Kubernetes
Management
Design Patterns

With Docker, CoreOS Linux, and Other
Platforms

Deepak Vohra

Apress’

http://www.allitebooks.org

Kubernetes
Management Design
Patterns

Deepak Vohra

Apress-

[vww allitebooks.cond

http://www.allitebooks.org

Kubernetes Management Design Patterns: With Docker, CoreOS Linux, and Other Platforms

Deepak Vohra
White Rock, British Columbia
Canada

ISBN-13 (pbk): 978-1-4842-2597-4 ISBN-13 (electronic): 978-1-4842-2598-1
DOI10.1007/978-1-4842-2598-1

Library of Congress Control Number: 2017930815
Copyright © 2017 by Deepak Vohra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

“Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States and/or
other countries. Docker, Inc. and other parties may also have trademark rights in other terms used herein””

Kubernetes is Apache License 2.0 software. Docker is Apache License 2.0 software. CoreOS is Apache License 2.0
software.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik.
Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: James A. Compton
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/us/
services/rights-permission.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers for download or cloning at Github via the book's product page, located at www.apress.
com/9781484225974. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

[vww allitebooks.cond

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/us/services/rights-permission
http://www.apress.com/us/services/rights-permission
http://www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

Contents at a Glance

About the AUtROrccvverimmis s ————————_—— Xiii
About the Technical REVIEWETcccussssssmssmsssmssssssssssssssmsssssssssssssssssssssssnssssssnsssannns Xv
INtroduction........cccvvcemiismne s —————————_————— Xvii
Part I: Platformscccoissssemmmmmsssessnmssssssssnsssssnsnssssssssssssssnnsnsssssnnnnnnsnnns 1
Chapter 1: Kubernetes on AWS.........ccocccmimmmmssnmmssssmmsssssmsssssesssssssssssssssssssssnsssssanss 3
Chapter 2: Kubernetes on Core0S on AWScccccvvmmmmmmmssssssnnmmssmsssssssssssssssnnns 23
Chapter 3: Kubernetes on Google Cloud Platformccccccimmmsssennnmsssssnnnnssssnnsns 49
Part Il: Administration and Configuration..........ccccccnnnieemnnnnssscnnnnnns 89
Chapter 4: Using Multiple ZONES......cccussseenmmssssssnssssssssnsssssssssssssssssssssssssnssssssssnnnss 91
Chapter 5: Using the Tectonic CONSoleccusccemmmssssnnnmmssssnsnmssssssnnsssssssnnssssssnnnns 117
Chapter 6: USiNg VOIUMEScccuussmmmmssnnsssssnssssanssssansssssnsssssnsssssnnssssnsssssnnssssnnssss 135
Chapter 7: USINg SEIrVICESccccuuussemmmmssssnnsmmssssnsnssssssnsnssssssnssssssssnnnssssssnnnsssssnnnnss 153
Chapter 8: Using Rolling Updates..........cccrmmmmmmmmmmssssnsnmmssssssnsssssssssssssssssnssssssnnnss 171
Chapter 9: Scheduling Pods on Nodes........ccuscemmmmsssmmnmmssssssnnsssssssssssssssssssssssnnns 199
Chapter 10: Configuring Compute ReSOUrCesS......ccusemmrrssssnnnssssssnsnssssssnssssssssnnnss 237
Chapter 11: Using ConfigMapscccceurrrrmmmsssssssssmmmmsssssssssssssnssssssssssssssssnnssssssssnns 257
Chapter 12: Using Resource QUOTAsccccuusssemnmmssssnsnsssssssnsssssssssssssssssnnsssssnnnnss 279
Chapter 13: Using AutoSCaliNgcccssseesssssnsssssnssssansssssnsssssnsssssnsssssnsssssnnssssnnnss 299
Chapter 14: Configuring LOGQing......cccuseesmmssssnsnmsssssnsnssssssnsnssssssnsnssssssnnssssssnnnnss 309
iii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS AT A GLANCE

Part Ill: High Availability.....cccccccmmmmmmmmmmmmnnnnnnnnnsssssssssssssssssssssssnes 333

Chapter 15: Using an HA Master with OpenShift............ccccciimnnnemmmmnnnnnnnmnssnnns 335

Chapter 16: Developing a Highly Available Websitecccevunnnmmnmnssssnnnsnsssannns 355
11T 393
iv

[vww allitebooks.cond

http://www.allitebooks.org

Contents

About the AUROFccccimismninsmssssss s nnnnn s xiii
About the Technical REVIEWETccuvusssessssnsssansssassssnsssasssssssssnsssasssssssssnsssassssasssansss XV
INtroductionccccumiemmmssnmnmsssesmsssnnnsssnnssssns s san s san s an s Xvii
Part I: Platforms..........cccnmmemmmmmmnnnnnnssssssnmnmnmsssssssnsmnsssssssssssnnnnssssnnnnns 1
Chapter 1: Kubernetes on AWS.........ccccccmnmmmmssnmmssssmmsssssesssssesssssesssssssssssssssnsssssnnss 3
(0] 01T 1PN 3
8310 10 o T 3
OVEIVIBWovecesieesesse s e sa s et e s e s e s e s e s e nae e 3
Setting the ENVIFONMENT............ooe o sn e snenn 4
CoNfIGURING AWS.......ooeeecerereree e sa e sa e sa e sa e sa e s sa e sa e e sa e sa e sa e sn e e e nn e nn e nn e s 7
Starting the Kubernetes CIUSLEccoccoriernic e 11
TeStiNg the CIUSTE ... 17
Configuring the CIUSTENccoi e n s 18
StopPiNg the CIUSTEN.........cceeceeceeceeee e 21
SUMMAIY ...t n s sr e s a s ae e s a e e ae e s e eae e s aennn e nnennnnnas 22
Chapter 2: Kubernetes on Core0S on AWScccccuissemmmmmssssssmmssssssssssssssssssssssssnnns 23
ProODIBM ... ————————————————— 23
6310 10 0 TP 23
0 T 24
Setting the ENVIFONMENT...........ccoiiiiernieresrresse e snesn e 25
Configuring AWS CredentialS.........ccooevererereereeseessessessessesss s ssessessssassssssssssssssssssssassssses 25
INSTAllING KUDE-AWS......cceeeeeceeeeeceeceecse e s e nesne s nesn e nesa e s nesn e sn e snsnn e nn e nnnnnennan 25

v

[vww allitebooks.cond

http://www.allitebooks.org

vi

CONTENTS

Setting Up Cluster PAarameters.........ccoveeeenerenensesesssesessesssssse s sessssesssssssesessssssssssens 27
Creating @ KIMS KBYoucceererieccresie ettt ss e s s nsssnsnss 28
Setting Up an External DNS NAME...........ccoeerreiencrenresesesse e se s s sssessssssnns 29

Creating the CIUSTENcvevirerereree e se e sa e e sa e e sa e sa e sa e sa e sn e sn e sn s nn e nn e 29
Creating an ASSEE DIFECIOIYccevevererererere st re s re s s sae e se e s e se s e sa s e sae e sae e saesesaesaesesaesesaenenansanaens 29
Initializing the Cluster CIOUAFOrMAaLioN..........cccveeererererrre e sae e sae e saesesaesanaens 30
Rendering Contents of the ASSEt DIFECIOIY.......ccccvereriererrereerererer e st reres e sse e raesersesessesasessesessssesassanaens 30
CUSTOMIZING ThE CIUSTE.......ceveereeereerererer e rre e e raeses e ras e sae e ssesessesassesassesaesesae e saesassesassessenesassenasranaens 31
Validating the CloudFormation STacKcccecveererrererrernnerereresere s ereserss e ssesessesessesassesassessesessssesas 34
Launching the Cluster ClOUAFOrMALIONcccceeerereriererserereresesereseresersesersesessesessesassessesessssesassanaens 34

Configuring DNS ... r e r e s r e sn e n e r e sn e n e nnnnn e nan 35

ACCESSING the CIUSTEN ..o 39

TeStiNg the CIUSTENccevevirieririr st sn s sn e sn e sn e n e nn 4

31T 47

Chapter 3: Kubernetes on Google Cloud Platformccccccmmmnsssennnmssssssssssssssnnns 49

PrODIBM ... s 49

830 1110 PSPPSR 49

OVEBIVIBW ...t res e sas s sas s e s e s e s ne e s e e 49

Setting the ENVIFONMENL..........coooeeece s 50

Creating a Project on Google Cloud Platformcceeicernnnennscnesnsesssesesessessesnnnens 50

Enabling PErmiSSiONS.........cccveeiiineiier s sse s sne s sne s s s s e e sne s 55

Enabling the Compute ENging APlcoorircrcrrrr et 56

Creating @VM INSTANCEcccoeveererreereree s saesa e sa e sa s sa e sa e sn e sa s sn e sn s sa s s 62

Connecting 10 the VM INSTANCE..........ccccceeeererricre e sss s sne e 66
Reserving a Static EXternal IP AAAreSS.........cccveeerererierersersesersesesesessessssessesessessssessssessssessesessssssassassens 67

Creating a KUbernetes CIUSTEccoeeeeeee e e sse s s s snssnssnenne e 67

Creating a Kubernetes Application and Service..........ccocvevererrrssssssesses s senens 7

StopPINg the CIUSTEN ..o 75

Using Kubernetes with Google Container ENgine..........cccoceeeeerenececssesssssessessessessennns 77

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Creating a Go0gle CONtAINET CIUSIEN.........ccceererrerererererer e rseses e sessesss e sae e sse e e sessesassesaesesassesasanaens 77
Connecting to the Google CloUd SNEIlcccveeererererrrere e sae e aesesaesesaenanaens 80
00 10 0T T (=T 80
Testing the KUDEINEES CIUSTE.........cccvererererererereresseres e reesessesessesessesassessssessssessssessssassessssessessssnsnaes 81
1111 1P SRS 87

Part II: Administration and Configuration...........ccecccennnnssnennnnsssncnnnnns 89

Chapter 4: Using Multiple ZONeS......cccussmemmmsssssssmmssssssnssssssssssssssssnsnssssssnssssssssnnnss 91
PrODIBM ... ———————————————— o1
8310 11 (o 92
OVEBIVIBW ...t s s n e 93
Setting the ENVIFONMENT............ccoriiecrcecr e ne e 93
Initializing @ CloudFOrmation...........ccoeeecececcce e 95
Configuring cluster.yaml for Multiple ZONes..........ccocevererrrnrersnsse e see e 95
Launching the CloudFOrmationcccveeninennicne s ssesessens 99
Configuring EXternal DNS.........oo oo sresnesnesnssnssnesnssnssnesnenns 100
Running a Kubernetes Applicationcccvvrverrersennnsensessesses s s sessssssssessassessenns 101
Using Multiple Zones 0n AWS...........oo e s 103
SUMMEAIY ...ttt a s sae s r s s r e s e a e e s ae e s nnnnnnn s 116
Chapter 5: Using the Tectonic CONSOIEcccuremrmsssmsmsssnsmsssnsssssnsesssnsssssnnssssnnsss 117
ProDIBM ... ———————————————— 117
RST8] 0] o 117
0 118
Setting the ENVIFONMENT...........ccoieiiererrerr e sn e 118
Downloading the Pull Secret and the Tectonic Console Manifestc.ccccevvveriennnne 120
Installing the Pull Secret and the Tectonic Console Manifest..........c.ccccvveriricnieninnne 122
Accessing the TECIONIC CONSOIEcceeerrerrimresrssere s snes 123
Using the TECTONIC CONSOIEcceeeereereereereeree e saesae e s e saesaesaesaesassassassaenns 124
Removing the Tectonic CONSOIE..........ccccvcereerrersercersr s nns 134
SUMMEAY ...ttt a s e ae e e s sae e s e e r e e s e an e snennnsnnnnnnnnns 134

Vil

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 6: UsSing VOIUMEScccuremmmmmsssnmnmmssssssnmsssssssnssssssssnsssssssssssssssnsnsssssnnnnns 135
PrODIBM ... ————————————— 135
SOIUION .. 135
011 T 136
Setting the ENVIFONMENL...........cco oo 137
Creating @an AWS VOIUMEcovererrrerinsise s sss s s sn s s sns s s 139
Using an awsEIasticBIOCKSTOre VOIUMEcccceeeveerener s e e e ses s sesenns 141
Creating @ Git REPOccceeiicirirei et s 145
Using a gitREPO0 VOIUME...........ccouieereirernt e s 149
RS0 2 152
Chapter 7: USING SErVICeSuucsrsssanmssssnsssssnssssanssssanssssanssssansssssnsssssnsssssnnssssnnssss 153
ProODIBM ... ——————————————— 153
0310 11 (o R 154
L0 TSR 154
Setting the ENVIFONMENT..........ccocererrrrrer s sa e sa e sa s sn e saenas 155
Creating a CIUSTErIP SEIVICE.......ccceeeeererreceerie e sn e snesnesne e snssnesnennnnns 156
Creating @ NOUEPOI SEIVICEcccevuerererrrieree e see s sse s sss s s s saesassassnesassassasssssnns 159
Creating @ LoadBalanCer SErVICeccouuuerriereneresenise s s e ssssesse e s ssssessesssseens 166
1111 1P SRS 170
Chapter 8: Using Rolling Updatescccuusmmmmssanmmsssnsmsssssmsssssssssnssssssssssssnssssnnsss 171
PrODIBM ...t 171
RST8] 0] o 171
OVEIVIBW ...eeecesiecse e se s e s ae e ne s esan e nne e nnn s 172
Setting the ENVIFONMENL..........c.oceececrcer s 173
Rolling Update with an RC Definition File........c.ccocvvrvrvnnnsenrer s sessenenns 174
Rolling Update by Updating the Container Image..........c.ccooeerrernicrennsennscsesessesenennns 177
Rolling Back an UPdateccocvververienierrersirer s se s e e s e e s s snsnns 184
Using Only Either File 0r IMAJEccceverererrreree e ses s e e sae e s s sassassassasnnns 186
viii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Multiple-Container POUS.........ccocevverrerierirersirser s s sn s snssn s snesnenns 186
Rolling Update to a Deployment..........coccocvvrrrinrennenser s ses e e e e e sesenns 186
11] 1 R 198
Chapter 9: Scheduling Pods on Nodes........ccuscemmmmsssmmmmmsssssnnmmssssssssssssssssssssssnnns 199
PrODIBM ... 199
SOIUION ...t 199
011 T 200
Defining @ Scheduling POlICYcccvvviercersercersr s 200
Setting the ENVIFONMENT...........ccoeeiieresirerrs s nn e 202
Using the Default SChEUIETcoceverererere e sa e e e e e sassaesaennens 203
Scheduling Pods without a Node Selectorccceovereececscscr e 213
Setting Node LADEIS ..o 213
Scheduling Pods with a Node Selectorccceevererrcnnrcnernse e 214
Setting Node AffiNity.......cccceeecrcr e s 220
Setting requiredDuringSchedulinglgnoredDuringEXeCUtioncoccoecvecnecnennce e 222
Setting preferredDuringSchedulinglgnoredDuringEXeCUtion...........cccoecevecnecnennie s senaens 229
SUMMEAIY ...ttt a s s ae e ne e s a e e s ne e s nnnnnnnas 236
Chapter 10: Configuring Compute ReSOUrCeS......cuuomrssamrmsssnsesssnsesssnssssssnssssnnsas 237
ProODIBM ... 237
RST8] 0] o 237
0 238
Types of COMPULE RESOUICEScccvververerierrerer s se s sn s sn e e s 239
Resource Requests and LIMits.........ccccvcrvrniirnnninnn s ssse s 240
QUALILY OF SEIVICEcveererercrcr et e e 242
Setting the ENVIFONMENT.........c.ccieeiiernrrcrr s 243
Finding Node CapaCityc.ccvverrerrerrersersersessessessessessessessessessessessessesssssssssssssssssssssssssnnnns 244
Creating a Pod with Resources Specifiedcccceeererereresese s 245
Limit on Number of POS........c.coocovinrinnesise e s 252
ix

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Overcommitting Resource LimitSccocucieeiccrennensss s 254
Reserving NOUEe RESOUICESccccevververserersersersessessessessessessessesssssssssssesssssssssssssssssssnsnns 254
11 1 SRS 256
Chapter 11: Using ConfigMapsccccrrusssmmnmmssssnsnsmssssssnssssssssssssssssssssssssssssssssnnnnss 257
PrODIBM ... 257
03T 0] 111 10 PSP 257
OVEBIVIBW ... ne e s s sae e ne s esan e sae e nnnnis 257
Kubectl create configmap Command...........coccocrerirsrcsssssses s sne e 258
Setting the ENVIFONMENT.........c.ccoieiieresirers e sne e 258
Creating ConfigMaps from DireCtOriEscceverererrerrrreerer s e s s sassee e sassaesesenns 259
Creating ConfigMaps from FileS.........cccoeeeeerececece e e sn e sn e e 266

Creating ConfigMaps from Literal VAIUESccoreeererreicrirerccsere e 270
Consuming a ConfigMap in @ VOIUME..........ccoveerenircenncresise e 274
RS0 2 277
Chapter 12: Using Resource QUOtasc.cccssssummsssanssssanssssansssssnsssssnsssssnsssssnnnss 279
ProDIBM ... —————————————————— 279
SOIULION ... 279
OVEIVIBW ...t e e ss s s sas s n s sns s a s sae e s sa e s p e saenn s n e e s ae e n e 280
Setting the ENVIFONMENT..........ccocevririrer s se s sa s sn e sa e sn s sn s 281
Defining Compute Resource QUOLas..........cccvcrverceriersensesss s snesnnens 282
Exceeding Compute Resource QUOLASccccovveerreresrnsesssnsessnsesssss s ssesessesssseenes 284
Defining Object QUOLAS........cccccrerercrre e 288
Exceeding Object QUOLAS.........ccecercercerrircir s 290
Defining Best-Effort SCope QUOLAS.........cccuceeeerernseresnse e 294
SUMMAIY ...t a e e s ae e e a e e n e ne e s nnn e nnens 298
Chapter 13: Using AutoSCalingcccvussseenmmssssnsnssssssnsnssssssnsnsssssssnsssssssnnssssssnnnnns 299
PrODIBM ... ————————— 299

Y0 (1 0] 3R 299

CONTENTS

OVEIVIBW ...t s a s s e ne e s n e s nennn e 300
Setting the ENVIFONMENT..........ccoceverirrrrr s sn s 300
Running a PHP Apache Server Deployment ... 302
Creating @ SEIVICE........cuccrirriernere s sr s nesn s n s s nn e 302
Creating a Horizontal Pod AULOSCAIETcccereereererrerreeree s see e seesesssesessaesassessassassasnnns 303
INCreasing Load..........ccoeeeeeeeiecese e sae s e s sn e nesr e sn e nesnesnesnssn s nnennennnnnns 306
SUMMEAIY ...t a e n s s rer s e r e e s e n e e s ae e e snnnnnnnnas 308
Chapter 14: Configuring LOGQing......cccuseesmmssssnsnmsssssnsnssssssnsnsssssssnnssssssnsnsssssnnnnss 309
ProDIBM ... —————————————— 309
B30 0] o T 309
L0 310
Setting the ENVIFONMENT..........cocivrricrcr s 311
Getting the Logs Generated by Default LOGQET.........ccoovveverricrsneriesnse s 311
DOCKEr LOQG FilES....cceieeererircer s se s sn e sn s sn s sn s sn s sn s nnsnnnnns 313
Cluster-Level Logging with Elasticsearch and Kibanaccocevvvvevnressessensensennnnns 314

Starting a Replication CONTIOIIET............oveceeeireeeeirrcc e 315

Starting ElaStiC SBAICHccceceeieece e 318

Starting FIueNtd t0 COIECT LOGScccoererrrecririrescnirtse et s sa s sssnns 322

STArtiNg KiDANA.......ccovieeeecereccrir s e p s 324
E3 U112 7S 331
Part Ill: High Availability.....cccccccmmmmmmmmmmnnnnnnnnsssssssssssssssssssssssnes 333
Chapter 15: Using an HA Master with OpenShifi...........cccccmiincnnnnssssssnnneennn. 335
o 1010 7 1 335
RST8] 0] o 335
L0 - 336
Setting the ENVIFONMENT.........c.ccoeeiiercrrern e 336
Installing the Credentials..........c.cooerererernnenere e sae e saesae e naens 338
Installing the Network Man@gercoceeeeeeeneresesesse e sse e ssessessessessessessssnssssssssans 339

xi

CONTENTS

Installing OpenShift via Ansible on the Client Machine.........cccccoveeniresnccnescicnennene 339
Configuring ANSIDIEcc.evirererere e sa e sa e sa e sa e sa e sa s sn e sn e sn e 342
Running the Ansible PIayhooK............ccocvcririrsrsrsir s snssnnnns 346
TeStiNg the CIUSTEccvceeeeceerece e 347
Testing the High Availability ... 349
1111 112 SRS 353
Chapter 16: Developing a Highly Available Websitecccrnnseennmmssssnnnsssssannns 355
PrODIBM ... 355
83T 0] 11 10 PSP TTSSRN 355
011 T 356
Setting the ENVIFONMENL..........ccooeeececeecee e n s 357
Creating CloudFOrmMationS........cocceevererenesreree e ses s sss s sassnssassassassnssnesaennns 357
Configuring EXternal DNS. ... s 361
Creating a KUDErnetes SErViCe........ccuurerererreseeric s sse e sse e ssesss s s snesnesnssns s snenns 362
Creating an AWS RoULE 53 SEIVICE.......ccceverrrerreerrersrssesee s ssessssssssssssssssassassasssssssssssnns 367
Creating @ HOSIEA ZONE ..ot 368
Configuring Name Servers on @ DOmain Namecccoveeeererenenesesessesessssssesesessssssesessssssesssssssssens 369
Creating RECOIU SEIS........cccoiereiccirireecr s nas 374
Testing High Availabilitycccoerrrrnsninsersrser s sa e 384
SUMMANY ...ttt ss s s sr s n e a s e s s e r s s sn e e s e e e s e e nn e snennennennenn e e e nne e e nnnnnennnnnan 392
1T = 393

xii

About the Author

Deepak Vohra is a consultant and a principal member of the NuBean
software company. Deepak is a Sun-certified Java programmer and Web
component developer. He has worked in the fields of XML, Java
programming, and Java EE for over seven years. Deepak is the coauthor
of Pro XML Development with Java Technology (Apress, 2006). Deepak is
also the author of JDBC 4.0 and Oracle JDeveloper for J2EE Development,
Processing XML Documents with Oracle JDeveloper 11g, EJB 3.0
Database Persistence with Oracle Fusion Middleware 11g, and Java EE
Development in Eclipse IDE (Packt Publishing). He also served as the
technical reviewer on WebLogic: The Definitive Guide (O'Reilly Media,
2004) and Ruby Programming for the Absolute Beginner (Cengage
Learning PTR, 2007).

xiii

About the Technical Reviewer

Massimo Nardone has more than 22 years of experiences in Security,
Web/Mobile development, Cloud and IT Architecture. His true IT
passions are security and Android.

He has been programming and teaching how to program with Android,
Perl, PHP, Java, VB, Python, C/C++ and MySQL for more than 20 years.

He holds a Master of Science degree in Computing Science from the
University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer, Research
Engineer, Chief Security Architect, Information Security Manager,
PCI/SCADA Auditor and Senior Lead IT Security/Cloud/SCADA
Architect for many years.

Technical skills include: Security, Android, Cloud, Java, MySQL,
Drupal, Cobol, Perl, Web and Mobile development, MongoDB, D3,
Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS,
Jekyll, Scratch, etc.

He currently works as Chief Information Security Office (CISO) for Cargotec Oyj.

He worked as visiting lecturer and supervisor for exercises at the Networking Laboratory of the
Helsinki University of Technology (Aalto University). He holds four international patents (PKI, SIP, SAML
and Proxy areas).

Massimo has reviewed more than 40 IT books for different publishing company and he is the coauthor
of Pro Android Games (Apress, 2015).

XV

Introduction

Docker was made available as open source in March 2013 and has become the most commonly used
containerization platform. Kubernetes was open-sourced in June 2014 and has become the most widely
used container cluster manager. The first stable version of CoreOS Linux was made available in July 2014
and since has become the most commonly used operating system for containers. My first book, Kubernetes
Microservices with Docker (Apress, 2016), is an introduction to creating microservices with Kubernetes and
Docker. This book, Kubernetes Management Design Patterns, takes container cluster management to the next
level and discusses all or most aspects of administering and configuring Kubernetes on CoreOS and applying
suitable design patterns such as ConfigMaps, autoscaling, resource quotas, and high availability. Kubernetes
is a cluster manager for Docker and rkt containers, but this book discusses Kubernetes in the context of
Docker only. A cluster manager for Docker containers is needed because the Docker engine by itself lacks
some functionality, such as the ability to scale a cluster of containers, schedule pods on nodes, or mount a
certain type of storage (such as an AWS Volume or Github repo) as volumes. Docker Engine 1.12 integrates the
Docker Swarm cluster manager and Docker Swarm does overcome some of the earlier limitations of Docker
by providing replication, load balancing, fault tolerance, and service discovery, but Kubernetes provides
some features suitable for developing object-oriented applications. The Pod abstraction is the atomic unit of
deployment in Kubernetes. A Pod may consist of one or more containers. Co-locating containers has several
advantages as containers in a Pod share the same networking and filesystem and run on the same node.
Docker Swarm does not support autoscaling directly. While Docker Swarm is Docker native, Kubernetes is
more production-ready having been used in production at Google for more than 15 years.

Kubernetes Design Patterns

A software design pattern is a general reusable solution to a commonly occurring problem
within a given context in software design.

Wikepedia

A Docker image includes instructions to package all the required software and dependencies, set the
environment variables, and run commands, and it is a reusable encapsulation of software for modular
design. The atomic unit of modular container service in Kubernetes is a pod, which is a group of containers
with a common filesystem and networking. The Kubernetes pod abstraction enables design patterns for
containerized applications similar to object oriented design patterns. Pod, service, replication controller,
deployment, and ConfigMap are all types of Kubernetes objects. Further, because containers interact with
each other over HTTP, making use of a commonly available data format such as JSON, Kubernetes design

xvii

INTRODUCTION

patterns are language and platform independent. Containers provide some of the same benefits as software
objects such as modularity or packaging, abstraction and reuse. Kubernetes has described three classes or
types of patterns.

e Management design patterns
e Patterns involving multiple cooperating containers running on the same node
e Patterns involving containers running across multiple nodes

Some of the benefits of modular containers are as follows:

e The container boundary is an encapsulation or abstraction boundary that can be
used to build modular, reusable components.

e Thereusable containers may be shared between different applications and agile
developer teams.

e Containers speed application development.

e Containers are suitable for agile team development.

e Containers can be used to encapsulate a best design or implementation.
e Containers provide separation of concerns

The design patterns are introduced in the publication Design Patterns For Container-Based Distributed
Systems, by Brendan Burns and David Oppenheimer (https://www.usenix.org/node/196347). In this book
we shall be using some of these and other design patterns.

Kubernetes Architecture

A Kubernetes cluster consists of a single master node (unless a high-availability master is used, which is not
the default) and one or more worker nodes with Docker installed on each node. The following components
run on each master node:

— etcd to store the persistent state of the master including all configuration data.
A high-availability etcd cluster can also be used.

— An API Server to serve up the Kubernetes REST API for Kubernetes objects (pods,
services, replication controllers, and others).

— Scheduler to bind unassigned pods on nodes.

— Controller manager performs all cluster level operations such as create and update
service endpoints, discover, manage and monitor nodes. The replication controller
is used to scale pods in a cluster.

The following components are run on each worker node:

— kubelet to manage the pods (including containers), Docker images, and volumes.
The kubelet is managed from the API Server on the master node.

— kube-proxy is a network proxy and load balancer to serve up services.

The Kubernetes architecture is shown in Figure I-1.

xviii

https://www.usenix.org/node/196347

INTRODUCTION

/ API Server (pods,
»| services, replication |« Controller Manager
controllers)
kubectl T \
N
Scheduler etcd Storage
k Master Node

Docker

Worker Pods Worker

Node Node

/ 2 \ T T / Docker
| kubelet | proxy | kubelet
I .
Y . Y Y A

] L]
\ ' /}l;
tt

FigureI-1. Kubernetes Architecture

Why Core0S?

CoreOS is the most widely used Linux OS designed for containers, not just Docker containers but also rkt (an
implementation of the APP Container spec) containers. Docker and rkt are pre-installed on CoreOS
out-of-the-box. CoreOS supports most cloud providers including Amazon Web Services (AWS) Elastic
Compute Cloud (EC2), Google Cloud Platform, and virtualization platforms such as VMWare and VirtualBox.
CoreOS provides Cloud-Config for declaratively configuring for OS items such as network configuration
(flannel), storage (etcd), and user accounts. CoreOS provides a production-level infrastructure for
containerized applications including automation, security and scalability. CoreOS has been leading the drive
for container industry standards and in fact founded appc. CoreOS is not only the most widely used operating
system for containers but also the most advanced container registry, Quay. CoreOS provides server security
with Distributed Trusted Computing. CoreOS also provides Tectonic Enterprise for enterprise-level workloads
without operational overhead and an out-of-the-box Kubernetes cluster and a user-friendly dashboard.

Chapter Description

In Chapter 1 we shall install Kubernetes on Amazon Web Services (AWS), create a sample deployment
and service, and subsequently invoke the service. Kubernetes installation on AWS requires almost no
configuration to spin-up a multi-node cluster.

In Chapter 2 we shall install Kubernetes on CoreOS, which is the main platform we shall use for most of
the chapters. We'll first create an AWS EC2 instance from Amazon Linux AMI, which has the AWS Command
Line Interface (CLI) preinstalled. We'll then SSH log in to the EC2 instance and install Kube-aws. Then we
will launch a CloudFormation for a Kubernetes cluster with one controller node and three worker nodes and
SSH log in to the controller instance and install kubectl binaries to access the API server.

Xix

http://dx.doi.org/10.1007/978-1-4842-2598-1_1
http://dx.doi.org/10.1007/978-1-4842-2598-1_2

INTRODUCTION

In Chapter 3 we shall discuss Google Cloud Platform for Kubernetes. First, create a project and a
VM instance. Subsequently connect to the VM instance to create a Kubernetes cluster and test a sample
application.

In Chapter 4 we shall use multiple zones to create an AWS CloudFormation for a Kubernetes cluster.

Chapter 5 introduces the Tectonic Console for managing Kubernetes applications deployed on CoreOS.

Chapter 6 is on volumes. We demonstrate using volumes with two types of volumes:
awsElasticBlockStore volume and gitRepo volume.

Chapter 7 is on using services. We shall create sample services for three kinds of services supported by
Kubernetes: ClusterIP, NodePort and LoadBalancer.

In Chapter 8 we shall discuss rolling updates. A rolling update is the mechanism by which a running
replication controller can be updated to a newer image or specification while it is running.

In Chapter 9 we introduce the scheduling policy used by Kubernetes to schedule pods on nodes. We
discuss the various options including using a NodeSelector, and setting node affinity.

Chapter 10 is on allocating compute resources to applications. The two supported compute resources
are CPU and memory. We shall discuss setting resource requests and limits and also how Kubernetes
provides a quality of service by guaranteeing a preset level of resources.

Chapter 11 is on ConfigMaps, which are maps of configuration properties that may be used in pods and
replication controller definition files to set environment variables, command arguments and such.

Chapter 12 is on setting resource quotas on namespaces for constraining resource usage in a
namespace. Resource quotas are useful in team development (different teams have different requirements)
and different phases of application which have different resource requirements such as development,
testing, and production.

Chapter 13 is on autoscaling, which is suitable for production workloads that can fluctuate. Autoscaling
of a deployment, replica set, or replication controller scales the number of pods in a cluster automatically
when the load fluctuates.

Chapter 14 is on logging. The default logger is discussed in addition to cluster-level logging using
Elasticsearch, Fluentd, and Kibana.

In Chapter 15 OpenShift, a PaaS platform for Kubernetes, is discussed to create a high availability
master Kubernetes cluster using Ansible. Ansible is an automation platform for application deployment,
configuration management, and orchestration.

In Chapter 16 a high availability web site is developed using AWS Route 53 for DNS failover.

XX

http://dx.doi.org/10.1007/978-1-4842-2598-1_3
http://dx.doi.org/10.1007/978-1-4842-2598-1_4
http://dx.doi.org/10.1007/978-1-4842-2598-1_5
http://dx.doi.org/10.1007/978-1-4842-2598-1_6
http://dx.doi.org/10.1007/978-1-4842-2598-1_7
http://dx.doi.org/10.1007/978-1-4842-2598-1_8
http://dx.doi.org/10.1007/978-1-4842-2598-1_9
http://dx.doi.org/10.1007/978-1-4842-2598-1_10
http://dx.doi.org/10.1007/978-1-4842-2598-1_11
http://dx.doi.org/10.1007/978-1-4842-2598-1_12
http://dx.doi.org/10.1007/978-1-4842-2598-1_13
http://dx.doi.org/10.1007/978-1-4842-2598-1_14
http://dx.doi.org/10.1007/978-1-4842-2598-1_15
http://dx.doi.org/10.1007/978-1-4842-2598-1_16

PART I

Platforms

CHAPTER 1

Kubernetes on AWS

Kubernetes is a cluster manager for Docker (and rkt) containers. The Introduction outlines its basic
architecture and relationship to CoreOS and Amazon Web Services (AWS). In this chapter we'll spin up a
basic cluster without configuration.

Note Kubernetes Microservices with Docker (Apress, 2016) covers installing Kubernetes on single-node
and multi-node clusters.

Problem

Installing Kubernetes by installing its individual components (Docker, Flannel, Kubelet, and Service Proxy)
separately is an involved process that requires many commands to be run and files to be configured.

Solution

AWS provides a legacy tool called kube-up. sh to spin up a Kubernetes cluster without requiring any
configuration. Only an AWS account, the AWS Command Line Interface (CLI), and access to the AWS APIs
are required. Kubernetes and other tools such as Elasticsearch (used to index and store logs), Heapster
(used to analyze compute resource usage), Kibana (a GUI dashboard used to view the logs), KubeDNS (used
to resolve DNS names for services), Kubernetes-dashboard, Grafana (used for metrics visualization), and
InfluxDB are all installed with a single command.

Overview

In this chapter we will create a multi-node cluster (consisting of one master and multiple minions) on
Amazon Elastic Compute Cloud (EC2) using the AWS Command Line Interface. The stages are as follows:

Setting the Environment
Starting a Cluster
Testing the Cluster
Configuring the Cluster

Stopping the Cluster

© Deepak Vohra 2017 3
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_1

CHAPTER 1 * KUBERNETES ON AWS

Setting the Environment

Because we're using Amazon EC2, an AWS account is required. Also, to configure AWS you need to obtain
security credentials. Select Security Credentials for a user account. In the Your Security Credentials screen,
select the Access Keys node and click Create New Access Key as shown in Figure 1-1 to create a new access key.

« Your Security Credentials

Use this page to manage the credentials for your AWS account. To manage credentials for AWS ldentity and Access Management (LAM) users, use the 1AM Console

To learn more about the types of AWS credentials and how they're used, see AWS Security dentials in AWS General Reference

+ Password
+ Multi-Factor Authentication (MFA)
- Accass Keys (Access Key ID and Secret Access Key)

cess keys to sign programmatic requests o AWS services. To Iearn how to Sign requests using your access keys, see the signing documentation . For your
hare them. In addition, AWS recommends that you rotate your access keys every 90 days

re your access keys securely and do not

MNote: You can have a maximum of twd access keys (active or inactive) at 2 ime.

Last Used Last Used

Created Deleted Access Key ID Last Used Status Actions
Region Service
Mar 5th 2016 Jun 28th 2016 FPJWFZFWTYTQ 2016-04-08 17:30 PDT us-gast-1 iam Deleted
Feb 27th 2016 Mar 5th 2016 26BN 260 M WA s Deleted
har 24th 2012 Feb 27th 2016 SDOINWT ZHRA A, hA A Deleted
Feb 6th 2016 Feb 27th 2016 AKIAIPAIFSQCIHEY3IE0 MAA A s Deleted
Jan 26th 2016 Feb 6th 2016 AKIAJDFRIFUZTIFYDGLA Pfa, A, A Deleted

Create New Access Key

Figure 1-1. Creating a new access key

A new security access key is created and the Access Key ID and Secret Access Key are listed.
Copy the Access Key ID and Secret Access Key to be used later to configure AWS. The Access Key ID and
Secret Access Key will be different for different users.

AWS_ACCESS_KEY_ID AKTIAISQVXXXXXXXXXXXXXXX
AWS_SECRET_ACCESS_KEY = VuJD5gDXXXXXXXXXXXXXXXXXXXX

Because the AWS Command Line Interface is required, create an EC2 instance of the Amazon Linux

Amazon Machine Image (AMI), which has the AWS CLI preinstalled. Click on Launch Instance as shown in
Figure 1-2 to create a new instance.

Launch Instance Actions v
i ' @ o o

Q t (2] 1to30f3
Name = Instance 1D 3 5 Type - Availability Zone = | State - Status Checks - Alarm Status Public DNS
Kubemeatesh F5h3e2aa 12 micro us-gast-1e @ stopped Nore ",o
Kubemetes\ -773d298e 12 micro us-gast-1e @ stopped None =
Sqoop HBSTTBTTd 12 micro us-east-le @ stopped None »

Figure 1-2. Launching an EC2 instance

CHAPTER 1 = KUBERNETES ON AWS
In the next screen, select the Amazon Linux AMI (64 bit) as shown in Figure 1-3.

1.Choose AMI 7 Chanse Instance Type onfigure Instance 4 Agd Storage & Tapinstance 6 Confgure Securty Grous 7 Review

Step 1. Choose an Amazon Machine Image (AMI) Cancel and Exit

An AMIis 2 template that containg the software configuration (operating system, application server, and applications) required to launch your instance You can select an AMI provided by AWS, our user
COMMUNILy. OF the AWS MErKEIpIace; OF YOU CaN SEIeCt ONE Of yOur 0wn AMIS

Quick Start 110 25 of 25 AMEs

My Abs (T} Amazen Linux AMI 2016.03.3 (HVM), S5D Volume Type - ami-6B68aals

AmaronLinux The Amazon Linux AMI s an EBS-backed, AWS-supported irmage. Thi default image incledes AWS command line Loals, Python, Ruby, Perd, Ba-nit

AS Marke
AWE Marketplace and Java, The repasitoiies include Docker, PHP, MySOL, PostgreSOL, and other packsges
Community ANES Roct device type: 68 Virkuskzation type: e
Red Hat Enterprise Linux 7.2 (HVM), S50 Velume Type - ami-2051284a
Freeter oy s » s i [coiect]
Red Hat FRed Hat Enterprise Linux version 7.2 (HvM), EBS General Purpose (S50 Volume Type sd-bit
Froct device type: ehs Mirtuslzation type: s
2 SUSE Linux Enterprise Server 12 5P1 (HVYM), S50 Volume Type - smi-b7bdfecd m
SUSE Linu: SUSE Linux Erderprise Server 12 Serace Pack 1 (HWM), E eneral Pupose (SE0) Vielume Type. Pubhe Clowd, Advanced Systems 64-bit

Management, Web and Scrigting, and Legacy modules enabled.

Foot device typer et Vieluskzation bype: s

Figure 1-3. Selecting Amazon Linux AMI

For the Instance Type, select a relatively large Instance size (m4.xlarge) as shown in Figure 1-4, because
the default (Free Tier) micro size may not provide sufficient memory or disk space to install Kubernetes.
Some of the instance types such as m4.xlarge may only be launched in a virtual private cloud (VPC). When
you are ready, click Next:Configure Instance Details.

1.Chepse A 2, Choose nstance Type 3, Corigure instance 4 AdoSorage 5 Tag Instance 8. Corbgure Security Group 7. Revitw

GENEral purpose md large 2 -] EBS only s Mogeratz
a General purpose md darge El 15 EBS only = High
GEneral purpose md 2xiarge 8 32 EBS only Yes High
GEneral purpose md dxiarge 16 64 EBS only Yes High
Ganeral purpoae md. 1ldarge 40 160 EBS only es A cugank
GENeral purpase m3 medium ! 375 1x4 (550) - Maderats
General purpase m3 large 2 15 1% 32 (550) - Maderate
GENEral purpase m3 darge 4 15 2 %40 (350) Yes High
General purpose m3.Idarge 8 30 2% 80 (350) Yes High
Compute optimized cd Jarge 2 3.75 EBS onily s Moderate

Cancel Previous Mext: Configure Instance Datails

Figure 1-4. Choosing an instance type

CHAPTER 1 * KUBERNETES ON AWS

Specify the instance details such as Network VPC and Subnet as shown in Figure 1-5. When finished,
click Next: Add Storage.

1. Choose AMI 2. Choose Instance Tyoe 3. Configure Instance 4 Add Storage 5. Tag Instance B. Configure Securly Group T Review

Step 3: Configure Instance Details

Confgure e INStance o Sul your reguirEmENts. You Can EBUNCh muitiple INSTances from tne same AMI, request Spot instances o take advantage of the Iower pricing, 35$ign an 3CCE5S M3Nagement role to the -

instance, and mare

Number of Instances

Purchasing eptien (i

Metwork |

Subnet

1 Launch into Auto Scaling Group (1)
 Request Spot instances

vpe-301 2650 (172.50.0.0/18) v] C Creatz newVPC
subnet-bboS2386(172 30 4 1724) | us-east-1e v
248 P Adaresses availzblz

Create new subnet

Auto-assign Publie 1P (j Use subnet seting (Enable) v
Placement group (j Mo placement group M
14M role (i Hone v c Creats new LAM role
Shutdewn behavier (i Stop r

Enable termination protection |

Manitaring |

Protect against accidental termination

Frania Clnodiisteh dataliad mantaning

Figure 1-5. Configuring instance details

Review and Launch

Cancel Previous Hext: Add Storage

A new EC2 instance is created. Obtain the Public DNS for the instance as shown in Figure 1-6.

Launch Instance BRCACTT I ST 0] S
4

@ o % 0
Q, search . 6318b49b @ K < 1te1oft
B Name = Instance ID - | Type -~ ity Zone = | State - Status Checks - Alarm Status Public DNS = Publ
ad HE31Eb430 md. xlarge us-gast-le @ running Z Initializing None % ec252-3260-193comp.. 523
»
_N_J=]

Instance: | 1-6318b45b QPulillc DNS: @c2-52-3-250-193.compute-1.amazonaws.com

Figure 1-6. The public DNS

CHAPTER 1 * KUBERNETES ON AWS

Using the private key that was specified when the instance was created, SSH log in to the instance:
ssh -i "docker.pem" ec2-user@ec2-52-3-250-193.compute-1.amazonaws.com

The Amazon Linux command prompt is displayed as shown in Figure 1-7.

ec2-user@ip-172-30-4-159:~

File Edit View Search Terminal Help
[root@localhost ~]# ssh -i "docker.pem" ec2-user@ec2-52-3-250-193.compute-1.amal"
zonaws. com

The authenticity of host 'ec2-52-3-250-193.compute-1.amazonaws.com (52.3.250.193
)' can't be established.

IRSA key fingerprint is ad:09:29:d7:65:03:4f:fe:ba:f7:a9:ad:83:e4:64:9a.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'ec2-52-3-250-193.compute-1.amazonaws.com,52.3.250.19
3' (RSA) to the list of known hosts.

| [)
[/ Amazon Linux AMI

N1

https://aws.amazon.com/amazon-linux-ami/2016.03-release-notes/
1 package(s) needed for security, out of 1 available

Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-30-4-159 ~]$]

Figure 1-7. Amazon Linux AMI command prompt

Configuring AWS

When a Kubernetes cluster is started on AWS EC2, a new VPC is created for the master and minion nodes.
The number of VPCs that may be created in an AWS account has a limit, which can vary for different users.
Before starting the cluster, delete the VPCs that are not being used so that the limit is not reached when a
new VPC is created. To begin, select VPC in the AWS Services as shown in Figure 1-8.

CHAPTER 1 * KUBERNETES ON AWS

History All AWS Services

3 F‘{,D Compute

p ec2 Storage & Content Delivery

T AM Database

B# Console Home Networking

& Device Farm Developer Tools
Management Tools

Security & Identity
Analytics

Internet of Things
Mobile Services
Application Services
Enterprise Applications
Game Development

Figure 1-8. Selecting the VPC console

CHAPTER 1 * KUBERNETES ON AWS

Click on Start VPC Wizard as shown in Figure 1-9 to list and delete VPCs if required.

Resources < Service Health
4
Launch EC2 Instances Current Status Details

1ces will launch in the US East (M. Virginia) region © Amazon VPC - US East (N. Virginia) Service is operating normally
You are using the following Amazon VPC resources in the US East (N. © Amazon EC2 - US East (N, Virginia) - Sarvice s operating normally
Vinginia) reglon Wiew complete service health details
2 VPCs 2 Internet Gateways
8 Subnets 3 Route Tables e :
R A 0 i Additional Information
0 VPC Peering Connections 0 Endpoints
0 Nat Gateways B0 Security Groups VPC Documentation
1 Running Instance 0 VPN Connections All VPC Resources
0 Virtual Private Gateways 0 Customer Gateways Forums

Report an Issue

VPN Connections

Amazon VPC enables you to use your own isolated resources within the
AWNS cloud, and then connect those resources directly to your own
datacenter using Industry-standard encrypted IPsec VPN connections

Create YPN Connection

Figure 1-9. Starting the VPC Wizard

The VPCs already available are listed as shown in Figure 1-10.

Q. Search VPCs and their propert X “{1to20f2VPCs "
Name ~ VPCID ~ Stiate = VPCCIDR ~ DHCP options set - Route table -~ Network ACL = Tenancy ~ | Def
kubemstes-wpe wpc-eBbbl7a] available 17220 0018 dopt-2d345a49 | kubem. .. rth-aebfbSc9 ackbbbld? de Default Mo

[] wpe-3b12efsf available 17230 0016 dopt-09b24TEC rib-ch3B9afl acka%2ad2ed Default No

Figure 1-10. Available VPCs

CHAPTER 1 * KUBERNETES ON AWS

To delete a VPC, select the VPC and click Actions » Delete VPC, as shown in Figure 1-11.

Create VPC < u @
“{1to10t1VPC P

= WPCCIDR ~ DHCP optionsset -~ Route table - Network ACL = Tenancy ~ | Def

Gilable 1723000116 dopt-09b3476c b-cb389al acha92ad2ed Default Na

Create Flow Log

Figure 1-11. Selecting Actions » Delete VPC

In the confirmation screen that appears, click Yes, Delete. If the VPC is not associated with any instance,
the VPC should start to be deleted as shown in Figure 1-12.

Q

Deleting... :

Figure 1-12. Deleting a VPC

If a VPC is associated with any instance, then it is not deletable and the Yes, Delete button is
unavailable, as shown in Figure 1-13.

10

CHAPTER 1 * KUBERNETES ON AWS

Delete VPC

This WPC contains one or more instances, and cannot be deleted until those instances have been

terminated. Click here to view your instances.
Cancel Yes, Delate
L3

Figure 1-13. The message for a nondeletable VPC

Next, configure AWS on the Amazon Linux instance using the following command:
aws configure

When prompted, specify the AWS Access Key ID and AWS Access Key. Also specify the default region
name (us-east-1) and the default output format (json) as shown in Figure 1-14.

[ec2-user@ip-172-30-4-159 ~]$ aws confiaure
AWS Access Key ID [None]: AKIAISQVST(

AWS Secret Access Key [None]: VulD5gDccuicc.
Default region name [None]: us-east-1
Default output format [None]: json
[ec2-user@ip-172-30-4-159 ~]$

Figure 1-14. Configuring AWS

Starting the Kubernetes Cluster

Now that you have configured AWS, run the following command to install Kubernetes:
export KUBERNETES PROVIDER=aws; wget -q -0 - https://get.k8s.io | bash

This command starts the Kubernetes installation process as shown in Figure 1-15.

[ec2-user@ip-172-30-4-159 ~]$ aws configure

AWS Access Key ID [None]: AKIAISQVST~

AWS Secret Access Key [None]: VulD5g

Default region name [None]: us-east-1

Default output format [None]: json

[ec2-user@ip-172-30-4-159 ~]$ export KUBERNETES PROVIDER=aws; wget -q -0 - https
://get.k8s.io | bash]

Figure 1-15. Installing Kubernetes

11

CHAPTER 1 * KUBERNETES ON AWS

The preceding command invokes the cluster/kube-up.sh script, which further invokes the cluster/
aws/util. sh script using the configuration specified in the cluster/aws/config-default.sh script. One
master and four minions are started on Debian 8 (jessie) as shown in Figure 1-16. The cluster initialization is
started subsequently

>

Sleeping for 3 seconds...
aiting for instance 1i-04978291 to be running (currently pending)
Sleeping for 3 seconds...
aiting for instance i-04978291 to be running (currently pending)
Sleeping for 3 seconds...
[master running]
|{Attaching IP 560.112.79.71 to instance 1-04978291
|Attaching persistent data volume (vol-c026ee75) to master
2016-06-28T18:42:25.708Z /dev/sdb i-04978291 attaching v
ol-cB26ee75
cluster "aws_kubernetes" set.
user "aws kubernetes" set.
context "aws kubernetes" set.
switched to context "aws_kubernetes".
user "aws kubernetes-basic-auth” set.
Wrote config for aws_kubernetes to /home/ec2-user/.kube/config
Creating minion configuration
Creating autoscaling group

4 minions started; ready]
Waiting for cluster initialization.
This will continually check to see if the API for kubernetes is reachable.

This might loop forever if there was some uncaught error during start
up.

T

Figure 1-16. Starting master and minions

The cluster is started and validated, and the components installed are listed. The URLs at which the
Kubernetes master, Elasticsearch, Heapster, and other services are running are listed as shown in Figure 1-17.
The directory path at which the Kubernetes binaries are installed is also listed.

12

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 * KUBERNETES ON AWS

Flag --api-version has been deprecated, flag is no longer respected and will be [~
deleted in the next release

Validate output:

NAME STATUS MESSAGE ERROR

scheduler Healthy ok

controller-manager Healthy ok

etecd-1 Healthy {"health": "true"}

etcd-0 Healthy {"health": "true"}

Cluster validation succeeded

Done, listing cluster services:

Kubernetes master is running at https://56.112.79.71

Elasticsearch is running at https://50.112.79.71/api/v1/proxy/namespaces/kube-sy
stem/services/elasticsearch-logging

Heapster is running at https://50.112.79.71/api/v1/proxy/namespaces/kube-system/
services/heapster

Kibana is running at https://50.112.79.71/api/v1/proxy/namespaces/kube-system/se
rvices/kibana-logging

KubeDNS is running at https://50.112.79.71/api/v1/proxy/namespaces/kube-system/s
ervices/kube-dns

kubernetes-dashboard is running at https://50.112.79.71/api/v1l/proxy/namespaces/
kube-system/services/kubernetes-dashboard

Grafana is running at https://50.112.79.71/api/v1l/proxy/namespaces/kube-system/s
ervices/monitoring-grafana

InfluxDB is running at https://50.112.79.71/api/v1/proxy/namespaces/kube-system/
services/monitoring-influxdb

Kubernetes binaries at /home/ec2-user/kubernetes/cluster/

You may want to add this directory to your PATH in $HOME/.profile

Installation successful!

[ec2-user@ip-172-30-4-159 ~]$ || v

Figure 1-17. Kubernetes and components started

The one kubernetes-master and four kubernetes-minion nodes started are listed in the EC2 console as

shown in Figure 1-18.

4

@ o % @
Q Filter by tags and aliributes or sesrch by keyword @ K < 1togofs > 3
HName =i n = Type - Availability Zone ~ Instance State ~ Status Checks -~ Alarm Status Public DNS
KubemetzshMastor i5b3e2aa2 12.micro us-easl-le @ stopped None =
kubernetes-minion i-GeifS8ad 12.micro us-east-le @ running © 22checks.. None Y ec2-5482-173-104.com.,
kubermetes-minian Adif 585 2. micro us-gast-le @ running @ 22checks ... None M ec2-54175-223-112 com
kubernetes-minion G506 t2.micro ug-east-le @ running & 272 checks ... None N 2c254-224-28.97 comp..
kubermetes-minion -5#758a7 12 micro us-east-1g @ running & 27 checks None “ 8c2-54-175-135-241 co,
Kubemetes 63180430 md.xlarge us-east-le @ running & 22checks.. None Y 262:52.3-250-193.comp..
KubemetesWorker 7730238 t2.micro us-east-le @ stopped None %
kubernetes-master -7 di75e85 m3.medium us-gasl-le @ running & 22 checks ... None % #c2-52-205-128-166.co...
Sqoop 57 7bTTd t2.micro us-easi-le @ stopped None %

Figure 1-18. kubernetes-master and kubernetes-minion EC2 instances

13

CHAPTER 1 * KUBERNETES ON AWS

The cluster information may be obtained with the kubectl cluster-info command, as shown in
Figure 1-19.

[ec2-user@ip-172-30-4-159 ~]$ kubectl cluster- 1nfo
Kubernetes master is running at 3. 16
Elasticsearch is running at

Heapster is running at

Kibana is running at

Ku beDN; is runnlng at

kL’nt:' etes- dafh'mnrf‘ is runnlng at

is runnmg at htt

Infl .aDB is runnlng at

1

T

[ecz user@lp 172-30-4-159 -]s [|

(<]

Figure 1-19. Running the kubectl cluster-info command

The different instances need to access each other. A security group is created for each of the instance
types, master and minion, as shown in Figure 1-20.

(B S | Security Group Actions
4

Filter Al security groups v Q Search Security Groups and tr X
Name tag +~ Group ID + Group Name * VPC ~ Description -
[} [} 5g-50726836 default vpe-c25322a36 default VPC security group

5g-3687285e kubemetes-master-ku... vpc-c25322a6 (172.20.0.016... Kubemetes security group applied to ma
sg-02721864 kubemetes-minion-ku... vpc-c25322a6 (172.20.0.0M16... Kubemetes security group applied to min.

Figure 1-20. Security groups

To add all traffic between the instances, add the default security group to the security groups for the
master and minion; the default security group allows all traffic of all protocols from all sources. To add a
security group to an instance (kubernetes-master, for example) select the instance. Then select Actions »
Networking » Change Security Groups as shown in Figure 1-21.

14

CHAPTER 1 * KUBERNETES ON AWS

Launch Instance Connect Actions ~

e

Name = e Type ~ Availability Zone + Instance State -~ Status Checks -~ Alarm Status

KubemetesMaster us-gast-1e @ stopped None

kubemetes-minion us-east-1e @ running & 272 checks Nome
kubernetes-minion running @ 272 checks None
kubemetes-minion running & 272 checks None
kubemetes-minion running @ 22checks ... None
Kubermetes H6318b49b unning @ 22checks ... None
KubemetesWarker F73d298e g stopped None
B kubemstes-master 7 di75685 us-east-1e running & 22 checks ... None
Sqoop +8577b77d 2. micro us-east-1e @ stopped None

Figure 1-21. Selecting Actions » Networking » Change Security Groups

In the Change Security Groups screen, select the default security group in addition to the security group
assigned to the master node and click Assign Security Groups as shown in Figure 1-22.

Change Security Groups X

Instance 1D:-7d75885
Interface ID:eni-a70ebeab

Select Security Group(s) to associate with your instance

Security Group ID Security Group Name Description

o) $0-6987c512 default default VPC security group

o) 5g-4587c53e kubernetes-master-kubernetes Kubernetes security group applied to master nodes
50-3e87c545 kubernetes-minion-kubemetes Kubernetes security group applied to minion nodes

TuCIl Assign Security Groups

Figure 1-22. Assigning security groups for kubernetes-master

15

CHAPTER 1 * KUBERNETES ON AWS

Similarly, for each of the kubernetes-minion nodes, add the default security group and click Assign
Security Groups as shown in Figure 1-23.

Change Security Groups

Instance ID:-5cf75824
Interface ID:eni-8bf34087

Select Security Group(s) to associate with your instance

Security Group ID Security Group Name Description
) $0-6987c512 default default VPC security group

$g-4587c¢53e kubernetes-master-kubernetes Kubernetes security group applied to master nodes
i 50-3e87c545 kubernetes-minion-kubemetes Kubernetes security group applied to minion nodes

TuCCIl Assign Security Groups

Figure 1-23. Assigning security groups for kubernetes-minion

Alternatively, if the default security group was modified not to allow all traffic, the security group

assigned to the kubernetes-master and each of the kubernetes-minion security groups should include an
inbound rule to all traffic, as shown in Figure 1-24.

Edit inbound rules

Amywhere v | 0.0.0.0/0
fy Al trafic v Al 0- 65535 [rmpwhere + | [0.0.0.010

Add Rule cancal m

Figure 1-24. The security group with inbound rules to allow all traffic

X
Type i Protocel (i Port Range (i Source (i
Al tramc L Al 0- 65535 Custom ¥ | |sg-02721864 (%]
All traffic M Al 0- 65535 Custorn v | |sg-3872r85¢ [<]
SSH . TCFP 22 Anywhere ¥ | |0.0.0.00 (%]
HTTPS v TCP 443 [x]
o

16

CHAPTER 1 © KUBERNETES ON AWS

Testing the Cluster

Next, we will test the Kubernetes cluster. First, we need to add the directory path in which the Kubernetes
binaries are installed to the environment variable PATH.

export PATH=/home/ec2-user/kubernetes/platforms/linux/amd64:$PATH

Subsequently echo the PATH environment variable as shown in Figure 1-25.

[ec2-user@ip-172-30-4-159 kubernetes]$ export PATH=/home/ec2-user/kubernetes/pla
tforms/linux/amd64 : SPATH

[ec2-user@ip-172-30-4-159 kubernetes]$ cd ~

[ec2-user@ip-172-30-4-159 ~]$ echo $PATH
/home/ec2-user/kubernetes/platforms/linux/amd64: fusr/Llocal/bin:/bin: /usr/bin:/us
r/local/sbin:/usr/sbin:/sbin:/opt/aws/bin:/home/ec2-user/.local/bin:/home/ec2-us
er/bin

Figure 1-25. Setting the PATH environment variable

To test the cluster, run a Docker image such as the nginx image to create three pod replicas:
kubectl run nginx --image=nginx --replicas=3 --port=80
List the pods:
kubectl get pods
List the deployments:
kubectl get deployments
Create a service of type LoadBalancer for the deployment:
kubectl expose deployment nginx --port=80 --type=LoadBalancer
List the services:
kubectl get services
List the pods across the cluster
kubectl get pods -o wide

If Kubernetes has installed correctly, all the previous commands should run correctly and generate the
output to indicate that a pod cluster has been created, as shown in Figure 1-26.

17

CHAPTER 1 * KUBERNETES ON AWS

[ec2-user@ip-172-30-4-159 ~]$ kubectl run nginx --image=nginx --replicas=3 --por
t=80

|deployment "nginx" created

[ec2-user@ip-172-30-4-159 ~]$ kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-198147104-de6gq 1/1 Running @ 23s
nginx-198147104-q322k 1/1 Running @ 23s
nginx-198147104-u3sah 1/1 Running © 23s
[ec2-user@ip-172-30-4-159 ~]$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 3 3 3 3 45s

[ec2-user@ip-172-30-4-159 ~]$ kubectl expose deployment nginx --port=80 --type=L
oadBalancer

service "nginx" exposed

[ec2-user@ip-172-30-4-159 ~]$ kubectl get services

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes 10.0.0.1 <none> 443/TCP 55m

nginx 10.0.165.153 80/TCP 22s
[ec2-user@ip-172-30-4-159 ~]$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE NODE
nginx-198147104-debgq 1/1 Running @ 2m ip-172-20-0-175
.us-west-2.compute.internal

nginx-198147104-q322k 1/1 Running © 2m ip-172-20-0-174
.us-west-2.compute.internal

nginx-198147104-u3sah 1/1 Running © 2m 1p-172-20-0-175

£
=

.us-west-2.compute.internal
[ec2-user@ip-172-30-4-159 ~]$]

Figure 1-26. Creating a pod cluster for nginx

Configuring the Cluster

The default configuration settings used to start a new cluster are specified in the cluster/aws/config-
default.sh file. The default configuration includes settings for AWS zone, number of nodes, master size,
node size, AWS S3 region, AWS S3 Bucket, and instance prefix.

export KUBE_AWS ZONE=eu-west-1c

export NUM_NODES=3

export MASTER_SIZE=m3.medium

export NODE_SIZE=m3.medium

export AWS_S3_REGION=eu-west-1

export AWS_S3_BUCKET=mycompany-kubernetes-artifacts
export INSTANCE_PREFIX=k8s

The config-default.sh file may be opened in a vi editor:
sudo vi /home/ec2-user/kubernetes/cluster/aws/config-default.sh

The configuration settings are listed as shown in Figure 1-27.

18

CHAPTER 1 © KUBERNETES ON AWS

ec2-user@ip-172-30-4-159:~
File Edit View Search Terminal Help
Bi/bin/bash

Copyright 2014 The Kubernetes Authors All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

LRI I R R R

Al

ZONE=${KUBE AWS ZONE:-us-east-le} _
MASTER SIZE=${MASTER SIZE:-} I
NODE SIZE=${NODE SIZE:-}
NUM_NODES=${NUM NODES: -4}

Dynamically set node sizes so that Heapster has enough space to run
if [[-z ${NODE SIZE}]]; then
if ((${NUM _NODES} < 50)); then
NODE_SIZE="t2.micro"
elif ((${NUM NODES} < 150)); then
NODE_SIZE="t2.small"
else
NODE_SIZE="t2.medium"
fi
./kubernetes/cluster/aws/config-default.sh" 157L, 6168C [~

Figure 1-27. Listing the default configuration settings

As an example, change the AWS zone from us-east-1e to us-west-2a as shown in Figure 1-28.

19

CHAPTER 1 © KUBERNETES ON AWS

!/bin/bash
Copyright 2014 The Kubernetes Authors All rights reserved.

i

#

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#

#

#

#

#

#

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

*

ZONE=${KUBE_AWS_ZONE:-us-west-2a}
MASTER SIZE=${MASTER SIZE:-}
NODE_SIZE=${NODE_SIZE:-}
NUM_NODES=${NUM_NODES: -4}

Dynamically set node sizes so that Heapster has enough space to run
if [[-z ${NODE_SIZE}]]; then
if ((${NUM NODES} < 50)); then
NODE_SIZE="t2.micro"
elif ((${NUM NODES} < 150)); then
NODE_SIZE="t2.small"
else
NODE_SIZE="t2.medium"
fi
"/home/ec2-user/kubernetes/cluster/aws/config-default.sh" 157L, 6168C

Figure 1-28. Modifying the AWS zone

Shut down the cluster after making any modifications:
/home/ec2-user/kubernetes/cluster/kube-down.sh

Restart the cluster:
/home/ec2-user/kubernetes/cluster/kube-up.sh

The cluster should be started in the us-west-2a zone as shown in Figure 1-29.

20

—==—

CHAPTER 1 © KUBERNETES ON AWS

Create Volume IS
b @ o o0

Q, Fiter by ta it i (2] 1to6of 6
Name = Volume Il - Size = Volume Type - 10PS = Snapshot = Created = Availability Zone - State

vok5d2T efel RGB ap2 100 / 3000 snap-e9a55571 June 28, 2016 at 11 us-wesi-2a @ inuse
vol5227 efe? 32 GB gp2 100 / 3000 snap-e9a55571 June 28, 2016 at 11 us-west-2a @ inuse
vokddZ7 o3 32GB ap2 100 /3000 snap-e9a5557 1 June 28, 2016 at 11 us-wesl-2a @ inuse
vol 47 effa RN Ge gp2 100 / 3000 snap-e9a55571 June 28, 2016 at 11 us-west-2a @ inuse
vol-TalGeacl B8 GiB ap2 100 /3000 snap-e9a58571 June 28, 2016 at 11 us-west-2a @ inuze

B kubemetes-masterpd wokclZ6eeT5 20 GiB gp2 100 / 3000 June 28, 2016 at 11 us-west-2a @ inuse

Figure 1-29. Restarted Kubernetes cluster with nodes in the new AWS zone

Stopping the Cluster

To stop the cluster, run the kube-down.sh command:
/home/ec2-user/kubernetes/cluster/kube-down.sh

As the output in Figure 1-30 indicates, the ELBs in the VPC are deleted, the instances in the VPC are
deleted, and the auto-scaling groups and the auto launch configuration are deleted.

[ec2-user@ip-172-30-4-159 ~]$ /home/ec2-user/kubernetes/cluster/kube-down.sh [~
Bringing down cluster using provider: aws

Deleting ELBs in: vpc-e6bb@781

|waiting for ELBs to be deleted

All ELBs deleted

Deleting instances in VPC: vpc-e6bb0781

Deleting auto-scaling group: kubernetes-minion-group-us-east-le

Deleting auto-scaling launch configuration: kubernetes-minion-group-us-east-le
Deleting auto-scaling group: kubernetes-minion-group-us-east-1le

Deleting auto-scaling group: kubernetes-minion-group-us-east-le

Deleting auto-scaling group: kubernetes-minion-group-us-east-le

Waiting for instances to be deleted

Waiting for instance i-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance 1-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance 1-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance i-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance i-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance 1-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance i-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds... E
Waiting for instance i-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance 1-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance i-7df75885 to be terminated (currently shutting-down)

(<]

Figure 1-30. Stopping a Kubernetes cluster
21

CHAPTER 1 © KUBERNETES ON AWS

After all instances have been deleted, the elastic IP is released, and eventually the security groups and
VPC are deleted as shown in Figure 1-31.

=

= ec2-user@ip-172-30-4-159:~
File Edit View Search Terminal Help

Waiting for instance i-7df75885 to be terminated (currently shutting-down) [~
Sleeping for 3 seconds...

Waiting for instance i-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance i-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance 1-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance 1-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance i-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance i-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance i1-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

Waiting for instance i-7df75885 to be terminated (currently shutting-down)
Sleeping for 3 seconds...

All instances deleted

Releasing Elastic IP: 52.205.128.166

Deleting volume vol-42cddacc

Cleaning up resources in VPC: vpc-ebbb@781

Cleaning up security group: sg-aabefcdl

Cleaning up security group: sg-4587c53e

Cleaning up security group: sg-3e87c¢545

Deleting security group: sg-aabefcdl

Deleting security group: sg-4587c53e

Deleting security group: sg-3e87c545

Deleting VPC: vpc-e6bb8781

Done
[ec2-user@ip-172-30-4-159 ~]$ |} [

Figure 1-31. Deleting instances, volumes, security groups, and VPC

Subsequently, the cluster may be restarted if required.

/home/ec2-user/kubernetes/cluster/kube-up.sh

Summary

In this chapter we discussed installing Kubernetes on AWS. The Amazon Linux AMI must be used as it

has the AWS CLI preinstalled. Too many VPCs must not be created prior to creating a Kubernetes cluster,

as anew VPC is created when the cluster is created and having too many prior VPCs could make the VPC
quota allocated to a user account to be exceeded. We spun up a Kubernetes cluster consisting of a single
master and three minions. In the next chapter we shall install Kubernetes on CoreOS, the Linux OS designed
specifically for containers.

22

CHAPTER 2

Kubernetes on CoreOS on AWS /

Kubernetes is usually used with a cloud platform, as the hardware infrastructure required for a multi-node
Kubernetes cluster is best provisioned in a cloud environment. In Chapter 1 we used the kube-up tool to spin
up a cluster without requiring any configuration.

Problem

The kube-up tool does not create a production-ready cluster. One of the limitations of kube-up is that it does
not support CoreOS. Docker has to be installed, even though the Docker installation is preconfigured.

Solution

Docker is installed out-of-the-box on CoreOS. The CoreOS tool kube-aws can be used to spin up a
production-ready Kubernetes cluster on CoreOS nodes on EC2 without much configuration. The kube-

aws tool makes use of AWS CloudFormation to create a cluster of EC2 instances running CoreOS. AWS
CloudFormation is a service to provision AWS resources such as EC2 instances, Auto Scaling Groups,

and Elastic Load Balancing load balancers, all using a template. Using a single cluster configuration file

to provision an AWS CloudFormation for a Kubernetes cluster is a management design pattern. The

same cluster template may be reused to provision other Kubernetes clusters. Figure 2-1 shows an AWS
CloudFormation that consists of a Kubernetes Master node and three Kubernetes worker nodes, along with
an Auto Scaling Group and a Launch Configuration.

© Deepak Vohra 2017 23
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_2

http://dx.doi.org/10.1007/978-1-4842-2598-1_1

CHAPTER 2 © KUBERNETES ON COREQOS ON AWS

AWS
CloudFormation

)

) Worker Node
Master Node
(Core0S)
)
m Worker Node
Configuration (Core05)
kube-aws > ~— —
)
) Worker Node
Auto Scaling (Core0S)
Group -/

~—

Figure 2-1. AWS CloudFormation for a Kubernetes cluster

Overview

AWS CloudFormation provisions a collection of AWS resources based on a template, which defines the
resources and the dependencies. In this chapter we shall deploy an AWS CloudFormation for a cluster of
CoreOS instances running Kubernetes. We shall use an AWS Launch Configuration and a Scaling Group for
automatically launching and scaling the CloudFormation. The kube-aws CloudFormation generator CLI tool
is used to create the CloudFormation stack from a template. The stages we'll explore are as follows:

Setting the Environment

Configuring AWS Credentials

Installing kube-aws

Setting Up Cluster Parameters

Creating a KMS Key

Setting Up an External DNS Name
Creating the Cluster CloudFormation
Creating an Asset Directory

Initializing the Cluster CloudFormation
Rendering Contents of the Asset Directory

Customizing the Cluster

24

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

Validating the CloudFormation Stack
Launching the Cluster CloudFormation
Configuring DNS

Accessing the Cluster

Testing the Cluster

Setting the Environment

The following software is required for this chapter:
e AWS Command Line Interface (CLI)
e kube-aws CloudFormation Generator

To set up your environment, first create an Amazon EC2 instance from Amazon Linux AMI (ami-
7172b611), which has the AWS CLI preinstalled. Modify the Inbound/Outbound rules to allow all traffic for
all protocols in port range 0-65535 from any source and to any destination. Obtain the Public IP of the EC2
instance. SSH Log in to the EC2 instance:

ssh -i kubernetes-coreos.pem ec2-user@54.86.194.192

The Amazon Linux command prompt is displayed. You're now ready to go.

Configuring AWS Credentials

We need to create a set of AWS Security credentials, which we will use to configure the EC2 instance from
which the CloudFormation stack is launched. The AWS Security credentials used in Chapter 1 may be used
if not deleted. To create new AWS Security credentials click on Security Credentials for the user account and
click on Create New Access Key to create an access key. Copy the Access Key ID and the access key. In the
Amazon Linux instance run the following command to configure the instance with the AWS credentials:
aws configure

Specify the access key ID and access key when prompted. Specify the default region name (us-east-1)
and the output format (json).

Installing Kube-aws

CoreOS applications on GitHub and packaged into AppC images are signed with the CoreOS Application
Signing Key. So that you'll be able to distribute your own work, import the CoreOS Application Signing Key,
as shown here:

gpg2 --keyserver pgp.mit.edu --recv-key FC8A365E

Next, validate the key:

gpg2 --fingerprint FC8A365E

25

http://dx.doi.org/10.1007/978-1-4842-2598-1_1

CHAPTER 2 KUBERNETES ON COREOS ON AWS

Figure 2-2 shows the output from this command. As you can see, the key fingerprint is 18AD 5014 C99E
F7E3 BASF 6CE9 50BD D3EO FC8A 365E, which is the correct key fingerprint; the value is a constant.

[ec2-user@ip-172-30-1-188 ~]$ gpg2 --keyserver pgp.mit.edu --recv-key FCBA365E
gpg: directory " /home/ec2-user/.gnupg' created
lgpg: new configuration file "/home/ec2-user/.gnupg/gpg.conf' created
lgpg: WARNING: options in "/home/ec2-user/.gnupg/gpg.conf' are not yet active dur
ing this run
gpg: keyring "/home/ec2-user/.gnupg/secring.gpg’ created
gpg: keyring ' /home/ec2-user/.gnupg/pubring.gpg’' created
gpg: requesting key FC8A365E from hkp server pgp.mit.edu
gpg: /home/ec2-user/.gnupg/trustdb.gpg: trustdb created
gpg: key FCBA365E: public key "Core0S Application Signing Key <security@coreos.c
om>" imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
[ec2-user@ip-172-30-1-188 ~]$ gpg2 --fingerprint FC8A365E
pub 4096R/FCBA365E 2016-03-02 [expires: 2021-03-01]
Key fingerprint = 18AD 5014 C99E F7E3 BASF 6CE9 50BD D3E@ FCB8A 365E
uid [unknown] Core0S Application Signing Key <security@coreos.com>
sub 2048R/3F1B2C87 2016-03-02 [expires: 2019-03-082]
sub 2048R/BEDDBA18 2016-03-08 [expires: 2019-03-08]
sub 2048R/7EF48FD3 2016-03-08 [expires: 2019-03-08]

[ec2-user@ip-172-30-1-188 ~]$ ||
Figure 2-2. Importing and validating the CoreOS application signing key

Donwload the latest release tarball and detached signature (. sig) for kube-aws from https://github.
com/coreos/coreos-kubernetes/releases

wget https://github.com/coreos/coreos-kubernetes/releases/download/v0.7.1/kube-aws-1inux-
amd64.tar.gz
wget https://github.com/coreos/coreos-kubernetes/releases/download/v0.7.1/kube-aws-1inux-
amd64.tar.gz.sig

Validate the tarball’s GPG signature.

gpg2 --verify kube-aws-linux-amd64.tar.gz.sig kube-aws-linux-amd64.tar.gz

The primary key fingerprint should be 18AD 5014 C99E F7E3 BA5F 6CE9 50BD D3EO FC8A 365E, as
shown in Figure 2-3.

26

https://github.com/coreos/coreos-kubernetes/releases
https://github.com/coreos/coreos-kubernetes/releases

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

[ec2-user@ip-172-30-1-188 ~]$ 1ls -1

total 4552

-rw-rw-r-- 1 ec2-user ec2-user 4655969 Jun 4 00:32 kube-aws-linux-amd64.tar.gz
-rw-rw-r-- 1 ec2-user ec2-user 287 Jun 6 21:36 kube-aws-linux-amd64.tar.gz.
sig

[ec2-user@ip-172-30-1-188 ~]$ gpg2 --verify kube-aws-linux-amd64.tar.gz.sig kube

-aws-linux-amd64.tar.gz

gpg: Signature made Mon 06 Jun 2016 ©9:32:47 PM UTC using RSA key ID BEDDBA18

gpg: Good signature from "Core0S Application Signing Key <security@coreos.com>"

[unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: 18AD 5014 C99E F7E3 BASF 6CE9 50BD D3E® FC8A 365E
Subkey fingerprint: 55DB DA91 BBE1 849E A27F E733 A6F7 1EE5 BEDD BAlS8

[ec2-user@ip-172-30-1-188 ~]$ ||

Figure 2-3. Validate the tarball’'s GPG signature

Extract the binary from the tar.gz file:
tar zxvf kube-aws-linux-amd64.tar.gz
Add kube-aws to the path:
sudo mv linux-amd64/kube-aws /usr/local/bin

The kube-aws CloudFormation generator is installed. You can display information about its usage with
the kube-aws -help command.

Setting Up Cluster Parameters

Before initializing and launching the AWS CloudFormation cluster we need to create or define the following
cluster parameters:

e EC2key pair
e KMSkey
e External DNS name

Before creating a key pair we need to configure an AWS region; we already did that with the aws
configure command. Run the following command to create a key pair called kubernetes-coreos and save it
as kubernetes-coreos.pem:

aws ec2 create-key-pair --key-name kubernetes-coreos --query 'KeyMaterial' --output text >
kubernetes-coreos.pem

Modify the access permissions of the key pair using the mode 400, which sets access permissions to
read by owner.

chmod 400 kubernetes-coreos.pem

27

CHAPTER 2 KUBERNETES ON COREOS ON AWS

The key pair is created and access permissions are set as shown in Figure 2-4.

[ec2-user@ip-172-30-1-188 ~]$ aws ec2 create-Key-pair --key-name kubernetes-core
0s --query 'KeyMaterial' --output text > kubernetes-coreos.pem
|[ec2-user@ip-172-30-1-188 ~]$ chmod 400 kubernetes-coreos.pem

Figure 2-4. Creating the key pair

On the AWS console the kubernetes-coreos key pair should be listed, as shown in Figure 2-5.

HEEVCRICUETE Import Key Pair | Delete
4

Q
Key pair name ~ Fingerprint -
docker be:{3:9d:13:5d:9b:04:379d:04: df o7 :0e:36:c0:1b:00: 16:80:7b
Docker-Ec2 33:el:fc:ac:5a:d3:7e:9b:46:91:07:7¢:c9:e5:6d:26:29:5d:4¢:22

dockercloud-786784c3-5e4f-4 cer50:15:e0:0d:85:0d:b3:99 ad: c9:f6e:13:57 .74

dockerEC2 11:6:cfE87:6d:82:3. d2:6c:8b: 1b:43:33: bf 2. d0:60: 02:47:¢9
dvohra 19:ac:63:ea:b8: cf e2:8f ef a2: 1a:a0.5e:8b:50: ac:Bb: 7 c:bD: ac
ec2 Da:b4:ad:fe:59:1d: ca:96:9b:f4: da:71:60:52: cb: d5:01:8e:d5:a8
kubernetes-7104e4d2b03972 . 40:86:d8:ba:38:18:c9:6:ba:58:21:07:12:7a'bd aa

B kubemetes-coreos 5e:81:7£9102:31:b8:4¢:7c:47:43:65: ab:b:4c:8a:d5:9¢.f8:0d

Figure 2-5. Listing the key pair in the EC2 console

Creating a KMS Key

Next, create a KMS key, which is used to encrypt and decrypt cluster TLS assets and is identified by an
Amazon Resource Name (ARN) string. Use the aws CLI to create a KMS key for region us-east-1.

aws kms --region=us-east-1 create-key --description="kube-aws assets"
A KMS key is created as shown in Figure 2-6. Copy the KeyMetadata.Arn string arn:aws :kms :us-east-

1:672593526685: key/b7209ba2-cb87-4ccf-8401-5c6Fd4fbofob to be used later to initialize the cluster
CloudFormation.

28

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

[ec2-user@ip-172-30-1-188 ~]$ aws kms --region=us-east-1 create-key --descriptio
n="kube-aws assets"
{
"KeyMetadata": {
"KeyId": "b7209ba2-cb87-4ccf-8401-5c¢6fd4fbafob",
"Description": "Kube-aws assets",
"Enabled": true,
"KeyUsage": "ENCRYPT DECRYPT",
"KeyState": "Enabled",
"CreationDate": 1467655082.654,
"Arn": "arn:aws:kms:us-east-1:672593526685:key/b7209ba2-cb87-4ccf-8401-5
c6fd4fbofob",
"AWSAccountId": "672593526685"
}

}
[ec2-user@ip-172-30-1-188 ~]$ |}

Figure 2-6. Creating a KMS key

Setting Up an External DNS Name

Next you need to register a domain name with a domain registrar, as we shall be using the domain’s external
DNS name to make the cluster API accessible. We have used the external DNS name NOSQLSEARCH. COM. The
NOSQLSEARCH.COM domain is not usable for all users, and different users would need to register a different
domain name with a domain registry. Or, use a domain that is already registered.

Creating the Cluster

Creating a cluster requires the following procedure:
1. Create an asset directory.
Initialize the CloudFormation stack.
Render the contents of the asset directory.
Customize the cluster optionally in the cluster.yaml file.

Validate the CloudFormation stack and the cloud-config user data files.

@ o ~ w b

Launch the CloudFormation stack.

We shall discuss each of these stages next.

Creating an Asset Directory

Create a directory on the Amazon Linux EC2 instance for the generated assets. Then cd (change directory) to
the asset directory:

mkdir coreos-cluster
cd coreos-cluster

29

CHAPTER 2 KUBERNETES ON COREOS ON AWS

Initializing the Cluster CloudFormation

Using the Amazon EC2 key pair, KMS Key ARN string, and external DNS name, initialize the CloudFormation
stack:

kube-aws init --cluster-name=kube-coreos-cluster

--external-dns-name=NOSQLSEARCH.COM

--region=us-east-1

--availability-zone=us-east-1c

--key-name=kubernetes-coreos
--kms-key-arn="arn:aws:kms:us-east-1:672593526685:key/b7209ba2-cb87-4ccf-8401-5c6fd4fbofob "

The CloudFormation stack assets are created; the main configuration file is cluster.yaml, as shown in
Figure 2-7.

[ec2-user@ip-172-30-1-188 ~]$ mkdir coreos-cluster
[ec2-user@ip-172-30-1-188 ~]$ «cd coreos-cluster

[ec2-user@ip-172-30-1-188 coreos-cluster]$ Kkube-aws init --cluster-name=kube-c
oreos-cluster --external-dns-name=NOSQLSEARCH.COM --region=us-east-1 --availabil
ity-zone=us-east-1c --key-name=kubernetes-coreos --kms-key-arn="arn:aws:kms:us-e
ast-1:672593526685: key/b7209ba2-cb87-4ccf-8401-5c6fd4fb9fab”

Success! Created cluster.yaml

Next steps:

1. (Optional) Edit cluster.yaml to parameterize the cluster.

2. Use the "kube-aws render" command to render the stack template.
[ec2-user@ip-172-30-1-188 coreos-cluster]$ [} |

Figure 2-7. Creating CloudFormation stack assets

Rendering Contents of the Asset Directory

Next, render (generate) the cluster assets (templates and credentials), which are used to create, update, and
interact with the Kubernetes cluster.

kube-aws render

The CloudFormation template stack-template.json is created (as shown in Figure 2-8); it will be used
to create the Kubernetes cluster. The cluster.yaml, userdata files for the Kubernetes controller and the
worker, and stack-template.json could optionally be customized.

[ec2-user@ip-172-30-1-188 coreos-cluster]$ kube-aws render
Success! Stack rendered to stack-template.json.

Next steps:
1. (Optional) validate your changes to cluster.yaml with "kube-aws validate"

2. (Optional) Further customize the cluster by modifying stack-template.json or
files in ./userdata.

3. Start the cluster with "kube-aws up".

[ec2-user@ip-172-30-1-188 coreos-cluster]$ |

Figure 2-8. Rendering clustering assets

30

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

Customizing the Cluster

Customizing the cluster is optional, and the CloudFormation stack could be launched with its defaults.
Among the reasons to customize are to use a different cloud provider region and external DNS name than
specified when rendering the cluster assets and to use nondefault settings for other parameters. Some of the
configuration settings in cluster.yaml are discussed in Table 2-1.

Table 2-1. Cluster.yaml Configuration Settings

Configuration setting

Description

Default Value

clusterName

externalDNSName

releaseChannel
createRecordSet

hostedZone

hostedZoneld

keyName

region

availabilityZone

controllerInstanceType

controllerRootVolumeSize

workerCount

workerInstanceType

Name of Kubernetes cluster. If more than one cluster are
to deployed in the same AWS account, Kubernetes cluster
name must be unique within the AWS account. For the
example cluster, set this to kube-coreos-cluster.

DNS name routable to the Kubernetes controller nodes
from worker nodes and external clients. Configure the
createRecordSet and hostedZone options below if you'd

like kube-aws to create a Route53 record sets/hosted zones

for you. Otherwise the deployer is responsible for making
this name routable. For the example cluster, set this to
NOSQLSEARCH. COM.

CoreOS release channel to use. Currently supported
options: [alpha, beta]

Set to true if you want kube-aws to create a Route53 A
Record for you.

The name of the hosted zone to add the externalDNSName
to, such as “google.com” This needs to already exist;
kube-aws will not create it for you.

The ID of hosted zone to add the externalDNSName to.
Either specify hostedZoneld or hostedZone, but not both.

Name of the SSH keypair already loaded into the AWS
account being used to deploy this cluster. For the example
cluster, set to kubernetes-coreos

Region to provision Kubernetes cluster. For the example
cluster, set to us-east-1.

Availability zone to provision Kubernetes cluster when
placing nodes in a single availability zone (not highly-
available) Comment out for multi availability zone setting
and use the subnets section instead. For the example
cluster set to us-east-1c.

Instance type for controller node.
Disk size (GiB) for controller node.
Number of worker nodes to create.

Instance type for worker nodes.

alpha

false

“n

“n

m3.medium
30
1.

m3.medium

(continued)

31

CHAPTER 2 © KUBERNETES ON COREQOS ON AWS

Table 2-1. (continued)

Configuration setting

Description

Default Value

workerRootVolumeSize

vpcld
routeTablelId
vpcCIDR

instanceCIDR

subnets

controllerIP

serviceCIDR
podCIDR

dnsServiceIP
kubernetesVersion

hyperkubeImageRepo

useCalico

stackTags: Name

stackTags: Environment:

Disk size (GiB) for worker nodes.

ID of existing VPC to create subnet in. Leave blank to create

anew VPC.

ID of existing route table in existing VPC to attach subnet to.
Leave blank to use the VPC's main route table.

CIDR for Kubernetes VPC. If vpcld is specified, must
match the CIDR of existing vpc.

CIDR for Kubernetes subnet when placing nodes in a
single availability zone (not highly-available) Leave
commented out for multi availability zone setting and
use the subnets section instead.

Kubernetes subnets with their CIDRs and availability
zones. Differentiating availability zone for two or more
subnets result in high-availability (failures of a single
availability zone won't result in immediate downtimes).

IP Address for the controller in Kubernetes subnet. When
we have two or more subnets, the controller is placed in
the first subnet and controllerIP must be included in the
instanceCIDR of the first subnet. This convention will
change once CoreOS supports H/A controllers.

CIDR for all service IP addresses.
CIDR for all pod IP addresses.

IP address of Kubernetes dns service (must be contained
by serviceCIDR).

Version of hyperkube image to use. This is the tag for the
hyperkube image repository.

Hyperkube image repository to use.

Whether to use Calico for network policy. When set to “true,’
kubernetesVersion must also be updated to include a
version tagged with CN,I e.g. v1.2.4_coreos.cni.1.

AWS Tag for CloudFormation stack resources.

AWS Tag for CloudFormation stack resources.

30

“10.0.0.0/16”

“10.0.0.0/24”

10.0.0.50

“10.3.0.0/24”
“10.2.0.0/16”
10.3.0.10

v1.2.4_coreos.1

quay.io/
coreos/
hyperkube

false

J

“Kubernetes’

“Production”

32

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

By default one Kubernetes controller and one Kubernetes worker are launched. As an example, we shall
modify the number of Kubernetes workers to 3. Open cluster.yaml in the vi editor:

sudo vi cluster.yaml

SetworkerCount to 3 as shown in Figure 2-9 and save the cluster.yaml file.

The ID of hosted zone to add the externalDNSName to.
Either specify hostedZoneId or hostedZone, but not both
#hostedZoneId: ""

Name of the SSH keypair already loaded into the AWS
account being used to deploy this cluster.
keyName: kubernetes-coreos

Region to provision Kubernetes cluster
region: us-east-1

Availability Zone to provision Kubernetes cluster when placing nodes in a sing
le availability zone (not highly-available) Comment out for multi availability z
one setting and use the below "subnets’ section instead.

availabilityZone: us-east-1c

ARN of the KMS key used to encrypt TLS assets.
kmsKeyArn: "arn:aws:kms:us-east-1:672593526685:key/b7209ba2-cb87-4ccf-8401-5¢6fd
4fbafob"

Instance type for controller node
#controllerInstanceType: m3.medium

Disk size (GiB) for controller node
#controllerRootVolumeSize: 30

Number of worker nodes to create
workerCount: 3

Instance type for worker nodes
v | -‘

Figure 2-9. Modifying cluster.yaml to set Worker Nodes to 3

Customizing the cluster.yaml does not require the assets to be re-rendered, but if the user data files or
the stack template is modified, the cluster assets must be rerendered (we don’t need to re-render):

kube-aws render

33

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

Validating the CloudFormation Stack
After modifying any file (stack-template.json or the user data files), the CloudFormation stack must be
validated:

kube-aws validate

As indicated by the output in Figure 2-10, the user data and the stack template are valid.

[ec2-user@ip-172-30-1-188 coreos-cluster]$ kube-aws validate
Validating UserData...
UserData is valid.

Validating stack template...
Validation Report: {
Capabilities: ["CAPABILITY IAM"],
CapabilitiesReason: "The following resource(s) require capabilities: [AWS::IAM
::InstanceProfile, AWS::IAM::Role]",
Description: "kube-aws Kubernetes cluster kube-coreos-cluster"
}

stack template is valid.

Validation OK!
[ec2-user@ip-172-30-1-188 coreos-cluster]$ |}

Figure 2-10. Validating the CloudFormation stack

Launching the Cluster CloudFormation

Launch the CloudFormation stack with the following command:

kube-aws up
It could take a few minutes for the cluster to be launched and for the Kubernetes controller and
workers to become available. The preceding command does not complete until the cluster has launched.

The controller IP is listed when the cluster is lauched. The cluster status may be found with the following
command:

kube-aws status

As the output from the preceding commands in Figure 2-11 indicates, the cluster is launched.

34

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

[ec2-user@ip-172-30-1-188 coreos-cluster]$ kube-aws up
Creating AWS resources. This should take around 5 minutes.
Success! Your AWS resources have been created:

Cluster Name: kube-coreos-cluster

Controller IP: 23.22.192.55

The containers that power your cluster are now being dowloaded.

You should be able to access the Kubernetes API once the containers finish downl

oading.
[ec2-user@ip-172-30-1-188 coreos-cluster]$ kube-aws status
Cluster Name: kube-coreos-cluster

Controller IP: 23.22.192.55

Figure 2-11. Launching the cluster and validating status

The EC2 console should list the controller and worker instances as running or initializing, as shown in
Figure 2-12.

Name = Instance ID =~ Instance Type - Awailability Zone - Instance State -~ Status Checks -~ Alarm Status Public D
kube-coreos-cluster-kube-aws-controller -73ac326 m3 medium us-east-le @ running Z Initializing @ noData Vg ec2232
kube-comeos-cluster-kube-aws-worker edad33Eh m3. rmedium ug-gasl-1c @ running E Initializing Nore \a ec254-1;
kb cluster-kub 5 2ad3374 m3. medium us-easi-Ic @ running = Initializing None Y ec2-S54-1t
kube-coreos-cluster-kube-aws-worker 3ad3375 m3. medium vs-sast-ic @ running I Initializing None %% ec2 848

Figure 2-12. Listing the controller and worker nodes

An EC2 security group, a scaling group, and a launch configuration are also created.

Configuring DNS

Next, we need to configure the external DNS, NOSQLSEARCH.COM in the example, to add an A record for the
public IP address of the controller. Obtain the public IP address of the controller from the EC2 console as
shown in Figure 2-13.

35

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

Name = Instance ID = | Type - Awailability Zone - State - Staius Checks - Alarm Status Public D
B hube-coreos-cluster-kube-sws-controller 1-73ac328 m3 medum us-gast-lc @ mnning & 272 checks @ NoDsta Vg ec223-Z
kube-corgos-clusterkube- sws-worker redadd3Eh m3.medum ug-gast-1¢ @ mmning & 272 checks None % ec254.15
kube-coreos-clusterkube-sws-worker H2ad3374 m3 medum ug-east-ic @ rmning & 272 checks Hione %% ec2B4-1t
kube-coreos-clusterkube- sws-worker E3ad3375 m3.mediom us-east-le @ running & 272 checks Hione YW ec254E
»
Instance: | i-T32c3215 (kube-coreos-cluster-kube-aws-controller) Elastic IP: 23.22.192 66 _N =R =
Description Status Checks Monitoning Tags
Instance ID -73ac328 Public DNS ~ ec2-23-22-192-55 compute-
1.am WS COMm
Instance state running b Fublic P EEpepgEREss
Instance type m3 medium Elastic IPs 23.22 192.55"
Private DNS ip-10-0-0-50. ec2 intemal Availability zone us-zast-lc
Private IPs 10.0.0.50 Securily groups kube-coreos-cluster-SecurityGroupControllar- v

Figure 2-13. Obtaining the public IP address

The procedure for adding an A record could be slightly different for different domain registries. In the
DNS Zone File for the external DNS NOSQLSEARCH. COM, choose Edit Record as shown in Figure 2-14 to modify
the A record.

3 All Domains » NOSQLSEARCH.COM <2

NOSQLSEARCH.COM -~

Status: Active | Creal

O Renew = O Upgrade

Settings DNS Zone File Contacts

Zoﬂe Fi!'e ® 17 records in this zone

Last updated 04072016 2:19:58 PM MST

B BulkActions v @ Templates v @ More w Eilter List s

A (Host) @

1 Records (0 Selected)

@ 23.2041.39 600 seconds

GR
Bk

Figure 2-14. Editing the A record

36

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

In the Edit Zone Record screen, specify the public IP address in the Points To field and click Finish as
shown in Figure 2-15.

Edit Zone Record

NOSQLSEARCH.COM H

Record type: View current
A (Host)

Host: *
@

Pointsto: * (&)

232219255

TTL: * & Seconds: *

Custom v 600

Cancel
W

Figure 2-15. Adding an A record

37

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

Click on Save Changes to save the modifications to the A record as shown in Figure 2-16.

NOSQLSEARCH.COM -~

Status: Active | Created: 28/07/2012 | Expires: 2 {2017 | Folder. Mone | Profile: None

O Renew = O Upgrade S Buy&Sel ~ ﬂ Account Change €3 Delete

Settings DNS Zone File Contacts

Zone FiIe@ 17 records in this zone
Last updated 040772016 2:19:58 PM MST
[Add Record ¥ BulkActions v @ Templates v @ More v Filter List
@ Action needed] en't final L i 7] ':\,-Pgh. nges
A (Host) @
1 Records (0 Selected)
« Host Pgints To T Actions
@ 23.22.19255 600 seconds LA D)

Figure 2-16. Saving changes to the A record

The A record should list the Points To as the public IP address of the controller instance as shown in
Figure 2-17.

38

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

NOSQLSEARCH.COM -
Status: Active | Created: 28/07/2012 | Expires: 28/07/2017 | Folder None | Frofile: None

0 Renew = O Upgrade $ Buy&sSel 2_ Account Change £ Delete

Settings DNS Zone File Contacts

Zone File @ 17 records in this zone

Last updated 04/07/2016 2:42:41 PM MST

[Add Record B BulkActions v @ Templates v ® More v Filter List
A (Host) (D

1 Records (0 Selected)

T

ost Points To ITL Actions
(e}

Figure 2-17. The updated A record

v

®

23.22.192.55 600 seconds T

Accessing the Cluster

Download the kubectl binaries, which are used to manage the Kubernetes cluster. Set access permissions to
the kubect] binaries to make them executable, and move the kubect] binaries to /usr/local/bin, which is
in the path:

sudo wget https://storage.googleapis.com/kubernetes-release/release/v1.3.0/bin/1linux/amd64/
kubectl

sudo chmod +x kubectl

sudo mv kubectl /usr/local/bin/

Using the kubectl config file access the cluster to list the nodes. The one controller node and the three
worker nodes should be listed as shown in Figure 2-18. The controller node is not schedulable by default,
which implies that pods cannot be run on the node.

[ec2-user@ip-172-30-1-188 ~]$ kubectl --kubeconfig=kubeconfig get nodes
NAME STATUS AGE
ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 35m
ip-10-0-0-56.ec2.internal Ready 35m
ip-10-0-0-57.ec2.internal Ready 35m
ip-10-0-0-58.ec2.internal Ready 35m
[ec2-user@ip-172-30-1-188 ~]$ |}

Figure 2-18. Listing the Kubernetes cluster nodes

39

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

Using the public IP of the controller instance, access the controller instance. The user name must be
specified as “core” as the instances are running CoreOS.

ssh -i "kubernetes-coreos.pem" core@23.22.192.55

The preceding command logs into the CoreOS controller instance as shown in Figure 2-19.

[ec2-user@ip-172-30-1-188 ~]$ ssh -i "kubernetes-coreos.pem" core@23.22.192.55
The authenticity of host '23.22.192.55 (23.22.192.55)' can't be established.
ECDSA key fingerprint is 95:f2:5e:04:60:a7:e7:fe:26:7d:¢6:76:b2:6¢:95:12.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '23.22.192.55' (ECDSA) to the list of known hosts.
Core0S stable (1010.6.0)

Update Strategy No Reboots

ﬂsl

Figure 2-19. SSH logging into a CoreOS instance

Download the kubectl binaries, set permissions, and move binaries to the /usr/local/bin directory to
ensure they are in your path. The commands must be rerun after logging into the controller.

sudo wget https://storage.googleapis.com/kubernetes-release/release/v1.3.0/bin/1linux/amd64/
kubectl

sudo chmod +x kubectl

sudo mv kubectl /usr/local/bin/

The kubectl binaries are installed as shown in Figure 2-20.

] -50 ~ § sudo wget https://storage.googleapis.com/kubernetes-releas
e/release/vl 3.0/bin/1linux/amd64/kubectl
--2016-07-04 21:45:12-- https://storage.googleapis.com/kubernetes-release/relea
se/v1.3.0/bin/linux/amd64/kubectl
Resolving storage.googleapis.com... 209.85.144.128, 2607:f8b0:400d:c04::80
Connecting to storage.googleapis.com|209.85.144.128|:443... connected.
HTTP request sent, awaiting response... 200 0K
Length: 56515944 (54M) [application/octet-stream]
Saving to: 'kubectl'

kubectl 100%(>] 53.96M 53.4MB/s in 1.0s

2016-07-04 21:45:14 (53.4 MB/s) - 'kubectl' saved [56515944/56515944]

~ § sudo chmod +x kubectl
- § sudo mv kubectl /usr/local/bin/

Figure 2-20. Installing Kubectl binaries

40

CHAPTER 2 © KUBERNETES ON COREOS ON AWS
List the nodes:
kubectl get nodes

The single controller node and the three worker nodes are listed as shown in Figure 2-21.

0K! % ./kubectl get nodes

NAME STATUS AGE
ip-10-0-0-159.ec2.internal Ready 7m
ip-10-0-0-160.ec2.internal Ready 7m
ip-10-0-0-161.ec2.internal Ready m
ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 7m

Figure 2-21. Listing the Kubernetes cluster nodes

Testing the Cluster

To test the cluster, run some example application, such as the nginx server. Run three pod replicas of the
nginx application:

./kubectl -s http://localhost:8080 run nginx --image=nginx -replicas=3 --port=80

List the replication controllers:

./kubectl get rc
List the services:

./kubectl get services
List the deployments:

./kubectl get deployments
List the pods:

./kubectl get pods
Create a service for the nginx deployment:

./kubectl expose deployment nginx --port=80 --type=LoadBalancer
List the services again, and the nginx service should be listed:

./kubectl get services

Figure 2-22 shows the output from the preceding commands.

41

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

I 0-0-0-50 ~ § ./kubectl -s http://localhost:8080 run nginx --image=nginx|
--repllcas 3 --port=80
deployment “nglnx" created
_)-0-5I ./kubectl get rc
(8ip-10-0-0-50 ~ S ./kubectl get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes 10.3.0.1 <none> 443/TCP 5m
core@ip-10-0-0-50 ~ § ./kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 3 3 3 3 39s
core@ip-10-0-0-50 ~ § ./kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-198147104-2u7b4 1/1 Running © 1m
nginx 198147104-c803n 1/1 Running © 1m
nglnx 198147194 xoahe 1/1 Running 0 1m

10-0-0-5¢€ ./kubectl expose deployment nginx --port=80 --type=LoadBal|
ancer
service nglnx“ exposed
ip-10-0-0-50 ~ $./kubectl get services
NAHE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes 10.3.0.1 <none> 443/TCP 7m
nginx 10.3.0.127 alazad2f44231... 80/TCP 9s
core@ip-10-0-6-50 ~ Sl

Figure 2-22. Creating a deployment and service for nginx

Next, describe the nginx service:
./kubectl describe svc nginx

The service description lists its endpoints, as shown in Figure 2-23.

42

core@ip-10-0-0-50 ~ § ./kubectl describe svc nginx
Name: nginx
Namespace: default
Labels: run=nginx
Selector: run=nginx
Type: LoadBalancer
IP: 10.3.0.127
LoadBalancer Ingress: ala2ad2f4423111e6848d0a928873259-235290971.us-east-1.elb
.amazonaws . com
Port: <unset> 80/TCP
NodePort: <unset> 31531/TCP
Endpoints: 10.2.29.3:80,10.2.32.2:80,10.2.32.3:80
Session Affinity: None
Events:

FirstSeen LastSeen Count From SubobjectPath T
ype Reason Message

38s 38s 1 {service-controller } N
ormal CreatinglLoadBalancer Creating load balancer

36s 36s 1 {service-controller } N
ormal CreatedLoadBalancer Created load balancer

'!‘-'i'-.-'_:--':f_:-_sl

Figure 2-23. Service description

Invoke a service endpoint:

curl 10.2.29.3

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

lists the service endpoints

The HTML markup for the nginx server application is output as shown in Figure 2-24.

43

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

core@ip-10-0-0- - § curl 10.2.29.3
<!DOCTYPE html>

<html>
<head>
l<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>

<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

=0 ~ S.

Figure 2-24. Invoking the service endpoint with curl

Similarly invoke another endpoint:
curl 10.2.32.2

The nginx application HTML markup is listed, as shown in Figure 2-25.

44

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

- $ curl 10.2.32.2
<!DOCTYPE html>

<html>
|<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: @ auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>

<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>
</html>

.5.

Figure 2-25. Invoking another service endpoint

To be able to invoke the nginx service endpoint in a browser, we need to set port forwarding from a local
machine. Copy the key pair kubernetes-coreos.pemto the local machine:

scp -1 docker.pem ec2-user@ec2-54-85-83-181.compute-1.amazonaws.com:~/kubernetes-coreos.pem
~/kubernetes-coreos.pem

Using the key pair, set port forwarding from the local machine to a service endpoint on the controller
instance:

ssh -i kubernetes-coreos.pem -f -nNT -L 80:10.2.29.3:80 core@ec2-23-22-192-55.compute-1.
amazonaws . com

Port forwarding from a local machine to the service endpoint is set as shown in Figure 2-26.

45

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

[root@localhost ~]# scp -1 docker.pem ec2-user@ec2-54-85-83-181.compute-1.amazon
aws.com:~/kubernetes-coreos.pem ~/kubernetes-coreos.pem

The authenticity of host 'ec2-54-85-83-181.compute-1.amazonaws.com (54.85.83.181
)" can't be established.

RSA key fingerprint is be:cf:d6:dd:44:d4:39:b0:d9:1d:d0:8e:30:4e:1b:3a.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'ec2-54-85-83-181.compute-1.amazonaws.com' (RSA) to t
he list of known hosts.

kubernetes-coreos.pem 100% 1675 1.6KB/s 00:00
[root@localhost ~]# ssh -i kubernetes-coreos.pem -f -nNT -L 80:10.2.29.3:80 core|
@©@ec2-23-22-192-55. compute-1.amazonaws.com

The authenticity of host 'ec2-23-22-192-55.compute-1.amazonaws.com (23.22.192.55
)' can't be established.

RSA key fingerprint is ad:bd:41:b9:ae:f9:12:47:52:0e:2f:fe:8f:ed:80:8e.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'ec2-23-22-192-55.compute-1.amazonaws.com,23.22.192.5
5' (RSA) to the list of known hosts.

[root@localhost ~]# |}

Figure 2-26. Setting port forwarding

Invoke the service endpoint on the local machine browser to display the nginx application output as
shown in Figure 2-27.

3 Welcome to nginx! - Mozilla Firefox

/ Welcome to nginx! x \ gk

€ @ localhost v | |Bv Google

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and working.
Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Figure 2-27. Invoking the service in a browser

46

CHAPTER 2 © KUBERNETES ON COREOS ON AWS

Exit the controller instance as shown in Figure 2-28.

exit
logout

Connection to 23.22.192.55 closed.
[ec2-user@ip-172-30-1-188 ~]$ |

Figure 2-28. Exiting CoreOS instance

Summary

In this chapter we launched an AWS CloudFormation stack for a Kubernetes cluster on CoreOS instances.
The procedure we followed was this: First, install kube-aws. Next, set up the cluster parameters, such as
creating a KMS key and setting up an external DNS name. To create the cluster CloudFormation, create an
asset directory, initialize the cluster CloudFormation, render contents of the asset directory, customize the
cluster, validate the cluster and launch the cluster. After the cluster has been launched, access the cluster
and create an nginx application pod cluster.

In the next chapter we will install Kubernetes on the Google Cloud platform.

47

CHAPTER 3

Kubernetes on Google Cloud
Platform

Google Cloud Platform is a public cloud computing platform that includes database services and
infrastructure on which applications and websites may be hosted on managed virtual machines. This
integrated PaaS/IaaS is a collection of services that may be categorized into Compute, Storage and
Databases, Networking, Big Data, and Machine Learning, to list a few.

Problem

While Docker is pre-installed on CoreOS, Kubernetes is not. As discussed in Chapter 2 Kubernetes has to be
installed on CoreOS.

Solution

The service category of most interest for using Kubernetes is Compute, which includes a Compute Engine
for running large-scale workloads on virtual machines hosted on Google’s infrastructure, an App Engine
for developing scalable web and mobile apps, and a Container Engine for running Docker containers on
Kubernetes on Google’s infrastructure. Google Container Engine is a Kubernetes based cluster manager for
Docker containers and thus does not require installation of Kubernetes. We shall use the Google Container
Engine, a Google managed service for Kubernetes. Google Container Engine has Docker preinstalled and
provides built-in support for Google Cloud Platform, which as stated is both an Infrastructure as a Service
(TaaS) and a Platform as a Service (PaaS). Google Cloud Platform is an alternative to Amazon Web Services
(AWS), which is the cloud provider we use in most other chapters.

Overview

The design patterns discussed in subsequent chapters may be used on Google Cloud Platform as well,
though the configuration could be different. In this chapter we will use the Google Compute Engine to
create a virtual machine instance, install Kubernetes on it using binaries, and subsequently create a sample
Kubernetes application and service. We shall also discuss using the Google Container Engine, which is
Kubernetes based cluster manager for Docker containers. The steps we’ll take are as follows:

Setting the Environment
Creating a Project on Google Cloud Platform

Enabling Permissions

© Deepak Vohra 2017 49
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_3

http://dx.doi.org/10.1007/978-1-4842-2598-1_2

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

Enabling the Compute Engine API

Creating a VM Instance

Connecting to the VM Instance

Reserving a Static Address

Creating a Kubernetes Cluster

Creating a Kubernetes Application and Service
Stopping the Cluster

Using Kubernetes with Google Container Engine

Setting the Environment

To create a Kubernetes cluster and deploy an application on it we will use the following procedure on Google
Cloud Platform:

1. Create a project.

Enable the Compute Engine APL

Enable permissions.

Create and connect to a Virtual Machine instance.
Reserve a static address.

Create a Kubernetes cluster.

N o a &~ DN

Create a sample Kubernetes application and service.

The only prerequisite is to install SSH for Google Cloud Platform as shown in Figure 3-1.

~ - SSH for Google Cloud Platform

Figure 3-1. Installing SSH for Google Cloud Platform

We also need to create a new Billing Account at https://console.cloud.google.com/billing. Before
we can use the Compute Engine API, the billing needs to be enabled for a project. Most of the Google Cloud
Platform artifacts may also be created and/or managed with the command-line tool gcloud. We have
used the Google Cloud Platform console for most of the chapter except for setting some configurations.
These include configuring kubectl to use a particular project, to push a Docker image to Google Container
Registry, and to delete a Google Container Engine cluster.

Creating a Project on Google Cloud Platform

To create a project, navigate to the Google Cloud Platform console at https://console.cloud.google.com/
start. The Google Cloud Platform console is displayed as shown in Figure 3-2.

50

https://console.cloud.google.com/billing
https://console.cloud.google.com/start
https://console.cloud.google.com/start

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

Getting started
Try App Engine Use Google APls
Create and deploy a Hello Warld app Ensble APz, crests credentiale, and track
Your usage
Get stanted v

[Ensblesnd manage APz

Create a Cloud SOL instance Documeniation

Cloud SOL is a MySOL datsbase that -

Learn to use Cloud Storage runs in Google’s cloud, with no & Learn sbout Compute Engine

ingtallation of maintenance required
Cloud Storage iz & powerful and simple
atorage service. In this tutonial youll
learn the bazics by creating a storage Gt started —
bucket, and then uplosding snd sharing B Leam sbout App Engine
= sample file sz a public URL link

B Learn sbout Cloud Storage

Bet started

+ Craate an ampty project
Figure 3-2. Displaying the Google Cloud Platform console

Select the Project dropdown and click Create Project as shown in Figure 3-3.

€& - C @ httpsy//console.cloud.google.com/start

Google Cloud Platform Froject ~ Q

Getling started Creste project

Figure 3-3. Selecting Create Project to begin project creation

In the New Project dialog, specify a Project name (Kube-GCE for example) and optionally select an App
Engine location in the advanced options. Click on Create as shown in Figure 3-4.

51

CHAPTER 3 * KUBERNETES ON GOOGLE CLOUD PLATFORM

New Project

Projact name

Kube-GCE

Your project 10 will be kube-gce-141122 Edit

Hide advanced options...

App Engine location

[us-east]

Cancel

Figure 3-4. Creating a project

The message Creating project "Kube-GCE" is displayed, as shown in Figure 3-5.

Creating project "Kube-GCE"... X

+ : Create an empty project

Figure 3-5. Creating a project “Kube-GCE” message

The new project is added in the Projects on the Dashboard as shown in Figure 3-6.

Google Cloud Platform Kube-GCE ~

U

Figure 3-6. The new project is added

52

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

The Kube-GCE project may be selected from the project list to display its details as shown in Figure 3-7,
or you can create another project with Create Project.

Google Cloud Platform Kube-GCE ~ Q

Create proj
ﬁ Home peoipet
IECENT
Iil Dashboard /KUb&GCE kUb&gQ&141122
= Activity View more projects

Figure 3-7. Selecting a project

The Dashboard can be accessed at https://console.cloud.google.com/projectselector/home/
dashboard. The project Kube-GCE should be listed on the Dashboard as shown in Figure 3-8.

= Google Cloud Platform

ﬁ Heme Dashboard
1§l Cashboad
Praject: KubeGCE Free Trial Suppart
= Activiy Use Google APIz
1D kube-goe (#166811560515) w = i s e ity i R Tl
Enable APl creste coedentisls, and track :;_“: h:: B e
your usage 8 hemion

Documentation
I Enablesnd manage AFls

E Google Cloud Platform dosumentation

d Cloud Platform solutions

Learn to use Cloud Storage

Try App Engine
Browse tutarials

Crente snd deploy o Hello Word spp

Ta ke intarsctive tut 2 and learn how wcy Get atarted

1o build and deploy simple spplisations.
) Getatarted w~

Pl GatStared

a L

Figure 3-8. Project description on dashboard

If no project exists yet, the Dashboard URL https://console.cloud.google.com/projectselector/
home/dashboard displays a dialog prompt to create a project as shown in Figure 3-9.

53

https://console.cloud.google.com/projectselector/home/dashboard
https://console.cloud.google.com/projectselector/home/dashboard
https://console.cloud.google.com/projectselector/home/dashboard
https://console.cloud.google.com/projectselector/home/dashboard

CHAPTER 3 * KUBERNETES ON GOOGLE CLOUD PLATFORM

Google Cloud Platform Froject ~

ﬁ Home Dashboard
!i! Dashboard
= Activity

Home

Dashboard

The Google Cloud Platform uses projects to manage resources
To get started, create a project

Create a project

Figure 3-9. The Create a Project link in the Dashboard dialog

The projects may be managed at https://console.cloud.google.com/iam-admin/projects, as shown
in Figure 3-10.

Y

0 Projects x|

& - C @ httpsy//consolecloudgooglecom/iam-admin/projects b 1

Google Cloud Platform

e |AM & Admin Projects |3 CREATE PROJECT] No project selected
iE Al projects

Projects shut down and pending deletion
. 1AM
Q@ GCP Privacy & Security

Selact one of more projects.

- Settings
°3 Sefvice accounts
Q@ Labels
[=] Quotas

Figure 3-10. Managing projects at All Projects

54

https://console.cloud.google.com/iam-admin/projects

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

Enabling Permissions

To enable permissions for a project, navigate to the Projects page at https://console.cloud.google.com/
iam-admin/projects. Select the Kube-GCE project as shown in Figure 3-11.

€ - C @ httpsi//console.cloud.google.com/iam-admin/projects

Google Cloud Platform FProject ~ Q

8 IAM & Admin Projects CREATEPROJECT |
= All projects D Columns ~
+® 1AM ' Project name Project ID
M KubefiCE kube-gca141122
GCP Privacy & Security ﬁ%_ 2
Settings

o3 Service accounts

Labels

L 4

Quotas

Figure 3-11. Selecting a project

Permissions for the project resources are displayed. Modify all permissions to “Owner” as shown in
Figure 3-12.

55

https://console.cloud.google.com/iam-admin/projects
https://console.cloud.google.com/iam-admin/projects

CHAPTER 3 * KUBERNETES ON GOOGLE CLOUD PLATFORM

€ C B https://console.cloud.google.com/iam-admin/iam fprojectiproject=kube-gee-141122 iy O =

Google Cloud Platform

o)

IAM & Admin

All projects

+8 AR

*] GCP Privacy & Sacurity
£ Settings

o8 Service accounts

@ Labels

[=] Cueotas

IAM +2 ADD

Permissions for project "Kube-GCE”

These permissions affect the entire Kube-GCE" project and sll of its resources
To grant role-based access, add peaple, domains, groups, or service accounts to
tha projest

Sorne roles are In bata developrnant and might be changed or deprecataed in the
future. Learn more L7

Type Mambars ~ Rala(s)
°a 667323737858 loper gervicesccount.com Qwner ~ "
L) dvohral Obgmailzem Bt w 5
o kube-goe-1411 22@appsp ot gsery teom Owner = 3

Figure 3-12. Setting permissions for the project

Enabling the Compute Engine API

To be able to create a virtual machine and create a Kubernetes cluster, we need to enable the Compute
Engine API. Access the Dashboard at https://console.cloud.google.com/apis/dashboard. In the Use
Google APIs field, click the Enable and Manage APIs link in as shown in Figure 3-13.

= Google Cloud Platform

ﬁ Home

Ij! Dashboard
HH

= Activity

LE|

Dashboard

Try Compute Engine Learn to use Cloud Storage

Cloud Starage is & powerful and simple
storagae garvice. In this tutarial you'll
learn the basics by creating & storage
bucket, and then uploading and sharing
azample file as a public URL link

5 Getsterted

Try App Engine

Use Google APIs
Create ond deploy o Hello World app
Enable APlz, create credentialz, and track

your usage
Get: started ~
A Enable and manage APy
Project: Kube-GCE ?____
Use Google APls
ID: kube-goe- 141122 (#667323737353) W

Create a Cloud SOL instance

Figure 3-13. Selecting the Enable and Manage APIs link

56

https://console.cloud.google.com/apis/dashboard

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

The Compute Engine API is not listed by default for a new project, as shown in Figure 3-14.

 reromboses-kueecce x Nl —

€ - C | B httpsy/console.cloud.google.com/apis/dashboard?project=kube-gce-141 200&duration=PT1H e O

API APIManager Dashboard ENABLE API

«» Dashboard
Library

o Credentials

b Lol ~ Requests Erfers Error ratio Latency, madian Latency 95%
Bighuery API - - - - - Disable
Google Cloud APls - - - - - Digable
Boogle Cloud Datestore API = = - = = Disable
Google Cloud Logging API = i . = = Disable
Google Cloud SOL - - - = - Disable
Google Cloud Storage = - - = = Disable
Boogle Cloud Storage JSON AFI - = = = = Disable
Boogle Monitaring API - - - - = Disable
Stackdriver Debugger AP i = = - = Disable
Stackdriver Trace AP - = = = = Disable

LE]

Figure 3-14. Listing the Enabled and Disabled APIs

To fix that, click ENABLE API as shown in Figure 3-15.

J API Dashboard - Kube-GCE X \\

g’project=kube-gce-1412008&duration=PT1H

API APIManager Dashboard ENABLE API
«}» Dashboard
w Library
O Credentials

Figure 3-15. Clicking on ENABLE API

57

CHAPTER 3 * KUBERNETES ON GOOGLE CLOUD PLATFORM

Then select the Compute Engine AP, as shown in Figure 3-16.

Google Cloud Platform

API APIManager Library

«%» Dashboard Google APls

- Library

o« Credentials | =il ot i e

Popular APls

q Google Cloud APls
Compute Engine API
BigQuery API q i
Cloud Storage Service
Cloud Datastore API
Cloud Deployment Manager AP
Cloud DNS API

More

Figure 3-16. Selecting the Google Compute Engine API

The Compute Engine API is selected. Click ENABLE as shown in Figure 3-17.

Google Cloud Platform

API

EE

APl Manager & Google Compute Engine API > E%BLE
Dashboard
About this API Documentstion Try this APl in APls Ex
Library
Google Compute Engine providas virtual machines for large scele data processing and analytics applications
Credentials

Figure 3-17. Enabling the Compute Engine API

To be able to enable an AP], Billing must be enabled for the project if not already enabled. Click on
Enable Billing in the Billing Required dialog as shown in Figure 3-18.

58

CHAPTER 3

Billing required

The APl requires o valid billing method

g e

Figure 3-18. Enabling billing

An ENABLING message is displayed, as shown in Figure 3-19.

Google Cloud Platform tube-GCE -

KUBERNETES ON GOOGLE CLOUD PLATFORM

APl Manager & Google Compute Engine AP|

& Dashboard
About this API

W Library

Documantation Try thiz APl in APlg Ex|

Google Compute Engine provides virtual machines for large scale dats processing and analytics applicstions

ov Credentials

Figure 3-19. Google Compute Engine API being enabled

If a Billing Account does not exist, click Create Billing Account in the Enable Billing for Project dialog as

shown in Figure 3-20.

Enable biling for project "Kube-GCE*

You are

of any billing s
ont

Figure 3-20. Creating a Billing Account

nts. To enable billing on this
r billing socount

59

CHAPTER 3 * KUBERNETES ON GOOGLE CLOUD PLATFORM

After a Billing account has been created, the Compute Engine API should be enabled. To find whether
credentials need to be created for a project, click Go to Credentials as shown in Figure 3-21.

Google Cloud Platform Hube GCE = -

API APIManager & Google Compute Engine AP B DISABLE
«» Dashboard
ik Thia AP ia enabled, but you con't use itin your project until you create credentiola.
W Library Click "Go to Credentials® to do thiz now (strongly recommen ded)
- b
ov Credantials Overview Quotes

Figure 3-21. Navigating to the Credentials page

As indicated in the Credentials page, new credentials don’t need to be created and the Application
Default Credentials may be used. Click on Cancel as shown in Figure 3-22.

API API Manager Credentials
A Add credentials to your project
i Library
+ Find out what kind of credentials you nead
o Credentials Calling Google Compute Engine AP from a web server

You don't need 1o create new credentials

n

For your situstion you cen use Application Default Credentisls, which provide » simple way to access Google APls
from App Engine or Compute Engine

Learn how to uze Application Default Credentials

If you prefer, you can craabe & service account

Done Cq%?\ed

Figure 3-22. Determining whether credentials need to be added

The Google Compute Engine API is enabled for the Kube-GCE project as shown in Figure 3-23.

Google Cloud Platform *ube GCE - Q

API APIManager b(_ Google Compute Engine AP B DISABLE
Dashboard
44 This AFlis enabled, but you cant use it in your project until you creste credentials.
m Library Click "Go to Credentials’ to do this now (strongly recommended).
o E
[Credentials Orearview Quotaa

Figure 3-23. Google Compute Engine API enabled

60

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

The Google Compute Engine API should be listed in the Dashboard as shown in Figure 3-24.

Kube-GCE ~ Q

Dashboard ENABLE AP
API v Raquasts Errors Error ratio Latancy, madian Latency 95%

BigQuery API - - = B = Disable
Google Cloud APls = = = e ~ Disable
Google Cloud Datastore API - - = = = Disable
Google Cloud Logging API = = * = > Disable
Google Cloud SOL = = = = = Disable
Google Cloud Storage = = & = = Disable
Google Cloud Storage JSON API = = - - - Disable

h‘ Google Compute Engine APl = - - - - Disable
Google Monitoring APl = = = = = Disable
Stackdriver Debugger API e - - - = Disable
Stackdriver Trace AP| = = = e - Disable

Figure 3-24. Google Compute Engine API listed as Enabled

As indicated by the message A project is needed to enable APIs in Figure 3-25, to enable the Google
Compute Engine API a project is required.

& Google Compute Engine AP B ENARLE

i A projectis needed to ensble AF s =3

Figure 3-25. A project is needed to enable APIs

61

CHAPTER 3 * KUBERNETES ON GOOGLE CLOUD PLATFORM

Creating a VM Instance

The Compute Engine API provisions virtual machine instances. To create a VM instance, navigate to the VM
Instances page at https://console.cloud.google.com/compute/instances. In the Compute Engine dialog,
click Create Instance as shown in Figure 3-26.

Google Cloud Platform

{E} Compute Engine

A VMinstances
Compute Engine
@, Instance groups WM instances

@ Instance tamplates

Gisks Ul
a8 running Debian,

B Snapshots first VM instance or try the quickstart to build & sample app

5 Images m o Takethe quickstart

Figure 3-26. Clicking on Create Instance

In the Create an instance page, specify an instance name (vm-kube-gce for example). Select a Zone,
Machine Type, Identity, and API Access as shown in Figure 3-27.

62

https://console.cloud.google.com/compute/instances

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

& Create aninstance

Name

vrm-kube-gce

Zone

us-eastl-b -

Machine type

1vCPU * 375 GB memory Customize

Upgrade your account to create instances with up to 32 cores

Bootdisk

——W MNew 10 GEstandard persistent disk
p

{ r “\I\'. Imna ge

\ \j/,
b Debian GNU/Linux 8 (jessie)

Change

Identity and APl accaess

Service account

Compute Engine default service account ~

Accass scopes

Allow default access
® Allow full access to all Cloud APls

Figure 3-27. The Create an Instance page

63

CHAPTER 3 * KUBERNETES ON GOOGLE CLOUD PLATFORM

Click on Create as shown in Figure 3-28.

& Create aninstance

——@ New 10 GBE standard persistent disk
/;_\\ Image
e
Debian GNU/Linux 8 (jessie) Change

Idantity and APl access

Service account
Compute Engine default service account ~

Accass scopes
Allow default access

® Allow full access to all Cloud APls
Set access for each API

Firewall
Add tags and firewall rules to allow specific network traffic from the Internet

Allow HTTP traffic
Allow HTTPS traffic

Management, disk, networking, $SH keys

Your Free Trial credits, if available, will be used for this instance.

Cares

Figure 3-28. Clicking on Create

A new VM instance is created, as shown in Figure 3-29.

64

Google Cloud Platform

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

VM instances [CREATE INSTANCE

!EE Compute Engine

B WMinstances

dh
CPU utilization =
a
a CFU
@ % CPU
H
22 Metadsts
A Healthchecks
R-‘ Zones
@ Operations
W Guotas
& Settings Neme ~ Tone Netwark " upe by
[@ wevkubegon usenstlh defeul
a

Figure 3-29. A new VM instance

W CREATE INSTANCE GROUP

Columns = G Labels

1 howr | &h 12h dey | 24 ad 7d 14d | 304

There is no data for this chart

istamal P Extemal P Connect

1014202 104196112232 BH O

Select the VM instance to lists its stats, such as CPU Utilization as shown in Figure 3-30. Initially the

chart may have no data.

& VMinstances /' EDIT C! RESET

SSH @

@ vm-kube-goe

CPU utilization =

CPU

% CPU

Figure 3-30. Listing a VM’s CPU utilization

| STOP gj CLONE @ DELETE
1 hour | 6hours | 12 hours | 1 day @ 2 days

There is no data for this chart.

65

CHAPTER 3 * KUBERNETES ON GOOGLE CLOUD PLATFORM

Connecting to the VM Instance

To connect to a VM instance, click SSH as shown in Figure 3-31.

& VMinstances 2 EDIT C RESET W STOP

SSH.@E

@ vmkubegee

CPU utilization ~

CPU

% CPU

Figure 3-31. Clicking SSH to begin connecting to the VM instance

A Connecting. .. message should be displayed as shown in Figure 3-32.

-
{8} SSH: vm-kube-gce @ kube-gce - Google Chrome - -

B CLONE @ DELETE

1 hour | 6 hours

Figure 3-32. Connecting to a VM instance

The VM instance is connected to and a command prompt is displayed.

66

8 https://ssh.cloud.google.com/projects/kube-gce/zones/us-eastl-b/finstances/vm-kube-gce?

. Connecting...

Establishing connection to SSH server. ..

Reserving a Static External IP Address

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

Each VM instance is assigned an internal IP address, which is used to communicate with other VM instances

on the same network. To be able to communicate outside the network, with the Internet to download

Kubernetes binaries for example, we need to assign a static external IP address to the VM instance. Navigate

to the URL https://console.cloud.google.com/networking/addresses to create a static external IP

address.
In the Reserve a Static Address page, click Regional and specify a Region. In the Attached To field, select
the VM instance created earlier. Click on Reserve as shown in Figure 3-33.

Google Cloud Platform

Metworking

Networks
External IP addresses
Firewall nules

Routes

Cloud NS

VRN

Cloud Routers

q

Reserve a static address

Name

kube-gos

Description [0}

Type
& Regional

Global (to be used with Global forwarding rules Leam m

Ragioa
us-east]

Attached 1o

ore)

wkubegoe

Figure 3-33. Clicking on Reserve to reserve a static address

A static external IP Address is reserved for the VM instance.

Creating a Kubernetes Cluster

To create a Kubernetes cluster, run one of the following commands in the shell for the VM instance.

curl -sS https://get.k8s.io | bash

or

wget -q -0 - https://get.k8s.io | bash

The Kubernetes binaries are downloaded as shown in Figure 3-34.

67

https://console.cloud.google.com/networking/addresses

CHAPTER 3 * KUBERNETES ON GOOGLE CLOUD PLATFORM

£} dvohral0@vm-kube-gce: ~ - Google Chrome _ﬁ @M

& https://ssh.cloud.google.com/projects/kut

Connected, host fingerprint: ssh-rsa 2048

e programs included with the Debian GNU/Linux system are free softvare;
the exact distribution terms for each program are described in the
individual files in /usc/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

vohralDBvm-kube-gce:~§ curl -s=3 https://get.k8=.io | bash

Downloading kubernetes release v1.3.0 to /home/dvohral0/kubernetes.tac.gz

-=2016-07-06 19:01:06-- https://storage.googleapis.com/kubernetes-release/release/vl1.3.0/kubernetes.tar.gz
Resolving storage.googleapis.com (storage.googleapis.com)... 74.125.26.128, 2607:£8b0:400c:cOc::80
onnecting to storage.googleapis.com (storage.googleapis.com)|74.125.26.128]:443... connected.

HTTP reguest sent, awaiting response... 200 OK

Length: 1486828686 (1.4G) [application/x-tar]

aving to: ‘kubernetes.tar.gz’

ernetes.tar.gz 100% [>] 1.38G 138MB/s in 14s
016-07-06 19:01:20 (102 MB/s) - ‘kubernetes.tar.gz’ saved [14B6828686/1486828686)

Unpacking kubernetes release v1.3.0

Figure 3-34. Downloading the Kubernetes binaries

Then the Kubernetes cluster is started as shown in Figure 3-35.

. .
£} dvohral0@vm-kube-gce: ~ - Google Chrome __ @Eﬂ

£ https://ssh.cloud.google.com/p

The user name and password to

<.« calling validate-cluster

Paiting for 4 ready nodes. 1 ready nodes, 1 registered. Retrying.
Paiting for 4 ready nodes. 1 ready nodes, 4 registered. Retrying.
Vaiting for 4 ready nodes. 1 ready nodes, 4 registered. Retrying.
Found 4 node(s).

ANE STATUS AGE
kubernetes-master Ready, SchedulingDisabled 1Im |
kubernetes-minion-group-cg3? Ready 45s
kubernstes-minion-group-vsos Ready 44s
kubernetes-minion-group-za7e Ready 498
alidate output:

JANE STATUS HESSAGE ERROR
controller-manager Healthy ok

scheduler Healthy ok

etcd=-1 Healthy {"health™: "true™}

etcd-0 Healthy {"health”: "trus"}

Cluscer validation succeeded

jbone, listing cluster services:

Kuberneces mascer is running ac hoops://146.148.36.131

GLBECDefaultBackend is runhing at hteps://146.148.36.131/api/vi/proxy/namespaces/kube-ayscen/services/defaulc-hte
Jp-backend

Heapater is running at hetps://146.148.36.131/api/vl/proxy/namespaces/kube-ayacem/services/heapater

F DNS is running at htops://146.148.36.131/api/vi/proxy/ namespaces/kube-syacen/services/kube-dns
kuberneces-dashboard is running at hoopsa://146.148.36.131/api/vil/proxy/namespaces/kube-ayaten/services/kubernece
s-dashboard

Grafana is running at hteps://146.148.36.131/api/vl/proxy/ namespaces/kube-system/services/monitoring-gratana
InfluxDE is running at hocps://146.148.36.131/api/vl/ proxy/ namespaces/ kube-syscem/services/monitoring-inf luxdb

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

JFubernetes binaries at /home/dvohral0/kubernetes/cluster/

You may want to add this directory to your PATH in §HOME/.profile
Installacion successful!

dvohral0fvm-kube-goe:~§

Figure 3-35. Starting a Kubernetes Cluster with four nodes
68

To list the services, run the following command:
kubectl.sh get --all-namespaces services

The services are listed as shown in Figure 3-36.

CHAPTER 3 ' KUBERNETES ON GOOGLE CLOUD PLATFORM

dvohralOBvm-kube-goe:~$ kubectl.sh get --all-namespaces services
ANESPACE NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE

default kubernetes 10.0.0.1 <none> 443/ TCP Sm

kube-system default-http-backend 10.0.17.225 <nodes> B0/ TCP Tm

!kuhe —system heapster 10.0.220.227 <none> 80/ TCP Tm

kube-system kube-dns 10.0.0.10 <nones> 53/UDF, 53/ TCP Tm

!imhe-svsr.em kubernetes-dashboard 10.0.94.209 <nones> 80/ TCP Tm

jkube-ayatem monitoring-grafana 10.0.198.75 <none B0/ TCF Tm

|ku.be-svs:em monitoring-int luxdb 10.0.218.95 <none: 8083/TCF, 8086/ TCP Tm

dvohral0fvm-jube-goe:~§
Figure 3-36. Listing the services in All Namespaces

To list all the pods, run the following command:
kubectl.sh get --all-namespaces pods
All the pods in all the namespaces are listed, as shown in Figure 3-37.

dvohralOfvm-kube-goe:~§ kubectl get --all-namespaces pods
~bash: kubectl: comwand not found
dvohralOfvm-kube-goe:~$ kubectl.sh get --all-namespaces pods
NAMESPACE NANE READY STATUS RESTARTS AGE
kube-system etcd-server-events-kubernetes-master i/1 Running (1] Sm
kube-system etcd-server-kubernetes-master 11 | Running (] Sm
kube-system fluentd-cloud-logging-kubernetes-master 1/1 Running (] 8m
kube-system fluentd-cloud-logging-kubernetes-minion-group-cg3? i/1 Running (1] 8m
kube-=ystem fluentd-cloud-logging-kubernectes-minion-group-v59es 1/1 Running o Bm
kube-syscem fluentd-cloud-logging-kuberneces-minion-group-za76 1/1 Running 0 B8m
kube-syscem heapscer-v1.1.0-527143062-c57xt 4/4 Running 0 Tm
kube-aystem kube-addon-manager-kuberneces-mascer 1/1 Running (1] Sm
kube-syscem kube-apiserver-kubernstes-master if1 Running 1 Sm
kube-ayacem kube-controller ger-kubern a 1f1 Running (1] Bm
kube-system kube-dns-v17-yz76]) 3/3 Running (1] Bm
kube-system kube-proxy-kubernetes-minion-group-cg3? 1/1 Running O am
kube-system kube-proxy-kKubernetes-minion-group-v59e 1/1 Running (1] B8m
kube-system kube-proxy-kubernetes-minion-group-za76 1/1 Running 0 Bm
kube-system kube-scheduler-kubernetes-mascer 1/1 Running 0 Bm
kube-system kubernetes-dashboard-vl.1.0-4u2 lg 11 Running (1] Bm
kube-system l7-default-backend-vl.0-1lnorr /1 Running O Bm
kube-system 17=-1lb=-controller-v0.7.0-kubernstes-naster /1 Running (1] Sm
kube-system monitoring-influxdb-grafana-vi-spgle z2/f2 Running O Gm
kube-system node-problem—detector-v0D.1-0lzvh 1/1 Running o Bm
kube-system node-problem—detector-vD.1-5fwSi 1/1 Running o Bm
kube-system node-problem-detector-v0.1-83l7g /1 Funning (1] Bm
kube-system node-problem-detector-v0.1-jn5c2 1/1 Funning 0 Bm
dvohralOBvm-kube-gce: ~§

Figure 3-37. Listing all the pods

69

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

To list all the nodes, run the following command:
kubectl.sh get nodes

One controller node and three minion nodes are listed, as shown in Figure 3-38.

dvohralOfvm-kube-gee:~§ kubectl.sh get nodes

NANE STATUS
kubernetes-master Ready, SchedulingDisabled
kubernetes-minion-group-cg3? Ready
kubernetes-minion-group-vSSe Ready
kubernetes-minion-group-za76é Ready
dvohralOfvm-kube-gee:~§

geers

Figure 3-38. Listing the Kubernetes cluster nodes

List all the namespaces with the following command:
kubectl.sh get namespaces

The two namespaces default and kube-system are listed, as shown in Figure 3-39.

dvohralO@vi-kube-gce:~§ kubectl.sh get namespaces

NAME STATUS AGE
default Active 15m
kube-system Aetive 15m

dvohrallBfvi-kube-goee:~$§

Figure 3-39. Listing the namespaces

The CPU utilization of the VM instance may be displayed in the console as shown in Figure 3-40.

VM instances & EDIT * RESET | SToP QJ(iI:INI B DELETE

SSH §

@ virkubegoe

CPU utilization = 1 hour | 6h 12h | 1day 2d 4d 7d 14d

CPU

Jul 6,11:30 AM Jul6,11:45 AM Julb,12

BiCPU: 4.2

Figure 3-40. Displaying the graph for CPU Utilization

70

00 FM Jul6,12:15 FPM Jul 6,12:29 PM

CHAPTER 3 ' KUBERNETES ON GOOGLE CLOUD PLATFORM

The VM Instances also lists the controller and minion instances started for the Kubernetes cluster, as
shown in Figure 3-41.

Nama ~ Zone Hetwork In use by Intarnal IP Extarnal IP Connact
@ kubernetas-master us-centrall-b default 10.128.02 146.148.36.131 S8H ¢
& kubernetes-minion-groupcg27 uscentrall-b default kubernetes-minion-group 1012803 104.155.174.236 SSH
& kubemetes-minion-groupv5de uscentrall-b default kubernetes-minion-group 1012805 104.197.168.26 SSH &
@ kubernetes-minion-group-2a76 uzcentrall-b default kubernetes-minion-group 1012204 104.156.146.64 SSH 3
& vrkubegoe us-eastl-b default 1014202 104.196.113.232 SSH 3

Figure 3-41. Listing the Kubernetes controller and minion instances

Select the External IP Addresses tab to list all the external IP addresses, including those for the
controller and minion instances, as shown in Figure 3-42.

Google Cloud Platform a

+ Networking External IP addresses RESERVE STATIC ADDRESS
& Metworks Name Extamal Addrass Region Typa ~ In use by
¥ ExternalIP addresses " kubegoe uz-esstl
2= Firewall rules 1461483631 s Static ~ VM instance kubermnetes-master (Zone b) Change
ot cantrall
E s Routes 104.1556.146.64 ug- Ephemeral - tanee kubametes-minion-group-za7 6
ocentrall
F-3 Load balancing
104156174236 us Ephemeral = VM inatance kubemetes-minion-groupcg37
= Cloud DNS cantrall Zone b)
[H = 104.196.113.232 uz-eastl Ephemeral = VM inatance vonkubegoe (Zone b)
e = 10419716826 us- Ephemeral - WM instance kubermetes-minion-group-vi9e
¥k loud Rakars cantrall (Zone b)

Figure 3-42. Listing the external IP addresses

Creating a Kubernetes Application and Service

In this section we'll create a sample Kubernetes application using the Docker image nginx. The following
command creates a deployment for the nginx Docker image.

kubectl.sh --namespace=default run nginx --image=nginx -replicas=3 -port=80

Deployment "nginx" is created as shown in Figure 3-43.

ldvohral0Bvm-kube-goe: ~§ kubectl.sh --namespace=default run nginx --image=nginxk --replicas=3 --port=80
deployment "nginx" created
dvohralOf@vm-kube-goe: ~§

Figure 3-43. Creating a deployment nginx

71

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

List the pods, including the nodes the pods run on:
kubectl.sh get pods -o wide

The three pod replicas including the node are listed as shown in Figure 3-44.

d‘}ohraltl[‘vm—kuhe—gce:"S kubectl.sh --namespace=default run nginx --image=nginx --replicas=3 --port=80
[deployment "nginx™ created
ldvohral0Bvm-kube-goe:~§ kubectl.sh get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

nginx-2032906785-aSblg 1/1 Running 0 27s 10.244.1.5 kubernetes-minion-group-za76
nginx-2032906785-1yig2 1/1 Running 0 2738 10.244.3.4 kubernetes-minion-group-vS9e
nginx-2032906785-gncl0 1/1 Running 0 27s 10.244.2.5 kuberneces-minion-group-cg3?

dvohral0fvm-kube-goe:~§

Figure 3-44. Listing the node replicas

List the deployments:

kubectl.sh get deployments
Create a service for type LoadBalancer:

kubectl.sh expose deployment nginx --port=80 --type=LoadBalancer
List the services:

kubectl.sh get services

The output from the preceding commands is shown in Figure 3-45.

dvohralO@vm-kube-gcee:~§ kubectl.sh get deployments
ANE DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 3 3 3 3 59s
dvohralO@fvm-kube-gce:~§ kubectl.sh expose deployment nginx --port=80 --type=LoadBalancer
service "nginx" exposed
dvohralOBvm-kube-gce:~§ kubectl.sh get services

[NANE CLUSTER-IP EXTERNAL-IP PORT (S) AGE
kubernetes 10.0.0.1 <none> 443/ TCP 31m
nginx 10.0.213.17S5 <pending> 80/ TCP 10s

dvohralO@vm-kube-gce:~§

Figure 3-45. Listing the deployments and services

Describe the nginx service:
kubectl.sh describe svc nginx

The service description, including the service endpoints and any error messages, is listed as shown in
Figure 3-46.

72

CHAPTER 3

!dvohralﬁavm-kube-gc=:~$ kubectl.sh describe svc nginx

KUBERNETES ON GOOGLE CLOUD PLATFORM

Name : nginx |
Namespace: default
ELehela: run=nginx |
ESelectur: run=nginx l
iType: LoadBalancer
iP: 10.0.213.175 |
Porc: <unsec> 80/TCP
odePort: <unset> 31882/TCP
izndpoxncs: 10.244.1.5:80,10.244.2.5:80,10.244.3.4:80 |
Session Affinity: None
[Events:
| FirscSeen LastSeen Count From SubobjectPath Type Reason |
|essage '
im 36s 5 {service-controller) Normal CreatinqLoaﬂBala:
ncer Creating load balancer
im 36= 5 {service-controller } Warning CreatingloadBala
ncerFailed Error creating load balancer (will retry): Failed to create load balancer for service default/ng

ESSES' exceeded. Limic:

dvohralOfvin-kube-gee:~§

1.0, quotaExceeded

Figure 3-46. Listing the service description

inx: failed to ensure static IP : error creating goe static IP address: googleapi: Error 403: Quota 'STATIC ADDR

Next, we shall invoke a service endpoint. Copy a service endpoint as shown in Figure 3-47.

Evahralﬂﬁvmakuhe-g:=:~$

ane 3 nginx
mmespace : defaultc
Labels: run=nginx
Selector: run=nginx
Type: LoadBalancer
IP: 10.0.213.175
Port: <unset> 80/TCP
NodePort: 1882/ TCP
Endpoints: 10.2449.1.5:80,10.244.2.5:80,10.2494.3.4:80
Session Affinicy: None
Events:
FirscSeen LastcSeen Count From SubobjeccPatch
g

kubectl.sh describe svc nginx

Type

Reason .4

Figure 3-47. Obtaining a service endpoint

Invoke the service endpoint with curl.

curl 10.244.1.5

The HTML markup for the service is listed as shown in Figure 3-48.

73

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

dvohralORvm-kube-gce:~§ curl 10.244.1.5
<!DOCTYPE html>

<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em:
margin: 0 auto;
font-family: Tahowa, Verdana, Arial, sans-serif;
¥
</style>
</ head>
<body>

<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is recuired.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank vou for using nginx.</p>
</body>

</html>

dvohralOfvm-kube-gce:~$§

Figure 3-48. Invoking a service endpoint

Similarly, invoke another service endpoint:
curl 10.244.2.5

The second service endpoint is also invoked, as shown in Figure 3-49.

4

CHAPTER 3 ' KUBERNETES ON GOOGLE CLOUD PLATFORM

dvohralOfvm-kube-gee:~§ curl 10.244.2.5
<!DOCTYPE htmnl>
<html>
<head>
<title>Welcome to nginx'!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>
<hl>Welcome to nginx!</hil>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is recquired.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>

</html>

dvohralO@fvm-kube-gece:~$

Figure 3-49. Invoking another service endpoint

Stopping the Cluster

To stop the VM instances, select the instances in the console and click Stop as shown in Figure 3-50.

75

CHAPTER 3

KUBERNETES ON GOOGLE CLOUD PLATFORM

VM instances B CREATE INSTANCE B, CREATE INSTANCE GROUP (* RESET m STOP # DELETE
% CPU
A
0 f\
8 |.'|l II'\
; [\
IR X
2
Jul6, 1245 FM Jul6,1:.00PM Jul 5_1‘15 PM
W CPU: 3.662
~ Name ~ Zone Network In use by Internal I? External IP Connect
M @ kubemates-msster uscentrall-b default 1012802 146.148.36.131 $SH
-] kubernetes-minion-group-cg37 ug-centrall-b default kuber netes-minion-group 10.128.0.3 104.155.174.236 S5H
+ @ kubemnetes-minion-groupv59e uscentrall-h default kubernetes-minion-group 1012805 104,197,168 26 S8H
v & kubernetes-minior-group-2a76 ug-centrall-b default kuber netes-minion-group 1028.04 104.155.146.64 S3H
v & vekubegoe us-eastl-h default 1014202 104.196.99 56 S8H

Figure 3-50. Selecting all nodes and clicking on Stop

In the verification dialog, choose Stop as shown in Figure 3-51.

Stop VM instance

Stop shuts down the instances. If the shutdown doesn't complete within 2

minutes, the instances are forced to halt. This can lead to filesystem

corruption. Do you want to stop 5 instances?

Cancel

Figure 3-51. Stopping a VM instance

76

The VM Instances are stopped as shown in Figure 3-52.

CHAPTER 3 ' KUBERNETES ON GOOGLE CLOUD PLATFORM

v/ Namea ~ Zona Natwark In use by Intarnal IP Extarnal IP Gonnact
v (U kubernetes-m aster uscentrall-b default 1012802 14614836131

v (U kubernetes-minion-group<g37 us-centrall-b default kubernetes-minion-group 10.128.0.3 104.155.174.236

v (U kubernetes-minion-group-viie us-centrall-b default kubernetes-minion-group 10.128.0.5 104.197.168.26

v (U kubernetes-minion-group-za76 us-centrall-b default kubernetes-minion-group 10128.04 104.155.146.64

v & vm-kubegee us-eastl-b default 10.142.0:2 104.196.99.56 SSH

Figure 3-52. VM instances being stopped

Using Kubernetes with Google Container Engine

Google Container Engine is Google-managed service for Kubernetes clusters running Docker containers.
Google Container Engine is a component of the Google Cloud Platform. It fully manages and orchestrates
the cluster, including scheduling the containers and running them based on specified CPU and memory
requirements. Google Container Engine provides the flexibility of using a private, public, or hybrid cloud,
and it provides auto-scaling of clusters based on resource utilization. Google services such as Google Cloud
Logging, Google Cloud VPN, Google Container Registry, and Google accounts and role permissions are
integrated with Google Container Engine.

To run a Kubernetes application on Google Container Engine, the following procedure is used.

1. Create a Billing Account if one does not already exist.

Create a Project on Google Cloud Platform.

Enable Permissions for the project.

Enable Billing for the project.

Enable Google Compute Engine and Google Container Engine APIs.
Create a Google Container Cluster.

Connect to the Google Cloud Shell.

Configure kubectl for the container cluster.

© e N o g 0 0 N

Test the Kubernetes cluster.

We have discussed steps 1 through 5 earlier in this chapter, except that Google Container Engine API also
needs to be enabled. In this section we shall discuss step 6 onward. We have used a project called Kube-GKE.

Creating a Google Container Cluster

Select the project in which a Google Container Cluster is to be created on the Google Container Engine

at URL https://console.cloud.google.com/kubernetes. AURL similar to https://console.cloud.
google.com/kubernetes/list?project=kubernete-gke is invoked. In Container Clusters, click on Create a
Container Cluster as shown in Figure 3-53.

77

https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes/list?project=kubernete-gke
https://console.cloud.google.com/kubernetes/list?project=kubernete-gke

CHAPTER 3

Google Cloud Platform

KUBERNETES ON GOOGLE CLOUD PLATFORM

@ Container Engine

Container clusters

Container Registry

Container clusters

Container Enging
Container clusters

Containers package an application so it can be essily deployed to
run in its own isolated environment. Containers are managed in
clusters that automata WM creation and maintenance. Lasm mare

Figure 3-53. Clicking on Create a Container Cluster

The URL https://console.cloud.google.com/kubernetes/add?project=kubernetes-gke (the URL

could be slightly different) is invoked, and an input form is displayed to specify the container cluster detail as

shown in Figure 3-54.

Google Cloud Platform

@ Container Engine

i

@

Figure 3-54.

78

Container clusters

Container Reglstry

& Create a container cluster

A container cluster iz & managed group of uniform VM inztances for running
Kubernetes Learmn more

Neme
hubecluster-1

Daseription (Cpticns

Zone
us-easgt]-d -

Machina type

1vCRU ~ | 37568 ¥ Cust

Upgrade your sccount bo create instances with up to 32 cores

Clustar size
3
Total cores 3vCPUa
Total memary 112568

Specifying Cluster Name, Zone and Machine Type

https://console.cloud.google.com/kubernetes/add?project=kubernetes-gke

CHAPTER 3 ' KUBERNETES ON GOOGLE CLOUD PLATFORM

Specify a cluster name or keep the default cluster name (for example kube-cluster-1). Select a Zone,
for example us-east1-d. Select the Machine type as the number of CPU cores. For example, select 1 vCPU,
which has 3.75 GB memory. Specify a Cluster size, 3 for example. Keep the “default” setting for Subnetwork.
Optionally select Logging and monitoring options and click on Create as shown in Figure 3-55.

& - C 8 https//consoledoud.google.com/kuberrie

Google Cloud Platform

@ Container Engine & Create a container cluster

i Contalner clusters Upgrade your aczount to create instances with up to 32 corea

B Container Registry

Clustar size
3
Total cores 3vCPUa
Total memory 11.25G8

Cluster instances use ephemersl local disks. You can attach a parsistent disk to
your pod, if needed.

Subnetwork

Logging and manitoring

Turm on Cloud Moritaring
To uee Cloed Monlierning for instances, arable Cloud Monhoring for your project
+" Turn on Cloud Logging

More

You will be billed for the 2 nodes (VM instances) in your cluster Learn more

w Cancel

Equivalent REST orcommand line

a

Figure 3-55. Creating a container cluster

A container cluster is created as shown in Figure 3-56.

= Google Cloud Platform

@ Container Engine Container clusters B3 CREATECLUSTER B DELETE

0 Saangrolushens Container clusters

B Container Registry Name Zone Cluster siza Total cores Total memary Node varsion

B

@ kubecluster1 uz-east]-d 3 IvCPU= 11.25GB 125 a1

Figure 3-56. Container cluster kube-cluster-1

79

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

Connecting to the Google Cloud Shell

To connect to the Google Cloud Shell, click the » icon as shown in Figure 3-57. A message Welcome to
Cloud Shell and the command prompt for the Cloud Shell should be displayed.

Google Cloud Platform

@ Container Engine & Container clusters / EIT B DELETE
Container clusters @ kuba-cluster-1
B Container Registry Working with Container Engine
Cluster
Master version 125
Endpaint 104196148118 Show credentinls
Cluster size 3
Master zone usesstl-d
VE) Node zones us-eoatl-d

mB o hubeghe x4

§Helem to Cloud Shell! For help, visic heopa:Sf/cloud.google.com/cloud-shell/help.
| dvohralOBkube-gke: ~§

Figure 3-57. Connecting to the Google Cloud Shell

Configuring kubectl

The kubect]l command-line interface is used to manage the resources in a cluster. If more than one
container clusters exist, kubectl needs to be configured for the cluster to be managed. Using gcloud, which
is a command-line tool for Google Cloud Platform, run the following command to configure kubectl to a
specific cluster. The zone must be included in the command, with the -zone option:

gcloud container clusters get-credentials kube-cluster-1 --zone us-easti-d

The cluster endpoint and auth data are fetched, and a kubeconfig entry is generated for
kube-cluster-1 as shown in Figure 3-58.

m E -] kube-gke X -+

| dvohralOfkube~-gke:~§ gcloud container clusters get-credentials kube-cluster-1 --zone us-eastl-d
Fetching cluster endpoint and auth data.

| kubeconfig entry generated for kube-cluster-1.

dvohralOfkube-gke:~$

Figure 3-58. Configuring kubect1 for the cluster

80

CHAPTER 3 ' KUBERNETES ON GOOGLE CLOUD PLATFORM

Testing the Kubernetes Cluster

The cluster info may be listed with the following command:
kubectl cluster-info

As shown in Figure 3-59, the Kubernetes master and other cluster components are running.

dvoh:aJ.DBB:ube -gke:~/hellonode$ kubectl cluster-info

ter is running at https://104.196.148

aultBackend is running ac hreps 4
is runnlnq At htt -
is runnmq at hottps://104.196.14

ard is runnmg at https:

dvoh:aloﬂkube g‘ke ~/hellonode$

‘defaulc-htcp-backend

Figure 3-59. Listing cluster info

Next, we shall create a Node application to test the cluster. Create a folder called hellonode (or some
other folder name). In the hellonode folder create a Node file server. js with the vi editor as shown in
Figure 3-60.

dvohralORkube-gke:~§ cd hellonode
dvohralOBkube-gke:~/hellonode$ ls -1

total O

dvohralOBkube-gke:~/hellonode$ sudo vi server.js

Figure 3-60. Creating a Node script server.js

The Node script server. js responds to any request with the response Hello World!.

var http = require('http');

var handleRequest = function (request, response) {
response.writeHead(200);
response.end('Hello World!');

};
var www = http.createServer(handleRequest);
www.1isten(8080);

The server. js is shown in a vi editor in Figure 3-61.

s/kubernetes-dashboard

81

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

M8 & kube-gke X -+

var http=recquire('http'):;

var handleRecuest = function(recuest, response) {
response.writeHead (200) ;
response.end("Hello World!"™):

}

var www = http.createServer {handleRequest) ;

www. listen (8080) ;

-

“

1w

Figure 3-61. The server.js Node Script

Next, create a Docker file, also in the hellonode folder, to describe the Docker image to build including
the port the application listens on.

FROM node:4.4
EXPOSE 8080

COPY server.js .
CMD node server.js

The Docker file is shown in Figure 3-62.

M B & kubegke X <

|

| FROM node:4.4

| EXPOSE 8080

| COPY server.js .

| CHD node server.js

|
1
|,_
|
|

Figure 3-62. The Dockerfile

82

CHAPTER 3 ' KUBERNETES ON GOOGLE CLOUD PLATFORM

Next, build a Docker image using the docker build command.

docker build -t gcr.io/kube-gke/hello-node:vi.

The Docker image node: 4.4, from which the image gcr.io/kube-gke/hello-node:v1 is built, is pulled

as shown in Figure 3-63.

M B £ kube-gke X <

| dvohralOBkube-gke:~/hellonode$ sudo vi Dockerfile
dvohralOfkube-gke:~/hellonode$ docker build -t ger.io/kube-gke/hello-node:vl .
Sending build context to Docker daemon 3.072 kB

Step 1 : FROM node:4.4

4.4: Pulling from library/node
17bd2058e0c6: Pull complete
3f0d3d140cel: Pull complete
c28cbefB85¢c39: Pull complete
0d3e866c82£3: Pull complete
7el16e2273003: Pull complete
05f9ce51426c: Pull complete

Figure 3-63. Running the docker build command

The Docker image is built as shown in Figure 3-64.

M B & kube-gke X <=

-—=> ealObb6249cSe

Removing intermediate container
Step 3 : COPY server.js .

—-—=> 7544dfS55657d

Removing intermediate container
Step 4 : CHMD node server.js
-—=> Running in £474£f2f7aS5f8
-—=> d3fZaclZeeéba
Removing intermediate container
Successfully built d3fZaclZeeba
dvohralORfkube-gke:~/hellonode$

Figure 3-64. The Docker image built

c0a20129f2dd

24h317cabdd?

£474£217a518

83

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

Run the Docker image with the docker run command:
docker run -d -p 8080:8080 gcr.io/kube-gke/hello-node:vi
Invoke the application with the curl command:
curl http://localhost:8080

The Hello World! message is output as shown in Figure 3-65.

M B8 & kube-gke X ==

Removing intermediate container e4b317cabdd?
Step 4 : CMD node server.js
===> Running in £474£2f7a5f8
--—-> d3f2acl2eefa
Removing intermediate container £474f2f7aS5f8
Successfully built d3fZaclZeeba
dvohralOfkube-gke:~/hellonode$
dvohralOBkube-gke:~/hellonode§ docker run -d -p 8080:8080 gcr.io/kube-gke/hello-node:vl
d5£534401bbcSaSafeS5e7£5401212c644d0857417786091933 1eb44dch54a76d
dvohralORBkube-gke:~/hellonode$ curl http://localhost:B8080
Hello World'dvohralORkube-gke:~/hellonode$

Figure 3-65. Running and Invoking the hello-node Application

The Docker image may be pushed to the Google Container Registry, with the following command:
gcloud docker push gcr.io/kube-gke/hello-node:vi

The command output is shown in Figure 3-66.

dvohralOBkube-gke:~/hellonode§ gcloud docker push ger.io/kube-gke/hello-node:vl

The push refers to a repository [gcr.io/kube-gke/hello-node] (len: 1)

dif2aclZeeta: Pushed

7544d£55657d: Pushed

ealbb6249cSe: Pushed

82h826d33703: Pushing [===== === - == =mmy] 39.71 NB

Figure 3-66. Uploading the Docker Image to Google Container Registry

The Docker image is pushed to the repository as shown in Figure 3-67.

84

CHAPTER 3 ' KUBERNETES ON GOOGLE CLOUD PLATFORM

&

d3fZaclZeeta: Pushed
7544d£55657d: Pushed

ealbbb62459c5e: Pushed

82p826d33703: Pushed

05£9ce51426c: Image already esxists
Tel6e2273003: Image already exiscs
0d3e866c82£3: Image already exists
c28chef85¢39: Image already exists
17bd2058e0cs: Image already exiscs
vl: digesc: sha256:22fad%f72afa%cb03988b22704e96a4abd10d411a6791005£011895bfebb00ct2 size: 12984
dvohralOBkube-gke:~/hellonode$

Figure 3-67. Docker Image Uploaded to Repository

The repository image may be used to create a Kubernetes deployment and Service. Run the kubectl
run command to create a deployment:

kubectl run hello-node --image=gcr.io/kube-gke/hello-node:v1 --port=8080

The deployment hello-node is created as shown in Figure 3-68.

dvohralOfkube-gke:~/hellonode$ kubectl run hello-node --image=gcr.io/kube-gke/hello-node:vl --port=8080
deployment "hello-node” created
dvohralORkube-gke:~/hellonode$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILAELE AGE

hello-node sk it 1 o i2s
dvohralOfkube-gke:~/hellonode§ kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-node-2683538093-cSL0h 0/1 ContainerCreating (1] 238

dvohralORkube-gke:~/hellonode$

Figure 3-68. Creating a deployment

List the deployments and the pods as shown in Figure 3-69, and you'll see a hello-node deployment
and a hello-node prefixed pod listed.

m B & kubegke X <4

dvohralOfikube-gke:~/hellonode$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILAELE AGE

hello-node 1 1 1 a 12s
dvohralOfkube-gke:~/hellonode§ kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-node-2683538093-c9f0h 0/1 ContainerCreating o 233

dvohralOfkube-gke:~/hellonode§ kubectl logs hello-node-2683538093-c9f0h
dvohralOfkube-gke:~/hellonode§ kubectl get pods

| NAME READY STATUS RESTARTS AGE
hello-node-2683538093-cS£0h /1 Running o 1m
dvohralOfkube-gke:~/hellonode$

Figure 3-69. Listing the deployment and pod

85

CHAPTER 3 © KUBERNETES ON GOOGLE CLOUD PLATFORM

Create a LoadBalancer type service for the deployment:
kubectl expose deployment hello-node --type="LoadBalancer"

Subsequently describe the service. As shown in Figure 3-70 a service is created and the service
description includes the endpoints.

DB &

dvohralOfkube-gke:~/hellonode$ kubectl expose deployment hello-node -—-type="LoadBalancer™
service "hello-node” exposed
dvohralDfkube-gke: ~/hellonode$ kubectl get services hello-nods

NARE CLUSTER-IP EXTERNAL-IF PORT(S) AGE

hello-node 10.127.245.128 BOBOD/ TCP l4s

dvohralOfkube-gke:~/hellonode$ kubectl describe svec hello-node

Neune : hello-node

Neamespace : default

Labels: run=hello-node

Selector: run=hello-node

Type: LoadBnlancer

IP: 10.127.245.128

Port: <unzet> 8080/TCP

NodePort: <unset> I2152/TCP

Endpoints: 10.124.0.3:8080

Session Affinity: None

Events:
FiratSeen LastSeen Count From SubcbjectPath Type Reason Hessags
32s 32s 1 {service-controller } Hormal CreatingloadBalancer Creating load balancer

dvohralOfkube-gke: ~/ he 1 lonode §

Figure 3-70. Creating and describing a service

List the service hello-node, and the cluster-IP, external-IP, and port for the service are listed as shown in
Figure 3-71.

dvohralOfkube-gke:~/hellonode$ kubectl get services hello-node
NAME CLUSTER-IP EXTERNAL-IP PORT (3) AGE
hello-node 10.127.245.128 104,.196.11.21 8080/ TCP 3m
dvohralOfkube-gke:~/hellonode$

Figure 3-71. Obtaining a service external IP and port

Using the external-ip:port command, invoke the service in a browser as shown in Figure 3-72.

& C [} 104.196.11.21:8080

J, [104.196.11.21:8080 x { \ o~

Hello World!

Figure 3-72. Invoking the service in a browser

86

CHAPTER 3 ' KUBERNETES ON GOOGLE CLOUD PLATFORM

The service and deployment can now be deleted:
kubectl delete service,deployment hello-node

The service hello-node and the deployment hello-node are deleted, as shown in Figure 3-73.

dvohralOBkube-gke:~/hellonode$ kubectl get services hello-node

NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE

hello-node 10,127,245, 128 104196, 11.21 8080/ TCP 14m
dvohralOfkube-gke:~/hellonode$ kubectl delete service,deployment hello-node
service "hello-node” deleted

deployment "hello-node" deleted

Figure 3-73. Deleting deployment and service

The container cluster kube-cluster-1 may also be deleted:
gcloud container clusters delete kube-cluster-1 --zone us-easti-d

Specify Y to delete the cluster when prompted, as shown in Figure 3-74.

dvohralOfkube-gke:~/hellonode§

dvohralORkube-gke:~/hellonode§ gcloud container clusters delete kube-cluster-1 --zone us-eastl-d
The following clusters will be deleted.
- [kube-cluster-1] in [us-eastl-d]

Do you want to continue (¥/n)? ¥

Figure 3-74. Deleting the cluster

Summary

In this chapter we discussed creating a Kubernetes cluster on Google Cloud Platform. The procedure was
as follows: First, create a project in the Google Cloud Platform console. Subsequently, enable the Compute
Engine API and permissions. Create and connect to a virtual machine instance and reserve a static address.
Create a Kubernetes cluster and test the cluster by creating an application. We also discussed using
Kubernetes on Google Container Engine. In the next chapter we shall discuss using multiple zones for a
Kubernetes cluster.

87

PART Il

Administration and
Configuration

CHAPTER 4

Using Multiple Zones

High availability in a Kubernetes cluster is implemented using various parameters. High availability of master
controllers would provision multiple master controllers. High availability of etcd would provision multiple etcd
nodes. High availability of public DNS would provision multiple public DNSes. In a cloud-native application,
availability of a cluster would depend on the availability of the region or zone in which the nodes are run.
AWS provides various high-availability design patterns, such as Multi Region Architecture, Multiple Cloud
Providers, DNS Load Balancing Tier, and Multiple Availability Zones. In this chapter we will discuss the Multiple
Availability Zones design pattern as implemented by Kubernetes. Amazon AWS availability zones are distinct
physical locations with independent power, network and security and insulated from failures in other availability
zones. Availability zones within the same region have low latency network connectivity between them.

Problem

If all the nodes in a Kubernetes cluster are run in the same cloud provider zone (as defined by Amazon AWS
and Google Cloud Platform), failure of a single zone would bring down the whole Kubernetes cluster as
shown in Figure 4-1.

Single
Cloud
Provider
Zone

Master

>< Node

Worker Worker Worker
Node Node Node

Figure 4-1. In a single-zone cluster no fault tolerance is provided

© Deepak Vohra 2017 91
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_4

CHAPTER 4 ' USING MULTIPLE ZONES

Solution

Starting with Kubernetes 1.2, a cluster may be provisioned across multiple cloud provider zones. The pods
managed by a replication controller or service are spread across zones so that the failure of a single zone
does not affect the availability of the replication controller or service in other zones, as shown in Figure 4-2.

Multiple
Cloud
Provider
Zones
Master
Node
us-
east-
1b
Low
Network Worker
Latency Node
us-
east- us-
1b east- Worker
Worker < > 1b Node

2 Y

Figure 4-2. Failure of two zones in a three-zone cluster does not cause the whole cluster to fail

Zones are supported only with the GCE (Google Compute Engine) and AWS (Amazon Web Services)
cloud providers. AWS refers to the zones as “availability zones.” Pods that specify a persistent volume are
placed in the same zone as the volume. The support for zones has some limitations, though:

e The multiple zones must be located in the same region. A cluster must not span
multiple cloud formations.

e The zones are assumed to be in close proximity to avoid network latency as no zone-
aware routing is provided.

e Pod-volume collocation in the same zone applies only to persistent volumes and not
to other types of volumes such as EBS volume.

e The nodes are in multiple zones, but a single master controller is built by default and
the master controller is located in a single zone.

92

CHAPTER 4~ USING MULTIPLE ZONES

Overview

In this chapter we shall create a multiple-zone AWS CloudFormation on CoreOS. We shall also demonstrate
volume-zone affinity for a persistent volume on a multiple-zone cluster with AWS cloud provider. The steps
we'll take are as follows:

Setting the environment

Initializing a CloudFormation

Configuring cluster.yaml for multiple zones
Launching the CloudFormation
Configuring External DNS

Running a Kubernetes Application

Using Multiple Zones on AWS

Setting the Environment

You'll find the details of creating a Kubernetes cluster on a CoreOS AWS CloudFormation in Chapter 2. We
only need to start a single EC2 instance to launch the CloudFormation from. Create an EC2 instance using
the Amazon Linux AMI, which has the AWS CLI installed by default; the AWS CLI is used to initialize and
launch a CloudFormation. Obtain the Public IP address of the EC2 instance from the EC2 console. SSH log in
into the EC2 instance:

ssh -i "docker.pem" ec2-user@184.73.19.214

The Amazon Linux AMI command prompt is displayed.

Because we will be launching an AWS CloudFormation for a Kubernetes cluster, the CloudFormation
stack name must be one that is not already used. If a CloudFormation stack name is already used an error
similar to the following (Figure 4-3) is generated.

[ec2-user@ip-10-0-0-126 coreos-cluster]$ kube-aws up
Creating AWS resources. This should take around 5 minutes.
Error: Error creating cluster: AlreadyExistsException: Stack [kubernetes-coreos-
cluster] already exists
status code: 400, request id: e1729893-4861-11e6-9731-6334ac51fa70

Figure 4-3. Stack already exists error

To find whether a CloudFormation stack name can be used, click Services » CloudFormation as shown
in Figure 4-4.

93

http://dx.doi.org/10.1007/978-1-4842-2598-1_2

CHAPTER 4 * USING MULTIPLE ZONES

History All AWS Services > .‘8 AP Gateway

i ec2 Compute % AppStream

& VPC Storage & Content Delivery @ ANSIoT

B Console Home Database = Certificate Manager

i B¥ Support Metworking m (

? 1AM Developer Tools = CloudFront

B Billing Management Tools) CloudSearch
Security & ldentity ‘ CloudTrail
Anahtics s CloudWatch
Internet of Things @ codeCommit
obile Services CodeDeploy
Application Services CodePipeline
Enterprise Applications Cognito
Game Development Config

Data Pipeline

Device Farm
||

httpsi/fconsole.aws.amazon.com/cloudformation/home?region=us-east-1

B @220

Mirect "~ annect

Figure 4-4. Choosing Services » CloudFormation

The stacks are listed as shown in Figure 4-5. A stack name the same as one that is listed cannot be used
to create a new stack.

« C & https//console.aws.amazon.com,/cloudf

O eugtemetor sz <0 T SEE——_— .

m Actions = Design template

Filter: Active= By Name: Show
Stack Name Created Time Status Description
coreons-cluster 2016-07-09 10:50:49 UTC-0700 CREATE_COMPLETE kube-aws Kubernetes cluster coreos-cluster
Kube-corens-cluste 2016-07-09 10:15:54 UTC-DTD0 | CREATE_COMPLETE Kube-aws Kubermnetes cluster kube-corens-ciuste
hube-coreos 2016-07-05 09:29:19 UTC-0700 CREATE_COMPLETE kube-aws Kubemetes cluster kube-coreos
hube-coreos-cluster 2016-07-04 14:32:59 UTC-0700 DELETE_FAILED kube-aws Kubemetes cluster kube-coreos-cluster
Core0S-stable A016-03-08 112209 UTC-0800 ROLLBACK_COMPLETE CoreQ35 on ECE hitpr/fcorens comfocs/running-corens/cloud-provdersiecsy’

Figure 4-5. Listing the CloudFormation stacks

94

CHAPTER 4~ USING MULTIPLE ZONES

Initializing a CloudFormation

Initializing a CloudFormation stack is discussed in detail in Chapter 2. The procedure to create an AWS
CloudFormation is as follows:

1. Install Kube-aws (required to be installed only once for the Amazon Linux
instance).

2. Setup Cluster Parameters, such as creating an EC2 key pair (kubernetes-
coreos), KMS key, and External DNS name (oramagsearch. com).

3. Create an Asset Directory for a cluster CloudFormation.
4. Initialize the cluster CloudFormation.
5. Render the Contents of the asset directory.
A typical command to create an EC2 key pair is as follows:
aws ec2 create-key-pair --key-name kubernetes-coreos --query 'KeyMaterial' --output text >

kubernetes-coreos.pem
chmod 400 kubernetes-coreos.pem

The command to create a KMS key is as follows:
aws kms --region=us-east-1 create-key --description="kube-aws assets"

Copy the KeyMetadata.Axn string and use it to initialize a CloudFormation stack; for example, a cluster
called kubernetes-coreos-cluster with the asset directory kube-coreos-cluster is initialized as follows:

mkdir kube-coreos-cluster

cd kube-coreos-cluster

kube-aws init --cluster-name=kubernetes-coreos-cluster --external-dns-name=ORAMAGSEARCH.COM
--region=us-east-1 --availability-zone=us-east-ic --key-name=kubernetes-coreos --kms-key-
arn="arn:aws:kms:us-east-1:XxXXXXXXXXX : Key/XXXXXXXXXXXXXXXXXXX"

The command to render the contents of an assets directory is as follows:

kube-aws render

Configuring cluster.yaml for Multiple Zones

By default a single zone is used to launch a CloudFormation. Next, we shall customize the CloudFormation
to configure multiple zones. Open the cluster.yaml file in a vi editor:

sudo vi cluster.yaml

The region to provision the CloudFormation is set to us-east-1 as specified in the kube-aws init
command. The availabilityZone is set to us-east-1c also as specified in the kube-aws init command.
For a multi-availability zone or multiple zones, comment out the availabilityZone. By default
workerCount, which specifies the number of worker nodes to create, is set to 1. To demonstrate a multiple-
zone cluster, the worker nodes must be set to at least the number of zones to configure. Set workerCount to 6
as shown in Figure 4-6.

95

http://dx.doi.org/10.1007/978-1-4842-2598-1_2

CHAPTER 4 * USING MULTIPLE ZONES

=l ec2-user@ip-10-0-0-126:~/coreos-cluster
#hostedZoneId: "

Name of the SSH keypair already loaded into the AWS
account being used to deploy this cluster.
keyName: Kkubernetes-coreos

Region to provision Kubernetes cluster
region: us-east-1

Availability Zone to provision Kubernetes cluster when placing nodes in a sing
le availability zone (not highly-available) Comment out for multi availability z
one setting and use the below "subnets’ section instead.

#availabilityZone: us-east-1c

ARN of the KMS key used to encrypt TLS assets.
kmsKeyArn: "arn:aws:kms:us-east-1:672593526685:key/142c67fe-f3b4-4f0d-b9cl-d744a
53720e5"

Instance type for controller node
#controllerInstanceType: m3.medium

Disk size (GiB) for controller node
#controllerRootVolumeSize: 30

Number of worker nodes to create
workerCount: 6

Instance type for worker nodes
#workerInstanceType: m3.medium

Figure 4-6. Setting workerCount to 6

in

Cluster.yaml is configured for a single availability zone by default, and the instanceCIDR setting
specifies the CIDR for the Kubernetes subnet. For multiple availability zones the instanceCIDR must be
commented out, as we need to configure multiple subnets in cluster.yaml. In setting subnets, specify the
Kubernetes subnets and their CIDRs and availability zones. The objective of high availability is that failure
of a single zone does not result in interruption in the service. At least two subnets must be specified for high
availability of zones. Each subnet is specified as an availabilityZone setting and an instanceCIDR setting.
The availability zones that could be specified must be available to create subnets. If an availability zone is not
available, an error such as the one shown in Figure 4-7 is generated when the CloudFormation is launched.

96

CHAPTER 4~ USING MULTIPLE ZONES

[ec2-user@ip-10-0-0-126 coreos-cluster]$ kube-aws up

Creating AWS resources. This should take around 5 minutes.

Error: Error creating cluster: Stack creation failed: CREATE_FAILED : The follow
ing resource(s) failed to create: [Subnetl, RouteTable, IAMRoleWorker, Subnet®,
SecurityGroupController, Subnet2, SecurityGroupWorker, IAMRoleController, VPCGat
ewayAttachment].

Printing the most recent failed stack events:

CREATE_FAILED AWS::CloudFormation::Stack kubernetes-coreos-cluster The following
resource(s) failed to create: [Subnetl, RouteTable, IAMRoleWorker, Subnet®, Sec

urityGroupController, Subnet2, SecurityGroupWorker, IAMRoleController, VPCGatewa

yAttachment].

CREATE_FAILED AWS::EC2::Subnet Subnet® Value (us-east-la) for parameter availabi

lityZone is invalid. Subnets can currently only be created in the following avai

lability zones: us-east-1c, us-east-le, us-east-1b, us-east-1d. Eﬂ
[ec2-user@ip-10-0-0-126 coreos-cluster]s | =

Figure 4-7. Error message when subnet could not be created because an availability zone is not valid

Run the following command to find the availability zones.
ec2-availability-zones -aws-access-key <access key id> --aws-secret-key <access key>

The availability zones are listed as shown in Figure 4-8. As indicated, the availability zones for the
us-east-1 region are us-east-1a, us-east-1b, us-east-1c, us-east-1d, and us-east-1e.

[ec2-user@ip-10-0-0-126 ~]$ ec2-describe-availability-zones --aws-access-key AKI
AJGFCP4HUFH4453FA --aws-secret-key 7BaiUETep3zPYrhrzKYpBdwkwVV16BTT+pt2/EXF

AVAILABILITYZONE us-east-la available us-east-1
AVAILABILITYZONE us-east-1b available us-east-1
AVAILABILITYZONE us-east-1c available us-east-1
AVAILABILITYZONE us-east-1d available us-east-1
AVAILABILITYZONE us-east-le available us-east-1
[ec2-user@ip-10-0-0-126 ~]$ || v

Figure 4-8. Listing the availability zones

The instanceCIDR block specifies the range of IPs to be used. Block sizes must be between a /16
netmask and a /28 netmask. Specify three subnets for three different availability zones:

subnets:
availabilityZone: us-east-1b
instanceCIDR: "10.0.0.0/24"
availabilityZone: us-east-1c
instanceCIDR: "10.0.0.0/24"
availabilityZone: us-east-1d
instanceCIDR: "10.0.0.0/24"

97

CHAPTER 4 * USING MULTIPLE ZONES

Another setting that needs to be commented out is controllerIP. The controllerIP setting specifies
the controller in a Kubernetes subnet. With two or more subnets the controller is placed in the first subnet,
and controllerIP must be included in the instanceCIDR of the first subnet. If no instanceCIDRs in the
configured Subnets contain the controllerIP and controllerIP is not commented out, the error shown in
Figure 4-9 is generated.

[ec2-user@ip-10-0-0-126 coreos-cluster]s kube-aws up

Error: Failed to read cluster config: file cluster.yaml: invalid cluster: No ins
tanceCIDRs in Subnets ([10.0.1.6/24 10.0.2.0/24 10.0.3.0/24]) contain controller
IP (10.0.0.50)

[ec2-user@ip-10-0-0-126 coreos-cluster]$]

Figure 4-9. Error message when no instanceCIDRs in the configured subnets contain the controllerIP

The subnets must be formatted as shown in Figure 4-10.

3 ec2-user@ip-10-0-0-126:~/coreos-cluster]
ID of existing route table in existing VPC to attach subnet to. Leave blank to|
use the VPC's main route table. 1
routeTableld: i

CIDR for Kubernetes VPC. If vpcId is specified, must match the CIDR of existin|

g vpc.
vpcCIDR: "10.0.0.0/16"

CIDR for Kubernetes subnet when placing nodes in a single availability zone (n

ot highly-available) Leave commented out for multi availability zone setting and
use the below "subnets’ section instead.

instanceCIDR: "10.0.0.0/24"

Kubernetes subnets with their CIDRs and availability zones. Differentiating av
ailability zone for 2 or more subnets result in high-availability (failures of a
single availability zone won't result in immediate downtimes) |
subnets: =]
availabilityZone: us-east-1b
instanceCIDR: "10.0.6.0/24"

availabilityZone: us-east-1c
instanceCIDR: "10.0.1.0/24"

availabilityZone: us-east-1d

instanceCIDR: "10.0.2.08/24"
IP Address for the controller in Kubernetes subnet. When we have 2 or more sub
nets, the controller is placed in the first subnet and controllerIP must be incl
uded in the instanceCIDR of the first subnet. This convention will change once w
e have H/A controllers
controllerIP: 10.0.0.50

swal]

(<]

Figure 4-10. Listing the formatted subnets

98

CHAPTER 4~ USING MULTIPLE ZONES

Launching the CloudFormation

After we modify cluster.yaml, the CloudFormation stack must be validated. Validate the CloudFormation
stack with the following command:

kube-aws validate

Launch the CloudFormation stack.

kube-aws up

The AWS resources, such as the EC2 instances, scaling groups, and launch configurations are created,
and the CloudFormation is launched as shown in Figure 4-11.

[ec2-user@ip-10-0-8-126 coreos-cluster]$ kube-aws up
Creating AWS resources. This should take around 5 minutes.
Success! Your AWS resources have been created:

Cluster Name: kubernetes-coreos-cluster

Controller IP: 52.202.134.20

The containers that power your cluster are now being dowloaded.
You should be able to access the Kubernetes API once the containers finish downlim

oading. 2
[ec2-user@ip-10-0-0-126 coreos-cluster]s ||

Figure 4-11. Launching the CloudFormation
The status of the CloudFormation may be found with the following command:

kube-aws status

The controller IP is listed, as shown in Figure 4-12.

[ec2-user@ip-10-0-8-126 coreos-cluster]$ kube-aws status
Cluster Name: kubernetes-coreos-cluster

Controller IP: 52.202.134.20

[ec2-user@ip-10-0-0-126 coreos-cluster]s ||

'_m]

Figure 4-12. Finding the status of CloudFormation
The EC2 instances launched by the CloudFormation stack are shown in Figure 4-13. As indicated in the

Availability Zone column, two instances each are launched in the us-east-1b, us-east-1c, and us-east-1d
zones. The single controller runs in zone us-east-1b.

99

CHAPTER 4 * USING MULTIPLE ZONES

Launch Instance Connect Actions v
| Y o s eceo

Q, | Launch Time : > July 12, 2016 a 11:30:00 AM UTC-7 f (2] 1toTof 7
Name ~ Instance |0 =~ Instance Type ~ Awvailability fone « Instance State ~ Status Checks -~ Alarm Status
] L luster-kub i-75b65dea m3. mediurm uz-gast-1b @ running & 22 checks .. @ NoData %
kubemptes- coreos-clustes-kube- sws-worker i-cobB5d51 m3. redium ug-tast-1b & running & 272 checks None ‘,,,
kubemetes-coreos-cluster-kube-aws-worker ieibB5d50 m3. medium us-east-1b @ running @ 272 checks None ™
kub -coregs-cluster-kube-aws-work 1257109 m3. medum us-gast-lc & running @ 22 checks None p™
kubemetes-coreos-cluster-kul orker 16571094 3. e us-gast-lc @ rnning 9 272 checks Mone j
kubemetes-coreos-cluster-kube-aws-worker HO1Tdec m3. medmum us-gast-1d @ running & 212 checks None =
kubemetes-coreas-cluster-kube- mws-worker 027 deca2 m3. medsum us-gast-1d @ running @ 272 checks None ‘s
»
[l (kubernete s-cluster-kub troller) Elastic IP: 52.202.134.20 [N =R =]
Description Status Checks Monitaring Tags
Instance [0 75b6Sdea Fublic DNS ec2-52-202-134-20 compute-
1 amazonaws com
Instance state running i Public IP 52.202.134.20
Instance fype m3 medium ElasticIPs 52202134 207
Private DNS ip-10-0-0-20, ec2.intermnal Availability zone us-east-1b i

Figure 4-13. Listing the formatted subnets

Configuring External DNS

Configure the Public IP address of the controller instance in the Public DNS name for the nosqlsearch.com
domain on the domain registrar. Add an A record for the Public IP of the controller instance as shown in
Figure 4-14.

Settings DNS Zone File Contacts

Zone File @ 17 records in this zone

Last updated 12/07/2016 12:07:11 PMMST

[Add Record & Bulk Actions v ® Templates s @ More s Filter List s
A (Host) (&

1 Records (0 Selected)

' Host Points To TL Actions

@ h‘ 52.202.134.20 600 seconds (A

Figure 4-14. Listing the formatted subnets

100

CHAPTER 4 * USING MULTIPLE ZONES

Running a Kubernetes Application

Next, we shall test the Kubernetes cluster to confirm that pods in an application do get allocated across the
nodes in the different zones. Connect to the controller instance:

ssh -i "kubernetes-coreos.pem” core@52.202.134.20

The controller instance is logged into as shown in Figure 4-15.

[ec2-user@ip-10-0-0-126 ~]$ ssh -i "kubernetes-coreos.pem" core@52.202.134.20

Core0S stable (1010.6.0)

Update Strategy: No Reboots

Failed Units: 2
docker-4da24e21aef8496389d6bfafdd7del2dc7¢39004a279d13eb0f0103c83086249.5cope [
polkit.service IZ

|

Figure 4-15. SSH logging into the controller CoreOS instance

Install the kubect1 binaries and set permissions.
sudo wget https://storage.googleapis.com/kubernetes-release/release/v1.3.0/bin/1linux/
amd64/./kubectl
sudo chmod +x ./kubectl

Kubectl binaries are installed. Move the kubect] binaries to /usr/local/bin/, which is in the path:
sudo mv ./kubectl /usr/local/bin/

List the nodes in the cluster:

./kubectl get nodes

The single master node and the six worker nodes are listed as shown in Figure 4-16.

- § ./kubectl get nodes

-5.ec2.internal Ready 4m

NAME STATUS AGE
ip-10-0-0-186.ec2.internal Ready 4m
ip-10-0-0-187.ec2.internal Ready 4m
ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 4m
ip-10-0-1-66.ec2.internal Ready 4m
ip-10-0-1-67.ec2.internal Ready 4m
ip-10-0-2-4.ec2.internal Ready 4m |
ip-10-0-2-5, E

Figure 4-16. Listing the nodes in the Kubernetes cluster

101

CHAPTER 4 * USING MULTIPLE ZONES

Run the nginx Docker image to create six pod replicas:
kubectl run nginx --image=nginx --replicas=6 --port=80
Subsequently, list the pods:
kubectl get pods -o wide

The nginx deployment is created and the pods are listed. Initially the pods may be listed as not ready, as
indicated by the READY column value of 0/1 and STATUS column value of ContainerCreating in Figure 4-17.

- § ./kubectl run nginx --image=nginx --replicas=6 --port=80
deployment "nginx" created
- - - § ./kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP
NODE

nginx-198147104-1loien 0/1 ContainerCreating © 13s <none

> ip-10-0-1-66.ec2.internal

nginx-198147104-co400 0/1 ContainerCreating © 13s <none

> ip-10-0-0-187.ec2.internal

nginx-198147104-gd3sd 0/1 ContainerCreating © 13s <none

> ip-10-0-0-186.ec2.internal

nginx-198147104-jfpp7 0/1 ContainerCreating © 13s <none

> ip-10-0-2-5.ec2.internal

nginx-198147104-mtcle 0/1 ContainerCreating © 13s <none

> ip-10-0-1-67.ec2.internal

nginx-198147104-pbrsh 0/1 ContainerCreating © 13s <none

> ip-10-8-2-5.ec2.internal
Figure 4-17. Running the Kubernetes nginx application

Run the kubectl get pods -o wide command again after a few more seconds (up to a minute) and
all the pods should be running and ready as shown in Figure 4-18. As indicated in the NODE column, each
of the six pods is running on a different node, which implies that the pods are spread across the zones in the
cluster. A failure of a single zone will not affect the availability of the deployment.

- & ./kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NOD|
E

nginx-198147104-1oi6n 1/1 Running © 54s 10.2.86.3 ip-
10-0-1-66.ec2.internal

nginx-198147104-cod400 1/1 Running © 54s 10.2.65.2 1ip-
10-0-0-187.ec2.internal

nginx-198147104-gd3sd 1/1 Running © 54s 10.2.39.2 ip-
10-0-0-186.ec2.internal

nginx-198147104-jfpp7 1/1 Running @ 54s 10.2.24.3 ip-
10-0-2-5.ec2.internal

nginx-198147104-mtcle 1/1 Running © 54s 10.2.34.2 1ip-
10-6-1-67.ec2.internal

nginx-198147104-pbrsh 1/1 Running © 54s 10.2.24.2 ip-|
10-0-2-5.ec2.internal -

Figure 4-18. All pods running and ready

102

CHAPTER 4 * USING MULTIPLE ZONES

Using Multiple Zones on AWS

If a Kubernetes cluster is to be started with multi-zone capability, the MULTIZONE parameter must be set to
true. Setting MULTIZONE to true does not automatically start nodes running in multiple zones; it only adds
the capability to manage a multi-zone cluster. If cluster nodes are to be run in multiple zones, multiple sets of
nodes must be started in separate zones using the same master controller as the first zone node set. When a
node set is started in a zone-aware cluster, the nodes are labeled indicating the zone in which the nodes run.

First, start a multi-zone aware cluster using the AWS Kubernetes provider by setting MULTIZONE=true.
Setting KUBE_AWS_ZONE to true creates the master controller node and all the minion nodes in the specified
zone. The NUM_NODES value sets the number of nodes to create. Run the following command to start a cluster
in zone us-east-1c with three nodes:

curl -sS https://get.k8s.io | MULTIZONE=true KUBERNETES PROVIDER=aws KUBE_AWS ZONE=us-east-
1c NUM_NODES=3 bash

Kubernetes binaries are downloaded with the MULTIZONE command, as shown in Figure 4-19.

[ec2-user@ip-10-0-0-126 ~]$ curl -sS https://get.k8s.io | MULTIZONE=true KUBERNE
TES PROVIDER=aws KUBE AWS ZONE=us-east-1c NUM NODES=3 bash
Downloading kubernetes release v1.3.0 to /home/ec2-user/kubernetes.tar.gz

--2016-07-12 16:24:03-- https://storage.googleapis.com/kubernetes-release/relea
se/v1.3.0/kubernetes.tar.gz

Resolving storage.googleapis.com (storage.googleapis.com)... 173.194.204.128, 26
07:f8b0:400d:c00::80

Connecting to storage.googleapis.com (storage.googleapis.com)|173.194.204.128]|:4
43... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1486828686 (1.4G) [application/x-tar]

Saving to: ‘kubernetes.tar.gz’

kubernetes.tar.gz 13%[=>] 195.03M 18.0MB/s eta 66s I

Figure 4-19. Starting a multi-zone aware cluster

A multi-zone Kubernetes cluster is started as shown in Figure 4-20. What is different about the cluster is
that it is aware of multiple-zones.

103

CHAPTER 4 * USING MULTIPLE ZONES

Done, listing cluster services:

Kubernetes master is runnlng at

Elastlcsearch 15 runnmg at | v1/proxy
stem/service :_;.-\|_-.:'__'
Heapster 15 runnlng at | 3 Je-syste
ieapster
K:Lbar‘a is runnlng at https://52.206.28.220/api/v1/proxy/namespaces/kube-system/s
Dana-Logging

KubeDNS is runnlng at https://52.206.28.220/api/v1/proxy/namespaces/kube-system/
ces/Kube-

k:bernetes dashboard 15 runnlng at |

"""." tem -‘.~=." ruper = LEC

e5-da

Grafana is runnlng at

quluxDB is runnlng at

.1'
nfluxdb

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump’.

Kubernetes binaries at /home/ec2-user/kubernetes/cluster/

You may want to add this directory to your PATH in $HOME/.profile
Installation successful!

[ec2-user@ip-10-0-0-126 ~]$ ||

Figure 4-20. Starting a multi-zone aware cluster

List the nodes with kubectl get nodes as shown in Figure 4-21.

[ec2-user@ip-10-0-0-126 ~]$ kubectl get nodes
NAME STATUS AGE
ip-172-20-0-239.ec2.internal Ready 8m
ip-172-20-0-240.ec2.internal Ready 8m
ip-172-20-0-241.ec2.internal Ready am
[ec2-user@ip-10-0-0-126 ~1$]

Figure 4-21. Listing the nodes

Next, list the nodes and include the labels to be listed as shown in Figure 4-22.
kubectl get nodes --show-labels

The labels include failure-domain.beta.kubernetes.io/region for the region and failure-domain.
beta.kubernetes.io/zone for the zone.

104

CHAPTER 4 * USING MULTIPLE ZONES

[ec2-user@ip-10-0-0-126 ~]$ kubectl get nodes --show-labels

NAME STATUS AGE LABELS
ip-172-20-0-239.ec2.internal Ready am beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=linux,failure-d
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone
=us-east-1c,kubernetes.io/hostname=ip-172-20-0-239.ec2.internal
ip-172-20-0-240.ec2.internal Ready 8m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=linux, failure-d
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone
=us-east-1c,kubernetes.io/hostname=ip-172-20-0-240.ec2.internal
ip-172-20-0-241.ec2.internal Ready 8m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=linux,failure-d
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone
=us-east-1c,kubernetes.io/hostname=ip-172-20-0-241.ec2.internal
[ec2-user@ip-10-0-0-126 ~1$ ||

Figure 4-22. Listing the nodes including the labels

As shown in the EC2 console in Figure 4-23, all the nodes are running in the same zone, us-east-1c.
Why the same zone even though MULTIZONE is set to true? Because the setting makes the cluster multi-zone
aware and not multi-zone to start with. We shall discuss subsequently adding node sets in other zones using
the same master controller.

(EMELECEAS connect Actions v
iz @c e

Q, | Launch Time : > July 12, 2016 at 12:00:00 AM UTC-7 § [~] 1to5ot5
Name = Instance ID = Instance Type - Awvailability Zone ~ Instance State - Status Checks - Alarm Status
Kubemeates-Core0S i-342¢5802 12 micro us-gast-ic @ running @ 272 checks None %
kubemetes-minion i-d3ade255 12.micro us-east-1c & running & 272 checks Nona %
kubametes-minion i-ddade952 12.micro us-gast-1c @ running @ 272 checks None e
kubemetes-minion dSadeD53 2. micro us-east-1c @ running & 272 checks None =
B kubsmetes-master i-ebacefhd m3 mediem us-east-1c & running @ 212 checks None W

Figure 4-23. All nodes in the same zone, us-east-1c

Next, start another node set in a different zone but using the same master as the first node set. Obtain
the Private IP of the master instance from the EC2 console. Run the following command in which the
MASTER_INTERNAL_IP specifies the private IP of the master controller and KUBE_SUBNET_CIDR specifies the
subnet CIDR. KUBE_USE_EXISTING_MASTER is set to true, implying that the existing master is to be used. The
KUBE_AWS_ZONE is set to a different zone, us-east-1b.

KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE=us-east-
1b NUM_NODES=3 KUBE_SUBNET_CIDR=172.20.1.0/24 MASTER_INTERNAL_IP=172.20.0.9 kubernetes/
cluster/kube-up.sh

Another node set in a different zone, us-east-1b, is started as shown by the command output in
Figure 4-24.

105

CHAPTER 4 * USING MULTIPLE ZONES

)

[ec2-user@ip-10-0-0-126 ~]$ KUBE USE EXISTING MASTER=true MULTIZONE=true KUBERNE
TES PROVIDER=aws KUBE AWS ZONE=us-east-1b NUM NODES=3 KUBE SUBNET CIDR=172.20.1.
©/24 MASTER INTERNAL IP=172.20.0.9 kubernetes/cluster/kube-up.sh
Using subnet CIDR override: 172.20.1.0/24

. Starting cluster in us-east-1b using provider aws

. calling verify-prereqs

. calling kube-up
Starting cluster using os distro: jessie
{Uploading to Amazon S3
+++ Staging server tars to S3 Storage: kubernetes-staging-3b2de58189ba7d2340027c
ecbbbe5060/devel
upload: ../../tmp/kubernetes.LOSThs/s3/bootstrap-script to s3://kubernetes-stagi
ng-3b2de58189ba7d2340027cecbbbe5060/devel /bootstrap-script
Uploaded server tars:

SERVER BINARY TAR URL: https://s3.amazonaws.com/kubernetes-staging-3b2de58189b
a7d2340027cecbbbe5060/devel/kubernetes-server-linux-amd64. tar.gz

SALT TAR URL: https://s3.amazonaws.com/kubernetes-staging-3b2de58189ba7d234002
7cecbbbe5060/devel/kubernetes-salt.tar.gz

BOOTSTRAP_SCRIPT URL: https://s3.amazonaws.com/kubernetes-staging-3b2de58189ba
7d2340027cecbbbe5060/devel /bootstrap-script
INSTANCEPROFILE arn:aws:iam::672593526685:instance-profile/kubernetes-master 2

016-01-29T0E0:18:58Z AIPAJREOYCBYPX27F553HI kubernetes-master /

ROLES arn:aws:iam::672593526685: role/kubernetes-master 2016-01-29T00:18
1572 / AROAIDG4HG76MIPGRWEEW kubernetes-master
ASSUMEROLEPOLICYDOCUMENT 2012-10-17

STATEMENT sts:AssumeRole Allow

PRINCIPAL ec2.amazonaws .com

INSTANCEPROFILE arn:aws:iam::672593526685:instance-profile/kubernetes-minion 2|
016-01-29T00:19:00Z AIPAJHMVQBPLMRBJESMNO kubernetes-minion

ROLES arn:aws:iam::672593526685:role/kubernetes-minion 2016-01-29T00:18
1592 / AROAJU44B2VYHKS5GKUB3S kubernetes-minion v

Figure 4-24. Starting a Kubernetes node cluster in another zone, us-east-1b

As indicated by the output in Figure 4-25, the master IP is the same but the subnet CIDR is different.

106

CHAPTER 4 * USING MULTIPLE ZONES

ip-172-20-8-241.ec2.internal Ready 40m
Validate output:
Using subnet CIDR override: 172.20.1.0/24

NAME STATUS MESSAGE ERROR
scheduler Healthy ok

controller-manager Healthy ok

etcd-1 Healthy {"health”: "true"}

etcd-0 Healthy {"health": "true"}

Cluster validation succeeded
Done, listing cluster services:

Using subnet CIDR override: 172.20.1.0/24

Kubernetes master is running at https://52.206.28.220
Elasticsearch is running at https://52.206.28.220/api/v1/proxy/namespaces/kul
rch-logging
s://52.206.28.220/api/v1l/proxy/na

ystem/services/elasticsea

Heapster is running at hi

ices/Kube-system
/services/neapster

Kibana is running at https://
ervices/kibana-loggl
KubeDNS is running at
services/kube-dns
kubernetes-dashboard is running at https://52.206.28.220/api/v1/proxy/namespaces
/Kube-system/services/kubernetes-dashboard

Grafana is running at | 2.206.28.220/api/v1l/proxy/namespaces/kube-system/
services/monitoring-gra
InfluxDB is running at

/services/monitoring-1in

2.206.28.2208/api/v1l/proxy/namespaces/kube-system/s

https://52.206.28.220/api/v1/proxy/namespaces/kube-system/

://52.206.28,220/api/v1/proxy/namespaces/kube-system

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump’.

[ec2-user@ip-10-0-0-126 ~1$ ||

-~

Figure 4-25. The same master IP but a different subnet CIDR

The EC2 console lists another set of nodes in a different zone, us-east-1b as shown in Figure 4-26. The
cluster has only one master in zone us-east-1c but minions in different zones, us-east-1b and us-east-1c.

Q Launch Time : > July 12, 2016 at 12200:00 AM UTC-7 idd filter @ £ < 1toBofs
Hame = Instance 1D b Type - Awvailability Zone ~ | State = Status Checks ~
kubernetes-minion Fcd32dasSh 2 micro us-gast-1b @ woning @ 22 checks ...
kubemnetes-minion -c532da5a 12.micro us-gast-1b @ wnning @ 22checks ...
kubernetes-minion c732da58 2. micro us-gast-1b @ rnning @ 22 checks ...
Kubemetes-Core0S Ba2c5002 2 micro us-gaszt-lc @ running & Z2checks ..
kubernetes-minion [R.EEL 2 micro us-east-lc @ running & 22 checks ..
kubernates-rminion iddadats2 12 micro ug-gast-lc @ running @ 272 checks .
kuberretes-rminion idSadeS53 12 micro ug-gast-ic @ mnnning © 272 checks .
kubernetes-master -ebace8hd m3. medium us-gasi-lc @ wnning & 272 checks ...

Figure 4-26. The same master IP but a different subnet CIDR

|

Alarm Status

None

None

vy vy

107

CHAPTER 4 * USING MULTIPLE ZONES

Listing the nodes displays six nodes, as shown in Figure 4-27.

[ec2-user@ip-10-0-0-126 ~]$ kubectl get nodes
NAME STATUS AGE
ip-172-20-0-239.ec2.internal Ready 56m
ip-172-20-0-240.ec2.internal Ready 56m
ip-172-20-0-241.ec2.internal Ready 56m

ip-172-20-1-96.ec2.internal Ready 16m
ip-172-20-1-97.ec2.internal Ready 16m
ip-172-20-1-98.ec2.internal Ready 16m

[ec2-user@ip-10-0-0-126 ~1$ ||

Figure 4-27. Listing nodes in two different zones

Listing the nodes including the labels displays six nodes, three in the us-east-1c zone and three in us-
east-1b, as shown in Figure 4-28.

[ec2-user@ip-10-0-0-126 ~]$ kubectl get nodes --show-labels

NAME STATUS AGE LABELS
ip-172-20-0-239.ec2.internal Ready 57m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=1linux,failure-d
jomain.beta.kubernetes.io/region=us-east-1, failure-domain.beta.kubernetes.io/zone
i=us-east-1c,kubernetes.io/hostname=ip-172-20-0-239.ec2.internal
1ip-172-20-0-240.ec2.internal Ready 57m beta. kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=linux, failure-d
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone
=us-east-1c,kubernetes.io/hostname=ip-172-20-0-240.ec2.internal
ip-172-20-0-241.ec2.internal Ready 57m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=linux, failure-d
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone
=us-east-1c,kubernetes.io/hostname=ip-172-20-0-241.ec2.internal
ip-172-20-1-96.ec2.internal Ready 11m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=Llinux, failure-d
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone
=us-east-1b,kubernetes.io/hostname=ip-172-20-1-96.ec2.internal
ip-172-20-1-97.ec2.internal Ready 11m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=linux, failure-d
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone
=us-east-1b,kubernetes.io/hostname=ip-172-20-1-97.ec2.internal
ip-172-20-1-98.ec2.internal Ready 11m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=linux, failure-d
omain.beta.kubernetes.in/region=us-east-1,failure-domain.heta.kubernetes.io{zoneEi

=us-east-1b, kubernetes.io/hostname=ip-172-20-1-98.ec2.internal
[ec2-user@ip-10-0-0-126 ~]$ ||

Figure 4-28. Listing nodes in two zones including labels

Launch another node set in the us-east-1d zone using the same master node. Specify a different
subnet CIDR for the us-east-1d zone.

KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=aws KUBE_AWS ZONE=us-east-

1d NUM_NODES=3 KUBE_SUBNET_CIDR=172.20.2.0/24 MASTER_INTERNAL_IP=172.20.0.9 kubernetes/
cluster/kube-up.sh

108

CHAPTER 4 * USING MULTIPLE ZONES

A node set is started in the us-east-1d zone as shown in Figure 4-29.

[ec2-user@ip-10-0-0-126 ~]$ KUBE USE EXISTING MASTER=true MULTIZONE=true KUBERNE
TES PROVIDER=aws KUBE AWS ZONE=us-east-1d NUM NODES=3 KUBE SUBNET CIDR=172.20.2.
0/24 MASTER INTERNAL IP=172.20.0.9 kubernetes/cluster/kube-up.sh
Using subnet CIDR override: 172.20.2.0/24

.. Starting cluster in us-east-1d using provider aws

. calling verify-prereqs

. calling kube-up
Starting cluster using os distro: jessie
Uploading to Amazon S3
+++ Staging server tars to S3 Storage: kubernetes-staging-3b2de58189ba7d2340027c
ecbbbe5060/devel
upload: ../../tmp/kubernetes.PiXSEQ/s3/bootstrap-script to s3://kubernetes-stagi
ng-3b2de58189ba7d2340027cecbbbe5060/devel/bootstrap-script
Uploaded server tars:

SERVER BINARY TAR URL: https://s3.amazonaws.com/kubernetes-staging-3b2de58189b
a7d2340027cecbbbe5060/devel/kubernetes-server-1linux-amd64.tar.gz

SALT TAR URL: https://s3.amazonaws.com/kubernetes-staging-3b2de58189ba7d234002
7cecbbbe5060/devel/kubernetes-salt.tar.gz

BOOTSTRAP_SCRIPT URL: https://s3.amazonaws.com/kubernetes-staging-3b2de58189ba
7d2340027cecbbbe5060/devel /bootstrap-script
INSTANCEPROFILE arn:aws:iam::672593526685:instance-profile/kubernetes-master 2

016-01-29T00:18:582 AIPAJRGYCBYPX27F553HI kubernetes-master /
ROLES arn:aws:iam::672593526685:role/kubernetes-master 2016-01-29T00:18
sBTZ / AROAIDG4HG76MIPGRWEEW kubernetes-master
ASSUMEROLEPOLICYDOCUMENT 2012-10-17

STATEMENT sts:AssumeRole Allow

PRINCIPAL ec2.amazonaws . com

INSTANCEPROFILE arn:aws:iam::672593526685:instance-profile/kubernetes-minion 2
016-01-29T00:19:00Z AIPAJHMVQBPLMRBJESMNO kubernetes-minion /
ROLES arn:aws:iam::672593526685:role/kubernetes-minion 2016-01-29T00:18|
1592 / AROAJU44B2VYHK5GKUB3S kubernetes-minion

Figure 4-29. Launching a cluster in the us-east-1d zone

As indicated by the cluster output in Figure 4-30, the master IP is the same but the subnet CIDR is

different.

109

CHAPTER 4 * USING MULTIPLE ZONES

ip-172-20-1-98.ec2.internal Ready 28m
Validate output:
Using subnet CIDR override: 172.20.2.0/24

|NAME STATUS MESSAGE ERROR
scheduler Healthy ok

controller-manager Healthy ok

1etcd-1 Healthy {"health": "true"}

etcd-0 Healthy {"health": "true"}

Cluster validation succeeded
Done, listing cluster services:

Using subnet CIDR override: 172.20.2.0/24

Kubernetes master is running at https://52.206.28.220

Elasticsearch is running at https://52.206.28.220/api/v1/proxy/namespaces/kube-s
ystem/services/elasticsearch-1loggi
Heapster is running at https://52.2
/services/heapster

Kibana is running at https://52.206.28.220/api/v1/proxy/namespaces/kube-system/s
ervices/kibana-logging

KubeDNS is running at https://52.206.28.220/api/v1l/proxy/namespaces/kube-system/
services/kube-dns

kubernetes-dashboard is running at https://52.206.28.220/api/v1/proxy/namespaces
/kube-system/services/kubernetes-dashboard

Grafana is running at https://52.206.28.220/api/v1/proxy/namespaces/kube-system/
services/monitoring-grafana

InfluxDB is running at https://52.206.28.220/api/v1/proxy/names
/services/monitoring-influxdb

06.28.220/ap1/v1/proxy/namespaces/kube-system

paces/Kube-system

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump’.

[ec2-user@ip-10-0-0-126 ~]$ |
Figure 4-30. The same master IP but a different subnet CIDR

The EC2 Console lists three minion sets, one each in the us-east-1b, us-east-1c, and us-east-1d
zones as shown in Figure 4-31. The single master is in the us-east-1c zone.

Launch Instance Actions ¥
ST @c oo

Q, Launch Time : > July 12, 2016 at 12:00:00 AM UTC-7 9 K < 1tomer1n >)l
Name = Instance ID = |} Type - Awvailability Zone = | State - Status Checks - Alarm Status
kubemetes-minion i-c432da5h 2. micro us-gast-10 @ running 2/2 checks ... None %
kubernetes-minion ic532da5a 12.micro us-gast-10 @ running & 272 checks ... None =
kubernetes-minion C7320a58 12, micro us-gast-10 @ running @ 272 checks .. Nope =
Kubemetes-Core0S Ed2c5a02 12, micro us-gast-Tc @ running @ 22 checks ... None =
kubermnetes-minion id3ade5s 12 micro us-gast-1c @ running @ 272 checks .. Hone ™
kubernates-minion i-tdaded52 12, micro us-gast-1c @ running 22 checks .. None %
kubemetes-minion i-d5aded53 12, micro us-gast-1c @ running & 272 checks None ‘.;
kubernetes-master i-ebacedEd m3. medium us-gast-1c @ running & 272 checks ... Nome b)
kubernetes-minicn -38b02148 12. micro us-east-1d @ running @ 22 checks ... None b
kubernetes-minion 39602129 12 micro us-gast-1d @ running @ 22 checks ... None L
Kubemates-rinion #3021 af 12 micoo us-east-1d @ running @ 272 checks .. None ‘..

Figure 4-31. Listing nodes in three zones

110

CHAPTER 4 * USING MULTIPLE ZONES

Listing the nodes displays 9 nodes. Some nodes may be initially in the NotReady state while the node set

is started, as shown in Figure 4-32.

[ec2-user@ip-10-0-0-126 ~]$ kubectl get nodes

NAME

ip-172-20-0-239.ec2.internal
ip-172-20-0-240.ec2.internal
ip-172-20-0-241.ec2.internal

ip-172-20-1-96.ec2.internal
ip-172-20-1-97.ec2.internal
ip-172-20-1-98.ec2.internal
ip-172-20-2-23.ec2.internal
ip-172-20-2-24.ec2.internal
ip-172-20-2-25.ec2.internal
[ec2-user@ip-10-0-0-126 ~]$ kubectl get nodes

NAME

ip-172-20-0-239.ec2.internal
ip-172-20-0-240.ec2.internal
ip-172-20-0-241.ec2.internal

ip-172-20-1-96.ec2.
1p-172-20-1-97.ec2.
ip-172-20-1-98.ec2.
ip-172-20-2-23.ec2.
ip-172-20-2-24.ec2.

ip-172-20-2-25.ec2

[ec2-user@ip-10-8-0-126 ~]$ ||

internal
internal
internal
internal
internal
internal

STATUS AGE
Ready 1h
Ready 1h
Ready 1h
Ready 34m
Ready 34m
Ready 34m
NotReady 30s
NotReady 27s
NotReady 26s
STATUS AGE
Ready 1h
Ready 1h
Ready 1h
Ready 35m
Ready 35m
Ready 35m
Ready 44s
Ready 41s
Ready 40s

Figure 4-32. Listing Kubernetes nodes

111

CHAPTER 4 * USING MULTIPLE ZONES

Including the labels lists the nodes as being in three different zones, as shown in Figure 4-33.

[ec2-user@ip-10-0-0-126 ~]$ kubectl get node ip-172-20-1-96.ec2.internal ip-172-|
20-0-241.ec2.internal ip-172-20-2-23.ec2.internal ip-172-20-2-25.ec2.internal ip
-172-20-1-98.ec2.internal ip-172-20-2-25.ec2.internal ip-172-20-1-96.ec2.interna
1 ip-172-20-1-97.ec2.internal ip-172-20-0-240.ec2.internal ip-172-20-2-24.ec2.in
ternal --show-labels

NAME STATUS AGE LABELS
ip-172-20-1-96.ec2.internal Ready 43m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=1linux, failure-d|
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone
=us-east-1b,kubernetes.io/hostname=ip-172-20-1-96.ec2.internal .
ip-172-20-8-241.ec2.internal Ready 1h beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=linux, failure-d
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone|
=us-east-1c,kubernetes.io/hostname=ip-172-20-0-241.ec2.internal
ip-172-20-2-23.ec2.internal Ready 8m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=1inux, failure-d|
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone|
=us-east-1d, kubernetes.io/hostname=ip-172-20-2-23.ec2.internal
ip-172-20-2-25.ec2.internal Ready 8m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=1linux, failure-d|
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone
=us-east-1d,kubernetes.io/hostname=ip-172-20-2-25.ec2.internal
ip-172-20-1-98.ec2.internal Ready 43m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=1inux, failure-d
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone|
=us-east-1b,kubernetes.io/hostname=ip-172-20-1-98.ec2.internal
ip-172-20-2-25.ec2.internal Ready 8m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/0os=linux, failure-d|
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone
=us-east-1d, kubernetes.io/hostname=ip-172-20-2-25.ec2.internal
ip-172-20-1-96.ec2.internal Ready 43m beta.kubernetes.io/arch=amd64
,beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=1inux, failure-d
omain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone|

Figure 4-33. Listing nodes including labels

A PersistentVolume (PV) is a provisioned networked storage in a cluster, and a PersistentVolumeClaim
(PVC) is a request for storage by a user. A PVC consumes PV resources just as a pod consumes node
resources. Next, we shall create a persistent volume claim and subsequently claim the volume in a pod
specification. The objective of the application is to demonstrate that a persistent volume cannot be attached
across zones. A persistent volume is labeled with the zone in which it is created, and a pod that makes
use of the persistent volume is allocated in the same zone as the persistent volume. First, create a JSON
specification file claim.yaml for a persistent volume claim:

sudo vi claimi.json

112

Copy the following source code into claim.json

"kind": "PersistentVolumeClaim",
"apiVersion": "v1",
"metadata": {
"name": "claim1",
"annotations": {
"volume.alpha.kubernetes.io/storage-class":
}

b
"spec": {
"accessModes": [
"ReadWriteOnce"
1,

"resources": {
"requests": {
"storage": "3Gi"

}

"foo"

}
}

The resulting claim1.json is shown in the vi editor in Figure 4-34.

"kind": "PersistentVolumeClaim",
"apiversion": "v1",
"metadata”: {
"name": "claiml®,
"annotations”: {
"volume.alpha.kubernetes.io/storage-class": "foo"
}

¥
"spec": {
"accessModes”: [
"ReadwWriteOnce”
]t
"resources": {
"requests”: {
"storage": "36i"
}
}
}
}

Figure 4-34. A PersistentVolumeClaim claimi. json

CHAPTER 4 * USING MULTIPLE ZONES

113

CHAPTER 4 * USING MULTIPLE ZONES

Create a PVC with the kubectl create command:
kubectl create -f claimi.json
List the persistent volumes, including labels:
kubectl get pv --show-labels
The persistent volume is listed as being consumed by the persistent volume claim:

kubectl get pvc

As the command’s output indicates, a persistentvolumeclaimis created. The persistent volume is
listed to be in the us-east-1b zone as shown in Figure 4-35.

[ec2-user@ip-10-0-0-126 ~]$ kubectl create -f claiml.json
persistentvolumeclaim "claiml" created
[ec2-user@ip-10-0-0-126 ~]$ kubectl get pv --show-labels

NAME CAPACITY ACCESSMODES STATUS CL|
AIM REASON AGE LABELS

pvc-f2da72bf-4856-11e6-8be4-0ab9c2d7053d 36Gi RWO Bound de|
fault/claiml 11s failure-domain.beta.kubernetes.io/region=us-e

ast-1,failure-domain.beta.kubernetes.io/zone=us-east-1b
[ec2-user@ip-10-0-0-126 ~]$ kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS?
MODES AGE
claiml Bound pvc-f2da72bf-4856-11e6-8be4-0ab9c2d7053d 0

20s

[ec2-user@ip-10-0-0-126 ~1$ ||
Figure 4-35. A PersistentVolumeClaim claimi.json

Next, define a pod specification that makes use of the PVC.

sudo vi pod.yaml

Copy the following code to pod.yaml:

apiVersion: vi
kind: Pod
metadata:
name: nginx
spec:
containers:
image: nginx
name: nginx
volumeMounts:
mountPath: /var/www/html
name: pv
volumes:

114

CHAPTER 4 * USING MULTIPLE ZONES

name: pv
persistentVolumeClaim:
claimName: claimi

The resulting pod.yaml is shown in a vi editor in Figure 4-36.

apiVersion: vl
kind: Pod
metadata:
name: nginx
spec:
containers:
image: nginx
name: nginx
volumeMounts:
mountPath: /var/www/html
name: pv
volumes:
name: pv
persistentVolumeClaim:
claimName: claiml

Figure 4-36. Using PersistentVolumeClaim claimi. json in a pod

Create a pod from pod.yaml:
./kubectl create -f pod.yaml

A pod is created. Next, list the pods across the cluster:
kubectl get pods -o wide

The node on which the pod is running is listed, as shown in Figure 4-37.

[ec2-user@ip-10-0-0-126 ~]$ sudo vi pod.yaml

[ec2-user@ip-10-0-0-126 ~]$ kubectl create -f pod.yaml

pod "nginx" created

[ec2-user@ip-10-0-0-126 ~]$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE 1P NODE
nginx 8/1 ContainerCreating © 13s <none> ip-172-20
-1-96.ec2.internal

[ec2-user@ip-10-0-6-126 ~]$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IpP NODE
nginx 0/1 ContainerCreating © 19s <none> ip-172-20
-1-96.ec2.internal

[ec2-user@ip-10-0-0-126 ~]$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE P NODE
nginx 1/1 Running @ 38s 10.244.3.3 ip-172-20-1-96.e
c2.internal

[ec2-user@ip-10-0-0-126 ~]$ ||

Figure 4-37. Creating a pod and listing its node
115

CHAPTER 4 * USING MULTIPLE ZONES

Alternatively obtain the Node IP as follows:
kubectl describe deployment nginx | grep Node

The Node IP is output as shown in Figure 4-38.

[ec2-user@ip-10-0-0-126 ~]$ kubectl describe pod nginx | grep Node
Node: ip-172-20-1-96.ec2.internal/172.20.1.96

Figure 4-38. A PersistentVolumeClaim claim1.json

Next, list the node labels:
kubectl get node <node ip> --show-labels

The node is running in the zone us-east-1b, which is the same as the zone of the persistent volume, as
shown in Figure 4-39.

[ec2-user@ip-10-0-0-126 ~]$ kubectl get node ip-172-20-1-96.ec2.internal --show-
labels

NAME STATUS AGE LABELS
ip-172-20-1-96.ec2.internal Ready 23m beta.kubernetes.io/arch=amd64,
beta.kubernetes.io/instance-type=t2.micro,beta.kubernetes.io/os=1inux, failure-do
main.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone=|
us-east-1b,kubernetes.io/hostname=ip-172-20-1-96.ec2.internal
[ec2-user@ip-10-0-0-126 ~1$ ||

Figure 4-39. A node is scheduled on the same zone as the persistent volume

Summary

In this chapter we created a Kubernetes cluster using multiple zones on CoreOS. A multi-zone cluster is

a highly available cluster. A multi-zone cluster is configured by specifying multiple Kubernetes subnets

with their CIDRs and availability zones in cluster.yaml in the subnets section. We also discussed creating a
multi-zone cluster on the AWS cloud provider by setting the MULTIZONE parameter to true in the curl -sS
https://get.k8s.io command to launch a Kubernetes cluster. In the next chapter we will discuss using the
Tectonic console.

116

https://get.k8s.io/

CHAPTER 5

Using the Tectonic Console

Tectonic is a commercial enterprise Kubernetes platform providing enterprise-level security, scalability,

and reliability. Tectonic provides an integrated platform based on Kubernetes and CoreOS Linux. The
Tectonic architecture consists of Kubernetes cluster manager orchestrating rkt containers running on
CoreOS. Tectonic provides Distributed Trusted Computing using cryptographic verification of the entire
environment, from the hardware to the cluster. Tectonic enhances open source Kubernetes, and applications
may be deployed between cloud and data center environments.

Problem

CoreOS Linux does provide a platform suitable for developing containerized applications, but a command-
line interface still has to be used to run Kubernetes commands to create and manage a replication controller,
deployment, pod, or service.

Solution

Tectonic Console is a graphical user interface (GUI) to manage a Kubernetes cluster from a web browser. The
Console may be used to deploy new applications, create rolling upgrades for deployments, and create pods,
replication controllers, and services. Some of the benefits of Tectonic Console are as follows:

— Out-of-the-box Kubernetes cluster

— Authorization framework

— Enterprise authentication

— Improved scalability

— User-friendly Dashboard

— Scheduled Updates for cluster software

— Flexible architectures

— Automatic Load Balancing and Services

— Rollbacks

— Better machine utilization

— Environment consistency across teams

— Built-in credentials storage and distribution
— Demarcation between OS and applications
— LDAP-based secure authentication

© Deepak Vohra 2017 117
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_5

CHAPTER 5 ' USING THE TECTONIC CONSOLE

Overview

The Console can be used to deploy new applications, create rolling upgrades for deployments, and create
pods, replication controllers and services. We'll explore the following topics:

Setting the environment

Downloading the pull secret and the Tectonic Console manifest
Installing the pull secret and the Tectonic Console

Accessing the Tectonic Console

Using the Tectonic Console

Removing the Tectonic Console

Setting the Environment

As a prerequisite, install a Kubernetes cluster. Installing Kubernetes on CoreOS on the AWS cloud provider

is discussed in Chapter 2. To reiterate briefly, first create an Amazon EC2 instance to launch an AWS
CloudFormation for a Kubernetes cluster. The EC2 instance AMI should be Amazon Linux, as Amazon Client
Interface (CLI) is preinstalled on an Amazon Linux AMI-based instance. Obtain the public IP address of the
EC2 instance and SSH log in to the instance. Create a CloudFormation for a Kubernetes cluster consisting of
one master and three worker nodes as shown in Figure 5-1.

Hame = Instance ID = Instance Type - Awvailability Zone ~ Instance State - Status Checks -~ Alarm Status Public D

KubemetesCoreOS H0S121459 2. micro us-east-1b @ running & 22 checks None w ec2B2-N

(00857 cB5 m3 madium us-gast-le None % ec254.2

kube-coreos-kube. TUnning

vorker 01657 87 m3 medium us-gast-1e

running

22 checks None % ec2-54-1

22 checks... @ NoData “g ec223

kube-coreos-kube-aws-worker -03e57cB5 m3.madium uz-gasi-le running

¢ e 66

B kube-coreos-kube-aws-controller i-1des7 c3b m3. medium ug-gast-1¢ running

Figure 5-1. CloudFormation EC2 instances for a Kubernetes cluster

Obtain the public IP address for the controller from the EC2 console and add an A record for the
IP address to the public DNS used to initialize the CloudFormation stack as shown in Figure 5-2.

118

http://dx.doi.org/10.1007/978-1-4842-2598-1_2

CHAPTER 5 ' USING THE TECTONIC CONSOLE

NOSQLSEARCH.COM -~

Expires: 28/07/2017 | Folder Mone | Profile: None

Status: Active | Created: 28/0

@ Renew O Upgrade % BuydsSel =~ & Account Change © Delete

Settings DNS Zone File Contacts

Zone File
Last updated 05072016 9:38:25 AM MST
[Add Record E Bulk Actions s @ Templates s @ More s

A (Host) (&

1 Records (D Selected)

" Host Points To ITL

@ & 23.20.52.23 600 seconds
e

Figure 5-2. Adding an A record for the public IP address of the controller

SSH log in to the controller instance and install kubectl as shown in Figure 5-3.

17 records in this zone

Filter List s

Actions

A}

[ec2-user@ip-172-30-1-188 ~]$ ssh -1 "kubernetes-coreos.pem" core@23.20.52.23

Core0S stable (1010.6.0)
Update Strategy: No Reboots
-~ &

Figure 5-3. SSH logging into the CoreOS controller instance

Run the following command to list the binaries.

kubectl get nodes

119

CHAPTER 5 ' USING THE TECTONIC CONSOLE

The single master node and the three worker nodes are listed, as shown in Figure 5-4.

./kubectl get nodes

NAME STATUS AGE
ip-10-0-0-107.ec2.internal Ready 3m
ip-10-0-0-108.ec2.internal Ready 3m
ip-10-0-0-109.ec2.internal Ready 3m
ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 3m

Figure 5-4. Listing the nodes

Tectonic provides the following services for applications deployed in a user's cluster: Tectonic Console,
Tectonic Identity, Tectonic Support, Tectonic Wizard, and Tectonic Manager. Tectonic Console is a web
management console for a Kubernetes cluster. Tectonic Identity is for user management for services on a
Kubernetes cluster. Tectonic Support is the support from a team. Tectonic Wizard is the Tectonic installation
and configuration wizard. Tectonic Manager is for management of the Tectonic services themselves.

Tectonic is available at three subscription levels: Starter, Lab, and Enterprise. Starter includes just
the Tectonic Console and does not provide security (SSO) features; it is suitable as an initial starter level.
Tectonic Lab includes the Tectonic Console with Quay Enterprise Basic but does not include security
features. Tectonic Enterprise includes Tectonic Identity for Trusted Computing in addition to the Tectonic
Console with Quay Enterprise Basic and is suitable for production. While the Lab and the Enterprise levels
are fee-based, the Starter is free. We shall use the Tectonic Starter subscription level in this chapter. Tectonic
Starter level does not authenticate users.

Next, register for the Tectonic Starter account at https://tectonic.com/starter/.

Downloading the Pull Secret and the Tectonic Console
Manifest

Tectonic is mainly an infrastructure platform that enables enterprises to run containers with Kubernetes
anywhere, securely and reliably. The Kubernetes cluster makes use of a Pull Secret to download the Tectonic
Console image. The Pull Secret is a Kubernetes formatted file containing the credentials required to
download the Tectonic Console image. Click on Account Assets after creating a Tectonic Starter project and
click Download Kubernetes Secret for the Pull Secret file coreos-pull-secret.yml as shown in Figure 5-5.

120

https://tectonic.com/starter/

CHAPTER 5 ' USING THE TECTONIC CONSOLE

Universal Software License

Download Kubernetes Secret

Kubernetes Secret | RawFormat

apiversion: w1 -
kind: Secret |='i
metadata:

name: tectonic-license
data:

license: ZX1KaGJIHY21PaUpTV¥XplMUSpSKXNIbXRwwk NINk LuUmx
ZM132¥misakxXeHBZMLZ 1Yz IVAGE yVjV1aXdpZEhsd@lgb2lTbGRVS
¥ LmyS SmpjbVZoZEdsdmIrUmhkR1VpT21JeU1ERTNMVEEZ TFRBMUL
ERTFPak 15T2pNdexqZz INREkWTBNBCk 1EQXANQEI Wk VNaUxDSmX1Ss

F TtV 24606 FXNY VAR AVIMWT MM T ASYX AMVET ATIHR S AF 1 FAWAMVEIZ2TY N
1 »

Pull Secret

Download Kubernetes Secret

U

dockercfg | KubernetesSecret | Docker login

Figure 5-5. Downloading Kubernetes Secret

121

CHAPTER 5 ' USING THE TECTONIC CONSOLE

If the Pull Secret file is downloaded to a local machine, scp copy the file to the CoreOS instance for the
Kubernetes controller. First, the key pair may need to be copied to the local machine:

scp -i docker.pem ec2-user@ec2-52-201-216-175.compute-1.amazonaws.com:~/kubernetes-coreos.
pem ~/kubernetes-coreos.pem

The key pair used to SSH log in to the controller CoreOS instance is copied to the local machine.
Next copy the coreos-pull-secret.yml file to the controller instance:

scp -i kubernetes-coreos.pem /media/sf VMShared/kubernetes/tectonic/coreos-pull-secret.yml
core@ec2-23-20-52-23.compute-1.amazonaws.com:~/coreos-pull-secret.yml

Another file required for the Tectonic Console is the Tectonic Console Manifest file tectonic-console.
yaml, which defines the Kubernetes deployment required to run a container for the Tectonic Console on the
Kubernetes cluster. Download the Tectonic Console Manifest from https://tectonic.com/enterprise/
docs/latest/deployer/files/tectonic-console.yaml. Copy the Tectonic Console Manifest to the
controller CoreOS instance.

scp -1 kubernetes-coreos.pem /media/sf_VMShared/kubernetes/tectonic/tectonic-console.yaml
core@ec2-23-20-52-23.compute-1.amazonaws.com:~/tectonic-console.yaml

The Tectonic Console Manifest is copied to the controller CoreOS instance.
If the 1s -1 command is run on the CoreOS instance for the controller, the coreos-pull-secret.yml
and the tectonic-console.yaml files should be listed as shown in Figure 5-6.

5 1s -1
total 55212
-rwxr-xr-x 1 core core 343 Jul 5 16:55
-rwxr-xr-x 1 root root 56515944 Jul 1 20:06
-rwxr-xr-x 1 core core 2121 Jul 5 16:55

Figure 5-6. Listing files in the controller CoreOS instance

Installing the Pull Secret and the Tectonic Console Manifest

Next, install the Pull Secret on the Kubernetes cluster:
kubectl create -f coreos-pull-secret.yml

A Kubernetes Secret called coreos-pull-secret is created; it will be used by Kubernetes to pull and
install the image for the Tectonic Console.

Next, install the Tectonic Console using the Tectonic Console Manifest, making use of the Pull Secret to
pull and install the image for the tectonic-console. The following command creates a replication controller
called tectonic-console.
kubectl create -f tectonic-console.yaml

List the pods, which should specify just the tectonic-console pod to be listed:

kubectl get pods -1 tectonic-app=console
122

https://tectonic.com/enterprise/docs/latest/deployer/files/tectonic-console.yaml
https://tectonic.com/enterprise/docs/latest/deployer/files/tectonic-console.yaml

CHAPTER 5 ' USING THE TECTONIC CONSOLE

If the Tectonic Console was installed, output similar to Figure 5-7 should be generated from the
preceding commands.

./kubectl create -f coreos-pull-secret.yml
secret "coreos-pull-secret" created
./kubectl create -f tectonic-console.yaml
replicationcontroller "tectonic-console-v@.1.9" created
. ./kubectl get pods -1 tectonic-app=console
NAME READY STATUS RESTARTS AGE
tectonic-console-v0.1.9-dupbi 1/1 Running © 7s

Figure 5-7. Creating a replication controller and pod for Tectonic Console

Accessing the Tectonic Console

Because Tectonic Starter does not authenticate users, the interface is not exposed outside the cluster,
and port forwarding must be set from the controller machine to the Tectonic Console service port 9000.
The following command sets up port forwarding from 127.0.0.1:9000 to port 9000 on the pod labelled
app=tectonic-console:

kubectl get pods -1 tectonic-app=console -o template --template="{{range.items}}{{.metadata.
name}}{{end}}" | xargs -i{} kubectl port-forward {} 9000

Port forwarding from the machine from which the preceding command is run, which is the controller
instance, to the pod on which the container for the Tectonic Console is run, will be set up as shown in Figure 5-8.

, ./kubectl get pods -1 tectonic-app=console -o template --t
emplate="{{range.items}}{{.metadata.name}}{{end}}" | xargs -i{} ./kubectl port-f
orward {} 9000
Forwarding from 127.0.0.1:9000 -> 9000
Forwarding from [::1]:9000 -> 9000

Figure 5-8. Setting port forwarding

To invoke the Tectonic Console in a web browser we still need to set another port forwarding from a
local machine to the controller machine, which has public IP 23.20.52.23 and public DNS ec2-23-20-52-23.
compute-1.amazonaws.com. A port other than 9000 could be used on the local machine to forward to the
Tectonic Console port. The command looks like this:

ssh -i kubernetes-coreos.pem -f -nNT -L 9001:127.0.0.1:9000 core@ec2-23-20-52-23.compute-1.
amazonaws . com

Port forwarding from the local machine on which the preceding command is run to the controller

instance is set up. Access the Tectonic Console at URL http://localhost:9001 in a browser on the local
machine as shown in Figure 5-9. The port could be different if a different localhost port is forwarded.

123

CHAPTER 5~ USING THE TECTONIC CONSOLE

Nodes - Tectonic - Mozilla Firefox
| @ Nodes - Tectonic

€ @ localhost:9001/nodes

eTECTONIC Services Replication Controllers

Trusted Nodes

m L

10.0.0.107

10.0.0.108

10.0.0.109

7. 10.0.0.50

localhost:9001/nodes

Figure 5-9. Accessing the Tectonic Console

Using the Tectonic Console

The Tectonic Console may be used to view the different Kubernetes objects, such as deployments,
replication controllers, replica sets, pods, and services, or to create new Kubernetes objects. To display the
deployments, click the Deployments tab. To create a new deployment, click the Create a New Deployment
link as shown in Figure 5-10.

124

CHAPTER 5 ' USING THE TECTONIC CONSOLE

Deployments - Tectonic - Mozilla Firefox

© Deployments - Tectonic x

€ | @ localhost:9001/all-namespaces/deployments v | B~ Google

eTECTONIC Services Replication Controllers ReplicaSets Deployments Pods

Deployments

Deployment List

IOc;Ihost:900hmfdefaﬂuluaeplwmentsmew
Figure 5-10. Begin by clicking the Create a New Deployment link

As an example, create a deployment for the nginx server by specifying the labels, pod selector, replicas,
and pod labels as shown in Figure 5-11.

New Deployment - Tectonic - Mozilla Firefox

| © New Deployment-T... =

€, @ localhost:9001/ns/default/deployments/new

Create Deployment

Deployment Details

nginx

Pod Selector:

Replicas:

Pod Labels:

Figure 5-11. Specifying deployment details for an nginx application

125

CHAPTER 5~ USING THE TECTONIC CONSOLE

Specify the container name, image, and version/tag, and click Launch Deployment
as shown in Figure 5-12.

New Deployment - Tectonic - Mozilla Firefox

| ® New Deployment-T... x

€ | @ localhost:9001/ns/default/de

Containers

Add Another Container

latest

lume Mounts » fault Command » Always Pull

Not Configured »

Launch Deployment [sEGIeE

Figure 5-12. Launching the deployment

You can list the replica sets using the Replica Sets tab, as shown in Figure 5-13.

Replica Sets - Tectonic - Mozilla Firefox

| @ Replica Sets - Tectonic x|
& @ localhost:9001/all-namespaces/replicasets v & | |Bv coogle ®n e + A

©TECTONIC wore~ | Mo gy

1]}

lication Controllers Replica Sets Deployments Pods Nodes

Rep_lica Sets

Replica Set List

kBs-app = heapster 1of 1 pods ak
pod-tem... = 3151619174 Q, pod-template-hash=3151619174 »
Q version=vl

E. @ heapster-y

version =v1.02

£+ @ heapster kés-app = heapster 0of 0 pods Q kBs-app=hea
pod-tem. .. = 808903732 Q, pod-t

version=v1.02

& Documentation ¥ IRC fcoreos

Figure 5-13. Listing replica sets
126

CHAPTER 5 ' USING THE TECTONIC CONSOLE

To list the pods, click the Pods tab. To create a new pod, click the Create a New Pod link
as shown in Figure 5-14.

Pods - Tectonic - Mozilla Firefox

J @ Pods - Tectonic x|\ b

€ | @ localhost:9001/all-namespaces/pods v & B~ Google M T E ¥+ #

9TECTONIC Services Replication Controllers Replica Sets Deployments Pods Nodes More ~ all - i3

Pod List

Running 2 p-10-0-0-50.ec2.interna
Pe
Ru I Running 2 p-10-0-0-108.ec2intern
inati n
Running 1 p-10-0-0-50.ec2.interna
Running 1 p-10-0-0-50.ec 2.intern

localhost:9001/ns/default/pods/new
Figure 5-14. Begin by clicking the Create a New Pod link

To list the replication controllers, click the Replication Controllers tab. To create a new replication
controller, click the Create a New Replication Controller link as shown in Figure 5-15.

Replication Controllers - Tectonic - Mozilla Firefox

/ @ Replication Controlle... x | €k
€ | @ localhost:9001/all-namespacesreplicationcontrollers v @ | @ Google Mo Ba 3+ & =

eTECTONlc Services Replication Controllers ReplicaSets Deployments Pods Modes More - all " iy

| Replication Controllers
Replication Controller

List
& @ rube-dnsvll Ks-app = kube-dns 1of 1 pods Q kBs-app=hub
kubernet...=true version =vi1l Q ver v1l
& @ tectonic-console-v0.19 tectonic-... = console lof 1peds QL tecton

tectonic-...=wm
tectonic-... =v0.19

Io:alﬁos::gm 1/ns/defa u]t.."re plicationcontrollers/new

Figure 5-15. Begin by clicking the Create a New Replication Controller link
127

CHAPTER 5~ USING THE TECTONIC CONSOLE

Specify a controller name, controller labels, pod label selector, and replicas as shown in Figure 5-16.

New Replication Controller - Tectonic - Mozilla Firefox

& New Replication Con... x | &k
& | @ localhost:9001/ns/default/replicationcontrollers/new v | [@v Google ®TBE A=

GTECTONIC Services Replication Controllers Replica Sets Deployments Pods Nodes More ~ all &

Replication Controller Details

Controller Name: nginx-re

Controller Labels:

Pod Label Selector:

Replicas: 3

Figure 5-16. Specifying replication controller details

Specify the container name, container image, and container version/tag. Click on Launch Replication
Controller as shown in Figure 5-17.

New Replication Controller - Tectonic - Mozilla Firefox

@ New Replication Con... x | &k

replicationcontrollersinen v &| |8+ coogle Boa & &

€ @ localhost:2001/ns/default

Containers
Add Another Container
(]
nginxl ng r:ni latest
0 Volume Mounts Default Command Always Pull »
0 Ports » Mot Configured » Mot Configured »
0 Variables » Mot Configured
Launch Replication Controller [EESERIRE
0

Figure 5-17. Launching Replication Controller

128

CHAPTER 5 ' USING THE TECTONIC CONSOLE

A new replication controller is created, as shown in Figure 5-18.

] Replication Controllers - Tectonic - Mozilla Firefox — =]

| @ Replication Controlle... x | &

@ wBE 3 @
TR -

€ | @ localhost:2001/all-nar

GTECTONIC Services Replication Controllers Replica Sets Deployments Pods Nodes More ~

Replication Controller
List

& @ tube-dnsil kes-app = kube-dns Lof 1pods
kubernet...=true version =vIl

* & @ nginere app = nginx 3of 3pods
o @ c-console-v0.19 tectonic-... = console Lof 1pods
tectonic-... =ui
tectonic-... =v0.L9

Figure 5-18. A new replication controller

To modify the replication controller settings, right-click the RC and select one of the options
shown in Figure 5-19.

| © Replication Controlle... x | b

€ | & localhost:9001/all-namespaces/replicationcontrollers v | B Google M a 3+ #
eTECTONIC Services Replication Controllers Replica Sets Deployments Pods Nodes More = ail i -u.

Replication Controller
List

ks-app = kube-dns 1 of 1 pods

kubernet...=true version =vil

app = nginx 3of 3pods

tectonic-... = console Lof 1 pods
tectonic-... =ui

tectonic-... =v0.1.9

Figure 5-19. Modifying or deleting an RC

129

CHAPTER 5~ USING THE TECTONIC CONSOLE

Click the RC to list its details. You can list the pods in the RC by using the Pods tab, as shown in Figure 5-20.

| @ Replication Controlle... x | dn

(-. & localhost:9001/ns/default/replicationcontrollers/nginx-rc ~ | @~ Google MY B +$ /& =
@O TECTONIC Services Replication Controllers ReplicaSets Deployments Pods Nodes More ~ all ot o

nginx-rc

@ Replication Controller Overview

mu-rc
ﬂg app = nginx

Q@ Jul5, 1:37 PM

3

localhost:9001/ns/default/replicationcontrollers/nginx-rc/pods

Figure 5-20. Listing Pods in an RC

The pods managed by the RC are listed as shown in Figure 5-21.

| @ Replication Controlle... x | dn

(-. @ localhost:9001/ns/default/replicationcontrollers/nginx-rc/pods ~ | @~ Google #et e 3/ =
eTECTONIC Services Replication Controllers Replica Sets Deployments Pods Nodes More - all e &

NEiNX-rc

®

Matching Pods
£ @ nginxrc39mnj app = ngin Running 1 ip-10-0-0-10
ﬂg Fo o nEine-re-jauuw PP = ngin Running 1 ip-10-0-0- 10

Running

Figure 5-21. Pods in RC nginx-rc

130

CHAPTER 5 ' USING THE TECTONIC CONSOLE

To modify a pod’s labels or delete it, right-click a pod and select one of the options shown in Figure 5-22.
Click on Delete Pod to delete the pod.

| @ Replication Controlle... x | dn

(-. @ localhost:9001/ns/default/replicationcontrollers/nginx-rc/pods ~ | @~ Google #et e 3/ =
eTECTONIC Services Replication Controllers Replica Sets Deployments Pods Nodes More - all ' &

NEiNX-rc

®

Matching Pods

Running 1 ip-10-0-0-107.ec Zinternal
Running 1 ip-10-0-0-107.ecZinternal

Running

Figure 5-22. Modifying a pod’s labels or deleting a pod

In the confirmation dialog, click Delete Pod as shown in Figure 5-23.

Delete Pod

Are you sure you want to delete nginx-rc-39mnj?

Delete Pod Cancel
1.

Figure 5-23. Deleting a pod

If the number of pods running is not the number of replicas specified for the RC, new pods are launched
for the deleted pods, and the number of pods again becomes 3, as shown in Figure 5-24.

131

CHAPTER 5~ USING THE TECTONIC CONSOLE

| @ Replication Controlle..

€ @localhost:9001 v &||Bv Google # e 8 3 A

QTECTONIC Services Replication Controllers Replica Sets Deployments Pods Nodes More - all &

NEiNX-rc

2 @ nginercjauun app = nginx Running 1 ip-10-0-0-107.ec2internal

ﬂg o3 0 nginx-re-wibpg PP = nginx Running 1 ip-10-0-0-108.ecZinternal

Running

Figure 5-24. Relaunched pod

To list the services, click the Services tab. To create a new service click the Create a New Service link as
shown in Figure 5-25.

| @ Services - Tectonic ® | db

fall-namespacesfservices v | |[B@v Google @B 3 #

€ | @ localhost:90

eTECTONlc Services Replication Controllers Replica Sets Deployments Pods Modes More - all RS &

Services

Service List

O o heapster kubernet... =true kubernet... = Heapster Q kés-app=heapster 10.3.0.134:80

kubernet... = true Q kBs-app=kube

localhost:900 unsfﬂefaulugéwicesfnew

Figure 5-25. Begin by clicking the Create a New Service link

132

CHAPTER 5 ' USING THE TECTONIC CONSOLE

Specify the service details such as service name, labels, port, and routing method in the Create New
Service form shown in Figure 5-26.

| @ Create New Service -... x | dn

€ | @ localhost:9001/ns/default/servicesinew ~ | |B~ Google N T BE 3 A

Create New Service

Service Details

Service Name: nginx-service
Service Labels: m—r .
appengink x apy
Service Port: 3:;|
Routing Method: ® Internal Cluster IP (default)

© Node Port & Internal Cluster IP

Figure 5-26. Specifying details for the new service

Select the Assign Any Available Port (default) to assign any port. Specify Pod Label Selector and Target
Port, and click Create Service as shown in Figure 5-27.

J W Create New Service -... » | &b

€ | @localhost:9001/ns/default/services/new ~ ¢ | |Bv Google M B 4 #

Routing Method: ® Internal Cluster IP (default)

) Node Port & Internal Cluster IP

% Assign any available port (default)

Specify a port:

Pod Label Selector:

Target Port: SC]

Create Service [EEeERTEE

Figure 5-27. Creating a new service

133

CHAPTER 5~ USING THE TECTONIC CONSOLE

A new Service is created, as shown in Figure 5-28.

| @ Services - Tectonic ® | db
& | @ localhost:9001/all-namespacesfservices v | [Bv coogle ®~va ¢ oal=
eTECTONIC Services Replication Controllers Replica Sets Jeployments Pods Nodes More = all -

Service List

kubernet...=true kubernet... = Heapster

kas-app = kuk

kubernet... =

Figure 5-28. A new service created in Tectonic Console

Removing the Tectonic Console

To delete the Tectonic Console, run the following command:
kubectl delete replicationcontrollers tectonic-console
To delete the Kubernetes Pull Secret, run the following command:

kubectl delete secrets coreos-pull-secret

Summary

In this chapter we installed the GUI Tectonic Console, part of the free Starter version of the commercial
enterprise Kubernetes platform Tectonic. We accessed the console in a browser and created a sample
replication controller and service. Finally, we deleted the Tectonic Console. In the next chapter we shall
discuss using Kubernetes volumes.

134

CHAPTER 6

Using Volumes

Kubernetes pods are invariably associated with data, and the data can either be made integral to a Docker
container via its Docker image or decoupled from the Docker container.

Problem

If data (in on-disk files) is made integral to a Docker container, the following issues could result:

e The data is not persistent. The data is removed when a Docker container is restarted,
which could also be due to a container crash.

e The datais container-specific and cannot be shared with other containers as such.

Solution

One of the principles of modular design is the Single Responsibility Principle (SRP). Kubernetes volumes
implement the SRP by decoupling the data from a container. A volume is just a directory with or without
data on some medium, which is different for different volume types. A volume is specified in a pod’s spec
and shared across different containers in the pod. A volume must be mounted in each container in a pod’s
spec independently, although it may be mounted in the different containers at the same (or different)
file/directory path. A container in a pod has access to the filesystem inherited from its Docker image and
the filesystem from a Kubernetes volume. A Docker image’s filesystem is still at the root of the filesystem
hierarchy, and a volume can only be mounted on a directory path within the root filesystem. Since volumes
provide access to data outside a pod, volumes mounted in different pods are able to share the same data
from the host or other external storage such as AWS EBS or a GitHub repository. Two types of volume
abstractions or plugins are available: Volume and PersistentVolume. While a Volume is coupled with a pod, a
PersistentVolume is provisioned on the networked cluster and is independent of a pod. Figure 6-1 shows an
example of using an Amazon EBS Volume in a pod.

© Deepak Vohra 2017 135
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_6

CHAPTER 6 = USING VOLUMES

4)

(N\

NEA volumeMounts: vqumeMounts:} \(volumeMounts:

ocker >

Containers || mountPath: mountPath: mountPath:
_ /aws-ebs1) | _ /aws-ebs2 /aws-ebs1

AWS

EBS Pememaas

Volume oS -

" volumelD:”aws://us- '
east-1c/vol- J
Volume ID 62a59dc8” : A

vol-
62a59dc8

Figure 6-1. Using a volume in a pod

Overview

Kubernetes volumes are storage units associated with pods. A volume can be shared by pod replicas or
dedicated to a single pod. Several types of volumes are supported for different types of storage, such as
AWS volume, GitHub repository, or directory on the host, to list a few. The different types of volumes are
described in Table 6-1.

Table 6-1. Types of Volumes

Volume Type Description

emptyDir A per-pod volume that is initially empty and shared by containers in a pod.
Each container may mount the volume at the same or different path. By
default, the volume is stored on the medium backing the machine, which
could be SSD or network storage. Alternatively, the medium could be set to
memory. When a pod is deleted the volume is deleted also, which means
the volume is not persistent.

hostPath Mounts a file or a directory form the host node’s file system into the pod.
Writable by root only the volume data persists even if the pod is deleted. All
containers in the pod can access the volume. Designed for single node test
only and supported in a multi-node cluster.

gcePersistentDisk Mounts a Google Compute Engine Persistent Disk into a pod. The GCE PD’s
contents are not deleted if a pod is deleted and the volume is unmounted.
Supported only for nodes of type GCE VMs in the same GCE project.

(continued)

136

Table 6-1. (continued)

CHAPTER 6 = USING VOLUMES

Volume Type Description

awsElasticBlockStore Mounts an AWS EBS volume into a pod. The volume is persistent, as its
contents are not deleted when the pod is deleted; the volume is unmounted.
The node on which pods are running must be an Amazon EC2 instance in
the same region and availability zone as the EBS volume. A single instance
may mount an EBS volume.

nfs A persistent volume; mounts a Network File System (NFS) into a pod.

flocker Mounts a Flocker dataset into a pod. Flocker is an open-source clustered
container data volume manager.

gitRepo Clones a Git repository into an empty directory.

persistentVolumeClaim

azureFileVolume

Mounts a PersistentVolume into a pod.

Mounts a Microsoft Azure File Volume into a pod.

This chapter looks at the following topics:

Setting the Environment

Creating a AWS Volume

Using a awsElasticBlockStore Volume

Creating a Git Repo

Using a gitRepo Volume

Setting the Environment

We will create an AWS CloudFormation on CoreOS for a Kubernetes cluster. To start, create a single EC2
instance from an Amazon Linux AMI.
SSH log in to the EC2 instance using the public IP address:

ssh -i "docker.pem" ec2-user@54.173.38.246

Spin up a CloudFormation consisting of a single controller and three worker nodes as shown in

Figure 6-2.
() Launch Time : > July 10, 2016 at 12:00:00 AM UTC-7 e 1to5of§
Hame = Instance 1D * Instance Type ~ Awvailability Zone + Instance State -~ Status Checks ~ Alarm Status
kubemetes-comeos-cluster-kube-aws-worker HOET0280 m3. medium us-gast-Ic @ running @ 22checks... Nane %
kubernetes-coreos-cluster-kube-aws-worker 087028 m3. medium us-gasl-Ic @ runming @ 272 checks . None b ™
kubemetes-comeos-cluster-kube-aws-worker =097028f m3. medium us-gast-ic @ running @ 22 checks . Nore %
kubemetes-coreos-cluster-kube-aws-controller 1370295 m3. medium @ running @ 272 checks @ toDats g
Kubemetes-Core0S i+B42¢5602 12.micro us-gast-Tc @ running & 272 checks None %

Figure 6-2. CloudFormation EC2 instances

137

CHAPTER 6~ USING VOLUMES

Obtain the Kubernetes clusters’ controller’s public IP and add an A record for it to the public DNS for
which the CloudFormation is created, as shown in Figure 6-3.

NOSQLSEARCH.COM -

Status: Active | Created: 2 2012 | Expires: 28/07/2017 | Folder. None | Profile: None

O Renew O Upgrade $ BuyasSel v § AccountChange £ Delete

Settings DNS Zone File Contacts

Zone File @ 17 records in this zone
Last updated 100072016 10:22:40 AM MST
[Add Record B Bulk Actions s © Templates v @ More s Eilter List s
A (Host) ®
1 Records (0 Selected)
Vv Host Points To ITL Actions
@ 521116171 600 seconds &

Figure 6-3. Adding an A record for the domain

SSH log in in to the controller instance using the public IP:
ssh -i "kubernetes-coreos.pem” core@52.1.116.171

Install kubectl binaries and list the nodes in the cluster:
./kubectl get nodes

The single controller node and the three worker nodes are listed as shown in Figure 6-4.

re@if S ./kubectl get nodes
NAME STATUS AGE

ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 4m

ip-10-0-0-52.ec2.internal Ready 4m

ip-10-0-0-53.ec2.internal Ready 4m E

ip-10-0-0-54.ec2.internal Ready 4m =
" -0-0-58 - ¢ ;

Figure 6-4. Listing running nodes

138

CHAPTER 6 = USING VOLUMES

Creating an AWS Volume

An awsElasticBlockStore volume mounts an AWS EBS volume into a pod. In this section we will create an
AWS EBS volume. Click on Create Volume in the EC2 Console as shown in Figure 6-5.

. R o T

Q Fiter - o @ ¢ 1to6ofé
Name = Volumell -~ Size = Volume Type - [OPS = Snapshot * Created = Availability Zone - State = Alarm
vol-1c2ciabb 8 GiB gp2 100/ 3000 snap-25dd2act July B, 2016 at 208.... us-east-1c @ inuse None
val- o577 8 GiB gp2 100 / 3000 snap-FOdefD July B, 2016 at 1:38:.., us-east-lc @ inuse None
vol-4a5056e0 aGiB ap2 100 / 3000 snap-25dd2act July B, 2016 &t 116 us-east-ic @ inuse Norw
val-B247 d77 B8 GB gp2 100 / 3000 snap-f70defl May 24, 2016 at 11: us-east-le @ available None
vol-cd2aed 06 8 GiB gp2 100 / 3000 snap-MOdefD Apiil 3. 2016 at 5:12 us-east-le @ available None
wol-922de359 8GiB gp2 100 / 3000 snap-T0defD Agril 3, 2016 at 5:11 us-easl-le @ available None

Figure 6-5. Begin by clicking Create Volume

The EBS volume must be created in the same availability zone as the EC2 instance on which a pod is to
mount the EBS volume. The availability zone is obtained from the EC2 console and is us-east-1c, as shown
in Figure 6-6.

Q| Launch Time : > July 10, 2016 &t 12:00:00 AM UTC-7 (2] 1te5ofs
Name = Instance ID * Instance Type - Availability Zone ~ Instance Siate - Status Checks - Alarm Status
kube s-cluster-kube-aws-worker WOB7T280 m3 medium us-gast-1e @ running & 272 checks None %
kubemetes-coreos-cluster-kube-aws-worker 087028 m3 medium us-east-le @ running & 212 checks None Y%
kubemetes-corens-cluster-kube ker 09710281 m3 medium us-east-le @ running & 272 checks None %
kubemetes-coreos-cluster-kube-aws-controller 13710295 m3. medium us-east-lc I} & running @ 22checks ... @ Ok %
Kubemetes-Core0S 84205802 12 micio us-east-1c @ runming @ 22 checks ... None =

Figure 6-6. Obtaining the availability zone

In the Create Volume dialog, set the Volume Type as General Purpose SSD (GP2) and the Size as 100
GiB. Set the Availability Zone as us-east-1c and click Create as shown in Figure 6-7.

139

CHAPTER 6~ USING VOLUMES

Create Volume

Volume Type (i)

Size (GIB) (i

IOPS (j

Throughput (MB/s) (i)
Availability Zone (j)
SnhapshotID (j)

Encryption (i)

X
General Purpose SSD (GP2) v
100 (Min: 1 GiB, Max 16384 GIiB)
300 /3000 (Baseline of 100 IOPS per GiB)

Not Applicable

us-east-1c v

I Encrypt this volume

Figure 6-7. Creating a volume

An AWS EBS volume is created. An alternative method to create an EBS volume is with the aws ec2
create-volume command, as follows. The availability zone is specified with the --availability-zone
command parameter as us-east-1c, the same as the EC2 instance on which the pod is running.

aws ec2 create-volume --availability-zone us-east-ic --size 10 --volume-type gp2

An AWS EBS volume is created, as shown in Figure 6-8.

[ec2-user@ip-10-0-0-126 ~]$ aws ec2 create-volume --availability-zone us-east-1c
--s5ize 10 --volume-type gp2

"AvailabilityZone": "us-east-1lc",

"Encrypted": false,
"VolumeType": "gp2",

"VolumeId": “"vol-529fa7fs",

"State": "creating”,

“Tops": 160,
“SnapshotId®: **,

“CreateTime": "2016-07-10T18:04:31.554Z",

"Size": 10

}

[ec2-user@ip-10-0-0-126 ~]$ ||

Figure 6-8. Creating a volume on the command line

140

CHAPTER 6 = USING VOLUMES

Using an awsElasticBlockStore Volume

Next, we will use the EBS volume in a ReplicationController specification file. Create a file called
pod-aws.yaml:

sudo vi pod-aws.yaml

Specify the awsElasticBlockStore volume with the volumes key with the format of the volumeID set to
aws://zone/volumeid. Obtain the volumeID from the EC2 console as shown in Figure 6-9.

Create Volume QTSI
NERS @o ¢ o

Q Fit (2] 1to12 of 12
Name = Volume D - Size = Volume Type~ 10PS = Snapshot = Created =

B Kubemetes Volume Type awsElasticBlockStore gp2 300 /3000 July 10, 2016 at 10:52.05 AM UTC-7
volBbesid21 standard = snap-5dfedshic July 10, 2016 at 1001532 AM UTC-7
volSBcSida2 EaNei:) standard . snap-5dBedShe July 10, 2016 at 10:15:32 AM UTC-T
volSbeSidal standard - snap-Sd0edShe July 10, 2016 at 10:15:32 AM UTC-7
wokabeSidlc standard - snap-5d8edSSe July 10, 2016 at 10:15:00 AM UTC-7
vol-dE5E7 3a ap2 100 7 3000 July 10, 2016 at 9:44:23 AM UTC-7
vok1c2clabe BB ap2 100 7 3000 snap-25dd2acl July 8, 2016 at 2:08:29 PM UTC-7
volbdd57317 B GiB ap2 100 7 3000 snap-T0defD July 8, 2016 at 1:38:22 PM UTC-7
vokdas056:0 B8 GiB gp2 100 / 2000 snap-25dd2acl July 8, 2016 at 1:16:32 PM UTC-7
vol-ERiTar? B GiB gp2 100 / 3000 May 24, 2016 at 11:07:11 AMUTC-7
volcd2aed(s B8 GiB gp2 100 7 3000 April 3, 2016 at 5:12:36 PM UTC.7
vol-922de359 B GiB qp2 100 / 3000 snap-T0defD April 3, 2016 at 5:11:04 PM UTC-7

Figure 6-9. Obtaining the volumeID

Specify the fsType as ext4 and the volume name as aws-volume:

volumes:
awsElasticBlockStore:
fsType: ext4
volumeID: "aws://us-east-1c/vol-62a59dc8"
name: aws-volume

141

CHAPTER 6 = USING VOLUMES

The preceding volume definition is mounted with the volumeMounts key. The pod-aws . yaml file looks
like this:

apiVersion: vi
kind: ReplicationController
metadata:
labels:
app: nginx
name: nginx-rc
spec:
replicas: 1
template:
metadata:
labels:
app: nginx
spec:
containers:
image: nginx
name: nginx
volumeMounts:
mountPath: /aws-ebs
name: aws-volume
volumes:
awsElasticBlockStore:
fsType: extq
volumeID: "aws://us-east-1c/vol-62a59dc8"
name: aws-volume

Save the pod-aws.yaml file with :wq as shown in Figure 6-10.

142

apiVersion: vl
kind: ReplicationController
metadata:
labels:
app: nginx
name: nginx-rc
spec:
replicas: 1
template:
metadata:
labels:
app: nginx
spec:
containers:
image: nginx
name: nginx
volumeMounts:
mountPath: /aws-ebs
name: aws-volume
volumes:

awsElasticBlockStore:

fsType: ext4

volumeID: "aws://us-east-lc/vol-62a59dc8"
name: aws-volume

20 |

Figure 6-10. The pod-aws.yaml

Create a replication controller with the kubectl create command:

./kubectl create -f pod-aws.yaml

List the deployments, replication controllers, and pods:

./kubectl get deployments
./kubectl get rc
./kubectl get pods

CHAPTER 6~ USING VOLUMES

LR

A replication controller is created. The pod may initially be listed as not ready, as shown in Figure 6-11.

143

CHAPTER 6 * USING VOLUMES

r 10-0-0-50 - § ,/kubectl create -f pod-aws.yaml (4]

repllcatloncontroller "nginx-rc" created
- ./kubectl get rc

INAHE DESIRED CURRENT AGE
nginx-rc¢ 1 1 14s
cor)-10-0-0-50 ~ § ,/kubectl get pods
|NAME READY STATUS RESTARTS AGE
nginx-rc-a3mih 0/1 ContainerCreating © 28s
server 1/1 Running 0 31m

I -10-0-0-50 ~ § ./kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-rc-a3mih 0/1 ContainerCreating © 32s
server 1/1 Running (] 31m

Figure 6-11. Pod created but not yet running and ready

Using the pod name, describe the pod with the following command:
kubectl describe pod nginx-rc-a3mih

The pod description is listed. The AWSElasticBlockStore volume should also be listed as shown in
Figure 6-12.

Volumes:
aws-volume:
Type: AWSElasticBlockStore (a Persistent Disk resource in AWS)
VolumelD: aws://us-east-1c/vol-62a59dc8
FSType: extd

Partition: ©
ReadOnly: false
default-token-nx5cy:

Type: Secret (a volume populated by a Secret)
SecretName: default-token-nx5cy
QoS Tier: BestEffort

Figure 6-12. Volume description

List the pods again after a pause (up to a minute), and the pod should be running and ready as shown in
Figure 6-13.

I p-10-0-0-50 ~ § ./kubectl get pods
NAME READY STATUS RESTARTS AGE

nginx-rc-a3mih 1/1 Running © 2m
server 1/1 Running © 32m
e 1= -5 1

Figure 6-13. Pod running and ready

Using the kubectl exec command, start an interactive bash shell. List the files and directories with
1s -1, and the aws-ebs directory should be listed; it is the mount path for the volume as shown in Figure 6-14.

144

- § ./kubectl get pods
RESTARTS AGE

NAME READY

STATUS
nginx-rc-a3mih 1/1 Running
Running

server 1/1
r p- -0=0-56 ~ §
ore@ip-10-0-0-50 ~ $./kubectl ex
|root@nginx-rc-a3mih: /# 1s -1
total 132

drwxr-xr-x. 3 root root 4096 Jul
drwxr-xr-x. 2 root root 4096 Jul
drwxr-xr-x. 2 root root 4096 Mar
drwxr-xr-x. 5 root root 380 Jul
drwxr-xr-x. 1 root root 4096 Jul
drwxr-xr-x. 2 root root 4096 Mar
drwxr-xr-x. 9 root root 4096 Jul
drwxr-xr-x. 2 root root 4096 Jul
drwxr-xr-x. 2 root root 4096 May
drwxr-xr-x. 2 root root 4096 May
drwxr-xr-x. 2 root root 4096 May
dr-xr-xr-x. 94 root root 0 Jul
drwx------ 2 root root 4096 Jul
drwxr-xr-x. 1 root root 4096 Jul
drwxr-xr-x. 2 root root 4096 Jul
drwxr-xr-x. 2 root root 4096 May

dr-xr-xr-x. 13 root root 0 Jul
druxrwxrwt. 2 root root 4096 Jun
drwxr-xr-x. 10 root root 4096 Jul
drwxr-xr-x. 1 root root 4096 Jul
root@nginx-rc-a3mih:/#

ec

0
0

nginx-rc-a3mih -i -t

17:
17
23:
17:
LT
23:
17:

56
26
46
56
56
46
26

CHAPTER 6 * USING VOLUMES

2m
32m

-- bash -il

aws-ebs
bin
boot
dev
etc
home
lib
1ib64
media
mnt
opt
proc
root
run
sbin
srv
sys
tmp
usr
var

0,

Figure 6-14. Starting the interactive shell and listing files

Change directory (cd) to the /aws-ebs directory and list its contents. A default created file is listed as

shown in Figure 6-15.

root@nginx-rc-a3mih:/# cd /aws-ebs
root@nginx-rc-a3mih:/aws-ebs# 1s -
total 16

root@nginx-rc-a3mih:/aws-ebs# [}

1

. 2 root root 16384 Jul 10 17:56 lost+found

Figure 6-15. Listing the default file in the /aws-ebs directory

Creating a Git Repo

For the gitRepo type of volume, we need to create a Git repository if one does not already exist. Create a

GitHub account and click New Repository as shown in Figure 6-16.

145

CHAPTER 6 * USING VOLUMES

New repository

t Import repository

New organization

Figure 6-16. Selecting the New Repository option

In the Create a New Repository window, specify a Repository name, select the Public repository option,
select Initialize This Repository with a README, and click Create Repository as shown in Figure 6-17.

Create a new repository
A repository contains all the files for your project, including the revision history:

Owner Repository name

dvnhrav { kubemetes-volume v

Great repository names are short and memorable. Need inspiration? How about automatic-potato.
Description (optional}

Repo for Kubernetes Volume of type gitRepo

® [| Public
5= Anyone can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

¥ Initialize this repository with a README
This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing repository.

Add _gitignore: None - Add a license: None =

Figure 6-17. Creating a repository

146

CHAPTER 6 * USING VOLUMES

A new repository is created, as shown in Figure 6-18.

- dvohra / kubernetes-volume [} © Unwatch ~ 1 W Star 0 YFork o

<> Code lssues o ‘I Pull requests o Wiki 4 Pulse il Graphs L+ Seltings
Repo for Kubernetes VYolume of type citRepo — Edit

0 1 commit ¥ 1 branch 0 releases i@ 1 contributor

Sranch. master = Hew pull request Create new file Upload files Find file

dvohra Initial commit Latest commit 558292 just now

[E) README. md Initial comrmit just now

[EZ README.md

kubernetes-volume

Repo for Kubernetes Volume of type gitRepo

Figure 6-18. The repository kubernetes-volume

Optionally add some files (pod.yaml) to the repository, as shown in Figure 6-19.

dvohra / kubernetes-volume @Unwatch~ 1 4 Star 0 YFork 0

£ Code lzsues o 11 Pull requests o Wiki - Pulze 1 Graphs ¥ Settings
Repo for Kubernetes Violume of type gitRepo — Edit

® 2 commits 7 1 branch © 0 releases 7 1 contributor

Eranch: master » New pull request Create new file Upload files Find file

dvnhla committed on GitHub Add files via upload Latest commit des18bd just now

[E README.md Initial commit an hour ago
[E) pod yaml Add files via upload just now
9 README.md

=kubernetes-volume .

Figure 6-19. Adding a file to the repository

147

CHAPTER 6 * USING VOLUMES

The kubernetes-volume repo should be listed in the user account, as shown in Figure 6-20.

Popular repositories Customize your pinned repositories
¥ flume-ingestion e
Flume - Ingestion, an Apache Flume distribution
¥ go-ocig oR
oracle driver for go that using databaselsql
[J kubernetes-volume ’
0¥

h Repo for Kubemetes Volume of type gilRepo

Figure 6-20. Listing the kubernetes-volume repository

Obtain the HTTPS web URL for the Git repo as shown in Figure 6-21. We will use the web URL to define
avolume in a pod specification file.

Create new file Upload files Find file Clone or download ~ |

Clone with HTTPS (@ Use SSH
Use Git or checkout with SYN using the web URL.

https://github.com/dvohrafkubernetes-vol E.

Open in Desktop Download ZIP

Figure 6-21. Obtaining the web URL for the repository

We also need the commit revision number, which may be obtained from the GitHub repo, as shown in
Figure 6-22.

148

CHAPTER 6 * USING VOLUMES

Add files via upload

L master

Browse files

B dvohra committed on GitHub 3 minutes ago parent 5582292
Showing 1 changed file with 20 additions and 0 deletions. Unified Split
20 EEEEE pod.yanl Wiew

Figure 6-22. Obtaining the commit revision number

Using a gitRepo Volume

Create a pod specification file pod.yaml in which to use the gitRepo volume:
sudo vi pod.yaml

Copy the following listing into pod.yaml. The repository and revision strings are kept empty in the
following listing, and values obtained from a user repository should be substituted.

apiVersion: vi
kind: Pod
metadata:
name: server
spec:
containers:
image: nginx
name: nginx
volumeMounts:
mountPath: /git-repo
name: git-volume

149

CHAPTER 6 * USING VOLUMES

volumes:
gitRepo:
repository:
revision: ""
name: git-volume

The resulting pod.yaml is shown in the vi editor with the repository and revision added as shown in
Figure 6-23; the repository and revision will be different for different users.

apiversion: vl
kind: Pod
metadata:
name: server
|spec:
containers:

image: nginx
name: nginx
volumeMounts:

A

mountPath: /git-repo
name: git-volume
volumes:

gitRepo:
repository: "https://github.com/dvohra/kubernetes-volume.git"
revision: deB8l8bd2ea2fdach791lec34fa6062e4ab894d875

name: git-volume

2 | 4

Figure 6-23. Thepod.yaml file

Create a pod with the kubectl create command:
./kubectl create -f pod.yaml
List the replication controllers and pods:

./kubectl get rc
./kubectl get pods

As the output from the preceding commands shown in Figure 6-24 indicates, the pod "server" is

created and started. Initially the pod may be listed as not running, but after a few seconds the pod should be
running, as also shown in Figure 6-24.

150

CHAPTER 6 * USING VOLUMES

core@ip-10-0- ~ § ./kubectl create -f pod.yaml
pod "server" created
re@ip-10-0-8-50 ~ § ./kubectl get rc
re@ip-10-| ~ § ./kubectl get pods
NAME READY STATUS RESTARTS AGE

server 0/1 ContainerCreating © 22s
re@ip-10-0- ~ & ./kubectl get pods
NAME READY STATUS RESTARTS AGE
server 1/1 Ruining 0 35s E
cor ip-10- 0-50 ~ § E

Figure 6-24. Creating a pod

Describe the pod:
kubectl describe pod server

The gitRepo volume should also be listed in the description, as shown in Figure 6-25.

Volumes:
Tgit-volume:
= Type: GitRepo (a volume that is pulled from git when the pod is create
d)
Repository: https://github.com/dvohra/kubernetes-volume.git
Revision: de8l18bd2ea2fdach791lec34fa6062e4abB894d875
default-token-nx5cy: v

Figure 6-25. Listing the volume description

Start an interactive shell on the "server" pod. List the directories and files, and you'll see the git-repo
directory path on which the gitRepo volume is mounted listed as shown in Figure 6-26.

core@ip-10-0-0-50 ~ § ,/kubectl get pods
NAME READY STATUS RESTARTS AGE
server 1/1 Running © 13m
re@ip-10-0-0 ~ % ./kubectl exec server -i -t -- bash -il
root@server:/# 1ls -1
total 136
drwxr-xr-x. 2 root root 4096 Jul 10 17:26 bin
drwxr-xr-x. 2 root root 4096 Mar 13 23:46 boot
drwxr-xr-x. 5 root root 380 Jul 10 17:26 dev
drwxr-xr-x. 1 root root 4096 Jul 10 17:26 etc
druwxrwxrwx. 3 root root 4096 Jul 1€ 17:25 git-repo
drwxr-xr-x. 2 root root 4096 Mar 13 23:46 home
drwxr-xr-x. 9 root root 4096 Jul 10 17:26 lib
drwxr-xr-x. 2 root root 4096 Jul 10 17:26 1ib64
drwxr-xr-x. 2 root root 4096 May 23 17:51 media
drwxr-xr-x. 2 root root 4096 May 23 17:51 mnt
drwxr-xr-x. 2 root root 4096 May 23 17:51 opt
dr-xr-xr-x. 85 root root 0 Jul 10 17:26 proc
drwx------ 2 root root 4096 Jul 10 17:26 root
drwxr-xr-x. 1 root root 4096 Jul 10 17:26 run
drwxr-xr-x. 2 root root 4096 Jul 10 17:26 sbin
drwxr-xr-x. 2 root root 4096 May 23 17:51 srv
dr-xr-xr-x. 13 root root 0 Jul 10 17:16 sys
druwxrwxrwt. 2 root root 4096 Jun 1 18:00 tmp

drwxr-xr-x. 1 root root 4096 Jul 10 17:26 var

drwxr-xr-x. 10 root root 4096 Jul 10 17:26 usr
root@server:/# | @

Figure 6-26. Starting an interactive shell
151

CHAPTER 6 * USING VOLUMES

Change directory (cd) to the git-repo directory. List the directories, and the kubernetes-volume
directory is listed, as shown in Figure 6-27.

root@server:/# cd /git-repo
root@server:/git-repo# ls -1
total 8 3
drwxr-xr-x. 3 root root 4096 Jul 10 17:25 kubernetes-volume [
root@server:/git-repo# || [

(1

Figure 6-27. Listing the kubernetes-volume directory

Change directory (cd) to the kubernetes-volume directory. List the directories and the pod.yaml file on
the Git repo should be listed, as shown in Figure 6-28.

root@server:/# cd /git-repo

root@server:/git-repo# 1ls -1

total 8

drwxr-xr-x. 3 root root 4096 Jul 10 17:25 kubernetes-volume
root@server:/git-repo# cd kubernetes-volume
root@server:/git-repo/kubernetes-volume# 1ls -1

total 16

-rw-r--r--. 1 root root 63 Jul 10 17:25 README.md
=rw-r--r--. 1 root root 417 Jul 10 17:25 pod.yaml
root@server:/git-repo/kubernetes-volume# [

[

Figure 6-28. Listing files in the kubernetes-volume directory

Summary

In this chapter we introduced the different types of Kubernetes volumes and then used two of these volumes,
an awsElasticBlockStore volume and a gitRepo volume. For the awsElasticBlockStore an AWS volume
had to be created, and for the gitRepo volume a Git repo had to be created. In the next chapter we will
discuss using the different types of services.

152

CHAPTER 7

Using Services

A Kubernetes service is an abstraction serving a set of pods. The pods that a service defines or represents

are selected using label selectors specified in the service spec. A service's label selector expression must be
included in a pod's labels for the service to represent the pod. For example, if a service selector expression
is "app=hello-world", a pod's labels must include the label "app=hello-world" for the service to represent
the pod. A service is accessed at one or more endpoints provided by the service. The number of endpoints
available is equal to the number of pod replicas for a deployment/replication controller. To be able to access
a service outside its cluster, the service must be exposed at an external IP address. The ServiceType field
defines how a service is exposed. By default a ServiceType is ClusterIP, which exposes the service only
within the cluster and not at an external IP. The other ServiceTypes are NodePort and LoadBalancer, which
expose the service at an external IP.

Problem

Services are a classic example of the Single Responsibility Principle (SRP). Consider the alternative that
a service is tightly coupled with a replication controller (RC) as shown in Figure 7-1. The following issues
would result.

— Ifeither the replication controller or the service is modified, the other has to be
modified, too, as the two have a dependency on each other. If a replication controller
is removed and replaced with another, the service would need to be replaced, too.

— For “high-functioning” DevOp teams, it is common for an application to have
multiple release tracks, which could be daily or weekly. For multiple release
applications it is typical to have multiple versions of replication controllers to coexist.
Multiple RCs cannot coexist with a controller/service coupling.

Replication

Service
Controller

Figure 7-1. Listing nodes in a Kubernetes cluster

© Deepak Vohra 2017 153
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_7

CHAPTER 7 * USING SERVICES

Another issue associated with services is that when a new RC is created, pods do not start immediately
and take a certain time (which could be a few seconds). A service representing the RC would need to know
when the containers in a pod are ready so that the service can route traffic to the pod.

Solution

The service is a REST object similar to a pod and provides object-oriented benefits such as modularity or
packaging, abstraction and reuse. Decoupling the service from the controller implements the SRP, and either
the service or controller may be modified or deleted without having to modify or delete the other. Multiple
replication controllers may be kept indefinitely, as shown in Figure 7-2, to meet the requirement of DevOps
teams. A replication controller only manages the pods, and a service only exposes endpoints to access pods.
Decoupling controller and service is a management design pattern.

Replication
Controller

Replication

Service Controller

Replication
Controller

Figure 7-2. Service associated with multiple replication controllers

Another management pattern used in services is a readiness probe. A readiness probe is used to find
whether a pod’s containers are ready to receive traffic.

Overview

Table 7-1 describes the different ServiceTypes.

154

CHAPTER 7 * USING SERVICES

Table 7-1. Types of Services

ServiceType External IP Description
ClusterIP No The default; exposes a service from within a cluster only.
NodePort Yes In addition to exposing the service within a cluster, exposes

the service at each node in the cluster at a specific port at URL
<NodeIP>:NodePort.

LoadBalancer Yes In addition to exposing a service within the cluster and at each node
in the cluster exposes the service at an external LoadBalancer IP.

In this chapter we shall discuss each of the ServiceTypes with an example. This chapter has the
following sections:

Setting the Environment
Creating a ClusterIP Service
Creating a NodePort Service

Creating a LoadBalancer Service

Setting the Environment

Create an AWS EC2 instance from Amazon Linux AMI. SSH log in to the EC2 instance using the public IP
address:

ssh -i "docker.pem" ec2-user@107.23.131.161

Create a CoreOS AWS CloudFormation for a Kubernetes cluster. Add an A record for the cluster
controller instance to the public DNS name for the CloudFormation and SSH log in to the controller
instance:
ssh -i "kubernetes-coreos.pem" core@52.203.239.87

Install kubectl binaries and list the nodes:

./kubectl get nodes

The nodes in the cluster should be listed, as shown in Figure 7-3.

$./kubectl get nodes

NAME STATUS AGE
ip-10-0-0-159.ec2.internal Ready 2h
ip-16-8-8-168.ec2.internal Ready 2h
ip-10-8-08-161.ec2.internal Ready 2h

ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 2h

Figure 7-3. Listing nodes in a Kubernetes cluster

155

CHAPTER 7 * USING SERVICES

Creating a ClusterlP Service

In this section we shall create a service of type ClusterIP, which is the default service type. First, create a
deployment using the Docker image tutum/hello-world with three replicas:

./kubectl run hello-world --image=tutum/hello-world --replicas=3 --port=80
Next, list the deployments:
./kubectl get deployments

A hello-world deployment is created and listed as shown in Figure 7-4.

-10- ~ § ./kubectl run hello-world --image=tutum/hello-world --replicas
=3 --port=80
deployment “hello-world" created

$./kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
hello-world 3 3 3 3 11s I
php-apache 15 15 15 12 36m Eﬂ

Figure 7-4. Creating and listing the deployments

List the pods:
./kubectl get pods

The three pod replicas are listed. Expose the deployment as a service of type ClusterIP, which is the
default, but may also be specified explicitly.

./kubectl expose deployment hello-world --port=80 --type=ClusterIP
List the services:
./kubectl get services
The hello-world service should be listed in addition to the kubernetes service and any other services,

as shown in Figure 7-5.

- § ./kubectl expose deployment hello-world --port=80 --type=Clust
erIp

service "hello-world" exposed
-10- $./kubectl get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

hello-world 10.3.0.234 <none> 80/TCP 8s
kubernetes 16.3.0.1 <nonex> 443/TCP 1h
php-apache 10.3.0.129 a0feb87714cfd... 88/TCP 56m

Figure 7-5. Creating and listing a service

156

CHAPTER 7 * USING SERVICES

Describe the service:

./kubectl describe svc hello-world

The service description includes the service type as ClusterIP and three endpoints for the service, as

shown in Figure 7-6.

re@ip-10- - § ./kubectl describe svc hello-world
Name : hello-world

Namespace: default
Labels: run=hello-world
Selector: run=hello-world
Type: ClusterIP
IP: 10.3.0.234
Port: <unset> 80/TCP
Endpoints: 10.2.12.7:80,10.2.49.7:80,10.2.83.6:80
Session Affinity: None
No events.
=k . L;

Figure 7-6. Describing the hello-world service

The service may be accessed at the clusterIP and each of the service endpoints. First, access the

b

cluster IP with the command curl cluster-ip. The cluster-ipis 10.3.0.234, so access the service at curl

10.3.0.234. The HTML markup for the service is output as shown in Figure 7-7.

re@ip-10-6- 9~ $ curl 10.3.0.234
<html>
<head>
<title>Hello world!</title>
<link href="http://fonts.googleapis.com/css?family=0pen+5ans:400,700' rel='s
tylesheet' type='text/css'>
<style>
body {
background-color: white;
text-align: center;
padding: 5@px;
font-family: "Open Sans","Helvetica Neue", Helvetica,Arial,sans-serif

}

#logo {
margin-bottom: 40px;
}

</style>
</head>
<body>

<hl=Hello world!</hl>
<h3>My hostname is hello-world-3739649373-xyghi</h3> <h3>
Links found</h3>
PHP_APACHE listening in 80 available
at tcp://10.3.0.129:80

KUBERNETES listening in 443 a
vailable at tcp://10.3.0.1:443

</body>

</html>

._c_..

Figure 7-7. Invoking a service endpoint with curl

(< Tl

157

CHAPTER 7 * USING SERVICES

Similarly, invoke the service at a service endpoint 10.2.12.7 as shown in Figure 7-8. The HTML markup
for the service is output.

. ~ $ curl 10.2.12.7
<html>
<head>
<title>Hello world!</title>
<link href="http://fonts.googleapis.com/css?family=0Open+Sans:400,700' rel='s
tylesheet' type='text/css's
<Style>
body {

background-color: white;

text-align: center;

padding: 58px;

font-family: "Open Sans","Helvetica Neue" Helvetica,Arial,sans-serif

}

#logo {
margin-bottom: 40px;

</style>
</head>
<body>

<hl>Hello world!</hl>

<h3>My hostname is hello-world-3739649373-ylpe3</h3> <h3>
Links found</h3>
PHP_APACHE listening in 80 available

at tcp://10.3.0.129:80

KUBERNETES listening in 443 a

vailable at tcp://10.3.08.1:443

</body>

</html>

(il

Figure 7-8. Invoking a different service endpoint

To invoke the service in a web browser, set port forwarding from a local machine. First, copy the key-
pair used to access the cluster controller instance to the local machine:

scp -1 docker.pem ec2-user@ec2-107-23-131-161.compute-1.amazonaws.com:~/kubernetes-coreos.
pem ~/kubernetes-coreos.pem

Then set port forwarding from the local machine locahost:80 to the cluster IP of the service on the
controller instance:

ssh -i kubernetes-coreos.pem -f -nNT -L 80:10.3.0.234:80 core@ec2-52-203-239-87.compute-1.
amazonaws . com

Port forwarding from local machine localhost:80 to cluster-ip:80 is set. Invoke the service in a web
browser at http://localhost, as shown in Figure 7-9.

158

CHAPTER 7 * USING SERVICES

Hello world! - Mozilla Firefox

Hello world! x| de

4 & localhost v | |[B~ Google ® o B 3 #

@tutum

Hello world!

My hostname is hello-world-3739649373-trkwk
Links found

PHP_APACHE listening in 80 available at tcp://10.3.0.129:80
KUBERNETES listening in 443 available at tcp://10.3.0.1:443

Figure 7-9. Invoking a service in a browser

Creating a NodePort Service

In this section we shall expose the same deployment hello-world as a service of type NodePort. First, delete
the service hello-world:

./kubectl delete svc hello-world
Then expose the deployment hello-world as a service of type NodePort:
./kubectl expose rc hello-world --port=80 --type=NodePort

A service of type NodePort is exposed, as shown in Figure 7-10.

I ~ & ./kubectl delete svc hello-world
service "hello-world" deleted

$./kubectl expose deployment hello-world --port=80 --type=NodeP|
ort
service "hello-world" exposed

Figure 7-10. Creating a service of type NodePort

159

CHAPTER 7 © USING SERVICES

List the services, and the hello-world service is displayed. In addition to a cluster-ip, an external-
ip <nodes> islisted, as shown in Figure 7-11. Unlike the cluster-ip, the <nodes> ip is not aliteral IP and
indicates that the service is exposed at each of the nodes in the cluster.

re@ip-10-0- - § ./kubectl get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

hello-world 10.3.8.125 <nodes> 80/TCP 42s ‘
kubernetes 10.3.0.1 <none> 443/TCP 2h E
ore@ip-10-0-0-50 ~ $.

Figure 7-11. Listing the NodePort-type service

Access the service at the cluster-ip as for a service of type ClusterIP, and the HTML markup is
displayed as shown in Figure 7-12.

core@ip-10- ~ § curl 10.3.0.125
<html>
<head>
<title>Hello world!</title>
<link href='http://fonts.googleapis.com/css?family=0pen+Sans:400,700' rel='s
tylesheet' type='text/css'=>
<style>
body {
background-color: white;
text-align: center;
padding: 50px;
font-family: "Open Sans","Helvetica Neue", Helvetica,Arial,sans-serif

}

#logo {
margin-bottom: 40px;
}

</style>
</head>
<body>

<hl>Hello world!</hl>
<h3>My hostname is hello-world-3739649373-b8gar</h3> <h3>,
Links found</h3>
PHP_APACHE listening in 80 available
at tcp://10.3.0.129:80

KUBERNETES listening in 443 a
vailable at tcp://10.3.0.1:443

HELLO WORLD listening in 80 a|
vailable at tcp://10.3.0.234:80

</body>

</html>

Figure 7-12. Invoking a service at Cluster-IP

160

CHAPTER 7 * USING SERVICES

List the nodes, as shown in Figure 7-13.

I -10-0- ~ § ./kubectl get nodes
NAME STATUS AGE

ip-10-8-0-159.ec2.internal Ready 2h

ip-10-0-0-160.ec2.internal Ready 2h

ip-10-0-0-161.ec2.internal Ready 2h =

ip-lﬂ—a—a—sa.ecz.interial Ready,SchedulingDisabled 2h E
-0- ~ ¢

Figure 7-13. Listing the nodes in a Kubernetes cluster

Describe the service to list the NodePort (32624), which is the port on each of the nodes at which the
service is exposed, as shown in Figure 7-14.

~ 5 ./kubectl describe svc hello-world

Name : hello-world
Namespace: default
Labels: run=hello-world
selector: run=hello-world
Type: NodePort
IP: 10.32.0.125
Port: <unset> 80/TCP
NodePort: <unset> 32624/TCP
Endpoints: 10.2.12.3:80,10.2.49.2:80,10.2.49.3:80
Session Affinity: None
No events.

-5 1

Figure 7-14. Describing the NodePort service

Invoke the service at a worker node with the URL Node-IP:NodePort, and the same HTML markup
should be listed, as shown in Figure 7-15.

161

CHAPTER 7 © USING SERVICES

core@ip-10-0-0-50 ~ § curl http://ip-10-0-0-159.ec2.internal:32624
<html>
<head>
<title>Hello world!</title>
<link href="http://fonts.googleapis.com/css?family=0pen+Sans:400,700' rel='s
tylesheet' type='text/css'>
<style>
body {

background-color: white;

text-align: center;

padding: 5@px;

font-family: "Open Sans","Helvetica Neue",Helvetica,Arial,sans-serif

}
#logo {

}
</style>

margin-bottom: 40px;

</head>
<body>

<hl>Hello world!</hl>
<h3>My hostname is hello-world-3739649373-51192</h3> <h3>
Links found</h3>
PHP_APACHE listening in 80 available
at tcp://10.3.0.129:80

HELLO WORLD listening in 80 a
vailable at tcp://10.3.0.234:80

KUBERNETES listening in 443 a
Figure 7-15. Invoking the service at a worker node

Similarly, the service may be invoked at the master node using the same node port, as shown in
Figure 7-16.

162

CHAPTER 7 * USING SERVICES

core@ip-10-0-0-50 ~ § curl http://ip-10-0-0-50.ec2.internal:32624
<html>
<head>
<title>Hello world!</title>
<link href='http://fonts.googleapis.com/css?family=0Open+Sans:400,700' rel='s
tylesheet' type='text/css'>
<style>
body {
background-color: white;
text-align: center;
padding: 50px;
font-family: "Open Sans","Helvetica Neue", Helvetica,Arial,sans-serif

}

#logo {
margin-bottom: 40px;

</style>
</head>
<body>

<hl>Hello world!</hl>
<h3>My hostname is hello-world-3739649373-51192</h3> <h3>
Links found</h3>
PHP_APACHE listening in 8@ available
at tcp://10.3.0.129:80

HELLO WORLD listening in 80 a
vailable at tcp://10.3.0.234:80

KUBERNETES listening in 443 a

vailable at tcp://10.3.0.1:443

Figure 7-16. Invoking the service at the master node

To invoke the service in a web browser, we don’t need to set port forwarding. Obtain the public DNS

name of the node at which to invoke the service as shown in Figure 7-17.

ey
Q Launch Time : > July 18, 2016 at 12:00:00 AM UTC-7 il filter @ K < ttoBofs > 3
Name = Instance ID | Type - ilahility Zone = | State -~ Status Checks - Alarm Status
Kubemetes-Core0S Fe37c0845 12.micro us-zast-1¢ @ running @ 20 checks ... None b
kub fust kube-3 il 5aBE3ed m3. medium us-gast-1c @ wnning & 212 checks & oK -
a8 i Kub s B3663e0e m3 medium us-gast-1c @ mnning & 22 checks .. None ‘%
fust kube- swe-worke iBeEB3e08 m3 medium us-gast-1¢ @ wnning @ 272 checks ... None -
kub fust Fouby HBEE3e0S m3 medium ug-2ast-¢ @ running @ 212 checks None -
>
I (kuber Tust Kube-aws ker) Public DNS: 2e2-54-172-247 225 compute-1.amazonaws.com _N=l=|

Description Status Checks onitoring Tags

Instance D -BAB5E3e0e L\G Public DNS 2c2-54-172-247-225 compute-
1. amazonaws. com
Instance state running Public IP 54172247 225
Instance fype m3.medum Elastic [Ps
Private DNS ip-1040-0-159 ec2. intemal Availabilty zone us-east-le
Prieate [Ps 1000159 Securitv orouns kubemetes-cluster-coreos-

Figure 7-17. Obtaining the public DNS

163

CHAPTER 7 © USING SERVICES

Invoke the service in a web browser at URL http://public-dns:32624 as shown in Figure 7-18.

[' [Hello world!
< Cc

1] ec2-54-172-247-225 compute-1.amazonaws.com:=2624

Dtutum

| Hello world!

My hostname is hello-world-3739649373-sbw5r

Links found

PHP_APACHE listening in 80 available at tcp://10.3.0.129:80 |
KUBERMNETES listening in 443 available at tcp://10.3.0.1:443 |
HELLO_WORLD listening in 80 available at tcp://10.3.0.234:80

Figure 7-18. Invoking the service in a browser

Similarly, obtain the public-dns for another worker node. Invoke the service at
http://public-dns:node-port for the node as shown in Figure 7-19.

164

CHAPTER 7 * USING SERVICES

i \
[Hello world! X

[C' [} ec2-107-23-121-203.compute-1.amazonaws.com:32624

j D tutum

\ Hello world!

My hostname is hello-world-3739649373-sbw5r

Links found

i PHP_APACHE listening in 80 available at tcp://10.3.0.129:80
KUBERMNETES listening in 443 available at tcp://10.3.0.1:443
HELLO_WORLD listening in 80 available at tcp://10.3.0.234:80

Figure 7-19. Invoking the service at another worker node

In addition to the cluster-ip:80 and node-ip:node-port, the service may also be invoked at each of
the service endpoints as shown for one of the endpoints in Figure 7-20.

165

CHAPTER 7 © USING SERVICES

: S curl 10.2.12.3:80 |
<html>
<head>
<title>Hello world!</title>
<link href='http://fonts.googleapis.com/css?family=0pen+Sans:400,700"' rel='s|
tylesheet' type='text/css'>
<style>
body {

background-color: white;

text-align: center;

padding: 50px; |
font-family: "Open Sans”,"Helvetica Neue",Helvetica,Arial,sans-serif|

}

#logo {
margin-bottom: 4@px;
}

<fstyle>
</head>
<body>

<hl>Hello world!</hl>
<h3>My hostname is hello-world-3739649373-sbwSr</h3> <h3>|
Links found</h3>
PHP_APACHE listening in 80 available
at tcp://10.3.0.129:80

KUBERNETES listening in 443 a|
vailable at tcp://10.3.0.1:443

HELLO WORLD listening in 80 a
vailable at tcp://10.3.0.234:80

Figure 7-20. Invoking the service at an endpoint

Creating a LoadBalancer Service

In this section we shall expose the same deployment as a service of type LoadBalancer. Delete the
hello-world service and expose the hello-world deployment as a service of type LoadBalancer:

./kubectl expose deployment hello-world --port=80 --type=LoadBalancer

Subsequently the hello-world service listed should expose an external IP in addition to the cluster-ip
as shown in Figure 7-21.

re@ip-10-0-0-50 ~ $./kubectl delete svc hello-world
service "hello-world" deleted
re@if ~ & ./kubectl expose deployment hello-world --port=80 --type=LoadB
alancer |
service "hello-world" exposed
~ § ./Kubectl get svc

NAME : CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 16.3.0.1 <none> 443/TCP 2h
D- -8 l

hello-world 10.3.0.142 a85ad84414d08... 80/TCP 9s [:

Figure 7-21. Creating a LoadBalancer service

166

CHAPTER 7 * USING SERVICES

The service is invoked at the cluster-internal cluster-ip for all types of Kubernetes services, as shown
in Figure 7-22.

I>]

re@ip- - § curl 10.3.0.142
<html>
<head>
<title>Hello world!</title>
<link href='http://fonts.googleapis.com/css?family=0pen+Sans:400,700' rel='s
tylesheet' type='text/css'>
<style>
body {
background-color: white;
text-align: center;
padding: 50px;
font-family: "Open Sans","Helvetica Neue" Helvetica, Arial,sans-serif

}

#logo {
margin-bottom: 40px;

}
</style>
</head>
<body=>

<h1>Hello world!</hl>
<h3>My hostname is hello-world-3739649373-51192</h3> <h3>|
Links found</h3>
PHP_APACHE listening in 80 available
at tcp://10.3.0.129:80

HELLO WORLD listening in 8@ a
vailable at tcp://10.3.0.234:88

KUBERNETES listening in 443 a

(1< TRmi]

vailable at tcp://10.3.0.1:443

Figure 7-22. Invoking a service at cluster-IP

Obtain the external IP, the LoadBalancer Ingress, at which the service is exposed with the following
command:

./kubectl describe services hello-world | grep "LoadBalancer Ingress"

The LoadBalancer Ingress is listed as shown in Figure 7-23.

q i ~ § ./kubectl describe services hello-world | grep "LoadBalancer I
ngress”

LoadBalancer Ingress: aB85ad84414d8811e699c50a558d3101d-1977318300.us-east-1.elb.amy
azonaws.com

-5 1

Figure 7-23. Obtaining the LoadBalancer Ingress

The LoadBalancer Ingress may also be obtained from the service description, as shown in Figure 7-24.

167

CHAPTER 7 © USING SERVICES

re@ip-10-0-0-50 -~ § . /kubectl describe svc hello-world
Name: hello-world
Namespace: default
Labels: run=hello-world
Selector: run=hello-world
Type: LoadBalancer
IP: 10.3.0.142
LoadBalancer Ingress: a85ad84414de811e699¢50a558d3101d-1977318300.us-east-1.elb.am
azonaws.com
Port: <unset> 80/TCP
NodePort: <unset> 31653/TCP
Endpoints: 19.2.12.3:80,10.2.49.2:80,10.2.49.3:80
Session Affinity: None
Events:
FirstSeen LastSeen Count From SubobjectPath Type
Reason Message
5m 5m 1 {service-controller } Norm
al CreatinglLoadBalancer Creating load balancer
5m 5m 1 {service-controller } Norm
al CreatedLoadBalancer Created load balancer
yre@ip-10-0-0-50 ~ $ l :§

Figure 7-24. LoadBalancer Ingress also listed in the service description

Invoke the service at the LoadBalancer Ingress IP as shown in Figure 7-25.

core@ip-10-0-0-50 ~ § curl a85ad84414d0811e699c50a558d3101d-1977318300.us-east-1.elb|
.amazonaws.com
<html>
<head=>

<title>Hello world!</title>

<link href="http://fonts.googleapis.com/css?family=0Open+5ans:400,700' rel='s
tylesheet' type='text/css'>

<style>

body {

background-color: white;

text-align: center;

padding: S@px;

font-family: "Open Sans","Helvetica Neue" Helvetica,Arial,sans-serif

}

#logo {
margin-bottom: 40px;

}
</style>
</head>
<body>

<hl>Hello world!</hl>
<h3>My hostname is hello-world-3739649373-51192</h3> <h3>|
Links found</h3>
PHP APACHE listening in 8@ available
at tcp://10.3.0.129:80

HELLO WORLD listening in 80 a
vallable at tcp://10.3.0.234:80

KUBERNETES listening in 443 a

vailable at tcp://10.3.0.1:443

Figure 7-25. Invoking the service at the LoadBalancer Ingress

168

CHAPTER 7 * USING SERVICES

An AWS load balancer is created for a service of type LoadBalancer. The LoadBalancer Ingress is the

public DNS of the load balancer, as shown in the EC2 Console in Figure 7-26.

Create Load Balancer QJEGTLLERS

Filter: | Q Search Load Balancers ®
@ Load Balancer Name = DHS name > Port Configuration = Availability Zones = Instance Count
B a85ad84414d0811e699c80a5... aB5ad54414d0811e699c50a5... B0 (TCP) forwarding 10 31653... us-easl-ic 3 Instances

Load balancer: | 3852d84414408112699¢502558431014d

Description Instances Health Check Monitoring Security Listeners Tags
DNS name: ab5a08441400811e699¢50a558d3101d- 1977318300 us-east-1 elb. amazonaws.com (A Recond)

Because the set of IP addresses associated with a LoadBalancer can change over time, you should
never create an "A" record with any specific IP address. If you want to use a friendly DNS name for

) a0 balancer Instead of the name generated by the Elastic Load Balancing senvice, you should
create a CNAME record for the LoadBalancer DNS name, or use Amazon Route 53 to create a hosted
zone. For more information, see Using Domain Names With Elastic Load Balancing

Scheme: nternet-facing
Status: 3 of 3 instances in service

Port Configuration: 80 (TCP) forwarding to 31653 (TCP)

Figure 7-26. Public DNS of the LoadBalancer

Health Check

TCP:31653

L

To invoke a service of type LoadBalancer, access the public DNS in a browser as shown in Figure 7-27.

[Hello world! x

[= C [a85ad84414d0811e699¢50a5558d3101d-1977318300. us-east-Lelb.amazonaws.com 57

mtutum

. Hello world!

| My hostname is hello-world-3739649373-sbw5r
Links found
PHP_APACHE listening in 80 available at tcp://10.2.0.129:80

KUBERNETES listening in 443 available at tcp://10.3.0.1:443
HELLO_WORLD listening in 80 available at tcp://10.3.0.234:80

Figure 7-27. Invoking the public DNS in a browser

169

CHAPTER 7 * USING SERVICES

In addition to the cluster-ip and the load balancer public DNS, the service may also be invoked at any
of the service endpoints, as shown for one of the endpoints in Figure 7-28.

. - $ curl 10.2.12.3 e
<html>
<head>
<title=Hello world!</title>
<link href='http://fonts.googleapis.com/css?family=0Open+5Sans:400,700' rel='s
tylesheet' type='text/css'>
<style>
body {
background-color: white;
text-align: center;
padding: 56@px; |
font-family: "Open Sans","Helvetica MNeue" Helvetica,Arial,sans-serif

}

#logo {
margin-bottom: 48px;

}

</style>

</head>

<body>

<hl>Hello world!</hl>

<h3>My hostname is hello-world-3739649373-sbwSr</h3> <h3>

Links found</h3>
PHP_APACHE listening in 80 available

at tcp://10.3.0.129:80

KUBERNETES listening in 443 a

vailable at tcp://10.3.0.1:443

vailable at tcp://10.3.0.234:80

</body>

< [

HELLO WORLD listening in 80 a[:

Figure 7-28. Invoking a service endpoint

Summary

In this chapter we introduced the different types of Kubernetes services. The ClusterIP service type is the
default and is invoked on a cluster IP. The NodePort service type is also exposed on each of the nodes in the
cluster in addition to the cluster IP. The LoadBalancer service type is exposed on an AWS LoadBalancer DNS
in addition to being exposed on a cluster IP, and each of the nodes in the cluster. Subsequently we created
sample deployments and pods for each of the types of services and invoked them from the IPs or DNS from
which they can be invoked. In the next chapter we shall discuss using rolling updates.

170

CHAPTER 8

Using Rolling Updates

It is common for a replication controller specification or a container image to be updated. If a replication
controller is created from an earlier image or definition file, the replication controller will need to be updated.

Problem

If the Docker image or controller specification for a replication controller has been updated while the replication
controller’s pods are running, the replication controller will need to be deleted and a new replication controller
created based on the updated Docker image or controller specification. Shutting down an application will
cause the application to become unavailable. One of the DevOps and Agile software development best
practices is Continuous Deployment. The objective of Continuous Deployment is to minimize the lead time
between a new application release/build being developed and being used in production.

Solution

During a rolling update, pods for any earlier version replication controller are terminated and pods for the
new controller started. The earlier version pods are shut down using a “graceful termination” mechanism,
which provides a callback into a container a configurable amount of time before the container is terminated
to allow the container to shut down gracefully, which implies that the in-memory state of the container is
persisted and the open connections are closed. The “graceful termination” mechanism Kubernetes makes
use of is a single-container management design pattern.

As shown in Figure 8-1, for the rolling update of a replication controller RC1 to RC2, RC1 initially has
three pods and RC2 no pods. In the next phase, RC1 has two pods and RC2 one pod. In the third phase RC1
has one pod and RC2 two pods. When the rolling update is completed RC1 has no pods and RC2 three pods.
The rolling update is performed one pod at a time.

© Deepak Vohra 2017 171
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_8

CHAPTER 8 ' USING ROLLING UPDATES

rcl rc2

4 2\ 4 2\
\\§ 4 \\§ 4
4 N\ 4 N\
_ J _ J
e N e N
\\§ 4 \\§ 4
4 N\ 4 N\

\\§ J

- J

Figure 8-1. Rolling update of RC1 to RC2

Another management pattern used in rolling updates is the controller/service decoupling, which follows
the Single Responsibility Principle. If controller and service are tightly coupled, multiple controllers cannot
be associated with a single service as new replication controllers are created and earlier ones removed. One of
the requirements of rolling updates is for multiple controllers to be associated with a service while an earlier
version RC is deleted (a pod at a time as discussed in this chapter) and pods for a new RC are started.

Overview

Kubernetes provides a mechanism by which a running replication controller can be updated to the newer
image or specification while it is running—what is called a rolling update. The replication controller or a
service representing the replication controller does not become unavailable at any time. The RC is updated
one pod at a time so that at any given time the number of pods in the RC is at the specified replication level.
In this chapter we shall use a rolling update to update a replication controller and a deployment while the
replication controller or deployment is running. Topics include the following:

Setting the environment

Rolling updates with an RC definition file
Rolling update by updating the container image
Rolling back an update

Using only either a file or an image

Rolling update on deployment with deployment file

172

CHAPTER 8 " USING ROLLING UPDATES

Setting the Environment

Create an Amazon EC2 instance based on the Amazon Linux AMI. Obtain the public IP of the instance and
SSH log in to the instance:

ssh -i "docker.pem" ec2-user@54.87.191.230

Create a Kubernetes cluster using an AWS CloudFormation consisting of a single controller and three
worker nodes running CoreOS, as shown in Figure 8-2.

. SRS @ecooe

(@, Status Checks - All stalus checks - passed fiter 9 I 1te5off ©
Hame = Instance ID = Instance Type ~ Availability Zone ~ Instance State ~ Status Checks - Alarm Status Publ
coreos-cluster-kube-aws-worker i-B0feBE rri3. madiurm ug-easl-lc @ wnning @ 272 checks Nome % ec2f
corens-cluster-kube- sws-worker 810807 i3 rediurm us-gast-1c @ running & 22 checks None e ec2s
corens-cluster-kube- aws-warker 834805 3. medium us-east-lc @ mnning @ 272 checks Kaone Y% ec2f
Kubemetes-Corze 085 84205802 12.micro us-east-lc @ running & 22checks .. Nome W ec2s
coreos-cluster-kube-aws-controller i-B9fBe0] rri3. madium us-easl-le @ running © 22checks.. @ Mo Data Y% ec2f

Figure 8-2. CloudFormation EC2 instances

After starting the cluster and setting up an A record for the controller instance IP address in the public
DNS name for the CloudFormation, SSH log in to the controller instance:

ssh -i "kubernetes-coreos.pem" core@52.205.169.82

The controller CoreOS instance is logged in as shown in Figure 8-3.

[ec2-user@ip-10-0-0-126 ~]$ ssh -i "kubernetes-coreos.pem” core@52.205.169.82
The authenticity of host '52.205.169.82 (52.205.169.82)' can't be established.
ECDSA key fingerprint is 37:13:80:3e:d9:74:d6:97:af:8a:a3:36:44:cf:bc:58.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '52.205.169.82' (ECDSA) to the list of known hosts.
Core0S stable (1010.6.0)

Update Strategy: No Reboots

- 9
Figure 8-3. SSH logging into the controller instance

Install kubectl binaries and list the nodes:
./kubectl get nodes

The single controller node and the three worker nodes are listed as shown in Figure 8-4.

173

CHAPTER 8 ' USING ROLLING UPDATES

5 ./kubectl get nodes

NAME STATUS AGE

ip-10-0-0-196.ec2.internal Ready 14m

ip-10-0-0-197.ec2.internal Ready 14m

ip-10-0-0-198.ec2.internal Ready 14m
0-0-0

ip-10-0-0-506.ec2.internal Ready,SchedulingDisabled 14m

Figure 8-4. Listing the nodes

The kubectl rolling-update command is used to perform a rolling update. The syntax for the
rolling-update command is as follows.

kubectl rolling-update OLD CONTROLLER NAME ([NEW_CONTROLLER NAME] --image=NEW_CONTAINER
IMAGE | - NEW_CONTROLLER_SPEC)

The old container name is required to be specified, and if a new controller name is to be assigned to
the updated RC, a new controller name may be specified. Either a new container image or a new container
specification must be specified as a command parameter. Next, we shall discuss performing a rolling update
using each of the methods; a new container image and a new controller specification.

Rolling Update with an RC Definition File

In this section we’ll discuss the rolling update of an existing replication controller by providing an RC
definition file to the kubectl rolling-update command. The following requirements apply for rolling-
updating an RC.

1. The new replication controller must be in the same namespace.

2. The new replication controller name in the definition file must not be the same
as the existing replication controller being updated.

3. Thenewreplication controller must specify at least one matching key with a
nonequal value in the selector field.

First, create a replication controller to be updated. The following RC definition file mysql.yaml creates
an RC called mysql and specifies three replicas. Create a definition file mysql.yaml in a vi editor:

sudo vi mysql.yaml

Copy the following source code to the definition file:

apiVersion: vi
kind: ReplicationController
metadata:
name: mysql
labels:
app: mysql-app

174

spec:
replicas: 3
selector:
app: mysql-app
deployment: vi
template:
metadata:
labels:
app: mysql-app
deployment: vi
spec:
containers:

env:

name: MYSQL_ROOT_PASSWORD
value: mysql

image: mysql
name: mysql
ports:

containerPort: 3306
Create a replication controller with the following command:
kubectl create -f mysql.yaml

An RC called mysql with three replicas should be created.

CHAPTER 8

USING ROLLING UPDATES

Next, modify the mysql.yaml file based on the requirements listed earlier. The following mysql.yaml
specifies a different RC name and a different value for the deployment key in the selector. Optionally, the

Docker image tag can be different.

apiVersion: vi

kind: ReplicationController

metadata:
name: mysql-vi
labels:
app: mysql-app
spec:
replicas: 3
selector:
app: mysql-app
deployment: v2
template:
metadata:
labels:
app: mysql-app
deployment: v2

175

CHAPTER 8 ' USING ROLLING UPDATES

spec:
containers:

env:

name: MYSQL_ROOT_PASSWORD
value: mysql

image: mysql:5.5

name: mysql

ports:

containerPort: 3306

Next, perform a rolling update to the RC called mysql using the definition file mysql.yaml. Optionally,
specify a timeout for the rolling update. When a timeout is set, the pods updated to the new image or
specification are not rolled back after the timeout has elapsed and the rolling update has terminated. The
rolling update may be performed again and resumes from the previous update.

kubectl rolling-update mysql -f mysql.yaml --timeout=1m

The mysql RC is updated to mysql-v1 as shown in Figure 8-5. Subsequently the RC mysql is deleted.

~ § sudo vi mysql.yaml
~ 5 ./kubectl rolling-update mysql -f mysql.yaml --timeout=1
m
Created mysql-vl
Scaling up mysql-vl from @ to 3, scaling down mysql from 3 to © (keep 3 pods ava
ilable, don't exceed 4 pods)
Scaling mysql-vl up to 1
Scaling mysql down to 2
Scaling mysql-vl up to 2
Scaling mysql down to 1
Scaling mysql-vl up to 3
Scaling mysql down to ©
Update succeeded. Deleting mysql
replicationcontroller "mysql" rolling updated to "mysql-v1"

3

| | IIJi

Figure 8-5. Rolling update of a replication controller

Delete the RC mysql-v1, as we shall be using the same RC name in the next section:

kubectl delete rc mysql-vi

176

CHAPTER 8 " USING ROLLING UPDATES

Rolling Update by Updating the Container Image

In this section we shall update an RC by updating the Docker image. First, create an RC using the following
mysql.yaml definition file:

apiVersion: vi
kind: ReplicationController
metadata:
name: mysql-vi
labels:
app: mysql-app
spec:
replicas: 3
selector:
app: mysql-app
deployment: vi
template:
metadata:
labels:
app: mysql-app
deployment: vi
spec:
containers:

env:

name: MYSQL_ROOT_PASSWORD
value: mysql

image: mysql:5.5

name: mysql

ports:

containerPort: 3306

Copy the preceding listing to a file mysql.yaml in a vi editor as shown in Figure 8-6.

177

CHAPTER 8 * USING ROLLING UPDATES

apiVersion: vl
kind: ReplicationController
metadata:
name: mysql-vl
labels:
app: mysql-app
spec:
replicas: 3
selector:
app: mysql-app
deployment: vl
template:
metadata:
labels:
app: mysql-app
deployment: vl
spec:
containers:

e

env:

name: MYSQL ROOT PASSWORD
value: mysql

image: mysql:5.5

name: mysql

ports:

containerPort: 3306

B | E

Figure 8-6. Themysql.yaml file in a vi editor
Run the following command to create an RC:
kubectl create -f mysql.yaml
List the RC and the pods:

kubectl get rc
kubectl get pods

The mysql-v1 RCis created and listed. The three pods also are listed as shown in Figure 8-7.

~ § sudo vi mysql.yaml
] ~ § ./kubectl create - mysql.yaml
repllcatlonccntruller "mysql-vl" created
()-50 ~ § ./kubectl get rc
NAME DESIRED CURRENT AGE

mysql-vl 3 3 7s
ip-10-(~ § ./kubectl get pods
NAME READY STATUS RESTARTS AGE
mysql-vl-8ekze 1/1 Running @ 14s
mysql-vl-p2udx 1/1 Running © 14s
mysql-vl-wa9vi 1/1 I Running © 14s
re p-16-8-08-56 ~ §

Figure 8-7. Creating an RC and listing the pods
178

CHAPTER 8 * USING ROLLING UPDATES

The following command creates a rolling update on the RC with a new image tag and new RC name.
The -a option displays all labels, and the --poll-interval specifies the interval between polling the
replication controller for status after update.

kubectl rolling-update mysql-vi mysql --image=mysql:latest -a --poll-interval=3ms

The RC mysql-v1 is rolling-updated to mysql as shown in Figure 8-8. Subsequently the RC mysql-v1 is
deleted.

- § ./kubectl rolling-update mysql-vl mysql --image=mysql:la
test -a --poll-interval=3ms
Created mysql
Scaling up mysql from © to 3, scaling down mysql-vl from 3 to © (keep 3 pods ava
ilable, don't exceed 4 pods)
Scaling mysql up to 1
Scaling mysql-vl down to 2
Scaling mysql up to 2
Scaling mysql-vl down to 1
Scaling mysql up to 3
Scaling mysql-vl down to ©
Update succeeded. Deleting mysql-vl
replicationcontroller "mysql-vl" rolling updated to "mysql"

Figure 8-8. Rolling update to an RC using a Docker image

After the update, list the RC and the pods:

kubectl get rc
kubectl get pods

A different RC, mysql, and different pods are now listed, as shown in Figure 8-9.

~ $./Kubectl get rc

NAME DESIRED CURRENT AGE
mysql 3 3 3m

I -0- ~ § ./kubectl get pods
NAME READY STATUS RESTARTS AGE
mysql-6teef 1/1 Running @ 2m
mysql-cgdxr 1/1 Running © im
mysql-o079yj 1/1 Running © 3m

Figure 8-9. Listing the RC and pods

A rolling update on an RC does not have to use a new RC name. As an example, perform a rolling update
with a new image tag and same RC name.

kubectl rolling-update mysql --image=mysql:5.6
For the purpose of updating the RC a temporary RC is created and the update is applied to the RC as

shown in Figure 8-10. Subsequently the original RC mysql is deleted and the temporary RC is renamed to
mysql, as a result keeping the RC name the same.

179

CHAPTER 8 * USING ROLLING UPDATES

./kubectl rolling-update mysql --image=mysql:5.6
Created mysql BGG?QCCf?36924b5b3?1245f3Sa?f86?
Scaling up mysql-00679ccf736024b5b371245f35a77867 from @ to 3, scaling down mysq
1 from 3 to 0 (keep 3 pods available, don't exceed 4 pods)
Scaling mysql-00679ccf736024b5b371245f35a7f867 up to 1
Scaling mysql down to 2
Scaling mysql-00679ccf736024b5b371245f35a7f867 up to 2
Scaling mysql down to 1
Scaling mysql-00679ccf736024b5b371245f35a7f867 up to 3
Scaling mysql down to O
Update succeeded. Deleting old controller: mysql
Renaming mysql-00679ccT736024b5b371245735a77867 to mysql
replicationcontroller "mysql" rolling updated

Figure 8-10. Rolling Update using the same RC name

A rolling update does not have to be with the same Docker image. As an example, use a different image,
postgres, to update an RC called mysql and based on the mysql image. The following command updates the
mysql image to the postgresql image using image=postgres:

kubectl rolling-update mysql postgresql --image=postgres

The RC mysql is updated to RC postgresql as shown in Figure 8-11.

S ./kubectl rolling-update mysql postgresql --image=postgre

s

Created postgresql

Scaling up postgresql from @ to 3, scaling down mysql from 3 to © (keep 3 pods &

vailable, don't exceed 4 pods)

Scaling postgresql up to 1

Scaling mysql down to 2

Scaling postgresql up to 2

Scaling mysql down to 1

Scaling postgresql up to 3

Scaling mysql down to ©

Update succeeded. Deleting mysql

replicationcontroller imysql“ rolling updated to "postgresqgl”
3 20

Figure 8-11. Rolling Update using a different Docker image

List the RC and the pods:

kubectl get rc
kubectl get pods

A different RC and pods should be listed, as shown in Figure 8-12. Not only has the RC been updated,
the pods are also running different software.

180

CHAPTER 8

p-10-0-0-50 ~ $./kubectl get rc
NAME DESIRED CURRENT AGE

postgresql 3 3 am

re@ip-10-0-0-50 ~ § ./kubectl get pods
NAME READY STATUS RESTARTS AGE
postgresql-ghoix 1/1 Running © 4m
postgresql-h40ud4 1/1 Running © 2m

postgresql-vdde7 1/1 Running © im
ore@ip-10-0-0-50 ~ $

Figure 8-12. Listing updated RC and pods

USING ROLLING UPDATES

A rolling update back to the mysql image-based RC may be performed by running a similar command.

Then list the new RC and pods for the new RC:

kubectl rolling-update postgresql mysql --image=mysql
kubectl get rc
kubectl get pods

The RC postgresql is updated to the mysql image-based RC named mysql, as shown in Figure 8-13. The

new RC and pods are listed.

ore@ip-10-0-0-50 ~ § ,/kubectl rolling-update postgresql mysql --image=mysql
Created mysql
Scaling up mysql from © to 3, scaling down postgresql from 3 to @ (keep 3 pods a
vailable, don't exceed 4 pods)
Scaling mysql up to 1
Scaling postgresql down to 2
Scaling mysql up to 2
Scaling postgresql down to 1
Scaling mysql up to 3
iScaling postgresql down to ©
Update succeeded. Deleting postgresql
repllcatloncontroller "postgresql” rolling updated to "mysql"

) -50 ~ § ./kubectl get rc

NAME DESIRED CURRENT AGE

mysql 3 3 6m
p-10-0-0- ~ S ./kubectl get pods

NAME READY STATUS RESTARTS AGE
mysql-7zway 1/1 Running @ 3m
mysql-19l4r 1/1 Running © 6m
mysql u92yw 1/1 Running @ 5m

) ~ § ./kubectl describe rc mysql
Name : mysql
Namespace: default
Image(s): mysql
Selector: app=mysql-app,deployment=b96c41ab12543233113058c0d774809f
Labels: app=mysql-app
Replicas: 3 current / 3 desired
Pods Status: 3 Running / © Waiting / @ Succeeded / © Failed
No volumes.
Events:

FirstSeen LastSeen Count From Subobjec

tPath Type Reason Message

Figure 8-13. Rolling update back to an RC

l
i

181

CHAPTER 8 * USING ROLLING UPDATES

A rolling update may be terminated while in progress and resumed later. As an example, create the
ReplicationController definition file mysql.yaml shown in Figure 8-14.

apiVersion: vl
kind: ReplicationController
metadata:
name: mysql-vl
labels:
app: mysql-app
spec:
replicas: 3
selector:
app: mysql-app
deployment: vl
template:
metadata:
labels:
app: mysql-app
deployment: vl
spec:
containers:

env:

name: MYSQL ROOT PASSWORD
value: mysql

image: mysql:5.5

name: mysql

ports:

containerPort: 3306

;wa =
Figure 8-14. The definition filemysql.yaml
Create an RC with the following command:
kubectl create -f mysql.yaml
List the pods:
kubectl get pods

The RC mysql-v1is created, and the pods are listed as shown in Figure 8-15.

§ - § ./kubectl create -f mysql.yaml
replxcatloncontroller "mysql-v1l" created

I ./kubectl get pods
NAME REnDY STATUS RESTARTS AGE

mysql-v1l-2blfo 1/1 Running © 7s

mysql-vl-6zmzb 1/1 Running © 7s

mysql-vl-zvl4x 1/1 Running @ 7s
' ._...‘5.

Figure 8-15. Creating an RC and listing pods

182

CHAPTER 8 * USING ROLLING UPDATES

Perform a rolling update of the mysql-v1 RC to a new RC called postgresql using a new Docker image,
postgres:

kubectl rolling-update mysql-vl postgresql --image=postgres

The rolling update is started as shown in Figure 8-16.

S ./kubectl rolling-update mysql-vl postgresql --image=post
gres
Created postgresql
Scaling up postgresql from © to 3, scaling down mysql-vl from 3 to @ (keep 3 pod
s available, don't exceed 4 pods)
Scaling postgresql up to 1

Figure 8-16. Starting a rolling update
While the rolling update is running, terminate the update with AC as shown in Figure 8-17.

$./kubectl rolling-update mysql-vl postgresql --image=post
igres
|Created postgresql
|Scaling up postgresql from @ to 3, scaling down mysql-vl from 3 to © (keep 3 pod
|s available, don't exceed 4 pods)
|Scaling postgresql up to 1

C
20

Figure 8-17. Terminating a rolling update

To resume the rolling update, run the same command again:
kubectl rolling-update mysql-vl postgresql --image=postgres

As the output in Figure 8-18 indicates, the existing update is found and resumed.

) ~ S ./kubectl rolling-update mysql-vl postgresql --image=post
gres

Found existing update in progress (postgresql), resuming.

Continuing update with existiflg controller postgresql.

Scaling up postgresql from 1 to 3, scaling down mysql-vl from 3 to © (keep 3 pod|
s available, don't exceed 4 pods) |

Figure 8-18. Resuming a rolling update

183

CHAPTER 8 * USING ROLLING UPDATES

The rolling update is completed using an existing update as shown in Figure 8-19. Next, list the new RC
and pods.

~ § ./kubectl rolling-update mysql-vl postgresql --image=post
gres
Created postgresql
Scaling up postgresql from @ to 3, scaling down mysql-vl from 3 to 0@ (keep 3 pod
s available, don't exceed 4 pods)
{Scaling postgresql up to 1
I~C

$./kubectl rolling-update mysql-vl postgresql --image=post

gres
Found existing update in progress (postgresql), resuming.
Continuing update with existing controller postgresql. |
Scaling up postgresql from 1 to 3, scaling down mysql-vl from 3 to 0 (keep 3 pod
s available, don't exceed 4 pods)
Scaling mysql-vl down to
Scaling postgresql up to
Scaling mysql-vl down to
Scaling postgresql up to
Scaling mysql-vl down to ©
Update succeeded. Deleting mysql-v1l
replicationcontroller “mysql-vl" rolling updated to "postgresql”

~ § ./Kubectl get rc

[FER G)

NAME DESIRED CURRENT AGE
mysql-v2 <]] am
postgresql 3 3 4m

! $./kubectl get pods
NAME READY STATUS RESTARTS AGE
postgresql-5a@rb 1/1 Running © 2m
postgresql-7p7a5 1/1 Running @ m

postgresql-g8izq 1/1 Running © 4m

- 9

Figure 8-19. Rolling update using existing update

Rolling Back an Update

A rollback of a rolling update can be performed if required. As an example, a rolling update to an RC called
postgresql is started using a new container image mysql:

kubectl rolling-update postgresql mysql --image=mysql

Now suppose that while the rolling update is still in progress, we realize the update should not have
been started, or was started in error, or needs to be started with different parameters. Using AC, terminate
the update. Then run the following command to roll back the update:
kubectl rolling-update postgresql mysql -rollback

When the rolling update was terminated, the postgresql RC had already scaled down to one pod and
the mysql RC had already scaled up to two pods. When the rollback is performed, the existing controller

postgresql is scaled back up from one to three pods and the mysql RC is scaled down from two to zero pods,
as shown in Figure 8-20.

184

CHAPTER 8 * USING ROLLING UPDATES

core@ip-10-0- ~ § ./kubectl rolling-update postgresql mysql --image=mysql
Created mysql
Scaling up mysql from © to 3, scaling down postgresql from 3 to © (keep 3 pods a
vailable, don't exceed 4 pods)
Scaling mysql up to 1
Scaling postgresql down to 2
Scaling mysql up to 2
Scaling postgresql down to 1
C

2ip-10-0-0-50 ~ § ./kubectl rolling-update postgresql mysql --rollback
Settlng "postgresql" replicas to 3
Continuing update with existing controller postgresql.
Scaling up postgresql from 1 to 3, scaling down mysql from 2 to @ (keep 3 pods a
vailable, don't exceed 4 pods)
Scaling postgresql up to 2

Figure 8-20. Rolling back a rolling update

Next list the RC and the pods:

kubectl get rc
kubectl get pods

The mysql RC is not listed and instead the postgresql RC is listed, as shown in Figure 8-21.

core@ip-10-0-0-50 ~ § ./kubectl rolling-update postgresql mysql --image=mysql
Created mysql
Scaling up mysql from @ to 3, scaling down postgresql from 3 to 0 (keep 3 pods a
vailable, don't exceed 4 pods)
Scaling mysql up to 1
|Scaling postgresql down to 2
|Scaling mysql up to 2
|Scaling postgresqgl down to 1
C

0-0-50 ~ § ./kubectl rolling-update postgresql mysql --rollback
Settlng "postgresql" replicas to 3
Continuing update with existing controller postgresql.
Scaling up postgresql from 1 to 3, scaling down mysql from 2 to ©@ (keep 3 pods a
vailable, don't exceed 4 pods)
Scaling postgresql up to 2
Scaling mysql down to 1
Scaling postgresql up to 3
Scaling mysql down to ©
Update succeeded. Deleting mysql
Error from server replicationcontrollers "mysql” not found
ore@ip-10- $./kubectl get rc
NAME DESIRED CURRENT AGE

mysql-v2 (<]] 15m
postgresql 3 3 16m

10-0-0-50 ~ § ./kubectl get pods
NAHE READY STATUS RESTARTS AGE
postgresql-2yq3y 1/1 Running © im
postgresql-g8izq 1/1 Running @ 10m
postgresql-ygbsl llll Running @ 2m
core@ip-10-0-0-50 ~ §

Figure 8-21. Listing a rolled-back RC and pods

185

CHAPTER 8 * USING ROLLING UPDATES

Rollback of a deployment may be performed even after a rolling update has completed if an earlier
revision is available. The rolling update of deployments is discussed in a later section.

Using Only Either File or Image

Only one of a container image or a definition file may be used, not both. To demonstrate, try specifying both
image and file:

kubectl rolling-update mysql --image=mysql -f mysql.yaml

An error is generated as shown in Figure 8-22.

5 ./kubectl rolling-update postgresql --image=mysql -f my
sql.yaml
error: --filename and --image can not both be specified
See 'kubectl rolling-update -h' for help and examples.

Figure 8-22. An error is generated if both Docker image and definition file are used

Multiple-Container Pods

A rolling update performs an update on an RC, which consists of pod replicas, using a new container image
or pod spec. If -image is specified in the kubectl rolling-update command to perform an update, the
image is used to update the pods. But what if the pod is a multicontainer pod? An image can update only one
of the containers in the pod, and the container must be specified using the -container option.

Rolling Update to a Deployment

A deployment created using a definition file has the provision to specify spec for the rolling update. The
default strategy of a deployment is rollingUpdate and may also be specified explicitly. The other option
for the strategy type is Recreate. The following (Table 8-1) fields may be specified for a rolling update

deployment, the default.

186

Table 8-1. Fields for Rolling Update to a Deployment

CHAPTER 8 * USING ROLLING UPDATES

Field Description

Example

maxUnavailable The maximum number of pods

that may become unavailable

during the update. The value may
be an absolute number, such as 3,
or a percentage, for example 30%.
Default value is 1. The value cannot

be 0 if maxSurge is 0.

maxSurge The maximum number of pods
that may be running above

the configured or desired level
specified as a number or a

percentage. Default value is 1.

Cannot be 0 if maxUnavailable is 0.

If set to 20% the maximum number of pods that
may be unavailable cannot exceed 20%, and 80%
of the pods must always be available. When the
update starts, the old RC is scaled down to 80%
immediately and new pods started for the new
RC. As new pods are started old RC pods are
stopped, so that the number of pods available is
always 80% of the configured replication level.

If set to 10% the new RC may surge to 110%

of the configured or desired number of pods
immediately when the update is started, but not
more than 110% of the configured replication
level. As old RC pods are stopped more new RC
pods are started, but at any given time the total
number of pods must not exceed 110%.

The Deployment spec provides two fields (Table 8-2) for the rolling update rollback. Neither of these

fields are required.

Table 8-2. Fields for Rolling Update Rollback

Field Description

rollbackTo

The config the deployment is rolled back to in a rollback. The RollbackConfig

provides a field revision to specify the revision to roll back to. If set to 0 rolls

back to the last revision.

revisionHistorylLimit

The number of old replica sets to retain to allow a rollback.

Next, we shall demonstrate rolling update of a deployment. Create a deployment file mysql-

deployment.yaml:
sudo vi mysql-deployment.yaml
Copy the following listing to the definition file:

apiVersion: extensions/vibetal
kind: Deployment
metadata:
name: mysql-deployment
spec:
replicas: 5
template:
metadata:
labels:

app: mysql

187

CHAPTER 8 * USING ROLLING UPDATES

spec:
containers:
- name: mysql
image: mysql:5.5
ports:
- containerPort: 80
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 75%
maxSurge: 30%
rollbackTo:
revision: 0

Figure 8-23 shows the definition file in a vi editor.

apiVersion: extensions/vlbetal
kind: Deployment
metadata:
name: mysql-deployment
spec:
replicas: 5
template:
metadata:
labels:
app: mysql
spec:
containers:

name: mysql
image: mysql:5.5
ports:

containerPort: 80
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: "75%"
maxsurge: "30%"
rollbackTo:
revision: ©

) |

Figure 8-23. Definition file for a deployment

188

CHAPTER 8 * USING ROLLING UPDATES

Create a deployment:

kubectl create -f mysql-deployment.yaml
Find the rollout status:

kubectl rollout status deployment/mysql-deployment
List the deployments:

kubectl get deployments

The mysql-deployment is created and rolled out as shown in Figure 8-24.

~ § ./kubectl create -f mysql-deployment.yaml
deployment "mysql-deployment" created
S ./kubectl rollout status deployment/mysql-deployment
deployment mysql deployment successfully rolled out
~ S ./kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
mysql-deployment 5 5 5 1 48s

~ &

Figure 8-24. Creating and rolling out a deployment

The Docker image specified in the definition file ismysql:5.5. The image may be updated using the
kubectl set image command. As an example, update the image to the latest tag:

kubectl set image deployment/mysql-deployment mysql=mysql:latest
Find the deployment status, list the deployments, and describe the deployments:
kubectl describe deployments

As indicated in the output shown in Figure 8-25, the RollingUpdateStrategy is 75% unavailable and
30% max surge.

189

CHAPTER 8 * USING ROLLING UPDATES

10-0-0-50 ~ § ,/kubectl create -f mysql-deployment.yaml
deployment "mysql deployment" created
re@ip -0-50 ~ § ./kubectl rollout status deployment/mysql-deployment
deployment mysql deployment successfully rolled out
ip-10 <50 -~ § ./kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
mysql deployment 5 5 5 1 48s
! 50 ~ & ./kubectl set image deployment/mysql-deployment mysql=mysq
l latest
deployment "mysql deployment" image updated
0-5¢ S ./kubectl rollout status deployment/mysql-deployment
deployment mysql deployment successfully rolled out
ip-10-0-0-50 - § ./kubectl get deployments

NAHE DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
mysql-deployment 5 5 5 0 im
core@ip-10-0-0-50 ~ § ./kubectl describe deployment mysql-deployment
Name: mysql-deployment
Namespace: default
CreationTimestamp: Sat, 09 Jul 2016 20:22:25 +0000
Labels: app=mysql
Selector: app=mysql
Replicas: 5 updated | 5 total | © available | 5 unavailable
StrategyType: RollingUpdate
MinReadySeconds:]
RollingUpdateStrategy: 75% max unavailable, 30% max surge
0ldReplicaSets: <none>
NewReplicaSet: mysql-deployment-2839511385 (5/5 replicas created)
Events:

FirstSeen LastSeen Count From Subobjec
tPath Type Reason Message

Figure 8-25. Describing a deployment

As listed in Events, one replica set is scaled down and another replica set is scaled up. Both replica sets
are listed with kubectl get rs, but only one has pods, as shown in Figure 8-26.

190

CHAPTER 8 " USING ROLLING UPDATES

FirstSeen LastSeen Count From Subobjec
tPath Type Reason Message

2m 2m 1 {deployment-controller }
ormal ScalingReplicaSet Scaled up replica set my
sql-deployment-227245924 to 5 ‘

2m 2m 2 {deployment-controller } W
arning DeploymentRollbackRevisionNotFound Unable to find last revi
sion.

59s 595 1 {deployment-controller } N
ormal ScalingReplicaSet Scaled up replica set my
sql-deployment-2839511385 to 2 i

58s 58s 1 {deployment-controller } N
ormal ScalingReplicaSet Scaled down replica set
mysql-deployment-227245924 to 2

58s 58s 1 {deployment-controller } N
ormal ScalingReplicaSet Scaled up replica set my
sql-deployment-2839511385 to 5

39s 39s 1 {deployment-controller } N
ormal ScalingReplicaSet Scaled down replica set
mysql-deployment-227245924 to 1

39s 39s 1 {deployment-controller } N
ormal ScalingReplicaSet Scaled down replica set
mysql-deployment-227245924 to 0
core@ip-10-0-0-50 ~ $§ ./kubectl get rs
NAME DESIRED CURRENT AGE
mysql-deployment-227245924 0 0 3m
mysql-deployment—28395i1385 5 5 2m

re@ip-10-0-8-58 ~ $

Figure 8-26. Scaling and listing ReplicaSets

Alternatively, edit the deployment with kubectl edit:
kubectl edit deployment/mysql-deployment

As an example, the mysql image tag could be set to 5.5 as shown in Figure 8-27.

191

CHAPTER 8 * USING ROLLING UPDATES

namespace: default
resourceVersion: "22537"
selfLink: /apis/extensions/vlbetal/namespaces/default/deployments/mysql-deploy
ment
uid: 0e80cfc7-4614-11e6-840e-0a975dd0e3e5
spec:
replicas: 5
selector:
matchLabels:
app: mysql
strategy:
rollingUpdate:
maxSurge: 30%
maxUnavailable: 75%
type: RollingUpdate
template:
metadata:
creationTimestamp: null
labels:
app: mysql
spec:
containers:
- env:
- name: MYSQL_ROOT_PASSWORD
value: mysql
image: mysql:§.5
imagePullPolicy: Always
name: mysql
ports:
- containerPort: 3306
protocol: TCP

Figure 8-27. Editing a deployment

Modify the image tag to latest, the default when no tag is specified, as shown in Figure 8-28.

192

CHAPTER 8 " USING ROLLING UPDATES

namespace: default
resourceVersion: "22537"
selfLink: /apis/extensions/vlbetal/namespaces/default/deployments/mysql-deploy
ment
uid: 0e80cfc7-4614-11e6-840e-0a975dd0e3e5
spec:
replicas: 5
selector:
matchLabels:
app: mysql
strategy:
rollingUpdate:
maxSurge: 30%
maxUnavailable: 75%
type: RollingUpdate
template: =
metadata:
creationTimestamp: null
labels:
app: mysql
spec:
containers:
- env:
- name: MYSQL ROOT PASSWORD
value: mysql
image: mysql
imagePullPolicy: Always
name: mysql
ports:
- containerPort: 3306
protocol: TCP
L | E

-

Figure 8-28. Setting the image tag to latest, which is the default for the mysql Docker image

Save the definition file with :wq. The message deployment edited indicates that the deployment has
been edited as shown in Figure 8-29. List the deployments, the replica sets, and the pods. The old replica set
does not have any pods, while the new replica set does.

50~ § sudo vi mysql-deployment.yaml
0-50 -~ § ,/kubectl edit deployment/mysql-deployment
deployment "mysql deployment” edited
0-50 ~ § ./kubectl rollout status deployment/mysql-deployment
deployment mysqI deplnyment successfully rolled out
~ § ./kubectl get deployments
NANE DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
mysql-deployment 5 5 5 5 m
core@ip-10-0-0-50 ~ § . /kubectl get rs
NAME DESIRED CURRENT AGE
mysql-deployment-2212994012 0 0 5m
mysql-deployment-789224202 5 5 &m
ore@ip-10-0-0-50 ~ $./Kubectl get pods
NAME READY STATUS RESTARTS AGE
mysql-deployment-789224202-5wsép 1/1 Running © im
mysql-deployment-789224202-7pibl 1/1 Running © im
mysql-deployment-789224202-ferml 1/1 Running © im
mysql-deployment-789224202-p69kh 1/1 Running © m
789224202-rolu3 1/1 Running © 1m

mysql-deployment-
-:_gl

Figure 8-29. Deployment edited and rolled out

CHAPTER 8 * USING ROLLING UPDATES

Make some more rolling updates. For example, the rolling update shown in Figure 8-30 sets the image
tag to 5.6.

r p ~ § ./kubectl set image deployment/mysql-deployment mysql=mysq |
1:5.6 1
deployment "mysql-deplﬁyment" image updated

) ~ $

Figure 8-30. Applying a rolling update to the mysql Docker image tag

The kubectl set image command does not verify the validity of a tag. For example, suppose a mysql
image with the invalid tag 5.5.5 is also used for a rolling update and the deployment is rolled out. Some of the
pods of the old RC are stopped, but new pods are not started. Listing the pods shows that some of the pods
have the Status ImagePullBackOff, or show another error message as illustrated in Figure 8-31.

- § ./kubectl set image deployment/mysql-deployment mysql=mysq
1:555
deployment "mysql-deployment" image updated
I -0-0- S ./kubectl rollout status deployments mysql-deployment
deployment mysql-deployment successfully rolled out
- § ./kubectl get rs
NAME DESIRED CURRENT AGE

mysql-deployment-2212994012 @ 2] am
mysql-deployment-2296945629 2 2 2m
mysql-deployment-28011146083 5 5 22s
mysql-deployment-3585318469 @ 2] 2m

mysql-deployment-789224202 0] 12m

~ § ./kubectl get pods
NAME READY STATUS RESTARTS AGE
mysql-deployment-2296945629-1908b 1/1 Running] 2m
mysql-deployment-2296945629-qan2a 1/1 Running 0 2m
mysql-deployment-2801114083-37h5b 0/1 ImagePullBackoff © 45s
mysql-deployment-2801114083-k9p7v 0/1 ImagePullBackoff 0 45s
mysql-deployment-2801114083-rgl2d 0/1 ErrImagePull 0 45s
mysql-deployment-2801114083-vue9g 0/1 ImagePullBackoff 0 45s
0 45s |=

mysql-deployment-2801114083-znlrj 0/1 ImagePullBackoff
- 3 J

Figure 8-31. Rolling update with an invalid image tag

As another example, rolling-update and roll out a deployment using the image mysql:latest. The
deployment also is rolled out. But as indicated in the deployment description, only two of the pods are
available, as shown in Figure 8-32.

194

CHAPTER 8 " USING ROLLING UPDATES

oI ~ % ./kubectl describe deployment (~]
Name: mysql-deployment
Namespace: default
CreationTimestamp: Sat, 09 Jul 2016 20:31:03 +0000
Labels: app=mysql
Selector: app=mysql
Replicas: 5 updated | 5 total | 2 available | 5 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 75% max unavailable, 30% max surge
OldReplicaSets: mysql-deployment-2296945629 (2/2 replicas created)
NewReplicaSet: mysql-deployment-2801114083 (5/5 replicas created)
Events:

FirstSeen LastSeen Count From Subobjec
tPath Type Reason Message

14m 14m 2 {deployment-controller } W
arning DeploymentRollbackRevisionNotFound Unable to find last revi
sion.

1lm 1lm 1 {deployment-controller } N
ormal ScalingReplicaSet Scaled up replica set my
sql-deployment-2212994012 to 2

11m 11m 1 {deployment-controller } N
ormal ScalingReplicaSet Scaled up replica set my
sql-deployment-2212994012 to 5

11m 11m 1 {deployment-controller } N
ormal ScalingReplicaset Scaled down replica set
mysql-deployment-789224202 to 1

1lm 1lm 1 {deployment-controller } N
ormal ScalingReplicaSet Scaled down replica set @

mysql-deployment-789224202 to @

Figure 8-32. Only some of the replicas are available

E

If some deployment has an error, the deployment may be rolled back to an earlier revision. List the

deployment revisions.
kubectl rollout history deployment/mysql-deployment

The deployment revisions are listed as shown in Figure 8-33.

0 ~ § ./kubectl rollout history deployment/mysql-deployment

deployments "mysql-deployment":
REVISION CHANGE - CAUSE
<none>

<none>

<none>

<none>

<none>

"SI

O W

Figure 8-33. Listing deployment revisions

195

CHAPTER 8 ' USING ROLLING UPDATES

We need to find which deployment revision does not have an error and subsequently roll back to that
revision. The details of a revision can be displayed. For example, the following command lists the detail of
revision 4:

kubectl rollout history deployment/mysql-deployment --revision=4

The details of revision 4 are listed as shown in Figure 8-34.

S ./kubectl rollout history deployment/mysql-deployment
deployments "mysql-deployment”:

REVISION CHANGE - CAUSE
2 <none>
3 <none>
4 <none>
5 <none>
6 <none>
. ~ 5 ./kubectl rollout history deployment/mysql-deployment --re
vision=4
deployments "mysql-deployment” revision 4
Labels: app=mysql
pod-template-hash=2296945629
Containers:
mysql:
Image: mysql:5.6
Port: 3306/TCP
Environment Variables:
MYSQL_ROOT PASSWORD: mysql
Mo volumes. 3

|

Figure 8-34. Listing the details of revision 4

To roll back to the previous version, run the following command, assuming the rollbackTo->revision
field is set to 0 (also the default) in the deployment definition file:

kubectl rollout undo deployment/mysql-deployment

Deployment is rolled back as shown in Figure 8-35. List the pods, and you may see some of the pods still
not running, which indicates that the revision rolled back to has errors.

196

CHAPTER 8

30 ~ § ./kubectl rollout undo deployment/mysql-deployment
deployment “mysql deployment” rolled back
50 ~ § ./kubectl get deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
mysql deployment 5 7 5 2 17m
) ~ § ./kubectl get pods

NAHE READY STATUS RESTARTS AGE
mysql-deployment-2296945629-1900b 1/1 Running 0 m
mysql-deployment-2296945629-qan2a 1/1 Running 0 m
mysql-deployment-3585318469-71ahh ©/1 ImagePullBackoff 0 40s
mysql-deployment-3585318469-83lam 0/1 ErrImagePull 0 40s
mysql-deployment-3585318469-ntdhs 0/1 ErrImagePull 0 40s
mysql-deployment-3585318469-vrcyw 0/1 ErrImagePull 0 40s
mysql-deployment-35853;8469-y3rez 0/1 ErrImagePull 0 40s @
core@ip-10-0-0-50 ~ § ’

Figure 8-35. Rolling back a deployment

USING ROLLING UPDATES

Either keep rolling back one revision at a time and verifying whether the revision is valid or roll back to a

specific revision that is known to be valid, for example revision 4:
kubectl rollout undo deployment/mysql-deployment --to-revision=4

Now list the pods. As indicated in Figure 8-36, all pods are running.

re 50 -~ $./kubectl rollout undo deployment/mysql-deployment
depIOyment “mysql deployment” rolled back
i -0-56 ./kubectl get deployment
NAHE DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

mysql deployment 5 7 5 2 19m
ip ./kubectl get pods

NAME READY STATUS RESTARTS AGE
mysql-deployment-2296945629-1900b 1/1 Running 0 9m
mysql-deployment-2296945629-qan2a 1/1 Running 0 9m
mysql-deployment-3585318469-33sus 0/1 ImagePullBackOff 0 165
mysql-deployment-3585318469-3wlel 0/1 ErrImagePull 0 165
mysql-deployment-3585318469-bldxw 0/1 ErrImagePull 0 16s
mysql-deployment-3585318469-c63wa 0/1 ImagePullBackoff © 16s

mysql deployment -3585318469-f280y 0/1 ImagePullBackOff 0 16s
I 0-50 ~ § ./kubectl rollout undo deployment/mysql-deployment --to-re
v1510n-4

deployment “mysql deployment” rolled back
-0-50 ~ 5 ./kubectl get deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
mysql deployment 5 5 5 5 20m
0 - % ./kubectl get pods

NAHE READY STATUS RESTARTS AGE
mysql-deployment-2296945629-1900b 1/1 Running © 10m
mysql-deployment-2296945629-ohyud 1/1 Running © 195
mysql-deployment-2296945629-q1ln74 1/1 Running © 19s
mysql-deployment-2296945629-qan2a 1/1 Running © 1em
mysql deployment 22969;5629 rbwop 1/1 Running © 19s

] =f=00 - § v

Figure 8-36. Rolling back to revision 4

No further rollback is required.

197

CHAPTER 8 ' USING ROLLING UPDATES

Summary

In this chapter we introduced rolling updates, a feature that is useful because it lets you update a running
application to a newer image or RC definition without interruption in service. We created a rolling update
using an updated RC definition file and also an updated container image. We also demonstrate rolling back
an update. In the next chapter we shall discuss scheduling pods on nodes.

198

CHAPTER 9

Scheduling Pods on Nodes

Scheduling involves finding the pods that need to be run and running (scheduling) them on nodes in a cluster.

Problem

Often containers have dependencies between them and need to be collocated on the same node to reduce
the network latency between them. The pod abstraction can encapsulate multiple containers, which solves
the problem of collocating containers with dependencies between them. The pattern can be extended

further to dependencies between pods that need to be running on the same or a different machine (node).

Solution

In a recent publication, Design Patterns for Container-based Distributed Systems, by Brendan Burns and
David Oppenheimer (https://www.usenix.org/node/196347), three types of container design patterns are
discussed:

1. Single Container Management Patterns
2. Single Node, Multi-Container Application Patterns
3. Multi-Node Application Patterns

All of these design patterns require pods to be scheduled on specific nodes in a cluster. Kubernetes
provides various options for scheduling pods on specific nodes within a cluster. The sequence used to
schedule a pod on a node is shown in Figure 9-1.

Find a pod that Find a suitable node Schedule the pod on
needs to be run to run the pod on the node

Figure 9-1. Sequence used in scheduling a pod

© Deepak Vohra 2017 199
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_9

https://www.usenix.org/node/196347

CHAPTER 9 © SCHEDULING PODS ON NODES

Overview

Kubernetes Scheduler is a Kubernetes component or process that runs alongside the other components
such as API Server. The purpose of the Scheduler is to monitor the API for pods that need to be scheduled,
find a suitable node to schedule a pod, and schedule the pod, one pod at a time. This chapter looks at the
following topics.

Defining a scheduling policy
Setting the environment
Using the default scheduler
Scheduling pods without a node selector
Setting node labels
Scheduling pods with node selector
Setting node affinity
Setting requiredDuringSchedulingIgnoredDuringExecution

Setting preferredDuringSchedulingIgnoredDuringExecution

Defining a Scheduling Policy

Scheduling is determined by a scheduling policy, involving predicates and priority functions. Scheduling
involves the following process, starting with all nodes being viable to schedule a pod:

1. Filter out nodes using filtering policy predicates. The objective of filtering out
nodes is to exclude those nodes that do not meet certain requirements of a pod.

2. Nodes are ranked using priority functions.

3. The pod is scheduled onto the node with the highest priority. If multiple nodes
have equal priority, one of the nodes is chosen at random.

Some of the salient predicates that implement filtering policy are discussed in Table 9-1.

200

CHAPTER 9 * SCHEDULING PODS ON NODES

Table 9-1. Predicates for Filtering Policy

Predicate Description

NoDiskConflict Evaluates whether there is any disk conflict due to the volumes requested
by the pod. Supported volume types are AWS EBS, GCE PD, and Ceph
RBD.

NoVolumeZoneConflict Taking into consideration zone restrictions, evaluates whether the
volumes a pod requests are available on the zone.

PodFitsResources Verifies that the available resources (CPU and memory) on a node fit a
pod’s resource requirements.

PodFitsHostPorts Verifies that a HostPort requested by a pod is not already taken up.

HostName If the pod’s spec specified a node name, filters out all the other nodes.

MatchNodeSelector Filters out nodes that do not have matching labels as set in the pod’s

nodeSelector field and the scheduler.alpha.kubernetes.io/affinity
pod annotation if specified.

MaxEBSVolumeCount Verifies that the number of attached EBS Volumes does not exceed the
limit of 39 available volumes (1 of the 40 available is reserved for the root
volume).

MaxGCEPDVolumeCount Verifies that the number of attached GCE PD Volumes does not exceed the

limit of 16 available volumes.

CheckNodeMemoryPressure Least priority (BestEffort) pods cannot be scheduled on nodes with
memory pressure condition.

CheckNodeDiskPressure Pods cannot be scheduled on nodes with a disk pressure condition.

After the unsuitable nodes have been filtered out, the remaining nodes are ranked using priority
functions. Some of the salient priority functions are discussed in Table 9-2.

Table 9-2. Priority Functions

Priority Function Description

LeastRequestedPriority The objective of this priority function is to spread out the resource
consumption across the nodes. CPU and memory are equally
weighted in calculating the free resources fraction (the fraction of the
node that would be free if a pod were scheduled on the node) using a
formula: (capacity - sum of requests of all pods already on the node -
request of pod that is being scheduled) / capacity). The node with the
greatest free fraction is selected for scheduling.

BalancedResourceAllocation The objective of this priority function is to balance the CPU and
memory utilization rate.

SelectorSpreadPriority The objective is to avoid scheduling pods in the same replication
controller, replica set or service on to the same node or zone.

CalculateAntiAffinityPriority The objective is to avoid scheduling pods in the same service on
nodes with same label values for a particular label.

(continued)

201

CHAPTER 9 © SCHEDULING PODS ON NODES

Table 9-2. (continued)

Priority Function Description

ImagelocalityPriority The objective is to schedule on nodes that already have some or all
of the image packages installed. A node with the larger size of the
already installed packages is preferred.

NodeAffinityPriority Evaluate node affinity using
preferredDuringSchedulingIgnoredDuringExecution and
requiredDuringSchedulingIgnoredDuringExecution.

The final node ranking is calculated using a weighted priority function score. Each node is given a score
in the range of 1-10 for each of the applied priority functions, and the final score is calculated by assigning
a weight for each priority function. For example, given three priority functions priorityFunciScore,
priorityFunc2Score, and priorityFunc3Score, the final score is calculated as follows:

RankingScoreNodeA = (weightl * priorityFunciScore) + (weight2 * priorityFunc2Score) +
(weight3 * priorityFunc3Score)

The node with the highest score is selected for scheduling a pod.
The default scheduling policy as determined by default predicates and priority functions may be
customized or overridden using one of the following procedures:

1. Usea--policy-config-file parameter to the scheduler. The policy config file
is a json file, for example https://github.com/kubernetes/kubernetes/blob/
master/examples/scheduler-policy-config.json.

2. Modify the default predicates and/or priority functions in plugin/pkg/
scheduler/algorithm/predicates/predicates.go and/or plugin/pkg/
scheduler/algorithm/priorities/priorities.go respectively and register the
policy in defaultPredicates() and/or defaultPriorities() in plugin/pkg/
scheduler/algorithmprovider/defaults/defaults.go.

Setting the Environment

We shall be using a CoreOS-based AWS EC2 Cloud Formation to run a one-controller-three-worker-node
Kubernetes cluster. Start an EC2 instance using Amazon Linux AMI. SSH log in to the EC2 instance:

ssh -i docker.pem ec2-user@54.197.206.44
Start a cloud configuration for a Kubernetes cluster and register the Public IP address of the controller
in the Public DNS name. While configuring the cluster set the Kubernetes version to v1.3.0_coreos.1 in the

kubernetesVersion field in cluster.yaml.
Install the kubect1 binaries. Both the Client and Server versions should be 1.3, as shown in Figure 9-2.

202

https://github.com/kubernetes/kubernetes/blob/master/examples/scheduler-policy-config.json
https://github.com/kubernetes/kubernetes/blob/master/examples/scheduler-policy-config.json

CHAPTER 9 * SCHEDULING PODS ON NODES

S ./kubectl version
Client Version: version.Info{Major:"1", Minor:"3", GitVersion:"v1.3.8", GitCommi
t:"283137936a498aed572ee22af6774b6fb6e9fd94", GitTreeState:"clean”, BuildDate:"2
016-07-01T19:26:382", GoVersion:"gol.6.2", Compiler:"gc", Platform:"linux/amdé4"
}
Server Version: version.Info{Major:"1", Minor:"3", GitVersion:"v1.3.0+coreos.1",
GitCommit:"83e9¢912798138607241b68d076d58f9¢5871357", GitTreeState:"clean", Bui
ldDate:"2016-07-06T20:04:26Z", GoVersion:"gol.6.2", Compiler:"gc", Platform:"ling=
ux/amd64"} I E

Figure 9-2. Listing Kubernetes versions

SSH log in to the controller instance:

ssh -i "kubernetes-coreos.pem" core@50.19.44.241
List the nodes:

kubectl get nodes

The controller and three worker nodes are listed as running, but the controller node is not schedulable,
as indicated by the SchedulingDisabled shown in Figure 9-3.

~ § ./kubectl get nodes

NAME STATUS AGE
ip-10-0-0-151.ec2.internal Ready &m
ip-10-0-0-152.ec2.internal Ready 8m
ip-10-0-0-153.ec2.internal Ready 8m
ip-10-0-0-

50.ec2.internal Ready,SchedulingDisabled 8m

. &
>

(Tl

Figure 9-3. Listing Nodes; the master node is nonschedulable

Using the Default Scheduler

The default scheduler kube-scheduler is started automatically when the Kubernetes processes
(components) are started. The component statuses should list the scheduler component, as shown in
Figure 9-4.

core@ip-10-0-0-50 ~ $§ ./Kubectl get cs
NAME STATUS MESSAGE ERROR

scheduler Healthy ok
controller-manager Healthy ok

etcd-0 Healthy {"health": "true"}
ore@ip-10-0-0-50 ~ $ ||

Figure 9-4. Listing component status for scheduler

203

CHAPTER 9 © SCHEDULING PODS ON NODES

A pod for the kube-scheduler is started in the kube-system namespace, as shown in Figure 9-5.

cor p-10-0-0-50 ~ § ./kubectl get pods --namespace=kube-system |
NAME READY STATUS RESTARTS
heaggier-vl.e.2‘31516191?4-3c012 2/2 Running ©
'kub:?gpiserver-ip-la-e-a-sa.ecz.internal 1/1 Running ©
kubz??ontroller-manager-ip-19-0-0-59.ec2.interna1 1/1 Running ©
kub:?gns-vll-uzgl4 4/4 Running ©
kubg?groxy-ip-19-9-0-213.ec2.interna1 1/1 Running ©
kubg?groxy-ip-19-@-9-214.ec2.interna1 1/1 Running ©
kubg?groxy—ip-19—0-9-215.ec2.internal 1/1 Running @
kubz?groxy—ip-19—0-9-50.ec2.internal 1/1 Running ©
kubg?gcheduler—ip—la-e-a—sa.ecz.internal 1/1 Running 0
59m
ore@ip-10-0-0-50 ~ $ | [%

Figure 9-5. listing pods in the kube-system namespace, including the kube-scheduler pod

The kube-scheduler command can be used to start kube-scheduler with custom settings. The
available command parameters can be listed with kube-scheduler -help as shown in Figure 9-6.

core@ip-10-0-0-50 ~ § ./kube-scheduler -help
Usage of ./kube-scheduler:

--address=127.0.0.1: The IP address to serve on (set to 0.0.0.@ for all in
terfaces)

--algorithm-provider="DefaultProvider": The scheduling algorithm provider
to use, one of: DefaultProvider

--alsologtostderr([=false]: log to standard error as well as files

--bind-pods-burst=100: Number of bindings per second scheduler is allowed
to make during bursts

--bind-pods-gqps=50: Number of bindings per second scheduler is allowed to
continuously make

--kubeconfig="": Path to kubeconfig file with authorization and master loc
ation information.

--log-backtrace-at=:0: when logging hits line file:N, emit a stack trace

--log-dir="": If non-empty, write log files in this directory

--log-flush-frequency=5s: Maximum number of seconds between log flushes

--logtostderr[=true]: log to standard error instead of files

--master="": The address of the Kubernetes API server (overrides any value
in kubeconfig)
--policy-config-file="": File with scheduler policy configuration

--port=10251: The port that the scheduler's http service runs on
--profiling[=true]: Enable profiling via web interface host:port/debug/ppr

of/
--stderrthreshold=2: logs at or above this threshold go to stderr
--v=0: log level for V logs
--version=false: Print version information and quit
--vmodule=: comma-separated list of pattern=N settings for file-filtered 1

ogging

p-10-0-0-50 ~ § I

Figure 9-6. kube-scheduler command usage

204

CHAPTER 9 * SCHEDULING PODS ON NODES

The configuration files to launch the pods for the Kubernetes components, which include the API
Server, Controller Manager, Proxy, and Scheduler are in the /etc/kubernetes/manifests directory as shown
in Figure 9-7; the kube-scheduler.yaml file is what we need for the scheduler.

1p-1 /etc/kubernetes/manifests § ls -1
total 40
-rw-r--r--. 1 root root 748 Jul 26 16:53 calico-policy-agent.yaml
-rw-r--r--. 1 root root 1466 Jul 26 16:50 kube-apiserver.yaml
-rw-r--r--. 1 root root 1000 Jul 26 16:50 kube-controller-manager.yaml
-rw-r--r--. 1 root root 536 Jul 26 16:50 kube-proxy.yaml
-rw-r--r--. 1 root root 464 Jul 26 16:5@ kube-scheduler.yaml
(/etc/kubernetes/manifests § I

Figure 9-7. Listing files in the /etc/kubernetes/manifests directory

The kube-scheduler pod specification can be customized in a vi editor as shown in Figure 9-8.

piVersion: vl
kind: Pod
metadata:

name: kube-scheduler

namespace: kube-system

spec:

hostNetwork: true

containers:

- name: kube-scheduler
image: quay.io/coreos/hyperkube:v1.2.4 coreos.1l
command:

- /hyperkube
- scheduler
- --master=http://127.0.0.1:8080
- --leader-elect=true
livenessProbe:
httpGet:
host: 127.0.0.1
path: /healthz
port: 10251
initialDelaySeconds: 15
timeoutSeconds: 1

"kube-scheduler.yaml" 22L, 464C

Figure 9-8. The kube-scheduler.yaml file in a vi editor

205

CHAPTER 9 © SCHEDULING PODS ON NODES

The kubelet must be restarted, as shown in Figure 9-9, if the modification to the kube-scheduler pod

specification is to take effect.

Loaded:
Active:
Main PID:
Tasks:
Memory:
CPU:
CGroup:

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

. kubelet.service

- S sudo systemctl restart kubelet

~ § sudo systemctl status kubelet

loaded (/etc/systemd/system/kubelet.service; enabled;

21353 {kubélef]

11

34.8M

4.6655
/system.slice/kubelet.service

21353 /kubelet --api-servers=http://localhost:8080 --network-plug
-k -f

21551 journalctl

lines 1- 21!21 (END)

2154
:15 i

[

=
o

—

"
=

i e
T o
0
—
DO DD DOOD
]

ip-1
ip-1

ip-1

.ec2.
.ec2.
.ec2.
.ec2.
.ec2.
.ec2.
.ec2.
.ec2.
.ec2.
.ec2.

internal
internal
internal
internal
internal
internal
internal
internal
internal
internal

kubelet-wrapper[21353]:
kubelet-wrapper[21353]:
kubelet-wrapper[21353]:
kubelet-wrapper([21353]:
kubelet-wrapper[21353]:
kubelet-wrapper[21353]:
kubelet-wrapper[21353]:
kubelet-wrapper[21353]:
kubelet-wrapper[21353]:
kubelet-wrapper[21353]:

vendor preset

since Wed 2016-07-27 01:39:01 UTC; 15s ago

EO727
E0727
We727
wWe727
wWe727
E0727
wWe727
we727
wWe727
wWe727

Figure 9-9. Restarting the kubelet

A container is started for each of the Kubernetes components, including the scheduler. The containers
may be listed with the docker ps command. The k8s_kube-schduler container should be listed as shown in

Figure 9-10.

206

CHAPTER 9 * SCHEDULING PODS ON NODES

core@ip-10- - § sudo docker ps &
CONTAINER ID IMAGE COMMAND '
CREATED STATUS PORTS NAMES
d1f1f7d3f314 quay.io/calico/leader-elector:ve.1.0 "/run.sh --electil
on=c" About an hour ago Up About an hour k8s_leader-e|

lector.89250a02 calico-policy-agent-ip-10-0-0-50.ec2.internal calico-system 7d76

69564417afb929ddc4edb98cddsf 86b65670 _

7doc6de70cco calico/k8s-policy-agent:ve.1.4 */dist/policy age| |
nt" About an hour ago Up About an hour k8s k8s-poli

cy-agent.45b4585 calico-policy-agent-ip-10-0-0-50.ec2.internal calico-system 7d7

669564417afb929ddcdedbascddsf b2de3eoa

de56581c3101 gcr.io/google containers/pause:2.0 " /pause"

About an hour ago Up About an hour k8s POD.6059
dfa2 calico-policy-agent-ip-10-0-0-50.ec2.internal calico-system 7d7669564417afb
929ddc4edb98cdd8f 1848cdlb |
aed4ead66828b quay.io/coreos/hyperkube:v1.2.4 coreos.1 "/hyperkube contr
olle" About an hour ago Up About an hour k8s_kube-con
troller-manager.f40916b4 kube-controller-manager-ip-10-0-0-50.ec2.internal kube-
system c0c551a0956f03772329794a28e37905 1b677095
adb8375a8do1 quay.io/coreos/hyperkube:vl.2.4 coreos.1 "/hyperkube proxy

--m" About an hour ago Up About an hour k8s kube-pro
xy.ae2b61b3 kube-proxy-ip-10-0-8-50.ec2.internal kube-system 7f8f464c17931de0b37
?1eela604f50c_63631301
ed53¢1e01525 quay.io/coreos/hyperkube:v1.2.4 coreos.1 /hyperkube sched
uler" About an hour ago Up About an hour cube-
eduler.ce96eb6 kube-scheduler-ip-10-0-0-50.ec
b1497bee62dac0f426a e3ddcc3f
454befad24ee quay.io/coreos/hyperkube:v1.2.4 coreos.1 "/hyperkube apise
rver" About an hour ago Up About an hour k8s kube-api| |
server.ea756937 kube-apiserver-ip-10-0-0-50.ec2.internal kube-system e0e30as55daf
2b8f921d859@15ef0c395 abedDabd [}
e90f19b677fe gcr.io/google containers/pause:2.0 " /pause" [~

internal kube-system

Figure 9-10. Listing Docker containers, including the k8s_kube-scheduler

The scheduler container cannot be terminated while the Kubernetes cluster is running. If the
scheduler container is stopped explicitly, the container restarts as indicated in Figure 9-11 by the first

container k8s_kube-schduler listed and started 6 seconds earlier.

207

CHAPTER 9 © SCHEDULING PODS ON NODES

core@ip-10-0-0-50 ~ § sudo docker stop ed53c1e01525 [=
ed53c1e01525
core@ip-10-0-0-50 ~ $ sudo docker ps
CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES |
41366132226 quay.io/coreos/hyperkube:v1.2.4 coreos.1 "/hyperkube sched|
uler" 6 seconds ago Up 5 seconds k8s_kube-sch|
eduler.ce96e6_kube-scheduler-ip-10-0-0-50.ec2.internal kube-system 6283345906d1f|
b1497bee62dacOf426a 69031829

|d1f1f7d3f314 quay.io/calico/leader-elector:ve.1.0 "/run.sh --electi|
on=c" About an hour ago Up About an hour k8s leader-e
lector.89250a02 calico-policy-agent-ip-10-0-0-50.ec2.internal calico-system 7d76
69564417afb929ddc4edbo8cddaf 86b65670

7d0c6do70cco calico/k8s-policy-agent:v0.1.4 "/dist/policy age
nt" About an hour ago Up About an hour k8s k8s-poli,
cy-agent.45b4585 calico-policy-agent-ip-10-0-0-50.ec2.internal calico-system 7d7|
669564417afb929ddc4edb98cddsf b2de3e0a

de56581¢3101 gcr.io/google containers/pause:2.0 " /pause"

About an hour ago Up About an hour k8s POD.6059
dfa2 calico-policy-agent-ip-10-0-0-50.ec2.internal_calico-system 7d7669564417afb
929ddc4edb98cdd8f 1848cdlb
aedead66828b quay.io/coreos/hyperkube:vl.2.4 coreos.1 "/hyperkube contr
olle" About an hour ago Up About an hour k8s kube-con|
troller-manager.f40910b4 kube-controller-manager-ip-10-0-0-50.ec2.internal kube-
system c0c551a0956703772329794a28e37905 1b677095
ades375a8del quay.io/coreos/hyperkube:v1.2.4 coreos.1 “/hyperkube proxy

--m" About an hour ago Up About an hour k8s_kube-pro
Xy .ae2b61b3 kube-proxy-ip-10-0-0-50.ec2.internal kube-system 7f8f464c17931de@b37
71e01a604f50c e80el301
454befad24ee quay.io/coreos/hyperkube:v1.2.4 coreos.1 “/hyperkube apise
rver" About an hour ago Up About an hour kBs_kube-apiE
server.ea756937_kube-apiserver-ip-10-0-0-50.ec2.internal_kube-system e®@e30a55daf(.

Figure 9-11. The k8s_kube-schduler container is restarted if stopped

The kube-scheduler pod description, including the command used to start the scheduler, may be
obtained with the kubectl describe pod command as shown in Figure 9-12.

208

CHAPTER 9 * SCHEDULING PODS ON NODES

core@ip-10- - § ./kubectl describe pod kube-scheduler --namespace=kube-sy
stem
Name : kube-scheduler
Namespace: kube-system
Node : ip-10-0-0-214.ec2.internal/10.0.0.214
Start Time: Tue, 26 Jul 2016 19:46:26 +0000
Labels: <none>
Status: Running
IP: 10.0.0.214
IControllers: <none>
Containers:
second-kube-scheduler:
Container ID: docker://6fc7d1452c832d1fe46a8eb735f857257b5e7b3d2aas77
175f1706123e37cf56
Image: quay.io/coreos/hyperkube:vl.3.2 coreos.0
Image ID: docker://sha256: ff57fd92809bceclcfbdd47bf933fd6d663765
249dd3f7a5bac91a91al19b170
Port:
Command:
/hyperkube
scheduler
--master=http://127.0.0.1:8080
--leader-elect=true
State: Running
Started: Tue, 26 Jul 2016 19:47:36 +0000
Ready: True
Restart Count: 0
Environment Variables: <none>
Conditions:
Type Status
Ready True
Volumes:

Figure 9-12. Listing the pod description for kube-scheduler

The scheduler component cannot be deleted, as shown in Figure 9-13.

core@ip-10-0-0-50 = § ./kubectl delete c¢s scheduler
Error from server: the server does not allow this method on the requested resource
ore@ip-10-0-0-50 ~ § l

Figure 9-13. The scheduler component is not deleted

209

CHAPTER 9 © SCHEDULING PODS ON NODES

The optional scheduler.alpha.kubernetes.io/name annotation on a pod can be used to specify the
scheduler to use. Next, we shall demonstrate the use of the annotation. Create a pod definition file named
pod1.yaml:

sudo pod1.yaml

In the first example, we shall not specify the scheduler.alpha.kubernetes.io/name annotation. Copy
the following listing to the pod1.yaml.

apiVersion: vi
kind: Pod
metadata:
name: pod-without-annotation
labels:
name: multischeduler
spec:
containers:
image: "gcr.io/google_containers/pause:2.0"
name: pod-without-annotation

The pod1.yaml file is shown in a vi editor in Figure 9-14.

apivVersion: vl
kind: Pod
metadata:
name: pod-without-annotation
labels:
name: multischeduler
spec:
containers:

image: "gcr.io/google containers/pause:2.0"
name: pod-without-annotation

Figure 9-14. Pod definition without scheduler annotation

Create a pod using the definition file:
./kubectl create -f podi.yaml
Subsequently, list the pods:
./kubectl get pods -o wide
The pod-without-annotation is created and listed as shown in Figure 9-15. The default scheduler is

used to schedule the pod using the default scheduling policy.

210

r - & ./kubectl create -f podl.yaml
pod "pod-without-annotation" created
$./kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE
DE
pod-without-annotation 1/1 Running @ 18s
-10-0-0-213.ec2.internal

5 - & I

Figure 9-15. Pod definition without scheduler annotation

Next, we shall use the scheduler.alpha.kubernetes.io/name annotation in a pod definition file.

CHAPTER 9 * SCHEDULING PODS ON NODES

IP

10.2.54.2

NO

ip

Create another pod definition file, named pod2.yaml, and copy the following code into it. The scheduler.

alpha.kubernetes.io/name annotation is set to the default-scheduler explicitly.

apiVersion: vi
kind: Pod
metadata:
annotations:
scheduler.alpha.kubernetes.io/name: default-scheduler
labels:
name: multischeduler
name: default-scheduler
spec:
containers:
image: "gcr.io/google_containers/pause:2.0"
name: pod-with-default-scheduler-annotation-container

The pod2.yaml file is shown in the vi editor in Figure 9-16.

apiversion: vl
kind: Pod
metadata:
annotations:
scheduler.alpha.kubernetes.io/name: default-scheduler
labels:
name: multischeduler
name: pod-with-default-scheduler-annotation
spec:
containers:

image: "gcr.io/google containers/pause:2.0"
name: pod-with-default-scheduler-annotation-container

Figure 9-16. Pod definition with scheduler annotation

1

211

CHAPTER 9 © SCHEDULING PODS ON NODES

Create a pod using the pod2.yaml definition file:

./kubectl create -f pod2.yaml

The pod pod-with-default-scheduler-annotation-container is created and listed, as shown in

Figure 9-17.

ip-1 } ~ § sudo vi pod2.yaml
ip-10-0-0-50 ~ § ./kubectl create -f pod2.yaml
pod “pod w1th default-scheduler-annotation" created
I 0-50 ~ § ./Kubectl get pods -o wide
NAME READY STATUS RESTARTS

IP NODE
pod-with-default-scheduler-annotation 1/1 Running ©
10.2.54.3 1ip-10-0-0-213.ec2.internal
pod-without-annotation 1/1 Running ©
10.2.54.2 ip-lele-eiZIB.ecZ.internal
I p-10-0-8-50 ~ §

Figure 9-17. Creating and listing the pod with scheduler annotation

AGE

8s

1m

[

The default scheduler is used regardless of whether it is specified explicitly. To verify that the default-
scheduler is used, list the Events. The pod named pod-with-default-scheduler-annotation-container is
listed to have been scheduled using the default-scheduler, and so is the pod pod-without-annotation, as

shown in Figure 9-18.

re@ip-10-0-0-5€ ./kubectl get events
LASTSEEN FIRSTSEEN COUNT NAME
SUBOBJECT
REASON SOURCE MESSAGE

h-default-scheduler-annotation to ip-10-0-0-213.ec2.internal

spec.containers{pod-with-default-scheduler-annotation-container}

Pulled {kubelet ip-10-0-0-213.ec2.internal} Container image "gcr.io/googl

e containers/pause:2.0" already present on machine

585 58s 1 pod-with-default-scheduler-annotation Pod

spec.containers{pod-with-default-scheduler-annotation-container}

Created {kubelet ip-10-0-0-213.ec2.internal} Created container with docker

id 972b50807b73

57s 57s 1 pod-with-default-scheduler-annotation Pod

spec.containers{pod-with-default-scheduler-annotation-container}

Started {kubelet ip-10-0-0-213.ec2.internal} Started container with docker

id 972b50807b73

2m 2m 1 pod-without-annotation Pod
Normal

Scheduled T{default-scheduler } Successfully assigned pod-wit

hout-annotation to ip-10-0-0-213.ec2.internal

2m 2m 1 pod-without-annotation Pod
spec.containers{pod-without-annotation} Normal

Pulled {kubelet ip-10-0-0-213.ec2.internal} Container image "gcr.io/googl

e containers/pause:2.0" already present on machine

2m 2m 1 pod-without-annotation Pod
spec.containers{pod-without-annotation} Normal

Created {kubelet ip-10-0-0-213.ec2.internal} Created container with docker

id 5d7bb224f843

595 59s 1 pod-with-default-scheduler-annotation Pod
S LN { de fault -scheduler } Successfully assigned pod-wit

158s 58s 1 pod-with-default-scheduler-annotation Pod

KIND

TYPE

Normal

Normal

Normal

Normal

Figure 9-18. The pods are scheduled using the default-scheduler
212

CHAPTER 9 * SCHEDULING PODS ON NODES

Scheduling Pods without a Node Selector

The nodeSelector field in the pod specification may be used to select a node for the pod to be scheduled
on. The nodeSelector field specifies a label, which should be the same as a node’s label for the pod to be
scheduled on the node. If a nodeSelector is not specified, the pod definition (pod.yaml) for a pod for nginx
will be similar to the following:

apiVersion: vi
kind: Pod
metadata:
name: nginx
labels:
env: test
spec:
containers:
- name: nginx
image: nginx
imagePullPolicy: IfNotPresent

Run the pod using the definition file:
kubectl create -f pod.yaml

The pod is scheduled on a suitable node using the default scheduling policy.

Setting Node Labels

Next, we shall use labels to match pods with labels. First, we need to set labels on nodes. The node names on
which to set labels may be found with kubectl get nodes, as shown in Figure 9-3 earlier.
The syntax to label a node is as follows:

kubectl label nodes <node-name> <label-key>=<label-value>

Some built-in labels are also provided, which can also be used in the nodeSelector field, but only one
label may be specified.

kubernetes.io/hostname, failure-domain.beta.kubernetes.io/zone,failure-domain.beta.
kubernetes.io/region,beta.kubernetes.io/instance-type

As an example, label the node ip-10-0-0-151.ec2.internal with the label kubernetes.io/image-
name=nginx:

kubectl label nodes ip-10-0-0-151.ec2.internal kubernetes.io/image-name=nginx
Similarly, label node ip-10-0-0-152.ec2.internal.
kubectl label nodes ip-10-0-0-152.ec2.internal kubernetes.io/image-name=hello-world

Nodes are labeled, as shown in Figure 9-19.

213

CHAPTER 9 © SCHEDULING PODS ON NODES

- § ./kubectl label nodes ip-10-0-0-151.ec2.internal kubernete
s.1o/image-name=nginx
node "ip-10-0-0-151.ec2.internal" labeled

- § ./kubectl label nodes ip-10-0-0-152.ec2.internal kubernete
s.io/image-name=hello-world
node "ip-10-0-0-152.ec2.internal" labeled ﬂ

Figure 9-19. Labeling nodes

List the nodes, including the labels, using the -show-1abels command argument to the kubectl get
nodes command. The labels added are listed in addition to the default labels, as shown in Figure 9-20.

r p- - - § ./kubectl get nodes --show-labels
NAME STATUS AGE LABELS
ip-10-0-0-151.ec2.internal Ready 11m beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le, kubernetes.io/hostname=ip-10-0
-0-151.ec2.internal, kubernetes.io/image-name=nginx
ip-10-0-0-152.ec2.internal Ready 11m beta.kubernete
s.1lo/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le,kubernetes.io/hostname=ip-10-0
-0-152.ec2.internal, kubernetes. io/image-name=hello-world
ip-10-0-0-153.ec2.internal Ready 1lm beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le,kubernetes.io/hostname=ip-10-0
-0-153.ec2.internal
ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 11m kubernetes.io/|
hostname=ip-10-0-0-50.ec2.internal [:
- 1 - 5

Figure 9-20. Listing nodes including labels

When using labels to match pods with nodes, one of the following results:
1. The pod is scheduled on the labeled node.
2. The pod is scheduled on an unlabeled node if a node affinity is specified.
3. The podis not scheduled.

We shall discuss each of these in the following sections using the labeled and unlabeled nodes from this
section.

Scheduling Pods with a Node Selector

The nodeSelector field in a pod’s specification may be used to explicitly select a node for a pod. To assign a
pod to a label, create a pod definition file pod-nginx.yaml. Copy the following code to the definition file:

apiVersion: vi
kind: Pod
metadata:
name: nginx
labels:
env: test

214

CHAPTER 9 * SCHEDULING PODS ON NODES

spec:
containers:
- name: nginx
image: nginx
imagePullPolicy: IfNotPresent
nodeSelector:
kubernetes.io/image-name: nginx

The resulting pod-nginx.yaml is shown in a vi editor in Figure 9-21.

core@ip-10-0-0-50:/home/core
File Edit View Search Terminal Help
apiversion: vl

name: hello-world
labels:
env: test
|spec:
containers:
- pame: hello-world
image: hello-world
imagePullPolicy: IfNotPresent
nodeSelector:
kubernetes.io/image-name: hello-world

{1

Figure 9-21. The pod definition file pod-nginx.yaml
Create a pod using the definition file:
kubectl create -f pod-nginx.yaml

Similarly, create another pod definition file pod-helloworld.yaml. Copy the following listing into
pod-helloworld.yaml

apiVersion: vi
kind: Pod
metadata:
name: hello-world
labels:
env: test
spec:
containers:
- name: hello-world
image: hello-world
imagePullPolicy: IfNotPresent
nodeSelector:
kubernetes.io/image-name: hello-world

215

CHAPTER 9 © SCHEDULING PODS ON NODES

Create the pod using the pod definition file:
kubectl create -f pod-helloworld.yaml
List the cluster-wide pods:

kubectl get pods -o wide

As the output from the preceding commands in Figure 9-22 indicates, the two pods are created and

started. Initially the pods may be not running.

r ~ § ./kubectl create -f pod-nginx.yaml
pod "nginx" created
| p 0 -~ 5 ./Kubectl create -f pod-helloworld.yaml
pod "hello-world" created

; p-10-0- ~ § ./kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NOD

E

hello-world ©/1 CrashLoopBackOff 1 9s 10.2.92.3 ip-
10-0-0-152.ec2.internal

nginx 0/1 ContainerCreating © 18s <none> ip-

10-0-0-151.ec2.internal

Figure 9-22. Creating pods that make use of nodeSelector

List the pods again, including the nodes, and the pods should either be running or have completed. The

Node column lists the node on which a pod is running, as shown in Figure 9-23.

r ~ 5 ./kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE

hello-world ©0/1 Completed 2 22s 10.2.92.3 ip-10-0-0-1
52.ec2.internal
nginx 1/1 Running 0 31s 10.2,17.2 1p-10-0-0-1

51.ec2.internal

Figure 9-23. Listing pods including the nodes

Using the node name, obtain the labels for each of the two nodes as shown in Figure 9-24. The labels for
each of the nodes include the label specified in the nodeSelector for the pod scheduled on the node.

1s

NAME STATUS AGE LABELS
ip-10-0-0-152.ec2.internal Ready 18m beta.kubernetes.io/instance-typ

e=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1, failure-domain.be
ta.kubernetes.io/zone=us-east-1le,kubernetes.io/hostname=ip-10-0-0-152.ec2.intern|
al,kubernetes.io/image-name=hello-world

- § ./kubectl get nodes ip-10-0-0-151.ec2.internal --show-labe

ls
NAME STATUS AGE LABELS
ip-10-0-0-151.ec2.internal Ready 19m beta.kubernetes.io/instance-typ

e=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,failure-domain.be|
ta.kubernetes.io/zone=us-east-1le,kubernetes.io/hostname=ip-10-0-0-151.ec2.intern
al,kubernetes.io/image-name=nginx

~ § ./kubectl get nodes ip-10-0-0-152.ec2.internal - -show- labe| |

Figure 9-24. Listing node labels
216

CHAPTER 9 * SCHEDULING PODS ON NODES

Next, we shall demonstrate that if multiple pods have matching labels, one of the nodes is used. Label
the third node with the same label as one of the other nodes:

kubectl label nodes ip-10-0-0-153.ec2.internal kubernetes.io/image-name=hello-world

The third node is also labeled, as shown in Figure 9-25.

0 ~ § ./kubectl label nodes ip-10-0-0-153.ec2.internal kubernete|
s.io/image-name=hello-world
node "ip-10-0-0-153.ec2.internal" labeled

- §

Figure 9-25. Labeling a third node

Listing the node labels should display two nodes with the common label kubernetes.io/image-
name=hello-world, as shown in Figure 9-26.

~ 5 ./kubectl get nodes --show-labels
NAME STATUS AGE LABELS
ip-10-0-0-151.ec2.internal Ready 23m beta.kubernete
s.iofinstance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le, kubernetes.io/hostname=ip-10-0
-p-151.ec2.internal,kubernetes.io/image-name=nginx
ip-10-0-0-152.ec2.internal Ready 23m beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le, kubernetes.io/hostname=ip-10-0
-0-152.ec2.internal, kubernetes.io/image-name=hello-world
ip-10-0-0-153.ec2.internal Ready 23m beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le, kubernetes.io/hostname=ip-10-0
-0-153.ec2.internal, kubernetes.io/image-name=hello-world

ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 23m kubernetes.io/
hostname=ip-10-0-0-50.ec2.internal E]
-s 1 S

Figure 9-26. Two nodes with the same label

Delete the pod hello-world with kubectl, as next we shall create the pod again to find which node is
the pod scheduled on, given two nodes with the same label as in the nodeSelector field. Create the hello-
world pod again using the same definition file. List the pod, and it should be shown on one of the two nodes
that have the label kubernetes.io/image-name=hello-world, which are ip-10-0-0-152.ec2.internal
and ip-10-0-0-153.ec2.internal. The pod is scheduled on the first node it finds with the matching label,
which is ip-10-0-0-152.ec2. internal as shown in Figure 9-27.

217

CHAPTER 9 © SCHEDULING PODS ON NODES

~ & ./kubectl create -f pod-helloworld.yaml
pod "hello-world" created
r ~ § ./kubectl get pods -0 wide
NAME READY STATUS RESTARTS AGE IP NODE
hello-world ©/1 CrashLoopBackoff 2 33s 10.2.92.3 ip-1
0-0-0-152.ec2.internal
I ~ § ./kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

hello-world @/1 CrashLoopBackoff 3 im 10.2.92.3 ip-1

0-0-0-152.ec2.internal a
- ~-s 1l ~J

Figure 9-27. The pod is scheduled on the first node it finds with the matching label

Next, we shall demonstrate that if a node with a matching label is not found, the pod is not scheduled at
all. We need to delete all the labels, as we shall be using the same definition files for pods and with the same
nodeSelector field settings. Delete the label added previously to each of the nodes:

kubectl label nodes ip-10-0-0-151.ec2.internal kubernetes.io/image-name
kubectl label nodes ip-10-0-0-152.ec2.internal kubernetes.io/image-name
kubectl label nodes ip-10-0-0-153.ec2.internal kubernetes.io/image-name

The node labels are removed, even though the command output indicates that the node was labeled, as
shown in Figure 9-28. Removing a node label is also considered labeling a node.

< ./kubectl label nodes ip-10-0-0-153.ec2.internal kubernete
s.1lo/image-name-
node "ip-16-8-@-153.ec2.internal" labeled
1 ~ 5 ./kubectl label nodes ip-10-0-0-152.ec2.internal Kubernete
s.io/image-name-
node "ip-10-0-0-152.ec2.internal” labeled
- S ./kubectl label nodes ip-10-0-0-151.ec2.internal kubernete
s.io/image-name-
node "ip-10-0-0-151.ec2.internal” labeled

-

Figure 9-28. Removing node labels

List the nodes, including labels, and the node labels should not include the labels added previously, as
shown in Figure 9-29.

218

CHAPTER 9 * SCHEDULING PODS ON NODES

re@ip-10-8- ~ § ./kubectl get nodes --show-labels

NAME STATUS AGE LABELS
ip-10-0-0-151.ec2.internal Ready 32m beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1e,kubernetes.io/hostname=ip-10-0
-0-151.ec2.internal

ip-10-0-0-152.ec2.internal Ready 32m beta.kubernete,
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le,kubernetes.io/hostname=ip-10-0
-0-152.ec2.internal

ip-10-0-0-153.ec2.internal Ready 32m beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1e,kubernetes.io/hostname=ip-10-0
-0-153.ec2.internal

ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 32m kubernetes.io/[
hostname=ip-10-0-0-50.ec2.internal [%
r p-10-0-0- - % I

Figure 9-29. Listing node labels after removing labels

Create the two pods again using the same pod definition files, as shown in Figure 9-30.

core@ip-1¢ £ ~ § ./kubectl create -f pod-nginx.yaml
pod “nginx" created
-0-50 ~ § ./kubectl create -f pod-helloworld.yaml
pod “hello world“ created F
e L E

Figure 9-30. Creating pods using definition files used earlier

List the pods cluster-wide. The pods are listed with the STATUS column value as Pending, as shown in
Figure 9-31, because none of the nodes have labels that are the same as specified in the nodeSelector field.

re@ip-18-8-8-58 ~ § ./kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE

hello-world @/1 Pending © 56s <none> |
nginx 0/1 Pending 0 m <none> [i

Figure 9-31. Pods with “pending” status

Add labels to the nodes to match the nodeSelector field settings in the pod definitions, as shown in
Figure 9-32.

re@ip- 11 ~ § ./kubectl label nodes ip-10-8-8-151.ec2.internal kubernete
s.io/image-name=nginx
node ”lp 10 0-0-151.ec2.internal” labeled
-0-50 ~ § ,/kubectl label nodes ip-10-0-0-152.ec2.internal kubernete
5. 10/1mage aame—hello viorld
node "ip-10-0-0-152. eci .internal” labeled %
- 9

Figure 9-32. Labeling nodes to match nodeSelector labels

219

CHAPTER 9 © SCHEDULING PODS ON NODES

Then list the pods; the pods should not be in Pending status, having completed or running as shown in
Figure 9-33. The pods are scheduled when suitable nodes are found.

~ 5 ./kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE

hello-world /1 CrashLoopBackoff 2 2m 10.2.92.3 ip-1
0-0-0-152.ec2.internal
nginx 1/1 Running 0 2m 10.2.17.2 ip-y;

0-0-0-151.ec2.internal I

Figure 9-33. Previously Pendingpods are scheduled when nodes with matching labels are found

If node labels are modified at runtime, for example if a label from a node is removed, a Running pod
does not have its status changed to Pending and continues to run if running even though the node on which
the pod is running does not have a matching label. As an example, remove the labels from the node on
which the nginx pod is running, and the pod continues to run as shown in Figure 9-34.

¢ ./kubectl label nodes ip-10-0-0-151.ec2.internal kubernete
s.io/image-name-
node "ip-10-0-0-151.ec2.internal” labeled
- $./Kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE

hello-world /1 CrashLoopBackOff 4 4m 10.2.92.3 ip-1
0-0-0-152.ec2.internal
nginx 1/1 Running 0 4m 10.2.17.2 ip-1

il

0-0-0-151.ec2.internal

[

Figure 9-34. A running pod continues to run on a node even though matching labels from node are removed

Setting Node Affinity

Starting with version 1.2, Kubernetes offers an alpha version of a new mechanism for selecting nodes, called
node affinity. The alpha version of node affinity is based on labels, but support for other types of node
affinity is planned to be added, such as scheduling pods on a node based on which other pods are running
on the node. Currently, two types of node affinity are supported as discussed in Table 9-3.

220

CHAPTER 9 © SCHEDULING PODS ON NODES

Table 9-3. Types of Node Affinity

Node Affinity Description
requiredDuringScheduling Specifies a node affinity condition that must be met. Similar to
IgnoredDuringExecution nodeSelector but declarative. IgnoredDuringExecution implies that

the node affinity requirement is ignored once a pod is running. For
example, if a label on a node is changed to make a running pod non
schedulable on the node, the pod continues to run on the node. If
both nodeSelector and nodeAffinity are set and nodeAffinity is
requiredDuringSchedulingIgnoredDuringExecution, both must be
met for a pod to be scheduled on a node.

preferredDuringScheduling A node affinity a scheduler tries to implement but does not
IgnoredDuringExecution guarantee. A pod can be scheduled on a specified labeled
node or not based on matching labels. A pod can even be
scheduled on an unlabeled node. If nodeAffinity is set to
preferredDuringSchedulingIgnoredDuringExecution and none
of the nodes meet the settings, another node is scheduled on. If
both nodeSelector and nodeAffinity are set and nodeAffinity is
preferredDuringSchedulingIgnoredDuringExecution, only the
nodeSelector must be met, as the other is only a hint for a preference.

Node affinity in the alpha version is specified using annotations, but these will be replaced with fields.
An example nodeAffinity requiredDuringSchedulingIgnoredDuringExecution setting using annotations
is as follows:

annotations:
scheduler.alpha.kubernetes.io/affinity: >
{
"nodeAffinity": {
"requiredDuringSchedulingIgnoredDuringExecution™: {
"nodeSelectorTerms": [

{
"matchExpressions": [
"key": " kubernetes.io/image-name",
"operator": "In",
"values": ["image1", "image2"]
}
]
}
]
}
}
}

another-annotation-key: another-annotation-value

221

CHAPTER 9 © SCHEDULING PODS ON NODES

The another-annotation-key: another-annotation-value setting implies that from the
nodes found suitable with the nodeAffinity condition, the node with the another-annotation-
key: another-annotation-value label should be preferred, which again is a hint for a preference
that may or may not be implemented. The another-annotation-key: another-annotation-value
is found to be implemented with requiredDuringSchedulingIgnoredDuringExecution and not with
preferredDuringSchedulingIgnoredDuringExecution. In addition to the In operator, the other supported
operators are NotIn, Exists, DoesNotExist, Gt and Lt.

Next, we shall discuss each of the node affinities with an example.

Setting requiredDuringSchedulinglgnoredDuringExecution

Create a pod definition file pod-node-affinity.yaml for a pod named with-1labels and set the
nodeAffinity to requiredDuringSchedulingIgnoredDuringExecution with matching expressions for
nodeSelectorTerms to be a label kubernetes.io/image-name with value as one of nginx2 or hello-world2.
The another-annotation-key: another-annotation-valueis kubernetes.io/image-name: nginx.The
container image is nginx

apiVersion: vi
kind: Pod
metadata:

name: with-labels

annotations:

scheduler.alpha.kubernetes.io/affinity: >
{
"nodeAffinity": {
"requiredDuringSchedulingIgnoredDuringExecution": {
"nodeSelectorTerms": [

{
"matchExpressions”: [
{
"key": "kubernetes.io/image-name",
"operator": "In",
"values": ["nginx2", "hello-world2"]
}
]
}
]
}
}
}
kubernetes.io/image-name: nginx
spec:
containers:

- name: with-labels
image: nginx

List the nodes, including labels. The resulting labels on nodes should not include the required labels
nginx2 or hello-world2, as shown in Figure 9-35.

222

CHAPTER 9 © SCHEDULING PODS ON NODES

core@ip-10-0-0-50 ~ § . /kubectl get nodes --show-labels

NAME STATUS AGE LABELS |
ip-10-0-8-151.ec2.internal Ready 53m beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le,kubernetes.io/hostname=ip-10-0
-0-151.ec2.internal, kubernetes.io/image-name=nginx

ip-10-0-0-152.ec2.internal Ready 53m beta.kubernete
s.ilo/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1e,kubernetes.io/hostname=1ip-10-0
-0-152.ec2.internal, kubernetes.io/image-name=hello-world |
ip-10-0-0-153.ec2.internal Ready 53m beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1e, kubernetes.io/hostname=ip-10-0
-0-153.ec2.internal

ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 53m kubernetes.io/|
hostname=ip-10-0-0-50.ec2.internal E
core@ip-10-8-6-50 ~ $ ||

Figure 9-35. None of the nodes have matching labels

The pod-node-affinity.yaml file is shown in a vi editor in Figure 9-36.

apivVersion: vl |4
kind: Pod
metadata:
name: with-labels
annotations:
scheduler.alpha.kubernetes.io/affinity: >
{
"nodeAffinity": {
"requiredDuringSchedulingIgnoredDuringExecution”: {
"nodeSelectorTerms": [
{
"matchExpressions": [
{
"key": "kubernetes.io/image-name",
"operator": "In",
"values": ["nginx2", "hello-world2"]

kubernetes.io/image-name: nginx
spec:
containers:
- name: with-labels
image: nginx

Figure 9-36. The pod-node-affinity.yaml definition file

Create the pod from the definition file:

kubectl create -f pod-node-affinity.yaml

223

CHAPTER 9 © SCHEDULING PODS ON NODES

The pod with-labels is created as shown in Figure 9-37.

5 sudo vi pod-node-affinity.yaml
- § ./kubectl create -f pod-node-affinity.yaml
pod "with-labels" created

Figure 9-37. Creating the pod with-1abels

List the pods across the cluster. The pod STATUS is Pending because none of the nodes have the label
nginx2 or hello-world2, as shown in Figure 9-38.

r - ~ § ./kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
with-labels ©/1 Pending © 27s <none>

. -

Figure 9-38. Listing pods with Pending status

Subsequently, add one of the required labels to one of the nodes, for example the hello-world2 label
to the ip-10-0-0-153.ec2.internal node. The STATUS of the with-1labels pod changes from Pending to
Running, as shown in Figure 9-39.

~ & ./kubectl label nodes ip-10-0-0-153.ec2.internal kubernete
s.io/image-name=hello-world2
node "ip-10-0-0-153.ec2.internal” labeled
{ 0 -~ 5 ./kubectl get pods -0 wide
NAME READY STATUS RESTARTS AGE IP NODE

with-labels ©/1 Pending © im <none>

-10-0- ~ 5 ./kubectl get pods -0 wide
NAME READY STATUS RESTARTS AGE IP NODE
with-labels ©/1 ContainerCreating © im <none> ip-10

-0-0-153.ec2.internal
f p-10-0-0- ~ 5 ./kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
with-labels 0/1 ContainerCreating © im <none> ip-10
-0-0-153.ec2.1internal
T . ~ & ./kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IpP NODE
with-labels ©/1 ContainerCreating 0 im <none> ip-10
-D-0-153.ec2.internal
~ § ./kubectl get pods -0 wide
NAME READY STATUS RESTARTS AGE P NODE
with-labels 1/1 Running © im 10.2.94.3 ip-10-0-0-153
.ec2.internal li

I%'I I

Figure 9-39. The pod Status changes from Pending to Running

Next, we shall demonstrate that if both nodeAffinity and nodeSelector are specified with
nodeAffinity set to requiredDuringSchedulingIgnoredDuringExecution, both conditions must be met.
Add anodeSelector label to pod-node-affinity.yaml:

nodeSelector:
kubernetes.io/image-name: nginx

224

CHAPTER 9

The modified pod-node-affinity.yaml is shown in a vi editor in Figure 9-40.

kind: Pod
metadata:
name: with-labels
annotations:
scheduler.alpha.kubernetes.io/affinity: >

"nodeAffinity": {
"requiredDuringSchedulingIgnoredDuringExecution™: {
"nodeSelectorTerms": [

"matchExpressions”: [
"key": "kubernetes.io/image-name",

“operator": “"In",
"values": ["nginx2", "hello-world2"]

}
]
}
]
}
}
kubernetes.io/image-name: nginx
spec:
containers:

- name: with-labels
image: nginx
nodeSelector:
kubernetes.io/image-name: nginx
v |

SCHEDULING PODS ON NODES

Mk

[<]

Figure 9-40. Adding nodeSelector in addition to nodeAffinity set to
requiredDuringSchedulingIgnoredDuringExecution

We had added a node label kubernetes.io/image-name with the value hello-world2, but none of the

nodes has the label kubernetes.io/image-name: nginx. When the pod is created, it is created but is not

scheduled, as indicated by the Pending status in Figure 9-41.

~ § sudo vi pod-node-affinity.yaml
I 10 - ~ & ./kubectl create -f pod-node-affinity.yaml
pod "with-labels" created
I [~ § ./kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
with-labels ©/1 Pending © 9s <none>

Figure 9-41. The pod is created but not scheduled

Modify the nodeSelector field to specify a label that exists in addition to the required label from the

(< Tl

node affinity. Add the label kubernetes.io/host-name: ip-10-0-0-151.ec2.internal as shown in the vi

editor in Figure 9-42.

225

CHAPTER 9 © SCHEDULING PODS ON NODES

kind: Pod
metadata:
name: with-labels
annotations:
scheduler.alpha.kubernetes.io/affinity: >

"nodeAffinity": { !
"requiredbDuringSchedulingIgnoredDuringExecution”: {
"nodeSelectorTerms": [

"matchExpressions”: [
"key": "kubernetes.io/image-name",

“gperator": “"In",
"values": ["nginx2", "hello-world2"]

i

}
]
}
]
}
}
kubernetes.io/image-name: nginx
spec:
containers:

- name: with-labels
image: nginx
nodeSelector:
kubernetes.io/hostname: ip-10-0-8-153.ec2.internal

qve |

<

Figure 9-42. Specifying a nodeSelector label that exists

Delete the with-1labels pod. Create the pod with the updated pod definition file. You'll see that the pod
is scheduled and is running on the scheduled host as shown in Figure 9-43 with both the nodeSelector and
node affinity conditions met.

- & sudo vi pod-node-affinity.yaml
p-10-0- $./kubectl create -f pod-node-affinity.yaml
pod "with-labels" created
p- 1 - - § ./kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE Ip NODE

with-labels 1/1 Running © 12s 10.2.94.3 ip-10-0-0-153
.ec2.internal
- -0-0-50 ~ § ||

Figure 9-43. Both the nodeSelector and node affinity conditions are met

Next, we shall demonstrate that if multiple label values as specified in the matchExpressions field
match, the first node with the matching expression is used. Add or overwrite labels to add kubernetes.io/
image-name: nginx to one of the nodes and kubernetes.io/image-name: hello-world to two of the three
nodes, as shown in Figure 9-44.

226

CHAPTER 9 © SCHEDULING PODS ON NODES

10-0-¢ - 5 ./kubectl label nodes --overwrite ip-10-0-0-151.ec2.intern
al kubernetes 10/1mage name=nginx
node "1p 19 0-0- 151 ec2.internal” labeled

ip -0-0-50 ~ § ./kubectl label nodes --overwrite ip-10-8-0-153.ec2.intern
al kubernetes lollmage name=hello-world
node ”1p 13 0-0- 153 ec2 internal" labeled

p-10-0-0-50 ./kubectl get nodes --show-labels
NnHE STATUS AGE LABELS
ip-10-8-0-151.ec2.internal Ready 1h beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le, kubernetes.io/hostname=ip-10-0
-0-151.ec2.internal, kubernetes.io/image-name=nginx
ip-10-0-0-152.ec2.internal Ready 1h beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le,kubernetes.io/hostname=ip-10-0
-0-152.ec2.internal, kubernetes.io/image-name=hello-world
ip-10-0-0-153.ec2.internal Ready 1h beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le, kubernetes.io/hostname=ip-10-0
-0-153.ec2.internal, kubernetes.io/image-name=hello-world

ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 1h kubernetes.io/
hostname—lp 10-0-0-50.ec2.internal
ore@ip-10-0-0-50 ~ § I

Figure 9-44. Adding labels to nodes

Modify the pod-node-affinity.yaml to add both the nginx and hello-world for expressions to match
as shown in Figure 9-45.

apiVersion: vl
kind: Pod
metadata:
name: with-labels
annotations:
scheduler.alpha.kubernetes.io/affinity: >

"nodeAffinity": {
"requiredDuringSchedulingIgnoredDuringExecution”: {
"nodeSelectorTerms": [

{
"matchExpressions”: [
"key": "kubernetes.io/image-name",
"operator": "In",
"values": ["nginx", "hello-world"]
}
1
}
]
}
}
kubernetes.io/image-name: nginx2
spec:
containers:

- name: with-labels
image: nginx
nodeSelector:
kubernetes.io/hostname: ip-10-0-0-153.ec2.internal

swall

Figure 9-45. SettingmatchExpressions label values
227

CHAPTER 9 © SCHEDULING PODS ON NODES

Delete the pod with-1abels and create the pod again as shown in Figure 9-46. The pod is scheduled on
the node with the label kubernetes.io/image-name: nginx.

./kubectl create -f pod-node-affinity.yaml
pod wlth labels created
L] ~ 5§ ./kubectl get pods -o wide
NAHE READY STATUS RESTARTS AGE IP NODE

with-labels 1/1 Running © 165 10.2.17.2 ip-10-0-0-151
.ec2.internal
Fain-18-85 - s 1

Figure 9-46. Scheduling a pod on the first matching node

Next, we shall demonstrate that the node labeled another-annotation-key with value another-
annotation-value is preferred if node affinity is requiredDuringSchedulingIgnoredDuringExecution. Add
or overwrite node labels so that a node exists with each of the label values nginx2 and hello-world2 for key
kubernetes.io/image-name as shown in Figure 9-47.

0-0 ./kubectl label nodes --overwrite ip-10-8-0-153.ec2.intern
al kubernetes 10/1mage name=hello-world2
node “1p 10-0-0-153.ec2.internal" labeled

-0- ~ 5 kubectl label nodes --overwrite ip-10-0-0-151.ec2.internal
kubernetes io/image-name=nginx2
-bash kubectl: command not found

./Kubectl label nodes --overwrite ip-10-0-0-151.ec2.intern
al kubernetes lollmage name=nginx2
node “1p 10-0-0-151.ec2.internal" labeled
- ~ § ./kubectl get nodes --show-labels
NAME STATUS AGE LABELS
ip-10-0-0-151.ec2.internal Ready 1h beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le,kubernetes.io/hostname=ip-10-0
-0-151.ec2.internal,kubernetes.io/image-name=nginx2
ip-10-0-0-152.ec2.internal Ready 1h beta.kubernete
s.io/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1e,kubernetes.io/hostname=ip-10-0
-0-152.ec2.internal, kubernetes.io/image-name=hello-world
ip-10-0-0-153.ec2.internal Ready 1h beta.kubernete
s.lo/instance-type=m3.medium, failure-domain.beta.kubernetes.io/region=us-east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1le,kubernetes.io/hostname=ip-10-0
-0-153.ec2.internal, kubernetes.io/image-name=hello-world2
ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 1h kubernetes.io/
hostname—lp 10-0-0-50.ec2.internal
- | -)

Figure 9-47. Adding the label values nginx2 and hello-world2 for key kubernetes.io/image-name

In the pod-node-affinity.yaml file, set another-annotation-key kubernetes.io/image-name to
nginx2 and comment out the nodeSelector field as shown in Figure 9-48.

228

CHAPTER 9 © SCHEDULING PODS ON NODES

apiversion: vl
kind: Pod
metadata:
name: with-labels
annotations:
scheduler.alpha.kubernetes.io/affinity: >

"nodeAffinity": {
"requiredDuringSchedulingIgnoredDuringExecution”: {
"nodeSelectorTerms": [

{
"matchExpressions”: [
{
"key": "kubernetes.io/image-name",
"operator": "In",
"values": ["nginx2", "hello-world2"]
}
1
}
|
}
}
kubernetes.io/image-name: nginx2
spec:
containers:

- name: with-labels
image: nginx
nodeSelector:
kubernetes.io/hostname: ip-10-0-0-153.ec2.internal

2 |
Figure 9-48. Setting another-annotation-key and removing nodeSelector

Delete the pod with-1labels and create the pod again. The pod is scheduled on the node with the label
kubernetes.io/image-name: nginx2, as indicated by the NODE in the pod listing in Figure 9-49.

5 ./kubectl delete pod with-labels

pod "with-labels" deleted

-1 - - § sudo vi pod-node-affinity.yaml

-10-0-0-50 ~ § ./kubectl create -f pod-node-affinity.yaml
pod "with-labels" created

-10-1 ~ § ./kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
with-labels 1/1 Running @ 7s 10.2.17.2 ip-10-8-8-151
.ec2.internal

- & l

Figure 9-49. The pod is scheduled on another-annotation-key valued node

Setting preferredDuringSchedulinglgnoredDuringExecution

In this section we will use the node affinity preferredDuringSchedulingIgnoredDuringExecution, which
is only a hint to the scheduler and not guaranteed. A slightly different set of node values is used for the
example, as shown in Figure 9-50.

229

CHAPTER 9 © SCHEDULING PODS ON NODES

re@ip-10- ~ 5 ./kubectl get nodes
NAME STATUS AGE

ip-10-0-0-222.ec2.internal Ready 22m
ip-10-0-0-223.ec2.internal Ready 22m
ip-10-0-0-224.ec2.internal Ready 22m =
ip-10-0-0- 50 ec2. 1nterial Ready,SchedulingDisabled 22m H

Figure 9-50. Listing nodes used for node affinity preferredburingSchedulingIgnoredDuringExecution
example

Set the label key kubernetes.io/image-name to nginx on one of the nodes and hello-world on another
node as shown in Figure 9-51. The third node is kept unlabeled.

- ~ 5 ./kubectl label nodes --overwrite ip-10-0-0-222.ec2.intern
al kubernetes io/image-name=hello-world
node “1p 10-0-0-222.ec2.internal” labeled

I p-1)-50 ~ § ./kubectl label nodes ip-10-8-8-223.ec2.internal kubernete|
S 10/1mage name=nginx E
node "ip-10-0-0-223. eci.internal“ labeled E
[I 1D-10-0-0-5(- 5

Figure 9-51. Setting node labels

List the labels for each node as shown in Figure 9-52.

core@ip-10-0- - 5 ./kubectl get nodes --show-labels

NAME STATUS AGE LABELS
ip-10-0-0-222.ec2.internal Ready 32m beta.kubernete
s.io/arch=amd64,beta.kubernetes.io/instance-type=m3.medium, beta.kubernetes.io/os|
=linux, failure-domain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.ku
bernetes.io/zone=us-east-1le,kubernetes.io/hostname=ip-10-0-0-222.ec2.internal,ku
bernetes.io/image-name=hello-world

ip-10-0-0-223.ec2.internal Ready 32m beta.kubernete
s.io/arch=amd64,beta. kubernetes.io/instance-type=m3.medium, beta.kubernetes.io/os
=linux, failure-domain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.ku
bernetes.io/zone=us-east-1le, kubernetes.io/hostname=ip-10-0-0-223.ec2.internal, ku|
bernetes.io/image-name=nginx

ip-10-0-0-224.ec2.internal Ready 32m beta.kubernete
s.io/arch=amd64,beta.kubernetes.io/instance-type=m3.medium, beta.kubernetes.io/os
=linux, failure-domain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.ku
bernetes.io/zone=us-east-1le, kubernetes.io/hostname=ip-10-0-0-224.ec2.internal
ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 32m beta.kubernete|
s.io/arch=amd64,beta. kubernetes.io/os=1inux, kubernetes.io/hostname=ip-10-0-0-50.
ec2.internal %
; R |

Figure 9-52. Listing node labels

230

CHAPTER 9 © SCHEDULING PODS ON NODES

As discussed earlier, NodeAffinity is a priority function; and priority functions have weight allocated
to them in ranking nodes. Create a pod definition file podNodeAffinity.yaml and allocate a weight of 75
for a pod using node affinity preferredDuringSchedulingIgnoredDuringExecution. Set the expressions to
match to the label key kubernetes.io/image-name to be either nginx or hello-world

apiVersion: vi
kind: Pod
metadata:
name: with-labels
annotations:
scheduler.alpha.kubernetes.io/affinity: >

{
"nodeAffinity": {

"preferredDuringSchedulingIgnoredDuringExecution": [
{
"weight": 75,
"preference":
{

"matchExpressions”: [

"key": "kubernetes.io/image-name",
"operator": "In",
"values": ["nginx", "hello-world"]

kubernetes.io/image-name: hello-world
spec:
containers:
- name: with-labels
image: nginx

The pod definition file podNodeAffinity.yaml is shown in a vi editor in Figure 9-53.

231

CHAPTER 9 © SCHEDULING PODS ON NODES

apiVersion: vl
kind: Pod
metadata:
name: with-labels
annotations:
scheduler.alpha.kubernetes.io/affinity: >

"nodeAffinity": {
"preferredduringSchedulingIgnoredbDuringExecution": [

"weight": 75,
"preference":

"matchExpressions”: [
"key": "kubernetes.io/image-name",

"operator": "In",
"values": ["nginx", "hello-world"]

S

}
]
}
}
]
}
kubernetes.io/image-name: hello-world
spec:
containers:

- name: with-labels
image: nginx

sl =
Figure 9-53. Pod definition file podNodeAffinity.yaml

Create the with-1abels pod using the pod definition file. List the cluster-wide pods. The with-labels
pod is scheduled on the node with the label kubernetes.io/image-name: nginx, as shown in Figure 9-54.
The scheduling policy does not just constitute the priority functions, and the node affinity is not the only
priority function; and with node affinity being soft, the pod could have been allocated to a random node or
the allocation could be based on the result of the priority function’s score calculation.

~ 5 sudo vi podNodeAffinity.yaml
re@ip- ~ 5 ./kubectl create -f podNodeAffinity.yaml
pod "with-labels" created
$./kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
with-labels 1/1 Running] 265 10.2.45.2 1ip-10-0-0-223[5
.ec2.internal li

-0- . & I =

Figure 9-54. Scheduing pod using node affinity preferredDuringSchedulingIgnoredDuringExecution

Add the another-annotation-key: another-annotation-value as kubernetes.io/image-name:
hello-world as shown in Figure 9-55.

232

CHAPTER 9

apiVersion: vl
kind: Pod
metadata:

name: with-labels

annotations:

scheduler.alpha.kubernetes.io/affinity: >
{
"nodeAffinity": {
"preferredDuringSchedulingIgnoredDuringExecution": [

{
"weight": 75,
"preference":
"matchExpressions”: [
"key": "kubernetes.lo/image-name",
"operator”: "In",
"values": ["nginx", “"hello-world"]
}
]
}
}
]
}
}
kubernetes.io/image-name: hello-world
spec:
containers:

- name: with-labels
image: nginx

qv |

SCHEDULING PODS ON NODES

iy

Figure 9-55. Adding another-annotation-key: another-annotation-value

Delete the with-1label pod and create the pod again as shown in Figure 9-56. The pod is again

scheduled on the node with the label kubernetes.io/image-name: nginx.

re@ip-10- ~ § ./kubectl create -f podNodeAffinity.yaml
pod "with-labels" created
[~ 5 ./kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
with-labels 1/1 Running © 8s 10.2.45.2 ip-10-0-0-223[3

.ec2.internal

Figure 9-56. Scheduling a pod with node affinity

The node affinity preferredDuringSchedulingIgnoredDuringExecution is only a hint. To demonstrate
that, set all the options for the kubernetes.io/image-name label key to hello-world, both in the In

expression and in the another annotation as shown in Figure 9-57.

233

CHAPTER 9 © SCHEDULING PODS ON NODES

apiVersion: vl |
kind: Pod
metadata:
name: with-labels
annotations:
scheduler.alpha.kubernetes.io/affinity: >

"nodeAffinity": {
"preferredDuringSchedulingIgnoredbDuringExecution”: [

"weight": 75,
"preference":

"matchExpressions”: [
"key": "kubernetes.io/image-name",

“operator": "In",
"values": ["hello-world", "hello-world"]

A

}
]
}
}
]
}
}
kubernetes.io/image-name: hello-world
spec:
containers:

- name: with-labels
image: nginx

qv |

Figure 9-57. Setting all label values to nginx

Delete and create the pod again. The pod is scheduled on the node with kubernetes.
io/image-name label key set to hello-world, as shown in Figure 9-58. Again the scheduler
does not guarantee pod allocation to a node with the specified labels when the node affinity is
preferredDuringSchedulingIgnoredDuringExecution. With the same settings, the pod could just as well
have been allocated to a different node.

~ 5 ./kubectl create -f podNodeAffinity.yaml

pod "with-labels" created

T ~ § ./kubectl get pods -0 wide
NAME READY STATUS RESTARTS AGE IP NODE
with-labels ©/1 ContainerCreating © 8s <none> ip-10
-0-0-222.ec2.internal

re@if - - § ./kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE

with-labels 1/1 Running © 24s 10.2.100.3 ip-10-0-0-22{4
2.ec2.internal [%

=1 | &

Figure 9-58. Scheduling a pod with node affinity preferredDuringSchedulingIgnoredDuringExecution
does not guarantee pod schedulement on a particular node

As another example, specify all the kubernetes.io/image-name key values to those not used in node
labels, as shown in Figure 9-59.

234

CHAPTER 9 © SCHEDULING PODS ON NODES

apiVersion: vl
kind: Pod
metadata:
name: with-labels
annotations:
scheduler.alpha.kubernetes.io/affinity: >
{
"nodeAffinity": {
"preferredduringSchedulingIgnoredDuringExecution”: [
{
"weight": 75,
"preference":
{
"matchExpressions”: [
{
"key": "kubernetes.io/image-name",
“operator": "In",
"values": ["helloworld", "nginx2"]

L

kubernetes.io/image-name: helloworld
spec:
containers:
- name: with-labels
image: nginx

s | &

Figure 9-59. Setting all the kubernetes.io/image-name key values to non existing values

Delete the pod with-1labels and create the pod again. The pod is still scheduled even though none of
the nodes have matching labels, as shown in Figure 9-60. By comparison, when we used the node affinity
requiredDuringSchedulingIgnoredDuringExecution with none of the nodes having matching labels, the
pods were placed in Pending status until a matching label was added. Now the pod is scheduled because the
preferredDuringSchedulingIgnoredDuringExecution setting is not binding and is only a hint.

re@i - § ./kubectl create -f podNodeAffinity.yaml
pod "with-labels" created
- 5 ./kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE Ip NODE

with-labels 1/1 Running © 65 10.2.45.2 ip-10-0-0-223[5

.ec2.internal ti
- ‘FI 1=

Figure 9-60. Pods are scheduled even though no nodes with matching labels are found

The nodeSelector field if specified with node affinity preferredDuringSchedulingIgnoredDuringExecution
is still guaranteed. Add the nodeSelector field with the label kubernetes.io/image-name: nginx asshown in
Figure 9-61. All the other matching expressions are set to kubernetes.io/image-name: hello-world.

235

CHAPTER 9 © SCHEDULING PODS ON NODES

metadata: e
name: with-labels
annotations:
scheduler.alpha.kubernetes.io/affinity: >

"nodeAffinity": {
"preferredbDuringSchedulingIgnoredDuringExecution”: [
{
"weight": 75,
"preference":

"matchExpressions”: [
"key": "kubernetes.io/image-name",

“operator": "In",
"values": ["hello-world", "hello-world"]

i

}
]
}
}
]
1,
kubernetes.io/image-name: hello-world
spec:
containers:

- name: with-labels
image: nginx

nodeSelector:
kubernetes.io/image-name: nginx

:wall {

Figure 9-61. Setting nodeSelector in addiiton to node affinity
preferredDuringSchedulingIgnoredDuringExecution

Delete and create the with-labels pod again. The pod is scheduled on the node with kubernetes.io/
image-name: nginx label because the nodeSelector expression is kubernetes.io/image-name: nginx as
shown in Figure 9-62.

~ 5 sudo vi podNodeAffinity.yaml

~ § ./kubectl create -f podNodeAffinity.yaml
pod "with-labels" created

~ 5 ./kubectl get pods -0 wide
NAME READY STATUS RESTARTS AGE IP NODE
with-labels 1/1 Running 0 21s 10.2.45.2 ip-10-0-0-223(
.ec2.internal 3

‘1

Figure 9-62. The pod is scheduled on the node with label matching the nodeSelector expression

Summary

In this chapter we first discussed the default scheduling policy used by Kubernetes. Then we used the default
scheduler and also the node selector to schedule pods on nodes. We also discussed scheduling pods using
node affinity. In the next chapter we shall discuss configuring compute resources.

236

CHAPTER 10

Configuring Compute Resources .

Kubernetes'’s resource model is simple, regular, extensible and precise. The Kubernetes container cluster
manager provides two types of resources: compute resources and API resources. Supported compute
resources (simply called “resources” in this chapter) are CPU and RAM (or memory). Support for other
compute resources, such as network bandwidth, network operations, storage space, storage operations, and
storage time may be added later.

Problem

A Kubernetes node capacity in terms of allocable resources (CPU and memory) is fixed and has to be
apportioned among the different pods running on the node. A pod also has some fixed requirements for
resources (CPU and memory) with some flexibility in resource consumption. The problem in resource usage
is how to allocate resources to the different pods and also add some flexibility for a pod to be able to use
more than the minimum requested resources if available.

Solution

Kubernetes provides a flexible resource usage design pattern based on requests and limits as shown in

Figure 10-1. A request is the minimum resource (CPU and memory) a container in a pod requests so it can be
scheduled and run on a node. A limit is the maximum resource (CPU and memory) that can be allocated to
a container.

Pod
N
Resource N
Limit >
Resource
Request

N~

Figure 10-1. Kubernetes resource request and limit

© Deepak Vohra 2017 237
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_10

CHAPTER 10 © CONFIGURING COMPUTE RESOURCES

Overview

The two types of resources, compute resources and API resources, are shown in Figure 10-2. Compute
resources are measurable quantities that can be requested by containers in a pod, allocated to containers
and consumed by containers. API resources are Kubernetes objects such as pods and services, which are
written to and retrieved from the API server.

Kubernetes
Resource

Compute Resources API Resources

Figure 10-2. Kubernetes resource types

We will only be discussing compute resources in this chapter. By default, compute resources available
to a container or a pod are limited only by the node capacity. While resources are consumed by containers
in a pod (a pod can have one or more container), resources are also implied to be consumed by pods. The
resources requested, allocated, and consumed by a pod are the total of the resources requested, allocated,
and consumed by the containers in the pod. Node capacity comprises the resources available to a node in
terms of CPUs, memory, and the maximum number of pods that can be scheduled on the node. The total of
all allocated resources for each resource (CPUs, memory) to containers running on a node cannot exceed
the node capacity for the resource. Kubernetes Scheduler ensures that sufficient resources are available on
anode before it schedules a pod on the node. Even after scheduling a node, the Scheduler ensures that the
total of allocated resources on a node does not exceed the node capacity, which it cannot by virtue of the
node capacity. The Scheduler only monitors the containers started by the kubelet and not containers started
by the Docker engine. This chapter looks at the following topics:

Types of compute resources

Resource requests and limits

Quality of service

Setting the environment

Finding node capacity

Creating a pod with resources specified
Overcommitting resource limits

Reserving node resources

238

CHAPTER 10 * CONFIGURING COMPUTE RESOURCES

Types of Compute Resources

Kubernetes provides two types of compute resources, CPUs and memory, as shown in Figure 10-3.

Compute Resources

Figure 10-3. Types of compute resources

A compute resource is also referred to simply as a “resource,” and each resource type is a distinctly
measurable quantity at the container level. By default a pod’s compute resources are unbounded, only
limited by the node capacity. A pod’s container could optionally specify resource request and limit levels for
each type of resource, as discussed in the next section. Specifying explicit values for resource request and
limit is recommended for the following reasons:

Doing so makes it easier for the Scheduler to assign pods on a node.

It makes it easier for a Scheduler to handle excess resources and contention of
resources.

Available node capacity could make some pods non-schedulable on the

node if the pod’s containers require more capacity than the node capacity.
Specifying resource requests and limits makes feasible a better design of the pod
scheduling.

Separate namespaces could be created for development and production
workloads with separate resource requests and limits, the resource consumption
being different for different types of workloads.

More efficient utilization of a cluster’s resources is made feasible by specifying
explicit requests and limits for resources. While exceeding a node’s capacity is
one issue, a node could be underutilized if a pod that consumes only a fraction of
the node’s capacity is scheduled on the node, with the remaining node capacity
neither suitable for scheduling another pod nor used by the pod scheduled.

239

CHAPTER 10 © CONFIGURING COMPUTE RESOURCES

CPUs are the processor cycles and measured in units of CPU cores (or just “CPUs”); one CPU core could
be one AWS vCPU, one GCP core, one Azure vCore, or one hyperthread on a bare-metal Intel processor with
hyperthreading. A value of 1 in the cpu field is 1000 millicpu. The value can be multiples of 1 such as 2, 3, or
4. Fractional CPU values can also be specified and translate to x1000 millicpu. For example, a value of .001 is
1 millicpu, which is the lowest value that can be specified; a finer precision is not feasible.

The memory field unit is bytes and may be set as a plain integer such as 134217728 or 135e6, a fixed-point
integer with an SI suffix such as 135M, or the binary multiple of bytes equivalent 128Mi.

Resource Requests and Limits

In addition to the limits imposed by a node capacity, a container may request a specific amount of a
resource and also impose a limit on the maximum amount of resource a container can be allowed to use.
These are called the container request and limit. A container request is the quantity of resource a container is
guaranteed; a scheduler won'’t assign a pod on a node if the node cannot provide the total of the containers’
requests for each of the resource types. A container limit is the maximum quantity of a resource the

system allows a container to use. While the total of allocated resource requests cannot exceed the node
capacity limit for the resource, the total of resource limits may exceed the node capacity limit—assuming
that each of the containers on a node won’t be using the maximum resource limit concurrently. When

the total of resource limits of all pods running on a node exceeds the node capacity, the node is said to be
overcommitted. Each container may exceed the guaranteed resource allocated to it via the resource request,
up to the resource limit as long as the total resource consumption on a node does not exceed the node
capacity. But if due to contention of resources the total of resource consumption by containers on a node
exceeds the node capacity, or tends to exceed the node capacity, some pods may have to be terminated; and
if the restartPolicy is set to Always the pod may be restarted.

Resource guarantees are either compressible or incompressible. CPU resource guarantees are
compressible and memory resource guarantees are incompressible. A compressible CPU resource guarantee
implies that pods or more specifically containers are throttled if they exceed their CPU limit. A container
could be throttled back to its guaranteed CPU level if the excess memory allocated to it is requested by
another process such as a newly started pod or a system task or daemon. If extra CPU is available after all
the pods on the node have been allocated, the minimum requested (guaranteed) CPU and the system tasks
and daemons are getting the CPU they need, the extra CPU is distributed among the pods in the proportion
of their minimum CPU requests (the guaranteed CPU). For example, if a node has three pods with one
allocated a guaranteed CPU of 150m, the second a guaranteed CPU of 300m, and the third a guaranteed
CPU of 450m, the extra CPU is distributed in the same proportion 1:2:3 up to the limit of each container.
CPU resource is an elastic resource allocated within the range of the minimum request guarantee and the
resource limit. Memory resource guarantee is elastic in one direction only; a container or pod can use more
memory than the minimum requested (guaranteed) up to the limit, but if a container consumes more
than the request level memory, the pod could be terminated if another pod that was consuming less than
the minimum guaranteed level starts to consume more memory or if a system task or daemon requests
more memory. A container consuming less than and up to the request level guaranteed memory is never
terminated unless some system task or daemon has requested more memory. And a container consuming
more memory than the limit is terminated regardless of excess memory availability.

When referring to node capacity, what is implied is node allocable, as some resources must be reserved
for system components and Kubernetes components. The resource request and limit define a range 0 <=
request <=Node Allocatable and request <= limit.

Pod specification provides the fields shown in Table 10-1 for resource requests and limits.

240

CHAPTER 10 * CONFIGURING COMPUTE RESOURCES

Table 10-1. Pod Specification Fields for Compute Resources

Pod Spec Field Description

spec.container[].resources.requests.cpu CPU resource requested by a container. The
container is guaranteed the specified requested
CPU. The Scheduler schedules a pod based on the
requested CPU and the available CPU on a node.
Defaults to spec.container[].resources.limits.
cpu if not specified.

spec.container[].resources.requests.memory Memory resource requested by a container. The
container is guaranteed the specified requested
memory. The Scheduler schedules a pod based on
the requested memory and the available memory on
anode. Defaults to spec.container[].resources.
limits.memory if not specified.

spec.container[].resources.limits.cpu The upper limit on the CPU a container can use. The
Scheduler does not take into consideration the CPU
limit. The spec.container[].resources.limits.
cpu value must be greater than or equal to spec.
container[].resources.requests.cpu. Defaults to
the allocable node capacity.

spec.container[].resources.limits.memory The upper limit on the memory a container can use.
The Scheduler does not take into consideration the
memory limit. The spec.container[].resources.
limits.memory value must be greater than or equal
to spec.container[].resources.requests.memory.
Defaults to the allocable node capacity.

Specifying the resource fields is optional; if it is unset the values could be set to 0 or default values and
the implementation varies with cluster configuration. The following are some examples of the field settings
for cpu and memory:

containers:
- name: db
image: mysql
resources:
requests:
memory: "64Mi"
cpu: ".1"
limits:
memory: "128Mi"
cpu: ".5"

containers:
- name: db
image: mysql
resources:

241

CHAPTER 10 © CONFIGURING COMPUTE RESOURCES

requests:
memory: "64Mi"
cpu: "100m"
limits:
memory: "64Mi"
cpu: "s500m"
containers:
- name: db
image: mysql
resources:
requests:
memory: "1Gi"
cpu: "250m"
limits:
memory: "2Gi"
cpu: "250m"

The requests and limits are applied to the Docker run command when starting a container as shown in
Table 10-2.

Table 10-2. The Docker run Command Option Equivalents for Pod Spec Fields

Spec Field Docker run Command Option Description

spec.container[].resources.requests. --cpu-shares CPU shares

cpu

spec.container[].resources.limits.cpu --cpu-quota Sets the CPU CFS (Completely
Fair Scheduler) quota

spec.container[].resources.limits. --memory flag Memory limit

memory

Quality of Service

Kubernetes'’s Quality of Service (QoS) is a level for the resource availability. Pods or containers within a pod
that need a minimum level of resources can request guaranteed resources with the spec.container[].
resources.requests.cpu and spec.container[].resources.requests.memory fields. Pods that do not
need guaranteed resources can omit specifying the request levels. Three QoS classes are provided for
containers for each of the resource types. The QoS classes are based on requests and limits and are as shown
in Table 10-3 in decreasing order of priority.

242

CHAPTER 10 * CONFIGURING COMPUTE RESOURCES

Table 10-3. QoS Classes

QoS Class Description

Guaranteed Limits and optionally requests (not equal to 0) are set for all the resources across all
the containers and they are all equal. Requests default to limits if not set. These are the
highest-priority pods and not terminated (due to memory) or throttled (due to CPU)
unless a system task or daemon requests a resource and a lower priority pod is not
available.

Burstable Requests and optionally limits (not equal to 0) are set for one or more resources across
one or more containers and they are not equal. These pods have intermediate priority
and have some level of resource guarantee. If CPU is required by a higher priority
pod or system and no Best-Effort pod is running, the pod’s CPU could be throttled.
Similarly, if memory is required by a higher priority pod or system and no Best-Effort
pod is running the pod could be terminated.

Best-Effort Requests and limits are not set for any of the resources for any of the containers. These
are the lowest priority pods and could be terminated if memory resource is required by
another pod at a higher priority or a system task or daemon needs memory. The CPU
could be throttled if required by other pods and system.

The QoS policy assumes that swap is disabled.

Setting the Environment

Create a Kubernetes cluster as an AWS CloudFormation with CoreOS Linux. First, create an AWS EC2
instance from Amazon Linux AMI. SSH log in to the EC2 instance.

ssh -i "docker.pem" ec2-user@174.129.50.31

Launch a CloudFormation for a Kubernetes cluster with one controller node and three worker nodes.
Install the kubect1 binaries and list the nodes:

./kubectl get nodes

The nodes in the Kubernetes cluster are listed, as shown in Figure 10-4.

5 ./kubectl get nodes

NAME STATUS AGE
ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 2m -
ip-10-0-0-63.ec2.internal Ready 2m | _
ip-10-0-0-64.ec2.internal Ready 2m E|
ip-10-0-0-65.ec2.internal Ready 2m |

Figure 10-4. Kubernetes node cluster

243

CHAPTER 10 © CONFIGURING COMPUTE RESOURCES

Finding Node Capacity

A node’s capacity may be found by describing the node. For example:
kubectl describe node ip-10-0-0-50.ec2.internal

The Capacity field lists the node capacity in terms of CPU, memory, and number of pods. The
Allocatable field lists the allocable CPU, memory, and number of pods as shown in Figure 10-5.

Addresses: 10.0.0.64,10.0.0.64,54.243.23.193
Capacity:

cpu: 1

memory : 3857824K1

pods: 110
Allocatable:

cpu: ik

memory: 3857824K1

pods: 110

Figure 10-5. Node capacity, total and allocatable

The CPU and Memory Requests and Limits including allocated resources are also listed but should
initially all be 0 if no pod is running on the node, as shown in Figure 10-6.

Non-terminated Pods: (5 in total)
Namespace Name C
PU Requests CPU Limits Memory Requests Memory Limits
calico-system calico-policy-agent-ip-10-0-0-50.ec2.internal o
(0%) 0 (0%) 0 (0%) 0 (0%)
kube-system kube-apiserver-ip-10-0-0-50.ec2.internal 0
(0%) 0 (0%) 0 (0%) 0 (0%)
kube-system kube-controller-manager-ip-10-0-0-50.ec2.intern
al 0 (0%) 0 (0%) 0 (0%) 0 (0%)
kube-system kube-proxy-ip-10-0-0-50.ec2.internal 0
(0%) 0 (0%) 0 (0%) 0 (0%)
kube-system kube-scheduler-ip-10-0-0-50.ec2.internal 0
(0%) 0 (0%) 0 (0%) 0 (0%)
Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted. More info: http:/
/releases.k8s.io/HEAD/docs/user-guide/compute-resources.md)
CPU Requests CPU Limits Memory Requests Memory Limits
0 (0%) 0 (0%) 0 (0%) 0 (0%)
No events.
|

Figure 10-6. CPU and memory requests and limits

For the controller node, the node description should always list the allocated resources as 0 because the
node is not schedulable, as indicated by the NodeNotSchedulable in the Type column in Figure 10-7.

244

CHAPTER 10 © CONFIGURING COMPUTE RESOURCES

Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted. More info: http://
releases.k8s.i0/HEAD/docs/user-guide/compute-resources.md)
CPU Requests CPU Limits Memory Requests Memory Limits
0 (0%) 0 (0%) 0 (0%) 0 (0%)
Events:
FirstSeen LastSeen Count From S
ubobjectPath Type Reason Message
11m 11m 1 {kubelet ip-10-0-0-50.ec2.internal} N
ormal Starting Starting kubelet.
11m 11m 1 {kubelet ip-10-0-0-50.ec2.internal} N
ormal NodeNotSchedulable Node ip-10-0-8-56.ec2.internal status is
now: NodeNotSchedulable
16m 10m 1 {Kube-proxy ip-10-8-0-50.ec2.internal} N
ormal Starting Starting kube-proxy.

Figure 10-7. The controller node is not schedulable

Creating a Pod with Resources Specified

In this section we will create an example pod with a resource request and limit specified for the container.
Create a definition file mysql.yaml using the Docker image mysql for a replication controller. Specify
container resource request and limit. The same resource type may be specified only once in a list.

apiVersion: vi
kind: ReplicationController
metadata:
name: mysql-vi
labels:
app: mysql-app
spec:
replicas: 3
selector:
app: mysql-app
deployment: vi
template:
metadata:
labels:
app: mysql-app
deployment: vi
spec:
containers:

env:

name: MYSQL_ROOT_PASSWORD
value: mysql

image: mysql

name: mysql

245

CHAPTER 10 © CONFIGURING COMPUTE RESOURCES

ports:

containerPort: 3306

resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: “"128Mi"
cpu: "s500m"

The definition file mysql.yaml is shown in the vi editor in Figure 10-8.

labels:
app: mysql-app
Spec:
replicas: 3
selector:
app: mysql-app
deployment: v1
template:
metadata:
labels:
app: mysql-app
deployment: vl
spec:
containers:

env:
name: MYSQL_ROOT_PASSWORD
value: mysql

image: mysql

name: mysql

ports:

containerPort: 3306
resources:
requests:
memory: "64Mi"
cpu: “256m"
limits:
memory: "128Mi"
cpu: "50em"

o |

Figure 10-8. Replication controller definition filemysql.yaml

Create a replication controller using the definition file:
./kubectl create -f mysql.yaml
List the cluster-wide pods:

./kubectl get pods

246

CHAPTER 10 * CONFIGURING COMPUTE RESOURCES

Initially the pods may be not running or Ready. List the pods after a minute, and all the pods should be
running. Each pod is scheduled on a different node, as shown in Figure 10-9.

I p-10- . -~ $./kubectl create -f mysql.yaml
replicationcontroller "mysql-vl" created
I - ~ 5 ./kubectl get pods -0 wide

NAME READY
mysql-v1-80tj3 1/1
-63.ec2.internal
mysql-vl-kn53w 1/1
-64.ec2.internal
mysql-vl-pfd3r 1/1
-65.ec2.internal
i 1-0-0-50 ~ $]

STATUS

RESTARTS AGE IP NODE
Running @ 13s 10.2.56.3 ip-10-08-0
Running 0@ 13s 16.2.83.2 ip-10-8-0)|
Running © 13s

10.2.39.3 ip-l@-@-G

-

Figure 10-9. Each pod is scheduled on a different node

Describe a node to find the resource consumption on the node, as shown in Figure 10-10. Only one pod
is running on the node. The CPU and Memory Requests and Limits for each pod in the default namespace
are listed. The MySQL pod CPU request of 250m and CPU Limit of 500m and Memory Request of 64Mi and

Memory Limit of 128 Mi are listed. The allocated CPU and Memory Requests and Limits are also listed.

Allocated CPU and Memory requests are less than the limits, which is the desired level.

Non-terminated Pods:
Namespace

PU Requests CPU Limits
default

50m (25%) 500m (50%)
kube-system

10m (31%) 310m (31%)
kube-system

(9%) 0 (0%)

Allocated resources:

CPU Requests CPU Limits

560m (56%) 810m (81%)

No events.

NAME READY
mysql-v1-80tj3 1/1
mysql-vl-kn53w 1/1
mysql-vl-pfd3r 1/1

(3 in total)
Name
Memory Requests Memory Limits

mysql-v1-80tj3

64Mi (1%) 128Mi (3%)
kube-dns-v11-uzc57
170Mi (4%) 920Mi (24%)

kube-proxy-ip-10-8-0-63.ec2.internal
0 (0%) 0 (0%)

(Total limits may be over 100 percent, i.e., overcommitted. More info:
/releases.k8s.10/HEAD/docs/user-guide/compute-resources.md)

Memory Requests Memory Limits

234Mi (6%) 1048M1 (27%)

- § ./kubectl get pods
STATUS RESTARTS AGE

Running 2 1m
Running 2 im
Running 2 im

Figure 10-10. CPU and memory requests and limits on a schedulable node

http:/|

247

CHAPTER 10 © CONFIGURING COMPUTE RESOURCES

Describe a pod started with the previously discussed settings, and the Limits and Requests for the

resource types should be listed as shown in Figure 10-11 (the pod name can be from a different run with the
same settings).

r [~ 5§ ./kubectl describe pod mysql-vl-f3j7k [~
Name : mysql-v1-f3j7k
Namespace: default
Node: ip-10-0-0-63.ec2.internal/10.0.0.63
Start Time: Mon, 11 Jul 2016 16:35:02 +0000
Labels: app=mysql-app
deployment=v1
Status: Running
IP: 10.2.56.3
Controllers: ReplicationController/mysql-vl
Containers:
mysql:
Container ID: docker://5c5df522ab85de6eb02ddb1d153d7743878a21444065915
3el6136eff9ce3240
Image: mysql
Image ID: docker://sha256:1195b21c3a45d9bf93aae49772538789a09%aaded
18d6648753aa3¢e76670f41d
Port: 3306/TCP
. Limits:
I_ cpu: 500m
memory: 128Mi
Requests:
cpu: 250m
memory: 64M1 y
State: Running [T

Figure 10-11. Pod CPU and memory requests and limits

The resource limits must be set higher than the requests. As an example, set the limits to be lower than
the requests, as shown in Figure 10-12.

248

CHAPTER 10

spec:
replicas: 3
selector:
app: mysql-app
deployment: vl
template:
metadata:
labels:
app: mysql-app
deployment: vl
spec:
containers:

env:
name: MYSQL_ROOT_PASSWORD
value: mysql

image: mysql

name: mysql

ports:

containerPort: 3306

resources:
requests:
memory: "64Mi"
cpu: "256m"
limits:
memory: "6OMi"
cpu: "200m"

vl

Figure 10-12. Pod CPU and memory requests set higher than the limits

CONFIGURING COMPUTE RESOURCES

When the pod is created an error is generated, indicating that the CPU and memory limits must be

higher than the requests, as shown in Figure 10-13.

0 ~ § ./kubectl delete rc mysql-vl
repllcatlancontroller "mysql-vl" deleted
ip-16-0-0 - s sudo vi mysql.yaml

- ./kubectl create -f mysql.yaml

The Repllcatlontontroller "mysql-vl" is invalid.

* spec.template.spec.containers[0].resources.limits[cpu]: Invalid value: "200m":|

must be greater than or equal to request

* spec.template.spec.containers[0].resources.limits[memory]: Invalid value
i": must be greater than or equal to request
re@ip-10-0-0-50 ~ SI

Figure 10-13. Error indicating an invalid value for resource limits

: "6OM

(- T

249

CHAPTER 10 © CONFIGURING COMPUTE RESOURCES

The cpu may be specified as fractions (for example 0.3) instead of absolute value, as shown in
Figure 10-14. A cpu value of 0.3 is 300m. The requests are equal to the limits in the example.

app: mysql-app
spec:
replicas: 3
selector:
app: mysql-app
deployment: vl
template:
metadata:
labels:
app: mysql-app
deployment: v1
spec:
containers:

env:

name: MYSQL ROOT PASSWORD
value: mysqgl

image: mysql

name: mysql

ports:

containerPort: 3306
resources:

requests:
memory: "385782Ki"
cpu: "0.3"

limits:
memory: "3857824Ki"
cpu: "0.3"

swaf]
Figure 10-14. CPU specified as a fraction

Create the replication controller and list the pods. The three replicas are scheduled on three different
nodes. Scale the RC to six pods. The six pods are scheduled on the three nodes with two pods on each node,
as shown in Figure 10-15.

1 ~ § ./kubectl scale --replicas=6 rc/mysql-vl
repllcatloncontroller "mysql-v1l" scaled
~ 5 ./Kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
mysql-vl-c8aed 1/1 Running © 23m 10.2.56.3 ip-10-0-0
-63.ec2.internal

mysql-vl-ckywi 1/1 Running 0 m 10.2.56.4 ip-10-0-0
-63.ec2.internal |
mysql-vl-gl2r4 1/1 Running © 23m 10.2.39.3 ip-10-0-0
-65.ec2.internal

mysql-vl-kgp2t 1/1 Running © m 10.2.83.2 ip-10-0-0
-64.ec2.internal |
mysql-vl-q9nep 1/1 Running © 2m 10.2.39.4 ip-l10-0-0
-65.ec2.internal |
mysql-vl-qins5 1/1 Running @ 23m 10.2.83.3 ip-10-0-0
-64.ec2.internal

Figure 10-15. Two pods are scheduled on each node
250

CHAPTER 10 * CONFIGURING COMPUTE RESOURCES

The number of pod replicas has a limit, as the per-node resource capacity could start to be approached
with more replicas. With the previous settings seven replicas are scheduled, as shown in Figure 10-16. One of
the nodes has three pods.

re@ip-10 -50 ~ § ./kubectl scale --replicas=7 rc/mysql-vl

repllcatloncontroller "mysql-vl" scaled
p-10-0 ~ § ./kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
mysql-vl-b3ucj 1/1 Running © 55s 10.2.83.4 ip-10-0-0
-64.ec2.internal
mysql-vl-c8aed 1/1 Running © 26m 10.2.56.3 1ip-10-0-8
-63.ec2.internal
mysql-vl-ckywi 1/1 Running © 10m 10.2.56.4 1ip-10-0-0
-63.ec2.internal
mysql-vl-gl2ré 1/1 Running © 26m 10.2.39.3 ip-10-0-0
-65.ec2.internal
mysql-vl-kgp2t 1/1 Running © 16m 10.2.83.2 ip-10-0-0
-64.ec2.internal
mysql-vl-q9nep 1/1 Running © 5m 10.2.39.4 ip-10-0-0
-65.ec2.internal
mysql-vl-qins5 1/1 Running © 26m 10.2.83.3 ip-10-08-0
-64.ec2.internal

Figure 10-16. Kubernetes cluster capacity has a limit, allowing seven pods to be scheduled on three nodes in
this example

Describe the node with the three pods, and you'll see that resource consumption is at 90% for both CPU
and memory, as shown in Figure 10-17. No more pods can be scheduled on the pod.

|Non-terminated Pods: (4 in total) i

Namespace Name ¢l
PU Requests CPU Limits Memory Requests Memory Limits

default mysql-v1-b3ucj 3
0em (30%) 300m (30%) 385782Ki (9%) 3857824Ki (100%)

default mysql-vl-kgp2t 3
oom (30%) 300m (30%) 385782Ki (9%) 3857824Ki (100%)

default mysql-v1l-qins5 3
00m (30%) 300m (30%) 385782Ki (9%) 3857824Ki (100%)

kube-system kube-proxy-ip-10-0-0-64.ec2.internal 0
(0%) 0 (0%) 0 (0%) 0 (0%)

Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted. More info: http:/
/releases.k8s.io/HEAD/docs/user-quide/compute-resources.md)

CPU Requests CPU Limits Memory Requests Memory Limits
900m (90%) 900m (90%) 1157346K1 (29%) 11573472Ki (300%)
No events.
ip-10-0-0-50 -~ 5'

Figure 10-17. Resource consumption is at 90%

The minimum memory limit allowed is 4 MB.

251

CHAPTER 10 © CONFIGURING COMPUTE RESOURCES

Limit on Number of Pods

The number of pods that can be scheduled on a node is limited by the allocable node capacity, which
includes the limit of 110 on the number of pods. To demonstrate, scale the RC to 400 pods. The RC is scaled
to 400 replicas and no error is generated, as shown in Figure 10-18.

-0- ~ § ./kubectl scale --replicas=400 rc/mysql-vl
replicationcontroller "mysql-vl" scaled

alllisg

Figure 10-18. Scaling to 400 nodes

But 400 pods cannot run on three nodes; this is limited not only by the limit on the number of pods per
node but also by the allocable CPU and memory. The pods that cannot run are put in Pending status and no
node is allocated to them, as shown in Figure 10-19.

re@ip-10- 0 -~ 5 ./kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE

mysql-vl-02ptf 0/1 Pending © 30s <none>
mysql-vl-076yo 0/1 Pending © 35s <none>
mysql-v1-087wk 0/1 Pending © 40s <none>
mysql-v1-08dwx 0/1 Pending © 30s <none>
mysql-vl-0a5s5 0/1 Pending © 37s <none>
mysql-vl-0@dngp 0/1 Pending © 46s <none>
mysql-vl-0ilqr 0/1 Pending © 33s <none>
mysql-vl-010wd 0/1 Pending © 32s <none>
mysql-v1l-0rbl5 0/1 Pending © 44s <none>
mysql-v1l-0rgui 0/1 Pending © 33s <none>
mysql-vl-0w8ht 0/1 Pending 0 36s <none>
mysql-v1-16sf9 0/1 Pending © 44s <none>
mysql-v1-183yv 0/1 Pending © 34s <none>
mysql-vl-1dfzl /1 Pending © 30s <none>
mysql-vl-lelp2 0/1 Pending © 44s <none>
mysql-vl-1ffkn 0/1 Pending © 30s <none>
mysql-vl-1mhod ©/1 Pending © 38s <none>
mysql-vl-lofgs /1 Pending © 47s <none>
mysql-vl-lojz6 0/1 Pending © 31s <none>
mysql-vl-1pl9f @/1 Pending © 34s <none>
mysql-vl-1pswb 0/1 Pending © 34s <none>
mysql-vl-lugyb @/1 Pending © 47s <none>
mysql-vl-1x88g 0/1 Pending © 45s <none>
mysql-vl-22gkg /1 Pending © 39s <none>
mysql-v1l-23gx5 0/1 Pending © 34s <none>
mysql-vl-27018 0/1 Pending © 34s <none>
mysql-v1-2839x 0/1 Pending © 34s <none>
mysql-vl-2acfx 0/1 Pending © 38s <none>
mysql-vl-2id4cl 0/1 Pending © 41s <none>
mysql-vl-2ixqd 0/1 Pending © 32s <none>

Figure 10-19. Pods put in Pending status

Scale the RC back to five replicas. The Pending pods are not immediately removed. But five running
pods are listed, as shown in Figure 10-20.

252

CHAPTER 10 * CONFIGURING COMPUTE RESOURCES

re@ip-10-0-0-50 - § ./kubectl scale --replicas=5 rc/mysql-vl
repllcatlon:ontroller "mysql-vl" scaled

re@ip-10-0-0-50 ~ $./kubectl get pods -o wide
NAHE READY STATUS RESTARTS AGE IP NODE
mysql-v1-087wk 0/1 Pending 0 3m <none>
mysql-vl-2i4cl @/1 Pending 0 3m <none>
mysql-vl-2n792 0/1 Pending 0 3m <none>
mysql-vl-2s3rd ©8/1 Pending 0 3m <none>
mysql-vl-2tnkn ©8/1 Pending 0 3m <none>
mysql-v1-38fop /1 Pending [¢] 3m <none>
mysql-vl-3aiy6 0/1 Pending [¢] 3m <none>
mysql-vl-3lxxb 0/1 Pending 0 3m <none>
mysql-vl-5ldcn @/1 Pending 0 3m <none>
mysql-vl-60nlf 0/1 Pending 0 3m <none>
mysql-v1-63019 0/1 Pending 0 3m <none>
mysql-v1l-72psi ©/1 Pending [¢] 3m <none>
mysql-vl-7hgki ©/1 Pending 0 3m <none>
mysql-vl-8go2u 0/1 Pending 0 3m <none>
mysql-vl-8k6o2 0/1 Pending 0 3m <none>
mysql-vl-8umyf /1 Pending 0 3m <none>
mysql-vl-bb5fs 0/1 Pending 0 3m <none>
mysql-vl-bz5s57 @/1 Pending 0 3m <none>
mysql-vl-c8aed 1/1 Running 0 19m 10.2.56.3 ip-10
-0-0-63.ec2.internal
mysql-vl-cadé6 0/1 Pending 0 3m <none>
mysql-vl-cc5aw /1 Pending 0 3m <none>
mysql-vl-cfszj 0/1 Pending 0 3m <none>
mysql-vl-ckywi 1/1 Running [¢] 3m 10.2.56.4 ip-leg
-0-0-63.ec2.internal
mysql-vl-cqcf5 0/1 Pending 0 3m <none> Ea

Figure 10-20. Pods put in pending status

Scale the RC to 10 replicas. Only seven pods are Running and the others are Pending, as shown in
Figure 10-21.

re@ip-10-0-0-50 ~ § ./kubectl scale --replicas=10 rc/mysql-vl
repllcatloncontroller "mysql-vl" scaled
core@ip-10-0-0-50 -~ 5 ,/kubectl get pods -0 wide
NAME READY STATUS RESTARTS AGE P NODE
mysql-v1-3n@ty 0/1 Pending @ 10s <none>
mysql-vl-c8aed 1/1 Running @ 21m 10.2.56.3 ip-10-0-0
-63.ec2.internal
mysql-vl-ckywi 1/1 Running © 5m 10.2.56.4 ip-10-0-0
-63.ec2.internal
mysql-vl-cmkod ©/1 Pending © 10s <none>
mysql-vl-gl2r4 1/1 Running © 21m 10.2.39.3 ip-10-0-0
-65.ec2.internal
mysql-vl-kgp2t 1/1 Running @ 5m 10.2.83.2 ip-10-0-0
-64.ec2.internal
mysql-vl-q9nep 1/1 Running © 10s 10.2.39.4 ip-10-0-0
-65.ec2.internal
mysql-vl-qins5 1/1 Running @ 21m 10.2.83.3 ip-10-0-0
-64.ec2.internal
mysql-vl-uslzs 1/1 Running © 10s 10.2.83.4 1ip-10-0-0
-64.ec2.internal
mysql-vl-wek22 0/1 0 Pending 0 10s <none> Ei
core@ip-10-0-0-50 ~ § =]

Figure 10-21. Scaling to 10 replicas has only seven of the 10 pods Running

253

CHAPTER 10 © CONFIGURING COMPUTE RESOURCES

Overcommitting Resource Limits

As shown in an earlier example, a maximum of three pods can be scheduled on a node with the allocated
requests consuming 90% of allocable CPU. The memory limits are at 300%, which makes the limits
overcommitted. If all the pods were to request their maximum allocable memory concurrently, the resource
consumption would exceed 100% and some pods would terminate. Even with a single pod on a node the
memory limits are overcommitted at 109%, though not by much, as shown in Figure 10-22.

Non-terminated Pods: (3 in total)

Namespace Name C
PU Requests CPU Limits Memory Requests Memory Limits

default mysql-vl-gl2ré 3
0em (30%) 306m (360%) 385782Ki (9%) 3857824K1 (100%)

kube-system heapster-v1.0.2-3151619174-5dqrl 1
56m (15%) 156m (15%) 366Mi (9%) 366Mi (9%)

kube-system kube-proxy-ip-10-0-8-65.ec2.internal 2]
(0%) 0 (0%) 0 (0%) 0 (0%)
Allocated resources:

(Total limits may be over 100 percent, i.e., overcommitted. More info: http:/
/releases. k8s.io/HEAD/docs/user-quide/compute-resources.md)

CPU Requests CPU Limits Memory Requests Memory Limits

450m (45%) 458m (45%) 760566K1 (19%) 4232608K1i (109%)

Figure 10-22. Overcommitted memory limits

Reserving Node Resources

Pods are not the only objects or processes consuming resources on a node. It may be suitable to reserve
some resources for non-pod processes such as system processes. Resources may be reserved by running a
placeholder pod. Create a pod definition file pod-reserve-resource.yaml. Run the Docker image gcr.io/
google_containers/pause and specify resource limits for resources to be reserved such as 200m for cpu and
200Mi for memory.

apiVersion: vi
kind: Pod
metadata:

name: reserve-resource

spec:

containers:

- name: reserve-resource
image: gcr.io/google_containers/pause:0.8.0
resources:

limits:
cpu: “0.1”
memory: 200Mi

The pod definition file is shown in a vi editor in Figure 10-23.

254

apiversion: vl
kind: Pod
metadata:

name: reserve-resource

spec:

containers:

- name: reserve-resource
image: gcr.io/google containers/pause:0.8.0
resources:

limits:
cpu: ".1"
memory: "200Mi"

Figure 10-23. Pod definition to reserve some resources

CHAPTER 10 * CONFIGURING COMPUTE RESOURCES

First, create the placeholder pod as shown in Figure 10-24. Then create the MySQL RC.

o 10-0-0-50 ~ § ,/kubectl delete rc mysql-vl
repllcatloncontroller "mysql-vl" deleted
) ~ §$1s. -1
total 55212
-rwxr-xr-x 1 root root 56515944 Jul 1 20:06 kub
-rw-r--r-- 1 root root
-rw il 1 root root

pod “reserve resource" created

0-0-0-50 -~ $./kubectl get pods
NAHE READY STATUS RESTARTS AGE
reserve-resource 1/1 Running @ 10s

-0-0-50 ~ $,/kubectl create -f mysql.yaml

repllcatloncontroller "mysql-vl" created
cor P) = § ./kubectl get pods
NAME READY STATUS RESTARTS AGE

mysql-v1-c8aed 1/1 Running © 7s

mysql-vl-gl2r4 1/1 Running @ 7s

mysql-vl-gins5 1/1 Running @ 7s

reserve-resource 1/1I Running © 39s
yre@ip-10-(8 ~%

685 Jul 11 18:13 mysql.yaml
226 Jul 11 18:18 pod-reserve-resource.yaml
0 ~ § ./kubectl create -f pod-reserve-resource.yaml

(< Tl

Figure 10-24. Creating the resource reserving pod and RC for MySQL

255

CHAPTER 10 © CONFIGURING COMPUTE RESOURCES

Describe the reserve-resource pod, and you'll see that it is reserving the specified resources as shown
in Figure 10-25.

r -10- ~ & ./kubectl describe pod reserve-resource
Name: reserve-resource
Namespace: default
Node: ip-10-0-0-64.ec2.internal/10.0.0.64
Start Time: Mon, 11 Jul 2016 18:22:09 +0000
Labels: <none>
Status: Running
IP: 10.2.83.2
Controllers: <none>
Containers:
reserve-resource:
Container ID: docker://4bb88ca8468d834db1a97fe9b94ee3341ca95967553abb
4a06406178f6cbb93d
Image: gcr.io/google containers/pause:0.8.0
Image ID: docker://sha256:bf595365a5588eclbae3e9dc9efdel367277b75
61b6cc4514a82f07bedd01cab
Port:
Limits:
cpu: 106m
memory: 200Mi
Requests:
cpu: 100m
memory: 200M1
State: Running
Started: Mon, 11 Jul 2016 18:22:10 +0000
Ready: True
Restart Count: ¢]
Environment Variables: <none>
Conditions:
Type Status
Ready True
Volumes:

Figure 10-25. Pod description for the resource-reserving pod

Summary

In this chapter we discussed the configuration and use of compute resources. The two compute resources
that are configurable are CPU and memory. Two configuration values may be specified for each of these
resources, the requested value and the limiting value. Then we created a pod with compute resource request
and limit configured. We also discussed overcommitting resources and reserving resources on a node. In the
next chapter we shall discuss using configmaps.

256

CHAPTER 11

Using ConfigMaps

In Chapter 10 and some earlier chapters, we used the spec: containers: env: field to specify an
environment variable for the Docker image mysql for the MySQL database.

Problem

Consider the use case that some environment variables such as username and password for a database are
to be used in multiple replication controller or pod definition files. The username and password value would
need to be specified in each of the definition files. And if the username and password were to change, all the
definition files would need to be updated as well, which could be very tedious. Alternatively, variable values
could be supplied to kubectl when a command is run, which involves specifying command-line flags each
time the command is run.

Solution

The ConfigMap management pattern is a map of configuration properties that can be used in definition

files for pods, replication controllers, and other Kubernetes objects to configure environment variables,
command arguments, and configuration files such as key-value pairs in volumes, to list a few example

uses. A single ConfigMap may package multiple configuration properties as key/value pairs. By creating
ConfigMaps, you specify the configuration properties in a single configuration map, which can be updated
as required without having to update each of the definition files in which the ConfigMap is used. Decoupling
the containers from the configuration data provides portability of the applications running in the containers.

Overview

A ConfigMap definition file schema provides for the following (Table 11-1) fields.

Table 11-1. ConfigMap Fields

Field Description

kind The resource type. Must be set to ConfigMap.

apiVersion Version of the schema.

metadata Metadata such as name, labels, namespace and annotations.

data Configuration data as key/value pairs.

© Deepak Vohra 2017 257

D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_11

http://dx.doi.org/10.1007/978-1-4842-2598-1_10

CHAPTER 11 © USING CONFIGMAPS

In this chapter we shall discuss ConfigMaps and some common uses of them. This chapter covers the
following topics:

The kubectl create configmap command
Setting the environment

Creating ConfigMaps from directories
Creating ConfigMaps from files

Creating ConfigMaps from literal values

Consuming a ConfigMap in a volume

Kubectl create configmap Command

The kubectl create configmap command is used to create a ConfigMap from a file, directory, or literal
values and has the following syntax:

kubectl create configmap NAME [--from-file=[key=]source] [--from-literal=keyl=valuel]
[--dry-run]

When creating a ConfigMap from a file, the file name forms the key in the ConfigMap and the content of
the file forms the value. When creating a ConfigMap from a directory, a ConfigMap key/value pair is created
from each of the files in the directory with the file name being the key and the file content being the value.
Only regular files in a directory are used to create ConfigMap entries, and other directory contents such as
subdirectories and symlinks are omitted. The command argument for creating a ConfigMap from a directory
or file is the same, --from-file.

In the following sections we will set the environment and create ConfigMaps from a directory, files, and
literal values and also consume the ConfigMaps in a pod as environment variables, command arguments, or
config files in a volume.

Setting the Environment

Create a Kubernetes cluster using an AWS CloudFormation. SSH log in to the controller instance, install
the kubectl binaries, and list the nodes, as discussed in Chapter 2. The number of nodes in the cluster is a
variable, the default being one schedulable worker node and one controller node. The kubectl get nodes
command lists six worker nodes and one controller node.

$./kubectl get nodes

NAME STATUS AGE
ip-10-0-0-50.ec2.internal Ready,SchedulingDisabled 3m F
ip-10-0-0-87.ec2.internal Ready 3m
ip-10-0-0-88.ec2.internal Ready 3m
ip-10-0-1-29.ec2.internal Ready 3m 2
ip-10-0-1-30.ec2.internal Ready 3m
ip-10-0-2-122.ec2.internal Ready 3m
ip-10-0-2-123.ec2.internal Ready 3m

- 9

Figure 11-1. Kubernetes cluster nodes

258

http://dx.doi.org/10.1007/978-1-4842-2598-1_2

CHAPTER 11 I USING CONFIGMAPS

Creating ConfigMaps from Directories

In this section we shall create a ConfigMap from files in a directory. First, create a directory /mysql/env and
set the directory’s permissions to global (777):

sudo mkdir /mysql/env
sudo chmod -R 777 /mysql/env

The /mysql/env directory is created as shown in Figure 11-2. CD (change directory) to the /mysql/env
directory.

- § sudo mkdir -p /mysql/env

- $ sudo chmod -R 777 /mysql/env
- $ c¢d /mysql/env

/mysql/env $ |}

Figure 11-2. Creating the /mysql/env directory

Create five files, each with a file name that would form the key for a configuration property in the
ConfigMap as listed in Table 11-2.

Table 11-2. ConfigMap Fields

File name File content
mysql.root.password mysql
mysql.user mysql
mysql.password mysql
mysql.allow.empty.password no
mysql.database mysql

Use the vi editor to create each of the files; for example:
sudo vi mysql.root.password

Specify the value that is to be used as the root password and save the file with :wq as shown in Figure 11-3.

mysql

) |

Figure 11-3. Filemysql.root.password

Similarly, the value stored in the mysql.allow.empty.password would be no as shown in Figure 11-4.

259

CHAPTER 11 © USING CONFIGMAPS

no

) |
Figure 11-4. Filemysql.allow.empty.password

The files are to be created in the directory /mysql/env, as shown in Figure 11-5.

core@ip-10-0-0-50 /mysql/env $ ls -1
total 32

-rw-r--r--. 1 root root 4 Jul 16 18:52 mysql.allow.empty.password
-rw-r--r--. 1 root root 6 Jul 16 18:51 mysql.password
-rw-r--r--. 1 root root 6 Jul 16 18:50 mysql.root.password

1 root root 6 Jul 16 18:51 mysql.user

~IW-T--F--.
e@ip-16 /mysql/env $ |j

Figure 11-5. Files for generating ConfigMaps

Create a ConfigMap called mysql-config from the directory /mysql/env.
./kubectl create configmap mysql-config --from-file=/mysql/env

The ConfigMap mysql-config is created as shown in Figure 11-6.
Describe the ConfigMap:

./kubectl describe configmaps mysql-config

The configuration data stored in the ConfigMap, which essentially consists of key/value pairs created
from the files in the directory, is listed as shown in Figure 11-6.

260

CHAPTER 11 I USING CONFIGMAPS

ore@ip-10-0-0-50 ~ § ./kubectl create configmap mysql-config --from-file=/mysq|

L/env

conflgmap "mysql config" created
core@ip-10-0-0-50 ~ § ./kubectl describe configmaps mysql-config

Name: mysql-config

Namespace: default

Labels: <none>

Annotations: <none>

Data

mysql.allow.empty.password: 4 bytes

mysql.database: 6 bytes

mysql.password: 6 bytes

mysql.root.password: 6 bytes

mysql.user: 6 bytes
ore@ip-10-0-0-50 ~ SI

Figure 11-6. Creating a ConfigMap from a directory

You can list the ConfigMap YAML definition with the following command:
./kubectl get configmaps mysql-config -o yaml
The mysql-config definition file is listed as shown in Figure 11-7.

core@ip-10-0-0-50 ~ § ./kubectl get configmaps mysql-config -o yaml
apiversion: vl

data:
mysql.allow.empty.password: |
no
mysql.database: |
mysql
mysql.password: |
mysql
mysql.root.password: |
mysql
mysql.user: |
mysql
kind: ConfigMap
metadata:

creationTimestamp: 2016-07-16T18:59:18Z

name: mysql-config

namespace: default

resourceVersion: "12088"

selfLink: /api/vl/namespaces/default/configmaps/mysql-config
u1d 66015cea 4b87- 1ie6 ac0d-1241999f191f
P F B=N=-0=-50 - S

Figure 11-7. ConfigMap definition file
261

CHAPTER 11 © USING CONFIGMAPS

Next, consume the ConfigMap in a replication controller; to do that, create a definition file mysql.yaml:
sudo vi mysql.yaml

Use the config map mysql-config to obtain environment variable values for the MySQL database
Docker image mysql.

apiVersion: vi
kind: ReplicationController
metadata:
labels:
app: mysql-app
name: mysql
spec:
replicas: 3
selector:
app: mysql-app
template:
metadata:
labels:
app: mysql-app
spec:
containers:

env:
name: MYSQL_ROOT_PASSWORD
valueFrom:
configMapKeyRef:
key: mysql.root.password
name: mysql-config

name: MYSQL_DATABASE
valueFrom:
configMapKeyRef:
key: mysql.database
name: mysql-config

name: MYSQL_USER
valueFrom:
configMapKeyRef:
key: mysql.user
name: mysql-config

name: MYSQL_PASSWORD
valueFrom:
configMapKeyRef:
key: mysql.user
name: mysql-config

262

CHAPTER 11

name: MYSQL_ALLOW_EMPTY_PASSWORD
valueFrom:
configMapKeyRef:
key: mysql.allow.empty.password
name: mysql-config
image: mysql
name: mysql
ports:

containerPort: 3306

The mysql.yaml is shown in the vi editor in Figure 11-8.

env:
name: MYSQL ROOT PASSWORD
valueFrom:
configMapKeyRef:
key: mysql.root.password
name: mysql-config
name: MYSQL_DATABASE
valueFrom:
configMapKeyRef:
key: mysql.database
name: mysql-config
name: MYSQL_USER
valueFrom:
configMapKeyRef:
key: mysql.user
name: mysql-config
name: MYSQL PASSWORD
valueFrom:
configMapKeyRef:
key: mysql.password
name: mysql-config
name: MYSQL ALLOW EMPTY PASSWORD
valueFrom:
configMapKeyRef:
key: mysql.allow.empty.password
name: mysql-config
image: mysql

Figure 11-8. Using ConfigMap key reference in an RC definition file

USING CONFIGMAPS

263

CHAPTER 11 USING CONFIGMAPS

The key for a ConfigMap may not be any arbitrary name but must follow a specific regexp. To
demonstrate, use the key the same as the environment variable name as shown in Figure 11-9.

env:

name: MYSQL ROOT PASSWORD
valueFrom:
configMapKeyRef:
key: MYSQL _ROOT PASSWORD
name: mysql-config

name: MYSQL DATABASE
valueFrom:
configMapKeyRef:
key: MYSQL_DATABASE
name: mysql-config

name: MYSQL USER
valueFrom:
configMapKeyRef:
key: MYSQL_USER
name: mysql-config

name: MYSQL PASSWORD
valueFrom:
configMapKeyRef:
key: MYSQL PASSWORD
name: mysql-config

name: MYSQL ALLOW EMPTY PASSWORD
valueFrom:
configMapKeyRef:
key: MYSQL ALLOW EMPTY PASSWORD
name: mysql-config
image: mysql
v |

Figure 11-9. ConfigMap key ref set to same value as the environment variable name

An error is generated, as shown in Figure 11-10.

264

CHAPTER 11 I USING CONFIGMAPS

re@ip-10-0-0-50 ~ § ./kubectl create -f mysql.yaml
The ReplicationController "mysql" is invalid.

* spec.template.spec.containers[0].env[0].valueFrom.configMapKeyRef.key: Invalid
value: "MYSQL ROOT PASSWORD": must have at most 253 characters and match regex

\.?[a-20-9]([-a-z0-9]*[a-2z0-9])?(\.[a-2z0-9]([-a-20-9]*[a-z0-9])?)*

* spec.template.spec.containers[0].env[1].valueFrom.configMapKeyRef.key: Invalid
value: "MYSQL_DATABASE": must have at most 253 characters and match regex \.?[a
-20-9]([-a-20-9)*[a-20-9])?(\.[a-2z0-9] ([-a-z0-9]*[a-20-9])?)*

* spec.template.spec.containers([0].env[2].valueFrom.configMapKeyRef.key: Invalid
value: "MYSQL USER": must have at most 253 characters and match regex \.?[a-z0-

9]([-a-z0-9]*[a-20-9])?(\.[a-20-9] ([-a-20-9]*[a-20-9])7)*

* spec.template.spec.containers[0].env[3].valueFrom.configMapKeyRef.key: Invalid
value: "MYSQL PASSWORD": must have at most 253 characters and match regex \.?[a
-20-9]([-a-z0-9]*[a-20-9])?(\.[a-20-9]([-a-z0-9]*[a-20-9])?)*

* spec.template.spec.containers[0].env[4].valueFrom.configMapKeyRef.key: Invalid
value: "MYSQL ALLOW EMPTY PASSWORD": must have at most 253 characters and match
regex \ 7[a z0-9]([- alze -9]*[a-z0-9])?(\.[a-20-9] ([-a-20-9]*[a-20-9])?)*

_ -0-50 ~ $

Figure 11-10. Error indicating invalid value for ConfigMap key ref

Delete the mysql RC if it already exists and create a replication controller from the definition file with a
valid ConfigMapKeyRef as in Figure 11-8.

./kubectl create -f mysql.yaml
List the RC and the pods:

./kubectl get rc
./kubectl get pods

The RC and pods are created as shown in Figure 11-11.

core@ip-10-0-) ~ § ./kubectl delete rc mysql
repllcatloncontroller "mysql" deleted

:)-0-0-50 ~ § sudo vi mysql.yaml

ol 10-0-0-50 ~ § ./kubectl create -f mysql.yaml
repllcatloncontroller "mysql" created
core@ip-10-0-0-50 ~ $§ ./kubectl get rc
NAME DESIRED CURRENT AGE

mysql 3 3 8s
core@ip-10-0-8-50 ~ $./kubectl get pods

NAME READY STATUS RESTARTS AGE
mysql-lcwns 1/1 Running © 8s
mysql-5eegy 1/1 Running © 8s
mysql-unuye 1/1 ! Running © 8s
core@ip-10-0-0-50 ~ $

Figure 11-11. Creating a replication controller with a valid definition file
265

CHAPTER 11 USING CONFIGMAPS

Creating ConfigMaps from Files

Next, we shall create a ConfigMap using only some of the files in the /mysql/env directory. Only the
MYSQL_ROOT_PASSWORD environment variable is mandatory. As an example, create a ConfigMap called mysql-
config-2 from the mysql.allow.empty.password and mysql.root.password files.

/kubectl create configmap mysql-config-2 --from-file=/mysql/env/mysql.root.password --from-
file=/mysql/env/mysql.allow.empty.password

The mysql-config-2 ConfigMap is created as shown in Figure 11-12. Next, describe the ConfigMap. The
two key/value pairs are listed. The ConfigMap may also be listed as a YAML.

~ § ./kubectl create configmap mysql-config-2 --from-file=/my
sql/env/mysql root.password --from-file=/mysql/env/mysql.allow.empty.password
configmap "mysql-config-2" created

~ § ./kubectl describe configmaps mysql-config-2

Name: mysql-config-2
Namespace: default

Labels: <none>

|{Annotations: <none>

Data

mysql.allow.empty.password: 3 bytes
mysql.root.password: 6 bytes

. - $./kubectl get configmaps mysql-config-2 -o yaml
apiVersion: vl
data:
mysql.allow.empty.password: |
no
mysql.root.password: |
mysql
kind: ConfigMap
metadata:
creationTimestamp: 2016-07-16T19:22:39Z
name: mysql-config-2
namespace: default
resourceVersion: "16040"
selfLink: /api/vl/namespaces/default/configmaps/mysql-config-2
uid: a9245c47-4baa-1ie6-ac0d-1241999f191f
-50 ~ §

Figure 11-12. Creating ConfigMap from files

Next, consume the ConfigMap in a replication controller definition file mysql.yaml.

266

apiVersion: vi
kind: ReplicationController
metadata:
labels:
app: mysql-app
name: mysql
spec:
replicas: 3
selector:
app: mysql-app
template:
metadata:
labels:
app: mysql-app
spec:
containers:

env:
name: MYSQL_ROOT_PASSWORD
valueFrom:
configMapKeyRef:
key: mysql.root.password
name: mysql-config-2

name: MYSQL_ALLOW_EMPTY_PASSWORD
valueFrom:
configMapKeyRef:
key: mysql.allow.empty.password
name: mysql-config-2
image: mysql
name: mysql
ports:

containerPort: 3306

The mysql.yaml definition file is shown in the vi editor in Figure 11-13.

CHAPTER 11

USING CONFIGMAPS

267

CHAPTER 11 USING CONFIGMAPS

apiversion: vl
kind: ReplicationController
metadata:
labels:
app: mysql-app
name: mysql
spec:
replicas: 3
selector:
app: mysql-app
template:
metadata:
labels:
app: mysql-app
spec:
containers:
env:
name: MYSQL ROOT PASSWORD
valueFrom:
configMapKeyRef:
key: mysql.root.password
name: mysql-config-2
name: MYSQL ALLOW EMPTY PASSWORD
valueFrom:
configMapKeyRef:
key: mysql.allow.empty.password
name: mysql-config-2
image: mysql
:waf]

Figure 11-13. Consuming ConfigMaps

Create a replication controller from the definition file:
./kubectl create -f mysql.yaml

List the RC and the pods:

./kubectl get rc
./kubectl get pods

The RC and pods are created and listed as shown in Figure 11-14.

268

CHAPTER 11 I USING CONFIGMAPS

core@ip-10-0-0-50 ~ § ./kubectl create -f mysql.yaml
repllcatloncontroller "mysql" created
core@ip-10-0-0-50 ~ $./kubectl get rc
NAME DESIRED CURRENT AGE
mysql 3 3 7s

ip-10-0-8-50 ~ § ./kubectl get pods
NAHE READY STATUS RESTARTS AGE
mysql-96a3s 1/1 Running © 7s
mysql-blo9pk 1/1 Running © 7s
mysql-mveyp 1/1 Running © 7s
core@ip-10-0- ~ s

Figure 11-14. Creating replication controller and listing pods

Describe a pod, and the ConfigMap mysql-config-2 with the data should be listed as shown in Figure 11-15.

core@ip-10-0-0-50 ~ $./kubectl describe pod mysql-96a3s
Name : mysql-96a3s
Namespace: default
Node: ip-10-0-0-88.ec2.internal/10.0.0.88
Start Time: Sat, 16 Jul 2016 19:33:38 +0000
Labels: app=mysql-app
Status: Running
IP: 10.2.40.2
Controllers: ReplicationController/mysql
Containers:
mysql:
Container ID: docker://7084958b889c213ad55c58afc5013e290cee5933215e10
6deae90573789f1979
Image: mysql
Image ID: docker://sha256:1195b21c3a45d9bf93aae497f2538f89a09%aade
d18d6648753aa3ce76670f41d
Port: 3306/TCP
State: Running
Started: Sat, 16 Jul 2016 19:33:39 +0000
Ready: True
Restart Count: 0
Environment Variables:
MYSQL_ROOT PASSWORD: <set to the key 'mysql.root.password® o
f config map 'mysql-config-2'>
MYSQL_ALLOW EMPTY_ PASSWORD: <set to the key 'mysql.allow.empty.pass
word' of config map 'mysql-config-2'>
Conditions:
Type Status
Ready True
Volumes:
default-token-ni84s:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-ni84s

Figure 11-15. Pod description includes environment variables’ values consuming ConfigMaps

269

CHAPTER 11 USING CONFIGMAPS

Creating ConfigMaps from Literal Values

In this section we shall create and consume a ConfigMap using literal key/value pairs specified on the
command line with the --from-1literal option. As an example, create a ConfigMap called hello-config
with two key/value pairs, messagel=hello and message2=kubernetes.

kubectl create configmap hello-config --from-literal=messagel=hello --from-
literal=message2=kubernetes

A ConfigMap hello-config with two key/value pairs is created as shown in Figure 11-16. Describe the
configmap to list the key/values.

| : ./kubectl create configmap hello-config --from-literal=me|
ssagel hello --from 11teral—message2 kubernetes
conflgmap “hello config" created

- 50 = § ./kubectl describe configmaps hello-config

Name: hello-config
Namespace: default
Labels: <none>
Annotations: <none>

Data

messagel: 5 bytes
message2: 10 bytes

p-16-0- ~ § ./kubectl get configmaps hello-config -0 yaml
apiversion: vl
data:
messagel: hello
message2: kubernetes
kind: ConfigMap
metadata:
creationTimestamp: 2016-07-16T19:41:52Z
name: hello-config
namespace: default
resourceVersion: "19233"
selfLink: /api/vl/namespaces/default/configmaps/hello-config
uid: 58645d5b 4b8d- lieﬁ aced-1241999f191f
-0 =5 ...5

Figure 11-16. Creating ConfigMaps from literal values

270

CHAPTER 11 I USING CONFIGMAPS

Create a pod definition file hello-world.yaml to consume the ConfigMap hello-world. The pod is
based on the Ubuntu Docker image and runs a /bin/echo command with the two configuration properties
in the ConfigMap as arguments.

apiVersion: vi
kind: Pod
metadata:
labels:
app: helloApp
name: hello-world

spec:
containers:
args:
- " $(MESSAGE1)"
- " $(MESSAGE2)"
command:
- /bin/echo
env:

name: MESSAGE1
valueFrom:
configMapKeyRef:
key: messagel
name: hello-config

name: MESSAGE2
valueFrom:
configMapKeyRef:
key: message2
name: hello-config
image: ubuntu
name: hello

The pod definition file hello.yaml is shown in the vi editor in Figure 11-17.

271

CHAPTER 11 USING CONFIGMAPS

metadata:
labels:
app: helloApp
name: hello-world

spec:
containers:
args:
- " $(MESSAGE1)"
- " $(MESSAGE2)"
command:
- /bin/echo
env:

name: MESSAGE1l
valueFrom:
configMapKeyRef:
key: messagel
name: hello-config

name: MESSAGE2
valueFrom:
configMapKeyRef:
key: message2
name: hello-config
image: ubuntu
name: hello

:wal]

Figure 11-17. Pod definition file consuming ConfigMaps

List the ConfigMap hello-world. The ConfigMap has two data key/value pairs.

Create a pod from the definition file:
./kubectl create -f hello-world.yaml
List the pods:

./kubectl get pods

The hello-world pod is listed as Completed as shown in Figure 11-18.

272

data:

metadata:

apiversion: vl

messagel: hello
message2: kubernetes
kind: ConfigMap

50 ~ §

creationTimestamp: 2016-07-16T19:41:52Z
name: hello-config

namespace: default

resourceVersion:

"19233"

./kubectl get configmaps hello-config

CHAPTER 11

selfLink: /api/vl/namespaces/default/configmaps/hello-config
u1d 58645d5b 4b8d-11e6-ac0d-1241999f191f
0 .)-0-50 ~ § sudo vi hello-world.yaml

ip-10-0-0-50 ~ § ./kubectl create -f hello-world.yaml
pod "hello world" created

Lp-10-0-0-50 ~ § ./kubectl get pods
NAHE READY STATUS RESTARTS AGE
hello-world ©0/1 ContainerCreating © 9s
mysql-t316q 1/1 Running 0 6m
mysql-wwei3 1/1 Running 0 6m
mysql xant 1/1 Running 0 6m

ip-10-0-0-50 ~ $§ ./kubectl get pods
NAME READY STATUS RESTARTS AGE
hello-world 0/1 Completed © 18s
mysql-t316q 1/1 Running 0 6m
mysql-wwei3d 1/1 Running 0 6m
mysql-xsnjt 1/1 l Running 0 6m
core@ip-10-0-0-50 ~ $

Figure 11-18. Creating pod-consuming ConfigMaps

List the logs generated from the pod:

./kubectl logs hello-world

USING CONFIGMAPS

-0 yaml

The message generated from the two key/value pairs should be output as shown in Figure 11-19.

or lp-10-0-0-5¢€
I

~ § ./kubectl get pods

NAME READY STATUS RESTARTS AGE

hello-world 0/1 Completed © 18s

mysql-t316q 1/1 Running (] 6m

mysql-wwei3d 1/1 Running ¢] 6m

mysql-xsnjt 1/1 Running 0 6m

core@ip-10-0-0-50 ~ § ./kubectl logs hello-world
kubernetes

hello

ore@ip-10-0-0-50

..5.

Figure 11-19. Pod logs include the message generated using ConfigMaps

273

CHAPTER 11 © USING CONFIGMAPS

Consuming a ConfigMap in a Volume

In this section we shall create a ConfigMap to store a certificate key-value pair and consume the ConfigMap
in a volume. Create a definition file cert.yaml for a ConfigMap in which to specify the certificate.

apiVersion: vi
kind: ConfigMap
metadata:
name: nginx-cert
data:
cert.pem: |-
————— BEGIN CERTIFICATE-----

privkey.pem: |-
————— BEGIN PRIVATE KEY-----

The ConfigMap definition file is shown in the vi editor in Figure 11-20.

apivVersion: vl
kind: ConfigMap
metadata:
name: nginx-cert
data:
cert.pem: |-
----- BEGIN CERTIFICATE-----

----- END CERTIFICATE-----
privkey.pem: |-
----- BEGIN PRIVATE KEY-----

Figure 11-20. ConfigMap to store a certificate key-value pair

Create a ConfigMap from the definition file as shown in Figure 11-21.
./kubectl create -f cert.yaml

Describe the ConfigMap to list the two key/value pairs as shown in Figure 11-21.

274

CHAPTER 11

p-10-0-) -~ § sudo vi cert.yaml

- p-10-0-0-50 -~ § ./kubectl create -f cert.yaml
conflgmap nglnx -cert" created

e@ip-1¢ 50 -~ § ./kubectl get configmaps nginx-cert -o yaml
ap1Ver51on: vl
data:

cert.pem: |-

----- BEGIN CERTIFICATE-----

----- END CERTIFICATE-----
privkey.pem: |-
----- BEGIN PRIVATE KEY-----

kind: ConfigMap
metadata:

creationTimestamp: 2016-07-16T20:52:47Z

name: nginx-cert

namespace: default

resourceVersion: "30843"

selfLink: /api/vl/namespaces/default/configmaps/nginx-cert

uld 408e0916-4b97-11e6-ac0d-1241999f191f

p-16-0 0 ~ § ./Kubectl describe configmaps nginx-cert

Name. nginx-cert

Namespace: default
Labels: <none>
Annotations: <none>
Data

privkey.pem: 57 bytes
cert.pem: 57 bytes

Figure 11-21. Creating and listing a ConfigMap storing key/value pairs

USING CONFIGMAPS

(]

Next, consume the ConfigMap in a pod. Create a volume of type ConfigMap from the nginx-cert
ConfigMap. Mount the volume in the pod at some directory cert from which the certificate can be retrieved,

such as /etc/config/.

apiVersion: vi
kind: Pod
metadata:
name: configmap-volume
spec:
containers:
image: nginx
name: nginx
volumeMounts:

275

CHAPTER 11 © USING CONFIGMAPS

mountPath: /etc/config/cert
name: config-volume
readOnly: true
volumes:
configMap:
name: nginx-cert
name: config-volume

The pod definition file is shown in the vi editor in Figure 11-22.

3

apiVersion: vl
kind: Pod
metadata:
name: configmap-volume
spec:
containers:
image: nginx
name: nginx
volumeMounts:
mountPath: /etc/config/cert
name: config-volume
volumes:
configMap:
name: nginx-cert
name: config-volume

Figure 11-22. Pod consuming a ConfigMap in a volume mount
Create a pod from the definition file and list the pods as shown in Figure 11-23.

ore@ip-10-0-0-50 -~ § ./kubectl create -f pod.yaml
pod conflgmap -volume" created
re@ip-10-0-0-50 ~ $./kubectl get pods

NAME READY STATUS RESTARTS AGE
configmap-volume 1/1l Running © 12s
ore@ip-10-0-0-56 ~ $§

Figure 11-23. Creating and listing a pod

Describe the pod to list the volume of type ConfigMap as shown in Figure 11-24.

276

|NAME -
configmap-volume

Namespace:
Node:
Start Time:
Labels:
Status:
IP:
Controllers:
Containers:
nginx:
Container ID
019afb8e65b8eb71
Image:
Image ID:
8655a8c901749c2b
Port:
State:
Started:
Ready:
Restart Coun
Environment
Conditions:
Type
Ready
Volumes:
config-volume:
Type:
Name:

|Name:

CHAPTER 11 I USING CONFIGMAPS

) ~ § ./Kubectl get pods Al
READY STATUS RESTARTS AGE
1/1 Running @ 125
~ § ./kubectl describe pod configmap-volume
configmap-volume
default
ip-10-0-0-88.ec2.internal/10.0.0.88
Sat, 16 Jul 2016 20:56:47 +0000
<none>
Running
10.2.40.2
<none>

: docker://aa7d39f31¢6d8946837cb546bd05772d0b5a63
9fe5b5dc70
nginx
docker://sha256:0d409d33b27e47423b049f7f863faad

25b93ca67d01a470d
Running
Sat, 16 Jul 2016 20:56:48 +0000
True
j %]
Variables: <none>
Status
True
ConfigMap (a volume populated by a ConfigMap)
nginx-cert v

Figure 11-24. Pod description lists volume of type ConfigMap

Summary

In this chapter we intr

oduced ConfigMaps, which are maps of configuration properties that may be used in

Kubernetes object definitions such as pods, replication controllers, and also to set environment variables
and command arguments. Subsequently we discussed creating ConfigMaps from directories, files, and

literal values, and fina
quotas.

lly consuming the ConfigMaps. In the next chapter we shall discuss setting resource

277

CHAPTER 12

Using Resource Quotas

In Chapter 10 we introduced a resource consumption model based on requests and limits, using which
resources (CPU and memory) are allocated to a pod’s containers.

Problem

Although we discussed allocating resources to a pod’s containers, we did not take some other factors into
consideration. The resource requirements vary from one development team to another. If one development
team were to use all or most of the resources on a node, another team would not be able to run any
application on the same node. Second, the resource requirements vary across the different phases of
application development. Application development would have different resource usage than application
testing and application in-production work. The resource allocation pattern discussed in Chapter 10 does
not provide a solution for any of these factors.

Solution

Kubernetes provides a management design pattern for elastic quotas. Elastic quotas are not completely
elastic, and a fixed upper limit that is flexible to some extent based on the scope (discussed later in this
chapter) is imposed. Resource quotas are a specification for limiting the use of certain resources in a
particular namespace. The quota is not on a particular object, such as a pod or a replication controller, but
on the aggregate use within a namespace. The objective is to provide a fair share of resources to different
teams, with each team assigned a namespace with quotas. Another application of quotas is creating different
namespaces for production, development, and testing; different phases of application development have
different resource requirements. Creating or updating a resource should not exceed the quota restraint,
failing which the resource is not created or updated, and an error message is generated. Quotas could be
set on compute resources (CPU and memory), which were discussed in chapter 10, and object counts (such
as pods, replication controllers, services, load balancers, and ConfigMaps, to list a few). When a quota is

set for compute resources, requests or limits must be specified for those resources. Quotas are enabled by
default. The total cluster capacity, which could vary if nodes are added or removed, is not a limiting factor
when setting quotas. The total of the quotas of namespaces could exceed the cluster capacity, and resource
contention will be resolved on a first-come-first-served basis. Resource contention is resolved before a
resource is created and does not affect resources already created. Once a resource has been created, any
changes to the quota setting do not affect the resource.

© Deepak Vohra 2017 279
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_12

http://dx.doi.org/10.1007/978-1-4842-2598-1_10
http://dx.doi.org/10.1007/978-1-4842-2598-1_10
http://dx.doi.org/10.1007/978-1-4842-2598-1_10

CHAPTER 12 USING RESOURCE QUOTAS

Namespace:
development

Namespace: Namespace:
testing production

Figure 12-1. Different resource quotas for different namespaces

A quota could optionally be associated with a scope, which further limits the types of resources a
quota would be applied to. The available scopes are Terminating, NotTerminating, BestEffort, and
NotBestEffort. Terminatingscope is for pods that terminate, and NotTerminating scope is for pods that
do not terminate. BestEffort scope is for pods that have best-effort quality of service, and NotBestEffort
scope is for pods that do not have a best-effort quality of service. The resource quota spec fields are

discussed in Table 12-1.

Table 12-1. Resource Quota Spec Fields

Field Description

kind Should be set to ResourceQuota.

apiVersion Schema version.

metadata Metadata such as name, labels, and annotations.

spec The ResourceQuota spec provides two fields: hard, which specifies the hard
limits for each defined resource, and scopes, which sets the scopes. A quota
measures the usage of a resource only if it matches the intersection of the
scopes. The spec defines the desired settings for hard limits.

status The status is the actual use of resources and is set with hard and used.

The hard status is the enforced hard limits, and used is the actual total
usage of a resource in a namespace. The status values are those actually
implemented in contrast to the desired settings in the spec.

Overview

In this chapter we will discuss using resource quotas with Kubernetes applications. This chapter covers the

following topics.

Setting the environment

Defining compute resource quotas

280

CHAPTER 12 I USING RESOURCE QUOTAS

Exceeding compute resource quotas
Defining object quotas

Exceeding object resource quotas
Defining best-effort quotas

Using quotas

Exceeding object quotas

Exceeding the ConfigMaps quota

Setting the Environment

Create a Kubernetes cluster with an AWS CloudFormation with one controller node and three worker nodes
as shown in Figure 12-2.

Launch Instance Connect Actions ¥
- @aoc s e

Q| Launch Time - >.July 21, 2016 at 12.00:00 AM UTC-7 (2] 1to5ofs
Name * Instance ID - Type ~ y Zone = | State = Status Checks - Alarm Status Publi
[T keub I 0210416 m3, medum us-east-1c & running @ 22 checks & 0K Y% ec25
Kb swarke -bE3H133e m3. medium us-east-1¢ @ running @ 22 checks None W ec2s
kubsmetes-coreos-kube-aws-worker FhE3E133 m3.medum us-east-lc @ running @ 22 checks ... None W o2
kubzmetes-coreos-kube-aws-worker -ba38133c m3.medium us-easl-lc @ running © 22 checks... None YW ec25
Kubermetes-Core03 e37 0845 12.micra us-gast-lc @ running @ 22 checks None % ec25

Figure 12-2. CloudFormation for a Kubernetes cluster on CoreOS

SSH log in to the controller instance, install kubect] binaries, and list the nodes:
./kubectl get nodes

The controller instance and the worker nodes should be listed as shown in Figure 12-3.

-10- ~ § ./kubectl get nodes
NAME STATUS AGE
ip-10-0-0-180.ec2.internal Ready im
ip-10-0-0-181.ec2.internal Ready 1m
ip-10-0-0-182.ec2.internal Ready 1m
ip-10-0-0-50.ec2.interia1 Ready,SchedulingDisabled 5m
~ $

Figure 12-3. Listing the Kubernetes cluster nodes

281

CHAPTER 12 USING RESOURCE QUOTAS

Defining Compute Resource Quotas

The compute resource quotas limit the total compute resources used by pods in a namespace. Table 12-2
lists the compute resources supported.

Table 12-2. Supported Compute Resources

Compute Resource

Description

cpu

limits.cpu

limits.memory

memory

requests.cpu

requests.memory

The total of all cpu requests across all pods in non-terminal state cannot
exceed this setting. The container must specify a requests->CPU value if the
cpu quota is set, or pod creation could fail.

The total of all CPU limits across all pods in non-terminal state cannot
exceed this setting. The container must specify a limits->CPU value if the
limits.cpu quota is set, or pod creation could fail.

The total of all memory limits across all pods in non-terminal state cannot
exceed this setting. The container must specify a limits->memory value if
the 1imits.memory quota is set, or pod creation could fail.

The total of all memory requests across all pods in non-terminal state
cannot exceed this setting. The container must specify a requests->memory
value if the memory quota is set. or pod creation could fail.

Same as cpu.

Same as memory.

Create a ResourceQuota definition file compute-resource-quotas.yaml. In the spec field set hard limits
on the number of pods, total of CPU requests, total of memory requests, CPU limits, and memory limits. Set
NotBestEffort as a scope in the scopes list.

apiVersion: vi

kind: ResourceQuota

metadata:

name: compute-resource-quotas

spec:
hard:
pods: "10"

requests.cpu: "1"

requests.memory: 2Gi
limits.cpu: "2
limits.memory: 4Gi

scopes:

NotBestEffort

The definition file is shown in the vi editor in Figure 12-4.

282

CHAPTER 12 I USING RESOURCE QUOTAS

apiVersion: vl
kind: ResourceQuota

|metadata:
name: compute-resource-quotas
spec:
hard:
pods: "10"

requests.cpu: "1"
requests.memory: 2Gi
limits.cpu: "2"
limits.memory: 4Gi

scopes:

NotBestEffort

Figure 12-4. ResourceQuota definition file

Create the ResourceQuota in the default namespace:

./kubectl create -f compute-resource-quotas.yaml --namespace=default

The ResourceQuota is created as shown in Figure 12-5.

~ $ sudo vi compute-resource-quotas.yaml

(p-10-0- ~ § ./kubectl create -f compute-resource-quotas.yaml --namespa
ce=default
resourcequota "computeiresource-quotas" created

I p-10-0-0- -~ $

Figure 12-5. Creating a ResourceQuota
List the quotas:
./kubectl get quota --namespace=default

The compute-resource-quotas quota should be listed as shown in Figure 12-6.

- p-10-0-0-50 ~ § ./kubectl get quota --namespace=default
NAME AGE
compute~resource«quotai 24s

'] D- -B-0-F -._S

Figure 12-6. Listing the quotas in the default namespace

283

CHAPTER 12 USING RESOURCE QUOTAS

Describe the quota compute-resource-quotas:
./kubectl describe quota compute-resource-quotas --namespace=default

The quota description includes the used resources and hard limits. Because we have not yet created any
resource, the Used column values are all 0, as shown in Figure 12-7.

- § ./kubectl get quota --namespace=default
INAME AGE

compute-resource-quotas 24s
~ § ./kubectl describe quota compute-resource-quotas --namespa

ce=default

Name: compute-resource-quotas
Namespace: default

Scopes: NotBestEffort

* Matches all pods that do not have best effort quality of service.
Resource Used Hard

limits.cpu 0 2
limits.memory © 461
pods 0 10
requests.cpu 0 1
requests.memory 0 261

._SI

Figure 12-7. Describing compute-resource-quotas

Exceeding Compute Resource Quotas

Next, we shall use the resource quotas to limit the use of compute resources in the default namespace.
Create an RC definition file mysql.yaml:

apiVersion: vi
kind: ReplicationController
metadata:
name: mysql-rc
labels:
app: mysql-app
spec:
replicas: 3
selector:
app: mysql-app
deployment: vi
template:
metadata:
labels:

app: mysql-app

284

CHAPTER 12 I USING RESOURCE QUOTAS

deployment: vi
spec:
containers:

env:
name: MYSQL _ROOT_PASSWORD
value: mysql
image: mysql
name: mysql
ports:
containerPort: 3306
resources:
requests:
memory: "640Mi"
cpu: "500m"
limits:
memory: "1280Mi"
cpu: "2"

Create a replication controller with 10 replicas:
./kubectl scale rc mysql-rc --replicas=10

Next, describe the compute-resource-quotas. The Used column lists the actual used resources. None of
the used resources exceed the hard limits, as shown in Figure 12-8.

- ~ § ./Kubectl describe quota compute-resource-quotas --namespa
ce=default

Name: compute-resource-quotas
Namespace: default
Scopes: NotBestEffort

* Matches all pods that do not have best effort quality of service.
Resource Used Hard

limits.cpu 2 2
limits.memory 1280Mi 4Gi
pods 10 10

requests.cpu 500m 1
requests.memory 640Mi 26i

o i

Figure 12-8. Used resources do not exceed the hard limits

285

CHAPTER 12 © USING RESOURCE QUOTAS

To demonstrate that hard limits cannot be exceeded, scale the RC to 20 replicas:

./kubectl scale rc mysql-rc --replicas=20

Now describe the compute-resources-quota. The Used column still has 10 in the pods row, as shown in

Figure 12-9.

-0-0- ~ $./kubectl scale rc mysql-rc --replicas=20
repl1cat10ncontr011er "mysql-rc" scaled

1-0-50 ~ § ./kubectl describe quota compute-resource-quotas --namespa
ce=default

Name: compute-resource-quotas
INamespace: default
Scopes: NotBestEffort

* Matches all pods that do not have best effort quality of service.
Resource Used Hard

limits.cpu 2 2
limits.memory 1286Mi 4Gi
pods 10 10

requests.cpu 500m 1
requests.memory 640Mi 2Gi

ﬂsl

Figure 12-9. Pods not exceeding the hard limit even though scaled to do so

286

[>]

CHAPTER 12 I USING RESOURCE QUOTAS

Describe the RC, and you'll see that Replicas are listed as 10 current / 20 desired, as shown in Figure 12-10.

|Name:
Namespac

Labels:
Pods Sta

Events:
Firsts
tPath

Figure 12-10. Describing the replication controller: 10 current replicas instead of the 20 desired

core@ip-

e:

Image(s):
Selector:

Replicas:

tus:

No volumes.

een
Type

0-0-0-50

a._i S0
10-0-0-50

ip-10

mysql-rc
default
mysql

./kubectl scale rc mysql-rc --replicas=20
repllcatloncontroller "mysql-rc" scaled
or ~ § ./kubectl describe rc mysql-rc

app=mysql-app,deployment=v1

app=mysql-app
10 current / 20 desired

10 Running / @ Waiting / © Succeeded / © Failed

LastSeen Count
Reason

23m 1
SuccessfulCreate
23m 1
SuccessfulCreate
23m 1
SuccessfulCreate
22m 1
SuccessfulCreate
22m 1
SuccessfulCreate
22m 1
SuccessfulCreate
22m 1

From
Message

{replication-controller }
Created pod: mysql-rc-1lnyks
{replication-controller }
Created pod: mysql-rc-h2q9h
{replication-controller }
Created pod: mysql-rc-rgxzs
{replication-controller }
Created pod: mysql-rc-y6cvy
{replication-controller }
Created pod: mysql-rc-5j4gp
{replication-controller }
Created pod: mysql-rc-xhfg4
{replication-controller }

~

Subobjec

287

CHAPTER 12 © USING RESOURCE QUOTAS

List the pods cluster-wide, and you may see some of the pods being terminated or restarted if some
other compute resource is exceeded, as shown in Figure 12-11.

-10-0- ~ § ./Kubectl get pods -0 wide

NAME READY STATUS RESTARTS AGE 1P N|
ODE '
mysql-rc-1lnyks 1/1 Running B S5m 10.2.26.2 1
p-10-0-0-180.ec2.internal
mysql-rc-5911t /1 CrashLoopBack0off 3 4m 10.2.47.4 i| |
p-10-0-0-182.ec2.internal
mysql-rc-5j4gp 0/1 CrashLoopBackoff 3 4m 10.2.47.3 i
p-10-0-0-182.ec2.internal
mysql-rc-h2qsh /1 CrashLoopBackoff 4 5m 10.2.98.3 i
p-10-0-0-181.ec2.internal
mysql-rc-ke7te 1/1 Running 3 4m 10.2.26.6 i
p-10-0-0-180.ec2.internal
mysql-rc-rgxzs 1/1 Running 4 Sm 10.2.26.3 i
p-10-0-0-180.ec2.internal
mysql-rc-uf3za 1/1 Running 3 4m 10522605 A
p-10-0-0-180.ec2.internal
mysql-rc-xhf84 1/1 Running 3 4m 10.2.26.4 i‘
p-10-0-0-180.ec2.internal
mysql-rc-xj2oj 1/1 Running 4 4m 10.2.98.5 i
p-10-0-0-181.ec2.internal
mysql-rc-ybcvy 1/1 Running 4 4m 10.2.98.4 ip
p-le-e-a-lsl.ecz‘interﬁal i

I - -f) - -~ S

Figure 12-11. Pods terminated or restarted if some resource is exceeded

Defining Object Quotas

In this section we will set object quotas and demonstrate what happens when the object quotas are
exceeded: the resource object is not created. Create a ResourceQuota definition file object-quotas.yaml.
Specify hard limits for the number of ConfigMaps, replication controllers, and services:

apiVersion: vi
kind: ResourceQuota
metadata:
name: object-quotas
spec:
hard:
configmaps: "5"
replicationcontrollers: "1"
services: "2"

The definition file is shown in the vi editor in Figure 12-12.

288

CHAPTER 12 I USING RESOURCE QUOTAS

apiversion: vl
kind: ResourceQuota
metadata:
name: object-quotas
spec:
hard:
configmaps: "5"
replicationcontrollers: "1"
services: "2"

Figure 12-12. ResourceQuota definition file for object quotas

Create the ResourceQuota from the definition file in the default namespace as shown in Figure 12-13.
./kubectl create -f object-quotas.yaml --namespace=default
Then list and describe the quota:

./kubectl get quota --namespace=default
./kubectl describe quota object-quotas --namespace=default

The resource quota is created and listed as shown in Figure 12-13. The quota description includes the
Used resources and Hard limits.

- § ./kubectl create -f object-quotas.yaml --namespace=defaul(~
t
resourcequota "object-quotas" created
~ § ./kubectl get quota --namespace=default
NAME AGE
compute-resource-quotas 16m
object-quotas 125 !
~ § ./kubectl describe quota object-quotas --namespace=default
Name: object-quotas
Namespace: default
Resource Used Hard
configmaps 0 5
replicationcontrollers © 1
services 1 2
o :

Figure 12-13. Creating, listing, and describing the resource quota for object quotas

289

CHAPTER 12 USING RESOURCE QUOTAS

Exceeding Object Quotas

In this section we will demonstrate that object quotas cannot be exceeded; instead, the resource object that
would exceed the hard limit is not created. First, create an RC definition file mysql-rc.yaml.

apiVersion: vi
kind: ReplicationController
metadata:
name: mysql-rc
labels:
app: mysql-app
spec:
replicas: 3
selector:
app: mysql-app
deployment: vi
template:
metadata:
labels:
app: mysql-app
deployment: vi
spec:
containers:

env:
name: MYSQL_ROOT_PASSWORD
value: mysql
image: mysql
name: mysql
ports:
containerPort: 3306
resources:
requests:
memory: "64Mi"
cpu: "0.1"
limits:
memory: "128Mi"
cpu: "0.2"

290

CHAPTER 12 I USING RESOURCE QUOTAS

The definition file is shown in the vi editor in Figure 12-14.

spec:
replicas: 3
selector:
app: mysql-app
deployment: vl
template:
metadata:
labels:
app: mysql-app
deployment: vl
spec:
containers:

env:
name: MYSQL_ROOT_PASSWORD
value: mysql
image: mysql
name: mysql
ports:
containerPort: 3306
resources:
requests:
memory: "64Mi"
cpu: =1
Llimits:
memory: "128Mi"
cpu; .2

:waf]
Figure 12-14. ReplicationController definition file

Create the RC and list the RC and pods as shown in Figure 12-15.

core@ip-10-0-0-50 ~ $./Kubectl get pods -0 wide

NAME READY STATUS RESTARTS AGE IP
mysql-rc-b6j4o 1/1 Running © 29s 10.2.26.2
180.ec2.internal

mysql-rc-t@9up 1/1 Running © 28s 10.2.47.3
182.ec2.internal

mysql-rc-zxdun 1/1 Running © 29s 10.2.98.3
181.ec2.internal

core@ip-10-0-0-50 ~ $ |

Figure 12-15. Creating and listing an RC

201

CHAPTER 12 © USING RESOURCE QUOTAS

Listing the pods cluster-wide indicates that each of the pods was scheduled on a different node, as
shown in Figure 12-16.

p-10-0-0-50 - § ./kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
mysql-rc-b6j4o 1/1 Running © 29s 10.2.26.2 ip-10-0-0-
180.ec2.internal
mysql-rc-t@9up 1/1 Running @ 28s 10.2.47.3 ip-10-0-0-
182.ec2.internal
mysql-rc-zxdun 1/1 Running © 29s 10.2.98.3 ip-10-0-0-|.
181.ec2.internal

p-10-0-0-50 ~ § | .

Figure 12-16. Each of the three pods is scheduled on a different node, keeping in consideration the resource
consumption

Next, create another replication controller from another RC definition file, similar to the first. The
second RC is not created, and the error message indicates that the object-quotas quota is exceeded, as
shown in Figure 12-17.

p-1€ - § sudo vi mysql2.yaml

p-10-0-0-50 ~ § ./kubectl create -f mysql2.yaml
Error from server: error when creating "mysql2.yaml": replicationcontrollers "my
sql-rc2" is forbidden: Exceeded quota: object-quotas, requested: replicationcont
rollers=1, used: replicationcontrollers=1l, limited: replicationcontrollers=1

hsl

Figure 12-17. Error message indicates that the object-quotas quota is exceeded for
replicationcontrollers

The hard limit on the number of services is 2. Create one service and create another with a different
name than the default. The second service is not created, and the error message indicates that the object-
quota quota is being exceeded, as shown in Figure 12-18.

>

$./kubectl expose rc mysql-rc --port=3306 --type=LoadBalanc
er

service "mysql rc" exposed

[-0-50 ~ § ./kubectl expose rc mysql-rc --name="mysql-svc" --port=330
6 --type =LoadBalancer
Error from server: services "mysql-svc" is forbidden: Exceeded quota: object-quo
tas, requested: servicis=1, used: services=2, limited: services=2

p-160 ~ &

Figure 12-18. Error message indicates that the object-quotas quota is exceeded for services

292

CHAPTER 12 I USING RESOURCE QUOTAS

Next, we shall demonstrate exceeding a ConfigMaps quota. Chapter 11 showed how to create
ConfigMaps, but I'll briefly repeat the procedure here. We shall create some ConfigMaps from files in a
directory. The file names must be the same as the ConfigMap key, and the value is the content of the file.
Create a directory and set its permissions:

sudo mkdir /mysql/env
sudo chmod -R 777 /mysql/env
cd /mysql/env
Add the five files listed in Table 12-3 to the directory.

Table 12-3. Files from Which to Create ConfigMaps

File Content
mysql.root.password mysql
mysql.database mysqldb
mysql.user mysql
mysql.password mysql

mysql.allow.empty.password no

Create five ConfigMaps from the five files.

./kubectl create configmap mysql-config --from-file=/mysql/env/mysql.root.password
./kubectl create configmap mysql-config2 --from-file=/mysql/env/mysql.database
./kubectl create configmap mysql-config3 --from-file=/mysql/env/mysql.user

./kubectl create configmap mysql-config4 --from-file=/mysql/env/mysql.password
./kubectl create configmap mysql-config5 --from-file=/mysql/env/allow.empty.password

The five ConfigMaps are created as shown in Figure 12-19.

- ~ § ./kubectl create configmap mysql-config --from-file=/mysq(~
1/env/mysql.root.password
configmap "mysql-config" created

-0-0- - § ./kubectl create configmap mysql-config2 --from-file=/mys
ql/env/mysql.database
configmap "mysql-config2" created

~ & ./kubectl create configmap mysql-config3 --from-file=/mys

ql/env/mysql.user
configmap "mysql-config3" created

- § ./kubectl create configmap mysql-config4 --from-fi1e=/mys:3
ql/env/mysql.password i
configmap "mysql-config4" created v

Figure 12-19. Creating ConfigMaps

293

http://dx.doi.org/10.1007/978-1-4842-2598-1_11

CHAPTER 12 USING RESOURCE QUOTAS

The hard limit on the number of ConfigMaps is 5. Create another file, named mysql.config, and set its
content to mysql. Create, or try to create, the sixth ConfigMap:

./kubectl create configmap mysql-config6 --from-file=/mysql/env/mysql.config

An error message indicates that the number of ConfigMaps is being exceeded, as shown in Figure 12-20.

- § ./kubectl create configmap mysql-config5 --from-file=/mys(~
ql/env/mysql allow.empty.password
\configmap "mysql config5" created

~ & sudo vi mysql.config

- ./kubectl create configmap mysql-config6 --from-file=/mys
ql/env/mysql.config
Error from server: configmaps "mysql-configé6" is forbidden: Exceeded quota: objers
ct-quotas, requested: ionfigmaps=1, used: configmaps=5, limited: configmaps=5 '

. . - S

Figure 12-20. Error message indicates that the object-quotas quota is exceeded for ConfigMaps

Defining Best-Effort Scope Quotas

The BestEffort scope quota is used only for tracking pods. And if excess resources are available, pods in
excess of the hard limit could be scheduled, although the pods (exceeding the hard limit) would be the
first to be terminated if resources are required for another object. To demonstrate, create a ResourceQuota

definition file best-effort-quotas.yaml. Set the hard limit on the number of pods to 5. Set scopes to
BestEffort.

apiVersion: vi
kind: ResourceQuota
metadata:

name: best-effort-quotas
spec:

hard:

pods: "5"
scopes:

BestEffort

294

CHAPTER 12 I USING RESOURCE QUOTAS

The definition file is shown in the vi editor in Figure 12-21.

apivVersion: vl
kind: ResourceQuota
metadata:

name: best-effort-quotas
spec:

hard:

pods: “5"
scopes:

BestEffort

Figure 12-21. ResourceQuota definition file with scope BestEffort

We shall use the quota in a separate namespace. Create a namespace called best-effort.
./kubectl create namespace best-effort

Create the ResourceQuota from the definition file as shown in Figure 12-22.
./kubectl create -f best-effort-quotas.yaml --namespace=best-effort

List the quota and describe it:

./kubectl get quota --namespace=best-effort
./kubectl describe quota best-effort-quotas --namespace=best-effort

295

CHAPTER 12 © USING RESOURCE QUOTAS

The BestEffort scope quota is created, listed, and described as shown in Figure 12-22.

core@ip-10-08-08-56 ./kubectl create namespace best-effort
namespace 'best effort" created

re@ip-10-0-0-50 ~ § ./kubectl create -f best-effort-quotas.yaml --namespace=b
est-effort
resourcequota "best-effort-quotas" created
ore@ip-10-0-0-50 ~ § ,/kubectl get quota --namespace=best-effort
NAME AGE
best- effort -quotas 13s
ore@ip-10-0-0-50 ~ § ./kubectl describe quota best-effort-quotas --namespace=be

st-effort
Name: best-effort-quotas
Namespace: best-effort
Scopes: BestEffort
* Matches all pods that have best effort quality of service.
Resource Used Hard
pods 0 5

i
[
!
w
=
a

Figure 12-22. Creating and describing a ResourceQuota with scope BestEffort in namespace best-effort

Using the same RC definition file mysql.yaml, create an RC and list the three pods as shown in
Figure 12-23.

core@ip-10-0-0-50 ~ ./kubectl create -f mysql yaml --namespace-best -effort ~
repllcatloncontroller "mysql-rc" created

core@ip-10-0-0-50 ~ § ./kubectl get pods -o wide --namespace=best-effort

INAME READY STATUS RESTARTS AGE IP NODE
mysql-rc-fcreq 1/1 Running © 16s 10.2.98.7 1ip-10-0-0-
181.ec2.internal

mysql-rc-i9ynz 1/1 Running @ 16s 10.2.47.6 1ip-10-0-0-
182.ec2.internal

mysql-rc-s55kd 1/1 Running © 16s 10.2.26.8 ip-10-0-0-
180.ec2.internal 3
core@ip-10-0-0-50 ~ $§ E
core@ip-10-0-0-50 -~ SI

Figure 12-23. Creating an RC and listing the pods

296

CHAPTER 12 I USING RESOURCE QUOTAS

Scale the RC to five pods, which is also the hard limit. The RC is scaled as shown in Figure 12-24.

] : - § ./kubectl scale rc mysql-rc --replicas=5
repllcatloncontroller "mysql-rc" scaled

~ § ./kubectl scale rc mysql-rc --replicas=5 --namespace=best-
effort

replicationcontroller "mysql-rc" scaled

Figure 12-24. Scaling the replicas to the hard limit of 5

Scale the RC to six pods, which would exceed the hard limit. The RC is scaled as shown in Figure 12-25.

- § ./Kkubectl scale rc mysql-rc --replicas=6 --namespace=best-
effort

replicationcontroller "mysql-rc" scaled

Figure 12-25. Scaling the replicas to exceed the hard limit of 5

Describe the RC, and the Replicas value is listed as 6 current / 6 desired, as shown in Figure 12-26. Even

though the hard limit on the number of pods is exceeded, an extra pod is scheduled because the scope is set
toBestEffort.

297

CHAPTER 12 © USING RESOURCE QUOTAS

Name:
Namespace:
Image(s):
Selector:
Labels:

|Replicas:

Pods Status:
No volumes.
Events:
FirstSeen
tPath Type

mysql-rc
best-effort
mysql

~ § ./kubectl describe rc --namespace=best-effort

app=mysql-app,deployment=vl

app=mysql-app

6 current / 6 desired

6 Running / © Waiting / © Succeeded / © Failed

LastSeen
Reason

m 1
SuccessfulCreate
7m 1
SuccessfulCreate
m 1
SuccessfulCreate
5m 1
SuccessfulCreate
5m 1
SuccessfulCreate
1m 1
SuccessfulCreate

..-._'SI

From
Message

{replication-controller }
Created pod: mysql-rc-s55kd
{replication-controller }
Created pod: mysqgl-rc-fcrcq
{replication-controller }
Created pod: mysql-rc-i9ynz
{replication-controller }
Created pod: mysql-rc-5cnmg
{replication-controller }
Created pod: mysql-rc-dnkuf
{replication-controller }
Created pod: mysgl-rc-739se

Figure 12-26. The replicas exceed the hard limit because the scope is BestEffort

Summary

Subobjec

In this chapter we introduced resource quotas, a specification for limiting the allocation of certain resources
to a particular namespace with the objective of distributing the resources in a fair, shared manner. The
quotas may be set on compute resources and objects. In the next chapter we will discuss autoscaling.

298

CHAPTER 13

Using Autoscaling

Starting new pods may sometimes be required in a Kubernetes cluster, for example, to meet the
requirements of an increased load. The replication controller has the ability to restart a container, which is
actually starting a replacement container, if a container in a pod were to fail.

Problem

Cluster load is a variable, and depending on application use requirements, cluster load can increase or
decrease. One of the benefits of the Kubernetes cluster manager is the ability to scale a cluster of containers
(pods) as required. If more load is expected, a user may scale up (increase the number of pods) and if less
load is expected, a user may scale down (decrease the number of pods). But a user-intervened scaling
model is suitable only for development and a small-scale cluster. For a production-level cluster in which
the load is not predictable and high availability is a requirement, user-initiated scaling may not be timely or
proportional to the load requirements.

Solution

For production-level clusters Kubernetes provides the autoscaling management design pattern. Autoscaling
is based on the volatile configuration pattern. A horizontal pod autoscaler (HPA) can be created with a
preconfigured minimum and maximum number of pods within which to scale a cluster. When load is
increased on a running cluster, the HPA automatically increases the number of pods in proportion to the
load requirements up to the configured maximum number of pods, as shown in Figure 13-1, and when the
load decreases the HPA decreases the number of pods proportionally without user intervention.

© Deepak Vohra 2017 299
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_13

CHAPTER 13 © USING AUTOSCALING

_ 1 Pod
(

— 3 Pods

—
(
s

——p, 5Pos
—
\ 3

Figure 13-1. Increasing the load increases the number of pods

An HPA has two main benefits over user-intervened scaling: the scaling is automatic, and extra pods
are not kept running consuming resources that could be used for some other application. An autoscaler may
be created for a replication controller, replica set, or deployment. An autoscaler uses heapster to collect
CPU utilization of a resource, based on which it determines whether more or fewer pods should be run.
Autoscaling is based on a target CPU utilization, implying that the CPU utilization of a resource such as a
deployment should be x%.

Overview

In this chapter we shall demonstrate the use of autoscaling. This chapter discusses the following topics.
Setting the environment
Running PHP Apache Server deployment
Creating a service
Creating a horizontal pod autoscaler

Increasing load

Setting the Environment

Create a Kubernetes cluster running as a CoreOS AWS CloudFormation consisting of one controller node
and three worker nodes. List the nodes:

./kubectl get nodes

300

CHAPTER 13 " USING AUTOSCALING

The single controller node and the worker nodes should be listed as shown in Figure 13-2.

)) ~ § ./kubectl get nodes
NAME STATUS AGE

ip-10-0-0-109.ec2.internal Ready 2m
ip-10-0-0-110.ec2.internal Ready 2m
ip-10-0-0-111.ec2.internal Ready 2m i
ip-10-0-0-5B.ec2.interia1 Ready,SchedulingDisabled 2m E

Figure 13-2. Listing Kubernetes nodes

List the services across all namespaces as shown in Figure 13-3. The heapster service, which monitors
the CPU utilization, should be listed in the kube-system namespace.

core@ip-10-0-0-50 ~ § ./kubectl get svc --all-namespaces
NAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

default kubernetes 10.3.0.1 <none> 443/TCP 35m
kube-system heapster 16.3.08.52 <none> 80/TCP 35m 5
kube-system kube-dns 10.3.0.10 <none> 53/UDP,53/TCP 35m -=-=
r .':hSl

Figure 13-3. Listing services across all namespaces

List pods across all the namespaces, and the heapster pod should be listed as shown in Figure 13-4.

core@ip-10- | -~ & ./kubectl get pods --namespace=kube-system
NAME READY STATUS RESTARTS

hea;gier-v1.0.2-31516191?4lv?r2x 2/2 Running ©
kubz?gpiserver-ip-lB-G-G-SG.ecZ.internal 1/1 Running ©
kubz??ontroller-manager-ipAle-e-e-sa.ecz.internal 1/1 Running ©
kub:?zns-vll-GCSy 4/4 Running ©
kubz?grcxy-ip-IG-GAB-IGB.ecz.internal 1/1 Running ©
kuhz?ﬂraxyAip-le‘o-e-lla.ecz.internal 1/1 Running ©
kubzégrcxy-ip-le-e-e-lll.ecz.internal 1/1 Running ©
kubzﬁgroxy-ip-IGAGAG-SB.ecz.internal 1/1 Running ©
kubz?gcheduler-ip-lBAG-B-SG.ecz.internal 1/1 Running ©
mys:?Trc-utaqt 1/1 Running © 3

4m gl
core@ip-10-¢ - s 1

Figure 13-4. Listing pods across all namespaces

301

CHAPTER 13 © USING AUTOSCALING

Running a PHP Apache Server Deployment

First, we need to create a resource to scale. Create a deployment resource using the Docker image gcr.io/
google_containers/hpa-example. Set CPU requests to 200m.

./kubectl run php-apache --image=gcr.io/google containers/hpa-example --requests=cpu=200m

A deployment called php-apache is created as shown in Figure 13-5.

$./kubectl run php-apache --image=gcr.io/google containers/
hpa-example --requests=cpu=200m
deployment "php-apache" created

Figure 13-5. Creating a deployment for PHP and Apache

List the deployments:
./kubectl get deployment

The php-apache deployment should be listed as shown in Figure 13-6.

$./kubectl get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
php-apache 1 1 1] im

|

Figure 13-6. Listing the deployments

Creating a Service

Create a service of type LoadBalancer by exposing the deployment on port 80.
./kubectl expose deployment php-apache --port=80 --type=LoadBalancer

A service is created and then listed as shown in Figure 13-7.

S ./kubectl expose deployment php-apache --port=80 --type=L
oadBalancer
service "php-apache" exposed

S ./kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 10.3.0.1 <none> 443/TCP 3h |

php-apache 10.3.0.172 a0c9%9a24254c¢76... 80/TCP 8s

Figure 13-7. Creating a service

List the pods, and a single pod is listed as shown in Figure 13-8.

302

CHAPTER 13 © USING AUTOSCALING

- § ./kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 16.3.0.1 <none> 443/TCP 3h
php-apache 10.3.8.172 aBc9a24254c76. .. 80/TCP 308s
S ./kubectl get pods
NAME READY STATUS RESTARTS AGE |
[

php-apache-16292324-1hy2a 1/1 Running @ 2m

Figure 13-8. Listing the pods

We shall invoke the service, which provides an external IP, to put load on the deployment and
test whether varying loads make the autoscaler alter the number of pods proportionately. Obtain the
LoadBalancer Ingress for the service:

./kubectl describe services php-apache | grep "LoadBalancer Ingress"

The public DNS at which the service may be invoked is listed, as shown in Figure 13-9.

- § ./kubectl describe services php-apache | grep "LoadBalance
r Ingress"
LoadBalancer Ingress: a0c9a24254c7611e68ee50a92211bd41-40787046.us-east-1.elb.
amazonaws . com i

I

e

Figure 13-9. Obtaining the LoadBalancer Ingress

Invoke the service using the Load Balancer Ingress.An outputsuch as “OK!” is generated as shown
in Figure 13-10; the php-apache deployment is designed only for testing and more elaborate output is not
generated.

- § ./kubectl describe services php-apache | grep "LoadBalance
r Ingress"
LoadBalancer Ingress: a0c9a24254c7611e68ee50a92211bd41-40787046.us-east-1.elb.
amazonaws . com

1b.amazonaws . com

- § curl aBc9a24254c7611e68ee50a92211bd41-40787046.us-east-1.e 3
0K! - e | H

Figure 13-10. Invoking the LoadBalancer Ingress

Creating a Horizontal Pod Autoscaler

Next, we shall create a horizontal pod autoscaler for the deployment. An HPA can be created using one of
two available methods:

— A HorizontalPodAutoscaler object
— Thekubectl autoscale command

The HorizontalPodAutoscaler specification provides the fields shown in Table 13-1.

303

CHAPTER 13 © USING AUTOSCALING

Table 13-1. HorizontalPodAutoscaler Spec Fields

Field Description

scaleTargetRef The target resource to be scaled. Can be a Deployment,
ReplicaSet or ReplicationController.

minReplicas The minimum number of pods. Defaultis 1.

maxReplicas The maximum number of pods. Cannot be less than
minReplicas.

targetCPUUtilizationPercentage The target average CPU utilization. If not specified, a default

autoscaler policy is used,

The kubectl autoscale command has the following syntax, which essentially provides the same
settings as the specification.

kubectl autoscale (-f FILENAME | TYPE NAME | TYPE/NAME) [--min=MINPODS] --max=MAXPODS
[--cpu-percent=CPU] [flags]

Some of the options supported by kubectl autoscale are as discussed in Table 13-2.

Table 13-2. kubectl autoscale Options

Option Description Default Value Required (explicit
or default)
--cpu-percent The target average -1 Yes
CPU utilization over
all the pods in the

resource represented
as a percentage of the
CPU requests. If not set
or negative, a default
autoscaling policy is
used.

-f, --filename File name, directory, or] Yes
URL for the resource to
autoscale.

--max Upper limit for the -1 Yes
number of pods.

--min Lower limit for the -1 Yes
number of pods. If not
specified or -ve a default
value is used.

--name The name of the newly ~ “” No
created object.

Using the kubectl autoscale command, create a horizontal pod autoscaler. Set target CPU utilization
to 100% and set minimum number of pods to 3 and maximum number of pods to 10.

304

CHAPTER 13 © USING AUTOSCALING

./kubectl autoscale rc php-apache --cpu-percent=100 --min=3 --max=10

The deployment is autoscaled and an HPA is created, as shown in Figure 13-11.

- ~ § ./kubectl autoscale deployment php-apache --cpu-percent=10

0 --min=3 --max=10 =

deployment "php-apache" autoscaled
~ $

Figure 13-11. Creating a horizontal pod autoscaler

List the HPA:
./kubectl get hpa

The single HPA should be listed as shown in Figure 13-12. The TARGET column lists the target CPU
utilization, the CURRENT column lists the current CPU utilization, the MINPODS column lists the minimum
number of pods, and the MAXPODS lists the maximum number of pods. Because the CPU utilization takes a
while to be monitored by heapster, the CURRENT column is indicating a value of <waiting>.

~ $./kubectl autoscale deployment php-apache --cpu-percent=10
8 --min=3 --max=1@
deployment "php-apache" autoscaled
- ~ 5 ./kubectl get hpa

NAME REFERENCE TARGET CURRENT MINPODS MAXPODS A

GE

php-apache Deployment/php-apache 100% <waiting> 3 10 1

9s =
S I |

Figure 13-12. Listing the horizontal pod autoscaler

List the pods. The number of pods has increased from 1 in the initial deployment to 3 (the minimum
number of pods in the HPA) as shown in Figure 13-13.

$./kubectl get pods

NAME READY STATUS RESTARTS AGE
php-apache-16292324-1hy2a 1/1 Running © 18m
php-apache-16292324-hpwqo 1/1 Running © 3m
php-apache-16292324-wmgbk 1/1 Running © 3m q

Figure 13-13. Number of pods scaled to the minimum number of pods in the horizontal pod autoscaler

List the HPA again, and the CURRENT CPU utilization is at 0% as no load is being put on the
deployment as shown in Figure 13-14.

305

CHAPTER 13 © USING AUTOSCALING

r ~ § ./kubectl get hpa
NAME REFERENCE TARGET CURRENT MINPODS MAXPODS AGE
php-apache Deployment/php-apache 100% 0% 3 10 3m
{ e .

(o]

Figure 13-14. CPU Utilization is at 0%

Increasing Load

Next, we shall demonstrate what increasing load on the deployment does to the number of pods and CPU
utilization. Run the following command by substituting the LoadBalancer Ingress to put some load on the
deployment:

curl <LoadBalancer Ingress>

In another terminal, get the HPA. The number of pods is listed as 3 because the CPU utilization at 22% is
below the target CPU Utilization of 100%, as shown in Figure 13-15.

[root@localhost ~]# ssh -1 "docker.pem" ec2-user@52.91.91.148 (]
Last login: Sun Jul 17 19:27:48 2016 from d64-180-241-52.bchsia.telus.net

ol el 1)
) e / Amazon Linux AMI

IN__I

https://aws.amazon.com/amazon-linux-ami/2016.03-release-notes/
5 package(s) needed for security, out of 14 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-10-0-0-196 ~]$ ssh -1 "Kubernetes-coreos.pem" core@52.205.169.82
AC =
[ec2-user@ip-10-0-0-196 ~]$ ssh -1 "kubernetes-coreos.pem" core@52.20.201.138
Corel: stable (1068.6.0)
Last login: Sun Jul 17 23:40:14 2016 from 52.91.91.148
Update Strategy: No Reboots
r ~ & ./kubectl get hpa

NAME REFERENCE TARGET CURRENT MINPODS MAXPODS AGE|
php-apache Deployment/php-apache 100% 22% 3 10 7m

; [s ~ 5 ./kubectl get hpa |
NAME REFERENCE TARGET CURRENT ~ MINPODS MAXPODS AGE|
php-apache Deploymeni/php-apache 100% 22% 3 10 7m

Figure 13-15. CPU utilization increases to 22%

Run the following command loop by substituting the LoadBalancer Ingress to put more load on the
deployment:

while true; do curl <loadbalancer ingress>; done

Invoking the service in a loop outputs the same message repeatedly, as shown in Figure 13-16.

306

CHAPTER 13 " USING AUTOSCALING

-0- - § ./kubectl describe services php-apache | grep "LoadBalance
r Ingress"
LoadBalancer Ingress: a0c9a24254c7611e68ee50a92211bd41-40787046.us-east-1.elb.
amazonaws . com
18 ~ 5 curl aPc9a24254c7611e68ee50292211bd41-40787046.us-east-1.¢e
Lb.amazonaws . com

0K!core@ip- ~ % while true;
> do curl aac9a24254c?611e63ee50a92211bd41 40787046.us-east-1.elb.amazonaws. com;
done

OK!0K!0K!0K
'0K!0K!0K!0K!0K!0K!0K!0K!0K!0K!0K!0K!OK!0K!0K!OK!0K!0K!OK!0K!0K!O0K!0K!0K!0K!0K!0
K!OK!OK!OK!0K!OK!OK!OK!OK!OK!OK!OK!OK!0K!0K!OK!0K!0K!0K!0K!0K!0K!0K!O0K!0K!OK!OK!
OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK! OK!OK!OK! OK! OK!OK!OK! OK!OK!OK! OK!OK!0K!0K! 0K
'OK!IOK!OK!0K!0
K!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!0K!OK!OK!0K!O0K!0K!0K!0K!0K!0K!0K!OK!OK!OK!
OKIOK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!O0K!OK!OK!OK!OK! OK!0K!0K!0K!0K
'OK!0K!0K!OK!0K!OK!OK!0K!0K!'OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!0K!D
K!OK!OK!OK!OK!OK!OK!OK!OK!0OK!0OK!OK!0OK!OK!0OK!0OK!OK!OK!0K!0OK!OK!0K!OK!0K!0K!0K!0K!
OKIOK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK! OK!OK!OK!OK!OK!OK!OK!0K!OK!OK!0K!0K!OK!OK!O0K|
'OK!0K!OK!OK!OK!OK!OK!0K!0K!OK!0K!OK!OK!0K!OK!OK!OK!OK!OK!OK!OK!OK!OK!0K!0K!0K!0
KIOK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!0K!OK!OK!0OK!OK!0K!0K!OK!0K!0K!OK!O0K!OK!0K!
OK!IOK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK! OK!OK!OK!OK! OK!OK!OK! OK!OK!0K!0K! 0K
'OK!0K!0K!OK!OK!OK!OK!OK!OK!OK!0K!OK!OK!0K!0K!OK!0K!OK!OK!OK!OK!OK!OK!OK!OK!0K!0
K'0K10K'0K'0K'0KFOK|OK'OKlOK'DK'OK‘OK'OK'OK'OK'0K|DK'OK'0K|0K'UK'OKlﬁK'DK'OK'OKl[]

OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!OK!0OK!OK!OK!0OK!OK!0K!O0K! 0K =
10K!OK!OK!OK!0K!OKIOK!OK!0K!OK!OK![]

Figure 13-16. Invoking a service in a loop

List the horizontal pod autoscaler:
./kubectl get hpa

The CURRENT column value has become 224%, which indicates an increased load on the deployment,
as shown in Figure 13-17. The CPU utilization is above the target CPU utilization.

core@ip-10-0-0-50 ~ § ./kubectl get hpa

NAME REFERENCE TARGET CURRENT MINPODS MAXPODS AGE

php-apache Deploymenﬁ/php-apache 100% 224% 3 10 12m
I 1p-10-0-0-50 ~ §

Figure 13-17. Current CPU utilization above the target

The number of pods is still 3 because it takes a while for the number of pods to increase and the cluster
to stabilize, as shown in Figure 13-18.

re@ij 1-50 ~ S ./kubectl get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
php-apache 3 3 3 3 15m |

Figure 13-18. The number of pods is still 3 as it takes a while for the cluster to stabilize
when load is increased

List the deployment after a few more seconds, and the number of pods has increased to 5 as shown in
Figure 13-19. The autoscaler has scaled up the cluster by increasing the number of pods.

307

CHAPTER 13 © USING AUTOSCALING

5 ./kubectl get hpa I

NAME REFERENCE TARGET CURRENT MINPODS MAXPODS AGE|

php-apache Deployment/php-apache 100% 224% 3 10 12m|
- § ./kubectl get deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

php-apache 5 5 5 5 19m

Figure 13-19. The number of pods increases to 5 when load is increased

Summary

This chapter introduced autoscaling. To demonstrate autoscaling we create a PHP Apache Server
deployment and created a service for the deployment. Subsequently we created a horizontal pod autoscaler
and tested autoscaling by increasing load on the Apache server. In the next chapter we shall discuss
configuring logging.

308

CHAPTER 14

Configuring Logging

Logging is the process of collecting and storing log messages generated by different components of a system
(which would be a Kubernetes cluster) and by applications running on the cluster.

Problem

One of the problems associated with logging is demarcating the components and applications generating
logging messages. Another problem is decoupling the logging from the component/application. The
component generating logs in a Kubernetes application would be a container in a pod.

Solution

A container runs in isolation on the Docker Engine and is an object from which the single-container
management pattern of tracking an application running within a container, including application-
specific logging, can be used. Similarly, a pod is an object generating its own logging messages, and so is a
replication controller and a service.

A design pattern introduced in the recent publication Design Patterns for Container-based Distributed
Systems, by Brendan Burns and David Oppenheimer (https://www.usenix.org/node/196347)is a
single-node multi-container application pattern called the Sidecar Pattern, using which a main container
(for example a container generating web server logs) could be paired with a “logsaver” sidecar container,
as shown in Figure 14-1, to collect the web server’s logs from the local disk filesystem and stream them to
a cluster storage system. Sidecar containers are made feasible by containers on the same machine being
able to share a local disk volume.

Main Sidecar
Container Container

Web Server |« Loggl_ng
Container

Figure 14-1. Sidecar container for logging

© Deepak Vohra 2017 309
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_14

https://www.usenix.org/node/196347

CHAPTER 14 © CONFIGURING LOGGING

Another single-node, multiple-container application pattern, called the Adapter Pattern, could be used
to create an Adapter container (Figure 14-2) to provide a unified interface for aggregating logs from multiple
containers (or pods) on a node running the same or a different application.

Adapter Container |<«——

A 4

Container 1 Container 2 Container 3

Figure 14-2. Listing Kubernetes nodes

Using a logging-specific container provides separation of concerns, a modular design principle.

Overview

By default, Kubernetes components such as apiserver and kubelet use the “glog” logging library. For cluster-
level logging various options are available, two of which are as follows:

Logging to Google Cloud Logging
Logging to Elasticsearch and Kibana

In this chapter we shall discuss getting the single pod/container logs and also cluster-level logging
with Elasticsearch and Kibana. The procedure to use cluster-level logging with Elasticsearch and Kibana is
as follows.

1. Start Elasticsearch.
Start a Replication Controller from which logs are to be collected.

Start Fluentd and Elasticsearch to collect logs.

> e n

Start Kibana to view the logs.
This chapter covers the following topics:
e Setting the environment
e Getting the logs generated by the default logger
e Docker log files
e Cluster-level logging with Elasticsearch and Kibana

e Starting Elastic Search

310

CHAPTER 14 ' CONFIGURING LOGGING

e Starting a replication controller
e Starting Fluentd and Elasticsearch to collect logs

e Starting Kibana

Setting the Environment

Create a Kubernetes cluster using a CoreOS-based AWS CloudFormation. List the nodes with kubectl get
nodes. The controller and worker nodes should be listed; we have used a single-controller, three-worker
node cluster as shown in Figure 14-3.

$./kubectl get nodes

NAME STATUS AGE
ip-10-0-0-206.ec2.internal Ready 28s
ip-10-0-0-207.ec2.internal Ready 28s
ip-10-0-0-208.ec2.internal Ready 28s
ip-10-0-0-5

0.ec2.internal Ready,SchedulingDisabled 28s

Figure 14-3. Listing Kubernetes nodes

Getting the Logs Generated by Default Logger

The logs generated by a running pod may be obtained with the kubectl logs <POD> command. If a pod has
more than one container, the logs for a particular container may be obtained with the command kubectl
logs <POD> <container>.Kubernetes performs log rotation, and only the latest logs are available to kubectl logs.

First, create a sample pod from which to get the logs. Use the following listing to create a pod definition
file counter-pod.yaml; the pod generates a message using a counter.

apiVersion: vi
kind: Pod
metadata:
name: counter
spec:
containers:
args:
- bash
n_en
- "for ((i = 0; ; i++)); do echo \"$i: $(date)\"; sleep 1; done"
image: "ubuntu:14.04"
name: count

The pod definition file is shown in the vi editor in Figure 14-4.

311

CHAPTER 14 CONFIGURING LOGGING

apiVersion: vl
kind: Pod
metadata:
name: counter
spec:
containers:
args:
- bash
hl Il_cil
- "for ((i =0; ; i++)); do echo \"$i: $(date)\"; sleep 1; done"
image: "ubuntu:14.04"
name: count

Figure 14-4. Counter pod definition file

Create a pod from the pod definition file:
./kubectl create -f counter-pod.yaml

The counter pod is generated. List the pods. Get the logs for the pod counter:
./kubectl logs counter

The logs are listed as shown in Figure 14-5.

- § sudo vi counter-pod.yaml
e@i $./kKubectl create -f counter-pod.yaml
pod "counter" created
p-10-0-0- - § ./kubectl get pods
NAME READY STATUS RESTARTS AGE

counter ©/1 ContainerCreating © 10s
p-10-0-0- ~ § ./kubectl get pods
NAME READY STATUS RESTARTS AGE

counter ©9/1 ContainerCreating © 23s
ip- : ~ % ./kubectl logs counter

: Wed Jul 27 19:21:05 UTC 2016

: Wed Jul 27 19:21:06 UTC 20816

: Wed Jul 27 19:21:87 UTC 2016

: Wed Jul 27 19:21:08 UTC 2016

: Wed Jul 27 19:21:09 UTC 2016

: Wed Jul 27 19:21:10 UTC 2016

: Wed Jul 27 19:21:11 UTC 2016

: Wed Jul 27 19:21:12 UTC 2016

: Wed Jul 27 19:21:13 UTC 2016

: Wed Jul 27 19:21:14 UTC 2016

10: Wed Jul 27 19:21:15 UTC 2016

11: Wed Jul 27 19:21:1§ UTC 2016
D- -0-50 ~ §

WO~ oW b Wb @

Figure 14-5. Creating the counter pod and getting pod logs

312

CHAPTER 14 ' CONFIGURING LOGGING

Docker Log Files

By default the Docker containers log file directories are in the /var/1lib/docker/containers directory. CD
(change directory) to the /var/1lib/docker/containers directory and list the files and directories. A log
directory exists for each of the Docker containers, as shown in Figure 14-6.

p-1 fvar/lib/docker/containers $ sudo 1ls -1

total 88

drwx------ . 2 root root 4096 Jul 27 18:58 041501f4cecbfa26c89c8369282fel3a7e0lc8
1c28152d248e6575a22d20de24

drwx------ . 3 root root 4096 Jul 27 18:57 1f58566a7617c7327808297e280ec803dae2bf|
dbf1b23d29da52¢2095dbe4e76

drwx------ . 3 root root 4096 Jul 27 18:57 33fb20dfb63881369d02566eb2eb8a3ba5cclb
ef7dafoe70381aal3ffaed6e57

drwx------ . 3 root root 4696 Jul 27 18:57 365da624bcd55960feabf9fb5d7elb4712cdc79
a3c3c62724a422abode64e6f6a

drwx------ . 3 root root 4696 Jul 27 18:58 68bcde6c7c718a04d97a94bc5830914832fef5
f7cf38bd54cb90bbaldafbe64f

drwx------ . 2 root root 4096 Jul 27 18:58 6efofebdaac8ac53dfa9dfb6af853978365774
2932e25349c7f4f5277eaaf276

drwx------ . 3 root root 4896 Jul 27 18:57 9479ac4a8bd76f560fa5ba6156f060264081ee
70d37ebc7c4b42c73370f5a313

drwx------ . 2 root root 4096 Jul 27 18:59 d4dbad8595c¢f3f16c6e6b64b4f747c66ch2f27
92fcf31611ff3a3a2ab7379019 !
drwx------ . 2 root root 4096 Jul 27 18:58 dda5e849d5063a2f9fa9c72aa51d76174bf2ed|

Figure 14-6. Docker container log directories

To access a container directory we need to set permissions with chmod +x as shown in Figure 14-7. Then
CD to the container directory.

p-10-0-0-50 /var/lib/docker/containers $ sudo chmod +x ©41501f4cecbfa26c89]
c8369282 felaa?ea 1c81c28152d248e6575a22d20de24

0-50 fvar/lib/docker/containers § cd 041501fd4cecbfa26c89c8369282fel
3a?ea1c81c28152d248&65?5a22d2@de24

Figure 14-7. Setting Permissions on a Docker container log directory

List the files in the container directory as shown in Figure 14-8. The containerid-json.log file is the
log file generated by the container.

core@ip-10-0-0-50 /var/lib/docker/containers/0841501f4cecbfa26cB89c8369282fel3a7ed
1cB81lc28152d248e6575a22d20de24 $ sudo 1s -1
total 24
-TW-r----- . 1 root root 1030 Jul 27 18:58 041501f4cecbfa26c89c8369282fel3a7e0lcs
1c28152d248e6575a22d20de24-json. log
-rw-r--r--. 1 root root 3135 Jul 27 18:58 config.v2.json
-rw-r--r--. 1 root root 1229 Jul 27 18:58 hostconfig.json

re@ip-18-0-0-50 /var/lib/docker/containers/041501f4cecbfa26c89¢8369282fel3a7e0
lc8u2815"c12~8r_63?3.12u|20dr_2* S .

Figure 14-8. Listing log files for a Docker container

313

CHAPTER 14 © CONFIGURING LOGGING

Open the -json.log file in a vi editor. The JSON logs should be displayed as shown in Figure 14-9.

[l core@ip-10-0-0-50:/var/lib/docker/containers/041501f4cechfa26c89¢c83692 . o

File Edit View Search Terminal Help

“lcg“:"m?z? 18:58:24.249275 1 server.go:200] Using iptables Proxier.\n",
"stream":"stderr","time":"2016-07-27T18:58:24.264395246Z"}

{"log":"10727 18:58:24.249401 1 server.go:213] Tearing down userspace rule
s.\n","stream":"stderr","time":"2016-07-27T718:58:24.264432779Z"}

{"log":"10727 18:58:24.331715 1 conntrack.go:36] Setting nf_conntrack_max
to 262144\n","stream":"stderr","time":"2016-07-27T18:58:24.3533253732"}
{"log":"I0727 18:58:24.331784 1 conntrack.go:41] Setting conntrack hashsiz
e to 65536\n","stream":"stderr","time":"2016-07-27T18:58:24.353351574Z"}
{"log":"10727 18:58:24.332047 1 conntrack.go:46] Setting nf conntrack tcp_

timeout established to 86400\n","stream":"stderr”,”time":"2016-07-27T18:58:24.35
3358813Z"}

{"log":"E0727 18:58:24.332656 1 event.go:202] Unable to write event: 'Post
http://127.0.0.1:8080/api/v1l/namespaces/default/events: dial tcp 127.0.0.1:8080
: connection refused' (may retry after sleeping)\n","stream":"stderr","time":"20
16-07-27T18:58:24.35336476Z"}

<f4cechfa26c89c8369282fel3a7e01c81c28152d248e6575a22d20de24-json. log" 6L, 1030C

Figure 14-9. Docker container logs in JSON format

Logs of the system components are in the /var/log directory as shown in Figure 14-10.

~ § cd /var/log
‘fvar/log § 1s -1

total 48

“TW==-mm-- . 1 root utmp ® Jul 27 18:52 btmp
-rw-r--r--. 1 root root ® Jul 27 18:52 faillog
drwxr-sr-x. 4 root systemd-journal 4096 Jul 27 18:51 journal
-rw-r--r--. 1 root root 146292 Jul 27 19:11 lastlog
drwx------ . 2 root root 4696 Jul 18 06:27 sssd
“IW=----- . 1 root root 32064 Jul 27 19:11 tallylog
-rw-rw-r--. 1 root utmp 2688 Jul 27 19:11 wtmp

‘var/log $ I

Figure 14-10. System component logs

Cluster-Level Logging with Elasticsearch and Kibana

Cluster-level logging collects the standard output and standard error logs of applications running in
containers. For aggregating log files of applications running within containers, the Fluentd aggregator can be
used. In this section we shall configure and use cluster-level logging with Fluentd, Elasticsearch, and Kibana.
Fluentd is an open source data collector for a unified logging layer. Unified logging implies that Fluentd
decouples data sources from backend systems. The data source for the example would be logs generated in
a Kubernetes cluster, and the backend would be Elasticsearch. Elasticsearch is an open source distributed,
highly available, document-oriented, RESTful search engine designed for the cloud environment and built
on top of Lucene. Kibana is an open source analytics and search dashboard for Elasticsearch and is accessed
from a web browser. The three components of the cluster-level logging are shown in Figure 14-11.

314

Kubernetes
Cluster
Node

Fluentd Elasticsearch

o R g

CHAPTER 14 ' CONFIGURING LOGGING

Kibana Console

g

Figure 14-11. Cluster-level logging components

To configure logging, use the following procedure:

1.

LA

The following sections discuss each of the preceding steps in detail.

Start the MySQL replication controller and pods.
Start the Elasticsearch service.

Start Fluentd.

Start Kibana.

Access the logs in KIbana.

Starting a Replication Controller

A 4

To generate some application logs in pods we shall start a sample replication controller. Create an RC
definition file for amysql Docker image-based container. The RC is created in the kube-system namespace.

apiVersion: vi
kind: ReplicationController

metadata:
labels:

app: mysqlapp
name: mysql-rc
namespace: kube-system

spec:

replicas: 3
selector:
app: mysqlapp
template:
metadata:
labels:

app: mysqlapp

315

CHAPTER 14 CONFIGURING LOGGING

spec:
containers:

env:

name: MYSQL_ROOT_PASSWORD
value: mysql

image: mysql

name: mysql

ports:

containerPort: 3306

The RC definition file is shown in a vi editor in Figure 14-12.

apiversion: vl
kind: ReplicationController
metadata:
labels:
app: mysqlapp
name: mysql-rc
namespace: kube-system
spec:
replicas: 3
selector:
app: mysqlapp
template:
metadata:
labels:
app: mysqlapp
spec:
containers:

env:

name: MYSQL ROOT PASSWORD
value: mysql

image: mysql

name: mysql

ports:

containerPort: 3306

swall

Figure 14-12. Replication controller definition file

316

CHAPTER 14

Create an RC with kubectl create using the definition file:
./kubectl create -f mysql-rc.yaml

List the RC:
./kubectl get rc -namespace=kube-system

The mysql-rc RC should be listed as shown in Figure 14-13.

~ § sudo vi mysql-rc.yaml
re@ip-1t ~ § ./kubectl create -f mysql-rc.yaml
repllcatloncontroller "mysql-rc" created
i)-0 ~ § ./kubectl get rc --namespace=kube-system
NAME DESIRED CURRENT AGE

elasticsearch-logging-vl 2 2 21m
kibana-logging-v1 1 1 9m

kube-dns-v11 1 1 26m
mysql-rc 3 3 11s

Figure 14-13. Creating and listing a replication controller in the kube-system namespace

CONFIGURING LOGGING

List the pods in the kube-system namespace, and the mysql pods should be listed as shown in

Figure 14-14.

cor p-16-86- ~ § ./kubectl get pods --namespace=kube-system

NAME READY STATUS
RESTARTS AGE

elasticsearch-logging-vl-3eqgmk 1/1 Running
] 22m

elasticsearch-logging-v1-mnjy8 1/1 Running
0 22m

fluentd-elasticsearch 1/1 Running
2] 13m

heapster-v1.0.2-3151619174-kloek 2/2 Running
0 25m

klbana logging-v1-sdb3m 1/1 Running

9m

kube apiserver-ip-10-0-0-50.ec2.internal 1/1 Running
0 26m

kube-controller-manager-ip-10-0-0-50.ec2.internal 1/1 Running
] 26m

kube-dns-v1l-or9ek 4/4 Running
] 25m

kube-proxy-ip-10-0-8-206.ec2.internal 1/1 Running
] 25m

kube-proxy-ip-10-0-0-207.ec2.internal 1/1 Running

Figure 14-14. Listing pods in the kube-system namespace

317

CHAPTER 14 © CONFIGURING LOGGING

Starting Elastic Search

In this section we shall create a replication controller and service for Elasticsearch using the Docker image
gcr.io/google containers/elasticsearch:1.9. Create an RC definition file es-controller.yaml and
copy the following listing into it.

apiVersion: vi
kind: ReplicationController
metadata:
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true"
version: vi
name: elasticsearch-logging-vi
namespace: kube-system
spec:
replicas: 2
selector:
k8s-app: elasticsearch-logging
version: vi
template:
metadata:
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true"
version: vi
spec:
containers:
image: "gcr.io/google containers/elasticsearch:1.9"
name: elasticsearch-logging
ports:
containerPort: 9200
name: db
protocol: TCP

containerPort: 9300
name: transport
protocol: TCP
resources:
limits:
cpu: "0.1"
requests:
cpu: "0.1"
volumeMounts:
mountPath: /data
name: es-persistent-storage

318

CHAPTER 14 ' CONFIGURING LOGGING

volumes:
emptyDir: {}
name: es-persistent-storage

Create an RC using the definition file:
./kubectl create -f es-controller.yaml

Create a service definition file es-service.yaml for the Elasticsearch RC. Expose the service at port
9200. The selector labels should match labels in the pod.

apiVersion: vi
kind: Service
metadata:
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true"
kubernetes.io/name: Elasticsearch
name: elasticsearch-logging
namespace: kube-system
spec:
ports:
port: 9200
protocol: TCP
targetPort: db
selector:
k8s-app: elasticsearch-logging

Create a service from the definition file:
./kubectl create -f es-service.yaml

The RC, pods, and service for Elasticsearch are created in the kube-system namespace and may be
listed and described as shown in Figure 14-15.

319

CHAPTER 14 CONFIGURING LOGGING

e@ip ~ § sudo vi es-service.yaml
ip ~ S sudo vi es-controller.yaml
core@ip- ./kubectl create -f es-controller.yaml
repllcatloncontrcller "elasticsearch-logging-v1" created
core@ip-10-0-0-50 ~ § ./kubectl create -f es-service.yaml
service "elasticsearch-logging" created
e@ip-10-0-0-50 ~ § . /kubectl get rc --namespace=kube-system
NﬂME DESIRED CURRENT AGE
elasticsearch-logging-vl 2 2 32s
kube-dns-v11 1 1 am
core@ip-10-0-0-50 ~ $./Kubectl get svc --namespace=kube-system
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
elasticsearch-logging 10.3.0.79 <none> 9200/TCP 34s
heapster 10.3.0.18 <none> 80/TCP 5m
kube-dns 10.3.0.10 <none> 53/UDP,53/TCP 5m
core@ip-10-0-0-50 - § ./kubectl get pods --namespace=kube-system
NAME READY STATUS
RESTARTS AGE
elasticsearch-logging-v1-3eqmk 0/1 ContainerCreating
] 1m
elasticsearch-logging-v1l-mnjy8 0/1 ContainerCreating
a 1m
heapster-v1.0.2-3151619174-kl0ek 2/2 Running
0] 4m

Figure 14-15. Creating an RC and service for Elasticsearch

Describe the Elasticsearch service to list the service endpoints as shown in Figure 14-16.

core@ip-10-0- ~ 5 ./kubectl describe svc elasticsearch-logging --namespace=k

ube-system

Name: elasticsearch-logging

Namespace: kube-system

Labels: k8s-app=elasticsearch-logging
kubernetes.io/cluster-service=true
kubernetes.io/name=Elasticsearch

Selector: k8s-app=elasticsearch-logging

Type: ClusterIP

IP: 10.3.6.79

Port: <unset> 9280/TCP

Endpoints: 10.2.15.2:9200,10.2.69.3:9200

Session Affinity: None

No events.

ip-18-8-0-50 ~ § .

Figure 14-16. Describing the Elasticsearch service

320

CHAPTER 14 CONFIGURING LOGGING

Invoke the service endpoints to invoke the Elasticsearch service, as shown in Figure 14-17.

col)-0-0-50 ~ § curl 10.2.15.2:9200
{
"status" : 200,
“name" : "Jason",
"cluster name" : "kubernetes-logging",
"version" : {
"number® : "1.5:2%;
"build hash" : "62ff9868b4cBadc45860bebb259e21980778ablc",
"build timestamp" : "2015-04-27T09:21:06Z",
"build snapshot" : false,
"lucene_version" : "4.10.4"
}
"tagline" : "You Know, for Search"
}
re ~ § curl 10.2.69.3:9200
{
"status" : 200,
“name" : "Maestro",
"cluster name" : "kubernetes-logging”,
"version" : {
"number" : “1.5.2",
"build_hash" : "62ff9868b4c8adc45860bebb259€21980778ablc",
"build timestamp" : "2015-04-27T09:21:06Z",
"build snapshot" : false,
"lucene version" : "4.10.4"
}}
"tagline” : "You Know, for Search"

o~s1

Figure 14-17. Invoke testing for the Elasticsearch service

The kubectl cluster info should list the Elasticsearch as running, as shown in Figure 14-18.

~ & ./kubectl cluster-info

KUDEFDETES master is runnlng at h
Elast-csearch is runn1ng at ht

istem/services/

elastic

Heapster 15 runnlng at h

eapster
KUbE!DNS lS runnmg at |

services/kube-dns

To further debug and diagnose cluster problems,

0~ § l

j
use 'kubectl cluster-info dump' .
l

Figure 14-18. Elasticsearch service listed as Running in Kubernetes Cluster Info

321

CHAPTER 14 CONFIGURING LOGGING

Starting Fluentd to Collect Logs

Having started the data source (the Kuebrnetes cluster application) and the backend database
(Elasticsearch), next we shall start the unifying layer between the two, Fluentd. Create a pod definition

file fluentd-es.yaml for Fluentd and copy the following listing to the definition file. The Docker image
fabric8/fluentd-kubernetes:v1.9 is used in the pod’s container. The Elasticsearch endpoint URL and
port to interface with are also specified. The pod mounts the system log directory /var/log and the Docker
containers directory /var/1ib/docker/containers from the host path. Volumes of type hostPath are used.
A different log directory could also be mounted.

apiVersion: vi
kind: Pod
metadata:
name: fluentd-elasticsearch
spec:
containers:

env:
name: ELASTICSEARCH_HOST
value: "10.2.15.2"

name: ELASTICSEARCH_PORT
value: "9200"
image: "fabric8/fluentd-kubernetes:v1.9"
name: fluentd-elasticsearch
resources:
limits:
cpu: "0.1"
securityContext:
privileged: true
volumeMounts:
mountPath: /var/log
name: varlog

mountPath: /var/lib/docker/containers
name: varlibdockercontainers
readOnly: true
volumes:
hostPath:
path: /var/log
name: varlog

hostPath:

path: /var/lib/docker/containers
name: varlibdockercontainers

322

The pod definition file is shown in the vi editor in Figure 14-19.

apiVersion: vl
kind: Pod
metadata:
name: fluentd-elasticsearch
spec:
containers:

env:
name: ELASTICSEARCH HOST
value: "10.2.15.2"

name: ELASTICSEARCH PORT
value: "9200"
image: "fabric8/fluentd-kubernetes:v1.9"
name: fluentd-elasticsearch
resources:
limits:
cpu: "@.1"
securityContext:
privileged: true
volumeMounts:
mountPath: /var/log
name: varlog
. mountPath: /var/lib/docker/containers
1w

Figure 14-19. Pod definition file for fluentd

Create the pod for Fluentd:

./kubectl create -f fluentd-es.yaml

CHAPTER 14 CONFIGURING LOGGING

The pod is created in the kube-system namespace as shown in Figure 14-20.

323

CHAPTER 14 CONFIGURING LOGGING

s sudo vi fluentd-es.yaml
- ./kubectl create -f fluentd-es.yaml
pnd "fluentd elastlcsearch“ created
- § ./Kubectl get pods --namespace=kube-system

NAME READY STATUS RESTARTS
AGE

elasticsearch-logging-vl1-3eqmk 1/1 Running ©
8m

elasticsearch-logging-v1-mnjy8 /1 Running @
8m

fluentd-elasticsearch 1/1 Running ©
21s

heapster-v1.0.2-3151619174-k10ek 2/2 Running @
12Zm

kube-apiserver-ip-10-0-0-50.ec2.internal 1/1 Running ©
12m

kube-controller-manager-ip-10-0-0-50.ec2.internal 1/1 Running @
12m

kube-dns-v11l-0r9ok 4/4 Running ©
12m

kube-proxy-ip-10-0-0-206.ec2.internal 1/1 Running ©
12m

kube-proxy-ip-10-0-0-207.ec2.internal 1/1 Running @
1Z2m

kube-proxy-ip-10-0-0-208.ec2.internal 1/1 Running ©
12m

kube-proxy-ip-10-0-8-50.ec2.internal 1/1 Running ©
12m

kube-scheduler-ip-10-0-0-50.ec2.internal 1/1 Running @
12m

o= - 5 I

Figure 14-20. Creating and listing pod for fluentd

Starting Kibana

Next, we shall start Kibana to view the logs. Create an RC definition file kibana-rc.yaml and copy the
following listing to the file. The container image for Kibana is gcr.io/google_containers/kibana:1.3.
The URL for Elasticsearch also needs to be specified.

apiVersion: vi
kind: ReplicationController
metadata:
labels:
k8s-app: kibana-logging
kubernetes.io/cluster-service: "true"
version: vi
name: kibana-logging-vi
namespace: kube-system
spec:
replicas: 1
selector:
k8s-app: kibana-logging
version: vi

324

CHAPTER 14

template:
metadata:
labels:
k8s-app: kibana-logging
kubernetes.io/cluster-service: "true"
version: vi
spec:
containers:

env:
name: ELASTICSEARCH URL
value: "http://10.2.15.2:9200"
image: "gcr.io/google_containers/kibana:1.3"
name: kibana-logging
ports:
containerPort: 5601
name: ui
protocol: TCP
resources:
limits:
cpu: "0.1"
requests:
cpu: "0.1"

The RC definition file is shown in the vi editor in Figure 14-21.

CONFIGURING LOGGING

325

CHAPTER 14 © CONFIGURING LOGGING

replicas: 1
selector:
k8s-app: kibana-logging
version: vl
template:
metadata:
labels:
k8s-app: kibana-logging
kubernetes.io/cluster-service: "true”
version: vl
spec:
containers:

env:

name: ELASTICSEARCH URL

value: "http://10.2.15.2:9200"
image: "gcr.io/google containers/kibana:1.3"
name: kibana-logging
ports:

containerPort: 5601
name: ui
protocol: TCP
resources:
limits:
cpu: “0.1"
requests:
cpu: “@.1"

swall
Figure 14-21. Replication controller definition file for Kibana

Create a service definition file kibana-service.yaml for the RC and copy the following listing to the file.
The Kibana service is exposed at port 5601.

apiVersion: vi
kind: Service
metadata:
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true'
kubernetes.io/name: Kibana
name: kibana-logging
namespace: kube-system
spec:
ports:
port: 5601
protocol: TCP
selector:
k8s-app: kibana-logging

326

CHAPTER 14

The service definition file in the vi editor is shown in Figure 14-22.

apiVersion: vl
kind: Service
metadata:
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true"
kubernetes.io/name: Kibana
name: kibana-logging
namespace: kube-system
spec:
ports:
port: 5601
protocol: TCP
selector:
k8s-app: kibana-logging

Figure 14-22. Service definition file for Kibana

Create an RC for Kibana:
./kubectl create -f kibana-rc.yaml
Also, create the Kibana service:

./kubectl create -f kibana-service.yaml

CONFIGURING LOGGING

Kibana RC and service are created as shown in Figure 14-23. List the RC and service, which are in the

kube-system namespace

~ 5 sudo vi kibana-rc.yaml
~ § sudo vi kibana-service.yaml
r ~ 5 ./kubectl create -f kibana-rc.yaml
repllcatloncontroller "kibana-logging-v1" created
€ ~ & ./kubectl create -f kibana-service.yaml
service "klbana 1ogg1ng" created
) ~ § ./kubectl get rc --namespace=kube-system

NAME DESIRED CURRENT AGE
elasticsearch-logging-vl 2 2 13m
kibana-logging-v1 1 1 50s
kube dns-v1l 1 1 17m
i -0-50 ~ § ,/kubectl get svc --namespace=kube-system
NAHE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
elasticsearch-logging 10.3.0.79 <none> 9200/TCP 13m
heapster 10.3.0.18 <none> 80/TCP 18m
kibana-logging 10.3.0.213 <none> 5601/TCP im
kube-dns . 10.3.0.10 <none> 53/UDP,53/TCP 18m
i0-10-0-0-50 ~ §

Figure 14-23. Creating and listing RC and service for Kibana

327

CHAPTER 14 © CONFIGURING LOGGING

Describe the service to obtain the service endpoint, which is 10.2.15.4:5601, as shown in Figure 14-24.

- & ./kubectl describe svc kibana-logging --namespace=kube-sys

tem

Name: kibana-logging

Namespace: kube-system

Labels: k8s-app=elasticsearch-logging
kubernetes.io/cluster-service=true
kubernetes.io/name=Kibana

Selector: k8s-app=kibana-logging

Type: ClusterIP

IP: 10.3.08.213

Port: <unset> 5601/TCP

Endpoints: 10.2.15.4:5601

Session Affinity: None

No events.

.ql |

Figure 14-24. Describing the Kibana logging service

To access Kibana Dashboard from a web browser set port forwarding from a local machine. First, we
need to copy the key-pair for the CoreOS Kubernetes controller instance to be able to SSH into the controller
instance to set port forwarding:

scp -i docker.pem ec2-user@ec2-54-208-177-36.compute-1.amazonaws.com:~/kubernetes-coreos.pem

~/kubernetes-coreos.pem
ssh -i kubernetes-coreos.pem -f -nNT -L 5601:10.2.15.4:5601:5601 core@ec2-52-207-33-106.

compute— 1.amazonaws.com

Port forwarding is set.
Access the Kibana Dashboard from a browser on the local machine with the URL http://localhost:5601.
The Kibana Dashboard is started, as shown in Figure 14-25.

Kibana 4 - Mozilla Firefox

1l Kitana 4 x| B
4 & localhost: 560 ~ | |Bv coogle A E &A=

Kibana

Figure 14-25. Kibana Dashboard

328

http://localhost:5601/

CHAPTER 14 ' CONFIGURING LOGGING

For using Kibana, refer the Kibana documentation. An index pattern may be configured for search as
shown in Figure 14-26.

Advanced Oblects

Index Pattems

we Configure an index pattern

In order to use Kibana you must configure at least one index paltem. Index paltemns are used Lo identify the Elasticsearch index to run search and
analytics agalnst. They are also used o conflgure flelds.

Clindex contains time-based events

Index name or pattern

allow you to dafine dyna

=

1. Example: o

¥ mames

Figure 14-26. Configuring an index pattern

The logs collected from the Kubernetes cluster by Fluentd and the log messages generated by Fluentd
itself are displayed as shown in Figure 14-27.

Il Discover - Kibana 4 x | &

€ | ¥ | & locathost 560 L# discoverT splay-Off section:0,value:0 T ~ | B soogle BB 3 R =
_indax -]
tive
Timo - _source
message =
i v July 27th 2016, 19:26:62.000 possage: Connection cpened to Elasticsearch cluster =» {:host=»<10.2.15.2%, :port=»9208, :scheme=>"http"}
ugin_|
tag: fluent.info @gtimestamp: July 27th 2018, 19 900 _source: {"ressage”:*Conmection opened to Elasticsearch
0 cluster == {:host=>\"10.2. iport=>9200, :sc Y “http
fype "Grizestasp®:"2016-07-277T23:26:02+00:00"} _id: AVYurjBvBBCVMWESOVSz _type: fluentd

* July 2ith 2016, 19:26:60.000 message: shutting down fluentd tag: fluent.info etimestasp: July 27th 2016, 19:26:60.680 _source:
{"message”: "shutting down fluentd®,"tag":"fluent.info", "@tirestang”:"2016-07-27T23:26:00400:00"} _id: AVvuris.

BRCWMESOVSx _type: fluentd _index: logstash-2018.67.27

July 27th 2006, 19:26:60.080 typo: tail plugin_id: object:10893f2 message: shutting down input type="tail” plugin_ide"object:legnafe”

nfo gtinestamp: July 27th 2016, 19:26:00.000 _source:

‘type:"tail®, "plugin_id":"ebject:1eB03f4", "message”:"shutting down input types\“tail\" plugin_ids=\"object:lef03fa
T . sestarp®:"2016-07-27T23:26:00+00:00°) _id: AVYuri3-BBOVMNESOVSy _type: fluentd

tag: fluent

b July 2ith 2016, 19:26:80.960 pessage: shutting down fluentd tag: fluent.info etimestasp: July 27th 2016, 19:26:60.800 _source:
= 2016-07-27T23:26: 00+00: 00" }

shutting down fluentd®, "tag®:"fluent. info", "@tisest.

{roessage"

_dd: AvvurhoTBECVMWESOv ST I- File Browser | —index: logstash-

Figure 14-27. Displaying log messages in Kibana

329

CHAPTER 14 CONFIGURING LOGGING

The fields may be navigated from the Popular Fields list as shown in Figure 14-28.

Discover - Kibana 4 - Mozilla Firefox

| 1Ml Discover-Kibana 4 x | 4»

€ & localhost:560L/#;d e 0 v
10 ana
logstash-* 11 hits
27 2016, 00:00:00.000 - Jul Tih 2016, 235959 959
Selected Flekis s s e 9
BOUrCE
Flelds o NI
o [
Popular fiekds
@irmestamp
_d timestamp per 30 minutas
_indmc ~

Time » _scurce
* July 27th 2016, 19:26:02.000 pggsage: Connection opered to Elasticsearch cluster =» {:host=>"19.2.15.2", :port=>0209, :scheme=>"http"}
tag: fl info gtimestamp: July 27th 2016, 19:26:02.000 _source: {"message”:"Connection opened to Elasticsearch

cluster

{:hostax}"10.2.15.2\", :port=>9200, :scheme=»*http
+00: 80"}

_type: fluentd

JAd: AVur] BvBRCVIWESQvS:

fo* *@tinestanp”:2016-07-27T23:26:0

AT}, "tag" " Fluent 3

Figure 14-28. Popular fields in the index

The Kubernetes cluster info should also list Kibana in addition to the Elasticsearch service as shown in
Figure 14-29.

@1p-10-0- 5 ./kubectl ctuster-lnfo
Kubernetes master is runnmg at calhost:
Elast csearch 15 runnmg at

Heapﬁre- 15 runnlng at |

r'leﬂc: 15 runnlng at http://localhost:8080/api

‘lJLDNq is runnlng at 1ttp://Localhos

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

Figure 14-29. Kibana is listed as Running

Pods for MySQL, Elasticsearch, Fluentd, and Kibana are listed in the kube-system namespace as shown

in Figure 14-30.

330

CHAPTER 14 ' CONFIGURING LOGGING

(p-10-0- ~ $§ ./Kubectl get pods --namespace=kube-system L
NAME READY STATUS RESTARTS

elazgfcsearch-logging-vl-3equ 1/1 Running ©
elaszcsearch-logging-vl-mnjya 1/1 Running ©
flugﬁrsd-elasticsearch 1/1 Running ©
hea;:?ar-vl.9.2-31516191?4Ak19ek 2/2 Running ©
kibggz-logging-vl-sdem 1/1 Running ©
kubgr?aplserver-lp- 10-0-0-50.ec2.internal 1/1 Running @
kub§T$ontrol1er-manager-ip-lBAe-e-Se.ecz.internal 1/1 Running ©
kubi?zns-vll-oreek 4/4 Running ©
26m
kube-proxy-ip-10-0-8-206.ec2.internal 1/1 Running ©
kubzégroxy‘ipllalele‘ze?.ec2.interna1 1/1 Running @
kubg?groxy-iplla-e-e-zea.ecz.internal 1/1 Running @
kubz?groxy-ip-10-9-0-59.ec2.internal 1/1 Running ©
kubi?zcheduler-ip-le-o-a-se.ecz.internal 1/1 Running ©
mys:{Trclsjfdy 1/1 Running ©
59s
mysql-rc-nnhmt 1/1 Running © [

Figure 14-30. Pods for MySQL, Elasticsearch, Fluentd, and Kibana

Summary

In this chapter we introduced logging, including the default logger and the Docker log files. Subsequently we
demonstrate using cluster-level logging to collect and monitor logs with Elasticsearch, Fluentd, and Kibana.
In the next chapter we shall discuss using a high-availability master with OpenShift.

331

PART il

High Availability

CHAPTER 15

Using an HA Master with OpenShift/

A Platform as a Service (PaaS) is a cloud platform on which applications may be developed, run, and
managed with almost no configuration as the platform provides the application infrastructure including
networking, storage, OS, runtime middleware, databases, and other dependency services. Kubernetes is the
most commonly used container cluster manager and can be used as the foundation for developing a PaaS.
OpenShift is an example of a PaaS.

OpenShift Origin is an open source container application platform providing full application life-cycle
management. OpenShift Origin provides standardization through containerization. OpenShift includes an
embedded Kubernetes cluster manager to orchestrate Docker containers.

Problem

A single master in a Kubernetes cluster is a single point of failure (SPOF). Failure of the node on which the
master controller is running causes the Kubernetes cluster to fail and become inaccessible. At the time of
developing this book, CoreOS does not support a high-availability (HA) controller out-of-the-box. CoreOS
does provision an Auto Scaling Group and a Launch Configuration so that if a worker node is stopped or
fails, another worker node is started.

Solution

Using a high availability (HA) master, which consists of more than one Kubernetes master with failover
configured, provides high availability to the cluster, and failure of a single master does not cause the
cluster to fail. An alternative to the CoreOS Linux-based cluster is to use the OpenShift platform, which can
configure multiple master nodes. Amazon Elastic Load Balancers may be used to provide failover from a
controller node running in one zone to a controller node running in another zone with an Inter-AWS Zone
High-availability Architecture. AWS does not support Inter-AWS Region High-Availability Architecture for
Elastic Load Balancers. HA master is a Kubernetes design pattern that is implemented by only some of the
tools, such as the Kubernetes-based PaaS OpenShift. The OpenShift HA Master is based on the Active-Active
architectural pattern, in which both master nodes are active and provide redundancy. An Elastic Load
Balancer is used to distribute the load across the two master nodes. The HA master controller API server is
exposed on the Load Balancer, as shown in Figure 15-1, and not directly on the master nodes.

© Deepak Vohra 2017 335
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_15

CHAPTER 15 USING AN HA MASTER WITH OPENSHIFT

OpenShift
Master 1
. Kubernetes
oo st
URL
OpenShift
Master 2

Figure 15-1. OpenShift HA master

Overview

A typical production level OpenShift Origin cluster would consist of a high-availability master. In this
chapter we shall discuss such a high-availability master OpenShift Origin cluster. The stages are as follows:

Setting the environment
Installing the credentials
Installing the network manager
Installing OpenShift Ansible
Configuring Ansible

Running Ansible Playbook
Testing the cluster

Testing the HA

Setting the Environment

The OpenShift cluster we shall create consists of the following EC2 instances.

1 Ubuntu instance for OpenShift Ansible
2 CentOS 7 for OpenShift Masters

1 CentOS 7 for HAProxy

1 CentOS 7 for OpenShift Worker

1 Centos 7 for etcd

CentOS 7 instances may be launched from https://aws.amazon.com/marketplace/pp/B0007WM7QW.
Select a Region and click Continue. In the Launch on EC2:CentOS 7 (x86_64) - with Updates HVM dialog
that appears, select an m3.large or larger EC2 Instance Type. For VPC select EC2 Classic. For Key Pair select
a pre-existing key pair (docker.pem in the example). Click the button Launch With 1-Click. The CentOS

instances are shown in Figure 15-2.

336

https://aws.amazon.com/marketplace/pp/B00O7WM7QW

CHAPTER 15 I USING AN HA MASTER WITH OPENSHIFT

Your Account > See all AWS Account Acthity ™
Your Software SUbSCf‘iptionS (1) Enable ™ and create billing alerts 7 for AWS Marketplace charges
Products Instances Actions
ﬁ;:;()s 7 (xB6_64) - with Updates — (G 4 active
S5dfibee Version 1602
Contact vendor @ running Manage in WS Console T |Mmm ole s
White a review bBdi b21 ersion 1602
Cancel subscription] @ running Manage in AN Console T
i5d2164c Version 1602
@ running Manage in WS Console "7
iedc1887 Wersion 1602
@ running Manage in NS Console T

Figure 15-2. Launching CentoOS instances

Launch one EC2 instance based on the Ubuntu AMI. The required instances for the OpenShift cluster
are shown in Figure 15-3. Additional master, worker and Etcd instances may be added, but we have used the
minimum number of instances to define a HA master cluster.

Q Instance State : Running 9 1to6 of 6
Name ~ Instance ID - Inst Type - Availability Zone ~ Instance State
@ OpenShift -32e/c9ac t2.micro us-east-1b @ running
OpenShift Master 1 F029d50b m3.large us-east-1c @ running
OpenShift Master 2 i-239c5eba m3.large us-east-1c @ running
OpenShift Worker 1 i-a5a2603¢ m3.large us-gast-1¢ @ running
OpenShift Load Balancer recalb2?s m3.large us-east-1c @ running
OpenShift Etcd i-faa26063 m3.large us-gast-1c @ running
b
Instance: | i-32e7¢9ac (OpenShift) Public DNS: ec2-52-87-178-15.compute-1.amazonaws.com [_ B ==

Description Status Checks Monitaring Tags

Instance ID -32e7c9ac Public DNS ~ ec2-52-87-178-
15.compute-
1.amazonaws.com
Instance state runnina Public P 52.87.178.15 %

Figure 15-3. CentoOS instances for OpenShift cluster

The following software needs to be installed:

Docker on each CoreOS instance

Etcd on the etcd instances

HAProxy on the LoadBalancer instance

Network Manager on each CentOS instance

337

CHAPTER 15 USING AN HA MASTER WITH OPENSHIFT

All of the preceding software except the Network Manager is installed automatically when we run the
Ansible playbook. We also need to install the docker . pem credentials on each of the CoreOS instances and
the Ubuntu instance for OpenShift Ansible, which we shall install next.

Installing the Credentials

From the local machine SCP copy the docker.pem into the Ubuntu instance that is the client instance for
launching the OpenShift cluster using the Public IP address or Public DNS, which may be obtained from the
EC2 Console:

scp -i docker.pem docker.pem ubuntu@ec2-52-87-178-15.compute-1.amazonaws.com:~

Similarly, obtain the Public DNS for each of the CentOS instances, the ones for the masters, worker,
Etcd, and LoadBalancer. SCP copy the docker . penm file to each of the CentOS instances. The following scp
commands copy the docker . pem file to the master instances:

scp -i docker.pem docker.pem centos@ec2-54-90-107-98.compute-1.amazonaws.com:~
scp -i docker.pem docker.pem centos@ec2-54-221-182-68.compute-1.amazonaws.com:~
The following scp command copies the docker.pem to the Worker instance.

scp -1 docker.pem docker.pem centos@ec2-54-159-26-13.compute-1.amazonaws.com:"
The following scp command copies the docker.pem to the LoadBalancer instance.
scp -i docker.pem docker.pem centos@ec2-54-226-7-241.compute-1.amazonaws.com:~

The following scp command copies the docker . pem to the Etcd instance:
scp -i docker.pem docker.pem centos@ec2-54-160-210-253.compute-1.amazonaws.com:"~

The scp commands do not generate any output, as shown in Figure 15-4.

[root@localhost ~]# scp -i docker.pem docker.pem centos@ec2-54-221-182-68.comput
[e-1.amazonaws. com:~

|docker.pem 100% 1696 1.7KB/s ©0:00
[root@localhost ~]# scp -1 docker.pem docker.pem centos@ec2-54-159-26-13.compute
-1.amazonaws . com:~

docker.pem 100% 1696 1.7KB/s 00:00
[root@localhost ~]# scp -1 docker.pem docker.pem centos@ec2-54-226-7-241.compute
-1.amazonaws.com:~

docker.pem 100% 1696 1.7KB/s 00:00
[root@localhost ~]# scp -i docker.pem docker.pem centos@ec2-54-160-210-253.compu
te-1.amazonaws.com:~

docker.pem 100% 1696 1.7KB/s 00:00

Figure 15-4. Copying docker.pem to each of the CoreOS instances

338

CHAPTER 15 I USING AN HA MASTER WITH OPENSHIFT

Installing the Network Manager

For network connectivity the OpenShift cluster makes use of Network Manager, which we need to install on
each of the CentOS instances. SSH log in into each of the CentOS instances:

ssh -i docker.pem centos@ec2-54-90-107-98.compute-1.amazonaws.com
ssh -i docker.pem centos@ec2-54-221-182-68.compute-1.amazonaws.com
ssh -i docker.pem centos@ec2-54-159-26-13.compute-1.amazonaws.com
ssh -i docker.pem centos@ec2-54-226-7-241.compute-1.amazonaws.com
ssh -i docker.pem centos@ec2-54-160-210-253.compute-1.amazonaws.com

Run the following commands on each of the CentOS instances to install, start, and enable the Network
Manager and find its status:

sudo yum install NetworkManager
sudo systemctl start NetworkManager

sudo systemctl enable NetworkManager
sudo systemctl status NetworkManager

Installing OpenShift via Ansible on the Client Machine

We shall use the Ansible software automation platform to install the OpenShift software remotely from the
Ubuntu instance. We do not need to log into each of the OpenShift cluster instances to launch any software
other than the Network Manager, which we already have installed. SSH log into the Ubuntu instance:

ssh -i "docker.pem" ubuntu@ec2-52-87-178-15.compute-1.amazonaws.com

Ubuntu builds for Ansible are available in the Ubuntu Personal Package Archive (PPA). To configure
PPA and install Ansible, first run the following commands:

sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ansible/ansible

The Ansible PPA is added to the repository as shown in Figure 15-5.

339

CHAPTER 15 © USING AN HA MASTER WITH OPENSHIFT

ubuntu@ip-10-0-0-120:~$ sudo apt-get install software-properties-common

Reading package lists... Done

Building dependency tree

Reading state information... Done

software-properties-common is already the newest version.

@ upgraded, © newly installed, © to remove and @ not upgraded.
ubuntu@ip-10-0-0-120:~% sudo apt-add-repository ppa:ansible/ansible

Ansible is a radically simple IT automation platform that makes your applicatio
ns and systems easier to deploy. Avoid writing scripts or custom code to deploy
and update your applications— automate in a language that approaches plain Engli
sh, using SSH, with no agents to install on remote systems.

http://ansible.com/
More info: https://launchpad.net/~ansible/+archive/ubuntu/ansible
Press [ENTER] to continue or ctrl-c to cancel adding it

gpg: keyring " /tmp/tmpiz@jcdly/secring.gpg’ created

gpg: keyring " /tmp/tmpiz@jc4ly/pubring.gpg’ created

gpg: requesting key 7BB9C367 from hkp server keyserver.ubuntu.com

gpg: /tmp/tmpiz@jc4ly/trustdb.gpg: trustdb created

gpg: key 7BB9C367: public key "Launchpad PPA for Ansible, Inc." imported
gpg: Total number processed: 1

gpg: imported: 1 (RSA: 1)

0K

ubuntu@ip-10-0-0-120:~$ ||

Figure 15-5. Installing Ansible PPA

Update the repository and install Ansible:

sudo apt-get update
sudo apt-get install ansible

Ansible is installed on the Ubuntu instance.
Download the openshift-ansible git repository. CD (change directory) to the openshift-ansible

directory:

git clone https://github.com/openshift/openshift-ansible.git
cd openshift-ansible

To list the default settings for the IP addresses and host names run the following command:
ansible-playbook playbooks/byo/openshift facts.yml

The command output is shown in Figure 15-6.

340

CHAPTER 15 © USING AN HA MASTER WITH OPENSHIFT

ubuntu@ip-10-0-0-120:~/openshift-ansible$ ansible-playbook playbooks/byo/openshi
ft_facts.yml
[WARNING]: provided hosts list is empty, only localhost is available

PLAY [L0CalhoSt] *#¥sssrrrssisrirriitr e et i e s e es

TASK [Verify Ansible version is greater than or equal to 2.1.0.0] ***x¥sxxxxsixx
skipping: [localhost]

PLAY [10ca1h°st] AR A R R R A R R A R A A RN R AR N A AR A

TASK [include vars] EE R e PSR PR
ok: [localhost]

TASK Eadd host] EE st b P Rt R R e]
[DEPRECATION WARNING]: Using bare variables is deprecated. Update your playbooks
so that the environment value uses the full variable syntax

("{{g all hosts}}').

This feature will be removed in a future release.

Deprecation warnings can be disabled by setting deprecation warnings=False in

ansible.cfg.

PLAY [1 00 all hosts] i sk sk ke ke kel ke ok ke o ok ok ok ok ok o ok ke ok ok ok ok ok ke ok ok ok ol ok ok ok ke ke ol ke ol e ke ke e ol i e okl o ol e o ok
skipping: no hosts matched

Figure 15-6. Listing the default settings for the IP addresses and hostnames

The default IP address/hostname settings are output as shown in Figure 15-7.

TASK [Evaluate oo etcd to config] e s e e et

TASK [Evaluate o0 masters to config] AR R R R R R

TASK [Evaluate oo_nodes_to_config] **** SRy nuney s bl g
TASK [Evaluate 00 nodes to config] EikkEkkkkkkkkkkkhkk iRk kk kR kR k kR kR ko kR

TASK [Evaluate oo first Etcd] AEXEXEEZXEEXXEX XXX XXX XX XXX XXX XX XXX A XX R KX RE AR R R KR X

skipping: [localhost]

TASK [Evaluate oo first master] AR E AR E XA R LRI X AR R R R R KR

skipping: [localhost]

TASK EEvaluate oo 1b to config] ek sk s e ok i ke e ok ok o ke ol o ok ok ke e o o ok ke ke ke s o ol ok ke o o ok ok ok

TASK [Evaluate oo nfs to config] FEEEE R AR R XXX R R RRRE R

PLAY [Gather Cluster facts] R EEEEE R R R B e s
skipping: no hosts matched

PLAY RECAP R R s 2 22 s 22 2 e SR s s R s e 2 R S e RS SRS SR S EEEE S 2 EE R R

localhost : ok=1 changed=0 unreachable=0 failed=0

ubuntu@ip-10-0-0-120:~/openshift-ansibles ||

Figure 15-7. Default IP address/hostname settings

341

CHAPTER 15 © USING AN HA MASTER WITH OPENSHIFT

Configuring Ansible

Some of the Ansible configuration settings may be modified in the /etc/ansible/ansible.cfg
configuration file. We need to modify some of these settings for OpenShift Ansible. Open the /etc/ansible/
ansible.cfgfile in a vi editor.

sudo vi /etc/ansible/ansible.cfg
Add/modify the following settings in the [defaults] header.

sudo= yes

ask_sudo_pass=False
ask_pass=False

remote_user = centos

host_key checking = False
timeout=0

private_key file= ~/docker.pem

Some of the settings are shown in ansible.cfg in Figure 15-8.

host key checking = False

change the default callback
#stdout callback = skippy

enable additional callbacks
#callback whitelist = timer, mail

Determine whether includes in tasks and handlers are "static" by

default. As of 2.0, includes are dynamic by default. Setting these
values to True will make includes behave more like they did in the
1.x versions.

#task includes static = True

#handler includes static = True

change this for alternative sudo implementations
#sudo_exe = sudo

What flags to pass to sudo
WARNING: leaving out the defaults might create unexpected behaviours
#sudo flags = -H -S -n

SSH timeout
timeout = @

default user to use for playbooks if user is not specified
(/usr/bin/ansible will use current user as default)
remote user = centof§

logging is off by default unless this path is defined

79,20 16%

Figure 15-8. Configuringansible.cfg

342

CHAPTER 15 © USING AN HA MASTER WITH OPENSHIFT

These properties are spread out throughout the file and are not collocated, as shown in Figure 15-9.

1if set, always use this private key file for authentication, same as
if passing --private-key to ansible or ansible-playbook
private_key file = ~/docker.pem

If set, configures the path to the Vault password file as an alternative to
specifying --vault-password-file on the command line.
#vault_password file = /path/to/vault_password file

format of string {{ ansible managed }} available within Jinja2

templates indicates to users editing templates files will be replaced.

replacing {file}, {host} and {uid} and strftime codes with proper values.
#ansible managed = Ansible managed: {file} modified on %Y-%m-%d %H:%M:%S by {uid
} on {host}

This short version is better used in templates as it won't flag the file as ch
anged every run.

#ansible managed = Ansible managed: {file} on {host}

by default, ansible-playbook will display "Skipping [hest]" if it determines a
task

should not be run on a host. Set this to "False" if you don't want to see the
se "Skipping"

messages. NOTE: the task header will still be shown regardless of whether or n
ot the

task is skipped.

Hdisplay skipped hosts = True

125,1 32%

Figure 15-9. The ansible.cfg configuration properties are not collocated

The default inventory file used by Ansible is /etc/ansible/hosts, which is used to configure the

hosts for the OpenShift master nodes, worker nodes, etcd nodes, and LoadBalancer node. Open the /etc/

ansible/hosts file in a vi editor.
sudo vi /etc/ansible/hosts
At the top of the file configure the following:

[OSEv3:children]
masters

etcd

1b

nodes

Next, specify some variables:

[0SEv3:vars]
ansible user=centos
ansible sudo=true
deployment_type=origin
ansible_ssh_private key file=~/docker.pem

The top section of the /etc/ansible/hosts file is shown in Figure 15-10.

343

CHAPTER 15 © USING AN HA MASTER WITH OPENSHIFT

This is the default ansible 'hosts' file.

It should live in /fetc/ansible/hosts

- Comments begin with the '#' character

- Blank lines are ignored

- Groups of hosts are delimited by [header] elements
- You can enter hostnames or ip addresses

- A hostname/ip can be a member of multiple groups
[0SEv3:children]

masters

eted

1b

nodes

g
¥
#
#
i
#
“
#

4%

Ex 1: Ungrouped hosts, specify before any group headers.
[0SEv3:vars]

ansible user=centos

ansible sudo=true

deployment type=origin

ansible ssh private key file=~/docker.pem

“fetc/ansible/hosts" 77L, 3193C 1,1 Top

Figure 15-10. The /etc/ansible/hosts file

Several other cluster variables are supported (see Table 2. Cluster Variables at https://docs.
openshift.org/latest/install config/install/advanced_install.html#multiple-masters), but
we have used only the minimum required. With multiple masters the HA (High Availability) method
native is supported, which makes use of a LoadBalancer configured with [1b] host in the hosts file or
preconfigured.

openshift_master cluster method=native
We shall be specifying a host for the load balancer in the /etc/ansible/hosts file. Obtain the hostname
or the Public DNS or the Public IP for the load balancer instance from the EC2 Console and specify the same

in the following settings in the /etc/ansible/hosts file:

openshift master cluster hostname=ec2-54-226-7-241.compute-1.amazonaws.com
openshift_master cluster public_hostname=ec2-54-226-7-241.compute-1.amazonaws.com

Next, specify the masters in the /etc/ansible/hosts file.

Several host variables (see Table 1. Host Variables at the URL shown above) are supported, but we have
used only the host variables shown in Table 15-1 for the master, worker, etcd and Ib.

344

https://docs.openshift.org/latest/install_config/install/advanced_install.html#multiple-masters
https://docs.openshift.org/latest/install_config/install/advanced_install.html#multiple-masters

CHAPTER 15 © USING AN HA MASTER WITH OPENSHIFT

Table 15-1. Host Variables

Host Variable Description ExampleValue
openshift_ip Private IP which may be obtained 10.156.14.183
from the EC2 Console
openshift_public_ip Public IP which may be obtained ~ 54.90.107.98
from the EC2 Console
openshift_hostname The hostname for the host which ~ ip-10-156-14-183.ec2.internal
may be obtained from the Private
DNS in the EC2 Console

openshift_public_hostname The public hostname for the host ec2-54-90-107-98.compute-1.
which may be obtained from the amazonaws . com
Public DNS in the EC2 Console

Similarly configure the [etcd], [1b] and [nodes] sections. The masters are also listed in the [nodes]
but made non-schedulable with openshift_schedulable set to false and have the labels added with
openshift node_labels. The hosts settings should be similar to the following; the hostnames and IP
address would be different for different users.

[masters]

ec2-54-90-107-98. compute-1.amazonaws.com openshift ip=10.156.14.183 openshift public_
ip=54.90.107.98 openshift_hostname=ip-10-156-14-183.ec2.internal openshift public_
hostname=ec2-54-90-107-98. compute-1.amazonaws.com
€c2-54-221-182-68.compute-1.amazonaws.com openshift_ip=10.154.46.153 openshift_public_
ip=54.221.182.68 openshift_hostname=ip-10-154-46-153.ec2.internal openshift_public_
hostname=ec2-54-221-182-68.compute-1.amazonaws.com

[etcd]

€c2-54-160-210-253. compute-1.amazonaws.com openshift ip=10.153.195.121 openshift_public_
ip=54.160.210.253 openshift_hostname=ip-10-153-195-121.ec2.internal openshift_public_
hostname=ec2-54-160-210-253.compute-1.amazonaws.com

[1b]

€C2-54-226-7-241.compute-1.amazonaws.com openshift ip=10.154.38.224 openshift public_
ip=54.226.7.241 openshift_hostname=ip-10-154-38-224.ec2.internal openshift public_
hostname=ec2-54-226-7-241.compute-1.amazonaws.com

[nodes]

ec2-54-90-107-98. compute-1.amazonaws.com openshift ip=10.156.14.183 openshift public_
ip=54.90.107.98 openshift_hostname=ip-10-156-14-183.ec2.internal openshift public_
hostname=ec2-54-90-107-98. compute-1.amazonaws.com openshift node_ labels="{'region':
"primary', 'zone': 'east'}" openshift_schedulable=false
€c2-54-221-182-68.compute-1.amazonaws.com openshift ip=10.154.46.153 openshift_public_
ip=54.221.182.68 openshift_hostname=ip-10-154-46-153.ec2.internal openshift_public_
hostname=ec2-54-221-182-68.compute-1.amazonaws.com openshift node labels="{'region':
'primary', 'zone': 'east'}" openshift_schedulable=false
ec2-54-159-26-13.compute-1.amazonaws.com openshift ip=10.113.176.99 openshift_public_
ip=54.159.26.13 openshift_hostname=ip-10-113-176-99.ec2.internal openshift public_
hostname=ec2-54-159-26-13.compute-1.amazonaws.com openshift node labels="{'region':
"primary', 'zone': 'east'}"

345

CHAPTER 15 © USING AN HA MASTER WITH OPENSHIFT

Running the Ansible Playbook

The default inventory file is

/etc/ansible/hosts but another file may be configured with the inventory

setting in the ansible. cfg, for example:

inventory = /etc/ansible/inventory/hosts

We have configured the default inventory file /etc/ansible/hosts. Start the OpenShift cluster by

running the Ansible playbook:

ansible-playbook ~/openshift-ansible/playbooks/byo/config.yml

The OpenShift software such as Docker, HAProxy, and so on are installed and started on the configured

hosts, as shown in Figure 15-11.

TASK [openshift hosted :
skipping: [ec2-54-90-107-

TASK [openshift _hosted :
gistry] ***
skipping: [ec2-54-90-107-

TASK [openshift hosted :
skipping: [ec2-54-90-107-

TASK [openshift_hosted :
skipping: [ec2-54-90-167-

TASK [openshift hosted :

ec2-54-159-26-13. compute-
failed=0

failed=0
failed=e

gpR-1p7-98

failed=e

__féj;led:@__ 10-253. pute-1.a

Set_fact] O O O O
98.compute-1.amazonaws.com]

Determine if volume is already attached to dc/docker-re|

98.compute-1.amazonaws.com]

Set fact] P E Tt T T Tttt T T T T s Tt st 1=+

98 .compute-1.amazonaws.com]

Add volume to dc/docker-registry] **=xsxssxsxxzsssxxxsx
98.compute-1.amazonaws.com]

Delete temp directory] B e s

ok: [ec2-54-90-107-98.compute-1.amazonaws.com]

PLAY RECAP *#k*dikkddikddkdkdddkiRddkddddXddadkiidkddddiiddddbdkakdidadddiindhkds

1.amazonaws.com : 0k=143 1anged=42 unreachable=0
: 0k=97 changed=34 unreachable=0
amazonaws.com : ok=274 changed=91 unreachable=0
te-1.amazonaws.com : ok=71 changed=17 unreachable=0
:-1.amazonaws.com : ok=411 changed=106 unreachable=0
: ok=15 hanged=9 unreachable=0 failed=0

ubuntu@ip-10-0-0-128:~/openshift-ansibles |

Figure 15-11. Running the Ansible Playbook

SSH log in to one of the master instances and list the nodes in the OpenShift cluster:

oc get nodes

The three nodes, two of them non-schedulable, are listed as shown in Figure 15-12.

346

CHAPTER 15 © USING AN HA MASTER WITH OPENSHIFT

[root@localhost ~]# ssh -i docker.pem centos@ec2-54-90-107-98.compute-1.amazonaw
s.com

Last login: Tue Aug 9 ©1:17:23 2016 from ec2-52-87-178-15.compute-1.amazonaws.c
om

[centos@ip-10-156-14-183 ~]$ sudo oc get nodes

NAME STATUS AGE
ip-10-113-176-99.ec2.internal Ready 33m
ip-10-154-46-153.ec2.internal Ready,SchedulingDisabled 33m
ip-10-156-14-183.ec2.internal Ready,SchedulingDisabled 33m
[centos@ip-10-156-14-183 ~15] |

Figure 15-12. The nodes in the OpenShift cluster

Testing the Cluster

To test the OpenShift cluster, log in to the cluster.
oc login

Specify Username as system and Password as admin. The OpenShift cluster is logged in. Initially no
projects are created, as shown in Figure 15-13.

[centos@ip-10-156-14-183 ~]$ oc login

Authentication required for https://ec2-54-226-7-241.compute-1.amazonaws.com: 844
3 (openshift)

Username: system

Password:

Login successful.

You don't have any projects. You can try to create a new project, by running

$ ocC new-project <projectname>

[centos@ip-10-156-14-183 ~1$ ||
Figure 15-13. Logging into the OpenShift cluster

Create a new project, for example hello-openshift with the oc new-project command:
oc new-project hello-openshift

The hello-openshift projectis created as shown in Figure 15-14.

[centos@ip-10-156-14-183 ~]$ oc new-project hello-openshift
Now using project "hello-openshift" on server "https://ec2-54-226-7-241.compute-
l.amazonaws.com:8443".

You can add applications to this project with the 'new-app' command. For example
. try:

$ oc new-app centos/ruby-22-centos7~https://github.com/openshift/ruby-hello-
world.git

to build a new hello-world application in Ruby.
[centos@ip-10-156-14-183 ~15 |} |

Figure 15-14. Creating the hello-openshift project

347

CHAPTER 15 USING AN HA MASTER WITH OPENSHIFT

Find the project status:
oc status
Create a new OpenShift application with the oc new-app command.
oc new-app openshift/ruby-20-centos7~https://github.com/openshift/ruby-hello-world.git

A new OpenShift application is created.
To delete all the objects for an application run the following command:

oc delete all -1 app=appName
For example, to delete all the objects for the hello-world application, run the following command:
oc delete all -1 app=hello-world

Create some other application with the oc new-app command. The image tag may be specified, for
example for the openshift/deployment-example Docker image.

oc new-app openshift/deployment-example:vi
An OpenShift application is created. Initially the oc get pods command may list the pods as not

running, but with Status ContainerCreating as shown in Figure 15-15.

[centos@ip-18-156-14-183 ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
deployment-example-1-deploy 0/1 ContainerCreating © 17s
[centos@ip-10-156-14-183 ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
deployment-example-1-deploy 0/1 ContainerCreating © 22s

Figure 15-15. Listing the pods

Multiple applications from the same Docker image may be started concurrently; for example, run the
same command again:

oc new-app openshift/deployment-example:vi

When both the applications have started, two pods are listed, as shown in Figure 15-16.

[centos@ip-10-156-14-183 ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
deployment-example-1-awoib 1/1 Running © 4s
deployment-example-1-deploy 1/1 Running © 38s

[centos@ip-108-156-14-183 ~]3$ |}

Figure 15-16. Running multiple applications concurrently

348

CHAPTER 15 © USING AN HA MASTER WITH OPENSHIFT

The node on which a pod is running may be listed with the following command:
oc get -o wide pods

The node for the pod also is listed as shown in Figure 15-17.

[centos@ip-10-156-14-183 ~]$ oc get -o wide pods

NAME READY STATUS RESTARTS AGE NODE
deployment-example-1-awoib 1/1 Running © im ip-10-113-
176-99.ec2.internal

[centos@ip-10-156-14-183 ~]$ ||

Figure 15-17. Listing pods including the nodes

The oc describe command is used to describe a deployment:
oc describe dc/deployment-example

The services are listed with the following command:
oc get services

List all OpenShift objects with the following command:

oc get all

Testing the High Availability

With multiple masters and High availability configured with the native method, the load balancer distributes
the master load across the masters. The master API server is exposed on the IP Address of the load balancer,
but actually one API server is running on each of the masters. The two master instances and the single
worker instance are shown in Figure 15-18.

349

CHAPTER 15 © USING AN HA MASTER WITH OPENSHIFT

(), Instance State - Running & 1to 6 of6
Name ~ Instance ID = Instance Type ~ Awvailability Zone ~ Instance State
OpenShift i-32e7c9ac 12.micro us-gast-1b @ running
S @ OpenShift Master 1 i-029d5@b m3.large us-gast-1c & running
OpenShift Master 2 -239c5eba m3.large us-gast-1c @ running
OpenShift Waorker 1 -a5a2603¢c m3.large us-gast-1c @ running
OpenShift Load Balancer i-ecalB275 m3.large us-east-1c @ running
OpenShift Etcd i-faa26063 m3.large us-east-1c @ running
»
Instance: || i-029d5f9b (OpenShift Master 1) Public DNS: ec2-54-90-107-98.compute-1.amazonaws.com _ =

Description Status Checks Monitoring Tags Usage Instructions

Instance ID -029d5@b Public DNS ec2-54-90-107-
98 compute-

Figure 15-18. EC2 instances running OpenShift masters and worker

To demonstrate the high availability of the cluster, shut down one of the masters. Select the master
instance in the EC2 Console and in Actions select Instance State » Stop as shown in Figure 15-19.

(), Instance State : Running (2] 1to 6 of 6
Name Instance Type ~ Availability Zone ~ Instance State
OpenShift 12.micro us-east-1b @ running

@ OpenShift Master 1 m3.large us-east-1c & running
OpenShift Master 2 m3.large us-east-1c @ running
OpenShift Worker 1 m3.large us-gast-1c @ running
OpenShift Load Balancer m3.large us-east-1c @ running
OpenShift Etcd i-faa26063 m3.large us-east-1c @ running

Figure 15-19. Stopping an OpenShift master

In the Stop Instances dialog click on Yes, Stop as shown in Figure 15-20.

350

CHAPTER 15 © USING AN HA MASTER WITH OPENSHIFT

Stop Instances X

Are you sure you want to stop these instances?

« 1-02905f3b (OpenShift Master 1)

A Note that when your instances are stopped:
« Any data on the ephemeral storage of your instances will be lost.

Figure 15-20. The Stop Instances dialog

One of the masters starts to shut down, as shown in Figure 15-21.

Q, Instance State : Running filt ©® < < 1tosofs

Name ~ Instance ID = Instance Type - Awailability Zone ~ Instance State
OpenShift i-32e7 c9ac 12.micro us-gast-1b @ running

% “’:: OpenShift Master 1 +H029d50h m3 large us-east-1c _ slopping
OpenShift Master 2 i-23%9c5eba m3.large us-gast-1c @ running
OpenShift Worker 1 i-a5a2603c m3.large us-gast-1c @ running
COpenShift Load Balancer i-ecal6275 m3.large us-gast-1c @ running
OpenShift Etcd i-faa26063 m3 large us-east-1c @ running

Figure 15-21. One of the OpenShift masters stopping

After the master shuts down, the load balancer and the other masters should still be running as shown
in Figure 15-22.

351

CHAPTER 15 USING AN HA MASTER WITH OPENSHIFT

Launch Instance Connect Actions v
I, @ o4 e

(), Instance State : Running Add filter 0 K 1to6of6
Name ~ Instance ID ~ Instance Type - Availability Zone « Instance State
OpenShift i-32e7 c9ac 12.micro us-east-1b @ running
OpenShift Master 1 -029d50b m3.large us-east-1c @ stopped
OpenShift Master 2 i239c5eba m3.large us-gast-1¢ @ running
OpenShift Worker 1 i-a5a2603¢c m3.large us-east-1c @ running
@ OpenShift Load Balancer ecalB275 m3.large us-east-1c @ running
& OpenShift Eted i-faa26063 m3.large us-east-1c @ running

Description = Status Checks Manitaring Tags = Usage Instructions

Instance ID ecalB2?5 Public DNS ec2-54-226-7-
241 compute-
1.amazonaws.com

Figure 15-22. OpenShift Load Balancer and the other master still running

Run the following command to list the cluster kubeconfig configuration.
kubectl config view

The cluster API server is listed as the Public DNS of the load balancer as shown in Figure 15-23.

[centos@ip-10-154-46-153 ~]$ kubectl config view
apiVersion: vl
clusters:
- cluster:
certificate-authority-data: REDACTED
server: https://ec2-54-226-7-241.compute-1.amazonaws.com:8443
name: ec2-54-226-7-241-compute-1-amazonaws-com: 8443
contexts:
- context:
cluster: ec2-54-226-7-241-compute-1-amazonaws-com: 8443
namespace: default
user: system:admin/ec2-54-226-7-241-compute-1-amazonaws-com: 8443
name: default/ec2-54-226-7-241-compute-1-amazonaws-com:8443/system:admin
current-context: default/ec2-54-226-7-241-compute-1-amazonaws-com:8443/system:ad
min
kind: Config
preferences: {}
users:
- name: system:admin/ec2-54-226-7-241-compute-1-amazonaws-com:8443
user:
client-certificate-data: REDACTED
client-key-data: REDACTED
[centos@ip-10-154-46-153 ~]$ |

Figure 15-23. Listing the cluster kubeconfig configuration

352

CHAPTER 15 © USING AN HA MASTER WITH OPENSHIFT

Alternatively, run the following command to list the cluster info.
kubectl cluster-info

The Kubernetes master URL listed is constructed from the Public DNS of the load balancer as shown
in Figure 15-24.

[centos@lp 10-154-46-153 ~]$ kubectl cluster- 1nf0
Kubernetes master is running at . :

{centos@ip-19-154-46-153 ~1s i

Figure 15-24. Listing the cluster info

SSH log in to the other master instance and list the nodes with oc get nodes. One of the master nodes
is listed as NotReady, while the other master node is Ready, as shown in Figure 15-25. If the stopped master
is restarted, it is again listed as Ready.

[centos@ip-10-154-46-153 ~]$ oc get nodes

NAME STATUS AGE
ip-10-113-176-99.ec2.internal Ready 1h
ip-10-154-46-153.ec2.internal Ready,SchedulingDisabled 1h

ip-10-156-14-183.ec2.internal NotReady,SchedulingDisabled 1h
[centos@ip-10-154-46-153 ~]$ oc get nodes

NAME STATUS AGE
ip-10-113-176-99.ec2.internal Ready 1h
ip-10-154-46-153.ec2.internal Ready,SchedulingDisabled 1h
ip-10-156-14-183.ec2.internal Ready,SchedulingDisabled 1h
[centos@ip-10-154-46-153 ~]$ |}

Figure 15-25. Listing nodes, schedulable and non-schedulable

Summary

In this chapter we introduced another platform, called OpenShift, which is a PaaS platform with embedded
Kubernetes. A single master is a single point of failure (SPOF). We discussed creating a high-availability
master with OpenShift. In the next chapter we shall discuss creating a high-availability web site.

353

CHAPTER 16

Developing a Highly Available
Website

In Chapter 4 we used multiple AWS availability zones to provide fault tolerance for failure of a zone. But a
high-availability master was not used, and the single master is a single point of failure. In Chapter 15 we did
use a high-availability master with OpenShift and Ansible, but the single elastic load balancer remains a
single point of failure.

Problem

For a high-availability website, multiple public DNSes need to be configured. Another problem is that
Amazon Elastic Load Balancers do not support Inter-AWS Region High-availability Architecture, in which
the multiple master controllers in an HA master can be located in different AWS Regions. Amazon Elastic
Load Balancers only support Inter-AWS Zone High-availability Architecture within the same region. While
AWS zones are in different physical locations and are insulated from each other (failure of a one zone does
not cause failure in another zone), the HA is not spread across a wider geographical region.

Solution

Amazon Route 53 provides DNS failover, using which a high-availability website may be developed. Route
53 provides DNS failover across AWS regions as shown in Figure 16-1. Route 53 DNS failover can be used
to run applications across AWS zones or regions and configure alternate elastic load balancers to provide
failover across zones or regions. Route 53 DNS failover is not a Kubernetes design pattern but makes use of
the Amazon Route 53 Primary-Secondary architectural pattern.

© Deepak Vohra 2017 355
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_16

http://dx.doi.org/10.1007/978-1-4842-2598-1_4
http://dx.doi.org/10.1007/978-1-4842-2598-1_15

CHAPTER 16 = DEVELOPING A HIGHLY AVAILABLE WEBSITE

Primary
Amazon DNS
Route
53
Public
Hosted
Zone Secondary
DNS

Figure 16-1. Amazon Route 53 DNS failover

Overview

Amazon Route 53 is a highly available and scalable cloud domain name service (DNS) connecting user
requests to infrastructure running on the AWS, such as Amazon EC2 instances, load balancers, and
Amazon S3 buckets. A Kubernetes cluster can be deployed using AWS CloudFormation, as discussed in
Chapter 4. But the cluster developed there, using the kube-aws CLI tool, was a single master cluster without
the provision of a failover. A highly available cluster has the tolerance for failure of a node in the cluster
with built-in failover to another node in the cluster. In this chapter we shall develop a highly available
Kubernetes cluster using AWS CloudFormation on CoreOS. We shall provision multiple (three) AWS
CloudFormations and subsequently host an example application (hello-world) Kubernetes Service on
each of the CloudFormations. We'll use a public hosted zone for an example domain to route traffic to that
domain. This chapter covers the following topics.

Setting the environment
Creating CloudFormations
Configuring external DNS
Creating a Kubernetes service
Creating an AWS Route 53
Creating a hosted zone
Configuring name servers
Creating record sets

Testing high availability

356

http://dx.doi.org/10.1007/978-1-4842-2598-1_4

CHAPTER 16 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

Setting the Environment

The following procedure is used to create a highly available web application.

1.

Create three AWS CloudFormations on CoreOS with one Kubernetes controller
in each. The CloudFormations can be in the same region or multiple regions;
we have used the same region in the example, as some AWS resources may not
be available in all regions and availability zones. Add an A record for each of the
controller IPs to the Domain oramagsearch. com (the URL used in the chapter,
but the domain name will be different for different users).

Log in to each CoreOS controller instance. Create a Kubernetes service for an
example application (hello-world) exposed on an elastic load balancer. With one
Elastic Load Balancer exposed on each CloudFormation, three public DNS are
available.

Create an AWS Route 53 with the two DNS configured for failover.

Create an AWS public hosted zone for an example domain such as the domain
oramagsearch.com (the domain name would be different for different users).

Add name servers assigned to the Public Hosted Zone to the oramagsearch.com
domain registrar.

Create two alias resource record sets pointing to two different elastic load
balancers. The record sets are configured for failover, with one being the primary
and the other being the secondary in the Failover configuration.

Create a single EC2 instance with Amazon Linux AMI. The instance is used to launch the three
CloudFormations, and SSH log in to each of the controllers to create a Kubernetes service.

Creating CloudFormations

SSH Login into the Amazon Linux instance from three different Linux shells on the local machine.

ssh -i docker.pem ec2-user@ec2-54-242-131-243.compute-1.amazonaws.com

As discussed in Chapter 3, the procedure to create an AWS CloudFormation is as follows:

1.
2.

® N o a &

Install Kube-aws (required to be installed only once for the Amazon Linux instance)

Set up Cluster Parameters such as creating an EC2 key pair, KMS key, and
External DNS name. The same EC2 key pair (kubernetes-coreos) and External
DNS name (oramagsearch.com) are used for each CloudFormation.

Create an Asset Directory for a Cluster CloudFormation (a different directory for
each of the CloudFormations).

Initialize the cluster CloudFormation.

Render the contents of the Asset Directory.

Customize the cluster to create three worker nodes instead of one.
Validate the CloudFormation stack.

Launch the cluster CloudFormation.

357

http://dx.doi.org/10.1007/978-1-4842-2598-1_3

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

A typical command to create an EC2 key pair is as follows:

aws ec2 create-key-pair --key-name kubernetes-coreos --query 'KeyMaterial' --output text >
kubernetes-coreos.pem
chmod 400 kubernetes-coreos.pem

The command to create a KMS key is as follows:
aws kms --region=us-east-1 create-key --description="kube-aws assets"

Copy the KeyMetadata.Arn string and use it to initialize a CloudFormation stack. For example, a cluster
called kubernetes-coreos-cluster-1 with the asset directory as kube-coreos-cluster-1 is initialized as follows:

mkdir kube-coreos-cluster-1

cd kube-coreos-cluster-1

kube-aws init --cluster-name=kubernetes-coreos-cluster-1 --external-dns-name=0RAMAGSEARCH.
COM --region=us-east-1 --availability-zone=us-east-1c --key-name=kubernetes-coreos --kms-
key-arn="arn:aws:kms:us-east-1:Xxxxxxxxxx:key/XXXXXXXXXXXXXXXXXXX"

The commands to render the contents of an assets directory, validate a CloudFormation stack, and
launch a CloudFormation stack are as follows:

kube-aws render
kube-aws validate
kube-aws up

Next, launch into the controller instance for each of the Kubernetes clusters. The Public IP of a
controller may be obtained from the EC2 Console as shown in Figure 16-2.

Launch Instance Connect Actions v
| iy @t e

Q, Instance State : Running (2] 1to5 of 5
Name = Instance ID = Instance Type -~ Availability Zone « Instance State
kubemetes-careos-cluster-1-kube-aws-worker 01966498 m3 medium us-gast-1c @ running
@ kubemetes-coreos-cluster-1-kube-aws-controller 68976 cf1 m3.medium us-east-1c & running
KubemetesCoreO3 i-bdaS5e2d 12. micro us-east-1c & running
kubemetes-coreos-cluster-1-kube-aws-worker -E966461 m3.medium us-gast-1c @ running
kubemetes-coreos-cluster-1-kube-aws-worker i-9966dE0 3. medium us-egast-1¢ @ running
»
Description Status Checks Monitoring Tags
Instance D -63976c Public DNS ec2-52-70-185-
156.compute-
1. amazonaws.com
Instance state running [} Public IP 52.70.185.156
Instance type m3.medium Elastic IPs =~ 52.70.185.156"
Private DNS ip-10-0-0-50.ec2.intemal Availability zone us-east-1c
Private IPs 10.0.0.50 Security groups kubemetes-coreos- =

Figure 16-2. CloudFormation for Kubernetes cluster

358

CHAPTER 16 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

SSH log in using the EC2 key pair:
ssh -i "kubernetes-coreos.pem" core@52.70.185.156

The CoreOS command prompt should be displayed.
Install the kubect1 binaries and list the nodes:

sudo wget https://storage.googleapis.com/kubernetes-release/release/v1.3.0/bin/1linux/
amdé64/ . /kubectl

sudo chmod +x ./kubectl

./kubectl get nodes

The single master node and the three worker nodes in a cluster should be listed, as shown in Figure 16-3.

~ § sudo wget https://storage.googleapis.com/kubernetes-releas
e/release/vl 3.0/bin/linux/amd64/ . /kubectl
--2016-08-06 22:19:48-- https://storage.googleapis.com/kubernetes-release/relea
|se/v1.3.0/bin/linux/amd64/kubectl
IResolving storage.googleapis.com... 209.85.144.128, 2607:f8b0:400d:c06::80
Connecting to storage.googleapis.com|209.85.144.128|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 56515944 (54M) [application/octet-stream]
Saving to: 'kubectl'

kubectl 100%(>] 53.96M 63.8MB/s in 0.8s

2016-08-06 22:19:49 (63.8 MB/s) - 'kubectl' saved [56515944/56515944]

~ § sudo chmod +x ./kubectl
re@ip-10-0- - $./kubectl get nodes
NAME STATUS AGE

ip-10-0-0-132.ec2.internal Ready 2m
ip-10-0-0-133.ec2.interpnal Ready 2m
ip-10-0-0-134.ec2.internal Ready 2m
ip-10-0- G 5

0. ec2 internal Ready,SchedulingDisabled 2m
5~ &

Figure 16-3. Listing nodes in a Kubernetes cluster

Similarly, log in to the second controller instance as shown in Figure 16-4.

[ec2-user@ip-10-0-0-224 ~]$ ssh -i "kubernetes-coreos.pem" core@52.207.18.45
The authenticity of host '52.207.18.45 (52.207.18.45)' can't be established.
ECDSA key fingerprint is 59:f2:dd:8f:d6:19:7b:19:40:f5:5e:0d:75:8d:fb:34.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '52.207.18.45' (ECDSA) to the list of known hosts.
Core0S stable (1068.8.0)
Last login: Sat Aug 6 22:40:14 2016 from 54.198.174.131
Update Strategy: No Retlmots

[D=10-0=-0-5 . S

Figure 16-4. SSH logging into second controller instance

359

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

List the cluster nodes as shown in Figure 16-5.

1 $./kubectl get nodes
NAME STATUS AGE

ip-10-0-0-110.ec2.internal Ready 2m

ip-10-0-0-111.ec2.internal Ready 2m

ip-10-0-0-112.ec2.internal Ready 2m

ip-10-0- 0-50.ec2. internal Ready,SchedulingDisabled 2m
y i ..SI

Figure 16-5. Nodes for second Kubernetes cluster

And similarly, SSH log in to the third controller instance as shown in Figure 16-6.

[ec2-user@ip-10-0-0-224 ~]$ ssh -1 "kubernetes-coreos.pem" core@s2.204.178.21
The authenticity of host '52.204.178.21 (52.204.178.21)"' can't be established.
ECDSA key fingerprint is 5e:69:e6:da:f0:d5:c7:4d:b2:1¢:96:55:a9:f3:f5:b3.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '52.204.178.21' (ECDSA) to the list of known hosts.
Core0S stable (1068.8.0)
Last login: Sat Aug 6 22:54:13 2016 from 54.198.174.131
Update Strategy: No Reboots

p-10-0-0- - 3

Figure 16-6. SSH logging into third controller instance

List the cluster nodes as shown in Figure 16-7.

~ § ./kubectl get nodes
¢ ~ S ./kubectl get nodes
NAME STATUS AGE

ip-10-0-0-189.ec2.internal Ready im

ip-10-0-0-190.ec2.internal Ready im

ip-10-0-0-191.ec2.internal Ready im

ip-10-0-0-50.ec2. 1nterial Ready,SchedulingDisabled 1m
n- -f-8-58 -~ §

Figure 16-7. Nodes for thirdKubernetes cluster

When the three CloudFormations have been started, in all three controllers should be running in the
EC2 Console, with each controller managing three worker nodes as shown in Figure 16-8.

360

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

(), Instance State : Running | (2] 1to13 of 13

Name ~ Instance ID * Instance Type -~ Availability Zone « Instance State
kubemetes-coreos-cluster-3-kube-aws-worker i-13c9ed8d m3.medium us-east-1b @ running
kubemetes-coreos-cluster-3-kube-aws-worker i14c9ed8a m3.medium us-east-1b @ running
kubemetes-coreos-cluster-3-kube-aws-worker i-15c9ed8b m3. medium us-east-1b @ running

% @ ‘kubemetes-coreos-cluster-3-kube-aws-controller i-4acBecdd m3.medium us-east-1b & running
kubemetes-coreos-cluster-1-kube-aws-worker 01966498 m3.medium us-gast-1c @ running
kubemetes-coreos-cluster-1-kube-aws-controller +BE976cf1 m3.medium us-east-1c @ running
KubemetesCore0S i-bdab5e2d 12.micro us-gast-1¢ @ running
kubemetes-coreons-cluster-1-kube-aws-worker i-B966da 1 m3.medium us-east-1c @ running
kubemetes-coreos-cluster-1-kube-aws-worker i-9966de0 m3.medium us-east-1c @ running
kube-coreos-cluster-2-kube-aws-controller He0c220 m3.medium us-east-1d @ running
kube-coreos-cluster-2-kube-aws-worker i-adcdid34 m3. medium us-east-1d @ running

Figure 16-8. EC2 instances for three CloudFormations for Kubernetes clusters

Configuring External DNS

Next, add an A record for each of the controller instances to the oramagsearch.com (the domain name would
be different for different users) domain zone file as shown in Figure 16-9.

ORAMAGSEARCH.COM ~
Status: Active | Created: 02/04/2010 | Expires: 0204/2017 | Folder None | FProfile: None

O Renew w O Uporade $ Buyisel w @ Accourt Change & Delete

Settings DNS Zone File Contacts

Zone File @ 19 records in this zone

Last updated 06/08/2016 3:56:17 PM MST

[Add Record | Bulk Actions s ® Templates v @ More s Filter List s

A (Host) @
4 Records (0 Selected)

+ Host Points To ITL Actions

@ 52,70.185.156 600 seconds Ea

N @ §2.204.178.21 600 seconds K&
@ 52.207.18.45 600 seconds A

VA 72.167.232.13 600 seconds &

Figure 16-9. Adding A records for controller instances

361

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Creating a Kubernetes Service

In this section we shall create a hello-world application and expose the application as a service of type
LoadBalancer on each of the three Kubernetes clusters. As a result, three elastic load balancers each
exposing the hello-world service should be available.

SSH log in to each of the controller instances and after verifying that the cluster nodes are being listed
create an application with the tutum/hello-world Docker image.

kubectl -s http://localhost:8080 run hello-world --image=tutum/hello-world --replicas=2
--port=8

List the cluster-wide pods:
kubectl get pods -o wide
List the deployments:
kubectl get deployments
Subsequently, expose the deployment as a service of type LoadBalancer:
kubectl expose deployment hello-world--port=80 --type=LoadBalancer
List the services:
kubectl get services

The output from the preceding commands is shown in Figure 16-10.

S ./kubectl -s http://localhost:8080 run hello-world --image
=tutum/hello-world --replicas=2 --port=80
deployment "hello-world" created

S ./kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP
NODE
hello-world-3739649373-fz010 1/1 Running @ 33s 10.2.43.
3 ip-10-0-0-191.ec2.internal
hello-world-3739649373-xbrvl 1/1 Running © 33s 10.2.6.2

ip-10-0-0-190.ec2.internal
- ~ 5§ ./kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
hello-world 2 2 2 2 im

- -0- ~ 5 ./kubectl expose deployment hello-world --port=80 --type=L
oadBalancer
service "hello-world" exposed

-0- - § ./kubectl get services

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

hello-world 10.3.0.66 a91023d495¢29... 88/TCP 10s
kubernetes 10.3.0.1 <none> 443/TCP 3m

~§

Figure 16-10. Creating a hello-world deployment and service

362

Describe the service:

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

kubectl describe svc hello-world

The service details, in

(p-)~ § of
Name:

Namespace:

Labels:

Selector:

Type:

IP:

LoadBalancer Ingress:
.amazonaws. com

Port:
NodePort:
Endpoints:
Session Affinity:
Events:
FirstSeen LastSeen
ype Reason
43s 43s
ormal Creating
41s 41s
ormal CreatedL
_Sl

cluding the LoadBalancer Ingress, are listed as shown in Figure 16-11.

kubectl describe svc hello-world

hello-world

default

run=hello-world

run=hello-world

LoadBalancer

10.3.0.251
a26d378025c2411e691100aa20bff3c6-791280703.us-east-1.elb

<unset> 80/TCP
<unset> 32330/TCP
10.2.47.2:80,10.2.84.3:80

None
Count From SubobjectPath T
Message
1 {service-controller } N
LoadBalancer Creating load balancer
1 {service-controller } N
oadBalancer Created load balancer

Figure 16-11. Describing the hello-world service

The elastic load balancer should also be listed in the EC2 Console » LOAD BALANCING » Load
Balancers display. The Public DNS name of the load balancer is obtained from the EC2 Console as shown in

Figure 16-12.

363

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

= Create Load Balancer JFECITTITRS
4

Snapshots
4 st Fiter: Q X
Security Groups B Load Balancer Name =~ DNS name
Elastic IPs
Placement Groups B aXdIE025c2411e6911008a.. a26ITEO25c241166911008a..
Key Pairs b

Network Interfaces

Load balancer: | a26d378025¢2411¢6911002a20bff3¢6

| Lead Balancers Description

* Port Configuration

80 (TCP) forwarding to 32330 (TCP)

Security

Listeners

Tags

L2 A -]

1teiof1 >

= Availabilin

us-east-1c

a26d378025c2411e691100aa20bf3c6- 791280703 us-east-1 elb amazonaws com (A

Because the set of IP addresses associated with a LoadBalancer can change over time,

you should never create an "A" record with any specific IP address. If you want to use a

Instances Heaith Check Monitoring
= DNS name:
Launch Record)
Configurations
Auto Scaling Groups
Command History
Documents
Managed Instances Scheme: intermet-facing
Activations - Status: 0 of 3 Instances in service

Figure 16-12. LoadBalancer for a service

friendly DNS name for your load balancer instead of the name generated by the Elastic
Load Balancing service, you should create a CNAME record for the LoadBalancer DNS
name, or use Amazon Route 53 to create 3 hosted zone. For more Information, see Using
Domain Names With Elastic Load Balancing .

The Instances tab lists the EC2 instances being load-balanced by the load balancer. Initially the Status

may be OutOfService as shown in Figure 16-13.

Create Load Balancer J:THT1 BN

Filter: | Q Search X
B Load Balancer Name ~ DNS name = Port Configuration
B 326d378025c2411e69110035... a26d378025c2411e691100aa... B0 (TCP) forwarding to 32330 (TCP)
Description Instances Health Check Monitoring Security Listeners Tags
Connection Draining: Disabled (Edit)
Edit Instances
Instance Name Availability Status
kubemetes-coreos-cluster-1-kube-aws- OutOfService
i-fa966450 us-gast-1c =
worker (i
kubemetes-coreos-cluster-1-kube-aws- OutOfService
i-3966d51 us-east-1c _
worker i
kubemetes-coreos-cluster-1-kube-aws- OutOfService
01966498 us-east-1c _

worker

Figure 16-13. Initially the instances in the LoadBalancer may be OutOfService

364

Actions

Remove from Load
Balancer
Remove from Load
Balancer
Remove from Load

Balancer

o

¢ O

{ 1tot1of1 >)l

Awailability

us-gast-1c
»

-

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

After about a minute, the Status should become InService as shown in Figure 16-14.

Create Load Balancer Actions v

LS I 2
Filter: Q Searct i ancer X 1to1of1
B Load Balancer Name ~ DNS name ~ Port Configuration = Availability
B a26d378025c2411e691100aa... a26d378025c2411e691100aa... 80 (TCP) forwarding to 32330 (TCP) us-east-1c
»
Load balancer: | a26d378025¢2411e691100aa20bff3c6 N ==

Description Instances Health Check Monitoring Security Listeners Tags

Connection Draining: Disabled (Edit)

Edit Instances

Instance ID Name Availability Zone Status Actions

i-f9966da0 kubemetes-coreos-cluster-1-kube-aws-worker us-east-1c InService (1) Remove from Load Balancer
i-B9E6d61 kubemetes-coreos-cluster-1-kube-aws-worker us-east-1c InService (j Remove from Load Balancer
01966498 kubemetes-coreos-cluster-1-kube-aws-worker us-east-1c InService (j Remaove from Load Balancer

Figure 16-14. LoadBalancer instances InService

The Listeners tab should list the load balancer listener as shown in Figure 16-15.

Create Load Balancer QU1 1304

S ® 0
Filter: | Q Searct 1 Balancers b4 1to10f1
@ Load Balancer Name ~ DNS name = Port Configuration = Availability
B 526d378025c2411e691100aa... a26d378025c2411e6911003a... 80 (TCF) forwarding to 32330 (TCP) us-east-1c
»
Load balancer: | a26d378025c2411e651100aa20bff3c6 [l =l]

Description Instances Health Check | Monitoring Security Listeners Tags

Y

The following listeners are currently configured for this load balancer.

Load Balancer Protocol Load Balancer Port Instance Protocoel Instance Port Cipher SSL Certificate

TCP 80 TCP 32330 /A A

Edit

Figure 16-15. Listeners for LoadBalancer

365

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Invoke the Public DNS name in a web browser. The hello-world application output should be
displayed as shown in Figure 16-16.

[M Hello world! x

& C [} a26d378025¢2411e691100aa20bff3c6-791280703.us-east-1.elb.amazonaws.com

&tutum

Hello world!

My hostname is hello-world-3739649373-9w1pa

Links found

KUBERNETES listening in 443 available at tcp://10.3.0.1:443

Figure 16-16. Invoking the public DNS in a browser

When the Kubernetes service hello-world of type LoadBalancer has been created in each of the
Kubernetes clusters, three elastic load balancers should be created as shown in the EC2 Console in
Figure 16-17.

Load Balancer Name = DNS name = Port Configuration = Availahility Zones = Instance Count ~ He:
a26d378025c24 1169110035, a26d378025c24110691100aa 80 (TCP) forwarding to 32330 (TCP) us-gast-1c 3 Instances TCH
afeb3b8885c2611e685M0e3c afeb30EE35c 2611 685063 B0 (TCF) forwarding to 32413 (TCP) us-gast-1d 3 Instances TCH
B a91023d495c2911968454124 A910230495c2911668454124... B0 (TCF) forwarding to 30231 (TCP) us-gast-10 3 Instances TCH
v
Load d | 1168454 _ N =

Description Instances { Health Check Maonitoring Security Listeners Tags
Connection Draining: Disanled (Edit)
Edit Instances
Instance ID Name Avallability Zone Status Actions

Fldc9edda kubernetes-coraos-cluster-3-kube-aws-worker us-east-1b L} InSerace (j 1 Load Balancer

Sc9%dEb kubemetes-coregs-cluster-3-kube- aws-worker us-east-1h InSenice (| Load Balancer

139459 kubgmetes-coreos-cluster-3-kube-aws-worker us-east-1b InSenice [wm Load Balancer

Figure 16-17. Three LoadBalancers, one for each CloudFormation

366

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

The Public DNS name for each of the ELBs should display the result for the hello-world application as
shown in Figure 16-18.

[Hello world! x \

L C [291023d495¢2911e684541 24 2d3feaf6-43112609.us-east-1.elb.amazonaws.com

&ﬁbtutum

Hello world!

My hostname is hello-world-3739649373-fz010

Links found

KUBERNETES listening in 443 available at tcp://10.3.0.1:443

Figure 16-18. Invoking the public DNS for another Elastic Load Balancer

Creating an AWS Route 53 Service

In this section we shall create an AWS Route 53 service to route user requests to the oramagsearch.com
domain to the elastic load balancers, more specifically the public DNS name of the ELBs. We shall create
two resource record sets, pointing to two different ELBs configured for failover, with one of the ELBs being
the primary resource record set and another being the secondary record set. When the oramagsearch.
com domain is invoked in a web browser, the AWS Route 53 service routes the request to the primary
resource record set. If the primary record set becomes unavailable, the service routes the user request to
the secondary record set, in effect providing high availability of the Hello World web application on the
oramagsearch.com domain.

To create an AWS Route 53 service, select Route 53 in AWS Services as shown in Figure 16-19.

367

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

X

&« C' https://console.aws.

B Console Home
1 Billing

Support

&

Figure 16-19. Selecting the Route 53 service

Creating a Hosted Zone

To create a hosted zone, select Hosted Zones in the margin and click Create Hosted Zone as shown in

Figure 16-20.

Create Hosted Zone
Dashooard 1 17

Hosted zones Q X Al Types

Health checks

Domain Nama - Typé- Record SetCount-

raffic flow

nosgisearch com Pubic

Tra,

Policy reccrds

Figure 16-20. Creating a hosted zone

368

Commant

P
L

« Displaying 110 1 out of 1 Hosted Zonas.

Hested Zonae ID

DYHOTLSZGHILR

(2]

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

In the Create Hosted Zone dialog, specify a Domain Name (oramagsearch.com). The domain name
must be registered with the user. Select Public Hosted Zone as the type, as shown in Figure 16-21.

P Go to Record Sets siate Hosted Zar ~~
Create Hosted Zone o r4 e

3| | A1 Types Create Hosted Zone

Dashooard 4

Hosted zones Q

at holds information about how you
th 2% example com, and its

Heaith checks < Disphaying 110 1 o of 1 Hosted Tones >

Domain Name - Type- RecerdSetCount- Comment Hosted Zona ID

Trafhc

arch com Public 2 ZVHDTLSZGHILR Domain Name: Jramazsearch
Folicy records

Comment:
Domains

Registered domains Tree: | pugic

Fending requests

Figure 16-21. Configuring a hosted zone

A new public hosted zone is created. The name servers for the hosted zone are also assigned, as shown
in Figure 16-22.

Go to Record Sets Delete Hosted Zone

| Hosted zones Q | X Al Types X

Dashboard 4

Hosted Zone Details

Health checks O e W P e Domain MName: oramagsearch,com
2 Type: Putlic Hosted Zong

Traffic flow Domain Mame - Type- Record Set Count~ Comment Hosted Zone ID - Hosted Zone 1D: Z18GMLOFTEOERG
fic poich Record Set Count:
Traffic poficies nosqisearch.com. Puglic 2 ZVHDTLSZGHALR " oumt:2
Caomment: &

Policy records

[] Ofarnagseanch. com Putlic 2 Z19GMLOPTEOERG Name Servers *: ns-1504.awsdn
Domains [+ ns-1671 awsdn
n3-609 awsng-12
Registered domans ns-145 awsdn
B * Sesiee the Comain Mame System wlf star &9 roue
‘ending requests f

TR for B Jomain 1o Foute 57 rame Servers, Jou
AL S B8 PG SRV TACONTE 8RN WA B
current ONS sarvice or i ihe registrar o ihe domai,
8¢ AANREOBE. For mofe Formtion, citk i P icon
atove.

Tags: View and manage tags for your
hosted zones using Tag Editor

Figure 16-22. A new public hosted zone

Configuring Name Servers on a Domain Name

Next, we need to update the name server records for the domain oramagsearch. com with the domain
registrar so that the Domain Name System is able to route requests for the domain to Route 53 name servers.
Copy the Route 53 name servers as shown in Figure 16-23.

369

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Go to Record Sets Delete Hosted Zane

Q aart 2l Ralide *® All Types ¥ Hosted Zone Details

Domain Name: oramagsearch com.
!4 4 Displaying 1 to 2 out of 2 Hosled Zones » | A
Type: Pulic Hosted Zone
Domain Name -~ Type~ Record Set Count~ Comment Hosted Zone 1D ~ Hosted Zone ID: Z19GMLOP7ROERG
Record Set Count: 2

Comment: &

nosqlsearch.com. Public 2 IVHDTLSZGHALR

@ osmagsearchcom. Public 2 Z19GMLOP7B0ERG Name Servers *: ns-1504 awsdns-50.org

ns-1671 awsdns-16 co.uk
ns-608. awsdns-12.net
ns-145.awsdns-18.com

* Before the Domain Mame Sysilem wil stard fo roufe

v quaries for this domak fo Rouls 53 mame servers, you
must yoaisie fhe name server records elifer mith fe
cunrand ONS service or wih ie regisfrar for e domain,
as anplicabia, For more inormation, cick the 7 kcon
abova.

Tags: View and manage tags for your
hosted zones using Tag Editor

Figure 16-23. Route 53 name servers

The default name server records for a domain are typically provided by the domain registrar as shown
in Figure 16-24.

NS (Nameserver) &
2 Records (0 Selected)

+ Host Points To TTL Actions
@ (informational) ns07. domaincontrol com (informati. .. 1 Hour (Informational)
@ (informational) ns02.domaincontrol.com finformati. .. 1 Hour (Informational)

Figure 16-24. Domain nameservers

Add the name servers for the Route 53 service to the domain NS records as shown in Figure 16-25.

NS (Nameserver) @
6 Records (0 Selected)

+ Host Paints To ITL Actions
@ ns-145 awsdns-18.com 600 seconds F &
@ ns-609.awsdns-12.net 600 secands K o
@ ns-1504 . awsdns-60.0rg 600 seconds M &
@ ns-1671.awsdns-16.co.uk 600 seconds M &
@ (Informational) nsQf.domaincontrol.com (Informati... 7 Howr (informational)
@ (Informational) ns02.domaincontrol.com (Informati... 1 Hour (Informational)

Figure 16-25. Adding name servers for Route 53 to DNS record

370

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Next, select the default name servers provided by the domain registrar as shown in Figure 16-26.

NS (Nameserver) @
6 Records (2 Selected)

v/ Host Points Tg ITL Actions
@ ns-145 awsdns-18.com 600 seconds | A}
@ ns-609.awsdns-12 net 600 seconds Al
@ ns-1504.awsdns-60.0rg 600 seconds £
@ ns-1671.awsdns-16.c0.uk 600 seconds A}
Yl @ (informational) ns07.domaincontrol.com (informati... 1 Hour (informational)
s ¢ (@ (Informational) ns02.domaincontrol.com (informati... 7 Howr (Informational)

Figure 16-26. Selecting default name servers on domain

Click on Delete to delete the default name servers as shown in Figure 16-27.

Zone File 23 records in this zone
Last updated 06/08/2016 4:20:57 PM MST
[Add Record (® Qelete B Bulk Actions v @ Templates v @ More s Filter List s
A (Host) @
4 Records (0 Selected)
+ Host Points To EL Actions
(& 52.70.185.156 600 seconds r_,." o
@ 92.204.178.21 600 seconds L.f o
(@ 52.207.18.45 600 seconds E{ o

Figure 16-27. Deleting default name servers

Save the custom name server settings as shown in Figure 16-28.

371

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

: Nameserver Settings

Nameservers point your domain to where it is located.
Setup type:

- Standard

Go Daddy hosting, forwarding, and parked domains.

® Custorn

Customizable nameserver settings.

Nameservers: Edit Narmeservers

Hameserver Status

1 NS-1504 AWSDNS-60.0RG
2 NS-1671 AWSDNS-16.CO UK
3 NS-609 AWSDNS-12 NET

4 NS-145 AWSDNS-18.COM

© 0 06 06

i I Add Nameserver |

Figure 16-28. Domain name servers

The new settings may take a while to take effect, as shown by the message in Figure 16-29.

372

Settings DNS Zone File Contacts

CHAPTER 16

HAuto-Renew ()

Lock (&

Nameservers @

Forwarding (&)

DS Records ()

Host Names (3)

Domain Transfer (&)

Authorization Code ()

Figure 16-29. Updating domain nameservers can take a while

Standard: OF
Extended: Of

Ianage

on

NS0T DOMAINCONTROL.COM
NS02 DOMAINCONTROL.COM
Up 2010

Manage

Domain: OF
Manages
Subdomain: [subdomaing forwarded

Manage

0DS records created

Manage

2 hostnames created
IManage

Transier Out

Email my code

Set Nameservers

CERTIFIED DOMAIN @
ot owmed Add

PREMIUM LISTING
hot Ested Add

]

CASHPARKING®D
Nt owmed Add

&

GODADDY AUCTIONSS
Mot cwmed Add

SSL CERTIFICATE
Not owred Add
BUSINESS REGISTRATION

Not owned Add

DOMAIN APPRAISAL

Mot appraised Add

@ @ @ @

Extras

CUSTOM DOMAIN BUNDLE @
Varistions Avadable Sdo

DEVELOPING A HIGHLY AVAILABLE WEBSITE

x
13

When the new name server records have taken effect, the NS records should indicate the same as shown

in Figure 16-30.

ORAMAGSEARCH.COM -~

Stalus: Active |

© Renew w

Settings

Created: 02/04/2010

DNS Zone File

O Upgrade % BuyssSel -

Contacts

| Expires: 0210412017 |

Folder: None

S Account Change

Profile: Mone

@ Delete

fto-Renew (@)

Lock @

Nameservers (@)

s

Standard: Of
Extended: OF

Manage

on

Manage

NS-1504 ANSDNS-60.0RG

NS-1671.ANSDNS-16.CO.UK

NS-609 ANSDNS-12.NET
NE-145 ANSDNS-18.COM
) d 0&I0 16

Figure 16-30. Configured domain nameservers

373

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Creating Record Sets

Next, we shall create resource record sets to point to the elastic load balancers for the hello-world service.
Click on Go to Record Sets as shown in Figure 16-31.

Create Hosted Zone Go to Record@ets Delete Hosted Zone

Q search all field X | | Al Types v

'« « Displaying 1 to 2 out of 2 Hosted Zones =

Domain Name ~ Type~ Record Set Count Comment Hosted Zone ID ~
nosqlsearch.com. Public 2 ZVHDTLSZGHILR
@ oramagsearch.com. Public 2 Z19GMLOP780ERG

Figure 16-31. Start creating a record set by clicking Go To Record Sets

Then click on Create Record Set as shown in Figure 16-32.

Back to Hosted Zones Create Record Set Import Zone File Delete Record Set

Q i X! | any Type v Aliases Only Weighted Only
'« « Dpisplaying 1 to 2 out of 2 Record Sets » |
Name = Type' Value s Evaluate Target He

ns-1504, awsdns-60.org

ns-1671.awsdns-16.co.uk.

oramagsearch.com. NS -
ns-609. awsdns-12.net.
ns-145.awsdns-18.com

oramagsearch.com. SOA ns-1504. awsdns-60.org. awsdns-hostmaster. amazor -

Figure 16-32. Clicking on Create Record Set

In the Create Record Set dialog, set the Type as A - IPv4 address as shown in Figure 16-33. Select the
Alias radio button.

374

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Back to Hosted £ te Record Set I rt Z Fil Delete Record Set -
ack to Hosted Zones e Record Se mport Zone File Jelete Record Se 4 n o

Ii. tainbtad Create Record Set
Q Record Set Name X| Any Type v Only ghted Only Iy
MName: n
I£ < Displaying 1 to 2 out of 2 Record Sets > 3]
Type: A= IPvd address ¥

Name ~ Type~ Value = Evaluate Target He
Alias: @ Yes (1 No
ns-1504 awsdns-60.org

ns-18T1. awsdne-18.co.uk Alias Target: Enter target name
aramagsearch. com. NS = -
ne-E03. awsdns-1 2 et 'fiou ¢an 50 type the domaln name for the resource. Examples:
ng-146 awsdns-18.com. = CloudFront destribution doenain name: o1 11111 abodefS cloudfront net
- Elastc Beanstalk enve CNAME: exampie. com
aramagsearcn, com. S0oa ns-1504 awsdns-60. org. awsdns-hostmaster amazo - - ELE lodd badancar DING namd: exampie-1 us-2a5t-1 65 amazonivg com

- 53 webste erdpoint: exomalz s 3-mebate-us-cost-1 amasonaws. com
¥ - Pesource record Sed in this hosted Zone: ww.SxBmpie.com
Leam More

Routing Policy: Simnple v

Poute 53 responds 1o queries based only on the values in this record, Learn
More

Evaluate Target Health: () ves & o

Figure 16-33. Setting the Type in the Create Record Set dialog

Click in the Alias Target field to display the drop-down for the targets. Select one of the ELB Load Balancers,
assuming that all the ELB Load Balancers are for the hello-world service as shown in Figure 16-34.

375

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Create Record Set
Name: oramagsearch.com.

Type: A — IPv4 address v

Alias: @ Yes No

alias Target: ‘ | ‘

You can also type| — 53 wepsite endpoints — =

- CloudFront distr)
 Eiactic Beanstay 'O Targets Available

- ELBload balanc — £L & 030 balancers —
- 3 webstte endy. a260378025c2411e691100aa20bff3c6:7912¢
: L:j:':'h‘;’o‘";: FEEOM afe63h8885c2611 9685f4093004a?6921%!ﬁﬂf
a91023d495c2911e684541242d3feaf6-4311%,
Routing Policy ClouaFront distributions —
No Targets Available

Route 53 respondi . Ciacticr Beanctail enmvirnnmente —
More

Evaluate Target Health: « Yes @ No

Figure 16-34. Selecting one of the ELB Load Balancers as alias target

For Routing Policy, select Failover as shown in Figure 16-35.

376

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Create Record Set

Name: oramagsearch.com

Type: A - IPv4 address ¥
Alias: @ Yes) MNo

Alias Target: dualstack a26d378025c2411e691100
Alias Hosted Zone ID: Z35SXDOTRQ7X7K

You can also type the domain name for the resource. Examples:
- CloudFront distribution domain name: d111111abcdef8 cloudfront.net
- Elastic Beanstalk environmert CNAME: example elasticbeanstalk.com
- ELE load balancer DNS name: example-1 us-east-1 elb. amazonaws.com
- 53 wehsite endpoint: example s3website-us-east-1 amazonaws.com
- Resource record set in this hosted zone: www example.com
Learn More

Routing Policy: ‘ Simple v
I Simple S
Route 53 responds to : in this record. Learn
s | Weighted
Latency

Evaluate Target ﬂ Geolocation

Figure 16-35. Selecting Failover as the Routing Policy

For Failover Record Type, select Primary as shown in Figure 16-36.

377

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Create Record Set

Name: oramagsearch.com
Type: A - IPv4 address Y
Alias: @ Yes () No

Alias Target: dualstack a26d378025c2411e691100
Alias Hosted Zone ID: Z35SXDOTRQ7X7K

You can also type the domain name for the resource. Examples:
- CloudFront distribution domain name: d111111abcdef8 cloudfront.net
- Elastic Beanstalk environmert CNAME: example elasticbeanstalk .com
- ELEB load balancer DNS name: example-1 us-east-

! 1.elb.amazonaws.com
- 53 wehsite endpoint: example s3-vebsite-us-east-1 amazonaws.com
- Resource record set in this hosted zone: www example.com
Learn More

Routing Policy: | Failover v

Route 53 responds to queries using primary record sets if any are
healthy, or using secondary record sets otherwise. Learn More

Failover Record Type: -.T»}Priman; () Secondary

Set ID: | Primary

Figure 16-36. Setting the Failover Record Type as Primary

For Evaluate Target Health, select Yes. For Associate with Health Check, select No. Click on Create as
shown in Figure 16-37.

378

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Alias: @ Yes () No

Alias Target: dualstack a26d378025c2411e691100
Alias Hosted Zone ID: Z35SXDOTRQ7X7K

You can also type the domain name for the resource. Examples:
- CloudFront distribution domain name: d111111abcdefd cloudfront net
- Elastic Beanstalk environment CNAME: example elasticheanstalk .com
- ELE load balancer DNS name: example-1 us-east-
1.elb.amazonaws.com

- 53 website endpoint: example s3website-us-east-1 amazonaws .com
- Resource record set in this hosted zone: www example.com

Learn More

Routing Policy: Failover ¥

Route 53 responds to queries using primary record sets if any are
healthy, or using secondary record sets otherwise. Learn More

Failover Record Type: @ Primary () Secondary
Set ID: | Primary
Evaluate Target Health: @ Yes No

Associate with Health Check: « Yes @ No

Figure 16-37. Creating a record set

A new resource record set is added as shown in Figure 16-38.

379

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Back to Hosted Zones Create Record Set Import Zone File Delete Record Set

Q t Mar X Any Type v Aliases Only Weighted Only

'« 4 Displaying 1 to 3 out of 3 Record Sets » |

Name « Type~ Value ~ Evaluate Target He

oramagsearch.com. A ALIAS dualstack.a26d378025c2411e691100aa20bff: Yes

ns-1504. awsdns-60.0rg.
ns-1671.awsdns-16.co.uk.

oramagsearch.com. NS "
ns-609. awsdns-12.net

ns-145.awsdns-18.com.

oramagsearch.com. SOA ns-1504. awsdns-60.org. awsdns-hostmaster.amazor -

Figure 16-38. Resource record set

Click on Create Record Set to create another resource record set as shown in Figure 16-39. In a Failover
routing policy, two resource record sets need to be configured, one as the primary and the other as the
secondary. If the primary record set is not available, the Route 53 routes any request for the hosted zone to
the secondary record set.

Back to Hosted Zones Create Record Set Import Zone File Delete Record Set

Q t Mar X Any Type v Aliases Only Weighted Only

'« 4 Displaying 1 to 3 out of 3 Record Sets » |

Name « Type~ Value ~ Evaluate Target He

oramagsearch.com. A ALIAS dualstack.a26d378025c2411e631100aa20bff: Yes
ns-1504. awsdns-60.0rg.
ns-1671.awsdns-16.co.uk.

oramagsearch.com. NS -
ns-609. awsdns-12.net
ns-145. awsdns-18.com.

oramagsearch.com. SOA ns-1504. awsdns-60.org. awsdns-hostmaster.amazol -
Figure 16-39. Clicking on Create Record Set to create another record set

380

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

In Create Record Set, set the Type as A -IPv4 address and the Alias as Yes. For Alias Target select a
different ELB Load Balancer as shown in Figure 16-40.

Create Record Set

Name: oramagsearch.com
Type: A - IPv4 address v
Alias: @ Yes No

Alias Target: | |

Youcan alsotype, _ S3

- CloudFront distr

- Elastic Beanstall

- ELBload balanc| — £L5 /030 balancers —

- S3website endp 326d378025c2411e691100aa20bff3c6-7912¢
Y |5 Benovrceacm afe53b9885c26119585f40e3cq}a?592-1450£

Learn More
a91023d495c2911e684541242d3feafb-4311%

M anaSrant dietrihntinanc
— LAOUASTONT WSTHDRIONS —

=i site endpoints —

No Targets Available

Routing Policy
No Targets Available

Route 53 respond: — Ciacticr Beanctall enmvirnnmente —
More

Evaluate Target Health: « Yves @ No

Figure 16-40. Configuring the record set

Set the Routing Policy as Failover. Select Secondary as the Failover Record Type. Set Evaluate Target
Health as Yes and Associate with Health Check as No. Click on Create as shown in Figure 16-41.

381

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Alias: @ Yes () No

Alias Target: dualstack afeB3bE8885c2611eB85f40e
Alias Hosted Zone ID: Z35SXDOTRQ7X7K

You can also type the domain name for the resource. Examples:

- CloudFront distribution domain name: d111111abcdefS cloudfront.net
- Elastic Beanstalk environment CNAME: example elasticheanstalk com
- ELE load balancer DNS name: example-1 us-east-

1.elb.amazonaws.com
- 33 website endpoint: example s3-website-us-east-1 amazonaws .com

- Resource record set in this hosted zone: www example.com
Learn More

Routing Policy: Failover v

Route 53 responds to queries using primary record sets if any are
heatthy, or using secondary record sets otherwise. Learn More

Failover Record Type: « Primary @ Secondary
SetID: | Secondary
Evaluate Target Health: e Yes No

Associate with Health Check: « Yes @ No

i

Figure 16-41. Creating a second record set

A second resource record set is added, as shown in Figure 16-42.

382

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Back to Hosted Zones Create Record Set Import Zone File Delete Record Set

Q Record Set Name X! | Any Type v Aliases Only Weighted Only

[« < pisplaying 1 to 4 out of 4 Record Sets » |

Name « Type- Value * Evaluate Target He
oramagsearch.com. A ALIAS dualstack.a26d378025c2411e691100aa20bff. Yes
b oramagsearch.com. A ALIAS dualstack.afe63b8885c2611e685f40e3c04a?: Yes

ns-1504.awsdns-60.0rg.

ns-1671.awsdns-16.co.uk.
oramagsearch.com. NS 1
ns-609. awsdns-12.net.

ns-145.awsdns-18.com.
oramagsearch.com. SOA ns-1504. awsdns-60.0ry. awsdns-hostmaster. amazor -
Figure 16-42. A second resource record set

The Public Hosted Zone for the oramagsearch.com (domain name would be different for different users)
domain should list the Record Set Count as 4 instead of 2 to start with, as shown in Figure 16-43.

Create Hosted Zone Go to Record Sets Delete Hosted Zone

Q Search all fie X Al Types v

'« 4 Dpisplaying 1 to 2 out of 2 Hosted Zones » |

Domain Name ~ Type~ Record Set Count Comment Hosted Zone ID ~
nosglsearch.com. Public 2 ZVHDTLSZGHILR
@® oramagsearch.com. Public 4 Z19GMLOP780ERG

Figure 16-43. Public hosted zone with four record sets

383

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Testing High Availability

Next, we shall demonstrate high availability. Open the domain oramagsearch.com (the domain name would
be different for different users/user groups) in a web browser. The primary resource record set for the public
hosted zone is invoked, which points to one of the elastic load balancers for the Kubernetes service hello-
service, and the result of the tutum/hello-world application is displayed as shown in Figure 16-44.

[Hello world!

« C [} oramagsearch.com ve| & E

mtutum

Hello world!

My hostname is hello-world-3739649373-9w1pa
| Links found

KUBERNETES listening in 443 available at tcp:/10.2.0.1:443

Figure 16-44. Invoking domain in browser

The Primary resource record set points to one of the elastic load balancers, and the load balancer
should be available as indicated by all the registered instances being InService, as shown in Figure 16-45.

384

5 Create Load Balancer Actions v
1

Filter: Q

Load Balancer Name >

B a25d378025c2411e691100aa. .
afef3b8835c 26116685063
a91023d495¢2911e68454124. ..

Edit Instances

X

DNS name

a26d378025c2411269110034...

afeB3b8885c2611e685M40e3c

a91023d495c291168454124..

Instance ID Name

[} 2966460 kubemetes-coreos-cluster-1-kube-aws-worker
+E966d61 kubemetes-coreos-cluster1-kube-aws-worker
01966498 kubemetes-coreos-cluster-1-kube-aws-worker

Edit Availability Zones

CHAPTER 16 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

o % @
1to30of3
* Port Configuration ~ Awvailability
80 (TCP) forwarding to 32330 (TCP) us-east-1¢c
80 (TCP) forwarding to 32413 (TCP) us-east-1d
80 (TCP) forwarding to 30231 (TCP) us-east-1b
»
Availability Zone Status Actions
ug-east-1c InService (§ Remove from Load Balancer
us-gast-1c InService (j Remove from Load Balancer
ug-east-1¢ InSermice (j Remove from Load Balancer

Figure 16-45. LoadBalancer for primary resource record set with all instances inService

To demonstrate high availability, stop the controller for the Kubernetes cluster exposing the elastic load
balancer pointed to by the primary resource record set, as shown in Figure 16-46.

Q
Name

kubernetes-coreos-cluster-1-k
B kubemetes-coreos-cluster-1-k

KubemeatesCore0S

kubernetes-coreos-cluster-1-k

kubemetes-coreos-cluster-1-k

kube-corgos-cluster-2-kube-aws-controller 60c220
kube-coreos-cluster-2-kube-aws-worker i-adcdfd34
kube-coreos-cluster-2-kube-aws-worker i-abc4fd36
kube-coreos-cluster-2-kube-aws-worker i-a7 c4f437

e

m3.medium us-east-1c
m3.medium us-east-1c
Terminate 2. micro us-east-1c
m3.medium us-east-1c
m3.medium us-east-1c
m3.medium us-gast-1d
m3.medium us-east-1d
m3.medium us-east-1d
m3.medium us-east-1d

Type = Awvailability Zone «

[

e 00 0 ¢ ¢ ¢

1to 13 of 13

Instance State

running
running
mnning
running
running
unning
running
runnlng

running

Figure 16-46. Stopping the controller instance for the cluster exposing the ELB pointed to by the primary

resource record set

The controller instance and the worker node instances should be stopped, as shown in Figure 16-47,
in effect making the elastic load balancer for the primary resource record set unavailable. If the hosted zone
had just one resource record set without the Failover routing configured, the oramagsearch.com domain

would become unavailable.

385

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Q Fitter by ta e orsearah By avard @ K < 1t0130f13
Name = Instance 1D * Instance Type - Awailability Zone ~ Instance State
kubemetes-coreos-cluster-3-kube-aws-worker 13c9edbd m3.medium us-gast-1b @ running
kubemetes-coreos-cluster-3-kube-aws-worker 14c9edla m3.medium us-gast-1b @ running
kubemetes-corens-cluster-3-kube-aws-warker i-15c9ed8b m3.medium us-gast-1b @ running
kubemetes-coreos-cluster-3-kube-aws-contraller dacBecdd m3 medium us-gast-1b @ running

%, kubemetes-coreos-cluster-1-kube-aws-worker 01966498 m3.medium us-gast-1c _ stopping
kubemetes-coreos-cluster-1-kube-aws-controller 68976 ch m3.medium us-gast-1c @ stopped
KubernetesCore0S i-bdab5e2d 12.micro us-gast-1c @ running
kubemetes-coreos-cluster-1-kube-aws-worker B966d61 m3.medium us-east-1c) stopping
kubemetes-coreos-cluster-1-kube-aws-worker i-A96E 460 m3.medium us-east-1c) stopping
kube-coreos-cluster-2-kube-aws-controller 80220 m3.medium us-east-1d @ running ~

L3

Figure 16-47. Stopping the controller instance and worker instances for primary resource record set
CloudFormation

But the oramagsearch. com hosted zone fails over to the secondary resource record set and continues
to serve the hello-world service, as shown in Figure 16-48. As indicated by the output in the browser, the
hostname has changed (the hostname could also change due to the service distributing traffic between Pods
on the same deployment) but the service continues to be available.

Hellc warld!

« € [oramagsearch.com e &=

mtutum

Hello world!

My hostname is hello-world-3739649373-rfya3
Links found

KUBERNETES listening in 443 available at tcp:/10.2.0.1:443

Figure 16-48. The oramagsearch.com hosted zone fails over to the secondary resource record set and
continues to serve

386

CHAPTER 16 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

When the primary resource record set becomes unavailable and the user request is routed to the
secondary record set, in effect the service is being served by one record set and is thus not highly available
any more. To make the service highly available, we need to either make the primary record set point to a
different elastic load balancer or delete and create a new record set. Taking the second approach, select the
primary resource record set and click Delete Record Set as shown in Figure 16-49.

Eack to Hosted Zones Create Record Set Import Zone F Delete F\'{?;:nrd Set ~~ a 0

L
Edit Re: d Set =
Q X Ay Type v Aliases Only Weighted Only I RArARC A
Name: or %
14 4 Displaying 1 1o 4 oul of 4 Record Sets
Type: A= IPvd address v
Name ~ Type~ Value = Evaluate Target He
Alias: ® Yes () No
B oramagsearch.com A ALIAS dualstack a26d378025c2411e6011003a20bi: “es
Alias Target: stack aZ8d370025¢2411e631100
oaramagsearch.com A ALIAS dualstack afeBIbES85C261 1e685M40e3c04a: Yes Alias Hosted Zone ID: Z355XDOTRQTYIK
ns-1504. awsdns-60.org ou con also type the dosnain nanse for the resource. Examples:
£ i - CloudFront distribation domain name: i abodefd cloudfnont net
oramagsearch.com NS e 611kt 6000k - Elnstic Beanstok environanerd CHAME: example elasticheanstal: com
ng-600. awsdne-12.net. - ELB load balancer DNS name: exomols-1 us-cast-
ns-145, awsdns-18.com.) |1 Ao
- 53 website endpoint: example 33-mebsfie-us-east-1 AMAZONIVS COM
aramagsearch.com S0A ng-1504. awsdns-60 org. awsdns-hostmaster amazo - L:f:c:':: Ficrrd ol hr e inodend Bonu it ammee.com
Routing Policy: Fallover v

Foute 53 responds o queries using prisnary record sets If any are
hesfivy, or using secondary record sets otherwise. Leam More

Failover Record Type: s Primary Secondary

SetID: Prmary

; .
Figure 16-49. Deleting the primary resource record set

Click on Confirm in the Confirmation dialog as shown in Figure 16-50.

Confirm Cancel X

Are you sure you want to delete the following record set?

® oramagsearch.com.

Coqgm Cancel

Figure 16-50. Confirmation dialog

Only the secondary record set is available to route user requests to, as shown in Figure 16-51.

387

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Back to Hosted Zones Create Record Set Import Zone File Delete Record Set

Q Record Set Nam: X | Any Type v Aliases Only Weighted Only

!4 ¢ Dpisplaying 1 to 3 out of 3 Record Sets + |

Name ~ Typer Value ~ Evaluate Target He

l:} oramagsearch.com. A ALIAS dualstack.afe63b8885c2611e685r40e3c04a7: Yes

ns-1604. awsdns-60.0rg.
ns-1671.awsdns-16.co.uk.

oramagsearch.com. NS -
ns-609.awsdns-12.net.

ns-145. awsdns-18.com.

oramagsearch.com. SOA ns-1504.awsdns-60.0rg. awsdns-hostmaster.amazol - .

Figure 16-51. Only the secondary record set is available

The service continues to be served at oramagsearch. com as shown in Figure 16-52. The hostname may
have changed, as the load balancer also balances the load between the two replicas in the deployment.

= - = e
[Hello world! x\ -
€« C [oramagsearch.com v e = I
|
D tutum
Hello world!

My hostname is hello-world-3739649373-cas94
Links found

KUBERNETES listening in 443 available at tcp:/10.2.0.1:443

Figure 16-52. Hosted zone served by secondary record set

388

CHAPTER 16 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

To add a primary resource record set, click on Create Record Set as shown in Figure 16-53. In the Create
Record Set dialog set the Type as A - IPv4 address. Set Alias as Yes and select the third elastic load balancer
in Alias Target.

Create Record Set
Name: gramagsearc h.com

Type: A - IPv4 address 4

Alias: @ Yes No

Alias Target:

Youcan alsotype — S32 weh

> site endpoints — g
- CloudFront distr)
. Elasiic Beanatal -1 argets Avallatie
- ELBload balanc — £LE foad bajancers —

- $3 website endp a26d378025¢2411e691100aa20bff3c6-7912¢
'L:ef’;“: TECOT afeF3h888502611e685f40e3c04a7592-1460¢
ar oK
a91023d495c2911e684541242d3feafb-4311:
— CloudFront distributions —

Wi

Routing Policy
No Targets Available

Route 53 respand: —_— Elactie Reanclall enmvviranmentsc —
More

Evaluate Target Health: Yes (@ No

Figure 16-53. Adding back a primary resource record set

Set the Routing Policy as Failover and the Failover Record Type as Primary. With other settings the same
as when the Primary/Secondary record set was created, click on Create as shown in Figure 16-54.

389

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Alias: @ Yes () No

Alias Target: dualstack a91023d495c2911e684541
Alias Hosted Zone ID: Z355XDOTRQ7X7K

You can also type the domain name for the resource. Examples:

- CloudFront distribution domain name: d111111abcdefS cloudfront net
- Elastic Beanstalk environment CNAME: example elasticheanstalk.com
- ELE load balancer DNS name: example-1 us-east-
1.elb.amazonaws.com

- 33 website endpoint: example s3wvebsite-us-east-1 amazonaws.com
- Resource record set in this hosted zone: www example.com

Learn More

Routing Policy: Failover v

Route 53 responds to queries using primary record sets if any are
healthy, or using secondary record sets otherwise. Learn More

Failover Record Type: @ Primary Secondary
Set ID: Primary
Evaluate Target Health: e Yes No

Associate with Health Check: Yes @ No

Figure 16-54. Creating a primary resource record set

A Primary Record Set is added as shown in Figure 16-55.

390

CHAPTER 16 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

Back to Hosted Zones Create Record Set Import Zone File Delete Record Set

Q d Set Name X Any Type ¥ Aliases Only Weighted Only

|« 4 Dpisplaying 1 to 4 out of 4 Record Sets » |

Name ~ Type~ Value ~ [Evaluate Target He
oramagsearch.com. A ALIAS dualstack.a91023d495c2911e684541242d3fe Yes
oramagsearch.com. A ALIAS dualstack. afe63b8885c2611e685f40e3c04a7: Yes

ns-1504. awsdns-60.0rg

ns-1671.awsdns-16.co.uk.

oramagsearch.com. NS -
ns-609.awsdns-12.net.
ns-145.awsdns-18.com.

oramagsearch.com. S0A ns-1504. awsdns-60.org. awsdns-hostmaster.amazol -

Figure 16-55. A new primary resource record set

The web browser request is routed to the primary resource record set, as shown in Figure 16-56.

- . = |
; [Hello world! x\ - v -y
« C [oramagsearch.com 7| = = I
|
D tutum
Hello world!

My hostname is hello-world-3739649373-xbrvl
Links found |

KUBERNETES listening in 443 available at tcp:/10.2.0.1:443

Figure 16-56. Hosted zone served the new primary resource record set

391

CHAPTER 16 DEVELOPING A HIGHLY AVAILABLE WEBSITE

The AWS CloudFormations for the Kubernetes clusters have launch configurations and scaling groups
associated with them. If a controller instance is shut down directly, at first the controller and worker
instances would shut down; but because a launch configuration is associated with the CloudFormation,
other controller and worker instances for the CloudFormation are started. If the CloudFormation is
removed, the cluster is removed and is not relaunched. If both the primary and secondary resource record
sets are made unavailable, the Kubernetes service hosted on oramagsearch.combecomes unavailable, as
shown in Figure 16-57.

| =
/ (_ httpi//nosqlsearch.com/ X
&

- X [nosglsearch.com

This site can’t be reached
nosglsearch.com took too long to respond.

Search Google for nosql search

Figure 16-57. The hosted zone becomes unreachable if all resource record sets are deleted

Summary

In this chapter we created a highly available website. The high availability is made feasible by creating
multiple cloud formations and subsequently creating an AWS Route 53 service with DNS failover configured.

This chapter concludes the book Kubernetes Management Design Patterns. As subsequent Kubernetes
versions are developed, other features will be added. At the time of writing this book, Kubernetes 1.3 has
added cross-cluster federation, which can be used to develop federated services that span multiple clusters,
thus providing another form of high availability.

392

Index

A

Agile software, 171
Amazon Linux AMI, 173
Amazon Machine Image (AMI), 4
Amazon Web Services (AWS)
CLL 3
components, 3
environment
access key, 4
Amazon Linux AMI, 5
command prompt, 7
configuration, 6
EC2 instance, 4
instance type, 5
public DNS, 6
users, 4
Kubernetes (see Cluster)
multiple zones, 103
VPC configuration
confirmation screen, 10
console selection, 8
delete command, 10
default output format (json), 11
list and delete selection, 9
nondeletable message, 11
wizard, 9
another-annotation-key, 222
Ansible configuration
ansible.cfg, 342-343
client machine, 339
default settings, 341
IP addresses and hostnames, 340-341
PPA, 339-340
Ubuntu instances, 339
/etc/ansible/ansible.cfg file, 342
/etc/ansible/hosts file, 343-344
host variables, 345
inventory file, 343
IP address and
hostnames, 345
running, 346

© Deepak Vohra 2017

Autoscaling
Kubernetes cluster running, 300
management design pattern, 299
AWS. See Amazon Web Services (AWS)
AWS CloudFormation, 118, 137, 155, 173
awsElasticBlockStore Volume, 141-142, 144-145
AWS volume
create-volume command, 140
EC2 Console, 139
us-east-1¢, 139

BestEffort scope quota, 294, 296

C

Capacity field, 244
Certificate key-value pair, 274
Client Interface (CLI), 118
CloudFormations
choosing services, 93-94
cluster nodes, 360
CoreOS command prompt, 359
EC2 instances, Kubernetes cluster, 118, 361
initializing, 95
KMS key, 358
kube-coreos-cluster-1, 358
Kubernetes clusters, 358
launch, 99-100
nodes, 359
second controller instance, 359
SSH, 357
stacks, 93, 94
launching, 34-35
validation, 34
third controller instance, 360
ClusterIP Service, 156-159
Cluster load, 299
Clusters
action selection, 15
components, 13

D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1

INDEX

Clusters (cont.) AWS configuration, 25
configuration CLI tool, 24
source code, 18 CloudFormation, 23-24
us-west-2a zone, 21 cluster
zone modification, 20 accessing, 39-41
EC2 console nodes, 13 asset directory, 30
inbound rules, 16 CloudFormation, 30
installation process, 11 CloudFormation stack, 34-35
kubectl cluster-info command, 14 configuration, 31-33
logging creation, 29
components, 315 directory, 29
Elasticsearch, 314, 318 testing, 41-42, 44-47
Fluentd, 322 cluster parameters, 27-28
Kibana, 324 DNS, 35-39
kube-system namespace, 317 environment, 25
replication controller, 315 external DNS name, 29
master and minions, 12 KMS key, 28-29
master node, 15 kube-aws installation, 25-27
minion nodes, 16 kube-aws tool, 23
OpenShift CoreOS Linux, 117
nodes, 347 CPUs and memory, 239
testing, 347 CPU utilization increases, 306
security groups, 14 Creating and listing pod, 276
stop command, 21-22
testing D
directory path, 17
LoadBalancer, 17 Default scheduler, 203
nginx image, 17-18 Definition file, 291
PATH environment variable, 17 definition file mysql.yaml, 246
pods, 17 Docker image, 189
Cluster.yaml file, 95-98 Docker run command option equivalents, 242
Command-line interface, 117 Domain name service (DNS), 35-39, 356
Compute-resource-quotas, 283-286 elastic load balancer, 367
Compute resources external DNS, 361
and API resources, 238 failover, 356
node capacity, 244 Downloading Kubernetes
node resources, 254 secret, 120-121
number of pods, 252
pod specification fields, 241 E
requests and limits, 240, 245
resource consumption, 254 Elasticsearch, 314
types, 239 es-controller.yaml, 318
ConfigMap definition file, 257, 261 es-service.yaml, 319
ConfigMap Fields, 257, 259 kubectl cluster, 321
ConfigMap key/value pair, 258, 264 kube-system namespace, 319
ConfigMaps, 268, 293 service endpoints, 320
configuration data, 260 testing, 321
environment variables, 258 Exceeding object quotas, 290
management pattern, 257
multiple replication controller, 257 F
ConfigMaps quota, 293
ConfigMap storing key/value pairs, 275 File mysql.root.password, 259
Configuring cluster.yaml, multiple file object-quotas.yaml, 288
zones, 95-98 Filtering policy, 201
Configuring external DNS, 100 Final node ranking, 202
CoreOS Fluentd, 322

394

G

gitRepo type
creation, 146
description, 151
HTTPS web URL, 148
interactive shell, 151
Kubernetes-volume, 147, 152
pod.yaml, 149
repository window, 146
revision number, 148-149
server, 150
vi editor, 150
volume, 145
Google Cloud Logging, 77
Google Cloud Platform
Billing Account, 59
Compute Engine AP], 56-58, 60-61
console display, 50-51
credentials page, 60
database services and infrastructure, 49
“Kube-GCE” message, 52
Kubernetes (see Kubernetes)
permissions, enable, 55-56
project
addition, 52
creation, 51-52
description, 53
link, Dashboard dialog, 54
management, 54
selection, 53
static external IP address, 67
VM instance page, 62-66
Google Cloud Shell, 80
Google Cloud VPN, 77
Google Container Engine
cluster creation, 78
Google Cloud Platform, component, 77
Google Cloud Shell, 80
kube-cluster-1, 79
kubectl configuration, 80
Kubernetes application, 77
name, zone and machine type, 78
services, 77
Google Container Registry, 77, 84
Graphical user interface (GUI), 117, 134

H

hello-config, 270

hello-world pod, 272

hello-world2 label, 224

hello-world.yaml, 271

High availability (HA)master. See also OpenShift
cluster info, 353
EC2 instances, 349-350

INDEX

kubeconfig configuration, 352

load balancer and master, 352

nodes, schedulable and non-schedulable, 353

shut down, 351

stop action, 350

stop instances dialog, 350-351
Horizontal pod autoscaler (HPA), 299, 303, 305
HorizontalPodAutoscaler specification, 303, 304

I, J

Infrastructure as a Service (IaaS), 49

K

Kibana, 314
dashboard, 328
Elasticsearch service, 330
index pattern, 329
kibana-rc.yaml file, 324, 325
kibana-service.yaml, 326
kube-system namespace, 330-331
logging service, 328
log messages, 329
popular fields, 330
RC definition file, 325-326
service and RC creation, 327
service definition file, 327
KMS key, 28-29, 95
Kube-aws, 25-27
kubectl autoscale command, 304
kubectl autoscale options, 304
kubectl create configmap command, 258
Kubernetes. See also Google Container Engine
applications, 101-102, 280
binaries, 68
cluster, 91, 137, 243, 258, 281
capacity, 251
commands, 67
info, 81
nodes, 258, 281
components, 206
controller and minion instances, 71
CPU utilization, 70
deployment nginx, 71
deployments and services, 85, 72, 87
design patterns, 49
docker build command, 83
Dockerfile, 82
docker image built, 83
external IP addresses, 71
hello-node application, 84
IaaS and PaasS, 49
namespaces, 70
nginx Docker image, 71
node replicas, 72

395

INDEX

Kubernetes (cont.)
nodes, 68, 70, 301
node script server.js, 81
pods, 69, 85
procedure, 50
repository image uploaded, 85
resource types, 238
scheduler, 200
server.js Node Script, 82
service description, 73
service endpoint, 73-75
service external IP and port, 86
services in all namespaces, 69
SSH installation, 50
stopping the cluster, 75, 77
Kubernetes node cluster, 243
Kubernetes service
cluster, 153
ClusterIP Service, 156-159
cluster-wide pods, 362
CoreOS AWS CloudFormation, 155
deployment and service, 362
elastic load balancer, 367
hello-world application, 362
hello-world service, 363
InService, 365
LoadBalancer, 364-366
LoadBalancer Service, 166-168, 170
management pattern, 154
multiple replication controllers, 154
NodePort Service, 159-160, 162-164, 166
OutOfService, 364
overview, 154
public DNS name, 366
replication controller, 153
SRP, 153
Kubernetes versions, 203
kube-scheduler pod description, 208
kube-scheduler, 205
kube-system namespace, 204
kube-up.sh, 3

L

Labeling nodes, 214
LoadBalancer Ingress, 167-168, 303
LoadBalancer Service, 166-168, 170
Logging configuration
adapter pattern, 310
cluster
components, 315
Elasticsearch, 314, 318
Fluentd, 322
Kibana, 314, 324

396

kube-system namespace, 317
replication controller, 315
components, 309
counter pod creation, 312
counter-pod.yaml file, 311
design pattern, 309
Docker containers
directories, 313
JSON format, 314
listing files, 313
permissions setting, 313
system component logs, 314
environment, 311
kubectl logs, 311
nodes, 310
overview, 310
pod definition file, 311-312
sidecar container, 309

Memory field unit, 240
Multi-node application patterns, 199
Multiple zones

on AWS
aware cluster, 104
EC2 console, 105, 108, 112
Kubernetes binaries, 103
listing Kubernetes nodes, 111-112
listing nodes including labels, 112-113
listing nodes, zones, 108, 110
listing nodes, two zones including

labels, 108

listing nodes, including the labels, 104-105

master controller, 103
PV(C, 113-116
PV, 113
same master IP, different subnet
CIDR, 107-108, 110, 112
us-east-1b, 106-108
us-east-1c, 105
zone-aware cluster, 103
AWS CloudFormation, 93
cloud provider zones, 92
configuring cluster.yaml, 95-98
configuring external DNS, 100
environment setting, 93-94
GCE, 92
initializing, CloudFormation, 95
Kubernetes application, 101-102
Kubernetes cluster, 91
launch, CloudFormation, 99-100

mysql Docker image tag, 194
mysql image-based RC, 181

mysql-config definition file, 261
mysql-config-2, 266

mysql/env directory, 259

MySQL pod CPU request, 247
mysql.yaml definition file, 267
mysql.yaml file, 177-178, 182, 263

N

New pod link, 127

New replication controller link, 127
New Service link, 132

nginx application, 125
Kubernetes nginx application, 102
nginx, 234

Node affinity, 220

Node capacity, 244

Node label kubernetes, 225

Node labels, 213, 216

NodePort service, 159-164, 166
nodeSelector field, 225
nodeSelector label, 226

(0

Object quotas, 288
OpenShift
Ansible (see Ansible configuration)
cluster
nodes, 347
testing, 347
credentials, 338
environnment
CentoOS instances, 337
cluster, 337
EC2 instances, 336
software, 337
HA controller, 335
HA master, 336
network manager, 339
overview, 336
Overcommitted memory limits, 254

P

PersistentVolumeClaim (PVC), 113-116
PersistentVolume (PV), 113

Personal Package Archive (PPA), 339
php-apache deployment, 302

PHP Apache Server Deployment, 302
Placeholder pod, 255

Platform as a Service (PaaS), 49, 335

Pod CPU and memory requests and limits, 248

pod definition file, 254, 276, 272

INDEX

pod definition file hello.yaml, 271

Pod description, 269

Pod description lists volume, 277

Pod logs, 273

pod-node-affinity.yaml, 225, 227

Pod specification fields, 241

pod-with-default-scheduler-annotation-
container, 212

Priority functions, 201

Public DNS, 100, 169

Public IP address, 100, 118-119

Pull Secret file, 120

Q

QoS classes, 243
Quality of Service (QoS), 242
quota --namespace=default, 289

R

RC mysql-v1, 179
RC nginx-rc, 130
Relaunched pod, 131-132
Replication controller, 250, 269, 279, 285, 287
Replication controller definition file mysql.yaml,
246
reserve-resource pod, 256
Resource guarantees, 240
ResourceQuota definition file, 282-283, 289, 295
resource quotas
namespaces, 280
Kubernetes applications, 280
spec fields, 280
resource requirements, 279
resource-reserving pod, 256
Rolling updates
container image, 177-184
deployment, 186-189, 191-197
file/image, 186
multiple-container pods, 186
overview, 172
problem, 171
RC definition file, 174-176
replication controller, 176
rollback, 184-186
setting, 173-174
solution, 171-172
RollingUpdateStrategy, 189
Route 53 service
hosted zone, 368
name servers/domain name
configuration, 373
default selection, 371

397

INDEX

Route 53 service (cont.)

delete, 371
DNS record, 370
domain nameservers, 370
records, 369-370
save option, 371-372
update server, 373

record sets
Alias radio button selection, 375
configuration, 381
creation, 374
ELB load balancers, 376
failover record type, 378
public hosted zone, 383
record set creation, 379
resource set, 379-380
routing policy, 377
second record set, 382

routes, 367

selection, 367

S

Scheduler annotation, 211
Scheduling pods, nodes
cloud configuration, 202
default scheduler, 203
design patterns, 199
priority functions, 201
sequence, 199
Scheduling policy, 200
ServiceTypes, 153-155
Single container management patterns, 199
Single controller node, 301
Single master node, 120
Single node, multi-container application
patterns, 199
Single Responsibility Principle (SRP), 135,
153-154, 172
Single-zone cluster, 91
SSH logging, 101, 118-119, 122
SSO features, 120
Supported compute resources, 282

T

Tectonic console
accessing, 123
benefits, 117
CoreOS Linux, 117
deleting a pod, 131
downloading, pull secret, 120
environment setting, 118-120

398

GUI, 117
installing, pull secret, 122
launching replication controller, 128
launching the deployment, 126
listing pods, RC, 130
manifest, 120, 122
modifying pod’s labels/deleting a pod, 131
modifying/deleting an RC, 129
new deployment creation, 124-125
new pod link, 127
new replication controller link, 127, 129
new service link, 132
nginx application, 125
pods, RC nginx-rc, 130
relaunched pod, 132
removing, 134
replica sets, 126
service creation, 134
service details, 133
specifying replication controller
details, 128
subscription levels, 120
web management console, 120
Tectonic identity, 120
Tectonic manager, 120
Tectonic support, 120
Tectonic wizard, 120
Total cluster capacity, 279

U

user-intervened scaling, 300

Vv

Virtual private cloud (VPC), 5
Volumes
Amazon EBS Volume, 135
Docker container, 135
EC2 instance, 137
Kubernetes clusters, 138
nodes, 138
SSH log, 138
types, 135-137

W XY,Z2Z
Website (high-availability)
AWS, 355
CloudFormations
cluster nodes, 360
CoreOS command prompt, 359
EC2 instances, 361

KMS key, 358
kube-coreos-cluster-1, 358
Kubernetes clusters, 358
nodes, 359
second controller instance, 359
SSH, 357
third controller instance, 360
DNS failover, 355-356
environment, 357
external DNS, 361
Kubernetes (see Kubernetes service)
overview, 356
Route 53service (see Route 53 service)

testing

browser, 384

confirmation dialog, 387
controller and worker instances, 386
delete, 387

hosted zone, 392

hosted zone server, 388
InService, 384
oramagsearch.com, 386
primary resource record set, 385
primary set, 389-391

secondary record set, 388

web browser, 391

INDEX

399

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Part I: Platforms
	Chapter 1: Kubernetes on AWS
	Problem
	Solution
	Overview
	Setting the Environment
	Configuring AWS
	Starting the Kubernetes Cluster
	Testing the Cluster
	Configuring the Cluster
	Stopping the Cluster
	Summary

	Chapter 2: Kubernetes on CoreOS on AWS
	Problem
	Solution
	Overview
	Setting the Environment
	Configuring AWS Credentials
	Installing Kube-aws
	Setting Up Cluster Parameters
	Creating a KMS Key
	Setting Up an External DNS Name

	Creating the Cluster
	Creating an Asset Directory
	Initializing the Cluster CloudFormation
	Rendering Contents of the Asset Directory
	Customizing the Cluster
	Validating the CloudFormation Stack
	Launching the Cluster CloudFormation

	Configuring DNS
	Accessing the Cluster
	Testing the Cluster
	Summary

	Chapter 3: Kubernetes on Google Cloud Platform
	Problem
	Solution
	Overview
	Setting the Environment
	Creating a Project on Google Cloud Platform
	Enabling Permissions
	Enabling the Compute Engine API
	Creating a VM Instance
	Connecting to the VM Instance
	Reserving a Static External IP Address

	Creating a Kubernetes Cluster
	Creating a Kubernetes Application and Service
	Stopping the Cluster
	Using Kubernetes with Google Container Engine
	Creating a Google Container Cluster
	Connecting to the Google Cloud Shell
	Configuring kubectl
	Testing the Kubernetes Cluster

	Summary

	Part II: Administration and Configuration
	Chapter 4: Using Multiple Zones
	Problem
	Solution
	Overview
	Setting the Environment
	Initializing a CloudFormation
	Configuring cluster.yaml for Multiple Zones
	Launching the CloudFormation
	Configuring External DNS
	Running a Kubernetes Application
	Using Multiple Zones on AWS
	Summary

	Chapter 5: Using the Tectonic Console
	Problem
	Solution
	Overview
	Setting the Environment
	Downloading the Pull Secret and the Tectonic Console Manifest
	Installing the Pull Secret and the Tectonic Console Manifest
	Accessing the Tectonic Console
	Using the Tectonic Console
	Removing the Tectonic Console
	Summary

	Chapter 6: Using Volumes
	Problem
	Solution
	Overview
	Setting the Environment
	Creating an AWS Volume
	Using an awsElasticBlockStore Volume
	Creating a Git Repo
	Using a gitRepo Volume
	Summary

	Chapter 7: Using Services
	Problem
	Solution
	Overview
	Setting the Environment
	Creating a ClusterIP Service
	Creating a NodePort Service
	Creating a LoadBalancer Service
	Summary

	Chapter 8: Using Rolling Updates
	Problem
	Solution
	Overview
	Setting the Environment
	Rolling Update with an RC Definition File
	Rolling Update by Updating the Container Image
	Rolling Back an Update
	Using Only Either File or Image
	Multiple-Container Pods
	Rolling Update to a Deployment
	Summary

	Chapter 9: Scheduling Pods on Nodes
	Problem
	Solution
	Overview
	Defining a Scheduling Policy
	Setting the Environment
	Using the Default Scheduler
	Scheduling Pods without a Node Selector
	Setting Node Labels
	Scheduling Pods with a Node Selector
	Setting Node Affinity
	Setting requiredDuringSchedulingIgnoredDuringExecution
	Setting preferredDuringSchedulingIgnoredDuringExecution

	Summary

	Chapter 10: Configuring Compute Resources
	Problem
	Solution
	Overview
	Types of Compute Resources
	Resource Requests and Limits
	Quality of Service
	Setting the Environment
	Finding Node Capacity
	Creating a Pod with Resources Specified
	Limit on Number of Pods
	Overcommitting Resource Limits
	Reserving Node Resources
	Summary

	Chapter 11: Using ConfigMaps
	Problem
	Solution
	Overview
	Kubectl create configmap Command
	Setting the Environment
	Creating ConfigMaps from Directories
	Creating ConfigMaps from Files
	Creating ConfigMaps from Literal Values

	Consuming a ConfigMap in a Volume
	Summary

	Chapter 12: Using Resource Quotas
	Problem
	Solution
	Overview
	Setting the Environment
	Defining Compute Resource Quotas
	Exceeding Compute Resource Quotas
	Defining Object Quotas
	Exceeding Object Quotas
	Defining Best-Effort Scope Quotas
	Summary

	Chapter 13: Using Autoscaling
	Problem
	Solution
	Overview
	Setting the Environment
	Running a PHP Apache Server Deployment
	Creating a Service
	Creating a Horizontal Pod Autoscaler
	Increasing Load
	Summary

	Chapter 14: Configuring Logging
	Problem
	Solution
	Overview
	Setting the Environment
	Getting the Logs Generated by Default Logger
	Docker Log Files
	Cluster-Level Logging with Elasticsearch and Kibana
	Starting a Replication Controller
	Starting Elastic Search
	Starting Fluentd to Collect Logs
	Starting Kibana

	Summary

	Part III: High Availability
	Chapter 15: Using an HA Master with OpenShift
	Problem
	Solution
	Overview
	Setting the Environment
	Installing the Credentials
	Installing the Network Manager
	Installing OpenShift via Ansible on the Client Machine
	Configuring Ansible
	Running the Ansible Playbook
	Testing the Cluster
	Testing the High Availability
	Summary

	Chapter 16: Developing a Highly Available Website
	Problem
	Solution
	Overview
	Setting the Environment
	Creating CloudFormations
	Configuring External DNS
	Creating a Kubernetes Service
	Creating an AWS Route 53 Service
	Creating a Hosted Zone
	Configuring Name Servers on a Domain Name
	Creating Record Sets

	Testing High Availability
	Summary

	Index

