt
dateEnt.delete(0, END)

Finally, the buttons should be defined as shown:

Enter button
button = Button(root, text='Enter', command=compute)
button.grid(row=1, column=0)

Clear button
button = Button(root, text='Clear', command=clear)
button.grid(row=1, column=1)

9.5 We need to bind the Enter/Return key press to an event-handling function that takes
an Event object as input. All this function really has to do is call the handler compute().
So we only need to add to day.py:

def compute2(event):
compute()

dateEnt.bind('<Return>', compute2)

9.6 The key is to store the items returned by canvas.create_line(x,y,newX,newY) in
some container, say list curve. This container should be initialized to an empty list every
time we start drawing:

Module: draw2.py
1 def begin(event):
2 'initializes the start of the curve to mouse position'
3 global oldx, oldy, curve
4 oldx, oldy = event.x, event.y
5 curve = []

Aswemove themouse, the IDs of line segments created by Canvasmethod create_line()
need to be appended to list curve. This is shown in the reimplementation of event-handling
function draw(), shown next.

www.ebook3000.com

http://www.ebook3000.org

322 Chapter 9 Graphical User Interfaces

Module: draw2.py
1 def draw(event):
2 'draws a line segment from old mouse position to new one'
3 global oldx, oldy, canvas, curve # x and y will be modified
4 newx, newy = event.x, event.y # new mouse position
5 # connect previous mouse position to current one
6 curve.append(canvas.create_line(oldx, oldy, newx, newy))
7 oldx, oldy = newx, newy # new position becomes previous
8 def delete(event):
9 'delete last curve drawn'

10 global curve
11 for segment in curve:
12 canvas.delete(segment)
13 # bind Ctrl-Left button mouse click to delete()
14 canvas.bind('<Control-Button-1>', delete)

The event handler for the <Control-Button-1> event type, function delete(), should
iterate over the line segment ID in curve and call canvas.delete() on each.

9.7 The implementations are similar to function up():

Module: plotter.py
1 def down():
2 'move pen down 10 pixels'
3 global y, canvas # y is modified
4 canvas.create_line(x, y, x, y+10)
5 y += 10
6 def left():
7 'move pen left 10 pixels'
8 global x, canvas # x is modified
9 canvas.create_line(x, y, x-10, y)

10 x -= 10
11 def right():
12 'move pen right 10 pixels'
13 global x, canvas # x is modified
14 canvas.create_line(x, y, x+10, y)
15 x += 10

9.8 Because the Text widget is not used by the event handler, it is not necessary to assign
it to an instance variable.

Module: ch9.py
1 from tkinter import Text, Frame, BOTH
2 class KeyLogger(Frame):
3 'a basic editor that logs keystrokes'
4 def __init__(self, master=None):
5 Frame.__init__(self, master)
6 self.pack()
7 text = Text(width=20, height=5)
8 text.bind('<KeyPress>', self.record)
9 text.pack(expand=True, fill=BOTH)

Chapter 9 Exercises 323

10 def record(self, event):
11 '''handles keystroke events by printing character
12 associated with key'''
13 print('char={}'.format(event.keysym))

9.9 Only the Canvaswidget is referenced by the function move() that handles button clicks,
so it is the only widget that needs to be assigned to an instance variable, self.canvas. The
coordinates (i.e., state) of the pen will also need to be stored in instance variables self.x
and self.y. The solutions is in module ch9.py. Next is the constructor code fragment that
creates the button “up” and its handler; the remaining buttons are similar.

Module: ch9.py
1 # create up button
2 b = Button(buttons, text='up', command=self.up)
3 b.grid(row=0, column=0, columnspan=2)
4

5 def up(self):
6 'move pen up 10 pixels'
7 self.canvas.create_line(self.x, self.y, self.x, self.y-10)
8 self.y -= 10

Exercises

9.10 Develop a program that displays a GUI window with your picture on the left side and
your first name, last name, and place and date of birth on the right. The picture has to be in
the GIF format. If you do not have one, find a free online converter tool online and a JPEG
picture to the GIF format.

9.11 Modify the solution to Practice Problem 9.3 so that the times are displayed in a separate
pop-up window.

9.12 Modify the phone dial GUI from Section 9.1 so it has buttons instead of digits. When
the user dials a number, the digits of the number should be printed in the interactive shell.

9.13 In program plotter.py, the user has to click one of the four buttons to move the pen.
Modify the program to allow the user to use the arrow keys on the keyboard instead.

9.14 In the implementation of widget class Plotter, there are four very similar button
event handlers: up(), down(), left(), and right(). Reimplement the class using just
one function move() that takes two input arguments dx and dy and moves the pen from
position (x, y) to (x+dx, y+dx).

9.15 Add two more buttons to the Plotter widget. One, labeled “clear”, should clear the
canvas. The other, labeled “delete”, should erase the last pen move.

www.ebook3000.com

http://www.ebook3000.org

324 Chapter 9 Graphical User Interfaces

Problems
9.16 Implement a GUI application that allows users to compute their body mass index
(BMI), which we defined in Practice Problem 5.1. Your GUI should look as shown below.

After entering the weight and height and then clicking the button, a new window should
pop up with the computed BMI. Make sure your GUI is user friendly by deleting the entered
weight and height so that the user can enter new inputs without having to erase the old ones.

9.17 Develop a GUI application whose purpose is to compute the monthly mortgage pay-
ment given a loan amount (in $), the interest rate (in %), and the loan term (i.e., the number
of months that it will take to repay the loan). The GUI should have three labels and three
entry boxes for users to enter this information. It should also have a button labeled “Com-
pute mortgage” that, when clicked, should compute and display the monthly mortgage in a
fourth entry box.

The monthly mortgagem is computed from the loan amount a, interest rate r, and loan
terms t as:

m =
a× c× (1 + c)t

(1 + c)t − 1

where c = r/1200.

9.18 Develop a GUI that contains just one Frame widget of size 480 × 640 that has this
behavior: Every time the user clicks at some location in the frame, the location coordinates
are printed in the interactive shell.

>>>
you clicked at (55, 227)
you clicked at (426, 600)
you clicked at (416, 208)

9.19 Modify the phone dial GUI from Section 9.1 so that it has buttons instead of digits
and an entry box on top. When the user dials a number, the number should be displayed in
the traditional U.S. phone number format. For example, if the user enters 1234567890, the
entry box should display 123-456-7890.

9.20 Develop new widget Game that implements a number guessing game. When started, a
secret random number between 0 and 9 is chosen. The user is then requested to enter number
guesses. Your GUI should have an Entry widget for the user to type the number guess and
a Button widget to enter the guess:

Chapter 9 Problems 325

If the guess is correct, a separate window should inform the user of that. The user should
be able to enter guesses until he makes the correct guess.

9.21 In Problem 9.20, pressing the Enter/Return key on your keyboard after entering a
guess in the entry is ignored. Modify the Game GUI so that pressing the key is equivalent to
pressing the button.

9.22 Modify the widget Game from Problem 9.21 so that a new game starts automatically
when the user has guessed the number. The window informing the user that she made the
correct guess should say something like “Let’s do this again . . .” Note that a new random
number would have to be chosen at the start of each game.

9.23 Implement GUI widget Craps that simulates the gambling game craps. The GUI
should include a button that starts a new game by simulating the initial roll of a pair of dice.
The result of the initial roll is then shown in an Entry widget, as shown.

If the initial roll is not a win or a loss, the user will have to click the button "Roll for
point", and keep clicking it until she wins.

9.24 Develop an applicationwith a text box that measures how fast you type. It should record
the time when you type the first character. Then, every time you press the blank character,
it should print (1) the time you took to type the preceding word and (2) an estimate of your
typing speed in words per minute by averaging the time taken for typing the words so far and
normalizing over 1 minute. So, if the average time per word is 2 seconds, the normalized
measure is 30 words per minute.

9.25 Develop new GUI widget class Ed that can be used to teach first-graders addition
and subtraction. The GUI should contain two Entry widgets and a Button widget labeled
"Enter".

At start-up, your program should generate (1) two single-digit pseudorandom num-
bers a and b and (2) an operation o, which could be addition or subtraction—with equal
likelihood—using the randrange() function in the random module. The expression a o
bwill then be displayed in the first Entrywidget (unless a is less than b and the operation o
is subtraction, in which case b o a is displayed, so the result is never negative). Expressions
displayed could be, for example, 3+2, 4+7, 5-2, 3-3 but could not be 2-6.

www.ebook3000.com

http://www.ebook3000.org

326 Chapter 9 Graphical User Interfaces

The user will have to enter, in the second Entry widget, the result of evaluating the
expression shown in the first Entrywidget and click the "Enter" button (or the Return key
on the keyboard). If the correct result is entered, a new window should say "You got it!".

9.26 Augment the GUI you developed in Problem 9.25 so that a new problem gets generated
after the user answers a problem correctly. In addition, your app should keep track of the
number of tries for each problem and include that information in the message displayed
when the user gets the problem right.

9.27 Enhance the widget Ed from Problem 9.26 so that it does not repeat a problem given
recently. More precisely, ensure that a new problem is always different from the previous 10
problems.

9.28 Develop widget class Calendar that implements a GUI-based calendar application.
The Calendar constructor should take as input three arguments: the master widget, a year,
and a month (using numbers 1 through 12). For example, Calendar(root, 2012, 2)
should create a Calendar widget within the master widget root. The Calendar widget
should display the calendar page for the given month and year, with a button for every day:

Then, when you click on a day, a dialog will appear:

This dialog gives you an entry field to enter an appointment. When you click button
“OK”, the dialog window will disappear. However, when you click the same day button
in the main calendar window again, the dialog window should reappear together with the
appointment information.

You may use the askstring function from module tkinter.simpledialog for the
dialog window. It takes the window title and label as input and returns whatever the user
typed. For example, the last dialog window was created with the function call

askstring('example', 'Enter text')

Chapter 9 Problems 327

When the user clicks OK, the string typed in the entry box is returned by this function call.
The function can also take an optional argument initialvalue that takes a string and

puts it in the entry field:

askstring('example', ' Enter text', initialvalue='appt with John')

9.29 Modify class Calendar from Problem 9.28 so that it can be used for any month in
any year. When started, it should display the calendar for the current month. It should also
have two additional buttons labeled “previous” and “next” that, when clicked, switch the
calendar to the previous or next month.

www.ebook3000.com

http://www.ebook3000.org

CHAPTER

10
Recursion
10.1 Introduction to Recursion 330

10.2 Examples of Recursion 336

10.3 Run Time Analysis 347

10.4 Searching 354

Case Study: Tower of Hanoi 359

Chapter Summary 360

Solutions to Practice Problems 360

Exercises 362

Problems 363

IN THIS CHAPTER, we learn about recursion, a powerful problem-solving
technique, and run time analysis.

Recursion is a problem-solving technique that expresses the solution
to a problem in terms of solutions to subproblems of the original problem.
Recursion can be used to solve problems that might otherwise be quite
challenging. The functions developed by solving a problem recursively will
naturally call themselves, and we refer to them as recursive functions. We
also show how namespaces and the program stack support the execution
of recursive functions.

We demonstrate the wide use of recursion in number patterns,
fractals, virus scanners, and searching. We differentiate between linear
and nonlinear recursion and illustrate the close relationship between
iteration and linear recursion.

As we discuss when recursion should and should not be used, the
issue of program run time comes up. So far we have not worried much
about the efficiency of our programs. We now rectify this situation and use
the opportunity to analyze several fundamental search tasks. We develop
a tool that can be used to analyze experimentally the running time of
functions with respect to the size of the input.

329

www.ebook3000.com

http://www.ebook3000.org

330 Chapter 10 Recursion

10.1 Introduction to Recursion
A recursive function is a function that calls itself. In this section we explain what this means
and how recursive functions get executed. We also introduce recursive thinking as an ap-
proach to problem solving. In the next section, we apply recursive thinking and how to
develop recursive functions.

Functions that Call Themselves
Here is an example that illustrates what we mean by a function that calls itself:

Module: ch10.py
1 def countdown(n):
2 print(n)
3 countdown(n-1)

In the implementation of function countdown(), the function countdown() is called. So,
function countdown() calls itself. When a function calls itself, we say that it makes a
recursive call.

Let’s understand the behavior of this function by tracing the execution of function call
countdown(3):

• When we execute countdown(3), the input 3 is printed and then countdown() is
called on the input decremented by 1—that is, 3 − 1 = 2. We have 3 printed on the
screen, and we continue tracing the execution of countdown(2).

• When we execute countdown(2), the input 2 is printed and then countdown() is
called on the input decremented by 1—that is, 2−1 = 1. We now have 3 and 2 printed
on the screen, and we continue tracing the execution of countdown(1).

• When we execute countdown(1), the input 1 is printed and then countdown() is
called on the input decremented by 1—that is, 1 − 1 = 0. We now have 3, 2, and 1
printed on the screen, and we continue tracing the execution of countdown(0).

• When we execute countdown(0), the input 0 is printed and then countdown() is
called on the input, 0, decremented by 1—that is, 0−1 = −1.We now have 3, 2, 1, and
0 printed on the screen, and we continue tracing the execution of countdown(-1).

• When we execute countdown(-1), . . .

It seems that the execution will never end. Let’s check:

>>> countdown(3)
3
2
1
0
-1
-2
-3
...

The behavior of the function is to count down, starting with the original input number. If
we let the function call countdown(3) execute for a while, we get:

...

Section 10.1 Introduction to Recursion 331

-973
-974
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
countdown(3)

File "/Users/me/ch10.py"...
countdown(n-1)

...

And after getting many lines of error messages, we end up with:

RuntimeError: maximum recursion depth exceeded

OK, so the execution was going to go on forever, but the Python interpreter stopped it. We
will explain why the Python VM does this soon. The main point to understand right now is
that a recursive function will call itself forever unless we modify the function so there is a
stopping condition.

Stopping Condition
To show this, suppose that the behavior we wanted to achieve with the countdown() func-
tion is really:

>>> countdown(3)
3
2
1
Blastoff!!!

or

>>> countdown(0)
Blastoff!!!

Function countdown() is supposed to count down to 0, starting from a given input n; when
0 is reached, Blastoff!!! should be printed.

To implement this version of countdown(), we consider two cases that depend on
the value of the input n. When the input n is 0 or negative, all we need to do is print
'Blastoff!!!':

def countdown(n):
'counts down to 0'
if n <= 0: # base case

print('Blastoff!!!')
else:

... # remainder of function

We call this case the base case of the recursion; it is the condition that will ensure that the
recursive function is not going to call itself forever.

The second case is when the input n is positive. In that case we do the same thing we
did before:

print(n)
countdown(n-1)

www.ebook3000.com

http://www.ebook3000.org

332 Chapter 10 Recursion

How does this code implement the function countdown() for input value n > 0? The
insight used in the code is this: Counting down from (positive number) n can be done by
printing n first and then counting down from n − 1. This fragment of code is called the
recursive step.

With the two cases resolved, we obtain the recursive function:

Module: ch10.py
1 def countdown(n):
2 'counts down from n to 0'
3 if n <= 0: # base case
4 print('Blastoff!!!')
5 else: # n > 0: recursive step
6 print(n) # print n first and then
7 countdown(n-1) # count down from n-1 to 0
8 # recursively

Properties of Recursive Functions
A recursive function that terminates will always have:

1. One or more base cases, which provide the stopping condition for the recursion. In
function countdown(), the base case is the condition n ≤ 0, where n is the input.

2. One or more recursive calls, which must be on arguments that are “closer” to the
base case than the function input. In function countdown(), the sole recursive call
is made on n− 1, which is “closer” to the base case than input n.

What is meant by “closer” depends on the problem solved by the recursive function. The
idea is that each recursive call should be made on problem inputs that are closer to the base
case; this will ensure that the recursive calls eventually will get to the base case that will
stop the execution.

In the remainder of this section and the next, we present many more examples of recur-
sion. The goal is to learn how to develop recursive functions. To do this, we need to learn
how to think recursively—that is, to describe the solution to a problem in terms of solutions
of its subproblems.Why do we need to bother? After all, function countdown() could have
been implemented easily using iteration. (Do it!) The thing is that recursive functions pro-
vide us with an approach that is an alternative to the iterative approach we used in Chapter 5.
For some problems, this alternative approach actually is the easier, and sometimes, much
easier approach. When you start writing programs that search the Web, for example, you
will appreciate having mastered recursion.

Recursive Thinking
We use recursive thinking to develop recursive function vertical() that takes a nonneg-
ative integer as input and prints its digits stacked vertically. For example:

>>> vertical(3124)
3
1
2
4

To develop vertical() as a recursive function, the first thing we need to do is decide the
base case of the recursion. This is typically done by answering the question: When is the

Section 10.1 Introduction to Recursion 333

problem of printing vertically easy? For what kind of nonnegative number?
The problem is certainly easy if the input n has only one digit. In that case, we just

output n itself:

>>> vertical(6)
6

So we make the decision that the base case is when n < 10. Let’s start the implementation
of the function vertical():

def vertical(n):
'prints digits of n vertically'
if n < 10: # base case: n has 1 digit

print(n) # just print n
else: # recursive step: n has 2 or more digits

remainder of function

Function vertical() prints n if n is less than 10 (i.e., n is a single digit number).
Now that we have a base case done, we consider the case when the input n has two or

more digits. In that case, wewould like to break up the problem of printing vertically number
n into “easier” subproblems, involving the vertical printing of numbers “smaller” than n.
In this problem, “smaller” should get us closer to the base case, a single-digit number. This
suggests that our recursive call should be on a number that has fewer digits than n.

This insight leads to the following algorithm: Since n has at least two digits, we break
the problem:

a. Print vertically the number obtained by removing the last digit of n; this number
is “smaller” because it has one less digit. For n = 3124, this would mean calling
function vertical() on 312.

b. Print the last digit. For n = 3124, this would mean printing 4.

The last thing to figure out is the math formulas for (1) the last digit of n and (2) the number
obtained by removing the last digit. The last digit is obtained using the modulus (%) operator:

>>> n = 3124
>>> n%10
4

We can “remove” the last digit of n using the integer division operator (//):

>>> n//10
312

With all the pieces we have come up with, we can write the recursive function:

Module: ch10.py
1 def vertical(n):
2 'prints digits of n vertically'
3 if n < 10: # base case: n has 1 digit
4 print(n) # just print n
5 else: # recursive step: n has 2 or more digits
6 vertical(n//10) # recursively print all but last digit
7 print(n%10) # print last digit of n

www.ebook3000.com

http://www.ebook3000.org

334 Chapter 10 Recursion

Practice Problem
10.1

Implement recursive method reverse() that takes a nonnegative integer as input and prints
its digits vertically, starting with the low-order digit.

>>> reverse(3124)
4
2
1
3

Let’s summarize the process of solving a problem recursively:
1. First decide on the base case or cases of the problem that can be solved directly,

without recursion.
2. Figure out how to break the problem into one or more subproblems that are closer

to the base case; the subproblems are to be solved recursively. The solutions to the
subproblems are used to construct the solution to the original problem.

Practice Problem
10.2

Use recursive thinking to implement recursive function cheers() that, on integer input n,
outputs n strings 'Hip ' followed by 'Hurray!!! '.

>>> cheers(0)
Hurray!!!
>>> cheers(1)
Hip Hurray!!!
>>> cheers(4)
Hip Hip Hip Hip Hurray!!!

The base case of the recursion should be when n is 0; your function should then print
Hurrah. When n > 1, your function should print 'Hip ' and then recursively call itself on
integer input n− 1.

Practice Problem
10.3

In Chapter 5, we implemented function factorial() iteratively. The factorial function n!
has a natural recursive definition:

n! = 1 if n = 0
n · (n− 1)! if n > 0

Reimplement function factorial() function using recursion. Also, estimate how many
calls to factorial() are made for some input value n > 0.

Recursive Function Calls and the Program Stack
Before we practice solving problems using recursion, we take a step back and take a closer
look at what happens when a recursive function gets executed. Doing so should help us
recognize that recursion does work.

Section 10.1 Introduction to Recursion 335

We consider what happens when function vertical() is executed on input n = 3124.
In Chapter 7, we saw how namespaces and the program stack support function calls and the
normal execution control flow of a program. Figure 10.1 illustrates the sequence of recursive
function calls, the associated namespaces, and the state of the program stack during the
execution of vertical(3124).

Module: ch10.py
1 def vertical(n):
2 'prints digits of n vertically'
3 if n < 10: # base case: n has 1 digit
4 print(n) # just print n
5 else: # recursive step: n has 2 or more digits
6 vertical(n//10) # recursively print all but last digit
7 print(n%10) # print last digit of n

The difference between the execution shown in Figure 10.1 and Figure 7.5 in Chapter 7 is
that in Figure 10.1, the same function gets called: function vertical() calls vertical(),
which calls vertical(), which calls vertical(). In Figure 7.5, function f() calls g(),
which calls h(). Figure 10.1 thus underlines that a namespace is associated with every
function call rather than with the function itself.

vertical(3124)

n = 3124
vertical(312)

n = 312
vertical(31)

n = 31
vertical(3)

n = 3
print(3)

print(1)

print(2)

print(4)

Execution of
vertical(3124)

Execution of
vertical(312)

Program stack

Program stack

Execution of
vertical(31)

Program stack

Program stack

Execution of
vertical(3)

Program stack

Program stack

n = 3124

line 7

n = 3124

line 7

n = 3124

line 7

n = 312

line 7

n = 3124

line 7

n = 312

line 7

n = 3124

line 7

n = 312

line 7

n = 31

line 7

n = 3124

line 7

n = 312

line 7

n = 31

line 7

Figure 10.1 Recursive
function execution.
vertical(3124) executes
in a namespace in which
n is 3124. Just before call
vertical(312) is made,
values in the namespace
(3124) and the next line to
execute (line 7) are stored
in the program stack. Then
vertical(312) executes
in a new namespace in
which n is 312. Stack
frames are similarly added
just before recursive calls
vertical(31) and
vertical(3). Call
vertical(3) executes in a
new namespace in which n
is 3 and 3 is printed. When
vertical(3) terminates,
the namespace of
vertical(31) is restored:
n is 31, and the statement in
line 7, print(n%10), prints
1. Similarly, namespaces of
vertical(312) and
vertical(3124) are
restored as well.

www.ebook3000.com

http://www.ebook3000.org

336 Chapter 10 Recursion

10.2 Examples of Recursion
In the previous section, we introduced recursion and how to solve problems using recursive
thinking. The problems we used did not really showcase the power of recursion: Each prob-
lem could have been solved as easily using iteration. In this section, we consider problems
that are far easier to solve with recursion.

Recursive Number Sequence Pattern
We start by implementing function pattern() that takes a nonnegative integer n and prints
a number pattern:

>>> pattern(0)
0
>>> pattern(1)
0 1 0
>>> pattern(2)
0 1 0 2 0 1 0
>>> pattern(3)
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0
>>> pattern(4)
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

How do we even know that this problem should be solved recursively? A priori, we do not,
and we need to just try it and see whether it works. Let’s first identify the base case. Based
on the examples shown, we can decide that the base case is input 0 for which the function
pattern() should just print 0. We start the implementation of the function:

def pattern(n):
'prints the nth pattern'
if n == 0:

print(0)
else:

remainder of function

We now need to describe what the function pattern() does for positive input n. Let’s
look at the output of pattern(3), for example

>>> pattern(3)
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

and compare it to the output of pattern(2)

>>> pattern(2)
0 1 0 2 0 1 0

As Figure 10.2 illustrates, the output of pattern(2) appears in the output of pattern(3),
not once but twice:

Figure 10.2 Output of
pattern(3). The output of
pattern(2) appears twice.

pattern(3) 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

pattern(2) pattern(2)

Section 10.2 Examples of Recursion 337

It seems that the correct output of pattern(3) can be obtained by calling the func-
tion pattern(2), then printing 3, and then calling pattern(2) again. In Figure 10.3, we
illustrate the similar behavior for the outputs of pattern(2) and pattern(1):

pattern(2) 0 1 0 2 0 1 0

pattern(1) pattern(1)

pattern(1) 0 1 0

pattern(0) pattern(0)

Figure 10.3 Outputs of
pattern(2) and
pattern(1). The output
of pattern(2) can be
obtained from the output of
pattern(1). The output
of pattern(1) can be
obtained from the output
of pattern(0).

In general, the output for pattern(n) is obtained by executing pattern(n-1), then
printing the value of n, and then executing pattern(n-1) again:

... # base case of function
else

pattern(n-1)
print(n)
pattern(n-1)

Let’s try the function as implemented so far:

>>> pattern(1)
0
1
0

Almost done. In order to get the output in one line, we need to remain in the same line after
each print statement. So the final solution is:

Module: ch10.py
1 def pattern(n):
2 'prints the nth pattern'
3 if n == 0: # base case
4 print(0, end=' ')
5 else: # recursive step: n > 0
6 pattern(n-1) # print n-1st pattern
7 print(n, end=' ') # print n
8 pattern(n-1) # print n-1st pattern

Practice Problem
10.4

Implement recursive method pattern2() that takes a nonnegative integer as input and
prints the pattern shown next. The patterns for inputs 0 and 1 are nothing and one star,
respectively:

>>> pattern2(0)
>>> pattern2(1)
*

The patterns for inputs 2 and 3 are shown next.

www.ebook3000.com

http://www.ebook3000.org

338 Chapter 10 Recursion

>>> pattern2(2)
*
**
*
>>> pattern2(3)
*
**
*

*
**
*

Fractals
In our next example of recursion, we will also print a pattern, but this time it will be a
graphical pattern drawn by a Turtle graphics object. For every nonnegative integer n, the
printed pattern will be a curve called the Koch curve Kn. For example, Figure 10.4 shows
Koch curveK5.

Figure 10.4 Koch curve
K5. A fractal curve often
resembles a snowflake.

We will use recursion to draw Koch curves such as K5. To develop the function that is
used to draw this and other Koch curves, we look at the first few Koch curves. Koch curves
K0,K1,K2, andK3 are shown on the left of Figure 10.5.

If you look carefully at the patterns, youmight notice that each Koch curveKi, for i > 0,
contains within itself several copies of Koch curve Ki−1. For example, curve K2 contains
four copies of (smaller versions of) curveK1.

Figure 10.5 Koch curves
with drawing instructions.
On the left, from top to
bottom, are Koch curves
K0,K1,K2, andK3. The
drawing instructions for
Koch curvesK0,K1, and
K2 are shown as well. The
instructions are encoded
using letters F, L, and R
corresponding to “move
forward,” “rotate left 60
degrees,” and “rotate right
120 degrees.”

Koch curve turtle instructions

K0: F

K1: FLFRFLF

K2: FLFRFLFLFLFRFLFRFLFRFLFLFLFRFLF

K3:

Section 10.2 Examples of Recursion 339

More precisely, to draw Koch curve K2, a Turtle object should follow these instruc-
tions:

1. Draw Koch curveK1.
2. Rotate left 60 degrees.
3. Draw Koch curveK1.
4. Rotate right 120 degrees.
5. Draw Koch curveK1.
6. Rotate left 60 degrees.
7. Draw Koch curveK1.

Note that these instructions are described recursively. This suggests that what we need to
do is develop a recursive function koch(n) that takes as input a nonnegative integer n and
returns instructions that a Turtle object can use to draw Koch curveKn. The instructions
can be encoded as a string of letters F, L, and R corresponding to instructions “move for-
ward,” “rotate left 60 degrees,” and “rotate right 120 degrees,” respectively. For example,
instructions for drawing Koch curvesK0,K1, andK2 are shown on the right of Figure 10.5.
The function koch() should have this behavior:

>>> koch(0)
'F'
>>> koch(1)
'FLFRFLF'
>>> koch(2)
'FLFRFLFLFLFRFLFRFLFRFLFLFLFRFLF'

Now let’s use the insight we developed about drawing curveK2 in terms of drawingK1

to understand how the instructions to drawK2 (computed by function call koch(2)) are ob-
tained using instructions to drawK1 (computed by function call koch(1)). As Figure 10.6
illustrates, the instructions for curveK1 appear in the instructions of curveK2 four times:

koch(2) FLFRFLF L FLFRFLF R FLFRFLF L FLFRFLF

koch(1) koch(1) koch(1) koch(1)

Figure 10.6 Output of
Koch(2). Koch(1) can be
used to construct the output
of Koch(2).

Similarly, the instructions to draw K1, output by koch(1), contain the instructions to
drawK0, output by koch(0), as shown in Figure 10.7:

koch(1) F L F R F L F

koch(0) koch(0) koch(0) koch(0)

Figure 10.7 Output of
Koch(1). Koch(0) can be
used to construct the output
of Koch(1).

Nowwe can implement function koch() recursively. The base case corresponds to input
0. In that case, the function should just return instruction 'F':

def koch(n):
if n == 0:

return 'F'
remainder of function

www.ebook3000.com

http://www.ebook3000.org

340 Chapter 10 Recursion

For input n > 0, we generalize the insight illustrated in Figures 10.6 and 10.7. The instruc-
tions output by koch(n) should be the concatenation:

koch(n-1) + 'L' + koch(n-1) + 'R' + koch(n-1) + 'L' + koch(n-1)

and the function koch() is then

def koch(n):
if n == 0:

return 'F'
return koch(n-1) + 'L' + koch(n-1) + 'R' + koch(n-1) + 'L' + \

koch(n-1)

If you test this function, you will see that it works. There is an efficiency issue with this
implementation, however. In the last line, we call function koch() on the same input four
times. Of course, each time the returned value (the instructions) is the same. Our implemen-
tation is very wasteful.

!
CAUTION

Avoid Repeating the Same Recursive Calls

Often, a recursive solution is most naturally described using several identical recur-
sive calls. We just saw this with the recursive function koch(). Instead of repeatedly
calling the same function on the same input, we can call it just once and reuse its
output multiple times.

The better implementation of function koch() is then:

Module: ch10.py
1 def koch(n):
2 'returns turtle directions for drawing curve Koch(n)'
3

4 if n == 0: # base case
5 return 'F'
6

7 tmp = koch(n-1) # recursive step: get directions for Koch(n-1)
8 # use them to construct directions for Koch(n)
9

10 return tmp + 'L' + tmp + 'R' + tmp + 'L' + tmp

The last thing we have to do is develop a function that uses the instructions returned by
function koch() and draws the corresponding Koch curve using a Turtle graphics object.
Here it is:

Module: ch10.py
1 from turtle import Screen, Turtle
2 def drawKoch(n):
3 'draws nth Koch curve using instructions from function koch()'
4

5 s = Screen() # create screen
6 t = Turtle() # create turtle
7 directions = koch(n) # obtain directions to draw Koch(n)
8

Section 10.2 Examples of Recursion 341

9 for move in directions: # follow the specified moves
10 if move == 'F':
11 t.forward(300/3**n) # move forward, length normalized
12 if move == 'L':
13 t.lt(60) # rotate left 60 degrees
14 if move == 'R':
15 t.rt(120) # rotate right 60 degrees
16 s.bye()

Line 11 requires some explanation. The value 300/3**n is the length of a forward turtle
move. It depends on the value of n so that, no matter what the value of n is, the Koch curve
has width 300 pixels and fits in the screen. Check this for n equal to 0 and 1.

DETOUR
Koch Curves and Other Fractals

The Koch curves Kn were first described in a 1904 paper by the Swedish math-
ematician Helge von Koch. He was particularly interested in the curve K∞ that is
obtained by pushing n to∞.

The Koch curve is an example of a fractal. The term fractalwas coined by French
mathematician Benoît Mandelbrot in 1975 and refers to curves that:

• Appear “fractured” rather than smooth
• Are self-similar (i.e., they look the same at different levels of magnification)
• Are naturally described recursively

Physical fractals, developed through recursive physical processes, appear in nature
as snowflakes and frost crystals on cold glass, lightning and clouds, shorelines and
river systems, cauliflower and broccoli, trees and ferns, and blood and pulmonary
vessels.

Practice Problem
10.5

Implement function snowflake() that takes a nonnegative integer n as input and prints a
snowflake pattern by combining three Koch curves Kn in this way: When the turtle is fin-
ished drawing the first and the second Koch curve, the turtle should rotate right 120 degrees
and start drawing a new Koch curve. Shown here is the output of snowflake(4).

www.ebook3000.com

http://www.ebook3000.org

342 Chapter 10 Recursion

Virus Scanner
We now use recursion to develop a virus scanner, that is, a program that systematically
looks at every file in the filesystem and prints the names of the files that contain a known
computer virus signature. The signature is a specific string that is evidence of the presence
of the virus in the file.

DETOUR
Viruses and Virus Scanners

A computer virus is a small program that, usually without the user’s knowledge,
is attached to or incorporated in a file hosted on the user’s computer and does
nefarious things to the host computer when executed. A computer virus may corrupt
or delete data on a computer, for example.

A virus is an executable program, stored in a file as a sequence of bytes just like
any other program. If the computer virus is identified by a computer security expert
and the sequence of bytes is known, all that needs to be done to check whether
a file contains the virus is to check whether that sequence of bytes appears in the
file. In fact, finding the entire sequence of bytes is not really necessary; searching
for a carefully chosen fragment of this sequence is enough to identify the virus with
high probability. This fragment is called the signature of the virus: It is a sequence
of bytes that appears in the virus code but is unlikely to appear in an uninfected file.

A virus scanner is a program that periodically and systematically scans every
file in the computer filesystem and checks each for viruses. The scanner application
will have a list of virus signatures that is updated regularly and automatically. Each
file is checked for the presence of some signature in the list and flagged if it contains
that signature.

We use a dictionary to store the various virus signatures. It maps virus names to virus
signatures:

>>> signatures = {'Creeper':'ye8009g2h1azzx33',
'Code Red':'99dh1cz963bsscs3',
'Blaster':'fdp1102k1ks6hgbc'}

(While the names in this dictionary are names of real viruses, the signatures are completely
fake.)

The virus scanner function takes, as input, the dictionary of virus signatures and the
pathname (a string) of the top folder or file. It then visits every file contained in the top
folder, its subfolders, subfolders of its subfolders, and so on. An example folder 'test' is
shown in Figure 10.8 together with all the files and folders that are contained in it, directly or
indirectly. The virus scanner would visit every file shown in Figure 10.8 and could produce,
for example, this output:

File: test.zip >>> scan('test', signatures)
test/fileA.txt, found virus Creeper
test/folder1/fileB.txt, found virus Creeper
test/folder1/fileC.txt, found virus Code Red
test/folder1/folder11/fileD.txt, found virus Code Red
test/folder2/fileD.txt, found virus Blaster
test/folder2/fileE.txt, found virus Blaster

Section 10.2 Examples of Recursion 343

test

folder1

fileB.txt fileC.txt folder11

fileD.txt

fileA.txt folder2

fileD.txt fileE.txt

Figure 10.8 Filesystem
fragment. Illustrated is
folder 'test' and all its
descendant folders and
files.

Because of the recursive structure of a filesystem (a folder contains files and other fold-
ers), we use recursion to develop the virus scanner function scan(). When the input path-
name is the pathname of a file, the function should open, read, and search the file for virus
signatures; this is the base case. When the input pathname is the pathname of a folder,
scan() should recursively call itself on every file and subfolder of the input folder; this is
the recursive step. The complete implementation is:

Module: ch10.py
1 import os
2 def scan(pathname, signatures):
3 '''scans pathname or, if pathname is a folder, scans all files
4 contained, directly or indirectly, in the folder pathname'''
5 if os.path.isfile(pathname): # base case, scan pathname
6 infile = open(pathname)
7 content = infile.read()
8 infile.close()
9

10 for virus in signatures:
11 # check whether virus signature appears in content
12 if content.find(signatures[virus]) >= 0:
13 print('{}, found virus {}'.format(pathname, virus))
14 return
15

16 # pathname is a folder so recursively scan every item in it
17 for item in os.listdir(pathname):
18

19 # create pathname for item relative
20 # to current working directory
21 # fullpath = pathname + '/' + item # Mac only
22 # fullpath = pathname + '\' + item # Windows only
23 fullpath = os.path.join(pathname, item) # any OS
24

25 scan(fullpath, signatures)

This program uses functions from the Standard Library module os. The module os
contains functions that provide access to operating system resources such as the filesystem.
The three os module functions we are using are:

a. listdir(). Takes, as input, an absolute or relative pathname (as a string) of a folder
and returns the list of all files and subfolders contained in the input folder.

www.ebook3000.com

http://www.ebook3000.org

344 Chapter 10 Recursion

b. path.isfile(). Takes, as input, an absolute or relative pathname (as a string) and
returns True if the pathname refers to a regular file, False otherwise.

c. path.join(). Takes as input two pathnames, joins them into a new pathname, in-
serting \ or / as needed, and returns it.

We explain further why we need the third function. The function listdir() does not return
a list of pathnames but just a list of file and folder names. For example, when we start
executing scan('test') (we ignore the second argument of scan() in this discussion),
the function listdir() will get called in this way:

>>> os.listdir('test')
['fileA.txt', 'folder1', 'folder2']

If we were to make the recursive call scan('folder1'), then, when this function call
starts executing, the function listdir() would get called on pathname 'folder1', with
this result:

>>> os.listdir('folder1')
Traceback (most recent call last):
File "<pyshell#387>", line 1, in <module>
os.listdir('folder1')

OSError: [Errno 2] No such file or directory: 'folder1'

The problem is that the current working directory during the execution of scan('test')
is the folder that contains the folder test; the folder 'folder1' is not in there, thus the
error.

Instead of making the call scan('folder1'), we need to make the call on a pathname
that is either absolute or relative with respect to the current working directory. The pathname
of 'folder1' can be be obtained by concatenating 'test' and 'folder1' as follows

'test' + '\' + 'folder1'

(on a Windows box) or, more generally, concatenating pathname and item as follows

path = pathname + '\' + item

This works on Windows machines but not on UNIX, Linux, or MAC OS X machines be-
cause pathnames use the forward slashes (/) in those operating systems. A better, portable
solution is to use the path.join() function from module os. It will work for all operating
systems and thus be system independent. For example, on a Mac:

>>> pathname = 'test'
>>> item = 'folder1'
>>> os.path.join(pathname, item)
'test/folder1'

Here is a similar example executed on a Windows box:

>>> pathname = 'C://Test/virus'
>>> item = 'folder1'
>>> os.path.join(pathname, item)
'C://Test/virus/folder1'

Section 10.2 Examples of Recursion 345

Linear recursion
The three problems we have considered in this section—printing the number sequence pat-
tern, drawing the Koch curve, and scanning the filesystem for viruses—could all have been
solved without recursion. Iterative solutions for these problems really do exist. The iterative
solutions, however, require algorithms that are more complex than recursion and that are
beyond the scope of an introductory computer science textbook.

The problems we considered in Section 10.1, on the other hand, have simple iterative so-
lutions. Recursive functions vertical(), reverse(), cheers(), and factorial() from
Section 10.1 could have as easily been developed using iteration. In fact, the recursive and
iterative solutions are closely related. The two implementations of function factorial()
fromPractice Problem 10.3 and Practice Problem 5.4 can be used to illustrate this.While one
implementation is recursive and the other is iterative, both functions use a similar process to
compute n!: they both compute a sequence of intermediate results i!, for i = 1, . . . , n, ob-
tained by multiplying the previous intermediate result (i−1)!with i. The recursive function
can thus be viewed as a recursive implementation of this idea.

When the recursive step of a function is implemented using a single recursive call that
computes the “previous” intermediate result and a “basic,” nonrecursive (problem specific)
operation that computes the “next” intermediate result, the function is said to use linear re-
cursion. In function vertical(), for example, the recursive step consists of a single recur-
sive call vertical(n//10) that prints all but the last digit of n and statement print(n%10)
that prints the last digit.

Linear recursion is a particularly useful technique for implementing fundamental func-
tions on lists. For example, a function that adds the numbers in a list of numbers can be
implemented using linear recursion as follows:

Module: ch10.py
1 def recSum(lst):
2 'returns the sum of items in list lst'
3 if len(lst) == 0:
4 return 0
5 return recSum(lst[:-1]) + lst[-1]

Note that the recursive step consists of a single recursive call that sums all the numbers in
the list but the last and a “basic” operation that adds the last number to this sum.

Practice Problem
10.6

Using linear recursion, implement function recNeg() that takes a list of numbers as input
and returns True if some number in the list is negative, and False otherwise.

>>> recNeg([3, 1, -1, 5])
True
>>> recNeg([3, 1, 0, 5])
False

In the next example, we implement function recIncr() that takes a list of numbers as
input and returns a copy of the list with every number in the list incremented by one:

>>> lst = [1, 4, 9, 16, 25]
>>> recIncr(lst)
[2, 5, 10, 17, 26]

www.ebook3000.com

http://www.ebook3000.org

346 Chapter 10 Recursion

We choose to implement the function using linear recursion instead of iteration:

Module: ch10.py
1 def recIncr(lst):
2 'returns list [lst[0]+1, lst[1]+1, ..., lst[n-1]+1]'
3 if len(lst) == 0:
4 return []
5 return recIncr(lst[:-1]) + [lst[-1]+1]

The recursive step consists of concatenating the list obtained by the recursive call and the
list containing the last number in the list incremented by one.

The function recIncr() is an example of a function that takes a list and returns a copy
of it in which the same operation was performed on every list item. Incrementing every
number in the list by one is just one of the many operations one may wish to perform on
items of a list. It would thus be useful to implement a more abstract function recMap()
that takes, as input, the operation as well as the list and then applies the operation to every
item in the list. What “operation” really means, of course, is a function. For example, if we
wanted to use function recMap() to increment every number in a list of numbers, we would
first have to define the function that we want to apply to every number:

>>> def f(i):
return i + 1

Then we would use recMap() to apply function f to every number in the list:

>>> recMap(lst, f)
[2, 5, 10, 17, 26]

If, instead, we wanted to obtain a list containing the square roots of the numbers in list lst,
we would apply the math.sqrt function instead:

>>> from math import sqrt
>>> recMap(lst, sqrt)
[1.0, 2.0, 3.0, 4.0, 5.0]

Note that the input argument of recMap() is f, not f(), or sqrt, not sqrt(). This is
because we are simply passing a reference to the function object, not making a function
call.

We can implement recMap() using linear recursion:

Module: ch10.py
1 def recMap(lst, f):
2 'returns list [f(lst[0]), f(lst[1]), ..., f(lst[n-1])]'
3 if len(lst) == 0:
4 return []
5 return recMap(lst[:-1], f) + [f(lst[-1])]

DETOUR
Higher-Order Functions

In function recMap(), the second input argument is a function. A function that takes
another function as input or that returns a function is called a higher-order function.
Treating a function like a value is a style of programming that is used extensively in

Section 10.3 Run Time Analysis 347

the functional programming paradigm which we introduce in Section 12.3.
Python supports higher-order functions because the name of a function is

treated no differently from the name of any other object, so it can be treated as
a value. Not all languages support higher-order functions. A few other ones that do
are LISP, Perl, Ruby, and JavaScript.

Practice Problem
10.7

Using function recMap(), write a short statement that evaluates to a list containing the
sums of the rows of a two-dimensional table of numbers called table.

10.3 Run Time Analysis
The correctness of a program is of course our main concern. However, it is also important
that the program is usable or even efficient. In this section, we continue the use of recursion
to solve problems, but this time with an eye on efficiency. In our first example, we apply
recursion to a problem that does not seem to need it and get a surprising gain in efficiency.
In the second example, we take a problem that seems tailored for recursion and obtain an
extremely inefficient recursive program.

The Exponent Function
We consider next the implementation of the exponent function an. As we have seen already,
Python provides the exponentiation operator **:

>>> 2**4
16

But how is the operator ** implemented?Howwouldwe implement it if it was not available?
The straightforward approach is to just multiply the value of a n times. The accumulator
pattern can be used to implement this idea:

Module: ch10.py
1 def power(a, n):
2 'returns a to the nth power'
3 res = 1
4 for i in range(n):
5 res *= a
6 return res

You should convince yourself that the function power()works correctly. But is this the best
way to implement the function power()? Is there an implementation that would run faster?
It is clear that the function power() will perform n multiplications to compute an. If n is
10,000, then 10,000 multiplications are done. Can we implement power() so significantly
fewer multiplications are done, say about 20 instead of 10,000?

Let’s see what the recursive approach will give us. We are going to develop a recursive
function rpower() that takes inputs a and nonnegative integer n and returns an.

www.ebook3000.com

http://www.ebook3000.org

348 Chapter 10 Recursion

The natural base case is when the input n is 0. Then an = 1 and so 1 must be returned:

def rpower(a, n):
'returns a to the nth power'
if n == 0: # base case: n == 0

return 1
remainder of function

Now let’s handle the recursive step. To do this, we need to express an, for n > 0,
recursively in terms of smaller powers of a (i.e., “closer” to the base case). That is actually
not hard, and there are many ways to do it:

an = an−1 × a
an = an−2 × a2

an = an−3 × a3

...

an = an/2 × an/2

The appealing thing about the last expression is that the two terms, an/2 and an/2, are the
same; therefore, we can compute an by making only one recursive call to compute an/2.
The only problem is that n/2 is not an integer when n is odd. So we consider two cases.

As we just discovered, when the value of n is even, we can compute rpower(a, n)
using the result of rpower(a, n//2) as shown in Figure 10.9:

Figure 10.9 Computing an

recursively. When n is
even, an = an/2 × an/2.

rpower(2, n) = 2× 2× ...× 2 × 2× 2× ...× 2

power(2, n//2) power(2, n//2)

When the value of n is odd, we still can use the result of recursive call rpower(a, n//2)
to compute rpower(a, n), albeit with an additional factor a, as illustrated in Figure 10.10:

Figure 10.10 Computing
an recursively. When n is
odd,
an = abn/2c × abn/2c × a.

rpower(2, n) = 2× 2× ...× 2 × 2× 2× ...× 2 × 2

power(2, n//2) power(2, n//2)

These insights lead us to the recursive implementation of rpower() shown next. Note
that only one recursive call rpower(a, n//2) is made.

Module: ch10.py
1 def rpower(a, n):
2 'returns a to the nth power'
3 if n == 0: # base case: n == 0
4 return 1
5

6 tmp = rpower(a, n//2) # recursive step: n > 0
7

8 if n % 2 == 0:
9 return tmp*tmp # a**n = a**(n//2) * a**a(n//2)

10 else: # n % 2 == 1
11 return a*tmp*tmp # a**n = a**(n//2) * a**a(n//2) * a

Wenowhave two implementations of the exponentiation function, power() and rpower().
How can we tell which is more efficient?

Section 10.3 Run Time Analysis 349

Counting Operations
One way to compare the efficiency of two functions is to count the number of operations
executed by each function on the same input. In the case of power() and rpower(), we
limit ourselves to counting just the number of multiplications

Clearly, power(2, 10000) will need 10,000 multiplications. What about rpower(2,
10000)? To answer this question, we modify rpower() so it counts the number of mul-
tiplications performed. We do this by incrementing a global variable counter, defined
outside the function, each time a multiplication is done:

Module: ch10.py
1 def rpower(a, n):
2 'returns a to the nth power'
3 global counter # counts number of multiplications
4

5 if n==0:
6 return 1
7 # if n > 0:
8 tmp = rpower(a, n//2)
9

10 if n % 2 == 0:
11 counter += 1
12 return tmp*tmp # 1 multiplication
13

14 else: # n % 2 == 1
15 counter += 2
16 return a*tmp*tmp # 2 multiplications

Now we can do the counting:

>>> counter = 0
>>> rpower(2, 10000)
199506311688...792596709376
>>> counter
19

Thus, recursion led us to a way to do exponentiation that reduced the number of multipli-
cations from 10,000 to 23.

Fibonacci Sequence
We introduced the Fibonacci sequence of integers in Chapter 5:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

We also described a method to construct the Fibonacci sequence: A number in the se-
quence is the sum of the previous two numbers in the sequence (except for the first two 1s).
This rule is recursive in nature. So, if we are to implement a function rfib() that takes a
nonnegative integer n as input and returns the nth Fibonacci number, a recursive implemen-
tation seems natural. Let’s do it.

Since the recursive rule applies to the numbers after the 0th and 1st Fibonacci number,
it makes sense that the base case is when n ≤ 1 (i.e., n = 0 or n = 1). In that case, rfib()
should return 1:

www.ebook3000.com

http://www.ebook3000.org

350 Chapter 10 Recursion

def rfib(n):
'returns nth Fibonacci number'
if n < 2: # base case

return 1
remainder of function

The recursive step applies to input n > 1. In that case, the nth Fibonacci number is the sum
of the n− 1st and n− 2nd:

Module: ch10.py
1 def rfib(n):
2 'returns nth Fibonacci number'
3 if n < 2: # base case
4 return 1
5

6 return rfib(n-1) + rfib(n-2) # recursive step

Let’s check that function rfib() works:

>>> rfib(0)
1
>>> rfib(1)
1
>>> rfib(4)
5
>>> rfib(8)
34

The function seems correct. Let’s try to compute a larger Fibonacci number:

>>> rfib(35)
14930352

Hmmm. It’s correct, but it took a while to compute. (Try it.) If you try

>>> rfib(100)
...

you will be waiting for a very long time. (Remember that you can always stop the program
execution by hitting Ctrl - c simultaneously.)

Is computing the 36th Fibonacci number really that time consuming? Recall that we
already implemented a function in Chapter 5 that returns the nth Fibonacci number:

Module: ch10.py
1 def fib(n):
2 'returns nth Fibonacci number'
3 previous = 1 # 0th Fibonacci number
4 current = 1 # 1st Fibonacci number
5 i = 1 # index of current Fibonacci number
6

7 while i < n: # while current is not nth Fibonacci number
8 previous, current = current, previous+current
9 i += 1

10

11 return current

Section 10.3 Run Time Analysis 351

Let’s see how it does:

>>> fib(35)
14930352
>>> fib(100)
573147844013817084101
>>> fib(10000)
54438373113565...

Instantaneous in all cases. Let’s investigate what is wrong with rfib().

Experimental Analysis of Run Time
One way to precisely compare functions fib() and rfib()—or other functions for that
matter—is to run them on the same input and compare their run times. As good (lazy)
programmers, we like to automate this process, so we develop an application that can be
used to analyze the run time of a function. We will make this application generic in the
sense that it can be used on functions other than just fib() and rfib().

Our application consists of several functions. The key one that measures the run time on
one input is timing(): It is a higher-order function that takes as input (1) a function func
and (2) an “input size” (as an integer), runs function func on an input of the given size, and
returns the execution time.

Module: ch10.py
1 import time
2 def timing(func, n):
3 'runs func on input returned by buildInput'
4 funcInput = buildInput(n) # obtain input for func
5 start = time.time() # take start time
6 func(funcInput) # run func on funcInput
7 end = time.time() # take end time
8 return end - start # return execution time

Function timing() uses the time() function from the time module to obtain the current
time before and after the execution of the function func; the difference between the two will
be the execution time. (Note: The timing can be affected by other tasks the computer may
be doing, but we avoid dealing with this issue.)

The function buildInput() takes an input size and returns an object that is an appro-
priate input for function func() and has the right input size. This function is dependent on
the function func() we are analyzing. In the case of the Fibonacci functions fib() and
rfib(), the input corresponding to input size n is just n:

Module: ch10.py
1 def buildInput(n):
2 'returns input for Fibonacci functions'
3 return n

Comparing the run times of two functions on the same input does not tell us much about
which function is better (i.e., faster). It is more useful to compare the run times of the two
functions on several different inputs. In this way, we can attempt to understand the behavior
of the two functions as the input size (i.e., the problem size) becomes larger. We develop,
for that purpose, function timingAnalysis that runs an arbitrary function on a series of
inputs of increasing size and report run times.

www.ebook3000.com

http://www.ebook3000.org

352 Chapter 10 Recursion

Module: ch10.py 1 def timingAnalysis(func, start, stop, inc, runs):
2 '''prints average run times of function func on inputs of
3 size start, start+inc, start+2*inc, ..., up to stop'''
4 for n in range(start, stop, inc): # for every input size n
5 acc = 0.0 # initialize accumulator
6

7 for i in range(runs): # repeat runs times:
8 acc += timing(func, n) # run func on input of size n
9 # and accumulates run times

10 # print average run times for input size n
11 formatStr = 'Run time of {}({}) is {:.7f} seconds.'
12 print(formatStr.format(func.__name__, n, acc/runs))

Function timingAnalysis takes, as input, function func and numbers start, stop, inc,
and runs. It first runs func on several inputs of size start and prints the average run time.
Then it repeats that for input sizes start+inc, start+2*inc, . . . up to input size stop.

When we run timinAnalysis() on function fib()with input sizes 24, 26, 28, 30, 32,
34, we get:

>>> timingAnalysis(fib, 24, 35, 2, 10)
Run time of fib(24) is 0.0000173 seconds.
Run time of fib(26) is 0.0000119 seconds.
Run time of fib(28) is 0.0000127 seconds.
Run time of fib(30) is 0.0000136 seconds.
Run time of fib(32) is 0.0000144 seconds.
Run time of fib(34) is 0.0000151 seconds.

When we do the same on function rfib(), we get:

>>> timingAnalysis(rfib, 24, 35, 2, 10)
Run time of fibonacci(24) is 0.0797332 seconds.
Run time of fibonacci(26) is 0.2037848 seconds.
Run time of fibonacci(28) is 0.5337492 seconds.
Run time of fibonacci(30) is 1.4083670 seconds.
Run time of fibonacci(32) is 3.6589111 seconds.
Run time of fibonacci(34) is 9.5540136 seconds.

We graph the results of the two experiments in Figure 10.11.

Figure 10.11 Run time
graph. Shown are the
average run times, in
seconds, of fib() and
rfib() for inputs n = 24,
26, 28, 32, and 34.

n

time (sec)

24 26 28 30 32 34

2

4

6

8

fib(n)

rfib(n)

Section 10.3 Run Time Analysis 353

rfib(n)

rfib(n-1)

rfib(n-2)

rfib(n-3)

rfib(n-4) rfib(n-5)

rfib(n-4)

rfib(n-3)

rfib(n-4) rfib(n-5)

rfib(n-2)

rfib(n-3)

rfib(n-4) rfib(n-5)

rfib(n-4)

Figure 10.12 Tree of
recursive calls. Computing
rfib(n) requires making
two recursive calls:
rfib(n-1) and
rfib(b-2). Computing
rfib(n-1) requires making
recursive calls rfib(n-2)
and rfib(n-3); computing
rfib(n-2) requires
recursive calls rfib(n-3)
and rfib(n-4). The same
recursive calls will be made
multiple times. For example,
rfib(n-4) will be
recomputed five times.

The run times of fib() are negligible. However, the run times of rfib() are increasing
rapidly as the input size increases. In fact, the run time more than doubles between succes-
sive input sizes. This means that the run time increases exponentially with respect to the
input size. In order to understand the reason behind the poor performance of the recursive
function rfib(), we illustrate its execution in Figure 10.12.

Figure 10.12 shows some of the recursive calls made when computing rfib(n). To
compute rfib(n), recursive calls rfib(n-1) and rfib(n-2) must be made; to com-
pute rfib(n-1) and rfib(n-2), separate recursive calls rfib(n-2) and rfib(n-3), and
rfib(n-2) and rfib(n-3), respectively, must be made. And so on.

The computation of rfib() includes two separate computations of rfib(n-2) and
should therefore take more than twice as long as rfib(n-2). This explains the exponential
growth in run time. It also shows the problem with the recursive solution rfib(): It keeps
making and executing the same function calls, over and over. The function call rfib(n-4),
for example, is made and executed five times, even though the result is always the same.

Practice Problem
10.8

Using the run time analysis application developed in this section, analyze the run time of
functions power() and rpower() as well as built-in operator **. You will do this by run-
ning timingAnalysis() on functions power2(), rpower2(), and pow2() defined next
and using input sizes 20,000 through 80,000 with a step size of 20,000.

def power2(n):
return power(2,n)

def rpower2(n):
return rpower(2,n)

def pow2(n):
return 2**n

When done, argue which approach the built-in operator ** likely uses.

www.ebook3000.com

http://www.ebook3000.org

354 Chapter 10 Recursion

10.4 Searching
In the last section, we learned that the way we design an algorithm and implement a program
can have a significant effect on the program’s run time and ultimately its usefulness with
large data sets. In this section, we consider how reorganizing the input data set and adding
structure to it can dramatically improve the run time, and usefulness, of a program.We focus
on several fundamental search tasks and usually use sorting to give structure to the data set.
We start with the fundamental problem of checking whether a value is contained in a list.

Linear Search
Both the in operator and the index() method of the list class search a list for a given
item. Because we have been (and will be) using them a lot, it is important to understand
how fast they execute.

Recall that the in operator is used to check whether an item is in the list or not:

>>> lst = random.sample(range(1,100), 17)
>>> lst
[28, 72, 2, 73, 89, 90, 99, 13, 24, 5, 57, 41, 16, 43, 45, 42, 11]
>>> 45 in lst
True
>>> 75 in lst
False

The index()method is similar: Instead of returning True or False, it returns the index of
the first occurrence of the item (or raises an exception if the item is not in the list).

If the data in the list is not structured in some way, there is really only one way to
implement in and index(): a systematic search through the items in the list, whether from
index 0 and up, from index −1 and down, or something equivalent. This type of search is
called linear search. Assuming the search is done from index 0 and up, linear search would
look at 15 elements in the list to find 45 and all of them to find that 75 is not in the list.

A linear search may need to look at every item in the list. Its run time, in the worst case,
is thus proportional to the size of the list. If the data set is not structured and the data items
cannot be compared, linear search is really the only way search can be done on a list.

Binary Search
If the data in the list is comparable, we can improve the search run time by sorting the list
first. To illustrate this, we use the same list lst as used in linear search, but now sorted:

>>> lst.sort()
>>> lst
[2, 5, 11, 13, 16, 24, 28, 41, 42, 43, 45, 57, 72, 73, 89, 90, 99]

Suppose we are searching for the value of target in list lst. Linear search compares
target with the item at index 0 of lst, then with the item at index 1, 2, 3, and so on.
Suppose, instead, we start the search by comparing target with the item at index i, for
some arbitrary index i of lst. Well, there are three possible outcomes:

• We are lucky: lst[i] == target is true, or

• target < lst[i] is true, or

• target > lst[i] is true.

Section 10.4 Searching 355

Let’s do an example. Suppose the value of target is 45 and we compare it with the
item at index 5 (i.e., 24). It is clear that the third outcome, target > lst[i], applies in
this case. Because list lst is sorted, this tells us that target cannot possibly be to the left
of 24, that is, in sublist lst[0:5]. Therefore, we should continue our search for target to
the right of 24 (i.e., in sublist lst[6:17]), as illustrated in Figure 10.13.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 5 11 13 16 24 28 41 42 43 45 57 72 73 89 90 99

28 41 42 43 45 57 72 73 89 90 99

Figure 10.13 Binary
search. By comparing 45,
the value of target, with
the item at index 5 of lst,
we have reduced the search
space to the sublist
lst[6:].The main insight we just made is this: With just one comparison, between target and

list[5], we have reduced our search space from 17 list items to 11. (In linear search, a
comparison reduces the search space by just 1.) Now we should ask ourselves whether a
different comparison would reduce the search space even further.

In a sense, the outcome target > lst[5] was unlucky: target turns out to be in the
larger of lst[0:5] (with 5 items) and lst[6:17] (with 11 items). To reduce the role of
luck, we could ensure that both sublists are about the same size. We can achieve that by
comparing target to 42—that is, the item in the middle of the list (also called themedian).

The insights we just developed are the basis of a search technique called binary search.
Given a list and a target, binary search returns the index of the target in the list, or −1 if the
target is not in the list.

Binary search is easy to implement recursively. The base case is when the list lst is
empty: target cannot possibly be in it, and we return−1. Otherwise, we compare target
with the list median. Depending on the outcome of the comparison, we are either done or
continue the search, recursively, on a sublist of lst.

We implement binary search as the recursive function search(). Because recursive
calls will be made on sublists lst[i:j] of the original list lst, the function search()
should take, as input, not just lst and target but also indices i and j:

Module: ch10.py
1 def search(lst, target, i, j):
2 '''attempts to find target in sorted sublist lst[i:j];
3 index of target is returned if found, -1 otherwise'''
4 if i == j: # base case: empty list
5 return -1 # target cannot be in list
6

7 mid = (i+j)//2 # index of median of l[i:j]
8

9 if lst[mid] == target: # target is the median
10 return mid
11 if target < lst[mid]: # search left of median
12 return search(lst, target, i, mid)
13 else: # search right of median
14 return search(lst, target, mid+1, j)

To start the search for target in lst, indices 0 and len(lst) should be given:

>>> target = 45
>>> search(lst, target, 0, len(lst))
10

www.ebook3000.com

http://www.ebook3000.org

356 Chapter 10 Recursion

Figure 10.14 Binary
search. The search for 45
starts in list lst[0:17].
After 45 is compared to the
list median (42), the search
continues in sublist
lst[9:17]. After 45 is
compared to this list’s
median (72), the search
continues in lst[9:12].
Since 45 is the median of
lst[9:12], the search
ends.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 5 11 13 16 24 28 41 42 43 45 57 72 73 89 90 99

43 45 57 72 73 89 90 99

43 45 57

Figure 10.14 illustrates the execution of this search.

Linear versus Binary Search
To convince ourselves that binary search is, on average, much faster than linear search, we
perform an experiment. Using the timingAnalysis() application we developed in the last
section, we compare the performance of our function search() and the built-in list method
index(). To do this, we develop functions binary() and linear() that pick a random
item in the input list and call search() or invoke method index(), respectively, to find
the item:

Module: ch10.py
1 def binary(lst):
2 'chooses item in list lst at random and runs search() on it'
3 target=random.choice(lst)
4 return search(lst, target, 0, len(lst))
5

6 def linear(lst):
7 'choose item in list lst at random and runs index() on it'
8 target=random.choice(lst)
9 return lst.index(target)

The list lst of size n we will use is a random sample of n numbers in the range from 0 to
2n− 1.

Module: ch10.py
1 def buildInput(n):
2 'returns a random sample of n numbers in range [0, 2n)'
3 lst = random.sample(range(2*n), n)
4 lst.sort()
5 return lst

Here are the results:

>>> timingAnalysis(linear, 200000, 1000000, 200000, 20)
Run time of linear(200000) is 0.0046095
Run time of linear(400000) is 0.0091411
Run time of linear(600000) is 0.0145864
Run time of linear(800000) is 0.0184283
>>> timingAnalysis(binary, 200000, 1000000, 200000, 20)
Run time of binary(200000) is 0.0000681
Run time of binary(400000) is 0.0000762
Run time of binary(600000) is 0.0000943
Run time of binary(800000) is 0.0000933

Section 10.4 Searching 357

It is clear that binary search is much faster and the run time of linear search grows propor-
tionally with the list size. The interesting thing about the run time of binary search is that it
does not seem to be increasing much. Why is that?

Whereas linear search may end up looking at every item in the list, binary search will
look at far fewer list items. To see this, recall our insight that with every binary search
comparison, the search space decreases by more than a half. Of course, when the search
space becomes of size 1 or less, the search is over. The number of binary search comparisons
in a list of sizen is bounded by this value: the number of times we can halven division before
it becomes 1. In equation form, it is the value of x in

n

2x
= 1

The solution to this equation is x = log2 n, the logarithm base two of n. This function does
indeed grow very slowly as n increases.

In the remainder of this section we look at several other fundamental search-like prob-
lems and analyze different approaches to solving them.

Uniqueness Testing
We consider this problem: Given a list, is every item in it unique? One natural way to solve
this problem is to iterate over the list and for each list item check whether the item appears
more than once in the list. Function dup1 implements this idea:

Module: ch10.py
1 def dup1(lst):
2 'returns True if list lst has duplicates, False otherwise'
3 for item in lst:
4 if lst.count(item) > 1:
5 return True
6 return False

The list method count(), just like the in operator and the index method, must perform a
linear search through the list to count all occurrences of a target item. So, in duplicates1(),
linear search is performed for every list item. Can we do better?

What if we sorted the list first? The benefit of doing this is that duplicate items will be
next to each other in the sorted list. Therefore, to find out whether there are duplicates, all
we need to do is compare every item with the item before it:

Module: ch10.py
1 def dup2(lst):
2 'returns True if list lst has duplicates, False otherwise'
3 lst.sort()
4 for index in range(1, len(lst)):
5 if lst[index] == lst[index-1]:
6 return True
7 return False

The advantage of this approach is that it does only one pass through the list. Of course, there
is a cost to this approach: We have to sort the list first.

In Chapter 6, we saw that dictionaries and sets can be useful to check whether a list
contains duplicates. Functions dup3() and dup4() use a dictionary or a set, respectively,
to check whether the input list contains duplicates:

www.ebook3000.com

http://www.ebook3000.org

358 Chapter 10 Recursion

Module: ch10.py 1 def dup3(lst):
2 'returns True if list lst has duplicates, False otherwise'
3 s = set()
4 for item in lst:
5 if item in s:
6 return False
7 else:
8 s.add(item)
9 return True

10

11 def dup4(lst):
12 'returns True if list lst has duplicates, False otherwise'
13 return len(lst) != len(set(lst))

We leave the analysis of these four functions as an exercise.

Practice Problem
10.9

Using an experiment, analyze the run time of functions dup1(), dup2(), dup3(), and
dup4(). You should test each function on 10 lists of size 2000, 4000, 6000, and 8000 ob-
tained from:

import random
def buildInput(n):

'returns a list of n random integers in range [0, n**2)'
res = []
for i in range(n):

res.append(random.choice(range(n**2)))
return res

Note that the list returned by this function is obtained by repeatedly choosing n numbers in
the range from 0 to n2 − 1 and may or may not contain duplicates. When done, comment
on the results.

Selecting the kth Largest (Smallest) Item

Finding the largest (or smallest) item in an unsorted list is best done with a linear search.
Finding the second, or third, largest (or smallest) kth smallest can be also done with a linear
search, though not as simply. Finding the kth largest (or smallest) item for large k can easily
be done by sorting the list first. (There are more efficient ways to do this, but they are beyond
the scope of this text.) Here is a function that returns the kth smallest value in a list:

Module: ch10.py
1 def kthsmallest(lst, k):
2 'returns kth smallest item in list lst'
3 lst.sort()
4 return lst[k-1]

Chapter 10 Case Study: Tower of Hanoi 359

Computing the Most Frequently Occurring Item
The problem we consider next is searching for the most frequently occurring item in a list.
We actually know how to do this, and more: In Chapter 6, we saw how dictionaries can be
used to compute the frequency of all items in a sequence. However, if all we want is to find
the most frequent item, using a dictionary is overkill and a waste of memory space.

We have seen that by sorting a list, all the duplicate items will be next to each other. If
we iterate through the sorted list, we can count the length of each sequence of duplicates
and keep track of the longest. Here is the implementation of this idea:

Module: ch10.py
1 def frequent(lst):
2 '''returns most frequently occurring item
3 in non-empty list lst'''
4 lst.sort() # first sort list
5

6 currentLen = 1 # length of current sequence
7 longestLen = 1 # length of longest sequence
8 mostFreq = lst[0] # item with longest sequence
9

10 for i in range(1, len(lst)):
11 # compare current item with previous
12 if lst[i] == lst[i-1]: # if equal
13 # current sequence continues
14 currentLen+=1
15

16 else: # if not equal
17 # update longest sequence if necessary
18 if currentLen > longestLen: # if sequence that ended
19 # is longest so far
20 longestLen = currentLen # store its length
21 mostFreq = lst[i-1] # and the item
22 # new sequence starts
23 currentLen = 1
24

25 return mostFreq

Practice Problem
10.10

Implement function frequent2() that uses a dictionary to compute the frequency of every
item in the input list and returns the item that occurs the most frequently. Then perform an
experiment and compare the run times of frequent() and frequent2() on a list obtained
using the buildInput() function defined in Practice Problem 10.9.

Case Study: Tower of Hanoi
In Case Study CS.10, we consider the Tower of Hanoi problem, the classic example of
a problem easily solved using recursion. We also use the opportunity to develop a visual
application by developing new classes and using object-oriented programming techniques.

www.ebook3000.com

http://www.ebook3000.org

360 Chapter 10 Recursion

Chapter Summary
The focus of this chapter is recursion and the process of developing a recursive function
that solves a problem. The chapter also introduces formal run time analysis of programs
and applies it to various search problems.

Recursion is a fundamental problem-solving technique that can be applied to problems
whose solution can be constructed from solutions of “easier” versions of the problem. Re-
cursive functions are often far simpler to describe (i.e., implement) than nonrecursive solu-
tions for the same problem because they leverage operating system resources, in particular
the program stack.

In this chapter, we devolop recursive functions for a variety of problems, such as the
visual display of fractals and the search for viruses in the files of a filesystem. The main
goal of the exposition, however, is to make explicit how to do recursive thinking, a way to
approach problems that leads to recursive solutions.

In some instances, recursive thinking offers insights that lead to solutions that are more
efficient than the obvious or original solution. In other instances, it will lead to a solution
that is far worse. We introduce run time analysis of programs as a way to quantify and com-
pare the execution times of various programs. Run time analysis is not limited to recursive
functions, of course, and we use it to analyze various search problems as well.

Solutions to Practice Problems
10.1 The function reverse() is obtained by modifying function vertical() (and re-
naming it, of course). Note that function vertical() prints the last digit after printing all
but the last digit. Function reverse() should just do the opposite:

def reverse(n):
'prints digits of n vertically starting with low-order digit'
if n < 10: # base case: one-digit number

print(n)
else: # n has at least 2 digits

print(n%10) # print last digit of n
reverse(n//10) # recursively print in reverse all but

the last digit

10.2 In the base case, when n = 0, just 'Hurray!!!' should be printed. When n > 0,
we know that at least one 'Hip' should be printed, which we do. That means that n − 1
strings 'Hip' and then 'Hurray!!!' remain to be printed. That is exactly what recursive
call cheers(n-1) will achieve.

def cheers(n):
'prints cheer'
if n == 0:

print('Hurray!!!')
else: # n > 0

print('Hip', end=' ')
cheers(n-1)

10.3 By the definition of the factorial function n!, the base case of the recursion is n = 0 or
n = 1. In those cases, the function factorial() should return 1. For n > 1, the recursive

Chapter 10 Solutions to Practice Problems 361

definition of n! suggests that function factorial() should return n * factorial(n-1):

def factorial(n):
'returns n!'
if n == 0: # base case

return 1
return factorial(n-1) * n # recursive step when n > 0

10.4 In the base case, when n = 0, nothing is printed. If n > 0, note that the output
of pattern2(n) consists of the output of pattern2(n-1), followed by a row of n stars,
followed by the output of pattern2(n-1):

def pattern2(n):
'prints the nth pattern'
if n > 0:

pattern2(n-1) # prints pattern2(n-1)
print(n * '*') # print n stars
pattern2(n-1) # prints pattern2(n-1)

10.5 As Figure 10.15 of snowflake(4) illustrates, a snowflake pattern consists of three
patterns koch(3) drawn along the sides of an equilateral triangle.

Figure 10.15 The pattern
snowflake(4).

To draw the pattern snowflake(n), all we need to do is draw pattern koch(n), turn
right 120 degrees, draw koch(n) again, turn right 120 degrees, and draw koch(n) one last
time.

def drawSnowflake(n):
'draws nth snowflake curve using function koch() 3 times'
s = Screen()
t = Turtle()
directions = koch(n)

for i in range(3):
for move in directions: # draw koch(n)

if move == 'F':
t.fd(300/3**n)

if move == 'L':
t.lt(60)

if move == 'R':
t.rt(120)

t.rt(120) # turn right 120 degrees
s.bye()

www.ebook3000.com

http://www.ebook3000.org

362 Chapter 10 Recursion

10.6 If the list is empty, the returned value should be False; otherwise, True should be
returned if and only if lst[:-1] contains a negative number or lst[-1] is negative:

def recNeg(lst):
'''returns True if some number in list lst is negative,

False otherwise'''
if len(lst) == 0:

return False
return recNeg(lst[:-1]) or lst[-1] < 0

10.7 The buil-in function sum() should be applied to every item (row) of table:

>>> table = [[1,2,3], [4,5,6]]
>>> recMap(table, sum)
[6, 15]

10.8 After running the tests, you will note that the run times of power2() are significantly
worse than the run times of pow2() and rpow2() which are very, very close. It seems that
the built-in operator ** uses an approach that is equivalent to our recursive solution.

10.9 Even though dup2() has the additional sorting step, you will note that dup1() is much
slower. This means that the multiple linear searches approach of dup1() is very inefficient.
The dictionary and set approaches in dup3 and dup4() did best, with the set approach
winning overall. The one issue with these last two approaches is that they both use an extra
container, so they take up more memory space.

10.10 You can use the function frequency from Chapter 6 to implement freqent2().

Exercises
10.11 Using Figure 10.1 as a model, draw all the steps that occur during the execution of
countdown(3), including the state of the program stack at the beginning and end of every
recursive call.

10.12 Swap statements in lines 6 and 7 of function countdown() to create function countdown2().
Explain how it differs from countdown().

10.13 Using Figure 10.1 as a model, draw all the steps that occur during the execution of
countdown2(3), where countdown2() is the function from Exercise 10.12.

10.14 Modify the function countdown() so it exhibits this behavior:

>>> countdown3(5)
5
4
3

BOOOM!!!
Scared you...

2
1
Blastoff!!!

Chapter 10 Problems 363

10.15 Using Figure 10.1 as a model, draw all the steps that occur during the execution of
pattern(2), including the state of the program stack at the beginning and end of every
recursive call.

10.16 The recursive formula for computing the number of ways of choosing k items out of
a set of n items, denoted C(n, k), is:

C(n, k) =

 1 if k = 0
0 if n < k
C(n− 1, k − 1) + C(n− 1, k) otherwise

The first case says there is one way to choose no item; the second says that there is no way
to choose more items than available in the set. The last case separates the counting of sets
of k items containing the last set item and the counting of sets of k items not containing the
last set item. Write a recursive function combinations() that computesC(n, k) using this
recursive formula.

>>> combinations(2, 1)
0
>>> combinations(1, 2)
2
>>> combinations(2, 5)
10

10.17 Just as we did for the function rpower(), modify function rfib() so that it counts
the number of recursive calls made. Then use this function to count the number of calls
made for n = 10, 20, 30.

Problems
10.18 Write a recursive method silly() that takes one nonnegative integer n as input and
then prints n question marks, followed by n exclamation points. Your program should use
no loops.

>>> silly(0)
>>> silly(1)
* !
>>> silly(10)
* * * * * * * * * * ! ! ! ! ! ! ! ! ! !

10.19 Write a recursive method numOnes() that takes a nonnegative integer n as input and
returns the number of 1s in the binary representation of n. Use the fact that this is equal to
the number of 1s in the representation of n//2 (integer division), plus 1 if n is odd.

>>> numOnes(0)
0
>>> numOnes(1)
1
>>> numOnes(14)
3

www.ebook3000.com

http://www.ebook3000.org

364 Chapter 10 Recursion

10.20 In Chapter 5 we developed Euclid’s Greatest Common Divisor (GCD) algorithm
using iteration. Euclid’s algorithm is naturally described recursively:

gcd(a, b) =

{
a if b = 0
gcd(b, a%b) otherwise

Using this recursive definition, implement recursive function rgcd() that takes two non-
negative numbers a and b, with a > b, and returns the GCD of a and b:

>>> rgcd(3,0)
3
>>> rgcd(18,12)
6

10.21 Write a method rem() that takes as input a list containing, possibly, duplicate values
and returns a copy of the list in which one copy of every duplicate value was removed.

>>> rem([4])
[]
>>> rem([4, 4])
[4]
>>> rem([4, 1, 3, 2])
[]
>>> rem([2, 4, 2, 4, 4])
[2, 4, 4]

10.22 You’re visiting your hometown and are planning to stay at a friend’s house. It just
happens that all your friends live on the same street. In order to be efficient, you would
like to stay at the house of a friend who is in a central location in the following sense: the
same number of friends, within 1, live in either direction. If two friends’ houses satisfy this
criterion, choose the friend with the smaller street address.

Write function address() that takes a list of street numbers and returns the street num-
ber you should stay at.

>>> address([2, 1, 8, 5, 9])
5
>>> address([2, 1, 8, 5])
2
>>> address([1, 1, 1, 2, 3, 3, 4, 4, 4, 5])
3

10.23 Develop a recursive function tough() that takes two nonnegative integer arguments
and outputs a pattern as shown below. Hint: The first argument represents the indentation
of the pattern, whereas the second argument—always a power of 2—indicates the number
of “*”s in the longest line of “*”s in the pattern.

>>> f(0, 0)
>>> f(0, 1)
*
>>> f(0, 2)
*
**
*

Chapter 10 Problems 365

>>> f(0, 4)
*
**
*

*
**
*

10.24 Write a recursive method base() that takes a nonnegative integer n and a positive
integer 1 < b < 10 and prints the base-b representation of integer n.

>>> base(0, 2)
0
>>> base(1, 2)
1
>>> base(10, 2)
1010
>>> base(10, 3)
1 0 1

10.25 Implement function permutations() that takes a list lst as input and returns a
list of all permutations of lst (so the returned value is a list of lists). Do this recursively as
follows: If the input list lst is of size 1 or 0, just return a list containing list lst. Otherwise,
make a recursive call on the sublist lst[1:] to obtain the list of all permutations of all
items of lst except lst[0]. Then, for each such permutation (i.e., list) perm, generate
permutations of lst by inserting lst[0] into all possible positions of perm.

>>> permutations([1, 2])
[[1, 2], [2, 1]]
>>> permutations([1, 2, 3])
[[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]]
>>> permutations([1, 2, 3, 4])
[[1, 2, 3, 4], [2, 1, 3, 4], [2, 3, 1, 4], [2, 3, 4, 1],
[1, 3, 2, 4], [3, 1, 2, 4], [3, 2, 1, 4], [3, 2, 4, 1],
[1, 3, 4, 2], [3, 1, 4, 2], [3, 4, 1, 2], [3, 4, 2, 1],
[1, 2, 4, 3], [2, 1, 4, 3], [2, 4, 1, 3], [2, 4, 3, 1],
[1, 4, 2, 3], [4, 1, 2, 3], [4, 2, 1, 3], [4, 2, 3, 1],
[1, 4, 3, 2], [4, 1, 3, 2], [4, 3, 1, 2], [4, 3, 2, 1]]

10.26 Implement function anagrams() that computes anagrams of a given word. An ana-
gram of word A is a word B that can be formed by rearranging the letters of A. For example,
the word pot is an anagram of the word top. Your function will take as input the name of a
file of words and as well as a word, and print all the words in the file that are anagrams of
the input word. In the next examples, use file words.txt as your file of words.

File: words.txt>>> anagrams('words.txt', 'trace')
crate
cater
react

www.ebook3000.com

http://www.ebook3000.org

366 Chapter 10 Recursion

10.27 Write a function pairs1() that takes as inputs a list of integers and an integer target
value and returns True if there are two numbers in the list that add up to the target and
False otherwise. Your implementation should use the nested loop pattern and check all
pairs of numbers in the list.

>>> pairs1([4, 1, 9, 3, 5], 13)
True
>>> pairs1([4, 1, 9, 3, 5], 11)
False

When done, reimplement the function so that it sorts the list first and then efficiently
searches for the pair. Analyze the run time of both implementations using the timingAnalysis()
app. (Function buildInput() should generate a tuple containing the list and the target.)

10.28 In this problem, you will develop a function that crawls through “linked” files. Every
file visited by the crawler will contain zero or more links, one per line, to other files and
nothing else. A link to a file is just the name of the file. For example, the content of file
file0.txt is:

file1.txt
file2.txt

The first line represents the link o file file1.txt and the second is a link to file2.txt.
Implement recursive method crawl() that takes as input a file name (as a string), prints

a message saying the file is being visited, opens the file, reads each link, and recursively
continues the crawl on each link. The below example uses a set of files packaged in archive
files.zip.

File: files.zip >>> crawl('file0.txt')
Visiting file0.txt
Visiting file1.txt
Visiting file3.txt
Visiting file4.txt
Visiting file8.txt
Visiting file9.txt
Visiting file2.txt
Visiting file5.txt
Visiting file6.txt
Visiting file7.txt

10.29 Pascal’s triangle is an infinite two-dimensional pattern of numbers whose first five
lines are illustrated in Figure 10.16. The first line, line 0, contains just 1. All other lines start
and end with a 1 too. The other numbers in those lines are obtained using this rule: The
number at position i is the sum of the numbers in position i− 1 and i in the previous line.

Figure 10.16 Pascal’s
triangle. Only the first five
lines of Pascal’s triangle are
shown.

1

1

1

1

1 4

1

2

3

4

1

3

6

1

4 1

Chapter 10 Problems 367

Implement recursive function pascalLine() that takes a nonnegative integer n as input
and returns a list containing the sequence of numbers appearing in the nth line of Pascal’s
triangle.

>>> pascalLine(0)
[1]
>>> pascalLine(2)
[1, 2, 1]
>>> pascalLine(3)
[1, 3, 3, 1]
>>> pascalLine(4)
[1, 4, 6, 4, 1]

10.30 Implement recursive function traverse() that takes as input a pathname of a folder
(as a string) and an integer d and prints on the screen the pathname of every file and subfolder
contained in the folder, directly or indirectly. The file and subfolder pathnames should be
output with an indentation that is proportional to their depth with respect to the topmost
folder. The next example illustrates the execution of traverse() on folder 'test' shown
in Figure 10.8.

File: test.zip>>> traverse('test', 0)
test/fileA.txt
test/folder1
test/folder1/fileB.txt
test/folder1/fileC.txt
test/folder1/folder11
test/folder1/folder11/fileD.txt

test/folder2
test/folder2/fileD.txt
test/folder2/fileE.txt

10.31 Implement function search() that takes as input the name of a file and the pathname
of a folder and searches for the file in the folder and any folder contained in it, directly or
indirectly. The function should return the pathname of the file, if found; otherwise, None
should be returned. The below example illustrates the execution of search('file.txt',
'test') from the parent folder of folder 'test' shown in Figure 10.8.

File: test.zip>>> search('fileE.txt', 'test')
test/folder2/fileE.txt

10.32 The Lévy curves are fractal graphical patterns that can be defined recursively. Like
the Koch curves, for every nonnegative integer n > 0, the Lévy curve Ln can be defined
in terms of Lévy curve Ln−1; Lévy curve L0 is just a straight line. Figure 10.17 shows the
Lévy curve L8.
(a) Find more information about the Lévy curve online and use it to implement recursive

function levy() that takes a nonnegative integer n and returns turtle instructions
encoded with letters L, R and, F, where L means “rotate left 45 degrees,” R means
“rotate right 90 degrees,” and F means “go forward.”

>>> levy(0)
'F'

www.ebook3000.com

http://www.ebook3000.org

368 Chapter 10 Recursion

Figure 10.17 Lévy curve
L8.

>>> levy(1)
'LFRFL'
>>> levy(2)
'LLFRFLRLFRFLL'

(b) Implement function drawLevy()) so that it takes nonnegative integer n as input and
draws the Lévy curve Ln using instructions obtained from function levy().

10.33 In the simple coin game you are given an initial number of coins and then, in every
iteration of the game, you are required to get rid of a certain number of coins using one of
the following rules. If n is the number of coins you have then:

• If n is divisible by 10, then you may give back 9 coins.
• If n is even, then you may give back exactly n/2− 1 coins.
• If n is divisible by 3, then you may give back 7 coins.
• If n is divisible by 4, then you may give back 6 coins.

If none of the rules can be applied, you lose. The goal of the game is to end up with exactly
8 coins.

Note that more than one rule may be applied for some values of n. If n is 20, for example,
rule 1 could be applied to end up with 11 coins. Since no rule can be applied to 11 coins,
you would lose the game. Alternatively, rule 4 could be applied to end up with 14 coins, and
then rule 2 could be applied to end up with 8 coins and win the game.

Implement a function coins() that takes as input the initial number of coins and returns
True if there is some way to play the game and end up with 8 coins. The function should
return False only if there is no way to win.

>>> coins(7)
False
>>> coins(8)
True
>>> coins(20)
True
>>> coins(66)
False
>>> coins(99)
True

10.34 Using linear recursion, implement function recDup() that takes a list as input and
returns a copy of it in which every list item has been duplicated.

>>> recDup(['ant', 'bat', 'cat', 'dog'])
['ant', 'ant', 'bat', 'bat', 'cat', 'cat', 'dog', 'dog']

Chapter 10 Problems 369

10.35 Using linear recursion, implement function recReverse() that takes a list as input
and returns a reversed copy of the list.

>>> lst = [1, 3, 5, 7, 9]
>>> recReverse(lst)
[9, 7, 5, 3, 1]

10.36 Using linear recursion, implement function recSplit() that takes, as input, a list
lst and a nonnegative integer i no greater than the size of lst. The function should split
the list into two parts so that the second part contains exactly the last i items of the list. The
function should return a list containing the two parts.

>>> recSplit([1, 2, 3, 4, 5, 6, 7], 3)
[[1, 2, 3, 4], [5, 6, 7]]

10.37 Implement a function that draws patterns of squares like this:

(a) To get started, first implement function square() that takes as input a Turtle object
and three integers x, y, and s and makes the Turtle object trace a square of side
length s centered at coordinates (x, y).

>>> from turtle import Screen, Turtle
>>> s = Screen()
>>> t = Turtle()
>>> t.pensize(2)
>>> square(t, 0, 0, 200) # draws the square

(b) Now implement recursive function squares() that takes the same inputs as function
square plus an integer n and draws a pattern of squares. When n = 0, nothing is
drawn. When n = 1, the same square drawn by square(t, 0, 0, 200) is drawn.
When n = 2 the pattern is:

Each of the four small squares is centered at an endpoint of the large square and has
length 1/2.2 of the original square. When n = 3, the pattern is:

www.ebook3000.com

http://www.ebook3000.org

CHAPTER

11The Web and
Search
11.1 The World Wide Web 372

11.2 Python WWW API 379

11.3 String Pattern Matching 387

Case Study: Web Crawler 391

Chapter Summary 392

Solutions to Practice Problems 392

Exercises 394

Problems 395

IN THIS CHAPTER, we introduce the World Wide Web (the WWW or
simply the web). The web is one of the most important developments in
computer science. It has become the platform of choice for sharing
information and communicating. Consequently the web is a rich source for
cutting-edge application development.

We start this chapter by describing the three core WWW technologies:
Uniform Resource Locators (URLs), the HyperText Transfer Protocol
(HTTP), and the HyperText Markup Language (HTML). We focus
especially on HTML, the language of web pages. We then go over the
Standard Library modules that enable developers to write programs that
access, download, and process documents on the web. We focus, in
particular, on mastering tools such as HTML parsers and regular
expressions that help us process web pages and analyze the content of
text documents.

The skills taught in this chapter and the next are useful for mining data
files such as web pages and developing applications such as search
engines, recommender systems, and a multitude of other Big Data apps.

371

www.ebook3000.com

http://www.ebook3000.org

372 Chapter 11 The Web and Search

11.1 The World Wide Web
The World Wide Web (WWW or, simply, the web) is a distributed system of documents
linked through hyperlinks and hosted on web servers across the Internet. In this section, we
explain how the web works and describe the technologies that it relies on. We make use of
these technologies in the web-based applications we develop in this chapter.

Web Servers and Web Clients
As mentioned earlier, the Internet is a global network that connects computers around the
world. It allows programs running on two computers to send messages to each other. Typ-
ically, the communication occurs because one of the programs is requesting a resource (a
file, say) from the other. The program that is the provider of the resource is referred to as a
server. (The computer hosting the server program is often referred to as a server too.) The
program requesting the resource is referred to as a client.

The WWW contains a vast collection of web pages, documents, multimedia, and other
resources. These resources are stored on computers connected to the Internet that run a
server program called a web server. Web pages, in particular, are a critical resource on the
web as they contain hyperlinks to resources on the web.

A program that requests a resource from a web server is called a web client. The web
server receives the request and sends the requested resource (if if exists) back to the client.

Your favorite browser (whether it is Chrome, Firefox, Internet Explorer, or Safari) is a
web client. A browser has capabilities in addition to being able to request and receive web
resources. It also processes the resource and displays it, whether the resource is a web page,
text document, image, video, or other multimedia. Most important, a web browser displays
the hyperlinks contained in a web page and allows the user to navigate between web pages
by just clicking on the hyperlinks.

DETOUR
Brief History of the Web

The WWW was invented by English computer scientist Tim Berners-Lee while he
worked at the European Organization for Nuclear Research (CERN). His goal was
to create a platform that particle physicists around the world could use to share
electronic documents. The first-ever web site was put online on August 6, 1991,
and had the URL

http://info.cern.ch/hypertext/WWW/TheProject.html

The web quickly got accepted as a collaboration tool among scientists. How-
ever, it was not until the development of the Mosaic web browser (at the National
Center for Supercomputing Applications at the University of Illinois at Urbana-
Champaign) and its successor, Netscape, that its use among the general public
exploded. The web has grown a lot since then. In late 2010, Google recorded a
total of about 18 billion unique web pages hosted by servers in 239 countries.

The WWW Consortium (W3C), founded and headed by Berners-Lee, is the
international organization that is in charge of developing and defining the WWW
standards. Its membership includes information technology companies, nonprofit
organizations, universities, governmental entities, and individuals from across the
world.

http://info.cern.ch/hypertext/WWW/TheProject.html

Section 11.1 The World Wide Web 373

“Plumbing” of the WWW
In order to write application programs that use resources on the web, we need to know more
about the technologies that the web relies on. Before we go over them, let’s understand what
component of the web they implement.

In order to request a resource on the web, there must be a way to identify it. In other
words, every resource on the web must have a unique name. Furthermore, there must be a
way to locate the resource (i.e., find out which computer on the Internet hosts the resource).
Therefore, the web must have a naming and locator scheme that allows a web client to
identify and locate resources.

Once a resource is located, there needs to be a way to request the resource. Sending a
message like “Hey dude, get me that mp3!” is just not going to fly. The client and server
programs must communicate using an agreed-upon protocol that specifies precisely how
the web client and the web server are supposed to format the request message and the reply
message, respectively.

Web pages are a critical resource on the web. They contain formatted information and
data and also hyperlinks that enable web surfing. In order to specify the format of a web page
and incorporate hyperlinks into it, there needs to be a language that supports formatting
instructions and hyperlink definitions.

These three components—the naming scheme, the protocol, and the web publishing
language—were all developed by Berners-Lee and are the technologies that really define
the WWW.

Naming Scheme: Uniform Resource Locator
In order to identify and access a resource on the web, each resource must have a unique
identifier. The identifier is called the Uniform Resource Locator (URL). The URL not only
uniquely identifies a resource but also specifies how to access it, just as a person’s address
can be used to find the person. For example, the mission statement of the W3C is hosted on
the consortium’s web site, and its URL is the string

http://www.w3.org/Consortium/mission.html

This string uniquely identifies the web resource that is the W3C mission document. It also
specifies the way to access it, as illustrated in Figure 11.1.

http } :// www.w3.org /Consortium/mission.html

scheme host path

Figure 11.1 Anatomy of a
URL. A URL specifies the
scheme, the host, and the
pathname of the resource.

The scheme specifies how to access the resource. In Figure 11.1, the scheme is the
HTTP protocol that we will discuss shortly. The host (www.w3c.org) specifies the name
of the server hosting the document, which is unique to each server. The path is the rel-
ative pathname (see the definition in Section 4.3) of the document relative to a special
directory at the server called the web server root directory. In Figure 11.1, the path is
(/Consortium/mission.html).

Note that the HTTP protocol is just one of many schemes that a URL may specify. Other
schemes include the HTTPS protocol, which is the secure (i.e., encrypted) version of HTTP,
and the FTP protocol, which is the standard protocol for transferring files over the Internet:

https://webmail.cdm.depaul.edu/
ftp://ftp.server.net/

www.ebook3000.com

http://www.w3.org/Consortium/mission.html
http://www.w3.org
http://www.w3c.org
https://webmail.cdm.depaul.edu
ftp://ftp.server.net
http://www.ebook3000.org

374 Chapter 11 The Web and Search

Other examples include the mailto and file schemes, as in

mailto:lperkovic@cs.depaul.edu
file:///Users/lperkovic/

The mailto scheme opens an email client, such as Microsoft Outlook, to write an email
(to me in the example). The file scheme is used to access folders or files in the local file
system (such as my home directory /Users/lperkovic/).

Protocol: HyperText Transfer Protocol
A web server is a computer program that serves web resources it hosts upon request. A
web client is a computer program that makes such a request (e.g., your browser). The client
makes the request by first opening a network connection to the server (not unlike opening
a file for reading and/or writing) and then sending a request message to the server through
the network connection (equivalent to writing to a file). If the requested content is hosted
at the server, the client will eventually receive—from the server and through the network
connection—a response message that contains the requested content (equivalent to reading
from a file).

Once the network connection is established, the communication schedule between the
client and the server as well as the precise format of the request and response messages is
specified by the HyperText Transfer Protocol (HTTP).

Suppose, for example, that you use your web browser to download the W3C mission
statement with URL:

http://www.w3.org/Consortium/mission.html

The request message your web browser will send to the host www.w3.org will start with
this line:

GET /Consortium/mission.html HTTP/1.1

The first line of the request message is referred to as the request line. The request line must
start with one of theHTTPmethods. ThemethodGET is one of the HTTPmethods and is the
usual way that a resource is requested. Following it is the path embedded in the resource’s
URL; this path specifies the identity and location of the requested resource relative to the
web server’s root directory. The version of the HTTP protocol used ends the request line.

The request message may contain additional lines, referred to as request header fields,
following the request line. For example, these header fields follow the request line just
shown:

Host: www.w3.org
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; ...
Accept: text/html,application/xhtml+xml,application/xml;...
Accept-Language: en-us,en;q=0.5
...

The request header fields give the client a way to provide more information about the request
to the server, including the character encoding and the languages (such as English) that the
browser accepts, caching information, and so on.

When the web server receives this request, it uses the path that appears in the request
line to find the requested document. If successful, it creates a reply message that contains
the requested resource.

mailto:lperkovic@cs.depaul.edu
file:///Users/lperkovic
http://www.w3.org/Consortium/mission.html
http://www.w3.org
http://www.w3.org

Section 11.1 The World Wide Web 375

The first few lines of the reply message are something like:

HTTP/1.1 200 OK
Date: Mon, 28 Feb 2011 18:44:55 GMT
Server: Apache/2
Last-Modified: Fri, 25 Feb 2011 04:22:57 GMT
...

The first line of this message, called the response line, indicates that the request was success-
ful; if it were not, an error message would appear. The remaining lines, called the response
header fields, provide additional information to the client, such as the exact time when the
server serviced the request, the time when the requested resource was last modified, the
“brand” of the server program, the character encoding of the requested resource, and oth-
ers.

Following the header fields is the requested resource, which in our example is an HTML
document (describing the mission of the W3 Consortium). If the client receiving this re-
sponse is a web browser, it will compute the layout of the document using the HTML codes
and display the formatted, interactive document in the browser.

HyperText Markup Language
TheW3C mission document mission.html downloaded when pointing the browser to the
URL

http://www.w3.org/Consortium/mission.html

looks like a typical web page when viewed in the browser. It has headings, paragraphs, lists,
links, pictures, all nicely arranged to make the “content” readable. However, if you look at
the actual content of the text file mission.html, you will see this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ...
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" ...
...
<script type="text/javascript" src="/2008/site/js/main" ...
</div></body></html>

(Only the beginning and the end of the file are shown.)

DETOUR
Viewing the Web Page Source File

You may view the actual content of the file that is displayed in your browser by
clicking, for example, on menu View and then item Page Source in Firefox or on

menu Page and then item View Source in Internet Explorer.

The file mission.html is the source file for the displayed web page. A web page source
file is written using a publishing language called theHyperText Markup Language (HTML).
This language is used to define the headings, lists, images, and hyperlinks of a web page and
incorporate video and other multimedia into it.

www.ebook3000.com

http://www.w3.org/Consortium/mission.html
http://www.w3.org/1999/xhtml
http://www.ebook3000.org

376 Chapter 11 The Web and Search

HTML Elements
AnHTML source file is composed ofHTML elements. Each element defines one component
(such as a heading, a list or list item, an image, or a link) of the associated web page. In order
to see how elements are defined in an HTML source file, we consider the web page shown
in Figure 11.2. It is a basic web page summarizing the W3C mission.

Figure 11.2 Web page
w3c.html. A web page
is composed of different
types of HTML elements.
Elements h1 and h2 specify
the largest and second
largest heading, p is the
paragraph element, br is
the line break element, ul is
the list element, li is the list
item element, and a is the
anchor element, which is
used to specify a hyperlink.

Heading h1

Paragraph p

Heading h2

List ul

Data

List items li

Anchor a

Data Line break br

Indicated in the figure are web page components (headings of different size, a paragraph,
a list, etc.) that correspond to the different elements of the document; what we actually
see are the elements after they have been interpreted by the browser. The actual element
definitions are in the web page source file:

File: w3c.html 1 <html>
2 <head><title>W3C Mission Summary</title></head>
3 <body>
4 <h1>W3C Mission</h1>
5 <p>
6 The W3C mission is to lead the World Wide Web to its full
7 potential
by developing protocols and guidelines that
8 ensure the long-term growth of the Web.
9 </p>

10 <h2>Principles</h2>
11
12 Web for All
13 Web on Everything
14
15 See the complete
16
17 W3C Mission document
18 .
19 </body>
20 </html>

Consider the HTML element corresponding to heading “W3C Mission”:

<h1>W3C Mission</h1>

This is a large heading element named h1. It is described using the start tag <h1> and the

http://www.w3.org/Consortium/mission.html

Section 11.1 The World Wide Web 377

end tag </h1>. The text contained in between will be represented as a large heading by the
browser. Note that the start and end tags contain the element name and are always delimited
with < and > brackets; the end tag has a backslash as well.

In general, an HTML element consists of three components:
1. A pair of tags: the start tag and the end tag
2. Optional attributes within the start tag
3. Other elements or data between the start and end tag

In HTML source file w3c.html, there is an example of an element (title) contained inside
another element (head):

<head><title>W3C Mission Summary</title></head>

Any element that appears between the start and end tag of another element is said to be con-
tained in it. This containment relation gives rise to a treelike hierarchical structure between
the elements of an HTML document.

Tree Structure of an HTML Document
The elements in an HTML document form a tree hierarchy similar to the tree hierarchy of
a filesystem (see Chapter 4). The root element of every HTML document must be element
html. Element html contains two elements (each optional but usually present). The first
is element head, which contains document metadata information, such as a title element
(which typically contains text data that is shown on top of the browser windowwhen viewing
the document). The second element is body, which contains all the elements and data that
will be displayed within the browser window.

Figure 11.3 shows all the elements in file w3c.html. The figure makes explicit what
element is contained in another and the resulting tree structure of the document. This tree
structure and the HTML elements together determine the layout of the web page.

html

head

title

W3C Mission

body

h1

W3C Mission

p

The . . . potential
br

by . . . Web.

h2

Principles

ul

li

Web for All

li

Web on Everything
See the complete

a

W3C Mission document

Figure 11.3 Structure of
w3c.html. The elements of
an HTML document form a
hierarchical tree structure
that specifies how the
content is organized;
the elements and the
hierarchical structure are
used by the browser to
produce the web page
layout.

Anchor HTML Element and Absolute Links
The HTML anchor element (a) is used to create hyperlinked text. In source file w3c.html,
we create hyperlinked text in this way:

W3C Mission document

www.ebook3000.com

http://www.w3.org/Consortium/mission.html
http://www.ebook3000.org

378 Chapter 11 The Web and Search

This is an example of an HTML element with an attribute. As we said at the beginning of
this section, the start tag of an element may contain one or more attributes. Each attribute is
assigned a value in the start tag. The anchor element a requires attribute href to be present
in the start tag; the value of the href attribute should be the URL of the linked resource. In
our example, that is

http://www.w3.org/Consortium/mission.html

This URL identifies the web page containing the mission statement of the W3C and hosted
on the server www.w3.org. The linked resource can be anything that can be identified with
a URL: an HTML page, an image, a sound file, a movie, and so on.

The text contained in the anchor element (e.g., the text W3C Mission document) is the
text displayed in the browser, in whatever format the browser uses to display hyperlinks. In
Figure 11.2, the hyperlinked text is shown underlined. When the hyperlinked text is clicked,
the linked resource is downloaded and displayed in the browser.

In our example, the URL specified in the hyperlink is an absolute URL, which means
that it explicitly specifies all the components of a URL: the scheme, the host, and the com-
plete path of the linked resource. In cases when the linked resource is accessible using the
same scheme and is stored on the same host as the HTML document containing the link, a
shortened version of the URL can be used, as we discuss next.

Relative Links
Suppose that you look at the source file of the web page with URL

http://www.w3.org/Consortium/mission.html

and find the anchor element

Facts About W3C

Note that the value of attribute href is not a complete URL; it is missing the scheme and
host specification, and only has the path /Consortium/facts.html. What is the complete
URL of the facts.html document?

The URL /Consortium/facts.html is a relative URL. Because it is contained in the
document with URL

http://www.w3.org/Consortium/mission.html

the URL /Consortium/facts.html is relative to it, and the missing scheme and host-
name are just http and www.w3.org. In other words, the complete URL of web page
/Consortium/facts.html is:

http://www.w3.org/Consortium/facts.html

Here is another example. Suppose that the document with URL

http://www.w3.org/Consortium/mission.html

contains anchor

Facts About W3C

What is the complete URL of facts.html? Again, relative URL facts.html is relative
to the URL of the document containing it, which is:

http://www.w3.org/Consortium/mission.html

http://www.w3.org/Consortium/mission.html
http://www.w3.org
http://www.w3.org/Consortium/mission.html
http://www.w3.org/Consortium/mission.html
http://www.w3.org
http://www.w3.org/Consortium/facts.html
http://www.w3.org/Consortium/mission.html
http://www.w3.org/Consortium/mission.html

Section 11.2 Python WWW API 379

In other words, facts.html is contained in directory Consortium on host www.w3.org.
Therefore, its complete URL is

http://www.w3.org/Consortium/facts.html

DETOUR
Learning More about HTML

Web development and HTML is not a focus of this textbook. If you want to learn
more about HTML, there are excellent free resources on the web, in particular the
HTML tutorial at

http://www.w3schools.com/html/default.asp

This tutorial also includes an interactive HTML editor that allows you to write HTML
code and view the result.

11.2 Python WWW API
In the previous two sections, we went over basic WWW concepts and covered the three key
technologies that make up the “plumbing” of the web.We have gained a basic understanding
of how the web works and the structure of an HTML source file. Now we can use the web in
our Python application programs. In this section we introduce a few of the Standard Library
modules that allow Python developers to access and process resources on the web.

Module urllib.request
We typically use browsers to access web pages on the web. A browser is just one type of web
client, however; any program can act as a web client and access and download resources on
the web. In Python, the Standard Library module urllib.request gives developers this
capability. The module contains functions and classes that allow Python programs to open
and read resources on the web in a way similar to how files are opened and read.

The function urlopen() in module urlib.request is similar to the built-in function
open() that is used to open (local) files. There are three differences however:

1. urlopen() takes as input a URL rather than a local file pathname.
2. It results in an HTTP request being sent to the web server hosting the content.
3. It returns a complete HTTP response.

In the next example, we use function urlopen() to request and receive an HTML document
hosted at a server on the web:

>>> from urllib.request import urlopen
>>> response = urlopen('http://www.w3c.org/Consortium/facts.html')
>>> type(response)
<class 'http.client.HTTPResponse'>

The object returned by function urlopen() is of type HTTPResponse, which is a type de-
fined in Standard Library module http.client. Objects of this type encapsulate the HTTP
response from the server. As we saw earlier, the HTTP response includes the requested re-
source but also additional information. For example, the HTTPResponsemethod geturl()

www.ebook3000.com

http://www.w3.org
http://www.w3.org/Consortium/facts.html
http://www.w3schools.com/html/default.asp
http://www.w3c.org/Consortium/facts.html
http://www.ebook3000.org

380 Chapter 11 The Web and Search

returns the URL of the requested resource:

>>> response.geturl()
'http://www.w3.org/Consortium/facts.html'

To obtain all the HTTP response header fields, you can use method getheaders():

>>> for field in response.getheaders():
print(field)

('Date', 'Sat, 16 Jul 2011 03:40:17 GMT')
('Server', 'Apache/2')
('Last-Modified', 'Fri, 06 May 2011 01:59:40 GMT')
...
('Content-Type', 'text/html; charset=utf-8')

(Some header fields are omitted.)
The HTTPResponse object returned by urlopen contains the requested resource. The

HTTPResponse class is said to be a filelike class because it supports methods read(),
readline(), and readlines(), the same methods supported by the types of objects re-
turned by the file-opening function open(). All these methods retrieve the content of the
requested resource. For example, let’s use the method read():

>>> html = response.read()
>>> type(html)
<class 'bytes'>

Themethod read()will return the content of the resource. If the file is anHTMLdocument,
for example, then its content is returned. Note, however, that method read() returns an
object of type bytes. This is because resources opened by urlopen() could very well be
audio or video files (i.e., binary files). The default behavior for urlopen() is to assume that
the resource is a binary file and, when this file is read, a sequence of bytes is returned.

If the resource happens to be an HTML file (i.e., a text file), it makes sense to decode the
sequence of bytes into the Unicode characters they represent. We use the decode()method
of the bytes class (and covered in Section 6.3) to achieve this:

>>> html = html.decode()
>>> html
'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">\n
...

</div></body></html>\n'

(Many lines are omitted.) Decoding an HTML document into a Unicode string makes
sense because an HTML document is a text file. Once decoded into a string, we can use
string operators and methods to process the document. For example, we can now find out
the number of times string 'Web' appears in (the source file of) web page

http://www.w3c.org/Consortium/facts.html

Here it is:

>>> html.count('Web')
26

http://www.w3.org/Consortium/facts.html
http://www.w3c.org/Consortium/facts.html

Section 11.2 Python WWW API 381

With all we have learned so far, we can write a function that takes a URL of a web page
as input and returns the content of the web page source file as a string:

Module: ch11.py
1 from urllib.request import urlopen
2 def getSource(url):
3 'returns the content of resource specified by url as a string'
4 response = urlopen(url)
5 html = response.read()
6 return html.decode()

Let’s test it on Google web page:

>>> getSource('http://www.google.com')
'<!doctype html><html><head><meta http-equiv="content-type"
content="text/html; charset=ISO-8859-1"><meta name="description"
content="Search the world's information, including webpages,
...

Practice Problem
11.1

Write method news() that takes a URL of a news web site and a list of news topics (i.e.,
strings) and computes the number of occurrences of each topic in the news.

>>> news('http://bbc.co.uk',['economy','climate','education'])
economy appears 3 times.
climate appears 3 times.
education appears 1 times.

Module html.parser
Module urllib.request provides tools to request and download resources such as web
pages from the web. If the downloaded resource is an HTML file, we can read it into a string
and process it using string operators and methods. That may be sufficient to answer some
questions about the web page content, but what about, for example, picking up all the URLs
associated with anchor tags in the web page?

If you take a moment and think about it, it would be quite messy to use string operators
and methods to find all the anchor tag URLs in an HTML file. Yet it is clear what needs to
be done: Go through the file and pick up the value of the href attribute in every anchor start
tag. To do this, however, we need a way to recognize the different elements of the HTML
file (the title, headings, links, images, text data, etc.), in particular the anchor element start
tags. The process of analyzing a document in order to break it into components and obtain
its structure is called parsing.

The Python Standard Library module html.parser provides a class, HTMLParser, that
parses HTML files. When it is fed an HTML file, it will process it from beginning to end, find
all the start tags, end tags, text data, and other components of the source file, and “process”
each one of them.

To illustrate the usage of a HTMLParser object and describe what “process” means, we
use the HTML file w3c.html from Section 11.1.

www.ebook3000.com

http://www.google.com
http://bbc.co.uk
http://www.ebook3000.org

382 Chapter 11 The Web and Search

Recall that file w3c.html starts with:

File: w3c.html <html>
<head><title>W3C Mission Summary</title></head>
<body>
<h1>W3C Mission</h1>

...

The HMLPParser class supports method feed() that takes, as input, the content of an
HTML source file, in string form. Therefore, to parse file w3c.html, we first need to read
it into a string and then feed it to the parser:

>>> infile = open('w3c.html')
>>> content = infile.read()
>>> infile.close()
>>> from html.parser import HTMLParser
>>> parser = HTMLParser()
>>> parser.feed(content)

When the last line is executed (i.e., when string content is fed to parser), this happens
behind the scenes: The parser divides the string content into tokens that correspond to
HTML start tags, end tags, text data, and other HTML components, and then handles the
tokens in the order in which they appear in the source file. What this means is that for
each token, an appropriate handler method is invoked. The handlers are methods of class
HTMLParser. Some of them are listed in Table 11.1.

Table 11.1 Some
HTMLParser handlers.
These methods do nothing
when invoked; they need to
be overridden to produce
the desired behavior.

Token Handler Explanation
<tag attrs> handle_starttag(tag, attrs) Start tag handler
</tag> handle_endtag(tag) End tag handler
data handle_data(data) Arbitrary text data handler

When the parser encounters a start tag token, handler method handle_starttag()
is invoked; if the parser encounters a text data token, handler method handle_data()
is invoked. Method handle_starttag() takes, as input, the start tag element name and
a list containing the tag’s attributes (or None if the tag contains no attributes). Each at-
tribute is represented by a tuple storing the name and value of the attribute. Method
handle_data() takes just the text token as input. Figure 11.4 illustrates the parsing of
file w3c.html.

Figure 11.4 Parsing HTML
file w3c.html. Tokens are
handled in the order they
appear. The first token, start
tag <html>, is handled by
handle_starttag(). The
next token is the string
between tags <http> and
<head> consisting of a new
line character and a blank
space; considered text data,
it is handled by
handle_data().

Token Handler

<http> handle_starttag('http')

'' handle_data('\n ')

<head> handle_starttag('head')

'' handle_data('')

<title> handle_starttag('title')

'W3C Mission Summary' handle_data('W3CMission Summary')

</title> handle_endtag('title')

Section 11.2 Python WWW API 383

What do the HTMLParser class handler methods (like handle_starttag()) really do?
Well, nothing. The handler methods of class HTMLParser are implemented to do nothing
when called. That is why nothing interesting happened when we executed:

>>> parser.feed(content)

The HTMLParser class handler methods are really meant to be overridden by user-defined
handlers that implement the behavior desired by the programmer. In other words, class
HTMLParser is not supposed to be used directly but rather as a super class from which
the developer derives a parser that exhibits the parsing behavior desired by the programmer.

Overriding the HTMLParser Handlers
Let’s develop a parser that prints the URL value of the href attribute contained in every
anchor start tag of the fed HTMLfile. To achieve this behavior, the HTMLParser handler that
needs to be overridden is method handle_starttag(). Recall that this method handles
every start tag token. Instead of doing nothing, we want it now to check whether the input
tag is an anchor tag and, if so, find the href attribute in the list of attributes and print its
value. Here is the implementation of our LinkParser class:

Module: ch11.py
1 from html.parser import HTMLParser
2 class LinkParser(HTMLParser):
3 '''HTML doc parser that prints values of
4 href attributes in anchor start tags'''
5

6 def handle_starttag(self, tag, attrs):
7 'print value of href attribute if any'
8

9 if tag == 'a': # if anchor tag
10

11 # search for href attribute and print its value
12 for attr in attrs:
13 if attr[0] == 'href':
14 print(attr[1])

Note how, in lines 12 to 14, we search through the list of attributes to find the attribute
href. Let’s test our parser on this HTML file:

File: links.html1 <html>
2 <body>
3 <h4>Absolute HTTP link</h4>
4 Absolute link to Google
5 <h4>Relative HTTP link</h4>
6 Relative link to w3c.html.
7 <h4>mailto scheme</h4>
8 Click here to email me.
9 </body>

10 </html>

There are three anchor tags in the HTML file links.html: the first contains URL that
is a hyperlink to Google, the second contains a URL that is a link to local file w3c.html,

www.ebook3000.com

http://www.google.com
mailto:me@example.net
http://www.ebook3000.org

384 Chapter 11 The Web and Search

and the third contains a URL that actually starts the mail client. In the next code, we feed
the file to our parser and obtain the three URLs:

>>> infile = open('links.html')
>>> content = infile.read()
>>> infile.close()
>>> linkparser = LinkParser()
>>> linkparser.feed(content)
http://www.google.com
test.html
mailto:me@example.net

Practice Problem
11.2

Develop class MyHTMLParser as a subclass of HTMLParser that, when fed an HTML file,
prints the names of the start and end tags in the order that they appear in the document, and
with an indentation that is proportional to the element’s depth in the tree structure of the
document. Ignore HTML elements that do not require an end tag, such as p and br .

File: w3c.html >>> infile = open('w3c.html')
>>> content = infile.read()
>>> infile.close()
>>> myparser = MyHTMLParser()
>>> myparser.feed(content)
html start

head start
title start
title end

head end
body start

h1 start
h1 end
h2 start
h2 end
ul start

li start
...

a end
body end

html end

Module urllib.parse
The parser LinkParser we just developed prints the URL value of every anchor href
attribute. For example, when we run the following code on the W3C mission web page

>>> rsrce = urlopen('http://www.w3.org/Consortium/mission.html')
>>> content = rsrce.read().decode()
>>> linkparser = LinkParser()
>>> linkparser.feed(content)

http://www.google.com
mailto:me@example.net
http://www.w3.org/Consortium/mission.html

Section 11.2 Python WWW API 385

we get an output that includes relative HTTP URLs like

/Consortium/contact.html

absolute HTTP URLs such as

http://twitter.com/W3C

and also non-HTTP URLs like

mailto:site-comments@w3.org

(We omit many lines of output.)
What if we are only interested in collecting the URLs that correspond to HTTP hy-

perlinks (i.e., URLs whose scheme is the HTTP protocol)? Note that we cannot just say
“collect those URLs that start with string http” because then we would miss the relative
URLs, such as /Consortium/contact.html. What we need is a way to construct an ab-
solute URL from a relative URL (like /Consortium/contact.html) and the URL of the
web page containing it (http://www.w3.org/Consortium/mission.html).

The Python Standard Library module urllib.parse provides a few methods that op-
erate on URLs, including one that does exactly what we want, method urljoin(). Here is
an example usage:

>>> from urllib.parse import urljoin
>>> url = 'http://www.w3.org/Consortium/mission.html'
>>> relative = '/Consortium/contact.html'
>>> urljoin(url, relative)
'http://www.w3.org/Consortium/contact.html'

Parser That Collects HTTP Hyperlinks
We now develop another version of the LinkParser class that we call Collector. It col-
lects only HTTP URLs and, instead of printing them out, it puts them into a list. The URLs
in the list will be in their absolute, rather than relative, format. Finally, the class Collector
should also support method getLinks() that returns this list.

Here is a sample usage we expect from a Collector parser:

>>> url = 'http://www.w3.org/Consortium/mission.html'
>>> resource = urlopen(url)
>>> content = resource.read().decode()
>>> collector = Collector(url)
>>> collector.feed(content)
>>> for link in collector.getLinks():

print(link)

http://www.w3.org/
http://www.w3.org/standards/
...
http://www.w3.org/Consortium/Legal/ipr-notice

(Again, many lines of output, all absolute URLs, are omitted.)
To implement Collector, we again need to override handle_starttag(). Instead of

simply printing the value of the href attribute contained in the start tag, if any, the han-
dler must process the attribute value so that that only absolute HTTP URLs are collected.

www.ebook3000.com

http://twitter.com/W3C
mailto:site-comments@w3.org
http://www.w3.org/Consortium/mission.html
http://www.w3.org/Consortium/mission.html
http://www.w3.org/Consortium/contact.html
http://www.w3.org/Consortium/mission.html
http://www.w3.org
http://www.w3.org/standards
http://www.w3.org/Consortium/Legal/ipr-notice
http://www.ebook3000.org

386 Chapter 11 The Web and Search

Therefore, the handler needs to do this with every href value it handles:
1. Transform the href value to an absolute URL.
2. Append it to a list if it is an HTTP URL.

To do the first step, the URL of the fed HTML file must be available to the handler. There-
fore, an instance variable of the Collector parser object must store the URL. This URL
must somehow be passed to the Collector object; we choose to pass the URL as an input
argument of the Collector constructor.

For the second step, we need to have a list instance variable to store all the URLs. The
list should be initialized in the constructor. Here is the complete implementation:

Module: ch11.py
1 from urllib.parse import urljoin
2 from html.parser import HTMLParser
3 class Collector(HTMLParser):
4 'collects hyperlink URLs into a list'
5

6 def __init__(self, url):
7 'initializes parser, the url, and a list'
8 HTMLParser.__init__(self)
9 self.url = url

10 self.links = []
11

12 def handle_starttag(self, tag, attrs):
13 'collect hyperlink URLs in their absolute format'
14 if tag == 'a':
15 for attr in attrs:
16 if attr[0] == 'href':
17 # construct absolute URL
18 absolute = urljoin(self.url, attr[1])
19 if absolute[:4] == 'http': # collect HTTP URLs
20 self.links.append(absolute)
21

22 def getLinks(self):
23 'returns hyperlinks URLs in their absolute format'
24 return self.links

Practice Problem
11.3

Augment class Collector so that it also collects all the text data into a string that can be
retrieved using method getData().

>>> url = 'http://www.w3.org/Consortium/mission.html'
>>> resource = urlopen(url)
>>> content = resource.read().decode()
>>> collector = LinksCollector(url)
>>> collector.feed(content)
>>> collector.getData()
'\nW3C Mission\n ...'

(Only the first few characters are shown.)

http://www.w3.org/Consortium/mission.html

Section 11.3 String Pattern Matching 387

11.3 String Pattern Matching
Suppose we would like to develop an application that analyzes the content of a web page, or
any other text file, and looks for all email addresses in the page. The string method find()
can find only specific email addresses; it is not the right tool for finding all the substrings
that “look like email addresses” or fit the pattern of an email address.

In order to mine the text content of a web page or other text document, we need tools
that help us define text patterns and then search for strings in the text that match these text
patterns. In this section, we introduce regular expressions, which are used to describe string
patterns. We also introduce Python tools that find strings in a text that match a given string
pattern.

Regular Expressions
How do we recognize email addresses in a text document? We usually do not find this very
difficult. We understand that an email address follows a string pattern:

An email address consists of a user ID—that is, a sequence of "allowed" characters—
followed by the @ symbol followed by a hostname—that is, a dot-separated
sequence of allowed characters.

While this informal description of the string pattern of an email address may work for us, it
is not nearly precise enough to use in a program.

Computer scientists have developed a more formal way to describe a string pattern: a
regular expression. A regular expression is a string that consists of characters and regular
expression operators. We will now learn a few of these operators and how they enable us to
precisely define the desired string pattern.

The simplest regular expression is one that doesn’t use any regular expression operators.
For example, the regular expression best matches only one string, the string 'best':

Regular Expression Matching String(s)
best best

The operator . (the dot) has the role of a wildcard character: It matches any (Unicode)
character except the new line character ('\n'). Therefore 'be.t' matches best, but also
'belt', 'beet', 'be3t', and 'be!t', among others:

Regular Expression Matching String(s)
be.t best, belt, beet, bezt, be3t, be!t, be t, . . .

Note that regular expression be.t does not match string 'bet' because operator '.' must
match some character.

Regular expression operators *, +, and ?match a particular number of repetitions of the
previous character (or regular expression). For example, the operator * in regular expression
be*t matches 0 or more repetitions of the previous character (e). It therefore matches bt
and also bet, beet, and so on:

Regular Expressions Matching String(s)
be*t bt, bet, beet, beeet, beeeet, . . .
be+t bet, beet, beeet, beeeet, . . .
bee?t bet, beet

The last example also illustrates that operator + matches 1 or more repetitions, whereas ?
matches 0 or 1 repetition of the previous character (or regular expression).

www.ebook3000.com

http://www.ebook3000.org

388 Chapter 11 The Web and Search

The operator []matches any one character listed within the square brackets: For exam-
ple, regular expression [abc] matches strings a, b, and c and no other string. The operator
-, when used within the operator [], specifies a range of characters. This range is specified
by the Unicode character ordering. So regular expression [l-o]matches strings l, m, n, and
o:

Regular Expressions Matching String(s)
be[ls]t belt, best
be[l-o]t belt, bemt, bent, beot
be[a-cx-z]t beat, bebt, bect, bext, beyt, bezt

In order to match a set of characters not in the range or not in a specified set, the caret
character ^ is used. For example, [^0-9] matches any character that is not a digit:

Regular Expressions Matching String(s)
be[^0-9]t belt, best, be#t, . . . (but not be4t).
be[^xyz]t belt, be5t, . . . (but not bext, beyt, and bezt).
be[^a-zA-Z]t be!t, be5t, be t, . . . (but not beat).

The operator | is an “or” operator: If A and B are two regular expressions, then regu-
lar expression A|B matches any string that is matched by A or by B. For example, regular
expression hello|Hello matches strings 'hello' and 'Hello':

Regular Expressions Matching String(s)
hello|Hello hello, Hello.
a+|b+ a, b, aa, bb, aaa, bbb, aaaa, bbbb, . . .
ab+|ba+ ab, abb, abbb, . . . , and ba, baa, baaa, . . .

The description of operators we just described is summarized in Table 11.2.

DETOUR
Additional Regular Expression Operators

Python supports many more regular expression operators; we have only scratched
the surface in this section. To learn more about them, read the extensive documen-
tation available online at:

http://docs.python.org/py3k/howto/regex.html
and

http://docs.python.org/py3k/library/re.html

Practice Problem
11.4

Each of the listed cases gives a regular expression and a set of strings. Select those strings
that are matched by the regular expression.

Regular Expression Strings
(a) [Hh]ello ello, Hello, hello
(b) re-?sign re-sign, resign, re-?sign
(c) [a-z]* aaa, Hello, F16, IBM, best
(d) [^a-z]* aaa, Hello, F16, IBM, best
(e) <.*> <h1>, 2 < 3, <<>>>>, ><

http://docs.python.org/py3k/howto/regex.html
http://docs.python.org/py3k/library/re.html

Section 11.3 String Pattern Matching 389

Operator Interpretation
. Matches any character except a new line character.
* Matches 0 or more repetitions of the regular expression immediately

preceding it. So in regular expression ab*, operator * matches 0 or
more repetitions of b, not ab.

+ Matches 1 or more repetitions of the regular expression immediately
preceding it.

? Matches 0 or 1 repetitions of the regular expression immediately
preceding it.

[] Matches any character in the set of characters listed within the
square brackets; a range of characters can be specified using the first
and last character in the range and putting '-' in between.

^ If S is a set or range of characters, then [^S] matches any character
not in S.

| If A and B are regular expressions, A|B matches any string that is
matched by A or B.

Table 11.2 Some regular
expression operator.
Operators ., *, +, and ?
apply to the regular
expression preceding the
operator. Operator | is
applied to the regular
expression to the left
and right of the operator.

Because operators *, ., and [have special meaning inside regular expressions, they
cannot be used to match characters '*', '.', or '['. In order to match characters with
special meaning, the escape sequence \ must be used. So, for example, regular expression
\[would match string '['. In addition to serving as an escape sequence identifier,
the backslash \ may also signal a regular expression special sequence. Regular expression
special sequences represent predefined sets of characters that are commonly used together.
Table 11.3 lists some of the regular expression special sequences.

Special Sequence Set of Characters
\d Matches any decimal digit; equivalent to [0-9]
\D Matches any nondigit character; equivalent to [^0-9]
\s Matches any whitespace character including the blank

space, the tab \t, the new line \n, and the carriage return \r
\S Matches any non-whitespace character
\w Matches any alphanumeric character; this is equivalent to

[a-zA-Z0-9_]
\W Matches any nonalphanumeric character; this is equivalent

to [^a-zA-Z0-9_]

Table 11.3 Some special
regular expression
sequences. Note that the
listed escape sequences
are to be used in regular
expressions only; they
should not be used in an
arbitrary string.

Practice Problem
11.5

For each of the listed informal pattern descriptions or sets of strings, define a regular ex-
pression that fits the pattern description or matches all the strings in the set and no other.
(a) aac, abc, acc
(b) abc, xyz
(c) a, ab, abb, abbb, abbbb, . . .
(d) Nonempty strings consisting of lowercase letters in the alphabet (a, b, c, . . . , z)
(e) Strings containing substring oe
(f) String representing and HTML start or end tag

www.ebook3000.com

http://www.ebook3000.org

390 Chapter 11 The Web and Search

Python Standard Library Module re
The module re in the Standard Library is Python’s tool for regular expression processing.
One of the methods defined in the module is method findall() that takes two inputs, a
regular expression and a string, and returns a list of all substrings of the input string that the
regular expression matches. Here are some examples:

>>> from re import findall
>>> findall('best', 'beetbtbelt?bet, best')
['best']
>>> findall('be.t', 'beetbtbelt?bet, best')
['beet', 'belt', 'best']
>>> findall('be?t', 'beetbtbelt?bet, best')
['bt', 'bet']
>>> findall('be*t', 'beetbtbelt?bet, best')
['beet', 'bt', 'bet']
>>> findall('be+t', 'beetbtbelt?bet, best')
['beet', 'bet']

If the regular expression matches two substrings such that one is contained in the other, the
function findall() will match the longer substring only. For example, in

>>> findall('e+', 'beeeetbet bt')
['eeee', 'e']

the returned list does not contain substrings 'ee' and 'eee'. If the regular expression
matches two overlapping substrings, the function findall() returns the left one. The func-
tion findall() in fact scans the input string from left to right and collects matches into a
list in the order found. You can verify this when running:

>>> findall('[^bt]+', 'beetbtbelt?bet, best')
['ee', 'el', '?', 'e', ', ', 'es']

Here is another example:

>>> findall('[bt]+', 'beetbtbelt?bet, best')
['b', 'tbtb', 't', 'b', 't', 'b', 't']

!
CAUTION

Empty Strings Are Everywhere

Compare the last example with this one:

>>> findall('[bt]*', 'beetbtbelt?bet, best')
['b', '', '', 'tbtb', '', '', 't', '', 'b', '', 't', '', '',
'b', '', '', 't', '']

Because regular expression [bt]* matches the empty string '', the function
findall() looks for empty substrings in the input string 'beetbtbelt?bet,
best' that are not contained in a larger matching substring. It finds many empty
strings, one before every character that is not b or t. That includes the empty sub-
string between the first b and the first e, the empty substring between the first and
second e, and so on.

Chapter 11 Case Study: Web Crawler 391

Practice Problem
11.6

Develop function frequency() that takes a string as input, computes the frequency of every
word in the string, and returns a dictionary that maps words in the string to their frequency.
You should use a regular expression to obtain the list of all words in the string.

>>> content = 'The pure and simple truth is rarely pure and never\
simple.'

>>> frequency(content)
{'and': 2, 'pure': 2, 'simple': 2, 'is': 1, 'never': 1,
'truth': 1, 'The': 1, 'rarely': 1}

Another useful function defined in module re is search(). It also takes a regular ex-
pression and a string; it returns the first substring that is matched by the regular expression.
You can think of it as a more powerful version of string method find(). Here is an example:

>>> from re import search
>>> match = search('e+', 'beetbtbelt?bet')
>>> type(match)
<class '_sre.SRE_Match'>

Method search returns a reference to an object of type SRE_Match, informally referred to
as a match object. The type supports, for example, methods to find the start and end index
of the match in the input string:

>>> match.start()
1
>>> match.end()
3

The matched substring of 'beetbtbelt?bet' starts at index 1 and ends before index 3.
Match objects also have an attribute variable called string that stores the searched string:

>>> match.string
'beetbtbelt?bet, best'

To find thematched substring, we need to get the slice of match.string from index match.start()
to index match.end():

>>> match.string[match.start():match.end()]
'ee'

Case Study: Web Crawler
In Case Study CS.11, we apply recursion and what we have learned in this chapter to develop
a basic web crawler, that is, a program that systematically visits web pages by following
hyperlinks. A web crawler works by following a hyperlink and downloading the associated
web page, parsing its content, collecting content data, and then recursively repeating this
for every hyperlink contained in the web page. The recursive algorithm used by the crawler
is an example of of depth-first search, a fundamental search algorithm.

www.ebook3000.com

http://www.ebook3000.org

392 Chapter 11 The Web and Search

Chapter Summary
In this chapter, we introduced the development of computer applications that search and
collect data from documents near and far. We focused in particular on accessing, searching,
and collecting data hosted on the World Wide Web.

The web is certainly one of the most important applications running on the Internet to-
day. In the last 20 years, the web has revolutionized the way we work, shop, socialize, and
get entertainment. It enables communication and the sharing of information on an unprece-
dented scale and has become an enormous repository of data. This data, in turn, provides
an opportunity for the development of new computer applications that collect and process
the data and produce valuable information. This chapter introduces the web technologies,
the Python Standard Library web APIs, and the algorithms that can be used to to develop
such applications,

We introduced the key web technologies: URLs, HTTP, and HTML.We also introduced
the Python Standard LibraryAPIs for accessing resources on theweb (module urllib.request)
and for processing web pages (module html.parser). We have seen how to use both APIs
to download a web page HTML source file and parse it to obtain the web page content.

In order to process the content of a web page or any other text document, it is helpful to
have tools that recognize string patterns in texts. This chapter introduces such tools: regular
expressions and the Standard Library module re.

Solutions to Practice Problems
11.1 Once the HTML document is downloaded and decoded into a string, string methods
can be used:

def news(url, topics):
'''counts in resource with URL url the frequency

of each topic in list topics'''
download and decode resource to obtain all lowercase content
response = urlopen(url)
html = response.read()
content = html.decode().lower()

for topic in topics: # find frequency of topic in content
n = content.count(topic)
print('{} appears {} times.'.format(topic, n))

11.2 The methods handle_starttag() and handle_endtag() need to be overridden.
Each should print the name of the element corresponding to the tag, appropriately indented.

The indentation is an integer value that is incremented with every start tag token and
decremented with every end tag token. (We ignore elements p and br.) The indentation
value should be stored as an instance variable of the parser object and initialized in the
constructor.

Module: ch11.py
1 from html.parser import HTMLParser
2 class MyHTMLParser(HTMLParser):
3 'HTML doc parser that prints tags indented by depth'
4

Chapter 11 Solutions to Practice Problems 393

5 def __init__(self):
6 'initializes the parser and the initial indentation'
7 HTMLParser.__init__(self)
8 self.indent = 0 # initial indentation value
9

10 def handle_starttag(self, tag, attrs):
11 '''prints start tag with an indentation proportional
12 to the depth of the tag's element in the document'''
13 if tag not in {'br', 'p'}:
14 print('{}{} start'.format(self.indent*' ', tag))
15 self.indent += 4
16

17 def handle_endtag(self, tag):
18 '''prints end tag with an indentation proportional
19 to the depth of the tag's element in the document'''
20 if tag not in {'br', 'p'}:
21 self.indent -= 4
22 print('{}{} end'.format(self.indent*' ', tag))

11.3 You should initialize an empty string instance variable self.text in the Collector
constructor. The handler handle_data() will then handle the text data token by concate-
nating it with self.text. The code is shown next.

Module: ch11.py
1 def handle_data(self, data):
2 'collects and concatenates text data'
3 self.text += data
4

5 def getData(self):
6 'returns the concatenation of all text data'
7 return self.text

11.4 The solutions are:
(a) Hello, hello
(b) 're-sign', 'resign'
(c) aaa, best
(d) F16, IBM
(e) <h1>, <<>>>>

11.5 The solutions are:
(a) a[abc]c
(b) abc|xyz
(c) a[b]*
(d) [a-z]+
(e) [a-zA-Z]*oe[a-zA-Z]*
(f) <[^>]*>

11.6 We already considered this problem in Chapter 6. The solution here uses a regular
expression to match words and is cleaner than the original solution.

www.ebook3000.com

http://www.ebook3000.org

394 Chapter 11 The Web and Search

def frequency(content):
'''returns dictionary containing frequencies

of words in string content'''
pattern = '[a-zA-Z]+'
words = findall(pattern, content)
dictionary = {}
for w in words:

if w in dictionary:
dictionary[w] +=1

else:
dictionary[w] = 1

return dictionary

Exercises
11.7 In each of the next cases, select those strings that are matched by the given regular
expression.

Regular Expression Strings
(a) [ab] ab, a, b, the empty string
(b) a.b. ab, acb, acbc, acbd
(c) a?b? ab, a, b, the empty string
(d) a*b+a* aa, b, aabaa, aaaab, ba
(e) [^\d]+ abc, 123, ?.?, 3M

11.8 For each informal pattern description or set of strings below, define a regular expres-
sion that fits the pattern description or matches all the strings in the set and no other.
(a) Strings containing an apostrophe (’)
(b) Any sequence of three lowercase letters in the alphabet
(c) The string representation of a positive integer
(d) The string representation of a nonnegative integer
(e) The string representation of a negative integer
(f) The string representation of an integer (whether positive or not)
(g) The string representation of a floating-point value using the decimal point notation

11.9 For each informal description listed next, write a regular expression that will match all

File: frankenstein.txt
the strings in file frankenstein.txt that match the description. Also find out the answer
using the findall() function of the module re.
(a) String ‘Frankenstein’
(b) Numbers appearing in the text
(c) Words that end with substring ‘ible’
(d) Words that start with an uppercase and end with ‘y’
(e) List of strings of the form ‘horror of <lowercase string> <lowercase string>’
(f) Expressions consisting of a word followed by the word ‘death’
(g) Sentences containing the word ‘laboratory’

Chapter 11 Problems 395

11.10 Write a regular expression that matches the attribute href and its value (found in an
HTML start tag) in an HTML source file.

11.11 Write a regular expression that matches strings that represent a price in U.S. dollars.
Your expression should match strings such as '$13.29' and '$1,099.29', for example.
Your expression does not have to match prices beyond $9,999.99.

11.12 Write a regular expression that matches a string that represents a date given in the for-
mat DD/MM/YYY (where DD is a 2-digit day in the month, MM is a 2-digit representation
of a month, and YYYY is a 4-digit year).

11.13 Write a regular expression that matches an email address. This is not easy so your
goal should be to create an expression that matches email addresses as closely as you can.

11.14 Write a regular expression that matches an absolute URL that uses the HTTP proto-
col. Again, this is tricky, and you should strive for the “best” expression you can.

Problems
11.15 In this book, we have seen three ways to remove punctuation from a string: using
string method replace() and string method translate() in Chapter 4, and using reg-
ular expressions in this chapter. Compare the running time of each using the experimental
running time analysis framework from Section 10.3.

11.16 HTML supports ordered and unordered lists. An ordered list is defined using element
ol and each item of the list is defined using element li. An unordered list is defined using
element ul and each item of the list is defined using element li as well. For example, the
unordered list in file w3c.html is described using HTML code:

File: w3c.html
Web for All
Web on Everything

Develop class ListCollector as a subclass of HTMLParser that, when fed an HTML
file, creates a Python list for every ordered or unordered list in the HTML document. Each
item of a Python list should be the text data that appears in one item of the corresponding
HTML list. You may assume that every item of every list in the HTML document contains
only text data (i.e. no other HTML element). The class ListCollector should support
method getLists() that takes no input arguments but returns a list containing all the cre-
ated Python lists.

File: lists.html>>> infile = open('lists.html')
>>> content = infile.read()
>>> infile.close()
>>> myparser = ListCollector()
>>> myparser.feed(content)
>>> myparser.getLists()
[['An item', 'Another', 'And another one'],
['Item one', 'Item two', 'Item three', 'Item four']]

www.ebook3000.com

http://www.ebook3000.org

396 Chapter 11 The Web and Search

11.17 You would like to produce a unique scary dictionary but have a hard time remem-
bering the thousands of words that should go into a dictionary. Your brilliant idea is to im-
plement function scary() that reads in an electronic version of a scary book, say Franken-
stein byMaryWollstonecraft Shelley, picks up all the words in it using a regular expression,
writes them in alphabetic order in a new file called dictionary.txt, and prints them as
well. Your function should take the filename (e.g., frankenstein.txt) as input. The first
few lines in dictionary.txt should be:

File: frankenstein.txt a
abandon
abandoned
abbey
abhor
abhorred
abhorrence
abhorrent
...

11.18 Implement function getContent() that takes as input a URL (as a string) and prints
only the text data content of the associated web page (i.e., no tags). Avoid printing blank
lines that follow a blank line and strip the whitespace in every line printed.

>>> getContent('http://www.nytimes.com/')
The New York Times - Breaking News, World News & Multimedia
Subscribe to The Times

Log In
Register Now

Home Page
...

11.19 Write function emails() that takes a document (as a string) as input and returns the
set of email addresses (i.e., strings) appearing in it. You should use a regular expression to
find the email addresses in the document.

>>> from urllib.request import urlopen
>>> url = 'http://www.cdm.depaul.edu'
>>> content = urlopen(url).read().decode()
>>> emails(content)
{'advising@cdm.depaul.edu', 'wwwfeedback@cdm.depaul.edu',
'admission@cdm.depaul.edu', 'webmaster@cdm.depaul.edu'}

11.20 Develop an application that implements the web search algorithm we developed in
Section 1.4. Your application should take as input a list of web page addresses and a list of
target prices of the same size; it should print those web page addresses that correspond to
products whose price is less than the target price. Use your solution to Problem 11.11 to
find the price in an HTML source file.

11.21 Another useful function in the module urllib.request module is the function
urlretrieve(). It takes as input a URL and a filename (both as strings) and copies the

http://www.nytimes.com
http://www.cdm.depaul.edu
mailto:advising@cdm.depaul.edu
mailto:wwwfeedback@cdm.depaul.edu
mailto:admission@cdm.depaul.edu
mailto:webmaster@cdm.depaul.edu

Chapter 11 Problems 397

content of the resource identified by the URL into a file named filename. Use this function
to develop a program that copies all the web pages from a web site, starting from the main
web page, to a local folder on your computer.

www.ebook3000.com

http://www.ebook3000.org

CHAPTER

12Databases and
Data Processing
12.1 Databases and SQL 400

12.2 Database Programming in Python 410

12.3 Functional Language Approach 415

12.4 Parallel Computing 423

Case Study: Data Interchange 431

Chapter Summary 432

Solutions to Practice Problems 432

Exercises 435

Problems 436

IN THIS CHAPTER, we introduce several approaches to handle the vast
amounts of data that are created, stored, accessed, and processed in
today’s computing applications.

We start by introducing relational databases and the language used to
access them, SQL. Unlike many of the programs we have developed so
far in this book, real-world application programs usually make heavy use
of databases to store and access data. This is because databases store
data in a way that enables easy and efficient access to the data. For this
reason, it is important to develop an early appreciation of the benefits of
databases and how to make effective use of them.

The amount of data generated by web crawlers, scientific
experiments, or the stock markets is so vast that no single computer can
process it effectively. Instead, a joint effort by multiple compute
nodes—whether computers, processors, or cores—is necessary. We
introduce an approach to develop parallel programs that make effective
use of the multiple cores of a modern microprocessor. We then use this to
develop the MapReduce framework, an approach for processing data
developed by Google that can scale from a few cores on a personal
computer to hundreds of thousands of cores in a server farm.

399

www.ebook3000.com

http://www.ebook3000.org

400 Chapter 12 Databases and Data Processing

12.1 Databases and SQL
Data that is processed by a program exists only while the program executes. In order for
data to persist beyond the execution of the program—so it can be processed later by some
other program, for example—the data must be stored in a file.

So far in this book, we have been using standard text files to store data persistently.
The advantage of text files is that they are general purpose and easy to work with. Their
disadvantage is that they have no structure; they have, in particular, no structure that permits
data to be efficiently accessed and processed.

In this section, we introduce a special type of file, called a database file or simply a
database, that stores data in a structured way. The structure makes the data in a database
file amenable to efficient processing, including efficient insertion, update, deletion, and,
especially, access. A database is a far more appropriate data storage approach than a general
text file in many applications, and it is important to know how to work with databases.

Database Tables
In Case Study CS.11, we develop a web crawler—a program that visits web page after web
page by following hyperlinks. The crawler scans the content of each visited web page and
outputs information about it, including all the hyperlink URLs contained in the web page
and the frequency of every word in the page. If we ran the crawler on the set of linked web
pages shown in Figure 12.1, with each page containing names of some world cities with
indicated frequencies, the hyperlink URLs would be output in this format:

URL Link
one.html two.html
one.html three.html
two.html four.html
...

Figure 12.1 Five linked
web pages. Each page
contains a few occurrences
of some of the world’s major
cities. Page one.html, for
example, contains three
occurrences of 'Beijing',
five of 'Paris', and five of
'Chicago'. It also contains
hyperlinks to web pages
two.html and
three.html.

one.html

Beijing × 3
Paris × 5
Chicago × 5

three.html
Chicago × 3
Beijing × 6

two.html

Bogota × 3
Beijing × 2
Paris × 1

four.html

Chicago × 3
Paris × 2
Nairobi × 1

five.html
Nairobi × 7
Bogota × 2

Section 12.1 Databases and SQL 401

The first two lines, for example, indicate that page one.html contains links to pages two.html
and three.html.

The crawler would output the frequency of every word in every web page in this format:

URL Word Freq
one.html Beijing 3
one.html Paris 5
one.html Chicago 5
two.html Bogota 3
...

So page one.html contains three occurrences of 'Beijing', five of 'Paris', and five of
'Chicago'.

Suppose we are interested in analyzing the data set collected by the crawler. We might,
for example, be interested in making queries such as:

1. In which web pages does word X appear in?
2. What is the ranking of web pages containing word X, based on the number of occur-

rences of word X in the page?
3. How many pages contain word X?
4. What pages have a hyperlink to page Y?
5. What is the total number of occurrences of the word ‘Paris’ across all web pages?
6. How many outgoing links does each visited page have?
7. How many incoming links does each visited page have?
8. What pages have a link to a page containing word X?
9. What page containing word X has the most incoming links?
Answering each of these questions on the data set produced by the crawler would be

quite cumbersome. The text file format of the data set would require the file to be read into a
string, and then ad hoc string operations would have to be used to retrieve the relevant data.
For example, to answer question 1, we would have to find all the lines in the file containing
word X, split each line into words (i.e., strings separated by blanks), collect the first word
in every line, and then eliminate duplicate URLs.

An alternative approach would be to save the information gathered by the crawler into a
database file rather than a general-purpose text file. A database file stores data in a structured
way that enables efficient access and processing of the data.

Structuredmeans that data in a database file is stored in one or more tables. Each table is
identified by a name, such as Customers or Products, and consists of columns and rows.
Each column has a name and contains data of a specific type: string, integer, real (float), and
so on. Each row of the table contains data corresponding to one database record.

In our example, the information obtained by the crawler on the web pages shown in
Figure 12.1 could be stored in two database tables shown in Figure 12.2. The first table,
called Hyperlinks, has columns named Url and Link. Each row (record) in that table has
a string X in column Page and a string Y in column Link and refers to a hyperlink with
URL Y in web page X. The second table, called Keywords, has columns named Url, Word,
and Freq. Each record consists of strings X and Y in columns Url and Word, respectively,
and integer Z in column Freq, and corresponds to word Y appearing in web page with URL
X with frequency Z.

With data stored in database tables, we can make data queries using a special database
programming language.

www.ebook3000.com

http://www.ebook3000.org

402 Chapter 12 Databases and Data Processing

Figure 12.2 Database
tables Hyperlink and
Keywords. The tables
contain data processed by a
crawler on the set of pages
shown in Figure 12.1. A row
of Hyperlinks corresponds
to a hyperlink from page
Url to page Link. A row in
Keywords corresponds to a
word occurring in page Url;
the frequency of Word in the
page is Freq.

Url Link
one.html two.html
one.html three.html
two.html four.html
three.html four.html
four.html five.html
five.html one.html
five.html two.html
five.html four.html

Url Word Freq
one.html Beijing 3
one.html Paris 5
one.html Chicago 5
two.html Bogota 3
two.html Beijing 2
two.html Paris 1
three.html Chicago 3
three.html Beijing 6
four.html Chicago 3
four.html Paris 2
four.html Nairobi 5
five.html Nairobi 7
five.html Bogota 2

(a) Table Hyperlinks (b) Table Keywords

Structured Query Language
Database files are not read from or written to by an application program using the usual file
input/output interface. They typically are also not accessed directly. Instead, the application
program usually sends commands to a special type of server program called a database en-
gine or a database management system that manages the database; that program will access
the database file on the application’s behalf.

The commands accepted by database engines are statements written in a query language,
themost popular of which is called StructuredQuery Language, typically referred to as SQL.
Next we introduce a small subset of SQL that we can use to write programs that can make
use of databases, when databases are the right choice for data storage.

Statement SELECT
The SQL statement SELECT is used to make queries into a database. In its simplest form,
this statement is used to retrieve a column of a database table. For example, to retrieve
column Link from table Hyperlinks, you would use:

SELECT Link FROM Hyperlinks

The result of executing this statement is stored in a result table (also called a result set),
illustrated in Figure 12.3(a).

We use uppercase characters to highlight the SQL statement keywords; SQL statements
are not case-sensitive so we could use lowercase characters. In general, the SQL statement
SELECT retrieves a subset of columns from the table and has this format:

SELECT Column(s) FROM TableName

For example, to select the content of columns Url and Word from table Keywords, you
would use:

SELECT Url, Word FROM Keywords

The result table that is obtained is shown in Figure 12.3(b). In order to retrieve all the
columns of table Keywords, the wildcard symbol * may be used:

SELECT * FROM Hyperlinks

Section 12.1 Databases and SQL 403

Link
two.html
three.html
four.html
four.html
five.html
one.html
two.html
four.html

Url Word
one.html Beijing
one.html Paris
one.html Chicago
two.html Bogota
two.html Beijing
two.html Paris
three.html Chicago
three.html Beijing
four.html Chicago
four.html Paris
four.html Nairobi
five.html Nairobi
five.html Bogota

Link
two.html
three.html
four.html
five.html
one.html

SELECT Link
FROM Hyperlinks

(a)

SELECT Url, Word
FROM Keywords

(b)

SELECT DISTINCT Link
FROM Hyperlinks

(c)

Figure 12.3 Result tables
for three queries. Each
table is the result of the
query appearing below it.
Table (a) contains all the
Link values in table
Hyperlinks. Table (b)
contains all the Url and
Word values in table
Keywords. Table (c)
contains the distinct values
in Link values in table
Hyperlinks.

The result table obtained is the original table Hyperlinks shown in Figure 12.2(a).
When we made the query

SELECT Link FROM Hyperlinks

the result set we obtained included multiple copies of the same link. If we wanted to retrieve
only the distinct links in column Link, we could use the SQL DISTINCT keyword

SELECT DISTINCT Link FROM Hyperlinks

and we would obtain the result table shown in Figure 12.3(c).

DETOUR
Getting Your Hands Dirty with SQL

In the next section, we introduce the sqlite3 Python Standard Library module. It
provides an application programming interface (API) that enables Python programs
to access database files and execute SQL commands on them.

If you cannot wait and want to try running the SQL queries we just described,
you can use the SQLite command-line shell. It is a stand-alone program that al-
lows you to interactively execute SQL statements against a database file. You will,
however, first need to download the precompiled shell binary from:

www.sqlite.org/download.html

Save the binary executable in a directory that contains the database file you want
to work with. We illustrate next the usage of the SQLite command-line shell on
database file links.db (whose two tables are shown in Figure 12.2), so we save
the executable in the folder containing that file.

To run the SQLite command-line shell, you first need to open the command-
line shell of your system. Then, switch the directory to the directory containing

www.ebook3000.com

http://www.sqlite.org/download.html
http://www.ebook3000.org

404 Chapter 12 Databases and Data Processing

the sqlite3 executable and run the code shown to access the database file
links.db:

> ./sqlite3 links.db
SQLite version 3.7.7.1
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite>

(This code works on Unix/Linux/Mac OS X systems; on MS Windows, you should
use the command sqlite3.exe links.db.)

At the sqlite> prompt, you can now execute SQL statements against the
database file links.db. The only additional requirement is that your SQL state-
ment must be followed by a semicolon (;). For example:

sqlite> SELECT Url, Word FROM Keywords;
one.html|Beijing
one.html|Paris
one.html|Chicago
two.html|Bogota
two.html|Beijing
...
five.html|Nairobi
five.html|Bogota
sqlite>

(A few lines of output have been omitted.) You can use the SQLite command-line
shell to execute every SQL statement described in this section.

Clause WHERE
In order to answer a question such as “In which pages does word X appear in?” we need
to make a database query that selects only some records in a table (i.e., those that satisfy a
certain condition). The SQLWHERE clause can be added to the SELECT statement to con-
ditionally select records. For example, to select the URLs of web pages containing ‘Paris’,
you would use

SELECT Url FROM Keywords
WHERE Word = 'Paris'

The result set returned is illustrated in Figure 12.4(a). Note that string values in SQL also
use quotes as delimiters, just as in Python. In general, the format of the SELECT statement
with the WHERE clause is:

SELECT column(s) FROM table
WHERE column operator value

The condition column operator value restricts the rows to which the SELECT state-
ment is applied to only those that satisfy the condition. Operators that may appear in the
condition are shown in Table 12.1. Conditions can be enclosed in parentheses, and logical
operators AND and OR can be used to combine two or more conditions. Note: The format

Section 12.1 Databases and SQL 405

Url
one.html
two.html
four.html

Url Freq
one.html 5
four.html 2
two.html 1

SELECT Url FROM Keywords
WHERE Word = 'Paris'

(a)

SELECT Url, Freq FROM Keywords
WHERE Word = 'Paris'
ORDER BY Freq DESC

(b)

Figure 12.4 Result tables
for two queries. Table (a)
shows the URLs of pages
containing the word
'Paris' in table Keywords.
Table (b) shows the ranking
of web pages containing the
word 'Paris', based on
the frequency of the word, in
descending order.

of the WHERE clause is slightly different when the BETWEEN operator is used; it is

WHERE column BETWEEN value1 AND value2

Suppose we would like the result set in Figure 12.4(a) to be ordered by the frequency
of the word 'Paris' in the web page. In other words, suppose the question is “What is the
ranking of web pages containing word X, based on the number of occurrences of string X
in the page?” To order the records in the result set by a specific column value, the SQL
keyword ORDER BY can be used:

SELECT Url,Freq FROM Keywords
WHERE Word='Paris'
ORDER BY Freq DESC

This statement returns the result set shown in Figure 12.4(b). The keyword ORDER BY is
followed by a column name; the records selected will be ordered based on values in that
column. The default is an increasing ordering; in the statement, we used keyword DESC
(which stands for “descending”) to obtain an ordering that puts the page with most occur-
rences of ‘Paris’ first.

Operator Explanation Usage
= Equal column = value
<> Not equal column <> value
> Greater than column > value
< Less than column < value
>= Greater than or equal column >= value
<= Less than or equal column <= value
BETWEEN Within an inclusive range column BETWEEN value1 and value2

Table 12.1 SQL
conditional operators.
Conditions can be enclosed
in parentheses, and logical
operators AND and OR can
be used to combine two or
more conditions.

Practice Problem
12.1

Write an SQL query that returns:
(a) The URL of every page that has a link to web page four.html
(b) The URL of every page that has an incoming link from page four.html
(c) The URL and word for every word that appears exactly three times in the web page

associated with the URL
(d) The URL, word, and frequency for every word that appears between three and five

times, inclusive, in the web page associated with the URL

www.ebook3000.com

http://www.ebook3000.org

406 Chapter 12 Databases and Data Processing

Built-In SQL Functions
To answer queries such as “How many pages contain the word Paris?” we need a way to
count the number of records obtained through a query. SQL has built-in functions for this
purpose. The SQL function COUNT(), when applied to a result table, returns the number
of rows in it:

SELECT COUNT(*) FROM Keywords
WHERE Word = 'Paris'

The result table obtained, shown in Figure 12.5(a), contains just one column and one record.
Note that the column no longer corresponds to a column of the table on which we made the
query.

To answer “What is the total number of occurrences of the word Paris across all web
pages?” we need to add up the values in column Freq of every row of table Keywords
containing ‘Paris’ in the Word column. The SQL function SUM() can be used for this as
shown next:

SELECT SUM(Freq) FROM Keywords
WHERE Word = 'Paris'

The result table is illustrated in Figure 12.5(b).

Figure 12.5 Result tables
for three queries. Table (a)
contains the number of
pages in which the word
‘Paris’ appears. Table (b) is
the total number of
occurrences of the word
‘Paris’ across all web pages
in the database. Table (c)
contains the number of
outgoing hyperlinks for each
web page.

3 8

Url
one.html 2
two.html 1
three.html 1
four.html 1
five.html 3

SELECT COUNT(*)
FROM Keywords
WHERE Word = 'Paris'

(a)

SELECT SUM(Freq)
FROM Keywords
WHERE Word = 'Paris'

(b)

SELECT Url, COUNT(*)
FROM Hyperlinks
GROUP BY Url

(c)

Clause GROUP BY
Suppose you now want to know “How many outgoing links does each web page have?” To
answer this question, you need to add up the number of links for each distinct Url value.
The SQL clause GROUP BY groups the records of a table that have the same value in the
specified column. The next query will group the rows of table Hyperlinks by Url value
and then count the number of rows in each group:

SELECT COUNT(*) FROM Hyperlinks
GROUP BY Url

We modify this query slightly to also include the Web page URL:

SELECT Url, COUNT(*) FROM Hyperlinks
GROUP BY Url

The result of this query is shown in Figure 12.5(c).

Section 12.1 Databases and SQL 407

Practice Problem
12.2

For each question, write an SQL query that answers it:
(a) How many words, including duplicates, does page two.html contain?
(b) How many distinct words does page two.html contain?
(c) How many words, including duplicates, does each web page have?
(d) How many incoming links does each web page have?

The result tables for questions (c) and (d) should include the URLs of the web pages.

Making SQL Queries Involving Multiple Tables
Suppose we want to know “What web pages have a link to a page containing the word
‘Bogota’?” This question requires a lookup of both tables Keywords and Hyperlinks. We
would need to look up Keywords to find out the set S of URLs of pages containing the word
‘Bogota’, and then look up Keywords to find the URLs of pages with links to pages in S.

The SELECT statement can be used on multiple tables. To understand the behavior of
SELECT when used on multiple tables, we develop a few examples. First, the query

SELECT * FROM Hyperlinks, Keywords

returns a table containing 104 records, each a combination of a record in Hyperlinks and a
record in Keywords. This table, shown in Figure 12.6 and referred to as a cross join, has five
named columns corresponding to the two columns of table Hyperlinks and three columns
of table Keywords.

It is, of course, possible to conditionally select some records in the cross join. For ex-
ample, the next query selects the 16 records (2 of which are shown in Figure 12.6) out of
the 104 in the cross join that contain ‘Bogota’ in column Word of table Keywords:

SELECT * FROM Hyperlinks, Keywords
WHERE Keywords.Word = 'Bogota'

Do pay attention to the syntax of this last SQL query. In a query that refers to columns in
multiple tables, you must add the table name and a dot before a column name. This is to
avoid confusion if columns in different tables have the same name. To refer to column Word
of table Keywords, we must use the notation Keywords.Word.

Hyperlinks Keywords
Url Link Url Word Freq
one.html two.html one.html Beijing 3
one.html two.html one.html Paris 5
one.html two.html one.html Chicago 5
one.html two.html two.html Bogota 3
...
five.html four.html four.html Nairobi 5
five.html four.html five.html Nairobi 7
five.html four.html five.html Bogota 2

SELECT * FROM Hyperlinks, Keywords

Figure 12.6 Joining
database tables.
The table consists of every
combination of a row from
table Hyperlinks and a
row from table Keywords.
Since there are 8 rows in
table Hyperlinks and 13 in
table Keywords, the cross
join will have 8× 13 = 104
rows. Only the first 3 and
the last 3 rows are shown.

www.ebook3000.com

http://www.ebook3000.org

408 Chapter 12 Databases and Data Processing

Here is another example. The next query picks up only those records in the cross join
whose Hyperlink.Url and Keyword.Url values match:

SELECT * FROM Hyperlinks, Keywords
WHERE Hyperlinks.Url = Keywords.Url

The result of this query is shown in Figure 12.7.

Figure 12.7 Joining
database tables. The table
consists of those rows of the
table in Figure 12.6 that
have Hyperlinks.Link =
Keywords.Url.

Hyperlinks Keywords
Url Link Url Word Freq
one.html two.html two.html Bogota 3
one.html two.html two.html Beijing 2
one.html two.html two.html Paris 1
one.html three.html three.html Chicago 3
...
five.html four.html four.html Paris 2
five.html four.html four.html Nairobi 5

SELECT * FROM Hyperlinks, Keywords
WHERE Hyperlinks.Url = Keywords.Url

Conceptually, the table in Figure 12.7 consists of records that associate a hyperlink (from
Hyperlinks.Url to Hyperlinks.Link) to a word appearing in the web page pointed to
by the hyperlink (i.e., the web page with URL Hyperlinks.Link).

Now, our original question was “What web pages have a link to a page containing
‘Bogota’?” To answer this question, we need to select records in the cross join whose
Keyword.Word value is ‘Bogota’ and whose Keyword.Url value is equal to the value of
Hyperlinks.Link. Figure 12.8 shows these records.

Figure 12.8 Joining
database tables. This table
consists of those rows of the
table in Figure 12.7 that
have Keyword.Word =
'Bogota'.

Hyperlinks Keywords
Url Link Url Word Freq
one.html two.html two.html Bogota 3
four.html five.html five.html Bogota 2
five.html two.html two.html Bogota 3

SELECT * FROM Hyperlinks, Keywords
WHERE Keywords.Word = 'Bogota' AND Hyperlinks.Link = Keywords.Url

To pick up all the URLs of web pages with a link to a page containing ‘Bogota’, we thus
need to make the query shown and illustrated in Figure 12.9.

Figure 12.9 Joining
database tables. This
result table is just the
column Hyperlinks.Url
of the table shown in
Figure 12.8.

Hyperlinks
Url
one.html
four.html
five.html

SELECT Hyperlinks.Url FROM Hyperlinks, Keywords
WHERE Keywords.Word = 'Bogota' AND Hyperlinks.Link = Keywords.Url

Section 12.1 Databases and SQL 409

Statement CREATE TABLE
Of course, before we can make queries to a database, we need to create the tables and insert
records into it. When a database file is created, it will be empty and contain no table. The
SQL statement CREATE TABLE is used to create a table and has this format:

CREATE TABLE TableName
(
Column1 dataType,
Column2 dataType,
...

)

We spread the statement across multiple lines and indent the column definitions for visual
appeal, nothing else. We could have also written the whole statement in one line.

For example, to define the table Keywords, we would do:
CREATE TABLE Keywords
(
Url text,
Word text,
Freq int

)

The CREATE TABLE statement explicitly specifies the name and data type of each column
of the table. Columns Url and Word are of type text, which corresponds to the Python str
data type. Column Freq stores integer data. Table 12.2 lists a few SQL data types and the
corresponding Python data types.

SQL Type Python Type Explanation
INTEGER int Holds integer values
REAL float Holds floating-point values
TEXT str Holds string values, delimited with quotes
BLOB bytes Holds sequence of bytes

Table 12.2 A few SQL data
types. Unlike Python
integers, the SQL integers
are limited in size (to the
range from −231 to
231 − 1).

Statements INSERT and UPDATE
The SQL statement INSERT is used to insert a new record (i.e., row) into a database table.
To insert a complete row, with a value for every column of the database, this format is used:

INSERT INTO TableName VALUES (value1, value2, ...)

For example, to insert the first row of table Keywords, you would do

INSERT INTO Keywords VALUES ('one.html', 'Beijing', 3)

The SQL statement UPDATE is used to modify the data in a table. Its general format is

UPDATE TableName SET column1 = value1
WHERE column2 = value2

If we wanted to update the frequency count of ‘Bogota’ in page two.html, we would update
the table Keywords in this way:

UPDATE Keywords SET Freq = 4
WHERE Url = 'two.html' AND Word = 'Bogota'

www.ebook3000.com

http://www.ebook3000.org

410 Chapter 12 Databases and Data Processing

DETOUR
More on SQL

SQL is specifically designed to access and process data stored in a relational
database, that is, a collection of data items stored in tables that can be accessed
and processed in various ways. The term relational refers to to the mathematical
concept of relation, which is a set of pairs of items or, more generally, tuples of
items. A table can thus be viewed as a mathematical relation.

In this text, we have been writing SQL statements in an ad hoc fashion. The
advantage of viewing tables through the prism of mathematics is that that the power
of abstraction and mathematics can be brought to bear to understand what can be
computed using SQL and how. Relational algebra is a branch of mathematics that
has been developed for precisely this purpose.

There are good online resources if you would like to learn more about SQL,
including

www.w3schools.com/sql/default.asp

12.2 Database Programming in Python
With a bit of SQL under our belt, we can now write applications that store data in databases
and/or make database queries. In this section, we show how to store the data grabbed by a
web crawler into a database and then mine the database in the context of a simple search en-
gine application.We start by introducing the database API we will use to access the database
files.

Database Engines and SQLite
The Python Standard Library includes a databaseAPImodule sqlite3 that provides Python
developers a simple, built-in API for accessing database files. Unlike typical database APIs,
the sqlite3 module is not an interface to a separate database engine program. It is an
interface to a library of functions called SQLite that accesses the database files directly.

DETOUR
SQLite versus Other Database Management Systems

Application programs do not typically read from and write to database files di-
rectly. Instead, they send SQL commands to a database engine or, more formally,
a relational database management system (RDBMS). An RDBMS manages the
database and accesses the database files on the application’s behalf.

The first RDBMS was developed at the Massachusetts Institute of Technology
in the early 1970s. Significant RDBMSs in use today include commercial ones by
IBM, Oracle, Sybase, and Microsoft as well as open source ones such as Ingres,
Postgres, and MySQL. All these engines run as independent programs outside
of Python. In order to access them, you must use an API (i.e., a Python module)
that provides classes and functions that allow Python applications to send SQL

http://www.w3schools.com/sql/default.asp

Section 12.2 Database Programming in Python 411

statements to the engine.
SQLite, however, is a library of functions that implements an SQL database en-

gine that executes in the context of the application rather than independent from
it. SQLite is extremely lightweight and commonly used by many applications, in-
cluding the Firefox and Opera browsers, Skype, Apple iOS and Google’s Android
operating system, to store data locally. For this reason, SQLite is said to be the
most widely used database engine.

Creating a Database with sqlite3
We now demonstrate the usage of the sqlite3 database API by going over the steps neces-
sary to store word frequencies and hyperlink URLs scanned from aweb page into a database.
First, we need to create a connection to the database file, which is somewhat equivalent to
opening a text file:

>>> import sqlite3
>>> con = sqlite3.connect('web.db')

The function connect() is a function in module sqlite3 that takes as input the name of a
database file (in the current working directory) and returns an object of type Connection,
a type defined in the module sqlite3. The Connection object is associated with the
database file. In the statement, if database file web.db exists in the current working directory,
the Connection object con will represent it; otherwise, a new database file web.db is
created.

Once we have a Connection object associated with the database, we need to create a
cursor object, which is responsible for executing SQL statements. The method cursor()
of the Connection class returns an object of type Cursor:

>>> cur = con.cursor()

A Cursor object is the workhorse of database processing. It supports a method that
takes an SQL statement, as a string, and executes it: method execute(). For example, to
create the database table Keywords, you would just pass the SQL statement, as a string, to
the execute() method:

>>> cur.execute("""CREATE TABLE Keywords (Url text,
Word text,
Freq int)""")

Now that we’ve created table Keywords, we can insert records into it. The SQL INSERT
INTO statement is simply passed as an input to the execute() function:

>>> cur.execute("""INSERT INTO Keywords
VALUES ('one.html', 'Beijing', 3)""")

In this example, the values inserted into the database ('one.html', 'Beijing' and 3) are
"hardcoded" in the SQL statement string expression. That is not typical, as usually SQL
statements executed within a program use values that come from Python variables. In order
to construct SQL statements that use Python variable values, we use a technique similar to
string formatting called parameter substitution.

www.ebook3000.com

http://www.ebook3000.org

412 Chapter 12 Databases and Data Processing

Suppose, for example, that we would like to insert a new record into the database, one
containing values:

>>> url, word, freq = 'one.html', 'Paris', 5

We construct the SQL statement string expression as usual, but we put a ? symbol as a
placeholder wherever a Python variable value should be. This will be the first argument to
the execute() method. The second argument is a tuple containing the three variables:

>>> cur.execute("""INSERT INTO Keywords
VALUES (?, ?, ?)""", (url, word, freq))

The value of each tuple variable is mapped to a placeholder as shown in Figure 12.10.

Figure 12.10 Parameter
substitution. Placeholder ?
is placed in the SQL string
expression where the
variable value should go.

''INSERT INTO Keywords VALUES (? , ? , ?)'', (url , word , freq))

We can also assemble all the values into a tuple object beforehand:

>>> record = ('one.html','Chicago', 5)
>>> cur.execute("INSERT INTO Keywords VALUES (?, ?, ?)", record)

!
CAUTION

Security Issue: SQL Injection

It is possible to construct SQL statement string expressions using format strings
and the string format() method. That is, however, insecure, as it is vulnerable
to a security attack called an SQL injection attack. You should definitely not use
format strings to construct SQL expressions.

Committing to Database Changes and Closing the Database
Changes to a database file—including table creation or deletion or row insertions and updates—
are not actually written to the database file immediately. They are only recorded temporarily,
in memory. In order to ensure that the changes are written, you must commit to the changes
by having the Connection object invoke the commit() method:

>>> con.commit()

When you are done working with a database file, you need to close it just as you would
close a text file. The Connection object invokes the close()method to close the database
file:

>>> con.close()

Practice Problem
12.3

Implement function webData() that takes as input:
1. The name of a database file
2. The URL of a web page
3. A list of all hyperlink URLs in the web page
4. A dictionary mapping each word in the web page to its frequency in the web page

Section 12.2 Database Programming in Python 413

The database file should contain tables named Keywords and Hyperlinks defined as illus-
trated in Figures 12.2(a) and (b). Your function should insert a row into table Hyperlinks
for every link in the list, and a row into table Keywords for every (word, frequency) pair in
the dictionary. You should also commit and close the database file when done.

Querying a Database Using sqlite3
We now show how to make SQL queries from within a Python program. We make queries
against database file links.db, which contains the tables Hyperlinks and Keywords
shown in Figure 12.2.

File: links.db>>> import sqlite3
>>> con = sqlite3.connect('links.db')
>>> cur = con.cursor()

To execute an SQL SELECT statement, we just need to pass the statement, as a string, to
the cursor’s execute() method:

>>> cur.execute('SELECT * FROM Keywords')

The SELECT statement should return a result table. So where is it?
The table is stored in the Cursor object cur itself. If you want it, you need to fetch it,

which you can do in several ways. To obtain the selected records as a list of tuples, you can
use the fetchall() method (of the Cursor class):

>>> cur.fetchall()
[('one.html', 'Beijing', 3), ('one.html', 'Paris', 5),
('one.html', 'Chicago', 5), ('two.html', 'Bogota', 3)
...
('five.html', 'Bogota', 2)]

The other option is to treat the Cursor object cur as an iterator and iterate over it directly:

>>> cur.execute('SELECT * FROM Keywords')
<sqlite3.Cursor object at 0x15f93b0>
>>> for record in cur:

print(record)

('one.html', 'Beijing', 3)
('one.html', 'Paris', 5)
...
('five.html', 'Bogota', 2)

The second approach has the advantage of being memory efficient because no large list is
stored in memory.

What if a query uses a value stored in a Python variable? Suppose we would like to learn
what web pages contain the value of word, where word is defined as:

>>> word = 'Paris'

Once again, we can use parameter substitution:

>>> cur.execute('SELECT Url FROM Keywords WHERE Word = ?', (word,))
<sqlite3.Cursor object at 0x15f9b30>

www.ebook3000.com

http://www.ebook3000.org

414 Chapter 12 Databases and Data Processing

The value of word is placed into the SQL query at the placeholder position. Let’s check that
the query does find all the web pages containing the word ‘Paris’:

>>> cur.fetchall()
[('one.html',), ('two.html',), ('four.html',)]

Let’s try an example that uses values of two Python variables. Suppose we want to know
the URLs of web pages containing more than n occurrences of word, where:

>>> word, n = 'Beijing', 2

We again use parameter substitution, as illustrated in Figure 12.11:

>>> cur.execute("""SELECT * FROM Keywords
WHERE Word = ? AND Freq > ?""", (word, n))

<sqlite3.Cursor object at 0x15f9b30>

Figure 12.11 Two
parameter SQL
substitution. The first
variable is matched to the
first placeholder, and the
second variable to the
second placeholder.

'SELECT * FROM Keywords WHERE Word = ? AND Freq > ? ', (word , n))

!
CAUTION

Two Cursor Pitfalls

If, after executing the cur.execute() statement, you run

>>> cur.fetchall()
[('one.html', 'Beijing', 3), ('three.html', 'Beijing', 6)]

you will get the expected result table. If, however, you run cur.fetchall() again:

>>> cur.fetchall()
[]

you get nothing. The point is this: The fetchall() method will empty the Cursor
object buffer. This is also true if you fetch the records in the result table by iterating
over the Cursor object.

Another problem occurs if you execute an SQL query without fetching the result
of the previous query:

>>> cur.execute("""SELECT Url FROM Keywords
WHERE Word = 'Paris'""")

<sqlite3.Cursor object at 0x15f9b30>
>>> cur.execute("""SELECT Url FROM Keywords

WHERE Word = 'Beijing'""")
<sqlite3.Cursor object at 0x15f9b30>
>>> cur.fetchall()
[('one.html',), ('two.html',), ('three.html',)]

The fetchall() call returns the result of the second query only. The result of the
first is lost!

Section 12.3 Functional Language Approach 415

Practice Problem
12.4

A search engine is a server application that takes a keyword from a user and returns the
URLs of web pages containing the keyword, ranked according to some criterion. In this
practice problem, you are asked to develop a simple search engine that ranks web pages
based on its frequency.

Write a search engine application based on the results of a web crawl that stored word
frequencies in a database table Keywords just like the one in Figure 12.2(b). The search
engine will take a keyword from the user and simply return the web pages containing the
keyword, ranked by the frequency of the keyword, in decreasing order.

>>> freqSearch('links.db')
Enter keyword: Paris
URL FREQ
one.html 5
four.html 2
two.html 1
Enter keyword:

12.3 Functional Language Approach
In this section we showcase MapReduce, a framework for data processing developed by
Google. Its key feature is that it is scalable, which means that it is able to process very
large data sets. It is robust enough to process large data sets using multiple compute nodes,
whether the compute nodes are cores on one microprocessor or computers in a cloud com-
puting platform. In fact, we show in the next section how to extend the frameworkwe develop
here to utilize all the cores of your computer’s microprocessor.

In order to keep our MapReduce implementation as simple as possible, we introduce
a new Python construct, list comprehension. Both list comprehension and the MapReduce
framework have their origins in the functional programming language paradigm, which we
describe briefly.

List Comprehension
When you open a text file and use method readlines() to read the file, you will obtain a
list of lines. Each line in the list ends with the new line character \n. Suppose, for example,
that list lines was obtained that way:

>>> lines
['First Line\n','Second\n','\n', 'and Fourth.\n']

In a typical application, character \n gets in the way of processing the lines, and we need
to remove it. One way to do this would be to use a for loop and the familiar accumulator
pattern:

>>> newlines = []
>>> for i in range(len(lines)):

newlines.append(lines[i][:-1])

In each iteration i of the for loop, the last character of line i (the new line character \n) is

www.ebook3000.com

http://www.ebook3000.org

416 Chapter 12 Databases and Data Processing

removed and the modified line is added to accumulator list newlines:

>>> newlines
['First Line', 'Second', '', 'and Fourth.']

There is another way to accomplish the same task in Python:

>>> newlines = [line[:-1] for line in lines]
>>> newlines
['First Line', 'Second', '', 'and Fourth.']

The Python statement [line[:-1] for line in lines] constructs a new list from list
lines and is Python’s list comprehension construct. Here is how it works. Every item line
in list lines is used in order from left to right to generate an item in the new list by applying
line[:-1] to line. The order in which the items appear in the new list corresponds to the
order in which the corresponding items appear in the original list lines (see Figure 12.12).

Figure 12.12 List
comprehension. List
comprehension constructs
a new list from an existing
list. The same function is
applied to every item of the
existing list to construct
items of the new.

lines:

newlines:

'First Line\n''First Line\n' 'Second\n''Second\n' '\n''\n' 'and Fourth\n''and Fourth\n'

'First Line''First Line' 'Second''Second' '''' 'and Fourth''and Fourth'

[:-1] [:-1] [:-1] [:-1]

More generally, a list comprehension statement has this syntax:

[<expression> for <item> in <sequence/iterator>]

This statement evaluates into a list whose items are obtained by applying <expression>,
a Python expression typically involving variable <item>, to each item of iterable container
<sequence/iterator>. An even more general version may also include an optional con-
ditional expression:

[<expression> for <item> in <sequence/iterator> if <condition>]

In this case, the list obtained has elements that are obtained by applying expression to
each item of sequence/iterator for which condition is true.

Let’s try a few examples. In the next modification of the last example, the new list will
not contain blank strings that correspond to blank lines in the original file:

>>> [line[:-1] for line in lines if line != '\n']
['First Line', 'Second', 'and Fourth.']

In the next example, we construct a list of even numbers up to 20:

>>> [i for i in range(0, 20, 2)]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

In the last example, we compute the lengths of the strings in a list:

>>> [len(word) for word in ['hawk', 'hen', 'hog', 'hyena']]
[4, 3, 3, 5]

Section 12.3 Functional Language Approach 417

Practice Problem
12.5

Let the list of strings words be defined as:

>>> words = ['hawk', 'hen', 'hog', 'hyena']

Write list comprehension statements that use words as the original list to construct lists:
(a) ['Hawk', 'Hen', 'Hog', 'Hyena']
(b) [('hawk', 4), ('hen', 3), ('hog', 3), ('hyena', 5)]
(c) [[('h', 'hawk'), ('a', 'hawk'), ('w', 'hawk'), ('k', 'hawk')],

[('h', 'hen'), ('e', 'hen'), ('n', 'hen')], [('h', 'hog'),
('o', 'hog'), ('g', 'hog')], [('h', 'hyena'), ('y', 'hyena'),
('e', 'hyena'), ('n', 'hyena'), ('a', 'hyena')]]

The list in (c) requires some explanation. For every string s of the original list a new list of
tuples is created, such that each tuple maps a character of the string s to the string s itself.

DETOUR
Functional Programming

List comprehension is a programming construct borrowed from functional program-
ming languages. With origins in the SETL and NPL programming languages, list
comprehension became more widely known when incorporated in the functional
programming language Haskell and, especially, Python.

The functional language paradigm differs from the imperative, declarative, and
object-oriented paradigms in that it does not have “statements,” only expressions.
A functional language program is an expression that consists of a function call that
passes data and possible other functions as arguments. Examples of functional
programming languages include Lisp, Scheme, Clojure, ML, Erlang, Scala, F#, and
Haskell.

Python is not a functional language, but it borrows a few functional language
constructs that help create cleaner, shorter Python programs.

MapReduce Problem-Solving Framework
We consider, one last time, the problem of computing the frequency of every word in a
string. We have used this example to motivate the dictionary container class and also to
develop a very simple search engine. We use this problem now to motivate a new approach,
called MapReduce, developed by Google for solving data processing problems.

Suppose we would like to compute the frequency of every word in the list

>>> words = ['two', 'three', 'one', 'three', 'three',
'five', 'one', 'five']

The MapReduce approach for doing this takes three steps.
In the first step, we create a tuple (word, 1) for every word in the list words. The

pair (word, 1) is referred to as a (key, value) pair, and the value of 1 for every key word
captures the count of that particular instance of a word. Note that there is a (word, 1) pair
for every occurrence of word in the original list words.

www.ebook3000.com

http://www.ebook3000.org

418 Chapter 12 Databases and Data Processing

Figure 12.13 MapReduce
for word frequency. List
comprehension is used
to map each word in list
words to a list [(word,1)].
Those new lists are stored
in list intermediate1.
Then all [(word,1)] lists of
intermediate1 containing
the same word are pulled
together to create tuple
(word, [1,1,...,1]). In
the last step, the 1s in every
such tuple are added up into
variable count, and tuple
(word, count) is added to
list frequency.

'two'

'three'

'one'

'three'

'three'

'five'

'one'

'five'

words

[('two', 1)]

[('three', 1)]

[('one', 1)]

[('three', 1)]

[('three', 1)]

[('five', 1)]

[('one', 1)]

[('five', 1)]

intermediate1

('two', [1])

('three', [1,1,1])

('one', [1,1])

('five', [1,1])

intermediate2

('two', 1)

('three', 3)

('one', 2)

('five', 2)

frequency

Each (key,value) pair is stored in its own list, and all these single-element lists are con-
tained in the list intermediate1, as shown in Figure 12.13.

The intermediate step of MapReduce pulls together all (word, 1) pairs with the same
word key and create a new (key, value) pair (word, [1,1,...,1]) where [1,1,...,1]
is a list of all the values 1 pulled together. Note that there is a 1 in [1,1,...,1] for every
occurrence of word in the original list words. We refer to the list of (key, value) pairs
obtained in this intermediate step as intermediate2 (see Figure 12.13).

In the final step, a new pair (word, count) is constructed by adding up all the 1s in
every (word, [1,1,...,1]) of intermediate2, as shown in Figure 12.13. We call this
final list of (key, value) pairs result.

Let’s see now how to do these steps in Python. The first step consists of constructing a
new list from list words by applying function occurrence() to every word in list words:

Module: ch12.py
1 def occurrence(word):
2 'returns list containing tuple (word, 1)'
3 return [(word, 1)]

Using list comprehension, we can express the first step of MapReduce succinctly:

>>> intermediate1 = [occurrence(word) for word in words]
>>> intermediate1
[[('two', 1)], [('three', 1)], [('one', 1)], [('three', 1)],
[('three', 1)], [('five', 1)], [('one', 1)], [('five', 1)]]

This step is referred to as theMap step of MapReduce, and function occurrence() is said
to be the map function of the word frequency problem.

Section 12.3 Functional Language Approach 419

!
CAUTION

Map Step Returns a List of Tuples

The function occurrence() returns a list containing just one tuple. You may won-
der why it does not return just the tuple itself.

The reason is that our goal is not just to solve the word frequency problem.
Our goal is to develop a general framework that can be used to solve a range of
problems. For problems other than the word frequency problem, the Map step may
return more than one tuple. We will see an example of this later in this section. So
we insist that the map function returns a list of tuples.

The intermediate step of MapReduce, called the Partition step, pulls together all pairs

(key, value1), (key, value2), ... (key, valuek)

contained in (sublists of) intermediate1 with the same key. For each unique key, a new
(key, values) pair is constructed where values is the list [value1, value2, ...,
valuek]. This step is encapsulated in function partition():

Module: ch12.py
1 def partition(intermediate1):
2 '''intermediate1 is a list containing [(key, value)] lists;
3 returns iterable container with a (key, values) tuple for
4 every unique key in intermediate1; values is a list that
5 contains all values in intermediate1 associated with key
6 '''
7 dct = {} # dictionary of (key, value) pairs
8

9 # for every (key, value) pair in every list of intermediate1
10 for lst in intermediate1:
11 for key, value in lst:
12

13 if key in dct: # if key already in dictionary dct, add
14 dct[key].append(value) # value to list dct[key]
15 else: # if key not in dictionary dct, add
16 dct[key] = [value] # (key, [value]) to dct
17

18 return dct.items() # return container of (key, values) tuples

Function partition() takes list intermediate1 and constructs list intermediate2:

>>> intermediate2 = partition(intermediate1)
>>> intermediate2
dict_items([('one', [1, 1]), ('five', [1, 1]), ('two', [1]),

('three', [1, 1, 1])])

Finally, the last step consists of constructing a new (key, count) pair from each (key,
values) pair of intermediate2 by just accumulating the values in values:

Module: ch12.py
1 def occurrenceCount(keyVal):
2 return (keyVal[0], sum(keyVal[1]))

www.ebook3000.com

http://www.ebook3000.org

420 Chapter 12 Databases and Data Processing

Again, list comprehension provides a succinct way to perform this step:

>>> [occurrenceCount(x) for x in intermediate2]
[('six', 1), ('one', 2), ('five', 2), ('two', 1), ('three', 3)]

This is referred to as the Reduce step of MapReduce. The function occurrenceCount()
is referred to as the reduce function for the word frequency problem.

MapReduce, in the Abstract
The MapReduce approach we used to compute word frequencies in the previous section
may seem like an awkward and strange way to compute word frequencies. It can be viewed,
as a more complicated version of the dictionary-based approach we have seen in Chapter 6.
There are, however, benefits to the MapReduce approach. The first benefit is that the ap-
proach is general enough to apply to a range of problems. The second benefit is that it is
amenable to an implementation that uses not one but many compute nodes, whether it is
several cores on a central processing unit (CPU) or thousands in a cloud computing system.

We go into the second benefit in more depth in the next section. What we would like to
do now is abstract the MapReduce steps so the framework can be used in a range of different
problems, by simply defining the problem specific map and reduce functions. In short, we
would like to develop a class SeqMapReduce that can be used to compute word frequencies
as easily as this:

>>> words = ['two', 'three', 'one', 'three', 'three',
'five', 'one', 'five']

>>> smr = SeqMapReduce(occurrence, occurrenceCount)
>>> smr.process(words)
[('one', 2), ('five', 2), ('two', 1), ('three', 3)]

We can then use the SeqMapReduce object smr to compute the frequencies of other things.
For example, numbers:

>>> numbers = [2,3,4,3,2,3,5,4,3,5,1]
>>> smr.process(numbers)
[(1, 1), (2, 2), (3, 4), (4, 2), (5, 2)]

Furthermore, by specifying other, problem-specific, map and reduce functions, we can solve
other problems.

These specifications suggest that the class SeqMapReduce should have a constructor that
takes the map and reduce functions as input. The method process should take an iterable
sequence containing data and perform the Map, Partition, and Reduce steps:

Module: ch12.py
1 class SeqMapReduce(object):
2 'a sequential MapReduce implementation'
3 def __init__(self, mapper, reducer):
4 'functions mapper and reducer are problem specific'
5 self.mapper = mapper
6 self.reducer = reducer
7 def process(self, data):
8 'runs MapReduce on data with mapper and reducer functions'
9 intermediate1 = [self.mapper(x) for x in data] # Map

10 intermediate2 = partition(intermediate1)
11 return [self.reducer(x) for x in intermediate2] # Reduce

Section 12.3 Functional Language Approach 421

!
CAUTION

Input to MapReduce Should Be Immutable

Suppose we would like to compute frequencies of sublists in list lists:

>>> lists = [[2,3], [1,2], [2,3]]

It would seem that the same approach we used to count strings and numbers would
work:

>>> smr = SeqMapReduce(occurrence, occurrenceCount)
>>> smr.process(lists)
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'

So . . . what happened? The problem is that lists cannot be used as keys of the
dictionary dct inside the implementation of function partition(). Our approach
can work only with hashable, immutable data types. By changing the lists to tuples,
we are back in business:

>>> lists = [(2,3), (1,2), (2,3)]
>>> m.process(lists)
[((1, 2), 1), ((2, 3), 2)]

Inverted Index
We now apply the MapReduce framework to solve the inverted index problem (also referred
to as the reverse index problem). There are many versions of this problem. The one we
consider is this: Given a bunch of text files, we are interested in finding out which words
appear in which file. A solution to the problem could be represented as a mapping that maps
each word to the list of files containing it. This mapping is called an inverted index.

For example, suppose we want to construct the inverted index for text files a.txt,
b.txt, and c.txt shown in Figure 12.14.

a.txt
Paris, Miami
Tokyo, Miami

b.txt
Tokyo
Tokyo, Quito

c.txt
Cairo, Cairo
Paris

Figure 12.14 Three text
files. An inverted index
maps each word to the list
of files containing the word.

An inverted indexwouldmap, say, 'Paris' to list ['a.txt', 'c.txt'] and 'Quito'
to ['b.txt']. The inverted index should thus be:

[('Paris', ['c.txt', 'a.txt']), ('Miami', ['a.txt']),
('Cairo', ['c.txt']), ('Quito', ['b.txt']),
('Tokyo', ['a.txt', 'b.txt'])]

To use MapReduce to obtain the inverted index, we must define the map and reduce
functions that will take the list of file names

['a.txt', 'b.txt', 'c.txt']

and produce the inverted index. Figure 12.15 illustrates how these functions should work.

www.ebook3000.com

http://www.ebook3000.org

422 Chapter 12 Databases and Data Processing

Figure 12.15 MapReduce
for the inverted index
problem. The Map step
creates a tuple (word,
file) for every word in a
file. The Partition step
collects all the (word,
file) tuples with the same
word. The output of the
Partition step is the desired
inverted index that maps
words to the files they are
contained in. The Reduce
step does not make any
changes to the output of
the Partition step.

a.txt

b.txt

c.txt

docs

(Tokyo, a.txt)

(Paris, a.txt)

(Miami, a.txt)

(Tokyo, b.txt)

(Quito, b.txt)

(Cairo, c.txt)

(Paris, c.txt)

intermediate1

(Tokyo, [a.txt,b.txt])

(Paris, [a.txt,c.txt])

(Miami, [a.txt])

(Quito, [b.txt])

(Cairo, [c.txt])

intermediate2

(...)

(...)

(...)

(...)

(...)

In the Map phase, the map function creates a list for every file. This list contains a tuple
(word, file) for every word word in the file. Function getWordsFromFile() imple-
ments the map function:

Module: ch12.py
1 from string import punctuation
2 def getWordsFromFile(file):
3 '''returns list of items [(word, file)]
4 for every word in file'''
5 infile = open(file)
6 content = infile.read()
7 infile.close()
8

9 # remove punctuation (covered in Section 4.1)
10 transTable = str.maketrans(punctuation, ' '*len(punctuation))
11 content = content.translate(transTable)
12

13 # construct set of items [(word, file)] with no duplicates
14 res = set()
15 for word in content.split():
16 res.add((word, file))
17 return res

Note that this map function returns a set, not a list. That is not a problem because the only
requirement is that the returned container is iterable. The reason we use a set is to ensure
there are no duplicate entries [(word, file)], as they are not necessary and will only
slow down the Partition and Reduce steps.

After the Map step, the partition function will pull together all tuples (word, file)
with the same value of word and merge them into one tuple (word, files), where files
is the list of all files containing word. In other words, the partition function constructs the
inverted index.

Section 12.4 Parallel Computing 423

This means that the Reduce step does not need to do anything. The reduce function just
copies items to the result list, the inverted index.

Module: ch12.py
1 def getWordIndex(keyVal):
2 return keyVal

To compute the inverted index, you only need to do:

File: a.txt, b.txt, c.txt>>> files = ['a.txt', 'b.txt', 'c.txt']
>>> print(SeqMapReduce(getWordsFromFile, getWordIndex).

process(files))
[('Paris', ['c.txt', 'a.txt']), ('Miami', ['a.txt']),
('Cairo', ['c.txt']), ('Quito', ['c.txt', 'b.txt']),
('Tokyo', ['a.txt', 'b.txt'])]

Practice Problem
12.6

Develop a MapReduce-based solution constructing an inverted “character index” of a list
of words. The index should map every character appearing in at least one of the words to a
list of words containing the character. Your work consists of designing the mapper function
getChars() and reducer function getCharIndex().

>>> mp = SeqMapReduce(getChars, getCharIndex)
>>> mp.process(['ant', 'bee', 'cat', 'dog', 'eel'])
[('a', ['ant', 'cat']), ('c', ['cat']), ('b', ['bee']),
('e', ['eel', 'bee']), ('d', ['dog']), ('g', ['dog']),
('l', ['eel']), ('o', ['dog']), ('n', ['ant']),
('t', ['ant', 'cat'])]

12.4 Parallel Computing
Today’s computing often requires the processing of a tremendous amount of data. A search
engine continuously extracts information out of billions of web pages. Particle physics ex-
periments run at the Large Hadron Collider near Geneva, Switzerland, generate petabytes
of data per year that must be processed to answer basic questions about the universe. Com-
panies like Amazon, eBay, and Facebook keep track of millions of transactions daily and
use them in their data mining applications.

No computer is powerful enough to tackle the type of problems we have just described
by itself. Today, large data sets are processed in parallel using many, many processors. In
this section, we introduce parallel programming and a Python API that enables us to take
advantage of the multiple cores available on most current computers. While the practical
details of parallel computing on a distributed system is beyond the scope of this text, the
general principles we introduce in this chapter apply to such computing as well.

Parallel Computing
For several decades and until the mid-2000s, microprocessors on most personal computers
had a single core (i.e., processing unit). That meant that only one program could execute at a
time on suchmachines. Starting in themid-2000s,majormicroprocessormanufacturers such

www.ebook3000.com

http://www.ebook3000.org

424 Chapter 12 Databases and Data Processing

as Intel and AMD started selling microprocessors with multiple processing units, typically
referred to as cores. Almost all personal computers sold today and many wireless devices
have microprocessors with two or more cores. The programs we have developed so far have
not made use of more than one core. To take advantage of them, we need to use one of the
Python parallel programming APIs.

DETOUR
Moore’s Law

Intel cofounder Gordon Moore predicted in 1965 that the number of transistors on a
microprocessor chip would double about every two years. Amazingly, his prediction
has held up so far. Thanks to the exponential increase in transistor density, the
processing power of microprocessors, measured in the number of instructions per
second, has seen tremendous growth over the last several decades.

Increasing transistor density can improve the processing power in two ways.
One way is to use the fact that if transistors are closer together, then the instruc-
tions can execute quicker. We can thus reduce the time between the execution of
instructions (i.e., increase the processor clock rate). Until the mid-2000s, that was
exactly what microprocessor manufacturers were doing.

The problem with increasing the clock rate is that it also increases power con-
sumption, which in turn creates problems such as overheating. The other way to in-
crease processing power is to reorganize the denser transistors into multiple cores
that can execute instructions in parallel. This approach also ends up increasing the
number of instructions that can be executed per second. Recently, processor man-
ufacturers have begun using this second approach, producing processors with two,
four, eight, and even more cores. This fundamental change in the architecture of
microprocessors is an opportunity but also a challenge. Writing programs that use
multiple cores is more complex than single-core programming.

Class Pool of Module multiprocessing
If your computer has a microprocessor with multiple cores, you can split the execution of
some Python programs into several tasks, which can be run in parallel by different cores.
One way to do this in Python is by using the Standard Library module multiprocessing.

If you do not know the number of cores on your computer, you can use the function
cpu_count() defined in module multiprocessing to find out:

>>> from multiprocessing import cpu_count
>>> cpu_count()
8

Your computer may have fewer cores, or more! With eight cores, you could, theoretically,
execute programs eight times faster. To achieve that speed, you would have to split the prob-
lem you are solving into eight pieces of equal size and then let each core handle a piece
in parallel. Unfortunately, not all problems can be broken into equal-size pieces. But there
are problems, especially data processing problems, that can be, and they are motivating this
discussion.

We use the class Pool in module multiprocessing to split a problem and execute its
pieces in parallel. A Pool object represents a pool of one or more processes, each of which
is capable of executing code independently on an available processor core.

Section 12.4 Parallel Computing 425

DETOUR
What Is a Process?

A process is typically defined as a “program in execution.” But what does that really
mean? When a program executes on a computer, it executes in an “environment”
that keeps track of all the program instructions, variables, program stack, the state
of the CPU, and so on. This “environment” is created by the underlying operating
system to support the execution of the program. This “environment” is what we refer
to as a process.

Modern computers are multiprocessing, which means that they can run multi-
ple programs or, more precisely, multiple processes concurrently. The term con-
currently does not really mean “at the same time.” On a single-core microprocessor
computer architecture, only one process can really be executing at a given point.
What concurrently means in that case is that at any given point in time, there are
multiple processes (programs in execution), one of which is actually using the CPU
and making progress; the other processes are interrupted, waiting for the CPU to
be allocated to them by the operating system. In a multicore computer architec-
ture, the situation is different: Several processes can truly run at the same time, on
different cores.

We illustrate the usage of the class Pool in a simple example:

Module: parallel.py
1 from multiprocessing import Pool
2

3 pool = Pool(2) # create pool of 2 processes
4

5 animals = ['hawk', 'hen', 'hog', 'hyena']
6 res = pool.map(len, animals) # apply len() to every animals item
7

8 print(res) # print the list of string lengths

This program uses a pool of two processes to compute the lengths of strings in list animals.
When you execute this program in your system’s command shell (not the Python interactive
shell), you get:

> python parallel.py
[4, 3, 3, 5]

So, in program parallel.py, the map() method applies function len() to every item of
list animals and then returns a new list from the values obtained. Expression

pool.map(len, animals)

and the list comprehension expression

[len(x) for x in animals]

really do the same thing and evaluate to the same value. The only difference is how they do
it.

In the Pool-based approach, unlike the list comprehension approach, two processes are
used to apply the function len() to each item of list animals. If the host computer has

www.ebook3000.com

http://www.ebook3000.org

426 Chapter 12 Databases and Data Processing

at least two cores, the processor can execute the two processes at the same time (i.e., in
parallel).

To demonstrate that the two processes execute at the same time, we modify the pro-
gram parallel.py to explicitly show that different processes handle different items of list
animal. To differentiate between processes, we use the convenient fact that every process
has a unique integer ID. The ID of process can be obtained using the getpid() function of
the os Standard Library module:

Module: parallel2.py
1 from multiprocessing import Pool
2 from os import getpid
3

4 def length(word):
5 'returns length of string word'
6

7 # print the id of the process executing the function
8 print('Process {} handling {}'.format(getpid(), word))
9 return len(word)

10

11 # main program
12 pool = Pool(2)
13 res = pool.map(length, ['hawk', 'hen', 'hog', 'hyena'])
14 print(res)

The function length() takes a string and returns its length, just like len(); it also prints
the ID of the process executing the function. When we run the previous program at the
command line (not in the Python interactive shell), we get something like:

> python parallel2.py
Process 36715 handling hawk
Process 36716 handling hen
Process 36716 handling hyena
Process 36715 handling hog
[4, 3, 3, 5]

Thus, the process with ID 36715 handled strings 'hawk' and 'hog', while the process
with ID 36716 handled strings 'hen' and 'hyena'. On a computer with multiple cores,
the processes can execute completely in parallel.

!
CAUTION

Why Don’t We Run Parallel Programs in the Interactive Shell?

For technical reasons that go beyond the scope of this book, it is not possible, on
some operating system platforms, to run programs using Pool in the interactive
shell. For this reason, we run all programs that use a pool of processes in the
command-line shell of the host operating system.

To change the pool size in parallel2.py, you only need to change the input argument
of the Pool constructor. When a pool is constructed with the default Pool() constructor
(i.e., when the pool size is not specified), Python will decide on its own howmany processes
to assign. It will not assign more processes than there are cores on the host system.

Section 12.4 Parallel Computing 427

Practice Problem
12.7

Write program notParallel.py that is a list comprehension version of parallel2.py.
Run it to check how many processes it uses. Then run parallel2.py several times, with a
pool size of 1, 3, and then 4. Also run it with the default Pool() constructor.

Parallel Speedup
To illustrate the benefit of parallel computing, we consider a computationally intensive prob-
lem from number theory. We would like to compare the distribution of prime numbers in
several arbitrary ranges of integers. More precisely, we want to count the number of prime
numbers in several equal-size ranges of 100,000 large integers.

Suppose one of the ranges is from 12,345,678 up to but not including 12,445,678. To
find the prime numbers in this range, we can simply iterate through the numbers in the range
and check each whether it is prime. Function countPrimes() implements this idea using
list comprehension:

Module: primeDensity.py
1 from os import getpid
2

3 def countPrimes(start):
4 'returns the number of primes in range [start, start+rng)'
5

6 rng = 100000
7 formatStr = 'process {} processing range [{}, {})'
8 print(formatStr.format(getpid(), start, start+rng))
9

10 # sum up numbers i in range [start, start_rng) that are prime
11 return sum([1 for i in range(start,start+rng) if prime(i)])

The function prime() takes a positive integer and returns True if it is prime, False other-
wise. It is the solution to Problem 5.36. We use the next program to compute the execution
time of function countPrimes():

Module: primeDensity.py
1 from multiprocessing import Pool
2 from time import time
3

4 if __name__ == '__main__':
5

6 p = Pool()
7 # starts is a list of left boundaries of integer ranges
8 starts = [12345678, 23456789, 34567890, 45678901,
9 56789012, 67890123, 78901234, 89012345]

10

11 t1 = time() # start time
12 print(p.map(countPrimes, starts)) # run countPrimes()
13 t2 = time() # end time
14

15 p.close()
16 print('Time taken: {} seconds.'.format(t2-t1))

www.ebook3000.com

http://www.ebook3000.org

428 Chapter 12 Databases and Data Processing

If we modify the line p = Pool() to p = Pool(1), and thus have a pool with only one
process, we get this output:

> python map.py
process 4176 processing range [12345678, 12445678]
process 4176 processing range [23456789, 23556789]
process 4176 processing range [34567890, 34667890]
process 4176 processing range [45678901, 45778901]
process 4176 processing range [56789012, 56889012]
process 4176 processing range [67890123, 67990123]
process 4176 processing range [78901234, 79001234]
process 4176 processing range [89012345, 89112345]
[6185, 5900, 5700, 5697, 5551, 5572, 5462, 5469]
Time taken: 47.84 seconds.

In other words, a single process handled all eight integer ranges and took 47.84 seconds.
(The run time will likely be different on your machine.) If we use a pool of two processes,
we get a dramatic improvement in running time: 24.60 seconds. So by using two processes
running on two cores instead of just one process, we decreased the running time by almost
one-half.

A better way to compare sequential and parallel running times is the speedup, that is,
the ratio between the sequential and the parallel running times. In this particular case, we
have a speedup of

47.84

24.6
≈ 1.94.

What this means is that with two processes (running on two separate cores), we solved the
problem 1.94 times faster, or almost twice as fast. Note that this is, essentially, the best we
can hope for: Two processes executing in parallel can be at most twice as fast as one process.

With four processes, we get further improvement in running time: 16.78 seconds, which
corresponds to a speedup of 47.84/16.78 ≈ 2.85. Note that the best possible speedup
with four processes running on four separate cores is 4. With eight processes, we get some
further improvement in running time: 14.29 seconds, which corresponds to a speedup of
47.84/14.29 ≈ 3.35. The best possible is, of course, 8.

MapReduce, in Parallel
With a parallel version of list comprehension in our hands, we can modify our first, sequen-
tial MapReduce implementation to one that can run the Map and Reduce steps in parallel.
The only modification to the constructor is the addition of an optional input argument: the
desired number of processes.

Module: ch12.py
1 from multiprocessing import Pool
2 class MapReduce(object):
3 'a parallel implementation of MapReduce'
4

5 def __init__(self, mapper, reducer, numProcs=None):
6 'initialize map and reduce functions, and process pool'
7 self.mapper = mapper
8 self.reducer = reducer
9 self.pool = Pool(numProcs)

Section 12.4 Parallel Computing 429

The method process() is modified so that it uses the Pool method map() instead of list
comprehension in the Map and Reduce steps.

Module: ch12.py
1 def process(self, data):
2 'runs MapReduce on sequence data'
3

4 intermediate1 = self.pool.map(self.mapper, data) # Map
5 intermediate2 = partition(intermediate1)
6 return self.pool.map(self.reducer, intermediate2) # Reduce

Parallel versus Sequential MapReduce
We use the parallel implementation of MapReduce to solve the name cross-checking prob-
lem. Suppose that tens of thousands of previously classified documents have just been posted
on the web and that the documents mention various people. You are interested in finding
which documents mention a particular person, and you want to do that for every person
named in one ormore documents. Conveniently, people’s names are capitalized, which helps
you narrow down the words that can be proper names.

The precise problem we are then going to solve is this: Given a list of URLs (of the
documents), we want to obtain a list of pairs (proper, urlList) in which proper is a
capitalized word in any document and urlList is a list of URLs of documents containing
proper. In order to use MapReduce, we need to define the map and reduce functions.

The map function takes a URL and should produce a list of (key, value) pairs. In this
particular problem, there should be a (key, value) pair for every capitalized word in the
document that the URL identifies, with the word being the key and the URL being the
value. So the map function is then:

Module: ch12.py
1 from urllib.request import urlopen
2 from re import findall
3

4 def getProperFromURL(url):
5 '''returns list of items [(word, url)] for every word
6 in the content of web page associated with url'''
7

8 content = urlopen(url).read().decode()
9 pattern = '[A-Z][A-Za-z\'\-]*' # RE for capitalized words

10 propers = set(findall(pattern, content)) # removes duplicates
11

12 res = [] # for every capitalized word
13 for word in propers: # create pair (word, url)
14 res.append((word, url))
15 return res

A regular expression, defined in line 8, is used to find capitalized words in line 9. (To review
regular expressions, see Section 11.3.) Duplicate words are removed by converting the list
returned by re function findall() to a set; we do that because duplicates are not needed
and to speed up the Partition and Reduce steps that follow.

The Partition step of MapReduce takes the output of the Map step and pulls together all
the (key, value) pairs with the same key. In this particular problem, the result of the Partition

www.ebook3000.com

http://www.ebook3000.org

430 Chapter 12 Databases and Data Processing

step is a list of pairs (word, urls) for every capitalized word; urls refers to the list of
URLs of documents containing word. Since these are exactly the pairs we need, no further
processing is required in the Reduce step:

Module: ch12.py
1 def getWordIndex(keyVal):
2 'returns input value'
3 return keyVal

How do our sequential and parallel implementations compare? In the next code, we
develop a test program that compares the running times of the sequential implementation
and a parallel implementation with four processes. (The tests were run on a machine with
eight cores.) Instead of classified documents we use, as our test bed, eight novels by Charles
Dickens, publicly made available by the Project Gutenberg:

Module: ch12.py
1 from time import time
2

3 if __name__ == '__main__':
4

5 urls = [# URLs of eight Charles Dickens novels
6 'http://www.gutenberg.org/cache/epub/2701/pg2701.txt',
7 'http://www.gutenberg.org/cache/epub/1400/pg1400.txt',
8 'http://www.gutenberg.org/cache/epub/46/pg46.txt',
9 'http://www.gutenberg.org/cache/epub/730/pg730.txt',

10 'http://www.gutenberg.org/cache/epub/766/pg766.txt',
11 'http://www.gutenberg.org/cache/epub/1023/pg1023.txt',
12 'http://www.gutenberg.org/cache/epub/580/pg580.txt',
13 'http://www.gutenberg.org/cache/epub/786/pg786.txt']
14

15 t1 = time() # sequential start time
16 SeqMapReduce(getProperFromURL, getWordIndex).process(urls)
17 t2 = time() # sequential stop time, parallel start time
18 MapReduce(getProperFromURL, getWordIndex, 4).process(urls)
19 t3 = time() # parallel stop time
20

21 print('Sequential: {:5.2f} seconds.'.format(t2-t1))
22 print('Parallel: {:5.2f} seconds.'.format(t3-t2))

Let’s run this test:

> python ch12.py
Sequential: 19.89 seconds.
Parallel: 14.81 seconds.

So, with four cores, we decreased the running time by 5.08 seconds, which corresponds to
a speedup of

19.89

14.81
≈ 1.34.

The best possible speedup with four cores is 4. In the previous example, we are using four
cores to get a speedup of 1.34, which is not close to the theoretically best speedup of 4.

http://www.gutenberg.org/cache/epub/2701/pg2701.txt
http://www.gutenberg.org/cache/epub/1400/pg1400.txt
http://www.gutenberg.org/cache/epub/46/pg46.txt
http://www.gutenberg.org/cache/epub/730/pg730.txt
http://www.gutenberg.org/cache/epub/766/pg766.txt
http://www.gutenberg.org/cache/epub/1023/pg1023.txt
http://www.gutenberg.org/cache/epub/580/pg580.txt
http://www.gutenberg.org/cache/epub/786/pg786.txt

Chapter 12 Case Study: Data Interchange 431

DETOUR
Why Cannot We Get a Better Speedup?

One reason we cannot get a better speedup is that there is always overhead when
running a program in parallel. The operating system has extra work to do when
managing multiple processes running on separate cores. Another reason is that
while our parallel MapReduce implementation executes the Map and Reduce steps
in parallel, the Partition step is still sequential. On problems that produce very large
intermediate lists to be processed in the Partition step, the Partition step will take
the same long time as on the sequential implementation. This effectively reduces
the benefit of parallel Map and Reduce steps.

It is possible do the Partition step in parallel, but to do so you would need ac-
cess to an appropriately configured distributed file system of the kind Google uses.
In fact, this distributed file system is the real contribution made by Google in devel-
oping the MapReduce framework. To learn more about it, you can read the original
Google paper that describes the framework:

http://labs.google.com/papers/mapreduce.html

In Practice Problem 12.8, you will develop a program that has a more time-
intensive Map step and a less intensive Partition step; you should see a more im-
pressive speedup.

Practice Problem
12.8

You are given a list of positive integers, and you need to compute a mapping that maps a
prime number to those integers in the list that the prime number divides. For example, if the
list is [24,15,35,60], then the mapping is

[(2, [24, 60]), (3, [15, 60]), (5, [15, 35]), (7, [35])]

(Prime number 2 divides 24 and 60, prime number 3 divides 15 and 60, etc.)
You are told that your application will get very large lists of integers as input. Therefore,

you must use the MapReduce framework to solve this problem. In order to do so, you will
need to develop amap and a reduce function for this particular problem. If named mapper()
and reducer(), you would use them in this way to get the mapping described:

>>> SeqMapReduce(mapper, reducer).process([24,15,35,60])

After implementing the map and reduce functions, compare the running times of your
sequential and parallel MapReduce implementations, and compute the speedup, by devel-
oping a test program that uses a random sample of 64 integers between 10,000,000 and
20,000,000. You may use the sample() function defined in the module random().

Case Study: Data Interchange
In Case Study CS.12, we have developed a simple web crawler that collects information
about web pages it visits. This information can in turn be used to build a search engine. By
saving the crawl data into a file, we can make that data available to other programs. In Case
Study CS.12, we look at data interchange or how to format and save data so it is accessible,
easily and efficiently, to any program that requires it.

www.ebook3000.com

http://labs.google.com/papers/mapreduce.html
http://www.ebook3000.org

432 Chapter 12 Databases and Data Processing

Chapter Summary
This chapter focuses onmodern approaches to processing data. Behind almost everymodern
“real” computer application, there is a database. Database files are often more suitable than
general-purpose files for storing data. This is why it is important to get an early exposure to
databases, understand their benefits, and know how to use them.

This chapter introduces a small subset of SQL, the language used to access a type of
database files. We also introduce the Python Standard Library module sqlite3, which
is an API for working with such files. We demonstrate the usage of SQL and the sqlite3
module in the context of storing the results of a web crawl in a database file and then making
search engine-type queries.

Scalability is an important issue with regard to data processing. The amount of data gen-
erated and processed by many current computer applications is huge. Not all programs can
scale and handle large amounts of data, however. We are thus particularly interested in pro-
gramming approaches that can scale (i.e., that can be run in parallel on multiple processors
or cores). We introduce in this chapter several scalable programming techniques that have
their roots in functional languages. We introduce first list comprehensions, a Python con-
struct that enables, using a succinct description, the execution of a function on every item
of a list. We then introduce the function map(), defined in the Standard Library module
multiprocessing, that essentially enables the execution of list comprehensions in par-
allel using the available cores of a microprocessor. We then build on this to describe and
develop a basic version of Google’s MapReduce framework. Google and other companies
use this framework to process really big data sets.

While our programs are implemented to run on a single computer, the concepts and tech-
niques introduced in this chapter apply to distributed computing in general and especially
to modern cloud computing systems.

Solutions to Practice Problems
12.1 The SQL queries are:
(a) SELECT DISTINCT Url FROM Hyperlinks WHERE Link = 'four.html'
(b) SELECT DISTINCT Link FROM Hyperlinks WHERE Url = 'four.html'
(c) SELECT Url, Word from Keywords WHERE Freq = 3
(d) SELECT * from Keywords WHERE Freq BETWEEN 3 AND 5

12.2 The SQL queries are:
(a) SELECT SUM(Freq) From Keywords WHERE Url = 'two.html'
(b) SELECT Count(*) From Keywords WHERE Url = 'two.html'
(c) SELECT Url, SUM(Freq) FROM Keywords GROUP BY Url
(d) SELECT Link, COUNT(*) FROM Hyperlinks GROUP BY Link

12.3 Make sure you use parameter substitution correctly, and do not forget to commit and
close:

import sqlite3
def webData(db, url, links, freq):

'''db is the name of a database file containing tables
Hyperlinks and Keywords;

Chapter 12 Solutions to Practice Problems 433

url is the URL of a web page;
links is a list of hyperlink URLs in the web page;
freq is a dictionary that maps each word in the web page
to its frequency;

webData inserts row (url, word, freq[word]) into Keywords
for every keyword in freq, and record (url, link) into
Hyperlinks, for every link in links

'''
con = sqlite3.connect(db)
cur = con.cursor()
for word in freq:

record = (url, word, freq[word])
cur.execute("INSERT INTO Keywords VALUES (?,?,?)", record)

for link in links:
record = (url, link)
cur.execute("INSERT INTO Keywords VALUES (?,?)", record)

con.commit()
con.close()

12.4 The search engine is a simple server program that iterates indefinitely and serves a
user search request in every iteration:

def freqSearch(webdb):
'''webdb is a database file containing table Keywords;

freqSearch is a simple search engine that takes a keyword
from the user and prints URLs of web pages containing it
in decreasing order of frequency of the word'''

con = sqlite3.connect(webdb)
cur = con.cursor()

while True: # serve forever
keyword = input("Enter keyword: ")
select web pages containing keyword in
decreasing order of keyword frequency
cur.execute("""SELECT Url, Freq

FROM Keywords
WHERE Word = ?
ORDER BY Freq DESC""", (keyword,))

print('{:15}{:4}'.format('URL', 'FREQ'))
for url, freq in cur:

print('{:15}{:4}'.format(url, freq))

12.5 The list comprehension constructs are:
(a) [word.capitalize() for word in words]: Every word is capitalized.
(b) [(word, len(word)) for word in words]: A tuple is created for every word.
(c) [[(c,word) for c in word] for word in words]: Everyword is used to cre-

ate a list; the list is constructed from every character of the word, which can be done
using list comprehension too.

www.ebook3000.com

http://www.ebook3000.org

434 Chapter 12 Databases and Data Processing

12.6 The map function should map a word (string) to a list of tuples (c, word) for every
character c of word.

def getChars(word):
'''word is a string; the function returns a list of tuples

(c, word) for every character c of word'''
return [(c, word) for c in word]

The input to the reduce function is a tuple (c, lst) where lst contains words containing
c; the reduce function should simply eliminate duplicates from lst:

def getCharIndex(keyVal):
'''keyVal is a 2-tuple (c, lst) where lst is a list

of words (strings)

function returns (c, lst') where lst' is lst with
duplicates removed'''

return (keyVal[0], list(set(keyVal[1])))

12.7 The program is:

Module: notParallel.py
1 from os import getpid
2

3 def length(word):
4 'returns length of string word'
5 print('Process {} handling {}'.format(getpid(), word))
6 return len(word)
7

8 animals = ['hawk', 'hen', 'hog', 'hyena']
9 print([length(x) for x in animals])

It will, of course, use only one process when executed.

12.8 The map function, which we name divisors(), takes number and returns a list of
pairs (i, number) for every prime i dividing number:

from math import sqrt
def divisors(number):

'''returns list of (i, number) tuples for
every prime i dividing number'''

res = [] # accumulator of factors of number
n = number
i = 2
while n > 1:

if n%i == 0: # if i is a factor of n
collect i and repeatedly divide n by i
while i is a factor of n
res.append((i, number))
while n%i == 0:

n //= i
i += 1 # go to next i

return res

Chapter 12 Exercises 435

The Partition step will pull together all pairs (i, number) that have the same key i. The
list it constructs is actually the desired final list, so the Reduce step should only copy the
(key, value) pairs:

def identity(keyVal):
return keyVal

Here is a test program:

from random import sample
from time import time
if __name__ == '__main__':

create list of 64 large random integers
numbers = sample(range(10000000, 20000000), 64)
t1 = time()
SeqMapReduce(divisors, identity).process(numbers)
t2 = time()
MapReduce(divisors, identity).process(numbers)
t3 = time()
print('Sequential: {:5.2f} seconds.'.format(t2-t1))
print('Parallel: {:5.2f} seconds.'.format(t3-t2))

When you run this test on a computer with a multicore microprocessor, you should see the
parallel MapReduce implementation run faster. Here is the result for a sample run using
four cores:

Sequential: 26.77 seconds.
Parallel: 11.18 seconds.

The speedup is 2.39.

Exercises
12.9 Write SQL queries on tables Hyperlinks and Keywords from Figure 12.2 that return
these results:
(a) The distinct words appearing in web page with URL four.html
(b) URLs of web pages containing either 'Chicago' or 'Paris'
(c) The total number of occurrences of every distinct word, across all web pages
(d) URLs of web pages that have an incoming link from a page containing 'Nairobi'

12.10 Write SQL queries on table WeatherData in Figure 12.16 that return:
(a) All the records for the city of London
(b) All the summer records
(c) The city, country, and season for which the average temperature is less than 20◦

(d) The city, country, and season for which the average temperature is greater than 20◦

and the total rainfall is less than 10 mm
(e) The maximum total rainfall
(f) The city, season, and rainfall amounts for all records in descending order of rainfall
(g) The total yearly rainfall for Cairo, Egypt
(h) The city name, country, and total yearly rainfall for every distinct city

www.ebook3000.com

http://www.ebook3000.org

436 Chapter 12 Databases and Data Processing

Figure 12.16 A world
weather database
fragment. Shown are
the 24-hour average
temperature (in degrees
Celsius) and total rainfall
amount (in millimeters)
for Winter (1), Spring (2),
Summer (3), and Fall (4)
for several world cities.

City Country Season Temperature Rainfall
Mumbai India 1 24.8 5.9
Mumbai India 2 28.4 16.2
Mumbai India 3 27.9 1549.4
Mumbai India 4 27.6 346.0
London United Kingdom 1 4.2 207.7
London United Kingdom 2 8.3 169.6
London United Kingdom 3 15.7 157.0
London United Kingdom 4 10.4 218.5
Cairo Egypt 1 13.6 16.5
Cairo Egypt 2 20.7 6.5
Cairo Egypt 3 27.7 0.1
Cairo Egypt 4 22.2 4.5

12.11 Using module sqlite3, create a database file weather.db and table WeatherData
in it. Define the column names and types to match those in the table in Figure 12.16; then
enter all the rows shown into the table.

12.12 Using sqlite3 and within the interactive shell, open the database file weather.db
you created in Problem 12.11 and execute the queries from Problem 12.10 by running ap-
propriate Python statements.

12.13 Let list lst be defined as

>>> lst = [23, 12, 3, 17, 21, 14, 6, 4, 9, 20, 19]

Write list comprehension expression based on list lst that produce these lists:
(a) [3, 6, 4, 9] (the single-digit numbers in list lst)
(b) [12, 14, 6, 4, 20] (the even numbers in list lst)
(c) [12, 3, 21, 14, 6, 4, 9, 20] (the numbers divisible by 2 or 3 in list lst)
(d) [4, 9] (the squares in list lst)
(e) [6, 7, 3, 2, 10] (the halves of the even numbers in list lst)

12.14 Run program primeDensity.py with one, two, three, and four cores, or up to as
many cores as you have on your computer, and record the running times. Then write a
sequential version of the primeDensity.py program (using list comprehension, say) and
record its running time. Compute the speedup for each execution of primeDensity.py
with two or more cores.

12.15 Fine-tune the run time analysis of program ch12.py by recording the execution time
of each step—Map, Partition, and Reduce—of MapReduce. (You will have to modify the
class MapReduce to do this.) Which steps have better speedup than others?

Problems
12.16 Write function ranking() that takes as input the name of a database file containing
a table named Hyperlinks of the same format as the table in Figure 12.2(a). The function
should add to the database a new table that contains the number of incoming hyperlinks for

Chapter 12 Problems 437

every URL listed in the Link column of Hyperlinks. Name the new table and its columns
Ranks, Url, and Rank, respectively. When executed against database file links.db, the
wildcard query on the Rank table should produce this output:

File: links.db>>> cur.execute('SELECT * FROM Ranks')
<sqlite3.Cursor object at 0x15d2560>
>>> for record in cur:

print(record)

('five.html', 1)
('four.html', 3)
('one.html', 1)
('three.html', 1)
('two.html', 2)

12.17 Develop an application that takes the name of a text file as input, computes the
frequency of every word in the file, and stores the resulting (word, frequency) pairs in a new
table named Wordcounts of a new database file. The table should have columns Word and
Freq for storing the (word, frequency) pairs.

12.18 Develop an application that displays, using Turtle graphics, the n most frequently
occurring words in a text file. Assume that the word frequencies of the file have already
been computed and stored in a database file such as the one created in Problem 12.17. Your
application takes as input the name of this database file and the number n. It should then
display the nmost frequent words at random positions of a turtle screen. Try using different
font sizes for the words: a very large font for the most frequently occurring word, a smaller
font for the next two words, an even smaller font for the next four words, and so on.

12.19 In Practice Problem 12.4, we developed a simple search engine that ranks web pages
based on word frequency. There are several reasons why that is a poor way to rank web
pages, including the fact that it can be easily manipulated.

Modern search engines such as Google’s use hyperlink information (among other things)
to rank web pages. For example, if a web page has few incoming links, it probably does not
contain useful information. If, however, a web page has many incoming hyperlinks, then it
likely contains useful information and should be ranked high.

Using the links.db database file obtained by crawling through the pages in Figure 12.1,
and also the Rank table computed in Problem 12.16, redevelop the search engine from Prac-
tice Problem 12.4 so that it ranks web pages by number of incoming links.

File: links.db>>> search2('links.db')
Enter keyword: Paris
URL RANK
four.html 3
two.html 2
one.html 1
Enter keyword:

12.20 The UNIX text search utility grep takes a text file and a regular expression and returns
a list of lines in the text that contain a string that matches the pattern. Develop a parallel
version of grep that takes from the user the name of a text file and the regular expression

www.ebook3000.com

http://www.ebook3000.org

438 Chapter 12 Databases and Data Processing

and then uses a pool of processes to search the lines of the file.

12.21 We used the program primeDensity.py to compare the densities of prime numbers
in several large ranges of very large integers. In this problem, you will compare the densities
of twin primes. Twin primes are pairs of primes whose difference is 2. The first few twin
primes are 3 and 5, 5 and 7, 11 and 13, 17 and 19, and 29 and 32. Write an application that
uses all the cores on your computer to compare the number of twin primes across the same
ranges of integers we used in primeDensity.py.

12.22 Problem 10.26 asks you to develop function anagram() that uses a dictionary (i.e., a
list of words) to compute all the anagrams of a given string. Develop panagram(), a parallel
version of this function, that takes a list of words and computes a list of anagrams for each
word.

12.23 At the end of this book there is an index, which maps words to page numbers of pages
containing the words. A line index is similar: It maps words to line numbers of text lines
in which they appear. Develop, using the MapReduce framework, an application that takes
as input the name of a text file and creates a line index. Your application should output the
index to a file so words appear in alphabetical order, one word per line; the line numbers,
for each word, should follow the word and be output in increasing order.

12.24 Redo Problem 12.16 using MapReduce to compute the number of incoming links for
every web page.

12.25 A web-link graph is a description of the hyperlink structure of a set of linked web
pages. One way to represent the web-link graph is with a list of (url, linksList) pairs with
each pair corresponding to a web page; url refers to the URL of the page, and linksList
is a list of URLs of hyperlinks contained in the page. Note that this information is easily
collected by a web crawler.

The reverse web-link graph is another representation of the hyperlink structure of the set
of web pages. It can be represented as a list of (url, incomingList) pairs with url referring to
the URL of a web page and incomingList referring to a list of URLs of incoming hyperlinks.
So the reverse web-link graph makes explicit incoming links rather than outgoing links. It
is very useful for efficiently computing the Google PageRank of web pages.

Develop a function that takes a web-link graph, represented as described, and returns
the reverse web-link graph.

12.26 A web server usually creates a log for every HTTP request it handles and appends
the log string to a log file. Keeping a log file is useful for a variety of reasons. One particular
reason is that it can be used to learn what resources—identified by URLs—managed by the
server have been accessed and how often—referred to as the URL access frequency. In this
problem, you will develop a program that computes the URL access frequency from a given
log file.

Web server log entries are written in a well-known, standard format known as the Com-
mon Log Format. This is a standard format used by the Apache httpd web server as well
as other servers. A standard format makes it possible to develop log analysis programs that
mine the access log file. A log file entry produced in a common log format looks like this:

127.0.0.1 - - [16/Mar/2010:11:52:54 -0600] "GET /index.html HTTP/1.0" 200 1929

This log contains a lot of information. The key information, for our purposes, is the

Chapter 12 Problems 439

requested resource, index.html. Write a program that computes the access frequency for
each resource appearing in the log file and writes the information into a database table with
columns for the resource URL and the access frequency. Writing the access frequency into
a database makes the URL access frequency amenable to queries and analysis.

12.27 Write an application that computes a concordance of a set of novels using MapRe-
duce. A concordance is a mapping that maps eachword in a set of words to a list of sentences
from the novels that contain the word. The input for the application is the set of names of
text files containing the novels and the set of words to be mapped. You should output the
concordance to a file.

www.ebook3000.com

http://www.ebook3000.org

Case Studies
CS.2 Turtle Graphics 442

CS.3 Automating Turtle Graphics 448

CS.4 Processing Image Files 452

CS.5 Image-Processing Algorithms 458

CS.6 Games of Chance 465

CS.7 Debugging with a Debugger 471

CS.8 Indexing and Iterators 479

CS.9 Developing a Calculator 486

CS.10 Tower of Hanoi 492

CS.11 Web Crawlers 498

CS.12 Data Interchange 506

441

www.ebook3000.com

http://www.ebook3000.org

442 Case Studies

CS.2 Turtle Graphics
In our first case study, we will use a graphics tool to (visually) illustrate the concepts cov-
ered in Chapter 2: objects, classes and class methods, object-oriented programming, and
modules. The tool, Turtle graphics, allows a user to draw lines and shapes in a way that is
similar to using a pen on paper.

DETOUR
Turtle Graphics

Turtle graphics has a long history going all the way back to the time when the field
of computer science was developing. It was part of the Logo programming lan-
guage developed by Daniel Bobrow, Wally Feurzig, and Seymour Papert in 1966.
The Logo programming language and its most popular feature, turtle graphics, was
developed for the purpose of teaching programming.

The turtle was originally a robot, that is, a mechanical device controlled by a
computer operator. A pen was attached to the robot and it left a trace on the surface
as the robot moved according to functions input by the operator.

Turtle graphics is available to Python developers through the turtle module. In the
module are defined 7 classes and more than 80 class methods and functions. We will not
exhaustively cover all the features of the module turtle. We only introduce a sufficient
number to allow us to do interesting graphics while cementing our understanding of objects,
classes, class methods, functions, and modules. Feel free to explore this fun tool on your
own.

Classes Screen and Turtle
We start by importing the turtle module and then instantiating a Screen object.

>>> import turtle
>>> s = turtle.Screen()

You will note that a new window appears with a white background after executing the sec-
ond statement. The Screen object is the canvas on which we draw. The Screen class is
defined in the turtle module. Later we will introduce some Screenmethods that change the
background color or close the window. Right now, we just want to start drawing.

To create our pen or, using the turtle graphics terminology, our turtle, we instantiate a
Turtle object we name t:

>>> t = turtle.Turtle()

A Turtle object is essentially a pen that is initially located at the center of the screen,
at coordinates (0, 0). The Turtle class, defined in the turtle module, provides many
methods for moving the turtle. As we move the turtle, it leaves a trace behind. To make our
first move, we will use the forward() method of the Turtle class. So, to move forward
100 pixels, the method forward() is invoked on Turtle object t with 100 (pixels) as the
distance:

>>> t.forward(100)

The effect is shown in Figure CS.1.

Case Study CS.2 Turtle Graphics 443

Figure CS.1 Turtle
graphics. The black arrow
tip represents the Turtle
object. The line is the trace
left by the turtle after
moving forward 100 pixels.

Note that the move is to the right. When instantiated, the turtle faces right (i.e., to the
east). To make the turtle face a new direction, you can rotate it counterclockwise or clock-
wise using the left() or right() methods, both Turtle class methods. To rotate 90
degrees counterclockwise, the method left() is invoked on Turtle object t with the ar-
gument 90:

>>> t.left(90)

We can have several Turtle objects simultaneously on the screen. Next, we create a new
Turtle instance that we name u and make both turtles do some moves:

>>> u = turtle.Turtle()
>>> u.left(90)
>>> u.forward(100)
>>> t.forward(100)
>>> u.right(45)

The current state of the two turtles and the trace they made is shown in Figure CS.2.

Figure CS.2 Two Turtle
objects. The Turtle object
on the left is facing
northeast whereas the
Turtle object on the right is
facing north.

In the example we just completed, we used three methods of class Turtle: forward(),
left(), and right(). In Table CS.1, we list those and some other methods (but by no
means all). To illustrate some of the additional methods listed in the table, we go through
the steps necessary to draw a smiley face emoticon shown in Figure CS.3.

We start by instantiating a Screen and a Turtle object and setting the pen size.

>>> import turtle
>>> s = turtle.Screen()

Figure CS.3 A Turtle
smiley face drawing.

www.ebook3000.com

http://www.ebook3000.org

444 Case Studies

Table CS.1 Some methods
of the Turtle class.
After importing the module
turtle, you can obtain the
full list of Turtle methods
in your interactive shell
using
help(turtle.Turtle)

Usage Explanation
t.forward(distance) Move turtle in the direction the turtle is headed by

distance pixels
t.left(angle) Rotate turtle counterclockwise by angle degrees
t.right(angle) Rotate turtle clockwise by angle degrees
t.undo() Undo the previous move
t.goto(x, y) Move turtle to coordinates defined by x and y; if pen

is down, draw line
t.setx(x) Set the turtle’s first coordinate to x
t.sety(y) Set the turtle’s second coordinate to y
t.setheading(angle) Set orientation of turtle to angle, given in degrees;

Angle 0 means east, 90 is north, and so on
t.circle(radius) Draw a circle with given radius; the center of the

circle is radius pixels to the left of the turtle
t.circle(radius, angle) Draw only the part the circle (see above)

corresponding to angle
t.dot(diameter, color) Draw a dot with given diameter and color
t.penup() Pull pen up; no drawing when moving
t.pendown() Put pen down; drawing when moving
t.pensize(width) Set the pen line thickness to width
t.pencolor(color) Set the pen color to color described by string color

>>> t = turtle.Turtle()
>>> t.pensize(3)

We then define the coordinates where the chin of the smiley face will be located and then
move to that location.

>>> x = -100
>>> y = 100
>>> t.goto(x, y)

Oooops!We drew a line from coordinate (0, 0) to coordinate (−100, 100); all we wanted
was to move the pen, without leaving a trace. So we need to undo the last move, lift the pen,
and then move it.

>>> t.undo()
>>> t.penup()
>>> t.goto(x, y)
>>> t.pendown()

Now we want to draw the circle outlining the face of our smiley face. We call the method
circle() of the class Turtle with one argument, the radius of the circle. The circle is
drawn as follows: The current turtle position will be a point of the circle, and the center of
the circle is defined to be to the turtle’s left, with respect to the current turtle heading.

>>> t.circle(100)

Now we want to draw the left eye. We choose the left eye coordinates relative to (x, y) (i.e.,
the chin position) and “jump” to that location. We then use the dot function to draw a black
dot of diameter 10.

Case Study CS.2 Turtle Graphics 445

Usage Explanation
s.bgcolor(color) Changes the background color of screen s to color

described by string color
s.clearscreen() Clears screen s
s.turtles() Returns the list of all turtles in the screen s
s.bye() Closes the screen s window

Table CS.2 Methods of the
Screen class. Shown are
only some of the Screen
class methods. After
importing module turtle,
you can obtain the full list of
Screen methods in your
interactive shell using
help(turtle.Screen)

>>> t.penup()
>>> t.goto(x - 35, y + 120)
>>> t.pendown()
>>> t.dot(25)

Next, we jump and draw the right eye.

>>> t.penup()
>>> t.goto(x + 35, y + 120)
>>> t.pendown()
>>> t.dot(25)

Finally, we draw the smile. I chose the exact location of the left endpoint of the smile using
trial and error. You could also use geometry and trigonometry to get it right if you prefer.
We use here a variant of the method circle() that takes a second argument in addition to
the radius: an angle. What is drawn is just a section of the circle, a section corresponding to
the given angle. Note that we again have to jump first.

>>> t.penup()
>>> t.goto(x - 60.62, y + 65)
>>> t.pendown()
>>> t.setheading(-60)
>>> t.circle(70, 120)

We’re done! As we end this case study, you may wonder how to close cleanly your turtle
graphics window. The Screen method bye() closes it:

>>> s.bye()

This method and several other Screen methods are listed in Table CS.2.

Practice Problem
CS.1

Start by executing these statements:

>>> import turtle
>>> s = turtle.Screen()
>>> t = turtle.Turtle(shape='turtle')
>>> t.penup()
>>> t.goto(-300, 0)
>>> t.pendown()

A turtle pen will appear on the left side of the screen. Then execute a sequence of Python
turtle graphics statements that will produce this image:

www.ebook3000.com

http://www.ebook3000.org

446 Case Studies

Solution to the Practice Problem

CS.1 We assume the starting position is the leftmost point of the "wave" curve. To draw
the first “valley,” we need to make the turtle point southeast and then draw a 90◦ section of
the circle:

>>> t.setheading(-45)
>>> t.circle(50, 90)

We then repeat this pair of statements eight times. To draw the Sun, we need to lift the pen,
move it, put the pen down, and draw a circle:

>>> t.penup()
>>> t.goto(-100, 200)
>>> t.pendown()
>>> t.circle(50)
>>> t.penup()
>>> t.goto(0, -50)

We end by moving the turtle so it can swim in the sea.

Problems

CS.2 Write Python statements that draw a square of side length 100 pixels using Turtle
graphics. Make sure you import the module turtle first. Your first two and last statement
should be as shown:

>>> s = turtle.Screen() # create screen
>>> t = turtle.Turtle() # create turtle

... # now write a sequence of statements

... # that draw the square

>>> s.bye() # delete the Screen when done

Case Study CS.2 Turtle Graphics 447

CS.3 Using the approach from Problem CS.2, write Python statements that draw a diamond
of side length 100 pixels using Turtle graphics.

CS.4 Using the approach from ProblemCS.2, write Python statements that draw a pentagon
of side length 100 pixels using Turtle graphics. Then do a hexagon, a heptagon, and an
octogon.

CS.5 Using the approach from Problem CS.2, write Python statements that draw the inter-
secting circles of radius 100 pixels shown using Turtle graphics:

The sizes of the circles do not matter; their centers should be, more or less, the points
of an equilateral triangle.

CS.6 Using the approach from Problem CS.2, write Python statements that draw four con-
centric circles similar to the concentric circles of a dartboard.

CS.7 Add three more swimming turtles to the picture shown in Practice Problem CS.1.

CS.8 Using Turtle graphics, illustrate the relative size of the Sun and the Earth by draw-
ing two circles. The circle representing Earth should have a radius of 1 pixel. The circle
representing the Sun should have a radius of 109 pixels.

CS.9 Using Turtle graphics, draw a five-pointed star by repeating the following five times:
move the turtle 100 pixels and then rotate it right 144 degrees. When done, consider how to
draw the six-pointed star (commonly referred to as the Star of David).

CS.10 Using Turtle graphics, draw an image showing the six sides of a dice. You may
represent each side inside a separate square.

CS.11 Using Turtle graphics, draw the lines of a basketball field. You may choose the Na-
tional Basketball Association (NBA) or International Basketball Federation (FIBA) speci-
fications, which you can easily find on the web.

CS.12 Using Turtle graphics, draw an image showing the (visible) phases of the moon as
seen from your hemisphere: waxing crescent, first quarter, waxing gibbous, full, waning
gibbous, third quarter, and waning crescent. You can find illustrations of the phases of the
moon on the web.

www.ebook3000.com

http://www.ebook3000.org

448 Case Studies

CS.3 Automating Turtle Graphics
In Case Study CS.2 we implemented a sequence of Python statements—in other words, a
program—that draws the picture of a smiley face. Take a another look at that sequence of
statements. Youwill notice that the statements were repetitive and somewhat tedious to type.
This sequence of commands appeared several times:

t.penup()
t.goto(x, y)
t.pendown()

This sequence of Turtle method calls was used to move the Turtle object t to a new
location (with coordinates (x, y)) without leaving a trace; in other words, it was used to
make the Turtle object jump to the new location.

Function jump()
It would save us a lot of typing if we could replace that sequence of Python statements
with just one. That is exactly what functions are for. What we want to do is to develop a
function that takes a Turtle object and coordinates x and y as input arguments and makes
the Turtle object jump to coordinate (x, y). Here is that function:

Module: turtlefunctions.py
1 def jump(t, x, y):
2 'makes turtle t jump to coordinates (x, y)'
3 t.penup()
4 t.goto(x, y)
5 t.pendown()

Using this function instead of three statements shortens the process of drawing the smi-
ley face image. It also makes the program more understandable because the function call
jump(t, x, y):

1. Better describes the action performed by the Turtle object
2. Hides the low-level and technical pen-up and -down operations, thus removing com-

plexity from the program.
Suppose nowwewant to be able to draw several smiley faces next to each other as shown

in Figure CS.4.

Figure CS.4 Two smiley
faces. Ideally, each smiley
face should be drawn with
just one function call.

To do this, it would be useful to develop a function that takes as input a Turtle ob-
ject and coordinates x and y and draws a smiley face at coordinate (x, y). If we name this
function emoticon(), we could use and reuse it to draw the image.

>>> import turtle
>>> s = turtle.Screen()
>>> t = turtle.Turtle()

Case Study CS.3 Automating Turtle Graphics 449

>>> emoticon(t, -100, 100)
>>> emoticon(t, 150, 100)

Here is the implementation of the function:

Module: turtlefunctions.py
1 def emoticon(t,x,y):
2 'turtle t draws a smiley face with chin at coordinate (x, y)'
3 # set turtle direction and pen size
4 t.pensize(3)
5 t.setheading(0)
6

7 # move to (x, y) and draw head
8 jump(t, x, y)
9 t.circle(100)

10

11 # draw right eye
12 jump(t, x+35, y+120)
13 t.dot(25)
14

15 # draw left eye
16 jump(t, x-35, y+120)
17 t.dot(25)
18

19 # draw smile
20 jump(t, x-60.62, y+65)
21 t.setheading(-60) # smile is a 120 degree
22 t.circle(70, 120) # section of a circle

We should note a few things about the program. Note the docstring with the strange
triple quotes. In Python, strings, statements, and most expressions usually cannot span mul-
tiple lines. A string, whether defined with single quotes, as in 'example', or with double
quotes, as in "example", cannot span multiple lines of a Python program. If, however, we
need to define a string that does contain multiple lines, we must use triple quotes, as in
'''example''' or """example""".

The rest of the function follows the steps we have already developed in the case study in
Case Study CS.2. Note how we use the jump() function to make the program shorter and
the steps of the program more intuitive.

Practice Problem
CS.13

Implement function olympic(t) that makes turtle t draw the Olympic rings shown below.

www.ebook3000.com

http://www.ebook3000.org

450 Case Studies

Use the jump() function from module turtlefunctions. You should be able to get
the image drawn by executing:

>>> import turtle
>>> s = turtle.Screen()
>>> t = turtle.Turtle()
>>> olympic(t)

Solution to the Practice Problem

CS.13 The solution uses the jump() functions from module turtlefunctions we de-
veloped in the case study. In order for Python to import this module, it must be in the same
folder as the module containing the olympic() function.

import turtlefunctions
def olympic(t):

'has turtle t draw the olympic rings'
t.pensize(3)
turtlefunctions.jump(t, 0, 0) # bottom of top center circle
t.setheading(0)

t.circle(100) # top center circle
turtlefunctions.jump(t, -220, 0)
t.circle(100) # top left circle
turtlefunctions.jump(t, 220, 0)
t.circle(100) # top right circle
turtlefunctions.jump(t, 110, -100)
t.circle(100) # bottom right circle
turtlefunctions.jump(t, -110, -100)
t.circle(100) # bottom left circle

Problems

CS.14 (This problem builds on Problem CS.4.) Implement function polygon() that takes
a number n ≥ 3 as input and draws, using Turtle graphics, an n-sided regular polygon.

CS.15 Using Turtle graphics, implement a function grid() that takes two positive integers
m and n and draws a grid of sizem× n.

CS.16 Using Turtle graphics, implement function spiral() that draws a spiral with given
inital length, angle, and multiplier.

CS.17 Using Turtle graphics, implement function planets(), which will simulate the
planetary motion of Mercury, Venus, Earth, and Mars during one rotation of planet Mars.
You can assume that:
(a) At the beginning of the simulation, all planets are lined up (say along the negative

y-axis).
(b) The distances of Mercury, Venus, Earth, and Mars from the Sun (the center of rota-

tion) are 58, 108, 150, and 228 pixels.

Case Study CS.3 Automating Turtle Graphics 451

(c) For every 1 degree circular motion of Mars, Earth, Venus, and Mercury will move 2,
3, and 7.5 degrees, respectively.

The figure below shows the state of the simulation when Earth is about a quarter of the way
around the Sun. Note that Mercury has almost completed its first rotation.

www.ebook3000.com

http://www.ebook3000.org

452 Case Studies

CS.4 Processing Image Files
In this case study, we explore processing images using Python. Images are typically stored
as binary files rather than text files, and so image files are not processed using standard
text file I/O tools. Instead, special-purpose I/O tools are required to read, write, and process
images. By “processing” we mean modifying an image in some way; for example, re-sizing,
rotating, or blurring an image or cutting part of an image and pasting the part into another
would all be basic image-processing tasks.

We also use this case study to show how one installs Python modules that are not in the
Python Standard Library so that, once installed, they can be imported just like a Standard
Library module. The image-processing library we need to install is Pillow, which is located
in the Python Package Index, the official third-party software repository for Python.

DETOUR
Python Package Index (PyPI)

The Python Standard Library contains Python modules that extend the core Python
language with additional functions and classes. These functions and classes are
mostly general-purpose rather than specific to a particular application domain.
Python software that is meant to be used in a particular application domain such
as image processing is not included in the Python Standard Library.

The Python Package Index, or PyPI for short, is a repository for open-source
Python software developed by third parties. At the time of writing, PyPI includes
about 50,000 packages containing Python software for a huge variety of application
domains. The image-processing library Pillow is one of the packages in the PyPI
repository. In order to install a PyPI package, you need to open the terminal window
for your particular operating system and run the program pip3. The pip3 program
is a tool for installing and managing Python software; the 3 in pip3 ensures that
your are installing software compatible with Python 3 (rather than 2). While pip3
can be used to install software from other depositories, the default is PyPI.

For example, to install the Pillow library you would need to use:

$ pip3 install Pillow

The command install used above is used when installing; other pip3 commands
include uninstall and list (to view already installed packages). For more infor-
mation about PyPI, visit

http://pypi.python.org.

Class Image in Module PIL.Image
Assuming that the Pillow library has already been installed on your computer, we now use it
to open a file containing an image. The library consists of several dozen modules contained
in a package called PIL (which stands for Python Imaging Library). A package is a way to
collect related modules. One of the modules in PIL is PIL.Image; we import it as follows:

>>> import PIL.Image

Note the dotted notation used to access module PIL.Image in package PIL.

http://pypi.python.org

Case Study CS.4 Processing Image Files 453

We can now use the function open(), defined in the PIL.Image module, to open the
JPEG file with absolute pathname, say, /Users/me/montana.jpg:

File: montana.jpg>>> im = PIL.Image.open('/Users/me/montana.jpg')

Function open() returns an object of type Image. This class is defined in the PIL.Image
module. Among the methods supported by the class is method show() that displays on the
screen the image we just opened:

>>> im.show()

You should see the gorgeous landscape of Glacier National Park in Montana.

Image Size, Format, and Mode
Before we explore some of the other methods supported by class Image, we obtain some
information about the image we just opened:

>>> im.size
(1248, 936)
>>> im.format
'JPEG'
>>> im.mode
'RGB'

What these tell us is that the image is 1248 pixels wide and 936 pixels tall, that it is
stored in a compressed format using JPEG compression, and that the color of each pixel
is described using the RGB model (see also Table CS.3). Before we go into what this all
means, we take a moment to discuss what kind of variables size, format, and mode are.
They are variables associated with object im, an object of type Image. They are commonly
referred to as instance variables and are accessed using dotted notation and the name of the
object as the prefix. We discuss such variables in more depth in Section 8.1.

Usage Explanation
im.format String containing the image format (JPEG, GIF, TIFF, BMP, ...)
im.mode String containing the image mode (RGB, CYMK, Grayscale, ...)
im.size Tuple containing the width and height of the image in pixels

Table CS.3 Image object
metadata. The metadata is
stored in instance variables
associated with the object.

Figure CS.5 illustrates how our image is represented as a grid of 1248 × 936 pixels.
Associated with each pixel is a pair of coordinates (i, j) that identify the column i and the
row j of the pixel. The columns are numbered from left to right, starting with 0, and the
rows are numbered from top to bottom, also starting with 0.

0 i w−1
0

j

h−1

Figure CS.5 An image of
size w × h. A digital image
is represented as a grid of
pixels. Each pixel is
assigned a color and can be
identified by specifying a
(column, row) pair. The pixel
in column i and row j has
location (i, j).

www.ebook3000.com

http://www.ebook3000.org

454 Case Studies

Each pixel of an image is assigned a color. There are different ways to describe colors
digitally and the image mode refers to a particular way, that is, a particular color encoding.
The image we just opened has mode RGB, which means that colors are described using
varying amounts of colors red, green and blue. Other image modes include mode CMYK,
in which colors are described using varying amounts of cyan, magenta, yellow, and black,
and also mode L, in which colors are described using shades of gray (for Grayscale images).
We will take a closer look at the RGB color mode in Case Study CS.5.

The image format describes how the image file is organized and stored. While an image
that has been opened for processing is represented by a grid of pixels, that is not necessar-
ily how the image is stored in a file. Various formats exist today, and JPEG is just one of
them. (JPEG stands for Joint Photographic Experts Group, the name of the committee of
image-processing professionals that created the standard.) Other file formats that are fully
supported by Pillow include BMP, EPS, GIF, PNG, and TIFF.

Image Class Methods
We now explore some of the methods of the Image class that allow us to manipulate images.
Method copy() simply returns a copy of the image:

>>> copied = im.copy()

You can, of course, verify that copied is an exact copy of the original image:

>>> copied.show()

Method rotate() returns a copy of the image rotated counterclockwise by the given angle
(in degrees).

>>> rotation = im.rotate(90)

If the angle argument is negative, then the image is rotated clockwise.
To crop our image im, we first need to define the rectangular region that we want to

crop. To define the rectangular region of im from column x1 on the left and up to but not
including column x2 on the right and from row y1 on top and up to but not including row
y2 on the bottom, the 4-integer tuple (x1, y1, x2, y2) is used. For example

>>> box = (600,600,1000,800)

would be used to define the 400×200 rectangular region whose upper left pixel is (600, 600)
and lower right pixel is (999, 799). Once the rectangular region to be cropped has been
defined we use method crop() to obtain a cropped copy of the image:

>>> cropped = im.crop(box)

Figure CS.6 Crop box. The
rectangular region defined
by tuple (x1, y1, x2, y2)
goes from column x1 on the
left up to but not including
column x2 on the right and
from row y1 on top and up
to but not including row y2
on the bottom.

x1 x2

y1

y2

Case Study CS.4 Processing Image Files 455

Usage Explanation
im.copy() Return copy of image im
im.paste(im2, box) Paste image im2 into image im at rectangular region

defined by tuple box
im.rotate(d) Return copy of image rotated d degrees counterclockwise
im.show() Display image on the screen
im.save(filename) Save image under given filename; the format of the saved

file is determined from the filename extension
im.crop(box) Return copy of the rectangular region defined by tuple

box
im.filter(fltr) Return copy of im filtered using filter fltr
im.close() Close the file associated with the image

Table CS.4 Image class
methods. Shown are some
of the methods of class
Image. For the full list use
help(PIL.Image.Image)
or the online documentation.

The method filter() returns a copy of the image that has been modified using an
image filter. An image filter can sharpen an image or make it smoother, or it can provide
more or less contrast, for example. Package PIL includes a module, PIL.ImageFilter that
contains several predefined filters. One such filter is SMOOTH. We use it to obtain a smoother
(i.e., less sharp) copy of the original image:

>>> import PIL.ImageFilter
>>> smoothed = im.filter(PIL.ImageFilter.SMOOTH)

You can then view the image obtained and compare it with the original. Other image fil-
ters defined in module PIL.ImageFilter include SHARPEN (essentially the opposite of
SMOOTH), CONTOUR, DETAIL, EMBOSS, FIND_EDGES, etc.

Finally, method paste() is used to paste an image into another. In addition to the image
to be pasted, the method takes another argument that specifies where the image should be
pasted. The rectangular region is specified the sameway as for cropping, using a tuple of four
integers (see Figure CS.6). For example, we can paste cropped, the image of size 400×200
we cropped earlier, into the rectangular region of size 400 × 200 defined by box of image
smoothed as follows:

>>> smoothed.paste(cropped, box)

The methods we have covered are summarized in Table CS.4.

Creating and Saving a New Image
Sometimes, rather than processing an existing image, we would like to create a new one.
The function new() in module PIL.Image creates a new Image object with given mode
and size (see Table CS.5). For example, the following creates a new RGB image of size
400× 200.

>>> im2 = PIL.Image.new('RGB', (400,200))

Usage Explanation
open(filename) Opens image file filename and returns Imageobject

representing the image
new(mode, size) Returns an Image object with given mode and size

Table CS.5 Some
functions in module
PIL.Image. Both return an
Image object.

www.ebook3000.com

http://www.ebook3000.org

456 Case Studies

We can now choose to paste an existing image (or images) into this new image. For
example, we can paste our cropped image:

>>> im2.paste(cropped, (0,0,400,200))

Finally, we can use the Image class method save() to save the new image:

>>> im2.save('crop.jpg')

This saves the image in JPEG format. Alternatively, we can save it in another format, say
GIF, by simply changing the file extension from .jpg to .gif:

>>> im2.save('crop.gif')

We quickly verify that the saved image is indeed in a GIF format:

>>> im3 = PIL.Image.open('crop.gif')
>>> im3.format
'GIF'

DETOUR
More on the Python Imaging Library and Pillow

In this case study, we only scratched the surface of what one can do with im-
ages using Python and Pillow. The image-processing tools provided by Pillow in-
clude module ImageEnhance to adjust the contrast, brightness, and color bal-
ance of an image, module PIL.ImageDraw for basic 2D drawing, and module
PIL.ImageSequence to process GIF animations, among others. For more infor-
mation about Pillow check out the online documentation at

http://pillow.readthedocs.org.

Practice Problem
CS.18

Implement function warhol() that takes an image (i.e., an Image object) as input and re-
turns an image consisting of four copies of the input image, arranged in a 2×2 grid, modified
as follows. The copy in the top left should be the original image, whereas the images in the
top right, bottom left, and bottom right should be filtered using the CONTOUR, EMBOSS, and
FIND_EDGES built-in filters defined im module PIL.ImageFilter.

Solution to the Practice Problem

CS.18 In order to contain four copies of the original image arranged in a 2 × 2 grid, the
new image has to have twice the width and twice the height of the original. If w and h refer
to the width and height of the original, the location in the new image where the top left copy
of the original should be placed can be described using the tuple (0, 0, w, h). Similarly,
the top right, bottom left, and bottom right locations are described by tuples (w, 0, 2w, h),
(0, h, w, 2h), and (w, h, 2w, 2h), respectively.

def warhol(photo):
'''returns image consisting of 4 copies of photo arranged

http://pillow.readthedocs.org

Case Study CS.4 Processing Image Files 457

in a 2x2 grid, with the top right, bottom left, and bottom
right copies modified using filters CONTOUR, EMBOSS, and
FIND_EDGES, respectively'''

width, height = photo.size # width, height = size[0], size[1]

create new image big enough to contain 4 copies
of photo arranged in a 2x2 grid pattern
res = PIL.Image.new(photo.mode, (2*width, 2*height))

put original photo in top left corner of res
res.paste(photo, (0, 0, width, height))

put CONTOUR filtered image in top right corner of res
contour = photo.filter(PIL.ImageFilter.CONTOUR)
res.paste(contour, (width, 0, 2*width, height))

put EMBOSS filtered image in bottom left corner of res
emboss = photo.filter(PIL.ImageFilter.EMBOSS)
res.paste(emboss, (0, height, width, 2*height))

put FIND_EDGES filtered image in bottom right corner of res
edges = photo.filter(PIL.ImageFilter.FIND_EDGES)
res.paste(edges, (width, height, 2*width, 2*height))

return res

Problems

CS.19 Open a file containing an image of yours and find its size, format, and mode.

CS.20 The class Image in module PIL.Image has a method resize() that takes a tuple

File: montana.jpg
(x, y) as input. When invoked on an Image object im, the method returns a resized copy of
the image of size x × y. Use this method to obtain a copy of image montana.jpg of size
312× 234.

CS.21 Implement function convert() that takes the pathname (as a string) of a JPEG
image file and saves a GIF format copy of the image in the current working directory.

CS.22 Open a file of yours containing an image with a group of people. Crop one of the
faces and save it in a new file.

CS.23 Open a file of yours containing an image with a group of people. Create a new image
in which two of the faces have been (cropped and) swapped.

CS.24 Implement function album() that takes a list of up to eight Image objects as input
and returns an image containing all images arranged in a two column album (i.e., grid).

CS.25 Write a function frame() that takes as input an Image object and a tuple (w, h) of
two integers. The function should crop the image so the result is the largest image whose
width to height ratio is w/h and that is centered at the center of the original image.

www.ebook3000.com

http://www.ebook3000.org

458 Case Studies

CS.5 Image-Processing Algorithms
In Case Study CS.4 we learned how to process images using Python and third-party image-
processing library Pillow. In particular, we saw how to copy, rotate, crop, and smooth an
image. In this case study we take a look “underneath the hood” of image processing and see
how such image-processing tools can be implemented. Because images are two-dimensional
grids of pixels, it is no surprise that the nested loop pattern is going to be used quite a bit.

Accessing Pixels
In order to manipulate images, we need to be able to read and modify the color of individual
pixels. Class Image (defined in module PIL.Image) provides methods getpixel() and
putpixel() for that purpose (see Table CS.6). Method getpixel() takes the location of
a pixel as input and returns its color. The location is specified with a tuple of two integers,
and the color returned is a tuple representing the encoding of the color, where the encoding
is determined by the imagemode. In the case of the RGBmode, each RGB color is described
with a tuple of three integer values in the range from 0 to 255 representing the amount of
red, blue, and green colors used to produce the color. For example, after importing module
PIL.Image and opening our working example,

File: montana.jpg >>> import PIL.Image
>>> im = PIL.Image.open('/Users/me/montana.jpg')

we can obtain the color of the pixel at location (1247, 0) as follows:

>>> im.getpixel((1247,0))
(131, 194, 245)

The RGB color encoding (131, 194, 245) represents a sky blue color as seen in the upper
right corner of the image. (The location (1247, 0) refers to the uppermost, rightmost pixel
of our 1248× 936 image.)

The method putpixel() takes the location of a pixel and a color as input and modifies
the image by coloring the pixel with the given color. To change, in image im, the color of
the pixel at location (1247, 0) to RGB color (255, 0, 0) (red) you would do:

>>> im.putpixel((125,175), (255,0,0))

View the image im

>>> im.show()

and note that the upper right pixel is now red. You may have to magnify the image to see
the pixel!

We are now ready to see how image-processing functions can be implemented. We will
focus, in particular, on functions that copy, rotate by 90 degrees, crop, and smooth out im-
ages.

Table CS.6 Additional
Image class methods.
These methods are used to
access individual pixels.

Usage Explanation
im.getpixel(loc) Return the color of the pixel at location loc
im.putpixel(loc, pix) Replace pixel color at location loc with color pix

Case Study CS.5 Image-Processing Algorithms 459

Copying an Image
In our first example, we develop a function copy() that takes an image as input and returns
a copy. This function should simply open the original image, create a new blank image of
the same size, and then copy pixel colors from the old image to corresponding pixels in the
new image. More precisely, the pixel (at location) (i, j) in the new image should receive the
color of the pixel (i, j) in the original. In order to do this for all pixels, over all columns i
and rows j of the image, a nested loop is clearly required.

Module: image.py
1 def copy(original):
2 'returns copy of image photo'
3

4 # create a new image of the same mode and size as original
5 res = PIL.Image.new(original.mode, original.size)
6 # width = original.size[0], height = original.size[1]
7 width, height = original.size
8

9 # nested loop pattern to access individual pixels
10 for i in range(0, width):
11 for j in range(0, height):
12 # set pix to color of pixel
13 # at location (i,j) of original
14 pix = original.getpixel((i,j))
15 # set pixel at location (i,j) of res to pix
16 res.putpixel((i,j), pix)
17 return res

This function can be used as follows:

>>> copied = copy(im)

You can view image copied to verify that the copy() function worked:

>>> copied.show()

Practice Problem
CS.26

Implement function crop() that takes, as input, an Image object and a tuple of four inte-
gers defining the rectangular region to be cropped (as shown in Figure CS.6) and returns a
cropped copy of the image.

Rotating an Image by 90 Degrees
In our next example we implement a function that takes an image and returns a copy of it
that is rotated 90 degrees counterclockwise. Just as for function copy(), colors of pixels
need to be copied from the original to the new image. What we need to figure out is where
in the new image should we put the color of pixel (i, j) of the original.

As Figure CS.7 illustrates, the rotation of the original n×m image results in am× n
image. Note that row j in the original image becomes column j in the new image. It is a
little harder to see what happens to column i of the original image. To make sense of it, let’s
consider some special columns. Column 0 in the original image becomes the bottom row

www.ebook3000.com

http://www.ebook3000.org

460 Case Studies

Figure CS.7 Image
rotation. The rotation of an
n×m image is of size
m× n. Row j in the original
is mapped to column j of
the rotated image, and
column i is mapped to row
n− i− 1. So pixel (i, j) of
the original image is
mapped to pixel
(j, n− i− 1) of the rotated
image.

Before:

0 i n−1
0

j

m−1

After:

0 j m−1
0

n−i−1

i

n−1

in the rotated image, that is, row n − 1. Similarly, column 1 becomes row n − 2, column
2 becomes row n − 3. In general, column i of the original image becomes row n − i − 1
in the rotated image. Therefore, the color of pixel (i, j) in the original is mapped to pixel
(j, n− i− 1) as shown in Figure CS.7.

Once we have figured out this mapping, the implementation of function rotateCC() is
essentially the same as the implementation of function copy():

Module: image.py
1 def rotateCC(original):
2 'returns copy of photo rotated counterclockwise 90 degrees'
3

4 # n and m are width and height, resp., of original
5 n, m = original.size
6 # m and n are width and height, resp., of new image
7 res = PIL.Image.new(original.mode, (m,n))
8

9 # nested loop pattern copies colors from original to res
10 for i in range(0, n):
11 for j in range(0, m):
12 pixel = original.getpixel((i,j))
13 # pixel at location (i,j) in original is
14 # mapped to pixel at location (j,n-i-1) in res
15 res.putpixel((j, n-i-1), pixel)
16 return res

This function can be used as follows:

>>> rotatedCC = rotateCC(im)

You may verify that the new image is the counterclockwise rotation of the original:

>>> rotatedCC.show()

Practice Problem
CS.27

Implement function rotateCL() that takes an image (i.e., an Image object) as input and
returns a copy of the image rotated clockwise 90 degrees.

Case Study CS.5 Image-Processing Algorithms 461

Applying an Image Filter
Functions copy() and rotateCC() simply copy colors of pixels from the original image
to pixels in the new image. By contrast, applying an image filter to an image produces an
image that is not just another mapping of colors from the original to the new image. An
image filter produces an image in which the color of pixel (i, j) is obtained by combining
in some way the colors of pixels in the original image that are close to location (i, j). By
specifying what close and in some way mean exactly, different image filters can be defined
and different image altering effects are obtained.

In Case Study CS.4, we used filter SMOOTH from module PIL.ImageFilter to make
an image look smoother. An image looks smoother if there is less differentiation between
neighboring pixels. One way to achieve this effect is by setting the color of every pixel (i, j)
in the new image to the average of the colors of pixel (i, j) and its neighbors in the original.

We define what we mean by average of several colors first. We assume that we are
workingwith RGB images, and thus the color of a pixel is encoded as a tuple of three integers
representing the amount of red, green, and blue colors needed to produce the pixel color.
The average of the colors of several pixels is simply the average amount of red, blue, and
green in those pixels. We define the neighbors of pixel (i, j) to be those that are adjacent—
vertically, horizontally, or diagonally—to it. Figure CS.8 shows the eight neighbors of pixel
(i, j), assuming that the pixel does not lie on the image border.

0 i w−1
0

j

h−1

Figure CS.8 Neighbor
pixels. The neighbors of
pixel (i, j) are those that
are adjacent to it vertically,
horizontally, or diagonally. If
pixel (i, j) does not lie on
the image border, then it
and its neighbors lie in
columns i− 1 to i+ 1 and
rows j − 1 to j + 1.

Assuming that pixel (i, j) is not on the border, pixel (i, j) and its neighbors can be
described as those that lie in columns i − 1 to i + 1 and rows j − 1 to j + 1. With this
insight, we can write the code fragment that computes the color of pixel (i, j) in new image
res as the average of the colors of pixel (i, j) and its neighbors in the image original:

initialize sums of colors red, green and blue
red, green, blue = 0, 0, 0
nested loop pattern generates locations
(c, r) of pixel (i, j) and its neighbors
for c in range(i-1, i+2):

for r in range(j-1, j+2):
add colors of pixel (c, r) to sums red, green, and blue
pixel = original.getpixel((c, r))
red = red + pixel[0]
green = green + pixel[1]
blue = blue + pixel[2]

compute average of red, blue, and green colors
red, green, blue = red//9, green//9, blue = blue//9
color pixel (i, j) of res with average color
res.putpixel((i, j), (red, green, blue))

www.ebook3000.com

http://www.ebook3000.org

462 Case Studies

In this code, we separately add the amounts of red, green, and blue colors in pixel (i, j)
and its neighbors in image original. Since pixel (i, j) is not on the border, a total of 9
pixels are involved in the three sums. Therefore, the average amount of red, green, and blue
is obtained by dividing each of the three sums by 9.

The previous code is correct only for computing the color of pixels in res that are not on
the image border. Figure CS.8 shows two cases when the pixel lies on the image border and
not all eight pixel neighbors are defined. These special cases are exactly those for which
the code fragment generates invalid row and column indexes. For example, for the pixel
(0, h− 1) in the lower right corner, the code would generate column−1 and row h, both of
which are not valid. To ensure that invalid column indexes are not generated, we replace

for c in range(i-1, i+2):

with

for c in range(max(0, i-1), min(width, i+2)):

This second loop will not produce invalid column indexes −1 and w. A similar change for
row indexes is shown in the complete implementation of function smooth():

Module: image.py
1 def smooth(original):
2 'returns smooth copy of original'
3 # new image has same mode and size as original
4 res = PIL.Image.new(original.mode, original.size)
5 width, height = original.size
6 # nested loop pattern computes the color of every pixel in res
7 for i in range(0, width):
8 for j in range(0, height):
9 # initialize sums of colors red, green and blue

10 red, green, blue = 0, 0, 0
11 # initialize counter of neighbors of pixel (i, j)
12 numPixels = 0
13 # nested loop pattern generates locations
14 # (c, r) of pixel (i, j) and its neighbors
15 for c in range(max(0, i-1), min(width, i+2)):
16 for r in range(max(0, j-1), min(height, j+2)):
17 # increment neighbor count
18 numPixels +=1
19 # add colors of pixel (c, r) to sums
20 # red, green, blue
21 pixel = original.getpixel((c, r))
22 red = red + pixel[0]
23 green = green + pixel[1]
24 blue = blue + pixel[2]
25 # compute average of red, green, and blue colors
26 red = red//numPixels
27 green = green//numPixels
28 blue = blue//numPixels
29 # color pixel (i, j) of res with average color
30 res.putpixel((i, j), (red, green, blue))
31 return res

Case Study CS.5 Image-Processing Algorithms 463

Since the number of neighbors of a pixel varies, we had to replace the constant 9 in the
average computation in lines 26 to 28 by the actual number of pixels involved in the three
sums red, green, and blue. The actual number is obtained by incrementing numPixels
for every pixel involved in the sums.

Solutions to Practice Problems

CS.26 This function takes as input a tuple (x1, y1, x2, y2) that defines the rectangular region
to be cropped. The width and height of this region are x2 − x1 and y2 − y1, respectively.
Therefore, the image res created and returned by the function should have those dimen-
sions. The pixel at location (i, j) of res should receive the color of the pixel at location
(x1 + i, y1 + j) of the original image.

def crop(original, box):
'''returns copy of image original cropped using

the rectangular region defined by box'''
rows and columns that define region to be cropped
x1, y1, x2, y2 = box
width and height of new image
width, height = x2 - x1, y2 - y1
create new image to contain cropped image
res = PIL.Image.new(original.mode, (width, height))
nested loop pattern copies pixel colors from original to res
for i in range(width):

for j in range(height):
set pixel at location (i, j) of res to color of
pixel at location (x1+i, y1+j) of original
pix = original.getpixel((x1+i, y1+j))
res.putpixel((i, j), pix)

return res

CS.27 The main problem is to figure out where in the new, rotated image we should put
the color of pixel (i, j) of the original. Since column i in the original becomes row i in the
rotated image and row j in the original becomes columnm− j− 1, it follows that the color
of pixel (i, j) of the original is mapped to pixel (m− j − 1, i) of the rotated image.

def rotateCL(original):
'returns copy of original image rotated clockwise 90 degrees'
n and m are width and height, resp., of original
n, m = original.size
m and n are width and height, resp., of new image
res = PIL.Image.new(original.mode, (m, n))
nested loop pattern copies colors from original to res
for i in range(0, n):

for j in range(0, m):
pixel = original.getpixel((i, j))
pixel at location (i, j) in original is
mapped to pixel at location (m-j-1, i) in res
res.putpixel((m-j-1, i), pixel)

return res

www.ebook3000.com

http://www.ebook3000.org

464 Case Studies

Problems

CS.28 The negative of an RGB image is obtained by changing the color (i, j, k) of every
pixel to (255− i, 255− j, 255− k). Implement function negative() that takes an Image
object as input and returns a negative copy of it.

CS.29 Implement function mirror() that takes an Image object as input and returns a
mirror image copy of it. In other words, the first and last columns are flipped, and so are the
second and next to last columns, and so on.

CS.30 Implement function rotate180() that takes an Image object as input and returns
a copy that has been rotated 180 degrees.

CS.31 In RGB mode, color black is encoded as tuple (0, 0, 0), color white is encoded as
(255, 255, 255), and shades of gray between black and white are encoded as (x, x, x) for
values of x between 0 and 255. Therefore, to make an RGB image Black & White, each
pixel color must be modified to a shade of gray or, more precisely, to a tuple containing the
same amount of red, green, and blue. One way to do that is to set that amount to the average
of colors red, green, and blue in the original pixel. Using this scheme, implement function
blackAndWhite() that takes an Image object as input and returns a Black & White copy
of it.

CS.32 Our implementation of function smooth() in this case study is different from the
implementation of the built-in filter SMOOTH in module PIL.ImageFilter. In our imple-
mentation, the color of pixel (i, j) in the new image is the average of the colors of pixel
(i, j) and neighboring pixels in the original image. Each pixel is given equal weight when
computing the average. The built-in filter SMOOTH gives higher weight to pixel (i, j): Pixel
(i, j) is given a weight of five, whereas all neighboring pixels have the (usual) weight of
one. Implement function smooth2() that uses this weighing in computing the average.

CS.33 The image filter SHARPEN is a built-in filter inmodule PIL.ImageFilter that sharp-
ens an image, an effect that is essentially the opposite from the effect of filter SMOOTH. Like
filter SMOOTH (see Problem CS.32), filter SHARPEN produces an image in which the color of
pixel (i, j) is a weighted average of colors of pixel (i, j) and its neighbors in the original
image: pixel (i, j) is assigned weight 32 while neighboring pixels as assigned weight −2.
Implement function sharpen() that takes an Image object as input and returns a copy that
has been sharpened.

CS.34 The image filter BLUR is a built-in filter in module PIL.ImageFilter that blurs an
image. Like filter smooth() that we developed in this case study, filter BLUR produces an
image in which the color of pixel (i, j) is the average of colors of certain pixels surround-
ing pixel (i, j). The pixels used to compute the average are those that are neighbors of the
neighbors of pixel (i, j) but not including pixel (i, j) and its neighbors. Using this approach,
implement function blur() that takes an Image object and returns a blurred copy of it.

Case Study CS.6 Games of Chance 465

CS.6 Games of Chance
Games of chance such as poker and blackjack have transitioned to the digital age very suc-
cessfully. In this case study, we show how to develop a blackjack application. As we develop
this application, we will make use of several concepts introduced in Chapter 6: sets, dictio-
naries, Unicode characters, and of course randomness through card shuffling.

Blackjack
Blackjack can be played with a standard deck of 52 cards. In a one-person blackjack game,
the player plays against the house (i.e., the dealer). The house deals the cards, plays using a
fixed strategy, and wins in case of a tie. Our blackjack application will simulate the house.
The player (i.e., the user of the application) is trying to beat the house.

DETOUR
Blackjack Game Rules

The game starts with the house dealing cards from a shuffled deck to the player and
to itself (the house). The first card is handed to the player, the second to the house,
the third to the player, and the fourth to the house. Each gets two cards. Then the
player is offered the opportunity to take an additional card, which is usually referred
to as “to hit.”

The goal in blackjack is to get a hand whose card values add up to as close to
21 as possible without going over. The value of each number card is its rank, and
the value of each face card is 10. The ace is valued at either 1 or 11, whichever
works out better (i.e., gets closer to 21 without exceeding it). By hitting one or more
times, the player tries to get his hand value closer to 21. If the player’s hand value
goes over 21 after a hit, he loses.

When the player decides to stand (i.e., pass the opportunity to hit), it is the
house’s turn to take additional cards. The house is required to use a fixed strategy:
It must hit if its best hand value is less than 17 and stand if it is 17 or greater. Of
course, if the house’s best hand value goes over 21, the player wins.

When the house stands, the player’s hand is compared with the house’s hand.
If the player has a higher-valued hand, he wins. If he has a lower-valued hand, he
loses. In case of a tie, no one wins (i.e., the player keeps his bet) except if the
player’s and the house’s hands tied at 21 and either the house or the player has
a blackjack hand (an ace and a value 10 card), in which case the blackjack hand
wins.

Let’s illustrate with a few examples how we want the blackjack application to work.
When you start the app, the house should deal two cards to you and two to itself:

>>> blackjack()
House: 7 ♠ A ♥
You: 6 ♠ 10 ♠

Would you like to hit (default) or stand?

The house dealt a 6 and a 10 of spades to you and a 7 of spades and an ace of heart to itself.
The house then asks you whether you want to hit. Suppose you hit:

You got 8 ♣

www.ebook3000.com

http://www.ebook3000.org

466 Case Studies

You went over... You lose.

You receive an 8 of clubs; since your hand value is 10 + 8 + 6 > 21, you lose. Let’s try
another example:

>>> blackjack()
House: 5 ♦ 7 ♠
You: 2 ♠ 8 ♥

Would you like to hit (default) or stand?
You got 9 ♣
Would you like to hit (default) or stand? s
House got A ♥
House got 5 ♣
You win.

After getting your first two cards, you decide to hit and receive a 9 of clubs. With a hand
value of 19, you decide to stand. The house then hits once and gets an ace. With an ace
value of 11, the house’s total is 5+7+11=23, so the ace value of 1 is used instead, making
the house’s hand value 5 + 7 + 1 = 13. Since 13 < 17, the house must hit again and gets a
5. With a hand value of 18, the house must stand and the player wins.

In this final example, the house loses because it went over:

>>> blackjack()
House: 2 ♦ 10 ♣
You: 4 ♦ 8 ♠

Would you like to hit (default) or stand?
You got A ♠
Would you like to hit (default) or stand? s
House got 10 ♥
House went over... You win.

Rather than develop the blackjack application as a single function, we develop it in mod-
ular fashion, using several small functions. The modular approach has two main benefits.
One is that smaller functions are easier to write, test, and debug. Another is that some of
the functions may be reused in some other card-playing game app. In fact, the first function
we implement returns a shuffled deck, which is useful in most card games.

Creating and Shuffling the Deck of Cards
The game starts with a shuffled deck of 52 cards. Each card is defined by its rank and suit,
and every combination of rank and suit defines a card. To generate all 52 combinations of
rank and suit, we first create a set of ranks and a set of suits (using Unicode suit characters).
Then we use a nested loop pattern to generate every combination of rank and suit. Finally,
we use the shuffle() function of the random module to shuffle the deck:

Module: blackjack.py
1 def shuffledDeck():
2 'returns shuffled deck'
3

4 # suits is a set of 4 Unicode symbols: black spade and club,
5 # and white diamond and heart
6 suits = {'\u2660', '\u2661', '\u2662', '\u2663'}
7 ranks = {'2','3','4','5','6','7','8','9','10','J','Q','K','A'}

Case Study CS.6 Games of Chance 467

8 deck = []
9

10 # create deck of 52 cards
11 for suit in suits:
12 for rank in ranks: # card is the concatenation
13 deck.append(rank+' '+suit) # of suit and rank
14

15 # shuffle the deck and return
16 random.shuffle(deck)
17 return deck

A list is used to hold the cards in the shuffled deck because a list defines an ordering
on the items it contains. A blackjack hand, however, does not need to be ordered. Still, we
choose lists to represent the player’s and the house’s hands. Next we develop a function that
deals a card to either the player or the house.

Dealing a Card
The next function is used to deal the top card in a shuffled deck to one of the blackjack
participants. It also returns the card dealt.

Module: blackjack.py
1 def dealCard(deck, participant):
2 'deals single card from deck to participant'
3 card = deck.pop()
4 participant.append(card)
5 return card

Note that this function can also be reused in other card game apps. The next function, how-
ever, is blackjack specific.

Computing the Value of a Hand
Next we develop the function total() that takes a blackjack hand (i.e., a list of cards) and
uses the best assignment of values to aces to return the best possible value for the hand.
Developing this function makes sense, not because it can be reused in other card games but
because it encapsulates a very specific and somewhat complex computation.

The mapping of cards to their blackjack values is somewhat tricky. Therefore, we use a
dictionary to map the assignments of values to the ranks (dictionary keys) with the ace being
assigned 11. The hand value is computed with these assignments using an accumulator loop
pattern. In parallel, we also count the number of aces, in case we want to switch the value
of an ace down to 1.

If the hand value obtained is 21 or below, it is returned. Otherwise, the value of each ace
in the hand, if any and one by one, is converted to 1 until the hand value drops below 21.

Module: blackjack.py
1 def total(hand):
2 'returns the value of the blackjack hand'
3 values = {'2':2, '3':3, '4':4, '5':5, '6':6, '7':7, '8':8,
4 '9':9, '1':10, 'J':10, 'Q':10, 'K':10, 'A':11}
5 result = 0
6 numAces = 0

www.ebook3000.com

http://www.ebook3000.org

468 Case Studies

7

8 # add up the values of the cards in the hand
9 # also add the number of aces

10 for card in hand:
11 result += values[card[0]]
12 if card[0] == 'A':
13 numAces += 1
14

15 # while value of hand is > 21 and there is an ace
16 # in the hand with value 11, convert its value to 1
17 while result > 21 and numAces > 0:
18 result -= 10
19 numAces -= 1
20

21 return result

Comparing the Player’s and the House’s Hands
Another part of the blackjack implementation that we can develop as a separate function
is the comparison between the player’s hand and the house’s. Blackjack rules are used to
determine, and announce, the winner.

Module: blackjack.py
1 def compareHands(house, player):
2 'compares house and player hands and prints outcome'
3

4 # compute house and player hand total
5 houseTotal, playerTotal = total(house), total(player)
6

7 if houseTotal > playerTotal:
8 print('You lose.')
9 elif houseTotal < playerTotal:

10 print('You win.')
11 elif houseTotal == 21 and 2 == len(house) < len(player):
12 print('You lose.') # house wins with a blackjack
13 elif playerTotal == 21 and 2 == len(player) < len(house):
14 print('You win.') # player wins with a blackjack
15 else:
16 print('A tie.')

Main Blackjack Function
We now implement the main function, blackjack(). The functions we have developed so
far make the program easier to write and easier to read as well.

Module: blackjack.py
1 def blackjack()
2 'simulates the house in a game of blackjack'
3

4 deck = shuffledDeck() # get shuffled deck

Case Study CS.6 Games of Chance 469

5

6 house = [] # house hand
7 player = [] # player hand
8

9 for i in range(2): # dealing initial hands in 2 rounds
10 dealCard(deck, player) # deal to player first
11 dealCard(deck, house) # deal to house second
12

13 # print hands
14 print('House:{:>7}{:>7}'.format(house[0] , house[1]))
15 print(' You:{:>7}{:>7}'.format(player[0], player[1]))
16

17 # while user requests an additional card, house deals it
18 answer = input('Hit or stand? (default: hit): ')
19 while answer in {'', 'h', 'hit'}:
20 card = dealCard(deck, player)
21 print('You got{:>7}'.format(card))
22

23 if total(player) > 21: # player total is > 21
24 print('You went over... You lose.')
25 return
26

27 answer = input('Hit or stand? (default: hit): ')
28

29 # house must play the "house rules"
30 while total(house) < 17:
31 card = dealCard(deck, house)
32 print('House got{:>7}'.format(card))
33

34 if total(house) > 21: # house total is > 21
35 print('House went over... You win.')
36 return
37

38 # compare house and player hands and print result
39 compareHands(house, player)

In lines 6 and 7, the shuffled deck is used to deal the initial hands, which are then printed.
In lines 18 to 25, the interactive loop pattern is used to implement the player’s requests for
additional cards. After each card is dealt, the value of the player’s hand is checked. Lines
30 to 36 implement the house rule for completing the house hand.

Problems

CS.35 Most casinos combine multiple decks for blackjack. Modify the shuffledDeck()
function so it shuffles six decks of 52 cards and returns a shuffled deck (list) of 312 cards.

CS.36 Implement function pokerHand() that takes a poker hand (i.e., a list of five strings
such as '7 ♠') and returns the type of poker hand. The poker hand types include a straight
flush, four of a kind, full house, flush, straight, three of a kind, two pair, one pair, and high

www.ebook3000.com

http://www.ebook3000.org

470 Case Studies

card.

>>> pokerHand(['7 ♠', '8 ♠', '9 ♠', '10 ♠', 'J ♠'])
Straight Flush

CS.37 Implement function pokerComp() that takes two poker hands (i.e., lists of five
strings such as '7 ♠') and returns−1 if the first hand is stronger, 1 if the second is stronger,
and 0 if neither is stronger than the other.

>>> hand1 = ['7 ♠', '8 ♠', '9 ♠', '10 ♠', 'J ♠']
>>> hand2 = ['4 ♦', '4 ♣', '4 ♠', '4 ♥', 'K ♠']
>>> pokerHand(hand1, hand2)
-1

CS.38 Implement function blackjackProb() that takes as input an integer n and simu-
lates n rounds of blackjack in which the player uses the house strategy. You should reuse
and appropriately modify the functions from this section.

Case Study CS.7 Debugging with a Debugger 471

CS.7 Debugging with a Debugger
In this case study we illustrate the use of a debugger to analyze the execution of a program
and, if necessary, find bugs in it. The debugger we use is pdb, the python debugger that is
included in the Python Standard Library. While fancier Python debuggers do exist, pdb is
simple, has the features one expects in a debugger, and, because it is part of the Standard
Library, has the advantage of always being around when working on Python code.

To illustrate how pdb is used, we make use of functions f(), g(), and h() that we
defined in Section 7.1:

Module: stack.py
1 def h(n):
2 print('Start h')
3 print(1/n)
4 print(n)
5

6 def g(n):
7 print('Start g')
8 h(n-1)
9 print(n)

10

11 def f(n):
12 print('Start f')
13 g(n-1)
14 print(n)

We use pdb to analyze the execution of function call f(2) which, as we saw in Section 7.3,
results in a ZeroDivisionError exception being thrown. To get started, we first import
module pdb and then call function run() defined in the module:

>>> import pdb
>>> pdb.run('f(2)')
> <string>(1)<module>()
(Pdb)

Function run() takes as input the Python expression or statement whose execution we want
to analyze; in our case it is the function call f(2). The expression or statement must be given
as a string, just as for function eval(). The result of executing run() is a new, interactive
debugging session which is indicated by the (Pdb) prompt. This prompt tells us that the
debugger is expecting a debugging command from us.

Debugging Commands
A basic debugging task is to run a program and stop its execution at a particular statement
in order to inspect the variable values just before the statement is executed. To do this, we
must first tell the debugger where to stop, which is done by associating a breakpointwith the
statement using the pdb command break. We consider first the special case when we want
to stop the execution just before a function is executed, that is, just before the first statement
in the body of the function. For example, to set a breakpoint at the beginning of the body of
function f, we use:

(Pdb) b f
Breakpoint 1 at /Users/me/stack.py:11

www.ebook3000.com

http://www.ebook3000.org

472 Case Studies

Table CS.7 Debugger
commands. A few pdb
debugger commands are
shown; to see the full list,
use the help debugger
command.

Usage Explanation
b(break) func Set a break at the first statement of function func
b(break) lineno Set a breakpoint at line numbered lineno of the program
b(break) List all breakpoints
condition bp cd Associate condition cd with breakpoint bp so it is ignored if

cd evaluates to False
c(continue) Continue execution until next breakpoint (or end of program)
cl(ear) bp Clear breakpoint bp or all breakpoints if no argument is given
d(own) Move the program stack frame view to the frame one level

down (as seen in the program trace)
h(elp) Print the list of available commands
l(ist) List the 11 lines of source code around the current line
p exp Evaluate expression exp and print its value
q(uit) Quit the debugger
n(ext) Execute the next line of the current function and stop when

done
u(p) Move the program stack frame view to the frame one level up

(as seen in the program trace)
w(here) Print the stack trace, with the most recent frame at the bottom

Note the printed message saying that the breakpoint is associated with the statement in
line 11 of module stack.py. We use b, the abbreviated version of command break; since
debugging often involves typing a lot of debugging commands, to make debugging more
efficient most commands have abbreviated versions. Table CS.7 lists the commands, and
their abbreviations, we will use in this case study.

Once the breakpoint is set, we can run the program within the debugger using the
c(ontinue) command:

(Pdb) c
> /Users/me/stack.py(12)f()
-> print('Start f')

The program executes until a breakpoint is reached or the program terminates. In our case
the execution stops at the breakpoint we just set, just before statement print('Start f')
which is the first statement in the body of function f. This is shown in the printed message
with an arrow pointing to that statement. We can also see that with command l(ist)which
prints the 11 lines of source code around the statement at which the execution stopped:

(Pdb) l
7 print('Start g')
8 h(n-1)
9 print(n)
10
11 B def f(n):
12 -> print('Start f')
13 g(n-1)
14 print(n)
15
16
[EOF]

Case Study CS.7 Debugging with a Debugger 473

At any point, we can make queries about variable values using command p(rint). For
example, we can verify the current value of variable n:

(Pdb) p n
2

Let’s continue the execution of the program. To execute just a single statement (the one
pointed to by the arrow) and stop, we can use command n(ext):

(Pdb) n
Start f
> /Users/me/stack.py(13)f()
-> g(n-1)

Note that the string 'Start f' was printed, which means that statement print('Start
f')was executed. In addition, a message is printed that shows the arrow pointing to function
call g(n-1), which means that execution has stopped just prior to executing this statement.

Suppose that at this point we want to continue execution and stop just before the body of
function g is executed. We simply set another breakpoint at g and then continue execution:

(Pdb) b g
Breakpoint 2 at /Users/me/stack.py:6
(Pdb) c
> /Users/me/stack.py(7)g()
-> print('Start g')

Note that the execution stopped just before executing the first statement of g(). The value
of n is now:

(Pdb) p n
1

Before we continue the execution, we set another breakpoint. This time it will be at function
h:

(Pdb) b h
Breakpoint 3 at /Users/me/stack.py:1

We also take a moment to see all the breakpoints we have set:

(Pdb) b
Num Type Disp Enb Where
1 breakpoint keep yes at /Users/me/stack.py:11

breakpoint already hit 1 time
2 breakpoint keep yes at /Users/me/stack.py:6

breakpoint already hit 1 time
3 breakpoint keep yes at /Users/me/stack.py:1

The pdb command b(reak), when used without arguments, lists the current breakpoints.
We now continue the execution using the command c(ontinue):

(Pdb) c
Start g
> /Users/me/stack.py(2)h()
-> print('Start h')

www.ebook3000.com

http://www.ebook3000.org

474 Case Studies

We have stopped at the breakpoint we set at function h. We take one more step and then
verify the value of n:

(Pdb) n
Start h
> /Users/me/stack.py(3)h()
-> print(1/n)
(Pdb) p n
0

The value of n while executing function h is 0 and the next statement in h to be executed is
print(1/n). Before we proceed and execute that statement, we take this opportunity and
show how to analyze the current program stack.

Analyzing the Program Stack
The command w(here) prints the stack trace which is a summary of the current program
stack.

(Pdb) w
/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/
bdb.py(431)run()

-> exec(cmd, globals, locals)
<string>(1)<module>()
/Users/me/stack.py(13)f()

-> g(n-1)
/Users/me/stack.py(8)g()

-> h(n-1)
> /Users/me/stack.py(3)h()
-> print(1/n)

A two-line summary of the frame at the top of the program stack, corresponding to the most
recent function call and marked with symbol >, is shown at the bottom. The reason for this
inconsistency (the top frame in the stack is shown at the bottom of the stack trace) is that
on Intel-CPU-based systems, the convention is to draw the stack upside-down. The stack
trace shows that the frame at the top of the stack corresponds to function h() and that we
are about to execute statement print(1/n) in h().

The stack trace also shows that the stack frame just below the top frame corresponds to
the call to function g() and that we are in the process of executing function call h(n-1) in
g(), and that the frame below that corresponds to the call to function f() and that we are
in the process of executing function call g(n-1) in f().

Debugger pdb provides commands that allow us to go up and down the program stack
and visit frames currently in the stack. The command u(p) is used to move from the frame
we are currently viewing to the one above it as shown in the program trace. Let’s use this
command to move up from the top frame corresponding to the call to function h() and in
which variable n has value 0:

(Pdb) u
> /Users/me/stack.py(8)g()
-> h(n-1)

The message shows that we are now viewing the frame corresponding to the execution of
function g(). We verify this using command l(ist) and by printing the value of n.

Case Study CS.7 Debugging with a Debugger 475

(Pdb) l
3 print(1/n)
4 print(n)
5
6 B def g(n):
7 print('Start g')
8 -> h(n-1)
9 print(n)
10
11 B def f(n):
12 print('Start f')
13 g(n-1)
(Pdb) p n
1

Let’s move up one more frame to view the frame corresponding to the call to function f():

(Pdb) u
> /Users/me/stack.py(13)f()
-> g(n-1)
(Pdb) p n
2

The value of n in this frame is 2. In Figure CS.9, we illustrate the different values of n stored
in different frames of the stack.

In stack frame for h(0)n = 0

In stack frame for g(1)n = 1

In stack frame for f(2)n = 2

Program stack

Figure CS.9 Current stack.
Shown are the different
values of n stored in frames
on the program stack.

The command d(own) is used to move from the frame we are currently viewing to the
one below it as shown in the program trace. We use twice it to get back to the top (i.e., most
recent) frame on the stack:

(Pdb) d
> /Users/me/stack.py(8)g()
-> h(n-1)
(Pdb) d
> /Users/me/stack.py(3)h()
-> print(1/n)

The printed message shows that we are again viewing the frame corresponding to the call
to function h and showing that the execution stopped just prior to executing the statement
print(1/n). Since the value of n in this frame is 0, the execution of the statement will
cause a DivisionbyZero exception to be thrown, crashing our program:

(Pdb) n
ZeroDivisionError: division by zero
> /Users/me/stack.py(3)h()
-> print(1/n)

www.ebook3000.com

http://www.ebook3000.org

476 Case Studies

We can now use command c(ontinue) to continue the execution of the program which
will result in the stack trace being printed and the program terminating. Alternatively, we
can simply quit the debugger using command q(uit):

(Pdb) q

Practice Problem
CS.39

Function arithmetic is supposed to take a list of integers as input and return True if the
numbers in the list form an arithmetic sequence and False otherwise:

Module: arithmetic.py

1 def arithmetic(numList):
2 '''returns True if list of integers numList
3 is an arithmetic sequence, False otherwise'''
4 if len(numList) < 2:
5 return True
6 diff = numList[1] - numList[0]
7 for i in range(len(numList)):
8 if numList[i+1] - numList[i] != diff:
9 return False

10 return True

This implementation has a bug, however:

>>> arithmetic([2,4,6,8])
Traceback (most recent call last):
File "<pyshell#32>", line 1, in <module>
arithmetic([2,4,6,8])

File "/Users/me/stack.py", line 8, in arithmetic
if numList[i+1] - numList[i] != diff:

IndexError: list index out of range

Using the pdb debugger, find the value of i that causes the IndexError exception. To do
this, you will find it helpful to read, in the online Python Standard Library pdb documenta-
tion, about setting a conditional breakpoint so execution stops at a breakpoint only when a
condition is true.

Solution to the Practice Problem

CS.39 Let’s start the debugger session, set a breakpoint at function arithmetic, execute
the program up to this breakpoint, and list the source code:

>>> import pdb
>>> pdb.run('arithmetic([2,4,6,8])')
> <string>(1)<module>()
(Pdb) b arithmetic
Breakpoint 1 at /Users/me/stack.py:1
(Pdb) c
> /Users/me/stack.py(2)arithmetic()
-> if len(numList) < 2:

Case Study CS.7 Debugging with a Debugger 477

(Pdb) l
1 B def arithmetic(numList):
2 -> if len(numList) < 2:
3 return True
4 diff = numList[1] - numList[0]
5 for i in range(len(numList)):
6 if numList[i+1] - numList[i] != diff:
7 return False
8 return True

[EOF]

The stack trace shows that the IndexError occurred while executing the statement

if numList[i+1] - numList[i] != diff:

so we set a breakpoint at that line and we associate with it a condition that must be true for
an IndexError exception to occur. i would either have to be less than 0 or i + 1 would
have to be at least len(numList):

(Pdb) b 6
Breakpoint 2 at /Users/me/stack.py:6
(Pdb) condition 2 i < 0 or i + 1 >= len(numList)
New condition set for breakpoint 2.
(Pdb) c
> /Users/me/stack.py(6)arithmetic()
-> if numList[i+1] - numList[i] != diff:

Since the execution stopped at line 6, it must be that the condition associated with the break-
point is true. We check this:

(Pdb) p i
3
(Pdb) p i+1
4
(Pdb) p len(numList)
4

Problems

CS.40 Function slopes() takes as input a list of points in the plane and then computes
and prints the slope between each successive pair of points. Each point is described using a
tuple of two numbers.

Module: slopes.py
1 def slopes(points):
2 for i in range(1, len(points)):
3 x1, y1 = points[i-1]
4 x2, y2 = points[i]
5 slope = (y2 - y1) / (x2 - x1)

An error occurs when the function is run with the list points as input:

>>> points = [(2, 3), (5, 6), (4, 5), (4, 3), (2, 5), (9, 4), \
(7, 4), (3, 7), (6, 8), (8, 5), (2, 9)]

www.ebook3000.com

http://www.ebook3000.org

478 Case Studies

>>> slopes(points)
Traceback (most recent call last):
File "<pyshell#372>", line 1, in <module>
slopes(points)

File "/Users/me/slopes.py", line 5, in slopes
slope = (y2 - y1) / (x2 - x1)

ZeroDivisionError: division by zero

Use the pdb debugger and a conditional breakpoint to quickly find the value of index iwhen
the error occurs.

CS.41 The following program generates a secret six-digit key based on your computer’s
network name:

Module: blackbox.py
1 from random import randrange, seed
2 from platform import node
3

4 def blackbox():
5 seed(node()) # generate pseudorandom number generator seed
6 # based on host's network name
7 secret = randrange(10**5,10**6) # generate six digit integer
8 # based on seed
9 try:

10 key = int(input('Enter key: '))
11 if key != secret:
12 print('Failed...')
13 else:
14 print('Success!')
15 except:
16 print('Failed...')

Use the pdb debugger to find the secret key and test the key you found. On the author’s
laptop, the key 892854 worked:

>>> blackbox()
Enter key: 892854
Success!

Case Study CS.8 Indexing and Iterators 479

CS.8 Indexing and Iterators
In this case study, we will learn how to make a container class feel more like a built-in class.
We will see how to enable indexing of items in the container and how to enable iteration,
using a for loop, over the items in the container.

Because iterating over a container is an abstract task that generalizes over different types
of containers, software developers have developed a general approach for implementing
iteration behavior. This approach, called the iterator design pattern, is just one among many
OOP design patterns that have been developed and cataloged for the purpose of solving
common software development problems.

Overloading the Indexing Operators
Suppose that we are working with a queue, whether of type Queue or Queue2, and would
like to see what item is in the 2nd, 3rd, or 24th position in the queue. In other words, we
would like to use the indexing operator [] on the queue object.

We implemented the class Queue2 as a subclass of list. Thus Queue2 inherits all the
attributes of class list, including the indexing operator. Let’s check that. We first build the
Queue2 object:

>>> q2 = Queue2()
>>> q2.enqueue(5)
>>> q2.enqueue(7)
>>> q2.enqueue(9)

Now we use the indexing operator on it:
>>> q2[1]
7

Let’s now turn our attention to the original implementation, Queue. The only attributes
of class Queue are the ones we implemented explicitly. It therefore should not support the
indexing operator:

>>> q = Queue()
>>> q.enqueue(5)
>>> q.enqueue(7)
>>> q.enqueue(9)
>>> q
[5, 7, 9]
>>> q[1]
Traceback (most recent call last):
File "<pyshell#18>", line 1, in <module>
q[1]

TypeError: 'Queue' object does not support indexing

In order to be able to access Queue items using the indexing operator, we need to add
method __getitem__() to the Queue class. This is because when the indexing operator is
used on an object, as in q[i], the Python interpreter will translate that to a call to method
__getitem__(), as in q.__getitem(i); if method __getitem__() is not implemented,
then the object’s type does not support indexing.

Here is the implementation of __getitem__() we will add to class Queue:

def __getitem__(self, key):
return self.q[key]

www.ebook3000.com

http://www.ebook3000.org

480 Case Studies

The implementation relies on the fact that lists support indexing: To get the queue item at
index key, we return the item at index key of the list self.q. We check that it works:

>>> q = queue()
>>> q.enqueue(5)
>>> q.enqueue(7)
>>> q.enqueue(9)
>>> q[1]
7

OK, so we now can use the indexing operator to get the item of a Queue at index 1. Does
this mean we can change the item at index 1?

>>> q[1] = 27
Traceback (most recent call last):
File "<pyshell#48>", line 1, in <module>
q[1] = 27

TypeError: 'queue' object does not support item assignment

That’s a no. Method __getitem__() gets called by the Python interpreter only when we
evaluate self[key]. When we attempt to assign to self[key], the overloaded operator
__setitem__() is called by the Python interpreter instead. If we wanted to allow assign-
ments such as q[1] = 27, then we would have to implement a method __setitem__()
that takes a key and an item as input and places the item at position key.

A possible implementation of __setitem__() could be:

def __setitem__(self, key, item):
self.q[key] = item

This operation, however, does not make sense for a queue class, and we do not to add it.
One benefit of implementing the method __getitem__() is that it allows us to iterate

over a Queue container, using the iteration loop pattern:

>>> for item in q:
print(item)

5
7
9

Before implementing the method __getitem__(), we could not have done that.

Practice Problem
CS.42

Recall that we can also iterate over a Queue container using the counter loop pattern (i.e.,
by going through the indexes):

>>> for i in range(len(q)):
print(q[i])

3
5
7
9

Case Study CS.8 Indexing and Iterators 481

What overloaded operator, in addition to the indexing operator, needs to be implemented to
be able to iterate over a container using this pattern?

Iterators and OOP Design Patterns
Python supports iteration over all the built-in containers we have seen: strings, lists, dictio-
naries, tuples, and sets. We have just seen that by adding the indexing behavior to a user-
defined container class, we can iterate over it as well. The remarkable thing is that the same
iteration pattern is used for all the container types:

for c in s: # s is a string
print(char)

for item in lst: # lst is a list
print(item)

for key in d: # d is a dictionary
print(key)

for item in q: # q is a Queue (user-defined class)
print(item)

The fact that the same code pattern is used to iterate over different types of containers
is no accident. Iteration over items in a container transcends the container type. Using the
same familiar pattern to encode iteration simplifies the work of the developer when reading
or writing code. That said, because each container type is different, the work done by the
for loop will have to be different depending on the type of container: Lists have indexes and
dictionaries do not, for example, so the for loop has to work one way for lists and another
way for dictionaries.

To explore iteration further, we go back to iterating over a Queue container. With our
current implementation, iteration over a queue starts at the front of the queue and ends at
the rear of the queue. This seems reasonable, but what if we really, really wanted to iterate
from the rear to the front, as in:

>>> q = [5, 7, 9]
>>> for item in q:

print(item)

9
7
5

Are we out of luck?
Fortunately, Python uses an approach to implement iteration that can be customized. To

implement the iterator pattern, Python uses classes, overloaded operators, and exceptions
in an elegant way. In order to describe it, we need to first understand how iteration (i.e., a
for loop) works. Let’s use the next for loop as an example:

>>> s = 'abc'
>>> for c in s:

print(c)

www.ebook3000.com

http://www.ebook3000.org

482 Case Studies

a
b
c

What actually happens in the loop is this: The for loop statement causes the method
__iter__() to be invoked on the container object (string 'abc' in this case.) This method
returns an object called an iterator; the iterator will be of a type that implements a method
called __next__(); this method is then used to access items in the container one at a time.
Therefore, what happens behind the scenes when the last for loop executes is this:

>>> s = 'abc'
>>> it = s.__iter__()
>>> it.__next__()
'a'
>>> it.__next__()
'b'
>>> it.__next__()
'c'
>>> it.__next__()
Traceback (most recent call last):
File "<pyshell#173>", line 1, in <module>
it.__next__()

StopIteration

After the iterator has been created, themethod __next__() is called repeatedly.When there
are no more elements, __next__() raises a StopIteration exception. The for loop will
catch that exception and terminate the iteration.

In order to add custom iterator behavior to a container class, we need to do two things:
1. Add to the class method __iter__(), which returns an object of a iterator type (i.e.,

of a type that supports the __next()__ method).
2. Implement the iterator type and in particular the method __next__().
We illustrate this by implementing iteration on Queue containers in which queue items

are visited from the rear to the front of the queue. First, a method __iter__() needs to be
added to the Queue class:

Module: queue.py
1 class Queue:
2 'a classic queue class'
3

4 # other Queue methods implemented here
5

6 def __iter__(self):
7 'returns Queue iterator'
8 return QueueIterator(self)

The Queue method __iter__() returns an object of type QueueIterator that we have
yet to implement. Note, however, that argument self is passed to the QueueIterator()
constructor: In order to have an iterator that iterates over a specific queue, it better have
access to the queue.

Now let’s implement the iterator class QueueIterator. We need to implement the
QueueIterator class constructor so that it takes in a reference to the Queue container

Case Study CS.8 Indexing and Iterators 483

it will iterate over:

class QueueIterator:
'iterator for Queue container class'
def __init__(self, q):

'constructor'
self.q = q

method next to be implemented

The method __next__() is supposed to return the next item in the queue. This means that
we need to keep track of what the next item is, using an instance variable we will call index.
This variable will need to be initialized, and the place to do that is in the constructor. Here
is the complete implementation:

Module: queue.py
1 class QueueIterator:
2 'iterator for Queue container class'
3 def __init__(self, q):
4 'constructor'
5 self.index = len(q)-1
6 self.q = q
7

8 def __next__(self):
9 '''returns next Queue item; if no next item,

10 raises StopIteration exception'''
11 if self.index < 0: # no next item
12 raise StopIteration()
13

14 # return next item
15 res = self.q[self.index]
16 self.index -= 1
17 return res

The method __next__() raises an exception if there are no more items to iterate over.
Otherwise, it stores the item at index index, decrements index, and returns the stored
item.

Practice Problem
CS.43

Develop subclass oddList of list that behaves just like a list except for the peculiar be-
havior of the for loop:

>>> lst = oddList(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
>>> lst
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
>>> for item in lst:

print(item, end=' ')

a c e g

The iteration loop pattern skips every other item in the list.

www.ebook3000.com

http://www.ebook3000.org

484 Case Studies

Solutions to Practice Problems

CS.42 The operator len(), which returns the length of the container, is used explicitly in
a counter loop pattern.

CS.43 The class oddList inherits all the attributes of list and overloads the __iter__()
method to return a ListIterator object. Its implementation is shown next.

class oddList(list):
'list with peculiar iteration loop pattern'
def __iter__(self):

'returns list iterator object'
return ListIterator(self)

An object of type ListIterator iterates over a oddList container. The constructor initial-
izes the instance variables lst, which refers to the oddList container, and index, which
stores the index of the next item to return:

class ListIterator:
'peculiar iterator for oddList class'
def __init__(self, lst):

'constructor'
self.lst = lst
self.index = 0

def __next__(self):
'returns next oddList item'
if self.index >= len(self.lst):

raise StopIteration
res = self.lst[self.index]
self.index += 2
return res

The __next__() method returns the item at position index and increments index by 2.

Problems

CS.44 Modify the solution of Practice Problem CS.43 so that two list items are skipped in
every iteration of a for loop.

>>> lst = oddList(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
>>> for item in lst:

print(item, end=' ')

a d g

CS.45 Implement an iterator for container class Stat from Problem 8.34. To do this, first
add method __iter__() to class Stat; this method should just instantiate and return a
StatIterator object. In order for this iterator object to be able to access the items con-
tained in the corresponding Stat object, make sure you pass a reference to the list that

Case Study CS.8 Indexing and Iterators 485

actually contains the items in the Stat object. Finally, implement class StatIterator.

CS.46 Add method __iter__() to class PriorityQueue from Problem 8.36; the method
should just return a PriorityQueueIterator object. Then implement the iterator class
PriorityQueueIterator that visits items of a PriorityQueue object in order, from
smallest to largest.

CS.47 Implement an iterator for class Deck developed in Section 8.3.

CS.48 Implement an iterator for class Hand from Problem 8.29. Your iterator should visit
the cards in the hand in order, where the order is determined by suit (clubs first, then dia-
monds, then hearts, and finally spades) and then by rank (2 through 10, and then J, Q, K,
and A).

www.ebook3000.com

http://www.ebook3000.org

486 Case Studies

CS.9 Developing a Calculator
In this case study, we implement a basic calculator GUI, shown in Figure CS.10. We use
OOP techniques to implement it as a user-defined widget class, from scratch. In the pro-
cess, we explain how to write a single event-handling function that handles many different
buttons.

Figure CS.10 GUI Calc. A
calculator application with
the usual four operators, a
square root and a square
function, and a memory
capability.

The Calculator Buttons and Passing Arguments to Handlers
Let’s get our hands dirty right away and tackle the code that creates the 24 buttons of the
calculator. We can use the approach based on a two-dimensional list of button labels and a
nested loop that we used in program phone.py from Section 9.1. Let’s get started.

Module: calc.py
1 # calculator button labels in a 2D list
2 buttons = [['MC', 'M+', 'M-', 'MR'],
3 ['C' , '\u221a', 'x\u00b2', '+'],
4 ['7' , '8' , '9' , '-'],
5 ['4' , '5' , '6' , '*'],
6 ['1' , '2' , '3' , '/'],
7 ['0' , '.' , '+-', '=']]
8

9 # create and place buttons in appropriate row and column
10 for r in range(6):
11 for c in range(4):
12 b = Button(self, # button for symbol buttons[r][c]
13 text=buttons[r][c],
14 width=3,
15 relief=RAISED,
16 command=???) # method ??? to be done
17 b.grid(row=r+1, column=c) # entry is in row 0

(We use Unicode characters \u221a and \u00b2 for the square root and the superscript in
x2.)

Case Study CS.9 Developing a Calculator 487

What’s missing in this code is the name of each event-handling function (note the ques-
tion marks ??? in line 16). With 24 different buttons, we need to have 24 different event
handlers. Writing 24 different handlers would not only be very painful, but it would also be
quite repetitive since many of them are essentially the same. For example, the 10 handlers
for the 10 “digit” buttons should all do essentially the same thing: append the appropriate
digit to the string in the entry field.

Wouldn’t it be nicer if we could write just one event handler called click() for all 24
buttons? This handler would take one input argument, the label of the clicked button, and
then handle the button click depending on what the label is.

The problem is that a button event handler cannot take an input argument. In other words,
the command option in the Button constructor must refer to a function that can and will be
called without arguments. So are we out of luck?

There is actually a solution to the problem, and it uses the fact that Python functions
can be defined so that when called without an input value, the input argument receives a
default value. Instead of having function click() be the official handler, we define, inside
the nested for loop, the handler to be a function cmd() that takes one input argument x—
which defaults to the label buttons[r][c]—and calls self.click(x). The next module
includes this approach (and the code that creates the Entry widget):

Module: calc.py
1 # use Entry widget for display
2 self.entry = Entry(self, relief=RIDGE, borderwidth=3,
3 width=20, bg='gray',
4 font=('Helvetica', 18))
5 self.entry.grid(row=0, column=0, columnspan=5)
6

7 # create and place buttons in appropriate row and column
8 for r in range(6):
9 for c in range(4):

10

11 # function cmd() is defined so that when it is
12 # called without an input argument, it executes
13 # self.click(buttons[r][c])
14 def cmd(x=buttons[r][c]):
15 self.click(x)
16

17 b = Button(self, # button for symbol buttons[r][c]
18 text=buttons[r][c],
19 width=3,
20 relief=RAISED,
21 command=cmd) # cmd() is the handler
22 b.grid(row=r+1, column=c) # entry is in row 0

In every iteration of the innermost for loop, a new function cmd is defined. It is defined
so that when called without an input value, it executes self.clicked(buttons[r][c]).
The label buttons[r][c] is the label of the button being created in the same iteration. The
button constructor will set cmd() to be the button’s event handler.

In summary, when the calculator button with label key is clicked, the Python interpreter
will execute self.click(key). To complete the calculator, we need only to implement the
“unofficial” event handler click().

www.ebook3000.com

http://www.ebook3000.org

488 Case Studies

Implementing the “Unofficial” Event Handler click()
The function click() actually handles every button click. It takes the text label key of
the clicked button as input and, depending on what the button label is, does one of several
things. If key is one of the digits 0 through 9 or the dot, then key should simply be appended
to the digits already in the Entry widget:

self.entry.insert(END, key)

(We will see in a moment that this is not quite enough.)
If key is one of the operators +, -, *, or /, it means that we just finished typing an

operand, which is displayed in the entry widget, and are about to start typing the next
operand. To handle this, we use an instance variable self.expr that will store the ex-
pression typed so far, as a string. This means that we need to append the operand currently
displayed in the entry box and also the operator key:

self.expr += self.entry.get()
self.expr += key

In addition, we need to somehow indicate that the next digit typed is the start of the next
operand and should not be appended to the current value in the Entry widget. We do this
by setting a flag:

self.startOfNextOperand = True

This means that we need to rethink what needs to be done when key is one of the digits 0
through 9. If startOfNextOperand is True, we need to first delete the operand currently
displayed in the entry and reset the flag to False:

if self.startOfNextOperand:
self.entry.delete(0, END)
self.startOfNextOperand = False

self.entry.insert(END, key)

What should be done if key is =? The expression typed so far should be evaluated and
displayed in the entry. The expression consists of everything stored in self.expr and the
operand currently in the entry. Before displaying the result of the evaluation, the operand
currently in the entry should be deleted. Because the user may have typed an illegal expres-
sion, we need to do all this inside a try block; the exception handler will display an error
message if an exception is raised while evaluating the expression.

We can now implement a part of the click() function:

Module: calc.py
1 def click(self, key):
2 'handler for event of pressing button labeled key'
3 if key == '=':
4 # evaluate the expression, including the value
5 # displayed in entry and display result
6 try:
7 result = eval(self.expr + self.entry.get())
8 self.entry.delete(0, END)
9 self.entry.insert(END, result)

10 self.expr = ''
11 except:
12 self.entry.delete(0, END)

Case Study CS.9 Developing a Calculator 489

13 self.entry.insert(END, 'Error')
14

15 elif key in '+*-/':
16 # add operand displayed in entry and operator key
17 # to expression and prepare for next operand
18 self.expr += self.entry.get()
19 self.expr += key
20 self.startOfNextOperand = True
21 # the cases when key is '\u221a', 'x\u00b2', 'C',
22 # 'M+', 'M-', 'MR', 'MC' are left as an exercise
23

24 elif key == '+-':
25 # switch entry from positive to negative or vice versa
26 # if there is no value in entry, do nothing
27 try:
28 if self.entry.get()[0] == '-':
29 self.entry.delete(0)
30 else:
31 self.entry.insert(0, '-')
32 except IndexError:
33 pass
34

35 else:
36 # insert digit at end of entry, or as the first
37 # digit if start of next operand
38 if self.startOfNextOperand:
39 self.entry.delete(0, END)
40 self.startOfNextOperand = False
41 self.entry.insert(END, key)

Note that the case when the user types the +- button is also shown. Each press of this button
should either insert a - operator in front of the operand in the entry if it is positive, or remove
the - operator if it is negative. We leave the implementation of some of the other cases as a
practice problem.

Lastly, we implement the constructor. We have already written the code that creates
the entry and the buttons. Instance variables self.expr and self.startOfNextOperand
should also be initialized there. In addition, we should initialize an instance variable that will
represent the calculator’s memory.

Module: calc.py
1 def __init__(self, parent=None):
2 'calculator constructor'
3 Frame.__init__(self, parent)
4 self.pack()
5

6 self.memory = '' # memory
7 self.expr = '' # current expression
8 self.startOfNextOperand = True # start of new operand
9

10 # entry and buttons code

www.ebook3000.com

http://www.ebook3000.org

490 Case Studies

Practice Problem
CS.49

Complete the implementation of the Calc class. You will need to implement the code that
handles buttons C, MC, M+, M-, and MR as well as the square root and square buttons.

Use the instance variable self.memory in the code handling the four memory buttons.
Implement the square root and the square button so that the appropriate operation is applied
to the value in the entry and the result is displayed in the entry.

Solution to the Practice Problem

CS.49 Here is the code fragment that is missing:

Module: calc.py
1 elif key == '\u221a':
2 # compute and display square root of entry
3 result = sqrt(eval(self.entry.get()))
4 self.entry.delete(0, END)
5 self.entry.insert(END, result)
6

7 elif key == 'x\u00b2':
8 # compute and display the square of entry
9 result = eval(self.entry.get())**2

10 self.entry.delete(0, END)
11 self.entry.insert(END, result)
12

13 elif key == 'C': # clear entry
14 self.entry.delete(0, END)
15

16 elif key in {'M+', 'M-'}:
17 # add or subtract entry value from memory
18 self.memory = str(eval(self.memory+key[1]+self.entry.get()))
19

20 elif key == 'MR':
21 # replace value in entry with value stored in memory
22 self.entry.delete(0, END)
23 self.entry.insert(END, self.memory)
24

25 elif key == 'MC': # clear memory
26 self.memory = ''

Problems

CS.50 Develop a widget class Finances that incorporates a calculator and a tool to com-
pute the monthly mortgage. In your implementation, you should use the Calc class devel-
oped in the case study and a Mortgage widget from Problem 9.17.

CS.51 Augment calculator widget Calc so that the user can type keyboard keys instead of
clicking buttons corresponding to the 10 digits, the dot ., and the operators +, -, *, and /.

Case Study CS.9 Developing a Calculator 491

Also allow the user to type the Enter/Return key instead of clicking button labeled =.

CS.52 Most calculators clear to 0 and not an empty display. Modify the calculator Calc
implementation so the default display is 0.

CS.53 Make the Calc class a scientific calculator by adding 2 rows of buttons correspond-
ing to the following math functions and constants: sin(x), cos(x), tan(x), π, 2x, ex, 10x,
e.

CS.54 Add one more row of buttons to the calculator from the previous problem. This row
should contain buttons corresponding to math functions x3, xy , 1

x and a button labeled INV
whose behavior is as follows.When a function button (e.g., 2x) is clicked right after clicking
button INV, the inverse of the function (e.g., log2 x) is actually computed.

www.ebook3000.com

http://www.ebook3000.org

492 Case Studies

CS.10 Tower of Hanoi
In this case study, we consider the Tower of Hanoi problem, the classic example of a problem
easily solved using recursion. We also use the opportunity to develop a visual application
by developing new classes and using object-oriented programming techniques.

Here is the problem. There are three pegs—which we call, from left to right, pegs 1,
2, and 3—and n ≥ 0 disks of different diameters. In the initial configuration, the n disks
are placed around peg 1 in increasing order of diameter, from top to bottom. Figure CS.11
shows the initial configuration for n = 5 disks.

Figure CS.11 Tower of
Hanoi with five disks.
The initial configuration.

The Tower of Hanoi problem asks to move the disks one at a time and achieve the final
configuration shown in Figure CS.12.

Figure CS.12 Tower of
Hanoi with five disks.
The final configuration.

There are restrictions on how disks can be moved: (1) Disks can be moved only one
at a time, (2) A disk must be released around a peg before another disk is picked up, and
(3) A disk cannot be placed on top of a disk with smaller diameter. We illustrate these
rules in Figure CS.13, which shows three successive legal moves, starting from the initial
configuration from Figure CS.11.

Figure CS.13 Tower of
Hanoi with five disks: first
three moves. Configuration
(a) is the result of moving
the topmost, smallest disk
from peg 1 to peg 3.
Configuration (b) is the
result of moving the next
smallest disk from peg 1 to
peg 2. Note that moving the
second smallest disk to peg
3 would have been an illegal
move. Configuration (c) is
the result of moving the disk
around peg 3 to peg 2.

(a)

(b)

(c)

Case Study CS.10 Tower of Hanoi 493

The Recursive Solution
Wewould like to develop a function hanoi() that takes a nonnegative integer n as input and
moves n disks from peg 1 to peg 3 using legal single-disk moves. To implement hanoi()
recursively, we need to find a recursive way to describe the solution (i.e., the moves of the
disks). To help us discover it, we start by looking at the simplest cases.

The easiest case is when n = 0: There is no disk to move! The next easiest case is when
n = 1: A move of the disk from peg 1 to peg 3 will solve the problem.

With n = 2 disks, the starting configuration is shown in Figure CS.14.

Figure CS.14 Tower of
Hanoi with two disks.
The initial configuration.

In order to move the two disks from peg 1 to peg 3, it is clear that we need to move the
top disk from peg 1 out of the way (i.e., to peg 2) so the larger disk can be moved to peg 3.
This is illustrated in Figure CS.15.

(a)

(b)

(c)

Figure CS.15 Tower of
Hanoi with two disks: the
solution. Disks are moved
in this order: (a) the small
disk from peg 1 to peg 2, (b)
the large disk from peg 1 to
peg 3, and (c) the small disk
from peg 2 to peg 3.

In order to implement function hanoi() in a clear and intuitive way (i.e., in terms of
moving disks from peg to peg), we need to develop classes that represent peg and disk
objects. We discuss the implementation of these classes later; at this point, we only need
to know how to use them, which we show using the help() tool. The documentation for
classes Peg and Disk is:

>>> help(Peg)
...
class Peg(turtle.Turtle, builtins.list)
| a Tower of Hanoi peg class
...
| __init__(self, n)
| initializes a peg for n disks
|
| pop(self)
| removes top disk from peg and returns it
|
| push(self, disk)
| pushes disk around peg
...
>>> help(Disk)
...
class Disk(turtle.Turtle)
| a Tower of Hanoi disk class

www.ebook3000.com

http://www.ebook3000.org

494 Case Studies

...
| Methods defined here:
|
| __init__(self, n)
| initializes disk n

We also need to develop function move() that takes two pegs as input and moves the
topmost disk from the first peg to the second peg:

Module: turtleHanoi.py
1 def move_disk(from_peg, to_peg):
2 'moves top disk from from_peg to to_peg'
3 disk = from_peg.pop()
4 to_peg.push(disk)

Using these classes and function, we can describe the solution of the Tower of Hanoi
problem with two disks, illustrated in Figures CS.14 and CS.15 as shown:

>>> p1 = Peg(2) # create peg 1
>>> p2 = Peg(2) # create peg 2
>>> p3 = Peg(2) # create peg 3
>>> p1.push(Disk(2)) # push larger disk onto peg 1
>>> p1.push(Disk(1)) # push smaller disk onto peg 1
>>> move_disk(p1, p2) # move top disk from peg 1 to peg 2
>>> move_disk(p1, p3) # move remaining disk from peg 1 to peg 3
>>> move_disk(p2, p3) # move disk from peg 2 to peg 3

Now let’s consider the case when n = 3 and try to describe the sequence of disk moves
for it recursively. We do this using the same approach we took for n = 2: We would like to
take the two top disks from peg 1 out of the way (i.e., put them around peg 2) so that we
can move the largest disk from peg 1 to peg 3. Once we get the largest disk around peg 3,
we again need to move two disks, but this time from peg 2 to peg 3. This idea is illustrated
in Figure CS.16.

Figure CS.16 Tower of
Hanoi problem with three
disks. Configuration (a) is
the initial one. The next
one, (b), is the result of
recursively moving two disks
from peg 1 to peg 2.
Configuration (c) is the
result of moving the last
disk around peg 1 to peg 3.
Configuration (d) is the
result of recursively moving
2 disks from peg 2 to peg 3.

(a)

(b)

(c)

(d)

Case Study CS.10 Tower of Hanoi 495

The question is: How do we move two disks (once from peg 1 to peg 2 and once from
peg 2 to peg 3)? Using recursion, of course! We already have a solution for moving two
disks, and we can use it. So, if function hanoi(n, peg1, peg2, peg3) moves n disks
from peg p1 to peg p3 using intermediate peg p2, the next code should solve the Tower of
Hanoi problem with three disks.

>>> p1 = Peg(3)
>>> p2 = Peg(3)
>>> p3 = Peg(3)
>>> p1.push(Disk(3))
>>> p1.push(Disk(2))
>>> p1.push(Disk(1))
>>> hanoi(2, p1, p3, p2)
>>> move_disk(p1, p3)
>>> hanoi(2, p2, p1, p3)

We can now implement the recursive function hanoi(). Note that the base case is when
n = 0, when there is nothing to do.

Module: turtleHanoi.py
1 def hanoi(n, peg1, peg2, peg3):
2 'move n disks from peg1 to peg3 using peg2'
3

4 # base case: n == 0. Do nothing
5

6 if n > 0: # recursive step
7 hanoi(n-1, peg1, peg3, peg2) # move top n-1 disks
8 # from peg1 to peg2
9 move_disk(peg1, peg3) # move largest disk

10 # from peg1 to peg2
11 hanoi(n-1, peg2, peg1, peg3) # move n-1 disks
12 # from peg2 to peg3

Classes Peg and Disk
We can now discuss the implementation of classes Peg and Disk. The Disk class is a sub-
class of class Turtle. This means that all the attributes of Turtle are available to make
our Disk objects look right.

Module: turtleHanoi.py
1 from turtle import Turtle, Screen
2 class Disk(Turtle):
3 'a Tower of Hanoi disk class'
4

5 def __init__(self, n):
6 'initializes disk n'
7 Turtle.__init__(self, shape='square', visible=False)
8 self.penup() # moves should not be traced
9 self.sety(300) # moves are above the pegs

10 self.shapesize(1, 1.5*n, 2) # set disk diameter
11 self.fillcolor(1, 1, 1) # disk is white
12 self.showturtle() # disk is made visible

www.ebook3000.com

http://www.ebook3000.org

496 Case Studies

The class Peg is a subclass of two classes: Turtle, for the visual aspects, and list,
because a peg is a container of disks. Each Peg will have an x-coordinate determined by
class variable pos. In addition to the constructor, the class Peg supports stack methods
push() and pop() to put a disk around a peg or remove a disk from the peg.

Module: turtleHanoi.py
1 class Peg(Turtle, list):
2 'a Tower of Hanoi peg class, inherits from Turtle and list'
3 pos = -200 # x-coordinate of next peg
4

5 def __init__(self, n):
6 'initializes a peg for n disks'
7

8 Turtle.__init__(self, shape='square', visible=False)
9 self.penup() # peg moves should not be traced

10 self.shapesize(n*1.25,.75,1) # height of peg is function
11 # of the number of disks
12 self.sety(12.5*n) # bottom of peg is y=0
13 self.x = Peg.pos # x-coord of peg
14 self.setx(self.x) # peg moved to its x-coord
15 self.showturtle() # peg made visible
16 Peg.pos += 200 # position of next peg
17

18 def push(self, disk):
19 'pushes disk around peg'
20

21 disk.setx(self.x) # moves disk to x-coord of peg
22 disk.sety(10+len(self)*25)# moves disk vertically to just
23 # above the topmost disk of peg
24 self.append(disk) # adds disk to peg
25

26 def pop(self):
27 'removes top disk from peg and returns it'
28

29 disk = self.pop() # removes disk from peg
30 disk.sety(300) # lifts disk above peg
31 return disk

Finally, here is the code that starts the application for up to seven disks.

Module: turtleHanoi.py
1 def play(n):
2 'shows the solution of a Tower of Hanoi problem with n disks'
3 screen = Screen()
4 Peg.pos = -200
5 p1 = Peg(n)
6 p2 = Peg(n)
7 p3 = Peg(n)
8

9 for i in range(n): # disks are pushed around peg 1
10 p1.push(Disk(n-i)) # in decreasing order of diameter
11

Case Study CS.10 Tower of Hanoi 497

12 hanoi(n, p1, p2, p3)
13

14 screen.bye()

Problems

CS.55 Suppose someone started solving the Tower of Hanoi problem with five disks and
stopped at the configuration illustrated in Figure CS.13(c). Describe a sequence of move()
and hanoi() function calls that will complete the move of the five disks from peg 1 to
peg 3. Note: You can obtain the starting configuration by executing these statements in the
interactive shell:

>>> peg1 = Peg(5)
>>> peg2 = Peg(5)
>>> peg3 = Peg(5)
>>> for i in range(5,0,-1):

peg1.push(Disk(i))

>>> hanoi(2, peg1, peg3, peg2)

CS.56 Implement function patternGUI(), a GUI version of recursive function pattern()
from Section 10.2. Instead of displaying a number sequence pattern as in

>>> pattern(4)
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

your function should display a sequence pattern of vertical bars:

The height of each bar should be proportional to the height of the corresponding number
in the number seqence pattern.

CS.57 Implement function toughGUI(), a GUI version of recursive function tough()
from Practice Problem 10.23.

www.ebook3000.com

http://www.ebook3000.org

498 Case Studies

CS.11 Web Crawlers
In this case study, we develop a basic web crawler, that is, a program that systematically
visits web pages by following hyperlinks. (Web crawlers are also referred to as automatic
indexers, web robots, or simply bots.) Every time it visits a web page, our web crawler will
analyze its content and print out its analysis. The ultimate goal, which we will realize in the
next case study, is to use this analysis to build a search engine.

Recursive Crawler, Version 0.1
A basic approach to implementing a web crawler is this: After completing the analysis of
the current web page, the web crawler will recursively analyze every web page reachable
from the current one with a hyperlink. This approach is very similar to the one we used
when implementing the virus scanner function scan() in Section 10.2. Function scan()
took as input a folder, put the content of the folder in a list, and then recursively called itself
on every item in the list. Our web crawler should take as input a URL, put the hyperlink
HTTP URLs contained in the associated web page into a list, and then recursively call itself
on every item in the list:

Module: crawler.py
1 def crawl1(url):
2 'recursive web crawler that calls analyze() on every web page'
3

4 # analyze() returns a list of hyperlink URLs in web page url
5 links = analyze(url)
6

7 # recursively continue crawl from every link in links
8 for link in links:
9 try: # try block because link may not be valid HTML file

10 crawl1(link)
11 except: # if an exception is thrown,
12 pass # ignore and move on.

Since function crawl1() is recursive, normally we would need to define a base case
for it. Without the base case, the crawler may just continue crawling forever. That is not
necessarily wrong in this case, as a crawler should continuously crawl the web. There is
an issue with this, however. A continuously running program may exhaust the computer’s
resources (such as memory), but that is outside of the scope of this text. So, for simplicity’s
sake, we choose to leave the base case out and let our crawler run free.

The function analyze() used in function crawl1() encapsulates the analysis of the
content of the web page with URL url. We will implement this aspect of analyze() later.
Function analyze() also returns the list of links in the web page. We need to implement
this part if wewant to test our basic web crawler crawl1().We do this using the Collector
parser we developed in Section 11.2:

Module: crawler.py
1 def analyze(url):
2 '''returns the list of http links, in absolute format, in
3 the web page with URL url'''
4 print('Visiting', url) # for testing
5

6 # obtain links in the web page

Case Study CS.11 Web Crawlers 499

7 content = urlopen(url).read().decode()
8 collector = Collector(url)
9 collector.feed(content)

10 urls = collector.getLinks() # urls is the list of links
11

12 # analysis of web page content to be done
13 return urls

Now let’s test our crawler. We do so on a set of linked web pages represented in Fig-
ure CS.17. Each page contains a few words (world cities, actually) and links to some of the
other pages. For example, the HTML file five.html is:

File: five.html1 <html>
2 <body>
3 Nairobi Nairobi Nairobi Nairobi Nairobi
4 Nairobi Nairobi
5 Bogota
6 Bogota
7 </body>
8 </html>

When we run crawler crawl1() starting from web page one.html, we get this output:

>>> crawl1('http://reed.cs.depaul.edu/lperkovic/one.html')
Visiting http://reed.cs.depaul.edu/lperkovic/one.html
Visiting http://reed.cs.depaul.edu/lperkovic/two.html
Visiting http://reed.cs.depaul.edu/lperkovic/four.html
Visiting http://reed.cs.depaul.edu/lperkovic/five.html
Visiting http://reed.cs.depaul.edu/lperkovic/four.html
Visiting http://reed.cs.depaul.edu/lperkovic/five.html
...

one.html

Beijing × 3
Paris × 5
Chicago × 5

three.html
Chicago × 3
Beijing × 6

two.html

Bogota × 3
Beijing × 2
Paris × 1

four.html

Chicago × 3
Paris × 2
Nairobi × 1

five.html
Nairobi × 7
Bogota × 2

Figure CS.17 Five linked
web pages. Each page
contains a few occurrences
of some of the world’s major
cities. Page one.html, for
example, contains 3
occurrences of 'Beijing',
5 of 'Paris', and 5 of
'Chicago'. It also contains
hyperlinks to web pages
two.html and
three.html.

www.ebook3000.com

http://reed.cs.depaul.edu/lperkovic/one.html
http://reed.cs.depaul.edu/lperkovic/one.html
http://reed.cs.depaul.edu/lperkovic/two.html
http://reed.cs.depaul.edu/lperkovic/four.html
http://reed.cs.depaul.edu/lperkovic/five.html
http://reed.cs.depaul.edu/lperkovic/four.html
http://reed.cs.depaul.edu/lperkovic/five.html
http://www.ebook3000.org

500 Case Studies

Figure CS.18 An execution
of crawl1(). We start the
crawl by calling function
crawl1() on one.html.
The first link in one.html
is to two.html, and so a
recursive call is made on
two.html. From there,
recursive calls are made on
four.html and then on
five.html. There are three
links out of five.html.
Since the first link out of
five.html is to page
four.html, a recursive call
is made on four.html.
From there, a recursive call
is made on five.html . . .

one.html

two.html

four.html

five.html

Crawler goes back
and forth between
four.html and
five.html

(The execution did not stop and had to be interrupted by typing Ctrl - C .)
Let’s try to understand what happened. The crawler started at page one.html. There are

two links out of one.html. The first one is a link to two.html, and the crawler followed
it (more precisely, made a recursive call on it). The crawler then followed the only link
out of two.html to page four.html, and then, again, the only link from four.html to
five.html. The page five.html has three outgoing links. The first one happens to be
the link to page four.html, and the crawler follows it. From then on, the crawler will visit
pages four.html and five.html back and forth, until it crashes because it reaches the
maximum recursion depth or until it is interrupted. (See Figure CS.18 for an illustration.)

Clearly, something went very wrong with this execution. Page three.html was never
visited, and the crawler got stuck going between pages four.html and five.html. We can
fix the second problem by having the crawler ignore the links to pages it has already visited.
To do this, we need to somehow keep track of visited pages.

Recursive Crawler, Version 0.2
In our second crawler implementation, we use a set object to store the URLs of visited web
pages. Because this set should be accessible from the namespace of every recursive call, we
define the set in the global namespace:

Module: crawler.py
1 visited = set() # initialize visited to an empty set
2

3 def crawl2(url):
4 '''a recursive web crawler that calls analyze()
5 on every visited web page'''
6

7 # add url to set of visited pages
8 global visited # while not necessary, warns the programmer
9 visited.add(url)

10

11 # analyze() returns a list of hyperlink URLs in web page url
12 links = analyze(url)
13

Case Study CS.11 Web Crawlers 501

14 # recursively continue crawl from every link in links
15 for link in links:
16 # follow link only if not visited
17 if link not in visited:
18 try:
19 crawl2(link)
20 except:
21 pass

Lines 8 and 16 are the difference between crawl2() and crawl1(). By adding URLs of
visited web pages to set visited and avoiding links to web pages with URLs in visited,
we ensure that the crawler does not revisit a page. Let’s test this crawler on the same test
bed of web pages:

>>> crawl2('http://reed.cs.depaul.edu/lperkovic/one.html')
Visiting http://reed.cs.depaul.edu/lperkovic/one.html
Visiting http://reed.cs.depaul.edu/lperkovic/two.html
Visiting http://reed.cs.depaul.edu/lperkovic/four.html
Visiting http://reed.cs.depaul.edu/lperkovic/five.html
Visiting http://reed.cs.depaul.edu/lperkovic/three.html

(The execution now stops, unlike the the execution of crawl1().)

The first four pages visited by the crawler are the same as the first four pages visited when
testing crawler1(). The difference now is that each visited page is added to set visited.
When the crawler reaches page five.html, it finds links to one.html, two.html, and
four.html, all of which have been visited. Therefore, the recursive call of crawl2() on
page five.html terminates, and so do recursive calls on pages four.html and two.html
as well. The execution returns to the original function call of crawl2() on page one.html.
The second link in that page is to three.html. Since three.html has not been visited,
the crawler will go ahead and visit it next. Figure CS.19 illustrates this execution of function
crawl2().

one.html

three.html

two.html

four.html

five.html Figure CS.19 Execution of
crawl2(). Starting from
page one.html, the crawler
visits the same sequence
of pages as in Figure CS.18.
When the crawler reaches
five.html, it finds no link
to an unvisited page. It then
has to backtrack to page
four.html, then to page
two.html, then finally
one.html. The crawler then
follows the link out of page
one.html to unvisited page
three.html.

www.ebook3000.com

http://reed.cs.depaul.edu/lperkovic/one.html
http://reed.cs.depaul.edu/lperkovic/one.html
http://reed.cs.depaul.edu/lperkovic/two.html
http://reed.cs.depaul.edu/lperkovic/four.html
http://reed.cs.depaul.edu/lperkovic/five.html
http://reed.cs.depaul.edu/lperkovic/three.html
http://www.ebook3000.org

502 Case Studies

Practice Problem
CS.58

Redevelop the second crawler as a class Crawler2. The set visited should be encapsu-
lated as an instance variable of the Crawler2 object rather than as a global variable.

>>> crawler2 = Crawler2()
>>> crawler2.crawl('http://reed.cs.depaul.edu/lperkovic/one.html')
Visiting http://reed.cs.depaul.edu/lperkovic/one.html
Visiting http://reed.cs.depaul.edu/lperkovic/two.html
Visiting http://reed.cs.depaul.edu/lperkovic/four.html
Visiting http://reed.cs.depaul.edu/lperkovic/five.html
Visiting http://reed.cs.depaul.edu/lperkovic/three.html

The Web Page Content Analysis
The current implementation of function analyze() analyzes the content of a web page for
the sole purpose of finding hyperlink URLs in it. Our original goal was to do more than
that: The function analyze() was supposed to analyze the content of each web page and
print this analysis out. We now add this additional functionality to function analyze() and
complete its implementation.

We choose that the web page analysis consists of computing (1) the frequency of every
word in the web page content (i.e., in the text data) and (2) the list of links contained in the
web page. We have already computed the list of links. To compute the word frequencies, we
can use function frequency() we developed in Practice Problem 13.6. Here is then our
final implementation:

Module: crawler.py
1 def analyze(url):
2 '''prints the frequency of every word in web page url and
3 prints and returns the list of http links, in absolute
4 format, in it'''
5

6 print('Visiting', url) # for testing
7

8 # obtain links in the web page
9 content = urlopen(url).read().decode()

10 collector = Collector(url)
11 collector.feed(content)
12 urls = collector.getLinks() # get list of links
13

14 # compute word frequencies
15 content = collector.getData() # get text data as a string
16 freq = frequency(content)
17

18 # print the frequency of every text data word in web page
19 print('\n{:50} {:10} {:5}'.format('URL', 'word', 'count'))
20 for word in freq:
21 print('{:50} {:10} {:5}'.format(url, word, freq[word]))
22

23 # print the http links found in web page
24 print('\n{:50} {:10}'.format('URL', 'link'))

http://reed.cs.depaul.edu/lperkovic/one.html
http://reed.cs.depaul.edu/lperkovic/one.html
http://reed.cs.depaul.edu/lperkovic/two.html
http://reed.cs.depaul.edu/lperkovic/four.html
http://reed.cs.depaul.edu/lperkovic/five.html
http://reed.cs.depaul.edu/lperkovic/three.html

Case Study CS.11 Web Crawlers 503

25 for link in urls:
26 print('{:50} {:10}'.format(url, link))
27

28 return urls

Using this version of analyze(), let’s test our crawler again. We start the crawl with:

>>> crawl2('http://reed.cs.depaul.edu/lperkovic/one.html')

The output that is printed in the interactive shell is shown on the next page. Note: In order
to get the output to fit the width of the page and also to have a cleaner view of it, we edited
out from some of the URLs the substring

http://reed.cs.depaul.edu/lperkovic/

Visiting http://reed.cs.depaul.edu/lperkovic/one.html

URL word count
one.html Paris 5
one.html Beijing 3
one.html Chicago 5

URL link
one.html two.html
one.html three.html

Visiting http://reed.cs.depaul.edu/lperkovic/two.html

URL word count
two.html Bogota 3
two.html Paris 1
two.html Beijing 2

URL link
two.html four.html

Visiting http://reed.cs.depaul.edu/lperkovic/four.html

URL word count
four.html Paris 2
four.html Nairobi 1
four.html Chicago 3

URL link
four.html five.html

Visiting http://reed.cs.depaul.edu/lperkovic/five.html

URL word count
five.html Bogota 2
five.html Nairobi 7

www.ebook3000.com

http://reed.cs.depaul.edu/lperkovic/one.html
http://reed.cs.depaul.edu/lperkovic
http://reed.cs.depaul.edu/lperkovic/one.html
http://reed.cs.depaul.edu/lperkovic/two.html
http://reed.cs.depaul.edu/lperkovic/four.html
http://reed.cs.depaul.edu/lperkovic/five.html
http://www.ebook3000.org

504 Case Studies

URL link
five.html four.html
five.html one.html
five.html two.html

Visiting http://reed.cs.depaul.edu/lperkovic/three.html

URL word count
three.html Beijing 6
three.html Chicago 3

URL link
three.html four.html

DETOUR
Depth-First and Breadth-First Traversals

The approach that the crawler version 0.2 uses to visit pages on the web is called
depth-first traversal. Traversal is synonymous with crawl for our purposes. The
depth-first term refers to the fact that, in this approach, the crawler can quickly
move away from the start of the crawl. To see this, look at Figure CS.19. It shows
that the crawler visits faraway pages four.html and five.html before it visits
neighboring page three.html.

The problem with depth-first traversal is that it may take a very long time
to visit a neighboring page. For example, if page five.html had a link to
www.yahoo.com or www.google.com, it is unlikely that the crawler would ever visit
page three.html.

For this reason, crawlers used by Google and other search providers use a
breadth-first traversal that ensures that pages are visited in the order of distance (the
number of links) from the starting web page. Problem 11.64 asks you to implement
this approach.

Solution to the Practice Problem

CS.58 The set visited should be initialized in the constructor. The method crawl() is a
slight modification of function crawl2():

class Crawler2:
'a web crawler'

def __init__(self):
'initializes set visited to an empty set'
self.visited = set()

def crawl(self, url):
'''calls analyze() on web page url and calls itself

on every link to an unvisited web page'''

http://reed.cs.depaul.edu/lperkovic/three.html
http://www.yahoo.com
http://www.google.com

Case Study CS.11 Web Crawlers 505

links = analyze(url)
self.visited.add(url)
for link in links:

if link not in self.visited:
try:

self.crawl(link)
except:

pass

Problems

CS.59 Modify the crawler function crawl1() so that the crawler does not visit web pages
that are more than n click (hyperlinks) away. To do this, the function should take an ad-
ditional input, a nonnegative integer n. If n is 0, then no recursive calls should be made.
Otherwise, the recursive calls should pass n− 1 as the argument to the crawl1() function.

CS.60 Using Figure 10.1 as a model, draw all the steps that occur during the execution of
crawl2('one.html'), including the state of the program stack at the beginning and end
of every recursive call.

CS.61 Modify the crawler function crawl2() so that the crawler only follows links hosted
on the same host as the starting web page.

CS.62 Modify the crawler function crawl2() so that the crawler only follows links to
resources that are contained, directly or indirectly, in the web server filesystem folder con-
taining the starting web page.

CS.63 Develop a crawler that collects the email addresses in the visited web pages. You
can use function emails() from Problem 11.19 to find email addresses in a web page. To
get your program to terminate, you may use the approach from Problem CS.59 or Prob-
lem CS.61.

CS.64 Implement a web crawler that uses breadth-first traversal rather than depth-first. Un-
like depth-first traversal, breadth-first traversal is not naturally implemented using recursion.
Instead, iteration and a queue (of the kind we developed in Section 8.3) are used. The pur-
pose of the queue is to store URLs that have been discovered but not visited yet. Initially,
the queue will contain the starting web page only, the only discovered URL at that point.
In every iteration of a while loop, the queue is dequeued to obtain a URL, and then the
associated web page is visited. Any link in the visited page with a URL that has not been
visited or discovered is then added to the queue. The while loop should iterate as long as
there are discovered but unvisited URLs (i.e., as long as the queue is not empty).

www.ebook3000.com

http://www.ebook3000.org

506 Case Studies

CS.12 Data Interchange
In Case Study CS.11, we have developed a simple web crawler that collects information
about web pages it visits and then prints that information on the screen. More useful than
printing on the screen, however, would have been to output the information to a file. As
we saw in Practice Problem 12.3 and Practice Problem 12.4, the information collected by
a crawler can be used to build a search engine. By saving the crawl data into a file, we can
make that data available to other programs. In this Case Study, we look at data interchange
or how to format and save data so that it is accessible, easily and efficiently, to any program
that requires it.

Serialization and Data Interchange Formats
A good software engineering principle is for a program to do only one task and do it well
(e.g., efficiently). Many applications, however, consist of several tasks and data that is pro-
duced by one task (the producer program) may need to be consumed by another (the con-
sumer program). Because the consumer program is not necessarily going to handle the data
as soon as it is produced by the producer, the data will need to be stored in a file. Files can
be either text or binary; text files have the advantage of being readable by humans, and for
that reason they are typically used for data interchange. This means that the data from the
producer, typically consisting of objects such as lists and dictionaries containing various
types of objects, must be translated to a string, a process called serialization. The string
representation of the data will need to be read by the consumer who will need to re-create
the original lists and/or dictionaries from it, a process called deserialization.

The format of the string representation of the serialized object must be well defined
so the data serialized by the producer can be properly and independently deserialized by
the consumer. This is particularly important because the producer program and consumer
program are likely to be developed independently, by different developers, and perhaps even
using different programming languages. The format should also be efficient to serialize and
deserialize and, preferably, easy to read by humans.

In the last 20 years, a number of data interchange formats have been defined: XML
(Extensible Markup Language) and JSON (JavaScript Object Notation) are two that are
currently seeing widespread use. In this case study, we will learn about JSON.

JSON (JavaScript Object Notation)
JSON (JavaScript Object Notation) defines a standard format for describing, using strings,
typical built-in objects such as dictionaries, lists, numbers, and strings. While originally
a subset of the JavaScript programming language, it is now a language-independent data
format and all major programming languages have libraries that produce and consume JSON
data.

DETOUR
JavaScript

JavaScript is a programming language that is typically used within web pages and
executed by web browsers. Web pages contain JavaScript programs for a variety
of reasons: to interact with the user, to change the displayed content, and to com-
municate with the web server, among others. JavaScript was famously developed

Case Study CS.12 Data Interchange 507

in 10 days by Brendan Eich in order for it to be incorporated into the beta version
of the Netscape Navigator 2.0 web browser, way back in 1995. Despite its name,
JavaScript is not related to the Java programming language; the name was simply
a marketing ploy designed to capitalize on the popularity, at the time, of the Java
programming language.

The Python Standard Library module json contains functions to encode a Python object
into JSON format (or simply JSON) and to decode JSON back to a Python object (see
Table CS.8). We use this dictionary object to illustrate its usage:

>>> record = {'url':'one.html', 'links':['two.html','three.html']}

(As motivation, you can assume that this dictionary is the summary of the analysis of the
web page with URL one.html and containing links to web pages with URL two.html and
three.html.)

Function dumps() in module json is used to serialize a Python object into JSON. It
takes a Python object as input and returns a string that is the JSON representation of the
Python object:

>>> import json
>>> jsonRec = json.dumps(record)
>>> jsonRec
'{"links": ["two.html", "three.html"], "url": "one.html"}'

Note that the JSON representation of a dictionary, a list, and a string is essentially the same
as Python’s string representation of these same objects. While this is very convenient, it may
also be confusing, so we go over the returned string more carefully. The Python string

'{"links": ["two.html", "three.html"], "url": "one.html"}'

returned by function dumps() is a representation of dictionary record in JSON format.
The JSON consists of a JSON object containing two key:value pairs. The first one maps key
"links", a JSON string, to a value that is a JSON array containing two (JSON) strings
"two.html" and "three.html". The second key:value pair maps key "url", a (JSON)
string, to a value that is the (JSON) string "one.html".

We now define more formally the types of values supported by JSON. There are two
types of JSON containers:

• A JSON object, which is a collection of key:value pairs separated by commas and
enclosed in curly braces (and that corresponds to a Python dictionary).

• A JSON array, which is an ordered collection of values separated by commas and
enclosed in square brackets (and that corresponds to a Python list).

Usage Explanation
dumps(record) Return a string that contains the serialization of record in

JSON format
loads(serial) Return the Python object that is the deserialization of serial

(a serialization in JSON format)

Table CS.8 Two functions
in module json. These are
used to serialize a Python
object to JSON and to
deserialize it from JSON
back to a Python object.

www.ebook3000.com

http://www.ebook3000.org

508 Case Studies

The key in a key:value pair of a JSON object must be a string (unlike Python which allows
the key to be any immutable type). Values in JSON objects and arrays can be JSON objects,
arrays, numbers (integers or floating point, just as in Python), strings (unlike Python, always
represented with double quotes), and Boolean values true and false (not quite the same
as Python’s True and False).

To deserialize a Python string that contains JSON, we use function load() from the
json module:

>>> recordDup = json.loads(jsonRec)
>>> recordDup
{'links': ['two.html', 'three.html'], 'url': 'one.html'}
>>> type(recordDup)
<class 'dict'>

The function returns a Python object, referred to as recordDup, whose type matches the
type of the original dictionary object record. It is critical that the deserialized Python object
has the same value as the pre-serialized Python object. We check that is the case:

>>> recordDup == record
True

Practice Problem
CS.65

JSON has certain restrictions on the kind of Python objects that can be serialized to JSON
data. Give an example of a Python dictionary that violates the restrictions and check that the
deserialization of the serialization of the dictionary is not equal in value to the dictionary.

Data Compression
Data files are stored on a hard disk drive (or solid-state drive, magnetic tape, etc.) and can
also be sent across a computer network (e.g., from the computer cluster running the producer
program to the computer cluster running the consumer program). In today’s Big Data world,
data files are often huge and can take a lot of disk space to store or time to transmit across
the network. In order to save disk space and transmission time, large data files should be
compressed.

To illustrate how to create, in a Python program, a compressed file containing JSON
data, we turn back to our crawler example from Case Study CS.11. Suppose that we would
like to store in a compressed file many records similar to:

>>> record = {'links':['two.html','three.html'], 'url':'one.html'}

The Python Standard Library module gzip contains functions and classes that are used
to read and write compressed files. We will, in particular, make use of the class GzipFile
defined in the module.

To create (i.e., open) a compressed file, we use the GzipFile constructor as follows:

>>> import gzip
>>> outfile = gzip.GzipFile('crawl.txt.gz','wb')

Just like function open() that is used to open regular, uncompressed files, the GzipFile()
constructor takes as input the name of the file to be opened and the mode. The name of the
file has a .gz suffix, which is the standard suffix for a file compressed using the gzip file

Case Study CS.12 Data Interchange 509

compression format. The file mode is 'wb' because we will write into the file and because
compressed files are binary, not text, files.

DETOUR
Data compression algorithms and formats

As we saw in Section 6.3, uncompressed string data is stored in memory using
a Unicode encoding such as UTF-8. Data compression involves finding, for given
string data, a more efficient way to represent the data. One way to achieve this is
to replace the UTF-8 encoding with an encoding that is shorter for characters that
appear more often in the string. That is (basically) the idea behind the Huffman
code, developed by David Huffman in 1952. This idea can be generalized so that
repeated occurrences of a substring, not just a character, are replaced with (short)
references to a single copy of the substring. This is the approach taken by the
LZ77 compression algorithm developed by Abraham Lempel and Jacob Ziv in 1977.
Module gzip makes use of algorithm DEFLATE that is essentially a hybrid of the
LZ77 and Huffman code approaches.

There are numerous data compression applications available today. Module
gzip is really an interface to the Zlib application. Other commonly used data com-
pression apps include PKZIP, Gzip (which differs from Zlib only in the meta-data
format), and PNG (used to compress images). Data compression apps differ in the
compression algorithm (though most use DEFLATE in some way) and the meta-
data (original file length, timestamp, checksum, etc.) added to the compressed file.

A GzipFile object is a file-like object, which means that you can write to it using
method write() just as you would with any other file. In our case we want to write a line
containing the JSON representation of record:

>>> import json
>>> line = json.dumps(record) + '\n'

Since the file is binary, however, we must first encode the string line to bytes before
writing:

>>> outfile.write(line.encode())
57

To make the example a bit more realistic, we add a few more records to the file:

>>> records = [{"links": ["four.html"], "url": "two.html"}, \
{"links": ["four.html"], "url": "three.html"}, \
{"links": ["five.html"], "url": "four.html"}, \
{"links": ["one.html", "two.html", "four.html"], \
"url": "five.html"}]

>>> for record in records:
outfile.write((json.dumps(record) + '\n').encode())

44
46
45

www.ebook3000.com

http://www.ebook3000.org

510 Case Studies

69
>>> outfile.close()

After closing the file, we have a compressed file in the current working directory. It effec-
tively contains, in compressed form, a text file containing a JSON object in every line.

We now turn our attention to uncompressing this file and deserializing the JSON objects
in it. We first open the compressed the file for reading using the GzipFile() constructor:

>>> infile = gzip.GzipFile('crawl.txt.gz', 'rb')

Note the use of the binary mode because the compressed file is binary. After the compressed
file has been opened, the compression is transparent and the file is read without regard to
compression. For example, we can read the file line by line, decode each line from the bytes
type to a string containing JSON, and then deserialize JSON to a Python object:

>>> for line in infile:
json.loads(line.decode())

{'url': 'one.html', 'links': ['two.html', 'three.html']}
{'url': 'two.html', 'links': ['four.html']}
{'url': 'three.html', 'links': ['four.html']}
{'url': 'four.html', 'links': ['five.html']}
{'url': 'five.html', 'links': ['one.html', 'two.html', 'four.html']}

We got our dictionary records back.

Practice Problem
CS.66

Run, in the interactive shell, the code from the previous example that creates the file crawl.txt.gz,
and find out the size of the file. Then repeat the process without compression to create an
uncompressed text file craw2.txt that contains the same JSON data. Compute the ratio
of the uncompressed file size and the compressed file size. This ratio is referred to as the
compression ratio.

I/O Streams
We just saw how to open and read a compressed file when the file is stored in the local
computer’s filesystem. What if the file was on a remote server instead? After all, it is very
likely that the program that produced the data is on a different system than the consumer
program. As an example, let’s see how to open file crawl.txt.gz when it is stored on a
remote web server and can be identified with a URL.

We can start by retrieving the file just as we retrieved web pages in Section 11.2:

>>> from urllib.request import urlopen
>>> url = 'http://reed.cs.depaul.edu/lperkovic/crawl.txt.gz'
>>> response = urlopen(url)

Let’s look at the header fields of the HTTP response:

>>> for field in response.getheaders():
print(field)

('Server', 'Apache-Coyote/1.1')

http://reed.cs.depaul.edu/lperkovic/crawl.txt.gz

Case Study CS.12 Data Interchange 511

...
('Content-Type', 'application/x-gzip')
('Content-Length', '111')
...

The Content-Type header field shows that the retrieved content is a compressed file in
gzip format. We can still read the content as usual:

>>> content = response.read()

Recall that object returned by method read() is of type bytes. When we retrieved a web
page in Section 11.2, all we needed to do is decode the bytes content to interpret the bytes
as a string in someUnicode encoding. This time, however, the binary data is the compression
of text data, and it needs to be decompressed first.

We saw previously how to read (or decompress) a compressed file. The situation is a
bit different now. The compressed data is not in a file on disk: It is in memory. We could,
of course, write the binary data to a local file and then read it as we did previously but that
would be silly. There is a more elegant approach that uses a generalization of a file called
an I/O stream.

The file API (opening and closing, reading and writing files) is a powerful abstraction
that is useful for processing not just regular files but also other types of inputs and outputs.
An I/O stream is a type of object that can represent many type of inputs or outputs (disk,
memory, I/O devices, etc.) and that is file-like: It behaves like a file and supports methods
such as read() and write().

The Python Standard Library module io provides classes StringIO and BytesIO that
make it possible to process string (str) and bytes objects as file-like objects. Before we
continue with our working example, we take a small detour to illustrate how StringIO is
used. Consider the poem by Emily Dickinson that we saw in Section 4.1:

>>> poem = '''
To make a prairie it takes a clover and one bee, -
One clover, and a bee,
And revery.
The revery alone will do
If bees are few.
'''

With the StringIO() constructor, we create a file-like object whose content is the poem:

>>> import io
>>> poemStream = io.StringIO(poem)

We can now read from the file-like object as we would from a regular file:

>>> poemStream.readline()
'\n'
>>> poemStream.readline()
'To make a prairie it takes a clover and one bee, -\n'
>>> poemStream.readline()
'One clover, and a bee,\n'
>>> poemStream.read()
'And revery.\nThe revery alone will do\nIf bees are few.\n'

We now return to our working example. Because content is of type bytes, we use the

www.ebook3000.com

http://www.ebook3000.org

512 Case Studies

BytesIO class instead of StringIO to create a file-like object:

>>> import io
>>> compressed = io.BytesIO(content)

Now, compressed refers to a file-like object that contains compressed data. To read it, we
make use of the GzipFile class again. This time, however, we do not pass a filename but a
reference compressed to a file-like object:

>>> import gzip
>>> infile = gzip.GzipFile(fileobj=compressed, mode='rb')

The GzipFile() constructor has several input parameters, all optional. The first one is
filename, and fileobj is another. If a file name is not passed to the constructor, then a
reference to a file-like object must be passed to parameter fileobj.

Finally, we read the file-like object exactly as we did before:

>>> import json
>>> for line in infile:

json.loads(line.decode())

{'links': ['two.html', 'three.html'], 'url': 'one.html'}
{'links': ['four.html'], 'url': 'two.html'}
{'links': ['four.html'], 'url': 'three.html'}
{'links': ['one.html', 'two.html', 'four.html'], 'url': 'five.html'}
{'links': ['five.html'], 'url': 'four.html'}

Solution to the Practice Problems

CS.65 JSON restricts keys of JSONobjects to be strings. Therefore a Python dictionarywith
nonstring keys such as {2:'two'’, 3:'three', 4:'four'} should not be serialized to
a JSON object. Let’s try it anyways:

>>> rec = {2:'two', 3:'three', 4:'four'}
>>> json.dumps(rec)
'{"2": "two", "3": "three", "4": "four"}'

Note that the integer keys are transformed into string keys. We check that the deserialized
JSON data is a Python dictionary whose value is not the same as the value to the original
dictionary:

>>> json.loads(json.dumps(rec))
{'2': 'two', '4': 'four', '3': 'three'}
>>> rec2 = json.loads(json.dumps(rec))
>>> rec == rec2
False

CS.66 We create the uncompressed file as follows:

>>> outfile = open('crawl2.txt', 'w')
>>> records = [{'links': ['two.html','three.html'], \

'url': 'one.html'}, \
{"links": ["four.html"], "url": "two.html"}, \

Case Study CS.12 Data Interchange 513

{"links": ["four.html"], "url": "three.html"}, \
{"links": ["five.html"], "url": "four.html"}, \
{"links": ["one.html", "two.html", "four.html"], \
"url": "five.html"}]

>>> for record in records:
outfile.write(json.dumps(record) + '\n')

57
44
46
45
69
>>> outfile.close()

The size of crawl2.txt on my machine is 261 bytes. The compression ratio is thus 261
111 ≈

2.35.

Problems

CS.67 Modify your solution to ProblemCS.63 so that all the emails collected by the crawler
are stored in a Python list that is, upon completion of the crawl, serialized into a JSON array
and then written in a compressed file saved in the current working directory.

CS.68 Modify the functions crawl2() and analyze() from Case Study CS.11 so that the
data collected from a web page is stored in a Python dictionary that is then serialized into a
JSON object and written in one line of a compressed file named mycrawl.txt.gz (located
in the current working directory). The Python dictionary should have keys url, links,
and words mapping to the URL of the analyzed web page, a list of hyperlinks in it, and a
dictionary mapping every word appearing in the web page to the number of occurences of
the word. Each line in file mycrawl.txt.gz should contain a JSON object corresponding
to a visited web page.

CS.69 Reimplement function webData() from Practice Problem 12.3 so that it takes just
two inputs: the name of a database file and the name of a compressed text file whose content
is as described in Problem CS.68.

CS.70 A web search by a crawler of the type you developed in Problem CS.68 generates
an enormous amount of data that often cannot be stored in a single file. Instead, many files
similar to mycrawl.txt.gz must be created and the names of these files are then stored in
a compressed text file, one file name per line. A function that processes crawl data such as
webData() from Problem CS.69 would need to go through this file filename by filename
and process each filename just as described in Problem CS.69. Reimplement webdata()
to do this.

www.ebook3000.com

http://www.ebook3000.org

Index
!= operator

number not equal, 19, 36
overloading, 258
set not equal, 179, 180
string not equal, 23

** exponentiation operator, 17, 36
* operator

list repetition, 28
number multiplication, 16, 36
overloading, 258
in regular expression, 387, 389
string repetition, 24, 25

+= increment operator, 135
+ operator

list concatenation, 28
number addition, 16, 36
overloading, 258
in regular expression, 387, 389
string concatenation, 24, 25

- operator
negation unary operator, 36
overloading, 258
set difference, 179, 180
subtraction binary operator, 16, 36

.. parent folder, 109

. regular expression operator, 387, 389
// quotient operator, 17, 36
/ operator

number division, 16, 36
overloading, 258

<= operator
number less than or equal, 19, 36
overloading, 258
SQL less than or equal, 405
subset of, 179, 180

<> SQL not equal operator, 405
< operator

number less than, 18, 36
overloading, 258

proper subset of, 179, 180
SQL less than, 405
string less than, 23

== operator
number equal, 19, 36
overloading, 258, 261, 262
set equal, 179, 180
string equal, 23
versus = assignment operator, 22

= SQL equal operator, 405
= assignment statement, 12, 20–22, 74–

78
and mutability, 76–77
multiple assignment, 78
simultaneous assignment, 78
swapping, 77–78
versus == equal operator, 22

>= operator
number greater than or equal, 19, 36
overloading, 258
SQL greater than or equal, 405
superset of, 179, 180

> operator
number greater than, 18, 36
overloading, 258
proper superset of, 179, 180
SQL greater than, 405
string greater than, 23

>>> prompt, 9, 16
? regular expression operator, 387, 389
[] operator

dictionary indexing, 169
list indexing, 27, 28
list slicing, 95
overloading, 479
in regular expression, 387, 389
string indexing, 25–27
string slicing, 94–95
tuple indexing, 30

515

www.ebook3000.com

http://www.ebook3000.org

516 Index

two-dimensional list indexing, 141
% remainder operator, 17, 36
& set intersection operator, 179, 180
^ operator

in regular expression, 388, 389
set symmetric difference, 179, 180

| operator
in regular expression, 388, 389
set union, 179, 180

abs() built-in function, 17, 36
absolute pathname, 108
abstraction, 3, 10
accumulator

for integer sum, 135
for integer product, 136
for list concatenation, 136
loop pattern, see iteration pattern
for string concatenation, 136

acronym() function, 136
__add__() method, 257
add() set method, 180
algebraic

expression, 16–18
operators, 16, 17, 36

algorithm, 3, 11
image processing, 458–463
running time, see run time analysis

alignment in formatted output, 103
American Standard Code for Information

Interchange (ASCII), 182–183
analyze() function, 498, 502–504
anchor, see HTML
and Boolean operator, 19, 20
Animal class, 247, 268
append() list method, 32
Application Programming Interface

(API), 7
approxE() function, 146
approxPi() function, 188
Ariane rocket accident, 220
ARPANET, 6
assignment, see = assignment statement
attribute

class, see class
of HTML element, see HTML
instance, see instance
module, see module

automatic indexer, see web crawler
automation, 3

average.py program, 69

background widget option, 293, 296
backslash in file path, 109
base case, see recursion
before0() function, 150
Berners-Lee, Tim, 372, 373
BETWEEN SQL operator, 405
bgcolor() Screen method, 445
binary operator, 20
binary search, 354
bind() widget method, 306–311
binding, see event
Bird class, 267, 268
blackjack application, 465–469
blackjack() function, 469
bool Boolean type, see Boolean
George Boole, 20
Boolean

algebra, 20
expression, 18–20
mutability, 75
operators, 19
type, 18
values, 18

borderwidth widget option, 293, 296
bot, see web crawler
break statement, 149–150
breakpoint, 471
browser, see web
bubblesort() function, 139
buffer overflow attack, 210
bug, see computer bug
builtins module, 226
bus, 5
Button tkinter class, 299–302

command option, 300
event handler, 300

bye() Screen method, 445
bytes built-in type, 186, 380
BytesIO io class, 511–512

Calc class, 486–490
calc.py module, 486–490
camelCase, 22
canonical string representation, 260–262
Canvas tkinter class, 308–313
capitalize() string method, 96, 98
Card class, 250–251
ceil() math module function, 42

Index 517

central processing unit (CPU), 4, 425
character encoding, 181–186

ASCII, 182–183
of files, 186
Unicode, 183–186
UTF encodings, 185–186

cheers() recursive function, 334
choice() randommodule function, 189
chr() built-in function, 183
circle() Turtle method, 443, 444
cities() function, 148
cities2() function, 148
class, 34, 40

attribute, 230–231
attribute inheritance, 244–245
attribute search, 268–269
code reuse, 264
constructor, 37
constructor and repr() contract,

260–264
default constructor, 249–250
defining new class, 240–275
defining new container, 251–256
documentation, 246
enabling iteration, 481–483
extending a method, 270
inheritance, 264–272
inheritance patterns, 270–271
method implementation, 231
namespace, 230–231, 241–242
overloaded constructor, 248–250
overloaded indexing operator, 479–

481
overloaded operator, 256–264
overriding a method, 267–270
subclass, 265, 266
superclass, 266

class statement, 243, 245, 267
clear() set method, 180
clearscreen() Screen method, 445
ClickIt class, 314
clickit.py module, 300, 301, 313
client, see web
clock rate, 424
close()

Connection method, 412
Image method, 455
file method, 110, 112

code point (Unicode), 183
code reuse

with classes, 264
with functions, 204

Collector class, 385
column formatted output, 102
column grid() method option, 298
columnspan grid() method option,

298
command Button widget option, 300
command line, 53
comment, 72
commit() Connection method, 412
compareHands() function, 468
comparison operators, 36

for numbers, 18–19
for sets, 180
for strings, 23

compiler, 7
complete() function, 173
computational thinking, 9–13
computer applications, 2
computer bug, 7, 471
computer science, 2–4, 13
computer system, 3–7
computer virus, see virus
concatenation, see + operator
concurrent, 425
condition

in multiway if statement, 128–131
in one-way if statement, 59, 128
in two-way if statement, 62, 128
in while loop statement, 143
mutually exclusive, 130

connect() sqlite3 function, 411
Connection sqlite3 class, 411

method close(), 412
method commit(), 412
method cursor(), 411

constructor, see class
container class, see class
continue statement, 150–151
CONTOUR PIL.ImageFilter filter, 455
copy()

Image method, 454, 455
function, 459

core (CPU), 424
cos() math module function, 42
count() list method, 32
count() string method, 96, 98
COUNT() SQL function, 406

www.ebook3000.com

http://www.ebook3000.org

518 Index

countdown() recursive function, 330–
332

counter loop pattern, see iteration pattern
counting operations, 349
cpu_count() multiprocessing func-

tion, 424
crawl1() function, 498
crawl2() function, 501
crawling, see web
CREATE TABLE SQL statement, 409
create_line() widget method, 309,

310
create_rectangle() widget method,

310
create_oval() widget method, 310
crop()

Image method, 454, 455
function, 459

crop box, 454
cross join, see SQL
crosscheck.py module, 429–430
current working directory, 108
cursor, 111
Cursor sqlite3 class, 411

as an iterator, 413
method execute(), 411
method fetchall(), 413, 414

cursor() Connection method, 411

data compression, 508–512
algorithm, 509
file on remote server, 510
format, 509
gzip Standard Library module,

508–512
data interchange, 506–512

data compression, see data compres-
sion

deserialization, 506
I/O stream, see I/O stream
JavaScript Object Notation, see

JSON
serialization, 506

data type, 11–12
database, 400–415

column, 401
engine, 402, 410
file, 400, 401
management system, 402
programming, 410

record, 401
row, 401
SQLite, 410
SQLite command-line shell, 403
sqlite3 module, 410–415
structured data storage, 401
table, 401

Day class, 316
day.py module, 303, 304, 315
dealCard() function, 467
debugger, 7

pdb debugger, see pdb module
decimal precision in formatted output,

103
decision structure, see if statement
Deck class, 252–254
decode() bytes method, 186, 380
def function definition statement, 68
default constructor, see class
default exception handler, see exception
DEFLATE, see data compression algo-

rithm
delete() widget method, 310

for Entry, 303
for Text, 305

delimiter for method split(), 96
depth-first traversal, 500–504
DESC SQL clause, 405
deserialization, 506
DETAIL PIL.ImageFilter filter, 455
developer, 2–4
dict dictionary type, see dictionary
dictionary, 166–176

for counting, 173–176
dict() constructor, 168
key-value pair, 167
methods, 170–172
multiway condition substitute, 173
mutability, 168
operators, 169–170
user-defined indexes, 166–167
view object, 172

dictionary order (strings), 24, 185
directory, 108
Disk class, 493–497
DISTINCT SQL clause, 403
divisors() function, 136
docstring, 72

multiline, 449
documentation, 72, 246

Index 519

dot() Turtle method, 443, 445
double quotes, see string
Draw class, 318
draw.py module, 309, 310, 317
drawKoch() function, 340
dumps() json function, 507
dynamic.py module, 71

e math module Euler constant e, 42
editor, 52, 54
elif statement, see if statement
else clause, see if statement
EMBOSS PIL.ImageFilter filter, 455
emoticon, 443
emoticon() function, 204, 448
EmptyQueueError exception class, 274
encapsulation

with classes, 275
with functions, 205
with user-defined exceptions, 272,

274
encode() bytes method, 509
end argument, see print()
Entry tkinter class, 302–304

deleting entry, 303
reading entry, 303

epoch, 106
__eq__() method, 261, 263
__len__() method, 263
error, see exception
escape sequence, 93

\", 92
\', 92
\n, 93, 112
interpreted by print(), 93
in regular expressions, 389

eval() built-in function, 56
event, 301

binding to event handler, 306–311
handler, 300, 301, 306, 486–490
loop, 301
pattern, 306–311
type, 306

Event tkinter class, 306–308
attributes, 306

except statement, see exception
exception, 116–119, 215

catching a type of, 218
catching and handling, 216–223
default handler, 215, 218, 221

defining new, 272–275
exceptional control flow, 215–223
handler, 217, 218, 222
multiple handlers, 219
object, 118
raising, 215
raising in a program, 273
try/except statements, 217–218
type, 118

Exception class, 274
execute() Cursor method, 411
execution control structure, 12–13

decision, 57–62, 128–131
iteration, 62–67, 131–151

expand pack() method option, 296
experimental run time analysis, 351–353
expression

algebraic, see algebraic
Boolean, see Boolean
evaluation, 17

Extender class, 270

factorial()
iterative function, 136, 345
recursive function, 334, 345

False value, 18
feed() HTMLParser method, 382
fetchall() Cursor method, 413, 414
fibonacci() function, 146
Fibonacci numbers, 145, 349
field width in formatted output, 103
file, 107–116

appending to, 110
binary, 107, 110, 380, 509
character encoding, 186
closing, 115
compression, 508–512
cursor, 111
data interchange, 506–512
database, 400
file-like object, 509–512
flushing output, 116
I/O stream, see I/O stream
mode, 110, 509
opening, 109–111
reading, 110–115, 511–512
reading and writing, 110
reading patterns, 112–115
storage, 5
text, 107, 110

www.ebook3000.com

http://www.ebook3000.org

520 Index

writing, 110, 115–116, 511–512
filesystem, 107–109

absolute pathname, 108
current working directory, 108
directory, 108
folder, 108
pathname, 108
recursive structure, 342
relative pathname, 108
root directory, 108
tree structure, 108

fill pack() method option, 296
filter() Image method, 454, 455
FIND_EDGES PIL.ImageFilter filter,

455
find() string method, 95, 98
findall() re function, 390
First-In First Out (FIFO), 254
float type, see floating point
floating point

float() constructor, 38
mutability, 75
type, 16
values, 16, 35

floor() math module function, 42
flowchart, 52

one-way if statement, 58, 59
three-way if statement, 129
two-way if statement, 61
while loop statement, 143

flushing output, 116
folder, 108
font widget option, 293
for loop statement, 62–65, 131

iteration patterns, 131–143
loop variable, 64

foreground widget option, 293, 296
format() string method, 100–105
format Image instance variable, 453–

454, 456
format string, 100

for time, 106
formatted output, 98–105
forward() Turtle method, 442, 443
forward slash in file path, 109
fractal, 338–342

Koch curve, 338
snowflake, 341

Fraction fractions class, 42
difference between float and, 43

fractions Standard Library module,
42–43

Frame tkinter class, 311–313
frequency() function, 175
frequent() function, 359
from module import keyword, 229
function

built-in math, 17
call, 31
code reuse, 204
encapsulation, 205
higher-order, 346
input arguments, 68–69
local variable, 205–207
modifying global variable inside,

214
modularity, 205
recursive, see recursion
user-defined, 67–74

functional language, 346, 417
list comprehension, 415–417

games of chance, 465–469
geometry (of GUI), see widget
get() dictionary method, 171
get() widget method

for Entry, 303
for Text, 305

getheaders() HTTPResponse method,
380

__getitem__() method, 479
getpid() os function, 426
getpixel() Image method, 458
getSource() function, 381
geturl() HTTPResponse method, 380
getWordsFromFile() function, 422
GIF image format, 454, 456
global keyword, 214
global scope, 211–215
global variable, 211

storing state in, 310
gmtime() time function, 106
Google, 417
goto() Turtle method, 443, 444
graphical user interface (GUI)

development, 292–318
history, 302
object-oriented approach, 313–318

graphics interchange format (GIF), 294
grid() widget method, 297–299

Index 521

GROUP BY SQL clause, 406
growthrates() function, 105
gzip Standard Library module, 508–512

GzipFile class, 508–512
GzipFile gzip class, 508–512

method write(), 509

handle_data() HTMLParser method,
382

handle_endtag() HTMLParser
method, 382

handler
exception, see exception
GUI event, see event
HTML document parser, 382

handle_starttag() HTMLParser
method, 382

hanoi() recursive function, 493–495
hard drive, 5
hardware, 4
height widget option, 293, 294
hello() function, 70, 73
hello.py module, 52
hello2() function, 147
help() built-in function, 40
higher-order function, 346
HTML, 375–379

a anchor element, 377
absolute hyperlink, 378
body element, 377
document parsing, 381–384
document tree structure, 377
element, 376–377
element attribute, 377, 378
head element, 377
heading element, 376
href attribute, 378
html element, 377
hyperlink, 372, 377, 385
relative hyperlink, 378
resources, 379
tag, 376
title element, 377

HTMLParser html.parser class, 381
html.parser Standard Library module,

381–384
HTTP, 374–375

hyperlink, see HTML
http.client Standard Library module,

379

HTTPResponse http.client class, 379
Huffman code, see data compression al-

gorithm
hyperlink, see HTML
HyperText Markup Language, see

HTML
HyperText Transfer Protocol, see HTTP

I/O stream, 510–512
io Standard Library module, 511–

512
IDLE, 8

editor, 52
running program, 52

if statement
elif statement, 128
else clause, 60, 128
multiway, 128–131
one-way, 57–60, 128
ordering of conditions, 130–131
two-way, 60–62, 128

ignore0() function, 151
Image class in module PIL.Image, 453–

456
instance variables, 453–454
methods, 454–456, 458

image widget option, 293, 294
image processing, 452–463

PIL package, 452
algorithms, 458–463
copying, 454, 459
cropping, 454, 459
pasting, 455
rotating, 454, 459, 460
saving, 456
smoothing, 455, 461–463

immutable, 29, 75
parameter passing, 79–80

import statement, see module, 54
ImportError exception, 225
in operator

for dictionaries, 169
for lists, 28
for sets, 179, 180
for strings, 24, 25

incr2D() function, 142
incrementing, see += increment operator
indentation, 60
indented block

in class definition, 243, 245

www.ebook3000.com

http://www.ebook3000.org

522 Index

in for loop statement, 65
in function definition, 68
in multiway if statement, 128
in one-way if statement, 59, 128
in two-way if statement, 62, 128
in while loop statement, 143

index, 25
in two-dimensional list, 141

IndexError exception, 117, 118
indexing operator, see [] operator
infinite loop pattern, see iteration pattern
inheritance, 264–272

extending a method, 270
by objects, 244–245
overriding a method, 270
patterns, 270–271
subclass, 266
superclass, 266

Inheritor class, 270
__init__() method, 249–250, 255
input() built-in function, 55
input.py module, 55
insert() list method, 32
insert() widget method

for Entry, 303
for Text, 305

INSERT INTO SQL statement, 409
instance

attribute, 244
variable, 243–244, 453

int integer type, see integer
integer

int() constructor, 37, 38
mutability, 75
type, 16
values, 16, 35

integrated development environment
(IDE), 7, 8, 52, 54

interactive shell, 8
restarting, 52

interest() function, 144
Internet, 6
interpreter, 7, 17
inverted index, 421–423
io Standard Library module, 511–512

BytesIO class, 511–512
StringIO class, 511–512

IOError exception, 119
items() dictionary method, 171, 172
__iter__() method, 482

iteration
implementation in new classes,

481–483
through indexes of a list, 132–134
through integers in a range, 66–67,

132
through a list, 64, 131
through a string, 63, 131

iteration pattern
accumulator loop, 134–137
counter loop, 132–134
infinite loop, 147
iteration loop, 131–132
loop and a half, 147–149
nested loop, 137–139, 141–143
sequence loop, 145–146

iteration structure
for loop, see for loop statement
while loop, see while loop state-

ment
iterator, 482

JavaScript
Object Notation (JSON), see JSON
programming language, 506

JPEG image format, 453–454
json Standard Library module, 507–508

function dumps(), 507
function loads(), 507, 508
JSON types, 507

JSON (JavaScript Object Notation), 506–
508

json Standard Library module,
507–508

JSON types, 507
jump() function, 204, 448

key-value pair
dictionary, 167
MapReduce, 417

KeyboardInterrupt exception, 118
KeyError exception, 168
keyLogger.py module, 307
keys() dictionary method, 170, 171
keyword (reserved), 23
koch() recursive function, 339
Koch curve, 338–342
kthsmallest() function, 358

Label tkinter class, 292–298

Index 523

for images, 294–297
for text, 292–293

language
HTML, 373
SQL, 402

left() Turtle method, 443
left-to-right, 36
left-to-right evaluation, 16
len() built-in function

for dictionaries, 169
for lists, 28
for sets, 179
for strings, 25
overloading, 258, 263

lexicographic order, 185
library, 7
line ending in text file, 112
linear recursion, 345–347
linear search, 354
LinkParser class, 383
Linux, 6
list, 27–33

comprehension, 415–417
concatenation, see + operator
indexing, see [] operator
length, see len() built-in function
list() constructor, 38
methods, 31–33
mutability, 29, 75, 76
operators, 27–29
repetition, see * operator
slicing, see [] operator
two-dimensional, 140–143
type, 27
value, 27

listdir() os module function, 343
loads() json function, 507, 508
local scope, 211–212
local variable, 205–207
localtime() time function, 106
log() math module function, 42
loop and a half pattern, see iteration pat-

tern
lower() string method, 98
LZ77, see data compression algorithm

Mac OS X, 5
__main__ module, 226
main memory, 4
mainloop() widget method, 292

maketrans() string method, 97
map() Pool method, 425
map MapReduce function, 420
MapReduce class, 428
MapReduce, 417–423, 428–431

inverted index, 421–423
name cross-checking, 429
sequential versus parallel, 430
word frequency, 417–420

master (widget), see widget
match object (regular expression), 391
math Standard Library module, 41–42
max() built-in function, 18, 28
method, 32, 33

call, 40
extending, 270
as a function in a namespace, 231
inheriting, 270
overriding, 267–270

Microsoft Windows, 5
min() built-in function, 18, 28
mode, see file mode
mode Image instance variable, 453–454
model, 3, 10
modularity

through classes, 276
through functions, 205

module, 41, 54, 223–230
attribute, 223–224
current working directory, 108
importing, 41, 223–230
importing all attributes, 229
importing module name, 228
importing some attributes, 228
__main__ module, 226
__name__ variable, 226–228
namespace, 224–230
search path, 224, 227
top-level, 226–228
user-defined, 54

Moore’s Law, 424
move() widget method, 310
multiple assignment, 78
multiprocessing Standard Library

module, 424–431
class Pool, 424–431
function cpu_count(), 424

multiway, see if statement
mutable, 29, 75

parameter passing, 80–81

www.ebook3000.com

http://www.ebook3000.org

524 Index

mutually exclusive conditions, 130
MyList class, 265

__name__ variable, 226–228
NameError exception, 117, 118
namespace, 207

class, 241–242
function call, 206–207
global, 211–215
local, 212
module, 224–230
object, 242
and the program stack, 207–211

negative index, 26, 27
nested() function, 138
nested loop pattern, see iteration pattern
nested statements, 65–66
nested2() function, 139
network, 5, 6
new() function in module PIL.Image,

455
__next__() method, 482
not Boolean operator, 19, 20
numChars() function, 112
numLines() function, 114
numWords() function, 113

object, 33
class attributes inheritance, 244–

245
instance variable, 243–244
namespace, 242
type, 33
value, 33, 35

object-oriented programming (OOP), 40,
240–276

GUI development, 313–318
Python, 34

occurrences
most frequently occurring item, 359
number of, 173–176, 502
using MapReduce, 417–420

one-way, see if statement
oneWay.py module, 58
oneWay2.py module, 59
open() built-in function, 186
open() function

built-in, 109–111
in module PIL.Image, 452, 455

open source, 6

operating system, 5–6
operator, 33

Boolean, see Boolean
algebraic, see algebraic
as class method, 257–258
dictionary, see dictionary
as a function in a namespace, 258
list, see list
overloaded, see class
precedence, see precedence rule
regular expression, 387–391
set, see set
string, see string

or Boolean operator, 19, 20
ord() built-in function, 182
ORDER BY SQL clause, 405
os Standard Library module, 343

getpid() function, 426
listdir() function, 343
path.isfile() function, 343
path.join() function, 343

OverflowError exception, 35, 118
overloaded, see class
overriding a method, 267–269

pack() widget method, 293, 295–297
packing widgets, see widget
padx, pady widget options, 293, 296
parallel.py module, 425
parallel computing, 423–431

versus concurrent, 425
speedup, 427

parallel2.py module, 426
parameter passing, 78–81

immutable parameter, 79–80
mutable parameter, 80–81
passing functions, 346

parameter substitution (SQL), 411
parent folder, 109
parser, 116

HTML document, see HTML
partition()MapReduce function, 419
pass statement, 119, 151
paste() Image method, 455
path sys module variable, 227
pathsys module variable, 224
path.isfile() os module function,

343
path.join() os module function, 343
pathname, 108

Index 525

absolute, 108
relative, 108

pattern() recursive function, 336
pdb module, 471–476

breakpoint, 471
debugging commands, 471–476
run() function, 471

peace.py module, 294
Peg class, 493–497
pencolor() Turtle method, 443
pendown() Turtle method, 443, 444
pensize() Turtle method, 443, 444
penup() Turtle method, 443, 444
phone.py module, 297
PhotoImage tkinter class, 294
pi math module constant π, 42
PIL package, 452

PIL.Imagemodule, see PIL.Image
PIL.ImageFilter module, 455

PIL.Image module, 452–463
Image class, see Image class
new() function, 455
open() function, 452, 455

PIL.ImageFilter module, 455
filters, 455

Pillow, see PIL package
pip3 package installer, 452
placeholder

in format string, 100
in SQL query, 412

plotter.py module, 311
Point class, 240–246, 248–250

constructor and repr() contract,
260–262

implementation, 242–243
methods, 240
overloaded operators, 256
string representation, 258–260

Pool multiprocessing class, 424–431
method map(), 425

pop() method
dictionary, 170, 171
list, 32

precedence rule, 16, 18, 36–37
primeDensity.py module, 427
print() built-in function, 52, 54, 98–

100
end argument, 99
sep argument, 98
versus return statement, 70

print2D() function, 141
process, 424

ID, 426
program, 2, 3, 52

editing, 52
executing, 52, 53

program stack, 207–211, 474–476
analyzing with debugger, 474–476
buffer overflow attack, 210
stack frame, 209
stack trace, 474

programming, 7
language, 7

Project Gutenberg, 430
prompt

input() function, 55
Python shell, see >>> prompt

protocol, 373
HTTP, see HTTP

pseudocode, 11
pseudorandom number generator, 186
putpixel() Image method, 458
Python

background, 8
Imaging Library, see PIL package
Standard Library, see Standard Li-

brary modules
Python Package Index (PyPI), 452

Queue class, 254–256, 272, 275, 480
empty queue exception, 274
enabling iteration, 481–483
overloaded operators, 257, 262–264
as subclass of list, 271

Queue2 class, 271
QueueIterator class, 482
quotes, see string

raise() built-in function, 273
raising exception, see exception
random Standard Library module, 186–

190
random accessmemory (RAM), seemain

memory
randomness, 188
randrange() random module function,

187
range() built-in function, 66–67

in counter loop pattern, 132
re Standard Library module, 390–391

www.ebook3000.com

http://www.ebook3000.org

526 Index

read() file method, 110, 111
read() HTTPResponse method, 380
readline() file method, 110, 111
readlines() file method, 110, 114
real numbers, 35
recNeg() function, 345
recSum() function, 345
recursion, 330–357

base case, 331
depth-first traversal, 500–504
filesystem traversal, 342–344
fractal, 338–342
function, 330
linear, 345–347
and the program stack, 334–335
recursive call, 330
recursive step, 332
recursive thinking, 330, 332–334
repeated recursive calls, 340
stopping condition, 331
virus scanning, 342–344
web crawling, 498–504

reduce MapReduce function, 420
regular expression, 387–391

escape sequences, 389
operators, 387–391
resources, 388

relational
algebra, 410
database, 410

relative pathname, 108
relief widget option, 293, 296
remove() method

for lists, 32
for sets, 180

replace() string method, 96, 98
Replacer class, 270
__repr__() method, 264
repr() built-in function, 259

contract with constructor, 260–264
overloading, 258, 259, 263

reserved keywords, 23
result table, see SQL
return statement, 68–71

versus print() built-in function,
70

reverse() list method, 32
reverse() recursive function, 334
reverse index, see inverted index
rfib() recursive function, 349

run time analysis, 352
RGB image format, 458–463
RGB image mode, 453–454
right() Turtle method, 443
rlookup() function, 169
root directory, 108
rotate() Image method, 454, 455
rotateCC() function, 459
rotateCL() function, 460
row grid() method option, 298
rowspan grid() method option, 298
rpower() recursive function, 347
run() function in module pdb, 471
run time analysis, 347–353

experimental, 351–353
linear versus binary search, 356

safe_open() function, 220
sample() randommodule function, 189
save() Image method, 455, 456
scalability, 415
scan() recursive function, 343
scientific notation, 35
scope, 211
Screen turtle module class

constructor, 442
methods, 445

search() recursive function, 355
search() re function, 391
search engine, 498
search of a list, 354–359

binary, 354
duplicates, 357
linear, 354
linear versus binary, 356

search path, see module
SELECT SQL statement, 402–404
selecting kth smallest, 358
sep argument, see print()
SeqMapReduce class, 420
sequence loop pattern, see iteration pat-

tern
serialization, 506
server, see web
set, 177–181

comparison, 179
constructor, 178
for duplicate removal, 178
empty set, 178
methods, 180–181

Index 527

operators, 179–180
setheading() Turtle method, 443,

445
setup (of Python IDE), 8
setx(), sety() Turtle methods, 443
SHARPEN PIL.ImageFilter filter, 455
shell, see interactive shell
show() Image method, 453, 455
shuffle() random module function,

189
shuffledDeck() function, 466
side pack() method option, 295
simultaneous assignment, 78
sin() math module function, 42
single quotes, see string
size Image instance variable, 453–454
slicing, see [] operator
smileyPeace.py module, 295
SMOOTH PIL.ImageFilter filter, 455
smooth() function, 462
snowflake fractal, 341
software, 4
software library, 7
sort() list method, 32
sorted() function, 134
speedup (parallel), 427, 430
spelling.py module, 63
split() string method, 96, 98
SQL, 402–410

conditional operators, 405
COUNT() function, 406
CREATE TABLE statement, 409
cross join, 407
DESC clause, 405
DISTINCT clause, 403
GROUP BY clause, 406
INSERT INTO statement, 409
ORDER BY clause, 405
parameter substitution, 411
querying multiple tables, 407
resources, 410
result table, 402
SELECT statement, 402–404
SQL injection, 412
SUM() function, 406
UPDATE statement, 409
WHERE clause, 404–406

SQLite, 410
command-line shell, 403

sqlite3 Standard Library module, 410–
415

class Connection, 411
class Cursor, 411
function connect(), 411

sqrt() math module function, 41, 42
stack

frame, see program stack
trace, 474

Standard Library modules, 41
fractions, see fractions
gzip, see gzip
html.parser, see html.parser
http.client, see http.client
io, see io
json, see json
math, see math
multiprocessing, see multiprocessing
os, see os
random, see random
re, see re
sqlite3, see sqlite3
sys, see sys
time, see time
tkinter, see tkinter
turtle, see turtle
urllib.parse, see urllib.parse
urllib.request, see urllib.request

StopIteration exception, 482
str() string constructor

informal string representation, 260
overloading, 258

str string type, see string
strftime() time function, 106
string, 23–27, 92–98

comparison, 24, 184
concatenation, see + operator
encoding, see character encoding
formatting, 100–105
methods, 95–98
methods return copy, 96
mutability, 29, 75
operators, 23–27
pattern matching, 387–391
quotes, 23, 92
repetition, see * operator
representation, 92–93
representation of object, 98, 259–

262
slicing, see [] operator

www.ebook3000.com

http://www.ebook3000.org

528 Index

str() constructor, see str() con-
structor

triple quotes, 93
type, 23
value, 23

StringIO io class, 511–512
strip() string method, 98
structured data storage, see database
Structured Query Language, see SQL
subclass, 265, 266
substring, 25
sum() built-in function, 28
SUM() SQL function, 406
superclass, 266
swapping, 77–78
syntax error, 116
sys Standard Library module, 224, 227

table, see database
TCP/IP, 6
temperature() function, 129
Text tkinter class, 305–308
text widget option, 293
text entry box

multiline, see Text tkinter class
single-line, see Entry tkinter

class
time() time function, 105
time format directive, 106
time Standard Library module, 105–107
timing() function, 351
timingAnalysis() function, 352
Tk tkinter class, 292
tkinter Standard Library module, 292

coordinate system, 312
resources, 299
widgets, see widget

top-level module, 226–228
total() (Blackjack) function, 468
Tower of Hanoi problem, 492–497
translate() string method, 97, 98
tree

filesystem, 108
of recursive calls, 353
root, 377
structure of HTML document, 377

triple quotes, 93
True value, 18
truth table, 20
try statement, see exception

tuple, 29–31
as dictionary keys, 176–177
methods, 33
mutability, 29, 176
one-element tuple, 30

Turtle graphics, 338, 442, 492
turtle Standard Library module, 442–

446
Screen class, see Screen
Turtle class, see Turtle

Turtle turtle class
constructor, 442
methods, 442–445

turtlefunctions.py module, 448
turtles() Screen method, 445
two-dimensional list, 140–143
two-way, see if statement
twoWay.py module, 61
type, 11–12, 33

in formatted output, 104
type() built-in function, 34
type conversion

explicit, 39
implicit, 17, 38

TypeError exception, 117, 118

unary operator, 20
undo() Turtle method, 443, 444
Unicode, 183–186
uniform() random module function,

188
Uniform Resource Locator, see URL
uniqueness testing, 357
UNIX, 5
update() dictionary method, 170, 171
UPDATE SQL statement, 409
upper() string method, 96, 98
URL, 373–374

absolute, 378
host, 373
pathname, 373
relative, 378
scheme, 373

urljoin() urllib.parse function,
385

urllib.request Standard Library
module, 379–381

urllib.parse Standard Library mod-
ule, 384–385

Index 529

urlopen() urllib.request function,
379

user-defined
function, 67–74
module, 54

user-defined indexes, see dictionary
UTC time, 106
UTF encodings, 185–186

ValueError exception, 118
Van Rossum, Guido, 8
variable, 20–21

evaluation of, 21
global, 211
instance, 243–244
local, 205–207
naming convention, 22
naming in Python 3, 22
naming rules, 22–23
type, 34
unassigned, 21

vertical() recursive function, 332
view object, 172
virus, 342

scanner, 342–344
signature, 342

warhol() function, 456
web, 372

browser, 372, 375, 376
client, 372
crawler, 498–504
page source file, 375
server, 372
server root directory, 373

WHERE SQL clause, 404–406
while loop statement, 143–144

iteration patterns, 145–149
widget, 292

Button tkinter class, 299–302
Canvas tkinter class, 308–313
constructor options, 292–298
coordinate system, 312
Entry tkinter class, 302–304
Frame tkinter class, 311–313
Label tkinter class, 292–298

for images, 294–297
for text, 292–293

mainloop() widget method, 292
master, 293, 311
mixing pack() and grid(), 298
placement, 293
placement with Frame, 311–313
placement with grid(), 297–299
placement with pack(), 295–297
Text tkinter class, 305–308
Tk, 292

width widget option, 293, 294
wordcount() function, 175
World Wide Web, see WWW
write() file method, 110, 115, 509
WWW, 6, 372–379

history, 372
HTML, see HTML
HTTP, see HTTP
locator scheme, 373
naming scheme, 373
Python web API, 379–387
technologies, 373
URL, see URL

ZeroDivisionError exception, 117,
118

www.ebook3000.com

http://www.ebook3000.org

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	Contents
	Preface
	The Book’s Technical Features
	 Online Textbook Supplements
	 For Students: How to Read This Book
	 Overview of the Book
	 What Is New in This Edition?
	 For Instructors: How to Use This Book

	Chapter 1 Introduction to Computer Science
	1.1 Computer Science
	What Do Computing Professionals Do?
	Models, Algorithms, and Programs
	Tools of the Trade
	What Is Computer Science?

	1.2 Computer Systems
	Computer Hardware
	Operating Systems
	Networks and Network Protocols
	Programming Languages
	Software Libraries

	1.3 Python Programming Language
	Short History of Python
	Setting Up the Python Development Environment

	1.4 Computational Thinking
	A Sample Problem
	Abstraction and Modeling
	Algorithm
	Data Types
	Assignments and Execution Control Structures

	Chapter Summary

	Chapter 2 Python Data Types
	2.1 Expressions, Variables, and Assignments
	Algebraic Expressions and Functions
	Boolean Expressions and Operators
	Variables and Assignments
	Variable Names

	2.2 Strings
	String Operators
	Indexing Operator

	2.3 Lists and Tuples
	List Operators
	Lists Are Mutable, Strings Are Not
	Tuples, or “Immutable Lists”
	List and Tuple Methods

	2.4 Objects and Classes
	Object Type
	Valid Values for Number Types
	Operators for Number Types
	Creating Objects
	Implicit Type Conversions
	Explicit Type Conversions
	Class Methods and Object-Oriented Programming

	2.5 Python Standard Library
	Module math
	Module fractions

	Case Study: Turtle Graphics
	Chapter Summary
	Solutions to Practice Problems
	Exercises

	Chapter 3 Imperative Programming
	3.1 Python Programs
	Our First Python Program
	Python Modules
	Built-In Function print()
	Interactive Input with input()
	Function eval()

	3.2 Execution Control Structures
	One-Way Decisions
	Two-Way Decisions
	Iteration Structures
	Nesting Control Flow Structures
	Function range()

	3.3 User-Defined Functions
	Our First Function
	Function Input Arguments
	print() versus return
	Function Definitions Are “Assignment” Statements
	Comments
	Docstrings

	3.4 Python Variables and Assignments
	Mutable and Immutable Types
	Assignments and Mutability
	Swapping

	3.5 Parameter Passing
	Immutable Parameter Passing
	Mutable Parameter Passing

	Case Study: Automating Turtle Graphics
	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	Chapter 4 Text Data, Files, and Exceptions
	4.1 Strings, Revisited
	String Representations
	The Indexing Operator, Revisited
	String Methods

	4.2 Formatted Output
	Function print()
	String Method format()
	Lining Up Data in Columns
	Getting and Formatting the Date and Time

	4.3 Files
	File System
	Opening and Closing a File
	Patterns for Reading a Text File
	Writing to a Text File

	4.4 Errors and Exceptions
	Syntax Errors
	Built-In Exceptions

	Case Study: Image Files
	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	Chapter 5 Execution Control Structures
	5.1 Decision Control and the if Statement
	Three-Way (and More!) Decisions
	Ordering of Conditions

	5.2 for Loop and Iteration Patterns
	Loop Pattern: Iteration Loop
	Loop Pattern: Counter Loop
	Loop Pattern: Accumulator Loop
	Accumulating Different Types
	Loop Patterns: Nested Loop

	5.3 More on Lists: Two-Dimensional Lists
	Two-Dimensional Lists
	Two-Dimensional Lists and the Nested Loop Pattern

	5.4 while Loop
	while Loop Usage

	5.5 More Loop Patterns
	Iteration Patterns: Sequence Loop
	Loop Pattern: Infinite Loop
	Loop Pattern: Loop and a Half

	5.6 Additional Iteration Control Statements
	break Statement
	continue Statement
	pass Statement

	Case Study: Image Processing
	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	Chapter 6 Containers and Randomness
	6.1 Dictionaries
	User-Defined Indexes as Motivation for Dictionaries
	Dictionary Class Properties
	Dictionary Operators
	Dictionary Methods
	A Dictionary as a Substitute for the Multiway if Statement
	Dictionary as a Collection of Counters
	tuple Objects Can Be Dictionary Keys

	6.2 Sets
	Using the set Constructor to Remove Duplicates
	set Operators
	set Methods

	6.3 Character Encodings and Strings
	Character Encodings
	ASCII
	Unicode
	UTF-8 Encoding for Unicode Characters

	6.4 Module random
	Choosing a Random Integer
	Choosing a Random “Real”
	Shuffling, Choosing, and Sampling at Random

	Case Study: Games of Chance
	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	Chapter 7 Namespaces
	7.1 Encapsulation in Functions
	Code Reuse
	Modularity (or Procedural Decomposition)
	Encapsulation (or Information Hiding)
	Local Variables
	Namespaces Associated with Function Calls
	Namespaces and the Program Stack

	7.2 Global versus Local Namespaces
	Global Variables
	Variables with Local Scope
	Variables with Global Scope
	Changing Global Variables Inside a Function

	7.3 Exceptional Control Flow
	Exceptions and Exceptional Control Flow
	Catching and Handling Exceptions
	The Default Exception Handler
	Catching Exceptions of a Given Type
	Multiple Exception Handlers
	Controlling the Exceptional Control Flow

	7.4 Modules as Namespaces
	Module Attributes
	What Happens When Importing a Module
	Module Search Path
	Top-Level Module
	Different Ways to Import Module Attributes

	7.5 Classes as Namespaces
	A Class Is a Namespace
	Class Methods Are Functions Defined in the Class Namespace

	Case Study: Debugging with a debugger
	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	Chapter 8 Object-Oriented Programming
	8.1 Defining a New Python Class
	Methods of Class Point
	A Class and Its Namespace
	Every Object Has an Associated Namespace
	Implementation of Class Point
	Instance Variables
	Instances Inherit Class Attributes
	Class Definition, More Generally
	Documenting a Class
	Class Animal

	8.2 Examples of User-Defined Classes
	Overloaded Constructor Operator
	Default Constructor
	Playing Card Class

	8.3 Designing New Container Classes
	Designing a Class Representing a Deck of Playing Cards
	Implementing the Deck (of Cards) Class
	Container Class Queue
	Implementing a Queue Class

	8.4 Overloaded Operators
	Operators Are Class Methods
	Making the Class Point User Friendly
	Contract between the Constructor and the repr() Operator
	Making the Queue Class User Friendly

	8.5 Inheritance
	Inheriting Attributes of a Class
	Class Definition, in General
	Overriding Superclass Methods
	Extending Superclass Methods
	Implementing a Queue Class by Inheriting from list

	8.6 User-Defined Exceptions
	Raising an Exception
	User-Defined Exception Classes
	Improving the Encapsulation of Class Queue

	Case Study: Indexing and Iterators
	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	Chapter 9 Graphical User Interfaces
	9.1 Basics of tkinter GUI Development
	Widget Tk: The GUI Window
	Widget Label for Displaying Text
	Displaying Images
	Packing Widgets
	Arranging Widgets in a Grid

	9.2 Event-Based tkinter Widgets
	Button Widget and Event Handlers
	Events, Event Handlers, and mainloop()
	The Entry Widget
	Text Widget and Binding Events
	Event Patterns and the tkinter Class Event

	9.3 Designing GUIs
	Widget Canvas
	Widget Frame as an Organizing Widget

	9.4 OOP for GUIs
	GUI OOP Basics
	Shared Widgets Are Assigned to Instance Variables
	Shared Data Are Assigned to Instance Variables

	Case Study: Developing a Calculator
	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	Chapter 10 Recursion
	10.1 Introduction to Recursion
	Functions that Call Themselves
	Stopping Condition
	Properties of Recursive Functions
	Recursive Thinking
	Recursive Function Calls and the Program Stack

	10.2 Examples of Recursion
	Recursive Number Sequence Pattern
	Fractals
	Virus Scanner
	Linear recursion

	10.3 Run Time Analysis
	The Exponent Function
	Counting Operations
	Fibonacci Sequence
	Experimental Analysis of Run Time

	10.4 Searching
	Linear Search
	Binary Search
	Linear versus Binary Search
	Uniqueness Testing
	Selecting the kth Largest (Smallest) Item
	Computing the Most Frequently Occurring Item

	Case Study: Tower of Hanoi
	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	Chapter 11 The Web and Search
	11.1 The World Wide Web
	Web Servers and Web Clients
	“Plumbing” of the WWW
	Naming Scheme: Uniform Resource Locator
	Protocol: HyperText Transfer Protocol
	HyperText Markup Language
	HTML Elements
	Tree Structure of an HTML Document
	Anchor HTML Element and Absolute Links
	Relative Links

	11.2 Python WWW API
	Module urllib.request
	Module html.parser
	Overriding the HTMLParser Handlers
	Module urllib.parse
	Parser That Collects HTTP Hyperlinks

	11.3 String Pattern Matching
	Regular Expressions
	Python Standard Library Module re

	Case Study: Web Crawler
	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	Chapter 12 Databases and Data Processing
	12.1 Databases and SQL
	Database Tables
	Structured Query Language
	Statement SELECT
	Clause WHERE
	Built-In SQL Functions
	Clause GROUP BY
	Making SQL Queries Involving Multiple Tables
	Statement CREATE TABLE
	Statements INSERT and UPDATE

	12.2 Database Programming in Python
	Database Engines and SQLite
	Creating a Database with sqlite3
	Committing to Database Changes and Closing the Database
	Querying a Database Using sqlite3

	12.3 Functional Language Approach
	List Comprehension
	MapReduce Problem-Solving Framework
	MapReduce, in the Abstract
	Inverted Index

	12.4 Parallel Computing
	Parallel Computing
	Class Pool of Module multiprocessing
	Parallel Speedup
	MapReduce, in Parallel
	Parallel versus Sequential MapReduce

	Case Study: Data Interchange
	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	Case Studies
	CS.2 Turtle Graphics
	Classes Screen and Turtle
	Solution to the Practice Problem
	Problems

	CS.3 Automating Turtle Graphics
	Function jump()
	Solution to the Practice Problem
	Problems

	CS.4 Processing Image Files
	Class Image in Module PIL.Image
	Image Size, Format, and Mode
	Image Class Methods
	Creating and Saving a New Image
	Solution to the Practice Problem
	Problems

	CS.5 Image-Processing Algorithms
	Accessing Pixels
	Copying an Image
	Rotating an Image by 90 Degrees
	Applying an Image Filter
	Solutions to Practice Problems
	Problems

	CS.6 Games of Chance
	Blackjack
	Creating and Shuffling the Deck of Cards
	Dealing a Card
	Computing the Value of a Hand
	Comparing the Player’s and the House’s Hands
	Main Blackjack Function
	Problems

	CS..7 Debugging with a Debugger
	Debugging Commands
	Analyzing the Program Stack
	Solution to the Practice Problem
	Problems

	CS.8 Indexing and Iterators
	Overloading the Indexing Operators
	Iterators and OOP Design Patterns
	Solutions to Practice Problems
	Problems

	CS.9 Developing a Calculator
	The Calculator Buttons and Passing Arguments to Handlers
	Implementing the “Unofficial” Event Handler click()
	Solution to the Practice Problem
	Problems

	CS.10 Tower of Hanoi
	The Recursive Solution
	Classes Peg and Disk
	Problems

	CS.11 Web Crawlers
	Recursive Crawler, Version 0.1
	Recursive Crawler, Version 0.2
	The Web Page Content Analysis
	Solution to the Practice Problem
	Problems

	CS.12 Data Interchange
	Serialization and Data Interchange Formats
	JSON (JavaScript Object Notation)
	Data Compression
	I/O Streams
	Solution to the Practice Problems
	Problems

	Index
	EULA

		2016-01-16T03:17:54+0000
	Preflight Ticket Signature

