
www.allitebooks.com

http://www.allitebooks.org

Java EE 6 with GlassFish 3
Application Server

A practical guide to install and configure the GlassFish 3
Application Server and develop Java EE 6 applications
to be deployed to this server

David Heffelfinger

 BIRMINGHAM - MUMBAI

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

Java EE 6 with GlassFish 3 Application Server

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2010

Production Reference: 1160710

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-36-3

www.packtpub.com

Cover Image by John M. Quick (john.m.quick@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
David Heffelfinger

Reviewers
Allan Bond

Arun Gupta

Development Editors
Dhiraj Chandiramani

Mehul Shetty

Technical Editor
Roger D’souza

Indexer
Hemangini Bari

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Late Basantani

Project Coordinator
Shubhanjan Chatterjee

Proofreader
Cathy Cumberlidge

Graphics
Geetanjali Sawant

Production Coordinator
Melwyn D’sa

Cover Work
Melwyn D’sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

David Heffelfinger is the Chief Technology Officer of Ensode Technology,
LLC—a software consulting firm based in the greater Washington DC area. He has
been architecting, designing, and developing software professionally since 1995,
and has been using Java as his primary programming language since 1996. He has
worked on many large scale projects for several clients, including the US Department
of Homeland Security, Freddie Mac, Fannie Mae, and the US Department of
Defense. He has a Masters degree in Software Engineering from Southern Methodist
University. David is the Editor-in-Chief of Ensode.net (http://www.ensode.net), a
website about Java, Linux, and other technology topics.

I would like to thank everyone who helped in making this book a
reality. I would like to thank the Development Editors, Mehul Shetty
and Dhiraj Chandiramani, and the Project Coordinators, Shubhanjan
Chatterjee and Pallabi Chatterjee.

I would also like to thank the Technical Reviewers, Allan Bond and
Arun Gupta for their insightful comments and suggestions.

Additionally, I would like to thank the GlassFish team at Oracle
(formerly Sun Microsystems) for developing such an outstanding
application server.

Finally, I would like to thank my wife and daughter for putting up
with the long hours of work that kept me away from the family.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Allan Bond is a software developer who has been active in the IT industry for
over 10 years. His primary focus is systems development using Java and related
technologies. He has worked and consulted for a variety of organizations, ranging
from small businesses to Fortune 500 companies and government agencies. Allan
holds a Masters degree in Information Systems Management from Brigham
Young University.

I would like to thank my wife and children for their patience during
the nights (and sometimes weekends) I needed to complete the
review of this book.

Arun Gupta is a Java EE and GlassFish evangelist working at Oracle. Arun has
over 14 years of experience in the software industry working in the Java (TM)
platform and several web-related technologies. In his current role, he works to create
and foster the community around Java EE 6 and GlassFish. He has participated in
several standard bodies and worked amicably with members from other companies.
He has been with the Java EE team since its inception and has contributed to all Java
EE releases in different capacity. Arun has extensive worldwide speaking experience
on a myriad of topics and loves to engage with the community everywhere.

He is a prolific blogger at http://blogs.sun.com/arungupta. This blog has over
1,000 blog entries, with frequent visitors from all over the world, and it reaches up to
25,000 hits per day.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with GlassFish	 7

Overview of Java EE and GlassFish	 7
What's new in Java EE 6	 8

JavaServer Faces (JSF) 2.0	 8
Enterprise JavaBeans (EJB) 3.1	 8
Java Persistence API (JPA) 2.0	 9
Contexts and Dependency Injection for Java (Web Beans 1.0)	 9
Java Servlet API 3.0	 9
Java API for RESTful web services (JAX-RS) 1.1	 10
Java API for XML-based web services (JAX-WS) 2.2	 10
Java Architecture for XML Binding (JAXB) 2.2	 10

What's new in GlassFish v3	 10
GlassFish advantages	 11

Obtaining GlassFish	 12
Installing GlassFish	 13

GlassFish dependencies	 14
Performing the installation	 14

Verifying the installation	 21
Deploying our first Java EE application	 23

Deploying an application through the Web Console	 23
Undeploying an application through the Web Console	 25
Deploying an application through the command line	 26

GlassFish domains	 29
Creating domains	 29
Deleting domains	 30
Stopping a domain	 31

Setting up database connectivity	 31
Setting up connection pools	 32
Setting up data sources	 37

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Final notes	 38
Summary	 38

Chapter 2: Servlet Development and Deployment	 39
What is a servlet?	 39
Writing our first servlet	 41
Compiling the servlet	 42
Configuring the servlet	 43
Packaging the web application	 45
Deploying the web application	 46
Testing the web application	 47
Processing HTML forms	 48
Request forwarding and response redirection	 55

Request forwarding	 55
Response redirection	 58

Persisting application data across requests	 61
New features introduced in Servlet 3.0	 64

Optional web.xml deployment descriptor	 64
@WebServlet annotation	 64
@WebFilter annotation	 67
@WebListener annotation	 70
Pluggability	 72
Configuring web applications programmatically	 74
Asynchronous processing	 76

Summary	 79
Chapter 3: JavaServer Pages	 81

Introduction to JavaServer Pages	 81
Developing our first JSP	 82
JSP implicit objects	 86
JSPs and JavaBeans	 95
Reusing JSP content	 100
JSP custom tags	 102

Extending SimpleTagSupport	 102
Using tag files to create custom JSP tags	 109

Unified Expression Language	 113
JSP XML syntax	 117
Summary	 120

Chapter 4: JSP Standard Tag Library	 121
Core JSTL tag library	 122
Formatting JSTL tag library	 130
SQL JSTL tag library	 135
XML JSTL tag library	 140

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

JSTL functions	 144
Summary	 148

Chapter 5: Database Connectivity	 149
The CustomerDB database	 149
JDBC	 150

Retrieving data from a database	 151
Modifying database data	 159

The Java Persistence API	 161
Entity relationships	 168

One-to-one relationships	 168
One-to-many relationships	 174
Many-to-many relationships	 180

Composite primary keys	 187
Java Persistence Query Language	 192

New features introduced in JPA 2.0	 195
Criteria API	 196
Bean Validation support	 199

Summary	 202
Chapter 6: JavaServer Faces	 203

Introduction to JSF 2.0	 203
Facelets	 203
Optional faces-config.xml	 204
Standard resource locations	 204

Developing our first JSF 2.0 application	 205
Facelets	 205
Project stages	 210
Validation	 212
Grouping components	 214
Form submission	 214
Managed beans	 215

Managed bean scopes	 216
Navigation	 217

Custom data validation	 218
Creating custom validators	 218
Validator methods	 222

Customizing JSF's default messages	 225
Customizing message styles	 225
Customizing message text	 227

Integrating JSF and JPA	 230
Ajax enabling JSF 2.0 applications	 237
JSF standard components	 242

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

JSF core components	 242
The <f:actionListener> tag	 242
The <f:ajax> tag	 242
The <f:attribute> tag	 243
The <f:convertDateTime> tag	 243
The <f:convertNumber> tag	 244
The <f:converter> tag	 244
The <f:event> tag	 244
The <f:facet> tag	 245
The <f:loadBundle> tag	 245
The <f:metadata> tag	 246
The <f:param> tag	 246
The <f:phaseListener> tag	 246
The <f:selectItem> tag	 246
The <f:selectItems> tag	 247
The <f:setPropertyActionListener> tag	 247
The <f:subview> tag	 247
The <f:validateBean> tag	 248
The <f:validateDoubleRange> tag	 248
The <f:validateLength> tag	 248
The <f:validateLongRange> tag	 249
The <f:validateRegex> tag	 249
The <f:validateRequired> tag	 249
The <f:validator> tag	 250
The <f:valueChangeListener> tag	 250
The <f:verbatim> tag	 250
The <f:view> tag	 251
The <f:viewParam> tag	 251

JSF HTML components	 251
The <h:body> tag	 251
The <h:button> tag	 251
The <h:column> tag	 252
The <h:commandButton> tag	 252
The <h:commandLink> tag	 252
The <h:dataTable> tag	 253
The <h:form> tag	 253
The <h:graphicImage> tag	 253
The <h:head> tag	 254
The <h:inputHidden> tag	 254
The <h:inputSecret> tag	 254
The <h:inputText> tag	 254
The <h:inputTextarea> tag	 254
The <h:link> tag	 254
The <h:message> tag	 255
The <h:messages> tag	 255
The <h:outputFormat> tag	 255
The <h:outputLabel> tag	 256
The <h:outputLink> tag	 256

Table of Contents

[v]

The <h:outputScript> tag	 256
The <h:outputStylesheet> tag	 257
The <h:outputText> tag	 257
The <h:panelGrid> tag	 257
The <h:panelGroup> tag	 258
The <h:selectBooleanCheckbox> tag	 259
The <h:selectManyCheckbox> tag	 259
The <h:selectManyListbox> tag	 259
The <h:selectManyMenu> tag	 260
The <h:selectOneListbox> tag	 260
The <h:selectOneMenu> tag	 260
The <h:selectOneRadio> tag	 260

Additional JSF component libraries	 261
Summary	 261

Chapter 7: Java Messaging Service	 263
Setting up GlassFish for JMS	 263

Setting up a JMS connection factory	 263
Setting up a JMS message queue	 266
Setting up a JMS message topic	 267

Message queues	 268
Sending messages to a message queue	 268
Retrieving messages from a message queue	 272
Asynchronously receiving messages from a message queue	 275
Browsing message queues	 278

Message topics	 280
Sending messages to a message topic	 280
Receiving messages from a message topic	 282
Creating durable subscribers	 284

Summary	 287
Chapter 8: Security	 289

Security realms	 289
Predefined security realms	 290

The admin-realm	 291
The file realm	 293
The certificate realm	 307

Defining additional realms	 315
Defining additional file realms	 315
Defining additional certificate realms	 316
Defining an LDAP realm	 318
Defining a Solaris realm	 319
Defining a JDBC realm	 320
Defining custom realms	 326

Summary	 332

Table of Contents

[vi]

Chapter 9: Enterprise JavaBeans	 333
Session beans	 334

Simple session bean	 334
A more realistic example	 338
Invoking session beans from web applications	 340

Singleton session beans	 342
Asynchronous method calls	 343
Message-driven beans	 346
Transactions in Enterprise JavaBeans	 347

Container-managed transactions	 347
Bean-managed transactions	 350

Enterprise JavaBeans life cycle	 353
Stateful session bean life cycle	 353
Stateless session bean life cycle	 356
Message-driven bean life cycle	 359

EJB timer service	 359
Calendar-based EJB timer expressions	 363

EJB security	 365
Client authentication	 368

Summary	 370
Chapter 10: Contexts and Dependency Injection	 371

Named beans	 371
Dependency injection	 374
Qualifiers	 375
Named bean scopes	 379
Summary	 388

Chapter 11: Web Services with JAX-WS	 389
Developing web services with JAX-WS	 389

Developing a web service client	 394
Sending attachments to web services	 401

Exposing EJBs as web services	 404
EJB web service clients	 405
Securing web services	 406
Securing EJB web services	 408

Summary	 410
Chapter 12: RESTful Web Services with Jersey and JAX-RS	 411

Introduction to RESTful web services and JAX-RS	 411
Developing a simple RESTful web service	 412

Configuring the REST resources path for our application	 415
Configuring via web.xml	 415

Table of Contents

[vii]

Configuring via the @ApplicationPath annotation	 416
Testing our web service	 417
Converting data between Java and XML with JAXB	 420

Developing a RESTful web service client	 424
Query and path parameters	 426

Query parameters	 426
Sending query parameters via the Jersey client API	 428

Path parameters	 430
Sending path parameters via the Jersey client API	 432

Summary	 434
Appendix A: Sending E-mails from Java EE Applications	 435

Configuring GlassFish	 435
Implementing e-mail delivery functionality	 439

Appendix B: IDE Integration	 443
NetBeans	 443
Eclipse	 445

Index	 453

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Preface
This book begins with the installation of Glassfish 3 and deploying Java applications.
It also explains how to develop, configure, package, and deploy servlets. Additionally,
we will learn the processing of HTML forms. As we move on, we will develop Java
Server Pages and get to know about implicit JSP objects. We will also get to know
about all the JSTL (JSP Standard Tag Library) tag libraries. This book gives us a better
understanding on how to manage data from a database through the Java Database
Connectivity (JDBC) API and the Java Persistence API (JPA). We will also learn more
about the newly introduced features of JPA 2.0 and develop JSF 2.0 applications to
learn how to customize them. We will then set up Glassfish for the Java Messaging
(JMS) API and understand the working of message queues and message topics. Later,
we will use the Context and Dependency Injection (CDI) API to integrate application
layers and study the SOAP-based web service development using the JAX-WS
specification. Finally, we will learn more about the RESTful web service development
using the JAX-RS specification.

The book covers the various Java EE 6 conventions and annotations that can simplify
enterprise Java application development. The latest versions of the Servlet, JSF,
JPA, EJB, and JAX-WS specifications are covered, as well as new additions to the
specification, such as JAX-RS and CDI.

What this book covers
Chapter 1, Getting Started with GlassFish will discuss how to download and install
GlassFish. We will look at several methods of deploying a Java EE application
through the GlassFish web console, through the asadmin command, and by copying
the file to the autodeploy directory. We will cover basic GlassFish administration
tasks such as setting up domains and setting up database connectivity by adding
connection pools and data sources.

Preface

[2]

Chapter 2, Servlet Development and Deployment will cover how to develop, configure,
package, and deploy servlets. We will also cover how to process HTML form
information by accessing the HTTP request object. Additionally, forwarding HTTP
requests from one servlet to another will be explained, as well as redirecting the
HTTP response to a different server. We will discuss how to persist objects in
memory across requests by attaching them to the servlet context and the HTTP
session. Finally, we will look at all the major new features of Servlet 3.0, including
configuring web applications via annotations, pluggability through web-fragment.
xml, programmatic servlet configuration, and asynchronous processing.

Chapter 3, JavaServer Pages will talk about how to develop and deploy simple JSPs.
We will cover how to access implicit objects such as request, session, and so on,
from JSPs. Additionally, we will look at how to set and get the values of JavaBean
properties via the <jsp:useBean> tag. In addition to that, we will find out how
to include a JSP into another JSP at runtime via the <jsp:include> tag, and at
compilation time via the JSP include directive. We will discuss how to write custom
JSP tags by extending javax.servlet.jsp.tagext.SimpleTagSupport or by
writing TAG files. We will also discuss how to access JavaBeans and their properties
via the Unified Expression Language. Finally, we will cover the JSP XML syntax that
allows us to develop XML-compliant JavaServer Pages.

Chapter 4, JSP Standard Tag Library will cover all JSP Standard Tag Library tags,
including the core, formatting, SQL, and XML tags. Additionally, JSTL functions will
be explained. Examples illustrating the most common JSTL tags and functions will be
provided; additional JSTL tags and functions will be mentioned and described.

Chapter 5, Database Connectivity will talk about how to access data in a database via
both the Java Database Connectivity (JDBC) and through the Java Persistence API
(JPA). Defining both unidirectional and bidirectional one-to-one, one-to-many, and
many-to-many relationships between JPA entities will be covered. Additionally, we
will discuss how to use JPA composite primary keys by developing custom primary
key classes. We will also discuss how to retrieve entities from a database by using
the Java Persistence Query Language (JPQL). We will look at how to build queries
programmatically through the JPA 2.0 Criteria API and automating data validation
through JPA 2.0's Bean Validation support

Chapter 6, JavaServer Faces will cover how to develop web-based applications using
JavaServer Faces—the standard component framework for the Java EE 5 platform.
We will talk about how to write a simple application by creating JSPs containing
JSF tags and managed beans. We will discuss how to validate user input by using
JSF's standard validators and by creating our own custom validators, or by writing
validator methods. Additionally, we will look at how to customize standard JSF
error messages; both the message text and the message style (font, color, and so on).
Finally, we will discuss how to write applications by integrating JSF and the Java
Persistence API (JPA).

Preface

[3]

Chapter 7, Java Messaging Service will talk about how to set up JMS connection
factories, JMS message queues, and JMS message topics in GlassFish using the
GlassFish web console. We will cover how to send and receive messages to and
from a message queue. We will discuss how to send and receive messages to and
from a JMS message topic. We will find out how to browse messages in a message
queue without removing the messages from the queue. Finally, we will look at how
to set up and interact with durable subscriptions to JMS topics.

Chapter 8, Security will talk about how to use GlassFish's default realms to
authenticate our web applications. We will cover the file realm, which stores
user information in a flat file, and the certificate realm, which requires client-side
certificates for user authentication. Additionally, we will discuss how to create
additional realms that behave just like the default realms, by using the realm
classes included with GlassFish.

Chapter 9, Enterprise JavaBeans will cover how to implement business logic via
stateless and stateful session beans. Additionally, we will explain the concept of
container-managed transactions and bean-managed transactions. We will look at
the life cycles for the different types of Enterprise Java Beans. We will talk about how
to have EJB methods invoked periodically by the EJB container, by taking advantage
of the EJB timer service. Finally, we will explain how to make sure that EJB methods
are only invoked by authorized users.

Chapter 10, Contexts and Dependency Injection will talk about how JSF pages can access
CDI named beans as if they were JSF managed beans. We will explain how CDI
makes it easy to inject dependencies into our code. We will discuss how we can use
qualifiers to determine what specific implementation of dependency to inject into
our code. Finally, we will look at all the scopes that a CDI bean can be placed into.

Chapter 11, Web Services with JAX-WS will cover how to develop web services and
web service clients via the JAX-WS API. We will discuss how to send attachments
to a web service. We will explain how to expose an EJB's methods as web services.
Finally, we will look at how to secure web services so that they are not accessible
to unauthorized clients.

Chapter 12, RESTful Web Services with Jersey and JAX-RS will discuss how to easily
develop RESTful web services using JAX-RS—a new addition to the Java EE
specification. We will explain how to automatically convert data between Java and
XML by taking advantage of the Java API for XML Binding (JAXB). Finally, we will
cover how to pass parameters to our RESTful web services via the @PathParam and
@QueryParam annotations.

Preface

[4]

What you need for this book
It is required to install the Java Development Kit (JDK) 1.5 or a newer version, and
GlassFish v3 or v3.1. Maven 2 is highly recommended, as all of the code examples
use it. A Java IDE such as NetBeans, Eclipse, or IntelliJ IDEA is optional.

Who this book is for
If you are a Java developer and wish to become proficient with Java EE 6, then this
book is for you. You are expected to have some experience with Java and to have
developed and deployed applications in the past, but need no previous knowledge
of Java EE or J2EE. You will also learn how to use GlassFish 3 to develop and
deploy applications.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The <servlet> and <servlet-mapping>
XML tags are used to actually configure our servlet."

A block of code is set as follows:

<servlet-mapping>
 <servlet>SimpleServlet</servlet>
 <url-pattern>*.foo</url-pattern>
</servlet-mapping>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Application Menu

 Main
 Secondary

Current page: <%= pageName %>

Any command-line input or output is written as follows:

javac -cp /opt/sges-v3/glassfish/lib/javaee.jar
net/ensode/glassfishbook/simpleapp/SimpleServlet.java

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "At this
point, we should click on the Deploy an Application item under the Deployment
section in the main screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with
GlassFish

In this chapter, we will discuss how to get started with GlassFish. Some of the topics
discussed in this chapter include:

•	 Overview of Java EE and GlassFish
•	 Obtaining GlassFish
•	 Installing GlassFish
•	 Verifying the GlassFish installation
•	 Deploying Java EE applications
•	 Setting up database connectivity

Overview of Java EE and GlassFish
Java EE (formerly called J2EE) includes a standard set of technologies for server-side
Java development. Java EE technologies include Servlets, Java Server Pages (JSPs),
Java Server Faces (JSF), Enterprise JavaBeans (EJBs), Java Messaging Service (JMS),
Java Persistence API (JPA), Java API for XML Web Services (JAX-WS), and Java API
for RESTful Web Services (JAX-RS), among others. Several commercial and open
source application servers exist. Java EE application servers allow developers to
develop and deploy Java EE-compliant applications; GlassFish being one of them.
Other open source Java EE application servers include Red Hat's JBoss, Apache
Software Foundation's Geronimo, and ObjectWeb's JOnAS. Commercial application
servers include BEA's Weblogic, IBM's Websphere, and Oracle Application Server.

GlassFish is an open source, freely available Java EE application server. GlassFish is
licensed under Common Development and Distribution License (CDDL).

Getting Started with GlassFish

[8]

To find out more about GlassFish's license, see
http://www.sun.com/cddl/.

Like all Java EE-compliant application servers, GlassFish provides the necessary
libraries to allow us to develop and deploy Java applications compliant with
Java EE specifications.

What's new in Java EE 6
Java EE 6—the latest version of the Java EE specification—includes several
improvements and additions to the specification. The following sections list
the major improvements to the specification that are of interest to enterprise
application developers.

JavaServer Faces (JSF) 2.0
Java EE 6 includes a new version of JSF. JSF 2.0 includes the following notable
new features:

•	 JSF 2.0 adopts Facelets as an official part for the specification. Facelets is a
view technology specifically designed for JSF. Some of the advantages of
Facelets include the ability to define a view in XHTML, the ability to easily
create templates, and the ability to develop JSF components using markup,
without having to use any Java code.

•	 JSF 2.0 also includes the ability to configure JSF applications using annotations,
thus greatly reducing, and in many cases eliminating the need to use XML
for configuration.

Enterprise JavaBeans (EJB) 3.1
Early versions of the EJB specification gained a reputation of being hard to use.

EJB 3.0 took major strides in greatly simplifying EJB development. EJB 3.1 adds the
following additional features to make EJB development even simpler.

•	 Local interfaces are now optional as an actual bean instance can be injected
into local clients.

•	 Singleton session beans can be used to manage application states.
•	 Session beans can now be invoked asynchronously, allowing us to

use session beans for tasks that were previously reserved for JMS
and message-driven beans.

Chapter 1

[9]

•	 Improved EJB timer service allows us to schedule jobs declaratively
via annotations.

•	 Enterprise JavaBeans can now be packaged inside a WAR (Web ARchive)
file. This feature greatly simplifies EJB packaging, as in the past an EAR
(Enterprise ARchive) file was needed to package web functionality and EJB
functionality into a single module.

Java Persistence API (JPA) 2.0
JPA was introduced as a standard part of Java EE in version 5 of the specification.
JPA was intended to replace Entity Beans as the standard object relational mapping
framework for Java EE. JPA adopted ideas from third-party object-relational
frameworks such as Hibernate, JDO, and so on, and made them part of the standard.

JPA 2.0 improves over JPA 1.0 in a number of areas:

•	 Non-entity collections can now be persisted via the @ElementCollection
and @CollectionTable annotations.

•	 JPA queries can now be built through the new Criteria API, reducing reliance
on JPQL.

•	 The JPA Query Language (JPQL) has improved, adding support for SQL-like
CASE expressions, NULLIF and COALESCE operators.

Contexts and Dependency Injection for Java
(Web Beans 1.0)
The Context and Dependency Injection is an API that helps simplify enterprise
application development. This API helps unify the web and transactional tiers
of a Java EE application. For example, Context and Dependency Injection allows
Enterprise JavaBeans to be used as JSF Managed Beans.

Java Servlet API 3.0
Servlets are the building blocks of all Java web applications. Early Java web
applications relied on the Servlet API directly. Over the years, several APIs have
been built on top of the Servlet API, some standard, and some third party. All Java
web application frameworks such as JSF, Struts, Wicket, Tapestry, and so on rely
on the Servlet API to do its work "behind the scenes". The servlet API itself hadn't
changed much over the years. Java EE 6 includes a number of improvements to the
Servlet API such as annotations, web fragments, and asynchronous requests.

Getting Started with GlassFish

[10]

Java API for RESTful web services (JAX-RS) 1.1
JAX-RS is a Java API for developing RESTful web services. RESTful web services use
the Representational State Transfer (REST) architecture.

Java EE 6 adopted JAX-RS as an official part of the Java EE specification.

Java API for XML-based web services (JAX-WS) 2.2
JAX-WS is the Java API for XML web services. JAX-WS is used to develop traditional
SOAP-based web services. Java EE 6 includes an updated JAX-WS specification.
JAX-WS 2.2 is a maintenance release, with minor improvements and enhancements
over JAX-WS 2.0.

Java Architecture for XML Binding (JAXB) 2.2
JAXB is used to map Java classes to XML and back. Java EE 6 includes an updated
maintenance release of JAXB.

What's new in GlassFish v3
GlassFish v3 is the first application server to fully support the Java EE 6 specification.
This should come as no surprise as GlassFish is the reference implementation of Java
EE. Glassfish v3 offers the following notable features:

•	 GlassFish v3 has a modular architecture based on OSGi. This OSGi-based
architecture allows GlassFish to have pluggable modules, allowing us to run
GlassFish with only the features we need, and not have to waste resources
such as memory and CPU with the features we don't need.

•	 GlassFish v3 is embeddable; it can be embedded into an existing JVM. It
allows us to write Java applications that have GlassFish embedded in them.
We would simply need to add the GlassFish libraries to our project to take
advantage of this feature.

Chapter 1

[11]

•	 GlassFish v3 is extensible; it can be adapted to support additional
technologies that are not part of the Java EE specification. Several extensions
are available out of the box from the GlassFish update center, for example,
support for Grails (a Groovy-based web application framework) and
JRuby on Rails. The extensibility features of GlassFish 3 allows application
developers and vendors to implement their own GlassFish extensions.

GlassFish advantages
With so many options in Java EE application servers, why choose GlassFish? Besides
the obvious advantage of GlassFish being available free of charge, it offers the
following benefits:

•	 Commercial support available: Commercial support is available (at a
cost). Many software development shops will not use any software for
which commercial support is not available, therefore commercial support
availability allows GlassFish to be used in environments where it otherwise
wouldn't.

•	 Java EE reference implementation: GlassFish is the Java EE reference
implementation. This means that other application servers may use GlassFish
to make sure their product complies with the specification. GlassFish could
theoretically be used to debug other application servers. If an application
deployed under another application server is not behaving properly, but it
does behave properly when deployed under GlassFish, then more than likely
the improper behavior is due to a bug in the other application server.

•	 Supports latest versions of the Java EE specification: As GlassFish is the
reference Java EE specification, it tends to implement the latest specifications
before any other application server in the market. As a matter of fact, at the
time of writing, GlassFish is the only Java EE application server in the market
that supports the complete Java EE 6 specification.

Getting Started with GlassFish

[12]

Obtaining GlassFish
GlassFish can be downloaded from https://glassfish.dev.java.net. On
entering this URL into the browser, the following screenshot appears:

Clicking on the Download link takes us to a page containing a table similar to the
following screenshot:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

[13]

At the time of writing, GlassFish 3 has not been officially released yet, but as can
be seen in the previous screenshot, there is a Java EE 6-compliant preview version
available. Clicking on the Download link for this version takes us to the
following page:

As we can see, the page has download links for all officially supported platforms
(Windows, Solaris, Linux, and MacOS X), plus a platform-independent ZIP file.

To download GlassFish, simply click on the link for your platform—the file should
start downloading immediately. After the file finishes downloading, we should have
a file called something such as glassfish-v3-preview-unix.sh, glassfish-v3-
preview-windows.exe, or glassfish-v3-preview.zip. The exact filename will
depend on the exact GlassFish version and platform.

Installing GlassFish
We will use the Unix installer to illustrate the installation process. This installer
works under Linux, Solaris, and MacOS X. Windows installation is very similar.

Installing GlassFish is an easy process. However, GlassFish assumes some
dependencies are present on your system.

NetBeans 6.8 comes bundled with GlassFish 3. By installing the
NetBeans Java bundle, GlassFish is automatically installed as well.

Getting Started with GlassFish

[14]

GlassFish dependencies
In order to install GlassFish 3, a recent version of the Java Development Kit (JDK)
must be installed on your workstation (JDK 1.6 or a newer version required), and
the Java executable must be in your system path. The latest JDK can be downloaded
from http://java.sun.com/. Please refer to the JDK installation instructions for
your particular platform at http://java.sun.com/javase/6/webnotes/install/
index.html.

Performing the installation
Once the JDK has been installed, installation can begin by simply executing the
downloaded file (permissions may have to be modified to make it executable):

../glassfish-v3-preview-unix.sh

The actual filename will depend on the version of GlassFish downloaded. The
following steps need to be performed in order to successfully install GlassFish:

1.	 After running the previous command, the GlassFish installer will
start initializing:

Chapter 1

[15]

2.	 After a few seconds, we should see the installer's welcome screen:

3.	 After clicking Next, we are prompted to accept the license terms:

www.allitebooks.com

http://www.allitebooks.org

Getting Started with GlassFish

[16]

4.	 The next screen in the installer prompts us for an installation directory. The
installation directory defaults to a directory called glassfishv3 under our
home directory. It is a reasonable default, but we are free to change it.

Chapter 1

[17]

5.	 The next page in the installer allows us to customize Glassfish's
administration and HTTP ports. Additionally, it allows us to provide a
username and password for the administrative user. By default, no username
and password combination is required to log into the admin console. This
default behavior is appropriate for development boxes. We can override this
behavior by choosing to provide a username and password in this step in the
installation wizard.

Getting Started with GlassFish

[18]

6.	 At this point in the installation, we need to indicate if we would like to
install the GlassFish update tool. The update tool allows us to easily install
additional GlassFish modules. Therefore, unless disk space is a concern,
it is recommended to install it. If we access the internet through a proxy
server, we can enter its host name or IP address and port at this point in
the installation.

Chapter 1

[19]

7.	 Now, we are prompted to either select an automatically detected Java SDK or
type in the location of the SDK. By default, the Java SDK matching the value
of the JAVA_HOME environment variable is selected.

8.	 At this point, the installer summarizes the steps it is about to take. Clicking
on the Install button causes the installation to begin:

Getting Started with GlassFish

[20]

9.	 The progress of the installation is shown in the next screenshot:

10.	 After installation finishes, we are asked to register our copy of GlassFish.
At this point, we can link our GlassFish installation to an existing Sun
Online Account, create a new Sun Online Account or skip installation:

Chapter 1

[21]

11.	 The next page in the installer shows an installation summary. Now, we
simply need to click on the Exit button to exit the installer:

Verifying the installation
To start GlassFish, change the directory to [glassfish installation
directory]/glassfishv3/bin and execute the following command:

./asadmin start-domain domain1

This command and most commands shown in this chapter assume a
Unix or Unix-like operating system. For windows systems, the initial
"./" is not necessary.

Getting Started with GlassFish

[22]

A few seconds after executing the previous command, we should see a message
similar to the following at the bottom of the terminal:

Name of the domain started: [domain1] and

its location: [/home/heffel/glassfishv3/glassfish/domains/domain1].

Admin port for the domain: [4848].

We can then open a browser window and type the following URL in the browser's
location text field: http://localhost:8080.

If everything went well, we should see a page similar to the following screenshot:

Getting Help
If any of the previous steps fail or for help with GlassFish in general,
a great resource is the GlassFish forum, which can be found at
http://forums.java.net/jive/forum.jspa?forumID=56.

Chapter 1

[23]

Deploying our first Java EE application
To further test that our GlassFish installation is running properly, we will deploy
a WAR (Web ARchive) file and make sure it deploys and executes properly. Before
moving on, please download the file simpleapp.war from this book's website.

Deploying an application through the Web Console
To deploy simpleapp.war, open a browser and navigate to the following URL:
http://localhost:4848. You should be greeted with a login screen that looks
like the following screenshot:

If GlassFish was configured as anonymous user, then we will see the previous page
directly. Otherwise, we will see it after entering the administrator credentials entered
during installation.

http://localhost:4343/

Getting Started with GlassFish

[24]

At this point, we should click on the Deploy an Application item under the
Deployment section in the main screen.

We should select the Local packaged file or directory that is accessible from the
Application Server radio button, and either type the path to our WAR file or select
it by clicking on the Browse Files... button.

After we have selected our WAR file, we simply click on the OK button to deploy it.

As can be seen in the previous screenshot, our simpleapp application has now
been deployed.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

[25]

To execute the simpleapp application, type the following URL in the browser's
location text field: http://localhost:8080/simpleapp/simpleservlet. The
resulting page should look as follows:

That's it! We have successfully deployed our first Java EE application.

Undeploying an application through the
Web Console
In the next section, we explain how to deploy a web application through the
command line. For the instructions in the next section to work, we need to
undeploy simpleapp.war.

To undeploy the application we deployed in the previous section, log into the
GlassFish Admin Console by typing the following URL in the browser's location
text field: http://localhost:4848.

Then, either click on the Applications menu item near the top left of the page or click
on the List Deployed Applications item on the administration console's home page.

Either way should take us to the application management page:

Getting Started with GlassFish

[26]

The application can be undeployed simply by selecting it from the list of deployed
applications and clicking on the Undeploy button. After undeploying the
application, the application management page looks as follows:

Deploying an application through the command line
There are two ways by which an application can be deployed through the command
line: it can be done by copying the artifact we want to deploy to an autodeploy
directory or by using GlassFish's asadmin command line utility.

The autodeploy directory
Now that we have undeployed the simpleapp.war file, we are ready to deploy it
using the command line. To deploy the application in this manner, simply copy
simpleapp.war to [glassfish installation directory]/glassfishv3/
glassfish/domains/domain1/autodeploy. The application will be automatically
deployed just by copying it to this directory.

We can verify that the application has been successfully deployed by looking at the
server log. The server log can be found at [glassfish installation directory]/
glassfishv3/glassfish/domains/domain1/logs/server.log. The last few lines
of this file should look as follows:

[#|2009-09-23T19:26:39.463-0400|INFO|glassfish|javax.enterprise.
system.tools.deployment.org.glassfish.deployment.common|_ThreadID=20;_
ThreadName=Thread-1;|[AutoDeploy] Selecting file /home/heffel/
glassfishv3/glassfish/domains/domain1/autodeploy/simpleapp.war for
autodeployment.|#]

Chapter 1

[27]

[#|2009-09-23T19:26:39.635-0400|INFO|glassfish|null|_ThreadID=20;_
ThreadName=Thread-1;|Deployment expansion took 64|#]

[#|2009-09-23T19:26:41.132-0400|INFO|glassfish|null|_ThreadID=20;_
ThreadName=Thread-1;|DOL Loading time938|#]

[#|2009-09-23T19:26:41.190-0400|INFO|glassfish|org.apache.catalina.
loader.WebappLoader|_ThreadID=20;_ThreadName=Thread-1;|Unknown loader
org.glassfish.internal.api.DelegatingClassLoader@55d866c5 class org.
glassfish.internal.api.DelegatingClassLoader|#]

[#|2009-09-23T19:26:41.610-0400|INFO|glassfish|javax.enterprise.system.
container.web.com.sun.enterprise.web|_ThreadID=20;_ThreadName=Thread-
1;|Loading application simpleapp at /simpleapp|#]

[#|2009-09-23T19:26:41.808-0400|INFO|glassfish|javax.enterprise.system.
tools.admin.org.glassfish.server|_ThreadID=20;_ThreadName=Thread-
1;|Deployment of simpleapp done is 2,239 ms|#]

[#|2009-09-23T19:26:41.810-0400|INFO|glassfish|javax.enterprise.
system.tools.deployment.org.glassfish.deployment.common|_ThreadID=20;_
ThreadName=Thread-1;|[AutoDeploy] Successfully autodeployed : /home/
heffel/glassfishv3/glassfish/domains/domain1/autodeploy/simpleapp.war.|#]

We can of course also verify the deployment by navigating to the URL for the
application, which will be the same one we used when deploying through the web
console: http://localhost:8080/simpleapp/simpleservlet. The application
should execute properly.

An application deployed this way can be undeployed by simply deleting the artifact
(in our case, the WAR file) from the autodeploy directory. After deleting the file, we
should see a message similar to the following in the server log:

[#|2009-09-23T19:29:09.835-0400|INFO|glassfish|javax.enterprise.
system.tools.deployment.org.glassfish.deployment.common|_ThreadID=20;_
ThreadName=Thread-1;|Autoundeploying application :simpleapp|#]

[#|2009-09-23T19:29:09.909-0400|INFO|glassfish|javax.enterprise.
system.tools.deployment.org.glassfish.deployment.common|_ThreadID=20;_
ThreadName=Thread-1;|[AutoDeploy] Successfully autoundeployed : /home/
heffel/glassfishv3/glassfish/domains/domain1/autodeploy/simpleapp.war.|#]

Getting Started with GlassFish

[28]

The asadmin command line utility
An alternate way of deploying an application through the command line is by using
the following command:

asadmin deploy [path to file]/simpleapp.war

The server log file should show a message similar to the following:

[#|2009-09-23T19:35:04.012-0400|INFO|glassfish|null|_ThreadID=16;_
ThreadName=Thread-1;|Deployment expansion took 76|#]

[#|2009-09-23T19:35:04.986-0400|INFO|glassfish|null|_ThreadID=16;_
ThreadName=Thread-1;|DOL Loading time707|#]

[#|2009-09-23T19:35:05.025-0400|INFO|glassfish|org.apache.catalina.
loader.WebappLoader|_ThreadID=16;_ThreadName=Thread-1;|Unknown loader
org.glassfish.internal.api.DelegatingClassLoader@55d866c5 class org.
glassfish.internal.api.DelegatingClassLoader|#]

[#|2009-09-23T19:35:05.238-0400|INFO|glassfish|javax.enterprise.system.
container.web.com.sun.enterprise.web|_ThreadID=16;_ThreadName=Thread-
1;|Loading application simpleapp at /simpleapp|#]

[#|2009-09-23T19:35:05.321-0400|INFO|glassfish|javax.enterprise.system.
tools.admin.org.glassfish.server|_ThreadID=16;_ThreadName=Thread-
1;|Deployment of simpleapp done is 1,576 ms|#]

The asadmin executable can be used to undeploy an application as well by issuing
the following command:

asadmin undeploy simpleapp

The following message should be shown at the bottom of the terminal window:

Command undeploy executed successfully.

Please note that the file extension is not used to undeploy the application. The
argument to asadmin undeploy should be the context root for the application
(what is typed right after http://localhost:4848 to access the application
through the browser), which defaults to the WAR filename.

In the next chapter, we will see how to change the default context root for
an application.

Chapter 1

[29]

GlassFish domains
The alert reader might have noticed that the autodeploy directory is under a
domains/domain1 subdirectory. GlassFish has a concept of domains. Domains allow
a collection of related applications to be deployed together. Several domains can
be started concurrently. They behave like individual GlassFish instances. A default
domain called domain1 is created when installing GlassFish.

Creating domains
Additional domains can be created from the command line by issuing the
following command:

asadmin create-domain domainname

This command takes several parameters to specify ports where the domain will listen
to for several services (HTTP, Admin, JMS, IIOP, secure HTTP, and so on). Type the
following command in the command line to see these parameters:

asadmin create-domain --help

If we want several domains to execute concurrently on the same server, these
ports must be chosen carefully, as specifying the same ports for different services
(or even the same service across domains) will prevent one of the domains from
working properly.

The default ports for the default domain1 domain are listed in the following table:

Service Port
Admin 4848
HTTP 8080
Java Messaging System (JMS) 7676
Internet Inter-ORB Protocol (IIOP) 3700
Secure HTTP (HTTPS) 8181
Secure IIOP 3820
Mutual Authorization IIOP 3920
Java Management Extensions (JMX)
Administration

8686

Getting Started with GlassFish

[30]

Please note that when creating a domain, the only port that needs to be specified
is the admin port. If the other ports are not specified, the default ports listed in the
preceding table will be used. Care must be taken when creating a domain because
as explained previously, two domains cannot run concurrently in the same server
if any of their services listen for connections on the same port.

An alternate method of creating a domain without having to specify ports for every
service is to issue the following command:

asadmin createdomain --portbase [port number] domainname

The value of the --portbase parameter dictates the base port for the domain. Ports
for different services will be offsets of the given port number. The following table
lists the ports assigned to all the different services:

Service Port
Admin portbase + 48
HTTP portbase + 80
Java Messaging System (JMS) portbase + 76
Internet Inter-ORB Protocol (IIOP) portbase + 37
Secure HTTP (HTTPS) portbase + 81
Secure IIOP portbase + 38
Mutual Authorization IIOP portbase + 39
Java Management Extensions (JMX)
Administration

portbase + 86

Of course, care must be taken when choosing the value for portbase, making sure
that none of the assigned ports collide with any other domain.

As a rule of thumb, creating domains using a portbase number
greater than 8000 and divisible by 1000 should create domains that
don't conflict with each other. For example, it should be safe to create a
domain using a portbase of 9000, another one using a portbase of
10000, so on and so forth.

Deleting domains
Deleting a domain is very simple; it can be accomplished by issuing the following
command in the command line:

asadmin delete-domain domainname

Chapter 1

[31]

We should see a message like the following on the terminal window:

Command delete-domain executed successfully.

Please use the previous command with care because once a domain is deleted, it
cannot be easily recreated (all deployed applications will be gone, as well as any
connection pools, datasources, and so on).

Stopping a domain
A domain that is executing can be stopped by issuing the following command:

asadmin stop-domain domainname

This command will stop the domain named domainname.

If only one domain is running, the domainname argument is optional.

This book assumes that the reader is working with the default
domain called domain1 and the default ports. If this is not
the case, instructions given need to be modified to match the
appropriate domain and port.

Setting up database connectivity
Any non-trivial Java EE application will connect to a Relational Database
Management Server (RDBMS). Supported RDBMS systems include JavaDB, Oracle,
Derby, Sybase, DB2, Pointbase, MySQL, PostgreSQL, Informix, Cloudscape, and SQL
Server. In this section, we will demonstrate how to set up GlassFish to communicate
with a MySQL database. The procedure is similar for other RDBMS systems.

GlassFish comes bundled with an RDBMS called JavaDB. This RDBMS
is based on Apache Derby. To limit the downloads and configuration
needed to follow this book's code, all examples needing an RDBMS will
use the embedded JavaDB RDBMS. The instructions in this section are
for illustrating how to connect GlassFish to a third-party RDBMS.

Getting Started with GlassFish

[32]

Setting up connection pools
The first step to follow when setting up a connection pool is to copy the JAR file
containing the JDBC driver for our RDBMS in the lib directory of the domain
(consult your RDBMS documentation for information on where to obtain this JAR
file). If the GlassFish domain where we want to add the connection pool is running
when copying the JDBC driver, it must be restarted for the change to take effect.
The domain can be restarted by executing asadmin restart-domain.

Once the JDBC driver has been copied to the appropriate location and the application
server has been restarted, log into the admin console by pointing the browser to
http://localhost:4848.

Then, click on Resources | JDBC | Connection Pools. The browser should now look
something like this:

Chapter 1

[33]

Click on the New... button. After entering the appropriate values for our RDBMS, the
page should look something like this:

After entering the appropriate data for the RDBMS and clicking on the Next button,
we should see a page like the following:

Getting Started with GlassFish

[34]

Most of the default values on the top portion of this page are sensible. Scroll all the
way down and enter the appropriate data for our RDBMS, then click on the Finish
button on the top right of the screen.

Properties vary depending on the RDBMS we are using, but usually there is a URL
property where we should enter the JDBC URL for our database, plus username
and password properties where we should enter authentication credentials for our
database. The list of properties is shown in the previous screenshot.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

[35]

Our newly created connection pool should now be visible in the list of
connection pools:

In most cases, GlassFish needs to be restarted after setting up a new connection pool.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with GlassFish

[36]

After restarting and navigating to the connection pools page, we can verify that our
connection pool was successfully set up by clicking on its JNDI Name for the new
connection pool, and clicking on the Ping button on the resulting page:

Our connection pool is now ready to be used by our applications.

Chapter 1

[37]

Setting up data sources
Java EE applications don't access connection pools directly. Instead, they access a
data source that points to a connection pool. To set up a new data source, click on
the JDBC Resources menu item on the left-hand side of the web console, then click
on the New... button. After filling up the appropriate information for our new data
source, we should see a page like the following:

Getting Started with GlassFish

[38]

After clicking on the OK button, we can see our newly created data source:

Final notes
Most of the examples in this book are IDE agnostic. However, both the NetBeans
and Eclipse IDEs integrate with GlassFish for ease of development and deployment.
Readers wishing to use one of these IDEs might want to refer to Appendix B for
instructions on how to integrate them with GlassFish.

Summary
In this chapter, we discussed how to download and install GlassFish. We also
discussed several methods of deploying a Java EE application through the
GlassFish web console, through the asadmin command, and by copying the file
to the autodeploy directory. We also discussed basic GlassFish administration
tasks such as setting up domains and setting up database connectivity by adding
connection pools and data sources.

Servlet Development and
Deployment

In this chapter, we will discuss how to develop and deploy Java Servlets. Some of the
topics covered include:

•	 An explanation of what servlets are
•	 Developing, configuring, packaging, and deploying our first servlet
•	 HTML form processing
•	 Forwarding HTTP requests
•	 Redirecting HTTP responses
•	 Persisting data across HTTP requests
•	 New features introduced in Servlet 3.0

What is a servlet?
A servlet is a Java class that is used to extend the capabilities of servers that host
applications. Servlets can respond to requests and generate responses. The base class
for all servlets is javax.servlet.GenericServlet. This class defines a generic,
protocol-independent servlet.

By far, the most common type of servlet is an HTTP servlet. This type of servlet is
used in handling HTTP requests and generating HTTP responses. An HTTP servlet
is a class that extends the javax.servlet.http.HttpServlet class, which is a
subclass of javax.servlet.GenericServlet.

Servlet Development and Deployment

[40]

A servlet must implement one or more methods to respond to specific HTTP
requests. These methods are overridden from the parent HttpServlet class. As can
be seen in the following table, these methods are named so that knowing which one
to use is intuitive:

HTTP request HttpServlet method
GET doGet(HttpServletRequest request, HttpServletResponse

response)

POST doPost(HttpServletRequest request, HttpServletResponse
response)

PUT doPut(HttpServletRequest request, HttpServletResponse
response)

DELETE doDelete(HttpServletRequest request, HttpServletResponse
response)

Each of these methods take the same two parameters, namely an instance of a class
implementing the javax.servlet.http.HttpServletRequest interface and an
instance of a class implementing the javax.servlet.http.HttpServletResponse
interface. These interfaces will be covered in detail later in this chapter.

Application developers never call these methods directly. They are
called automatically by the application server whenever it receives
the corresponding HTTP request.

Of the four methods listed previously, doGet() and doPost() are by far the most
commonly used.

An HTTP GET request is generated whenever a user types the servlet's URL in the
browser, when a user clicks on a link pointing to the servlet's URL, or when a user
submits an HTML form using the GET method, where the form's action points to
the servlet's URL. In any of these cases, the code inside the servlet's doGet() method
gets executed.

An HTTP POST request is typically generated when a user submits an HTML form
using the POST method and an action pointing to the servlet's URL. In this case, the
servlet's code inside the doPost() method gets executed.

Chapter 2

[41]

Writing our first servlet
In Chapter 1, we deployed a simple application that printed a message on the
browser window. That application basically consisted of a single servlet. In this
section, we will see how that servlet was developed, configured, and packaged.

The code for the servlet is as follows:

package net.ensode.glassfishbook.simpleapp;
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class SimpleServlet extends HttpServlet
{
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 {
 try
 {
 response.setContentType("text/html");
 PrintWriter printWriter = response.getWriter();
 printWriter.println("<h2>");
 printWriter.println("If you are reading this, your application
 server is good to go!");
 printWriter.println("</h2>");
 }
 catch (IOException ioException)
 {
 ioException.printStackTrace();
 }
 }
}

As this servlet is meant to execute when a user enters its URL in the browser
window, we need to override the doGet() method from the parent HttpServlet
class. Like we explained previously, this method takes two parameters: an
instance of a class implementing the javax.servlet.http.HttpServletRequest
interface, and an instance of a class implementing the javax.servlet.http.
HttpServletResponse interface.

Servlet Development and Deployment

[42]

Even though HttpServletRequest and HttpServletResponse
are interfaces, application developers don't typically write classes
implementing them. When control goes to a servlet from an HTTP
request, the application server (in our case, GlassFish) provides
objects implementing these interfaces.

The first thing our doGet() method does is set the content type for the
HttpServletResponse object to "text/html". If we forget to do this, the default
content type used is "text/plain", which means that the HTML tags used a couple of
lines down will be displayed on the browser, as opposed to them being interpreted
as HTML tags.

We then obtain an instance of java.io.PrintWriter by calling the
HttpServletResponse.getWriter() method. We can then send text output to
the browser by calling the PrintWriter.print() and PrintWriter.println()
methods (the previous example uses println() exclusively). As we set the content
type to "text/html", any HTML tags are properly interpreted by the browser.

Compiling the servlet
To compile the servlet, the Java library included with GlassFish must be in
the CLASSPATH. This library is called javaee.jar and it can be found in the
[glassfish installation directory]/glassfish/lib folder.

To compile from the command line using the javac compiler, a command like the
following must be issued (all in one line):

javac -cp /opt/sges-v3/glassfish/lib/javaee.jar net/ensode/glassfishbook/
simpleapp/SimpleServlet.java

Of course, these days very few developers compile code with the "raw" javac
compiler. Instead, either a graphical IDE or a command line build tool such
as Apache ANT or Apache Maven is used. Consult your IDE or build tool
documentation for information on how to add the javaee.jar library to its
CLASSPATH.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

[43]

Maven
Apache Maven is a build tool similar to ANT. However, Maven offers
a number of advantages over ANT, including automatic download of
dependencies and standard commands for compilation and packaging
of applications. Maven was the build tool used to compile and package
all examples in this book. Therefore, it is recommended to have Maven
installed in order to easily build the examples.
When using Maven, the code can be compiled and packaged by issuing
the following command in the project's root directory (in this case,
simpleapp): mvn package
Maven can be downloaded from http://maven.apache.org/.

Configuring the servlet
Before we can deploy our servlet, we need to configure it. All Java EE web
applications can be configured via an XML deployment descriptor named web.
xml or via annotations. In this section, we will discuss how to configure a Java EE
web application via web.xml; later in the chapter, we will cover configuration via
annotations. The web.xml deployment descriptor for our servlet is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <servlet>
 <servlet-name>SimpleServlet</servlet-name>
 <servlet-class>
 net.ensode.glassfishbook.simpleapp.SimpleServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>SimpleServlet</servlet-name>
 <url-pattern>/simpleservlet</url-pattern>
 </servlet-mapping>
</web-app>

Servlet Development and Deployment

[44]

The first few lines are boilerplate XML stating the XML version and encoding,
plus the schema used for the XML file and other information. It is safe to just copy
and paste these lines and reuse them across applications. The <servlet> and
<servlet-mapping> XML tags are used to actually configure our servlet.

The <servlet> tag contains two nested tags: <servlet-name> defines a logical name
for the servlet and <servlet-class> indicates the Java class defining the servlet.

The <servlet-mapping> tag also contains two nested tags: <servlet-name>
matches the value set inside the <servlet> tag and <url-pattern> sets the URL
pattern for which the servlet will execute.

The <url-pattern> tag can be specified in one of the following two ways: by
using a path prefix (which is what the previous example does) or by specifying
an extension suffix.

Path prefix values for <url-pattern> indicate that any URL paths starting with the
given path will be serviced by the corresponding servlet. Path prefix values must
start with a forward slash.

Java EE web applications run from within a context root. The context root
is the first string in the URL that is neither the server name or IP address
nor the port. For example, in the URL http://localhost:8080/
simpleapp/simpleservlet, the string simpleapp is the context root.
The value for <url-pattern> is relative to the application's context root.

Extension suffix values for <url-pattern> indicate that any URLs ending in the
given suffix will be serviced by the corresponding servlet. In the previous example,
we chose to use a path prefix. If we had chosen to use an extension suffix, the
<servlet-mapping> tag would look something like this:

<servlet-mapping>
 <servlet>SimpleServlet</servlet>
 <url-pattern>*.foo</url-pattern>
</servlet-mapping>

This would direct any URLs ending with the string .foo to our servlet.

The reason the <servlet-name> tag is specified twice (once inside the <servlet> tag
and again inside the <servlet-mapping> tag) is because a Java EE web application
can have more than one servlet. Each of the servlets must have a <servlet>
tag in the application's web.xml file. The <servlet> tag for each must have a
corresponding <servlet-mapping> tag. The <servlet-name> nested tag is used to
indicate which <servlet> tag corresponds to which <servlet-mapping> tag.

Chapter 2

[45]

A Java EE web.xml file can contain many additional XML tags. However,
these additional tags are not needed for this simple example. Additional
tags will be discussed in future examples when they are needed.

Before we can execute our servlet, we need to package it as part of a web application
in a WAR (Web ARchive) file.

Packaging the web application
All Java EE web applications must be packaged in a WAR (Web ARchive) file before
they can be deployed. A WAR file is nothing but a compressed file containing our
code and configuration. WAR files can be created by any utility that can create files
in a ZIP format (for example, WinZip, 7-Zip, and so on). Also, many Java IDEs and
build tools such as ANT and Maven automate WAR file creation.

A WAR file must contain the following directories (in addition to its root directory):

•	 WEB-INF

•	 WEB-INF/classes

•	 WEB-INF/lib

The root directory contains JSPs (covered in the next chapter), HTML files, JavaScript
files, and CSS files.

WEB-INF contains deployment descriptors such as web.xml.

WEB-INF/classes contains the compiled code (.class files) and may optionally
contain property files. Just like with any Java classes, the directory structure must
match the package structure. Therefore, this directory typically contains several
subdirectories corresponding to the classes contained in it.

WEB-INF/lib contains JAR files containing any library dependencies our code
might have.

The root directory, WEB-INF and WEB-INF/classes directories can have subdirectories.
Any resources on a subdirectory of the root directory (other than WEB-INF) can be
accessed by prepending the subdirectory name to its filename. For example, if there
was a subdirectory called css containing a CSS file called style.css, this CSS file
could be accessed in JSPs and HTML files in the root directory by the following line:

<link rel="stylesheet" type="text/css" media="screen"
 href="css/style.css" />

Servlet Development and Deployment

[46]

Notice the css prefix to the filename corresponding to the directory where the CSS
file resides.

To create a WAR file from scratch, create the previous directory structure in any
directory in your system, then perform the following steps:

1.	 Copy the web.xml file to WEB-INF.
2.	 Create the following directory structure under WEB-INF/classes: net/

ensode/glassfishbook/simpleapp.
3.	 Copy SimpleServlet.class to the simpleapp directory from the

previous step.
4.	 From the command line, issue the following command from the directory

right above WEB-INF: jar cvf simpleapp.war *.

You should now have a WAR file ready for deployment.

When using Maven to build the code, the WAR file is automatically
generated when issuing the mvn package command. The WAR file can
be found under the target directory. It is named simpleapp.war.

Before we can execute our application, it needs to be deployed.

Deploying the web application
Like we discussed in Chapter 1, there are several ways of deploying an application.
The easiest and most straightforward way to deploy any Java EE application is to
copy the deployment file (in this case, WAR file) to [glassfish installation
directory]/glassfish/domains/domain1/autodeploy.

After copying the WAR file to the autodeploy directory, the system log should show
a message similar to the following:

[#|2010-04-08T19:39:48.313-0400|INFO|glassfishv3.0|javax.enterprise.
system.tools.deployment.org.glassfish.deployment.common|_ThreadID=28;_
ThreadName=Thread-1;|[AutoDeploy] Successfully autodeployed : /home/
heffel/sges-v3/glassfish/domains/domain1/autodeploy/simpleapp.war.|#]

The system log can be found under [glassfish
installation directory]/glassfish/domains/
domain1/logs/server.log.

The last line should contain the string "Successfully autodeployed", indicating that
our WAR file was deployed successfully.

Chapter 2

[47]

Testing the web application
To verify that the servlet has been properly deployed, we need to point our browser
to http://localhost:8080/simpleapp/simpleservlet. After doing so, we should
see a page similar to the following:

Unsurprisingly, this is the same message we saw when deploying the application in
Chapter 1, as this is the same application we deployed then.

Earlier in this chapter, we mentioned that URL paths for a Java EE application are
relative to their context root. The default context root for a WAR file is the name of the
WAR file itself (minus the .war extension). As can be seen in the previous screenshot,
the context root for our application is simpleapp, which happens to match the name
of the WAR file. This default can be changed by adding an additional configuration
file to the WEB-INF directory of the WAR file. The name of this file should be
sun-web.xml. An example sun-web.xml file that will change the context root
of our application from the default simpleapp to simple would look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Application Server 8.1 Servlet 2.4//EN" "http://www.sun.com/software/
appserver/dtds/sun-web-app_2_4-1.dtd">
<sun-web-app>
 <context-root>/simple</context-root>
</sun-web-app>

As can be seen in this example, the context root for the application must be in the
<context-root> tag of the sun-web.xml configuration file. After redeploying the
simpleapp.war file, directing the browser to http://localhost:8080/simple/
simpleservlet will execute our servlet.

The sun-web.xml file can contain a number of additional tags to
configure several aspects of the application. Additional tags will be
discussed in the relevant sections of this book.

Servlet Development and Deployment

[48]

Processing HTML forms
Servlets are rarely accessed by typing their URL directly in the browser. The most
common use of servlets is to process data entered by users in an HTML form. In this
section, we illustrate this process.

Before digging into the servlet code and HTML markup, let's take a look at the
web.xml file for this new application:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
 <servlet>
 <servlet-name>FormHandlerServlet</servlet-name>
 <servlet-class>
 net.ensode.glassfishbook.formhandling.FormHandlerServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>FormHandlerServlet</servlet-name>
 <url-pattern>/formhandlerservlet</url-pattern>
 </servlet-mapping>
 <welcome-file-list>
 <welcome-file>dataentry.html</welcome-file>
 </welcome-file-list>
</web-app>

This web.xml file is very similar to the one we saw in the previous section. However,
it contains an XML tag we haven't seen before, namely the <welcome-file> tag.
The <welcome-file> tag determines which file to direct to when a user types a URL
ending in the application's context root (for this example, the URL would be
http://localhost:8080/formhandling, as we are naming our WAR file
formhandling.war and not specifying a custom context root). We will name the
HTML file containing the form as dataentry.html. This way, GlassFish will render
it in the browser when the user types our application's URL and does not specify
a filename.

If no <welcome-file> is specified in the application's web.xml file,
GlassFish will look for a file named index.html and use it as the
welcome file. If it can't find it, it will look for a file named index.jsp
and use it as the welcome file. If it can't find either one, it will display
a directory listing.

Chapter 2

[49]

The HTML file containing the form for our application looks as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Data Entry Page</title>
 </head>
 <body>
 <form method="post" action="formhandlerservlet">
 <table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td>Please enter some text:</td>
 <td><input type="text" name="enteredValue" /></td>
 </tr>
 <tr>
 <td></td>
 <td><input type="submit" value="Submit"></td>
 </tr>
 </table>
 </form>
 </body>
</html>

Notice how the value for the form's action attribute matches the value of the
servlet's <url-pattern> in the application's web.xml file (minus the initial slash). As
the value of the form's method attribute is post, our servlet's doPost() method will
be executed when the form is submitted.

Let's now take a look at our servlet's code:

package net.ensode.glassfishbook.formhandling;
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class FormHandlerServlet extends HttpServlet
{
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 String enteredValue;
 enteredValue = request.getParameter("enteredValue");
 response.setContentType("text/html");

Servlet Development and Deployment

[50]

 PrintWriter printWriter;
 try
 {
 printWriter = response.getWriter();
 printWriter.println("<p>");
 printWriter.print("You entered: ");
 printWriter.print(enteredValue);
 printWriter.print("</p>");
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }
}

As can be seen in this example, we obtain a reference to the value the user typed by
calling the request.getParameter() method. This method takes a single String
object as its sole parameter. The value of this string must match the name of the
input field in the HTML file. In this case, the HTML file has a text field named
enteredValue:

<input type="text" name="enteredValue" />

Therefore, the servlet has a corresponding line:

enteredValue = request.getParameter("enteredValue");

This line of code is used to obtain the text entered by the user and store it in the
string variable named enteredValue (the name of the variable does not need to
match the input field name, but naming it that way is good practice to make it easy
to remember what value the variable is holding).

After packaging the previous three files in a WAR file called formhandling.war and
deploying the WAR file, we can see the rendered dataentry.html file by entering
http://localhost:8080/formhandling in the browser:

Chapter 2

[51]

After the user enters some text in the text field and submits the form (either by
hitting the Enter key or clicking on the Submit button), we should see the output of
the servlet:

The HttpServletRequest.getParameter() method can be used to obtain the value
of any HTML input field that can return only one value (text boxes, text areas, single
selects, radio buttons, hidden fields, and so on). The procedure to obtain any of these
fields' values is identical. In other words, the servlet doesn't care if the user typed in
the value in a text field, selected it from a set of radio buttons, and so on. As long as
the input field's name matches the value passed to the getParameter() method, the
previous code will work.

When dealing with radio buttons, all related radio buttons must have
the same name. Calling the HttpServletRequest.getParameter()
method and passing in the name of the radio buttons will return the
value of the selected radio button.

Some HTML input fields such as checkboxes and multiple select boxes allow
the user to select more than one value. For these fields, instead of using the
HttpServletRequest.getParameter() method, the HttpServletRequest.
getParameterValues() method is used. This method also takes a string containing
the input field's name as its only parameter and returns an array of strings containing
all the values that were selected by the user.

Let's add a second HTML file and a second servlet to our application to illustrate this
case. The relevant sections of this HTML tag are shown in the following code:

<form method="post" action="multiplevaluefieldhandlerservlet">
<p>Please enter one or more options.</p>
 <table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td><input name="options" type="checkbox" value="option1" />

Servlet Development and Deployment

[52]

 Option 1
 </td>
 </tr>
 <tr>
 <td><input name="options" type="checkbox" value="option2" />
 Option 2
 </td>
 </tr>
 <tr>
 <td><input name="options" type="checkbox" value="option3" />
 Option 3
 </td>
 </tr>
 <tr>
 <td><input type="submit" value="Submit" /></td>
 <td></td>
 </tr>
 </table>
</form>

The new HTML file contains a simple form having three checkboxes and a submit
button. Notice how every checkbox has the same value for its name attribute. As
we mentioned before, any checkboxes that are clicked by the user will be sent to
the servlet.

Let's now take a look at the servlet that will handle this HTML form:

package net.ensode.glassfishbook.formhandling;
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class MultipleValueFieldHandlerServlet extends HttpServlet
{
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 String[] selectedOptions = request.getParameterValues("options");
 response.setContentType("text/html");
 try
 {
 PrintWriter printWriter = response.getWriter();
 printWriter.println("<p>");

Chapter 2

[53]

 printWriter.print("The following options were selected:");
 printWriter.println("
");
 if (selectedOptions != null)
 {
 for (String option : selectedOptions)
 {
 printWriter.print(option);
 printWriter.println("
");
 }
 }
 else
 {
 printWriter.println("None");
 }
 printWriter.println("</p>");
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }
}

This code calls the request.getParameterValues() method and assigns its return
value to the selectedOptions variable. Further down the doPost() method, the code
traverses the selectedOptions array and prints the selected values in the browser.

The previous code uses the enhanced for loop introduced in JDK
1.5. Refer to http://java.sun.com/j2se/1.5.0/docs/
guide/language/foreach.html for more information.

If no checkboxes are clicked, the request.getParameterValues() method will
return null. Therefore, it's a good idea to check for null before attempting to
traverse through this method's return values.

Before this new servlet can be deployed, the following lines need to be added to the
application's web.xml file:

<servlet>
 <servlet-name>MultipleValueFieldHandlerServlet</servlet-name>
 <servlet-class>
 net.ensode.glassfishbook.formhandling.MultipleValueFieldHand
 lerServlet
 </servlet-class>
</servlet>

Servlet Development and Deployment

[54]

We would also need to add the following lines of code:

<servlet-mapping>
 <servlet-name>MultipleValueFieldHandlerServlet</servlet-name>
 <url-pattern>/multiplevaluefieldhandlerservlet</url-pattern>
</servlet-mapping>

These lines assign a logical name and URL to the new servlet.

After re-creating the formhandling.war file by adding the compiled servlet and
the HTML file and redeploying it, we can see the changes in action by typing the
following URL in the browser window: http://localhost:8080/formhandling/
multiplevaluedataentry.html.

After submitting the form, control goes to our servlet and the browser window
should look something like this:

Of course, the actual message seen in the browser window will depend on which
checkboxes the user clicked on.

Chapter 2

[55]

Request forwarding and response
redirection
In many cases, one servlet processes form data, then transfers control to another
servlet or JSP to do some more processing or display a confirmation message on the
screen. There are two ways of doing this: either the request can be forwarded or the
response can be redirected to another servlet or page.

Request forwarding
Notice how the text displayed in the previous section's example matches the value of
the value attribute of the checkboxes that were clicked, and not the labels displayed
on the previous page. This might confuse the users. Let's modify the servlet to
change these values so that they match the labels, then forward the request to
another servlet that will display the confirmation message on the browser.

The new version of MultipleValueFieldHandlerServlet is shown in the
following code:

package net.ensode.glassfishbook.formhandling;
import java.io.IOException;
import java.util.ArrayList;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class MultipleValueFieldHandlerServlet extends HttpServlet
{
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 String[] selectedOptions = request.getParameterValues("options");
 ArrayList<String> selectedOptionLabels = null;
 if (selectedOptions != null)
 {
 selectedOptionLabels = new
 ArrayList<String>(selectedOptions.length);
 for (String selectedOption : selectedOptions)
 {
 if (selectedOption.equals("option1"))
 {
 selectedOptionLabels.add("Option 1");

Servlet Development and Deployment

[56]

 }
 else if (selectedOption.equals("option2"))
 {
 selectedOptionLabels.add("Option 2");
 }
 else if (selectedOption.equals("option3"))
 {
 selectedOptionLabels.add("Option 3");
 }
 }
 }
 request.setAttribute("checkedLabels", selectedOptionLabels);
 try
 {
 request.getRequestDispatcher("confirmation
 servlet").forward(request, response);
 }
 catch (ServletException e)
 {
 e.printStackTrace();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }
}

This version of the servlet iterates through the selected options and adds the
corresponding label to an ArrayList of strings. This string is then attached to the
request object by calling the request.setAttribute() method. This method is used
to attach any object to the request so that any other code we forward the request to
can have access to it later.

The previous code uses generics—a feature introduced to the Java
language in JDK 1.5 (see http://java.sun.com/j2se/1.5.0/
docs/guide/language/generics.html for details).

After attaching the ArrayList to the request, we then forward the request to the new
servlet using the following line of code:

request.getRequestDispatcher("confirmationservlet").forward(
 request, response);

Chapter 2

[57]

The String argument to this method must match the value of the <url-pattern>
tag of the servlet in the application's web.xml file.

At this point, control goes to our new servlet. The code for this new servlet is
as follows:

package net.ensode.glassfishbook.requestforward;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.List;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ConfirmationServlet extends HttpServlet
{
 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 try
 {
 PrintWriter printWriter;
 List<String> checkedLabels = (List<String>)
 request.getAttribute("checkedLabels");
 response.setContentType("text/html");
 printWriter = response.getWriter();
 printWriter.println("<p>");
 printWriter.print("The following options were selected:");
 printWriter.println("
");
 if (checkedLabels != null)
 {
 for (String optionLabel : checkedLabels)
 {
 printWriter.print(optionLabel);
 printWriter.println("
");
 }
 }
 else
 {
 printWriter.println("None");
 }
 printWriter.println("</p>");
 }
 catch (IOException ioException)
 {
 ioException.printStackTrace();
 }
 }
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Servlet Development and Deployment

[58]

This code obtains the ArrayList that was attached to the request by the previous
servlet. This is accomplished by calling the request.getAttribute() method.
The parameter for this method must match the value used to attach the object to
the request.

Once the previous servlet obtains a list of option labels, it traverses through it and
displays them on the browser:

Forwarding a request as described before works only for other resources (servlets
and JSP pages) in the same context as the code doing the forwarding. In simple
terms, the servlet or JSP we want to forward to must be packaged in the same WAR
file as the code invoking the request.getRequestDispatcher().forward()
method. If we need to direct the user to a page in another context (or even another
server), we can do it by redirecting the response object.

Response redirection
One disadvantage of forwarding a request as described in the previous section is
that requests can only be forwarded to other servlets or JSPs in the same context.
If we need to direct the user to a page on a different context (deployed in another
WAR file in the same server or deployed in a different server), we need to use the
HttpServletResponse.sendRedirect() method.

To illustrate response redirection, let's develop a simple web application that asks
the user to select their favorite search engine, then directs the user to his/her search
engine of choice. The HTML page for this application would look as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>

Chapter 2

[59]

 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Response Redirection Demo</title>
 </head>
 <body>
 <form method="post" action="responseredirectionservlet">
 Please indicate your favorite search engine.
 <table>
 <tr>
 <td><input type="radio" name="searchEngine"
 value="http://www.google.com">Google</td>
 </tr>
 <tr>
 <td><input type="radio" name="searchEngine"
 value="http://www.msn.com">MSN</td>
 </tr>
 <tr>
 <td><input type="radio" name="searchEngine"
 value="http://www.yahoo.com">Yahoo!</td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Submit" /></td>
 </tr>
 </table>
 </form>
 </body>
</html>

The HTML form in this markup code contains three radio buttons. The value for
each of them is the URL for the search engine corresponding to the user's selection.
Notice how the value for the name attribute of each radio button is the same, namely
searchEngine. The servlet will obtain the value of the selected radio button by
calling the request.getParameter() method and passing the string searchEngine
as a parameter. This is demonstrated in the following code:

package net.ensode.glassfishbook.responseredirection;
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ResponseRedirectionServlet extends HttpServlet
{
 @Override

Servlet Development and Deployment

[60]

 protected void doPost(HttpServletRequest request,
 HttpServletResponse response) throws IOException
 {
 String url = request.getParameter("searchEngine");
 if (url != null)
 {
 response.sendRedirect(url);
 }
 else
 {
 PrintWriter printWriter = response.getWriter();
 printWriter.println("No search engine was selected.");
 }
 }
}

By calling request.getParameter("searchEngine"), the previous code assigns the
URL of the selected search engine to the variable url. Then (after checking for null,
in case the user clicked on the submit button without selecting a search engine),
directs the user to the selected search engine by calling response.sendRedirect()
and passing the url variable as a parameter.

The web.xml file for this application should be fairly straightforward and is not
shown (it is part of this book's code download).

After packaging the code and deploying it, we can see it in action by typing the
following URL in the browser: http://localhost:8080/responseredirection/.

Chapter 2

[61]

After clicking on the Submit button, the user is directed to their favorite
search engine.

It should be noted that redirecting the response as just illustrated creates a new
HTTP request to the page we are redirecting to. Therefore, any request parameters
and attributes are lost.

Persisting application data across
requests
In the previous section, we saw how it is possible to store an object in the request
by invoking the HttpRequest.setAttribute() method, and how this object can
be retrieved later by invoking the HttpRequest.getAttribute() method. This
approach only works if the request was forwarded to the servlet by invoking the
getAttribute() method. If this is not the case, the getAttribute() method will
return null.

Servlet Development and Deployment

[62]

It is possible to persist an object across requests. In addition to attaching an object to
the request object, an object can also be attached to the session object or to the servlet
context. The difference between these two is that objects attached to the session will
not be visible by different users, whereas objects attached to the servlet context are.

Attaching objects to the session and servlet context is very similar to attaching
objects to the request. To attach an object to the session, the HttpServletRequest.
getSession() method must be invoked. This method returns an instance of
javax.servlet.http.HttpSession. We then call the HttpSession.setAttribute()
method to attach the object to the session. The following code fragment illustrates
the process:

protected void doPost(HttpServletRequest request, HttpServletResponse
 response)
{
 .
 .
 .
 Foo foo = new Foo(); //theoretical object
 HttpSession session = request.getSession();
 session.setAttribute("foo", foo);
 .
 .
 .
}

We can then retrieve the object from the session by calling the HttpSession.
getAttribute() method:

protected void doPost(HttpServletRequest request, HttpServletResponse
 response)
{
 HttpSession session = request.getSession();
 Foo foo = (Foo)session.getAttribute("foo");
}

Notice how the return value of session.getAttribute() needs to be casted to
the appropriate type. This is necessary as the return value of this method is
java.lang.Object.

Chapter 2

[63]

The procedure to attach and retrieve objects to and from the servlet context is very
similar. The servlet needs to call the getServletContext() method (defined in the
class called GenericServlet, which is the parent class of HttpServlet, which in
turn is the parent class of our servlets). This method returns an instance of javax.
servlet.ServletContext, which defines a setAttribute() and a getAttribute()
method. These methods work the same way as their HttpServletRequest and
HttpSessionResponse counterparts.

The procedure to attach an object to the servlet context is illustrated in the following
code snippet:

protected void doPost(HttpServletRequest request, HttpServletResponse
 response)
{
 //The getServletContext() method is defined higher in
 //the inheritance hierarchy.
 ServletContext servletContext = getServletContext();
 Foo foo = new Foo();
 servletContext.setAttribute("foo", foo);
 .
 .
 .
}

This code attaches the foo object to the servlet context. This object will be available to
any servlet in our application and will be the same across sessions. It can be retrieved
by calling the ServletContext.getAttribute() method, as illustrated next:

protected void doPost(HttpServletRequest request, HttpServletResponse
 response)
{
 ServletContext servletContext = getServletContext();
 Foo foo = (Foo)servletContext.getAttribute("foo");
 .
 .
 .
}

This code obtains the foo object from the request context. A cast is again needed
as the ServletContext.getAttribute() method, like its counterparts, returns an
instance of java.lang.Object.

Servlet Development and Deployment

[64]

Objects attached to the servlet context are said to have a scope of
application. Similarly, objects attached to the session are said to
have a scope of session, and objects attached to the request are
said to have a scope of request.

New features introduced in Servlet 3.0
Java EE 6 includes a new version of the Servlet API—Servlet 3.0. This version
of the Servlet API includes several new features that make servlet development
easier. Servlet 3.0 also makes it easier to take advantage of modern web application
techniques such as Ajax.

In the next several sections, we will discuss some of the most important additions to
the Servlet API.

Optional web.xml deployment descriptor
Servlet 3.0 makes the web.xml deployment descriptor completely optional. Servlets
can be configured via annotations instead of XML.

If a web application is configured both through annotations and through
a web.xml deployment descriptor, settings in web.xml take precedence.

@WebServlet annotation
Servlets can be decorated with the @WebServlet annotation to specify their name,
URL pattern, initialization parameters, and other configuration items usually
specified in the web.xml deployment descriptor.

At a minimum, a servlet to be configured via annotations must have a @WebServlet
annotation specifying the servlet's URL pattern.

Using this new Servlet 3.0 annotation, our first example in this chapter can be
rewritten as follows:

package net.ensode.glassfishbook.simpleapp;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.annotation.WebServlet;

Chapter 2

[65]

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(urlPatterns = {"/simpleservlet"})
public class SimpleServlet extends HttpServlet
{
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 {
 try
 {
 response.setContentType("text/html");
 PrintWriter printWriter = response.getWriter();
 printWriter.println("<h2>");
 printWriter.println("If you are reading this, your application
 server " + "is good to go!");
 printWriter.println("</h2>");
 }
 catch (IOException ioException)
 {
 ioException.printStackTrace();
 }
 }
}

Notice that all we had to do was annotate our servlet with the @WebServlet
annotation, and specify its URL pattern as the value of its urlPatterns attribute.

Just like with a web.xml, we can specify more than one URL pattern for our servlet.
All we need to do is separate each URL pattern with a comma. For example, if we
wanted our servlet to handle all URLs ending with .foo in addition to handling all
URLs starting with /simpleservlet, we would annotate it as follows:

@WebServlet(urlPatterns = {"/simpleservlet", "*.foo"})

With this simple change to our code, we avoid having to write a web.xml for
our application.

After packaging and deploying this new version of the application, it will work just
like the previous version.

Servlet Development and Deployment

[66]

Passing initialization parameters to a servlet via
annotations
It is sometimes useful to pass some initialization parameters to a servlet. This way,
we can make said servlet behave differently based on the parameters sent to it. For
example, we may want to configure a servlet to behave differently in development
and production environments.

Traditionally, servlet initialization parameters were sent via the <init-param>
parameter in web.xml. As of servlet 3.0, initialization parameters can be passed to the
servlet as the value of the initParams attribute of the @WebServlet annotation. The
following example illustrates how to do this:

package net.ensode.glassfishbook.initparam;
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebInitParam;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "InitParamsServlet", urlPatterns = {
 "/InitParamsServlet"}, initParams = {
 @WebInitParam(name = "param1", value = "value1"),
 @WebInitParam(name = "param2", value = "value2")})
public class InitParamsServlet extends HttpServlet
{
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 ServletConfig servletConfig = getServletConfig();
 String param1Val = servletConfig.getInitParameter("param1");
 String param2Val = servletConfig.getInitParameter("param2");
 response.setContentType("text/html");
 PrintWriter printWriter = response.getWriter();
 printWriter.println("<p>");
 printWriter.println("Value of param1 is " + param1Val);
 printWriter.println("</p>");
 printWriter.println("<p>");
 printWriter.println("Value of param2 is " + param2Val);
 printWriter.println("</p>");
 }
}

Chapter 2

[67]

As we can see, the value of the initParams attribute of the @WebServlet annotation
is an array of @WebInitParam annotations. Each @WebInitParam annotation has
two attributes: name, which corresponds to the parameter name and value, which
corresponds to the parameter value.

We can obtain the values of our parameters by invoking the getInitParameter()
method on the javax.servlet.ServletConfig class. This method takes a single
String argument as a parameter, corresponding to the parameter name, and returns
a String corresponding to the parameter value.

Each servlet has a corresponding instance of ServletConfig assigned to
it. As we can see in this example, we can obtain this instance by invoking
getServletConfig(), which is a method inherited from javax.servlet.
GenericServlet—the parent class of HttpServlet, which our servlets extend.

After packaging our servlet in a WAR file and deploying it to GlassFish either via
the asadmin command line tool (the GlassFish web console) or by copying it to the
autodeploy directory in our domain, we will see the following page rendered in
the browser:

As we can see, the rendered values correspond to the values we set in each @
WebInitParam annotation.

@WebFilter annotation
Filters were introduced to the servlet specification in version 2.3. A filter is an object
that can dynamically intercept a request and manipulate its data before the request
is handled by the servlet. Filters can also manipulate a response after a servlet's
doGet() or doPost() method finishes, but before the output is sent to the browser.

The only way to configure a filter in earlier servlet specifications was to use the
<filter-mapping> tag in web.xml. Servlet 3.0 introduced the ability to configure
servlets via the @WebFilter annotation.

Servlet Development and Deployment

[68]

The following code snippet illustrates how to do this:

package net.ensode.glassfishbook.simpleapp;
import java.io.IOException;
import java.util.Enumeration;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.annotation.WebFilter;
import javax.servlet.annotation.WebInitParam;

@WebFilter(filterName = "SimpleFilter", initParams = {
 @WebInitParam(name = "filterparam1", value = "filtervalue1")},
 urlPatterns = {"/InitParamsServlet"})
public class SimpleFilter implements Filter
{
 private FilterConfig filterConfig;

 @Override
 public void init(FilterConfig filterConfig) throws
 ServletException
 {
 this.filterConfig = filterConfig;
 }

 @Override
 public void doFilter(ServletRequest servletRequest,
 ServletResponse servletResponse, FilterChain filterChain)
 throws IOException, ServletException
 {
 ServletContext servletContext = filterConfig.getServletContext();
 servletContext.log("Entering doFilter()");
 servletContext.log("initialization parameters: ");
 Enumeration<String> initParameterNames =
 filterConfig.getInitParameterNames();
 String parameterName;
 String parameterValue;
 while (initParameterNames.hasMoreElements())
 {
 parameterName = initParameterNames.nextElement();
 parameterValue = filterConfig.getInitParameter(parameterName);
 servletContext.log(parameterName + " = " + parameterValue);
 }
 servletContext.log("Invoking servlet...");

Chapter 2

[69]

 filterChain.doFilter(servletRequest, servletResponse);
 servletContext.log("Back from servlet invocation");
 }

 @Override
 public void destroy()
 {
 filterConfig = null;
 }
}

As we can see in this code, the @WebFilter annotation has several attributes we
can use to configure the filter. The urlPatterns attribute is of special importance.
This attribute takes an array of String objects as its value. Each element in the
array corresponds to a URL that our filter will intercept. In our example, we are
intercepting a single URL pattern that corresponds to the servlet we wrote in the
previous section.

Other attributes in the @WebFilter annotation include the optional filterName
attribute, which we can use to give our filter a name. If we don't specify a name for
our filter, then the filter name defaults to the filter's class name.

As we can see in the previous code example, we can send initialization parameters
to a filter. This is done just like we send initialization parameters to a servlet. The
@WebFilter annotation has an initParams attribute that takes an array of
@WebInitParam annotations as its value. We can obtain the values of said parameters
by invoking the getInitParameter() method on javax.servlet.FilterConfig,
as illustrated in the example.

Our filter is fairly simple. It simply sends some output to the server log before and
after the servlet is invoked. Inspecting the server log after deploying our application
and pointing the browser to the servlet's URL should reveal our filter's output.

[#|2009-09-30T19:38:15.454-0400|INFO|glassfish|javax.enterprise.system.
container.web.com.sun.enterprise.web|_ThreadID=17;_ThreadName=Thread-
1;|PWC1412: WebModule[/servlet30filter] ServletContext.log():Entering
doFilter()|#]

[#|2009-09-30T19:38:15.456-0400|INFO|glassfish|javax.enterprise.
system.container.web.com.sun.enterprise.web|_ThreadID=17;_
ThreadName=Thread-1;|PWC1412: WebModule[/servlet30filter] ServletContext.
log():initialization parameters: |#]

[#|2009-09-30T19:38:15.459-0400|INFO|glassfish|javax.enterprise.system.
container.web.com.sun.enterprise.web|_ThreadID=17;_ThreadName=Thread-
1;|PWC1412: WebModule[/servlet30filter] ServletContext.log():filterparam1
= filtervalue1|#]

Servlet Development and Deployment

[70]

[#|2009-09-30T19:38:15.461-0400|INFO|glassfish|javax.enterprise.system.
container.web.com.sun.enterprise.web|_ThreadID=17;_ThreadName=Thread-
1;|PWC1412: WebModule[/servlet30filter] ServletContext.log():Invoking
servlet...|#]

[#|2009-09-30T19:38:15.471-0400|INFO|glassfish|javax.enterprise.system.
container.web.com.sun.enterprise.web|_ThreadID=17;_ThreadName=Thread-
1;|PWC1412: WebModule[/servlet30filter] ServletContext.log():Back from
servlet invocation|#]

Of course, servlet filters have many real uses. They can be used for profiling web
applications, for applying security, and for compressing data, among many
other uses.

@WebListener annotation
During the lifetime of a typical web application, a number of events take place, such
as HTTP requests are created or destroyed, request or session attributes are added,
removed, or modified, and so on and so forth.

The Servlet API provides a number of listener interfaces we can implement in order
to react to these events. All of these interfaces are in the javax.servlet package.
The following table summarizes them:

Listener Interface Description
ServletContextListener Contains methods for handling context

initialization and destruction events.
ServletContextAttributeListener Contains methods for reacting to any

attributes added, removed, or replaced in
the servlet context (application scope).

ServletRequestListener Contains methods for handling request
initialization and destruction events.

ServletRequestAttributeListener Contains methods for reacting to any
attributes added, removed, or replaced in
the request.

HttpSessionListener Contains methods for handling HTTP
session initialization and destruction events.

HttpSessionAttributeListener Contains methods for reacting to any
attributes added, removed, or replaced in
the HTTP session.

Chapter 2

[71]

All we need to do to handle any of the events handled by the interfaces described
in this table is to implement one of these interfaces and annotate it with the
@WebListener interface or declare it in the web.xml deployment descriptor via
the <listener> tag. Unsurprisingly, the ability to use an annotation to register a
listener was introduced in version 3.0 of the Servlet specification.

The API for all of these interfaces is fairly straightforward and intuitive. We will
show an example for one of these interfaces; others will be very similar.

The JavaDoc for all of the previous interfaces can be found at
http://java.sun.com/javaee/6/docs/api/javax/
servlet/http/package-summary.html

The following code example illustrates how to implement the
ServletRequestListener interface, which can be used to perform some action
whenever an HTTP request is created or destroyed:

package net.ensode.glassfishbook.listener;
import javax.servlet.ServletContext;
import javax.servlet.ServletRequestEvent;
import javax.servlet.ServletRequestListener;
import javax.servlet.annotation.WebListener;

@WebListener()
public class HttpRequestListener implements ServletRequestListener
{
 @Override
 public void requestInitialized(ServletRequestEvent
 servletRequestEvent)
 {
 ServletContext servletContext =
 servletRequestEvent.getServletContext();
 servletContext.log("New request initialized");
 }

 @Override
 public void requestDestroyed(ServletRequestEvent
 servletRequestEvent)
 {
 ServletContext servletContext =
 servletRequestEvent.getServletContext();
 servletContext.log("Request destroyed");
 }
}

Servlet Development and Deployment

[72]

As we can see, all we need to do to activate our listener class is to annotate it
with the @WebListener annotation. Our listener must also implement one of the
listener interfaces we listed previously. In our example, we chose to implement
javax.servlet.ServletRequestListener. This interface has methods that are
automatically invoked whenever an HTTP request is initialized or destroyed.

The ServletRequestListener interface has two methods: requestInitialized()
and requestDestroyed(). In our previous simple implementation, we simply
sent some output to the log, but of course we can do anything we need to do in our
implementations.

Deploying our previous listener along with the simple servlet we developed earlier
in the chapter, we can see the following output in GlassFish's log:

[#|2009-10-03T10:37:53.465-0400|INFO|glassfish|javax.enterprise.system.
container.web.com.sun.enterprise.web|_ThreadID=39;_ThreadName=Thread-
2;|PWC1412: WebModule[/nbservlet30listener] ServletContext.log():New
request initialized|#]

[#|2009-10-03T10:37:53.517-0400|INFO|glassfish|javax.enterprise.system.
container.web.com.sun.enterprise.web|_ThreadID=39;_ThreadName=Thread-
2;|PWC1412: WebModule[/nbservlet30listener] ServletContext.log():Request
destroyed|#]

Implementing the other listener interfaces is just as simple and straightforward.

Pluggability
When the original Servlet API was released back in the late 1990s, writing servlets
was the only way of writing server-side web applications in Java. Since then, several
standard Java EE and third-party frameworks have been built on top of the Servlet
API. Examples of such standard frameworks include JSP's and JSF, third-party
frameworks include Struts, Wicket, Spring Web MVC, and several others.

Nowadays, very few (if any) Java web applications are built using the Servlet API
directly. Instead, the vast majority of projects utilize one of the several available Java
web application frameworks. All of these frameworks use the Servlet API "under
the covers". Therefore, setting up an application to use one of these frameworks
has always involved making some configuration in the application's web.xml
deployment descriptor. In some cases, some applications use more than one
framework. This tends to make the web.xml deployment descriptor fairly large and
hard to maintain.

Chapter 2

[73]

Servlet 3.0 introduces the concept of pluggability. Web application framework
developers now have not one, but two ways to avoid having application developers
modify the web.xml deployment descriptor in order to use their framework.
Framework developers can choose to use annotations instead of a web.xml to
configure their servlets. After doing this, all that is needed to use the framework
is to include the library JAR file(s) provided by the framework developers in the
application's WAR file. Alternatively, framework developers may choose to include
a web-fragment.xml file as part of the JAR file to be included in web applications
that use their framework.

web-fragment.xml is almost identical to web.xml. The main difference is that the
root element of a web-fragment.xml file is <web-fragment> as opposed to
<web-app>. The following code example illustrates a sample web-fragment.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<web-fragment version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-fragment_3_0.xsd">
 <servlet>
 <servlet-name>WebFragment</servlet-name>
 <servlet-class>
 net.ensode.glassfishbook.webfragment.WebFragmentServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>WebFragment</servlet-name>
 <url-pattern>/WebFragment</url-pattern>
 </servlet-mapping>
</web-fragment>

As we can see, web-fragment.xml is almost identical to a typical web.xml. In this
simple example we only use the <servlet> and <servlet-mapping> elements.
However, all other usual web.xml elements such as <filter>, <filter-mapping>,
and <listener> are available as well.

As specified in our web-fragment.xml file, our servlet can be invoked via its URL
pattern, /WebFragment. Therefore, the URL to execute our servlet, once deployed as
part of a web application, would be http://localhost:8080/webfragmentapp/
WebFragment. Of course, the host name, port, and context root must be adjusted
as appropriate.

Servlet Development and Deployment

[74]

All we need to do for GlassFish or any Java EE 6-compliant application server to pick
up the settings in web-fragment.xml is to place the file in the META-INF folder of the
library where we pack our servlet, filter, and/or listener, then place our library's JAR
file in the lib directory of the WAR file containing our application.

Configuring web applications programmatically
In addition to allowing us to configure web applications through annotations and
through a web-fragment.xml file, Servlet 3.0 also allows us to configure our web
applications programmatically at runtime.

The ServletContext class has new methods to configure servlets, filters, and
listeners programmatically. The following example illustrates how to configure
a servlet programmatically at runtime, without resorting to the @WebServlet
annotation or to XML:

package net.ensode.glassfishbook.servlet;

import javax.servlet.ServletContext;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;
import javax.servlet.ServletException;
import javax.servlet.ServletRegistration;
import javax.servlet.annotation.WebListener;

@WebListener()
public class ServletContextListenerImpl implements
 ServletContextListener
{
 @Override
 public void contextInitialized(ServletContextEvent
 servletContextEvent)
 {
 ServletContext servletContext =
 servletContextEvent.getServletContext();
 try
 {
 ProgrammaticallyConfiguredServlet servlet = servletContext.
 createServlet(ProgrammaticallyConfiguredServlet.class);
 servletContext.addServlet("ProgrammaticallyConfiguredServlet",
 servlet);
 ServletRegistration servletRegistration =
 servletContext.getServletRegistration(
 "ProgrammaticallyConfiguredServlet");

Chapter 2

[75]

 servletRegistration.addMapping(
 "/ProgrammaticallyConfiguredServlet");
 }
 catch (ServletException servletException)
 {
 servletContext.log(servletException.getMessage());
 }
 }
 @Override
 public void contextDestroyed(ServletContextEvent
 servletContextEvent)
 {
 }
}

In this example, we invoke the createServlet() method of ServletContext to
create the servlet that we are about to configure. This method takes an instance of
java.lang.Class corresponding to our servlet's class. This method returns a class
implementing javax.servlet.Servlet or any of its child interfaces (thanks to
Generics, a Java language feature introduced in Java 5, we don't need to explicitly
cast the return value to the actual type of our servlet).

Once we create our servlet, we need to invoke addServlet() on our
ServletContext instance to register our servlet with the servlet container. This
method takes two parameters: the first being a String corresponding to the servlet
name, the second being the servlet instance returned by a call to createServlet().

Once we have registered our servlet, we need to add a URL mapping to it. In
order to do this, we need to invoke the getServletRegistration() method
on our ServletContext instance, passing the servlet name as a parameter.
This method returns the servlet container's implementation of javax.servlet.
ServletRegistration. From this object, we need to invoke its addMapping()
method, passing the URL mapping we wish our servlet to handle.

Our example servlet is very simple. It simply displays a text message on the browser.

package net.ensode.glassfishbook.servlet;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Servlet Development and Deployment

[76]

public class ProgrammaticallyConfiguredServlet extends HttpServlet
{
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 ServletOutputStream outputStream = response.getOutputStream();
 outputStream.println("This message was generated from a servlet
 that was " + "configured programmatically.");
 }
}

After packing our code in a WAR file, deploying to GlassFish and
pointing the browser to the appropriate URL (http://localhost:8080/
programmaticservletwebapp/ProgrammaticallyConfiguredServlet, assuming
we packaged the application in a WAR file named programmaticservletwebapp.
war and didn't override the default context root), we should see the following
message in the browser:

This message was generated from a servlet that was configured programmatically.

The ServletContext interface has methods to create and add servlet filters
and listeners. They work very similarly to the way the addServlet() and
createServlet() methods work, therefore we won't be discussing them in detail.
Refer to the Java EE 6 API documentation at http://java.sun.com/javaee/6/
docs/api/ for details.

Asynchronous processing
Traditionally, servlets have created a single thread per request in Java web
applications. After a request is processed, the thread is made available for other
requests to use. This model works fairly well for traditional web applications in
which HTTP requests are relatively few and far in between. However, most modern
web applications take advantage of Ajax (Asynchronous JavaScript and XML),
a technique that makes web applications behave much more responsively than
traditional web applications. Ajax has the side effect of generating a lot more HTTP
requests than traditional web applications. If some of these threads block for a long
time waiting for a resource to be ready or are doing anything that takes a long time
to process, it is possible our application may suffer from thread starvation.

To alleviate the situation described in the previous paragraph, the Servlet 3.0
specification introduced asynchronous processing. Using this new capability, we
are no longer limited to a single thread per request. We can now spawn a separate
thread and return the original thread back to the pool to be reused by other clients.

Chapter 2

[77]

The following example illustrates how to implement asynchronous processing using
the new capabilities introduced in Servlet 3.0:

package net.ensode.glassfishbook.asynchronousservlet;

import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.servlet.AsyncContext;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "AsynchronousServlet", urlPatterns = {
 "/AsynchronousServlet"}, asyncSupported = true)
public class AsynchronousServlet extends HttpServlet
{
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 final Logger logger =
 Logger.getLogger(AsynchronousServlet.class.getName());
 logger.log(Level.INFO, "--- Entering doGet()");
 final AsyncContext ac = request.startAsync();
 logger.log(Level.INFO, "---- invoking ac.start()");
 ac.start(new Runnable()
 {
 @Override
 public void run()
 {
 logger.log(Level.INFO, "inside thread");
 try
 {
 //simulate a long running process.
 Thread.sleep(10000);
 }
 catch (InterruptedException ex)
 {
 Logger.getLogger(AsynchronousServlet.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 try
 {

Servlet Development and Deployment

[78]

 ac.getResponse().getWriter().println("You should see this
 after a brief wait");
 ac.complete();
 }
 catch (IOException ex)
 {
 Logger.getLogger(AsynchronousServlet.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 }
 });
 logger.log(Level.INFO, "Leaving doGet()");
 }
}

The first thing we need to do to make sure our asynchronous processing code works
as expected is to set the asyncSupported attribute of the @WebServlet annotation
to true.

To actually spawn an asynchronous process, we need to invoke the startAsync()
method on the instance of HttpServletRequest that we receive as a parameter in
the doGet() or doPost() method in our servlet. This method returns an instance
of javax.servlet.AsyncContext. This class has a start() method that takes an
instance of a class implementing java.lang.Runnable as its sole parameter. In our
example, we used an anonymous inner class to implement Runnable in line. Of
course, a standard Java class implementing Runnable can be used as well.

When we invoke the start() method of AsyncContext, a new thread is spawned
and the run() method of the Runnable instance is executed. This thread runs in
the background, the doGet() method returns immediately, and the request thread
is immediately available to service other clients. It is important to notice that even
though the doGet() method returns immediately, the response is not committed
until after the thread spawned finishes. It can signal it has finished processing by
invoking the complete() method on AsyncContext.

In the previous example, we sent some entries to the GlassFish log file to illustrate
better what is going on. Observing the GlassFish log right after our servlet executes,
we should notice that all log entries are written to the log within a fraction of a
second of each other. The message You should see this after a brief wait isn't shown
in the browser until after the log entry indicating that we are leaving the doGet()
method, gets written to the log.

Chapter 2

[79]

Summary
This chapter covered how to develop, configure, package, and deploy servlets.

We also covered how to process HTML form information by accessing the HTTP
request object.

Additionally, forwarding HTTP requests from one servlet to another was covered, as
well as redirecting the HTTP response to a different server.

We also discussed how to persist objects in memory across requests by attaching
them to the servlet context and the HTTP session.

Finally, we covered all the major new features of Servlet 3.0, including configuring
web applications via annotations, pluggability through web-fragment.xml,
programmatic servlet configuration, and asynchronous processing.

JavaServer Pages
In the previous chapter, we saw how to develop Java servlets. Servlets are great for
handling form input, but servlet code that outputs HTML markup to the browser
tends to be cumbersome to write, read, and debug. A better way to send output to
the browser is through JavaServer Pages (JSPs).

The following topics will be covered in this chapter:

•	 Developing our first JSP
•	 Implicit JSP objects
•	 JSPs and JavaBeans
•	 Reusing JSP content
•	 Writing custom tags

Introduction to JavaServer Pages
In the early days, servlets were the only API available to develop server-side web
applications in Java. Servlets had a number of advantages over CGI scripts, which
were (and to some extent, still are) prevalent in those days. Some of the advantages
of servlets over CGI scripts included increased performance and enhanced security.

However, servlets also had one major disadvantage. As the HTML code to be
rendered in the browser needed to be embedded in Java code, most servlet code
was very hard to maintain. To overcome this limitation, Java Server Pages (JSP)
technology was created. JSPs use a combination of static HTML content and
dynamic content to generate web pages. As the static content is separate from
the dynamic content, JSP pages are a lot easier to maintain than servlets that
generate HTML output.

JavaServer Pages

[82]

In most modern applications using JSPs, servlets are still used. However, they
typically assume the role of a controller in the Model-View-Controller (MVC)
design pattern, with JSPs assuming the role of a view. As controller servlets have no
user interface, we don't run into the issue of having HTML markup inside Java code.

In this chapter, we will cover how to develop server-side web applications using
JavaServer Pages technology.

Developing our first JSP
JSPs are basically pages containing both static HTML markup and dynamic content.
Dynamic content can be generated by using snippets of Java code called scriptlets
or by using standard or custom JSP tags. Let's look at a very simple JSP code that
displays the current server time in the browser:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>

<%@ page import="java.util.Date" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Server Date And Time</title>
 </head>
 <body>
 <p>Server date and time: <% out.print(new Date()); %>

 </p>
 </body>
</html>

To deploy this JSP, all that needs to be done is to put it in a WAR file. Like we
mentioned before, the easiest way to deploy the WAR file is to copy it to [glassfish
installation directory]/glassfish/domains/domain1/autodeploy.

Chapter 3

[83]

Quickly deploying simple JSPs
Simple JSPs can be quickly deployed without having to
package them in a WAR file by copying them to [glassfish
installation directory]/glassfish/domains/domain1/
docroot/, and previewed in the browser by pointing them to
http://localhost:8080/jspname.jsp.

After a successful deployment, pointing the browser to http://localhost:8080/
firstjsp/first.jsp should result in a page like the following:

The Server date and time: string came from the static text immediately following the
<p> tag in the JSP page. The actual date and time displayed is the server's date and
time. The value came from the output of the code between the <% and %> delimiters.
We can place any valid Java code between these two delimiters. Code inside these
delimiters is known as a scriptlet. The scriptlet in the previous JSP makes use of the
out implicit object. JSP implicit objects are objects that can be readily used in any
JSP; no need to declare or initialize them. The out implicit object is an instance of
javax.servlet.jsp.JspWriter. It can be thought of as an equivalent of calling the
HttpServletResponse.getWriter() method.

The first two lines in the previous JSP are JSP page directives. A JSP page directive
defines attributes that apply to the entire JSP page. A JSP page directive can have
several attributes. In the previous example, the first page directive sets the language,
contentType, charset, and PageEncoding attributes. The second one adds an
import statement to the page.

As can be seen in the example, JSP page directive attributes can be combined in a
single directive, or a separate page directive can be used for each attribute.

JavaServer Pages

[84]

The following table lists all attributes for the page directive:

Attribute Description Valid values Default value
autoFlush Determines whether

the output buffer
should be flushed
automatically when it
is full.

true or false true

buffer The output buffer size
in kilobytes.

Nkb, where N
is an integer
number. "none"
is also a valid
value.

8kb

contentType Determines the page's
HTTP response MIME
type and character
encoding.

Any valid
MIME type
and character
encoding
combination.

text/html
; charset=
ISO-8859-1

deferredSyntaxAll
owedAsLiteral

In earlier versions of
the JSP specification,
the #{} syntax for the
expression language
was not reserved.
For backwards
compatibility
purposes, this
attribute sets any
expressions using this
syntax to be string
literals.

true or false false

errorPage Indicates which page
to navigate when
the JSP throws an
exception.

Any valid relative
URL to another
JSP.

N/A

extends Indicates the class this
JSP extends.

The fully qualified
name for the JSP's
parent class.

N/A

Chapter 3

[85]

Attribute Description Valid values Default value
import Imports one or more

classes to be used in
scriptlets.

A fully qualified
name of a class to
import or the full
package name +
".*" to import all
necessary classes
from the package
(for example,
<%@ page
import java.
util.* %>).

N/A

info The value for
this attribute is
incorporated into
the compiled JSP. It
can later be retrieved
by calling the page's
getServletInfo()
method.

Any string. N/A

isELIgnored Setting this value
to true prevents
expression language
expressions from
being interpreted.

true or false false

isErrorPage Determines if the
page is an error page.

true or false false

isThreadSafe Determines whether
the page is thread
safe.

true or false true

language Determines the
scripting language
used in scriptlets,
declarations, and
expressions in the JSP
page.

Any scripting
language that
can execute in
the Java Virtual
Machine (groovy,
jruby, and
so on).

java

www.allitebooks.com

http://www.allitebooks.org

JavaServer Pages

[86]

Attribute Description Valid values Default value
pageEncoding Determines the

page encoding, for
example, "UTF-8".

Any valid page
encoding.

N/A

session Determines whether
the page has access to
the HTTP session.

true or false true

trimDirectiveWhi
tespaces

When JSPs are
rendered as HTML
in the browser, the
generated markup
frequently has a lot
of blank lines in it.
Setting this attribute
to true prevents
these extraneous
blank lines from
being generated in the
markup.

true or false false

Of the attributes in the table, errorPage, import, and isErrorPage are the most
commonly used. Others have sensible defaults.

When deployed to the application server, JSPs are translated into (compiled
into) servlets. The extends attribute of the page directive indicates the generated
servlet's parent class. The value of this attribute must be a subclass of
javax.servlet.GenericServlet.

Although the language attribute can accept any language that can execute in the
Java Virtual Machine, it is extremely rare to use any language other than Java.

JSP implicit objects
JSP implicit objects are objects that can be used in a JSP without having to be
declared or initialized. They are actually declared and initialized behind the scenes
by the application server when the JSP is deployed.

In the previous section's example, we used the JSP implicit object out. This object,
for all practical purposes, is equivalent to calling the HttpResponse.getWriter()
method in a servlet. In addition to the out object, there are several other implicit
objects that can be used in JSP scriptlets. These implicit objects are listed in the
following table:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[87]

Implicit object Implicit object class Description
application javax.servlet.

ServletContext
Equivalent to calling the
getServletContext() method in
a servlet.

config javax.servlet.
ServletConfig

Equivalent to invoking the
getServletConfig() method in
a servlet.

exception java.lang.Throwable Only accessible if the page
directive's isErrorPage attribute
is set to true. Provides access to the
exception that was thrown, that led
to the page being invoked.

out javax.servlet.jsp.
JspWriter

Equivalent to the return value
of HttpServletResponse.
getWriter().

page java.lang.Object Provides access to the page's
generated servlet.

pageContext javax.servlet.jsp.
PageContext

Provides several methods for
managing the various web
application scopes (request, session,
application). Refer to the JavaDoc
for PageContext at http://
java.sun.com/javaee/5/
docs/api/javax/servlet/jsp/

PageContext.html.
request javax.servlet.

ServletRequest
Equivalent to the instance of
HttpServletRequest we obtain
as a parameter of the doGet() and
doPost() methods in a servlet.

response javax.servlet.
ServletResponse

Equivalent to the instance of
HttpServletResponse we obtain
as a parameter of the doGet() and
doPost() methods in a servlet.

session javax.servlet.http.
HttpSession

Equivalent to the return value
of the HttpServletRequest.
getSession() method.

The following example JSP illustrates the use of several of the JSP implicit objects:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<%@page import="java.util.Enumeration"%>

JavaServer Pages

[88]

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Implicit Objects Demo</title>
 </head>
 <body>
 <p>This page uses JSP Implicit objects to attach objects to the
 request, session, and application scopes.

 It also retrieves some initialization parameters sent in the
 web.xml configuration file.

 The third thing it does is get the buffer size from the
 implicit response object.

 </p>
 <p>
 <%
 application.setAttribute("applicationAttribute", new String(
 "This string is accessible across sessions."));

 session.setAttribute("sessionAttribute", new String(
 "This string is accessible across requests"));

 request.setAttribute("requestAttribute", new String(
 "This string is accessible in a single request"));

 Enumeration initParameterNames =
 config.getInitParameterNames();

 out.print("Initialization parameters obtained ");

 out.print("from the implicit
");

 out.println("config object:

");

 while (initParameterNames.hasMoreElements())
 {
 String parameterName =
 (String) initParameterNames.nextElement();
 out.print(parameterName + " = ");
 out.print(config.getInitParameter((String) parameterName));

 out.print("
");
 }
 out.println("
");
 out.println("Implicit object page is of type "
 + page.getClass().getName() + "

");

 out.println("Buffer size is: " + response.getBufferSize()
 + " bytes");

 %>

Chapter 3

[89]

 </p>
 <p>

 Click here to continue.

 </p>
 </body>
</html>

This JSP utilizes most of the implicit objects available to JSP scriptlets. The first thing
it does is attach objects to the application, session, and request implicit objects.
It then gets all initialization parameters from the implicit config object and displays
their names and values on the browser by using the implicit out object. Next, it
displays the fully qualified name of the implicit page object. Finally, it displays
the buffer size by accessing the implicit response object.

JSP (and optionally servlet) initialization parameters are declared in the application's
web.xml file. For this application, the web.xml file looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
 <servlet>
 <servlet-name>ImplicitObjectsJsp</servlet-name>
 <jsp-file>/implicitobjects.jsp</jsp-file>
 <init-param>

 <param-name>webxmlparam</param-name>

 <param-value>

 This is set in the web.xml file

 </param-value>

 </init-param>

 </servlet>
 <servlet-mapping>
 <servlet-name>ImplicitObjectsJsp</servlet-name>
 <url-pattern>/implicitobjects.jsp</url-pattern>
 </servlet-mapping>
</web-app>

JavaServer Pages

[90]

Remember that a JSP gets compiled into a servlet at runtime the first time it is
accessed after deployment. As such, we can treat it as a servlet in the web.xml file.
In order to be able to pass initialization parameters to a JSP, we must treat it like a
servlet, as initialization parameters are placed between the <init-param> and
</init-param> XML tags. As shown in the previous web.xml file, the parameter
name is placed between the <param-name> and </param-name> tags, and the
parameter value is placed between the <param-value> and </param-value> tags.
A servlet (and a JSP) can have multiple initialization parameters. Each initialization
parameter must be declared inside a separate <init-param> tag.

Notice that in the previous web.xml file, we declared a servlet mapping for our
JSP. This was necessary to allow GlassFish's web container to pass initialization
parameters to the JSP. As we didn't want the URL of the JSP to change, we used the
JSP's actual URL as the value for the <url-pattern> tag. If we wanted to access the
JSP via a different URL (not necessarily one ending in .jsp), we could have placed
the desired URL inside the <url-pattern> tag.

At the bottom of implicitobjects.jsp, there is a hyperlink to a second JSP, called
implicitobjects2.jsp. The markup and code for implicitobjects2.jsp looks
as follows:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<%@page import="java.util.Enumeration"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Sanity Check</title>
 </head>
 <body>
 <p>This page makes sure we can retrieve the application, session
 and request attributes set in the previous page.

 </p>
 <p>applicationAttribute value is:
 <%=application.getAttribute("applicationAttribute")%>

 sessionAttribute value is:
 <%=session.getAttribute("sessionAttribute")%>

 requestAttribute value is:
 <%=request.getAttribute("requestAttribute")%>

Chapter 3

[91]

 </p>
 <p>
 The following attributes were found at the application scope:

 <%
 Enumeration applicationAttributeNames = pageContext
 .getAttributeNamesInScope(pageContext.APPLICATION_SCOPE);

 while (applicationAttributeNames.hasMoreElements())
 {
 out.println(applicationAttributeNames.nextElement() +
 "
");
 }
 %>
 </p>
 <p>This hyperlink points to a JSP that will
 throw an exception.</p>
 </body>
</html>

In this second JSP, we retrieve the objects that were attached to the application,
session, and request objects. The attached objects are obtained by calling the
appropriate implicit object's getAttribute() method. Notice how all calls to the
getAttribute() method are nested between the <%= and %> delimiters. Snippets
of code between these delimiters are called JSP expressions. JSP expressions are
evaluated and their return value is displayed in the browser without having to call
the out.print() method.

This JSP also retrieves the names of all objects attached to the application scope and
displays them in the browser window.

At the bottom of the previous JSP, there is a hyperlink to a third JSP. This third JSP is
called buggy.jsp. Its only purpose is to demonstrate the errorPage attribute of the
page directive, the error attribute of the page directive, and the exception implicit
object. Therefore, it is not terribly complicated.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8" errorPage="error.jsp" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Buggy JSP</title>
 </head>
 <body>

JavaServer Pages

[92]

 <p>
 This text will never be seen in the browser since the exception
 will be thrown before the page renders.
 <%
 Object o = null;
 out.println(o.toString()); //NullPointerException thrown
 here.
 %>
 </p>
 </body>
</html>

The only thing this JSP does is force a NullPointerException, which will result in
GlassFish's servlet container directing the user to the page declared as an error page
in the errorPage attribute of the page directive. This page is error.jsp; its markup
and code is shown next:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8" isErrorPage="true"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<%@page import="java.io.StringWriter"%>
<%@page import="java.io.PrintWriter"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>There was an error in the application</title>
 </head>
 <body>
 <h2>Exception caught</h2>
 <p>Stack trace for the exception is:

 <%
 StringWriter stringWriter = new StringWriter();
 PrintWriter printWriter = new PrintWriter(stringWriter);
 exception.printStackTrace(printWriter);

 out.write(stringWriter.toString());
 %>
 </p>
 </body>
</html>

Chapter 3

[93]

Notice how this page declares itself to be an error page by setting the isErrorPage
attribute of the page directive to true. As this page is an error page, it has access
to the exception implicit object. This page simply calls the printStackTrace()
method of the exception implicit object and sends its output to the browser via
the out implicit object. In a real application, a user-friendly error message would
probably be displayed.

As the previous application consists only of three JSPs, packaging it for deployment
simply consists of putting all the JSPs in the root of the WAR file and the web.xml file
in its usual location (the WEB-INF subdirectory in the WAR file).

After deploying and pointing the browser to http://localhost:8080/
jspimplicitobjects/implicitobjects.jsp, we should see implicitobjects.jsp
rendered in the browser:

As we can see, the JSP has a number of "mysterious" initialization parameters
in addition to the one we set in the application's web.xml file. These additional
initialization parameters are set automatically by GlassFish's web container.

JavaServer Pages

[94]

Clicking on the hyperlink at the bottom of the page takes us to
implicitobjects2.jsp:

Notice how the value for the request attribute shows up as null. The reason for this
is that when we clicked on the hyperlink on the previous page, a new HTTP request
was created, therefore any attributes attached to the previous request were lost. If we
had forwarded the request to this JSP, we would have seen the expected value on the
browser window.

Notice how in addition to the attribute we attached to the application, GlassFish also
attaches a number of other attributes to this implicit object.

Finally, clicking on the hyperlink at the bottom of the page takes us to the buggy JSP,
which does not render. Instead, control is transferred to error.jsp:

Chapter 3

[95]

Nothing surprising is displayed here; we see the exception's stack trace as expected.

JSPs and JavaBeans
It is very easy to set and retrieve JavaBean properties with JSPs. A JavaBean is a
type of Java class. In order for a class to qualify as a JavaBean, it must possess the
following attributes:

•	 It must have a public constructor taking no arguments.
•	 Its variables must be accessed via getter and setter methods.
•	 It must implement java.io.Serializable.
•	 Although not a strict requirement, it's good coding practice to make all of

JavaBean's member variables private.

Do not confuse JavaBeans with Enterprise JavaBeans. They are not the
same thing. Enterprise JavaBeans are covered in detail in Chapter 9.

JavaServer Pages

[96]

All examples in this section will use the following JavaBean to illustrate JSP and
JavaBean integration:

package net.ensode.glassfishbook.javabeanproperties;
public class CustomerBean
{
 public CustomerBean()
 {

 }
 String firstName;
 String lastName;
 public String getFirstName()
 {
 return firstName;
 }
 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }
 public String getLastName()
 {
 return lastName;
 }
 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }
}

As we can see, this class qualifies as a JavaBean as it meets all the requirements
listed previously. Notice how the setter and getter method names follow a naming
convention. While getter methods start with the word "get" followed by the property
name, setter methods start with the word "set" followed by the property name. The
only difference is that the property name is capitalized in the method names. It is
important to follow these conventions for the JSP and JavaBean integration to work.

JSPs declare that they will use a JavaBean via the <jsp:useBean> tag. JavaBean
properties are set via the <jsp:setProperty> tag and retrieved via the
<jsp:getProperty> tag.

In JavaBean terminology, a property simply refers to one
of the JavaBean's class variables.

Chapter 3

[97]

The following example illustrates the use of these tags:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<jsp:useBean id="customer"
 class="net.ensode.glassfishbook.javabeanproperties.CustomerBean"
 scope="page"></jsp:useBean>

<jsp:setProperty name="customer" property="firstName"
 value="Albert" />

<jsp:setProperty name="customer" property="lastName" value="Chan" />

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>JavaBean Properties</title>
 </head>
 <body>
 <form>
 <table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td align="right">First Name: </td>
 <td>
 <input type="text" name="firstName"
 value='<jsp:getProperty name="customer"
 property="firstName"/>'>

 </td>
 </tr>
 <tr>
 <td align="right">Last Name: </td>
 <td>
 <input type="text" name="lastName"
 value='<jsp:getProperty name="customer"
 property="lastName"/>'>

 </td>
 </tr>
 <tr>
 <td></td>
 <td><input type="submit" value="Submit"></td>
 </tr>
 </table>
 </form>
 </body>
</html>

JavaServer Pages

[98]

As can be seen in this example, the <jsp:useBean> tag is typically used with three
attributes: the id attribute sets an identifier for the bean so that we can refer to it
later, the class attribute specifies the fully qualified name of the bean, and the scope
attribute specifies the scope of the bean. The bean in this example has a scope of page.
This scope is specific to JSPs and cannot be used with servlets. Objects in this scope can
only be accessed by the JSP that declares it. Other valid values for the scope attribute
are application, session, and request. If an attribute other than page is specified,
the JSP searches for an object attached to the specified scope with a name matching the
specified id. If it finds it, it uses it; otherwise, it attaches the bean to the specified scope.
If no scope is specified, then the default scope is page. If the attached object is not an
instance of the expected class, a ClassCastException is thrown.

Bean properties can be set by using the <jsp:setProperty> tag. The name attribute
of this tag identifies the bean for which we are setting the property. Its value must
match the value of the id attribute of the <jsp:useBean> tag. The property attribute
value must match the name of one of the bean's properties. The value attribute
determines the value to be assigned to the bean's property. Behind the scenes, the
property's setter method is called by the <jsp:setProperty> tag..

The <jsp:getProperty> tag has two attributes: a name attribute and a property
attribute. The name attribute identifies the bean we are obtaining the value from. Its
value must match the id attribute of the bean's <jsp:useBean> tag. The property
attribute identifies what bean property we want. The <jsp:getProperty> invokes
the getter method corresponding to the property specified in its property attribute.

After packaging and deploying the previous JSP and pointing the browser to
http://localhost:8080/javabeanproperties/beanproperties1.jsp,
we should see a page like the following:

Notice how the form is pre-populated with the bean's properties, as we embedded
the <jsp:getProperty> tags inside the value attribute of the HTML input tag.

In the previous example, the JSP itself set the bean's properties from hardcoded
values and later accessed them via the <jsp:getProperty> tag. More often than
not, bean attributes are set from request parameters. If we take the previous JSP
and replace the following code fragment:

Chapter 3

[99]

<jsp:setProperty name="customer" property="firstName"
 value="Albert" />
<jsp:setProperty name="customer" property="lastName" value="Chan" />

With this one:

<jsp:setProperty name="customer" property="firstName" param="fNm" />
<jsp:setProperty name="customer" property="lastName" param="lNm" />

The JSP will populate the bean's attributes from request parameters. The only
difference between the modified JSP and the original one is that the value attribute
of the <jsp:setProperty> tag has been replaced with the param attribute. When the
<jsp:setProperty> tag has a param attribute, it looks for a request parameter name
matching its value. If it finds it, it sets the corresponding bean property to the value
of the request parameter.

Redeploying the application and pointing the browser to http://localhost:8080/
javabeanproperties/beanproperties2.jsp?fNm=Albert&lNm=Chang (assuming
the modified JSP was saved as beanproperties2.jsp) should result in the display
of a page identical to the previous screenshot.

If request parameter names match the bean property names, there is no need to
explicitly set each property name to the corresponding request attribute. There is a
shortcut that will set each bean attribute to its corresponding value in the request. If
we modify the JSP once again, this time replacing the code fragment:

<jsp:setProperty name="customer" property="firstName"
 param="fNm" />
<jsp:setProperty name="customer" property="lastName"
 param="lNm" />

With this one:

<jsp:setProperty name="customer" property="*"/>

The <jsp:setProperty> tag will now look for request parameter names matching
bean property names and set the bean properties to the corresponding request
parameters. Pointing the browser to http://localhost:8080/javabeanproperties/
beanproperties3.jsp?firstName=Albert&lastName=Chang (assuming the
modified JSP was saved as beanproperties3.jsp), we should once again see a page
like the one in the previous screenshot displayed in the browser. Notice how in this
case the request parameter names match the bean property names.

Even though the examples in this section dealt exclusively with String properties,
the techniques demonstrated here work with numeric properties as well. Property
values from the request or in the <jsp:setProperty> tag are automatically
converted to the appropriate type.

JavaServer Pages

[100]

Reusing JSP content
Most web applications' web pages contain certain areas that are identical across
pages. For example, each page may display a company logo at the top or a
navigation menu. Copying and pasting the code to generate these common areas
is not very maintainable, because if a change needs to be made to one of them, the
change must be done on every page.

When using JSPs to develop a web application, it is possible to define each of these
areas in a single JSP, then include this JSP as a part of other JSPs. For example, we
could have a JSP that renders the site's navigation menu, then have every other JSP
include the navigation menu JSP to render the navigation menu. If the navigation
menu needs to change, the change needs to be done only once. JSPs including the
navigation menu JSP don't need to be changed.

There are two ways by which a JSP can be included in another JSP. It can be done via
the <jsp:include> tag or via the include directive.

The following example illustrates the use of the include directive to include a JSP as
part of a parent JSP:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%! String pageName = "Main"; %>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Main Page</title>
 </head>
 <body>
 <table cellpadding="0" cellspacing="0" border="1" width="100%"
 height="100%">
 <tr>
 <td width="100">
 <%@ include file="navigation.jspf"%>

 </td>
 <td>This is the main page.</td>
 </tr>
 </table>
 </body>

</html>

Chapter 3

[101]

As can be seen in this example, the include directive is very straightforward to use.
It takes a single attribute called file; the value of this attribute is the file to include.
Notice that the included file in the example has an extension of jspf. This is the
recommended extension for JSP fragments, that is, JSPs that do not render into a
proper HTML page.

Notice the following line near the top of the markup:

<%! String pageName = "Main"; %>

This line is a JSP declaration. Any variables (or methods) declared in a JSP
declaration are available to the JSP declaring it and to any JSPs included via the
include directive.

The code and markup for navigation.jspf is shown next:

Application Menu

 Main
 Secondary

Current page: <%= pageName %>

Notice how navigation.jspf accesses the pageName variable declared in the parent
JSP (in order for this to work, any JSP including navigation.jspf must declare a
variable called pageName).

There is a third file called secondary.jsp. This file is almost identical to main.jsp
and is not shown. The only differences between main.jsp and secondary.jsp are
the values of the pageName variable, the page title, and the text inside the second cell
in the table.

After packaging and deploying these files into a WAR file and pointing the
browser to http://localhost:8080/jspcontentreuse/main.jsp, we should see
a page like the following:

JavaServer Pages

[102]

The menu on the left hand side is rendered by navigation.jspf. The main area is
rendered by main.jsp. Clicking on the hyperlink labeled Secondary will take us to
the secondary page, which is virtually identical to the main page.

We admit we are not using very fancy web design. The reason for this
is that we want to keep the HTML as simple as possible, so that we can
focus on the topic at hand.

JSP files included via a page directive are included at compile time, that is, when
our JSP is translated into a servlet. This is the reason included JSPs have access to
variables declared in the parent JSP.

When using the <jsp:include> tag, the included JSP is added at runtime. Therefore,
it doesn't have access to any variable declared in the parent JSP.

The <jsp:include> tag has two attributes: a page attribute that sets the page to
include and an optional flush attribute that determines if any existing buffer should
be flushed before reading in the included JSP. Valid values for the flush attribute
include true and false; it defaults to false.

The previous JSPs can be easily modified to use the <jsp:include> tag. All
that needs to be done is replace the include directive with the equivalent
<jsp:include> tag, and of course, remove the JSP expression from navigation.
jspf, as it will be included at runtime and will not have access to it.

JSP custom tags
JSP technology allows software developers to create custom tags. Custom tags can
be used in JSP along with standard HTML tags. There are several ways of developing
custom tags. In this section, we will discuss the two most popular ways: extending
the javax.servlet.jsp.tagext.SimpleTagSupport class and creating a tag file.

Extending SimpleTagSupport
One way we can create custom JSP tags is by extending the javax.servlet.jsp.
tagext.SimpleTagSupport class. This class provides default implementations of
all methods in the javax.servlet.jsp.tagext.SimpleTag interface plus some
methods not defined in this interface. In most cases, all that needs to be done to
create a custom tag this way is override the SimpleTagSupport.doTag() method.

Chapter 3

[103]

Let's illustrate this approach with an example. Most HTML forms have an embedded
table containing several rows of labels and input fields. Let's create a JSP custom
tag that will generate each of these rows (to keep things simple, our tag will only
generate text fields):

package net.ensode.glassfishbook.customtags;

import java.io.IOException;
import javax.servlet.jsp.JspContext;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.tagext.SimpleTagSupport;

public class LabeledTextField extends SimpleTagSupport
{
 private String label;
 private String value = "";
 private String name;

 @Override
 public void doTag() throws JspException, IOException

 {

 JspContext jspContext = getJspContext();

 JspWriter jspWriter = jspContext.getOut();

 jspWriter.print("<tr>");

 jspWriter.print("<td>");

 jspWriter.print("");

 jspWriter.print(label);

 jspWriter.print("");

 jspWriter.print("</td>");

 jspWriter.print("<td>");

 jspWriter.print("<input type=\"text\" name=\"");

 jspWriter.print(name);

 jspWriter.print("\" ");

 jspWriter.print("value=\"");

 jspWriter.print(value);

 jspWriter.print("\"");

 jspWriter.print("/>");

 jspWriter.print("</td>");

 jspWriter.println("</tr>");

 }

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

JavaServer Pages

[104]

 public String getLabel()
 {
 return label;
 }
 public void setLabel(String label)
 {
 this.label = label;
 }
 public String getName()
 {
 return name;
 }
 public void setName(String name)
 {
 this.name = name;
 }
 public String getValue()
 {
 return value;
 }
 public void setValue(String value)
 {
 this.value = value;
 }
}

This class consists of an overriden version of the doTag() method and
several attributes. Our doTag() method obtains a reference to an instance of
javax.servlet.jsp.JspWriter by the getJSPContext()sp method. This method
is defined in the tag's parent class and returns an instance of javax.servlet.jsp.
JspContext. We then invoke the getOut() method of JspContext. This method
returns an instance of javax.servlet.jsp.JspWriter that can be used to send
output to the browser via its print() and println() methods. The rest of the
doTag() method basically sends output to the browser via these two methods.

Notice how some of the calls to jspWriter.print() in the doTag() method take
instance variables as their parameter. These attributes are set by the JSP containing
the tag via the tag's Tag Library Descriptor file.

Chapter 3

[105]

In order to be able to use custom tags in our JSPs, a Tag Library Descriptor (TLD) file
must be created. The TLD tag for the previous custom tag is shown next:

<taglib xsi:schemaLocation="http://java.sun.com/xml/ns/
 javaee web-jsptaglibrary_2_1.xsd"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 version="2.1">
 <tlib-version>1.0</tlib-version>
 <uri>DemoTagLibrary</uri>

 <tag>

 <name>labeledTextField</name>

 <tag-class>

 net.ensode.glassfishbook.customtags.LabeledTextField

 </tag-class>

 <body-content>empty</body-content>

 <attribute>

 <name>label</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>value</name>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 </tag>

</taglib>

A TLD file must contain a <tlib-version> element, which indicates the tag library
version. It must also contain a <uri> element. The <uri> element is used in the
JSP containing the tag. It is used to uniquely identify the tag library. Finally and
most importantly, a TLD file must contain one or more <tag> elements. TLD files
must be placed in the WEB-INF directory of the application's WAR file or one of its
subdirectories. As illustrated in the previous example TLD file, the <tag> element
contains several sub-elements:

JavaServer Pages

[106]

•	 A <name> element that assigns a logical name to the custom tag.
•	 A <tag-class> element that identifies the fully qualified name for the

custom tag.
•	 One or more <attribute> elements that define attributes for the custom tag.

The <attribute> element in turn can contain a number of sub-elements:

•	 A <name> element defining the name of the attribute. The value of this
element must match the name of one of the tag's instance variables with a
corresponding setter method.

•	 An optional <required> element indicating passing a value for the attribute
if required. If this element is set to true and no value is sent to the attribute
in the JSP, the page will fail to compile. The default value for this element
is false.

•	 An optional <rtexprvalue> tag indicating if the attribute can contain a
runtime expression as its value. If this element is set to true, then the tag
will accept Unified Expression Language expressions as its value. The
Unified Expression Language is discussed in detail later in the chapter.

We are covering only the most commonly used elements of a TLD file. To
see the complete list of TLD file elements, refer to the JSP 2.1 specification
at http://jcp.org/aboutJava/communityprocess/final/
jsr245/index.html.

Once we have the tag code and TLD, we are ready to use the tag in a JSP:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@taglib prefix="d" uri="DemoTagLibrary"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Custom Tag Demo</title>
 </head>
 <body>
 <form>
 <table>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[107]

 <d:labeledTextField label="Line 1" name="line1" value="This
 is line 1"></d:labeledTextField>

 <d:labeledTextField label="Line 2" name="line2">
 </d:labeledTextField>

 <d:labeledTextField label="City" name="city">
 </d:labeledTextField>

 <d:labeledTextField label="State" name="state">
 </d:labeledTextField>

 <d:labeledTextField label="Zip" name="zip">
 </d:labeledTextField>

 <tr>
 <td></td>
 <td><input type="submit" value="Submit"></td>
 </tr>
 </table>
 </form>
 </body>
</html>

This JSP uses our custom tag to generate a rudimentary address data entry form.
The first thing we should notice about this JSP is the use of the taglib directive.
This directive lets the JSP know that we will be using a custom tag library. The uri
attribute of the taglib directive must match the value of the <uri> element in the
tag library's TLD file. The value of the prefix attribute of the taglib directive
is prepended before the name of any custom tag from the library we use. In the
previous example, all <d:labeledField> attributes are uses of the custom tag we
have developed. The d before the : in each of those tags corresponds to the value of
the prefix attribute.

The next thing that should catch our eye in this example is the usage of the custom
tag itself. Notice how every time we use the custom tag, we set a value for its label
and value attributes. We must do this because these attributes were declared
as required in the tag's TLD file. The values we set for the tag's attributes are
automatically used to set the values of the tag's Java class instance variables. The
name of the attribute matches the corresponding instance variable. Behind the
scenes, the tag's class setter method for the appropriate instance variable is called.

JavaServer Pages

[108]

After we package and deploy the JSP, custom tag code, and TLD file in a WAR file
and deploy it, we should see that the previous JSP should render in the browser as
displayed in the following screenshot:

Notice how only the first text field has been pre-populated. This is because it was the
only one for which we set the value attribute.

If we look at the generated HTML markup from our JSP, we can see the markup that
was actually generated from our custom tag:

<table>
 <tr>

 <td>Line 1</td>

 <td><input type="text" name="line1" value="This is line 1"/></td>

 </tr>

 <tr>

 <td>Line 2</td>

 <td><input type="text" name="line2" value=""/></td>

 </tr>

 <tr>

 <td>City</td>

 <td><input type="text" name="city" value=""/></td>

 </tr>

 <tr>

 <td>State</td>

 <td><input type="text" name="state" value=""/></td>

 </tr>

 <tr>

Chapter 3

[109]

 <td>Zip</td>

 <td><input type="text" name="zip" value=""/></td>

 </tr>

 <tr>
 <td></td>
 <td><input type="submit" value="Submit"></td>
 </tr>
</table>

For simplicity and brevity, only a portion of the generated markup is shown. All
highlighted lines were generated by the custom tag.

Using tag files to create custom JSP tags
As was shown in the previous section, creating a custom tag by extending the
SimpleTagSupport class involves writing some Java code to generate HTML
markup. Code to accomplish this is usually hard to write and hard to read. An
alternate way of creating custom JSP tags is by using tag files. This alternate method
does not involve writing any Java code.

A tag file is very similar to a JSP. Tag filenames must end with a .tag extension
and must be placed in a subdirectory called tags under the WAR file's WEB-INF
directory. The following tag file generates a complete (and less rudimentary) address
input field:

<%@ tag language="java"%>

<%@ attribute name="addressType" required="true"%>

<jsp:useBean id="address" scope="request"
 class="net.ensode.glassfishbook.customtags.AddressBean" />
<table cellpadding="0" cellspacing="0" border="0">
 <tr>

 <td align="right" width="70">Line 1 </td>

 <td><input type="text" name="${addressType}_line1" size="30"
 maxlength="100" value="${address.line1}"></td>

 </tr>

 <tr>

 <td align="right">Line 2 </td>

 <td><input type="text" name="${addressType}_line2" size="30"
 maxlength="100" value="${address.line2}"></td>

 </tr>

 <tr>

 <td align="right">City </td>

 <td><input type="text" name="${addressType}_city" size="30"
 value="${address.city}"></td>

JavaServer Pages

[110]

 </tr>

 <tr>

 <td align="right">State </td>

 <td>

 <select name="${addressType}_state">

 <option value=""></option>

 <option value="AL"
 <% if(address.getState().equals("AL"))
 out.print (" selected "); %>>Alabama</option>

 <option value="AK"
 <% if(address.getState().equals("AK"))
 out.print (" selected "); %>>Alaska</option>

 <option value="AZ"
 <% if(address.getState().equals("AZ"))
 out.print (" selected "); %>>Arizona</option>

 <option value="AR"
 <% if(address.getState().equals("AR"))
 out.print (" selected "); %>>Arkansas</option>

 <option value="CA"
 <% if(address.getState().equals("CA"))
 out.print (" selected "); %>>California</option>

 <option value="CO"
 <% if(address.getState().equals("CO"))
 out.print (" selected "); %>>Colorado</option>

 <option value="CT"
 <% if(address.getState().equals("CT"))
 out.print (" selected "); %>>Conneticut</option>

 <option value="DC"
 <% if(address.getState().equals("DC"))
 out.print (" selected "); %>>District of Columbia
 </option>

 <option value="FL"
 <% if(address.getState().equals("FL"))
 out.print (" selected "); %>>Florida</option>

 </select>

 </td>

 </tr>

 <tr>

 <td align="right">Zip </td>

 <td><input type="text" name="${addressType}_zip" size="5"
 value="${address.zip}"></td>

 </tr>

</table>

Chapter 3

[111]

As can be seen in the example, a tag file is very similar to a JSP file. Just like a JSP, it
can contain scriptlets and set and get JavaBean properties. One difference between
tag files and JSPs is that tag files use a tag directive instead of a page directive. The
most commonly used attribute of the tag directive is the import attribute, which just
like in the JSP page directive, is used to import individual classes or packages to be
used in the tag file.

Tag files can have an attribute directive that generates an attribute that can be
set by the parent JSP file. The previous example creates a required attribute called
addressType.

Notice that the value for the name attribute of each input field in the example
tag file contains text like the following: ${addressType}_line1. The first part
of this string (${addressType}) is a special notation to obtain the value of the
addressType attribute. This notation can also be used to obtain values of JavaBean
properties. The syntax to obtain JavaBean properties using this notation is ${<bean
name>.<property name>}. The value attribute of each input field in the previous
example uses this notation to obtain the value of a property of the address bean. The
address bean is a simple JavaBean that declares several attributes along with their
corresponding setter and getter methods.

The ${} notation is part of the Unified Expression Language—a new
expression language for the JSP 2.1 specification. This notation is
compatible with the JSP expression language introduced in JSP 2.0.
However, the unified expression language also supports the #{} notation.
This new notation is not compatible with previous versions of the JSP
specification. The #{} notation will be covered in detail in Chapter 6,
JavaServer Faces.

As can be seen in the example, tag files can contain scriptlets. The scriptlets in the
example compare the value of the state attribute in the state bean to each option in
the select element, then set the appropriate element to be selected (for simplicity and
brevity, only a small subset of all states was used).

Using a custom tag defined in a tag file is almost identical to using a tag defined
using Java code:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib prefix="ct" tagdir="/WEB-INF/tags"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>

JavaServer Pages

[112]

 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Custom Tag Demo</title>
 </head>
 <body>
 <form>
 <h3>Shipping Address</h3>
 <ct:address addressType="shipping" />

 </body>
</html>

Notice how the taglib directive is used to import the tag library into the JSP.
However, in this case, instead of using a uri attribute, a tagdir attribute is used to
indicate the location of the tag library. All tag files located in the same directory are
implicitly part of a tag library; no TLD file is necessary. However, it is possible to add
a TLD for a tag library composed of tag files. The TLD for such a tag library must be
named implicit.tld and it must be placed in the same directory as the tag files
(in the previous example, WEB-INF/tags; tag libraries must be placed in this
directory or any subdirectory of the tags directory).

In order for the previous JSP to work properly, an instance of net.ensode.
glassfishbook.customtags.AddressBean must be attached to the request.
The following servlet will create an instance of this class. Populate some of
its fields and forward the request to the previous JSP.

package net.ensode.glassfishbook.customtags;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class CustomTagDemoServlet extends HttpServlet
{
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 {
 AddressBean addressBean = new AddressBean();

 addressBean.setLine1("43623 Park Ridge Ct");

 addressBean.setCity("Orlando");

 addressBean.setState("FL");

 addressBean.setZip("00303");

Chapter 3

[113]

 request.setAttribute("address", addressBean);

 try
 {
 request.getRequestDispatcher("customtagdemo2.jsp").forward
 (request,response);

 }
 catch (ServletException e)
 {
 e.printStackTrace();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }
}

Of course, a real application would probably obtain this information from a
database. This simple example just instantiates the bean and populates it with
some arbitrary attributes.

After packaging this JSP and tag file in a WAR file, deploying the WAR file, and
pointing the browser to the servlet's URL (as defined in the <servlet-mapping>
element of the application's web.xml file), we should see a page like the following:

Unified Expression Language
In the previous section, we saw how the Unified Expression Language can be used
to retrieve property values from JavaBeans. When JavaBeans properties are accessed
this way, GlassFish's web container looks for a JavaBean attached with the given
name to the page, request, session, and application scopes, in that order. It uses the
first one to find and invoke the getter method corresponding to the property we
want to obtain.

JavaServer Pages

[114]

If we know in what scope the bean we want is attached to, we can obtain it from
that scope directly, as JSP expressions have access to the JSP implicit objects. In the
next example, we attach several instances of a JavaBean called CustomerBean to the
different scopes. Before illustrating the JSP, let's take a look at the source code for
this bean:

package net.ensode.glassfishbook.unifiedexprlang;

public class CustomerBean
{
 public CustomerBean()
 {

 }
 public CustomerBean(String firstName, String lastName)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 }
 private String firstName;
 private String lastName;
 public String getFirstName()
 {
 return firstName;
 }
 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }
 public String getLastName()
 {
 return lastName;
 }
 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }

 @Override
 public String toString()
 {
 StringBuffer fullNameBuffer = new StringBuffer();
 fullNameBuffer.append(firstName);
 fullNameBuffer.append(" ");
 fullNameBuffer.append(lastName);
 return fullNameBuffer.toString();
 }
}

Chapter 3

[115]

This is a fairly simple JavaBean consisting of two properties and their corresponding
setter and getter methods. In order for this class to qualify as a JavaBean, it must
have a public constructor that takes no arguments. In addition to that constructor,
we added a convenience constructor that takes two parameters to initialize the bean's
properties. Additionally, the class overrides the toString() method so that its
output is the customer's first and last names.

Like we mentioned before, the following JSP obtains instances of CustomerBean
from the different scopes through the Unified Expression Language and shows
the corresponding output in the browser window:

Before this JSP is executed, all instances of CustomerBean must be
attached to the corresponding scope. We wrote a servlet that does this
and then forwards the request to the JSP. For brevity, this servlet is
not shown, but it is available as part of this book's code download.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>

<jsp:useBean scope="page" id="customer6"
 class="net.ensode.glassfishbook.unifiedexprlang.CustomerBean" />

<jsp:setProperty name="customer6" property="firstName"
 value="David" />
<jsp:setProperty name="customer6" property="lastName"
 value="Heffelfinger" />

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Unified Expression Language Demo</title>
 </head>
 <body>
 Customer attached to the application Scope:
 ${applicationScope.customer1}

 Customer attached to the session scope:
 ${sessionScope.customer2.firstName}
 ${sessionScope.customer2.lastName}

JavaServer Pages

[116]

 Customer attached to the request scope:
 ${requestScope.customer3}

 Customer attached to the page scope:
 ${pageScope.customer6}

 List of customers attached to the session:

 ${sessionScope.customerList[0]}

 ${sessionScope.customerList[1].firstName}

 ${sessionScope.customerList[1].lastName}

 </body>
</html>

The first highlighted line in this JSP looks for a bean attached to the application
scope, with a name of customer1. As we aren't referencing any of the bean's
properties, the bean's toString() method is invoked at that point.

The next two highlighted lines look for a bean attached to the session scope with a
name of customer2. In this case, we are accessing individual properties. The first
line accesses the firstName property and the second line accesses the lastName
property. Behind the scenes, Glassfish's web container invokes the corresponding
getter method for each property.

The next two highlighted lines obtain instances of CustomerBean from the request
and page scopes respectively. Again, as we aren't accessing individual properties,
the bean's toString() method is invoked.

The last three highlighted lines illustrate a very nice feature of the Unified Expression
Language. In this case, instances of CustomerBean were not attached to the session
directly. Instead, an ArrayList containing instances of CustomerBean was attached
to the session. This ArrayList was attached with a name of customerList. As can
be seen in these three lines, we can access individual elements of the ArrayList by
placing the element number in brackets, similar to what we would do with an array
in regular Java code. By the way, this technique also works with arrays as well as any
other class implementing the java.util.Collection interface.

Chapter 3

[117]

After packaging the previous JSP into a WAR file, deploying it, and pointing the
browser to the appropriate URL, we should see it rendered in the browser:

In this particular case, the toString() method outputs the customer's first and
last names. Therefore, the output is indistinguishable from displaying these two
properties next to each other.

Of course, the techniques shown in the example work on every scope. We can
access a bean attached to any scope by not specifying any properties. Similarly,
we can access bean properties on any scope and, of course, we can access
individual elements to a collection or array attached to any scope.

JSP XML syntax
In addition to using the standard JSP syntax that we have been discussing
throughout this chapter, JSPs can also be developed using XML syntax. JSPs
developed using this alternate syntax are formally known as JSP documents.
By convention, JSP document filenames end with the .jspx extension.

JavaServer Pages

[118]

The following table compares the standard JSP syntax with the equivalent
XML syntax:

JSP Feature Standard Syntax Example XML Syntax Example
Comment <%-- comment --%> <!-- comment -->

Declaration <%! String s; %> <jsp:declaration>
 String s;
</jsp:declaration>

Expression <%= new java.util.Date() %> <jsp:expression>
 new java.util.Date()
</jsp:expression>

Scriptlet <% x = 5 + y; %> <jsp:scriptlet>
 <![CDATA[
 x = 5 + y;
]]>
</jsp:scriptlet>

Attribute
Directive

<%@ attribute
 name="addressType"
 required="true"%>

<jsp:directive.attribute
 name="addressType"
 required="true"/>

Include
Directive

<%@ include
 file="navigation.jspf"%>

<jsp:directive.include
 file="navigation.jspf"
 />

Page
Directive

<%@page
import="java.util.Enumeration"%>

<jsp:directive.page
 import="java.util.
 Enumeration" />

Tag Directive <%@ tag language="java"%> <jsp:directive.tag
 language="java" />

Taglib
Directive

<%@taglib prefix="d"
 uri="DemoTagLibrary"%>

<jsp:root
xmlns:d="DemoTagLibrary">

Variable
Directive

<%@ variable
 name-given="value" %>

<jsp:directive.variable
 name-given="value" />

As we can see from this table, developing JSPs using XML syntax is fairly easy
and straightforward if we already know how to develop JSPs using the traditional
syntax. We should note that the tag and attribute directives described in the table can
only be used in JSP tags.

To develop a JSP using XML syntax, we simply need to use the XML syntax for all
the JSP features we intend to use. Also, as JSP documents need to be valid XML, we
need to make sure our JSPs are correctly formatted, making sure that each opening
tag has a corresponding closing tag, for instance.

Chapter 3

[119]

The following JSP document is a modified version of one of the examples we saw in
the JSPs and JavaBeans section earlier in this chapter:

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">

 <jsp:directive.page language="java" contentType="text/html"
 pageEncoding="UTF-8"/>

 <jsp:useBean id="customer"
 class="net.ensode.glassfishbook.javabeanproperties.CustomerBean"
 scope="page">
 </jsp:useBean>
 <jsp:setProperty name="customer" property="firstName"
 param="fNm" />
 <jsp:setProperty name="customer" property="lastName"
 param="lNm" />
 <html>
 <head>
 <title>JavaBean Properties</title>
 </head>
 <body>
 <form>
 <table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td align="right">First Name: </td>
 <td><input type="text" name="firstName"
 value='${customer.firstName}'/>
 </td>
 </tr>
 <tr>
 <td align="right">Last Name: </td>
 <td><input type="text" name="lastName"
 value='${customer.lastName}'/>
 </td>
 </tr>
 <tr>
 <td></td>
 <td><input type="submit" value="Submit"/></td>
 </tr>
 </table>
 </form>
 </body>
 </html>
</jsp:root>

JavaServer Pages

[120]

Notice that other than some minor changes to make the page XML compliant, all we
had to do to use the XML syntax was to add a <jsp:root> element and change the
page directive to use the XML syntax we described in the table earlier in this section.

Summary
This chapter covered a lot of ground. We talked about how to develop and deploy
simple JSPs. We also covered how to access implicit objects such as request,
session, and so on, from JSPs. Additionally, we covered how to set and get the
values of JavaBean properties via the <jsp:useBean> tag. In addition to that, we
covered how to include a JSP into another JSP at runtime via the <jsp:include> tag,
and at compilation time via the JSP include directive. We also covered how to write
custom JSP tags by extending javax.servlet.jsp.tagext.SimpleTagSupport or
by writing TAG files. We also covered how to access JavaBeans and their properties
via the Unified Expression Language.

Finally, we covered the JSP XML syntax that allows us to develop XML-compliant
JavaServer Pages.

JSP Standard Tag Library
The JSP Standard Tag Library (JSTL) is a collection of standard JSP tags that
perform several common tasks. This frees us from having to develop custom tags for
these tasks, or from using a mix of tags from several organizations to do our work.

JSTL contains the following tags:

•	 Core tags that perform conditional logic and iteration through collections,
among other things

•	 Format tags that perform string formatting and internationalization
•	 SQL tags that interact with a database
•	 XML tags for XML processing

Additionally, JSTL contains a number of functions that perform several tasks, the
vast majority of which are for string manipulation.

In this chapter, we will cover each of the JSTL tag libraries, providing examples
for the most commonly used tags and functions. Topics we will cover in this
chapter include:

•	 Core JSTL tag library
•	 Formatting JSTL tag library
•	 SQL JSTL tag library
•	 XML JSTL tag library
•	 JSTL functions

JSP Standard Tag Library

[122]

Core JSTL tag library
Core JSTL tags perform tasks such as writing output to the browser, conditional
display of segments in a page, and iterating through collections. Much of what the
core JSTL tags do can be accomplished with scriptlets. However, the page is much
easier to read and therefore more maintainable if core JSTL tags are used instead
of scriptlets.

The following example shows a JSP using some of the most common JSTL core tags:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<%@page import="java.util.ArrayList"%>
<html>
 <%
 ArrayList<String> nameList = new ArrayList<String>(4);
 nameList.add("David");
 nameList.add("Raymond");
 nameList.add("Beth");
 nameList.add("Joyce");
 request.setAttribute("nameList", nameList);
 %>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Core Tag Demo</title>
 </head>
 <body>
 <c:set var="name" scope="page" value="${param.name}"></c:set>
 <c:out value="Hello"></c:out>
 <c:choose>
 <c:when test="${!empty name}">
 <c:out value="${name}"></c:out>
 </c:when>
 <c:otherwise>
 <c:out value="stranger"></c:out>

 <c:out value="Need a name? Here are a few options:" />

 <c:forEach var="nameOption"
 items="${requestScope.nameList}">

Chapter 4

[123]

 <c:out value="${nameOption}"></c:out>
 </c:forEach>

 </c:otherwise>
 </c:choose>
 <c:remove var="name" scope="page" />
 </body>
</html>

In a nutshell, this example looks for a request parameter called name. If it finds it, it
displays the message "Hello ${name}" in the browser (${name} is actually replaced
with the value of the parameter). If the parameter is not found, it prints the message
"Hello stranger" and gets a little smart with the user, suggesting a few names. This
can be seen in the following screenshot:

The page employs the taglib directive to declare that it uses the JSTL core tag
library. Although any prefix can be used for this library, using the prefix c is
standard practice.

Before doing anything with JSTL, the page has a scriptlet that initializes an instance
of java.util.ArrayList with some strings containing names and attaches
ArrayList to the request (this would typically be done in a servlet or some other
class, not in the JSP itself; it was done this way in the example for simplicity).

The first JSTL tag used in the page is the <c:set> tag. This tag sets the result of the
expression defined in its variable attribute and stores it in a variable in the specified
scope. The name of the variable is defined in the tag's var attribute. The scope of the
variable is defined in the tag's scope attribute; if no scope is specified, the page scope is
used by default. The expression to be evaluated is defined in the tag's value attribute.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

JSP Standard Tag Library

[124]

Page scope is always the default
A number of JSTL tags contain a var attribute to define a variable
in a scope specified by a scope attribute. In all cases, if no scope is
specified, the page scope is used by default.

In the previous example, the expression is looking for the value of a request
parameter with a name of "name". param is an implicit variable that resolves to a
map using request parameter names as keys and request parameter values as values.
This implicit variable is equivalent to calling the getParameterMap() method on
the request. The value after the dot (name in the previous example) corresponds to
the key we want to get from the parameter map (which in turn corresponds to the
request parameter name).

The next core JSTL tag we see in the example is the <c:out> tag. This tag simply
displays in the browser the value of the expression defined in its value attribute.
In this particular case, the expression defined in the value attribute is a constant,
therefore it is displayed verbatim in the browser output.

Next, we see the <c:choose> tag. This tag allows us to perform if/then/else like
conditions in the page. The <c:choose> tag must contain one or more <c:when> tags
and optionally a <c:otherwise> tag. The <c:when> tag contains a test attribute that
must contain a Boolean expression. Once the expression in one of the <c:when> tags
nested in a <c:choose> tag evaluates to true, the body of the tag is executed and
the test attribute of other <c:when> tags nested inside the same <c:choose>
tag is not evaluated.

The next new tag we see in the example is the <c:otherwise> tag. The body of this
optional tag is executed if none of the expressions in any <c:when> tag evaluates to
true. In the example, the body of the tag is executed when no request parameter
with a name of "name" exists in the request, or if the value of the parameter is an
empty String.

In the previous example, the <c:when> tag contains a ! operator that negates a
Boolean expression, just like in Java. The tag also contains an empty operator; this
operator checks to see if a String is null or has a length of zero. The test attribute
of the <c:when> tag can have several logical and/or relational operators that can be
combined to build more complex expressions. All relational operators that can be
used in the test attribute (or any other Unified Expression Language expression, for
that matter) are listed in the following table:

Chapter 4

[125]

Relational operator Description
 == or eq Equals: evaluates to true if the expression on the left of the operator

equals the expression on the right of the operator.
 > or gt Greater than: evaluates to true if the expression on the left of the

operator is greater than the expression on the right of the operator.
 < or lt Less than: evaluates to true if the expression on the left of the

operator is less than the expression on the right of the operator.
 >= or ge Greater than or equal: evaluates to true if the expression on the left

of the operator is greater than or equal to the expression on the right
of the operator.

 <= or le Less than or equal: evaluates to true if the expression on the left of
the operator is less than or equal to the expression on the right of
the operator.

!= or ne Not equal: evaluates to true if the expression on the left of the
operator is not equal to the expression on the right of the operator.

All of these symbolic operators work the same way as their equivalent Java
operators, therefore, their use should be natural to any Java developer. In addition
to allowing us to use the symbolic operators in the Unified Expression Language, all
symbolic operators have a textual equivalent. These textual equivalents are used if
we need our page to be valid XML, as using the symbolic operators typically results
in an invalid XML markup.

In addition to relational operators, logical operators can also be used in Unified
Expression Language expressions. Valid logical operators are listed in the
following table:

Logical operator Description
&& or and And: evaluates to true if both the expression on the left of the operator

and the one on the right of the operator are true.
|| or or Or: evaluates to true if either the expression on the left of the operator

or the one on the right of the operator is true (or both).
! or not Not: negates the expression on the right of the operator. If the

expression evaluates to true, this operator makes it evaluate to false,
and vice versa.

empty Empty: evaluates to true if the value to the right of the operator is null
or empty. The value to the right of the operator must be a String or
a Collection.

E1?E2:E3 Conditional expression: if E1 is true, evaluates to E2; otherwise, it
evaluates to E3.

JSP Standard Tag Library

[126]

Just like with relational operators, logical operators work the same way as their Java
equivalents. All of them, except the ternary operator and empty, have a symbolic and
textual variant.

The Unified Expression Language also contains arithmetic operators. These are listed
in the following table:

Arithmetic operator Description
+ Addition: adds the values on the left and right of the operator.
- (binary) Subtraction: subtracts the value on the right of the operator from

the value on the left of the operator.
* Multiplication: multiplies the values on the left and right of the

operator
/ or div Division: divides the values on the left (dividend) and right

(divisor) of the operator.
% or mod Modulo: divides the values on the left (dividend) and right

(divisor) of the operator and returns the remainder.
- (unary) Minus: multiplies the value to the right of the operator by -1.

All arithmetic operators must be used with numerical values.

After our brief discussion of the Unified Expression Language operators, we can
now get back to discussing the example. The next new tag we see in the example
is the <c:forEach> tag. This tag iterates through a Collection, array, or Map. In
the example, it iterates through an instance of java.util.ArrayList attached
to the request in the scriptlet defined earlier in the page. The var attribute of the
<c:forEach> tag defines a variable to be used to access the current element in the
collection. This variable is only visible inside the body of the tag. The items attribute
of the <c:forEach> tag indicates the array, collection, or map to iterate through.
The <c:forEach> tag has additional attributes that are not shown in the example:
the begin attribute indicates the index of the first item to iterate from and the end
attribute indicates the last item to iterate to. If the begin attribute is not set, iteration
begins at the first item in the Collection, array, or Map. If the end attribute is not
set, iteration ends at the last element of the Collection, array, or Map. An additional
attribute of the <c:forEach> tag is the step attribute. It indicates the increment
from one index to the next and defaults to 1. In addition to iterating through a
Collection, array, or Map, the <c:forEach> tag can be used to execute its body a
number of times. To use the <c:forEach> tag this way, its items attribute is omitted
and its begin and end attributes are required.

The next new tag we see in the example is the <c:remove> tag. This tag is used to
remove a variable attached to the scope specified in its scope attribute. If no scope is
specified, the <c:remove> tag uses a default scope of page.

Chapter 4

[127]

There are some additional core JSTL tags not shown in the example. These remaining
tags are explained next.

The <c:if> tag is similar to the <c:when> tag; its body is executed if the expression
defined by its test attribute is true. The <c:if> tag has two optional attributes: a
var attribute that defines the name of a Boolean variable storing the results of the
tag's test attribute, and a scope attribute defining the scope of the var attribute.
The <c:if> tag should not be nested in a <c:choose> tag. Unlike the <c:when> tag,
the expression defined in the test attribute of multiple <c:if> tags is evaluated,
regardless of whether a previous <c:if> expression resolved to true or not.

The <c:forTokens> tag iterates over a delimiter separated string. The
<c:forTokens> tag has two required attributes: items and delims. The items
attribute value must be an expression resolving to a String or a String constant. The
value of the delims attribute must be an expression or a String constant indicating
the characters to be used as delimiters. Each individual character in the delims
attribute will be used as a delimiter for the value of the item, similar to the way the
java.util.StringTokenizer class works. Additionally, the <c:forTokens> tag
has a var attribute that works essentially the same way as the var attribute of the
<c:forEach> tag. That is, it defines a name for the current item in its items attribute,
allowing it to be accessed in the body of the <c:forTokens> tag.

The <c:import> tag is similar to <jsp:include>. It includes the contents of a
relative or absolute URL into the rendered JSP. Optionally, this tag can store the
contents of the included URL in a String or in an instance of java.io.Reader. The
<c:import> tag has one required attribute called url; the value of this attribute
is a String expression containing the URL to be imported. If we wish to store the
contents of the included URL in a String, then the var attribute must be used. The
value of this attribute is the name of the String that will hold the contents of the
included URL. If we wish to include the contents of the included URL in an instance
of java.io.Reader, then the varReader attribute must be used. The value of this
attribute is the name of the variable that will hold the contents of the included URL.
The <c:import> tag has an optional scope attribute that defines the scope of the
variable defined by the var or varReader attributes. If this attribute is not used, the
var or varReader variable will have a default scope of page.

The <c:redirect> tag redirects the browser to the URL specified in its url attribute.
It is equivalent to calling the sendRedirect() method of an instance of javax.
servlet.http.HttpServletResponse.

The <c:url> tag constructs a URL from the value of its url attribute and stores it in
a String whose name is defined in the tag's var attribute. The default scope of the
variable defined by the var attribute is page. This can be changed by using the tag's
scope attribute.

JSP Standard Tag Library

[128]

It is possible to pass parameters to the URL defined in the url attribute of the
<c:import>, <c:redirect>, or <c:url> tags. This is done by using the <c:param>
tag. This tag must be nested inside one of the mentioned three tags. The <c:param>
tag has two attributes: a required name attribute defining the parameter name and a
value attribute defining the parameter value.

The last core JSTL tag is the <c:catch> tag. This tag catches any java.lang.
Throwable thrown inside its body.

java.lang.Throwable is the parent class of java.lang.
Exception and java.lang.Error. Therefore, any Exception or
Error thrown inside the body of the <c:catch> tag is also caught.

If a Throwable is thrown inside the body of the <c:catch> tag, control goes to
the line immediately following the closing </c:catch> tag. Any lines inside the
body of the <c:catch> tag, that were processed before the Throwable is thrown,
are processed. The <c:catch> tag has a single optional attribute named var. This
attribute defines a variable to hold the Throwable that was thrown inside the body of
the <c:catch> tag. This variable always has a scope of page.

The following table lists all of the JSTL core tag libraries:

Tag Description Example
<c:catch> Catches any Exception,

Error, or Throwable
thrown inside its body.

<c:catch var="e">
 <c:out value="1/0"/>
 <c:if test="e!=null">
 <c:out value=
 "e.message"/>
 </c:if>
</c:catch>

<c:choose> Used to wrap the
<c:when> and (optionally)
<c:otherwise> tags. The
body of the first <c:when>
tag containing a test
expression that evaluates to
true is executed. If none of
the <c:when> tags contain a
test expression that evaluates
to true, then the body of
the <c:otherwise> tag is
executed.

<c:choose>
 <c:when test="empty o">
 <c:out value="o is
 empty"/>
 </c:when>
 <c:otherwise>
 <c:out value="o is
 not empty"/>
 </c:otherwise>
</c:choose>

Chapter 4

[129]

Tag Description Example
<c:forEach> Iterates over an array,

Collection, or Map.
<c:forEach
 items="${session.array
 OrCollection}"
 var="item">
 <c:out value="item" =
 ${item}>

</c:forEach>

<c:if> Its body gets executed if the
test expression evaluates to
true.

<c:if test="${a>b}">
 <c:out value="a is
 greater than b"/>
</c:if>

<c:import> Imports content from the URL
indicated in the url attribute
into the rendered page.

<c:import
 url="http://foo.com/
 somePage.jsp">
 <c:param
 name="someName"
 value="some val"/>
</c:import>

<c:out> Outputs the value of the
value expression.

<c:out value="> is the
greater than symbol"
 escapeXml="true"/>

<c:otherwise> Its body gets executed if none
of the test expressions in the
<c:when> tags nested in
the same <c:choose> tag
evaluate to true.

See example for <c:choose>

<c:param> Sets a parameter for a URL
defined in the <c:url> or
<c:import> tag.

See example for <c:import>

<c:redirect> Redirects to the specified
URL.

<c:redirect
url="http://ensode.net"/>

<c:remove> Removes a variable from the
page scope or the specified
scope.

<c:remove var="varName"
 scope="session"/>

<c:set> Sets a variable in the page
scope or the specified scope.

<c:set var="varName"
 value="foo"
 scope="session"/>

<c:url> Creates a URL variable. <c:url
 value="http://foo.com"
 var="fooUrl"/>

<c:when> Its body gets executed when
its test expression evaluates
to true.

See example for <c:choose>

JSP Standard Tag Library

[130]

Formatting JSTL tag library
The formatting JSTL tag library provides tags that ease internationalization and
localization of web applications. This tag library allows displaying a page in different
languages, based on the user's locale. It also allows locale specific formatting of dates
and currency.

The following example illustrates the use of the formatting JSTL tag library:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Format Tag Demo</title>
 </head>
 <body>
 <jsp:useBean id="today" class="java.util.Date" />
 <fmt:setLocale value="en_US" />
 <fmt:bundle basename="ApplicationResources">
 <fmt:message key="greeting" />,

 <fmt:message key="proposal" />
 <fmt:formatNumber type="currency" value="42000" />.

 <fmt:message key="offer_ends" />
 <fmt:formatDate value="${today}" type="date"
 dateStyle="full" />.
 </fmt:bundle>

 <fmt:setLocale value="es_ES" />
 <fmt:bundle basename="ApplicationResources">
 <fmt:message key="greeting" />,

 <fmt:message key="proposal" />
 <fmt:formatNumber type="currency" value="42000" />.

 <fmt:message key="offer_ends" />
 <fmt:formatDate value="${today}" type="date"
 dateStyle="full" />
 </fmt:bundle>
 </body>
</html>

Chapter 4

[131]

This page display basically greets the user, then proceeds to make a proposal
(sales pitch), followed by a price, and an offer end date:

As this page is internationalized, the actual text of the page is stored in a
property file called a resource bundle. The resource bundle for the page is
called ApplicationResources.properties. This is set in the page via the
<fmt:bundle> tag.

The page displays the same message in English and Spanish. Therefore, two resource
bundles are needed; one for each locale. The locale to use is defined in the value
attribute of the <fmt:setLocale> tag.

A real application would not simultaneously display the same
messages in two different languages. Instead, it would detect the
user's locale from the request and use the appropriate resource
bundle. If the user's locale doesn't match any of the available
resource bundles, then the default one would be used.

The English (and default) version of ApplicationResources.properties looks
as follows:

greeting=Hello
proposal=Obtain the secret of life, the universe and everything for
 only
offer_ends=But hurry! Offer ends on

JSP Standard Tag Library

[132]

The Spanish version of the resource bundle is called ApplicationResources_
es.properties:

greeting=Hola
proposal=Obtenga el secreto the la vida, el universo y todo por tan
 sólo
offer_ends=!Apresúrese! La oferta termina

As we can see, a resource bundle is nothing but a property file with keys and values.
The keys in each localized resource bundle must be the same; the value should vary
according to the locale. In order to be accessible to JSP pages and Java code, resource
bundles need to be placed in any directory in the WEB-INF/classes directory folder
or any of its subdirectories in the WAR file where the application is deployed. If they
are placed in a subdirectory of the WEB-INF/classes directory, then the basename
attribute of the <fmt:bundle> tag must include each directory under this directory,
separated by dots. For example, if ApplicationResources.properties and
ApplicationResources_es.properties were placed under WEB-INF/classes/
net/ensode, the <fmt:bundle> tag would look like this:

<fmt:bundle basename="net.ensode.ApplicationResources">

As we can see, this looks like a fully qualified class name, but in reality we are
pointing to the resource bundle.

Resource bundle names for each locale must have the same base name as the base
resource bundle (in this case, ApplicationProperties), followed by an underscore,
followed by an appropriate locale (in this case, es). The locale can only specify a
language (for example, en or es), or a language and country (for example, en_US or
es_ES). If no country is specified in the locale, any country whose primary language
matches the locale will use the resource bundle for that language.

The previous example uses es_ES as the locale, assuming every
page that is in Spanish comes from Spain. Obviously, this wouldn't
work in a real application and was done this way for simplicity.

The <fmt:message> tag looks for a key in the resource bundle matching its key
attribute and displays its value on the page. Although not illustrated in the example,
sometimes resource bundle values can have parameters that are substituted at
runtime with appropriate values. Parameters are designated by an integer between
curly braces. This is illustrated in the following example:

personalGreeting=Hello {0}

Chapter 4

[133]

The {0} in this property is a parameter. Parameters can be substituted by the
appropriate values at runtime by using the <fmt:param> tag. This tag must be nested
inside a <fmt:message> tag. The <fmt:param> tag has an attribute named value.
The value of this attribute can be a String constant or Unified Expression Language
expression. It is used to substitute the parameter with this value. Resource bundle
values can have more than one parameter, in which case, the number of <fmt:param>
tags nested inside <fmt:message> must match the number of parameters. The order
of the <fmt:param> tags determines which parameter gets substituted. The first
<fmt:param> tag will replace the parameter indexed at 0, the second <fmt:param>
tag will replace the parameter indexed at 1, and so on and so forth.

The next formatting tag we see in the example is the <fmt:formatNumber> tag. This
tag formats a number according to the locale. Some locales use a comma to separate
thousands and a dot as a decimal separator, while for others it is the other way
around. As can be seen in the previous screenshot, the <fmt:formatNumber> tag will
take care of this for us. Another useful attribute of the <fmt:formatNumber> tag is the
type attribute. This attribute has three valid values: number, percent, or currency.
As can be seen in the example, if the type attribute is set to currency, then the
appropriate currency symbol for the locale is automatically added to the number.

The next new formatting tag we see in the example is the <fmt:formatDate>
tag. This tag will take a Date object specified by its value attribute and format
it appropriately for the given locale. In addition to translating the date into the
appropriate language, this tag will place the day of the week, the day of the month,
the month, and the year in the appropriate place for the corresponding locale. It will
also use the correct capitalization for the first letter of the month. The dateStyle
attribute of the <fmt:formatDate> tag has the following valid values: full, long,
medium, short, and default. If no value is specified, default is used.

The format tag library tags we have covered so far are the most commonly used tags.
The following table lists all the JSTL formatting library tags:

Tag Description Example
<fmt:bundle> Loads a resource bundle to

be used inside its body.
<fmt:bundle
 basename="resbund">

 <fmt:message
 key="greeting">

</fmt:bundle>

<fmt:formatDate> Formats the date specified
by its value attribute
optionally using a specified
pattern.

<fmt:formatDate
 value="${today}"
 pattern=
 "MM/dd/yyyy"/>

JSP Standard Tag Library

[134]

Tag Description Example
<fmt:formatNumber> Formats the number

specified by its value
attribute according to the
current locale. Can be used
to format the number as
currency or percentage,
depending on the value of
its optional type attribute.

<fmt:formatNumber
 value="42000" />

<fmt:message> Displays a localized
message corresponding to
the key defined in its key
attribute.

<fmt:message
 key="offer_ends" />

<fmt:param> Substitutes a parameter
in the enclosing
<fmt:message> tag.

<fmt:param
 value="someVal"/>

<fmt:parseDate> Parses a string containing a
date into a Date object.

<fmt:parseDate
 value="03/31/2007"
 pattern=
 "MM/dd/yyyy"
 var="parsedDate"/>

<fmt:parseNumber> Parses a numeric string
into a Long or Double
object.

<fmt:parseNumber
 value="42,000.00"
 var=
 "parsedNumber"/>

<fmt:requestEncoding> Sets the character encoding
of the request.

<fmt:requestEncoding
 key="ISO-8859-1"/>

<fmt:setBundle> Sets the resource bundle to
use in the specified scope.
Default scope is page.

<fmt:setBundle
 baseName="resbund"
 var="bundle"
 scope="session"/>

<fmt:setLocale> Sets the locale to use in the
specified scope. Default
scope is page.

<fmt:setLocale
 value="en_US" />

<fmt:setTimeZone> Sets the time zone to use in
the specified scope. Default
scope is page.

<fmt:setTimeZone
 value="EST"
 var=
 "sessionTimeZone"
 scope="session"/>

<fmt:timeZone> Sets the time zone to use
inside its body.

<fmt:timeZone
 value="EST">
 <fmt:formatDate
 value="${today}"/>
</fmt:timeZone>

Chapter 4

[135]

SQL JSTL tag library
The SQL JSTL tag library allows us to execute SQL queries from JSP pages. As this
tag library mixes presentation and database access code, it should only be used for
prototyping and for writing simple "throwaway" applications. For more complex
applications, it is always a good idea to follow the DAO and MVC design patterns.

The following example illustrates the most commonly used tags in the SQL JSTL
tag library:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>SQL Tag Demo</title>
 </head>
 <body>
 <sql:setDataSource dataSource="jdbc/__CustomerDBPool" />
 <sql:transaction>
 <sql:update>
 insert into CUSTOMERS (CUSTOMER_ID, FIRST_NAME, LAST_NAME)
 values (((select max(CUSTOMER_ID) from customers) + 1), ?, ?)
 <sql:param value="${param.firstName}" />
 <sql:param value="${param.lastName}" />
 </sql:update>
 </sql:transaction>
 <p>Successfully inserted the following row into the CUSTOMERS
 table:</p>
 <sql:query var="selectedRows"
 sql="select FIRST_NAME, LAST_NAME from customers where
 FIRST_NAME = ? and LAST_NAME = ?">
 <sql:param value="${param.firstName}" />
 <sql:param value="${param.lastName}" />
 </sql:query>
 <table border="1" cellpadding="0" cellspacing="0">
 <tr>
 <td>First Name</td>
 <td>Last Name</td>
 </tr>

JSP Standard Tag Library

[136]

 <c:forEach var="currentRow" items="${selectedRows.rows}">
 <tr>
 <td><c:out value="${currentRow.FIRST_NAME}" /></td>
 <td><c:out value="${currentRow.LAST_NAME}" /></td>
 </tr>
 </c:forEach>
 </table>
 </body>
</html>

After packaging this JSP in a WAR file, deploying the WAR file, and pointing the
browser to the JSP's URL (and passing the parameters that the page expects), we
should see a page like the following:

Like most of our examples, the previous page is pretty simplistic and does not
necessarily represent what would be done in an actual application. The page inserts
a row into the CUSTOMERS table and then queries the table for rows matching the
values inserted. A real application (keeping in mind that the SQL tag library should
only be used for very simple applications) would typically insert values obtained
from request parameters into the database. It would be unlikely for the same page
to query the database for the data just inserted. This would probably be done in a
separate page.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

[137]

The first JSTL SQL tag we see in the example is the <sql:setDataSource> tag. This
tag sets the datasource to be used for database access. The datasource can either
be obtained via JNDI by using its JNDI name as the value of this tag's datasource
attribute, or by specifying a JDBC URL, username, and password via the url, user,
and password attributes. The previous example uses the first approach. In order for
this approach to work correctly, a <resource-ref> element must be added to the
application's web.xml file.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <resource-ref>
 <res-ref-name>jdbc/__CustomerDBPool</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</web-app>

The <res-ref-name> subelement of the <resource-ref> element contains the JNDI
name of a JDBC datasource. This needs to be set up in the application server. The
procedure to set up a JDBC datasource is covered in detail in the next chapter.

The <res-type> subelement of the <resource-ref> element contains the fully
qualified name of the resource to be obtained via JNDI. For datasources, this will
always be javax.sql.DataSource.

The <res-auth> subelement of the <resource-ref> element should have a value
of Container when using the <resource-ref> element to define a datasource as
a resource. This allows the application server to use the credentials set up in the
connection pool corresponding to the datasource to log into the database.

No suitable driver SQL exception
Sometimes, the <sql:setDataSource> tag will result in a
java.sql.SQLException: No suitable driver exception
when using its datasource attribute to locate the datasource
via JNDI. This typically means that we forgot to modify the
application's web.xml file, as described previously.

JSP Standard Tag Library

[138]

Like we mentioned before, an alternate way of using the <sql:setDataSource>
tag is to specify the database connection URL and credentials. If we had used this
approach in the previous example, the <sql:setDataSource> tag would have
looked like this:

<sql:setDataSource url="jdbc:derby://localhost:1527/customerdb"
 user="dev" password="dev" />

The attributes used are self-explanatory. The url attribute should contain the JDBC
URL for the connection. The user and password attributes should contain the
username and password used to log into the database respectively.

The next JSTL SQL tag we see in the example is the <sql:transaction> tag.
Unsurprisingly, this tag wraps any <sql:query> and <sql:update> tags it contains
in a transaction.

Next, we see the <sql:update> tag that is used to execute any queries that
modify the data in the database. It can be used for INSERT, UPDATE, or DELETE SQL
statements. As can be seen in the example, queries inside this tag can have one or
more parameters. Just like when using JDBC Prepared Statements, question marks
are used as placeholders for parameters. The <sql:param> tag is used to set the
value of any parameter in a query defined in a <sql:update> or <sql:query> tag.
The <sql:param> tag sets the value for its containing tag via its value attribute that
may contain a String constant or a Unified Expression Language expression.

The <sql:query> tag is used to query data from the database via a SELECT
statement. The query's result set is stored in a variable defined by this tag's var
attribute. By default, the var attribute has a scope of page. This can be changed
by using the <sql:query> scope attribute and setting its value to the appropriate
scope (page, request, session, or application). As can be seen in the example,
we can iterate through the variable defined by this tag's var attribute by using a
<c:forEach> tag.

The following table lists all the JSTL SQL tags:

Tag Description Example
<sql:dateParam> Sets the value for a date

parameter in a <sql:query>
or <sql:update> tag.

See example for
<sql:query>.

<sql:param> Sets the value for a text
or numeric parameter
in a <sql:query> or
<sql:update> tag.

See example for
<sql:update>.

Chapter 4

[139]

Tag Description Example
<sql:query> Executes the SQL query

defined in its sql attribute and
optionally attaches the resulting
result set into the specified
scope, using the specified
variable name.

<sql:query
 sql="select * from
 table
 where
 last_update < ?"
 var="selectedRows">
 <sql:dateParam
 value=
 "${someDate}"/>
</sql:query>

<sql:setDataSource> Defines the datasource to be
used at the specified scope. If
no scope is specified, the default
scope is page. Datasource can
be obtained via a JNDI lookup
or by specifying a JDBC URL
through the url, user, and
password attributes..

<sql:setDataSource
dataSource="jdbc/
__CustomerDBPool" />

<sql:transaction> Wraps any <sql:query> and
<sql:update> tags inside its
body in a transaction.

<sql:transaction>
 <sql:update
 sql="update
 table set
 some_col = ?">
 <sql:param
 value=
 "someValue"/>
 </sql:update>
 <sql:update
 sql="update
 table2 set
 some_col = ?">
 <sql:param
 value=
 "someValue"/>
 </sql:update>
</sql:transaction>

<sql:update> Executes an SQL INSERT,
UPDATE, or DELETE statement.

<sql:update
 sql="update table
 set some_col = ?">
 <sql:param
 value=
 "someValue"/>
</sql:update>

JSP Standard Tag Library

[140]

XML JSTL tag library
The XML JSTL tag library provides an easy way to parse XML documents and to do
Extensible Stylesheet Language Transformations (XSLT). This tag library uses XPath
expressions to navigate through elements in an XML document.

XPath is an expression language used for finding information
in an XML document, or for making calculations based on
the content of an XML document. For more information
about XPath, refer to http://www.w3.org/TR/xpath.

The following example illustrates the most commonly used tags in the XML
JSTL tag library:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/xml" prefix="x"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<c:import url="customers.xml" var="xml" />
<x:parse doc="${xml}" var="doc" />
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>XML Tag Demo</title>
 </head>
 <body>
 <table cellpadding="0" cellspacing="0" border="1">
 <tr>
 <td>First Name</td>
 <td>Last Name</td>
 <td>Email</td>
 </tr>
 <x:forEach select="$doc/customers/customer">
 <tr>
 <td>
 <x:out select="firstName" />
 </td>
 <td>
 <x:out select="lastName" />
 </td>

Chapter 4

[141]

 <td>
 <x:choose>
 <x:when select="email">
 <x:out select="email" />
 </x:when>
 <x:otherwise>
 <c:out value="N/A" />
 </x:otherwise>
 </x:choose>
 </td>
 </tr>
 </x:forEach>
 </table>
 </body>
</html>

The first thing we should notice in this example is the use of the <c:import> core
JSTL tag to import an XML file from a URL. The value of the URL attribute defines
the URL where the XML file can be located; it can be a relative or absolute URL. In
the example, the customers.xml file is in the same directory as the JSP, therefore a
relative path is used to obtain it. The customers.xml file has customer information
including first name, last name, and email, as shown next:

<?xml version="1.0" encoding="UTF-8"?>
<customers>
 <customer>
 <firstName>Karl</firstName>
 <lastName>Smith</lastName>
 <email>karls@nonexistent.org</email>
 </customer>
 <customer>
 <firstName>Jenny</firstName>
 <lastName>Conte</lastName>
 <email>jenny@notreal.com</email>
 </customer>
 <customer>
 <firstName>Rhonda</firstName>
 <lastName>Benedict</lastName>
 </customer>
</customers>

JSP Standard Tag Library

[142]

After packaging the previous two files in a WAR file and visiting the JSP's URL, we
should see a page like the following:

The first JSTL XML tag we see in the example is the <x:parse> tag. This tag parses
an XML document and stores it in the variable defined by its var attribute. The XML
document to parse is defined in its doc attribute.

The XML JSTL tag library contains several tags that are analogous to similar tags
in the Core JSTL tag libraries. These tags include <x:if>, <x:choose>, <x:when>,
<x:otherwise>, <x:forEach>, <x:param>, and <x:set>. Usage of these tags is very
similar to their core tag counterparts. The main difference is that these tags contain
a select attribute containing an XPath expression to evaluate, instead of the value
attribute that the corresponding core tags contain. The example illustrates the usage
of most of these tags.

The next JSTL XML tag we see in the example is the <x:forEach> tag. This tag
iterates over the elements of an XML document. Elements to iterate over are specified
as an XPath expression through the select attribute.

The next JSTL XML tag we see in the example is the <x:out> tag, which outputs the
value of the XPath expression defined in its select attribute.

Next, we see the <x:choose> tag, which is the parent tag of the <x:when> and
(optionally) <x:otherwise> tags. The body of the first nested <x:when> tag
containing an XPath expression evaluating to true as its select attribute is executed.
select expressions for subsequent <x:when> attributes are not evaluated after one of
them evaluates to true. If no select attributes for any of the <x:when> tags evaluate
to true, the body of the optional <x:otherwise> tag is executed.

Chapter 4

[143]

An additional XML JSTL tag is the <x:transform> tag, which is used to do XSLT
transformations on XML documents. This tag is typically used with two attributes.
The xml attribute indicates the location of the XML document to transform. It can be
imported via the <c:import> tag, as illustrated in the example. The xslt attribute
indicates the XSL stylesheet used to transform the document. This stylesheet can also
be imported via the <c:import> tag.

The following table lists all of the JSTL XML tags:

Tag Description Example
<x:choose> Used to wrap the

<x:when> and (optionally)
<x:otherwise> tags. The
body of the first <x:when>
tag containing a select
expression that evaluates to
true is executed. If none of
the <x:when> tags contain a
test expression that evaluates
to true, then the body of
the <x:otherwise> tag is
executed.

See example for <x:forEach>.

<x:forEach> Iterates over the elements
of an XML document. The
elements to iterate over are
specified through the select
attribute.

<x:forEach select=
 "$doc/customers/customer">
 <tr>
 <td>
 <x:out
 select="firstName" />
 </td>
 <td>
 <x:out
 select="lastName" />
 </td>
 <td>
 <x:choose>
 <x:when
 select="email">
 <x:out
 select="email" />
 </x:when>
 <x:otherwise>
 <c:out
 value="N/A" />
 </x:otherwise>
 </x:choose>
 </td>
 </tr>
</x:forEach>

JSP Standard Tag Library

[144]

Tag Description Example
<x:otherwise> Its body gets executed if none

of the test expressions in the
<x:when> tags nested in
the same <x:choose> tag
evaluate to true.

See example for <x:forEach>.

<x:out> Outputs an XPath expression
defined by the select
attribute.

See example for <x:forEach>.

<x:param> Adds a parameter to the
containing <x:transform>
tag.

See example for <x:transform>.

<x:parse> Parses an XML document and
stores it in the variable defined
by its var attribute.

<x:parse doc="${xml}"
 var="doc" />

<x:set> Saves the result of the
XPath expression defined
in its select attribute into
a variable in the specified
scope. If no scope is defined, a
default scope of page is used.

<x:set var="custEmail"
 select="email"/>

<x:transform> Transforms the XML
document defined by the
xml attribute using the XSL
stylesheet defined by the xslt
attribute.

<x:transform
 xml="${someXmlDoc}"
 xslt="${xslt}">
 <x:param name="paramName"
 value="${paramValue}"/>
</x:transform>

<x:when> Its body gets executed when
its select expression evaluates
to true.

See example for <x:forEach>.

JSTL functions
JSTL contains a number of functions that take Unified Expression Language
expressions as parameters. All JSTL functions except one are used exclusively for
String manipulation. An exception is the fn:length() function, which can take a
String, Collection, or array as a parameter. It returns the length of the String, the
size of the Collection, or the length of the array, depending on what parameter is
passed to it. The following JSP illustrates the use of JSTL functions:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

Chapter 4

[145]

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Function Tag Demo</title>
 </head>
 <body>
 <c:set var="nameArr"
 value="${fn:split('Kevin,Danielle,Alex,Beatrice',',')}" />
 We have a list of ${fn:length(nameArr)} names, here they are:

 <c:forEach var="currentName" items="${nameArr}">

 ${fn:toUpperCase(currentName)}

 </c:forEach>

 </body>
</html>

After packaging this JSP in a WAR file, deploying it and pointing the browser to its
URL, we should see a page like the following:

This JSP illustrates the use of some of the JSTL functions. The fn:split() function
splits a String into an array of strings using the character specified by its second
parameter as a delimiter.

JSP Standard Tag Library

[146]

Notice that the strings inside the fn:split() function are
enclosed inside single quotes. JSTL allows this as using double
quotes for the strings would have resulted in illegal syntax, as the
fn:split() function is already inside double quotes.

In the example, the fn:length() function returns the number of elements in the array
we created when the fn:split() function was executed. Like we mentioned earlier,
the fn:length() function can also take a Collection or a String as a parameter.
When applied to a Collection, the function returns the number of elements in it.
When applied to a String, the function returns the number of characters in
the String.

The next function illustrated in the example is fn:toUpperCase(), which simply
makes every alphabetical character in the String it takes as a parameter uppercase.
There are many other JSTL functions, all of them are very intuitive to use. The
following table lists all the JSTL functions:

Function Description Example
fn:contains(String,
String)

Returns a boolean
indicating if the second
parameter is contained in
the first one.

${fn:contains("envir
onment", "iron")}

fn:containsIgnoreCase(
String, String)

Case-insensitive version of
fn:contains().

${fn:containsIgnoreC
ase("environment",
"Iron")}

fn:endsWith(String,
String)

Returns a boolean
indicating if the first
parameter ends with a
string equal to the second
parameter.

${fn:endsWith("Glass
Fish", "Fish")}

fn:escapeXml(String) Returns a string with all
XML characters in the
parameter escaped into
their respective XML
character entity code.

${fn:escapeXml(
"<html>")}

fn:indexOf(String,
String)

Returns an int indicating
the index of the second
parameter in the first
parameter. Returns -1 if
the second parameter is
not a substring of the first
parameter.

${fn:indexOf("GlassF
ish", "Fish")}

Chapter 4

[147]

Function Description Example
fn:join(String[],
String)

Returns a string composed
of the elements in the
first parameter, using the
second parameter as a
delimiter.

${fn:join(arrayVar,"
, ")}

fn:length(Object) Returns the length of
an array, the size of a
collection, or the length of
a string, depending on the
type of the parameter.

${fn:length("String,
Collection or
Array")}

fn:replace(String,
String, String)

Returns a string replacing
every instance of the
second parameter on the
first parameter with the
third parameter.

${fn:replace("Crysta
lFish", "Glass")}

fn:startsWith(String,
String)

Returns a boolean
indicating if the first
parameter starts with the
first parameter.

${fn:startsWith("Gla
ssFish", "Glass")}

fn:split(String,
String)

Returns an array of strings
containing elements in the
first parameter as delimited
by the second parameter.

${fn:split("Eeny,
meeny", ",")}

fn:substring(String,
int, int)

Returns a string containing
the substring in the first
parameter, starting at the
index indicated by the
second parameter and
ending just before the
index indicated by the
second parameter.

${fn:substring(
"0123456789", 3, 6)}

fn:substringAfter
(String, String)

Returns a string containing
the substring in the first
parameter, starting after
the first occurrence of the
second parameter until the
end of the first parameter.

${fn:substringAfter(
"GlassFish",
"Glass")}

fn:substringBefore
(String, String)

Returns a string containing
the substring in the first
parameter, starting before
the first occurrence of the
second parameter until the
end of the first parameter.

${fn:substringBefore
("GlassFish",
"Fish")}

JSP Standard Tag Library

[148]

Function Description Example
fn:toLowerCase
(String)

Returns a string containing
a version of the parameters
with all alphabetical
characters as lowercase.

${fn:toLowerCase(
"GlassFish")}

fn:toUpperCase
(String)

Returns a string containing
a version of the parameters
with all alphabetical
characters as uppercase.

${fn:toUpperCase
(" GlassFish ")}

fn:trim(String) Returns a string containing
a modified version of
the parameter with
all whitespace at the
beginning and end of the
parameter removed.

${fn:trim(" Gla
ssFish ")}

Summary
This chapter covered all JSP Standard Tag Library tags, including the core,
formatting, SQL, and XML tags. Additionally, JSTL functions were covered.
Examples illustrating the most common JSTL tags and functions were provided;
additional JSTL tags and functions were mentioned and described.

Database Connectivity
Any non-trivial Java EE application will persist data to a relational database. In this
chapter, we will cover how to connect to a database and perform CRUD operations
(Create, Read, Update, and Delete). There are two Java EE APIs that can be used to
interact with a relational database: the Java Database Connectivity (JDBC) API and
the Java Persistence API (JPA). Both these APIs will be discussed in this chapter.

Some of the topics covered in this chapter include:

•	 Retrieving data from a database through JDBC
•	 Inserting data into a database through JDBC
•	 Updating data in a database through JDBC
•	 Deleting data in a database through JDBC
•	 Retrieving data from a database through JPA
•	 Inserting data into a database through JPA
•	 Updating data in a database through JPA
•	 Deleting data in a database through JPA
•	 Building queries programmatically through the JPA 2.0 Criteria API
•	 Automating data validation through JPA 2.0's Bean Validation support

The CustomerDB database
Examples in this chapter will use a database called CUSTOMERDB. This database
contains tables to track customer and order information for a fictitious store. The
database uses JavaDB for its RDBMS as it comes bundled with GlassFish.

A script is included with this book's code download to create this database and
pre-populate some of its tables. Instructions on how to execute the script and add a
connection pool and datasource to access it are included in the download as well.

Database Connectivity

[150]

The schema for the CUSTOMERDB database is depicted in the following image:

As can be seen in the image, the database contains tables to store customer
information such as name, address, and email address. It also contains tables
to store order and item information.

The ADDRESS_TYPES table will store values such as "Home", "Mailing", and
"Shipping" to distinguish the type of address in the ADDRESSES table. Similarly, the
TELEPHONE_TYPES table stores the values "Cell", "Home", and "Work". These two
tables are pre-populated when creating the database as well as the US_STATES table.

For simplicity's sake, our database only deals with
U.S. addresses.

JDBC
The Java Database Connectivity (JDBC) API is the standard API used for Java
applications to interact with a database. Although JDBC is not part of the Java EE
specification, it is used very frequently in Java EE applications.

Chapter 5

[151]

JDBC allows us to send queries to a database to perform select, insert, update, and
delete operations. The most common way of interacting with a database through
JDBC is through the java.sql.PreparedStatement interface. Using prepared
statements through this interface offers a number of benefits over using standard
JDBC statement objects. Some of the benefits of prepared statements include:

•	 Prepared statements are compiled into the RDBMS the first time they are
executed, therefore increasing performance

•	 Prepared statements are immune to SQL injection attacks
•	 Prepared statements free us from explicitly adding single quotes (') to our

SQL statements to handle character values

The java.sql.PreparedStatement interface has two methods that are
very frequently used to send queries to the database: executeQuery() and
executeUpdate(). The executeQuery() method is used to issue select statements
to the database and returns an instance of java.sql.ResultSet containing the rows
returned from the query. The executeUpdate() method is used to issue insert,
update, and delete statements to the database. It returns an int value corresponding
to the number of rows affected by the query. In the following sections, we illustrate
database interaction through these two methods.

Retrieving data from a database
As we mentioned in the previous section, the executeQuery() method of the java.
sql.PreparedStatement interface is used to send select statements to the database
and retrieve data from it. The following example code illustrates this process:

package net.ensode.glassfishbook.jdbcselect;

import java.io.IOException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.ArrayList;

import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.sql.DataSource;

Database Connectivity

[152]

public class JDBCSelectServlet extends HttpServlet
{
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 String sql = "select us_state_nm, " +
 "us_state_cd from us_states order by us_state_nm";

 ArrayList<UsStateBean> stateList = new ArrayList<UsStateBean>();
 try
 {
 InitialContext initialContext = new InitialContext();

 DataSource dataSource = (DataSource) initialContext .lookup
 ("jdbc/__CustomerDBPool");

 Connection connection = dataSource.getConnection();

 PreparedStatement preparedStatement =
 connection.prepareStatement(sql);

 ResultSet resultSet = preparedStatement.executeQuery();

 while (resultSet.next())

 {

 stateList.add(new
 UsStateBean(resultSet.getString("us_state_nm"),
 resultSet.getString("us_state_cd")));

 }

 resultSet.close();

 preparedStatement.close();

 connection.close();

 request.setAttribute("stateList", stateList);
 request.getRequestDispatcher("us_states.jsp").forward(request,
 response);
 }
 catch (NamingException namingException)
 {
 namingException.printStackTrace();
 }
 catch (SQLException sqlException)
 {
 sqlException.printStackTrace();
 }
 }
}

Chapter 5

[153]

In this servlet, we create a String containing the select statement we will be
sending to the database.

We then create an instance of javax.naming.InitialContext. This instance is then
used to perform a JNDI (Java Naming and Directory Interface) lookup for the javax.
sql.DataSource interface corresponding to the database we wish to connect to. This is
accomplished by calling the InitialContext.lookup() method. The string argument
to this method must match the name of the datasource we set up in GlassFish (refer
to Chapter 1). This method returns an instance of java.lang.Object. Its return value
must be casted to the appropriate type (in this case, javax.sql.DataSource).

Once we obtain a reference to the DataSource object by performing a JNDI
lookup, we can obtain a connection from the connection pool by invoking the
getConnection() method defined in the javax.sql.DataSource interface. This
method returns an instance of java.sql.Connection.

Once we get a connection from a connection pool, we obtain an instance of a
class implementing the java.sql.PreparedStatement interface by invoking
the prepareStatement() method on the instance of java.util.Connection we
obtained in the previous step. The prepareStatement() method takes a string
containing the SQL query as its sole argument.

Once we get an instance of a class implementing java.sql.PreparedStatement,
we can finally query the database by invoking its executeQuery() method. The
PreparedStatement.executeQuery() method returns an instance of a class
implementing the java.sql.ResultSet interface. This instance contains the results
of our query.

The servlet then iterates through the result set and populates an ArrayList with
instances of a JavaBean of type net.ensode.glassfishbook.jdbcselect.
UsStateBean.

Finally, we close the result set and the prepared statement by invoking their close()
methods, and the connection is released back to the connection pool by calling the
close() method on the java.sql.Connection instance we were using.

Calling the close() method on the connection does not actually
close the connection; it is released back to the connection pool so
that other applications can use it.

The previously populated ArrayList is then attached to the request and the request
is forwarded to a JSP called us_states.jsp.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Database Connectivity

[154]

For brevity, source for UsStateBean.java and us_states.jsp
are not shown as these files don't illustrate anything we haven't seen
before. Both files are part of this book's code download.

After packaging the code in a WAR file, and deploying and pointing the browser to
the appropriate URL, we should see the following page rendered in the browser:

All the U.S. state data displayed in the page was retrieved from the database.

As can be seen in the example, the ResultSet interface has a next() method. This
method returns a boolean indicating if the result set has more rows. An instance of
a class implementing ResultSet has a cursor pointing to the current row. Before
any calls to the next() method, the cursor is positioned before the first row. When
the next() method is called for the first time, the cursor points to the first row in the
result set. Subsequent calls to the next() method move the cursor to the next row.
When the cursor is pointing to the last row in the ResultSet, a call to next() will
return false, indicating that there are no more rows in the ResultSet.

Chapter 5

[155]

The ResultSet.next() method is commonly used as a condition in a while loop.
The loop will execute until this method returns false. Inside the loop, operations can
be performed on the current row in the result set. The example uses this technique
to populate a simple JavaBean with the values for the current row. As can be
seen in the code, the ResultSet interface contains a method called getString().
The getString() method returns the value of the column indicated by its sole
parameter, which is a String corresponding to the column we would like to obtain
the value for.

In addition to the getString() method, the ResultSet interface contains a series
of methods for obtaining other types of data. The following table illustrates the most
commonly used ones (for the complete list, refer to the JavaDoc documentation for the
ResultSet interface at http://java.sun.com/javase/6/docs/api/index.html):

Method name Return type
getBoolean() boolean

getDate() java.sql.Date

getDouble() double

getFloat() float

getInt() int

getLong() long

getShort() short

getString() java.lang.String

getTime() java.sql.Time

getTimeStamp() java.sql.Timestamp

There are two overloaded versions of each of the methods listed in the table. One
version takes a String indicating the column name as a parameter, the other version
takes an int indicating the position of the column in the query. For example, in the
following query:

select column1, column2, column3 from table

The column called column1 has a position of 1, column2 has a position of 2, and
column3 has a position of 3. Using the version of the previous methods, taking
an int usually results in code that is harder to read and understand than using a
version taking a String, therefore its usage is discouraged.

Database Connectivity

[156]

The PreparedStatement instance obtained by calling Connection.
prepareStatement() contains not just an SQL statement, but a precompiled
SQL statement. An SQL statement is given to the PreparedStatement instance
and this SQL statement is sent to the RDBMS for compilation. This means that
when the PreparedStatement instance is executed, the RDBMS can run the
PreparedStatement SQL statement without compiling it and the subsequent calls
for execution are faster. Although this is nice for static queries like the one in the
previous example, where it really shines is when queries are created dynamically
by passing parameters to them. The following example is a modified version of the
previous servlet illustrating this concept:

package net.ensode.glassfishbook.jdbcselect;

import java.io.IOException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.ArrayList;

import javax.annotation.Resource;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class JDBCSelectServlet2 extends HttpServlet
{
 @Resource(name = "jdbc/__CustomerDBPool")

 private javax.sql.DataSource dataSource;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 String sql = "select us_state_nm, us_state_cd " +
 "from us_states where us_state_nm like ? " +
 "or us_state_nm like ? order by us_state_nm";

 ArrayList<UsStateBean> stateList = new ArrayList<UsStateBean>();
 try
 {
 Connection connection = dataSource.getConnection();
 PreparedStatement preparedStatement =
 connection.prepareStatement(sql);

Chapter 5

[157]

 preparedStatement.setString(1, "North%");

 preparedStatement.setString(2, "South%");

 ResultSet resultSet = preparedStatement.executeQuery();
 response.setContentType("text/html");
 while (resultSet.next())
 {
 stateList.add(new
 UsStateBean(resultSet.getString("us_state_nm"),
 resultSet.getString("us_state_cd")));
 }
 resultSet.close();
 preparedStatement.close();
 connection.close();
 request.setAttribute("stateList", stateList);
 request.getRequestDispatcher("us_states.jsp").forward(request,
 response);
 }
 catch (SQLException sqlException)
 {
 sqlException.printStackTrace();
 }
 }
}

In this version of the servlet, we modified the SQL query to limit the result set
according to some parameters. Notice the question marks in the SQL statements.
These question marks are placeholders for query parameters and are not actually
sent to the database.

In the previous example, the setString() method of the PreparedStatement
interface is used to substitute the query parameters with the actual values that
will be sent to the database. This method takes two arguments: the first one is the
parameter index for the substitution and the second one is the value to use as a
substitute. After replacing the parameters with the values, the query in the previous
code will retrieve data for all states whose names start with the word "North" or start
with the word "South".

Notice that unlike with arrays or collections, the index
of the first parameter is 1, not 0.

Database Connectivity

[158]

After compiling the code, packaging in a WAR file and deploying it, and pointing
the browser to its URL, we should see a page displaying the following table in
the browser:

In addition to the setString() method, the PreparedStatement interface contains
many similar methods that allow us to set parameters of different types. The
following table illustrates the most commonly used ones (for the complete list,
refer to the JavaDoc documentation for the PreparedStatement interface at
http://java.sun.com/javase/6/docs/api/index.html):

PreparedStatement Method Name
setBoolean(int parameterIndex, boolean b)

setDate(int parameterIndex, java.sql.Date d)

setDouble(int parameterIndex, double d)

setFloat(int parameterIndex, float f)

setInt(int parameterIndex, int i)

setLong(int parameterIndex, long l)

setShort(int parameterIndex, short s)

setString(int parameterIndex, String s)

setTime(int parameterIndex, java.sql.Time t)

setTimeStamp(int parameterIndex, java.sql.TimeStamp t)

In all these methods, the first argument defines the parameter index (starting with 1)
and the second argument contains the value for the parameter.

In addition to modifying the query to accept parameters, we made an
additional, unrelated change to the servlet. Instead of creating an instance
of javax.naming.InitialContext and performing a JNDI lookup to obtain
a reference to the DataSource, we used dependency injection to obtain the
said instance.

Chapter 5

[159]

Dependency injection is a design pattern in which an object's
dependencies are injected at runtime by a container. This design
pattern was made popular in the Java world by the Spring framework.
Java EE uses the @Resource annotation to implement the pattern.

We accomplished this by moving the declaration of the dataSource object out of
the doGet() method and making it a field. We then decorated it with the @Resource
annotation. The @Resource annotation has an element called name. This element is
used to indicate the JNDI name of the resource we want to obtain.

The @Resource annotation can be used to look up any kind of resources available
through JNDI, not only DataSources.

Modifying database data
In the previous section, we saw how we can use the executeQuery() method of
the java.sql.PreparedStatement interface to read data from the database. In this
section, we will see how we can use the executeUpdate() method of this interface
to insert, update, or delete data from the database. The executeUpdate() method is
illustrated in the following example:

package net.ensode.glassfishbook.jdbcupdate;

import java.io.IOException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;

import javax.annotation.Resource;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.sql.DataSource;

public class JdbcUpdateServlet extends HttpServlet
{
 @Resource(name = "jdbc/__CustomerDBPool")
 private DataSource dataSource;
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException

Database Connectivity

[160]

 {
 String insertCustomerSql = "insert into " +
 "customers (customer_id, first_name, " +
 "last_name, email) values (?,?,?,?)";

 String updateCustomerLastNameSql = "update customers " +
 "set last_name = ? where customer_id = ?";

 String deleteCustomerSql = "delete from customers " +
 "where customer_id = ?";

 PreparedStatement insertCustomerStatement;
 PreparedStatement updateCustomerLastNameStatement;
 PreparedStatement deleteCustomerStatement;
 try
 {
 Connection connection = dataSource.getConnection();
 insertCustomerStatement =
 connection.prepareStatement(insertCustomerSql);
 updateCustomerLastNameStatement =
 connection.prepareStatement(updateCustomerLastNameSql);
 deleteCustomerStatement =
 connection.prepareStatement(deleteCustomerSql);

 insertCustomerStatement.setInt(1, 1);

 insertCustomerStatement.setString(2, "Leo");

 insertCustomerStatement.setString(3, "Smith");

 insertCustomerStatement.setString(4, "lsmith@fake.com");

 insertCustomerStatement.executeUpdate();

 insertCustomerStatement.setInt(1, 2);

 insertCustomerStatement.setString(2, "Jane");

 insertCustomerStatement.setString(3, "Davis");

 insertCustomerStatement.setString(4, null);

 insertCustomerStatement.executeUpdate();

 updateCustomerLastNameStatement.setString(1, "Jones");

 updateCustomerLastNameStatement.setInt(2, 2);

 updateCustomerLastNameStatement.executeUpdate();

 deleteCustomerStatement.setInt(1, 1);

 deleteCustomerStatement.executeUpdate();

 deleteCustomerStatement.close();
 updateCustomerLastNameStatement.close();

Chapter 5

[161]

 insertCustomerStatement.close();
 connection.close();
 response.getWriter().println("Database Updated Successfully");
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

In this servlet, all SQL statements modify the data in the database. Just as in the
previous example, we obtain a reference to the datasource by using dependency
injection. We then obtain a connection from the connection pool by calling the
getConnection() method defined in the javax.sql.DataSource interface.

Next, we obtain an instance of a class implementing the javax.sql.
PreparedStatement interface for each SQL statement. We do this by calling the
prepareStatement() method defined in the java.sql.Connection interface.

Just like before, we set the values for each parameter by calling the appropriate
methods defined in the PreparedStatement interface (in the example, setInt()
and setString()). After each parameter is set, we call the executeUpdate()
method. At this point, the statement is actually executed in the database.

After performing all four updates to the database, the servlet simply prints the
message "Database Updated Successfully" in the browser.

The Java Persistence API
The Java Persistence API (JPA) was introduced to Java EE in version 5 of the
specification. Like its name implies, it is used to persist data to a Relational
Database Management System. JPA replaced entity beans in Java EE 5 (of course,
for backwards compatibility, entity beans are still supported). Java EE Entities are
regular Java classes. The Java EE container knows these classes are entities because
they are decorated with the @Entity annotation. Let's look at an entity mapping to
the CUSTOMER table in the CUSTOMERDB database:

package net.ensode.glassfishbook.jpa;

import java.io.Serializable;

import javax.persistence.Column;
import javax.persistence.Entity;

Database Connectivity

[162]

import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name = "CUSTOMERS")
public class Customer implements Serializable
{
 @Id
 @Column(name = "CUSTOMER_ID")
 private Long customerId;

 @Column(name = "FIRST_NAME")
 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

 private String email;

 public Long getCustomerId()
 {
 return customerId;
 }
 public void setCustomerId(Long customerId)
 {
 this.customerId = customerId;
 }
 public String getEmail()
 {
 return email;
 }
 public void setEmail(String email)
 {
 this.email = email;
 }
 public String getFirstName()
 {
 return firstName;
 }
 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }
 public String getLastName()

Chapter 5

[163]

 {
 return lastName;
 }
 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }
}

In this example, the @Entity annotation lets GlassFish (or for that matter, any other
Java EE-compliant application server) know that this class is an entity.

The @Table(name = "CUSTOMERS") annotation lets the application server know
what table to map the entity to. The value of the name element contains the name of
the database table that the entity maps to. This annotation is optional. If the name of
the class maps the name of the database table, then it isn't necessary to specify what
table the entity maps to.

The @Id annotation indicates that the customerId field maps to the primary key.

The @Column annotation maps each field to a column in the table. If the name of the
field matches the name of the database column, then this annotation is not needed.
This is the reason why the email field is not annotated.

That is pretty much all we need to do to create a Java EE Entity. Compare this to
entity beans, where the bean had to implement a number of life cycle methods that
were rarely used. We also had to write a local and/or remote interface, a local and/
or remote home interface, plus a deployment descriptor in order to develop a single
entity bean.

The EntityManager class is used to persist entities to a database. The following
example illustrates its usage:

package net.ensode.glassfishbook.jpa;

import java.io.IOException;

import javax.annotation.Resource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.transaction.HeuristicMixedException;

Database Connectivity

[164]

import javax.transaction.HeuristicRollbackException;
import javax.transaction.NotSupportedException;
import javax.transaction.RollbackException;
import javax.transaction.SystemException;
import javax.transaction.UserTransaction;

public class JpaDemoServlet extends HttpServlet
{
 @PersistenceUnit
 private EntityManagerFactory entityManagerFactory;
 @Resource
 private UserTransaction userTransaction;
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();
 Customer customer = new Customer();
 Customer customer2 = new Customer();
 Customer customer3;

 customer.setCustomerId(3L);
 customer.setFirstName("James");
 customer.setLastName("McKenzie");
 customer.setEmail("jamesm@notreal.com");

 customer2.setCustomerId(4L);
 customer2.setFirstName("Charles");
 customer2.setLastName("Jonson");
 customer2.setEmail("cjohnson@phony.org");
 try
 {
 userTransaction.begin();
 entityManager.persist(customer);
 entityManager.persist(customer2);

 customer3 = entityManager.find(Customer.class, 4L);
 customer3.setLastName("Johnson");
 entityManager.persist(customer3);

 entityManager.remove(customer);
 userTransaction.commit();

Chapter 5

[165]

 }
 catch (NotSupportedException e)
 {
 e.printStackTrace();
 }
 catch (SystemException e)
 {
 e.printStackTrace();
 }
 catch (SecurityException e)
 {
 e.printStackTrace();
 }
 catch (IllegalStateException e)
 {
 e.printStackTrace();
 }
 catch (RollbackException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicMixedException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicRollbackException e)
 {
 e.printStackTrace();
 }
 response.getWriter().println("Database Updated Successfully");
 }
}

This servlet obtains an instance of a class implementing the javax.persistence.
EntityManagerFactory interface via dependency injection. This is done by
decorating the EntityManagerFactory variable with the @PersistenceUnit
annotation. The EntityManagerFactory instance is used to obtain a reference to an
instance of a class implementing the javax.persistence.EntityManager interface.

An instance of a class implementing the javax.transaction.UserTransaction
interface is then injected via the @Resource annotation. This object is necessary as
without wrapping calls to persist entities to the database, the code would throw a
javax.persistence.TransactionRequiredException.

Database Connectivity

[166]

EntityManager performs many of the duties that home interfaces performed for
entity beans, such as finding entities in a database, updating them, or deleting them.
We obtain an instance of a class implementing EntityManager by invoking the
createEntityManager() method on EntityManagerFactory.

As JPA entities are plain old Java objects (POJOs), they can be instantiated via the
new operator. We call methods on them directly, unlike with entity beans where
methods on an instance of a class implementing their remote interface is used.

The call to the setCustomerId() method takes advantage of
autoboxing—a feature added to the Java language in JDK 1.5.
Notice that the method takes an instance of java.lang.Long as
its parameter, but we are using long primitives. The code compiles
and executes properly thanks to this feature.

Calls to the persist() method on EntityManager must be in a transaction, therefore
it is necessary to start one by calling the begin() method on UserTransaction.

We then insert two new rows to the CUSTOMERS table by calling the persist()
method on entityManager for the two instances of the Customer class we populated
earlier in the code.

After persisting the data contained in the customer and customer2 objects, we
search the database for a row in the CUSTOMERS table with a primary key of 4. We
do this by invoking the find() method on entityManager. This method takes the
class of the entity we are searching for as its first parameter, and the primary key
of the row corresponding to the object we want to obtain. This method is roughly
equivalent to the findByPrimaryKey() method on an entity bean's home interface.

The primary key we set for the customer2 object was 4, therefore what we have
now is a copy of this object. The last name for this customer was misspelled when
we originally inserted his data into the database. We now correct Mr. Johnson's last
name by invoking the setLastName() method on customer3, then updating the
information in the database by invoking entityManager.persist().

We then delete the information for the customer object by invoking
entityManager.remove() and passing the customer object as a parameter.

Finally, we commit the changes to the database by invoking the commit() method on
userTransaction.

Chapter 5

[167]

In order for the previous code to work as expected, an XML configuration file named
persistence.xml must be deployed in the WAR file containing the previous servlet.
This file must be placed in the WEB-INF/classes/META-INF/ directory inside the
WAR file. Contents of this file for the previous code are shown next:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
 <persistence-unit name="customerPersistenceUnit">
 <jta-data-source>jdbc/__CustomerDBPool</jta-data-source>
 </persistence-unit>
</persistence>

persistence.xml must contain at least one <persistence-unit> element. Each
<persistence-unit> element must provide a value for its name attribute and
contain a <jta-data-source> child element whose value is the JNDI name of the
datasource to be used for the persistence unit.

The reason more than one <persistence-unit> element is allowed is because an
application may access more than one database. A <persistence-unit> element is
required for each database the application will access. If the application defines more
than one <persistence-unit> element, then the @PersistenceUnit annotation
used to inject the EntityManagerFactory interface must provide a value for its
unitName element. The value for this element must match the name attribute of the
corresponding <persistence-unit> element in persistence.xml.

Cannot persist detached object exception
Frequently, an application will retrieve a JPA entity via the
EntityManager.find() method, then pass this entity to a business
or user interface layer where it will be potentially modified, and later
the database data corresponding to the entity will be updated. In cases
like this, invoking EntityManager.persist() will result in an
exception. In order to update JPA entities this way, we need to invoke
EntityManager.merge(). This method takes an instance of the JPA
entity as its single argument and updates the corresponding row in the
database with the data stored in it.

Database Connectivity

[168]

Entity relationships
In the previous section, we saw how to retrieve, insert, update, and delete single
entities from the database. Entities are rarely isolated; in the vast majority of cases,
they are related to other entities.

Entities can have one-to-one, one-to-many, many-to-one, and many-to-many
relationships.

For example, in the CustomerDB database, there is a one-to-one relationship between
the LOGIN_INFO and CUSTOMERS tables. This means that each customer has
exactly one corresponding row in the LOGIN_INFO table. There is also a one-to-
many relationship between the CUSTOMERS table and the ORDERS table. This is
because a customer can place many orders. Additionally, there is a many-to-many
relationship between the ORDERS table and the ITEMS table. This is because an
order can contain many items and an item can be found in many orders.

In the next few sections, we discuss how to establish relationships between
JPA entities.

One-to-one relationships
One-to-one relationships occur when an instance of an entity can have zero or one
corresponding instance of another entity.

One-to-one entity relationships can be bidirectional (each entity is aware of the
relationship) or unidirectional (only one of the entities is aware of the relationship).
In the CUSTOMERDB database, one-to-one mapping between the LOGIN_INFO and
CUSTOMERS tables is unidirectional, as the LOGIN_INFO table has a foreign key to
the CUSTOMERS table, but not the other way around. As we will soon see, this fact
does not stop us from creating a bidirectional one-to-one relationship between the
Customer entity and the LoginInfo entity.

The source code for the LoginInfo entity that maps to the LOGIN_INFO table can be
seen next:

package net.ensode.glassfishbook.entityrelationships;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.Table;

@Entity

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5

[169]

@Table(name = "LOGIN_INFO")
public class LoginInfo
{
 @Id
 @Column(name = "LOGIN_INFO_ID")
 private Long loginInfoId;

 @Column(name = "LOGIN_NAME")
 private String loginName;

 private String password;

 @OneToOne
 @JoinColumn(name="CUSTOMER_ID")
 private Customer customer;

 public Long getLoginInfoId()
 {
 return loginInfoId;
 }
 public void setLoginInfoId(Long loginInfoId)
 {
 this.loginInfoId = loginInfoId;
 }
 public String getPassword()
 {
 return password;
 }
 public void setPassword(String password)
 {
 this.password = password;
 }
 public String getLoginName()
 {
 return loginName;
 }
 public void setLoginName(String userName)
 {
 this.loginName = userName;
 }
 public Customer getCustomer()
 {
 return customer;
 }
 public void setCustomer(Customer customer)
 {
 this.customer = customer;
 }
}

Database Connectivity

[170]

The code for this entity is very similar to the code for the Customer entity. It defines
fields that map to database columns. Each field whose name does not match the
database column name is decorated with the @Column annotation. In addition to
that, the primary key is decorated with the @Id annotation.

Where this code gets interesting is in the declaration of the customer field. As
can be seen in the code, the customer field is decorated with the @OneToOne
annotation. This lets the application server (GlassFish) know that there is a one-to-
one relationship between this entity and the Customer entity. The customer field is
also decorated with the @JoinColumn annotation. This annotation lets the container
know what column in the LOGIN_INFO table is the foreign key corresponding to the
primary key in the CUSTOMER table. Since LOGIN_INFO, the table that the LoginInfo
entity maps to has a foreign key to the CUSTOMER table, the LoginInfo entity
owns the relationship. If the relationship was unidirectional, we wouldn't have to
make any changes to the Customer entity. However, as we would like to have a
bidirectional relationship between these two entities, we need to add a LoginInfo
field to the Customer entity along with the corresponding getter and setter methods.

Like we mentioned before, in order to make the one-to-one relationship between
the Customer and LoginInfo entities bidirectional, we need to make a few simple
changes to the Customer entity:

package net.ensode.glassfishbook.entityrelationships;

import java.io.Serializable;
import java.util.Set;

import javax.persistence.CascadeType;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.OneToMany;
import javax.persistence.OneToOne;
import javax.persistence.Table;

@Entity
@Table(name = "CUSTOMERS")
public class Customer implements Serializable
{
 @Id
 @Column(name = "CUSTOMER_ID")
 private Long customerId;

 @Column(name = "FIRST_NAME")
 private String firstName;

Chapter 5

[171]

 @Column(name = "LAST_NAME")
 private String lastName;

 private String email;

 @OneToOne(mappedBy = "customer")
 private LoginInfo loginInfo;

 public Long getCustomerId()
 {
 return customerId;
 }
 public void setCustomerId(Long customerId)
 {
 this.customerId = customerId;
 }
 public String getEmail()
 {
 return email;
 }
 public void setEmail(String email)
 {
 this.email = email;
 }
 public String getFirstName()
 {
 return firstName;
 }
 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }
 public String getLastName()
 {
 return lastName;
 }
 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }
 public LoginInfo getLoginInfo()
 {
 return loginInfo;
 }
 public void setLoginInfo(LoginInfo loginInfo)
 {
 this.loginInfo = loginInfo;
 }

}

Database Connectivity

[172]

The only change we need to make to the Customer entity to make the one-to-
one relationship bidirectional is to add a LoginInfo field to it along with the
corresponding setter and getter methods. The loginInfo field is decorated with
the @OneToOne annotation. As the Customer entity does not own the relationship
(the table it maps to does not have a foreign key to the corresponding table), the
mappedBy element of the @OneToOne annotation needs to be added. This element
specifies what field in the corresponding entity has the other end of the relationship.
In this particular case, the customer field in the LoginInfo entity corresponds to the
other end of this one-to-one relationship.

The following servlet illustrates the use of this entity:

package net.ensode.glassfishbook.entityrelationships;

import java.io.IOException;

import javax.annotation.Resource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.transaction.HeuristicMixedException;
import javax.transaction.HeuristicRollbackException;
import javax.transaction.NotSupportedException;
import javax.transaction.RollbackException;
import javax.transaction.SystemException;
import javax.transaction.UserTransaction;

public class OneToOneRelationshipDemoServlet extends HttpServlet
{
 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;

 @Resource
 private UserTransaction userTransaction;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 EntityManager entityManager =

Chapter 5

[173]

 entityManagerFactory.createEntityManager();
 Customer customer;
 LoginInfo loginInfo = new LoginInfo();
 loginInfo.setLoginInfoId(1L);
 loginInfo.setLoginName("charlesj");
 loginInfo.setPassword("iwonttellyou");
 try
 {
 userTransaction.begin();
 customer = entityManager.find(Customer.class, 4L);
 loginInfo.setCustomer(customer);
 entityManager.persist(loginInfo);
 userTransaction.commit();
 response.getWriter().println("Database updated successfully.");
 }
 catch (NotSupportedException e)
 {
 e.printStackTrace();
 }
 catch (SystemException e)
 {
 e.printStackTrace();
 }
 catch (SecurityException e)
 {
 e.printStackTrace();
 }
 catch (IllegalStateException e)
 {
 e.printStackTrace();
 }
 catch (RollbackException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicMixedException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicRollbackException e)
 {
 e.printStackTrace();
 }
 }
}

Database Connectivity

[174]

In this example, we first create an instance of the LoginInfo entity and populate it
with some data. We then obtain an instance of the Customer entity from the database
by invoking the find() method of EntityManager (data for this entity was inserted
into the CUSTOMERS table in one of the JDBC examples). We then invoke the
setCustomer() method on the LoginInfo entity, passing the customer object as a
parameter. Finally, we invoke the EntityManager.persist() method to save the
data in the database.

What happens behind the scenes is that the CUSTOMER_ID column of the
LOGIN_INFO table gets populated with the primary key of the corresponding
row in the CUSTOMERS table. This can be easily verified by querying the
CUSTOMERDB database.

Notice how the call to EntityManager.find() to obtain the
Customer entity is inside the same transaction where we call
EntityManager.persist(). This must be the case, otherwise the
database will not be updated successfully.

One-to-many relationships
With JPA, one-to-many entity relationships can be bidirectional (one entity
contains a many-to-one relationship and the corresponding entity contains an
inverse one-to-many relationship).

With SQL, one-to-many relationships are defined by foreign keys in one of the tables.
The "many" part of the relationship is the one containing a foreign key to the "one"
part of the relationship. One-to-many relationships defined in an RDBMS are typically
unidirectional, as making them bidirectional usually results in denormalized data.

Just like when defining a unidirectional one-to-many relationship in an RDBMS, in
JPA the "many" part of the relationship is the one that has a reference to the "one"
part of the relationship. Therefore, the annotation used to decorate the appropriate
setter method is @ManyToOne.

In the CUSTOMERDB database, there is a unidirectional one-to-many relationship
between customers and orders. We define this relationship in the Order entity:

package net.ensode.glassfishbook.entityrelationships;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToOne;

Chapter 5

[175]

import javax.persistence.Table;

@Entity
@Table(name = "ORDERS")
public class Order
{
 @Id
 @Column(name = "ORDER_ID")
 private Long orderId;

 @Column(name = "ORDER_NUMBER")
 private String orderNumber;

 @Column(name = "ORDER_DESCRIPTION")
 private String orderDescription;

 @ManyToOne
 @JoinColumn(name = "CUSTOMER_ID")
 private Customer customer;

 public Customer getCustomer()
 {
 return customer;
 }
 public void setCustomer(Customer customer)
 {
 this.customer = customer;
 }
 public String getOrderDescription()
 {
 return orderDescription;
 }
 public void setOrderDescription(String orderDescription)
 {
 this.orderDescription = orderDescription;
 }
 public Long getOrderId()
 {
 return orderId;
 }
 public void setOrderId(Long orderId)
 {
 this.orderId = orderId;
 }

Database Connectivity

[176]

 public String getOrderNumber()
 {
 return orderNumber;
 }
 public void setOrderNumber(String orderNumber)
 {
 this.orderNumber = orderNumber;
 }
}

If we were to define a unidirectional many-to-one relationship between the Orders
entity and the Customer entity, we wouldn't need to make any changes to the
Customer entity. To define a bidirectional one-to-many relationship between the two
entities, a new field decorated with the @OneToMany annotation needs to be added to
the Customer entity:

package net.ensode.glassfishbook.entityrelationships;

import java.io.Serializable;
import java.util.Set;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.OneToMany;
import javax.persistence.Table;

@Entity
@Table(name = "CUSTOMERS")
public class Customer implements Serializable
{
 @Id
 @Column(name = "CUSTOMER_ID")
 private Long customerId;

 @Column(name = "FIRST_NAME")
 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

 private String email;

 @OneToOne(mappedBy = "customer")
 private LoginInfo loginInfo;

 @OneToMany(mappedBy="customer")
 private Set<Order> orders;

Chapter 5

[177]

 public Long getCustomerId()
 {
 return customerId;
 }
 public void setCustomerId(Long customerId)
 {
 this.customerId = customerId;
 }
 public String getEmail()
 {
 return email;
 }
 public void setEmail(String email)
 {
 this.email = email;
 }
 public String getFirstName()
 {
 return firstName;
 }
 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }
 public String getLastName()
 {
 return lastName;
 }
 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }
 public LoginInfo getLoginInfo()
 {
 return loginInfo;
 }
 public void setLoginInfo(LoginInfo loginInfo)
 {
 this.loginInfo = loginInfo;
 }
 public Set<Order> getOrders()
 {
 return orders;
 }

 public void setOrders(Set<Order> orders)

 {

 this.orders = orders;

 }

}

Database Connectivity

[178]

The only difference between this version of the Customer entity and the previous
one is the addition of the orders field and the related getter and setter methods. Of
special interest is the @OneToMany annotation decorating this field. The mappedBy
attribute must match the name of the corresponding field in the entity corresponding
to the "many" part of the relationship. In simple terms, the value of the mappedBy
attribute must match the name of the field decorated with the @ManyToOne
annotation in the bean at the other side of the relationship.

The following servlet illustrates how to persist one-to-many relationships to
the database:

package net.ensode.glassfishbook.entityrelationships;

import java.io.IOException;

import javax.annotation.Resource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.transaction.HeuristicMixedException;
import javax.transaction.HeuristicRollbackException;
import javax.transaction.NotSupportedException;
import javax.transaction.RollbackException;
import javax.transaction.SystemException;
import javax.transaction.UserTransaction;

public class OneToManyRelationshipDemoServlet extends HttpServlet
{
 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;

 @Resource
 private UserTransaction userTransaction;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();

Chapter 5

[179]

 Customer customer;
 Order order1;
 Order order2;

 order1 = new Order();
 order1.setOrderId(1L);
 order1.setOrderNumber("SFX12345");
 order1.setOrderDescription("Dummy order.");

 order2 = new Order();
 order2.setOrderId(2L);
 order2.setOrderNumber("SFX23456");
 order2.setOrderDescription("Another dummy order.");

 try
 {
 userTransaction.begin();
 customer = entityManager.find(Customer.class, 4L);
 order1.setCustomer(customer);
 order2.setCustomer(customer);
 entityManager.persist(order1);
 entityManager.persist(order2);
 userTransaction.commit();
 response.getWriter().println("Database updated successfully.");
 }
 catch (NotSupportedException e)
 {
 e.printStackTrace();
 }
 catch (SystemException e)
 {
 e.printStackTrace();
 }
 catch (SecurityException e)
 {
 e.printStackTrace();
 }
 catch (IllegalStateException e)
 {
 e.printStackTrace();
 }
 catch (RollbackException e)
 {
 e.printStackTrace();

Database Connectivity

[180]

 }
 catch (HeuristicMixedException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicRollbackException e)
 {
 e.printStackTrace();
 }
 }
}

This code is pretty similar to the previous example. It instantiates two instances of
the Order entity, populates them with some data, then in a transaction, an instance
of the Customer entity is located and used as a parameter of the setCustomer()
method of both instances of the Order entity. We then persist both Order entities
by invoking EntityManager.persist() for each one of them.

Just like when dealing with one-to-one relationships, what happens behind
the scenes is that the CUSTOMER_ID column of the ORDERS table in the
CUSTOMERDB database is populated with the primary key corresponding
to the related row in the CUSTOMERS table.

As the relationship is bidirectional, we can obtain all orders related to a customer
by invoking the getOrders() method on the Customer entity.

Many-to-many relationships
In the CUSTOMERDB database, there is a many-to-many relationship between the
ORDERS table and the ITEMS table. We can map this relationship by adding a new
Collection<Item> field to the Order entity and decorating it with the @ManyToMany
annotation.

package net.ensode.glassfishbook.entityrelationships;

import java.util.Collection;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.JoinTable;
import javax.persistence.ManyToMany;
import javax.persistence.ManyToOne;
import javax.persistence.Table;

Chapter 5

[181]

@Entity
@Table(name = "ORDERS")
public class Order
{
 @Id
 @Column(name = "ORDER_ID")
 private Long orderId;

 @Column(name = "ORDER_NUMBER")
 private String orderNumber;

 @Column(name = "ORDER_DESCRIPTION")
 private String orderDescription;

 @ManyToOne
 @JoinColumn(name = "CUSTOMER_ID")
 private Customer customer;

 @ManyToMany

 @JoinTable(name = "ORDER_ITEMS",
 joinColumns = @JoinColumn(name = "ORDER_ID",
 referencedColumnName = "ORDER_ID"),
 inverseJoinColumns = @JoinColumn(name = "ITEM_ID",
 referencedColumnName = "ITEM_ID"))

 private Collection<Item> items;

 public Customer getCustomer()
 {
 return customer;
 }
 public void setCustomer(Customer customer)
 {
 this.customer = customer;
 }
 public String getOrderDescription()
 {
 return orderDescription;
 }
 public void setOrderDescription(String orderDescription)
 {
 this.orderDescription = orderDescription;
 }
 public Long getOrderId()

Database Connectivity

[182]

 {
 return orderId;
 }
 public void setOrderId(Long orderId)
 {
 this.orderId = orderId;
 }
 public String getOrderNumber()
 {
 return orderNumber;
 }
 public void setOrderNumber(String orderNumber)
 {
 this.orderNumber = orderNumber;
 }
 public Collection<Item> getItems()

 {

 return items;

 }

 public void setItems(Collection<Item> items)

 {

 this.items = items;

 }

}

As we can see in this code, in addition to being decorated with the @ManyToMany
annotation, the items field is also decorated with the @JoinTable annotation. Like its
name suggests, this annotation lets the application server know what table is used as
a join table to create the many-to-many relationship between the two entities. This
annotation has three relevant elements: the name element that defines the name of the
join table, and the joinColumns and inverseJoinColumns elements that define the
columns that serve as foreign keys in the join table pointing to the entities' primary
keys. Values for the joinColumns and inverseJoinColumns elements are yet
another annotation—the @JoinColumn annotation. This annotation has two relevant
elements: the name element that defines the name of the column in the join table,
and the referencedColumnName element that defines the name of the column in the
entity table.

The Item entity is a simple entity mapping to the ITEMS table in the CUSTOMERDB
database:

package net.ensode.glassfishbook.entityrelationships;

import java.util.Collection;

Chapter 5

[183]

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.ManyToMany;
import javax.persistence.Table;

@Entity
@Table(name = "ITEMS")
public class Item
{
 @Id
 @Column(name = "ITEM_ID")
 private Long itemId;

 @Column(name = "ITEM_NUMBER")
 private String itemNumber;

 @Column(name = "ITEM_SHORT_DESC")
 private String itemShortDesc;

 @Column(name = "ITEM_LONG_DESC")
 private String itemLongDesc;

 @ManyToMany(mappedBy="items")

 private Collection<Order> orders;

 public Long getItemId()
 {
 return itemId;
 }
 public void setItemId(Long itemId)
 {
 this.itemId = itemId;
 }
 public String getItemLongDesc()
 {
 return itemLongDesc;
 }
 public void setItemLongDesc(String itemLongDesc)
 {
 this.itemLongDesc = itemLongDesc;
 }
 public String getItemNumber()
 {

Database Connectivity

[184]

 return itemNumber;
 }
 public void setItemNumber(String itemNumber)
 {
 this.itemNumber = itemNumber;
 }
 public String getItemShortDesc()
 {
 return itemShortDesc;
 }
 public void setItemShortDesc(String itemShortDesc)
 {
 this.itemShortDesc = itemShortDesc;
 }
 public Collection<Order> getOrders()

 {

 return orders;

 }

 public void setOrders(Collection<Order> orders)

 {

 this.orders = orders;

 }

}

Just like the one-to-one and one-to-many relationships, many-to-many relationships
can be unidirectional or bidirectional. As we would like the many-to-many
relationship between the Order and Item entities to be bidirectional, we added a
Collection<Order> field and decorated it with the @ManyToMany annotation. As the
corresponding field in the Order entity already has the join table defined, it is not
necessary to do it again here. The entity containing the @JoinTable annotation is
said to own the relationship. In a many-to-many relationship, either entity can own
the relationship. In our example, the Order entity owns it as its Collection<Item>
field is decorated with the @JoinTable annotation.

Just like with the one-to-one and one-to-many relationships, the @ManyToMany
annotation in the non-owning side of a bidirectional many-to-many relationship
must contain a mappedBy element indicating what field in the owning entity defines
the relationship.

Now that we have seen the changes necessary to establish a bidirectional
many-to-many relationship between the Order and Item entities, we can
see the relationship in action in the following example:

Chapter 5

[185]

package net.ensode.glassfishbook.entityrelationships;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;

import javax.annotation.Resource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.transaction.HeuristicMixedException;
import javax.transaction.HeuristicRollbackException;
import javax.transaction.NotSupportedException;
import javax.transaction.RollbackException;
import javax.transaction.SystemException;
import javax.transaction.UserTransaction;

public class ManyToManyRelationshipDemoServlet extends HttpServlet
{
 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;

 @Resource
 private UserTransaction userTransaction;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();
 Order order;
 Collection<Item> items = new ArrayList<Item>();
 Item item1 = new Item();
 Item item2 = new Item();

 item1.setItemId(1L);
 item1.setItemNumber("BCD1234");
 item1.setItemShortDesc("Notebook Computer");
 item1.setItemLongDesc("64 bit Quad core CPU, 4GB memory");

Database Connectivity

[186]

 item2.setItemId(2L);
 item2.setItemNumber("CDF2345");
 item2.setItemShortDesc("Cordless Mouse");
 item2.setItemLongDesc("Three button, infrared, "
 + "vertical and horizontal scrollwheels");

 items.add(item1);
 items.add(item2);
 try
 {
 userTransaction.begin();
 entityManager.persist(item1);
 entityManager.persist(item2);
 order = entityManager.find(Order.class, 1L);
 order.setItems(items);
 entityManager.persist(order);
 userTransaction.commit();
 response.getWriter().println("Database updated successfully");
 }
 catch (NotSupportedException e)
 {
 e.printStackTrace();
 }
 catch (SystemException e)
 {
 e.printStackTrace();
 }
 catch (SecurityException e)
 {
 e.printStackTrace();
 }
 catch (IllegalStateException e)
 {
 e.printStackTrace();
 }
 catch (RollbackException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicMixedException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicRollbackException e)
 {
 e.printStackTrace();
 }
 }
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5

[187]

This code creates two instances of the Item entity and populates them with some
data. It then adds these two instances to a collection. A transaction is then started and
the two Item instances are persisted to the database. Then, an instance of the Order
entity is retrieved from the database. The setItems() method of the Order entity
instance is then invoked, passing the collection containing the two Item instances as
a parameter. The Customer instance is then persisted into the database. At this point,
two rows are created behind the scenes in the ORDER_ITEMS table, which is the join
table between the ORDERS and ITEMS tables.

Composite primary keys
Most tables in the CUSTOMERDB database have a column with the sole purpose
of serving as a primary key (this type of primary key is sometimes referred to as a
surrogate primary key or as an artificial primary key). However, some databases are
not designed this way. Instead, a column in the database that is known to be unique
across rows is used as the primary key. If there is no column whose value is not
guaranteed to be unique across rows, then a combination of two or more columns is
used as the table's primary key. It is possible to map this kind of primary key to JPA
entities by using a primary key class.

There is one table in the CUSTOMERDB database that does not have a surrogate
primary key—the ORDER_ITEMS table. This table serves as a join table between
the ORDERS and the ITEMS tables. In addition to having foreign keys for these
two tables, this table has an additional column called ITEM_QTY, which stores the
quantity of each item in an order. As this table does not have a surrogate primary
key, the JPA entity mapping to it must have a custom primary key class. In this
table, the combination of the ORDER_ID and ITEM_ID columns must be unique.
Therefore, this is a good combination for a composite primary key.

package net.ensode.glassfishbook.compositekeys;

import java.io.Serializable;

public class OrderItemPK implements Serializable
{
 public Long orderId;
 public Long itemId;

 public OrderItemPK()
 {

 }
 public OrderItemPK(Long orderId, Long itemId)
 {

Database Connectivity

[188]

 this.orderId = orderId;
 this.itemId = itemId;
 }
 @Override
 public boolean equals(Object obj)
 {
 boolean returnVal = false;
 if (obj == null)
 {
 returnVal = false;
 }
 else if (!obj.getClass().equals(this.getClass()))
 {
 returnVal = false;
 }
 else
 {
 OrderItemPK other = (OrderItemPK) obj;
 if (this == other)
 {
 returnVal = true;
 }
 else if (orderId != null && other.orderId != null
 && this.orderId.equals(other.orderId))
 {
 if (itemId != null && other.itemId != null
 && itemId.equals(other.itemId))
 {
 returnVal = true;
 }
 }
 else
 {
 returnVal = false;
 }
 }
 return returnVal;
 }
 @Override
 public int hashCode()
 {
 if (orderId == null || itemId == null)
 {
 return 0;

Chapter 5

[189]

 }
 else
 {
 return orderId.hashCode() ^ itemId.hashCode();
 }
 }
}

A custom primary key class must satisfy the following requirements:

•	 The class must be public
•	 It must implement java.io.Serializable
•	 It must have a public constructor that takes no arguments
•	 Its fields must be public or protected
•	 Its field names and types must match those of the entity
•	 It must override the default hashCode() and equals() methods defined in

the java.lang.Object class

The OrderPK class meets all of these requirements. It also has a convenience
constructor that takes two Long objects meant to initialize its orderId and itemId
fields. This constructor was added for convenience. This is not a requirement for the
class to be used as a primary key class.

When an entity uses a custom primary key class, it must be decorated with the
@IdClass annotation. As the OrderItem class uses OrderItemPK as its custom
primary key class, it must be decorated with said annotation.

package net.ensode.glassfishbook.compositekeys;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.IdClass;
import javax.persistence.Table;

@Entity
@Table(name = "ORDER_ITEMS")
@IdClass(value = OrderItemPK.class)

public class OrderItem
{
 @Id

 @Column(name = "ORDER_ID")
 private Long orderId;

Database Connectivity

[190]

 @Id

 @Column(name = "ITEM_ID")
 private Long itemId;

 @Column(name = "ITEM_QTY")
 private Long itemQty;

 public Long getItemId()
 {
 return itemId;
 }
 public void setItemId(Long itemId)
 {
 this.itemId = itemId;
 }
 public Long getItemQty()
 {
 return itemQty;
 }
 public void setItemQty(Long itemQty)
 {
 this.itemQty = itemQty;
 }
 public Long getOrderId()
 {
 return orderId;
 }
 public void setOrderId(Long orderId)
 {
 this.orderId = orderId;
 }
}

There are two differences between this entity and the previous entities we have seen.
The first difference is that this entity is decorated with the @IdClass annotation,
indicating the primary key class corresponding to it. The second difference is that
this entity has more than one field decorated with the @Id annotation. As this entity
has a composite primary key, each field that is part of the primary key must be
decorated with this annotation.

Obtaining a reference of an entity with a composite primary key is not much
different than obtaining a reference to an entity with a primary key consisting
of a single field. The following example demonstrates how to do this:

Chapter 5

[191]

package net.ensode.glassfishbook.compositekeys;

import java.io.IOException;
import java.io.PrintWriter;

import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class CompositeKeyDemoServlet extends HttpServlet
{
 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 PrintWriter printWriter = response.getWriter();
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();
 OrderItem orderItem;
 orderItem = entityManager.find(OrderItem.class, new
 OrderItemPK(1L, 2L));
 response.setContentType("text/html");
 if (orderItem != null)
 {
 printWriter.println("Found an instance of Order Item for the
 supplied primary key:
");
 printWriter.println("OrderItem order id: " +
 orderItem.getOrderId() + "
");
 printWriter.println("OrderItem item id: " +
 orderItem.getItemId() + "
");
 }
 else
 {
 printWriter.println("No instance of OrderItem found for the
 supplied primary key.");
 }
 }
}

Database Connectivity

[192]

As can be seen in this example, the only difference between locating an entity with
a composite primary key and an entity with a primary key consisting of a single
field is that an instance of the custom primary key class must be passed as a second
argument of the EntityManager.find() method. Fields for this instance must be
populated with the appropriate values for each field that is part of the primary key.

Java Persistence Query Language
All of our examples that obtain entities from the database so far have conveniently
assumed that the primary key for the entity is known ahead of time. We all know
that frequently this is not the case. Whenever we need to search for an entity by a
field other than the entity's primary key, we must use the Java Persistence Query
Language (JPQL).

JPQL is an SQL-like language used for retrieving, updating, and deleting entities in
a database. The following example illustrates how to use JPQL to retrieve a subset of
states from the US_STATES table in the CUSTOMERDB database:

package net.ensode.glassfishbook.jpaquerylang;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.List;

import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.persistence.Query;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class SelectQueryDemoServlet extends HttpServlet
{
 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 PrintWriter printWriter = response.getWriter();
 List<UsState> matchingStatesList;
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();

Chapter 5

[193]

 Query query = entityManager.createQuery(
 "SELECT s FROM UsState s WHERE s.usStateNm " +
 "LIKE :name");

 query.setParameter("name", "New%");
 matchingStatesList = query.getResultList();
 response.setContentType("text/html");
 printWriter.println("The following states match " +
 "the criteria:
");
 for (UsState state : matchingStatesList)
 {
 printWriter.println(state.getUsStateNm() + "
");
 }
 }
}

This code invokes the EntityManager.createQuery() method, passing a
String containing a JPQL query as a parameter. This method returns an instance
of javax.persistence.Query. The query retrieves all UsState entities whose
name start with the word "New".

As can be seen in this code, JPQL is similar to SQL. However, there are some
differences that may confuse readers having SQL knowledge. The equivalent SQL
code for the query in the code would be:

SELECT * from US_STATES s where s.US_STATE_NM like 'New%'

The first difference between JPQL and SQL is that in JPQL, we always reference
entity names, whereas in SQL, table names are referenced. The "s" after the entity
name in the JPQL query is an alias for the entity. Table aliases are optional in SQL,
but entity aliases are required in JPQL. Keeping these differences in mind, the JPQL
query should now be a lot less confusing.

The :name in the query is a named parameter. Named parameters are meant to be
substituted with actual values. This is done by invoking the setParameter() method
in the instance of javax.persistence.Query returned by the call to EntityManager.
createQuery(). A JPQL query can have multiple named parameters.

To actually run the query and retrieve the entities from the database, the
getResultList() method must be invoked in an instance of javax.persistence.
Query obtained from EntityManager.createQuery(). This method returns an
instance of a class implementing the java.util.List interface. This list contains the
entities matching the query criteria. If no entities match the criteria, then an empty
list is returned.

Database Connectivity

[194]

If we are certain that the query will return a single entity, then the getSingleResult()
method may be alternatively called on Query. This method returns an Object that
must be casted to the appropriate entity.

The previous example uses the LIKE operator to find entities whose name start with
the word "New". This is accomplished by substituting the query's named parameter
with the value "New%". The percent sign at the end of the parameter value means
that any number of characters after the word "New" will match the expression. The
percent sign can be used anywhere in the parameter value. For example, a value
of "%Dakota" would match any entities whose name end in "Dakota", a value of
"A%a" would match any states whose name start with a capital "A" and end with a
lowercase "a". There can be more than one percent sign in a parameter value. The
underscore sign (_) can be used to match a single character. All the rules for the
percent sign apply to the underscore sign as well.

In addition to the LIKE operator, there are other operators that can be used to
retrieve entities from the database:

•	 The = operator will retrieve entities whose field at the left of the operator
exactly matches the value at the right of the operator.

•	 The > operator will retrieve entities whose field at the left of the operator is
greater than the value at the right of the operator.

•	 The < operator will retrieve entities whose field at the left of the operator is
less than the value at the right of the operator.

•	 The >= operator will retrieve entities whose field at the left of the operator is
greater than or equal to the value at the right of the operator.

•	 The <= operator will retrieve entities whose field at the left of the operator is
less than or equal to the value at the right of the operator.

All of these operators work the same way as the equivalent operators in SQL. Just
like in SQL, these operators can be combined with the "AND" and "OR" operators.
Conditions combined with the "AND" operator match if both conditions are true,
conditions combined with the "OR" operator match if at least one of the conditions
is true.

If we intend to use a query many times, it can be stored in a named query. Named
queries can be defined by decorating the relevant entity class with the @NamedQuery
annotation. This annotation has two elements: a name element used to set the name of
the query and a query element defining the query itself. To execute a named query,
the createNamedQuery() method must be invoked in an instance of EntityManager.
This method takes a String containing the query name as its sole parameter and
returns an instance of javax.persistence.Query.

Chapter 5

[195]

In addition to retrieving entities, JPQL can be used to modify or delete entities.
However, entity modification and deletion can be done programmatically via the
EntityManager interface. Doing so results in code that tends to be more readable
than when using JPQL. Due to this, we will not cover entity modification and
deletion via JPQL. Readers interested in writing JPQL queries to modify and delete
entities, as well as readers wishing to know more about JPQL are encouraged to
review the Java Persistence 2.0 specification. This specification can be downloaded
from http://jcp.org/en/jsr/detail?id=317.

In the examples of this chapter, we showed database access done directly from
servlets. We did this to get the point across without bogging ourselves down with
details. However, in general, this is not a good practice. Database access code should
be encapsulated in Data Access Objects (DAOs).

For more information on the DAO design pattern, refer to
http://java.sun.com/blueprints/corej2eepatterns/
Patterns/DataAccessObject.html.

Also, our examples showed servlets that did pretty much nothing but database
access. Servlets typically serve as controllers when following the Model View
Controller (MVC) design pattern. We chose not to add any user interface code to our
examples as it is irrelevant to the topic at hand. However, for real applications, we
would of course have entities populated from user interface components, most likely
input fields in a JSP. These fields would be in an HTML form that when submitted,
would pass control to a servlet, which would then populate entities from the data
entered by the user and pass the entities to a DAO, which would then persist the
data to the database.

For more information about the MVC design pattern, refer to
http://java.sun.com/blueprints/patterns/MVC.html.

New features introduced in JPA 2.0
Version 2.0 of the JPA specification introduces some new features to make working
with JPA even easier. In the following sections, we discuss some of these new features:

http://java.sun.com/blueprints/patterns/MVC.html

Database Connectivity

[196]

Criteria API
One of the main additions to JPA in the 2.0 specification is the introduction of the
Criteria API. The Criteria API is meant as a complement to the Java Persistence
Query Language (JPQL).

Although JPQL is very flexible, it has some problems that make working with it
more difficult than necessary. For starters, JPQL queries are stored as strings and the
compiler has no way of validating JPQL syntax. Additionally, JPQL is not type safe.
We could write a JPQL query in which our where clause could have a string value
for a numeric property and our code would compile and deploy just fine.

To get around the JPQL limitations described in the previous paragraph, the Criteria
API was introduced to JPA in version 2.0 of the specification. The Criteria API allows
us to write JPA queries programmatically, without having to rely on JPQL.

The following code example illustrates how to use the Criteria API in our Java
EE 6 applications:

package net.ensode.glassfishbook.criteriaapi;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.List;

import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.persistence.TypedQuery;
import javax.persistence.criteria.CriteriaBuilder;
import javax.persistence.criteria.CriteriaQuery;
import javax.persistence.criteria.Path;
import javax.persistence.criteria.Predicate;
import javax.persistence.criteria.Root;
import javax.persistence.metamodel.EntityType;
import javax.persistence.metamodel.Metamodel;
import javax.persistence.metamodel.SingularAttribute;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(urlPatterns = {"/criteriaapi"})
public class CriteriaApiDemoServlet extends HttpServlet

Chapter 5

[197]

{
 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 PrintWriter printWriter = response.getWriter();
 List<UsState> matchingStatesList;
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();
 CriteriaBuilder criteriaBuilder =
 entityManager.getCriteriaBuilder();

 CriteriaQuery<UsState> criteriaQuery =
 criteriaBuilder.createQuery(UsState.class);

 Root<UsState> root = criteriaQuery.from(UsState.class);

 Metamodel metamodel = entityManagerFactory.getMetamodel();

 EntityType<UsState> usStateEntityType =
 metamodel.entity(UsState.class);

 SingularAttribute<UsState, String> usStateAttribute =
 usStateEntityType.getDeclaredSingularAttribute("usStateNm",
 String.class);

 Path<String> path = root.get(usStateAttribute);

 Predicate predicate = criteriaBuilder.like(path, "New%");

 criteriaQuery = criteriaQuery.where(predicate);

 TypedQuery typedQuery = entityManager.createQuery(criteriaQuery);

 matchingStatesList = typedQuery.getResultList();

 response.setContentType("text/html");
 printWriter.println("The following states match the
 criteria:
");
 for (UsState state : matchingStatesList)
 {
 printWriter.println(state.getUsStateNm() + "
");
 }
 }
}

This example is equivalent to the JPQL example we saw earlier in this chapter.
However, this example takes advantage of the Criteria API instead of relying
on JPQL.

Database Connectivity

[198]

When writing code using the Criteria API, the first thing we need to do is to
obtain an instance of a class implementing the javax.persistence.criteria.
CriteriaBuilder interface. As we can see in the previous example, we need
to obtain said instance by invoking the getCriteriaBuilder() method on our
EntityManager.

From our CriteriaBuilder implementation, we need to obtain an instance of a
class implementing the javax.persistence.criteria.CriteriaQuery interface.
We do this by invoking the createQuery() method in our CriteriaBuilder
implementation. Notice that CriteriaQuery is generically typed. The generic type
argument dictates the type of result that our CriteriaQuery implementation will
return upon execution. By taking advantage of generics in this way, the Criteria API
allows us to write type safe code.

Once we have obtained a CriteriaQuery implementation, from it we can obtain an
instance of a class implementing the javax.persistence.criteria.Root interface.
The Root implementation dictates what JPA entity we will be querying from. It is
analogous to the FROM query in JPQL (and SQL).

The next two lines in our example take advantage of another new addition to
the JPA specification—the Metamodel API. In order to take advantage of the
Metamodel API, we need to obtain an implementation of the javax.persistence.
metamodel.Metamodel interface by invoking the getMetamodel() method on our
EntityManagerFactory.

From our Metamodel implementation, we can obtain a generically typed instance
of the javax.persistence.metamodel.EntityType interface. The generic type
argument indicates the JPA entity our EntityType implementation corresponds
to. EntityType allows us to browse the persistent attributes of our JPA entities at
runtime. This is exactly what we do in the next line in our example. In our case, we
are getting an instance of SingularAttribute, which maps to a simple, singular
attribute in our JPA entity. EntityType has methods to obtain attributes that map to
collections, sets, lists, and maps. Obtaining these types of attributes is very similar
to obtaining a SingularAttribute, therefore we won't be covering those directly.
Refer to the Java EE 6 API documentation at http://java.sun.com/javaee/6/
docs/api/ for more information.

As we can see in our example, SingularAttribute contains two generic type
arguments. The first argument dictates the JPA entity we are working with and
the second one indicates the type of attribute. We obtain our SingularAttribute
by invoking the getDeclaredSingularAttribute() method on our EntityType
implementation and passing the attribute name (as declared in our JPA entity) as
a String.

Chapter 5

[199]

Once we have obtained our SingularAttribute implementation, we need to
obtain an import javax.persistence.criteria.Path implementation
by invoking the get() method in our Root instance and passing our
SingularAttribute as a parameter.

In our example, we will get a list of all the "new" states in the United States
(that is, all states whose names start with "New"). Of course, this is the job of
a "like" condition. We can do this with the Criteria API by invoking the like()
method on our CriteriaBuilder implementation. The like() method takes
our Path implementation as its first parameter and the value to search for as its
second parameter.

CriteriaBuilder has a number of methods that are analogous to SQL and JPQL
clauses such as equals(), greaterThan(), lessThan(), and(), or(), and so on
and so forth (for the complete list, refer to the Java EE 6 documentation at
http://java.sun.com/javaee/6/docs/api/). These methods can be combined
to create complex queries via the Criteria API.

The like() method in CriteriaBuilder returns an implementation of the
javax.persistence.criteria.Predicate interface, which we need to pass to the
where() method in our CriteriaQuery implementation. This method returns a new
instance of CriteriaBuilder which we assign to our criteriaBuilder variable.

At this point, we are ready to build our query. When working with the Criteria API,
we deal with the javax.persistence.TypedQuery interface, which can be thought
of as a type-safe version of the Query interface we use with JPQL. We obtain an
instance of TypedQuery by invoking the createQuery() method in EntityManager
and passing our CriteriaQuery implementation as a parameter.

To obtain our query results as a list, we simply invoke getResultList() on our
TypedQuery implementation. It is worth reiterating that the Criteria API is type safe.
Therefore, attempting to assign the results of getResultList() to a list of the wrong
type would result in a compilation error.

After building, packaging, and deploying our code, then pointing the browser to our
servlet's URL, we should see all the "New" states displayed in the browser.

Bean Validation support
Another new feature introduced in JPA 2.0 is support for JSR 303, Bean Validation.
Bean Validation support allows us to annotate our JPA entities with Bean Validation
annotations. These annotations allow us to easily validate user input and perform
data sanitation.

http://java.sun.com/javaee/6/docs/api/

Database Connectivity

[200]

Taking advantage of Bean Validation is very simple, all we need to do is annotate
our JPA entity fields or getter methods with any of the validation annotations
defined in the javax.validation.constraints package. Once our fields are
annotated as appropriate, the EntityManager will prevent non-validating data
from being persisted.

The following code example is a modified version of the Customer JPA entity we
saw earlier in this chapter. It has been modified to take advantage of Bean Validation
in some of its fields.

package net.ensode.glassfishbook.jpa.beanvalidation;

import java.io.Serializable;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
@Table(name = "CUSTOMERS")
public class Customer implements Serializable
{
 @Id
 @Column(name = "CUSTOMER_ID")
 private Long customerId;

 @Column(name = "FIRST_NAME")
 @NotNull

 @Size(min=2, max=20)

 private String firstName;

 @Column(name = "LAST_NAME")
 @NotNull

 @Size(min=2, max=20)

 private String lastName;

 private String email;

 public Long getCustomerId()
 {
 return customerId;

Chapter 5

[201]

 }
 public void setCustomerId(Long customerId)
 {
 this.customerId = customerId;
 }
 public String getEmail()
 {
 return email;
 }
 public void setEmail(String email)
 {
 this.email = email;
 }
 public String getFirstName()
 {
 return firstName;
 }
 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }
 public String getLastName()
 {
 return lastName;
 }
 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }
}

In this example, we used the @NotNull annotation to prevent the firstName and
lastName of our entity from being persisted with null values. We also used the
@Size annotation to restrict the minimum and maximum length of these fields.

This is all we need to do to take advantage of Bean Validation in JPA. If our code
attempts to persist or update an instance of our entity that does not pass the declared
validation, an exception of type javax.validation.ConstraintViolationException
will be thrown and the entity will not be persisted.

As we can see, Bean Validation pretty much automates data validation, freeing us
from having to manually write validation code.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Database Connectivity

[202]

In addition to the two annotations discussed in the previous example, the
javax.validation.constraints package contains several additional annotations
that we can use to automate validation on our JPA entities. Refer to the Java EE 6
API documentation at http://java.sun.com/javaee/6/docs/api/ for the
complete list.

Summary
This chapter covered how to access data in a database via both the Java Database
Connectivity (JDBC) and through the Java Persistence API (JPA).

We covered how to obtain data from the database by using JDBC via the
executeQuery() method defined in the java.sql.PreparedStatement interface.
We also covered how to insert, update, and delete data in the database via the
executeUpdate() method defined in the same interface. Additionally, using
dependency injection to inject a DataSource into an object was also covered.

Setting a Java class as an entity by decorating it with the @Entity annotation was
also covered. Additionally, we covered how to map an entity to a database table
via the @Table annotation. We also covered how to map entity fields to database
columns via the @Column annotation, as well as declaring an entity's primary key
via the @Id annotation.

Using the javax.persistence.EntityManager interface to find, persist, and update
JPA entities was also covered.

Defining both unidirectional and bidirectional one-to-one, one-to-many, and
many-to-many relationships between JPA entities was covered as well.

Additionally, we covered how to use JPA composite primary keys by developing
custom primary key classes.

We also covered how to retrieve entities from a database by using the Java
Persistence Query Language (JPQL).

We then discussed some new JPA 2.0 features such as the Criteria API that allows
us to build JPA queries programmatically, the Metamodel API that allows us to take
advantage of Java's type safety when working with JPA, and Bean Validation that
allows us to easily validate input by simply annotating our JPA entity fields.

JavaServer Faces
In this chapter we will cover JavaServer Faces (JSF), the standard component
framework of the Java EE platform. Java EE 6 includes JSF 2.0 (the latest version
of JSF) as its standard user interface component framework. Readers familiar with
earlier versions of JSF will notice that JSF 2.0 includes a number of new features to
make JSF application development simpler. Notably, JSF 2.0 relies a lot on convention
over configuration. If we follow JSF conventions, then we don't need to write a lot of
configuration. In most cases, we don't need to write any configuration at all. This fact,
combined with the fact that web.xml is optional in servlet 3.0, means that in many
cases we can write complete web applications without having to write a single line of
XML configuration. This means it is no longer necessary to write either a web.xml or a
faces-config.xml file.

Introduction to JSF 2.0
JSF 2.0 introduces a number of enhancements to make JSF application development
easier. In the following few sections, we explain some of these new features.

Readers who are not familiar with earlier versions of JSF may
not understand the following few sections completely. There's
nothing to worry about, everything will be perfectly clear by the
end of this chapter.

Facelets
One notable difference between JSF 2.0 and earlier versions is that Facelets is now
the preferred view technology for JSF. Earlier versions of JSF used JSP as their
default view technology. As JSP technology predates JSF, sometimes using JSP
with JSF felt unnatural or created problems. For example, the lifecycle of JSPs is
different from the lifecycle of JSF. This mismatch introduced some problems for
JSF 1.x application developers.

JavaServer Faces

[204]

JSF was designed from the beginning to support multiple view technologies. To take
advantage of this capability, Jacob Hookom wrote a new view technology specifically
for JSF. He named his view technology "Facelets". Facelets was so successful that it
became a de-facto standard for JSF. The JSF 2.0 expert group recognized Facelets'
popularity and made it the official view technology for JSF 2.0.

Optional faces-config.xml
J2EE applications have suffered what some have considered to be excessive
XML configuration.

Java EE 5 took some measures to reduce XML configuration considerably. Java EE 6
reduces the required configuration even further, making the JSF configuration file,
faces-config.xml, optional in the latest version of JSF.

In JSF 2.0, JSF managed beans can be configured via the new @ManagedBean
annotation, obviating the need to configure them in faces-config.xml.

Additionally, there is a convention for JSF navigation. If the value of the action
attribute of a JSF 2.0 command link or command button matches the name of a
facelet (minus the XHTML extension), then by convention the application will
navigate to the facelet matching the action name. This convention allows us to
avoid having to configure application navigation in faces-config.xml.

For most JSF 2.0 applications, faces-config.xml is completely unnecessary.

Standard resource locations
JSF 2.0 introduces standard resource locations. Resources are artifacts a page or JSF
component needs to render properly. Resource examples include CSS stylesheets,
Javascript files, and images.

In JSF 2.0, resources can be placed in a subdirectory under a folder called resources,
either at the root of a WAR file or under META-INF. By convention, JSF components
know that they can retrieve resources from one of these two locations.

In order to avoid cluttering the resources directory, resources are typically
placed in a subdirectory. This subdirectory is referred to from the library
attribute of JSF components.

For example, we could place a CSS stylesheet called styles.css under
/resources/css/styles.css.

Chapter 6

[205]

In our JSF pages, we could retrieve this CSS file using the <h:outputStylesheet>
tag as follows:

<h:outputStylesheet library="css" name="styles.css"/>

The value of the library attribute must match the subdirectory where our stylesheet
is located.

Similarly, we could have a javascript file under /resources/scripts/somescript.js
and an image under /resources/images/logo.png. We could access these resources
as follows:

<h:graphicImage library="images" name="logo.png"/>

And:
<h:outputScript library="scripts" name="somescript.js"/>

Notice that in each case the value of the library attribute matches the corresponding
subdirectory name under the resources directory, and the value of the name attribute
matches the resource's filename.

Developing our first JSF 2.0 application
To illustrate basic JSF concepts, we will develop a simple application consisting of
two Facelet pages and a single managed bean.

Facelets
Like we mentioned in this chapter's introduction, the default view technology for JSF
2.0 is Facelets. Facelets need to be written using standard XML. The most popular way
of developing Facelet pages is to use XHTML in conjunction with JSF specific XML
namespaces. The following example shows how a typical Facelet page looks like:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>Enter Customer Data</title>
 </h:head>
 <h:body>
 <h:outputStylesheet library="css" name="styles.css"
 target="body"/>
 <h:form>

JavaServer Faces

[206]

 <h:messages></h:messages>
 <h:panelGrid columns="2"
 columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:">
 </h:outputText>
 <h:inputText label="First Name"
 value="#{customer.firstName}"
 required="true">
 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:inputText label="Last Name"
 value="#{customer.lastName}"
 required="true">
 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText>
 <h:outputText value="Email:">
 </h:outputText>
 <h:inputText label="Email" value="#{customer.email}">
 <f:validateLength minimum="3" maximum="30">
 </f:validateLength>
 </h:inputText>
 <h:panelGroup></h:panelGroup>
 <h:commandButton action="confirmation" value="Save">
 </h:commandButton>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

The following screenshot illustrates how this page renders in the browser:

Chapter 6

[207]

Of course, this screenshot was taken after entering some data in every text field;
originally each text field was blank.

Any Facelet JSF page will include the two namespaces illustrated in the example.
The first namespace (xmlns:h="http://java.sun.com/jsf/html") is for tags that
render HTML components. By convention, the prefix "h" (for "HTML") is used when
using this tag library.

The second namespace (xmlns:f="http://java.sun.com/jsf/core") is the core
JSF tag library. By convention, the prefix "f" (for "faces") is used when using this
tag library.

The first JSF-specific tags we see in the previous example are the <h:head> and the
<h:body> tags. These tags are analogous to the standard HTML <head> and <body>
tags and are rendered as such when the page is displayed in the browser.

The <h:outputStylesheet> tag is also a new JSF 2.0 tag. It is used to load a CSS
stylesheet from a well-known location. (JSF 2.0 standardizes the locations of resources
such as CSS stylesheets and javascript files. This will be discussed in detail later in the
chapter.) The value of the library attribute must correspond to the directory where
the CSS file resides (this directory must be under the resources directory). The name
attribute must correspond to the name of the CSS stylesheet we wish to load.

The next tag we see is the <h:form> tag. This tag generates an HTML form when
the page is rendered. As can be seen in the example, there is no need to specify an
action or method attribute for this tag. As a matter of fact, there is neither an action
attribute nor a method attribute for this tag. The action attribute for the rendered
HTML form will be generated automatically and the method attribute will always
be "post".

The next tag we see is the <h:messages> tag. Like its name implies, this tag is used
to display any messages. As we will see shortly, JSF can automatically generate
validation messages that will be displayed inside this tag. Additionally, arbitrary
messages can be added programmatically via the addMessage() method defined in
javax.faces.context.FacesContext.

The next JSF tag we see is <h:panelGrid>. This tag is roughly equivalent to an
HTML table, but it works a bit differently. Instead of declaring rows and columns,
the <h:panelGrid> tag has a columns attribute. The value of this attribute indicates
the number of columns in the table rendered by this tag. As we place components
inside this tag, they will be placed in a row until the number of columns defined in
the columns attribute is reached, then the next component will be placed in the next
row. In the example, the value of the columns attribute is two. Therefore, the first
two tags will be placed in the first row, the next two will be placed in the second
row, and so on.

JavaServer Faces

[208]

Another interesting attribute of <h:panelGrid> is the columnClasses attribute. This
attribute assigns a CSS class to each column in the rendered table. In the example,
two CSS classes (separated by a comma) are used as the value for this attribute. This
has the effect of assigning the first CSS class to the first column and the second one to
the second column. Had there been three or more columns, the third one would have
gotten the first CSS class, the fourth one would have the second CSS class, and so on,
alternating between the first one and the second one. To clarify how this works, the
next code snippet illustrates a portion of the source of the HTML markup generated
by the previous page.

<table>
 <tbody>
 <tr>
 <td class="rightAlign">
 First Name:
 </td>
 <td class="leftAlign">
 <input type="text" name="j_idt8:j_idt12" />
 </td>
 </tr>
 <tr>
 <td class="rightAlign">
 Last Name:
 </td>
 <td class="leftAlign">
 <input type="text" name="j_idt8:j_idt14" />
 </td>
 </tr>
 <tr>
 <td class="rightAlign">
 Email:
 </td>
 <td class="leftAlign">
 <input type="text" name="j_idt8:j_idt16" />
 </td>
 </tr>
 <tr>
 <td class="rightAlign"></td>
 <td class="leftAlign">
 <input type="submit" name="j_idt8:j_idt18" value="Save" />
 </td>
 </tr>
 </tbody>
</table>

Chapter 6

[209]

Notice how each <td> tag has an alternating CSS tag of "rightAlign" or
"leftAlign". We achieved this by assigning the value "rightAlign,leftAlign" to
the columnClasses attribute of <h:panelGrid>. We should note that the CSS classes
we are using in our example are defined in the CSS stylesheet we loaded via the
<h:outputStylesheet> tag we discussed earlier.

At this point in the example, we start adding components inside <h:panelGrid>.
These components will be rendered inside the table rendered by <h:panelGrid>.
Like we mentioned before, the number of columns in the rendered table is defined
by the columns attribute of <h:panelGrid>. Therefore, we don't need to worry
about columns (or rows). We just start adding components and they will be placed
in the right place.

The next tag we see is the <h:outputText> tag. This tag is similar to the core
JSTL <c:out> tag. It outputs the text or expression in its value attribute to the
rendered page.

Next, we see the <h:inputText> tag. This tag generates a text field in the rendered
page. Its label attribute is used for any validation messages. It lets the user know
what field the message refers to.

Although it is not required for the value of the label attribute of
<h:inputText> to match the label displayed on the page, it is
highly recommended to use this value. In case of an error, this will
let the user know exactly what field the message is referring to.

Of particular interest is the tag's value attribute. What we see as the value for
this attribute is a value binding expression. What this means is that this value is
tied to a property of one of the application's managed beans. In the example, this
particular text field is tied to a property called firstName in a managed bean called
customer. When a user enters a value for this text field and submits the form, the
corresponding property in the managed bean is updated with this value. The tag's
required attribute is optional and valid values for it are true or false. If this
attribute is set to true, the container will not let the user submit the form until
the user enters some data in the text field. If the user attempts to submit the form
without entering a required value, the page will be reloaded and an error message
will be displayed inside the <h:messages> tag.

JavaServer Faces

[210]

This can be seen in the following screenshot:

This screenshot illustrates the default error message shown when the user attempts
to save the form in the example without entering a value for the customer's first
name. The first part of the message ("First Name") is taken from the value of the
label attribute of the corresponding <h:inputTextField> tag. The text of the
message can be customized as well as its style (font, color, and so on). We will
cover how to do this later in this chapter.

Project stages
Having an <h:messages> tag on every JSF page is a good idea. Without it, the user
might not see validation messages and will have no idea of why the form submission
is not going through. By default, JSF validation messages do not generate any
output in the GlassFish log. A common mistake new JSF developers make is failing
to add an <h:messages> tag to their pages. Without it, if validation fails, then the
navigation seems to fail for no reason (the same page is rendered if navigation fails,
and without an <h:messages> tag, no error messages are displayed in the browser).

To avoid the situation described in the previous paragraph, JSF 2.0 introduces the
concept of project stages.

The following project stages are defined in JSF 2.0:

•	 Production
•	 Development
•	 UnitTest
•	 SystemTest

Chapter 6

[211]

We can define the project stage as an initialization parameter to the faces servlet
in the web.xml file or as a custom JNDI resource. As web.xml is now optional and
as altering it makes it relatively easy to use the wrong project stage, if we forget to
modify it when we move our code from one environment to another, the preferred
way of setting the project stage is through a custom JNDI resource.

With GlassFish, we can do this by logging into the web console, navigating to
JNDI | Custom Resources, and clicking on the New... button.

In the resulting page, we need to enter the following information

JNDI Name javax.faces.PROJECT_STAGE

Resource Type java.lang.String

Factory Class com.sun.faces.application.
ProjectStageJndiFactory

Then, add a new property with a name of stage and a value corresponding to the
project stage we wish to use.

Setting the project stage allows us to perform some logic only if we are running in a
specific stage. For instance, in one of our managed beans, we could have code that
looks as follows:

FacesContext facesContext = FacesContext.getCurrentInstance();
Application application = facesContext.getApplication();
if (application.getProjectStage().equals(ProjectStage.Production))
{
 //do production stuff

JavaServer Faces

[212]

}
else if (application.getProjectStage().equals(
 ProjectStage.Development))
{
 //do development stuff
}
else if (application.getProjectStage().equals(ProjectStage.UnitTest))
{
 //do unit test stuff
} else if (application.getProjectStage().equals(
 ProjectStage.SystemTest))
{
 //do system test stuff
}

As we can see, project stages allow us to modify our code's behavior for different
environments. More importantly, setting the project stage allows the JSF engine to
behave a bit differently based on the project stage setting. Relevant to our discussion,
setting the project stage to development results in additional logging statements in
the application server log. Therefore, if we forget to add an <h:messages> tag to our
page, if our project stage is Development, and validation fails, we will see log entries
similar to the following in the GlassFish server log:

INFO: WARNING: FacesMessage(s) have been enqueued, but may not have been
displayed.
sourceId=j_idt8:j_idt11[severity=(ERROR 2), summary=(First Name:
Validation Error: Value is required.), detail=(First Name: Validation
Error: Value is required.)]
sourceId=j_idt8:j_idt13[severity=(ERROR 2), summary=(Last Name:
Validation Error: Value is required.), detail=(Last Name: Validation
Error: Value is required.)]
sourceId=j_idt8:j_idt15[severity=(ERROR 2), summary=(Email: Validation
Error: Value is less than allowable minimum of '3'), detail=(Email:
Validation Error: Value is less than allowable minimum of '3')]

In the default Production stage, this output is not sent to the log, leaving us confused
as to why our page navigation doesn't seem to be working.

Validation
Notice that each <h:inputField> tag has a nested <f:validateLength> tag.
As its name implies, this tag validates that the entered value for a text field is
between a minimum and maximum length. Minimum and maximum values are
defined by the tag's minimum and maximum attributes. <f:validateLength> is one
of the standard validators included with JSF. Just like with the required attribute
of <h:inputText>, JSF will automatically display a default error message when a
user attempts to submit a form with a value that does not validate.

Chapter 6

[213]

The default message and style can be overridden. We will cover how to do this in the
next section.

In addition to <f:validateLength>, JSF includes other standard validators. These
are listed in the following table:

Validation tag Description
<f:validateBean> Bean Validation allows us to validate managed bean values

by using annotations in our managed beans, without having
to add validators to our JSF tags. This tag allows us to
fine-tune Bean Validation if necessary.

<f:validateDoubleRange> Validates that the input is a valid Double value between
the two values specified by the tag's minimum and maximum
attributes, inclusive.

<f:validateLength> Validates that the input's length is between the values
specified by the tag's minimum and maximum values,
inclusive.

<f:validateLongRange> Validates that the input is a valid Double value between
the values specified by the tag's minimum and maximum
attributes, inclusive.

<f:validateRegex> Validates that the input matches a regular expression
pattern specified in the tag's pattern attribute.

<f:validateRequired> Validates that the input is not empty. This tag is equivalent
to setting the required attribute to true in the parent
input field.

JavaServer Faces

[214]

Notice that in the description for <f:validateBean>, we briefly mentioned
Bean Validation. The Bean Validation JSR aims to standardize JavaBean validation.
JavaBeans are used across several other APIs that up until recently, had to implement
their own validation logic. Just like JPA 2.0, JSF 2.0 adopts the Bean Validation
standard to help validate managed bean properties.

If we wish to take advantage of Bean Validation, all we need to do is annotate the
desired field with the appropriate Bean Validation annotation, without having to
explicitly use a JSF validator.

For the complete list of Bean Validation annotations, refer to the
javax.validation.constraints package in the Java EE 6
API at http://java.sun.com/javaee/6/docs/api/.

Grouping components
<h:panelGroup> is the next new tag in the example. Typically, <h:panelGroup>
is used to group several components together so that they occupy a single cell
in an <h:panelGrid>. This can be accomplished by adding components inside
<h:panelGroup> and adding <h:panelGroup> to <h:panelGrid>. As can be seen
in the example, this particular instance of <h:panelGroup> has no child components.
In this particular case, the purpose of <h:panelGroup> is to have an "empty" cell and
have the next component, <h:commandButton>, align with all other input fields in
the form.

Form submission
<h:commandButton> renders an HTML submit button in the browser. Just like with
standard HTML, its purpose is to submit the form. Its value attribute simply sets
the button's label. This tag's action attribute is used for navigation. The next page to
show is based on the value of this attribute. The action attribute can have a String
constant or a method binding expression, meaning that it can point to a method in a
managed bean that returns a string. Later in this chapter, we will see an example of a
<h:commandButton> tag whose action attribute is a method binding expression.

JSF 2.0 introduces a new convention. If the base name of a page in our application
matches the value of the action attribute of a <h:commandButton> tag, then we
navigate to this page when clicking the button. This new JSF 2.0 feature frees us
from having to define navigation rules, like we had to do in JSF 1.x. In our example,
our confirmation page is called confirmation.xhtml. Therefore, by convention this
page will be shown when the button is clicked, as the value of its action attribute
("confirmation") matches the base name of the page.

Chapter 6

[215]

Even though the label of the button reads Save, in our simple example,
clicking on the button won't actually save any data. Later in this chapter,
we will see a more advanced version of this application that will
actually implement this functionality.

Managed beans
In earlier versions of JSF, we used to have to define our managed beans in a
configuration file named faces-config.xml. JSF 2.0 introduces new annotations
we can use in our managed beans, freeing us from having to maintain a separate
configuration file. The following is the managed bean for our example:

package net.ensode.glassfishbook.jsf;
import javax.faces.bean.ManagedBean;

@ManagedBean
public class Customer
{
 private String firstName;
 private String lastName;
 private String email;
 public String getEmail()
 {
 return email;
 }
 public void setEmail(String email)
 {
 this.email = email;
 }
 public String getFirstName()
 {
 return firstName;
 }
 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }
 public String getLastName()
 {
 return lastName;
 }
 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }
}

JavaServer Faces

[216]

The @ManagedBean class annotation designates this bean as a JSF managed bean.
This annotation has an optional name attribute we can use to give our bean a logical
name to use in our JSF pages. However, by convention, the value of this attribute is
the same as the class name (in our case, Customer), with its first character switched
to lowercase. In our example, we let this default behavior take place. Therefore, we
access our bean's properties via the customer logical name. Notice the value of any
of the input fields to see this logical name in action.

Notice that other than the @ManagedBean annotation, there is nothing special about
this bean. It is a standard JavaBean with private properties and corresponding
getter and setter methods.

Managed bean scopes
Managed beans always have a scope. A managed bean scope defines the lifespan of
an application. The managed bean scope is defined by a class level annotation. The
following table lists all valid managed bean scopes:

Managed bean scope
annnotation

Description

@ApplicationScoped The same instance of application scoped managed beans is available
to all of our application's clients. If one client modifies the value of
an application scoped managed bean, the change is reflected across
clients.

@SessionScoped An instance of each session scoped managed bean is assigned to each
of our application's clients. A session scoped managed bean can be
used to hold client-specific data across requests.

@RequestScoped Request scoped managed beans only live through a single HTTP
request.

@ViewScoped View scoped managed beans are associated with a particular view
(page). They are destroyed once the user navigates to a different
view.

@NoneScoped None scoped managed beans are instantiated when they are accessed
by another managed bean, typically as a managed property.

@CustomScoped JSF 2.0 introduces the ability for us to create custom scopes for
our managed beans. The value attribute of the @CustomScoped
annotation must resolve to a session-scoped map.

If no scope is specified in a managed bean (like in our example), then a default scope of
request is used.

Chapter 6

[217]

Navigation
As can be seen in our input page, when clicking on the "save" button in the
customer_data_entry.xhtml page, our application will navigate to a page called
confirmation.xhtml. This happens because we are taking advantage of JSF 2.0's
convention over configuration feature, in which if the value of the action attribute
of a command button or link matches the base name of another page, then this
navigation takes us to this page.

Same page reloading when clicking on a button or link that should
navigate to another page?
When JSF does not recognize the value of the action attribute of a
command button or command link, it will by default navigate to the
same page that was displayed in the browser when the user clicked on a
button or link that is meant to navigate to another page.
If navigation does not seem to be working properly, chances are there is
a typo in the value of this attribute. Remember that, by convention, JSF
will look for a page whose base name matches the value of the action
attribute of a command button or link.

The source for confirmation.xhtml looks as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Customer Data Entered</title>
 </h:head>
 <h:body>
 <h:panelGrid columns="2" columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:"></h:outputText>
 <h:outputText value="#{customer.firstName}"></h:outputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:outputText value="#{customer.lastName}"></h:outputText>
 <h:outputText value="Email:"></h:outputText>
 <h:outputText value="#{customer.email}"></h:outputText>
 </h:panelGrid>
 </h:body>
</html>

JavaServer Faces

[218]

There are no tags we haven't seen before in this page. One thing to notice about it is
that it is using value binding expressions as the value for all of its <h:outputText>
tags. As these value binding expressions are the same expressions used in the
previous page for the <h:inputText> tags, their values will correspond to the data
the user entered.

In traditional Java web applications, we define URL patterns to be processed by
a specific servlet. Specifically for JSF, the suffixes .jsf or .faces were commonly
used. Another commonly used URL mapping for JSF was the /faces prefix. By
default, GlassFish automatically adds all three of these mappings to the faces
servlet. Therefore, if we wish to use one of these mappings, we don't have to
specify any URL mapping at all. If for any reason we need to specify a different
mapping, then we need to add a web.xml configuration file to our application.
However, the defaults will suffice in most cases.

The URL we used for the pages in our application was the name of our Facelets
pages, substituting the .xhtml suffix with .jsf. This takes advantage of the default
URL mapping. We could also access our pages by using the .faces extension or the
/faces/ prefix.

Custom data validation
In addition to providing standard validators for our use, JSF allows us to create
custom validators. This can be done in one of two ways: creating a custom validator
class or by adding validation methods to our managed beans.

Creating custom validators
In addition to the standard validators, JSF allows us to create custom validators by
creating a Java class implementing the javax.faces.validator.Validator interface.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 6

[219]

The following class implements an email validator that we will use to validate the
email text input field in our customer data entry screen:

package net.ensode.glassfishbook.jsfcustomval;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.component.html.HtmlInputText;
import javax.faces.context.FacesContext;
import javax.faces.validator.FacesValidator;
import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;
import org.apache.commons.lang.StringUtils;

@FacesValidator(value = "emailValidator")

public class EmailValidator implements Validator
{
 @Override
 public void validate(FacesContext facesContext, UIComponent
 uiComponent, Object value) throws ValidatorException

 {
 org.apache.commons.validator.EmailValidator emailValidator =
 org.apache.commons.validator.EmailValidator.getInstance();
 HtmlInputText htmlInputText = (HtmlInputText) uiComponent;

 String email = (String) value;
 if (!StringUtils.isEmpty(email))
 {
 if (!emailValidator.isValid(email))
 {
 FacesMessage facesMessage = new FacesMessage(
 htmlInputText.getLabel() + ": email format is not valid");
 throw new ValidatorException(facesMessage);
 }
 }
 }
}

The @FacesValidator annotation registers our class as a JSF custom validator class.
The value of its value attribute is the logical name that JSF pages can use to refer to it.

JavaServer Faces

[220]

As can be seen in the example, the only method we need to implement when
implementing the Validator interface is a method called validate(). This
method takes three parameters: an instance of javax.faces.context.
FacesContext, an instance of javax.faces.component.UIComponent, and an
object. Typically, application developers only need to be concerned with the last
two. The second parameter is the component whose data we are validating, the
third parameter is the actual value. In the example, we cast uiComponent to
javax.faces.component.html.HtmlInputText. This way, we get access to
its getLabel() method, which we can use as part of the error message.

If the entered value is not a valid email address format, a new instance of
javax.faces.application.FacesMessage is created, passing the error message
to be displayed in the browser as its constructor parameter. We then throw a
new javax.faces.validator.ValidatorException. The error message is then
displayed in the browser. How it gets there is done behind the scenes by the JSF API.

Apache Commons Validator
The previous validator uses Apache Commons Validator to do the actual
validation. This library includes many common validations such as dates,
credit card numbers, ISBN numbers, and e-mails. When implementing
a custom validator, it is worth investigating if this library already has a
validator that we can use.

In order to use our validator in our page, we need to use the <f:validator> JSF tag.
The following Facelet page is a modified version of the customer data entry screen.
This version uses the <f:validator> tag to validate e-mail:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>Enter Customer Data</title>
 </h:head>
 <h:body>
 <h:outputStylesheet library="css" name="styles.css"
 target="body"/>
 <h:form>
 <h:messages></h:messages>
 <h:panelGrid columns="2"
 columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:">
 </h:outputText>

Chapter 6

[221]

 <h:inputText label="First Name"
 value="#{customer.firstName}"
 required="true">
 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:inputText label="Last Name"
 value="#{customer.lastName}"
 required="true">
 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText>
 <h:outputText value="Email:">
 </h:outputText>
 <h:inputText label="Email" value="#{customer.email}">
 <f:validator validatorId="emailValidator" />
 </h:inputText>
 <h:panelGroup></h:panelGroup>
 <h:commandButton action="confirmation" value="Save">
 </h:commandButton>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

After writing our custom validator and modifying our page to take advantage of it,
we can see our validator in action:

JavaServer Faces

[222]

Validator methods
Another way we can implement custom validation is by adding validation methods
to one or more of the application's managed beans. The following Java class
illustrates the use of validator methods for JSF validation:

package net.ensode.glassfishbook.jsfcustomval;

import javax.faces.application.FacesMessage;
import javax.faces.bean.ManagedBean;
import javax.faces.component.UIComponent;
import javax.faces.component.html.HtmlInputText;
import javax.faces.context.FacesContext;
import javax.faces.validator.ValidatorException;

import org.apache.commons.lang.StringUtils;

@ManagedBean
public class AlphaValidator
{
 public void validateAlpha(FacesContext facesContext, UIComponent
 uiComponent, Object value) throws ValidatorException
 {
 if (!StringUtils.isAlphaSpace((String) value))
 {
 HtmlInputText htmlInputText = (HtmlInputText) uiComponent;
 FacesMessage facesMessage = new FacesMessage(
 htmlInputText.getLabel() + ": only alphabetic characters are
 allowed.");
 throw new ValidatorException(facesMessage);
 }
 }
}

In this example, the class contains only the validator method. We can give our
validator method any name we want. However, its return value must be void
and it must take the three parameters illustrated in the example, in that order.
In other words, except for the method name, the signature of a validator method
must be identical to the signature of the validate() method defined in the
javax.faces.validator.Validator interface.

As we can see, the body of this validator method is nearly identical to the body of
our custom validator's validate() method. We check the value entered by the user
to make sure it contains only alphabetic characters and/or spaces. If it does not, we
throw a ValidatorException passing an instance of FacesMessage containing an
appropriate error message string.

Chapter 6

[223]

StringUtils
In the example, we used org.apache.commons.lang.StringUtils
to perform the actual validation logic. In addition to the method used in
the example, this class contains several methods for verifying that a string
is numeric or alphanumeric. This class, part of the Apache commons-lang
library, is very useful when writing custom validators.

As every validator method must be in a managed bean, we need to make sure that
the class containing our validator method is annotated with the @ManagedBean
annotation, as illustrated in our example.

The last thing we need to do to use our validator method is to bind it to our
component via the tag's validator attribute:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>Enter Customer Data</title>
 </h:head>
 <h:body>
 <h:outputStylesheet library="css" name="styles.css"
 target="body"/>
 <h:form>
 <h:messages></h:messages>
 <h:panelGrid columns="2"
 columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:">
 </h:outputText>
 <h:inputText label="First Name"
 value="#{customer.firstName}"
 required="true"
 validator="#{alphaValidator.validateAlpha}">

 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText>

 <h:outputText value="Last Name:"></h:outputText>
 <h:inputText label="Last Name"
 value="#{customer.lastName}"
 required="true"
 validator="#{alphaValidator.validateAlpha}">

JavaServer Faces

[224]

 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText>

 <h:outputText value="Email:">
 </h:outputText>
 <h:inputText label="Email" value="#{customer.email}">
 <f:validateLength minimum="3" maximum="30">
 </f:validateLength>
 <f:validator validatorId="emailValidator" />
 </h:inputText>
 <h:panelGroup></h:panelGroup>
 <h:commandButton action="confirmation" value="Save">
 </h:commandButton>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

As neither the First Name nor the Last Name fields should accept anything other
than alphabetic characters or spaces, we added our custom validator method to
both these fields.

Notice that the value of the validator attribute of the <h:inputText> tag is a
JSF expression language using the default managed bean name for the bean
containing our validation method. alphaValidator is the name of our bean
and validateAlpha is the name of our validator method.

After modifying our page to use our custom validator, we can now see it in action:

Notice how for the First Name field, both our custom validator message and the
standard length validator were executed.

Chapter 6

[225]

Implementing validator methods has the advantage of not having the overhead
of creating a whole class just for a single validator method (our example does just
that, but in many cases, validator methods are added to an existing managed bean
containing other methods). However, the disadvantage is that each component can
only be validated by a single validator method. When using validator classes, several
<f:validator> tags can be nested inside the tag to be validated. Therefore, multiple
validations, both custom and standard, can be done on the field.

Customizing JSF's default messages
Like we mentioned in the previous section, it is possible to customize the style
(font, color, text, and so on) of JSF default validation messages. Additionally, it is
possible to modify the text of the default JSF validation messages. In the following
sections, we will explain how to modify error message formatting and text.

Customizing message styles
Customizing message styles can be done via Cascading Style Sheets (CSS). This
can be accomplished by using the <h:message> style or styleClass attributes.
The style attribute is used when we want to declare the CSS style inline. The
styleClass attribute is used when we want to use a predefined style in a CSS
stylesheet or inside a <style> tag in our page.

The following markup illustrates using the styleClass attribute to alter the
style of error messages. It is a modified version of the input page we saw in the
previous section.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>Enter Customer Data</title>
 </h:head>
 <h:body>
 <h:outputStylesheet library="css" name="styles.css"
 target="body"/>
 <h:form>
 <h:messages styleClass="errorMsg"></h:messages>

 <h:panelGrid columns="2"
 columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:">

JavaServer Faces

[226]

 </h:outputText>
 <h:inputText label="First Name"
 value="#{customer.firstName}"
 required="true"
 validator="#{alphaValidator.validateAlpha}">
 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:inputText label="Last Name"
 value="#{customer.lastName}"
 required="true"
 validator="#{alphaValidator.validateAlpha}">
 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText>
 <h:outputText value="Email:">
 </h:outputText>
 <h:inputText label="Email" value="#{customer.email}">
 <f:validator validatorId="emailValidator" />
 </h:inputText>
 <h:panelGroup></h:panelGroup>
 <h:commandButton action="confirmation" value="Save">
 </h:commandButton>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

As we can see, the only difference between this page and the previous one is the use
of the styleClass attribute of the <h:messages> tag. Like we mentioned earlier, the
value of the styleClass attribute must match the name of a CSS style defined in a
cascading stylesheet our page has access to.

In our case, we defined a CSS style for messages as follows:

errorMsg
{
 color: red;
}

We then used this style as the value of the styleClass attribute of our
<h:messages> tag.

Chapter 6

[227]

The following screenshot illustrates how the validation error messages look after
implementing this change:

In this particular case, we just set the color of the error message text to red, but we
are only limited by CSS capabilities in setting the style of the error messages.

Any standard JSF component has both a style and a styleClass
attribute that can be used to alter its style. The former is used for
predefined CSS styles, the latter is used for inline CSS.

Customizing message text
It is sometimes desirable to override JSF's default validation errors. Default validation
errors are defined in a resource bundle called Messages.properties. This file can be
found inside the jsf-api.jar file under [glassfish installation directory]/
glassfish/modules. It can be found under the javax.faces folder inside the JAR
file. The file contains several messages; we are only interested in validation errors at
this point. The default validation error messages are defined as follows:

javax.faces.validator.DoubleRangeValidator.MAXIMUM={1}: Validation
Error: Value is greater than allowable maximum of "{0}"

javax.faces.validator.DoubleRangeValidator.MINIMUM={1}: Validation
Error: Value is less than allowable minimum of ''{0}''

javax.faces.validator.DoubleRangeValidator.NOT_IN_RANGE={2}: Validation
Error: Specified attribute is not between the expected values of {0} and
{1}.

javax.faces.validator.DoubleRangeValidator.TYPE={0}: Validation Error:
Value is not of the correct type

JavaServer Faces

[228]

javax.faces.validator.LengthValidator.MAXIMUM={1}: Validation Error:
Value is greater than allowable maximum of ''{0}''

javax.faces.validator.LengthValidator.MINIMUM={1}: Validation Error:
Value is less than allowable minimum of ''{0}''

javax.faces.validator.LongRangeValidator.MAXIMUM={1}: Validation Error:
Value is greater than allowable maximum of ''{0}''

javax.faces.validator.LongRangeValidator.MINIMUM={1}: Validation Error:
Value is less than allowable minimum of ''{0}''

javax.faces.validator.LongRangeValidator.NOT_IN_RANGE={2}: Validation
Error: Specified attribute is not between the expected values of {0} and
{1}.

javax.faces.validator.LongRangeValidator.TYPE={0}: Validation Error:
Value is not of the correct type.

javax.faces.validator.NOT_IN_RANGE=Validation Error: Specified attribute
is not between the expected values of {0} and {1}.

javax.faces.validator.RegexValidator.PATTERN_NOT_SET=Regex pattern must
be set.

javax.faces.validator.RegexValidator.PATTERN_NOT_SET_detail=Regex
pattern must be set to non-empty value.

javax.faces.validator.RegexValidator.NOT_MATCHED=Regex Pattern not
matched

javax.faces.validator.RegexValidator.NOT_MATCHED_detail=Regex pattern of
''{0}'' not matched

javax.faces.validator.RegexValidator.MATCH_EXCEPTION=Error in regular
expression.

javax.faces.validator.RegexValidator.MATCH_EXCEPTION_detail=Error in
regular expression, ''{0}''

javax.faces.validator.BeanValidator.MESSAGE={0}

In order to override the default error messages, we need to create our own
resource bundle using the same keys as used in the default one, but altering
the values to suit our needs. The following is a very simple customized resource
bundle for our application:

javax.faces.validator.LengthValidator.MINIMUM={1}: minimum allowed
 length is ''{0}''

In this resource bundle, we override the error message for when the value
entered for a field validated by the <f:validateLength> tag is less than the
allowed minimum. In order to let our application know that we have a custom
resource bundle for message properties, we need to modify the application's
faces-config.xml file.

Chapter 6

[229]

<?xml version='1.0' encoding='UTF-8'?>
<faces-config version="2.0"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd">
 <application>

 <message-bundle>net.ensode.Messages</message-bundle>

 </application>

</faces-config>

As we can see, the only thing we need to do to the application's faces-config.xml
file is to add a <message-bundle> element indicating the name and location of the
resource bundle containing our custom messages.

Custom error message text definitions is one of the few cases in
which we still need to define a faces-config.xml file for JSF 2.0
applications. However, notice how simple our faces-config.xml
file is. It is a far cry from a typical faces-config.xml file for JSF 1.x
that typically contains managed bean definitions, navigation rules, JSF
validator definitions, and so on.

After adding our custom message resource bundle and modifying the application's
faces-config.xml file, we can see our custom validation message in action:

JavaServer Faces

[230]

As we can see, if we haven't overridden a validation message, the default error
message will still be displayed. In our resource bundle, we only overrode the
minimum length validation error message, therefore our custom error message is
shown for the First Name text field. As we didn't override the error message for data
entry going over the maximum allowed length, the default error message is shown.
The e-mail validator is the custom validator we developed previously in this chapter.
As it is a custom validator, its error message is not affected.

Integrating JSF and JPA
So far we have covered many of the features of JSF. However, our example
application does not actually save any data yet. In this section, we will cover how
JavaServer Faces and the Java Persistence API can be easily integrated to save user
input to a database.

We will also cover additional JSF and JPA features. Regarding JSF, we will cover how
to perform some logic in the server before navigating to another page, and how to
automatically populate a managed bean's property through the @ManagedProperty
annotation. As far as JPA, we will cover how to automatically generate primary keys.

Like we have seen in this chapter, JSF managed beans are nothing but standard
JavaBeans. In Chapter 5, we saw that JPA uses standard JavaBeans for object-relational
mapping. As both JSF managed beans and JPA beans are standard JavaBeans, there is
nothing stopping us from using JPA beans as JSF managed beans.

Like we covered earlier, JSF tags can contain value binding expressions that are used
to automatically populate managed beans when the form is submitted. If we use a JPA
bean as a managed bean, the bean's properties are populated this way. We can then
simply call the EntityManager.persist() method to save the data into the database.

The first thing we need to do is use a JPA bean as a managed bean to be used for
value binding expressions.

package net.ensode.glassfishbook.jsfjpa;

import java.io.Serializable;
import javax.faces.bean.ManagedBean;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.Table;

Chapter 6

[231]

@ManagedBean

@Entity
@Table(name = "CUSTOMERS")
public class Customer implements Serializable
{
 @Id
 @GeneratedValue

 @Column(name = "CUSTOMER_ID")
 private Long customerId;
 @Column(name = "FIRST_NAME")
 private String firstName;
 @Column(name = "LAST_NAME")
 private String lastName;
 private String email;

 public Long getCustomerId()
 {
 return customerId;
 }
 public void setCustomerId(Long customerId)
 {
 this.customerId = customerId;
 }
 public String getEmail()
 {
 return email;
 }
 public void setEmail(String email)
 {
 this.email = email;
 }
 public String getFirstName()
 {
 return firstName;
 }
 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }
 public String getLastName()
 {
 return lastName;
 }
 public void setLastName(String lastName)

JavaServer Faces

[232]

 {
 this.lastName = lastName;
 }

 @Override
 public String toString()
 {
 Long localCustomerId = customerId;
 String localFirstName = firstName;
 String localLastName = lastName;
 String localEmail = email;

 if (localCustomerId == null)
 {
 localCustomerId = 0L;
 }
 if (localEmail == null)
 {
 localEmail = "";
 }
 if (localFirstName == null)
 {
 localFirstName = "";
 }
 if (localLastName == null)
 {
 localLastName = "";
 }

 String toString = "customerId = " + customerId + "\n";
 toString += "firstName = " + localFirstName + "\n";
 toString += "lastName = " + localLastName + "\n";
 toString += "email = " + localEmail;
 return toString;
 }
}

This class is almost an exact copy of the Customer bean we saw in Chapter 5, the
only difference being the package it belongs to and the fact that it is annotated with
the @ManagedBean annotation. Annotating our JPA entity as a JSF managed bean
allows us to use it in value binding expressions in our pages. Therefore, we can
populate them from user entered data that we can then persist to the database.

Chapter 6

[233]

Notice that we annotated our entity's primary key with the @GeneratedValue
annotation. This allows the primary key field to be generated automatically, freeing
us from having to populate it explicitly. JPA has several primary key generation
strategies. If we don't specify one, the default one will be used automatically. The
default primary key generation strategy varies depending on the RDBMS we are
using. In the case of JavaDB, which we used in our example, the default primary key
generation strategy is TABLE, which uses an automatically generated database table
to generate primary keys.

If we are happy with the default primary key generation strategy, all we need to do
to have primary keys is to annotate the primary key field with the @GeneratedValue
annotation. If for any reason we wish to use a different generation strategy, then we
need to specify it via the strategy attribute of the @GeneratedValue annotation.

The following table lists all the supported primary key generation strategies. Note
that not all strategies are supported by all RDBMS systems.

Generation strategy Description
GenerationType.AUTO A generation strategy is automatically picked for us. The

default strategy depends on the RDBMS system and JPA
implementation.

GenerationType.IDENTITY A database identity column is used to generate the primary
key. Not all RDBMS systems support identities.

GenerationType.SEQUENCE A database sequence is used to generate the primary key. Not
all RDBMS systems support sequences.

GenerationType.TABLE The primary key is obtained from a database table. The JPA
implementation will automatically manage this table, making
sure that we obtain a unique value from it every time a
primary key is generated.

Using a primary key generation strategy other than the default one requires
simply using the appropriate strategy as the value of the strategy attribute of
the @GeneratedValue annotation. For example, if we wanted to use a database
sequence to generate primary keys, all we would need to do would be something
like this:

@GeneratedValue(strategy=GenerationType.SEQUENCE)

Our primary key generation strategy would be changed accordingly.

JavaServer Faces

[234]

Our Customer bean represents the model (data) in our application; our pages represent
the view. We also need to add an additional managed bean to be used as a controller,
as it is always a good practice to follow the Model-View-Controller design pattern.

package net.ensode.glassfishbook.jsfjpa;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import javax.annotation.Resource;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.ManagedProperty;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.sql.DataSource;
import javax.transaction.UserTransaction;

@ManagedBean
public class CustomerController
{
 @Resource(name = "jdbc/__CustomerDBPool")
 private DataSource dataSource;
 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;
 @Resource
 private UserTransaction userTransaction;
 @ManagedProperty(value = "#{customer}")

 private Customer customer;

 public String saveCustomer()
 {
 String returnValue = "customer_saved";
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();
 try
 {
 userTransaction.begin();
 entityManager.persist(customer);
 userTransaction.commit();
 }
 catch (Exception e)

Chapter 6

[235]

 {
 e.printStackTrace();
 returnValue = "error_saving_customer";
 }
 return returnValue;
 }
 public Customer getCustomer()
 {
 return customer;
 }
 public void setCustomer(Customer customer)
 {
 this.customer = customer;
 }
}

The saveCustomer() method in this class will be called whenever a user clicks on
the Save button on the HTML form. A slight modification needs to be made to the
page containing the form; we will cover this shortly. This method simply saves the
data contained in the Customer bean in the database. Refer to Chapter 5 for details.

Of special interest are the setCustomer() and getCustomer() methods. These
methods are not meant to be invoked directly by an application developer. Instead,
they should be invoked by GlassFish's JSF implementation with the appropriate
instance of the Customer bean. We need to declare the customer property of the
previous controller as a managed property. JSF 2.0 introduces the @ManagedProperty
annotation that can be used to declare a managed bean's property.

As can be seen in the previous example, all we need to do to make a property
managed is to annotate it with the @ManagedProperty annotation, and specify
the logical name of the bean to bind to the property as a JSF expression language
expression matching the bean's name. In our case, as we didn't specify a name for
our Customer bean, the default behavior—which is to use the bean's class name with
its first letter changed to lowercase—takes place. Therefore, our Customer bean's
name is customer, which is the value we used for the value attribute of
the @ManagedBeanProperty annotation.

Finally, in order for the saveCustomer() method to be called whenever the
user submits the form and all fields validate correctly, we need to make a slight
modification to the customer data entry page:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

JavaServer Faces

[236]

 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>Save Customer</title>
 </h:head>
 <h:body>
 <h:form>
 <h:messages></h:messages>
 <table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td align="right">First Name:</td>
 <td align="left">
 <h:inputText label="First Name"
 value="#{customer.firstName}"
 required="true">
 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText>
 </td>
 </tr>
 <tr>
 <td align="right">Last Name:</td>
 <td align="left">
 <h:inputText label="Last Name"
 value="#{customer.lastName}"
 required="true">
 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText>
 </td>
 </tr>
 <tr>
 <td align="right">Email:</td>
 <td align="left">
 <h:inputText label="Email"
 value="#{customer.email}">
 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText>
 </td>
 </tr>
 <tr>
 <td></td>
 <td align="left">
 <h:commandButton

Chapter 6

[237]

 action="#{customerController.saveCustomer}"
 value="Save">

 </h:commandButton>

 </td>
 </tr>
 </table>
 </h:form>
 </h:body>
</html>

The only significant difference between this version of the page and previous
versions is that the action attribute of the <h:commandButton> tag was changed to
point to the saveCustomer() method of the CustomerController managed bean.
As can be seen in the source code for this bean (shown earlier in this section), this
method returns the String "customer_saved" if the data was saved successfully,
or "error_saving_customer" if there was any problem saving the data. These two
values match the base names of the pages we wish to navigate to when a customer
was saved successfully and when there was a problem saving the data.

There are a few more changes made to this version of the data entry page that are
unrelated to the task at hand. First, for simplicity we removed some of the features
we covered earlier in the chapter (custom validators, error message styling, and so
on). Additionally, and slightly more interesting, we replaced the <h:panelGrid>
component with a standard HTML table. Most server-side Java developers are at
least somewhat familiar with HTML. Therefore, using standard HTML components
whenever possible leverages this knowledge and potentially makes the page markup
more readable. In previous versions of the JSF specification, it wasn't recommended
to mix standard HTML and JSF tags in a JSF page as doing so sometimes resulted in
unexpected results. This restriction was lifted in JSF 1.2 as JSF JSP tags were modified
to avoid the unexpected issues experienced in earlier versions of JSF. Facelets never
had the issue to begin with. As Facelets is now the preferred view technology for JSF,
it makes even more sense to use standard HTML components whenever possible.

Ajax enabling JSF 2.0 applications
JSF 1.x did not include native Ajax support. Custom JSF library vendors were forced
to implement Ajax in their own way. Unfortunately, this state of events introduced
incompatibilities between JSF component libraries. JSF 2.0 standardizes Ajax support,
thanks to the newly introduced <f:ajax> tag.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

JavaServer Faces

[238]

The following code illustrates typical usage of the <f:ajax> tag:
<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>JSF Ajax Demo</title>
 </h:head>
 <h:body>
 <h2>JSF Ajax Demo</h2>
 <h:form>
 <h:messages/>
 <h:panelGrid columns="2">
 <h:outputText value="Echo input:"/>
 <h:inputText id="textInput" value="#{controller.text}">

 <f:ajax render="textVal" event="keyup"/>

 </h:inputText>

 <h:outputText value="Echo output:"/>
 <h:outputText id="textVal" value="#{controller.text}"/>
 </h:panelGrid>
 <hr/>
 <h:panelGrid columns="2">
 <h:panelGroup/>
 <h:panelGroup/>
 <h:outputText value="First Operand:"/>
 <h:inputText id="first" value="#{controller.firstOperand}"
 size="3"/>
 <h:outputText value="Second Operand:"/>
 <h:inputText id="second" value="#{controller.secondOperand}"
 size="3"/>
 <h:outputText value="Total:"/>
 <h:outputText id="sum" value="#{controller.total}"/>
 <h:commandButton
 actionListener="#{controller.calculateTotal}"
 value="Calculate Sum">

 <f:ajax execute="first second" render="sum"/>

 </h:commandButton>

 </h:panelGrid>
 </h:form>
 </h:body>
</html>

Chapter 6

[239]

After deploying our application, this code renders as illustrated in the next screenshot:

The previous code illustrates two uses of the <f:ajax> tag. The first time we use
this tag we are implementing a typical Ajax Echo example, in which we have an
outputText component updating itself with the value of an inputText component.
Whenever any character is entered into the input field, the value of the outputText
component is automatically updated.

To implement the functionality described in the previous paragraph, we put an
<f:ajax> tag inside an <h:inputText> tag. The value of the render attribute of the
<f:ajax> tag must correspond to the id of a component we wish to update after the
Ajax request finishes. In our particular example, we wish to update the outputText
component with an id of "textVal", therefore this is the value we use for the render
attribute of our <f:ajax> tag.

In some cases, we may need to render more than one JSF component
after an Ajax event finishes. In order to accommodate for this, we can
add several IDs as the value of the render attribute. We simply need
to separate them by spaces.

The other <f:ajax> attribute we used in this instance is the event attribute. This
attribute indicates the Javascript event that triggers the Ajax event. In this particular
case, we need to trigger the event any time a key is released while a user is typing
into the input field. Therefore, the appropriate event to use is "keyup".

JavaServer Faces

[240]

The following table lists all supported Javascript events:

Event Description
blur The component loses focus.
change The component loses focus and its value gets modified.
click The component is clicked on.
dblclick The component is double-clicked on.
focus The component gains focus.
keydown A key is depressed while the component has focus.
keypress A key is pressed or held down while the component has focus.
keyup A key is released while the component has focus.
mousedown The mouse button is depressed while the component has focus.
mousemove The mouse pointer is moved over the component.
mouseout The mouse pointer leaves the component.
mouseover The mouse pointer is placed over the component.
mouseup The mouse button is released while the component has focus.
select The component's text is selected.
valueChange Equivalent to change, the component loses focus and its value gets

modified.

We use the <f:ajax> once again farther down in the page, to Ajax-enable a
command button component. In this instance, we want to recalculate a value based
on the value of two input components. In order to have the values on the server
updated with the latest user input, we used the execute attribute of <f:ajax>,
this attribute takes a space separated list of component ids to use as input. We
then use the render attribute just like before to specify which components need
to be re-rendered after the Ajax request finishes.

Notice we are using the actionListener attribute of <h:commandButton>. This
attribute is typically used whenever we don't need to navigate to another page after
clicking the button. The value for this attribute is an action listener method we wrote
in one of our managed beans. Action listener methods must return void, and take an
instance of javax.faces.event.ActionEvent as it's sole parameter.

The managed bean for our application looks as follows:

package net.ensode.glassfishbook.jsfajax;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.ViewScoped;
import javax.faces.event.ActionEvent;

Chapter 6

[241]

@ManagedBean
@ViewScoped
public class Controller
{
 private String text;
 private int firstOperand;
 private int secondOperand;
 private int total;
 public Controller()
 {

 }
 public void calculateTotal(ActionEvent actionEvent)
 {
 total = firstOperand + secondOperand;
 }
 public String getText()
 {
 return text;
 }
 public void setText(String text)
 {
 this.text = text;
 }
 public int getFirstOperand()
 {
 return firstOperand;
 }
 public void setFirstOperand(int firstOperand)
 {
 this.firstOperand = firstOperand;
 }
 public int getSecondOperand()
 {
 return secondOperand;
 }
 public void setSecondOperand(int secondOperand)
 {
 this.secondOperand = secondOperand;
 }
 public int getTotal()
 {
 return total;
 }
 public void setTotal(int total)
 {
 this.total = total;
 }
}

JavaServer Faces

[242]

Notice that we didn't have to do anything special in our managed bean to enable
Ajax in our application. It is all controlled by the <f:ajax> tag on the page.

As we can see from this example, Ajax enabling JSF 2.0 applications is very simple.
We simply need to use a single tag to Ajax to enable our page, without having to
write a single line of Javascript, JSON or XML code.

JSF standard components
JSF includes several standard components, we have only covered a set of these
components so far. The following sections cover all available JSF components.

JSF core components
JSF core components are components that are not tied to HTML rendering or any
other rendering mechanism. They provide functionality like type conversion and
validation, among others. In this section, we will cover all core JSF components.

The <f:actionListener> tag
Executes the processAction()method of the action listener defined by the tag's
type attribute. The value of the type attribute must be the fully qualified name of
a class implementing the javax.faces.event.ActionListener interface. This
tag is typically a child tag of <h:commandButton> or <h:commandLink>. When a
user clicks on the parent component, the processAction() method of the declared
ActionListener implementation is automatically executed. The following markup
segment illustrates how this tag is typically used:

<h:commandButton action="save" value="Save">
 <f:actionListener type="net.ensode.CustomActionListener"/>
</h:commandButton>

The <f:ajax> tag
Enables Ajax behavior. This tag is typically nested inside another JSF tag such
as <h:commandButton>. When this tag is present, the parent component is
automatically "ajaxified". For example, an Ajax-enabled button does not refresh
the whole page, instead it triggers a partial page refresh. This behavior makes our
applications much more responsive.

<h:commandButton actionListener="#{controller.calculateTotal}"
 value="Calculate Sum">
 <f:ajax execute="first second" render="sum"/>
</h:commandButton>

Chapter 6

[243]

The value of the execute attribute is a space-separated list of component IDs to be
used as input when the Ajax request starts. The value of the render attribute is a
space-separated list of components to re-render after the Ajax request completes.

The <f:attribute> tag
Sets an attribute on the parent component, with a key defined by the tag's name
attribute and a value defined by the tag's value attribute. All component attributes
can later be programmatically retrieved as a map by invoking the getAttributes()
method of the appropriate instance of javax.faces.component.UIComponent. This
tag is frequently used in conjunction with the <f:actionListener> class to pass
parameters to the action listener.

The following markup segment illustrates typical use of this tag:

<h:commandButton action="save" value="Save">
 <f:actionListener type="net.ensode.CustomActionListener"/>
 <f:attribute name="someAttribute" value="someValue"/>
</h:commandButton>

The processAction() method of our CustomActionListener class would look
something like this:

public void processAction(ActionEvent actionEvent)
{
 String attribute = (String)
 actionEevent.getComponent().getAttributes().get("attrname1");
 //processing continues...
}

The <f:convertDateTime> tag
Converts the value of the parent component into an instance of java.util.Date. This
tag allows a correctly formatted user-entered string to be assigned to a date field in a
managed bean. The following markup segment illustrates typical usage of this tag:

<h:inputText value="#{customer.birthDate}">
 <f:convertDateTime dateStyle="short"/>
</h:inputText>

JavaServer Faces

[244]

The <f:convertNumber> tag
Converts the value of the parent component into an instance of java.lang.Number.
This tag allows a correctly formatted user-entered string to be assigned
to a numeric field in a managed bean. As java.lang.Number is the parent
class of java.lang.Integer, java.lang.Long, java.lang.Float, and
java.lang.Double (among other numeric types), this tag can be used to
convert pretty much any type of numeric data entry field into an appropriate type.

The following markup segment illustrates typical usage of this tag:

<h:inputText value="#{customer.age}">
 <f:convertNumber/>
</h:inputText>

The <f:converter> tag
Registers the custom converter specified by the tag's converterId attribute
with the parent tag. The specified converter must be a class implementing the
javax.faces.convert.Converter interface, and it must be either decorated
with the @FacesConverter annotation or registered in the application's
faces-config.xml file via the <converter> tag.

Suppose we have created a custom class named TelephoneNumber to store telephone
numbers, and a managed bean named Customer has a field called telephone of type
TelephoneNumber. We could create a custom validator to convert a user-entered
telephone number into an instance of the TelephoneNumber class.

<h:inputText value="#{customer.telephone}">
 <f:converter converterId="telephoneConverter"/>
</h:inputText>

The TelephoneConverter class would have to implement the javax.faces.
convert.Converter interface.

The <f:event> tag
Allows a managed bean method to be invoked whenever a specific event occurs.
This tag must be nested inside another JSF tag. The event to register for is
specified as the value of the type attribute of <f:event>. Valid values include
preRenderComponent, which is triggered just before the parent component is
rendered, PostAddToView, which is triggered after the parent component is added
to the view, preValidate, which is triggered just before the value of the parent
component is validated, and postValidate, which is triggered just after the parent
component is validated.

Chapter 6

[245]

The value of the listener attribute of <f:event> must be a value binding
expression that resolves to a managed bean method that is public, returns void
and takes an instance of javax.faces.event.ComponentSystemEvent as its sole
parameter. This method will be automatically invoked when the event is fired.

<h:outputText>
 <f:event type="preRenderComponent"
 action="#{myManagedBean.doSomething}" />
</h:outputText>

The <f:facet> tag
Registers a facet on the parent component. A facet is a special child component that
can be accessed via the UIComponent.getFacet() method. This method can be
overridden for custom components; it allows components inside a facet to be treated
differently. For example, the standard <h:dataTable> tag can have a facet named
"header" that is used to render all components in the <f:facet> tag as the header
of the rendered HTML table.

The following markup segment illustrates typical usage of this tag:

<h:dataTable value="{Order.items}" var="item">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Item Number" />
 </f:facet>
 <h:outputText value="#{item.itemNumber}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Item Description" />
 </f:facet>
 <h:outputText value="#{item.itemShortDesc}" />
 </h:column>
</h:dataTable>

The <f:loadBundle> tag
Loads a resource bundle into the request scope. The resource bundle name is
specified by the tag's basename attribute. The variable to use to access the resource
bundle properties is defined by the tag's var attribute.

JavaServer Faces

[246]

The following markup segment illustrates typical usage of this tag:

<f:view locale="#{facesContext.externalContext.request.locale}">
 <f:loadBundle basename="net.ensode.Messages" var="mess"/>
 <h:outputText value="#{mess.greeting}"/>
</f:view>

The <f:metadata> tag
This tag is primarily used as a parent tag to <f:viewParam>, which is used to map
GET request parameters to managed bean values.

<f:metadata>
 <f:viewParam name="someParam" value="#{someBean.someProperty}" />
</f:metadata>

The <f:param> tag
When this tag is a child of <h:commandLInk>, it generates a request parameter defined
by its name and value attributes. When this tag is a child of <h:outputFormat>,
it substitutes a parameter in the string defined by the value attribute of
<h:outpufFormat>.

The following markup segment illustrates typical usage of this tag:

<h:outputFormat value="Hello, {0}">
 <f:param value="#{customer.firstName}"/>
</h:outputFormat>

The <f:phaseListener> tag
Registers a phase listener to the current page. The phase listener must be an instance
of a class implementing javax.faces.event.PhaseListener. This class is defined
by the tag's type attribute.

The following markup segment illustrates typical usage of this tag:

<f:view>
 <f:phaseListener type="net.ensode.CustomPhaseListener"/>
</f:view>

The <f:selectItem> tag
Adds a selectable item belonging to the parent component. The way this component
is rendered depends on the parent component. It can be used as a child component
of <h:selectManyCheckBox>, <h:selectManuListBox>, <h:selectManyMenu>,
<h:selectOneListbox>, <h:selectOneMenu>, and <h:selectOneRadio>.

Chapter 6

[247]

The following markup segment illustrates typical usage of this tag:

<h:selectManyCheckBox value="#{order.items}">
 <f:selectItem itemValue="#{item1}"
 itemLabel="Wireless keyboard"/>
 <f:selectItem itemValue="#{item1}"
 itemLabel="Wireless mouse"/>
</h:selectManyCheckBox>

The <f:selectItems> tag
Adds a series of selectable items belonging to the parent tag. This tag's value
attribute must be a deferred value expression resolving to an array or a list of
javax.faces.model.SelectItem objects.

The following markup segment illustrates typical usage of this tag:

<h:selectManyCheckBox value="#{order.items}">
 <f:selectItems value="#{valueContainer.allItems} "/>
</h:selectManyCheckBox>

The <f:setPropertyActionListener> tag
This tag can be a child tag of <h:commandLink> or <h:commandButton>. When the
button or link is clicked, this tag sets an attribute in a managed bean defined by the
tag's target attribute with the value of the tag's value attribute.

The following markup segment illustrates typical usage of this tag:

<h:commandButton value="Save" action="#{controller.save}">
 <f:setPropertyActionListener
 target="#{order.lastUpdUserId}" value="#{user.userId}"/>
</h:commandButton>

The <f:subview> tag
This tag is meant to be used only when using JSP as the JSF view technology. Any
included JSPs via a <jsp:include> tag or JSTL's <c:import> tag must be inside a
<f:subview> tag.

The following markup segment illustrates typical usage of this tag:

<f:view>
 <table>
 <tr>
 <td width="30%">
 <f:subview>

JavaServer Faces

[248]

 <jsp:include page="menu.jsp">
 </f:subview>
 </td>
 <td>
 Additional content here.
 </td>
 </tr>
 </table>
</f:view>

The <f:validateBean> tag
This tag is used to fine-tune JSR-303 Bean Validation. It can be used to disable Bean
Validation in a case-by-case basis or to assign JSR-303 Bean Validation groups to the
components to be validated.

The following markup segment illustrates typical usage of this tag:

<h:inputText value="#{someManagedBean.someProperty}">
 <f:validateBean disabled="#{anotherManagedBean.booleanProperty}"/>
</h:inputText>

In this example, it is assumed that the someProperty property of someManagedBean
is decorated with a Bean Validation annotation such as @NotNull or @Pattern.
In this case, <f:validateBean> is used to disable Bean Validation if the
booleanProperty in anotherManagedBean resolves to true.

The <f:validateDoubleRange> tag
Validates that the value for the parent component is an instance of java.lang.Double
that is between the values defined by the tag's minimum and maximum attributes.

The following markup segment illustrates typical usage of this tag:

<h:inputText value="#{item.price}">
 <f:validateDoubleRange minimum="1.0" maximum="100.0"/>
</h:inputText>

The <f:validateLength> tag
Validates that the value for the parent component is a string whose length is
between the values defined by the tag's minimum and maximum attributes
(both values inclusive).

Chapter 6

[249]

The following markup segment illustrates typical usage of this tag:

<h:inputText label="First Name"
 value="#{customer.firstName}"
 required="true">
 <f:validateLength minimum="2"
 maximum="30">
 </f:validateLength>
</h:inputText>

The <f:validateLongRange> tag
Validates that the value for the parent component is an instance of java.lang.Long
that is between the values defined by the tag's minimum and maximum attributes.

The following markup segment illustrates typical usage of this tag:

<h:inputText value="#{orderItem.quantity}">
 <f:validateDoubleRange minimum="1" maximum="100"/>
</h:inputText>

The <f:validateRegex> tag
Validates that the value of the parent tag matches the regular expression specified in
its pattern attribute.

The following markup segment illustrates typical usage of this tag:

<h:inputText value="#{someBean.phoneNumber}">
 <f:validateRegex pattern="\d{3}-\d{3}-\d{4}"/>
</h:inputText>

The <f:validateRequired> tag
Ensures that the user entered a value in the parent input component. This tag is
equivalent to setting the required attribute to true in an input component.

The following markup segment illustrates typical usage of this tag:

<h:inputText value="#{someBean.someProperty}">
 <f:validateRequired/>
</h:inputText>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

JavaServer Faces

[250]

The <f:validator> tag
Validates the value of the parent component against a custom validator
implementing the javax.faces.validator.Validator interface. The custom
validator must be either decorated with the @FacesValidator annotation or
declared in the application's faces-config.xml file.

The following markup segment illustrates typical usage of this tag:

<h:inputText label="Email" value="#{customer.email}">
 <f:validator validatorId="emailValidator" />
</h:inputText>

The <f:valueChangeListener> tag
Registers an instance of a class implementing the javax.faces.event.
ValueChangeListener interface with the parent component. The
ValueChangeListener implementation will implement a processValueChange()
method that can perform an action if the value of the parent component changes.

The following markup segment illustrates typical usage of this tag:

<h:inputText value="#{orderItem.quantity}">
 <f:valueChangeListener
 type="net.ensode.CustomValueChangeListener"/>
</h:inputText>

The <f:verbatim> tag
The content of this tag is passed "as is" to the rendered page. Before JSF 1.2, it was
not recommended to have HTML tags inside the JSF <f:view> tag, as they would
sometimes not render properly. A common workaround to this limitation was to
put standard HTML tags inside the <f:verbatim> tags. As of JSF 1.2 or when using
facelets, this tag is redundant as it is now possible to safely place standard HTML
tags inside the JSF pages tag.

The following markup segment illustrates typical usage of this tag:

<f:view>
 <f:verbatim><p></f:verbatim>
 This text will be rendered inside an HTML <p> tag.
 <f:verbatim></p></f:verbatim>
</f:view>

Chapter 6

[251]

The <f:view> tag
This tag is the parent tag for all JSF tags, both standard and custom.

The following markup segment illustrates typical usage of this tag:

<f:view>
 <h:outputText escape="true"
 value="All JSF components must be inside <f:view>"/>
</f:view>

The <f:viewParam> tag
This tag is used to map an HTTP GET request parameter to a managed bean
property. The value of its name attribute must match the parameter name and the
value of its value parameter must be a value binding expression corresponding
to a managed bean value to be populated by the request parameter.

<f:metadata>
 <f:viewParam name="someParam" value="#{someBean.someProperty}" />
</f:metadata>

JSF HTML components
In the previous examples, we covered only a subset of the standard JSF HTML
components. In this section, we will list all the standard JSF HTML components.

The <h:body> tag
Renders the body of the page. This tag is analogous to the standard HTML <body> tag.

<h:body>
 <!-- body of the page goes here -->
</h:body>

The <h:button> tag
Similar to <h:commandButton>. However, a button rendered using this tag generates
an HTTP GET request when navigating to the target page.

<h:button value="Click" action="next_page"/>

JavaServer Faces

[252]

The <h:column> tag
This tag is typically nested inside the <h:dataTable> tag. Any components
inside this tag will be rendered as a single column inside the table rendered by
<h:dataTable>.

The following markup segment illustrates typical usage of this tag:

<h:dataTable value="{Order.items}" var="item">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Item Number" />
 </f:facet>
 <h:outputText value="#{item.itemNumber}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Item Description" />
 </f:facet>
 <h:outputText value="#{item.itemShortDesc}" />
 </h:column>
</h:dataTable>

The <h:commandButton> tag
Renders an HTML submit button on the rendered page.

The following markup segment illustrates typical usage of this tag:

<h:form>
 <h:inputText label="First Name"
 value="#{customer.firstName}"/>
 <h:commandButton action="save"
 value="Save">
 </h:commandButton>
</h:form>

The <h:commandLink> tag
Renders a link that will submit the form defined by this tag's parent <h:form> tag.

The following markup segment illustrates typical usage of this tag:

<h:form>
 <h:inputText label="First Name"
 value="#{customer.firstName}"/>
 <h:commandLink action="save"
 value="Save">
 </h:commandLink>
</h:form>

Chapter 6

[253]

The <h:dataTable> tag
Builds a table dynamically based on the values of a collection. The collection holding
the values must be defined by the tag's value attribute.

The following markup segment illustrates typical usage of this tag:

<h:dataTable value="{Order.items}" var="item">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Item Number" />
 </f:facet>
 <h:outputText value="#{item.itemNumber}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Item Description" />
 </f:facet>
 <h:outputText value="#{item.itemShortDesc}" />
 </h:column>
</h:dataTable>

The <h:form> tag
Renders an HTML form on the generated page.

The following markup segment illustrates typical usage of this tag:

<h:form>
 <h:inputText label="First Name"
 value="#{customer.firstName}"/>
 <h:commandLink action="save"
 value="Save">
 </h:commandLink>
</h:form>

The <h:graphicImage> tag
Renders an HTML img tag.

The following markup segment illustrates typical usage of this tag.

If we would like to load an image from a URL:

<h:graphicImage url="/images/logo.png"/>

If the image is placed in the JSF 2.0 standard resource folder, the tag could be used
like this:

<h:graphicImage library="images" name="logo.png"/>

JavaServer Faces

[254]

The <h:head> tag
JSF-specific version of the standard HTML <head> tag.

The following markup segment illustrates how to use this tag:

<h:head>
 <title>Page Title</title>
</h:head>

The <h:inputHidden> tag
Renders an HTML hidden field.

The following markup segment illustrates typical usage of this tag:

<h:inputHidden value="#{customer.id}" />

The <h:inputSecret> tag
Renders an HTML input field of type password.

The following markup segment illustrates typical usage of this tag:

<h:inputSecret redisplay="false"
 value="#{user.password}" />

The <h:inputText> tag
Renders an HTML input field of type text.

The following markup segment illustrates typical usage of this tag:

<h:inputText label="First Name" value="#{customer.firstName}"/>

The <h:inputTextarea> tag
Renders an HTML textarea field.

The following markup segment illustrates typical usage of this tag:

<h:inputTextarea label="Comments" value="#{order.comments}"/>

The <h:link> tag
Similar to <h:commandLink>. However, a link rendered using this tag generates an
HTTP GET request when navigating to the target page.

<h:link value="Click" action="next_page"/>

Chapter 6

[255]

The <h:message> tag
Renders messages for a single component. The component to render messages for
must use its id attribute to set an identifier for itself. This identifier then needs to be
used as this element's for attribute.

The following markup segment illustrates typical usage of this tag:

<table>
 <tr>
 <td align="right">
 <h:outputLabel value="Login Name:"
 for="loginField"/>
 </td>
 <td>
 <h:inputText id="loginField"
 value="#{user.login}"
 required="true"/>
 </td>
 <td><h:message for="loginField"/></td>
 </tr>
</table>

The <h:messages> tag
Outputs messages for all components or global messages. If the tag's globalOnly
attribute is set to true, then only global messages (messages not specific to any
component) will be displayed.

The following markup segment illustrates typical usage of this tag:

<f:view>
 <h:messages/>
 <h:form>
 <h:inputText label="First Name"
 value="#{customer.firstName}"/>
 <h:commandButton action="save"
 value="Save"/>
 </h:form>
</f:view>

The <h:outputFormat> tag
Renders parameterized text. Parameters in this tag's value attribute are defined in a
manner similar to the way they are defined in a resource bundle, that is, by placing
integers between curly braces in the parameter locations. Parameters are substituted
with values defined in any child <f:param> elements.

JavaServer Faces

[256]

The following markup segment illustrates typical usage of this tag:

<h:outputFormat value="Hello, {0}">
 <f:param value="#{customer.firstName}"/>
</h:outputFormat>

The <h:outputLabel> tag
Renders an HTML label field.

The following markup segment illustrates typical usage of this tag:

<table>
 <tr>
 <td align="right">
 <h:outputLabel value="Login Name:"
 for="loginField"/>
 </td>
 <td>
 <h:inputText id="loginField"
 value="#{user.login}"
 required="true"/>
 </td>
 </tr>
</table>

The <h:outputLink> tag
Renders an HTML link as an anchor (a) element with an href attribute.

The following markup segment illustrates typical usage of this tag:

<h:outputLink value="http://ensode.net">
 <h:outputText value="Ensode"/>
</h:outputLink>

The <h:outputScript> tag
Used to load a Javascript file from the standard resource location.

The following markup segment illustrates how to use this tag:

<h:outputScript library="scripts" name="somescript.js"/>

Chapter 6

[257]

The <h:outputStylesheet> tag
Used to load a CSS stylesheet from the standard resource location.

The following markup segment illustrates typical usage of this tag:

<h:outputStylesheet library="css" name="styles.css" />

The <h:outputText> tag
If the dir, lang, style, or styleClass attributes are defined, this tag renders an
HTML span element containing the tag's value attribute. Otherwise, the value
defined by the tag's value attribute is rendered, escaping any XML/HTML
characters so that they are rendered properly. If the tag's escape attribute is set
to false, then XML/HTML characters are not escaped.

The following markup segment illustrates typical usage of this tag:

<h:outputText value="#{customer.firstName}"/>

The <h:panelGrid> tag
Renders a static HTML table. The number of columns in the table is specified in
the tag's columns attribute. Child components are then added to a subsequent row
once the number of elements defined in the columns attribute has been added to the
current row.

The following markup segment illustrates typical usage of this tag:

<h:panelGrid columns="2"
 columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:">
 </h:outputText>
 <h:inputText label="First Name"
 value="#{customer.firstName}"
 required="true">
 <f:validateLength minimum="2"
 maximum="30">
 </f:validateLength>
 </h:inputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:inputText label="Last Name"
 value="#{customer.lastName}"
 required="true">
 <f:validateLength minimum="2"
 maximum="30">
 </f:validateLength>

JavaServer Faces

[258]

 </h:inputText>
 <h:outputText value="Email:">
 </h:outputText>
 <h:inputText label="Email" value="#{customer.email}">
 <f:validateLength minimum="3"
 maximum="30">
 </f:validateLength>
 </h:inputText>
 <h:panelGroup></h:panelGroup>
 <h:commandButton action="save"
 value="Save">
 </h:commandButton>
</h:panelGrid>

The <h:panelGroup> tag
Used to group its child components together in a single cell of a parent <h:panelGrid>
or <h:dataTable> tag. Can also be used to create an "empty" cell in a parent
<h:panelGrid> tag.

The following markup segment illustrates typical usage of this tag:

<h:panelGrid columns="2"
 columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:">
 </h:outputText>
 <h:inputText label="First Name"
 value="#{customer.firstName}"
 required="true">
 <f:validateLength minimum="2"
 maximum="30">
 </f:validateLength>
 </h:inputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:inputText label="Last Name"
 value="#{customer.lastName}"
 required="true">
 <f:validateLength minimum="2"
 maximum="30">
 </f:validateLength>
 </h:inputText>
 <h:outputText value="Email:">
 </h:outputText>
 <h:inputText label="Email" value="#{customer.email}">
 <f:validateLength minimum="3"
 maximum="30">

Chapter 6

[259]

 </f:validateLength>
 </h:inputText>
 <h:panelGroup></h:panelGroup>
 <h:commandButton action="save"
 value="Save">
 </h:commandButton>
</h:panelGrid>

The <h:selectBooleanCheckbox> tag
Renders a single HTML input field of type checkbox. The value attribute for this
tag is usually set to a value binding expression mapping to a boolean property in a
managed bean.

The following markup segment illustrates typical usage of this tag:

<h:selectBooleanCheckbox
 value="#{customer.newsletterOk}" />
<h:outputText
 value="Would you like to receive our newsletter?"/>

The <h:selectManyCheckbox> tag
Renders a series of related checkboxes. Values for the user to select are defined in
any child <f:selectItem> or <f:selectItems> tags.

The following markup segment illustrates typical usage of this tag:

<h:selectManyCheckBox value="#{order.items}">
 <f:selectItems value="#{valueContainer.allItems} "/>
</h:selectManyCheckBox>

The <h:selectManyListbox> tag
Renders an HTML select field of variable size that allows multiple selections.
Values for the user to select are defined in any child <f:selectItem> or
<f:selectItems> tags. The number of elements displayed at the same time
is set by the tag's size attribute.

The following markup segment illustrates typical usage of this tag:

<h:selectManyListBox value="#{order.items}">
 <f:selectItems value="#{valueContainer.allItems} "/>
</h:selectManyListBox>

JavaServer Faces

[260]

The <h:selectManyMenu> tag
Renders an HTML select field that allows multiple selections. Values for the user to
select are defined in any child <f:selectItem> or <f:selectItems> tags. This tag is
identical to <h:selectManyListbox> except that it always displays one element at a
time. Therefore, it has no size attribute.

The following markup segment illustrates typical usage of this tag:

<h:selectManyMenu value="#{order.items}">
 <f:selectItems value="#{valueContainer.allItems} "/>
</h:selectManyMenu>

The <h:selectOneListbox> tag
Renders an HTML select field of variable size that does not allow multiple
selections. Values for the user to select are defined in any child <f:selectItem>
or <f:selectItems> tags. The number of elements displayed at the same time is
set by the tag's size attribute, which is optional. If the size attribute is not set,
then all elements are displayed at the same time.

The following markup segment illustrates typical usage of this tag:

<h:selectOneListBox value="#{order.selectedItem}">
 <f:selectItems value="#{valueContainer.allItems} "/>
</h:selectOneListBox>

The <h:selectOneMenu> tag
Renders an HTML "dropdown", which is to say it renders an HTML select
field that does not allow multiple selections. Only one element is displayed at a
time. Values for the user to select are defined in any child <f:selectItem> or
<f:selectItems> tags.

The following markup segment illustrates typical usage of this tag:

<h:selectOneMenu value="#{order.selectedItem}">
 <f:selectItems value="#{valueContainer.allItems} "/>
</h:selectOneMenu>

The <h:selectOneRadio> tag
Renders a series of related radio buttons. Values for the user to select are defined in
any child <f:selectItem> or <f:selectItems> tags.

Chapter 6

[261]

The following markup segments illustrate typical usage of this tag:

<h:selectOneRadio value="#{order.selectedItem}">
 <f:selectItems value="#{valueContainer.allItems} "/>
</h:selectOneRadio>

Additional JSF component libraries
In addition to the standard JSF component libraries, there are a number of third-
party JSF tag libraries available. The following table lists some of the most popular.
Please note that at the time of writing, not all of the listed component libraries have
been updated to support JSF 2.0.

Tag Library Distributor License URL
MyFaces
Trinidad

Apache Apache 2.0 http://myfaces.apache.org/trinidad/

ICEfaces ICEsoft MPL 1.1 http://www.icefaces.org

RichFaces Red Hat/
JBoss

LGPL http://www.jboss.org/richfaces

Primefaces Prime
Technology

Apache 2.0 http://primefaces.org

Summary
In this chapter, we covered how to develop web-based applications using JavaServer
Faces—the standard component framework for the Java EE 6 platform. We covered
how to write a simple application by creating JSPs containing JSF tags and managed
beans. We also covered how to validate user input by using JSF's standard validators
and by creating our own custom validators or by writing validator methods.
Additionally, we covered how to customize standard JSF error messages; both the
message text and the message style (font, color, and so on). Finally, we covered how
to write applications by integrating JSF and the Java Persistence API (JPA).

Java Messaging Service
The Java Messaging API (JMS) provides a mechanism for Java EE applications to
send messages to each other. JMS applications do not communicate directly, instead
message producers send messages to a destination and message consumers receive
the message from the destination.

The message destination is a message queue when the point-to-point (PTP)
messaging domain is used, or a message topic when the publish/subscribe
(pub/sub) messaging domain is used.

In this chapter, we will cover the following topics:

•	 Setting up GlassFish for JMS
•	 Working with message queues
•	 Working with message topics

Setting up GlassFish for JMS
Before we start writing code to take advantage of the JMS API, we need to configure
some GlassFish resources. Specifically, we need to set up a JMS connection factory,
a message queue, and a message topic.

Setting up a JMS connection factory
The easiest way to set up a JMS connection factory is via GlassFish's web console.
Recall from Chapter 1 that the web console can be accessed by starting our domain,
by entering the following command in the command line:

asadmin start-domain domain1

Java Messaging Service

[264]

Then point the browser to http://localhost:4848 and log in:

A connection factory can be added by expanding the Resources node in the tree
at the left-hand side of the web console, expanding the JMS Resources node and
clicking on the Connection Factories node, then clicking on the New... button in
the main area of the web console.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

[265]

For our purposes, we can take most of the defaults. The only thing we need to do is
enter a Pool Name and pick a Resource Type for our connection factory.

It is always a good idea to use a Pool Name starting with "jms/" when
picking a name for JMS resources. This way JMS resources can be
easily identified when browsing a JNDI tree.

In the text field labeled Pool Name, enter jms/GlassFishBookConnectionFactory.
Our code examples later in this chapter will use this JNDI name to obtain a reference
to this connection factory.

The Resource Type drop-down menu has three options:

•	 javax.jms.TopicConnectionFactory - used to create a connection factory that
creates JMS topics for JMS clients using the pub/sub messaging domain

•	 javax.jms.QueueConnectionFactory - used to create a connection factory
that creates JMS queues for JMS clients using the PTP messaging domain

•	 javax.jms.ConnectionFactory - used to create a connection factory that
creates either JMS topics or JMS queues

For our example, we will select javax.jms.ConnectionFactory. This way we can use
the same connection factory for all our examples, those using the PTP messaging
domain and those using the pub/sub messaging domain.

Java Messaging Service

[266]

After entering the Pool Name for our connection factory, selecting a connection
factory type, and optionally entering a description for our connection factory,
we must click on the OK button for the changes to take effect.

We should then see our newly created connection factory listed in the main area of
the GlassFish web console.

Setting up a JMS message queue
A JMS message queue can be added by expanding the Resources node in the tree
at the left-hand side of the web console, expanding the JMS Resources node and
clicking on the Destination Resources node, then clicking on the New... button in
the main area of the web console.

In our example, the JNDI name of the message queue is jms/GlassFishBookQueue.
The resource type for message queues must be javax.jms.Queue. Additionally,
a Physical Destination Name must be entered. In this example, we use
GlassFishBookQueue as the value for this field.

Chapter 7

[267]

After clicking on the New... button, entering the appropriate information for
our message queue, and clicking on the OK button, we should see the newly
created queue:

Setting up a JMS message topic
Setting up a JMS message topic in GlassFish is very similar to setting up a
message queue.

In the GlassFish web console, expand the Resources node in the tree at the left hand
side, then expand the JMS Resouces node and click on the Destination Resources
node, then click on the New... button in the main area of the web console.

Our examples will use a JNDI Name of jms/GlassFishBookTopic. As this is a
message topic, Resource Type must be javax.jms.Topic. The Description field is
optional. The Physical Destination Name property is required. For our example, we
will use GlassFishBookTopic as the value for this property.

Java Messaging Service

[268]

After clicking on the OK button, we can see our newly created message topic:

Now that we have set up a connection factory, a message queue, and a message
topic, we are ready to start writing code using the JMS API.

Message queues
Like we mentioned earlier, message queues are used when our JMS code uses the
point-to-point (PTP) messaging domain. For the PTP messaging domain, there is
usually one message producer and one message consumer. The message producer
and the message consumer don't need to run concurrently in order to communicate.
The messages placed in the message queue by the message producer will stay in the
message queue until the message consumer executes and requests the messages from
the queue.

Sending messages to a message queue
The following example illustrates how to add messages to a message queue:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageProducer;
import javax.jms.Queue;
import javax.jms.Session;
import javax.jms.TextMessage;

public class MessageSender
{
 @Resource(mappedName = "jms/GlassFishBookConnectionFactory")
 private static ConnectionFactory connectionFactory;

Chapter 7

[269]

 @Resource(mappedName = "jms/GlassFishBookQueue")
 private static Queue queue;

 public void produceMessages()
 {
 MessageProducer messageProducer;
 TextMessage textMessage;
 try
 {
 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 messageProducer = session.createProducer(queue);
 textMessage = session.createTextMessage();

 textMessage.setText("Testing, 1, 2, 3. Can you hear me?");
 System.out.println("Sending the following message: "
 + textMessage.getText());
 messageProducer.send(textMessage);

 textMessage.setText("Do you copy?");
 System.out.println("Sending the following message: "
 + textMessage.getText());
 messageProducer.send(textMessage);

 textMessage.setText("Good bye!");
 System.out.println("Sending the following message: "
 + textMessage.getText());
 messageProducer.send(textMessage);

 messageProducer.close();
 session.close();
 connection.close();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }
 public static void main(String[] args)
 {
 new MessageSender().produceMessages();
 }
}

Java Messaging Service

[270]

Before delving into the details of this code, alert readers might have noticed that this
class is a standalone Java application as it contains a main method. As this class is
standalone, it executes outside the application server. In spite of this, we can see that
some resources are injected into it, specifically the connection factory and queue.
The reason we can inject resources into this code, even though it runs outside the
application server, is because GlassFish includes a utility called appclient.

This utility allows us to "wrap" an executable JAR file and allows it to have access
to the application server resources. To execute the previous code, assuming it is
packaged in an executable JAR file called jmsptpproducer.jar, we would type
the following command in the command line:

appclient -client jmsptpproducer.jar

We would then see, after some GlassFish log entries, the following output on
the console:

Sending the following message: Testing, 1, 2, 3. Can you hear me?

Sending the following message: Do you copy?

Sending the following message: Good bye!

The appclient executable can be found under [GlassFish installation
directory]/glassfish/bin. The previous example assumes this directory is in
your PATH variable. If it isn't the complete path to the appclient executable, it must
be typed in the command line.

With that out of the way, we can now explain the code.

The produceMessages() method performs all the necessary steps to send messages
to a message queue.

The first thing this method does is obtain a JMS connection by invoking
the createConnection() method on the injected instance of javax.jms.
ConnectionFactory. Notice that the mappedName attribute of the @Resource
annotation decorating the connection factory object matches the JNDI name of
the connection factory we set up in the GlassFish web console. Behind the scenes,
a JNDI lookup is made using this name to obtain the connection factory object.

After obtaining a connection, the next step is to obtain a JMS session from said
connection. This can be accomplished by calling the createSession() method on
the Connection object. As can be seen in the previous code, the createSession()
method takes two parameters.

Chapter 7

[271]

The first parameter of the createSession() method is a Boolean indicating if the
session is transacted. If this value is true, several messages can be sent as part of a
transaction by invoking the commit() method in the session object. Similarly, they
can be rolled back by invoking its rollback() method.

The second parameter of the createSession() method indicates how messages are
acknowledged by the message receiver. Valid values for this parameter are defined
as constants in the javax.jms.Session interface.

•	 Session.AUTO_ACKNOWLEDGE: indicates that the session will automatically
acknowledge the receipt of a message.

•	 Session.CLIENT_ACKNOWLEDGE: indicates that the message receiver must
explicitly call the acknowledge() method on the message.

•	 Session.DUPS_OK_ACKNOWLEDGE: indicates that the session will lazily
acknowledge the receipt of messages. Using this value might result in some
messages being delivered more than once.

After obtaining a JMS session, an instance of javax.jms.MessageProducer is
obtained by invoking the createProducer() method on the session object. The
MessageProducer object is the one that will actually send messages to the message
queue. The injected Queue instance is passed as a parameter to the createProducer()
method. Again, the value of the mappedName attribute for the @Resource annotation
decorating this object must match the JNDI name we gave our message queue when
setting it up in the GlassFish web console.

After obtaining an instance of MessageProducer, the code creates a series of text
messages by invoking the createTextMessage() method on the session object. This
method returns an instance of a class implementing the javax.jms.TextMessage
interface. This interface defines a method called setText(), which is used to set the
actual text in the message. After creating each text message and setting its text, they are
sent to the queue by invoking the send() method on the MessageProducer object.

After sending the messages, the code disconnects from the JMS queue by invoking
the close() method on the MessageProducer object, on the Session object, and on
the Connection object.

Although the previous example sends only text messages to the queue, we are not
limited to this type of message. The JMS API provides several types of messages
that can be sent and received by JMS applications. All message types are defined as
interfaces in the javax.jms package.

Java Messaging Service

[272]

The following table lists all the available message types:

Message type Description
BytesMessage Allows sending an array of bytes as a message.
MapMessage Allows sending an implementation of java.util.Map as a

message.
ObjectMessage Allows sending any Java object implementing

java.io.Serializable as a message.
StreamMessage Allows sending an array of bytes as a message. Differs from

BytesMessage in that it stores the type of each primitive type
added to the stream.

TextMessage Allows sending a java.lang.String as a message.

For more information on all of these message types, consult their JavaDoc
documentation at http://java.sun.com/javaee/6/docs/api/.

Retrieving messages from a message queue
There is no point in sending messages from a queue if nothing is going to receive
them. The following example illustrates how to retrieve messages from a JMS
message queue:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageConsumer;
import javax.jms.Queue;
import javax.jms.Session;
import javax.jms.TextMessage;

public class MessageReceiver
{
 @Resource(mappedName = "jms/GlassFishBookConnectionFactory")

 private static ConnectionFactory connectionFactory;

 @Resource(mappedName = "jms/GlassFishBookQueue")

 private static Queue queue;

 public void getMessages()
 {

Chapter 7

[273]

 Connection connection;

 MessageConsumer messageConsumer;

 TextMessage textMessage;

 boolean goodByeReceived = false;

 try

 {

 connection = connectionFactory.createConnection();

 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

 messageConsumer = session.createConsumer(queue);

 connection.start();

 while (!goodByeReceived)

 {

 System.out.println("Waiting for messages...");

 textMessage = (TextMessage) messageConsumer.receive();

 if (textMessage != null)

 {

 System.out.print("Received the following message: ");

 System.out.println(textMessage.getText());

 System.out.println();

 }

 if (textMessage.getText() != null
 && textMessage.getText().equals("Good bye!"))

 {

 goodByeReceived = true;

 }

 }

 messageConsumer.close();

 session.close();

 connection.close();

 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }
 public static void main(String[] args)
 {
 new MessageReceiver().getMessages();
 }
}

Java Messaging Service

[274]

Just like in the previous example, an instance of javax.jms.ConnectionFactory
and an instance of javax.jms.Queue are injected by using the @Resource
annotation. Getting a connection and a JMS session is exactly the same as in
the previous example.

In this example, we obtain an instance of javax.jms.MessageConsumer by calling
the createConsumer() method on the JMS session object. When we are ready to
start receiving messages from the message queue, we need to invoke the start()
method on the JMS connection object.

Code not receiving messages?
A common mistake when writing JMS messages is to fail to call the
start() method on the JMS connection object. If our code is not
receiving messages it should be receiving, we need to make sure we
didn't forget to call this method.

Messages are received by invoking the receive() method on the instance of
MessageConsumer obtained from the JMS session. This method returns an instance
of a class implementing the javax.jms.Message interface. It must be casted to the
appropriate type in order to obtain the actual message.

In this particular example, we placed this method call in a while loop, as we are
expecting a message that will let us know that no more messages are coming.
Specifically, we are looking for a message containing the text "Good bye!". Once
we receive said message, we break out of the loop and continue processing. In this
particular case, there is no more processing to do. Therefore, all we do is call the
close() method on the message consumer object, on the session object, and on the
connection object.

Just like in the previous example, using the appclient utility allows us to inject
resources into the code and prevents us from having to add any libraries to the
CLASSPATH. After executing the code through the appclient utility, we should
see the following output in the command line:

appclient -client target/jmsptpconsumer.jar

Waiting for messages...

Received the following message: Testing, 1, 2, 3. Can you hear me?

Waiting for messages...

Received the following message: Do you copy?

Waiting for messages...

Received the following message: Good bye!

Chapter 7

[275]

This of course assumes that the previous example was already executed and it placed
the messages in the message queue.

Asynchronously receiving messages from a
message queue
The MessageConsumer.receive() method has a disadvantage—it blocks
execution until a message is received from the queue. We can avoid this
disadvantage by receiving messages asynchronously via an implementation
of the javax.jms.MessageListener interface.

The javax.jms.MessageListener interface contains a single method called
onMessage. It takes an instance of a class implementing the javax.jms.Message
interface as its sole parameter. The following example illustrates a typical
implementation of this interface:

package net.ensode.glassfishbook;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

public class ExampleMessageListener implements MessageListener
{
 @Override
 public void onMessage(Message message)
 {
 TextMessage textMessage = (TextMessage) message;
 try
 {
 System.out.print("Received the following message: ");
 System.out.println(textMessage.getText());
 System.out.println();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Java Messaging Service

[276]

In this case, the onMessage() method simply outputs the message text to the console.

Our main code can now delegate message retrieval to our custom MessageListener
implementation:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageConsumer;
import javax.jms.Queue;
import javax.jms.Session;

public class AsynchMessReceiver
{
 @Resource(mappedName = "jms/GlassFishBookConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/GlassFishBookQueue")
 private static Queue queue;

 public void getMessages()
 {
 Connection connection;
 MessageConsumer messageConsumer;
 try
 {
 connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 messageConsumer = session.createConsumer(queue);
 messageConsumer.setMessageListener(new
 ExampleMessageListener());
 connection.start();

 System.out.println("The above line will allow the "
 + "MessageListener implementation to "
 + "receiving and processing messages from the queue.");
 Thread.sleep(1000);
 System.out.println("Our code does not have to block "
 + "while messages are received.");
 Thread.sleep(1000);
 System.out.println("It can do other stuff "
 + "(hopefully something more useful than sending "
 + "silly output to the console. :)");
 Thread.sleep(1000);

Chapter 7

[277]

 messageConsumer.close();
 session.close();
 connection.close();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
 }
 public static void main(String[] args)
 {
 new AsynchMessReceiver().getMessages();
 }
}

The only relevant difference between this example and the one in the previous
section is that in this case, we are calling the setMessageListener() method on
the instance of javax.jms.MessageConsumer obtained from the JMS session. We
pass an instance of our custom implementation of javax.jms.MessageListener
to this method. Its onMessage() method is automatically called whenever there is a
message waiting in the queue. By using this approach, the main code does not block
while waiting to receive messages.

Executing the previous example (using of course GlassFish's appclient utility)
results in the following output:

appclient -client target/jmsptpasynchconsumer.jar

The above line will allow the MessageListener implementation to receiving
and processing messages from the queue.

Received the following message: Testing, 1, 2, 3. Can you hear me?

Received the following message: Do you copy?

Received the following message: Good bye!

Our code does not have to block while messages are received.

It can do other stuff (hopefully something more useful than sending silly
output to the console. :)

Java Messaging Service

[278]

Notice how the messages were received and processed while the main thread was
executing. We can tell this is the case because the output of the onMessage() method
of our MessageListener can be seen between calls to System.out.println() in the
primary class.

Browsing message queues
JMS provides a way to browse message queues without actually removing the
messages from the queue. The following example illustrates how to do this:

package net.ensode.glassfishbook;

import java.util.Enumeration;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.Queue;
import javax.jms.QueueBrowser;
import javax.jms.Session;
import javax.jms.TextMessage;

public class MessageQueueBrowser
{
 @Resource(mappedName = "jms/GlassFishBookConnectionFactory")

 private static ConnectionFactory connectionFactory;

 @Resource(mappedName = "jms/GlassFishBookQueue")

 private static Queue queue;

 public void browseMessages()
 {
 try
 {
 Enumeration messageEnumeration;

 TextMessage textMessage;

 Connection connection = connectionFactory.createConnection();

 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

 QueueBrowser browser = session.createBrowser(queue);

 messageEnumeration = browser.getEnumeration();

Chapter 7

[279]

 if (messageEnumeration != null)

 {

 if (!messageEnumeration.hasMoreElements())

 {

 System.out.println("There are no messages " + "in the
 queue.");

 }

 else

 {

 System.out.println("The following messages are in the
 queue:");

 while (messageEnumeration.hasMoreElements())

 {

 textMessage =
 (TextMessage) messageEnumeration.nextElement();

 System.out.println(textMessage.getText());

 }

 }

 }

 session.close();

 connection.close();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }
 public static void main(String[] args)
 {
 new MessageQueueBrowser().browseMessages();
 }
}

As we can see, the procedure to browse messages in a message queue is
straightforward. We obtain a JMS connection and a JMS session the usual way, then
invoke the createBrowser() method on the JMS session object. This method returns
an implementation of the javax.jms.QueueBrowser interface. This interface contains
a getEnumeration() method that we can invoke to obtain an enumeration containing
all messages in the queue. To examine the messages in the queue, we simply traverse
this enumeration and obtain the messages one by one. In the previous example, we
simply invoke the getText() method of each message in the queue.

Java Messaging Service

[280]

Message topics
Message topics are used when our JMS code uses the publish/subscribe (pub/sub)
messaging domain. When using this messaging domain, the same message can be
sent to all subscribers of the topic.

Sending messages to a message topic
The following example illustrates how to send messages to a message topic:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;

public class MessageSender
{
 @Resource(mappedName = "jms/GlassFishBookConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/GlassFishBookTopic")

 private static Topic topic;

 public void produceMessages()
 {
 MessageProducer messageProducer;
 TextMessage textMessage;
 try
 {
 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 messageProducer = session.createProducer(topic);
 textMessage = session.createTextMessage();

Chapter 7

[281]

 textMessage.setText("Testing, 1, 2, 3. Can you hear me?");
 System.out.println("Sending the following message: "
 + textMessage.getText());
 messageProducer.send(textMessage);

 textMessage.setText("Do you copy?");
 System.out.println("Sending the following message: "
 + textMessage.getText());
 messageProducer.send(textMessage);

 textMessage.setText("Good bye!");
 System.out.println("Sending the following message: "
 + textMessage.getText());
 messageProducer.send(textMessage);

 messageProducer.close();
 session.close();
 connection.close();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }
 public static void main(String[] args)
 {
 new MessageSender().produceMessages();
 }
}

As we can see, this code is nearly identical to the MessageSender class we saw when
we discussed point-to-point messaging. As a matter of fact, the only lines of code
that are different are the ones that are highlighted. The JMS API was designed this
way so that application developers do not have to learn two different APIs for the
PTP and pub/sub domains.

As the code is nearly identical to the corresponding example in the Message queues
section, we will only explain the differences between the two examples. In this
example, instead of declaring an instance of a class implementing javax.jms.
Queue, we declare an instance of a class implementing javax.jms.Topic. Just like
in the previous examples, we use dependency injection to initialize the Topic object.
After obtaining a JMS connection and a JMS session, we pass the Topic object to the
createProducer() method in the Session object. This method returns an instance
of javax.jms.MessageProducer that we can use to send messages to the JMS topic.

Java Messaging Service

[282]

Receiving messages from a message topic
Just as sending messages to a message topic is nearly identical to sending messages
to a message queue, receiving messages from a message topic is nearly identical to
receiving messages from a message queue.

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageConsumer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;

public class MessageReceiver
{
 @Resource(mappedName = "jms/GlassFishBookConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/GlassFishBookTopic")

 private static Topic topic;

 public void getMessages()
 {
 Connection connection;
 MessageConsumer messageConsumer;
 TextMessage textMessage;
 boolean goodByeReceived = false;

 try
 {
 connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 messageConsumer = session.createConsumer(topic);
 connection.start();

 while (!goodByeReceived)
 {
 System.out.println("Waiting for messages...");
 textMessage = (TextMessage) messageConsumer.receive();

 if (textMessage != null)

Chapter 7

[283]

 {
 System.out.print("Received the following message: ");
 System.out.println(textMessage.getText());
 System.out.println();
 }
 if (textMessage.getText() != null
 && textMessage.getText().equals("Good bye!"))
 {
 goodByeReceived = true;
 }
 }

 messageConsumer.close();
 session.close();
 connection.close();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }
 public static void main(String[] args)
 {
 new MessageReceiver().getMessages();
 }
}

Once again, the differences between this code and the corresponding code for PTP are
trivial. Instead of declaring an instance of a class implementing javax.jms.Queue, we
declare a class implementing javax.jms.Topic. We use the @Resource annotation
to inject an instance of this class into our code using the JNDI name we used when
creating it in the GlassFish web console. After obtaining a JMS connection and a JMS
session, we pass the Topic object to the createConsumer() method in the Session
object. This method returns an instance of javax.jms.MessageConsumer that we can
use to receive messages from the JMS topic.

Using the pub/sub messaging domain as illustrated in this section has the advantage
that messages can be sent to several message consumers. This can be easily tested by
concurrently executing two instances of the MessageReceiver class we developed in
this section, then executing the MessageSender class we developed in the previous
section. We should see console output for each instance, indicating that both
instances received all messages.

Java Messaging Service

[284]

Just like with message queues, messages can be retrieved asynchronously from a
message topic. The procedure to do this is so similar to the message queue version
that we will not show an example. To convert the asynchronous example shown
earlier in this chapter to use a message topic, simply replace the javax.jms.Queue
variable with an instance of javax.jms.Topic and inject the appropriate instance by
using "jms/GlassFishBookTopic" as the value of the mappedName attribute of the
@Resource annotation decorating the instance of javax.jms.Topic.

Creating durable subscribers
The disadvantage of using the pub/sub messaging domain is that message
consumers must be executing when messages are sent to the topic. If the message
consumer is not executing at the time, it will not receive the messages, whereas in
PTP, messages are kept in a queue until the message consumer executes. Fortunately,
the JMS API provides a way to use the pub/sub messaging domain and keep
messages in the topic until all subscribed message consumers execute and receive the
message. This can be accomplished by creating durable subscribers to a JMS topic.

In order to be able to service durable subscribers, we need to set the ClientId
property of our JMS connection factory. Each durable subscriber must have a unique
client id, therefore a unique connection factory must be declared for each potential
durable subscriber.

InvalidClientIdException?
Only one JMS client can connect to a topic for a specific client id. If more
than one JMS client attempts to obtain a JMS connection using the same
connection factory, a JMSException stating that the client id is already in
use will be thrown. The solution is to create a connection factory for each
potential client that will be receiving messages from the durable topic.

Like we mentioned before, the easiest way to add a connection factory is through
the GlassFish web console. Recall that to add a JMS connection factory through the
GlassFish web console, we need to expand the Resources node on the left hand side,
then expand the JMS Resources node, click on the Connection Factories node, and
click on the New... button in the main area of the page. Our next example will use the
settings displayed in the following screenshot:

Chapter 7

[285]

Before clicking on the OK button, we need to scroll to the bottom of the page, click
on the Add Property button, and enter a new property named ClientId. Our
example will use ExampleId as the value for this property.

Now that we have set up GlassFish to be able to provide durable subscriptions, we
are ready to write some code to take advantage of them:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageConsumer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;

public class MessageReceiver
{
 @Resource(mappedName = "jms/GlassFishBookDurableConnectionFactory")

 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/GlassFishBookTopic")
 private static Topic topic;

Java Messaging Service

[286]

 public void getMessages()
 {
 Connection connection;
 MessageConsumer messageConsumer;
 TextMessage textMessage;
 boolean goodByeReceived = false;

 try
 {
 connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 messageConsumer = session.createDurableSubscriber(topic,
 "Subscriber1");
 connection.start();

 while (!goodByeReceived)
 {
 System.out.println("Waiting for messages...");
 textMessage = (TextMessage) messageConsumer.receive();
 if (textMessage != null)
 {
 System.out.print("Received the following message: ");
 System.out.println(textMessage.getText());
 System.out.println();
 }
 if (textMessage.getText() != null
 && textMessage.getText().equals("Good bye!"))
 {
 goodByeReceived = true;
 }
 }

 messageConsumer.close();
 session.close();
 connection.close();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }
 public static void main(String[] args)
 {
 new MessageReceiver().getMessages();
 }
}

Chapter 7

[287]

As we can see, this code is not much different from the previous examples whose
purpose was to retrieve messages. There are only two differences from the previous
examples: the instance of ConnectionFactory to which we are injecting is the one
we set up earlier in this section to handle durable subscriptions, and instead of
calling the createSubscriber() method on the JMS session object, we are calling
createDurableSubscriber(). The createDurableSubscriber() method takes two
arguments: a JMS Topic object to retrieve messages from and a string designating
a name for this subscription. This second parameter must be unique between all
subscribers to the durable topic.

Summary
In this chapter, we covered how to set up JMS connection factories, JMS message
queues, and JMS message topics in GlassFish using the GlassFish web console.

We also covered how to send messages to a message queue via the
javax.jms.MessageProducer interface.

Additionally, we covered how to receive messages from a message queue via the
javax.jms.MessageConsumer interface. We also covered how to asynchronously
receive messages from a message queue by implementing the javax.jms.
MessageListener interface.

We also saw how to use these interfaces to send and receive messages to and from a
JMS message topic.

We covered how to browse messages in a message queue without removing the
messages from the queue via the javax.jms.QueueBrowser interface.

Finally, we saw how to set up and interact with durable subscriptions to JMS topics.

:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Security
In this chapter, we will cover how to secure Java EE applications by taking
advantage of GlassFish's built-in security features.

Java EE security relies on the Java Authentication and Authorization Service (JAAS)
API. As we shall see, securing Java EE applications requires very little coding. For the
most part, securing an application is achieved by setting up users and security groups
to a security realm in the application server, then configuring our applications to rely
on a specific security realm for authentication and authorization.

Some of the topics we will cover include:

•	 Admin realm
•	 File realm
•	 Certificate realm
•	 Creating self-signed security certificates
•	 JDBC realm
•	 Custom realms

Security realms
Security realms are, in essence, collections of users and related security groups.
Users are application users; a user can belong to one or more security groups.
The groups that the user belongs to define what actions the system will allow
the user to perform. For example, an application can have regular users who can
only use the basic application functionality, and it can have administrators that,
in addition to being able to use basic application functionality, can add additional
users to the system.

Security

[290]

Security realms store user information (username, password, and security groups).
Applications don't need to implement this functionality; they simply can be configured
to obtain this information from a security realm. A security realm can be used by more
than one application.

Predefined security realms
GlassFish comes preconfigured with three predefined security realms: admin-realm,
the file realm, and the certificate realm. admin-realm is used to manage the user's
access to the GlassFish web console and shouldn't be used for other applications.
The file realm stores user information in a file. The certificate realm looks for a
client-side certificate to authenticate the user.

Chapter 8

[291]

In addition to the predefined security realms, we can add additional realms with
very little effort. We will cover how to do this later in this chapter, but first let's
discuss GlassFish's predefined security realms.

The admin-realm
To illustrate how to add users to a realm, let's add a new user to the admin-realm.
This will allow this additional user to log into the GlassFish web console. In order
to add a user to the admin-realm, log into the GlassFish web console, expand the
Configuration node at the left-hand side, expand the Security node, then the Realms
node, and click on admin-realm. The main area of the page should look like the
following screenshot:

Security

[292]

To add a user to the realm, click on the button labeled Manage Users at the top left.
The main area of the page should now look like this:

To add a new user to the realm, simply click on the New... button at the top left of
the screen, then enter the new user information.

In this screenshot, we added a new user named root, added this user to the asadmin
group, and entered this user's password.

The GlassFish web console will only allow users in the asadmin group
to log in. Failing to add our user to this security group would prevent
him/her from logging into the console.

Chapter 8

[293]

We have now successfully added a new user to the GlassFish web console. We can
test this new account by logging into the console with this new user's credentials.

The file realm
The second predefined realm in GlassFish is the file realm. This realm stores user
information encrypted in a text file. Adding users to this realm is very similar to
adding users to the admin-realm. We can add a user by expanding the Configuration
node, then expanding the Security node, then the Realms node, then clicking on file,
then clicking on the Manage Users button, and clicking on the New... button.

As this realm is meant to be used for our applications, we can come up with our
own groups. In this example, we added a user with a User ID of peter to the groups
appuser and appadmin.

Clicking on the OK button should save the new user and take us to the user list for
this realm.

Security

[294]

Clicking the New... button allows us to add additional users to the realm. Let's add
an additional user called joe belonging only to the appuser group:

As we have seen in this section, adding users to the file realm is very simple. We will
now illustrate how to authenticate and authorize users via the file realm.

File realm basic authentication
In the previous section, we covered how to add users to the file realm and how to
assign these users to groups. In this section, we will illustrate how to secure a web
application so that only properly authenticated and authorized users can access it.
This web application will use the file realm for user access control.

The application will consist of a few very simple JSPs. All authentication logic is
taken care of by the application server. Therefore, the only place we need to make
modifications in order to secure the application is in its deployment
descriptors—web.xml and sun-web.xml. We will first discuss web.xml, which
is shown next:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Admin Pages</web-resource-name>

 <url-pattern>/admin/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

Chapter 8

[295]

 <role-name>admin</role-name>

 </auth-constraint>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>AllPages</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>file</realm-name>

 </login-config>

</web-app>

The <security-constraint> element defines who can access pages matching
a certain URL pattern. The URL pattern of the pages is defined inside the
<url-pattern> element, which, as shown in the example, must be nested
inside a <web-resource-collection> element. Roles allowed to access the
pages are defined in the <role-name> element, which must be nested inside an
<auth-constraint> element.

In this example, we define two sets of pages to be protected. The first set of pages
is any page whose URL starts with /admin. These pages can only be accessed by
users with the role of admin. The second set of pages is all pages defined by the URL
pattern of /*. Only users with the role of user can access these pages. It is worth noting
that the second set of pages is a superset of the first set, that is, any page whose URL
matches /admin/* also matches /*. In cases like this, the most specific case "wins".
In this particular case, users with a role of user (and without the role of admin)
will not be able to access any pages whose URL starts with /admin.

The next element we need to add to web.xml in order to protect our pages is the
<login-config> element. This element must contain an <auth-method> element
that defines the authorization method for the application. Valid values for this
element include BASIC, DIGEST, FORM, and CLIENT-CERT.

Security

[296]

BASIC indicates that basic authentication will be used. This type of authentication
will result in a browser-generated pop-up prompting the user for a username and
password to be displayed the first time a user tries to access a protected page. Unless
using the HTTPS protocol, when using basic authentication, the user's credentials
are Base64 encoded, not encrypted. It would be fairly easy for an attacker to decode
these credentials, therefore using basic authentication is not recommended.

DIGEST is similar to basic authentication, except it uses an MD5 digest to encrypt the
user credentials instead of sending them Base64 encoded.

FORM uses a custom HTML or JSP page containing an HTML form with username
and password fields. The values in the form are then checked against the security
realm for user authentication and authorization. Unless using HTTPS, user
credentials are sent in clear text when using form-based authentication. Therefore,
using HTTPS is recommended as it encrypts the data. We will cover setting up
GlassFish to use HTTPS later in this chapter.

CLIENT-CERT uses client-side certificates to authenticate and authorize the user.

The <realm-name> element of <login-config> indicates what security realm to use
to authenticate and authorize the user. In this particular example, we are using the
file realm.

All the web.xml elements we have discussed in this section can be used with
any security realm; they are not tied to the file realm. The only thing that ties our
application to the file realm is the value of the <realm-name> element. Something
else to keep in mind is that not all authentication methods are supported by all
realms. The file realm supports only basic and form-based authentication.

Before we successfully authenticate our users, we need to link the user roles
defined in web.xml with the groups defined in the realm. We accomplish this
in the sun-web.xml deployment descriptor:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
 Application Server 9.0 Servlet 2.5//EN"
 "http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app>
 <security-role-mapping>
 <role-name>admin</role-name>
 <group-name>appadmin</group-name>
 </security-role-mapping>
 <security-role-mapping>
 <role-name>user</role-name>
 <group-name>appuser</group-name>
 </security-role-mapping>
</sun-web-app>

Chapter 8

[297]

As can be seen in the example, the sun-web.xml deployment descriptor can have
one or more <security-role-mapping> elements. One of these elements for each
role defined in web.xml is needed. The <role-name> sub-element indicates the role
to map. Its value must match the value of the corresponding <role-name> element
in web.xml. The <group-name> sub-element must match the value of a security
group in the realm used to authenticate users in the application.

In this example, the first <security-role-mapping> element maps the admin role
defined in the application's web.xml deployment descriptor to the appadmin group
we created when adding users to the file realm earlier in the chapter. The second
<security-role-mapping> maps the user role in web.xml to the appuser group
in the file realm.

Like we mentioned earlier, there is nothing we need to do in our code in order to
authenticate and authorize users. All we need to do is modify the application's
deployment descriptors, as described in this section. As our application is nothing
but a few simple JSPs, we will not show the source code for them. The structure of
our application is shown in the following screenshot:

Based on the way we set up our application in the deployment descriptors, users
with a role of user will be able to access the two JSPs at the root of the application
(index.jsp and random.jsp). Only users with the role of admin will be able to
access any pages under the admin folder, which in this particular case is a single
JSP named index.jsp.

Security

[298]

After packaging and deploying our application, and pointing the browser to the URL
of any of its pages, we should see a pop up asking for a username and password.

After entering the correct username and password, we are directed to a page we
were attempting to see:

At this point, the user can navigate to any page that he is allowed to access in the
application, either by following links or by typing the URL in the browser, without
having to re-enter his/her username and password.

Notice that we logged in as user joe. This user belongs only to the user role, therefore
he does not have access to any page that starts with /admin as the URL. If Joe tries to
access one of these pages, he will see the following error message in the browser:

Chapter 8

[299]

Only users belonging to the admin role can see pages that match this URL. When
we were adding users to the file realm, we added a user named "peter" that had
this role. If we log in as peter, we will be able to see the requested page. For basic
authentication, the only way possible to log out of the application is to close the
browser. Therefore, to log in as peter, we need to close and reopen the browser.

Like we mentioned before, one disadvantage of the basic authentication method
we used in this example is that login information is not encrypted. One way to get
around this is to use the HTTPS (HTTP over SSL) protocol. When using this protocol,
all information between the browser and the server is encrypted.

The easiest way to use HTTPS is by modifying the application's web.xml
deployment descriptor.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <security-constraint>

Security

[300]

 <web-resource-collection>
 <web-resource-name>Admin Pages</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AllPages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>file</realm-name>
 </login-config>
</web-app>

As we can see, all we need to do to have the application accessed only through
HTTPS is to add a <user-data-constraint> element containing a nested
<transport-guarantee> element to each set of pages we want to encrypt. Sets of
pages to be protected are declared in the <security-constraint> elements in the
web.xml deployment descriptor.

Now, when we access the application through the (unsecure) HTTP port
(by default it is 8080), the request is automatically forwarded to the (secure)
HTTPS port (default of 8181).

In this example, we set the value of the <transport-guarantee> element to
CONFIDENTIAL. This has the effect of encrypting all the data between the browser
and the server. Also, if a request is made through the unsecured HTTP port, it is
automatically forwarded to the secured HTTPS port.

Chapter 8

[301]

Another valid value for the <transport-guarantee> element is INTEGRAL. When
using this value, the integrity of the data between the browser and the server is
guaranteed. In other words, the data cannot be changed in transit. When using this
value, a request made over HTTP is not automatically forwarded to HTTPS. If a user
attempts to access a secure page via HTTP when this value is used, the browser will
deny the request and return a 403 Access Denied error.

The third and last valid value for the <transport-guarantee> element is NONE.
When using this value, no guarantees are made about the integrity or confidentiality
of the data. NONE is the default value used when the <transport-guarantee>
element is not present in the application's web.xml deployment descriptor.

After making these modifications to the web.xml deployment descriptor,
redeploying the application and pointing the browser to any of the pages in
the application, we should see the following warning page when accessing our
application with Firefox:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Security

[302]

After expanding the I Understand the Risks node and clicking on the button labeled
Add Exception..., we should see a window like the following:

After clicking on the button labeled Confirm Security Exception, we are prompted
for a username and password. After entering the appropriate credentials, we are
allowed access to the requested page.

The reason we see this warning is that, in order for a server to use the HTTPS
protocol, it must have an SSL certificate. Typically, SSL certificates are issued
by certificate authorities such as Verisign or Thawte. These certificate authorities
digitally sign the certificate; by doing this, they certify that the server belongs to
the entity it claims it belongs to.

A digital certificate from one of these certificate authorities typically costs around $400
USD and expires after a year. As the cost of these certificates may be prohibitive for
development or testing purposes, GlassFish comes pre-configured with a self-signed
SSL certificate. As this certificate has not been signed by a certificate authority, the

Chapter 8

[303]

browser shows the previous warning window when we try to access a secured page
via HTTPS.

Notice the URL in the previous screenshot; the protocol is set to HTTPS and the
port is 8181. The URL we pointed the browser to was http://localhost:8080/
filerealmauthhttps/random.jsp. Because of the modifications we made to
the application's web.xml deployment descriptor, the request was automatically
forwarded to this URL. Of course, users may directly type the secure URL and it
will work without a problem.

Any data transferred over HTTPS is encrypted, including the username and
password entered in the pop-up window generated by the browser. Using HTTPS
allows us to safely use basic authentication. However, basic authentication has another
disadvantage: the only way a user can log out from the application is by closing the
browser. If we need to allow users to log out of the application without closing the
browser, we need to use form-based authentication.

When using form-based authentication, we need to make some modifications to the
application's web.xml deployment descriptor:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admin Pages</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AllPages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>

Security

[304]

 <auth-method>FORM</auth-method>
 <realm-name>file</realm-name>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/loginerror.jsp</form-error-page>
 </form-login-config>
 </login-config>
 <servlet>
 <servlet-name>LogoutServlet</servlet-name>
 <servlet-class>
 net.ensode.glassfishbook.LogoutServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>LogoutServlet</servlet-name>
 <url-pattern>/logout</url-pattern>
 </servlet-mapping>
</web-app>

When using form-based authentication, we simply use FORM as the value of the
 <auth-method> element in web.xml. When using this authentication method, we
need to provide a login page and a login error page. We indicate the URLs for the
login page and the login error page as the values of the <form-login-page> and
<form-error-page> elements respectively. As can be seen in the example, these
elements must be nested inside the <form-login-config> element.

The markup for the login page for our application is shown next:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Login</title>
 </head>
 <body>
 <p>Please enter your username and password to access the
 application</p>
 <form method="POST" action="j_security_check">
 <table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td align="right">Username: </td>
 <td>
 <input type="text" name="j_username">
 </td>
 </tr>

Chapter 8

[305]

 <tr>
 <td align="right">Password: </td>
 <td>
 <input type="password" name="j_password">
 </td>
 </tr>
 <tr>
 <td></td>
 <td><input type="submit" value="Login"></td>
 </tr>
 </table>
 </form>
 </body>
</html>

The login page for an application using form-based authentication must contain a
form whose method is "POST" and action is "j_security_check". We don't need
to implement a servlet or anything else to process this form. The code to process it is
supplied by the application server.

The form in the login page must contain a text field named j_username. This text
field is meant to hold the user's username. Additionally, the form must contain a
password field named j_password, meant for the user's password. Of course, the
form must contain a submit button to submit the data to the server.

The only requirement for a login page is for it to have a form whose attributes match
those in the previous example, and the j_username and j_password input fields as
described in the preceding paragraph.

There are no special requirements for the error page. Of course, it should show an
error message telling the user that login was unsuccessful. However, it can contain
anything we wish. The error page for our application simply tells the user that there
was an error logging in and links back to the login page to give the user a chance to
log back in.

In addition to a login page and a login error page, we added a servlet to our
application. This servlet allows us to implement logout functionality, something
that wasn't possible when we were using basic authentication.

package net.ensode.glassfishbook;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

Security

[306]

@WebServlet(urlPatterns = {"/logout"})
public class LogoutServlet extends HttpServlet
{
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException
 {
 request.getSession().invalidate();
 response.sendRedirect("index.jsp");
 }
}

As we can see, all we need to do to log out the user is invalidate the session. In our
servlet, we redirect the response to the index.jsp page, as session is invalid at this
point, the security mechanism will "kick in" and automatically direct the user to the
login page.

We are now ready to test form-based authentication. After building our application,
deploying it and pointing the browser to any of its pages, we should see our login
page rendered in the browser:

If we submit invalid credentials, we are automatically forwarded to the login
error page:

Chapter 8

[307]

We can click on the Try again link to try again. After entering valid credentials, we
are allowed into the application:

As we can see, we added a Logout link to the page. This page directs the user to the
logout servlet, which as we mentioned before, simply invalidates the session. From
the user's point of view, this link will simply log them out and direct them to the
login screen.

The certificate realm
The certificate realm uses client-side certificates for authentication. Just like
server-side certificates, client-side certificates are typically obtained from a
certificate authority such as Verisign or Thawte. These certificate authorities
verify that the certificate really belongs to the entity it says it belongs to.

Obtaining a certificate from a certificate authority costs money and takes some time.
It might not be practical to obtain a certificate from one of the certificate authorities
when we are developing and/or testing our application. Fortunately, we can create
self-signed certificates for testing purposes.

Creating self-signed certificates
We can create self-signed certificates with little effort with the keytool utility
included with the Java Development Kit.

We will only briefly cover some of the keytool utility functionality.
Specifically, we will cover what is necessary to create and import
self-signed certificates into GlassFish and into the browser. To learn
more about the keytool utility, refer to http://java.sun.com/
javase/6/docs/technotes/tools/solaris/keytool.html.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Security

[308]

Generating a self-signed certificate can be accomplished by typing the following
command in the command line:

keytool -genkey -v -alias selfsignedkey -keyalg RSA -storetype PKCS12
-keystore client_keystore.p12 -storepass wonttellyou -keypass wonttellyou

This command assumes that the keytool utility is in the system path. This tool can
be found under the bin directory, under the directory where the Java Development
Kit is installed.

Substitute the values for the -storepass and -keypass parameters with your own
password. Both these passwords must be the same in order to successfully use
the certificate to authenticate the client. You may choose any value for the -alias
parameter. You may also choose any value for the -keystore parameter. However,
the value must end in .p12, as this command generates a file that needs to be
imported into the web browser, and this file won't be recognized unless it has a
p12 extension.

After entering the previous command in the command line, keytool will prompt for
some information:

What is your first and last name?

 [Unknown]: David Heffelfinger

What is the name of your organizational unit?

 [Unknown]: Book Writing Division

What is the name of your organization?

 [Unknown]: Ensode Technology, LLC

What is the name of your City or Locality?

 [Unknown]: Fairfax

What is the name of your State or Province?

 [Unknown]: Virginia

What is the two-letter country code for this unit?

 [Unknown]: US

Is CN=David Heffelfinger, OU=Book Writing Division, O="Ensode
Technology, LLC", L=Fairfax, ST=Virginia, C=US correct?

 [no]: y

After entering the data for each prompt, keytool will generate the certificate, it will
be stored in the current directory, and the name of the file will be the value we used
for the -keystore parameter (in the example, client_keystore.p12).

Chapter 8

[309]

To be able to use this certificate to authenticate ourselves, we need to import it into
the browser. The procedure, although similar, varies from browser to browser. In
Firefox, this can be accomplished by going to Edit | Preferences, then clicking on
the Advanced icon at the top of the resulting pop-up window, then clicking on the
Encryption tab:

We then need to click on the View Certificates button, click on the Import button
in the resulting window, then navigate and select our certificate from the directory
in which it was created. At this point, Firefox will ask us for the password used
to encrypt the certificate. In our example, we used "wonttellyou" as the password.
After entering the password, we should see a pop-up window confirming that our
certificate was successfully imported. We should then see it in the list of certificates:

Security

[310]

We have now added our certificate to Firefox so that it can be used to authenticate
ourselves. If you are using another browser, the procedure will be similar. Consult
your browser's documentation for details.

The certificate we created in the previous step needs to be exported into a format that
GlassFish can understand:

keytool -export -alias selfsignedkey -keystore client_keystore.p12
-storetype PKCS12 -storepass wonttellyou -rfc -file selfsigned.cer

The value for the -alias, -keystore, and -storepass parameters must match the
values used in the previous command. You may choose any value for the -file
parameter, but it is recommended for the value to end in the .cer extension.

As our certificate was not issued by a certificate authority, GlassFish by default will
not recognize it as a valid certificate. GlassFish knows which certificates to trust
based on the certificate authority that created them. The way this is implemented
is that certificates for these various authorities are stored in a keystore named
cacerts.jks. This keystore can be found in the following location:

[glassfish installation
directory]/glassfish/domains/domain1/config/cacerts.jks.

In order for GlassFish to accept our certificate, we need to import it into the cacerts
keystore. This can be accomplished by issuing the following command in the
command line:

keytool -import -file selfsigned.cer -keystore [glassfish installation
directory]/glassfish/domains/domain1/config/cacerts.jks -keypass
changeit -storepass changeit

At this point, keytool will display the certificate information in the command line
and ask us if we want to trust it.

Owner: CN=David Heffelfinger, OU=Book Writing Division, O="Ensode
Technology, LLC", L=Fairfax, ST=Virginia, C=US

Issuer: CN=David Heffelfinger, OU=Book Writing Division, O="Ensode
Technology, LLC", L=Fairfax, ST=Virginia, C=US

Serial number: 4b3bfea1

Valid from: Wed Dec 30 20:30:09 EST 2009 until: Tue Mar 30 21:30:09 EDT
2010

Certificate fingerprints:

 MD5: CD:77:45:77:5F:30:F1:A2:AE:3F:E3:6F:B5:7F:D1:A2

 SHA1: 8C:2B:53:A7:92:5F:21:17:6F:DD:B2:F0:84:66:DC:83:8F:B7:10:47

 Signature algorithm name: SHA1withRSA

Chapter 8

[311]

 Version: 3

Trust this certificate? [no]: y

Certificate was added to keystore

Once we add the certificate to the cacerts.jks keystore, we need to restart the
domain for the change to take effect.

What we are effectively doing here is adding ourselves as a certificate authority that
GlassFish will trust. This, of course, should not be done in a production system.

The value for the -file parameter must match the value we used for this same
parameter when we exported the certificate.

changeit is the default password for the -keypass and -storepass
parameters for the cacerts.jks keystore. This value can be changed by
issuing the following command:
[glassfish installation directory]/glassfish/bin/
asadmin change-master-password --savemasterpassword
=true

This command will prompt for the existing master password and
for the new master password. The –savemasterpassword=true
parameter is optional; it saves the master password into a file called
master-password in the root directory for the domain. If we don't use
this parameter when changing the master password, then we will need to
enter the master password every time we want to start the domain.

Now that we have created a self-signed certificate, imported it into our browser, and
established ourselves as a certificate authority that GlassFish will trust, we are ready
to develop an application that will use client-side certificates for authentication.

Configuring applications to use the certificate realm
As we are taking advantage of Java EE security features, we don't need to
modify any code at all in order to use the security realm. All we need to do is
modify the application's configuration on its deployment descriptors—web.xml
and sun-web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <security-constraint>

Security

[312]

 <web-resource-collection>
 <web-resource-name>AllPages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>users</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <login-config>

 <auth-method>CLIENT-CERT</auth-method>

 <realm-name>certificate</realm-name>

 </login-config>

</web-app>

The main difference between this web.xml deployment descriptor and the one we
saw in the previous section is the contents of the <login-config> element. In this
case, we declared CLIENT-CERT as the authorization method and certificate as the
realm to use to authenticate. This will have the effect of GlassFish asking the browser
for a client certificate before allowing a user into the application.

When using client certificate authentication, the request must always be done via
HTTPS. Therefore, it is a good idea to add the <transport-guarantee> element
with a value of CONFIDENTIAL to the web.xml deployment descriptor. Recall from
the previous section that this has the effect of forwarding any requests through the
HTTP port to the HTTPS port. If we don't add this value to the web.xml deployment
descriptor, any requests through the HTTP port will fail as client certificate
authentication cannot be done through the HTTP protocol.

Notice that we declared that only users in the role of "users" can access any page in the
system. We did this by adding the role of users to the <role-name> element nested
inside the <auth-constraint> element of the <security-constraint> element in
the web.xml deployment descriptor. In order to allow access to authorized users, we
need to add them to this role. This is done in the sun-web.xml deployment descriptor:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
 Application Server 9.0 Servlet 2.5//EN"
 "http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app error-url="">
 <context-root>/certificaterealm</context-root>

 <security-role-mapping>

 <role-name>users</role-name>

Chapter 8

[313]

 <principal-name>CN=David Heffelfinger, OU=Book Writing Division,
 O="Ensode Technology, LLC", L=Fairfax, ST=Virginia, C=US

 </principal-name>

 </security-role-mapping>

</sun-web-app>

This assignment is done by mapping the principal (user) to a role in the
<security-role-mapping> element in the sun-web.xml deployment
descriptor. Its <role-name> sub-element must contain the role name and the
<principal-name> sub-element must contain the username. This username
is taken from the certificate.

If you are not sure of the name to use, this name can be obtained from the certificate
with the keytool utility:

keytool -printcert -file selfsigned.cer

Owner: CN=David Heffelfinger, OU=Book Writing Division, O="Ensode
Technology, LLC", L=Fairfax, ST=Virginia, C=US

Issuer: CN=David Heffelfinger, OU=Book Writing Division, O="Ensode
Technology, LLC", L=Fairfax, ST=Virginia, C=US

Serial number: 4b3bfea1

Valid from: Wed Dec 30 20:30:09 EST 2009 until: Tue Mar 30 21:30:09 EDT
2010

Certificate fingerprints:

 MD5: CD:77:45:77:5F:30:F1:A2:AE:3F:E3:6F:B5:7F:D1:A2

 SHA1: 8C:2B:53:A7:92:5F:21:17:6F:DD:B2:F0:84:66:DC:83:8F:B7:10:47

 Signature algorithm name: SHA1withRSA

 Version: 3

The value to use as <principal-name> is the line after Owner. Please note that the
value of <principal-name> must be in the same line as its opening and closing
elements (<principal-name> and </principal-name>). If there are newline or
carriage return characters before or after the value, they are interpreted as being
part of the value and validation will fail.

As our application has a single user and a single role, we are ready to deploy it. If
we had more users, we would have to add additional <security-role-mapping>
elements to our sun-web.xml deployment descriptor; at least one per user. If we
had users that belong to more than one role, then we would have to add a
<security-role-mapping> element for each role the user belongs, using the
<principal-name> value corresponding to the user's certificate for each one
of them.

Security

[314]

We are now ready to test our application. After we deploy it and point the
browser to any page in the application, we should see a screen like the following
(assuming the browser hasn't been configured to provide a default certificate any
time a server requests one):

After clicking on the OK button, we are allowed to access the application:

Before allowing access to the application, GlassFish checks the certificate authority
that issued the certificate (as we self-signed the certificate, the owner of the certificate
and the certificate authority is the same) and checks against a list of trusted
certificate authorities. As we added ourselves as a trusted authority by importing
our self-signed certificate into the cacerts.jks keystore, GlassFish recognizes the
certificate authority as a valid one. It then gets the principal name from the certificate
and compares it against the entries in the application's sun-web.xml deployment
descriptor. As we added ourselves to this deployment descriptor and gave ourselves
a valid role, we are allowed into the application

Chapter 8

[315]

Defining additional realms
In addition to the three pre-configured security realms we discussed in the previous
section, we can create additional realms for application authentication. We can create
realms that behave exactly like the file or admin-realm realms. We can also create
realms that behave like the certificate realm. Additionally, we can create realms
that use other methods of authentication. We can authenticate users against an
LDAP database. We can also authenticate users against a relational database. When
GlassFish is installed on a Solaris server, we can use Solaris authentication within
GlassFish. Also, if none of these authentication mechanisms fit our needs, we can
implement our own.

Defining additional file realms
In the administration console, expand the Configuration node, expand the Security
node, click on the Realms node, then click on the New... button on the resulting page
in the main area of the web console. We should now see a screen like the following:

Security

[316]

All we need to do to create an additional realm is enter a unique name for it in the
Realm Name field, pick com.sun.enterprise.security.auth.realm.file.FileRealm for
the Class Name field, and enter a value for the JAAS context and Key File fields.
The value for the Key File field must be an absolute path to a file where user
information will be stored. For file realms, the value for the JAAS Context field
must always be fileRealm.

After entering all this information, we can click on the OK button and our new realm
will be created. We can then use it just like the predefined file realm. Applications
wishing to authenticate against this new realm must use its name as the value of the
<realm-name> element in the application's web.xml deployment descriptor.

At the time of writing, there is an issue in GlassFish v3 that prevents the
custom file realm from being created successfully. A workaround for the
issue is to create the key file (as an empty file) in advance, before creating
the realm.

Alternatively, a custom file realm can be added from the command line via the
asadmin utility:

asadmin create-auth-realm --classname
com.sun.enterprise.security.auth.realm.file.FileRealm --property
file=/home/heffel/additionalFileRealmKeyFile:jaas-context=fileRealm
newFileRealm

The create-auth-realm command tells asadmin that we want to create a new
security realm. The value of the --classname parameter corresponds to the security
realm class name; notice that it matches the value we selected previously in the web
console. The --property parameter allows us to pass properties and their values. The
value of this parameter must be a colon-separated list of properties and their values.
The last argument of this command is the name we wish to give our security realm.

Although it is easier to set up security realms via the web console, doing it through the
asadmin command line utility has the advantage that it is easily scriptable, allowing us
to save this command in a script and easily configure several GlassFish instances.

Defining additional certificate realms
To define an additional certificate realm, we simply need to enter its name in the Name
field and pick com.sun.enterprise.security.auth.realm.certificate.CertificateRealm as
the value of the Class Name field, then click on the OK button to create our new realm.

Chapter 8

[317]

Applications wishing to use this new realm for authentication must use its name
as the value of the <realm-name> element in the web.xml deployment descriptor,
and specify CLIENT-CERT as the value of its <auth-method> element. Of course,
client certificates must be present and configured as explained in the Configuring
applications to use the certificate realm section.

At the time of writing, there is an issue with GlassFish that prevents
creating a custom security realm via the web admin console. As a
workaround, custom certificate realms can be created via the asadmin
command line utility.

Alternatively, a custom certificate realm can be created via the command line, via the
asadmin utility.

asadmin create-auth-realm --classname
com.sun.enterprise.security.auth.realm.certificate.CertificateRealm
newCertificateRealm

In this case, we don't need to pass any properties like we had to when we created the
custom file realm. Therefore, all we need to do is pass the appropriate value to the
--classname parameter and specify the new security realm name.

Security

[318]

Defining an LDAP realm
We can easily set up a realm to authenticate against an LDAP (Lightweight Directory
Access Protocol) database. In order to do this, we need to, in addition to the obvious
step of entering a name for the realm, select com.sun.enterprise.security.auth.realm.
ldap.LDAPRealm as the Class Name value for a new realm:

We then need to enter a URL for the directory server in the Directory field and
the base distinguished name (DN) to be used to search user data as the value in
the Base DN field.

After creating an LDAP realm, applications can use it to authenticate against
the LDAP database. The name of the realm needs to be used as the value of the
<realm-name> element in the application's web.xml deployment descriptor. The
value of the <auth-method> element must be either BASIC or FORM. Users and roles
in the LDAP database can be mapped to groups in the application's sun-web.xml
deployment descriptor using the <principal-name>, <role-name>, and
<group-name> elements, as discussed earlier in this chapter.

Chapter 8

[319]

To create an LDAP realm from the command line, we need to use the following syntax:

asadmin create-auth-realm --classname
com.sun.enterprise.security.auth.realm.ldap.LDAPRealm --property "jaas-
context=ldapRealm:directory=ldap\://127.0.0.1\:1389:base-
dn=dc\=ensode,dc\=com" newLdapRealm

Notice that in this case, the value of the --property parameter is between quotes.
This is necessary because we need to escape some of the characters in its value, such
as all the columns and equal signs. To escape these special characters, we simply
prefix it with a backslash (\).

Defining a Solaris realm
When GlassFish is installed in a Solaris server, it can "piggyback" on the operating
system authentication mechanism via a Solaris realm. There are no special properties
for this type of realm. All we need to do to create one is pick a name for it and select
com.sun.enterprise.security.auth.realm.solaris.SolarisRealm as the value of the
Class Name field:

Security

[320]

The JAAS Context field must be set to solarisRealm. After adding the realm,
applications can authenticate against it using basic or form-based authentication.
Operating system groups and users can be mapped to application roles defined
in the application's web.xml deployment descriptor via the <principal-name>,
<role-name>, and <group-name> elements in its sun-web.xml deployment descriptor.

A Solaris realm can be created from the command line as follows:

asadmin create-auth-realm --classname
com.sun.enterprise.security.auth.realm.solaris.SolarisRealm --property
jaas-context=solarisRealm newSolarisRealm

Defining a JDBC realm
Another type of realm we can create is a JDBC realm. This type of realm uses user
information stored in database tables for user authentication.

In order to illustrate how to authenticate against a JDBC realm, we need to create a
database to hold user information:

Our database consists of three tables. There is a USERS table holding user
information, and a GROUPS table holding group information. As there is a
many-to-many relationship between USERS and GROUPS, we need to add a join
table to preserve data normalization. The name of this table is USER_GROUPS.

Notice that the PASSWORD column of the USERS table is of type CHAR(32). The
reason we chose this type instead of VARCHAR is that, by default, the JDBC realm
expects passwords to be encrypted as an MD5 hash, and these hashes are always
32 characters long.

Chapter 8

[321]

Passwords can be easily encrypted into a format expected by default by using
the java.security.MessageDigest class included with the JDK. The following
example code will take a clear text password and create an encrypted MD5 hash
out of it:

package net.ensode.glassfishbook;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

public class EncryptPassword
{
 public static String encryptPassword(String password)
 throws NoSuchAlgorithmException
 {
 MessageDigest messageDigest = MessageDigest.getInstance("MD5");

 byte[] bs;
 messageDigest.reset();
 bs = messageDigest.digest(password.getBytes());

 StringBuilder stringBuilder = new StringBuilder();

 //hex encode the digest
 for (int i = 0; i < bs.length; i++)

 {

 String hexVal = Integer.toHexString(0xFF & bs[i]);

 if (hexVal.length() == 1)

 {

 stringBuilder.append("0");

 }

 stringBuilder.append(hexVal);

 }

 return stringBuilder.toString();
 }
 public static void main(String[] args)
 {
 String encryptedPassword = null;
 try
 {
 if (args.length == 0)
 {
 System.err.println("Usage: java "
 + "net.ensode.glassfishbook.EncryptPassword "
 + "cleartext");

Security

[322]

 }
 else
 {
 encryptedPassword = encryptPassword(args[0]);
 System.out.println(encryptedPassword);
 }
 }
 catch (NoSuchAlgorithmException e)
 {
 e.printStackTrace();
 }
 }
}

The "meat" of this class is its encryptPassword() method. It basically takes a clear
text string and digests it using the MD5 algorithm by using the digest() method of
an instance of java.security.MessageDigest. It then encodes the digest as a series
of hexadecimal numbers. The reason this encoding is necessary is because GlassFish,
by default, expects an MD5 digested password to be hex encoded.

When using JDBC realms, the Glassfish users and groups are not added to the
realm via the GlassFish console. Instead, they are added by inserting data into
the appropriate tables.

Once we have the database that will hold user credentials in place, we are ready
to create a new JDBC realm.

We can create a JDBC realm by entering its name in the Name field of the New
Realm form in the GlassFish web console, then selecting com.sun.enterprise.
security.auth.realm.jdbc.JDBCRealm as the value of the Class Name field:

Chapter 8

[323]

There are a number of other properties we need to set for our new JDBC realm:

The JAAS context field must be set to jdbcRealm for JDBC realms. The value
of the JNDI property must be the JNDI name of the data source corresponding
to the database that contains the realm's user and group data. The value of the
User Table property must be the name of the table that contains the username
and password information.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Security

[324]

Notice that in the previous screenshot, we used V_USER_ROLE as the
value for this property. V_USER_ROLE is a database view that contains
both user and group information. The reason we didn't use the USERS
table directly is because GlassFish assumes that both the user table and
the group table contain a column containing the username. Doing this
results in having duplicate data. To avoid this situation, we created a
view that we could use as the value of both the User Table and Group
Table properties (to be discussed shortly).

The User Name property must contain a column in the User Table that contains the
usernames. The Password property value must be the name of a column in the User
Table that contains the user's password. The value of the Group Table property must
be the name of the table containing user groups. The Group Name property must
contain the name of a column in the Group Table containing user group names.

All other properties are optional and, in most cases, left blank. Of special interest is the
Digest property. This property allows us to specify the message digest algorithm to use
to encrypt the user's password. Valid values for this property include all algorithms
supported by the JDK. These algorithms are MD2, MD5, SHA-1, SHA-256, SHA-384,
and SHA-512. Additionally, if we wish to store user passwords in clear text, we can do
so by using the value "none" for this property.

Once we have defined our JDBC realm, we need to configure our application via
its web.xml and sun-web.xml deployment descriptors. Configuring an application
to rely on a JDBC realm for authorization and authentication is done just like when
using any other type of realm.

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admin Pages</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AllPages</web-resource-name>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

[325]

 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>
 <realm-name>newJdbcRealm</realm-name>

 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/loginerror.jsp</form-error-page>
 </form-login-config>
 </login-config>
</web-app>

In this example, we set the value of the <realm-name> element in the web.xml
deployment descriptor to newJdbcRealm. This is the name we chose to give our
realm when we configured it through the GlassFish console.

In this example, we chose to use form-based authentication, but we could have used
basic authentication as well.

In addition to declaring that we will rely on the JDBC realm for authentication and
authorization, just like with other types of realms, we need to map the roles defined
in the web.xml deployment descriptor to security group names. This is accomplished
in the sun-web.xml deployment descriptor:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
 Application Server 9.0 Servlet 2.5//EN"
 "http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app>
 <security-role-mapping>

 <role-name>admin</role-name>

 <group-name>Admin</group-name>

 </security-role-mapping>

 <security-role-mapping>

 <role-name>user</role-name>

 <group-name>Users</group-name>

 </security-role-mapping>

</sun-web-app>

Security

[326]

The value of the <role-name> elements must match the corresponding <role-name>
element in web.xml. The value of <group-name> must be a value in the column
specified by the Group Name Column property of the JDBC realm, as specified
when it was configured in the GlassFish web console.

A JDBC realm can be created from the command line as follows:

asadmin create-auth-realm --classname
com.sun.enterprise.security.auth.realms.jdbc.JDBCRealm

--property jaas-context=jdbcRealm:datasource-
jndi=jdbc/__UserAuthPool:user-table=V_USER_ROLE:user-name-
column=USERNAME:password-column=PASSWORD:group-table=V_USER_ROLE:group-
name-column=GROUP_NAME fooJdbcRealm

Defining custom realms
Although the predefined realm types should cover a vast majority of cases, we can
create custom realm types if the predefined ones don't meet our needs. Doing so
involves coding the custom Realm and LoginModule classes. Let's first discuss the
custom realm class:

package net.ensode.glassfishbook;

import java.util.Enumeration;
import java.util.Vector;

import com.sun.enterprise.security.auth.realm.IASRealm;
import com.sun.enterprise.security.auth.realm.
InvalidOperationException;
import com.sun.enterprise.security.auth.realm.NoSuchUserException;

public class SimpleRealm extends IASRealm

{

 @Override
 public Enumeration getGroupNames(String userName)
 throws InvalidOperationException, NoSuchUserException

 {

 Vector vector = new Vector();
 vector.add("Users");
 vector.add("Admin");
 return vector.elements();
 }
 @Override
 public String getAuthType()
 {

Chapter 8

[327]

 return "simple";
 }
 @Override
 public String getJAASContext()

 {

 return "simpleRealm";
 }
 public boolean loginUser(String userName, String password)

 {

 boolean loginSuccessful = false;
 if ("glassfish".equals(userName) && "secret".equals(password))
 {
 loginSuccessful = true;
 }
 return loginSuccessful;
 }
}

Our custom realm class must extend com.sun.enterprise.security.auth.
realm.IASRealm. This class can be found inside the security.jar file,
therefore this JAR file must be added to the CLASSPATH before our realm
can be successfully compiled.

The security.jar file can be found under [glassfish
installation directory]/glassfish/modules. When using
Maven or Ivy dependency management, this JAR file can be found in
the following repository: http://download.java.net/maven/
glassfish. The group id is org.glassfish.security and the
artifact id is security. At the time of writing, the latest version is 3.0.

Our class must override a method called getGroupNames(). This method takes a
single String as parameter and returns an Enumeration. The String parameter is
for the username of the user who is attempting to log into the realm. The Enumeration
must contain a collection of strings indicating which groups the user belongs to. In our
simple example, we simply hardcoded the groups. In a real application, these groups
would be obtained from some kind of persistent storage (database, file, and so on).

The next method our realm class must override is the getAuthType() method. This
method must return a String containing a description of the type of authentication
used by this realm.

Security

[328]

These two methods are declared as abstract in the IASRealm (parent) class. Although
the getJAASContext() method is not abstract, we should nevertheless override it,
as the value it returns is used to determine the type of authentication to use from the
application server's login.conf file. The return value of this method is used to map
the realm to the corresponding login module.

Finally, our realm class must contain a method to authenticate the user. We are free
to call it anything we want. Additionally, we can use as many parameters of any
type as we wish. Our simple example simply has the values for a single username
and password hardcoded. Again, a real application would obtain valid credentials
from some kind of persistent storage. This method is meant to be called from the
corresponding login module class:

package net.ensode.glassfishbook;

import java.util.Enumeration;

import javax.security.auth.login.LoginException;

import com.sun.appserv.security.AppservPasswordLoginModule;
import com.sun.enterprise.security.auth.realm.
InvalidOperationException;
import com.sun.enterprise.security.auth.realm.NoSuchUserException;

public class SimpleLoginModule extends AppservPasswordLoginModule

{

 @Override
 protected void authenticateUser() throws LoginException

 {

 Enumeration userGroupsEnum = null;
 String[] userGroupsArray = null;
 SimpleRealm simpleRealm;
 if (!(_currentRealm instanceof SimpleRealm))
 {
 throw new LoginException();
 }
 else
 {
 simpleRealm = (SimpleRealm) _currentRealm;
 }
 if (simpleRealm.loginUser(_username, _password))

 {

 try
 {

Chapter 8

[329]

 userGroupsEnum = simpleRealm.getGroupNames(_username);
 }
 catch (InvalidOperationException e)
 {
 throw new LoginException(e.getMessage());
 }
 catch (NoSuchUserException e)
 {
 throw new LoginException(e.getMessage());
 }

 userGroupsArray = new String[2];
 int i = 0;
 while (userGroupsEnum.hasMoreElements())
 {
 userGroupsArray[i++] =
 ((String) userGroupsEnum.nextElement());
 }
 }
 else
 {
 throw new LoginException();
 }
 commitUserAuthentication(userGroupsArray);
 }
}

Our login module class must extend the com.sun.appserv.security.
AppservPasswordLoginModule class. This class is also inside the security.jar
file; it only needs to override a single method—authenticateUser(). This method
takes no parameters and must throw a LoginException if user authentication is
unsuccessful. The _currentRealm variable is defined in the parent class; it is of
type com.sun.enterprise.security.auth.realm.Realm—the parent class of all
realm classes. This variable is initialized before the authenticateUser() method is
executed. The login module class must verify that this class is of the expected type
(in our example, SimpleRealm). If it is not, a LoginException must be thrown.

The other two variables that are defined in the parent class and initialized before
the authenticateUser() method is executed are _username and _password. These
variables contain the credentials the user entered in the login form (for form-based
authentication) or the pop-up window (for basic authentication). Our example
simply passes these values to the realm class so that it can verify the user credentials.

Security

[330]

The authenticateUser() method must call the parent class'
commitUserAuthentication() method upon a successful authentication. This
method takes an array of String objects containing the group the user belongs to.
Our example simply invokes the getGroupNames() method defined in the realm
class and adds the elements of the Enumeration it returns to an array, then passes
that array to the commitUserAuthentication() method.

Obviously, GlassFish is unaware of the existence of our custom realm and login
module classes. We need to add these classes to GlassFish's CLASSPATH. The easiest
way to do this is to copy the JAR file containing our custom realm and login module
to the following directory:

[glassfish installation directory]/glassfish/domains/domain1/lib

The last step we need to follow before we can authenticate applications against our
custom realm is to add our new custom realm to the domain's login.conf file.

fileRealm

{

 com.sun.enterprise.security.auth.login.FileLoginModule required;
};
ldapRealm
{
 com.sun.enterprise.security.auth.login.LDAPLoginModule required;
};
solarisRealm
{
 com.sun.enterprise.security.auth.login.SolarisLoginModule required;
};
jdbcRealm
{
 com.sun.enterprise.security.auth.login.JDBCLoginModule required;
};
jdbcDigestRealm
{
 com.sun.enterprise.security.auth.login.JDBCDigestLoginModule
 required;
};
simpleRealm

{

 net.ensode.glassfishbook.SimpleLoginModule required;

};

Chapter 8

[331]

The value before the opening brace must match the return value of the
getJAASContext() method defined in the realm class. It is in this file that the realm
and login module classes are linked to each other. The GlassFish domain needs to be
restarted for this change to take effect.

We are now ready to use our custom realm to authenticate the users in our
applications. We need to add a new realm of the type we created via GlassFish's
admin console:

At the time of writing, there is an issue with GlassFish 3 that is
preventing the successful creation of custom realms via the web
console. As a workaround, custom realms can be created via the
asadmin command line utility, as described later in this section.

To create our realm name, as usual we need to give it a name. Instead of selecting
a class name from the drop-down menu, we need to type it into the text field. Our
custom realm didn't have any properties, therefore we don't have to add any in this
example. If it did, they would be added by clicking on the Add Property button and
entering the property name and corresponding value. Our realm would then get the
properties by overriding the init() method from its parent class. This method has
the following signature:

protected void init(Properties arg0) throws BadRealmException,
 NoSuchRealmException

The instance of java.util.Properties it takes as a parameter would be
pre-populated with the properties entered in the page shown in the previous
screenshot (our custom realm doesn't have any properties, but for those that do,
properties are entered in said page).

Security

[332]

Once we have added the pertinent information for our new custom realm,
we can use it just like we use any of the predefined realms. Applications need
to specify its name as the value of the <realm-name> element of the application's
web.xml deployment descriptor. Nothing out of the ordinary needs to be done at
the application level.

Just like with standard realms, custom realms can be added via the asadmin
command line utility:

asadmin create-auth-realm --classname
net.ensode.glassfishbook.SimpleRealm newCustomRealm

Summary
In this chapter, we covered how to use GlassFish's default realms to authenticate
our web applications. We covered the file realm, which stores user information in
a flat file, and the certificate realm, which requires client-side certificates for user
authentication.

We discussed how to create additional realms that behave just like the default realms
by using the realm classes included with GlassFish.

We also covered how to use additional realm classes included in GlassFish to
create realms that authenticate against an LDAP database, against a relational
database, and how to create realms that "piggyback" into a Solaris server's
authentication mechanism.

Finally, we looked at how to create custom realm classes for cases where the
included ones don't fit our needs.

Enterprise JavaBeans
Enterprise JavaBeans are server-side components that encapsulate the business
logic of an application. Enterprise JavaBeans simplify application development by
automatically taking care of transaction management and security. There are two
types of Enterprise JavaBeans: session beans, which perform business logic, and
message-driven beans, which act as a message listener.

Readers familiar with previous versions of J2EE will notice that entity beans were not
mentioned in the previous paragraph. In Java EE 5, entity beans were deprecated in
favor of the Java Persistence API (JPA). Entity beans are still supported for backwards
compatibility. However, the preferred way of doing Object Relational Mapping with
Java EE 5 and Java EE 6 is through JPA. Refer to Chapter 5 for a detailed discussion
on JPA.

The following topics will be covered in this chapter:

•	 Session Beans
°° A simple session bean
°° A more realistic example
°° Using a session bean to implement the DAO design pattern
°° Singleton session beans
°° Asynchronous method calls

•	 Message-driven beans
•	 Transactions in Enterprise JavaBeans

°° Container-managed transactions
°° Bean-managed transactions

Enterprise JavaBeans

[334]

•	 Enterprise JavaBeans' life cycle
°° Stateful session bean life cycle
°° Stateless session bean life cycle
°° Message-driven bean life cycle

•	 EJB timer service
•	 EJB security

Session beans
Like we previously mentioned, session beans typically encapsulate business logic.
In Java EE 5, only two artifacts need to be created in order to create a session bean:
the bean itself and a business interface. These artifacts need to be decorated with
proper annotations to let the EJB container know that they are session beans.

Java EE 6 simplifies session bean development even further. Local interfaces
(to be discussed later in the chapter) are now optional. Therefore, to develop
a session bean that only requires local access, we only need to develop one
artifact—the session bean class.

Previous versions of J2EE required application developers to create
several artifacts in order to create a session bean. These artifacts
included the bean itself, a local or remote interface (or both), a local
home or a remote home interface (or both), and an XML deployment
descriptor. As we shall see in this chapter, EJB development was greatly
simplified in Java EE 5, and simplified even further in Java EE 6.

Simple session bean
The following example illustrates a very simple session bean:

package net.ensode.glassfishbook;

import javax.ejb.Stateless;

@Stateless
public class SimpleSessionBean
{
 private String message = "If you don't see this, it didn't work!";
 public String getMessage()
 {
 return message;
 }
}

Chapter 9

[335]

The @Stateless annotation lets the EJB container know that this class is a stateless
session bean. There are two types of session beans: stateless and stateful. Before we
explain the difference between these two types of session beans, we need to clarify
how an instance of an EJB is provided to an EJB client application.

When EJBs (both stateless session beans and message-driven beans) are deployed,
the EJB container creates a series of instances of each EJB. This is what is typically
referred to as the EJB pool. When an EJB client application obtains an instance of
an EJB, one of the instances in the pool is provided to this client application.

The difference between stateful and stateless session beans is that stateful session
beans maintain conversational state with the client, whereas stateless session beans
do not. In simple terms, what this means is that when an EJB client application
obtains an instance of a stateful session bean, we are guaranteed that the value of any
instance variables in the bean will be consistent across method calls. Therefore, it is
safe to modify any instance variables on a stateful session bean, as they will retain
their value for the next method call. The EJB container saves conversational state by
passivating stateful session beans and retrieves said state when the bean is activated.
Conversational state is the reason why the life cycle of stateful session beans is a bit
more complex than the life cycle of stateless session beans or message-driven beans
(EJB life cycle is discussed later in this chapter).

The EJB container may provide any instance of an EJB in the pool when an EJB client
application requests an instance of a stateless session bean. For stateless session
beans, the value of instance variables is not set to whatever it was in the last method
call (this is what passivation/activation does for stateful session beans). As we are
not guaranteed the same instance for every method call, values set to any instance
variables in a stateless session bean may be "lost" (they are not really lost, the
modification is in another instance of the EJB in the pool).

Other than being decorated with the @Stateless annotation, there is nothing
special about the previous class. Notice that it implements an interface called
SimpleSession. This interface is the bean's business interface. The SimpleSession
interface is shown next:

package net.ensode.glassfishbook;

import javax.ejb.Remote;

@Remote

public interface SimpleSession
{
 public String getMessage();
}

Enterprise JavaBeans

[336]

The only peculiar thing about this interface is that it is decorated with the @Remote
annotation. This annotation indicates that this is a remote business interface. What
this means is that the interface may be in a different JVM than the client application
invoking it. Remote business interfaces may even be invoked across the network.

Business interfaces may also be decorated with the @Local interface. This annotation
indicates that the business interface is a local business interface. Local business
interface implementations must be in the same JVM as the client application
invoking its methods.

As remote business interfaces can be invoked either from the same JVM or from a
different JVM as the client application, at first glance we might be tempted to make
all of our business interfaces remote. Before doing so, we must be aware of the fact
that the flexibility provided by remote business interfaces comes with a performance
penalty, as method invocations are made under the assumption that they will be
made across the network. As a matter of fact, most typical Java EE applications
consist of web applications acting as client applications for EJBs. In this case, the
client application and the EJB are running on the same JVM. Therefore, local
interfaces are used a lot more frequently than remote business interfaces.

Once we have compiled the session bean and its corresponding business interface,
we need to place them in a JAR file and deploy them. Just like with WAR files, the
easiest way to deploy an EJB JAR file is to copy it to [glassfish installation
directory]/glassfish/domains/domain1/autodeploy.

Now that we have seen the session bean and its corresponding business interface,
let's take a look at a client sample application:

package net.ensode.glassfishbook;

import javax.ejb.EJB;

public class SessionBeanClient
{
 @EJB

 private static SimpleSession simpleSession;

 private void invokeSessionBeanMethods()
 {
 System.out.println(simpleSession.getMessage());
 System.out.println("\nSimpleSession is of type: "
 + simpleSession.getClass().getName());
 }
 public static void main(String[] args)
 {

Chapter 9

[337]

 new SessionBeanClient().invokeSessionBeanMethods();
 }
}

This code simply declares an instance variable of type net.ensode.SimpleSession,
which is the business interface for our session bean. The instance variable is
decorated with the @EJB annotation. This annotation lets the EJB container know that
this variable is a business interface for a session bean. The EJB container then injects
an implementation of the business interface for the client code to use.

As our client is a standalone application (as opposed to an EJB artifact such as a
WAR file or another EJB JAR file), in order for it to be able to access the code
deployed in the server, it must be placed in a JAR file and executed through
the appclient utility. This utility can be found at [glassfish installation
directory]/glassfish/bin/. Assuming this path is in the PATH environment
variable, and assuming we placed our client code in a JAR file called
simplesessionbeanclient.jar, we would execute the previous client code
by typing the following command in the command line:

appclient -client simplesessionbeanclient.jar

Executing this command results in the following console output:

If you don't see this, it didn't work!

SimpleSession is of type: net.ensode.glassfishbook._SimpleSession_Wrapper

We are using Maven 2 to build our code. For this example, we used the
Maven Assembly plugin (http://maven.apache.org/plugins/
maven-assembly-plugin/) to build a client JAR file that includes
all dependencies. This frees us from having to specify all the dependent
JAR files in the -classpath command line option of appclient. To
build this JAR file, simply invoke mvn assembly:assembly from the
command line.

This is the output of the SessionBeanClient class.

The first line of the output is simply the return value of the getMessage() method
we implemented in the session bean. The second line of the output displays the fully
qualified class name of the class implementing the business interface. Notice that the
class name is not the fully qualified name of the session bean we wrote. Instead, what
is actually provided is an implementation of the business interface created behind
the scenes by the EJB container.

Enterprise JavaBeans

[338]

A more realistic example
In the previous section, we saw a very simple, "Hello world" type of example. In this
section, we will show a more realistic example. Session beans are frequently used
as Data Access Objects (DAOs). They are sometimes used as a wrapper for JDBC
calls, other times they are used to wrap calls to obtain or modify JPA entities. In this
section, we will take the latter approach.

The following example illustrates how to implement the DAO design pattern in a
session bean. Before looking at the bean implementation, let's look at the business
interface corresponding to it:

package net.ensode.glassfishbook;

import javax.ejb.Remote;

@Remote
public interface CustomerDao
{
 public void saveCustomer(Customer customer);
 public Customer getCustomer(Long customerId);
 public void deleteCustomer(Customer customer);
}

As we can see, this code snippet is a remote interface implementing three
methods. The saveCustomer() method saves customer data to the database,
the getCustomer() method obtains data for a customer from the database,
and the deleteCustomer() method deletes customer data from the database.
All these methods take an instance of the Customer entity we developed in
Chapter 4 as a parameter.

Let's now take a look at the session bean implementing the previous business
interface. As we are about to see, there are some differences between the way
the JPA code is implemented in a session bean versus in a plain old Java object.

package net.ensode.glassfishbook;

import javax.ejb.Stateful;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Stateful
public class CustomerDaoBean implements CustomerDao
{
 @PersistenceContext

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 9

[339]

 private EntityManager entityManager;

 public void saveCustomer(Customer customer)
 {
 if (customer.getCustomerId() == null)
 {
 saveNewCustomer(customer);
 }
 else
 {
 updateCustomer(customer);
 }
 }
 private void saveNewCustomer(Customer customer)
 {
 entityManager.persist(customer);
 }
 private void updateCustomer(Customer customer)
 {
 entityManager.merge(customer);
 }
 public Customer getCustomer(Long customerId)
 {
 Customer customer;
 customer = entityManager.find(Customer.class, customerId);
 return customer;
 }
 public void deleteCustomer(Customer customer)
 {
 entityManager.remove(customer);
 }
}

The first difference we should notice is that an instance of javax.persistence.
EntityManager is directly injected into the session bean. In the previous JPA examples,
we had to inject an instance of javax.persistence.EntityManagerFactory, then use
the injected EntityManagerFactory instance to obtain an instance of EntityManager.
The reason we had to do this was that our previous examples were not thread-safe.
What this means is that potentially the same code could be executed concurrently by
more than one user. As EntityManager is not designed to be used concurrently by
more than one thread, we used an EntityManagerFactory instance to provide each
thread with its own instance of EntityManager. As the EJB container assigns a session
bean to a single client at time, session beans are inherently thread-safe. Therefore, we
can inject an instance of EntityManager directly into a session bean.

Enterprise JavaBeans

[340]

The next difference between this session bean and the previous JPA examples
is that in the previous examples, JPA calls were wrapped between calls to
UserTransaction.begin() and UserTransaction.commit(). The reason we had to
do this is because JPA calls are required to be in wrapped in a transaction. If they are
not in a transaction, most JPA calls will throw a TransactionRequiredException.
The reason we don't have to explicitly wrap JPA calls in a transaction like in the
previous examples is because session bean methods are implicitly transactional.
There is nothing we need to do to make them that way. This default behavior is
what is known as container-managed transactions. Container-managed
transactions are discussed in detail later in this chapter.

As mentioned in Chapter 5, when a JPA entity is retrieved in
one transaction and updated in a different transaction, the
EntityManager.merge() method needs to be invoked to update
the data in the database. In this case, invoking EntityManager.
persist() will result in a "Cannot persist detached object" exception.

Invoking session beans from web
applications
Frequently, Java EE applications consist of web applications acting as clients for
EJBs. Before Java EE 6 was released, the most common way of deploying a Java EE
application that consists of both a web application and one or more session beans
was to package both the WAR file for the web application and the EJB JAR files into
an EAR (Enterprise ARchive) file.

Java EE 6 simplifies the packaging and deployment of applications consisting of both
EJBs and web components.

In this section, we will modify the example we saw in the section titled Integrating
JSF and JPA from Chapter 6 so that the web application acts as a client to the DAO
session bean we saw in the previous section.

In order to make this application act as an EJB client, we will modify the
CustomerController managed bean so that it delegates the logic to save a new
customer to the database to the CustomerDaoBean session bean we developed in
the previous section.

package net.ensode.glassfishbook.jsfjpa;

import javax.ejb.EJB;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.ManagedProperty;

Chapter 9

[341]

import net.ensode.glassfishbook.Customer;
import net.ensode.glassfishbook.CustomerDaoBean;

@ManagedBean
public class CustomerController
{
 @EJB

 CustomerDaoBean customerDaoBean;

 @ManagedProperty(value = "#{customer}")
 private Customer customer;

 public String saveCustomer()
 {
 String returnValue = "customer_saved";
 try
 {
 customerDaoBean.saveCustomer(customer);

 }
 catch (Exception e)
 {
 e.printStackTrace();
 returnValue = "error_saving_customer";
 }
 return returnValue;
 }
 public Customer getCustomer()
 {
 return customer;
 }
 public void setCustomer(Customer customer)
 {
 this.customer = customer;
 }
}

As we can see, all we had to do was declare an instance of the CustomerDaoBean
session bean, decorate it with the @EJB annotation so that an instance of the
corresponding EJB is injected, and replace the code to save the data to the
database with an invocation to the saveCustomer() method defined in the
CustomerDao business interface.

Enterprise JavaBeans

[342]

Notice that we injected an instance of the session bean directly into our client
code. The reason we can do this is because of a new Java EE 6 feature. When
using Java EE 6, we can do away with local interfaces and use session bean
instances directly in our client code.

Now that we have modified our web application to be a client for our session bean,
we need to package it in a WAR (web archive) file and deploy it in order to use it.

Singleton session beans
A new type of session bean introduced in Java EE 6 is the singleton session bean.
A single instance of each singleton session bean exists in the application server.

Singleton session beans are useful to cache database data. Caching frequently used
data in a singleton session bean increases performance as it greatly minimizes trips
to the database. The common pattern is to have a method in our bean decorated with
the @PostConstruct annotation. In this method, we retrieve the data we want to
cache. We then provide a setter method for the bean's clients to call. The following
example illustrates this technique:

package net.ensode.glassfishbook.singletonsession;

import java.util.List;
import javax.annotation.PostConstruct;
import javax.ejb.Singleton;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.Query;
import net.ensode.glassfishbook.entity.UsStates;

@Singleton
public class SingletonSessionBean implements
 SingletonSessionBeanRemote
{
 @PersistenceContext
 private EntityManager entityManager;
 private List<UsStates> stateList;

 @PostConstruct
 public void init()
 {
 Query query = entityManager.createQuery("Select us from UsStates
 us");
 stateList = query.getResultList();

Chapter 9

[343]

 }

 @Override
 public List<UsStates> getStateList()
 {
 return stateList;
 }
}

As our bean is a singleton, all of its clients would access the same instance, avoiding
having duplicate data in the database. Additionally, as it is a singleton, it is safe to
have an instance variable, as all clients access the same instance of the bean.

Asynchronous method calls
Sometimes, it is useful to have some processing done asynchronously, that is, invoke
a method call and return control immediately to the client, without having the client
wait for the method to finish.

In earlier versions of Java EE, the only way to invoke EJB methods asynchronously was
to use message-driven beans (discussed in the next section). Although message-driven
beans are fairly easy to write, they do require some configuration, such as setting up
JMS message queues or topics, before they can be used.

EJB 3.1 introduces the @Asynchronous annotation that can be used to mark a method
in a session bean as asynchronous. When an EJB client invokes an asynchronous
method, control immediately goes back to the client, without waiting for the method
to finish.

Asynchronous methods can only return void or an implementation of the
java.util.concurrent.Future interface. The following example illustrates
both scenarios:

package net.ensode.glassfishbook.asynchronousmethods;

import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;

import javax.ejb.AsyncResult;
import javax.ejb.Asynchronous;
import javax.ejb.Stateless;

@Stateless
public class AsynchronousSessionBean implements

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Enterprise JavaBeans

[344]

 AsynchronousSessionBeanRemote
{
 private static Logger logger =
 Logger.getLogger(AsynchronousSessionBean.class.getName());

 @Asynchronous

 @Override
 public void slowMethod()

 {

 long startTime = System.currentTimeMillis();
 logger.info("entering " + this.getClass().getCanonicalName()
 + ".slowMethod()");
 try
 {
 Thread.sleep(10000); //simulate processing for 10 seconds
 }
 catch (InterruptedException ex)
 {
 Logger.getLogger(AsynchronousSessionBean.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 logger.info("leaving " + this.getClass().getCanonicalName()
 + ".slowMethod()");
 long endTime = System.currentTimeMillis();
 logger.info("execution took " + (endTime - startTime)
 + " milliseconds");
 }

 @Asynchronous

 @Override
 public Future<Long> slowMethodWithReturnValue()

 {

 try
 {
 Thread.sleep(15000); //simulate processing for 15 seconds
 }
 catch (InterruptedException ex)
 {
 Logger.getLogger(AsynchronousSessionBean.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 return new AsyncResult<Long>(42L);
 }
}

Chapter 9

[345]

When our asynchronous method returns void, the only thing we need to do is
decorate the method with the @Asynchronous annotation, then call it as usual
from the client code.

If we need a return value, this value needs to be wrapped in an implementation
of the java.util.concurrent.Future interface. The Java EE 6 API provides a
convenience implementation in the form of the javax.ejb.AsyncResult class.
Both the Future interface and the AsyncResult class use generics. We need to
specify our return type as the type parameter of these artifacts.

The Future interface has several methods we can use to cancel the execution of
an asychronous method: check to see if the method is done, get the return value
of the method, or check to see if the method is canceled. The following table lists
these methods:

Method Description
cancel(boolean
mayInterruptIfRunning)

Cancels method execution. If the boolean
parameter is true, then this method will attempt
to cancel the method execution even if it is
already running.

get() Will return the "unwrapped" return value
of the method. The return value will be of
the type parameter of the Future interface
implementation returned by the method.

get(long timeout, TimeUnit
unit)

Will attempt the "unwrapped" return value
of the method. The return value will be of
the type parameter of the Future interface
implementation returned by the method.
This method will block for the amount of
time specified by the first parameter. The unit
of time to wait is determined by the second
parameter. The TimeUnit enum has constants for
NANOSECONDS, MILLISECONDS, SECONDS,
MINUTES, and so on. Refer to its JavaDoc
documentation for the complete list.

isCancelled() Returns true if the method has been cancelled,
false otherwise.

isDone() Returns true if the method has finished
executing, false otherwise.

Enterprise JavaBeans

[346]

As we can see, the @Asynchronous annotation makes it very easy to make
asynchronous calls without having the overhead of having to set up message
queues or topics. Certainly a welcome addition to the EJB 3.1 specification.

Message-driven beans
The purpose of a message-driven bean is to consume messages from a JMS queue
or a JMS topic, depending on the messaging domain used (refer to Chapter 7). A
message-driven bean must be decorated with the @MessageDriven annotation.
The mappedName attribute of this annotation must contain the JNDI name of the
JMS message queue or JMS message topic that the bean will be consuming messages
from. The following example illustrates a simple message-driven bean:

package net.ensode.glassfishbook;

import javax.ejb.MessageDriven;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.MessageListener;

import javax.jms.TextMessage;

@MessageDriven(mappedName = "jms/GlassFishBookQueue")

public class ExampleMessageDrivenBean implements MessageListener

{

 public void onMessage(Message message)

 {

 TextMessage textMessage = (TextMessage) message;

 try

 {

 System.out.print("Received the following message: ");

 System.out.println(textMessage.getText());

 System.out.println();

 }

 catch (JMSException e)

 {

 e.printStackTrace();

 }

 }

}

Chapter 9

[347]

As we can see, this class is nearly identical to the ExampleMessageListener class
we saw in Chapter 7. The only differences are the class name and the fact that this
example is decorated with the @MessageDriven interface. It is recommended, but not
required for message-driven beans to implement the javax.jms.MessageListener
interface. However, message-driven beans must have a method called onMessage()
whose signature is identical to the previous example.

Client applications never invoke a message-driven bean's methods directly. Instead,
they put messages in the message queue or topic, then the bean consumes those
messages and acts as appropriate. The previous example simply prints the message
to standard output. As message-driven beans execute inside an EJB container,
standard output gets redirected to a log. To see the messages in GlassFish's server
log, open the [GlassFish installation directory]/glassfish/domains/
domain1/logs/server.log file.

Transactions in Enterprise JavaBeans
Like we mentioned earlier in this chapter, any EJB methods are automatically wrapped
in a transaction by default. This default behavior is known as container-managed
transactions, as transactions are managed by the EJB container. Application developers
may also choose to manage transactions themselves. This can be accomplished
by using bean-managed transactions. Both these approaches are discussed in the
following sections:

Container-managed transactions
As EJB methods are transactional by default, we run into an interesting dilemma
when a session bean is invoked from the client code that is already in a transaction.
How should the EJB container behave? Should it suspend the client transaction,
execute its method in a new transaction, then resume the client transaction? Should
it not create a new transaction and execute its method as part of the client
transaction? Should it throw an exception?

By default, if an EJB method is invoked by client code that is already in a transaction,
the EJB container will simply execute the session bean method as part of the client
transaction. If this is not the behavior we need, we can change it by decorating the
method with the @TransactionAttribute annotation. This annotation has a value
attribute that determines how the EJB container will behave when the session bean
method is invoked within an existing transaction and when it is invoked outside
any transactions. The value of the value attribute is typically a constant defined in
the javax.ejb.TransactionAttributeType enum. The following table lists the
possible values for the @TransactionAttribute annotation:

Enterprise JavaBeans

[348]

@TransactionAttribute value Description
TransactionAttributeType.MANDATORY Forces the method to be invoked as part of

a client transaction. If the method is called
outside any transactions, it will throw a
TransactionRequiredException.

TransactionAttributeType.NEVER The method is never executed in a
transaction. If the method is invoked as
part of a client transaction, it will throw
a RemoteException. No transaction is
created if the method is not invoked inside
a client transaction.

TransactionAttributeType.NOT_
SUPPORTED

If the method is invoked as part of a
client transaction, the client transaction
is suspended and the method is executed
outside any transaction. After the method
completes, the client transaction is resumed.
No transaction is created if the method is
not invoked inside a client transaction.

TransactionAttributeType.REQUIRED If the method is invoked as part of a client
transaction, the method is executed as part
of said transaction. If the method is invoked
outside any transaction, a new transaction
is created for the method. This is the default
behavior.

TransactionAttributeType.REQUIRES_
NEW

If the method is invoked as part of a client
transaction, said transaction is suspended
and a new transaction is created for the
method. Once the method completes, the
client transaction is resumed. If the method
is called outside any transactions, a new
transaction is created for the method.

TransactionAttributeType.SUPPORTS If the method is invoked as part of a client
transaction, it is executed as part of said
transaction. If the method is invoked
outside a transaction, no new transaction is
created for the method.

Although the default transaction attribute is reasonable in most cases, it is good
to be able to override this default transaction attribute if necessary. For example,
transactions have a performance impact, therefore being able to turn off transactions
for a method that does not need them is beneficial. For a case like this, we would
decorate our method as illustrated in the following code snippet:

Chapter 9

[349]

@TransactionAttribute(value=TransactionAttributeType.NEVER)
public void doitAsFastAsPossible()
{
 //performance critical code goes here.
}

Other transaction attribute types can be declared by annotating the methods with the
corresponding constant in the TransactionAttributeType enum.

If we wish to override the default transaction attribute consistently across
all methods in a session bean, we can decorate the session bean class with the
@TransactionAttribute annotation. The value of its value attribute will be
applied to every method in the session bean.

Container-managed transactions are automatically rolled back whenever an
exception is thrown inside an EJB method. Additionally, we can programmatically
roll back a container-managed transaction by invoking the setRollbackOnly()
method on an instance of javax.ejb.EJBContext corresponding to the session
bean in question. The following example is a new version of the session bean we
saw earlier in this chapter, modified to roll back transactions if necessary:

package net.ensode.glassfishbook;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import javax.annotation.Resource;
import javax.ejb.EJBContext;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.sql.DataSource;

@Stateless
public class CustomerDaoRollbackBean implements CustomerDaoRollback
{
 @Resource

 private EJBContext ejbContext;

 @PersistenceContext
 private EntityManager entityManager;

 @Resource(name = "jdbc/__CustomerDBPool")

Enterprise JavaBeans

[350]

 private DataSource dataSource;

 public void saveNewCustomer(Customer customer)
 {
 if (customer == null || customer.getCustomerId() != null)
 {
 ejbContext.setRollbackOnly();
 }
 else
 {
 customer.setCustomerId(getNewCustomerId());
 entityManager.persist(customer);
 }
 }
 public void updateCustomer(Customer customer)
 {
 if (customer == null || customer.getCustomerId() == null)
 {
 ejbContext.setRollbackOnly();
 }
 else
 {
 entityManager.merge(customer);
 }
 }
 //Additional method omitted for brevity.
}

In this version of the DAO session bean, we deleted the saveCustomer() method
and made the saveNewCustomer() and updateCustomer() methods public. Each
of these methods now checks to see if the customerId field is set correctly for the
operation we are trying to perform (null for inserts and not null for updates). It
also checks to make sure that the object to be persisted is not null. If any of the checks
result in invalid data, the method simply rolls back the transaction by invoking the
setRollBackOnly() method on the injected instance of EJBContext and does not
update the database.

Bean-managed transactions
As we have seen, container-managed transactions make it ridiculously easy to write
code that is wrapped in a transaction. After all, there is nothing special we need to do
to make them that way. As a matter of fact, some developers are sometimes not even
aware that they are writing code that will be transactional in nature when they develop
session beans. Container-managed transactions cover most of the typical cases that
we will encounter. However, they do have a limitation: each method can be wrapped

Chapter 9

[351]

in a single transaction or with no transaction. With container-managed transactions,
it is not possible to implement a method that generates more than one transaction.
However, this can be accomplished by using bean-managed transactions.

package net.ensode.glassfishbook;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.List;

import javax.annotation.Resource;
import javax.ejb.Stateless;
import javax.ejb.TransactionManagement;
import javax.ejb.TransactionManagementType;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.sql.DataSource;
import javax.transaction.UserTransaction;

@Stateless
@TransactionManagement(value = TransactionManagementType.BEAN)

public class CustomerDaoBmtBean implements CustomerDaoBmt
{
 @Resource

 private UserTransaction userTransaction;

 @PersistenceContext
 private EntityManager entityManager;

 @Resource(name = "jdbc/__CustomerDBPool")
 private DataSource dataSource;

 public void saveMultipleNewCustomers(List<Customer> customerList)
 {
 for (Customer customer : customerList)
 {
 try
 {
 userTransaction.begin();

 customer.setCustomerId(getNewCustomerId());
 entityManager.persist(customer);
 userTransaction.commit();

Enterprise JavaBeans

[352]

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
 }
 private Long getNewCustomerId()
 {
 Connection connection;
 Long newCustomerId = null;
 try
 {
 connection = dataSource.getConnection();
 PreparedStatement preparedStatement =
 connection.prepareStatement("select " +
 "max(customer_id)+1 as new_customer_id " +
 "from customers");
 ResultSet resultSet = preparedStatement.executeQuery();
 if (resultSet != null && resultSet.next())
 {
 newCustomerId = resultSet.getLong("new_customer_id");
 }
 connection.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 return newCustomerId;
 }
}

In this example, we implemented a method named saveMultipleNewCustomers().
This method takes an ArrayList of customers as its sole parameter. The intention
of this method is to save as many elements in the ArrayList as possible. An
exception saving one of the entities should not stop the method from attempting to
save the remaining elements. This behavior is not possible using container-managed
transactions, as an exception thrown when saving one of the entities would roll back
the whole transaction. The only way to achieve this behavior is through
bean-managed transactions.

Chapter 9

[353]

As can be seen in the example, we declare that the session bean uses bean-managed
transactions by decorating the class with the @TransactionManagement annotation
and using TransactionManagementType.BEAN as the value for its value attribute
(the only other valid value for this attribute is TransactionManagementType.
CONTAINER, but as this is the default value, it is not necessary to specify it).

To be able to programmatically control transactions, we inject an instance of
javax.transaction.UserTransaction, which is then used in the for loop inside
the saveMultipleNewCustomers() method to begin and commit a transaction in
each iteration of the loop.

If we need to roll back a bean-managed transaction, we can do it by simply calling
the rollback() method on the appropriate instance of javax.transaction.
UserTransaction.

Before moving on, it is worth noting that even though all the examples in this section
were session beans, the concepts explained apply to message-driven beans as well.

Enterprise JavaBeans life cycle
Enterprise JavaBeans go through different states in their life cycle. Each type of EJB has
different states. States specific to each type of EJB are discussed in the next sections.

Stateful session bean life cycle
Readers experienced with previous versions of J2EE may remember that in
previous versions of the specification, session beans were required to implement
the javax.ejb.SessionBean interface. This interface provides methods to be
executed at certain points in the session bean's life cycle. Methods provided by
the SessionBean interface include:

•	 ejbActivate()

•	 ejbPassivate()

•	 ejbRemove()

•	 setSessionContext(SessionContext ctx)

The first three methods are meant to be executed at certain points in the bean's life
cycle. In most cases, there is nothing to do in the implementation of these methods.
This fact resulted in the vast majority of session beans implementing empty versions
of these methods. Thankfully, starting with Java EE 5, it is no longer necessary to
implement the SessionBean interface. However, if necessary, we can still write
methods that will get executed at certain points in the bean's life cycle. We can
achieve this by decorating the methods with specific annotations.

Enterprise JavaBeans

[354]

Before explaining the annotations available to implement the life cycle methods, a
brief explanation of the session bean life cycle is in order. The life cycle of a stateful
session bean is different from the life cycle of a stateless session bean.

A stateful session bean life cycle contains three states: Does Not Exist, Ready,
and Passive.

Before a stateful session bean is deployed, it is in the Does Not Exist state. Upon
successful deployment, the EJB container does any required dependency injection
on the bean and it goes into the Ready state. At this point, the bean is ready to have
its methods called by a client application.

When a stateful session bean is in the Ready state, the EJB container may decide
to passivate it, that is, to move it from the main memory to the secondary storage.
When this happens, the bean goes into the Passive state.

If an instance of a stateful session bean hasn't been accessed for a period of time, the
EJB container will set the bean to the Does Not Exist state. By default, GlassFish will
send a stateful session bean to the Does Not Exist state after 90 minutes of inactivity.
This default value can be changed by going to the GlassFish administration console,
expanding the Configuration node in the tree at the left-hand side, clicking on
the EJB Container node, then scrolling down towards the bottom of the page and
modifying the value of the Removal Timeout text field, then clicking on the Save
button at the top right of the main page.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 9

[355]

However, this technique sets the timeout value for all stateful session beans. If we
need to modify the timeout value for a specific session bean, we need to include a
sun-ejb-jar.xml deployment descriptor in the JAR file containing the session
bean. In this deployment descriptor, we can set the timeout value as the value of
the <removal-timeout-in-seconds> element:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE sun-ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
 Application Server 9.0 EJB 3.0//EN"
 "http://www.sun.com/software/appserver/dtds/sun-ejb-jar_3_0-0.dtd">
<sun-ejb-jar>
 <enterprise-beans>
 <ejb>
 <ejb-name>MyStatefulSessionBean</ejb-name>
 <bean-cache>
 <removal-timeout-in-seconds>
 600
 </removal-timeout-in-seconds>
 </bean-cache>
 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

Enterprise JavaBeans

[356]

Even though we are not required to create an ejb-jar.xml deployment descriptor
for our session beans anymore (this used to be the case in previous versions of
the J2EE specification), we can still write one if we wish to do so. The <ejb-name>
element in the sun-ejb-jar.xml deployment descriptor must match the value of
the element of the same name in ejb-jar.xml. If we choose not to create an
ejb-jar.xml deployment descriptor, then this value must match the name of
the EJB class. The timeout value for a stateful session bean must be the value of
the <removal-timeout-in-seconds> element. As the name of the element suggests,
the unit of time to use is seconds. In the previous example, we set the timeout value
to 600 seconds (or 10 minutes).

Any methods in a stateful session bean decorated with the @PostActivate
annotation will be invoked just after the stateful session bean has been activated.
This is equivalent to implementing the ejbActivate() method in previous versions
of J2EE. Similarly, any method decorated with the @PrePassivate annotation will
be invoked just before the stateful session bean is passivated. This is equivalent to
implementing the ejbPassivate() method in previous versions of J2EE.

When a stateful session bean that is in the Ready state times out and is sent to
the Does Not Exist state, any method decorated with the @PreDestroy annotation
is executed. If the session bean is in the Passive state and it times out, methods
decorated with the @PreDestroy annotation are not executed. Additionally, if a
client of the stateful session bean executes any method decorated with the @Remove
annotation, any methods decorated with the @PreDestroy annotation are executed
and the bean is marked for garbage collection. Decorating a method with the
@Remove annotation is equivalent to implementing the ejbRemove() method in
previous versions of the J2EE specification.

The @PostActivate, @PrePassivate, and @Remove annotations are valid only for
stateful session beans. The @PreDestroy and @PostConstruct annotations are valid
for stateful session beans, stateless session beans, and message-driven beans.

Stateless session bean life cycle
A stateless session bean life cycle contains only the Does Not Exist and Ready states:

Chapter 9

[357]

Stateless session beans are never passivated. A stateless session bean's methods can
be decorated with the @PostConstruct and @PreDestroy annotations. Just like in
stateful session beans, any methods decorated with the @PostConstruct annotation
will be executed when the stateless session bean goes from the Does Not Exist to
the Ready state, and any methods decorated with the @PreDestroy annotation will
be executed when a stateless session bean goes from the Ready state to the Does
Not Exist state. Stateless session beans are never passivated, therefore
any @PrePassivate and @PostActivate annotations in a stateless session
bean are simply ignored by the EJB container.

Just like with stateful session beans, we can control how GlassFish manages the life
cycle of stateless session beans (and message-driven beans, discussed in the next
section) via the administration web console:

Enterprise JavaBeans

[358]

Initial and Minimum Pool Size refers to the minimum number of beans in the pool.

Maximum Pool Size refers to the maximum number of beans in the pool.

Pool Resize Quantity refers to how many beans will be removed from the pool
when the pool idle timeout expires.

Pool Idle Timeout refers to the number of seconds or inactivity to wait before
removing the beans from the pool.

These settings affect all "poolable" (stateless session beans and message-driven beans)
EJBs. Just like with stateful session beans, these settings can be overridden on a case-
by-case basis by adding a GlassFish-specific sun-ejb-jar.xml deployment descriptor:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar
 PUBLIC "-//Sun Microsystems, Inc.//DTD Application Server 9.0 EJB
 3.0//EN"
 "http://www.sun.com/software/appserver/dtds/sun-ejb-jar_3_0-0.dtd">
<sun-ejb-jar>
 <enterprise-beans>
 <ejb>
 <ejb-name>MyStatelessSessionBean</ejb-name>
 <bean-pool>
 <steady-pool-size>10</steady-pool-size>
 <max-pool-size>60</max-pool-size>
 <resize-quantity>5</resize-quantity>
 <pool-idle-timeout-in-seconds>
 900
 </pool-idle-timeout-in-seconds>
 </bean-pool>
 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

<steady-pool-size> corresponds to Initial and Minimum Pool Size in the
GlassFish web console.

<max-pool-size> corresponds to Maximum Pool Size in the GlassFish web console.

<resize-quantity> corresponds to Pool Resize Quantity in the GlassFish
web console.

<pool-idle-timeout-in-seconds> corresponds to Pool Idle Timeout in the
GlassFish web console.

Chapter 9

[359]

Message-driven bean life cycle
Just like stateless session beans, message-driven beans contain only the Does Not
Exist and Ready states:

A message-driven bean can have methods decorated with the @PostConstruct and
@PreDestroy annotations. Methods decorated with the @PostConstruct annotation
are executed just before the bean goes to the Ready state. Methods decorated with
the @PreDestroy annotation are executed just before the bean goes to the Does Not
Exist state.

EJB timer service
Stateless session beans and message-driven beans can have a method that is executed
periodically at regular intervals of time. This can be accomplished by using the EJB
timer service. The following example illustrates how to take advantage of this service:

package net.ensode.glassfishbook;

import java.io.Serializable;

import java.util.Collection;

import java.util.Date;

import java.util.logging.Logger;

import javax.annotation.Resource;

import javax.ejb.EJBContext;

import javax.ejb.Stateless;

import javax.ejb.Timeout;

import javax.ejb.Timer;

import javax.ejb.TimerService;

@Stateless

Enterprise JavaBeans

[360]

public class EjbTimerExampleBean implements EjbTimerExample

{

 private static Logger logger =
 Logger.getLogger(EjbTimerExampleBean.class.getName());

 @Resource

 TimerService timerService;

 public void startTimer(Serializable info)

 {

 Timer timer = timerService.createTimer(new Date(), 5000, info);

 }

 public void stopTimer(Serializable info)

 {

 Timer timer;

 Collection timers = timerService.getTimers();

 for (Object object : timers)

 timer = ((Timer) object);

 if (timer.getInfo().equals(info))

 {

 timer.cancel();

 break;

 }

 }

 }

 @Timeout

 public void logMessage(Timer timer)
 {

 logger.info("This message was triggered by :" + timer.getInfo()
 + “ at “ + System.currentTimeMillis());
 }

}

In this example, we inject an implementation of the javax.ejb.TimerService
interface by decorating an instance variable of this type with the @Resource
annotation. We can then create a timer by invoking the createTimer() method
of this TimerService instance.

Chapter 9

[361]

There are several overloaded versions of the createTimer() method. The one
we chose to use takes an instance of java.util.Date as its first parameter. This
parameter is used to indicate the first time the timer should expire (go off). In the
example, we chose to use a brand new instance of the Date class, which in effect
makes the timer expire immediately. The second parameter of the createTimer()
method is the amount of time to wait, in milliseconds, before the timer expires
again. In the previous example, the timer will expire every five seconds. The
third parameter of the createTimer() method can be an instance of any class
implementing the java.io.Serializable interface. As a single EJB can have several
timers executing concurrently, this third parameter is used to uniquely identify each
of the timers. If we don't need to identify the timers, null can be passed as a value
for this parameter.

The EJB method invoking TimerService.createTimer() must
be called from an EJB client. Placing this call in an EJB method
decorated with the @PostConstruct annotation to start the timer
automatically when the bean is placed in the Ready state will
result in an IllegalStateException being thrown.

We can stop a timer by invoking its cancel() method. There is no way to directly
obtain a single timer associated with an EJB. What we need to do is invoke the
getTimers() method on the instance of TimerService that is linked to the EJB.
This method will return a collection containing all the timers associated with the EJB.
We can then iterate through the collection and cancel the correct one by invoking its
getInfo() method. This method will return the Serializable object we passed as
a parameter to the createTimer() method.

Finally, any EJB method decorated with the @Timeout annotation will be executed
when a timer expires. Methods decorated with this annotation must return void
and take a single parameter of type javax.ejb.Timer. In our example, the method
simply writes a message to the server log.

The following class is a standalone client for the previous EJB:

package net.ensode.glassfishbook;

import javax.ejb.EJB;

public class Client
{
 @EJB
 private static EjbTimerExample ejbTimerExample;

 public static void main(String[] args)
 {

Enterprise JavaBeans

[362]

 try
 {
 System.out.println("Starting timer 1...");
 ejbTimerExample.startTimer("Timer 1");
 System.out.println("Sleeping for 2 seconds...");
 Thread.sleep(2000);
 System.out.println("Starting timer 2...");
 ejbTimerExample.startTimer("Timer 2");
 System.out.println("Sleeping for 30 seconds...");
 Thread.sleep(30000);
 System.out.println("Stopping timer 1...");
 ejbTimerExample.stopTimer("Timer 1");
 System.out.println("Stopping timer 2...");
 ejbTimerExample.stopTimer("Timer 2");
 System.out.println("Done.");
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
 }
}

The example simply starts a timer, waits for a couple of seconds, then starts a second
timer. It then sleeps for 30 seconds and then stops both the timers. After deploying
the EJB and executing the client, we should see some entries like the following in the
server log:

[#|2007-05-05T20:41:39.518-0400|INFO|sun-
appserver9.1|net.ensode.glassfishbook.EjbTimerExampleBean|_ThreadID=22;_
ThreadName=p: thread-pool-1; w: 16;|This message was triggered by :Timer
1 at 1178412099518|#]

[#|2007-05-05T20:41:41.536-0400|INFO|sun-
appserver9.1|net.ensode.glassfishbook.EjbTimerExampleBean|_ThreadID=22;_
ThreadName=p: thread-pool-1; w: 16;|This message was triggered by :Timer
2 at 1178412101536|#]

[#|2007-05-05T20:41:46.537-0400|INFO|sun-
appserver9.1|net.ensode.glassfishbook.EjbTimerExampleBean|_ThreadID=22;_
ThreadName=p: thread-pool-1; w: 16;|This message was triggered by :Timer
1 at 1178412106537|#]

[#|2007-05-05T20:41:48.556-0400|INFO|sun-
appserver9.1|net.ensode.glassfishbook.EjbTimerExampleBean|_ThreadID=22;_
ThreadName=p: thread-pool-1; w: 16;|This message was triggered by :Timer
2 at 1178412108556|#]

These entries are created each time one of the timers expires.

Chapter 9

[363]

Calendar-based EJB timer expressions
The example in the previous section has one disadvantage: the startTimer() method
in the session bean must be invoked from a client in order to start the timer. This
restriction makes it difficult to have the timer start as soon as the bean is deployed.

Java EE 6 introduced calendar-based EJB timer expressions. Calendar-based
expressions allow one or more methods in our session beans to be executed at a
certain date and time. For example, we could configure one of our methods to be
executed every night at 8:10 pm, which is exactly what our next example does.

package com.ensode.glassfishbook.calendarbasedtimer;

import java.util.logging.Logger;
import javax.ejb.Stateless;
import javax.ejb.LocalBean;
import javax.ejb.Schedule;

@Stateless
@LocalBean
public class CalendarBasedTimerEjbExampleBean
{
 private static Logger logger = Logger.getLogger(
 CalendarBasedTimerEjbExampleBean.class.getName());
 @Schedule(hour = "20", minute = "10")
 public void logMessage()
 {
 logger.info("This message was triggered at:"
 + System.currentTimeMillis());
 }
}

As we can see in this example, we set the time when the method will be executed via
the javax.ejb.Schedule annotation. In this particular example, we set our method
to be executed at 8:10 pm by setting the hour attribute of the @Schedule annotation
to "20" and its minute attribute to "10" (the value of the hour attribute is 24 hour
based, setting hour to "20" is equivalent to 8:00 pm).

The @Schedule annotation has several other attributes that allow a lot of flexibility
in specifying when the method should be executed. We could, for instance, have a
method executed on the third Friday of every month, or on the last day of the month,
and so on and so forth.

The following table lists all the attributes in the @Schedule annotation that allow us
to control when the annotated method will be executed:

Enterprise JavaBeans

[364]

Attribute Description Example values Default
value

dayOfMonth The day of the
month.

"3": the third day of the month

"Last": the last day of the month

"-2": two days before the end of the month

"1st Tue": the first Tuesday of the month

"*"

dayOfWeek The day of the
week

"3": every Wednesday

"Thu": every Thursday

"*"

hour Hour of the
day (24 hour
based)

"14": 2:00 pm "0"

minute Minute of the
hour

"10": ten minutes after the hour "0"

month Month of the
year

"2": February

"March": March

"*"

second Second of the
minute

"5": five seconds after the minute "0"

timezone Timezone ID "America/New York" ""
year Four digit

year
"2010" "*"

In addition to single values, most attributes accept the asterisk ("*") as a wild card,
meaning that the annotated method will be executed every unit of time (every day,
hour, and so on).

Additionally, we can specify more than one value by separating the values with
commas. For example, if we needed a method to be executed every Tuesday and
Thursday, we could annotate the method as @Schedule(dayOfWeek="Tue, Thu").

We can also specify a range of values; the first value and the last value are separated
by a dash (-). To execute a method from Monday through Friday, we could use
@Schedule(dayOfWeek="Mon-Fri").

Additionally, we could specify that we need the method to be executed every "n"
units of time (for example, every day, every two hours, every ten minutes, and so
on). To do something like this, we could use @Schedule(hour="*/12"), which
would execute the method every 12 hours.

Chapter 9

[365]

As we can see, the @Schedule annotation provides a lot of flexibility as how to
specify when we need to get our methods executed. Plus it provides an advantage of
not needing a client call to activate the scheduling. It also has the advantage of using
cron-like syntax. Therefore, developers familiar with this Unix tool will feel right at
home when using this annotation.

EJB security
Enterprise JavaBeans allow us to declaratively decide which users can access their
methods. For example, some methods might only be available to users in certain
roles. A typical scenario is that only users with a role of administrator can add,
delete, or modify other users in the system.

The following example is a slightly modified version of the DAO session bean
we saw earlier in this chapter. In this version, some methods that were previously
private were made public. Additionally, the session bean was modified to allow
only users in certain roles to access its methods.

package net.ensode.glassfishbook;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import javax.annotation.Resource;
import javax.annotation.security.RolesAllowed;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.sql.DataSource;

@Stateless
@RolesAllowed("appadmin")
public class CustomerDaoBean implements CustomerDao
{
 @PersistenceContext
 private EntityManager entityManager;

 @Resource(name = "jdbc/__CustomerDBPool")
 private DataSource dataSource;

 public void saveCustomer(Customer customer)
 {
 if (customer.getCustomerId() == null)

Enterprise JavaBeans

[366]

 {
 saveNewCustomer(customer);
 }
 else
 {
 updateCustomer(customer);
 }
 }

 public Long saveNewCustomer(Customer customer)
 {
 customer.setCustomerId(getNewCustomerId());
 entityManager.persist(customer);
 return customer.getCustomerId();
 }
 public void updateCustomer(Customer customer)
 {
 entityManager.merge(customer);
 }

 @RolesAllowed({ "appuser", "appadmin" })
 public Customer getCustomer(Long customerId)
 {
 Customer customer;
 customer = entityManager.find(Customer.class, customerId);
 return customer;
 }

 public void deleteCustomer(Customer customer)
 {
 entityManager.remove(customer);
 }

 private Long getNewCustomerId()
 {
 Connection connection;
 Long newCustomerId = null;
 try
 {
 connection = dataSource.getConnection();
 PreparedStatement preparedStatement =
 connection.prepareStatement("select max(customer_id)+1 "
 "as new_customer_id from customers");
 ResultSet resultSet = preparedStatement.executeQuery();
 if (resultSet != null && resultSet.next())
 {
 newCustomerId = resultSet.getLong("new_customer_id");

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 9

[367]

 }
 connection.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 return newCustomerId;
 }
}

As we can see, we declare what roles have access to the methods by using
the @RolesAllowed annotation. This annotation can take either a single string
or an array of strings as a parameter. When a single string is used as a parameter
for this annotation, only users with a role specified by the parameter can access the
method. If an array of strings is used as a parameter, users with any of the roles
specified by the array's elements can access the method.

The @RolesAllowed annotation can be used to decorate an EJB class, in which case
its values apply to all the methods in the EJB or to one or more methods. In this
second case, its values apply only to the method the annotation is decorating. If, like
in our example, both the EJB class and one or more of its methods are decorated with
the @RolesAllowed annotation, the method-level annotation takes precedence.

Application roles need to be mapped to a security realm's group name.
This mapping, along with what realm to use, is set in the sun-ejb-jar.xml
deployment descriptor:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
 Application Server 9.0 EJB 3.0//EN"
 "http://www.sun.com/software/appserver/dtds/sun-ejb-jar_3_0-0.dtd">
<sun-ejb-jar>
 <security-role-mapping>

 <role-name>appuser</role-name>

 <group-name>appuser</group-name>

 </security-role-mapping>

 <security-role-mapping>

 <role-name>appadmin</role-name>

 <group-name>appadmin</group-name>

 </security-role-mapping>

 <enterprise-beans>
 <ejb>
 <ejb-name>CustomerDaoBean</ejb-name>
 <ior-security-config>

Enterprise JavaBeans

[368]

 <as-context>

 <auth-method>username_password</auth-method>

 <realm>file</realm>

 <required>true</required>

 </as-context>

 </ior-security-config>
 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

The <security-role-mapping> element of the sun-ejb-jar.xml deployment
descriptor does the mapping between application roles and the security realm's
group. The value of the <role-name> sub-element must contain the application role.
This value must match the value used in the @RolesAllowed annotation. The value
of the <group-name> sub-element must contain the name of the security group in the
security realm used by the EJB. In the previous example, we map two application
roles to the corresponding groups in the security realm. Although in this particular
example the name of the application role and the security group match, this does not
need to be the case.

Automatically matching roles to security groups
It is possible to automatically match any application roles to identically
named security groups in the security realm. This can be accomplished
by logging into the GlassFish web console, clicking on the Configuration
node, clicking on Security, then clicking on the checkbox labeled Default
Principal To Role Mapping, and saving this configuration change.

As can be seen in the example, the security realm to use for authentication is
defined in the <realm> sub-element of the <as-context> element. The value of
this sub-element must match the name of a valid security realm in the application
server. Other sub-elements of the <as-context> element include <auth-method>,
whose only valid value is username_password, and <required>, whose only valid
values are true and false.

Client authentication
If the client code accessing a secured EJB is part of a web application whose user has
already authenticated, then the user's credentials will be used to determine if the
user should be allowed to access the method he/she is trying to execute.

Standalone clients must be executed through the appclient utility. The following
code illustrates a typical client for the previous secured session bean:

Chapter 9

[369]

package net.ensode.glassfishbook;

import javax.ejb.EJB;

public class Client
{
 @EJB
 private static CustomerDao customerDao;

 public static void main(String[] args)
 {
 Long newCustomerId;

 Customer customer = new Customer();
 customer.setFirstName("Mark");
 customer.setLastName("Butcher");
 customer.setEmail("butcher@phony.org");

 System.out.println("Saving New Customer...");
 newCustomerId = customerDao.saveNewCustomer(customer);

 System.out.println("Retrieving customer...");
 customer = customerDao.getCustomer(newCustomerId);
 System.out.println(customer);
 }
}

As we can see, there is nothing the code is doing in order to authenticate the user.
The session bean is simply injected into the code via the @EJB annotation and it is
used as usual. The reason this works is because the appclient utility takes care
of authenticating the user. Passing the -user and -password arguments with
appropriate values will authenticate the user:

appclient -client ejbsecurityclient.jar -user peter -password secret

This command will authenticate a user with a username of "peter" and a password
of "secret". Assuming the credentials are correct and that the user has the appropriate
permissions, the EJB code will execute and we should see the expected output from
the previous Client class:

Saving New Customer...

Retrieving customer...

customerId = 29

firstName = Mark

Enterprise JavaBeans

[370]

lastName = Butcher

email = butcher@phony.org

If we don't enter the username and password from the command line, appclient
will prompt us for a username and password through a graphical window. In our
example, entering the following command:

appclient -client ejbsecurityclient.jar

Will result in a pop-up window like the following to show up:

We can simply enter our username and password in the appropriate fields. After
validating the credentials, the application will execute as expected.

Summary
In this chapter, we covered how to implement business logic via stateless and
stateful session beans. We also explained how to take advantage of the transactional
nature of EJBs to simplify implementing the Data Access Object (DAO) pattern.

Additionally, we explained the concept of container-managed transactions and
how to control them by using the appropriate annotations. We also explained how
to implement bean-managed transactions for cases in which container-managed
transactions are not enough to satisfy our requirements.

Life cycles for the different types of Enterprise JavaBeans were covered, including an
explanation on how to have EJB methods automatically invoked by the EJB container
at certain points in the life cycle.

We also covered how to have EJB methods invoked periodically by the EJB container
by taking advantage of the EJB timer service.

Finally, we explained how to make sure that EJB methods are only invoked by
authorized users by annotating the EJB classes and/or methods and by adding
the appropriate entries to the sun-ejb-jar.xml deployment descriptor.

Contexts and Dependency
Injection

Contexts and Dependency Injection (CDI) is a new addition to the Java EE
specification as of Java EE 6. It provides several advantages that were previously
unavailable to Java EE developers, such as allowing any JavaBean to be used as a JSF
managed bean, including stateless and stateful session beans. As its name implies,
CDI simplifies dependency injection in Java EE applications.

In this chapter, we will cover the following topics:

•	 Named beans
•	 Dependency injection
•	 Scopes
•	 Qualifiers

Named beans
CDI provides us with the ability to name our beans via the @Named annotation.
Named beans allow us to easily inject our beans into other classes that depend on
them (see next section), and to easily refer to them from JSF pages via the Unified
Expression Language.

Contexts and Dependency Injection

[372]

The following example shows the @Named annotation in action:

package net.ensode.cdidependencyinjection.beans;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped
public class Customer
{
 private String firstName;
 private String lastName;

 public String getFirstName()
 {
 return firstName;
 }

 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }

 public String getLastName()
 {
 return lastName;
 }

 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }
}

As we can see, all we need to do to name our class is to decorate it with the @Named
annotation. By default, the name of the bean will be the class name with its first letter
switched to lowercase. In our example, the name of the bean would be "customer". If
we wish to use a different name, we can do so by setting the value attribute of the
@Named annotation. For example, if we wanted to use the name "customerBean" for our
previous bean, we could have done so by modifying the @Named annotation as follows:

@Named(value="customerBean")

Or simply:

@Named("customerBean")

Chapter 10

[373]

As the value attribute name does not need to be specified, if we don't use an
attribute name, then value is implied.

This name can be used to access our bean from JSF pages using the Unified
Expression Language.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Enter Customer Information</title>
 </h:head>
 <h:body>
 <h:form>
 <h:panelGrid columns="2">
 <h:outputLabel for="firstName" value="First Name"/>
 <h:inputText id="firstName" value="#{customer.firstName}"/>
 <h:outputLabel for="lastName" value="Last Name"/>
 <h:inputText id="lastName" value="#{customer.lastName}"/>
 <h:panelGroup/>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

As we can see, named beans are accessed from JSF pages exactly like standard JSF
managed beans. This allows JSF to access any named bean, decoupling the Java code
from the JSF API.

When deployed and executed, our simple application looks like this:

Contexts and Dependency Injection

[374]

CDI applications must include a beans.xml configuration file as the presence of this
file tells the application server to activate CDI for the application. The file can be
empty, but it must exist. Typically, it would look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
</beans>

In web applications, this file must be placed under the WEB-INF directory in
the application's WAR file. In EJB JAR files, this file must be placed in the
META-INF directory.

Dependency injection
Dependency injection is a technique for supplying external dependencies to a Java
class. Java EE 5 introduced dependency injection via the @Resource annotation.
However, this annotation is limited to injecting resources such as database
connections, JMS resources, and so on. Java EE 6 introduces the @Inject annotation
that can be used to inject instances of Java classes into any dependent objects.

JSF applications typically follow the Model-View-Controller (MVC) design pattern.
As such, some JSF managed beans frequently take the role of controllers in the
pattern, while others take the role of the model. This approach typically requires the
controller managed bean to have access to one or more of the model managed beans.

Because of the pattern described in the previous paragraph, one of the most
frequently asked JSF questions is how to access one managed bean from another.
There is more than one way to do it, but before CDI, none of the ways were
straightforward. Before CDI, the easiest way to do it was to declare a managed
property in the controller managed bean, which required modifying the application's
faces-config.xml file. Another approach was to use code like the following:

ELContext elc = FacesContext.getCurrentInstance().getELContext();
SomeBean someBean =
 (SomeBean) FacesContext.getCurrentInstance().getApplication()
 .getELResolver().getValue(elc, null, "someBean");

Here, someBean is the name of the bean as specified in the application's
faces-config.xml file. As we can see, neither approach is simple or easy to
remember. Fortunately, code like this is not needed anymore in Java EE 6, thanks
to CDI's dependency injection capabilities.

Chapter 10

[375]

package net.ensode.cdidependencyinjection.ejb;

import java.util.logging.Logger;
import javax.inject.Inject;
import javax.inject.Named;

@Named
@RequestScoped
public class CustomerController
{
 private static final Logger logger =
 Logger.getLogger(CustomerController.class.getName());
 @Inject

 private Customer customer;

 public String saveCustomer()
 {
 logger.info("Saving the following information \n" +
 customer.toString());
 //If this was a real application, we would have code to save
 //customer data to the database here.
 return "confirmation";
 }
}

Notice that all we had to do to initialize our customer instance was to decorate it
with the @Inject annotation. When the bean is constructed by the application server,
an instance of the Customer bean is automatically injected into this field. Notice that
the injected bean is used in the saveCustomer() method. As we can see, CDI makes
accessing one bean from another a snap, a far cry from the code we had to use in
previous versions of the Java EE specification.

Qualifiers
In some instances, the type of bean we wish to inject into our code may be an
interface or a Java superclass, but we may be interested in injecting a subclass or a
class implementing the interface. For cases like this, CDI provides qualifiers we can
use to indicate the specific type we wish to inject into our code.

A CDI qualifier is an annotation that must be decorated with the @Qualifier
annotation. This annotation can then be used to decorate the specific subclass or
interface implementation we wish to qualify. Additionally, the injected field in the
client code needs to be decorated with the qualifier as well.

Contexts and Dependency Injection

[376]

Suppose our application could have a special kind of customer, wherein frequent
customers could be given the status of premium customers. To handle these
premium customers, we could extend our Customer named bean and decorate it
with the following qualifier:

package net.ensode.cdidependencyinjection.qualifiers;

import static java.lang.annotation.ElementType.TYPE;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import javax.inject.Qualifier;

@Qualifier
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Premium
{

}

Like we mentioned before, qualifiers are standard annotations. They typically
have a retention of runtime and can target methods, fields, parameters or types, as
illustrated in the previous example. The only difference between a qualifier and a
standard annotation is that qualifiers are decorated with the @Qualifier annotation.

Once we have our qualifier in place, we need to use it to decorate the specific
subclass or interface implementation:

package net.ensode.cdidependencyinjection.beans;

import javax.inject.Named;
import net.ensode.cdidependencyinjection.qualifiers.Premium;

@Named
@Premium
public class PremiumCustomer extends Customer
{
 private Integer discountCode;

 public Integer getDiscountCode()
 {
 return discountCode;
 }

Chapter 10

[377]

 public void setDiscountCode(Integer discountCode)
 {
 this.discountCode = discountCode;
 }
}

Once we have decorated the specific instance we need to qualify, we can use our
qualifiers in the client code to specify the exact type of dependency we need:

package net.ensode.cdidependencyinjection.beans;

import java.util.Random;
import java.util.logging.Logger;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.inject.Named;
import net.ensode.cdidependencyinjection.qualifiers.Premium;

@Named
@RequestScoped
public class CustomerController
{
 private static final Logger logger =
 Logger.getLogger(CustomerController.class.getName());
 @Inject
 @Premium
 private Customer customer;

 public String saveCustomer()
 {
 PremiumCustomer premiumCustomer = (PremiumCustomer) customer;
 premiumCustomer.setDiscountCode(generateDiscountCode());

 logger.info("Saving the following information \n"
 + premiumCustomer.getFirstName() + " "
 + premiumCustomer.getLastName() + ", discount code = "
 + premiumCustomer.getDiscountCode());

 //If this was a real application, we would have code to save
 //customer data to the database here.

 return "confirmation";
 }

 public Integer generateDiscountCode()
 {
 return new Random().nextInt(100000);
 }
}

Contexts and Dependency Injection

[378]

As we used our @Premium qualifier to decorate the customer field, an instance of
PremiumCustomer is injected into that field, as this class is also decorated with
the @Premium qualifier.

As far as our JSF pages go, we simply access our named bean as usual using
its name:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Enter Customer Information</title>
 </h:head>
 <h:body>
 <h:form>
 <h:panelGrid columns="2">
 <h:outputLabel for="firstName" value="First Name"/>
 <h:inputText id="firstName"
 value="#{premiumCustomer.firstName}"/>
 <h:outputLabel for="lastName" value="Last Name"/>
 <h:inputText id="lastName"
 value="#{premiumCustomer.lastName}"/>
 <h:outputLabel for="discountCode" value="Discount Code"/>
 <h:inputText id="discountCode"
 value="#{premiumCustomer.discountCode}"/>
 <h:panelGroup/>
 <h:commandButton value="Submit"
 action="#{customerController.saveCustomer}"/>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

In this example, we are using the default name for our bean, which is the class name
with the first letter switched to lowercase.

Our simple application renders and acts just like a "plain" JSF application as far as
the user is concerned.

Chapter 10

[379]

Named bean scopes
Just like JSF managed beans, CDI named beans are scoped. This means that CDI
beans are contextual objects. When a named bean is needed, either because of
injection or because it is referred from a JSF page, CDI looks for an instance of the
bean in the scope it belongs to and injects it to the dependent code. If no instance is
found, one is created and stored in the appropriate scope for future use. The different
scopes are the context in which the bean exists.

The following table lists the different valid CDI scopes:

Scope Annotation Description
Request @RequestScoped Request-scoped beans are shared through the

duration of a single request. A single request
could refer to an HTTP request, an invocation
to a method in an EJB, a web service invocation,
or sending a JMS message to a message-driven
bean.

Conversation @ConversationScoped The conversation scope can span multiple
requests, but is typically shorter than the
session scope.

Session @SessionScoped Session-scoped beans across all requests in an
HTTP session. Each user of an application gets
their own instance of a session-scoped bean.

Application @ApplicationScoped Application-scoped beans live through the
whole application lifetime. Beans in this scope
are shared across user sessions.

Dependent @Dependent Dependent-scoped beans are not shared.
Anytime a dependent-scoped bean is injected, a
new instance is created.

Contexts and Dependency Injection

[380]

As we can see, CDI includes all scopes supported by JSF, plus adds a couple of its
own. CDI's request scope differs from JSF's request scope in which a request does
not necessarily refer to an HTTP request. It could simply be an invocation on an EJB
method, a web service invocation, or sending a JMS message to a message-driven bean.

The conversation scope does not exist in JSF. This scope is longer than the
request scope, but shorter than session. It typically spans three or more pages.
Classes wishing to access a conversation-scoped bean must have an instance of
javax.enterprise.context.Conversation injected. At the point where we want
to start the conversation, the begin() method must be invoked on this object. At the
point where we want to end the conversation, the end() method must be invoked
on it.

CDI's session scope behaves just like its JSF counterpart. The life cycle of
session-scoped beans is tied to the life of an HTTP session.

CDI's application scope also behaves just like the equivalent scope in JSF.
Application-scoped beans are tied to the life of an application. A single instance
of each application-scoped bean exists per application, which means that the same
instance is accessible to all HTTP sessions.

Just like the conversation scope, CDI's dependent scope does not exist in JSF.
A new dependent-scoped bean is instantiated every time it is needed, usually
when it is injected into a class that depends on it.

Suppose we wanted to have a user enter some data that would be stored in a single
named bean. However, this bean has several fields, therefore we would like to split
the data entry into several pages. This is a fairly common situation and one that
is not easy to handle using JSF, or the servlet API for that matter. The reason this
situation is not trivial to manage using these technologies is that we can only put
a class in the request scope, in which case the class is destroyed after every single
request, losing its data in the process; or in session scope, in which the class sticks
around in memory long after it is needed. For cases like this, CDI's conversation
scope is ideal:

package net.ensode.conversationscope.model;

import java.io.Serializable;
import javax.enterprise.context.ConversationScoped;
import javax.inject.Named;
import org.apache.commons.lang.builder.ReflectionToStringBuilder;

@Named
@ConversationScoped
public class Customer implements Serializable
{

Chapter 10

[381]

 private String firstName;
 private String middleName;
 private String lastName;
 private String addrLine1;
 private String addrLine2;
 private String addrCity;
 private String state;
 private String zip;
 private String phoneHome;
 private String phoneWork;
 private String phoneMobile;

 public String getAddrCity()
 {
 return addrCity;
 }

 public void setAddrCity(String addrCity)
 {
 this.addrCity = addrCity;
 }

 public String getAddrLine1()
 {
 return addrLine1;
 }

 public void setAddrLine1(String addrLine1)
 {
 this.addrLine1 = addrLine1;
 }

 public String getAddrLine2()
 {
 return addrLine2;
 }

 public void setAddrLine2(String addrLine2)
 {
 this.addrLine2 = addrLine2;
 }

 public String getFirstName()
 {

Contexts and Dependency Injection

[382]

 return firstName;
 }

 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }

 public String getLastName()
 {
 return lastName;
 }

 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }

 public String getMiddleName()
 {
 return middleName;
 }

 public void setMiddleName(String middleName)
 {
 this.middleName = middleName;
 }

 public String getPhoneHome()
 {
 return phoneHome;
 }

 public void setPhoneHome(String phoneHome)
 {
 this.phoneHome = phoneHome;
 }

 public String getPhoneMobile()
 {
 return phoneMobile;
 }

 public void setPhoneMobile(String phoneMobile)

Chapter 10

[383]

 {
 this.phoneMobile = phoneMobile;
 }

 public String getPhoneWork()
 {
 return phoneWork;
 }

 public void setPhoneWork(String phoneWork)
 {
 this.phoneWork = phoneWork;
 }

 public String getState()
 {
 return state;
 }

 public void setState(String state)
 {
 this.state = state;
 }

 public String getZip()
 {
 return zip;
 }

 public void setZip(String zip)
 {
 this.zip = zip;
 }

 @Override
 public String toString()
 {
 return ReflectionToStringBuilder.reflectionToString(this);
 }
}

Contexts and Dependency Injection

[384]

We declare that our bean is conversation scoped by decorating it with the
@ConversationScoped annotation. Conversation-scoped beans also need to
implement java.io.Serializable. Other than these two requirements, there
is nothing special about our code. It is a simple JavaBean with private properties
and corresponding getter and setter methods.

We are using the Apache commons-lang library in our code to easily
implement a toString() method for our bean. commons-lang has
several utility methods like this that implement frequently needed,
tedious to code functionality. commons-lang is available in the central
Maven repositories and at http://commons.apache.org/lang.

In addition to having our conversation-scoped bean injected, our client code must
also have an instance of javax.enterprise.context.Conversation injected, as
illustrated in the following example:

package net.ensode.conversationscope.controller;

import java.io.Serializable;
import javax.enterprise.context.Conversation;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.inject.Named;
import net.ensode.conversationscope.model.Customer;

@Named
@RequestScoped
public class CustomerInfoController implements Serializable
{
 @Inject

 private Conversation conversation;

 @Inject

 private Customer customer;

 public String customerInfoEntry()
 {
 conversation.begin();

 System.out.println(customer);
 return "page1";
 }

 public String navigateToPage1()
 {
 System.out.println(customer);
 return "page1";

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 10

[385]

 }

 public String navigateToPage2()
 {
 System.out.println(customer);
 return "page2";
 }

 public String navigateToPage3()
 {
 System.out.println(customer);
 return "page3";
 }

 public String navigateToConfirmationPage()
 {
 System.out.println(customer);
 conversation.end();

 return "confirmation";
 }
}

Conversations can be either long running or transient. Transient conversations end
at the end of a request. Long running conversations span multiple requests. In most
cases, we will use long running conversations to hold a reference to a conversation-
scoped bean across multiple HTTP requests in a web application.

A long running conversation starts when the begin() method is invoked in the
injected Conversation instance, and it ends when we invoke the end() method
on this same object.

JSF pages simply access our CDI beans as usual.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Customer Information</title>
 </h:head>
 <h:body>
 <h3>Enter Customer Information (Page 1 of 3)</h3>
 <h:form>
 <h:panelGrid columns="2">

Contexts and Dependency Injection

[386]

 <h:outputLabel for="firstName" value="First Name"/>
 <h:inputText id="firstName" value="#{customer.firstName}"/>
 <h:outputLabel for="middleName" value="Middle Name"/>
 <h:inputText id="middleName" value="#{customer.middleName}"/>
 <h:outputLabel for="lastName" value="Last Name"/>
 <h:inputText id="lastName" value="#{customer.lastName}"/>
 <h:panelGroup/>
 <h:commandButton value="Next"
 action="#{customerInfoController.navigateToPage2}"/>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

As we navigate from one page to the next, we keep the same instance of our
conversation-scoped bean, therefore all user-entered data remains. When the end()
method is called on our conversation bean, the conversation ends and our
conversation-scoped bean is destroyed.

Keeping our bean in the conversation scope greatly simplifies the task of implementing
"wizard-style" user interfaces, where data can be entered across several pages.

In our example, after clicking on the Next button on the first page, we can see our
partially populated bean in the GlassFish log:

INFO:
net.ensode.conversationscope.model.Customer@6e1c51b4[firstName=Daniel,
middleName=,lastName=Jones,addrLine1=,addrLine2=,addrCity=,state=AL,
zip=<null>,phoneHome=<null>,phoneWork=<null>,phoneMobile=<null>]

mailto:net.ensode.conversationscope.model.Customer@6e1c51b4

Chapter 10

[387]

At this point, the second page in our simple wizard is displayed:

When clicking on Next, we can see that additional fields are populated in our
conversation-scoped bean:

INFO:
net.ensode.conversationscope.model.Customer@6e1c51b4[firstName=Daniel,
middleName=,lastName=Jones,addrLine1=123 Basketball Ct,
addrLine2=,addrCity=Montgomery,state=AL,zip=36101,phoneHome=<null>,
phoneWork=<null>,phoneMobile=<null>]

When we submit the third page in our wizard (not shown), additional bean
properties corresponding to the fields on that page are populated.

When we are at a point where we don't need to keep the customer information in
memory anymore, we need to call the end() method on the conversation bean that
was injected into our code. This is exactly what we do in our code before displaying
the confirmation page:

public String navigateToConfirmationPage()
{
 System.out.println(customer);
 conversation.end();

 return "confirmation";
}

Contexts and Dependency Injection

[388]

After the request to show the confirmation page is completed, our conversation-
scoped bean is destroyed, as we invoked the end() method in our injected
Conversation class.

We should note that since the conversation scope requires an instance of
javax.enterprise.context.Conversation to be injected, this scope requires
that the action in the command button or link used to navigate between pages be
an expression resolving to a managed bean method. Using static navigation with
the default behavior introduced in JSF 2.0 (where an action value of "foo" will, by
default, navigate to a page named foo.xml) won't work, as the Conversation
instance won't be injected anywhere.

Summary
In this chapter, we provided an introduction to Contexts and Dependency Injection
(CDI). We covered how JSF pages can access CDI named beans as if they were JSF
managed beans. We also covered how CDI makes it easy to inject dependencies into
our code via the @Inject annotation. Additionally, we explained how we can use
qualifiers to determine what specific implementation of dependency to inject into
our code. Finally, we covered all the scopes that a CDI bean can be placed into,
which include equivalents to all the JSF scopes, plus an additional two that are not
included in JSF, namely the conversation scope and the dependent scope.

Web Services with JAX-WS
The Java EE 6 specification includes the JAX-WS API as one of its technologies.
JAX-WS is the standard way to develop SOAP (Simple Object Access Protocol) web
services in the Java platform. It stands for Java API for XML Web Services. JAX-WS
is a high-level API; invoking web services via JAX-WS is done via remote procedure
calls. JAX-WS is a very natural API for Java developers.

Web services are application programming interfaces that can be invoked remotely.
Web services can be invoked from clients written in any language.

Some of the topics we will cover include:

•	 Developing web services with the JAX-WS API
•	 Developing web service clients with the JAX-WS API
•	 Adding attachments to web service calls
•	 Exposing EJBs as web services
•	 Securing web services

Developing web services with JAX-WS
JAX-WS is a high-level API that simplifies development of web services. JAX-WS
stands for Java API for XML-Based Web Services. Developing a web service via
JAX-WS consists of writing a class with public methods to be exposed as web
services. The class needs to be decorated with the @WebService annotation. All
public methods in the class are automatically exposed as web services; they can
optionally be decorated with the @WebService annotation. The following example
illustrates this process:

package net.ensode.glassfishbook;

import javax.jws.WebMethod;
import javax.jws.WebService;

Web Services with JAX-WS

[390]

@WebService
public class Calculator
{
 @WebMethod
 public int add(int first, int second)
 {
 return first + second;
 }

 @WebMethod
 public int subtract(int first, int second)
 {
 return first - second;
 }
}

This class exposes its two methods as web services. The add() method simply
adds the two int primitives it receives as parameters and returns the result, the
substract() method subtracts its two parameters and returns the result.

We indicate that the class implements a web service by decorating it with
the @WebService annotation. Any methods that we would like exposed as web
services can be decorated with the @WebMethod annotation, but this isn't necessary;
all public methods are automatically exposed as web services.

To deploy our web service, we need to package it in a WAR file. Before Java EE
6, all valid WAR files were required to contain a web.xml deployment descriptor
in their WEB-INF directory. As we have already covered in previous chapters, this
deployment descriptor is optional when working with Java EE 6 and is not required
to deploy a web service under this environment.

If we choose to add a web.xml deployment descriptor, nothing needs to be added
to the WAR file's web.xml deployment descriptor. In order to successfully deploy
our web service, simply having an empty <web-app> element in the deployment
descriptor will be enough to successfully deploy our WAR file.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
</web-app>

After compiling and packaging this code and deployment descriptor in a WAR file
and deploying it, we can verify that it was successfully deployed by logging into the
GlassFish admin web console and expanding the Applications node at the left-hand
side. We should see our newly deployed web service listed under this node:

Chapter 11

[391]

Notice that there is a View Endpoint link at the bottom right of the page. Clicking on
this link takes us to the Web Service Endpoint Information page, which has some
information about our web service.

Web Services with JAX-WS

[392]

Notice that there is a link labeled Tester; clicking on this link takes us to an
automatically generated page that allows us to test our web service:

To test the methods, we have to simply enter some parameters in the text fields and
click on the appropriate button. For example, entering the values 2 and 3 in the text
fields corresponding to the add method and clicking on the add button would result
in the following output:

Chapter 11

[393]

JAX-WS uses the SOAP protocol behind the scenes to exchange information between
web services clients and servers. By scrolling down the previous page, we can see the
SOAP request and response generated by our test:

As application developers, we don't need to concern ourselves too much with these
SOAP requests, as they are automatically taken care of by the JAX-WS API.

Web Services with JAX-WS

[394]

Web service clients need a WSDL (Web Services Definition Language) file in order
to generate executable code that they can use to invoke the web service. WSDL
files are typically placed in a web server and accessed by the client via its URL.
When deploying web services developed using JAX-WS, a WSDL is automatically
generated for us. We can see it, along with its URL, by clicking on the View WSDL
link in the Web Service Endpoint Information page.

Notice the WSDL's URL in the browser's location text field; we will need this URL
when developing a client for our web service.

Developing a web service client
Like we mentioned earlier, executable code needs to be generated from a web
service's WSDL. A web service client will then invoke this executable code to
access the web service:

GlassFish includes a utility to generate Java code from a WSDL. The name of the
utility is wsimport. It can be found under [glassfish installation directory]/
glassfish/bin/. The only required argument for wsimport is the URL of the WSDL
corresponding to the web service:

wsimport http://localhost:8080/calculatorservice/CalculatorService?wsdl

Chapter 11

[395]

This command will generate a number of compiled Java classes that allow client
applications to access our web service:

•	 Add.class

•	 AddResponse.class

•	 Calculator.class

•	 CalculatorService.class

•	 ObjectFactory.class

•	 package-info.class

•	 Subtract.class

•	 SubtractResponse.class

Keeping generated source code
By default, the source code for the generated class files is
automatically deleted; it can be kept by passing the -keep
parameter to wsimport.

These classes need to be added to the client's CLASSPATH in order for them to be
accessible to the client's code.

In addition to the command line tool, Glassfish includes a custom Ant task to
generate code from a WSDL. The following Ant build script illustrates its usage:

<project name="calculatorserviceclient" default="wsimport"
 basedir=".">
 <target name="wsimport">

 <taskdef name="wsimport"
 classname="com.sun.tools.ws.ant.WsImport">

 <classpath path=
 "/opt/sges-v3/glassfish/modules/webservices-osgi.jar"/>

 <classpath path=
 "/opt/sges-v3/glassfish/modules/jaxb-osgi.jar"/>

 <classpath path="/opt/sges-v3/glassfish/lib/javaee.jar"/>

 </taskdef>

 <wsimport wsdl=
 "http://localhost:8080/calculatorservice/CalculatorService?wsdl"
 xendorsed="true"/>

 </target>

</project>

Web Services with JAX-WS

[396]

This example is a very minimal Ant build script that only illustrates how to set up
the custom <wsimport> Ant target. In reality, the Ant build script for the project
would have several other targets for compilation, building a WAR file, and so on.

As <wsimport> is a custom Ant target and is not standard, we need to add a
<taskdef> element to our Ant build script. We need to set the name and classname
attributes as illustrated in the example. Additionally, we need to add the following
JAR files to the task's CLASSPATH via nested <classpath> elements:

•	 webservices-osgi.jar

•	 jaxb-osgi.jar

•	 javaee.jar

webservices-osgi.jar and jaxb-osgi.jar can be found under the [glassfish
installation directory]/glassfish/modules directory. javaee.jar contains
all Java EE 6 APIs and can be found under [glassfish installation
directory]/glassfish/lib.

Once we set up the custom <wsimport> task via the <taskdef> element, we are
ready to use it. We need to indicate the WSDL location via its wsdl attribute. Once
this task executes, Java code needed to access the web service defined by the WSDL
is generated.

JDK 1.6 comes bundled with JAX-WS 2.1. If we are using this version of JDK, we
need to tell Ant to use the JAX-WS 2.2 API included with GlassFish. This can be done
easily by setting the xendorsed attribute of the custom wsimport Ant task to true.

Readers using Maven to build their projects can take advantage of Maven's AntRun
plugin to execute the wsimport Ant target when building their code. This approach
is illustrated in the following pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>net.ensode.glassfishbook</groupId>
 <artifactId>calculatorserviceclient</artifactId>
 <packaging>jar</packaging>
 <name>Simple Web Service Client</name>
 <version>1.0</version>
 <url>http://maven.apache.org</url>
 <repositories>
 <repository>

Chapter 11

[397]

 <id>maven2-repository.dev.java.net</id>
 <name>Java.net Repository for Maven 2</name>
 <url>http://download.java.net/maven/2/</url>
 </repository>
 </repositories>
 <dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>6.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <build>
 <finalName>calculatorserviceclient</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-antrun-plugin</artifactId>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <configuration>
 <tasks>
 <property name="target.dir" value="target"/>

 <delete
 dir="${target.dir}/classes/com/testapp/ws/client"/>
 <delete dir=
 "${target.dir}/generated-sources/main/java/com/testapp/ws/client"/>

 <mkdir dir="${target.dir}/classes"/>
 <mkdir dir=
 "${target.dir}/generated-sources/main/java"/>

 <taskdef name="wsimport"
 classname="com.sun.tools.ws.ant.WsImport">
 <classpath path=
 "/home/heffel/sges-v3/glassfish/modules/webservices-osgi.jar"/>
 <classpath path=
 "/home/heffel/sges-v3/glassfish/modules/jaxb-osgi.jar"/>
 <classpath path=
 "/home/heffel/sges-v3/glassfish/lib/javaee.jar"/>
 </taskdef>
 <wsimport

Web Services with JAX-WS

[398]

wsdl="http://localhost:8080/calculatorservice/CalculatorService?wsdl"
 destdir="${target.dir}/classes"
 verbose="true"
 keep="true"
 sourceDestDir="${target.dir}/generated-sources/main/java"
 xendorsed="true"/>
 </tasks>
 <sourceRoot>
 ${project.build.directory}/generated-sources/main/java
 </sourceRoot>
 </configuration>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>
 <manifest>
 <mainClass>
 net.ensode.glassfishbook.CalculatorServiceClient
 </mainClass>
 <addClasspath>true</addClasspath>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Chapter 11

[399]

There is a wsimport Maven plugin, however, at the time of
writing, it hasn't been updated to work with JAX-WS 2.2, which
is the version included with Java EE 6.

Nested in the <configuration> tag corresponding to the AntRun plugin in the
pom.xml file, we place any Ant tasks we need to execute. Unsurprisingly, the body of
this tag in our example looks nearly identical to the Ant build file we just discussed.

Now that we know how to build our code with Ant or Maven, we can develop a
simple client to access our web service:

package net.ensode.glassfishbook;

import javax.xml.ws.WebServiceRef;

public class CalculatorServiceClient
{
 @WebServiceRef(wsdlLocation =
 "http://localhost:8080/calculatorservice/CalculatorService?wsdl")
 private static CalculatorService calculatorService;

 public void calculate()
 {
 Calculator calculator = calculatorService.getCalculatorPort();
 System.out.println("1 + 2 = " + calculator.add(1, 2));
 System.out.println("1 - 2 = " + calculator.subtract(1, 2));
 }

 public static void main(String[] args)
 {
 new CalculatorServiceClient().calculate();
 }
}

The @WebServiceRef annotation injects an instance of the web service into our
client application. Its wsdlLocation attribute contains the URL of the WSDL
corresponding to the web service we are invoking.

Notice that the web service class is an instance of a class called CalculatorService;
this class was created when we invoked the wsimport utility. wsimport always
generates a class whose name is the name of the class we implemented plus the
Service suffix. We use this service class to obtain an instance of the web service class
we developed. In our example, we do this by invoking the getCalculatorPort()
method on the CalculatorService instance. In general, the method to invoke to get
an instance of our web service class follows the pattern of getNamePort(), where
Name is the name of the class we wrote to implement the web service. Once we get
an instance of our web service class, we can simply invoke its methods like with any
regular Java object.

Web Services with JAX-WS

[400]

Strictly speaking, the getNamePort() method of the service class returns
an instance of a class implementing an interface generated by wsimport.
This interface is given the name of our web service class and it declares all
of the methods we declared to be web services. For all practical purposes,
the object returned is equivalent to our web service class.

Recall from Chapter 9 that in order for resource injection to work in a standalone
client (that does not get deployed to GlassFish), we need to execute it through
the appclient utility. Assuming we packaged our client in a JAR file called
calculatorserviceclient.jar, the command to execute would be:

appclient -client calculatorserviceclient.jar

After entering this command in the command line, we should see the output of our
client on the console:

1 + 2 = 3

1 - 2 = -1

In this example, we passed primitive types as parameters and return values. Of
course, it is also possible to pass objects both as parameters and as return values.
Unfortunately, not all standard Java classes or primitive types can be used as method
parameters or return values when invoking web services. The reason for this is
that behind the scenes, method parameters and return types get mapped to XML
definitions, and not all types can be properly mapped.

Valid types that can be used in JAX-WS web service calls are listed as follows:

•	 java.awt.Image

•	 java.lang.Object

•	 java.lang.String

•	 java.math.BigDecimal

•	 java.math.BigInteger

•	 java.net.URI

•	 java.util.Calendar

•	 java.util.Date

•	 java.util.UUID

•	 javax.activation.DataHandler

•	 javax.xml.datatype.Duration

•	 javax.xml.datatype.XMLGregorianCalendar

•	 javax.xml.namespace.QName

•	 javax.xml.transform.Source

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 11

[401]

Additionally, the following primitive types can be used:

•	 boolean

•	 byte

•	 byte[]

•	 double

•	 float

•	 int

•	 long

•	 short

We can also use our own custom classes as method parameters and/or return values
for web service methods, but member variables of our classes must be one of the
listed types.

Additionally, it is legal to use arrays both as method parameters or return values.
However, when executing wsimport, these arrays get converted to lists, generating
a mismatch between the method signature in the web service and the method call
invoked in the client. For this reason, it is preferred to use lists as method parameters
and/or return values, as this is also legal and does not create a mismatch between
the client and the server.

JAX-WS internally uses the Java Architecture for XML Binding to create
SOAP messages from method calls. The types we are allowed to use for
method calls and return values are the ones that JAXB supports. For more
information on JAXB, see https://jaxb.dev.java.net/.

Sending attachments to web services
In addition to sending and accepting the data types discussed in the previous
sections, web service methods can send and accept file attachments. The following
example illustrates how to do this:

package net.ensode.glassfishbook;

import java.io.FileOutputStream;
import java.io.IOException;

import javax.activation.DataHandler;
import javax.jws.WebMethod;
import javax.jws.WebService;

Web Services with JAX-WS

[402]

@WebService
public class FileAttachment
{
 @WebMethod
 public void attachFile(DataHandler dataHandler)

 {
 FileOutputStream fileOutputStream;
 try
 {
 // substitute "/tmp/attachment.gif" with
 // a valid path, if necessary.
 fileOutputStream = new FileOutputStream("/tmp/attachment.gif");

 dataHandler.writeTo(fileOutputStream);

 fileOutputStream.flush();
 fileOutputStream.close();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }
}

In order to write a web service method that receives one or more attachments, all
we need to do is add a parameter of type javax.activation.DataHandler for each
attachment the method will receive. In the previous example, the attachFile()
method takes a single parameter of this type and simply writes it to the file system.

Just like with any standard web service, the previous code needs to be packaged in
a WAR file and deployed. Once deployed, a WSDL will automatically be generated.
We then need to execute the wsimport utility to generate code that our web service
client can use to access the web service. Like previously discussed, the wsimport
utility can be invoked directly from the command line or via a custom Ant target.
Once we have executed wsimport to generate code to access the web service, we
can write and compile our client code.

package net.ensode.glassfishbook;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;

Chapter 11

[403]

import javax.xml.ws.WebServiceRef;

public class FileAttachmentServiceClient
{
 @WebServiceRef(wsdlLocation =
 "http://localhost:8080/fileattachmentservice/"
 + "FileAttachmentService?wsdl")
 private static FileAttachmentService fileAttachmentService;

 public static void main(String[] args)
 {
 FileAttachment fileAttachment =
 fileAttachmentService.getFileAttachmentPort();
 File fileToAttach = new File("src/main/resources/logo.gif");
 byte[] fileBytes = fileToByteArray(fileToAttach);

 fileAttachment.attachFile(fileBytes);

 System.out.println("Successfully sent attachment.");
 }

 static byte[] fileToByteArray(File file)
 {
 byte[] fileBytes = null;

 try
 {
 FileInputStream fileInputStream;
 fileInputStream = new FileInputStream(file);

 FileChannel fileChannel = fileInputStream.getChannel();
 fileBytes = new byte[(int) fileChannel.size()];
 ByteBuffer byteBuffer = ByteBuffer.wrap(fileBytes);
 fileChannel.read(byteBuffer);
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 return fileBytes;
 }
}

Web Services with JAX-WS

[404]

A web service client that needs to send one or more attachments to the web service
first obtains an instance of the web service as usual. It then creates an instance of
java.io.File, passing the location of the file to attach as its constructor's parameter.
Once we have an instance of java.io.File containing the file we wish to attach,
we then need to convert the file into a byte array and pass this byte array to the web
service method that expects an attachment.

Notice that, unlike when passing standard parameters, the parameter type used when
the client invokes a method expecting an attachment is different from the parameter
type of the method in the web server code. The method in the web server code expects
an instance of javax.activation.DataHandler for each attachment. However, the
code generated by wsimport expects an array of bytes for each attachment. These
arrays of bytes are converted to the right type (javax.activation.DataHandler)
behind the scenes by the wsimport generated code. We as application developers don't
need to concern ourselves with the details of why this happens. We just need to keep
in mind that when sending attachments to a web service method, the parameter types
will be different in the web service code and in the client invocation.

Exposing EJBs as web services
In addition to creating web services, as described in the previous section, public
methods of stateless session beans can easily be exposed as web services. The
following example illustrates how to do this:

package net.ensode.glassfishbook;

import javax.ejb.Stateless;
import javax.jws.WebService;

@Stateless
@WebService

public class DecToHexBean
{
 public String convertDecToHex(int i)
 {
 return Integer.toHexString(i);
 }
}

As we can see, the only thing we need to do to expose a stateless session bean's
public methods is decorate its class declaration with the @WebService annotation.
Needless to say, as the class is a session bean, it also needs to be decorated with
the @Stateless annotation.

Chapter 11

[405]

Just like regular stateless session beans, the ones whose methods are exposed as web
services need to be deployed in a JAR file. Once deployed, we can see the new web
service under the Applications node in the GlassFish administration web console.
Clicking on the application's node, we can see some details in the GlassFish console:

Notice that the value in the Type column for our new web service is
StatelessSessionBean. This allows us to see at a glance that the web service is
implemented as an Enterprise JavaBean.

Just like standard web services, EJB web services automatically generate a WSDL for
use by its clients. Upon deployment, it can be accessed the same way by clicking on
the View EndPoint link.

EJB web service clients
The following class illustrates the procedure to be followed to access an EJB web
service method from a client application:

package net.ensode.glassfishbook;

import javax.xml.ws.WebServiceRef;

public class DecToHexClient
{
 @WebServiceRef(wsdlLocation =
 "http://localhost:8080/DecToHexBeanService/DecToHexBean?wsdl")
 private static DecToHexBeanService decToHexBeanService;

Web Services with JAX-WS

[406]

 public void convert()
 {
 DecToHexBean decToHexBean =
 decToHexBeanService.getDecToHexBeanPort();
 System.out.println("decimal 4013 in hex is: "
 + decToHexBean.convertDecToHex(4013));
 }

 public static void main(String[] args)
 {
 new DecToHexClient().convert();
 }
}

As we can see, nothing special needs to be done when accessing an EJB web service
from a client. The procedure is the same as with standard web services.

As the previous example is a standalone application, it needs to be executed via the
appclient application:

appclient -client ejbwsclient.jar

This command results in the following output:

decimal 4013 in hex is: fad

Securing web services
Just like with regular web applications, web services can be secured so that only
authorized users can access them. This can be accomplished by modifying the web
service's web.xml deployment descriptor:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Calculator Web Service</web-resource-name>

 <url-pattern>/CalculatorService/*</url-pattern>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

Chapter 11

[407]

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>file</realm-name>

 </login-config>

</web-app>

In this example, we modify our calculator service so that only authorized users
can access it. Notice that the modifications needed to secure the web service are no
different from the modifications needed to secure any regular web application. The
URL pattern to use for the <url-pattern> element can be obtained by clicking on
the View WSDL link corresponding to our service. In our example, the URL for the
link is http://localhost:8080/calculatorservice/CalculatorService?wsdl.

The value to use for <url-pattern> is the value right after the context root (in our
example, /CalculatorService) and before the question mark, followed by a slash
and an asterisk.

Notice that the previous web.xml deployment descriptor only secures HTTP POST
requests. The reason for this is that wsimport uses a GET request to obtain the WSDL
and to generate the appropriate code. If GET requests are secured, wsimport will
fail as it will be denied access to the WSDL. Future versions of wsimport will allow
us to specify a username and password for authentication. In the meantime, the
workaround is to secure only POST requests.

The following code illustrates how a standalone client can access a secured
web service:

package net.ensode.glassfishbook;

import javax.xml.ws.BindingProvider;
import javax.xml.ws.WebServiceRef;

public class CalculatorServiceClient
{
 @WebServiceRef(wsdlLocation =
"http://localhost:8080/securecalculatorservice/
CalculatorService?wsdl")
 private static CalculatorService calculatorService;

 public void calculate()
 {
 //add a user named "joe" with a password of "password"
 //to the file realm to successfuly execute the web service.
 //"joe" must belong to the group "appuser".

Web Services with JAX-WS

[408]

 Calculator calculator = calculatorService.getCalculatorPort();
 ((BindingProvider) calculator).getRequestContext().put(
 BindingProvider.USERNAME_PROPERTY, "joe");

 ((BindingProvider) calculator).getRequestContext().put(
 BindingProvider.PASSWORD_PROPERTY, "password");

 System.out.println("1 + 2 = " + calculator.add(1, 2));
 System.out.println("1 - 2 = " + calculator.subtract(1, 2));
 }

 public static void main(String[] args)
 {
 new CalculatorServiceClient().calculate();
 }
}

This code is a modified version of the calculator service standalone client we saw
before. This version was modified to access the secure version of the service. As can
be seen in the code, all we need to do to access the secured version of the server is
put a username and password in the request context. The username and password
must be valid for the realm used to authenticate the web service.

We can add the username and password to the request context by casting our
web service endpoint class to javax.xml.ws.BindingProvider and calling its
getRequestContext() method. This method returns a java.util.Map instance.
We can then simply add the username and password by calling the put method
in the Map and using the constants USERNAME_PROPERTY and PASSWORD_PROPERTY
defined in BindingProvider as keys, and the corresponding String objects
as values.

Securing EJB web services
Just like standard web services, EJBs exposed as web services can be secured so that
only authorized clients can access them. This can be accomplished by configuring the
EJB via the sun-ejb-jar.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
 Application Server 9.0 EJB 3.0//EN"
 "http://www.sun.com/software/appserver/dtds/sun-ejb-jar_3_0-0.dtd">
<sun-ejb-jar>
 <enterprise-beans>
 <ejb>
 <ejb-name>SecureDecToHexBean</ejb-name>
 <webservice-endpoint>

Chapter 11

[409]

 <port-component-name>

 SecureDecToHexBean

 </port-component-name>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm>file</realm>

 </login-config>

 </webservice-endpoint>

 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

As can be seen in this deployment descriptor, security is set up differently for EJBs
exposed as web services than with standard EJBs. For EJBs exposed as web services,
security configuration is done inside the <webservice-endpoint> element of the
sun-ejb-jar.xml deployment descriptor.

The <port-component-name> element must be set to the name of the EJB we are
exposing as a web service. This name is defined in the <ejb-name> element for the EJB.

The <login-config> element is very similar to the corresponding element in a web
application's web.xml deployment descriptor. The <login-config> element must
contain an authorization method defined by its <auth-method> sub-element and a
realm to use for authentication. The realm is defined by the <realm> sub-element.

Do not use the @RolesAllowed annotation for EJBs intended to be
exposed as web services. This annotation is intended for when the EJB
methods are accessed through its remote or local interface. If an EJB
or one or more of its methods are decorated with this annotation, then
invoking the method will fail with a security exception.

Once we configure an EJB web service for authentication, package it in a JAR file and
deploy it as usual. The EJB web service is now ready to be accessed by clients.

The following code example illustrates how an EJB web service client can access a
secure EJB web service:

package net.ensode.glassfishbook;

import javax.xml.ws.BindingProvider;
import javax.xml.ws.WebServiceRef;

public class DecToHexClient
{

Web Services with JAX-WS

[410]

 @WebServiceRef(wsdlLocation = "http://localhost:8080/
SecureDecToHexBeanService/SecureDecToHexBean?
 wsdl")
 private static SecureDecToHexBeanService secureDecToHexBeanService;

 public void convert()
 {
 SecureDecToHexBean secureDecToHexBean =
 secureDecToHexBeanService.getSecureDecToHexBeanPort();
 ((BindingProvider) secureDecToHexBean).getRequestContext().put(
 BindingProvider.USERNAME_PROPERTY, "joe");
 ((BindingProvider) secureDecToHexBean).getRequestContext().put(
 BindingProvider.PASSWORD_PROPERTY, "password");

 System.out.println("decimal 4013 in hex is: "
 + secureDecToHexBean.convertDecToHex(4013));
 }

 public static void main(String[] args)
 {
 new DecToHexClient().convert();
 }
}

As we can see in this example, the procedure for accessing an EJB exposed as a web
service is identical to accessing a standard web service. The implementation of the
web service is irrelevant to the client.

Summary
In this chapter, we covered how to develop web services and web service clients via
the JAX-WS API. We explained how to incorporate web service code generation for
web service clients when using ANT or Maven 2 as a build tool. We also covered the
valid types that can be used for remote method calls via JAX-WS. Additionally, we
discussed how to send attachments to a web service. We also covered how to expose
an EJB's methods as web services. Lastly, we covered how to secure web services so
that they are not accessible to unauthorized clients.

RESTful Web Services with
Jersey and JAX-RS

Representational State Transfer (REST) is an architectural style in which web
services are viewed as resources and can be identified by Uniform Resource
Identifiers (URIs).

Web services developed using the REST style are known as RESTful web services.

Java EE 6 adds support to RESTful web services through the addition of the Java API
for RESTful Web Services (JAX-RS). JAX-RS has been available as a standalone API
for a while; it became part of Java EE in version 6 of the specification. In this chapter,
we will cover how to develop RESTful web services through the JAX-RS API using
Jersey—the JAX-RS implementation included by GlassFish.

The following topics will be covered in this chapter:

•	 Introduction to RESTful web services and JAX-RS
•	 Developing a simple RESTful web service
•	 Developing a RESTful web service client
•	 Path parameters
•	 Query parameters

Introduction to RESTful web services and
JAX-RS
RESTful web services are very flexible. RESTful web services can consume several
types of different MIME types, although they are typically written to consume
and/or produce XML or JSON (JavaScript Object Notation).

RESTful Web Services with Jersey and JAX-RS

[412]

Web services must support one or more of the following four HTTP methods:

•	 GET – By convention, a GET request is used to retrieve an existing resource
•	 POST – By convention, a POST request is used to update an existing resource
•	 PUT – By convention, a PUT request is used to create a new resource
•	 DELETE – By convention, a DELETE request is used to delete an

existing resource

We develop a RESTful web service with JAX-RS by creating a class with annotated
methods that are invoked when our web service receives one of these HTTP request
methods. Once we have developed and deployed our RESTful web service, we
need to develop a client that will send requests to our service. Jersey—the JAX-RS
implementation included with GlassFish—includes an API that we can use to easily
develop RESTful web service clients. Jersey's client-side API is a value-added feature
and is not part of the JAX-RS specification.

Developing a simple RESTful web service
In this section, we will develop a simple web service to illustrate how we can make
the methods in our service respond to the different HTTP request methods.

Developing a RESTful web service using JAX-RS is simple and straightforward. Each
of our RESTful web services needs to be invoked via its Unique Resource Identifier
(URI). This URI is specified by the @Path annotation, which we need to use to
decorate our RESTful web service resource class.

When developing RESTful web services, we need to develop methods that will be
invoked when our web service receives an HTTP request. We need to implement
methods to handle one or more of the four types of requests that RESTful web
services handle: GET, POST, PUT, and/or DELETE.

The JAX-RS API provides four annotations that we can use to decorate the methods
in our web service. The annotations are appropriately named as @GET, @POST, @PUT,
and @DELETE. Decorating a method in our web service with one of these annotations
will make it respond to the corresponding HTTP method.

Additionally, each method in our service must produce and/or consume a
specific MIME type. The MIME type to be produced needs to be specified with
the @Produces annotation. Similarly, the MIME type to be consumed must be
specified with the @Consumes annotation.

Chapter 12

[413]

The following example illustrates the concepts we have just explained:

Please note that this example does not "really" do anything. The
purpose of the example is to illustrate how to make the different
methods in our RESTful web service resource class respond to the
different HTTP methods.

package com.ensode.jaxrsintro.service;

import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

@Path("customer")

public class CustomerResource
{
 @GET

 @Produces("text/xml")

 public String getCustomer()
 {
 //in a "real" RESTful service, we would retrieve data from a
 //database
 //then return an XML representation of the data.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".getCustomer() invoked");

 return "<customer>\n"
 + "<id>123</id>\n"
 + "<firstName>Joseph</firstName>\n"
 + "<middleName>William</middleName>\n"
 + "<lastName>Graystone</lastName>\n"
 + "</customer>\n";
 }

 /**
 * Create a new customer
 * @param customer XML representation of the customer to create
 */

RESTful Web Services with Jersey and JAX-RS

[414]

 @PUT

 @Consumes("text/xml")

 public void createCustomer(String customerXML)
 {
 //in a "real" RESTful service, we would parse the XML
 //received in the customer XML parameter, then insert
 //a new row into the database.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".createCustomer() invoked");

 System.out.println("customerXML = " + customerXML);
 }

 @POST

 @Consumes("text/xml")

 public void updateCustomer(String customerXML)
 {
 //in a "real" RESTful service, we would parse the XML
 //received in the customer XML parameter, then update
 //a row in the database.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".updateCustomer() invoked");

 System.out.println("customerXML = " + customerXML);
 }

 @DELETE

 @Consumes("text/xml")

 public void deleteCustomer(String customerXML)
 {
 //in a "real" RESTful service, we would parse the XML
 //received in the customer XML parameter, then delete
 //a row in the database.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".deleteCustomer() invoked");

 System.out.println("customerXML = " + customerXML);
 }
}

Chapter 12

[415]

Notice that this class is annotated with the @Path annotation. This annotation
designates the Uniform Resource Identifier (URI) for our RESTful web service.
The complete URI for our service will include the protocol, server name, port,
context root, the REST resources path (see next sub-section), and the value passed
to this annotation.

Assuming our web service was deployed to a server called example.com, using
the HTTP protocol on port 8080 has a context root of jaxrsintro, and a REST
resources path of resources, then the complete URI for our service would be
http://example.com:8080/jaxrsintro/resources/customer.

As web browsers generate a GET request when pointed to a URL,
we can test the GET method of our service simply by pointing the
browser to our service's URI.

Notice that each of the methods in our class is annotated with one of the @GET, @POST,
@PUT, or @DELETE annotations. These annotations make our methods respond to the
corresponding HTTP method.

Additionally, if our method returns data to the client, we declare the MIME type
of the data to be returned in the @Produces annotation. In our example, only the
getCustomer() method returns data to the client. We wish to return data in XML
format, therefore, we set the value of the @Produces annotation to "text/xml".
Similarly, if our method needs to consume data from the client, we need to specify
the MIME type of the data to be consumed. This is done via the @Consumes annotation.
All methods except getCustomer() in our service consume data. In all cases, we
expect the data to be in XML, therefore, we again specify "text/xml" as the MIME
type to be consumed.

Configuring the REST resources path for
our application
As briefly mentioned in the previous section, before successfully deploying a RESTful
web service developed using JAX-RS, we need to configure the REST resources path
for our application. There are two ways of doing this: we can either use the web.xml
deployment descriptor or develop a class that extends javax.ws.rs.core.
Application and decorate it with the @ApplicationPath annotation.

Configuring via web.xml
We can configure the REST resources path for our JAX-RS RESTful web services via
the web.xml deployment descriptor.

RESTful Web Services with Jersey and JAX-RS

[416]

Jersey libraries include a servlet that we can configure as usual in our web.xml
deployment descriptor.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <servlet>
 <servlet-name>JerseyServlet</servlet-name>
 <servlet-class>
 com.sun.jersey.spi.container.servlet.ServletContainer
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>JerseyServlet</servlet-name>
 <url-pattern>/resources/*</url-pattern>
 </servlet-mapping>
</web-app>

As we can see in this markup, the fully qualified class name of the Jersey servlet is
com.sun.jersey.spi.container.servlet.ServletContainer, which is the value
we add to the <servlet-class> element in web.xml. We then give this servlet a
logical name (we chose JerseyServlet in our example), then declare the URL pattern
to be handled by the servlet as usual. Any URLs matching the pattern will be directed
to the appropriate method in our RESTful web services.

As we can see, configuring the Jersey servlet isn't any different from configuring any
other servlet.

Configuring via the @ApplicationPath annotation
As mentioned in previous chapters, Java EE 6 adds several new features to the
Java EE specification, so that in many cases, it isn't necessary to write a web.xml
deployment descriptor. JAX-RS is no different; we can configure the REST resources
path in Java code via an annotation.

To configure our REST resources path without having to rely on a web.xml
deployment descriptor, all we need to do is write a class that extends
javax.ws.ApplicationPath and decorate it with the @ApplicationPath
annotation. The value passed to this annotation is the REST resources path
for our services.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 12

[417]

The following code sample illustrates this process:

package com.ensode.jaxrsintro.service.config;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("resources")

public class JaxRsConfig extends Application
{
}

Notice that the class does not have to implement any methods. It simply needs to
extend javax.ws.rs.Application and get decorated with the @ApplicationPath
annotation. The class must be public, may have any name, and may be placed in
any package.

Testing our web service
Like we mentioned earlier, web browsers send a GET request to any URLs we point
them to. Therefore, the easiest way to test GET requests to our service is to simply
point the browser to our service's URI.

Web browsers only support GET and POST requests. To test a POST request
through the browser, we would have to write a web application containing an
HTML form having an action attribute value of our service's URI. Although trivial
for a single service, it can become cumbersome to do this for every RESTful web
service we develop.

RESTful Web Services with Jersey and JAX-RS

[418]

Thankfully, there is an open source command line utility called curl, which we can
use to test our web services. curl is included with most Linux distributions and can
be easily downloaded for Windows, Mac OS X, and several other platforms. curl
can be downloaded from http://curl.haxx.se/.

curl can send all four request method types (GET, POST, PUT, and DELETE) to our
service. Our server's response will simply be displayed on the command line console.
curl takes a -X command line option that allows us to specify what request method
to send. To send a GET request, we simply need to type the following command into
the command line:

curl -XGET http://localhost:8080/jaxrsintro/resources/customer

This results in the following output:

<customer>

<id>123</id>

<firstName>Joseph</firstName>

<middleName>William</middleName>

<lastName>Graystone</lastName>

</customer>

This, unsurprisingly, is the same output we saw when we pointed our browser to
our service's URI.

The default request method for curl is GET. Therefore, the -X parameter in our
previous example is redundant. We could have achieved the same result by invoking
the following command from the command line:

curl http://localhost:8080/jaxrsintro/resources/customer

After submitting any of the previous two commands and examining the GlassFish
log, we should see the output of the System.out.println() statements we added to
the getCustomer() method:

INFO: --- com.ensode.jaxrsintro.service.CustomerResource.getCustomer()
invoked

For all other request method types, we need to send some data to our service. This
can be accomplished by the --data command line argument to curl:

curl -XPUT -HContent-type:text/xml --data
"<customer><id>321</id><firstName>Amanda</firstName><middleName>Zoe
</middleName><lastName>Adams</lastName></customer>"
http://localhost:8080/jaxrsintro/resources/customer

http://localhost:8080/jaxrsintro/resources/customer
http://localhost:8080/jaxrsintro/resources/customer

Chapter 12

[419]

As can be seen in this example, we need to specify the MIME type via the -H
command line argument in curl using the format seen in the example.

We can verify that the previous command worked as expected by inspecting the
GlassFish log:

INFO: ---
com.ensode.jaxrsintro.service.CustomerResource.createCustomer() invoked

INFO: customerXML =
<customer><id>321</id><firstName>Amanda</firstName><middleName>Zoe
</middleName><lastName>Adams</lastName></customer>

We can test other request method types just as easily:

curl -XPOST -HContent-type:text/xml --data
"<customer><id>321</id><firstName>Amanda</firstName><middleName>Tamara
</middleName><lastName>Adams</lastName></customer>"
http://localhost:8080/jaxrsintro/resources/customer

This results in the following output in the GlassFish log:

INFO: ---
com.ensode.jaxrsintro.service.CustomerResource.updateCustomer() invoked

INFO: customerXML =
<customer><id>321</id><firstName>Amanda</firstName><middleName>Tamara
</middleName><lastName>Adams</lastName></customer>

We can test the delete method by executing the following command:

curl -XDELETE -HContent-type:text/xml --data
"<customer><id>321</id><firstName>Amanda</firstName><middleName>Tamara
</middleName><lastName>Adams</lastName></customer>"
http://localhost:8080/jaxrsintro/resources/customer

This results in the following output in the GlassFish log:

INFO: ---
com.ensode.jaxrsintro.service.CustomerResource.deleteCustomer() invoked

INFO: customerXML =
<customer><id>321</id><firstName>Amanda</firstName><middleName>Tamara
</middleName><lastName>Adams</lastName></customer>

RESTful Web Services with Jersey and JAX-RS

[420]

Converting data between Java and XML
with JAXB
In our previous example, we were processing "raw" XML received as a parameter,
as well as returning "raw" XML to our client. In a real application, we would more
than likely parse the XML received from the client and use it to populate a Java
object. Additionally, any XML that we need to return to the client would have to be
constructed from a Java object.

Converting data from Java to XML and back is such a common use case that the
Java EE specification provides an API to do it. This API is the Java API for XML
Binding (JAXB).

JAXB makes converting data from Java to XML transparent and trivial. All we need
to do is decorate the class we wish to convert to XML with the @XmlRootElement
annotation. The following code example illustrates how to do this:

package com.ensode.jaxrstest.entity;

import java.io.Serializable;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class Customer implements Serializable
{
 private Long id;
 private String firstName;
 private String middleName;
 private String lastName;

 public Customer()
 {
 }

 public Customer(Long id, String firstName, String middleInitial,
 String lastName)
 {
 this.id = id;
 this.firstName = firstName;
 this.middleName = middleInitial;
 this.lastName = lastName;
 }

 public String getFirstName()
 {
 return firstName;

Chapter 12

[421]

 }

 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }

 public Long getId()
 {
 return id;
 }

 public void setId(Long id)
 {
 this.id = id;
 }

 public String getLastName()
 {
 return lastName;
 }

 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }

 public String getMiddleName()
 {
 return middleName;
 }

 public void setMiddleName(String middleName)
 {
 this.middleName = middleName;
 }

 @Override
 public String toString()
 {
 return "id = " + getId() + "\nfirstName = " + getFirstName()
 + "\nmiddleName = " + getMiddleName() + "\nlastName = "
 + getLastName();
 }
}

RESTful Web Services with Jersey and JAX-RS

[422]

As we can see, other than the @XmlRootElement annotation at the class level, there is
nothing unusual about this Java class.

Once we have a class that we have decorated with the @XmlRootElement
annotation, we need to change the parameter type of our web service from
String to our custom class:

package com.ensode.jaxbxmlconversion.service;

import com.ensode.jaxbxmlconversion.entity.Customer;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

@Path("customer")
public class CustomerResource
{
 private Customer customer;

 public CustomerResource()
 {
 //"fake" the data, in a real application the data
 //would come from a database.
 customer = new Customer(1L, "David", "Raymond", "Heffelfinger");
 }

 @GET
 @Produces("text/xml")
 public Customer getCustomer()
 {
 //in a "real" RESTful service, we would retrieve data from a
 //database
 //then return an XML representation of the data.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".getCustomer() invoked");

 return customer;
 }

 @POST

Chapter 12

[423]

 @Consumes("text/xml")
 public void updateCustomer(Customer customer)
 {
 //in a "real" RESTful service, JAXB would parse the XML
 //received in the customer XML parameter, then update
 //a row in the database.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".updateCustomer() invoked");
 System.out.println("---- got the following customer: "
 + customer);
 }

 @PUT
 @Consumes("text/xml")
 public void createCustomer(Customer customer)
 {
 //in a "real" RESTful service, we would insert
 //a new row into the database with the data in th //customer
parameter

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".createCustomer() invoked");
 System.out.println("customer = " + customer);
 }

 @DELETE
 @Consumes("text/xml")
 public void deleteCustomer(Customer customer)
 {
 //in a "real" RESTful service, we would delete a row
 //from the database corresponding to the customer parameter

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".deleteCustomer() invoked");
 System.out.println("customer = " + customer);
 }
}

As we can see, the difference between this version of our RESTful web service and
the previous one is that all parameter types and return values have been changed
from String to Customer. JAXB takes care of converting our parameters and return
types to and from XML as appropriate. When using JAXB, an object of our custom
class is automatically populated with data from the XML sent from the client.
Similarly, return values are transparently converted to XML.

RESTful Web Services with Jersey and JAX-RS

[424]

Developing a RESTful web service client
Although curl allows us to quickly test our RESTful web services and it is a
developer-friendly tool, it is not exactly user friendly. We shouldn't expect to have
our user enter curl commands in their command line to use our web service.
For this reason, we need to develop a client for our services. Jersey—the JAX-RS
implementation included with GlassFish—includes a client-side API that we can
use to easily develop client applications.

The following example illustrates how to use the Jersey client API:

package com.ensode.jaxrsintroclient;

import com.ensode.jaxbxmlconversion.entity.Customer;
import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.UniformInterface;
import com.sun.jersey.api.client.WebResource;
import javax.ws.rs.core.MediaType;

public class App
{
 private WebResource baseUriWebResource;
 private WebResource webResource;
 private Client client;
 private static final String BASE_URI =
 "http://localhost:8080/jaxbxmlconversion/resources";

 public static void main(String[] args)
 {
 App app = new App();
 app.initWebResource();
 app.getCustomer();
 app.insertCustomer();
 }

 private void initWebResource()
 {
 com.sun.jersey.api.client.config.ClientConfig config =
 new com.sun.jersey.api.client.config.DefaultClientConfig();
 client = Client.create(config);
 baseUriWebResource = client.resource(BASE_URI);
 webResource = baseUriWebResource.path("customer");
 }

 public void getCustomer()

Chapter 12

[425]

 {
 UniformInterface uniformInterface =
 webResource.type(MediaType.TEXT_XML);
 Customer customer = uniformInterface.get(Customer.class);
 System.out.println("customer = " + customer);
 }

 public void insertCustomer()
 {
 Customer customer = new Customer(234L, "Tamara", "A",
 "Graystone");
 UniformInterface uniformInterface =
 webResource.type(MediaType.TEXT_XML);
 uniformInterface.put(customer);
 }
}

The first thing we need to do is create an instance of com.sun.jersey.api.client.
config.DefaultClientConfig, then pass it to the static create() method of
the com.sun.jersey.api.client.Client class. At this point, we have created
an instance of com.sun.jersey.api.client.Client. We then need to create
an instance of com.sun.jersey.api.client.WebResource by invoking the
resource() method of our newly created Client instance, passing the base URI of
our web service, as defined in its configuration, as explained earlier in this chapter.

Once we have a WebResource instance pointing to the base URI of our web service,
we need to create a new instance pointing to the URI of the specific web service we
need to target, as defined in its @Path annotation. We can do this simply by invoking
the path() method on WebResource and passing a value matching the contents of
the @Path annotation of our RESTful web service.

The WebResource class has a type() method that returns an instance of a class
implementing com.sun.jersey.api.client.UniformInterface. The type()
method takes a String as a parameter that can be used to indicate the MIME type
that the web service will handle. The javax.ws.rs.core.MediaType class has
several String constants defined, corresponding to most supported MIME types.
In our example, we have been using XML, therefore, we used the corresponding
MediaType.TEXT_XML constant as the value for this method.

The UniformInterface has methods we can invoke to generate the GET, POST,
PUT, and DELETE HTTP requests. These methods are appropriately named as
get(), post(), put(), and delete().

RESTful Web Services with Jersey and JAX-RS

[426]

In the getCustomer() method in our example, we invoke the get() method that
generates a GET request to our web service. Notice that we pass the Java class of the
type of data we expect to receive. JAXB automatically populates an instance of this
class with the data returned from the web service.

In the insertCustomer() method in our example, we invoke the put() method on
the UniformInterface implementation returned by WebResource.type(). We pass
an instance of our Customer class, which JAXB automatically converts to XML before
sending it to the server. The same technique can be used when invoking the post()
and delete() methods of UniformInterface.

Query and path parameters
In our previous example, we have been working with a RESTful web service to
manage a single customer object. In real life, this would obviously not be very helpful.
A common case is to develop a RESTful web service to handle a collection of objects
(in our example, customers). To determine what specific object in the collection we
are working with, we can pass parameters to our RESTful web services. There are two
types of parameters we can use: query and path parameters.

Query parameters
We can add parameters to methods that will handle HTTP requests in our web
service. Parameters decorated with the @QueryParam annotation will be retrieved
from the request URL.

The following example illustrates how to use query parameters in our JAX-RS
RESTful web services:

package com.ensode.queryparams.service;

import com.ensode.queryparams.entity.Customer;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;

@Path("customer")
public class CustomerResource

Chapter 12

[427]

{
 private Customer customer;

 public CustomerResource()
 {
 customer = new Customer(1L, "Samuel", "Joseph", "Willow");
 }

 @GET
 @Produces("text/xml")
 public Customer getCustomer(@QueryParam("id") Long id)
 {
 //in a "real" RESTful service, we would retrieve data from a
 //database
 //using the supplied id.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".getCustomer() invoked, id = " + id);
 return customer;
 }

 /**
 * Create a new customer
 * @param customer XML representation of the customer to create
 */
 @PUT
 @Consumes("text/xml")
 public void createCustomer(Customer customer)
 {
 //in a "real" RESTful service, we would parse the XML
 //received in the customer XML parameter, then insert
 //a new row into the database.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".createCustomer() invoked");
 System.out.println("customer = " + customer);
 }

 @POST
 @Consumes("text/xml")
 public void updateCustomer(Customer customer)
 {
 //in a "real" RESTful service, we would parse the XML
 //received in the customer XML parameter, then update
 //a row in the database.

RESTful Web Services with Jersey and JAX-RS

[428]

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".updateCustomer() invoked");
 System.out.println("customer = " + customer);
 System.out.println("customer= " + customer);
 }

 @DELETE
 @Consumes("text/xml")
 public void deleteCustomer(@QueryParam("id") Long id)

 {
 //in a "real" RESTful service, we would invoke
 //a DAO and delete the row in the database with the
 //primary key passed as the "id" parameter.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".deleteCustomer() invoked, id = " + id);
 System.out.println("customer = " + customer);
 }
}

Notice that all we had to do was decorate the parameters with the @QueryParam
annotation. This annotation allows JAX-RS to retrieve any query parameters
matching the value of the annotation and assign its value to the parameter variable.

We can add a parameter to the web service's URL, just like we pass parameters
to any URL:

curl -XGET -HContent-type:text/xml
http://localhost:8080/queryparams/resources/customer?id=1

Sending query parameters via the Jersey client API
The Jersey client API provides an easy and straightforward way of sending query
parameters to RESTful web services. The following example illustrates how to do this:

package com.ensode.queryparamsclient;

import com.ensode.queryparamsclient.entity.Customer;
import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.UniformInterface;
import com.sun.jersey.api.client.WebResource;
import javax.ws.rs.core.MediaType;

public class App
{
 private WebResource baseUriWebResource;

Chapter 12

[429]

 private WebResource webResource;
 private Client client;
 private static final String BASE_URI =
 "http://localhost:8080/queryparams/resources";

 public static void main(String[] args)
 {
 App app = new App();
 app.initWebResource();
 app.getCustomer();
 }

 private void initWebResource()
 {
 com.sun.jersey.api.client.config.ClientConfig config =
 new com.sun.jersey.api.client.config.DefaultClientConfig();
 client = Client.create(config);
 baseUriWebResource = client.resource(BASE_URI);
 webResource = baseUriWebResource.path("customer");
 }

 public void getCustomer()
 {
 UniformInterface uniformInterface =
 webResource.type(MediaType.TEXT_XML);

 Customer customer =
 (Customer) webResource.queryParam("id", "1").get(Customer.class);

 System.out.println("customer = " + customer);
 }
}

As we can see, all we need to do to pass a parameter is to invoke the queryParam()
method on com.sun.jersey.api.client.WebResource. The first argument to this
method is the parameter name and it must match the value of the @QueryParam
annotation on the web service. The second parameter is the value we need to pass
to the web service.

If we need to pass multiple parameters to one of our web service's methods, then
we need to use an instance of a class implementing the javax.ws.rs.core.
MultiValuedMap interface. Jersey provides a default implementation in the form
of com.sun.jersey.core.util.MultiValuedMapImpl that should suffice for
most cases.

RESTful Web Services with Jersey and JAX-RS

[430]

The following code fragment illustrates how to pass multiple parameters to a web
service method:

MultivaluedMap multivaluedMap = new MultivaluedMapImpl();
multivaluedMap.add("paramName1", "value1");
multivaluedMap.add("paramName2", "value2");
String s = webResource.queryParams(multivaluedMap).get(String.class);

We need to add all the parameters we need to send to our web service by invoking
the add() method on our MultivaluedMap implementation. This method takes
the parameter name as its first argument and the parameter value as its second
argument. We need to invoke this method for each parameter we need to send.

As we can see, com.sun.jersey.api.client.WebResource has a queryParams()
method that takes an instance of a class implementing the MultivaluedMap interface
as a parameter. In order to send multiple parameters to our web service, we simply
need to pass an instance of MultivaluedMap containing all required parameters to
this method.

Path parameters
Another way by which we can pass parameters to our RESTful web services is
via path parameters. The following example illustrates how to develop a JAX-RS
RESTful web service that accepts path parameters:

package com.ensode.pathparams.service;

import com.ensode.pathparams.entity.Customer;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;

@Path("/customer/")
public class CustomerResource
{
 private Customer customer;

 public CustomerResource()
 {
 customer = new Customer(1L, "William", "Daniel", "Graystone");

Chapter 12

[431]

 }

 @GET
 @Produces("text/xml")
 @Path("{id}/")

 public Customer getCustomer(@PathParam("id") Long id)

 {
 //in a "real" RESTful service, we would retrieve data from a
 //database
 //using the supplied id.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".getCustomer() invoked, id = " + id);
 return customer;
 }

 @PUT
 @Consumes("text/xml")
 public void createCustomer(Customer customer)
 {
 //in a "real" RESTful service, we would parse the XML
 //received in the customer XML parameter, then insert
 //a new row into the database.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".createCustomer() invoked");
 System.out.println("customer = " + customer);
 }

 @POST
 @Consumes("text/xml")
 public void updateCustomer(Customer customer)
 {
 //in a "real" RESTful service, we would parse the XML
 //received in the customer XML parameter, then update
 //a row in the database.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".updateCustomer() invoked");
 System.out.println("customer = " + customer);
 System.out.println("customer= " + customer);
 }

 @DELETE

RESTful Web Services with Jersey and JAX-RS

[432]

 @Consumes("text/xml")
 @Path("{id}/")

 public void deleteCustomer(@PathParam("id") Long id)

 {
 //in a "real" RESTful service, we would invoke
 //a DAO and delete the row in the database with the
 //primary key passed as the "id" parameter.

 System.out.println("--- " + this.getClass().getCanonicalName()
 + ".deleteCustomer() invoked, id = " + id);
 System.out.println("customer = " + customer);
 }
}

Any method that accepts a path parameter must be decorated with the
@Path annotation. The value attribute of this annotation must be formatted as
"{paramName}/", where paramName is the parameter the method expects to
receive. Additionally, method parameters must be decorated with the @PathParam
annotation. The value of this annotation must match the parameter name declared
in the @Path annotation for the method.

We can pass path parameters from the command line by adjusting our web service's
URI as appropriate. For example, to pass an "id" parameter of 1 to the previous
getCustomer() method (which handles HTTP GET requests), we could do it from
the command line as follows:

curl -XGET -HContent-type:text/xml
http://localhost:8080/pathparams/resources/customer/1

This returns the expected output of an XML representation of the Customer object
returned by the getCustomer() method:

<?xml version="1.0" encoding="UTF-8"
standalone="yes"?><customer><firstName>William</firstName><id>1</id>
<lastName>Graystone</lastName><middleName>Daniel</middleName></customer>

Sending path parameters via the Jersey client API
Sending path parameters to a web service via the Jersey client API is easy and
straightforward; all we need to do is append any path parameters to the path we use to
create our WebResource instance. The following example illustrates how to do this:

package com.ensode.queryparamsclient;

import com.ensode.queryparamsclient.entity.Customer;
import com.sun.jersey.api.client.Client;

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 12

[433]

import com.sun.jersey.api.client.WebResource;

public class App
{
 private WebResource baseUriWebResource;
 private WebResource webResource;
 private Client client;
 private static final String BASE_URI =
 "http://localhost:8080/queryparams/resources";

 public static void main(String[] args)
 {
 App app = new App();
 app.initWebResource();
 app.getCustomer();
 }

 private void initWebResource()
 {
 com.sun.jersey.api.client.config.ClientConfig config =
 new com.sun.jersey.api.client.config.DefaultClientConfig();
 client = Client.create(config);
 baseUriWebResource = client.resource(BASE_URI);
 webResource = baseUriWebResource.path("customer/1");

 }

 public void getCustomer()
 {
 Customer customer =
 (Customer) webResource.get(Customer.class);
 System.out.println("customer = " + customer);
 }
}

In this example, we simply appended a value of 1 as the path parameter to the
String used to build the WebResource implementation used to invoke our web
service. This parameter is automatically picked up by the JAX-RS API and assigned
to the method argument annotated with the corresponding @PathParam annotation.

If we need to pass more than one parameter to one of our web services, we simply
need to use the following format for the @Path parameter at the method level:

@Path("/{paramName1}/{paramName2}/")

RESTful Web Services with Jersey and JAX-RS

[434]

Then, annotate the corresponding method arguments with the @PathParam
annotation:

public String someMethod(@PathParam("paramName1") String param1,
 @PathParam("paramName2") String param2)

The web service can then be invoked by modifying the web service's URI to pass
the parameters in the order specified in the @Path annotation. For example, the
following URI would pass the values 1 and 2 for paramName1 and paramName2:

http://localhost:8080/contextroot/resources/customer/1/2

This URI will work both from the command line or through a web service client we
develop with the Jersey client API.

Summary
In this chapter, we discussed how to easily develop RESTful web services using
JAX-RS—a new addition to the Java EE specification.

We covered how to develop a RESTful web service by adding a few simple annotations
to our code. We also explained how to automatically convert data between Java and
XML by taking advantage of the Java API for XML Binding (JAXB).

Finally, we covered how to pass parameters to our RESTful web services via
the @PathParam and @QueryParam annotations.

http://localhost:8080/contextroot/resources/customer/1/2

Sending E-mails from
Java EE Applications

Applications deployed to GlassFish or any other Java EE-compliant application
server frequently need the ability to send e-mails. Thanks to the JavaMail
API—part of the Java EE specification—sending e-mails from Java EE
applications is fairly simple.

In order to implement the ability to send e-mails from a Java EE application, we
need to have access to a mail server, typically one using the Simple Mail Transfer
Protocol (SMTP)

Configuring GlassFish
Before we can start sending e-mails from our Java EE applications, we need to do
some initial GlassFish configuration. A new JavaMail session needs to be added by
logging into the GlassFish web console, expanding the Resources node in the tree at
the left-hand side of the page, then clicking on the JavaMail Sessions node.

Sending E-mails from Java EE Applications

[436]

This can be seen in the following screenshot:

To create a new JavaMail session, we need to click on the New... button. The main
area of the screen will look as shown in the following screenshot:

Appendix A

[437]

In the JNDI Name field, we need to provide a JNDI name for our JavaMail session.
This name must be a valid, unique name of our choosing. Applications will use this
name to access the mail session.

In the Mail Host field, we need to specify the DNS name of the mail server we will
be using to send e-mails.

In the Default User field, we need to specify the default username to use to connect
to the mail server.

In the Default Return Address field, we need to specify the default e-mail address
that e-mail recipients can use to reply to messages sent by our applications.

Sending E-mails from Java EE Applications

[438]

Specifying a fake return address
The default return address does not have to be a real e-mail address;
we can specify an invalid e-mail address here. Keep in mind that if
we do this, then users will be unable to reply to e-mails sent from our
applications. Therefore, it would be a good idea to include a warning
in the message body letting the users know that they cannot reply to
the message.

We can optionally add a description for the JavaMail session in the Description field.

The Status checkbox allows us to enable or disable the JavaMail session. Disabled
sessions are not accessible by applications.

The Store Protocol field is used to specify the value of the storage protocol of the
mail server, which is used to allow our applications to retrieve e-mail messages from
it. Valid values for this field include imap, imaps, pop3, and pop3s. Consult your
system administrator for the correct value for your server.

Store protocol ignored if applications only send e-mails
It is a lot more common to have our applications send e-mails than it is
to have them receive e-mails. If all applications using our mail session
will only be sending e-mails, then the value of the Store Protocol field
(and the Store Protocol Class field, discussed next) will be ignored.

The Store Protocol Class field is used to indicate the service provider implementation
class corresponding to the specified store protocol. Valid values for this field include:

•	 com.sun.mail.imap.IMAPStore for a store protocol of imap
•	 com.sun.mail.imap.IMAPSSLStore for a store protocol of imaps
•	 com.sun.mail.pop3.POP3Store for a store protocol of pop3
•	 com.sun.mail.pop3.POP3SSLStore for a store protocol of pop3s

The Transport Protocol field is used to specify the value of the transport protocol
of the mail server, which is used to allow our applications to send e-mail messages
through it. Valid values for this field include smtp and smtps. Consult your system
administrator for the correct value for your server.

Appendix A

[439]

The Transport Protocol Class field is used to specify the service provider
implementation class corresponding to the specified transport protocol.
Valid values for this field include:

•	 com.sun.mail.smtp.SMTPTransport for a transport protocol of smtp
•	 com.sun.mail.smtp.SMTPSSLTransport for a transport protocol of smtps

The Debug checkbox allows us to enable or disable debugging for the
JavaMail session.

If we need to add additional properties to the JavaMail session, we can do so by
clicking on the Add Property button near the bottom of the page, then entering the
property name and value in the corresponding fields.

Once we have entered all the required information for our server, we need to click
on the OK button at the top right of the page to create the JavaMail session. Once
it is created, it is ready to be used by deployed applications.

Implementing e-mail delivery functionality
Once we have set up a JavaMail session, as described in the previous section,
implementing the e-mail delivery functionality is fairly simple. The process is
illustrated in the following code example:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.faces.bean.ManagedBean;
import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.AddressException;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

@ManagedBean
public class FeedbackBean
{
 private String subject;
 private String body;

 @Resource(name = "mymailserver")

 Session session;

Sending E-mails from Java EE Applications

[440]

 public String sendEmail()
 {
 try
 {
 Message msg = new MimeMessage(session);
 msg.setRecipient(Message.RecipientType.TO, new
 InternetAddress("customer@customerdomain.com"));
 msg.setSubject(subject);
 msg.setText(body);
 Transport.send(msg);
 }
 catch (AddressException e)
 {
 e.printStackTrace();
 return "failure";
 }
 catch (MessagingException e)
 {
 e.printStackTrace();
 return "failure";
 }
 return "success";
 }

 public String getBody()
 {
 return body;
 }

 public void setBody(String body)
 {
 this.body = body;
 }

 public String getSubject()
 {
 return subject;
 }

 public void setSubject(String subject)
 {
 this.subject = subject;
 }
}

Appendix A

[441]

This class is used as a managed bean for a simple JSF application. For brevity, other
parts of the application are not shown as they do not deal with e-mail functionality.
The full application can be downloaded from this book's website.

The first thing we need to do is inject an instance of the JavaMail session created,
as described in the previous section, by adding a class-level variable of type
javax.mail.Session and decorating it with the @Resource annotation. The
value of the name attribute of this annotation must match the JNDI name we
gave our JavaMail session when it was created.

We then need to create an instance of javax.mail.internet.MimeMessage, passing
the session object as a parameter to its constructor.

Once we create an instance of javax.mail.internet.MimeMessage, we need to
add a message recipient by invoking its setRecipient() method. The first
parameter of this method indicates if the recipient is to be sent the message (TO),
carbon copied (CC), or blind carbon copied (BCC). We can indicate the type of
recipient by using Message.RecipientType.TO, Message.RecipientType.CC,
or Message.RecipientType.BCC as appropriate. The second parameter of the
setRecipient() method indicates the e-mail address of the recipient; this
parameter is of type javax.mail.Address. This class is an abstract class,
therefore we need to use one of its subclasses, specifically javax.mail.internet.
InternetAddress. The constructor for this class takes a String parameter
containing the e-mail address of the recipient. The setRecipient() method can
be invoked multiple times to add recipients to be sent, copied, or carbon copied.
Only a single address can be specified for each recipient type.

If we need to send a message to multiple recipients, we can use the addRecipients()
method of the javax.mail.Message class (or one of its subclasses, such as
javax.mail.internet.MimeMessage). This method takes the recipient type as
its first parameter and an array of javax.mail.Address as its second parameter.
The message will be sent to all recipients in the array. By using this method instead
of setRecipient(), we are not limited to a single recipient per recipient type.

Once we have specified the recipient or recipients, we need to add the message
subject and text by invoking the setSubject()and setText()methods on the
message instance respectively.

At this point, we are ready to send our message. This can be accomplished by
invoking the static send() method on the javax.mail.Transport class. This
method takes the message instance as a parameter.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

IDE Integration
GlassFish provides integration with two of the most popular Java IDE's: NetBeans
and Eclipse. NetBeans, being an Oracle (formerly Sun Microsystems) product, just
like GlassFish, provides GlassFish integration "out of the box". Oracle provides a
GlassFish Eclipse plugin for integration with Eclipse, as well as an Eclipse bundle
including the Eclipse Java IDE plus the GlassFish integration plugin.

NetBeans
NetBeans Java and "All" editions contain out of the box support for GlassFish. When
installing one of these editions of NetBeans, GlassFish is also installed. NetBeans can
be downloaded from http://www.netbeans.org.

NetBeans has several project categories; Java EE applications can be created from
the Java Web and Java EE categories.

IDE Integration

[444]

For most project types in the Java EE or Java Web categories, NetBeans requires us to
select an application server where the project will be deployed. GlassFish is labeled
GlassFish v3 in the drop-down box used to select a server:

Once we create the project and we are ready to deploy it, we simply need to right-
click on the project and select Deploy from the resulting pop-up menu:

Appendix B

[445]

The project will be automatically built, packaged, and deployed. For web
applications, we also get the Run and Debug options. Both of these options, in
addition to building, packaging, and deploying the project, automatically open a
new browser window and point it to the application's URL. On selecting Debug,
GlassFish will be started in the debug mode, if necessary, and we can use NetBeans
debugger to debug our project.

Additionally, NetBeans features automatic incremental deployment. This means
that every time a file is saved (managed bean, EJB, Facelets page, and so on), it
is automatically deployed to the server. Our deployed application is updated in
real time, as we develop. Testing our changes for the most part is as simple as
reloading the current page in the browser, as the user's session is not lost across
redeployments. This is a great time-saving feature, a far cry from the build, package,
deploy, test cycle we need to go through with most other Java EE application servers.

Eclipse
Unlike NetBeans, Eclipse does not come with GlassFish support out of the box.
Fortunately, it is very easy to add GlassFish support. Eclipse can be downloaded
from http://www.eclipse.org.

In this section, we assume that the Eclipse IDE for Java EE developers
is installed. This version of Eclipse includes tools for Java EE (JSF, JPA,
EJB, and so on) development.

In order to integrate Eclipse and GlassFish, we need to download the GlassFish
server adapter for Eclipse. To do this, we need to right-click on the Servers tab at the
bottom of the Java EE perspective and select New | Server:

IDE Integration

[446]

We then need to click on the Download additional server adapters link in the
window that pops up:

After doing so, a list of all available server adapters will be shown:

Appendix B

[447]

We simply need to select GlassFish and click on the Next > button.

At this point, we need to accept the license agreement and click Finish.

After the GlassFish server adapter for Eclipse is downloaded, we are told that it is
strongly recommended to restart Eclipse. It is a good idea to do so.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

IDE Integration

[448]

After Eclipse restarts, the GlassFish server adapter is fully installed, and we are
ready to deploy our applications to GlassFish straight from Eclipse.

To demonstrate the integration between GlassFish and Eclipse, we will use a project
of type Dynamic Web Project, but the procedure is very similar for other Java EE
project types.

To create a new Dynamic Web Project, all we need to do is click on File | New |
Dynamic Web Project.

When creating a Dynamic Web Project, Eclipse will ask, among other things, for the
Target runtime for the project. The target runtime is "Eclipse Speak" for a Java EE
application server.

Appendix B

[449]

To select GlassFish as our target runtime, we need to click on the New... button, then
select GlassFish v3 Java EE 6 from the GlassFish folder.

After clicking Next >, we need to indicate the directory where GlassFish is installed:

IDE Integration

[450]

We then need to indicate the domain directory, name, administrator Id, and password
for our domain. Most of these fields have sensible defaults. In most cases, the only field
we need to enter is the password.

After we finish creating our project, we should see GlassFish in the Servers view,
which is typically at the bottom of the screen:

If the Servers view is nowhere to be seen, it can be opened by clicking on
Window | Show View | Servers.

At this point, we are ready to start developing our application. When we are at a
point where we need to deploy it, we can do so by clicking on the GlassFish server
icon in the Servers view and selecting Publish:

Appendix B

[451]

At this point, Eclipse will build, package, and deploy the application.

For web applications, we can execute the application as soon as it is deployed by
right-clicking on the project and selecting Run As | Run on Server:

At this point, Eclipse will build, package, deploy the application, and open it in a
browser window embedded in Eclipse.

If we wish to debug the application using Eclipse's debugger, we can do so by
right-clicking on the project and selecting Debug As | Debug on Server. This will
cause Eclipse to start or restart GlassFish in debug mode, if necessary, and deploy
the application. We can then debug it using Eclipse's built-in debugger.

Index
Symbols
@ApplicationPath annotation 415
<as-context> element 368
@Asynchronous annotation 346
<attribute> element 106
<auth-constraint> element 295, 312
<auth-method> element 295
<c:catch> tag 128
<c:choose> tag 124, 128
<c:forEach> tag

about 126, 129
begin attribute 126
end attribute 126
items attribute 126
step attribute 126
var attribute 126

<c:forTokens> tag
about 127
delims attribute 127
items attribute 127

<c:if> tag
about 127, 129
test attribute 127
var attribute 127

<c:import> tag
about 127, 129
url attribute 127
varReader attribute 127

--classname parameter 316
@CollectionTable annotation 9
@Column annotation 163, 170
@Consumes annotation 412
<c:otherwise> tag 124, 129
<c:out> tag 124

about 129

value attribute 124
<c:param> tag

about 128, 129
name attribute 128
value attribute 128

<c:redirect> tag
about 127, 129
url attribute 127

<c:remove> tag
about 126, 129
scope attribute 126

<c:set> tag
about 123, 129
scope attribute 123
value attribute 123
variable attribute 123

<c:url> tag
about 127, 129
scope attribute 127
var attribute 127

_currentRealm variable 329
<c:when> tag

about 124, 129
test attribute 124

@DELETE annotation 412
<d:labeledField> attributes 107
@EJB annotation 337
<ejb-name> element 356
@ElementCollection annotation 9
@FacesConverter annotation 244
<f:actionListener> tag 242
<f:ajax> tag 242

about 237
using 238

<f:attribute> tag 243

[454]

<f:convertDateTime> tag 243
<f:converter> tag 244
<f:convertNumber> tag 244
<f:event> tag 244
<f:facet> tag 245
-file parameter 311
<f:loadBundle> tag 245
<f:metadata> tag 246
<fmt:bundle> tag 131, 133
<fmt:formatDate> tag 133
<fmt:formatNumber> tag 133, 134
<fmt:message> tag 132, 134
<fmt:param> tag 134
<fmt:parseDate> tag 134
<fmt:parseNumber> tag 134
<fmt:requestEncoding> tag 134
<fmt:setBundle> tag 134
<fmt:setLocale> tag 131, 134
<fmt:setTimeZone> tag 134
<fmt:timeZone> tag 134
<form-login-config> element 304
<f:param> tag 246
<f:phaseListener> tag 246
<f:selectItems> tag 247
<f:selectItem> tag 246
<f:setPropertyActionListener> tag 247
<f:subview> tag 247
<f:validateBean> tag 248
<f:validateDoubleRange> tag 248
<f:validateLength> tag 248
<f:validateLongRange> tag 249
<f:validateRegex> tag 249
<f:validateRequired> tag 249
<f:validator> tag 220, 250
<f:valueChangeListener> tag 250
<f:verbatim> tag 250
<f:viewParam> tag 251
<f:view> tag 251
@GeneratedValue annotation 233
@GET annotation 412
<group-name> sub-element 297
<h:body> tag 207, 251
<h:button> tag 251
<h:column> tag 252
<h:commandButton> tag 214, 252
<h:commandLink> tag 252
<h:dataTable> tag 253

<h:form> tag 253
<h:graphicImage> tag 253
<h:head> tag 207, 254
<h:inputHidden> tag 254
<h:inputSecret> tag 254
<h:inputTextarea> tag 254
<h:inputTextField> tag 210
<h:inputText> tag 209, 254
<h:link> tag 254
<h:messages> tag 207, 255
<h:message> style 225
<h:message> tag 255
<h:outputFormat> tag 255
<h:outputLabel> tag 256
<h:outputLink> tag 256
<h:outputScript> tag 256
<h:outputStylesheet> tag 257
<h:outputText> tag 209, 257
<h:panelGrid> tag 207, 257
<h:panelGroup> tag 214, 258
<h:selectBooleanCheckbox> tag 259
<h:selectManyCheckbox> tag 259
<h:selectManyListbox> tag 259
<h:selectManyMenu> tag 260
<h:selectOneListbox> tag 260
<h:selectOneMenu> tag 260
<h:selectOneRadio> tag 260
@Id annotation 163
@IdClass annotation 190
<init-param> parameter 66
@JoinColumn annotation 170, 182
@JoinTable annotation 182
<jsp:getProperty> tag 96
<jsp:include> tag 102
<jsp:root> element 120
<jsp:setProperty> tag 96, 98
<jsp:useBean> tag 96
-keystore parameter 308
<listener> tag 71
@Local interface 336
<login-config> element

about 295, 312, 409
BASIC 296
CLIENT-CERT 296
DIGEST 296
FORM 296

@ManagedBean annotation 216

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[455]

@ManagedBean class 216
@ManagedProperty annotation 230
@ManyToMany annotation 180
@ManyToOne annotation 178
@MessageDriven annotation 346
@Named annotation 372
@NamedQuery annotation 194
<name> element 106
@OneToMany annotation 176
@OneToOne annotation 170
@Path annotation 412, 432
@PersistenceUnit annotation 165, 167
<persistence-unit> element 167
<port-component-name> element 409
@PostActivate annotation 356
@POST annotation 412
@PostConstruct annotation 356
@PreDestroy annotation 356
@Premium qualifier 378
@PrePassivate annotation 356
@Produces annotation 412
@PUT annotation 412
@Qualifier annotation 375
<realm-name> element 296, 316
<realm> sub-element 368
@Remote annotation 336
<removal-timeout-in-seconds> element 355
<required> element 106
@Resource annotation 159, 270
<resource-ref> element

<res-ref-name> element 137
<res-type> element 137
<res-auth> element 137
about 137

<role-name> element 295
<role-name> sub-element 297
@RolesAllowed annotation 367, 409
@Schedule annotation

about 363
attributes 363

<security-constraint> element 295, 300, 312
<security-role-mapping> element 297, 313,

368
<servlet-mapping> tag 44
<servlet-name> tag 44
<servlet> tag 44
@Size annotation 201

<sql:dateParam> tag 138
<sql:param> tag 138
<sql:query> tag 138, 139
<sql:setDataSource> tag

about 137-139
datasource attribute 137
password attribute 137, 138
url attribute 137, 138
user attribute 137, 138

<sql:transaction> tag 138, 139
<sql:update> tag 138, 139
@Stateless annotation 335
-storepass parameter 310
@Table annotation 163
<tag-class> element 106
<tag> element 105
<tlib-version> element 105
@TransactionAttribute annotation

about 347
values 347

<transport-guarantee> element 300
<uri> element 105
<url-pattern> element 295
<url-pattern> tag 44
<user-data-constraint> element 300
@WebFilter annotation

about 67, 69
filterName attribute 69
initParams attribute 69

@WebListener annotation 70
<web-resource-collection> element 295
@WebService annotation 389
<webservice-endpoint> element 409
@WebServiceRef annotation 399
@WebServlet annotation

about 64, 65
initialization parameters, passing to servlet

66, 67
<welcome-file> tag 48
<wsimport> Ant target 396
<x:choose> tag 142, 143
<x:forEach> tag 142, 143
<x:if> tag 142
@XmlRootElement annotation 422
<x:otherwise> tag 142, 144
<x:out> tag 142, 144
<x:param> tag 142, 144

[456]

<x:parse> tag
about 142, 144
doc attribute 142
var attribute 142

<x:set> tag 142, 144
<x:transform> tag 142, 144
<x:when> tag 142, 144

A
Add.class 395
additional certificate realms

about 316
defining 316, 317

additional file realms
about 315
defining 315, 316

additional realms, security realms
additional certificate realms, defining 316,

317
additional file realms, defining 315, 316
custom realms, defining 326-332
defining 315
JDBC realm, defining 320-325
LDAP realm, defining 318, 319
Solaris realm, defining 319, 320

addMapping() method 75
addMessage() method 207
add() method 390
addRecipients() method 441
AddResponse.class 395
addServlet() method 75
admin-realm

about 290, 291
users, adding 291, 292

Ajax enabling JSF 2.0 applications
about 237
example 238-242

alphaValidator method 224
Ant build script 395
Apache Commons Validator 220
Apache Maven

about 43
download link 43

appclient utility 337, 368
application data

persisting, across requests 61-63

ApplicationResources_es.properties 132
ApplicationResources.properties 131
application scope, CDI 380
arithmetic operators

- 126
* 126
+ 126
/ or div 126
% or mod 126
- (unary) 126

asadmin command line utility 28
asadmin utility 316
asynchronous methods

about 343, 345
cancel() 345
get() 345
isCancelled() 345
isDone() 345

asynchronous processing, Servlet 3.0
about 76, 78
implementing 77, 78

asyncSupported attribute 78
attachFile() method 402
attributes, @Schedule annotation

dayOfMonth 364
dayOfWeek 364
hour 364
minute 364
month 364
second 364
timezone 364
year 364

authenticateUser() method 329
autodeploy directory 26, 27
autoFlush attribute 84

B
basename attribute 245
bean-managed transactions

about 350
saveMultipleNewCustomers(),

implementing 351, 352
Bean Validation support 199-201
begin() method 166
buffer attribute 84

[457]

C
Calculator.class 395
CalculatorService.class 395, 399
Calendar based EJB Timer expressions

363-365
cancel() method 345, 361
CDI

about 371
dependency injection 374
named beans 371
named bean scopes 379
qualifiers 375

CDI named bean scopes
about 379
application 379
conversation 379
dependent 379
example 380-388
request 379, 380
session 379

certificate realm
about 307
applications, configuring 311-314
self-signed certificates, creating 307-310

class attribute 98
client authentication, EJB Security 368-370
close() method 153, 271
columnClasses attribute 208
columns attribute 207
commit() method 166, 271
commitUserAuthentication() method 330
Common Development and Distribution

License (CDDL) 7
complete() method 78
composite primary keys

about 187-192
requisites 189

confirmation.xhtml 217
source 217

Connection object 271
connection pools

setting up 32
container-managed transactions 340-347
contentType attribute 84
Context and Dependency Injection,

for Java 9

conversation scope, CDI 380
conversation-scoped beans 384
converterId attribute 244
core JSTL tags

about 122
using 122-124

create-auth-realm command 316
createBrowser() method 279
createConnection() method 270
createDurableSubscriber() 287
createEntityManager() method 166
create() method 425
createNamedQuery() method 194
createProducer() method 271
createServlet() method 75
createSession() method 270
createTextMessage() method 271
createTimer() method 360, 361
Criteria API

about 196
example 196, 197
using 196-199

CriteriaBuilder
and() method 199
equals() method 199
greaterThan() method 199
lessThan() method 199
like() method 199
or() method 199

CustomActionListener class 243
custom data validation

about 218
validator methods, using 222-225

CustomerController managed bean 340
CustomerDaoBean session bean 340
CustomerDB database

about 149
ADDRESSES table 150
ADDRESS_TYPES table 150
schema 150
TELEPHONE_TYPES table 150
US_STATES table 150

Customer entity 170, 338
custom JSP tags. See JSP custom tags
custom realm class 326
custom realms

creating 326,-332

[458]

custom validators
creating 218, 220, 221
email validator 219

D
Data Access Objects (DAOs) design pattern

implementing, in session bean 338-340
database connectivity, GlassFish

connection pools, setting up 32-36
data sources, setting up 37, 38
setting up 31

data sources
setting up 37

deferredSyntaxAllowedAsLiteral attribute
84

deleteCustomer() method 338
dependency injection 158

about 374, 375
dependent scope, CDI 380
digest() method 322
doGet() method 40, 159
domains. See GlassFish domains
doPost() method 40
doTag() method 104
Dynamic Web Project

creating 448

E
Eclipse

about 445
download link 445
Dynamic Web Project, creating 448
GlassFish server adapter, downloading 445
GlassFish server adapter, installing 44-448
integrating, with GlassFish 445
target runtime, selecting 449

EJB 3.1
about 8
features 8

ejbActivate() method 353
ejbPassivate() method 353
EJB pool 335
ejbRemove() method 353
EJB Security

about 365-368
client authentication 368-370

EJBs, exposing as web services
about 404, 405
EJB web service clients 405
EJB web services, securing 408-410
web services, securing 406-408

EJB Timer Service
about 359
example 359
using 360, 362

EJB web service clients 405
EJB web services

securing 408-410
e-mail delivery functionality

implementing 439, 441
encryptPassword() method 322
Enterprise JavaBeans

about 333
life cycle 353
message-driven beans 333, 346, 347
session beans 333, 334
transactions 347

Enterprise JavaBeans 3.1. See EJB 3.1
Enterprise JavaBeans(EJB) 7
EntityManager class 163
EntityManagerFactory instance

using 165
EntityManager.find() method 167
EntityManager.merge() method 167
entityManager.persist() 166
EntityManager.persist() method 167, 230
entityManager.remove() 166
entity relationships, JPA

about 168
many-to-many relationships 180-187
one-to-many relationships 174-178
one-to-one relationships 168, 170

errorPage attribute 84, 91
execute attribute 243
executeQuery() method 151, 153
executeUpdate() method 151
extends attribute 84, 86

F
Facelets, JSF 2.0

about 203, 204
Facelet page, developing 205-209

[459]

faces-config.xml, JSF 2.0 204
FacesValidator annotation 219
file realm

about 293
basic authentication 294
users, adding 293, 294
web application, securing 294-307

filterName attribute 69
findByPrimaryKey() method 166
find() method 166
flush attribute 102
fmt:param> tag 133
fn:contains() function 146
fn:containsIgnoreCase() function 146
fn:endsWith() function 146
fn:escapeXml() function 146
fn:indexOf() function 146
fn:join() function 147
fn:length() function 144, 147
fn:replace() function 147
fn:split() function 145, 147
fn:startsWith() function 147
fn:substringAfter() function 147
fn:substringBefore() function 147
fn:substring() function 147
fn:toLowerCase() function 148
fn:toUpperCase() function 146, 148
fn:trim() function 148

G
generation strategies, JSF-JPA integration

GenerationType.AUTO 233
GenerationType.IDENTITY 233
GenerationType.SEQUENCE 233
GenerationType.TABLE 233

Geronimo 7
getAttribute() method 61, 91
getAttributes() method 243
getAuthType() method 327
getBoolean() method 155
getConnection() method 153, 161
getCriteriaBuilder() method 198
getCustomer() method 235, 338, 415
getDate() method 155
getDeclaredSingularAttribute() method 199
getDouble() method 155

getEnumeration() method 279
getFacet() method 245
getFloat() method 155
getGroupNames() method 327
getInfo() method 361
getInitParameter() method 67, 69
getInt() method 155
getJAASContext() method 328
getJSPContext()sp method 104
getLabel() method 220
getLong() method 155
getMessage() method 337
getMetamodel() method 198
get() method 345
getNamePort() method 399
getOrders() method 180
getOut() method 104
getParameterMap() method 124
getParameter() method 51
getParameterValues() method 51
getServletConfig() method 67
getServletContext() method 63
getServletRegistration() method 75
getShort() method 155
getString() method 155
getText() method 279
getTime() method 155
getTimers() method 361
getTimeStamp() method 155
GlassFish

about 7
advantages 11
asadmin command line utility 28
autodeploy directory 26
commercial support 11
configuring 435, 436
database connectivity, setting up 31
downloading 12, 13
installing 13-21
Java EE reference implementation 11
JavaMail session, creating 436-438
latest Java EE specifications

implementation 11
setting up 263

GlassFish configuration
JMS connection factory, setting up 263-266
JMS message queue, setting up 266

[460]

JMS message topic, setting up 267, 268
GlassFish dependencies 14
GlassFish domains

sabout 29
creating 29, 30
default ports 29
deleting 30
stopping 31

GlassFish-Eclipse integration
about 445
demonstrating, Dynamic Web Project used

448
GlassFish installation

about 13
GlassFish dependencies 14
verifying 21, 22

GlassFish installation, verifying
Java EE application, deploying 23

GlassFish server adapter
downloading, for Eclipse 445
installing 446-448

GlassFish v3
about 10
features 10, 11

GlassFish web console 291

H
HTML forms

processing 48-54
HTTP requests

DELETE 40
GET 40
POST 40
PUT 40

HTTP Servlet 39
HttpServlet class 40
HttpServletRequest.getSession() method 62
HttpServletResponse.getWriter() method 42
HttpServletResponse.sendRedirect()

method 58
HttpSession.setAttribute() method 62

I
id attribute 98
import attribute 85

info attribute 85
InitialContext.lookup() method 153
init() method 331
initParams attribute 66
insertCustomer() method 426
installation

GlassFish 13
inverseJoinColumns element 182
isCancelled() method 345
isDone() method 345
isELIgnored attribute 85
isErrorPage attribute 85, 93
isThreadSafe attribute 85
Item entity 187

J
JAR files 396
Java API for RESTful web services 1.1. See

JAX-RS 1.1
Java API for RESTful Web Services

(JAX-RS) 7
Java API for XML-based web services 2.2.

See JAX-WS 2.2
Java API for XML Web Services(JAX-WS) 7
Java Authentication and Authorization

Service (JAAS) API 289
JavaBean 95

JSP, intergrating with 95
JavaBean properties

demo page 98
setting, <jsp:setProperty> tag used 98

javac compiler 42
Java classes 395
Java Database Connectivity. See JDBC
Java EE 7
Java EE 6

about 8
CDI 371
Contexts and Dependency Injection, for

Java 9
EJB 3.0 8
features 8
Java Servlet API 3.0 9
JAXB 2.2 10
JAX-RS 1.1 10

[461]

JAX-WS 2.2 10
JAX-WS API 389
JPA 2.0 9
JSF 2.0 8

Java EE APIs
JDBC 149
JPA 149

Java EE application
deploying 23
deploying, through command line 26
deploying, Web Console used 23, 25
undeploying, Web Console used 25

Java EE security 289
Java EE technologies

Enterprise JavaBeans 7
Java API for RESTful Web Services 7
Java API for XML Web Services 7
Java Messaging Service 7
Java Persistence API 7
Java Server Faces 7
Java Server Pages 7
Servlets 7

Java EE web applications
deploying 46
packaging 45
testing 47

JavaMail session, in GlassFish
creating 437

Java Messaging Service(JMS) 7
Java Persistence API. See JPA
Java Persistence API 2.0. See JPA 2.0
Java Persistence API(JPA) 7
Java Persistence Query Language (JPQL)

about 192
differing, from SQL 193
LIKE operator, using 194
query 193
using 192, 193

Javascript events
blur 240
change 240
click 240
dbclick 240
focus 240
keydown 240
keypress 240

keyup 240
mousedown 240
mousemove 240
mouseout 240
mouseover 240
mouseup 240
select 240
valueChange 240

JavaServer Faces 2.0. See JSF 2.0
Java Server Faces (JSF) 7
JavaServer Pages. See JSP
Java Servlet API 3.0 9
java.sql.PreparedStatement interface

about 151
executeQuery() method 151
executeUpdate() method 151

JAXB 2.2 10
JAX-RS 1.1 10
JAX-WS

about 389
web services, developing with 389

JAX-WS 2.2 10
JBoss 7
JDBC

about 149, 150
database data, modifying 159-161
data, retrieving from database 151-158
prepared statements, using 151

JDBC realm
about 320
creating 320-325
user authentication 320, 322

Jersey client API 428
JMS

about 263
GlassFish, setting up for 263
message queues 268
message topics 280

JMS connection factory
general settings 265
settting up, via GlassFish 263-265

JNDI (Java Naming and Directory Interface)
153

joinColumns element 182
JOnAS 7

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[462]

JPA
about 149, 161
composite primary keys 187
entities, persisting to database 163-167
entity mapping, to CUSTOMER table 161,

163
entity relationships 168
JPQL 192, 193

JPA 2.0
about 9, 195
Bean Validation support 199-201
Criteria API 196
features 9, 195

JPQL query
about 193
named parameters 193
running 193

JSF 203
JSF 2.0

about 8, 203
custom validators 218
Facelets 203
faces-config.xml 204
features 8
standard resource locations 204

JSF 2.0 application
Ajax support 237
components, grouping 214
developing 205
Facelet pages, developing 205-209
form submission 214
managed beans, defining 215, 216
navigation 217
project stages, defining 210, 211
project stages, setting 211
validation 212

JSF 2.0 tags
<h:body> 207
<h:commandButton> 214
<h:form> 207
<h:head> 207
<h:inputText> 209
<h:inputTextField> 210
<h:messages> 207
<h:outputStylesheet> tag 207
<h:outputText> 209
<h:panelGrid> 207

<h:panelGroup> 214
JSF Ajax demo 237
JSF component libraries

about 261
ICEfaces 261
MyFaces Trinidad 261
Primefaces 261
RichFaces 261

JSF core components
<f:actionListener> tag 242
<f:ajax> tag 242
<f:attribute> tag 243
<f:convertDateTime> tag 243
<f:converter> tag 244
<f:convertNumber> tag 244
<f:event> tag 244
<f:facet> tag 245
<f:loadBundle> tag 245
<f:metadata> tag 246
<f:param> tag 246
<f:phaseListener> tag 246
<f:selectItems> tag 247
<f:selectItem> tag 246
<f:setPropertyActionListener> tag 247
<f:subview> tag 247
<f:validateBean> tag 248
<f:validateDoubleRange> tag 248
<f:validateLength> tag 248
<f:validateLongRange> tag 249
<f:validateRegex> tag 249
<f:validateRequired> tag 249
<f:validator> tag 250
<f:valueChangeListener> tag 250
<f:verbatim> tag 250
<f:viewParam> tag 251
<f:view> tag 251

JSF default validation messages
customizing 225
message styles, customizing 225, 226
message text, customizing 227-230

JSF HTML components
<h:body> tag 251
<h:button> tag 251
<h:column> tag 252
<h:commandButton> tag 252
<h:commandLink> tag 252
<h:dataTable> tag 253

[463]

<h:form> tag 253
<h:graphicImage> tag 253
<h:head> tag 254
<h:inputHidden> tag 254
<h:inputSecret> tag 254
<h:inputTextarea> tag 254
<h:inputText> tag 254
<h:link> tag 254
<h:messages> tag 255
<h:message> tag 255
<h:outputFormat> tag 255
<h:outputLabel> tag 256
<h:outputLink> tag 256
<h:outputScript> tag 256
<h:outputStylesheet> tag 257
<h:outputText> tag 257
<h:panelGrid> tag 257
<h:panelGroup> tag 258
<h:selectBooleanCheckbox> tag 259
<h:selectManyCheckbox> tag 259
<h:selectManyListbox> tag 259
<h:selectManyMenu> tag 260
<h:selectOneListbox> tag 260
<h:selectOneMenu> tag 260
<h:selectOneRadio> tag 260

JSF-JPA integration
about 230-237
generation strategies 233

JSF standard components
about 242
component libraries 261
core components 242
HTML components 251

JSP
about 7, 81
custom tags, creating 102
developing 82, 83, 86
JavaBeans, integrating with 95
quick deployment 83

JSP and JavaBean integration
<jsp:getProperty> tag, using 96
<jsp:setProperty> tag, using 96
<jsp:useBean> tag, using 96, 98
about 95
illustrating 96

JSP content
reusing 100-102

JSP custom tags
creating 102
creating, tag files used 109-113
SimpleTagSupport class, extending 102-108

JSP declaration 101
JSP documents 117
JSP expressions 91
JSP implicit objects

about 86
application 87
config 87
example 87-94
exception 87
out 87
page 87
pageContext 87
request 87
response 87
session 87
using 87-94

JSP page directive attributes
autoFlush 84
buffer 84
contentType 84
deferredSyntaxAllowedAsLiteral 84
errorPage 84
extends 84
import 85
info 85
isELIgnored 85
isErrorPage 85
isThreadSafe 85
language 85
pageEncoding 86
session 86
trimDirectiveWhitespaces 86

JSP page directives 83
JSP Standard Tag Library (JSTL) 121
JSP XML syntax

about 117
developing 118, 119

JSTL core tags
<c:catch> tag 128
<c:choose> tag 124, 128
<c:forEach> tag 126, 129
<c:forTokens> tag 127
<c:if> tag 127, 129

[464]

<c:import> tag 127, 129
<c:otherwise> tag 124, 129
<c:out> tag 124, 129
<c:param> tag 128, 129
<c:redirect> tag 127, 129
<c:remove> tag 126, 129
<c:set> tag 123, 129
<c:url> tag 127, 129
<c:when> tag 124, 129
about 122
using 122-124

JSTL formatting library tags
<fmt:bundle> tag 131, 133
<fmt:formatDate> tag 133
<fmt:formatNumber> tag 133, 134
<fmt:message> tag 132, 134
<fmt:param> tag 133, 134
<fmt:parseDate> tag 134
<fmt:parseNumber> tag 134
<fmt:requestEncoding> tag 134
<fmt:setBundle> tag 134
<fmt:setLocale> tag 131, 134
<fmt:setTimeZone> tag 134
<fmt:timeZone> tag 134

JSTL functions
about 144
fn:contains() 146
fn:containsIgnoreCase() 146
fn:endsWith() 146
fn:escapeXml() 146
fn:indexOf() 146
fn:join() 147
fn:length() 144, 147
fn:replace() 147
fn:split() 145, 147
fn:startsWith() 147
fn:substring() 147
fn:substringAfter() 147
fn:substringBefore() 147
fn:toLowerCase() 148
fn:toUpperCase() 146, 148
fn:trim() 148

JSTL SQL tags. See SQL JSTL tag library
JSTL tag library

core tags 122
formatting 130-133

jta-data-source> child element 167

K
keytool utility 307

L
language attribute 85
LDAP realm

about 318
creating 318
defining 318

library attribute 207
life cycle, Enterprise JavaBeans

about 353
message-driven bean life cycle 359
stateful session bean life cycle 353
stateless session bean life cycle 356
types 353

LIKE operator
< operator 194
<= operator 194
= operator 194
> operator 194
>= operator 194
using 194

listener attribute 245
listener interfaces

about 70
HttpSessionAttributeListener 70
HttpSessionListener 70
ServletContextAttributeListener 70
ServletContextListener 70
ServletRequestAttributeListener 70
ServletRequestListener 70

logical operators
E1?E2:E3 125
empty 125
&& or and 125
! or not 125
|| or or 125

LoginInfo entity 170

M
managed bean scope annnotation

@ApplicationScoped 216
@CustomScoped 216
@NoneScoped 216

[465]

@RequestScoped 216
@SessionScoped 216
@ViewScoped 216

managed beans, JSF 2.0
defining 215, 216
scopes 216

managed property 235
many-to-many relationships, entity relation-

ships
about 180
establishing 180-187

mappedBy attribute 178
mappedName attribute 270-346
message destination 263
message-driven bean life cycle 359
message-driven beans 346, 347
MessageProducer object 271
message queues

about 268
browsing 278, 279
messages, receiving asynchronously 275-

277
messages, retrieving from 272, 274
messages, sending to 268-271

message topics
about 280
durable subscribers, creating 284- 287
messages, receiving from 282-284
messages, sending to 280, 281

message types
BytesMessage 272
MapMessage 272
ObjectMessage 272
StreamMessage 272
TextMessage 272

Metamodel API 198
method attribute 49, 207
method binding expression 214
methods, ResultSet interface

getBoolean() 155
getDate() 155
getDouble() 155
getFloat() 155
getInt() 155
getLong() 155
getShort() 155
getString() 155

getTime() 155
getTimeStamp() 155

N
name attribute 52, 98, 167, 207
named beans, CDI

about 371
example 372, 373
@Named annotation 372

named bean scopes. See CDI named bean
scopes

NetBeans
about 443
download link 443
project categories 443
web application, creating 443-445

next() method 154

O
ObjectFactory.class 395
one-to-many relationships, entity relation-

ships
about 174
establishing 174-180

one-to-one relationships, entity relation-
ships

about 168
establishing 168-174

onMessage() method 276
Oracle Application Server 7
Order entity 174
OrderItem class 189
out.print() method 91

P
package-info.class 395
pageEncoding attribute 86
PageEncoding attributes 83
pageName variable 101
param attribute 99
path parameters

about 430
sending, via Jersey client API 432, 434
using, in JAX-RS RESTful web service

430-432

[466]

persist() method 166
pluggability, Servlet 3.0

about 72, 73
predefined security realms, GlassFish

about 290
admin-realm 290, 291
certificate realm 290, 307
file realm 290, 293

prepared statements
benefits 151
using 151

prepareStatement() method 153
primitive types

boolean 401
byte 401
byte[] 401
double 401
float 401
int 401
long 401
short 401

println() method 104
print() method 104
printStackTrace() method 93
PrintWriter.println() method 42
PrintWriter.print() method 42
processAction() method 243
produceMessages() method 270
project stages, JSF 2.0

about 210
defining 210
development 210
production 210
setting 211, 212
SystemTest 210
UnitTest 210

property attribute 98

Q
qualifiers, CDI

about 375-378
QueryParam annotation 426
query parameters

about 426
queryParam() method 429

sending, via Jersey client API 428, 429
using, in JAX-RS RESTful web services

426-428

R
receive() method 274
relational operators

== or eq 125
>= or ge 125
> or gt 125
<= or le 125
 < or lt 125
!= or ne 125

Representational State Transfer. See REST
request forwarding 55, 58
request.getParameter() method 50
request.getRequestDispatcher().forward()

method 58
request scope, CDI 380
request.setAttribute() method 56
resource() method 425
response redirection

about 58
illustrating 58-61

REST 411
RESTful web service

about 412-415
data, converting from Java to XML 420-423
developing 412
path parameters, sending via Jersey client

API 432, 434
path parameters, using 430-432
query parameters, sending via Jersey client

API 428, 429
query parameters, using 426-428
REST resources path, configuring 415
testing 417-419

RESTful web service client
developing 424-426

REST resources path, RESTful web service
configuring, via @ApplicationPath

annotation 416
configuring, via web.xml 415, 416

rollback() method 271, 353
rtexprvalue> tag 106

[467]

S
saveCustomer() method 235, 338
saveMultipleNewCustomers() method 352
scope attribute 98
scriptlets 82, 83
security realms

about 289
additional realms, defining 315
admin-realm 291
certificate realm 307
file realm 293
predefined security realms 290

selectedOptions variable 53
send() method 441
servlet

about 39
compiling 42
configuring 43, 44
HTML forms, processing 48-54
HTTP Servlet 39
request forwarding 55-58
response redirection 58
writing 41, 42

Servlet 3.0
@WebFilter annotation 67
@WebListener annotation 70
@WebServlet annotation 64
about 64
asynchronous processing 76
optional web.xml deployment descriptor

64
pluggability 72
web applications, configuring through

annotations 74-76
ServletContext class 74
ServletContext.getAttribute() method 63
ServletRequestListener interface

implementing 71
requestDestroyed() method 72
requestInitialized() method 72

session attribute 86
SessionBeanClient class 337
SessionBean interface

ejbActivate() method 353
ejbPassivate() method 353

ejbRemove() method 353
methods 353
setSessionContext() method 353

session beans
about 334
sclient sample application 336, 337
DAO design pattern, implementing 338-

340
invoking, from web applications 340, 341
local business interface 336
remote business interface 336
simple session bean 334, 335
singleton session bean 342, 343
stateful session bean 335
stateless session bean 335

session.getAttribute() method 62
Session object 271
session scope, CDI 380
setCustomerId() method 166
setCustomer() method 235
setInt() method 161
setItems() method 187
setLastName() method 166
setMessageListener() method 277
setRecipient() method 441
setRollbackOnly() method 349
setSessionContext() method 353
setString() method 157
setSubject() method 441
setText() method 271, 441
Simple Mail Transfer Protocol (SMTP) 435
simple session bean

about 334
example 334

SimpleSession interface 335
SimpleTagSupport class

extending 102
SimpleTagSupport.doTag() method 102
singleton session bean 342, 343
Solaris realm

about 319
creating 320
defining 319

SQL JSTL tag library
<sql:dateParam> tag 138
<sql:param> tag 138

[468]

<sql:query> tag 138, 139
<sql:setDataSource> tag 137-139
<sql:transaction> tag 138, 139
<sql:update> tag 138, 139
about 135, 138
examples 135, 136

standard JSP syntax
comparing, with XML syntax 118

standard resource locations, JSF 2.0 204, 205
standard validators, JSF 2.0

<f:validateBean> 213
<f:validateDoubleRange> 213
<f:validateLength> 212, 213
<f:validateLongRange> 213
<f:validateRegex> 213
<f:validateRequired> 213

startAsync() method 78
start() method 78, 274
startTimer() method 363
stateful session bean life cycle

about 353-356
does not exist state 354
passive state 354
ready state 354
states 354

stateful session beans 335
stateless session bean life cycle

about 356-358
does not exist state 357
ready state 357

stateless session beans 335
String parameter 327
StringUtils 223
styleClass attribute 225
substract() method 390
Subtract.class 395
SubtractResponse.class 395
surrogate primary key 187

T
tag files

using , for creating JSP custom tags 109-113
TelephoneNumber class 244
toString() method 115
transactions, Enterprise JavaBeans

about 347

bean-managed transactions 350
container-managed transactions 347

trimDirectiveWhitespaces attribute 86
type() method 425

U
Unified Expression Language

about 113
using 113-117

Unified Expression Language expressions
arithmetic operators 126
logical operators 125
relational operators 124

unitName element 167
urlPatterns attribute 69

V
validateAlpha method 224
validate() method 220
validator methods

about 222
alphaValidator 224
using 222-225
validateAlpha 224

valid types
java.awt.Image 400
java.lang.Object 400
java.lang.String 400
java.math.BigDecimal 400
java.math.BigInteger 400
java.net.URI 400
java.util.Calendar 400
java.util.Date 400
java.util.UUID 400
javax.activation.DataHandler 400
javax.xml.datatype.Duration 400
javax.xml.datatype.XMLGregorianCalendar

400
javax.xml.namespace.QName 400
javax.xml.transform.Source 400

value attribute 98, 235, 243
values, @TransactionAttribute annotation

MANDATORY 348
NEVER 348
NOT_SUPPORTED 348

[469]

REQUIRED 348
REQUIRES_NEW 348
SUPPORTS 348

var attribute 245

W
WAR file

creating 46
WEB-INF/classes 45
WEB-INF/lib 45
Weblogic 7
WebResource class 425
web service client

developing 394-401
web services, developing with JAX-WS

about 389
attachments, sending to 401-404
class, writing with public methods 389
example 389, 390
methods, testing 392
newly deployed web service, viewing 390
web service client, developing 394-401
web service, deploying 390
web service, testing 392

Websphere 7
web.xml deployment descriptor 64, 390
wsdlLocation attribute 399

X
xendorsed attribute 396
XML JSTL tag library

<x:choose> tag 142, 143
<x:forEach> tag 142, 143
<x:if> tag 142
<x:otherwise> tag 142, 144
<x:out> tag 142, 144
<x:param> tag 142, 144
<x:parse> tag 142, 144
<x:set> tag 142, 144
<x:transform> tag 143, 144
<x:when> tag 142, 144
about 140
example 140, 141

XML syntax
using, for developing JSP 118

XPath 140

Thank you for buying
Java EE 6 with GlassFish 3 Application Server

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

GlassFish Security
ISBN: 978-1-847199-38-6 Paperback: 296 pages

Secure your GlassFish installation, Web applications,
EJB applications, Application Client modules, and
Web services

1.	 Secure your GlassFish installation and
J2EE applications

2.	 Develop secure Java EE applications including
Web, EJB, and Application Client modules.

3.	 Secure web services using GlassFish and
OpenSSO web service security features

4.	 Support SSL in GlassFish including Mutual
Authentication and Certificate Realm with this
practical guide

Java EE 5 Development with
NetBeans 6
ISBN: 978-1-847195-46-3 Paperback: 400 pages

Develop professional enterprise Java EE applications
quickly and easily with this popular IDE

1.	 Use features of the popular NetBeans IDE
to improve Java EE development

2.	 Careful instructions and screenshots lead
you through the options available

3.	 Covers the major Java EE APIs such as JSF,
EJB 3 and JPA, and how to work with them in
NetBeans

4.	 Covers the NetBeans Visual Web designer
in detail

Please check www.PacktPub.com for information on our titles

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

GlassFish Administration
ISBN: 978-1-847196-50-7 Paperback: 284 pages

Administer and configure the GlassFish v2
application server

1.	 Get GlassFish installed and configured ready
for use

2.	 Integrate GlassFish with popular Open Source
products such as Open MQ, Open DS, and
Apache Active MQ, and get them working
together in a loosely-coupled manner

3.	 Configure resource types like JDBC, Java
Connector Architecture (JCA), JavaMail
Sessions, and Custom JNDI supported
in GlassFish to simplify resource access
and integration

JSF 1.2 Components
ISBN: 978-1-847197-62-7 Paperback: 408 pages

Develop advanced Ajax-enabled JSF applications

1.	 Develop advanced Ajax-enabled JSF
applications and solve common web
development challenges using UI
components from JSF component libraries

2.	 Master the basics of building web
user interfaces with standard JSF
HTML components

3.	 Implement UI security using JAAS and
Apache Tomahawk components

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting Started with GlassFish
	Overview of Java EE and GlassFish
	What's new in Java EE 6
	JavaServer Faces (JSF) 2.0
	Enterprise JavaBeans (EJB) 3.1
	Java Persistence API (JPA) 2.0
	Contexts and Dependency Injection for Java
(Web Beans 1.0)
	Java Servlet API 3.0
	Java API for RESTful web services (JAX-RS) 1.1
	Java API for XML-based web services (JAX-WS) 2.2
	Java Architecture for XML Binding (JAXB) 2.2

	What's new in GlassFish v3
	GlassFish advantages

	Obtaining GlassFish
	Installing GlassFish
	GlassFish dependencies
	Performing the installation

	Verifying the installation
	Deploying our first Java EE application
	Deploying an application through the Web Console
	Undeploying an application through the
Web Console
	Deploying an application through the command line

	GlassFish domains
	Creating domains
	Deleting domains
	Stopping a domain

	Setting up database connectivity
	Setting up connection pools
	Setting up data sources

	Final notes
	Summary

	Chapter 2: Servlet Development and Deployment
	What is a servlet?
	Writing our first servlet
	Compiling the servlet
	Configuring the servlet
	Packaging the web application
	Deploying the web application
	Testing the web application
	Processing HTML forms
	Request forwarding and response redirection
	Request forwarding
	Response redirection

	Persisting application data across requests
	New features introduced in Servlet 3.0
	Optional web.xml deployment descriptor
	@WebServlet annotation
	@WebFilter annotation
	@WebListener annotation
	Pluggability
	Configuring web applications programmatically
	Asynchronous processing

	Summary

	Chapter 3: JavaServer Pages
	Introduction to JavaServer Pages
	Developing our first JSP
	JSP implicit objects
	JSPs and JavaBeans
	Reusing JSP content
	JSP custom tags
	Extending SimpleTagSupport
	Using tag files to create custom JSP tags

	Unified Expression Language
	JSP XML syntax
	Summary

	Chapter 4: JSP Standard Tag Library
	Core JSTL tag library
	Formatting JSTL tag library
	SQL JSTL tag library
	XML JSTL tag library
	JSTL functions
	Summary

	Chapter 5: Database Connectivity
	The CustomerDB database
	JDBC
	Retrieving data from a database
	Modifying database data

	The Java Persistence API
	Entity relationships
	One-to-one relationships
	One-to-many relationships
	Many-to-many relationships

	Composite primary keys
	Java Persistence Query Language

	New features introduced in JPA 2.0
	Criteria API
	Bean Validation support

	Summary

	Chapter 6: JavaServer Faces
	Introduction to JSF 2.0
	Facelets
	Optional faces-config.xml
	Standard resource locations

	Developing our first JSF 2.0 application
	Facelets
	Project stages
	Validation
	Grouping components
	Form submission
	Managed beans
	Managed bean scopes

	Navigation

	Custom data validation
	Creating custom validators
	Validator methods

	Customizing JSF's default messages
	Customizing message styles
	Customizing message text

	Integrating JSF and JPA
	Ajax enabling JSF 2.0 applications
	JSF standard components
	JSF core components
	The <f:actionListener> tag
	The <f:ajax> tag
	The <f:attribute> tag
	The <f:convertDateTime> tag
	The <f:convertNumber> tag
	The <f:converter> tag
	The <f:event> tag
	The <f:facet> tag
	The <f:loadBundle> tag
	The <f:metadata> tag
	The <f:param> tag
	The <f:phaseListener> tag
	The <f:selectItem> tag
	The <f:selectItems> tag
	The <f:setPropertyActionListener> tag
	The <f:subview> tag
	The <f:validateBean> tag
	The <f:validateDoubleRange> tag
	The <f:validateLength> tag
	The <f:validateLongRange> tag
	The <f:validateRegex> tag
	The <f:validateRequired> tag
	The <f:validator> tag
	The <f:valueChangeListener> tag
	The <f:verbatim> tag
	The <f:view> tag
	The <f:viewParam> tag

	JSF HTML components
	The <h:body> tag
	The <h:button> tag
	The <h:column> tag
	The <h:commandButton> tag
	The <h:commandLink> tag
	The <h:dataTable> tag
	The <h:form> tag
	The <h:graphicImage> tag
	The <h:head> tag
	The <h:inputHidden> tag
	The <h:inputSecret> tag
	The <h:inputText> tag
	The <h:inputTextarea> tag
	The <h:link> tag
	The <h:message> tag
	The <h:messages> tag
	The <h:outputFormat> tag
	The <h:outputLabel> tag
	The <h:outputLink> tag
	The <h:outputScript> tag
	The <h:outputStylesheet> tag
	The <h:outputText> tag
	The <h:panelGrid> tag
	The <h:panelGroup> tag
	The <h:selectBooleanCheckbox> tag
	The <h:selectManyCheckbox> tag
	The <h:selectManyListbox> tag
	The <h:selectManyMenu> tag
	The <h:selectOneListbox> tag
	The <h:selectOneMenu> tag
	The <h:selectOneRadio> tag

	Additional JSF component libraries

	Summary

	Chapter 7: Java Messaging Service
	Setting up GlassFish for JMS
	Setting up a JMS connection factory
	Setting up a JMS message queue
	Setting up a JMS message topic

	Message queues
	Sending messages to a message queue
	Retrieving messages from a message queue
	Asynchronously receiving messages from a message queue
	Browsing message queues

	Message topics
	Sending messages to a message topic
	Receiving messages from a message topic
	Creating durable subscribers

	Summary

	Chapter 8: Security
	Security realms
	Predefined security realms
	The admin-realm
	The file realm
	The certificate realm

	Defining additional realms
	Defining additional file realms
	Defining additional certificate realms
	Defining an LDAP realm
	Defining a Solaris realm
	Defining a JDBC realm
	Defining custom realms

	Summary

	Chapter 9: Enterprise JavaBeans
	Session beans
	Simple session bean
	A more realistic example
	Invoking session beans from web applications

	Singleton session beans
	Asynchronous method calls
	Message-driven beans
	Transactions in Enterprise JavaBeans
	Container-managed transactions
	Bean-managed transactions

	Enterprise JavaBeans life cycle
	Stateful session bean life cycle
	Stateless session bean life cycle
	Message-driven bean life cycle

	EJB timer service
	Calendar-based EJB timer expressions

	EJB security
	Client authentication

	Summary

	Chapter 10: Contexts and Dependency Injection
	Named beans
	Dependency injection
	Qualifiers
	Named bean scopes
	Summary

	Chapter 11: Web Services with JAX-WS
	Developing web services with JAX-WS
	Developing a web service client
	Sending attachments to web services

	Exposing EJBs as web services
	EJB web service clients
	Securing web services
	Securing EJB web services

	Summary

	Chapter 12: RESTful Web Services with Jersey and JAX-RS
	Introduction to RESTful web services and JAX-RS
	Developing a simple RESTful web service
	Configuring the REST resources path for
our application
	Configuring via web.xml
	Configuring via the @ApplicationPath annotation

	Testing our web service
	Converting data between Java and XML
with JAXB

	Developing a RESTful web service client
	Query and path parameters
	Query parameters
	Sending query parameters via the Jersey client API

	Path parameters
	Sending path parameters via the Jersey client API

	Summary

	Appendix A: Sending E-mails from Java EE Applications
	Configuring GlassFish
	Implementing e-mail delivery functionality

	Appendix B: IDE Integration
	NetBeans
	Eclipse

	Index

