
Kubernetes
Management
Design Patterns

With Docker, CoreOS Linux, and Other
Platforms
—
Deepak Vohra

www.allitebooks.com

http://www.allitebooks.org

Kubernetes
Management Design

Patterns
With Docker, CoreOS Linux,

and Other Platforms

Deepak Vohra

www.allitebooks.com

http://www.allitebooks.org

Kubernetes Management Design Patterns: With Docker, CoreOS Linux, and Other Platforms

Deepak Vohra
White Rock, British Columbia
Canada

ISBN-13 (pbk): 978-1-4842-2597-4 ISBN-13 (electronic): 978-1-4842-2598-1
DOI 10.1007/978-1-4842-2598-1

Library of Congress Control Number: 2017930815

Copyright © 2017 by Deepak Vohra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

“Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States and/or
other countries. Docker, Inc. and other parties may also have trademark rights in other terms used herein.”

Kubernetes is Apache License 2.0 software. Docker is Apache License 2.0 software. CoreOS is Apache License 2.0
software.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik.
Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: James A. Compton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/us/
services/rights-permission.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers for download or cloning at Github via the book's product page, located at www.apress.
com/9781484225974. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/us/services/rights-permission
http://www.apress.com/us/services/rights-permission
http://www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author ��� xiii

About the Technical Reviewer ���xv

Introduction ���xvii

 ■Part I: Platforms ��� 1

 ■Chapter 1: Kubernetes on AWS �� 3

 ■Chapter 2: Kubernetes on CoreOS on AWS �� 23

 ■Chapter 3: Kubernetes on Google Cloud Platform ��� 49

 ■Part II: Administration and Configuration ��� 89

 ■Chapter 4: Using Multiple Zones �� 91

 ■Chapter 5: Using the Tectonic Console �� 117

 ■Chapter 6: Using Volumes ��� 135

 ■Chapter 7: Using Services ��� 153

 ■Chapter 8: Using Rolling Updates �� 171

 ■Chapter 9: Scheduling Pods on Nodes ��� 199

 ■Chapter 10: Configuring Compute Resources �� 237

 ■Chapter 11: Using ConfigMaps �� 257

 ■Chapter 12: Using Resource Quotas �� 279

 ■Chapter 13: Using Autoscaling �� 299

 ■Chapter 14: Configuring Logging ��� 309

www.allitebooks.com

http://www.allitebooks.org

iv

■ CONTENTS AT A GLANCE

 ■Part III: High Availability ��� 333

 ■Chapter 15: Using an HA Master with OpenShift ��� 335

 ■Chapter 16: Developing a Highly Available Website �� 355

Index ��� 393

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author ��� xiii

About the Technical Reviewer ���xv

Introduction ���xvii

 ■Part I: Platforms ��� 1

 ■Chapter 1: Kubernetes on AWS �� 3

Problem �� 3

Solution �� 3

Overview �� 3

Setting the Environment ��� 4

Configuring AWS ��� 7

Starting the Kubernetes Cluster ��� 11

Testing the Cluster ��� 17

Configuring the Cluster �� 18

Stopping the Cluster ��� 21

Summary �� 22

 ■Chapter 2: Kubernetes on CoreOS on AWS �� 23

Problem �� 23

Solution �� 23

Overview �� 24

Setting the Environment ��� 25

Configuring AWS Credentials �� 25

Installing Kube-aws �� 25

www.allitebooks.com

http://www.allitebooks.org

vi

■ CONTENTS

Setting Up Cluster Parameters ��� 27

Creating a KMS Key �� 28

Setting Up an External DNS Name �� 29

Creating the Cluster ��� 29

Creating an Asset Directory �� 29

Initializing the Cluster CloudFormation ��� 30

Rendering Contents of the Asset Directory ��� 30

Customizing the Cluster�� 31

Validating the CloudFormation Stack ��� 34

Launching the Cluster CloudFormation �� 34

Configuring DNS ��� 35

Accessing the Cluster ��� 39

Testing the Cluster ��� 41

Summary �� 47

 ■Chapter 3: Kubernetes on Google Cloud Platform ��� 49

Problem �� 49

Solution �� 49

Overview �� 49

Setting the Environment ��� 50

Creating a Project on Google Cloud Platform ��� 50

Enabling Permissions ��� 55

Enabling the Compute Engine API �� 56

Creating a VM Instance �� 62

Connecting to the VM Instance ��� 66

Reserving a Static External IP Address ��� 67

Creating a Kubernetes Cluster ��� 67

Creating a Kubernetes Application and Service ��� 71

Stopping the Cluster ��� 75

Using Kubernetes with Google Container Engine ��� 77

www.allitebooks.com

http://www.allitebooks.org

vii

■ CONTENTS

Creating a Google Container Cluster ��� 77

Connecting to the Google Cloud Shell �� 80

Configuring kubectl �� 80

Testing the Kubernetes Cluster��� 81

Summary �� 87

 ■Part II: Administration and Configuration ��� 89

 ■Chapter 4: Using Multiple Zones �� 91

Problem �� 91

Solution �� 92

Overview �� 93

Setting the Environment ��� 93

Initializing a CloudFormation �� 95

Configuring cluster�yaml for Multiple Zones ��� 95

Launching the CloudFormation �� 99

Configuring External DNS ��� 100

Running a Kubernetes Application ��� 101

Using Multiple Zones on AWS ��� 103

Summary �� 116

 ■Chapter 5: Using the Tectonic Console �� 117

Problem �� 117

Solution �� 117

Overview �� 118

Setting the Environment ��� 118

Downloading the Pull Secret and the Tectonic Console Manifest �������������������������������� 120

Installing the Pull Secret and the Tectonic Console Manifest ��������������������������������������� 122

Accessing the Tectonic Console ��� 123

Using the Tectonic Console �� 124

Removing the Tectonic Console�� 134

Summary �� 134

www.allitebooks.com

http://www.allitebooks.org

viii

■ CONTENTS

 ■Chapter 6: Using Volumes ��� 135

Problem �� 135

Solution �� 135

Overview �� 136

Setting the Environment ��� 137

Creating an AWS Volume �� 139

Using an awsElasticBlockStore Volume ��� 141

Creating a Git Repo �� 145

Using a gitRepo Volume�� 149

Summary �� 152

 ■Chapter 7: Using Services ��� 153

Problem �� 153

Solution �� 154

Overview �� 154

Setting the Environment ��� 155

Creating a ClusterIP Service ��� 156

Creating a NodePort Service �� 159

Creating a LoadBalancer Service ��� 166

Summary �� 170

 ■Chapter 8: Using Rolling Updates �� 171

Problem �� 171

Solution �� 171

Overview �� 172

Setting the Environment ��� 173

Rolling Update with an RC Definition File ��� 174

Rolling Update by Updating the Container Image ��� 177

Rolling Back an Update �� 184

Using Only Either File or Image �� 186

www.allitebooks.com

http://www.allitebooks.org

ix

■ CONTENTS

Multiple-Container Pods ��� 186

Rolling Update to a Deployment ��� 186

Summary �� 198

 ■Chapter 9: Scheduling Pods on Nodes ��� 199

Problem �� 199

Solution �� 199

Overview �� 200

Defining a Scheduling Policy �� 200

Setting the Environment ��� 202

Using the Default Scheduler ��� 203

Scheduling Pods without a Node Selector ��� 213

Setting Node Labels ��� 213

Scheduling Pods with a Node Selector �� 214

Setting Node Affinity��� 220

Setting requiredDuringSchedulingIgnoredDuringExecution ��� 222

Setting preferredDuringSchedulingIgnoredDuringExecution �� 229

Summary �� 236

 ■Chapter 10: Configuring Compute Resources �� 237

Problem �� 237

Solution �� 237

Overview �� 238

Types of Compute Resources ��� 239

Resource Requests and Limits ��� 240

Quality of Service ��� 242

Setting the Environment ��� 243

Finding Node Capacity ��� 244

Creating a Pod with Resources Specified �� 245

Limit on Number of Pods �� 252

www.allitebooks.com

http://www.allitebooks.org

x

■ CONTENTS

Overcommitting Resource Limits ��� 254

Reserving Node Resources �� 254

Summary �� 256

 ■Chapter 11: Using ConfigMaps �� 257

Problem �� 257

Solution �� 257

Overview �� 257

Kubectl create configmap Command ��� 258

Setting the Environment ��� 258

Creating ConfigMaps from Directories ��� 259

Creating ConfigMaps from Files ��� 266

Creating ConfigMaps from Literal Values ��� 270

Consuming a ConfigMap in a Volume ��� 274

Summary �� 277

 ■Chapter 12: Using Resource Quotas �� 279

Problem �� 279

Solution �� 279

Overview �� 280

Setting the Environment ��� 281

Defining Compute Resource Quotas ��� 282

Exceeding Compute Resource Quotas ��� 284

Defining Object Quotas ��� 288

Exceeding Object Quotas�� 290

Defining Best-Effort Scope Quotas ��� 294

Summary �� 298

 ■Chapter 13: Using Autoscaling �� 299

Problem �� 299

Solution �� 299

xi

■ CONTENTS

Overview �� 300

Setting the Environment ��� 300

Running a PHP Apache Server Deployment ��� 302

Creating a Service �� 302

Creating a Horizontal Pod Autoscaler ��� 303

Increasing Load �� 306

Summary �� 308

 ■Chapter 14: Configuring Logging ��� 309

Problem �� 309

Solution �� 309

Overview �� 310

Setting the Environment ��� 311

Getting the Logs Generated by Default Logger ��� 311

Docker Log Files ��� 313

Cluster-Level Logging with Elasticsearch and Kibana ��� 314

Starting a Replication Controller ��� 315

Starting Elastic Search ��� 318

Starting Fluentd to Collect Logs ��� 322

Starting Kibana ��� 324

Summary �� 331

 ■Part III: High Availability ��� 333

 ■Chapter 15: Using an HA Master with OpenShift ��� 335

Problem �� 335

Solution �� 335

Overview �� 336

Setting the Environment ��� 336

Installing the Credentials �� 338

Installing the Network Manager ��� 339

xii

■ CONTENTS

Installing OpenShift via Ansible on the Client Machine �� 339

Configuring Ansible �� 342

Running the Ansible Playbook �� 346

Testing the Cluster ��� 347

Testing the High Availability ��� 349

Summary �� 353

 ■Chapter 16: Developing a Highly Available Website �� 355

Problem �� 355

Solution �� 355

Overview �� 356

Setting the Environment ��� 357

Creating CloudFormations �� 357

Configuring External DNS ��� 361

Creating a Kubernetes Service ��� 362

Creating an AWS Route 53 Service ��� 367

Creating a Hosted Zone �� 368

Configuring Name Servers on a Domain Name �� 369

Creating Record Sets �� 374

Testing High Availability ��� 384

Summary �� 392

Index ��� 393

xiii

About the Author

Deepak Vohra is a consultant and a principal member of the NuBean
software company. Deepak is a Sun-certified Java programmer and Web
component developer. He has worked in the fields of XML, Java
programming, and Java EE for over seven years. Deepak is the coauthor
of Pro XML Development with Java Technology (Apress, 2006). Deepak is
also the author of JDBC 4.0 and Oracle JDeveloper for J2EE Development,
Processing XML Documents with Oracle JDeveloper 11g, EJB 3.0
Database Persistence with Oracle Fusion Middleware 11g, and Java EE
Development in Eclipse IDE (Packt Publishing). He also served as the
technical reviewer on WebLogic: The Definitive Guide (O’Reilly Media,
2004) and Ruby Programming for the Absolute Beginner (Cengage
Learning PTR, 2007).

xv

About the Technical Reviewer

Massimo Nardone has more than 22 years of experiences in Security,
Web/Mobile development, Cloud and IT Architecture. His true IT
passions are security and Android.

He has been programming and teaching how to program with Android,
Perl, PHP, Java, VB, Python, C/C++ and MySQL for more than 20 years.

He holds a Master of Science degree in Computing Science from the
University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer, Research
Engineer, Chief Security Architect, Information Security Manager,
PCI/SCADA Auditor and Senior Lead IT Security/Cloud/SCADA
Architect for many years.

Technical skills include: Security, Android, Cloud, Java, MySQL,
Drupal, Cobol, Perl, Web and Mobile development, MongoDB, D3,
Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS,
Jekyll, Scratch, etc.

He currently works as Chief Information Security Office (CISO) for Cargotec Oyj.
He worked as visiting lecturer and supervisor for exercises at the Networking Laboratory of the

Helsinki University of Technology (Aalto University). He holds four international patents (PKI, SIP, SAML
and Proxy areas).

Massimo has reviewed more than 40 IT books for different publishing company and he is the coauthor
of Pro Android Games (Apress, 2015).

xvii

Introduction

Docker was made available as open source in March 2013 and has become the most commonly used
containerization platform. Kubernetes was open-sourced in June 2014 and has become the most widely
used container cluster manager. The first stable version of CoreOS Linux was made available in July 2014
and since has become the most commonly used operating system for containers. My first book, Kubernetes
Microservices with Docker (Apress, 2016), is an introduction to creating microservices with Kubernetes and
Docker. This book, Kubernetes Management Design Patterns, takes container cluster management to the next
level and discusses all or most aspects of administering and configuring Kubernetes on CoreOS and applying
suitable design patterns such as ConfigMaps, autoscaling, resource quotas, and high availability. Kubernetes
is a cluster manager for Docker and rkt containers, but this book discusses Kubernetes in the context of
Docker only. A cluster manager for Docker containers is needed because the Docker engine by itself lacks
some functionality, such as the ability to scale a cluster of containers, schedule pods on nodes, or mount a
certain type of storage (such as an AWS Volume or Github repo) as volumes. Docker Engine 1.12 integrates the
Docker Swarm cluster manager and Docker Swarm does overcome some of the earlier limitations of Docker
by providing replication, load balancing, fault tolerance, and service discovery, but Kubernetes provides
some features suitable for developing object-oriented applications. The Pod abstraction is the atomic unit of
deployment in Kubernetes. A Pod may consist of one or more containers. Co-locating containers has several
advantages as containers in a Pod share the same networking and filesystem and run on the same node.
Docker Swarm does not support autoscaling directly. While Docker Swarm is Docker native, Kubernetes is
more production-ready having been used in production at Google for more than 15 years.

Kubernetes Design Patterns

A software design pattern is a general reusable solution to a commonly occurring problem
within a given context in software design.

Wikepedia

A Docker image includes instructions to package all the required software and dependencies, set the
environment variables, and run commands, and it is a reusable encapsulation of software for modular
design. The atomic unit of modular container service in Kubernetes is a pod, which is a group of containers
with a common filesystem and networking. The Kubernetes pod abstraction enables design patterns for
containerized applications similar to object oriented design patterns. Pod, service, replication controller,
deployment, and ConfigMap are all types of Kubernetes objects. Further, because containers interact with
each other over HTTP, making use of a commonly available data format such as JSON, Kubernetes design

patterns are language and platform independent. Containers provide some of the same benefits as software
objects such as modularity or packaging, abstraction and reuse. Kubernetes has described three classes or
types of patterns.

•	 Management design patterns

•	 Patterns involving multiple cooperating containers running on the same node

•	 Patterns involving containers running across multiple nodes

Some of the benefits of modular containers are as follows:

•	 The container boundary is an encapsulation or abstraction boundary that can be
used to build modular, reusable components.

•	 The reusable containers may be shared between different applications and agile
developer teams.

•	 Containers speed application development.

•	 Containers are suitable for agile team development.

•	 Containers can be used to encapsulate a best design or implementation.

•	 Containers provide separation of concerns

The design patterns are introduced in the publication Design Patterns For Container-Based Distributed
Systems, by Brendan Burns and David Oppenheimer (https://www.usenix.org/node/196347). In this book
we shall be using some of these and other design patterns.

Kubernetes Architecture
A Kubernetes cluster consists of a single master node (unless a high-availability master is used, which is not
the default) and one or more worker nodes with Docker installed on each node. The following components
run on each master node:

 – etcd to store the persistent state of the master including all configuration data.
A high-availability etcd cluster can also be used.

 – An API Server to serve up the Kubernetes REST API for Kubernetes objects (pods,
services, replication controllers, and others).

 – Scheduler to bind unassigned pods on nodes.

 – Controller manager performs all cluster level operations such as create and update
service endpoints, discover, manage and monitor nodes. The replication controller
is used to scale pods in a cluster.

The following components are run on each worker node:

 – kubelet to manage the pods (including containers), Docker images, and volumes.
The kubelet is managed from the API Server on the master node.

 – kube-proxy is a network proxy and load balancer to serve up services.

The Kubernetes architecture is shown in Figure I-1.

■ INTRODUCTION

xviii

https://www.usenix.org/node/196347

xix

■ INTRODUCTION

Why CoreOS?
CoreOS is the most widely used Linux OS designed for containers, not just Docker containers but also rkt (an
implementation of the APP Container spec) containers. Docker and rkt are pre-installed on CoreOS
out-of-the-box. CoreOS supports most cloud providers including Amazon Web Services (AWS) Elastic
Compute Cloud (EC2), Google Cloud Platform, and virtualization platforms such as VMWare and VirtualBox.
CoreOS provides Cloud-Config for declaratively configuring for OS items such as network configuration
(flannel), storage (etcd), and user accounts. CoreOS provides a production-level infrastructure for
containerized applications including automation, security and scalability. CoreOS has been leading the drive
for container industry standards and in fact founded appc. CoreOS is not only the most widely used operating
system for containers but also the most advanced container registry, Quay. CoreOS provides server security
with Distributed Trusted Computing. CoreOS also provides Tectonic Enterprise for enterprise-level workloads
without operational overhead and an out-of-the-box Kubernetes cluster and a user-friendly dashboard.

Chapter Description
In Chapter 1 we shall install Kubernetes on Amazon Web Services (AWS), create a sample deployment
and service, and subsequently invoke the service. Kubernetes installation on AWS requires almost no
configuration to spin-up a multi-node cluster.

In Chapter 2 we shall install Kubernetes on CoreOS, which is the main platform we shall use for most of
the chapters. We’ll first create an AWS EC2 instance from Amazon Linux AMI, which has the AWS Command
Line Interface (CLI) preinstalled. We’ll then SSH log in to the EC2 instance and install Kube-aws. Then we
will launch a CloudFormation for a Kubernetes cluster with one controller node and three worker nodes and
SSH log in to the controller instance and install kubectl binaries to access the API server.

kubectl

Docker

Docker

API Server (pods,
services, replication

controllers)

Scheduler

Master Node

Pods

Containers

Worker
Node

kubelet kubeletproxy proxy

Worker
Node

etcd Storage

Controller Manager

Figure I-1. Kubernetes Architecture

http://dx.doi.org/10.1007/978-1-4842-2598-1_1
http://dx.doi.org/10.1007/978-1-4842-2598-1_2

xx

■ INTRODUCTION

In Chapter 3 we shall discuss Google Cloud Platform for Kubernetes. First, create a project and a
VM instance. Subsequently connect to the VM instance to create a Kubernetes cluster and test a sample
application.

In Chapter 4 we shall use multiple zones to create an AWS CloudFormation for a Kubernetes cluster.
Chapter 5 introduces the Tectonic Console for managing Kubernetes applications deployed on CoreOS.
Chapter 6 is on volumes. We demonstrate using volumes with two types of volumes:

awsElasticBlockStore volume and gitRepo volume.
Chapter 7 is on using services. We shall create sample services for three kinds of services supported by

Kubernetes: ClusterIP, NodePort and LoadBalancer.
In Chapter 8 we shall discuss rolling updates. A rolling update is the mechanism by which a running

replication controller can be updated to a newer image or specification while it is running.
In Chapter 9 we introduce the scheduling policy used by Kubernetes to schedule pods on nodes. We

discuss the various options including using a NodeSelector, and setting node affinity.
Chapter 10 is on allocating compute resources to applications. The two supported compute resources

are CPU and memory. We shall discuss setting resource requests and limits and also how Kubernetes
provides a quality of service by guaranteeing a preset level of resources.

Chapter 11 is on ConfigMaps, which are maps of configuration properties that may be used in pods and
replication controller definition files to set environment variables, command arguments and such.

Chapter 12 is on setting resource quotas on namespaces for constraining resource usage in a
namespace. Resource quotas are useful in team development (different teams have different requirements)
and different phases of application which have different resource requirements such as development,
testing, and production.

Chapter 13 is on autoscaling, which is suitable for production workloads that can fluctuate. Autoscaling
of a deployment, replica set, or replication controller scales the number of pods in a cluster automatically
when the load fluctuates.

Chapter 14 is on logging. The default logger is discussed in addition to cluster-level logging using
Elasticsearch, Fluentd, and Kibana.

In Chapter 15 OpenShift, a PaaS platform for Kubernetes, is discussed to create a high availability
master Kubernetes cluster using Ansible. Ansible is an automation platform for application deployment,
configuration management, and orchestration.

In Chapter 16 a high availability web site is developed using AWS Route 53 for DNS failover.

http://dx.doi.org/10.1007/978-1-4842-2598-1_3
http://dx.doi.org/10.1007/978-1-4842-2598-1_4
http://dx.doi.org/10.1007/978-1-4842-2598-1_5
http://dx.doi.org/10.1007/978-1-4842-2598-1_6
http://dx.doi.org/10.1007/978-1-4842-2598-1_7
http://dx.doi.org/10.1007/978-1-4842-2598-1_8
http://dx.doi.org/10.1007/978-1-4842-2598-1_9
http://dx.doi.org/10.1007/978-1-4842-2598-1_10
http://dx.doi.org/10.1007/978-1-4842-2598-1_11
http://dx.doi.org/10.1007/978-1-4842-2598-1_12
http://dx.doi.org/10.1007/978-1-4842-2598-1_13
http://dx.doi.org/10.1007/978-1-4842-2598-1_14
http://dx.doi.org/10.1007/978-1-4842-2598-1_15
http://dx.doi.org/10.1007/978-1-4842-2598-1_16

PART I

Platforms

3© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_1

CHAPTER 1

Kubernetes on AWS

Kubernetes is a cluster manager for Docker (and rkt) containers. The Introduction outlines its basic
architecture and relationship to CoreOS and Amazon Web Services (AWS). In this chapter we’ll spin up a
basic cluster without configuration.

 ■ Note Kubernetes Microservices with Docker (Apress, 2016) covers installing Kubernetes on single-node
and multi-node clusters.

Problem
Installing Kubernetes by installing its individual components (Docker, Flannel, Kubelet, and Service Proxy)
separately is an involved process that requires many commands to be run and files to be configured.

Solution
AWS provides a legacy tool called kube-up.sh to spin up a Kubernetes cluster without requiring any
configuration. Only an AWS account, the AWS Command Line Interface (CLI), and access to the AWS APIs
are required. Kubernetes and other tools such as Elasticsearch (used to index and store logs), Heapster
(used to analyze compute resource usage), Kibana (a GUI dashboard used to view the logs), KubeDNS (used
to resolve DNS names for services), Kubernetes-dashboard, Grafana (used for metrics visualization), and
InfluxDB are all installed with a single command.

Overview
In this chapter we will create a multi-node cluster (consisting of one master and multiple minions) on
Amazon Elastic Compute Cloud (EC2) using the AWS Command Line Interface. The stages are as follows:

Setting the Environment

Starting a Cluster

Testing the Cluster

Configuring the Cluster

Stopping the Cluster

ChApter 1 ■ Kubernetes on AWs

4

Setting the Environment
Because we’re using Amazon EC2, an AWS account is required. Also, to configure AWS you need to obtain
security credentials. Select Security Credentials for a user account. In the Your Security Credentials screen,
select the Access Keys node and click Create New Access Key as shown in Figure 1-1 to create a new access key.

Figure 1-1. Creating a new access key

Figure 1-2. Launching an EC2 instance

A new security access key is created and the Access Key ID and Secret Access Key are listed.
Copy the Access Key ID and Secret Access Key to be used later to configure AWS. The Access Key ID and

Secret Access Key will be different for different users.

AWS_ACCESS_KEY_ID AKIAISQVxxxxxxxxxxxxxxx
AWS_SECRET_ACCESS_KEY VuJD5gDxxxxxxxxxxxxxxxxxxxx

Because the AWS Command Line Interface is required, create an EC2 instance of the Amazon Linux
Amazon Machine Image (AMI), which has the AWS CLI preinstalled. Click on Launch Instance as shown in
Figure 1-2 to create a new instance.

ChApter 1 ■ Kubernetes on AWs

5

In the next screen, select the Amazon Linux AMI (64 bit) as shown in Figure 1-3.

Figure 1-3. Selecting Amazon Linux AMI

For the Instance Type, select a relatively large Instance size (m4.xlarge) as shown in Figure 1-4, because
the default (Free Tier) micro size may not provide sufficient memory or disk space to install Kubernetes.
Some of the instance types such as m4.xlarge may only be launched in a virtual private cloud (VPC). When
you are ready, click Next:Configure Instance Details.

Figure 1-4. Choosing an instance type

ChApter 1 ■ Kubernetes on AWs

6

Specify the instance details such as Network VPC and Subnet as shown in Figure 1-5. When finished,
click Next: Add Storage.

Figure 1-5. Configuring instance details

Figure 1-6. The public DNS

A new EC2 instance is created. Obtain the Public DNS for the instance as shown in Figure 1-6.

ChApter 1 ■ Kubernetes on AWs

7

Using the private key that was specified when the instance was created, SSH log in to the instance:

ssh -i "docker.pem" ec2-user@ec2-52-3-250-193.compute-1.amazonaws.com

The Amazon Linux command prompt is displayed as shown in Figure 1-7.

Figure 1-7. Amazon Linux AMI command prompt

Configuring AWS
When a Kubernetes cluster is started on AWS EC2, a new VPC is created for the master and minion nodes.
The number of VPCs that may be created in an AWS account has a limit, which can vary for different users.
Before starting the cluster, delete the VPCs that are not being used so that the limit is not reached when a
new VPC is created. To begin, select VPC in the AWS Services as shown in Figure 1-8.

ChApter 1 ■ Kubernetes on AWs

8

Figure 1-8. Selecting the VPC console

ChApter 1 ■ Kubernetes on AWs

9

Click on Start VPC Wizard as shown in Figure 1-9 to list and delete VPCs if required.

Figure 1-9. Starting the VPC Wizard

Figure 1-10. Available VPCs

The VPCs already available are listed as shown in Figure 1-10.

ChApter 1 ■ Kubernetes on AWs

10

To delete a VPC, select the VPC and click Actions ➤ Delete VPC, as shown in Figure 1-11.

Figure 1-11. Selecting Actions ➤ Delete VPC

Figure 1-12. Deleting a VPC

In the confirmation screen that appears, click Yes, Delete. If the VPC is not associated with any instance,
the VPC should start to be deleted as shown in Figure 1-12.

If a VPC is associated with any instance, then it is not deletable and the Yes, Delete button is
unavailable, as shown in Figure 1-13.

ChApter 1 ■ Kubernetes on AWs

11

Next, configure AWS on the Amazon Linux instance using the following command:

aws configure

When prompted, specify the AWS Access Key ID and AWS Access Key. Also specify the default region
name (us-east-1) and the default output format (json) as shown in Figure 1-14.

Figure 1-13. The message for a nondeletable VPC

Figure 1-14. Configuring AWS

Starting the Kubernetes Cluster
Now that you have configured AWS, run the following command to install Kubernetes:

export KUBERNETES_PROVIDER=aws; wget -q -O - https://get.k8s.io | bash

This command starts the Kubernetes installation process as shown in Figure 1-15.

Figure 1-15. Installing Kubernetes

ChApter 1 ■ Kubernetes on AWs

12

The preceding command invokes the cluster/kube-up.sh script, which further invokes the cluster/
aws/util.sh script using the configuration specified in the cluster/aws/config-default.sh script. One
master and four minions are started on Debian 8 (jessie) as shown in Figure 1-16. The cluster initialization is
started subsequently.

Figure 1-16. Starting master and minions

The cluster is started and validated, and the components installed are listed. The URLs at which the
Kubernetes master, Elasticsearch, Heapster, and other services are running are listed as shown in Figure 1-17.
The directory path at which the Kubernetes binaries are installed is also listed.

www.allitebooks.com

http://www.allitebooks.org

ChApter 1 ■ Kubernetes on AWs

13

The one kubernetes-master and four kubernetes-minion nodes started are listed in the EC2 console as
shown in Figure 1-18.

Figure 1-17. Kubernetes and components started

Figure 1-18. kubernetes-master and kubernetes-minion EC2 instances

ChApter 1 ■ Kubernetes on AWs

14

The cluster information may be obtained with the kubectl cluster-info command, as shown in
Figure 1-19.

Figure 1-19. Running the kubectl cluster-info command

Figure 1-20. Security groups

The different instances need to access each other. A security group is created for each of the instance
types, master and minion, as shown in Figure 1-20.

To add all traffic between the instances, add the default security group to the security groups for the
master and minion; the default security group allows all traffic of all protocols from all sources. To add a
security group to an instance (kubernetes-master, for example) select the instance. Then select Actions ➤
Networking ➤ Change Security Groups as shown in Figure 1-21.

ChApter 1 ■ Kubernetes on AWs

15

In the Change Security Groups screen, select the default security group in addition to the security group
assigned to the master node and click Assign Security Groups as shown in Figure 1-22.

Figure 1-21. Selecting Actions ➤ Networking ➤ Change Security Groups

Figure 1-22. Assigning security groups for kubernetes-master

ChApter 1 ■ Kubernetes on AWs

16

Similarly, for each of the kubernetes-minion nodes, add the default security group and click Assign
Security Groups as shown in Figure 1-23.

Figure 1-23. Assigning security groups for kubernetes-minion

Figure 1-24. The security group with inbound rules to allow all traffic

Alternatively, if the default security group was modified not to allow all traffic, the security group
assigned to the kubernetes-master and each of the kubernetes-minion security groups should include an
inbound rule to all traffic, as shown in Figure 1-24.

ChApter 1 ■ Kubernetes on AWs

17

Testing the Cluster
Next, we will test the Kubernetes cluster. First, we need to add the directory path in which the Kubernetes
binaries are installed to the environment variable PATH.

export PATH=/home/ec2-user/kubernetes/platforms/linux/amd64:$PATH

Subsequently echo the PATH environment variable as shown in Figure 1-25.

Figure 1-25. Setting the PATH environment variable

To test the cluster, run a Docker image such as the nginx image to create three pod replicas:

kubectl run nginx --image=nginx --replicas=3 --port=80

List the pods:

kubectl get pods

List the deployments:

kubectl get deployments

Create a service of type LoadBalancer for the deployment:

kubectl expose deployment nginx --port=80 --type=LoadBalancer

List the services:

kubectl get services

List the pods across the cluster

kubectl get pods –o wide

If Kubernetes has installed correctly, all the previous commands should run correctly and generate the
output to indicate that a pod cluster has been created, as shown in Figure 1-26.

ChApter 1 ■ Kubernetes on AWs

18

Figure 1-26. Creating a pod cluster for nginx

Configuring the Cluster
The default configuration settings used to start a new cluster are specified in the cluster/aws/config-
default.sh file. The default configuration includes settings for AWS zone, number of nodes, master size,
node size, AWS S3 region, AWS S3 Bucket, and instance prefix.

export KUBE_AWS_ZONE=eu-west-1c
export NUM_NODES=3
export MASTER_SIZE=m3.medium
export NODE_SIZE=m3.medium
export AWS_S3_REGION=eu-west-1
export AWS_S3_BUCKET=mycompany-kubernetes-artifacts
export INSTANCE_PREFIX=k8s

The config-default.sh file may be opened in a vi editor:

sudo vi /home/ec2-user/kubernetes/cluster/aws/config-default.sh

The configuration settings are listed as shown in Figure 1-27.

ChApter 1 ■ Kubernetes on AWs

19

As an example, change the AWS zone from us-east-1e to us-west-2a as shown in Figure 1-28.

Figure 1-27. Listing the default configuration settings

ChApter 1 ■ Kubernetes on AWs

20

Shut down the cluster after making any modifications:

/home/ec2-user/kubernetes/cluster/kube-down.sh

Restart the cluster:

/home/ec2-user/kubernetes/cluster/kube-up.sh

The cluster should be started in the us-west-2a zone as shown in Figure 1-29.

Figure 1-28. Modifying the AWS zone

ChApter 1 ■ Kubernetes on AWs

21

Figure 1-29. Restarted Kubernetes cluster with nodes in the new AWS zone

Stopping the Cluster
To stop the cluster, run the kube-down.sh command:

/home/ec2-user/kubernetes/cluster/kube-down.sh

As the output in Figure 1-30 indicates, the ELBs in the VPC are deleted, the instances in the VPC are
deleted, and the auto-scaling groups and the auto launch configuration are deleted.

Figure 1-30. Stopping a Kubernetes cluster

ChApter 1 ■ Kubernetes on AWs

22

After all instances have been deleted, the elastic IP is released, and eventually the security groups and
VPC are deleted as shown in Figure 1-31.

Figure 1-31. Deleting instances, volumes, security groups, and VPC

Subsequently, the cluster may be restarted if required.

/home/ec2-user/kubernetes/cluster/kube-up.sh

Summary
In this chapter we discussed installing Kubernetes on AWS. The Amazon Linux AMI must be used as it
has the AWS CLI preinstalled. Too many VPCs must not be created prior to creating a Kubernetes cluster,
as a new VPC is created when the cluster is created and having too many prior VPCs could make the VPC
quota allocated to a user account to be exceeded. We spun up a Kubernetes cluster consisting of a single
master and three minions. In the next chapter we shall install Kubernetes on CoreOS, the Linux OS designed
specifically for containers.

23© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_2

CHAPTER 2

Kubernetes on CoreOS on AWS

Kubernetes is usually used with a cloud platform, as the hardware infrastructure required for a multi-node
Kubernetes cluster is best provisioned in a cloud environment. In Chapter 1 we used the kube-up tool to spin
up a cluster without requiring any configuration.

Problem
The kube-up tool does not create a production-ready cluster. One of the limitations of kube-up is that it does
not support CoreOS. Docker has to be installed, even though the Docker installation is preconfigured.

Solution
Docker is installed out-of-the-box on CoreOS. The CoreOS tool kube-aws can be used to spin up a
production-ready Kubernetes cluster on CoreOS nodes on EC2 without much configuration. The kube-
aws tool makes use of AWS CloudFormation to create a cluster of EC2 instances running CoreOS. AWS
CloudFormation is a service to provision AWS resources such as EC2 instances, Auto Scaling Groups,
and Elastic Load Balancing load balancers, all using a template. Using a single cluster configuration file
to provision an AWS CloudFormation for a Kubernetes cluster is a management design pattern. The
same cluster template may be reused to provision other Kubernetes clusters. Figure 2-1 shows an AWS
CloudFormation that consists of a Kubernetes Master node and three Kubernetes worker nodes, along with
an Auto Scaling Group and a Launch Configuration.

http://dx.doi.org/10.1007/978-1-4842-2598-1_1

Chapter 2 ■ Kubernetes on Coreos on aWs

24

Overview
AWS CloudFormation provisions a collection of AWS resources based on a template, which defines the
resources and the dependencies. In this chapter we shall deploy an AWS CloudFormation for a cluster of
CoreOS instances running Kubernetes. We shall use an AWS Launch Configuration and a Scaling Group for
automatically launching and scaling the CloudFormation. The kube-aws CloudFormation generator CLI tool
is used to create the CloudFormation stack from a template. The stages we’ll explore are as follows:

Setting the Environment

Configuring AWS Credentials

Installing kube-aws

Setting Up Cluster Parameters

Creating a KMS Key

Setting Up an External DNS Name

Creating the Cluster CloudFormation

Creating an Asset Directory

Initializing the Cluster CloudFormation

Rendering Contents of the Asset Directory

Customizing the Cluster

kube-aws

AWS
CloudFormation

Master Node
(CoreOS)

Worker Node
(CoreOS)

Worker Node
(CoreOS)

Worker Node
(CoreOS)

Launch
Configuration

Auto Scaling
Group

Figure 2-1. AWS CloudFormation for a Kubernetes cluster

Chapter 2 ■ Kubernetes on Coreos on aWs

25

Validating the CloudFormation Stack

Launching the Cluster CloudFormation

Configuring DNS

Accessing the Cluster

Testing the Cluster

Setting the Environment
The following software is required for this chapter:

•	 AWS Command Line Interface (CLI)

•	 kube-aws CloudFormation Generator

To set up your environment, first create an Amazon EC2 instance from Amazon Linux AMI (ami-
7172b611), which has the AWS CLI preinstalled. Modify the Inbound/Outbound rules to allow all traffic for
all protocols in port range 0–65535 from any source and to any destination. Obtain the Public IP of the EC2
instance. SSH Log in to the EC2 instance:

ssh -i kubernetes-coreos.pem ec2-user@54.86.194.192

The Amazon Linux command prompt is displayed. You’re now ready to go.

Configuring AWS Credentials
We need to create a set of AWS Security credentials, which we will use to configure the EC2 instance from
which the CloudFormation stack is launched. The AWS Security credentials used in Chapter 1 may be used
if not deleted. To create new AWS Security credentials click on Security Credentials for the user account and
click on Create New Access Key to create an access key. Copy the Access Key ID and the access key. In the
Amazon Linux instance run the following command to configure the instance with the AWS credentials:

aws configure

Specify the access key ID and access key when prompted. Specify the default region name (us-east-1)
and the output format (json).

Installing Kube-aws
CoreOS applications on GitHub and packaged into AppC images are signed with the CoreOS Application
Signing Key. So that you’ll be able to distribute your own work, import the CoreOS Application Signing Key,
as shown here:

gpg2 --keyserver pgp.mit.edu --recv-key FC8A365E

Next, validate the key:

gpg2 --fingerprint FC8A365E

http://dx.doi.org/10.1007/978-1-4842-2598-1_1

Chapter 2 ■ Kubernetes on Coreos on aWs

26

Figure 2-2 shows the output from this command. As you can see, the key fingerprint is 18AD 5014 C99E
F7E3 BA5F 6CE9 50BD D3E0 FC8A 365E, which is the correct key fingerprint; the value is a constant.

Figure 2-2. Importing and validating the CoreOS application signing key

Donwload the latest release tarball and detached signature (.sig) for kube-aws from https://github.
com/coreos/coreos-kubernetes/releases:

wget https://github.com/coreos/coreos-kubernetes/releases/download/v0.7.1/kube-aws-linux-
amd64.tar.gz
wget https://github.com/coreos/coreos-kubernetes/releases/download/v0.7.1/kube-aws-linux-
amd64.tar.gz.sig

Validate the tarball’s GPG signature.

gpg2 --verify kube-aws-linux-amd64.tar.gz.sig kube-aws-linux-amd64.tar.gz

The primary key fingerprint should be 18AD 5014 C99E F7E3 BA5F 6CE9 50BD D3E0 FC8A 365E, as
shown in Figure 2-3.

https://github.com/coreos/coreos-kubernetes/releases
https://github.com/coreos/coreos-kubernetes/releases

Chapter 2 ■ Kubernetes on Coreos on aWs

27

Extract the binary from the tar.gz file:

tar zxvf kube-aws-linux-amd64.tar.gz

Add kube-aws to the path:

sudo mv linux-amd64/kube-aws /usr/local/bin

The kube-aws CloudFormation generator is installed. You can display information about its usage with
the kube-aws –help command.

Setting Up Cluster Parameters
Before initializing and launching the AWS CloudFormation cluster we need to create or define the following
cluster parameters:

•	 EC2 key pair

•	 KMS key

•	 External DNS name

Before creating a key pair we need to configure an AWS region; we already did that with the aws
configure command. Run the following command to create a key pair called kubernetes-coreos and save it
as kubernetes-coreos.pem:

aws ec2 create-key-pair --key-name kubernetes-coreos --query 'KeyMaterial' --output text >
kubernetes-coreos.pem

Modify the access permissions of the key pair using the mode 400, which sets access permissions to
read by owner.

chmod 400 kubernetes-coreos.pem

Figure 2-3. Validate the tarball’s GPG signature

Chapter 2 ■ Kubernetes on Coreos on aWs

28

The key pair is created and access permissions are set as shown in Figure 2-4.

Figure 2-5. Listing the key pair in the EC2 console

Figure 2-4. Creating the key pair

On the AWS console the kubernetes-coreos key pair should be listed, as shown in Figure 2-5.

Creating a KMS Key
Next, create a KMS key, which is used to encrypt and decrypt cluster TLS assets and is identified by an
Amazon Resource Name (ARN) string. Use the aws CLI to create a KMS key for region us-east-1.

aws kms --region=us-east-1 create-key --description="kube-aws assets"

A KMS key is created as shown in Figure 2-6. Copy the KeyMetadata.Arn string arn:aws:kms:us-east-
1:672593526685:key/b7209ba2-cb87-4ccf-8401-5c6fd4fb9f9b to be used later to initialize the cluster
CloudFormation.

Chapter 2 ■ Kubernetes on Coreos on aWs

29

Setting Up an External DNS Name
Next you need to register a domain name with a domain registrar, as we shall be using the domain’s external
DNS name to make the cluster API accessible. We have used the external DNS name NOSQLSEARCH.COM. The
NOSQLSEARCH.COM domain is not usable for all users, and different users would need to register a different
domain name with a domain registry. Or, use a domain that is already registered.

Creating the Cluster
Creating a cluster requires the following procedure:

 1. Create an asset directory.

 2. Initialize the CloudFormation stack.

 3. Render the contents of the asset directory.

 4. Customize the cluster optionally in the cluster.yaml file.

 5. Validate the CloudFormation stack and the cloud-config user data files.

 6. Launch the CloudFormation stack.

We shall discuss each of these stages next.

Creating an Asset Directory
Create a directory on the Amazon Linux EC2 instance for the generated assets. Then cd (change directory) to
the asset directory:

mkdir coreos-cluster
cd coreos-cluster

Figure 2-6. Creating a KMS key

Chapter 2 ■ Kubernetes on Coreos on aWs

30

Initializing the Cluster CloudFormation
Using the Amazon EC2 key pair, KMS Key ARN string, and external DNS name, initialize the CloudFormation
stack:

kube-aws init --cluster-name=kube-coreos-cluster
--external-dns-name=NOSQLSEARCH.COM
--region=us-east-1
--availability-zone=us-east-1c
--key-name=kubernetes-coreos
--kms-key-arn="arn:aws:kms:us-east-1:672593526685:key/b7209ba2-cb87-4ccf-8401-5c6fd4fb9f9b "

The CloudFormation stack assets are created; the main configuration file is cluster.yaml, as shown in
Figure 2-7.

Figure 2-8. Rendering clustering assets

Figure 2-7. Creating CloudFormation stack assets

Rendering Contents of the Asset Directory
Next, render (generate) the cluster assets (templates and credentials), which are used to create, update, and
interact with the Kubernetes cluster.

kube-aws render

The CloudFormation template stack-template.json is created (as shown in Figure 2-8); it will be used
to create the Kubernetes cluster. The cluster.yaml, userdata files for the Kubernetes controller and the
worker, and stack-template.json could optionally be customized.

Chapter 2 ■ Kubernetes on Coreos on aWs

31

Table 2-1. Cluster.yaml Configuration Settings

Configuration setting Description Default Value

clusterName Name of Kubernetes cluster. If more than one cluster are
to deployed in the same AWS account, Kubernetes cluster
name must be unique within the AWS account. For the
example cluster, set this to kube-coreos-cluster.

externalDNSName DNS name routable to the Kubernetes controller nodes
from worker nodes and external clients. Configure the
createRecordSet and hostedZone options below if you'd
like kube-aws to create a Route53 record sets/hosted zones
for you. Otherwise the deployer is responsible for making
this name routable. For the example cluster, set this to
NOSQLSEARCH.COM.

releaseChannel CoreOS release channel to use. Currently supported
options: [alpha, beta]

alpha

createRecordSet Set to true if you want kube-aws to create a Route53 A
Record for you.

false

hostedZone The name of the hosted zone to add the externalDNSName
to, such as “google.com”. This needs to already exist;
kube-aws will not create it for you.

“”

hostedZoneId The ID of hosted zone to add the externalDNSName to.
Either specify hostedZoneId or hostedZone, but not both.

“”

keyName Name of the SSH keypair already loaded into the AWS
account being used to deploy this cluster. For the example
cluster, set to kubernetes-coreos.

region Region to provision Kubernetes cluster. For the example
cluster, set to us-east-1.

availabilityZone Availability zone to provision Kubernetes cluster when
placing nodes in a single availability zone (not highly-
available) Comment out for multi availability zone setting
and use the subnets section instead. For the example
cluster set to us-east-1c.

controllerInstanceType Instance type for controller node. m3.medium

controllerRootVolumeSize Disk size (GiB) for controller node. 30

workerCount Number of worker nodes to create. 1.

workerInstanceType Instance type for worker nodes. m3.medium
(continued)

Customizing the Cluster
Customizing the cluster is optional, and the CloudFormation stack could be launched with its defaults.
Among the reasons to customize are to use a different cloud provider region and external DNS name than
specified when rendering the cluster assets and to use nondefault settings for other parameters. Some of the
configuration settings in cluster.yaml are discussed in Table 2-1.

Chapter 2 ■ Kubernetes on Coreos on aWs

32

Table 2-1. (continued)

Configuration setting Description Default Value

workerRootVolumeSize Disk size (GiB) for worker nodes. 30

vpcId ID of existing VPC to create subnet in. Leave blank to create
a new VPC.

routeTableId ID of existing route table in existing VPC to attach subnet to.
Leave blank to use the VPC's main route table.

vpcCIDR CIDR for Kubernetes VPC. If vpcId is specified, must
match the CIDR of existing vpc.

“10.0.0.0/16”

instanceCIDR CIDR for Kubernetes subnet when placing nodes in a
single availability zone (not highly-available) Leave
commented out for multi availability zone setting and
use the subnets section instead.

“10.0.0.0/24”

subnets Kubernetes subnets with their CIDRs and availability
zones. Differentiating availability zone for two or more
subnets result in high-availability (failures of a single
availability zone won't result in immediate downtimes).

controllerIP IP Address for the controller in Kubernetes subnet. When
we have two or more subnets, the controller is placed in
the first subnet and controllerIP must be included in the
instanceCIDR of the first subnet. This convention will
change once CoreOS supports H/A controllers.

10.0.0.50

serviceCIDR CIDR for all service IP addresses. “10.3.0.0/24”

podCIDR CIDR for all pod IP addresses. “10.2.0.0/16”

dnsServiceIP IP address of Kubernetes dns service (must be contained
by serviceCIDR).

10.3.0.10

kubernetesVersion Version of hyperkube image to use. This is the tag for the
hyperkube image repository.

v1.2.4_coreos.1

hyperkubeImageRepo Hyperkube image repository to use. quay.io/
coreos/
hyperkube

useCalico Whether to use Calico for network policy. When set to “true,”
kubernetesVersion must also be updated to include a
version tagged with CN,I e.g. v1.2.4_coreos.cni.1.

false

stackTags: Name AWS Tag for CloudFormation stack resources. “Kubernetes”

stackTags: Environment: AWS Tag for CloudFormation stack resources. “Production”

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Kubernetes on Coreos on aWs

33

By default one Kubernetes controller and one Kubernetes worker are launched. As an example, we shall
modify the number of Kubernetes workers to 3. Open cluster.yaml in the vi editor:

sudo vi cluster.yaml

Set workerCount to 3 as shown in Figure 2-9 and save the cluster.yaml file.

Figure 2-9. Modifying cluster.yaml to set Worker Nodes to 3

Customizing the cluster.yaml does not require the assets to be re-rendered, but if the user data files or
the stack template is modified, the cluster assets must be rerendered (we don’t need to re-render):

kube-aws render

Chapter 2 ■ Kubernetes on Coreos on aWs

34

Validating the CloudFormation Stack
After modifying any file (stack-template.json or the user data files), the CloudFormation stack must be
validated:

kube-aws validate

As indicated by the output in Figure 2-10, the user data and the stack template are valid.

Figure 2-10. Validating the CloudFormation stack

Launching the Cluster CloudFormation
Launch the CloudFormation stack with the following command:

kube-aws up

It could take a few minutes for the cluster to be launched and for the Kubernetes controller and
workers to become available. The preceding command does not complete until the cluster has launched.
The controller IP is listed when the cluster is lauched. The cluster status may be found with the following
command:

kube-aws status

As the output from the preceding commands in Figure 2-11 indicates, the cluster is launched.

Chapter 2 ■ Kubernetes on Coreos on aWs

35

Figure 2-11. Launching the cluster and validating status

The EC2 console should list the controller and worker instances as running or initializing, as shown in
Figure 2-12.

Figure 2-12. Listing the controller and worker nodes

An EC2 security group, a scaling group, and a launch configuration are also created.

Configuring DNS
Next, we need to configure the external DNS, NOSQLSEARCH.COM in the example, to add an A record for the
public IP address of the controller. Obtain the public IP address of the controller from the EC2 console as
shown in Figure 2-13.

Chapter 2 ■ Kubernetes on Coreos on aWs

36

The procedure for adding an A record could be slightly different for different domain registries. In the
DNS Zone File for the external DNS NOSQLSEARCH.COM, choose Edit Record as shown in Figure 2-14 to modify
the A record.

Figure 2-14. Editing the A record

Figure 2-13. Obtaining the public IP address

Chapter 2 ■ Kubernetes on Coreos on aWs

37

In the Edit Zone Record screen, specify the public IP address in the Points To field and click Finish as
shown in Figure 2-15.

Figure 2-15. Adding an A record

Chapter 2 ■ Kubernetes on Coreos on aWs

38

Click on Save Changes to save the modifications to the A record as shown in Figure 2-16.

Figure 2-16. Saving changes to the A record

The A record should list the Points To as the public IP address of the controller instance as shown in
Figure 2-17.

Chapter 2 ■ Kubernetes on Coreos on aWs

39

Accessing the Cluster
Download the kubectl binaries, which are used to manage the Kubernetes cluster. Set access permissions to
the kubectl binaries to make them executable, and move the kubectl binaries to /usr/local/bin, which is
in the path:

sudo wget https://storage.googleapis.com/kubernetes-release/release/v1.3.0/bin/linux/amd64/
kubectl
sudo chmod +x kubectl
sudo mv kubectl /usr/local/bin/

Using the kubectl config file access the cluster to list the nodes. The one controller node and the three
worker nodes should be listed as shown in Figure 2-18. The controller node is not schedulable by default,
which implies that pods cannot be run on the node.

Figure 2-17. The updated A record

Figure 2-18. Listing the Kubernetes cluster nodes

Chapter 2 ■ Kubernetes on Coreos on aWs

40

Using the public IP of the controller instance, access the controller instance. The user name must be
specified as “core” as the instances are running CoreOS.

ssh -i "kubernetes-coreos.pem" core@23.22.192.55

The preceding command logs into the CoreOS controller instance as shown in Figure 2-19.

Figure 2-19. SSH logging into a CoreOS instance

Figure 2-20. Installing Kubectl binaries

Download the kubectl binaries, set permissions, and move binaries to the /usr/local/bin directory to
ensure they are in your path. The commands must be rerun after logging into the controller.

sudo wget https://storage.googleapis.com/kubernetes-release/release/v1.3.0/bin/linux/amd64/
kubectl
sudo chmod +x kubectl
sudo mv kubectl /usr/local/bin/

The kubectl binaries are installed as shown in Figure 2-20.

Chapter 2 ■ Kubernetes on Coreos on aWs

41

List the nodes:

kubectl get nodes

The single controller node and the three worker nodes are listed as shown in Figure 2-21.

Figure 2-21. Listing the Kubernetes cluster nodes

Testing the Cluster
To test the cluster, run some example application, such as the nginx server. Run three pod replicas of the
nginx application:

 ./kubectl -s http://localhost:8080 run nginx --image=nginx -replicas=3 --port=80

List the replication controllers:

./kubectl get rc

List the services:

./kubectl get services

List the deployments:

./kubectl get deployments

List the pods:

./kubectl get pods

Create a service for the nginx deployment:

./kubectl expose deployment nginx --port=80 --type=LoadBalancer

List the services again, and the nginx service should be listed:

./kubectl get services

Figure 2-22 shows the output from the preceding commands.

Chapter 2 ■ Kubernetes on Coreos on aWs

42

Next, describe the nginx service:

./kubectl describe svc nginx

The service description lists its endpoints, as shown in Figure 2-23.

Figure 2-22. Creating a deployment and service for nginx

Chapter 2 ■ Kubernetes on Coreos on aWs

43

Invoke a service endpoint:

curl 10.2.29.3

The HTML markup for the nginx server application is output as shown in Figure 2-24.

Figure 2-23. Service description lists the service endpoints

Chapter 2 ■ Kubernetes on Coreos on aWs

44

Similarly invoke another endpoint:

curl 10.2.32.2

The nginx application HTML markup is listed, as shown in Figure 2-25.

Figure 2-24. Invoking the service endpoint with curl

Chapter 2 ■ Kubernetes on Coreos on aWs

45

Figure 2-25. Invoking another service endpoint

To be able to invoke the nginx service endpoint in a browser, we need to set port forwarding from a local
machine. Copy the key pair kubernetes-coreos.pem to the local machine:

scp -i docker.pem ec2-user@ec2-54-85-83-181.compute-1.amazonaws.com:~/kubernetes-coreos.pem
~/kubernetes-coreos.pem

Using the key pair, set port forwarding from the local machine to a service endpoint on the controller
instance:

ssh -i kubernetes-coreos.pem -f -nNT -L 80:10.2.29.3:80 core@ec2-23-22-192-55.compute-1.
amazonaws.com

Port forwarding from a local machine to the service endpoint is set as shown in Figure 2-26.

Chapter 2 ■ Kubernetes on Coreos on aWs

46

Figure 2-27. Invoking the service in a browser

Figure 2-26. Setting port forwarding

Invoke the service endpoint on the local machine browser to display the nginx application output as
shown in Figure 2-27.

Chapter 2 ■ Kubernetes on Coreos on aWs

47

Exit the controller instance as shown in Figure 2-28.

Figure 2-28. Exiting CoreOS instance

Summary
In this chapter we launched an AWS CloudFormation stack for a Kubernetes cluster on CoreOS instances.
The procedure we followed was this: First, install kube-aws. Next, set up the cluster parameters, such as
creating a KMS key and setting up an external DNS name. To create the cluster CloudFormation, create an
asset directory, initialize the cluster CloudFormation, render contents of the asset directory, customize the
cluster, validate the cluster and launch the cluster. After the cluster has been launched, access the cluster
and create an nginx application pod cluster.

In the next chapter we will install Kubernetes on the Google Cloud platform.

49© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_3

CHAPTER 3

Kubernetes on Google Cloud
Platform

Google Cloud Platform is a public cloud computing platform that includes database services and
infrastructure on which applications and websites may be hosted on managed virtual machines. This
integrated PaaS/IaaS is a collection of services that may be categorized into Compute, Storage and
Databases, Networking, Big Data, and Machine Learning, to list a few.

Problem
While Docker is pre-installed on CoreOS, Kubernetes is not. As discussed in Chapter 2 Kubernetes has to be
installed on CoreOS.

Solution
The service category of most interest for using Kubernetes is Compute, which includes a Compute Engine
for running large-scale workloads on virtual machines hosted on Google’s infrastructure, an App Engine
for developing scalable web and mobile apps, and a Container Engine for running Docker containers on
Kubernetes on Google’s infrastructure. Google Container Engine is a Kubernetes based cluster manager for
Docker containers and thus does not require installation of Kubernetes. We shall use the Google Container
Engine, a Google managed service for Kubernetes. Google Container Engine has Docker preinstalled and
provides built-in support for Google Cloud Platform, which as stated is both an Infrastructure as a Service
(IaaS) and a Platform as a Service (PaaS). Google Cloud Platform is an alternative to Amazon Web Services
(AWS), which is the cloud provider we use in most other chapters.

Overview
The design patterns discussed in subsequent chapters may be used on Google Cloud Platform as well,
though the configuration could be different. In this chapter we will use the Google Compute Engine to
create a virtual machine instance, install Kubernetes on it using binaries, and subsequently create a sample
Kubernetes application and service. We shall also discuss using the Google Container Engine, which is
Kubernetes based cluster manager for Docker containers. The steps we’ll take are as follows:

Setting the Environment

Creating a Project on Google Cloud Platform

Enabling Permissions

http://dx.doi.org/10.1007/978-1-4842-2598-1_2

Chapter 3 ■ Kubernetes on GooGle Cloud platform

50

Enabling the Compute Engine API

Creating a VM Instance

Connecting to the VM Instance

Reserving a Static Address

Creating a Kubernetes Cluster

Creating a Kubernetes Application and Service

Stopping the Cluster

Using Kubernetes with Google Container Engine

Setting the Environment
To create a Kubernetes cluster and deploy an application on it we will use the following procedure on Google
Cloud Platform:

 1. Create a project.

 2. Enable the Compute Engine API.

 3. Enable permissions.

 4. Create and connect to a Virtual Machine instance.

 5. Reserve a static address.

 6. Create a Kubernetes cluster.

 7. Create a sample Kubernetes application and service.

The only prerequisite is to install SSH for Google Cloud Platform as shown in Figure 3-1.

Figure 3-1. Installing SSH for Google Cloud Platform

We also need to create a new Billing Account at https://console.cloud.google.com/billing. Before
we can use the Compute Engine API, the billing needs to be enabled for a project. Most of the Google Cloud
Platform artifacts may also be created and/or managed with the command-line tool gcloud. We have
used the Google Cloud Platform console for most of the chapter except for setting some configurations.
These include configuring kubectl to use a particular project, to push a Docker image to Google Container
Registry, and to delete a Google Container Engine cluster.

Creating a Project on Google Cloud Platform
To create a project, navigate to the Google Cloud Platform console at https://console.cloud.google.com/
start. The Google Cloud Platform console is displayed as shown in Figure 3-2.

https://console.cloud.google.com/billing
https://console.cloud.google.com/start
https://console.cloud.google.com/start

Chapter 3 ■ Kubernetes on GooGle Cloud platform

51

Select the Project dropdown and click Create Project as shown in Figure 3-3.

Figure 3-2. Displaying the Google Cloud Platform console

Figure 3-3. Selecting Create Project to begin project creation

In the New Project dialog, specify a Project name (Kube-GCE for example) and optionally select an App
Engine location in the advanced options. Click on Create as shown in Figure 3-4.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

52

The message Creating project "Kube-GCE" is displayed, as shown in Figure 3-5.

Figure 3-4. Creating a project

Figure 3-5. Creating a project “Kube-GCE” message

Figure 3-6. The new project is added

The new project is added in the Projects on the Dashboard as shown in Figure 3-6.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

53

The Kube-GCE project may be selected from the project list to display its details as shown in Figure 3-7,
or you can create another project with Create Project.

Figure 3-7. Selecting a project

The Dashboard can be accessed at https://console.cloud.google.com/projectselector/home/
dashboard. The project Kube-GCE should be listed on the Dashboard as shown in Figure 3-8.

Figure 3-8. Project description on dashboard

If no project exists yet, the Dashboard URL https://console.cloud.google.com/projectselector/
home/dashboard displays a dialog prompt to create a project as shown in Figure 3-9.

https://console.cloud.google.com/projectselector/home/dashboard
https://console.cloud.google.com/projectselector/home/dashboard
https://console.cloud.google.com/projectselector/home/dashboard
https://console.cloud.google.com/projectselector/home/dashboard

Chapter 3 ■ Kubernetes on GooGle Cloud platform

54

The projects may be managed at https://console.cloud.google.com/iam-admin/projects, as shown
in Figure 3-10.

Figure 3-9. The Create a Project link in the Dashboard dialog

Figure 3-10. Managing projects at All Projects

https://console.cloud.google.com/iam-admin/projects

Chapter 3 ■ Kubernetes on GooGle Cloud platform

55

Enabling Permissions
To enable permissions for a project, navigate to the Projects page at https://console.cloud.google.com/
iam-admin/projects. Select the Kube-GCE project as shown in Figure 3-11.

Figure 3-11. Selecting a project

Permissions for the project resources are displayed. Modify all permissions to “Owner” as shown in
Figure 3-12.

https://console.cloud.google.com/iam-admin/projects
https://console.cloud.google.com/iam-admin/projects

Chapter 3 ■ Kubernetes on GooGle Cloud platform

56

Enabling the Compute Engine API
To be able to create a virtual machine and create a Kubernetes cluster, we need to enable the Compute
Engine API. Access the Dashboard at https://console.cloud.google.com/apis/dashboard. In the Use
Google APIs field, click the Enable and Manage APIs link in as shown in Figure 3-13.

Figure 3-12. Setting permissions for the project

Figure 3-13. Selecting the Enable and Manage APIs link

https://console.cloud.google.com/apis/dashboard

Chapter 3 ■ Kubernetes on GooGle Cloud platform

57

The Compute Engine API is not listed by default for a new project, as shown in Figure 3-14.

Figure 3-14. Listing the Enabled and Disabled APIs

Figure 3-15. Clicking on ENABLE API

To fix that, click ENABLE API as shown in Figure 3-15.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

58

Then select the Compute Engine API, as shown in Figure 3-16.

Figure 3-16. Selecting the Google Compute Engine API

Figure 3-17. Enabling the Compute Engine API

The Compute Engine API is selected. Click ENABLE as shown in Figure 3-17.

To be able to enable an API, Billing must be enabled for the project if not already enabled. Click on
Enable Billing in the Billing Required dialog as shown in Figure 3-18.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

59

An ENABLING message is displayed, as shown in Figure 3-19.

Figure 3-18. Enabling billing

Figure 3-19. Google Compute Engine API being enabled

If a Billing Account does not exist, click Create Billing Account in the Enable Billing for Project dialog as
shown in Figure 3-20.

Figure 3-20. Creating a Billing Account

Chapter 3 ■ Kubernetes on GooGle Cloud platform

60

After a Billing account has been created, the Compute Engine API should be enabled. To find whether
credentials need to be created for a project, click Go to Credentials as shown in Figure 3-21.

Figure 3-21. Navigating to the Credentials page

Figure 3-22. Determining whether credentials need to be added

Figure 3-23. Google Compute Engine API enabled

As indicated in the Credentials page, new credentials don’t need to be created and the Application
Default Credentials may be used. Click on Cancel as shown in Figure 3-22.

The Google Compute Engine API is enabled for the Kube-GCE project as shown in Figure 3-23.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

61

The Google Compute Engine API should be listed in the Dashboard as shown in Figure 3-24.

Figure 3-24. Google Compute Engine API listed as Enabled

As indicated by the message A project is needed to enable APIs in Figure 3-25, to enable the Google
Compute Engine API a project is required.

Figure 3-25. A project is needed to enable APIs

Chapter 3 ■ Kubernetes on GooGle Cloud platform

62

Creating a VM Instance
The Compute Engine API provisions virtual machine instances. To create a VM instance, navigate to the VM
Instances page at https://console.cloud.google.com/compute/instances. In the Compute Engine dialog,
click Create Instance as shown in Figure 3-26.

Figure 3-26. Clicking on Create Instance

In the Create an instance page, specify an instance name (vm-kube-gce for example). Select a Zone,
Machine Type, Identity, and API Access as shown in Figure 3-27.

https://console.cloud.google.com/compute/instances

Chapter 3 ■ Kubernetes on GooGle Cloud platform

63

Figure 3-27. The Create an Instance page

Chapter 3 ■ Kubernetes on GooGle Cloud platform

64

Click on Create as shown in Figure 3-28.

Figure 3-28. Clicking on Create

A new VM instance is created, as shown in Figure 3-29.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

65

Select the VM instance to lists its stats, such as CPU Utilization as shown in Figure 3-30. Initially the
chart may have no data.

Figure 3-29. A new VM instance

Figure 3-30. Listing a VM’s CPU utilization

Chapter 3 ■ Kubernetes on GooGle Cloud platform

66

Connecting to the VM Instance
To connect to a VM instance, click SSH as shown in Figure 3-31.

Figure 3-31. Clicking SSH to begin connecting to the VM instance

Figure 3-32. Connecting to a VM instance

A Connecting... message should be displayed as shown in Figure 3-32.

The VM instance is connected to and a command prompt is displayed.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

67

Reserving a Static External IP Address
Each VM instance is assigned an internal IP address, which is used to communicate with other VM instances
on the same network. To be able to communicate outside the network, with the Internet to download
Kubernetes binaries for example, we need to assign a static external IP address to the VM instance. Navigate
to the URL https://console.cloud.google.com/networking/addresses to create a static external IP
address.

In the Reserve a Static Address page, click Regional and specify a Region. In the Attached To field, select
the VM instance created earlier. Click on Reserve as shown in Figure 3-33.

Figure 3-33. Clicking on Reserve to reserve a static address

A static external IP Address is reserved for the VM instance.

Creating a Kubernetes Cluster
To create a Kubernetes cluster, run one of the following commands in the shell for the VM instance.

curl -sS https://get.k8s.io | bash

or

wget -q -O - https://get.k8s.io | bash

The Kubernetes binaries are downloaded as shown in Figure 3-34.

https://console.cloud.google.com/networking/addresses

Chapter 3 ■ Kubernetes on GooGle Cloud platform

68

Figure 3-35. Starting a Kubernetes Cluster with four nodes

Figure 3-34. Downloading the Kubernetes binaries

Then the Kubernetes cluster is started as shown in Figure 3-35.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

69

To list the services, run the following command:

kubectl.sh get --all-namespaces services

The services are listed as shown in Figure 3-36.

Figure 3-36. Listing the services in All Namespaces

To list all the pods, run the following command:

kubectl.sh get --all-namespaces pods

All the pods in all the namespaces are listed, as shown in Figure 3-37.

Figure 3-37. Listing all the pods

Chapter 3 ■ Kubernetes on GooGle Cloud platform

70

To list all the nodes, run the following command:

kubectl.sh get nodes

One controller node and three minion nodes are listed, as shown in Figure 3-38.

Figure 3-38. Listing the Kubernetes cluster nodes

Figure 3-39. Listing the namespaces

Figure 3-40. Displaying the graph for CPU Utilization

List all the namespaces with the following command:

kubectl.sh get namespaces

The two namespaces default and kube-system are listed, as shown in Figure 3-39.

The CPU utilization of the VM instance may be displayed in the console as shown in Figure 3-40.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

71

The VM Instances also lists the controller and minion instances started for the Kubernetes cluster, as
shown in Figure 3-41.

Figure 3-41. Listing the Kubernetes controller and minion instances

Select the External IP Addresses tab to list all the external IP addresses, including those for the
controller and minion instances, as shown in Figure 3-42.

Figure 3-42. Listing the external IP addresses

Creating a Kubernetes Application and Service
In this section we’ll create a sample Kubernetes application using the Docker image nginx. The following
command creates a deployment for the nginx Docker image.

kubectl.sh --namespace=default run nginx --image=nginx –replicas=3 –port=80

Deployment "nginx" is created as shown in Figure 3-43.

Figure 3-43. Creating a deployment nginx

Chapter 3 ■ Kubernetes on GooGle Cloud platform

72

List the pods, including the nodes the pods run on:

kubectl.sh get pods -o wide

The three pod replicas including the node are listed as shown in Figure 3-44.

Figure 3-44. Listing the node replicas

List the deployments:

kubectl.sh get deployments

Create a service for type LoadBalancer:

kubectl.sh expose deployment nginx --port=80 --type=LoadBalancer

List the services:

kubectl.sh get services

The output from the preceding commands is shown in Figure 3-45.

Figure 3-45. Listing the deployments and services

Describe the nginx service:

kubectl.sh describe svc nginx

The service description, including the service endpoints and any error messages, is listed as shown in
Figure 3-46.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

73

Next, we shall invoke a service endpoint. Copy a service endpoint as shown in Figure 3-47.

Figure 3-46. Listing the service description

Figure 3-47. Obtaining a service endpoint

Invoke the service endpoint with curl.

curl 10.244.1.5

The HTML markup for the service is listed as shown in Figure 3-48.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

74

Similarly, invoke another service endpoint:

curl 10.244.2.5

The second service endpoint is also invoked, as shown in Figure 3-49.

Figure 3-48. Invoking a service endpoint

Chapter 3 ■ Kubernetes on GooGle Cloud platform

75

Stopping the Cluster
To stop the VM instances, select the instances in the console and click Stop as shown in Figure 3-50.

Figure 3-49. Invoking another service endpoint

Chapter 3 ■ Kubernetes on GooGle Cloud platform

76

In the verification dialog, choose Stop as shown in Figure 3-51.

Figure 3-51. Stopping a VM instance

Figure 3-50. Selecting all nodes and clicking on Stop

The VM Instances are stopped as shown in Figure 3-52.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

77

Using Kubernetes with Google Container Engine
Google Container Engine is Google-managed service for Kubernetes clusters running Docker containers.
Google Container Engine is a component of the Google Cloud Platform. It fully manages and orchestrates
the cluster, including scheduling the containers and running them based on specified CPU and memory
requirements. Google Container Engine provides the flexibility of using a private, public, or hybrid cloud,
and it provides auto-scaling of clusters based on resource utilization. Google services such as Google Cloud
Logging, Google Cloud VPN, Google Container Registry, and Google accounts and role permissions are
integrated with Google Container Engine.

To run a Kubernetes application on Google Container Engine, the following procedure is used.

 1. Create a Billing Account if one does not already exist.

 2. Create a Project on Google Cloud Platform.

 3. Enable Permissions for the project.

 4. Enable Billing for the project.

 5. Enable Google Compute Engine and Google Container Engine APIs.

 6. Create a Google Container Cluster.

 7. Connect to the Google Cloud Shell.

 8. Configure kubectl for the container cluster.

 9. Test the Kubernetes cluster.

We have discussed steps 1 through 5 earlier in this chapter, except that Google Container Engine API also
needs to be enabled. In this section we shall discuss step 6 onward. We have used a project called Kube-GKE.

Creating a Google Container Cluster
Select the project in which a Google Container Cluster is to be created on the Google Container Engine
at URL https://console.cloud.google.com/kubernetes. A URL similar to https://console.cloud.
google.com/kubernetes/list?project=kubernete-gke is invoked. In Container Clusters, click on Create a
Container Cluster as shown in Figure 3-53.

Figure 3-52. VM instances being stopped

https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes/list?project=kubernete-gke
https://console.cloud.google.com/kubernetes/list?project=kubernete-gke

Chapter 3 ■ Kubernetes on GooGle Cloud platform

78

The URL https://console.cloud.google.com/kubernetes/add?project=kubernetes-gke (the URL
could be slightly different) is invoked, and an input form is displayed to specify the container cluster detail as
shown in Figure 3-54.

Figure 3-53. Clicking on Create a Container Cluster

Figure 3-54. Specifying Cluster Name, Zone and Machine Type

https://console.cloud.google.com/kubernetes/add?project=kubernetes-gke

Chapter 3 ■ Kubernetes on GooGle Cloud platform

79

Specify a cluster name or keep the default cluster name (for example kube-cluster-1). Select a Zone,
for example us-east1-d. Select the Machine type as the number of CPU cores. For example, select 1 vCPU,
which has 3.75 GB memory. Specify a Cluster size, 3 for example. Keep the “default” setting for Subnetwork.
Optionally select Logging and monitoring options and click on Create as shown in Figure 3-55.

Figure 3-55. Creating a container cluster

A container cluster is created as shown in Figure 3-56.

Figure 3-56. Container cluster kube-cluster-1

Chapter 3 ■ Kubernetes on GooGle Cloud platform

80

Connecting to the Google Cloud Shell
To connect to the Google Cloud Shell, click the ➤ icon as shown in Figure 3-57. A message Welcome to
Cloud Shell and the command prompt for the Cloud Shell should be displayed.

Figure 3-57. Connecting to the Google Cloud Shell

Figure 3-58. Configuring kubectl for the cluster

Configuring kubectl
The kubectl command-line interface is used to manage the resources in a cluster. If more than one
container clusters exist, kubectl needs to be configured for the cluster to be managed. Using gcloud, which
is a command-line tool for Google Cloud Platform, run the following command to configure kubectl to a
specific cluster. The zone must be included in the command, with the –zone option:

gcloud container clusters get-credentials kube-cluster-1 --zone us-east1-d

The cluster endpoint and auth data are fetched, and a kubeconfig entry is generated for
kube-cluster-1 as shown in Figure 3-58.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

81

Testing the Kubernetes Cluster
The cluster info may be listed with the following command:

kubectl cluster-info

As shown in Figure 3-59, the Kubernetes master and other cluster components are running.

Figure 3-59. Listing cluster info

Next, we shall create a Node application to test the cluster. Create a folder called hellonode (or some
other folder name). In the hellonode folder create a Node file server.js with the vi editor as shown in
Figure 3-60.

Figure 3-60. Creating a Node script server.js

The Node script server.js responds to any request with the response Hello World!.

var http = require('http');
var handleRequest = function (request, response) {
 response.writeHead(200);
 response.end('Hello World!');
};
var www = http.createServer(handleRequest);
www.listen(8080);

The server.js is shown in a vi editor in Figure 3-61.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

82

Next, create a Docker file, also in the hellonode folder, to describe the Docker image to build including
the port the application listens on.

FROM node:4.4
EXPOSE 8080
COPY server.js .
CMD node server.js

The Docker file is shown in Figure 3-62.

Figure 3-62. The Dockerfile

Figure 3-61. The server.js Node Script

Chapter 3 ■ Kubernetes on GooGle Cloud platform

83

Next, build a Docker image using the docker build command.

docker build -t gcr.io/kube-gke/hello-node:v1.

The Docker image node:4.4, from which the image gcr.io/kube-gke/hello-node:v1 is built, is pulled
as shown in Figure 3-63.

Figure 3-63. Running the docker build command

The Docker image is built as shown in Figure 3-64.

Figure 3-64. The Docker image built

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Kubernetes on GooGle Cloud platform

84

Run the Docker image with the docker run command:

docker run -d -p 8080:8080 gcr.io/kube-gke/hello-node:v1

Invoke the application with the curl command:

curl http://localhost:8080

The Hello World! message is output as shown in Figure 3-65.

Figure 3-65. Running and Invoking the hello-node Application

Figure 3-66. Uploading the Docker Image to Google Container Registry

The Docker image may be pushed to the Google Container Registry, with the following command:

gcloud docker push gcr.io/kube-gke/hello-node:v1

The command output is shown in Figure 3-66.

The Docker image is pushed to the repository as shown in Figure 3-67.

Chapter 3 ■ Kubernetes on GooGle Cloud platform

85

The repository image may be used to create a Kubernetes deployment and Service. Run the kubectl
run command to create a deployment:

kubectl run hello-node --image=gcr.io/kube-gke/hello-node:v1 --port=8080

The deployment hello-node is created as shown in Figure 3-68.

Figure 3-67. Docker Image Uploaded to Repository

Figure 3-68. Creating a deployment

List the deployments and the pods as shown in Figure 3-69, and you’ll see a hello-node deployment
and a hello-node prefixed pod listed.

Figure 3-69. Listing the deployment and pod

Chapter 3 ■ Kubernetes on GooGle Cloud platform

86

Create a LoadBalancer type service for the deployment:

kubectl expose deployment hello-node --type="LoadBalancer"

Subsequently describe the service. As shown in Figure 3-70 a service is created and the service
description includes the endpoints.

Figure 3-70. Creating and describing a service

Figure 3-71. Obtaining a service external IP and port

List the service hello-node, and the cluster-IP, external-IP, and port for the service are listed as shown in
Figure 3-71.

Using the external-ip:port command, invoke the service in a browser as shown in Figure 3-72.

Figure 3-72. Invoking the service in a browser

Chapter 3 ■ Kubernetes on GooGle Cloud platform

87

The service and deployment can now be deleted:

kubectl delete service,deployment hello-node

The service hello-node and the deployment hello-node are deleted, as shown in Figure 3-73.

Figure 3-73. Deleting deployment and service

The container cluster kube-cluster-1 may also be deleted:

gcloud container clusters delete kube-cluster-1 --zone us-east1-d

Specify Y to delete the cluster when prompted, as shown in Figure 3-74.

Figure 3-74. Deleting the cluster

Summary
In this chapter we discussed creating a Kubernetes cluster on Google Cloud Platform. The procedure was
as follows: First, create a project in the Google Cloud Platform console. Subsequently, enable the Compute
Engine API and permissions. Create and connect to a virtual machine instance and reserve a static address.
Create a Kubernetes cluster and test the cluster by creating an application. We also discussed using
Kubernetes on Google Container Engine. In the next chapter we shall discuss using multiple zones for a
Kubernetes cluster.

PART II

Administration and
Configuration

91© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_4

CHAPTER 4

Using Multiple Zones

High availability in a Kubernetes cluster is implemented using various parameters. High availability of master
controllers would provision multiple master controllers. High availability of etcd would provision multiple etcd
nodes. High availability of public DNS would provision multiple public DNSes. In a cloud-native application,
availability of a cluster would depend on the availability of the region or zone in which the nodes are run.
AWS provides various high-availability design patterns, such as Multi Region Architecture, Multiple Cloud
Providers, DNS Load Balancing Tier, and Multiple Availability Zones. In this chapter we will discuss the Multiple
Availability Zones design pattern as implemented by Kubernetes. Amazon AWS availability zones are distinct
physical locations with independent power, network and security and insulated from failures in other availability
zones. Availability zones within the same region have low latency network connectivity between them.

Problem
If all the nodes in a Kubernetes cluster are run in the same cloud provider zone (as defined by Amazon AWS
and Google Cloud Platform), failure of a single zone would bring down the whole Kubernetes cluster as
shown in Figure 4-1.

Master
Node

Single
Cloud

Provider
Zone

Worker
Node

Worker
Node

Worker
Node

Figure 4-1. In a single-zone cluster no fault tolerance is provided

Chapter 4 ■ Using MUltiple Zones

92

Solution
Starting with Kubernetes 1.2, a cluster may be provisioned across multiple cloud provider zones. The pods
managed by a replication controller or service are spread across zones so that the failure of a single zone
does not affect the availability of the replication controller or service in other zones, as shown in Figure 4-2.

Multiple
Cloud

Provider
Zones

Low
Network
Latency

Master
Node

Worker
Node

us-
east-
1b

us-
east-
1b

us-
east-
1bWorker

Node

Worker
Node

Figure 4-2. Failure of two zones in a three-zone cluster does not cause the whole cluster to fail

Zones are supported only with the GCE (Google Compute Engine) and AWS (Amazon Web Services)
cloud providers. AWS refers to the zones as “availability zones.” Pods that specify a persistent volume are
placed in the same zone as the volume. The support for zones has some limitations, though:

•	 The multiple zones must be located in the same region. A cluster must not span
multiple cloud formations.

•	 The zones are assumed to be in close proximity to avoid network latency as no zone-
aware routing is provided.

•	 Pod-volume collocation in the same zone applies only to persistent volumes and not
to other types of volumes such as EBS volume.

•	 The nodes are in multiple zones, but a single master controller is built by default and
the master controller is located in a single zone.

Chapter 4 ■ Using MUltiple Zones

93

Overview
In this chapter we shall create a multiple-zone AWS CloudFormation on CoreOS. We shall also demonstrate
volume-zone affinity for a persistent volume on a multiple-zone cluster with AWS cloud provider. The steps
we’ll take are as follows:

Setting the environment

Initializing a CloudFormation

Configuring cluster.yaml for multiple zones

Launching the CloudFormation

Configuring External DNS

Running a Kubernetes Application

Using Multiple Zones on AWS

Setting the Environment
You’ll find the details of creating a Kubernetes cluster on a CoreOS AWS CloudFormation in Chapter 2. We
only need to start a single EC2 instance to launch the CloudFormation from. Create an EC2 instance using
the Amazon Linux AMI, which has the AWS CLI installed by default; the AWS CLI is used to initialize and
launch a CloudFormation. Obtain the Public IP address of the EC2 instance from the EC2 console. SSH log in
into the EC2 instance:

ssh -i "docker.pem" ec2-user@184.73.19.214

The Amazon Linux AMI command prompt is displayed.
Because we will be launching an AWS CloudFormation for a Kubernetes cluster, the CloudFormation

stack name must be one that is not already used. If a CloudFormation stack name is already used an error
similar to the following (Figure 4-3) is generated.

Figure 4-3. Stack already exists error

To find whether a CloudFormation stack name can be used, click Services ➤ CloudFormation as shown
in Figure 4-4.

http://dx.doi.org/10.1007/978-1-4842-2598-1_2

Chapter 4 ■ Using MUltiple Zones

94

The stacks are listed as shown in Figure 4-5. A stack name the same as one that is listed cannot be used
to create a new stack.

Figure 4-4. Choosing Services ➤ CloudFormation

Figure 4-5. Listing the CloudFormation stacks

Chapter 4 ■ Using MUltiple Zones

95

Initializing a CloudFormation
Initializing a CloudFormation stack is discussed in detail in Chapter 2. The procedure to create an AWS
CloudFormation is as follows:

 1. Install Kube-aws (required to be installed only once for the Amazon Linux
instance).

 2. Set up Cluster Parameters, such as creating an EC2 key pair (kubernetes-
coreos), KMS key, and External DNS name (oramagsearch.com).

 3. Create an Asset Directory for a cluster CloudFormation.

 4. Initialize the cluster CloudFormation.

 5. Render the Contents of the asset directory.

A typical command to create an EC2 key pair is as follows:

aws ec2 create-key-pair --key-name kubernetes-coreos --query 'KeyMaterial' --output text >
kubernetes-coreos.pem
chmod 400 kubernetes-coreos.pem

The command to create a KMS key is as follows:

aws kms --region=us-east-1 create-key --description="kube-aws assets"

Copy the KeyMetadata.Arn string and use it to initialize a CloudFormation stack; for example, a cluster
called kubernetes-coreos-cluster with the asset directory kube-coreos-cluster is initialized as follows:

 mkdir kube-coreos-cluster
cd kube-coreos-cluster
kube-aws init --cluster-name=kubernetes-coreos-cluster --external-dns-name=ORAMAGSEARCH.COM
--region=us-east-1 --availability-zone=us-east-1c --key-name=kubernetes-coreos --kms-key-
arn="arn:aws:kms:us-east-1:xxxxxxxxxx:key/xxxxxxxxxxxxxxxxxxx"

The command to render the contents of an assets directory is as follows:

kube-aws render

Configuring cluster.yaml for Multiple Zones
By default a single zone is used to launch a CloudFormation. Next, we shall customize the CloudFormation
to configure multiple zones. Open the cluster.yaml file in a vi editor:

sudo vi cluster.yaml

The region to provision the CloudFormation is set to us-east-1 as specified in the kube-aws init
command. The availabilityZone is set to us-east-1c also as specified in the kube-aws init command.
For a multi-availability zone or multiple zones, comment out the availabilityZone. By default
workerCount, which specifies the number of worker nodes to create, is set to 1. To demonstrate a multiple-
zone cluster, the worker nodes must be set to at least the number of zones to configure. Set workerCount to 6
as shown in Figure 4-6.

http://dx.doi.org/10.1007/978-1-4842-2598-1_2

Chapter 4 ■ Using MUltiple Zones

96

Cluster.yaml is configured for a single availability zone by default, and the instanceCIDR setting
specifies the CIDR for the Kubernetes subnet. For multiple availability zones the instanceCIDR must be
commented out, as we need to configure multiple subnets in cluster.yaml. In setting subnets, specify the
Kubernetes subnets and their CIDRs and availability zones. The objective of high availability is that failure
of a single zone does not result in interruption in the service. At least two subnets must be specified for high
availability of zones. Each subnet is specified as an availabilityZone setting and an instanceCIDR setting.
The availability zones that could be specified must be available to create subnets. If an availability zone is not
available, an error such as the one shown in Figure 4-7 is generated when the CloudFormation is launched.

Figure 4-6. Setting workerCount to 6

Chapter 4 ■ Using MUltiple Zones

97

Run the following command to find the availability zones.

ec2-availability-zones –aws-access-key <access key id> --aws-secret-key <access key>

The availability zones are listed as shown in Figure 4-8. As indicated, the availability zones for the
us-east-1 region are us-east-1a, us-east-1b, us-east-1c, us-east-1d, and us-east-1e.

Figure 4-7. Error message when subnet could not be created because an availability zone is not valid

Figure 4-8. Listing the availability zones

The instanceCIDR block specifies the range of IPs to be used. Block sizes must be between a /16
netmask and a /28 netmask. Specify three subnets for three different availability zones:

subnets:
 -
 availabilityZone: us-east-1b
 instanceCIDR: "10.0.0.0/24"
 -
 availabilityZone: us-east-1c
 instanceCIDR: "10.0.0.0/24"
 -
 availabilityZone: us-east-1d
 instanceCIDR: "10.0.0.0/24"

Chapter 4 ■ Using MUltiple Zones

98

Another setting that needs to be commented out is controllerIP. The controllerIP setting specifies
the controller in a Kubernetes subnet. With two or more subnets the controller is placed in the first subnet,
and controllerIP must be included in the instanceCIDR of the first subnet. If no instanceCIDRs in the
configured Subnets contain the controllerIP and controllerIP is not commented out, the error shown in
Figure 4-9 is generated.

Figure 4-10. Listing the formatted subnets

Figure 4-9. Error message when no instanceCIDRs in the configured subnets contain the controllerIP

The subnets must be formatted as shown in Figure 4-10.

Chapter 4 ■ Using MUltiple Zones

99

Launching the CloudFormation
After we modify cluster.yaml, the CloudFormation stack must be validated. Validate the CloudFormation
stack with the following command:

kube-aws validate

Launch the CloudFormation stack.

kube-aws up

The AWS resources, such as the EC2 instances, scaling groups, and launch configurations are created,
and the CloudFormation is launched as shown in Figure 4-11.

Figure 4-11. Launching the CloudFormation

Figure 4-12. Finding the status of CloudFormation

The status of the CloudFormation may be found with the following command:

kube-aws status

The controller IP is listed, as shown in Figure 4-12.

The EC2 instances launched by the CloudFormation stack are shown in Figure 4-13. As indicated in the
Availability Zone column, two instances each are launched in the us-east-1b, us-east-1c, and us-east-1d
zones. The single controller runs in zone us-east-1b.

Chapter 4 ■ Using MUltiple Zones

100

Figure 4-14. Listing the formatted subnets

Figure 4-13. Listing the formatted subnets

Configuring External DNS
Configure the Public IP address of the controller instance in the Public DNS name for the nosqlsearch.com
domain on the domain registrar. Add an A record for the Public IP of the controller instance as shown in
Figure 4-14.

Chapter 4 ■ Using MUltiple Zones

101

Running a Kubernetes Application
Next, we shall test the Kubernetes cluster to confirm that pods in an application do get allocated across the
nodes in the different zones. Connect to the controller instance:

ssh -i "kubernetes-coreos.pem" core@52.202.134.20

The controller instance is logged into as shown in Figure 4-15.

Figure 4-15. SSH logging into the controller CoreOS instance

Install the kubectl binaries and set permissions.

sudo wget https://storage.googleapis.com/kubernetes-release/release/v1.3.0/bin/linux/
amd64/./kubectl
sudo chmod +x ./kubectl

Kubectl binaries are installed. Move the kubectl binaries to /usr/local/bin/, which is in the path:

sudo mv ./kubectl /usr/local/bin/

List the nodes in the cluster:

./kubectl get nodes

The single master node and the six worker nodes are listed as shown in Figure 4-16.

Figure 4-16. Listing the nodes in the Kubernetes cluster

Chapter 4 ■ Using MUltiple Zones

102

Run the nginx Docker image to create six pod replicas:

kubectl run nginx --image=nginx --replicas=6 --port=80

Subsequently, list the pods:

kubectl get pods –o wide

The nginx deployment is created and the pods are listed. Initially the pods may be listed as not ready, as
indicated by the READY column value of 0/1 and STATUS column value of ContainerCreating in Figure 4-17.

Figure 4-17. Running the Kubernetes nginx application

Figure 4-18. All pods running and ready

Run the kubectl get pods –o wide command again after a few more seconds (up to a minute) and
all the pods should be running and ready as shown in Figure 4-18. As indicated in the NODE column, each
of the six pods is running on a different node, which implies that the pods are spread across the zones in the
cluster. A failure of a single zone will not affect the availability of the deployment.

Chapter 4 ■ Using MUltiple Zones

103

Using Multiple Zones on AWS
If a Kubernetes cluster is to be started with multi-zone capability, the MULTIZONE parameter must be set to
true. Setting MULTIZONE to true does not automatically start nodes running in multiple zones; it only adds
the capability to manage a multi-zone cluster. If cluster nodes are to be run in multiple zones, multiple sets of
nodes must be started in separate zones using the same master controller as the first zone node set. When a
node set is started in a zone-aware cluster, the nodes are labeled indicating the zone in which the nodes run.

First, start a multi-zone aware cluster using the AWS Kubernetes provider by setting MULTIZONE=true.
Setting KUBE_AWS_ZONE to true creates the master controller node and all the minion nodes in the specified
zone. The NUM_NODES value sets the number of nodes to create. Run the following command to start a cluster
in zone us-east-1c with three nodes:

curl -sS https://get.k8s.io | MULTIZONE=true KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE=us-east-
1c NUM_NODES=3 bash

Kubernetes binaries are downloaded with the MULTIZONE command, as shown in Figure 4-19.

Figure 4-19. Starting a multi-zone aware cluster

A multi-zone Kubernetes cluster is started as shown in Figure 4-20. What is different about the cluster is
that it is aware of multiple-zones.

Chapter 4 ■ Using MUltiple Zones

104

List the nodes with kubectl get nodes as shown in Figure 4-21.

Figure 4-20. Starting a multi-zone aware cluster

Figure 4-21. Listing the nodes

Next, list the nodes and include the labels to be listed as shown in Figure 4-22.

kubectl get nodes --show-labels

The labels include failure-domain.beta.kubernetes.io/region for the region and failure-domain.
beta.kubernetes.io/zone for the zone.

Chapter 4 ■ Using MUltiple Zones

105

As shown in the EC2 console in Figure 4-23, all the nodes are running in the same zone, us-east-1c.
Why the same zone even though MULTIZONE is set to true? Because the setting makes the cluster multi-zone
aware and not multi-zone to start with. We shall discuss subsequently adding node sets in other zones using
the same master controller.

Figure 4-22. Listing the nodes including the labels

Figure 4-23. All nodes in the same zone, us-east-1c

Next, start another node set in a different zone but using the same master as the first node set. Obtain
the Private IP of the master instance from the EC2 console. Run the following command in which the
MASTER_INTERNAL_IP specifies the private IP of the master controller and KUBE_SUBNET_CIDR specifies the
subnet CIDR. KUBE_USE_EXISTING_MASTER is set to true, implying that the existing master is to be used. The
KUBE_AWS_ZONE is set to a different zone, us-east-1b.

KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE=us-east-
1b NUM_NODES=3 KUBE_SUBNET_CIDR=172.20.1.0/24 MASTER_INTERNAL_IP=172.20.0.9 kubernetes/
cluster/kube-up.sh

Another node set in a different zone, us-east-1b, is started as shown by the command output in
Figure 4-24.

Chapter 4 ■ Using MUltiple Zones

106

As indicated by the output in Figure 4-25, the master IP is the same but the subnet CIDR is different.

Figure 4-24. Starting a Kubernetes node cluster in another zone, us-east-1b

Chapter 4 ■ Using MUltiple Zones

107

The EC2 console lists another set of nodes in a different zone, us-east-1b as shown in Figure 4-26. The
cluster has only one master in zone us-east-1c but minions in different zones, us-east-1b and us-east-1c.

Figure 4-25. The same master IP but a different subnet CIDR

Figure 4-26. The same master IP but a different subnet CIDR

Chapter 4 ■ Using MUltiple Zones

108

Listing the nodes displays six nodes, as shown in Figure 4-27.

Figure 4-27. Listing nodes in two different zones

Figure 4-28. Listing nodes in two zones including labels

Listing the nodes including the labels displays six nodes, three in the us-east-1c zone and three in us-
east-1b, as shown in Figure 4-28.

Launch another node set in the us-east-1d zone using the same master node. Specify a different
subnet CIDR for the us-east-1d zone.

KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE=us-east-
1d NUM_NODES=3 KUBE_SUBNET_CIDR=172.20.2.0/24 MASTER_INTERNAL_IP=172.20.0.9 kubernetes/
cluster/kube-up.sh

Chapter 4 ■ Using MUltiple Zones

109

A node set is started in the us-east-1d zone as shown in Figure 4-29.

Figure 4-29. Launching a cluster in the us-east-1d zone

As indicated by the cluster output in Figure 4-30, the master IP is the same but the subnet CIDR is
different.

Chapter 4 ■ Using MUltiple Zones

110

The EC2 Console lists three minion sets, one each in the us-east-1b, us-east-1c, and us-east-1d
zones as shown in Figure 4-31. The single master is in the us-east-1c zone.

Figure 4-30. The same master IP but a different subnet CIDR

Figure 4-31. Listing nodes in three zones

Chapter 4 ■ Using MUltiple Zones

111

Listing the nodes displays 9 nodes. Some nodes may be initially in the NotReady state while the node set
is started, as shown in Figure 4-32.

Figure 4-32. Listing Kubernetes nodes

Chapter 4 ■ Using MUltiple Zones

112

Including the labels lists the nodes as being in three different zones, as shown in Figure 4-33.

Figure 4-33. Listing nodes including labels

A PersistentVolume (PV) is a provisioned networked storage in a cluster, and a PersistentVolumeClaim
(PVC) is a request for storage by a user. A PVC consumes PV resources just as a pod consumes node
resources. Next, we shall create a persistent volume claim and subsequently claim the volume in a pod
specification. The objective of the application is to demonstrate that a persistent volume cannot be attached
across zones. A persistent volume is labeled with the zone in which it is created, and a pod that makes
use of the persistent volume is allocated in the same zone as the persistent volume. First, create a JSON
specification file claim.yaml for a persistent volume claim:

sudo vi claim1.json

Chapter 4 ■ Using MUltiple Zones

113

Copy the following source code into claim.json:

{
 "kind": "PersistentVolumeClaim",
 "apiVersion": "v1",
 "metadata": {
 "name": "claim1",
 "annotations": {
 "volume.alpha.kubernetes.io/storage-class": "foo"
 }
 },
 "spec": {
 "accessModes": [
 "ReadWriteOnce"
],
 "resources": {
 "requests": {
 "storage": "3Gi"
 }
 }
 }
}

The resulting claim1.json is shown in the vi editor in Figure 4-34.

Figure 4-34. A PersistentVolumeClaim claim1.json

Chapter 4 ■ Using MUltiple Zones

114

Create a PVC with the kubectl create command:

kubectl create -f claim1.json

List the persistent volumes, including labels:

kubectl get pv --show-labels

The persistent volume is listed as being consumed by the persistent volume claim:

kubectl get pvc

As the command’s output indicates, a persistentvolumeclaim is created. The persistent volume is
listed to be in the us-east-1b zone as shown in Figure 4-35.

Figure 4-35. A PersistentVolumeClaim claim1.json

Next, define a pod specification that makes use of the PVC.

sudo vi pod.yaml

Copy the following code to pod.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 -
 image: nginx
 name: nginx
 volumeMounts:
 -
 mountPath: /var/www/html
 name: pv
 volumes:
 -

Chapter 4 ■ Using MUltiple Zones

115

Figure 4-36. Using PersistentVolumeClaim claim1.json in a pod

 name: pv
 persistentVolumeClaim:
 claimName: claim1

The resulting pod.yaml is shown in a vi editor in Figure 4-36.

Create a pod from pod.yaml:

./kubectl create -f pod.yaml

A pod is created. Next, list the pods across the cluster:

kubectl get pods -o wide

The node on which the pod is running is listed, as shown in Figure 4-37.

Figure 4-37. Creating a pod and listing its node

Chapter 4 ■ Using MUltiple Zones

116

Figure 4-38. A PersistentVolumeClaim claim1.json

Alternatively obtain the Node IP as follows:

kubectl describe deployment nginx | grep Node

The Node IP is output as shown in Figure 4-38.

Figure 4-39. A node is scheduled on the same zone as the persistent volume

Next, list the node labels:

kubectl get node <node ip> --show-labels

The node is running in the zone us-east-1b, which is the same as the zone of the persistent volume, as
shown in Figure 4-39.

Summary
In this chapter we created a Kubernetes cluster using multiple zones on CoreOS. A multi-zone cluster is
a highly available cluster. A multi-zone cluster is configured by specifying multiple Kubernetes subnets
with their CIDRs and availability zones in cluster.yaml in the subnets section. We also discussed creating a
multi-zone cluster on the AWS cloud provider by setting the MULTIZONE parameter to true in the curl -sS
https://get.k8s.io command to launch a Kubernetes cluster. In the next chapter we will discuss using the
Tectonic console.

https://get.k8s.io/

117© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_5

CHAPTER 5

Using the Tectonic Console

Tectonic is a commercial enterprise Kubernetes platform providing enterprise-level security, scalability,
and reliability. Tectonic provides an integrated platform based on Kubernetes and CoreOS Linux. The
Tectonic architecture consists of Kubernetes cluster manager orchestrating rkt containers running on
CoreOS. Tectonic provides Distributed Trusted Computing using cryptographic verification of the entire
environment, from the hardware to the cluster. Tectonic enhances open source Kubernetes, and applications
may be deployed between cloud and data center environments.

Problem
CoreOS Linux does provide a platform suitable for developing containerized applications, but a command-
line interface still has to be used to run Kubernetes commands to create and manage a replication controller,
deployment, pod, or service.

Solution
Tectonic Console is a graphical user interface (GUI) to manage a Kubernetes cluster from a web browser. The
Console may be used to deploy new applications, create rolling upgrades for deployments, and create pods,
replication controllers, and services. Some of the benefits of Tectonic Console are as follows:

 – Out-of-the-box Kubernetes cluster
 – Authorization framework
 – Enterprise authentication
 – Improved scalability
 – User-friendly Dashboard
 – Scheduled Updates for cluster software
 – Flexible architectures
 – Automatic Load Balancing and Services
 – Rollbacks
 – Better machine utilization
 – Environment consistency across teams
 – Built-in credentials storage and distribution
 – Demarcation between OS and applications
 – LDAP-based secure authentication

Chapter 5 ■ Using the teCtoniC Console

118

Overview
The Console can be used to deploy new applications, create rolling upgrades for deployments, and create
pods, replication controllers and services. We’ll explore the following topics:

Setting the environment

Downloading the pull secret and the Tectonic Console manifest

Installing the pull secret and the Tectonic Console

Accessing the Tectonic Console

Using the Tectonic Console

Removing the Tectonic Console

Setting the Environment
As a prerequisite, install a Kubernetes cluster. Installing Kubernetes on CoreOS on the AWS cloud provider
is discussed in Chapter 2. To reiterate briefly, first create an Amazon EC2 instance to launch an AWS
CloudFormation for a Kubernetes cluster. The EC2 instance AMI should be Amazon Linux, as Amazon Client
Interface (CLI) is preinstalled on an Amazon Linux AMI-based instance. Obtain the public IP address of the
EC2 instance and SSH log in to the instance. Create a CloudFormation for a Kubernetes cluster consisting of
one master and three worker nodes as shown in Figure 5-1.

Obtain the public IP address for the controller from the EC2 console and add an A record for the
IP address to the public DNS used to initialize the CloudFormation stack as shown in Figure 5-2.

Figure 5-1. CloudFormation EC2 instances for a Kubernetes cluster

http://dx.doi.org/10.1007/978-1-4842-2598-1_2

Chapter 5 ■ Using the teCtoniC Console

119

SSH log in to the controller instance and install kubectl as shown in Figure 5-3.

Run the following command to list the binaries.

kubectl get nodes

Figure 5-2. Adding an A record for the public IP address of the controller

Figure 5-3. SSH logging into the CoreOS controller instance

Chapter 5 ■ Using the teCtoniC Console

120

The single master node and the three worker nodes are listed, as shown in Figure 5-4.

Tectonic provides the following services for applications deployed in a user's cluster: Tectonic Console,
Tectonic Identity, Tectonic Support, Tectonic Wizard, and Tectonic Manager. Tectonic Console is a web
management console for a Kubernetes cluster. Tectonic Identity is for user management for services on a
Kubernetes cluster. Tectonic Support is the support from a team. Tectonic Wizard is the Tectonic installation
and configuration wizard. Tectonic Manager is for management of the Tectonic services themselves.

Tectonic is available at three subscription levels: Starter, Lab, and Enterprise. Starter includes just
the Tectonic Console and does not provide security (SSO) features; it is suitable as an initial starter level.
Tectonic Lab includes the Tectonic Console with Quay Enterprise Basic but does not include security
features. Tectonic Enterprise includes Tectonic Identity for Trusted Computing in addition to the Tectonic
Console with Quay Enterprise Basic and is suitable for production. While the Lab and the Enterprise levels
are fee-based, the Starter is free. We shall use the Tectonic Starter subscription level in this chapter. Tectonic
Starter level does not authenticate users.

Next, register for the Tectonic Starter account at https://tectonic.com/starter/.

Downloading the Pull Secret and the Tectonic Console
Manifest
Tectonic is mainly an infrastructure platform that enables enterprises to run containers with Kubernetes
anywhere, securely and reliably. The Kubernetes cluster makes use of a Pull Secret to download the Tectonic
Console image. The Pull Secret is a Kubernetes formatted file containing the credentials required to
download the Tectonic Console image. Click on Account Assets after creating a Tectonic Starter project and
click Download Kubernetes Secret for the Pull Secret file coreos-pull-secret.yml as shown in Figure 5-5.

Figure 5-4. Listing the nodes

https://tectonic.com/starter/

Chapter 5 ■ Using the teCtoniC Console

121

Figure 5-5. Downloading Kubernetes Secret

Chapter 5 ■ Using the teCtoniC Console

122

If the Pull Secret file is downloaded to a local machine, scp copy the file to the CoreOS instance for the
Kubernetes controller. First, the key pair may need to be copied to the local machine:

scp -i docker.pem ec2-user@ec2-52-201-216-175.compute-1.amazonaws.com:~/kubernetes-coreos.
pem ~/kubernetes-coreos.pem

The key pair used to SSH log in to the controller CoreOS instance is copied to the local machine.
Next copy the coreos-pull-secret.yml file to the controller instance:

scp -i kubernetes-coreos.pem /media/sf_VMShared/kubernetes/tectonic/coreos-pull-secret.yml
core@ec2-23-20-52-23.compute-1.amazonaws.com:~/coreos-pull-secret.yml

Another file required for the Tectonic Console is the Tectonic Console Manifest file tectonic-console.
yaml, which defines the Kubernetes deployment required to run a container for the Tectonic Console on the
Kubernetes cluster. Download the Tectonic Console Manifest from https://tectonic.com/enterprise/
docs/latest/deployer/files/tectonic-console.yaml. Copy the Tectonic Console Manifest to the
controller CoreOS instance.

scp -i kubernetes-coreos.pem /media/sf_VMShared/kubernetes/tectonic/tectonic-console.yaml
core@ec2-23-20-52-23.compute-1.amazonaws.com:~/tectonic-console.yaml

The Tectonic Console Manifest is copied to the controller CoreOS instance.
If the ls –l command is run on the CoreOS instance for the controller, the coreos-pull-secret.yml

and the tectonic-console.yaml files should be listed as shown in Figure 5-6.

Installing the Pull Secret and the Tectonic Console Manifest
Next, install the Pull Secret on the Kubernetes cluster:

kubectl create -f coreos-pull-secret.yml

A Kubernetes Secret called coreos-pull-secret is created; it will be used by Kubernetes to pull and
install the image for the Tectonic Console.

Next, install the Tectonic Console using the Tectonic Console Manifest, making use of the Pull Secret to
pull and install the image for the tectonic-console. The following command creates a replication controller
called tectonic-console.

kubectl create -f tectonic-console.yaml

List the pods, which should specify just the tectonic-console pod to be listed:

kubectl get pods -l tectonic-app=console

Figure 5-6. Listing files in the controller CoreOS instance

https://tectonic.com/enterprise/docs/latest/deployer/files/tectonic-console.yaml
https://tectonic.com/enterprise/docs/latest/deployer/files/tectonic-console.yaml

Chapter 5 ■ Using the teCtoniC Console

123

If the Tectonic Console was installed, output similar to Figure 5-7 should be generated from the
preceding commands.

Accessing the Tectonic Console
Because Tectonic Starter does not authenticate users, the interface is not exposed outside the cluster,
and port forwarding must be set from the controller machine to the Tectonic Console service port 9000.
The following command sets up port forwarding from 127.0.0.1:9000 to port 9000 on the pod labelled
app=tectonic-console:

kubectl get pods -l tectonic-app=console -o template --template="{{range.items}}{{.metadata.
name}}{{end}}" | xargs -i{} kubectl port-forward {} 9000

Port forwarding from the machine from which the preceding command is run, which is the controller
instance, to the pod on which the container for the Tectonic Console is run, will be set up as shown in Figure 5-8.

To invoke the Tectonic Console in a web browser we still need to set another port forwarding from a
local machine to the controller machine, which has public IP 23.20.52.23 and public DNS ec2-23-20-52-23.
compute-1.amazonaws.com. A port other than 9000 could be used on the local machine to forward to the
Tectonic Console port. The command looks like this:

ssh -i kubernetes-coreos.pem -f -nNT -L 9001:127.0.0.1:9000 core@ec2-23-20-52-23.compute-1.
amazonaws.com

Port forwarding from the local machine on which the preceding command is run to the controller
instance is set up. Access the Tectonic Console at URL http://localhost:9001 in a browser on the local
machine as shown in Figure 5-9. The port could be different if a different localhost port is forwarded.

Figure 5-7. Creating a replication controller and pod for Tectonic Console

Figure 5-8. Setting port forwarding

Chapter 5 ■ Using the teCtoniC Console

124

Using the Tectonic Console
The Tectonic Console may be used to view the different Kubernetes objects, such as deployments,
replication controllers, replica sets, pods, and services, or to create new Kubernetes objects. To display the
deployments, click the Deployments tab. To create a new deployment, click the Create a New Deployment
link as shown in Figure 5-10.

Figure 5-9. Accessing the Tectonic Console

Chapter 5 ■ Using the teCtoniC Console

125

As an example, create a deployment for the nginx server by specifying the labels, pod selector, replicas,
and pod labels as shown in Figure 5-11.

Figure 5-11. Specifying deployment details for an nginx application

Figure 5-10. Begin by clicking the Create a New Deployment link

Chapter 5 ■ Using the teCtoniC Console

126

Specify the container name, image, and version/tag, and click Launch Deployment
as shown in Figure 5-12.

You can list the replica sets using the Replica Sets tab, as shown in Figure 5-13.

Figure 5-12. Launching the deployment

Figure 5-13. Listing replica sets

Chapter 5 ■ Using the teCtoniC Console

127

To list the pods, click the Pods tab. To create a new pod, click the Create a New Pod link
as shown in Figure 5-14.

To list the replication controllers, click the Replication Controllers tab. To create a new replication
controller, click the Create a New Replication Controller link as shown in Figure 5-15.

Figure 5-14. Begin by clicking the Create a New Pod link

Figure 5-15. Begin by clicking the Create a New Replication Controller link

Chapter 5 ■ Using the teCtoniC Console

128

Specify a controller name, controller labels, pod label selector, and replicas as shown in Figure 5-16.

Specify the container name, container image, and container version/tag. Click on Launch Replication
Controller as shown in Figure 5-17.

Figure 5-16. Specifying replication controller details

Figure 5-17. Launching Replication Controller

Chapter 5 ■ Using the teCtoniC Console

129

A new replication controller is created, as shown in Figure 5-18.

To modify the replication controller settings, right-click the RC and select one of the options
shown in Figure 5-19.

Figure 5-19. Modifying or deleting an RC

Figure 5-18. A new replication controller

Chapter 5 ■ Using the teCtoniC Console

130

Click the RC to list its details. You can list the pods in the RC by using the Pods tab, as shown in Figure 5-20.

The pods managed by the RC are listed as shown in Figure 5-21.

Figure 5-21. Pods in RC nginx-rc

Figure 5-20. Listing Pods in an RC

Chapter 5 ■ Using the teCtoniC Console

131

To modify a pod’s labels or delete it, right-click a pod and select one of the options shown in Figure 5-22.
Click on Delete Pod to delete the pod.

In the confirmation dialog, click Delete Pod as shown in Figure 5-23.

If the number of pods running is not the number of replicas specified for the RC, new pods are launched
for the deleted pods, and the number of pods again becomes 3, as shown in Figure 5-24.

Figure 5-23. Deleting a pod

Figure 5-22. Modifying a pod’s labels or deleting a pod

Chapter 5 ■ Using the teCtoniC Console

132

To list the services, click the Services tab. To create a new service click the Create a New Service link as
shown in Figure 5-25.

Figure 5-25. Begin by clicking the Create a New Service link

Figure 5-24. Relaunched pod

Chapter 5 ■ Using the teCtoniC Console

133

Specify the service details such as service name, labels, port, and routing method in the Create New
Service form shown in Figure 5-26.

Select the Assign Any Available Port (default) to assign any port. Specify Pod Label Selector and Target
Port, and click Create Service as shown in Figure 5-27.

Figure 5-27. Creating a new service

Figure 5-26. Specifying details for the new service

Chapter 5 ■ Using the teCtoniC Console

134

A new Service is created, as shown in Figure 5-28.

Removing the Tectonic Console
To delete the Tectonic Console, run the following command:

kubectl delete replicationcontrollers tectonic-console

To delete the Kubernetes Pull Secret, run the following command:

kubectl delete secrets coreos-pull-secret

Summary
In this chapter we installed the GUI Tectonic Console, part of the free Starter version of the commercial
enterprise Kubernetes platform Tectonic. We accessed the console in a browser and created a sample
replication controller and service. Finally, we deleted the Tectonic Console. In the next chapter we shall
discuss using Kubernetes volumes.

Figure 5-28. A new service created in Tectonic Console

135© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_6

CHAPTER 6

Using Volumes

Kubernetes pods are invariably associated with data, and the data can either be made integral to a Docker
container via its Docker image or decoupled from the Docker container.

Problem
If data (in on-disk files) is made integral to a Docker container, the following issues could result:

•	 The data is not persistent. The data is removed when a Docker container is restarted,
which could also be due to a container crash.

•	 The data is container-specific and cannot be shared with other containers as such.

Solution
One of the principles of modular design is the Single Responsibility Principle (SRP). Kubernetes volumes
implement the SRP by decoupling the data from a container. A volume is just a directory with or without
data on some medium, which is different for different volume types. A volume is specified in a pod’s spec
and shared across different containers in the pod. A volume must be mounted in each container in a pod’s
spec independently, although it may be mounted in the different containers at the same (or different)
file/directory path. A container in a pod has access to the filesystem inherited from its Docker image and
the filesystem from a Kubernetes volume. A Docker image’s filesystem is still at the root of the filesystem
hierarchy, and a volume can only be mounted on a directory path within the root filesystem. Since volumes
provide access to data outside a pod, volumes mounted in different pods are able to share the same data
from the host or other external storage such as AWS EBS or a GitHub repository. Two types of volume
abstractions or plugins are available: Volume and PersistentVolume. While a Volume is coupled with a pod, a
PersistentVolume is provisioned on the networked cluster and is independent of a pod. Figure 6-1 shows an
example of using an Amazon EBS Volume in a pod.

Chapter 6 ■ Using VolUmes

136

Overview
Kubernetes volumes are storage units associated with pods. A volume can be shared by pod replicas or
dedicated to a single pod. Several types of volumes are supported for different types of storage, such as
AWS volume, GitHub repository, or directory on the host, to list a few. The different types of volumes are
described in Table 6-1.

Pod

spec:
volumes:

/awsElastic BlockStore:

volumeMounts:

mountPath:
/aws-ebs1

volumeMounts:

mountPath:
/aws-ebs1

volumeMounts:

volumeID:”aws://us-
east-1c/vol-
62a59dc8”

mountPath:
/aws-ebs2

Docker
Containers

AWS
EBS

Volume

Volume ID
vol-

62a59dc8

Figure 6-1. Using a volume in a pod

Table 6-1. Types of Volumes

Volume Type Description

emptyDir A per-pod volume that is initially empty and shared by containers in a pod.
Each container may mount the volume at the same or different path. By
default, the volume is stored on the medium backing the machine, which
could be SSD or network storage. Alternatively, the medium could be set to
memory. When a pod is deleted the volume is deleted also, which means
the volume is not persistent.

hostPath Mounts a file or a directory form the host node’s file system into the pod.
Writable by root only the volume data persists even if the pod is deleted. All
containers in the pod can access the volume. Designed for single node test
only and supported in a multi-node cluster.

gcePersistentDisk Mounts a Google Compute Engine Persistent Disk into a pod. The GCE PD’s
contents are not deleted if a pod is deleted and the volume is unmounted.
Supported only for nodes of type GCE VMs in the same GCE project.

(continued)

Chapter 6 ■ Using VolUmes

137

This chapter looks at the following topics:

Setting the Environment

Creating a AWS Volume

Using a awsElasticBlockStore Volume

Creating a Git Repo

Using a gitRepo Volume

Setting the Environment
We will create an AWS CloudFormation on CoreOS for a Kubernetes cluster. To start, create a single EC2
instance from an Amazon Linux AMI.

SSH log in to the EC2 instance using the public IP address:

ssh -i "docker.pem" ec2-user@54.173.38.246

Spin up a CloudFormation consisting of a single controller and three worker nodes as shown in
Figure 6-2.

Volume Type Description

awsElasticBlockStore Mounts an AWS EBS volume into a pod. The volume is persistent, as its
contents are not deleted when the pod is deleted; the volume is unmounted.
The node on which pods are running must be an Amazon EC2 instance in
the same region and availability zone as the EBS volume. A single instance
may mount an EBS volume.

nfs A persistent volume; mounts a Network File System (NFS) into a pod.

flocker Mounts a Flocker dataset into a pod. Flocker is an open-source clustered
container data volume manager.

gitRepo Clones a Git repository into an empty directory.

persistentVolumeClaim Mounts a PersistentVolume into a pod.

azureFileVolume Mounts a Microsoft Azure File Volume into a pod.

Table 6-1. (continued)

Figure 6-2. CloudFormation EC2 instances

Chapter 6 ■ Using VolUmes

138

Obtain the Kubernetes clusters’ controller’s public IP and add an A record for it to the public DNS for
which the CloudFormation is created, as shown in Figure 6-3.

Figure 6-3. Adding an A record for the domain

Figure 6-4. Listing running nodes

SSH log in in to the controller instance using the public IP:

ssh -i "kubernetes-coreos.pem" core@52.1.116.171

Install kubectl binaries and list the nodes in the cluster:

./kubectl get nodes

The single controller node and the three worker nodes are listed as shown in Figure 6-4.

Chapter 6 ■ Using VolUmes

139

Creating an AWS Volume
An awsElasticBlockStore volume mounts an AWS EBS volume into a pod. In this section we will create an
AWS EBS volume. Click on Create Volume in the EC2 Console as shown in Figure 6-5.

Figure 6-5. Begin by clicking Create Volume

The EBS volume must be created in the same availability zone as the EC2 instance on which a pod is to
mount the EBS volume. The availability zone is obtained from the EC2 console and is us-east-1c, as shown
in Figure 6-6.

Figure 6-6. Obtaining the availability zone

In the Create Volume dialog, set the Volume Type as General Purpose SSD (GP2) and the Size as 100
GiB. Set the Availability Zone as us-east-1c and click Create as shown in Figure 6-7.

Chapter 6 ■ Using VolUmes

140

An AWS EBS volume is created. An alternative method to create an EBS volume is with the aws ec2
create-volume command, as follows. The availability zone is specified with the --availability-zone
command parameter as us-east-1c, the same as the EC2 instance on which the pod is running.

aws ec2 create-volume --availability-zone us-east-1c --size 10 --volume-type gp2

An AWS EBS volume is created, as shown in Figure 6-8.

Figure 6-7. Creating a volume

Figure 6-8. Creating a volume on the command line

Chapter 6 ■ Using VolUmes

141

Using an awsElasticBlockStore Volume
Next, we will use the EBS volume in a ReplicationController specification file. Create a file called
pod-aws.yaml:

sudo vi pod-aws.yaml

Specify the awsElasticBlockStore volume with the volumes key with the format of the volumeID set to
aws://zone/volumeid. Obtain the volumeID from the EC2 console as shown in Figure 6-9.

Figure 6-9. Obtaining the volumeID

Specify the fsType as ext4 and the volume name as aws-volume:

 volumes:
 -
 awsElasticBlockStore:
 fsType: ext4
 volumeID: "aws://us-east-1c/vol-62a59dc8"
 name: aws-volume

Chapter 6 ■ Using VolUmes

142

The preceding volume definition is mounted with the volumeMounts key. The pod-aws.yaml file looks
like this:

apiVersion: v1
kind: ReplicationController
metadata:
 labels:
 app: nginx
 name: nginx-rc
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 -
 image: nginx
 name: nginx
 volumeMounts:
 -
 mountPath: /aws-ebs
 name: aws-volume
 volumes:
 -
 awsElasticBlockStore:
 fsType: ext4
 volumeID: "aws://us-east-1c/vol-62a59dc8"
 name: aws-volume

Save the pod-aws.yaml file with :wq as shown in Figure 6-10.

Chapter 6 ■ Using VolUmes

143

Figure 6-10. The pod-aws.yaml

Create a replication controller with the kubectl create command:

./kubectl create -f pod-aws.yaml

List the deployments, replication controllers, and pods:

./kubectl get deployments
 ./kubectl get rc
./kubectl get pods

A replication controller is created. The pod may initially be listed as not ready, as shown in Figure 6-11.

Chapter 6 ■ Using VolUmes

144

Using the pod name, describe the pod with the following command:

kubectl describe pod nginx-rc-a3mih

The pod description is listed. The AWSElasticBlockStore volume should also be listed as shown in
Figure 6-12.

Figure 6-12. Volume description

Figure 6-13. Pod running and ready

Figure 6-11. Pod created but not yet running and ready

List the pods again after a pause (up to a minute), and the pod should be running and ready as shown in
Figure 6-13.

Using the kubectl exec command, start an interactive bash shell. List the files and directories with
ls –l, and the aws-ebs directory should be listed; it is the mount path for the volume as shown in Figure 6-14.

Chapter 6 ■ Using VolUmes

145

Change directory (cd) to the /aws-ebs directory and list its contents. A default created file is listed as
shown in Figure 6-15.

Figure 6-14. Starting the interactive shell and listing files

Figure 6-15. Listing the default file in the /aws-ebs directory

Creating a Git Repo
For the gitRepo type of volume, we need to create a Git repository if one does not already exist. Create a
GitHub account and click New Repository as shown in Figure 6-16.

Chapter 6 ■ Using VolUmes

146

In the Create a New Repository window, specify a Repository name, select the Public repository option,
select Initialize This Repository with a README, and click Create Repository as shown in Figure 6-17.

Figure 6-16. Selecting the New Repository option

Figure 6-17. Creating a repository

Chapter 6 ■ Using VolUmes

147

A new repository is created, as shown in Figure 6-18.

Figure 6-18. The repository kubernetes-volume

Figure 6-19. Adding a file to the repository

Optionally add some files (pod.yaml) to the repository, as shown in Figure 6-19.

Chapter 6 ■ Using VolUmes

148

The kubernetes-volume repo should be listed in the user account, as shown in Figure 6-20.

Figure 6-20. Listing the kubernetes-volume repository

Figure 6-21. Obtaining the web URL for the repository

Obtain the HTTPS web URL for the Git repo as shown in Figure 6-21. We will use the web URL to define
a volume in a pod specification file.

We also need the commit revision number, which may be obtained from the GitHub repo, as shown in
Figure 6-22.

Chapter 6 ■ Using VolUmes

149

Using a gitRepo Volume
Create a pod specification file pod.yaml in which to use the gitRepo volume:

sudo vi pod.yaml

Copy the following listing into pod.yaml. The repository and revision strings are kept empty in the
following listing, and values obtained from a user repository should be substituted.

apiVersion: v1
kind: Pod
metadata:
 name: server
spec:
 containers:
 -
 image: nginx
 name: nginx
 volumeMounts:
 -
 mountPath: /git-repo
 name: git-volume

Figure 6-22. Obtaining the commit revision number

Chapter 6 ■ Using VolUmes

150

 volumes:
 -
 gitRepo:
 repository: ""
 revision: ""
 name: git-volume

The resulting pod.yaml is shown in the vi editor with the repository and revision added as shown in
Figure 6-23; the repository and revision will be different for different users.

Figure 6-23. The pod.yaml file

Create a pod with the kubectl create command:

./kubectl create -f pod.yaml

List the replication controllers and pods:

./kubectl get rc

./kubectl get pods

As the output from the preceding commands shown in Figure 6-24 indicates, the pod "server" is
created and started. Initially the pod may be listed as not running, but after a few seconds the pod should be
running, as also shown in Figure 6-24.

Chapter 6 ■ Using VolUmes

151

Figure 6-24. Creating a pod

Figure 6-25. Listing the volume description

Describe the pod:

kubectl describe pod server

The gitRepo volume should also be listed in the description, as shown in Figure 6-25.

Start an interactive shell on the "server" pod. List the directories and files, and you’ll see the git-repo
directory path on which the gitRepo volume is mounted listed as shown in Figure 6-26.

Figure 6-26. Starting an interactive shell

Chapter 6 ■ Using VolUmes

152

Change directory (cd) to the git-repo directory. List the directories, and the kubernetes-volume
directory is listed, as shown in Figure 6-27.

Figure 6-28. Listing files in the kubernetes-volume directory

Figure 6-27. Listing the kubernetes-volume directory

Change directory (cd) to the kubernetes-volume directory. List the directories and the pod.yaml file on
the Git repo should be listed, as shown in Figure 6-28.

Summary
In this chapter we introduced the different types of Kubernetes volumes and then used two of these volumes,
an awsElasticBlockStore volume and a gitRepo volume. For the awsElasticBlockStore an AWS volume
had to be created, and for the gitRepo volume a Git repo had to be created. In the next chapter we will
discuss using the different types of services.

153© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_7

CHAPTER 7

Using Services

A Kubernetes service is an abstraction serving a set of pods. The pods that a service defines or represents
are selected using label selectors specified in the service spec. A service's label selector expression must be
included in a pod's labels for the service to represent the pod. For example, if a service selector expression
is "app=hello-world", a pod's labels must include the label "app=hello-world" for the service to represent
the pod. A service is accessed at one or more endpoints provided by the service. The number of endpoints
available is equal to the number of pod replicas for a deployment/replication controller. To be able to access
a service outside its cluster, the service must be exposed at an external IP address. The ServiceType field
defines how a service is exposed. By default a ServiceType is ClusterIP, which exposes the service only
within the cluster and not at an external IP. The other ServiceTypes are NodePort and LoadBalancer, which
expose the service at an external IP.

Problem
Services are a classic example of the Single Responsibility Principle (SRP). Consider the alternative that
a service is tightly coupled with a replication controller (RC) as shown in Figure 7-1. The following issues
would result.

−− If either the replication controller or the service is modified, the other has to be
modified, too, as the two have a dependency on each other. If a replication controller
is removed and replaced with another, the service would need to be replaced, too.

−− For “high-functioning” DevOp teams, it is common for an application to have
multiple release tracks, which could be daily or weekly. For multiple release
applications it is typical to have multiple versions of replication controllers to coexist.
Multiple RCs cannot coexist with a controller/service coupling.

Service
Replication
Controller

Figure 7-1. Listing nodes in a Kubernetes cluster

Chapter 7 ■ Using serviCes

154

Another issue associated with services is that when a new RC is created, pods do not start immediately
and take a certain time (which could be a few seconds). A service representing the RC would need to know
when the containers in a pod are ready so that the service can route traffic to the pod.

Solution
The service is a REST object similar to a pod and provides object-oriented benefits such as modularity or
packaging, abstraction and reuse. Decoupling the service from the controller implements the SRP, and either
the service or controller may be modified or deleted without having to modify or delete the other. Multiple
replication controllers may be kept indefinitely, as shown in Figure 7-2, to meet the requirement of DevOps
teams. A replication controller only manages the pods, and a service only exposes endpoints to access pods.
Decoupling controller and service is a management design pattern.

Replication
Controller

Replication
ControllerService

Replication
Controller

Figure 7-2. Service associated with multiple replication controllers

Another management pattern used in services is a readiness probe. A readiness probe is used to find
whether a pod’s containers are ready to receive traffic.

Overview
Table 7-1 describes the different ServiceTypes.

Chapter 7 ■ Using serviCes

155

In this chapter we shall discuss each of the ServiceTypes with an example. This chapter has the
following sections:

Setting the Environment

Creating a ClusterIP Service

Creating a NodePort Service

Creating a LoadBalancer Service

Setting the Environment
Create an AWS EC2 instance from Amazon Linux AMI. SSH log in to the EC2 instance using the public IP
address:

ssh -i "docker.pem" ec2-user@107.23.131.161

Create a CoreOS AWS CloudFormation for a Kubernetes cluster. Add an A record for the cluster
controller instance to the public DNS name for the CloudFormation and SSH log in to the controller
instance:

ssh -i "kubernetes-coreos.pem" core@52.203.239.87

Install kubectl binaries and list the nodes:

./kubectl get nodes

The nodes in the cluster should be listed, as shown in Figure 7-3.

Table 7-1. Types of Services

ServiceType External IP Description

ClusterIP No The default; exposes a service from within a cluster only.

NodePort Yes In addition to exposing the service within a cluster, exposes
the service at each node in the cluster at a specific port at URL
<NodeIP>:NodePort.

LoadBalancer Yes In addition to exposing a service within the cluster and at each node
in the cluster exposes the service at an external LoadBalancer IP.

Figure 7-3. Listing nodes in a Kubernetes cluster

Chapter 7 ■ Using serviCes

156

Creating a ClusterIP Service
In this section we shall create a service of type ClusterIP, which is the default service type. First, create a
deployment using the Docker image tutum/hello-world with three replicas:

./kubectl run hello-world --image=tutum/hello-world --replicas=3 --port=80

Next, list the deployments:

./kubectl get deployments

A hello-world deployment is created and listed as shown in Figure 7-4.

Figure 7-4. Creating and listing the deployments

Figure 7-5. Creating and listing a service

List the pods:

./kubectl get pods

The three pod replicas are listed. Expose the deployment as a service of type ClusterIP, which is the
default, but may also be specified explicitly.

./kubectl expose deployment hello-world --port=80 --type=ClusterIP

List the services:

./kubectl get services

The hello-world service should be listed in addition to the kubernetes service and any other services,
as shown in Figure 7-5.

Chapter 7 ■ Using serviCes

157

Describe the service:

./kubectl describe svc hello-world

The service description includes the service type as ClusterIP and three endpoints for the service, as
shown in Figure 7-6.

Figure 7-6. Describing the hello-world service

The service may be accessed at the clusterIP and each of the service endpoints. First, access the
cluster IP with the command curl cluster-ip. The cluster-ip is 10.3.0.234, so access the service at curl
10.3.0.234. The HTML markup for the service is output as shown in Figure 7-7.

Figure 7-7. Invoking a service endpoint with curl

Chapter 7 ■ Using serviCes

158

Similarly, invoke the service at a service endpoint 10.2.12.7 as shown in Figure 7-8. The HTML markup
for the service is output.

Figure 7-8. Invoking a different service endpoint

To invoke the service in a web browser, set port forwarding from a local machine. First, copy the key-
pair used to access the cluster controller instance to the local machine:

scp -i docker.pem ec2-user@ec2-107-23-131-161.compute-1.amazonaws.com:~/kubernetes-coreos.
pem ~/kubernetes-coreos.pem

Then set port forwarding from the local machine locahost:80 to the cluster IP of the service on the
controller instance:

ssh -i kubernetes-coreos.pem -f -nNT -L 80:10.3.0.234:80 core@ec2-52-203-239-87.compute-1.
amazonaws.com

Port forwarding from local machine localhost:80 to cluster-ip:80 is set. Invoke the service in a web
browser at http://localhost, as shown in Figure 7-9.

Chapter 7 ■ Using serviCes

159

Creating a NodePort Service
In this section we shall expose the same deployment hello-world as a service of type NodePort. First, delete
the service hello-world:

./kubectl delete svc hello-world

Then expose the deployment hello-world as a service of type NodePort:

./kubectl expose rc hello-world --port=80 --type=NodePort

A service of type NodePort is exposed, as shown in Figure 7-10.

Figure 7-9. Invoking a service in a browser

Figure 7-10. Creating a service of type NodePort

Chapter 7 ■ Using serviCes

160

List the services, and the hello-world service is displayed. In addition to a cluster-ip, an external-
ip <nodes> is listed, as shown in Figure 7-11. Unlike the cluster-ip, the <nodes> ip is not a literal IP and
indicates that the service is exposed at each of the nodes in the cluster.

Figure 7-11. Listing the NodePort-type service

Figure 7-12. Invoking a service at Cluster-IP

Access the service at the cluster-ip as for a service of type ClusterIP, and the HTML markup is
displayed as shown in Figure 7-12.

Chapter 7 ■ Using serviCes

161

List the nodes, as shown in Figure 7-13.

Figure 7-13. Listing the nodes in a Kubernetes cluster

Figure 7-14. Describing the NodePort service

Describe the service to list the NodePort (32624), which is the port on each of the nodes at which the
service is exposed, as shown in Figure 7-14.

Invoke the service at a worker node with the URL Node-IP:NodePort, and the same HTML markup
should be listed, as shown in Figure 7-15.

Chapter 7 ■ Using serviCes

162

Similarly, the service may be invoked at the master node using the same node port, as shown in
Figure 7-16.

Figure 7-15. Invoking the service at a worker node

Chapter 7 ■ Using serviCes

163

To invoke the service in a web browser, we don’t need to set port forwarding. Obtain the public DNS
name of the node at which to invoke the service as shown in Figure 7-17.

Figure 7-16. Invoking the service at the master node

Figure 7-17. Obtaining the public DNS

Chapter 7 ■ Using serviCes

164

Invoke the service in a web browser at URL http://public-dns:32624 as shown in Figure 7-18.

Figure 7-18. Invoking the service in a browser

Similarly, obtain the public-dns for another worker node. Invoke the service at
http://public-dns:node-port for the node as shown in Figure 7-19.

Chapter 7 ■ Using serviCes

165

In addition to the cluster-ip:80 and node-ip:node-port, the service may also be invoked at each of
the service endpoints as shown for one of the endpoints in Figure 7-20.

Figure 7-19. Invoking the service at another worker node

Chapter 7 ■ Using serviCes

166

Creating a LoadBalancer Service
In this section we shall expose the same deployment as a service of type LoadBalancer. Delete the
hello-world service and expose the hello-world deployment as a service of type LoadBalancer:

./kubectl expose deployment hello-world --port=80 --type=LoadBalancer

Subsequently the hello-world service listed should expose an external IP in addition to the cluster-ip
as shown in Figure 7-21.

Figure 7-21. Creating a LoadBalancer service

Figure 7-20. Invoking the service at an endpoint

Chapter 7 ■ Using serviCes

167

The service is invoked at the cluster-internal cluster-ip for all types of Kubernetes services, as shown
in Figure 7-22.

Figure 7-22. Invoking a service at cluster-IP

Figure 7-23. Obtaining the LoadBalancer Ingress

Obtain the external IP, the LoadBalancer Ingress, at which the service is exposed with the following
command:

./kubectl describe services hello-world | grep "LoadBalancer Ingress"

The LoadBalancer Ingress is listed as shown in Figure 7-23.

The LoadBalancer Ingress may also be obtained from the service description, as shown in Figure 7-24.

Chapter 7 ■ Using serviCes

168

Figure 7-24. LoadBalancer Ingress also listed in the service description

Figure 7-25. Invoking the service at the LoadBalancer Ingress

Invoke the service at the LoadBalancer Ingress IP as shown in Figure 7-25.

Chapter 7 ■ Using serviCes

169

An AWS load balancer is created for a service of type LoadBalancer. The LoadBalancer Ingress is the
public DNS of the load balancer, as shown in the EC2 Console in Figure 7-26.

Figure 7-26. Public DNS of the LoadBalancer

Figure 7-27. Invoking the public DNS in a browser

To invoke a service of type LoadBalancer, access the public DNS in a browser as shown in Figure 7-27.

Chapter 7 ■ Using serviCes

170

In addition to the cluster-ip and the load balancer public DNS, the service may also be invoked at any
of the service endpoints, as shown for one of the endpoints in Figure 7-28.

Figure 7-28. Invoking a service endpoint

Summary
In this chapter we introduced the different types of Kubernetes services. The ClusterIP service type is the
default and is invoked on a cluster IP. The NodePort service type is also exposed on each of the nodes in the
cluster in addition to the cluster IP. The LoadBalancer service type is exposed on an AWS LoadBalancer DNS
in addition to being exposed on a cluster IP, and each of the nodes in the cluster. Subsequently we created
sample deployments and pods for each of the types of services and invoked them from the IPs or DNS from
which they can be invoked. In the next chapter we shall discuss using rolling updates.

171© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_8

CHAPTER 8

Using Rolling Updates

It is common for a replication controller specification or a container image to be updated. If a replication
controller is created from an earlier image or definition file, the replication controller will need to be updated.

Problem
If the Docker image or controller specification for a replication controller has been updated while the replication
controller’s pods are running, the replication controller will need to be deleted and a new replication controller
created based on the updated Docker image or controller specification. Shutting down an application will
cause the application to become unavailable. One of the DevOps and Agile software development best
practices is Continuous Deployment. The objective of Continuous Deployment is to minimize the lead time
between a new application release/build being developed and being used in production.

Solution
During a rolling update, pods for any earlier version replication controller are terminated and pods for the
new controller started. The earlier version pods are shut down using a “graceful termination” mechanism,
which provides a callback into a container a configurable amount of time before the container is terminated
to allow the container to shut down gracefully, which implies that the in-memory state of the container is
persisted and the open connections are closed. The “graceful termination” mechanism Kubernetes makes
use of is a single-container management design pattern.

As shown in Figure 8-1, for the rolling update of a replication controller RC1 to RC2, RC1 initially has
three pods and RC2 no pods. In the next phase, RC1 has two pods and RC2 one pod. In the third phase RC1
has one pod and RC2 two pods. When the rolling update is completed RC1 has no pods and RC2 three pods.
The rolling update is performed one pod at a time.

Chapter 8 ■ Using rolling Updates

172

Another management pattern used in rolling updates is the controller/service decoupling, which follows
the Single Responsibility Principle. If controller and service are tightly coupled, multiple controllers cannot
be associated with a single service as new replication controllers are created and earlier ones removed. One of
the requirements of rolling updates is for multiple controllers to be associated with a service while an earlier
version RC is deleted (a pod at a time as discussed in this chapter) and pods for a new RC are started.

Overview
Kubernetes provides a mechanism by which a running replication controller can be updated to the newer
image or specification while it is running—what is called a rolling update. The replication controller or a
service representing the replication controller does not become unavailable at any time. The RC is updated
one pod at a time so that at any given time the number of pods in the RC is at the specified replication level.
In this chapter we shall use a rolling update to update a replication controller and a deployment while the
replication controller or deployment is running. Topics include the following:

Setting the environment

Rolling updates with an RC definition file

Rolling update by updating the container image

Rolling back an update

Using only either a file or an image

Rolling update on deployment with deployment file

rc1 rc2

Figure 8-1. Rolling update of RC1 to RC2

Chapter 8 ■ Using rolling Updates

173

Setting the Environment
Create an Amazon EC2 instance based on the Amazon Linux AMI. Obtain the public IP of the instance and
SSH log in to the instance:

ssh -i "docker.pem" ec2-user@54.87.191.230

Create a Kubernetes cluster using an AWS CloudFormation consisting of a single controller and three
worker nodes running CoreOS, as shown in Figure 8-2.

Figure 8-2. CloudFormation EC2 instances

After starting the cluster and setting up an A record for the controller instance IP address in the public
DNS name for the CloudFormation, SSH log in to the controller instance:

ssh -i "kubernetes-coreos.pem" core@52.205.169.82

The controller CoreOS instance is logged in as shown in Figure 8-3.

Figure 8-3. SSH logging into the controller instance

Install kubectl binaries and list the nodes:

./kubectl get nodes

The single controller node and the three worker nodes are listed as shown in Figure 8-4.

Chapter 8 ■ Using rolling Updates

174

The kubectl rolling-update command is used to perform a rolling update. The syntax for the
rolling-update command is as follows.

kubectl rolling-update OLD_CONTROLLER_NAME ([NEW_CONTROLLER_NAME] --image=NEW_CONTAINER_
IMAGE | -f NEW_CONTROLLER_SPEC)

The old container name is required to be specified, and if a new controller name is to be assigned to
the updated RC, a new controller name may be specified. Either a new container image or a new container
specification must be specified as a command parameter. Next, we shall discuss performing a rolling update
using each of the methods; a new container image and a new controller specification.

Rolling Update with an RC Definition File
In this section we’ll discuss the rolling update of an existing replication controller by providing an RC
definition file to the kubectl rolling-update command. The following requirements apply for rolling-
updating an RC.

 1. The new replication controller must be in the same namespace.

 2. The new replication controller name in the definition file must not be the same
as the existing replication controller being updated.

 3. The new replication controller must specify at least one matching key with a
nonequal value in the selector field.

First, create a replication controller to be updated. The following RC definition file mysql.yaml creates
an RC called mysql and specifies three replicas. Create a definition file mysql.yaml in a vi editor:

sudo vi mysql.yaml

Copy the following source code to the definition file:

apiVersion: v1
kind: ReplicationController
metadata:
 name: mysql
 labels:
 app: mysql-app

Figure 8-4. Listing the nodes

Chapter 8 ■ Using rolling Updates

175

spec:
 replicas: 3
 selector:
 app: mysql-app
 deployment: v1
 template:
 metadata:
 labels:
 app: mysql-app
 deployment: v1
 spec:
 containers:
 -
 env:
 -
 name: MYSQL_ROOT_PASSWORD
 value: mysql
 image: mysql
 name: mysql
 ports:
 -
 containerPort: 3306

Create a replication controller with the following command:

kubectl create –f mysql.yaml

An RC called mysql with three replicas should be created.
Next, modify the mysql.yaml file based on the requirements listed earlier. The following mysql.yaml

specifies a different RC name and a different value for the deployment key in the selector. Optionally, the
Docker image tag can be different.

apiVersion: v1
kind: ReplicationController
metadata:
 name: mysql-v1
 labels:
 app: mysql-app
spec:
 replicas: 3
 selector:
 app: mysql-app
 deployment: v2
 template:
 metadata:
 labels:
 app: mysql-app
 deployment: v2

Chapter 8 ■ Using rolling Updates

176

 spec:
 containers:
 -
 env:
 -
 name: MYSQL_ROOT_PASSWORD
 value: mysql
 image: mysql:5.5
 name: mysql
 ports:
 -
 containerPort: 3306

Next, perform a rolling update to the RC called mysql using the definition file mysql.yaml. Optionally,
specify a timeout for the rolling update. When a timeout is set, the pods updated to the new image or
specification are not rolled back after the timeout has elapsed and the rolling update has terminated. The
rolling update may be performed again and resumes from the previous update.

kubectl rolling-update mysql -f mysql.yaml --timeout=1m

The mysql RC is updated to mysql-v1 as shown in Figure 8-5. Subsequently the RC mysql is deleted.

Figure 8-5. Rolling update of a replication controller

Delete the RC mysql-v1, as we shall be using the same RC name in the next section:

kubectl delete rc mysql-v1

Chapter 8 ■ Using rolling Updates

177

Rolling Update by Updating the Container Image
In this section we shall update an RC by updating the Docker image. First, create an RC using the following
mysql.yaml definition file:

apiVersion: v1
kind: ReplicationController
metadata:
 name: mysql-v1
 labels:
 app: mysql-app
spec:
 replicas: 3
 selector:
 app: mysql-app
 deployment: v1
 template:
 metadata:
 labels:
 app: mysql-app
 deployment: v1
 spec:
 containers:
 -
 env:
 -
 name: MYSQL_ROOT_PASSWORD
 value: mysql
 image: mysql:5.5
 name: mysql
 ports:
 -
 containerPort: 3306

Copy the preceding listing to a file mysql.yaml in a vi editor as shown in Figure 8-6.

Chapter 8 ■ Using rolling Updates

178

Figure 8-7. Creating an RC and listing the pods

Figure 8-6. The mysql.yaml file in a vi editor

Run the following command to create an RC:

kubectl create –f mysql.yaml

List the RC and the pods:

kubectl get rc
kubectl get pods

The mysql-v1 RC is created and listed. The three pods also are listed as shown in Figure 8-7.

Chapter 8 ■ Using rolling Updates

179

The following command creates a rolling update on the RC with a new image tag and new RC name.
The –a option displays all labels, and the --poll-interval specifies the interval between polling the
replication controller for status after update.

kubectl rolling-update mysql-v1 mysql --image=mysql:latest -a --poll-interval=3ms

The RC mysql-v1 is rolling-updated to mysql as shown in Figure 8-8. Subsequently the RC mysql-v1 is
deleted.

Figure 8-8. Rolling update to an RC using a Docker image

After the update, list the RC and the pods:

kubectl get rc
kubectl get pods

A different RC, mysql, and different pods are now listed, as shown in Figure 8-9.

Figure 8-9. Listing the RC and pods

A rolling update on an RC does not have to use a new RC name. As an example, perform a rolling update
with a new image tag and same RC name.

kubectl rolling-update mysql --image=mysql:5.6

For the purpose of updating the RC a temporary RC is created and the update is applied to the RC as
shown in Figure 8-10. Subsequently the original RC mysql is deleted and the temporary RC is renamed to
mysql, as a result keeping the RC name the same.

Chapter 8 ■ Using rolling Updates

180

Figure 8-10. Rolling Update using the same RC name

Figure 8-11. Rolling Update using a different Docker image

A rolling update does not have to be with the same Docker image. As an example, use a different image,
postgres, to update an RC called mysql and based on the mysql image. The following command updates the
mysql image to the postgresql image using image=postgres:

kubectl rolling-update mysql postgresql --image=postgres

The RC mysql is updated to RC postgresql as shown in Figure 8-11.

List the RC and the pods:

kubectl get rc
kubectl get pods

A different RC and pods should be listed, as shown in Figure 8-12. Not only has the RC been updated,
the pods are also running different software.

Chapter 8 ■ Using rolling Updates

181

A rolling update back to the mysql image-based RC may be performed by running a similar command.
Then list the new RC and pods for the new RC:

kubectl rolling-update postgresql mysql --image=mysql
kubectl get rc
kubectl get pods

The RC postgresql is updated to the mysql image-based RC named mysql, as shown in Figure 8-13. The
new RC and pods are listed.

Figure 8-12. Listing updated RC and pods

Figure 8-13. Rolling update back to an RC

Chapter 8 ■ Using rolling Updates

182

A rolling update may be terminated while in progress and resumed later. As an example, create the
ReplicationController definition file mysql.yaml shown in Figure 8-14.

Figure 8-14. The definition file mysql.yaml

Figure 8-15. Creating an RC and listing pods

Create an RC with the following command:

kubectl create –f mysql.yaml

List the pods:

kubectl get pods

The RC mysql-v1 is created, and the pods are listed as shown in Figure 8-15.

Chapter 8 ■ Using rolling Updates

183

Perform a rolling update of the mysql-v1 RC to a new RC called postgresql using a new Docker image,
postgres:

kubectl rolling-update mysql–v1 postgresql --image=postgres

The rolling update is started as shown in Figure 8-16.

Figure 8-16. Starting a rolling update

While the rolling update is running, terminate the update with ^C as shown in Figure 8-17.

Figure 8-17. Terminating a rolling update

To resume the rolling update, run the same command again:

kubectl rolling-update mysql–v1 postgresql --image=postgres

As the output in Figure 8-18 indicates, the existing update is found and resumed.

Figure 8-18. Resuming a rolling update

Chapter 8 ■ Using rolling Updates

184

The rolling update is completed using an existing update as shown in Figure 8-19. Next, list the new RC
and pods.

Figure 8-19. Rolling update using existing update

Rolling Back an Update
A rollback of a rolling update can be performed if required. As an example, a rolling update to an RC called
postgresql is started using a new container image mysql:

kubectl rolling-update postgresql mysql --image=mysql

Now suppose that while the rolling update is still in progress, we realize the update should not have
been started, or was started in error, or needs to be started with different parameters. Using ^C, terminate
the update. Then run the following command to roll back the update:

kubectl rolling-update postgresql mysql –rollback

When the rolling update was terminated, the postgresql RC had already scaled down to one pod and
the mysql RC had already scaled up to two pods. When the rollback is performed, the existing controller
postgresql is scaled back up from one to three pods and the mysql RC is scaled down from two to zero pods,
as shown in Figure 8-20.

Chapter 8 ■ Using rolling Updates

185

Next list the RC and the pods:

kubectl get rc
kubectl get pods

The mysql RC is not listed and instead the postgresql RC is listed, as shown in Figure 8-21.

Figure 8-20. Rolling back a rolling update

Figure 8-21. Listing a rolled-back RC and pods

Chapter 8 ■ Using rolling Updates

186

Rollback of a deployment may be performed even after a rolling update has completed if an earlier
revision is available. The rolling update of deployments is discussed in a later section.

Using Only Either File or Image
Only one of a container image or a definition file may be used, not both. To demonstrate, try specifying both
image and file:

kubectl rolling-update mysql --image=mysql -f mysql.yaml

An error is generated as shown in Figure 8-22.

Figure 8-22. An error is generated if both Docker image and definition file are used

Multiple-Container Pods
A rolling update performs an update on an RC, which consists of pod replicas, using a new container image
or pod spec. If –image is specified in the kubectl rolling-update command to perform an update, the
image is used to update the pods. But what if the pod is a multicontainer pod? An image can update only one
of the containers in the pod, and the container must be specified using the –container option.

Rolling Update to a Deployment
A deployment created using a definition file has the provision to specify spec for the rolling update. The
default strategy of a deployment is rollingUpdate and may also be specified explicitly. The other option
for the strategy type is Recreate. The following (Table 8-1) fields may be specified for a rolling update
deployment, the default.

Chapter 8 ■ Using rolling Updates

187

The Deployment spec provides two fields (Table 8-2) for the rolling update rollback. Neither of these
fields are required.

Table 8-1. Fields for Rolling Update to a Deployment

Field Description Example

maxUnavailable The maximum number of pods
that may become unavailable
during the update. The value may
be an absolute number, such as 3,
or a percentage, for example 30%.
Default value is 1. The value cannot
be 0 if maxSurge is 0.

If set to 20% the maximum number of pods that
may be unavailable cannot exceed 20%, and 80%
of the pods must always be available. When the
update starts, the old RC is scaled down to 80%
immediately and new pods started for the new
RC. As new pods are started old RC pods are
stopped, so that the number of pods available is
always 80% of the configured replication level.

maxSurge The maximum number of pods
that may be running above
the configured or desired level
specified as a number or a
percentage. Default value is 1.
Cannot be 0 if maxUnavailable is 0.

If set to 10% the new RC may surge to 110%
of the configured or desired number of pods
immediately when the update is started, but not
more than 110% of the configured replication
level. As old RC pods are stopped more new RC
pods are started, but at any given time the total
number of pods must not exceed 110%.

Table 8-2. Fields for Rolling Update Rollback

Field Description

rollbackTo The config the deployment is rolled back to in a rollback. The RollbackConfig
provides a field revision to specify the revision to roll back to. If set to 0 rolls
back to the last revision.

revisionHistoryLimit The number of old replica sets to retain to allow a rollback.

Next, we shall demonstrate rolling update of a deployment. Create a deployment file mysql-
deployment.yaml:

sudo vi mysql-deployment.yaml

Copy the following listing to the definition file:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: mysql-deployment
spec:
 replicas: 5
 template:
 metadata:
 labels:
 app: mysql

Chapter 8 ■ Using rolling Updates

188

 spec:
 containers:
 - name: mysql
 image: mysql:5.5
 ports:
 - containerPort: 80
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 75%
 maxSurge: 30%
 rollbackTo:
 revision: 0

Figure 8-23 shows the definition file in a vi editor.

Figure 8-23. Definition file for a deployment

Chapter 8 ■ Using rolling Updates

189

Create a deployment:

kubectl create -f mysql-deployment.yaml

Find the rollout status:

kubectl rollout status deployment/mysql-deployment

List the deployments:

kubectl get deployments

The mysql-deployment is created and rolled out as shown in Figure 8-24.

Figure 8-24. Creating and rolling out a deployment

The Docker image specified in the definition file is mysql:5.5. The image may be updated using the
kubectl set image command. As an example, update the image to the latest tag:

kubectl set image deployment/mysql-deployment mysql=mysql:latest

Find the deployment status, list the deployments, and describe the deployments:

kubectl describe deployments

As indicated in the output shown in Figure 8-25, the RollingUpdateStrategy is 75% unavailable and
30% max surge.

Chapter 8 ■ Using rolling Updates

190

Figure 8-25. Describing a deployment

As listed in Events, one replica set is scaled down and another replica set is scaled up. Both replica sets
are listed with kubectl get rs, but only one has pods, as shown in Figure 8-26.

Chapter 8 ■ Using rolling Updates

191

Alternatively, edit the deployment with kubectl edit:

kubectl edit deployment/mysql-deployment

As an example, the mysql image tag could be set to 5.5 as shown in Figure 8-27.

Figure 8-26. Scaling and listing ReplicaSets

Chapter 8 ■ Using rolling Updates

192

Modify the image tag to latest, the default when no tag is specified, as shown in Figure 8-28.

Figure 8-27. Editing a deployment

Chapter 8 ■ Using rolling Updates

193

Save the definition file with :wq. The message deployment edited indicates that the deployment has
been edited as shown in Figure 8-29. List the deployments, the replica sets, and the pods. The old replica set
does not have any pods, while the new replica set does.

Figure 8-28. Setting the image tag to latest, which is the default for the mysql Docker image

Figure 8-29. Deployment edited and rolled out

Chapter 8 ■ Using rolling Updates

194

Make some more rolling updates. For example, the rolling update shown in Figure 8-30 sets the image
tag to 5.6.

Figure 8-30. Applying a rolling update to the mysql Docker image tag

Figure 8-31. Rolling update with an invalid image tag

The kubectl set image command does not verify the validity of a tag. For example, suppose a mysql
image with the invalid tag 5.5.5 is also used for a rolling update and the deployment is rolled out. Some of the
pods of the old RC are stopped, but new pods are not started. Listing the pods shows that some of the pods
have the Status ImagePullBackOff, or show another error message as illustrated in Figure 8-31.

As another example, rolling-update and roll out a deployment using the image mysql:latest. The
deployment also is rolled out. But as indicated in the deployment description, only two of the pods are
available, as shown in Figure 8-32.

Chapter 8 ■ Using rolling Updates

195

If some deployment has an error, the deployment may be rolled back to an earlier revision. List the
deployment revisions.

kubectl rollout history deployment/mysql-deployment

The deployment revisions are listed as shown in Figure 8-33.

Figure 8-32. Only some of the replicas are available

Figure 8-33. Listing deployment revisions

Chapter 8 ■ Using rolling Updates

196

We need to find which deployment revision does not have an error and subsequently roll back to that
revision. The details of a revision can be displayed. For example, the following command lists the detail of
revision 4:

kubectl rollout history deployment/mysql-deployment --revision=4

The details of revision 4 are listed as shown in Figure 8-34.

Figure 8-34. Listing the details of revision 4

To roll back to the previous version, run the following command, assuming the rollbackTo->revision
field is set to 0 (also the default) in the deployment definition file:

kubectl rollout undo deployment/mysql-deployment

Deployment is rolled back as shown in Figure 8-35. List the pods, and you may see some of the pods still
not running, which indicates that the revision rolled back to has errors.

Chapter 8 ■ Using rolling Updates

197

Figure 8-35. Rolling back a deployment

Either keep rolling back one revision at a time and verifying whether the revision is valid or roll back to a
specific revision that is known to be valid, for example revision 4:

kubectl rollout undo deployment/mysql-deployment --to-revision=4

Now list the pods. As indicated in Figure 8-36, all pods are running.

Figure 8-36. Rolling back to revision 4

No further rollback is required.

Chapter 8 ■ Using rolling Updates

198

Summary
In this chapter we introduced rolling updates, a feature that is useful because it lets you update a running
application to a newer image or RC definition without interruption in service. We created a rolling update
using an updated RC definition file and also an updated container image. We also demonstrate rolling back
an update. In the next chapter we shall discuss scheduling pods on nodes.

199© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_9

CHAPTER 9

Scheduling Pods on Nodes

Scheduling involves finding the pods that need to be run and running (scheduling) them on nodes in a cluster.

Problem
Often containers have dependencies between them and need to be collocated on the same node to reduce
the network latency between them. The pod abstraction can encapsulate multiple containers, which solves
the problem of collocating containers with dependencies between them. The pattern can be extended
further to dependencies between pods that need to be running on the same or a different machine (node).

Solution
In a recent publication, Design Patterns for Container-based Distributed Systems, by Brendan Burns and
David Oppenheimer (https://www.usenix.org/node/196347), three types of container design patterns are
discussed:

 1. Single Container Management Patterns

 2. Single Node, Multi-Container Application Patterns

 3. Multi-Node Application Patterns

All of these design patterns require pods to be scheduled on specific nodes in a cluster. Kubernetes
provides various options for scheduling pods on specific nodes within a cluster. The sequence used to
schedule a pod on a node is shown in Figure 9-1.

Find a pod that
needs to be run

Find a suitable node
to run the pod on

Schedule the pod on
the node

Figure 9-1. Sequence used in scheduling a pod

https://www.usenix.org/node/196347

Chapter 9 ■ SCheduling podS on nodeS

200

Overview
Kubernetes Scheduler is a Kubernetes component or process that runs alongside the other components
such as API Server. The purpose of the Scheduler is to monitor the API for pods that need to be scheduled,
find a suitable node to schedule a pod, and schedule the pod, one pod at a time. This chapter looks at the
following topics.

Defining a scheduling policy

Setting the environment

Using the default scheduler

Scheduling pods without a node selector

Setting node labels

Scheduling pods with node selector

Setting node affinity

Setting requiredDuringSchedulingIgnoredDuringExecution

Setting preferredDuringSchedulingIgnoredDuringExecution

Defining a Scheduling Policy
Scheduling is determined by a scheduling policy, involving predicates and priority functions. Scheduling
involves the following process, starting with all nodes being viable to schedule a pod:

 1. Filter out nodes using filtering policy predicates. The objective of filtering out
nodes is to exclude those nodes that do not meet certain requirements of a pod.

 2. Nodes are ranked using priority functions.

 3. The pod is scheduled onto the node with the highest priority. If multiple nodes
have equal priority, one of the nodes is chosen at random.

Some of the salient predicates that implement filtering policy are discussed in Table 9-1.

Chapter 9 ■ SCheduling podS on nodeS

201

After the unsuitable nodes have been filtered out, the remaining nodes are ranked using priority
functions. Some of the salient priority functions are discussed in Table 9-2.

Table 9-1. Predicates for Filtering Policy

Predicate Description

NoDiskConflict Evaluates whether there is any disk conflict due to the volumes requested
by the pod. Supported volume types are AWS EBS, GCE PD, and Ceph
RBD.

NoVolumeZoneConflict Taking into consideration zone restrictions, evaluates whether the
volumes a pod requests are available on the zone.

PodFitsResources Verifies that the available resources (CPU and memory) on a node fit a
pod’s resource requirements.

PodFitsHostPorts Verifies that a HostPort requested by a pod is not already taken up.

HostName If the pod’s spec specified a node name, filters out all the other nodes.

MatchNodeSelector Filters out nodes that do not have matching labels as set in the pod’s
nodeSelector field and the scheduler.alpha.kubernetes.io/affinity
pod annotation if specified.

MaxEBSVolumeCount Verifies that the number of attached EBS Volumes does not exceed the
limit of 39 available volumes (1 of the 40 available is reserved for the root
volume).

MaxGCEPDVolumeCount Verifies that the number of attached GCE PD Volumes does not exceed the
limit of 16 available volumes.

CheckNodeMemoryPressure Least priority (BestEffort) pods cannot be scheduled on nodes with
memory pressure condition.

CheckNodeDiskPressure Pods cannot be scheduled on nodes with a disk pressure condition.

Table 9-2. Priority Functions

Priority Function Description

LeastRequestedPriority The objective of this priority function is to spread out the resource
consumption across the nodes. CPU and memory are equally
weighted in calculating the free resources fraction (the fraction of the
node that would be free if a pod were scheduled on the node) using a
formula: (capacity – sum of requests of all pods already on the node –
request of pod that is being scheduled) / capacity). The node with the
greatest free fraction is selected for scheduling.

BalancedResourceAllocation The objective of this priority function is to balance the CPU and
memory utilization rate.

SelectorSpreadPriority The objective is to avoid scheduling pods in the same replication
controller, replica set or service on to the same node or zone.

CalculateAntiAffinityPriority The objective is to avoid scheduling pods in the same service on
nodes with same label values for a particular label.

(continued)

Chapter 9 ■ SCheduling podS on nodeS

202

The final node ranking is calculated using a weighted priority function score. Each node is given a score
in the range of 1–10 for each of the applied priority functions, and the final score is calculated by assigning
a weight for each priority function. For example, given three priority functions priorityFunc1Score,
priorityFunc2Score, and priorityFunc3Score, the final score is calculated as follows:

RankingScoreNodeA = (weight1 * priorityFunc1Score) + (weight2 * priorityFunc2Score) +
(weight3 * priorityFunc3Score)

The node with the highest score is selected for scheduling a pod.
The default scheduling policy as determined by default predicates and priority functions may be

customized or overridden using one of the following procedures:

 1. Use a --policy-config-file parameter to the scheduler. The policy config file
is a json file, for example https://github.com/kubernetes/kubernetes/blob/
master/examples/scheduler-policy-config.json.

 2. Modify the default predicates and/or priority functions in plugin/pkg/
scheduler/algorithm/predicates/predicates.go and/or plugin/pkg/
scheduler/algorithm/priorities/priorities.go respectively and register the
policy in defaultPredicates() and/or defaultPriorities() in plugin/pkg/
scheduler/algorithmprovider/defaults/defaults.go.

Setting the Environment
We shall be using a CoreOS-based AWS EC2 Cloud Formation to run a one-controller-three-worker-node
Kubernetes cluster. Start an EC2 instance using Amazon Linux AMI. SSH log in to the EC2 instance:

ssh -i docker.pem ec2-user@54.197.206.44

Start a cloud configuration for a Kubernetes cluster and register the Public IP address of the controller
in the Public DNS name. While configuring the cluster set the Kubernetes version to v1.3.0_coreos.1 in the
kubernetesVersion field in cluster.yaml.

Install the kubectl binaries. Both the Client and Server versions should be 1.3, as shown in Figure 9-2.

Priority Function Description

ImageLocalityPriority The objective is to schedule on nodes that already have some or all
of the image packages installed. A node with the larger size of the
already installed packages is preferred.

NodeAffinityPriority Evaluate node affinity using
preferredDuringSchedulingIgnoredDuringExecution and
requiredDuringSchedulingIgnoredDuringExecution.

Table 9-2. (continued)

https://github.com/kubernetes/kubernetes/blob/master/examples/scheduler-policy-config.json
https://github.com/kubernetes/kubernetes/blob/master/examples/scheduler-policy-config.json

Chapter 9 ■ SCheduling podS on nodeS

203

SSH log in to the controller instance:

ssh -i "kubernetes-coreos.pem" core@50.19.44.241

List the nodes:

kubectl get nodes

The controller and three worker nodes are listed as running, but the controller node is not schedulable,
as indicated by the SchedulingDisabled shown in Figure 9-3.

Figure 9-2. Listing Kubernetes versions

Figure 9-3. Listing Nodes; the master node is nonschedulable

Using the Default Scheduler
The default scheduler kube-scheduler is started automatically when the Kubernetes processes
(components) are started. The component statuses should list the scheduler component, as shown in
Figure 9-4.

Figure 9-4. Listing component status for scheduler

Chapter 9 ■ SCheduling podS on nodeS

204

A pod for the kube-scheduler is started in the kube-system namespace, as shown in Figure 9-5.

Figure 9-5. listing pods in the kube-system namespace, including the kube-scheduler pod

The kube-scheduler command can be used to start kube-scheduler with custom settings. The
available command parameters can be listed with kube-scheduler –help as shown in Figure 9-6.

Figure 9-6. kube-scheduler command usage

Chapter 9 ■ SCheduling podS on nodeS

205

The configuration files to launch the pods for the Kubernetes components, which include the API
Server, Controller Manager, Proxy, and Scheduler are in the /etc/kubernetes/manifests directory as shown
in Figure 9-7; the kube-scheduler.yaml file is what we need for the scheduler.

Figure 9-7. Listing files in the /etc/kubernetes/manifests directory

The kube-scheduler pod specification can be customized in a vi editor as shown in Figure 9-8.

Figure 9-8. The kube-scheduler.yaml file in a vi editor

Chapter 9 ■ SCheduling podS on nodeS

206

The kubelet must be restarted, as shown in Figure 9-9, if the modification to the kube-scheduler pod
specification is to take effect.

Figure 9-9. Restarting the kubelet

A container is started for each of the Kubernetes components, including the scheduler. The containers
may be listed with the docker ps command. The k8s_kube-schduler container should be listed as shown in
Figure 9-10.

Chapter 9 ■ SCheduling podS on nodeS

207

The scheduler container cannot be terminated while the Kubernetes cluster is running. If the
scheduler container is stopped explicitly, the container restarts as indicated in Figure 9-11 by the first
container k8s_kube-schduler listed and started 6 seconds earlier.

Figure 9-10. Listing Docker containers, including the k8s_kube-scheduler

Chapter 9 ■ SCheduling podS on nodeS

208

The kube-scheduler pod description, including the command used to start the scheduler, may be
obtained with the kubectl describe pod command as shown in Figure 9-12.

Figure 9-11. The k8s_kube-schduler container is restarted if stopped

Chapter 9 ■ SCheduling podS on nodeS

209

The scheduler component cannot be deleted, as shown in Figure 9-13.

Figure 9-12. Listing the pod description for kube-scheduler

Figure 9-13. The scheduler component is not deleted

Chapter 9 ■ SCheduling podS on nodeS

210

The optional scheduler.alpha.kubernetes.io/name annotation on a pod can be used to specify the
scheduler to use. Next, we shall demonstrate the use of the annotation. Create a pod definition file named
pod1.yaml:

sudo pod1.yaml

In the first example, we shall not specify the scheduler.alpha.kubernetes.io/name annotation. Copy
the following listing to the pod1.yaml.

apiVersion: v1
kind: Pod
metadata:
 name: pod-without-annotation
 labels:
 name: multischeduler
spec:
 containers:
 -
 image: "gcr.io/google_containers/pause:2.0"
 name: pod-without-annotation

The pod1.yaml file is shown in a vi editor in Figure 9-14.

Figure 9-14. Pod definition without scheduler annotation

Create a pod using the definition file:

./kubectl create -f pod1.yaml

Subsequently, list the pods:

./kubectl get pods -o wide

The pod-without-annotation is created and listed as shown in Figure 9-15. The default scheduler is
used to schedule the pod using the default scheduling policy.

Chapter 9 ■ SCheduling podS on nodeS

211

Next, we shall use the scheduler.alpha.kubernetes.io/name annotation in a pod definition file.
Create another pod definition file, named pod2.yaml, and copy the following code into it. The scheduler.
alpha.kubernetes.io/name annotation is set to the default-scheduler explicitly.

apiVersion: v1
kind: Pod
metadata:
 annotations:
 scheduler.alpha.kubernetes.io/name: default-scheduler
 labels:
 name: multischeduler
 name: default-scheduler
spec:
 containers:
 -
 image: "gcr.io/google_containers/pause:2.0"
 name: pod-with-default-scheduler-annotation-container

The pod2.yaml file is shown in the vi editor in Figure 9-16.

Figure 9-15. Pod definition without scheduler annotation

Figure 9-16. Pod definition with scheduler annotation

Chapter 9 ■ SCheduling podS on nodeS

212

Create a pod using the pod2.yaml definition file:

./kubectl create -f pod2.yaml

The pod pod-with-default-scheduler-annotation-container is created and listed, as shown in
Figure 9-17.

Figure 9-17. Creating and listing the pod with scheduler annotation

Figure 9-18. The pods are scheduled using the default-scheduler

The default scheduler is used regardless of whether it is specified explicitly. To verify that the default-
scheduler is used, list the Events. The pod named pod-with-default-scheduler-annotation-container is
listed to have been scheduled using the default-scheduler, and so is the pod pod-without-annotation, as
shown in Figure 9-18.

Chapter 9 ■ SCheduling podS on nodeS

213

Scheduling Pods without a Node Selector
The nodeSelector field in the pod specification may be used to select a node for the pod to be scheduled
on. The nodeSelector field specifies a label, which should be the same as a node’s label for the pod to be
scheduled on the node. If a nodeSelector is not specified, the pod definition (pod.yaml) for a pod for nginx
will be similar to the following:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent

Run the pod using the definition file:

kubectl create -f pod.yaml

The pod is scheduled on a suitable node using the default scheduling policy.

Setting Node Labels
Next, we shall use labels to match pods with labels. First, we need to set labels on nodes. The node names on
which to set labels may be found with kubectl get nodes, as shown in Figure 9-3 earlier.

The syntax to label a node is as follows:

kubectl label nodes <node-name> <label-key>=<label-value>

Some built-in labels are also provided, which can also be used in the nodeSelector field, but only one
label may be specified.

kubernetes.io/hostname, failure-domain.beta.kubernetes.io/zone,failure-domain.beta.
kubernetes.io/region,beta.kubernetes.io/instance-type

As an example, label the node ip-10-0-0-151.ec2.internal with the label kubernetes.io/image-
name=nginx:

kubectl label nodes ip-10-0-0-151.ec2.internal kubernetes.io/image-name=nginx
Similarly, label node ip-10-0-0-152.ec2.internal.
kubectl label nodes ip-10-0-0-152.ec2.internal kubernetes.io/image-name=hello-world

Nodes are labeled, as shown in Figure 9-19.

Chapter 9 ■ SCheduling podS on nodeS

214

List the nodes, including the labels, using the –show-labels command argument to the kubectl get
nodes command. The labels added are listed in addition to the default labels, as shown in Figure 9-20.

Figure 9-20. Listing nodes including labels

Figure 9-19. Labeling nodes

When using labels to match pods with nodes, one of the following results:

 1. The pod is scheduled on the labeled node.

 2. The pod is scheduled on an unlabeled node if a node affinity is specified.

 3. The pod is not scheduled.

We shall discuss each of these in the following sections using the labeled and unlabeled nodes from this
section.

Scheduling Pods with a Node Selector
The nodeSelector field in a pod’s specification may be used to explicitly select a node for a pod. To assign a
pod to a label, create a pod definition file pod-nginx.yaml. Copy the following code to the definition file:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test

Chapter 9 ■ SCheduling podS on nodeS

215

spec:
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent
 nodeSelector:
 kubernetes.io/image-name: nginx

The resulting pod-nginx.yaml is shown in a vi editor in Figure 9-21.

Figure 9-21. The pod definition file pod-nginx.yaml

Create a pod using the definition file:

kubectl create -f pod-nginx.yaml

Similarly, create another pod definition file pod-helloworld.yaml. Copy the following listing into
pod-helloworld.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: hello-world
 labels:
 env: test
spec:
 containers:
 - name: hello-world
 image: hello-world
 imagePullPolicy: IfNotPresent
 nodeSelector:
 kubernetes.io/image-name: hello-world

Chapter 9 ■ SCheduling podS on nodeS

216

Create the pod using the pod definition file:

kubectl create -f pod-helloworld.yaml

List the cluster-wide pods:

kubectl get pods -o wide

As the output from the preceding commands in Figure 9-22 indicates, the two pods are created and
started. Initially the pods may be not running.

Figure 9-24. Listing node labels

Figure 9-22. Creating pods that make use of nodeSelector

List the pods again, including the nodes, and the pods should either be running or have completed. The
Node column lists the node on which a pod is running, as shown in Figure 9-23.

Figure 9-23. Listing pods including the nodes

Using the node name, obtain the labels for each of the two nodes as shown in Figure 9-24. The labels for
each of the nodes include the label specified in the nodeSelector for the pod scheduled on the node.

Chapter 9 ■ SCheduling podS on nodeS

217

Next, we shall demonstrate that if multiple pods have matching labels, one of the nodes is used. Label
the third node with the same label as one of the other nodes:

kubectl label nodes ip-10-0-0-153.ec2.internal kubernetes.io/image-name=hello-world

The third node is also labeled, as shown in Figure 9-25.

Figure 9-25. Labeling a third node

Figure 9-26. Two nodes with the same label

Listing the node labels should display two nodes with the common label kubernetes.io/image-
name=hello-world, as shown in Figure 9-26.

Delete the pod hello-world with kubectl, as next we shall create the pod again to find which node is
the pod scheduled on, given two nodes with the same label as in the nodeSelector field. Create the hello-
world pod again using the same definition file. List the pod, and it should be shown on one of the two nodes
that have the label kubernetes.io/image-name=hello-world, which are ip-10-0-0-152.ec2.internal
and ip-10-0-0-153.ec2.internal. The pod is scheduled on the first node it finds with the matching label,
which is ip-10-0-0-152.ec2.internal as shown in Figure 9-27.

Chapter 9 ■ SCheduling podS on nodeS

218

Next, we shall demonstrate that if a node with a matching label is not found, the pod is not scheduled at
all. We need to delete all the labels, as we shall be using the same definition files for pods and with the same
nodeSelector field settings. Delete the label added previously to each of the nodes:

kubectl label nodes ip-10-0-0-151.ec2.internal kubernetes.io/image-name
kubectl label nodes ip-10-0-0-152.ec2.internal kubernetes.io/image-name
kubectl label nodes ip-10-0-0-153.ec2.internal kubernetes.io/image-name

The node labels are removed, even though the command output indicates that the node was labeled, as
shown in Figure 9-28. Removing a node label is also considered labeling a node.

Figure 9-28. Removing node labels

Figure 9-27. The pod is scheduled on the first node it finds with the matching label

List the nodes, including labels, and the node labels should not include the labels added previously, as
shown in Figure 9-29.

Chapter 9 ■ SCheduling podS on nodeS

219

Create the two pods again using the same pod definition files, as shown in Figure 9-30.

Figure 9-29. Listing node labels after removing labels

Figure 9-30. Creating pods using definition files used earlier

Figure 9-31. Pods with “pending” status

List the pods cluster-wide. The pods are listed with the STATUS column value as Pending, as shown in
Figure 9-31, because none of the nodes have labels that are the same as specified in the nodeSelector field.

Add labels to the nodes to match the nodeSelector field settings in the pod definitions, as shown in
Figure 9-32.

Figure 9-32. Labeling nodes to match nodeSelector labels

Chapter 9 ■ SCheduling podS on nodeS

220

Then list the pods; the pods should not be in Pending status, having completed or running as shown in
Figure 9-33. The pods are scheduled when suitable nodes are found.

Figure 9-33. Previously Pendingpods are scheduled when nodes with matching labels are found

Figure 9-34. A running pod continues to run on a node even though matching labels from node are removed

If node labels are modified at runtime, for example if a label from a node is removed, a Running pod
does not have its status changed to Pending and continues to run if running even though the node on which
the pod is running does not have a matching label. As an example, remove the labels from the node on
which the nginx pod is running, and the pod continues to run as shown in Figure 9-34.

Setting Node Affinity
Starting with version 1.2, Kubernetes offers an alpha version of a new mechanism for selecting nodes, called
node affinity. The alpha version of node affinity is based on labels, but support for other types of node
affinity is planned to be added, such as scheduling pods on a node based on which other pods are running
on the node. Currently, two types of node affinity are supported as discussed in Table 9-3.

Chapter 9 ■ SCheduling podS on nodeS

221

Table 9-3. Types of Node Affinity

Node Affinity Description

requiredDuringScheduling
IgnoredDuringExecution

Specifies a node affinity condition that must be met. Similar to
nodeSelector but declarative. IgnoredDuringExecution implies that
the node affinity requirement is ignored once a pod is running. For
example, if a label on a node is changed to make a running pod non
schedulable on the node, the pod continues to run on the node. If
both nodeSelector and nodeAffinity are set and nodeAffinity is
requiredDuringSchedulingIgnoredDuringExecution, both must be
met for a pod to be scheduled on a node.

preferredDuringScheduling
IgnoredDuringExecution

A node affinity a scheduler tries to implement but does not
guarantee. A pod can be scheduled on a specified labeled
node or not based on matching labels. A pod can even be
scheduled on an unlabeled node. If nodeAffinity is set to
preferredDuringSchedulingIgnoredDuringExecution and none
of the nodes meet the settings, another node is scheduled on. If
both nodeSelector and nodeAffinity are set and nodeAffinity is
preferredDuringSchedulingIgnoredDuringExecution, only the
nodeSelector must be met, as the other is only a hint for a preference.

Node affinity in the alpha version is specified using annotations, but these will be replaced with fields.
An example nodeAffinity requiredDuringSchedulingIgnoredDuringExecution setting using annotations
is as follows:

annotations:
 scheduler.alpha.kubernetes.io/affinity: >
 {
 "nodeAffinity": {
 "requiredDuringSchedulingIgnoredDuringExecution": {
 "nodeSelectorTerms": [
 {
 "matchExpressions": [
 {
 "key": " kubernetes.io/image-name",
 "operator": "In",
 "values": ["image1", "image2"]
 }
]
 }
]
 }
 }
 }
 another-annotation-key: another-annotation-value

Chapter 9 ■ SCheduling podS on nodeS

222

The another-annotation-key: another-annotation-value setting implies that from the
nodes found suitable with the nodeAffinity condition, the node with the another-annotation-
key: another-annotation-value label should be preferred, which again is a hint for a preference
that may or may not be implemented. The another-annotation-key: another-annotation-value
is found to be implemented with requiredDuringSchedulingIgnoredDuringExecution and not with
preferredDuringSchedulingIgnoredDuringExecution. In addition to the In operator, the other supported
operators are NotIn, Exists, DoesNotExist, Gt and Lt.

Next, we shall discuss each of the node affinities with an example.

Setting requiredDuringSchedulingIgnoredDuringExecution
Create a pod definition file pod-node-affinity.yaml for a pod named with-labels and set the
nodeAffinity to requiredDuringSchedulingIgnoredDuringExecution with matching expressions for
nodeSelectorTerms to be a label kubernetes.io/image-name with value as one of nginx2 or hello-world2.
The another-annotation-key: another-annotation-value is kubernetes.io/image-name: nginx. The
container image is nginx.

apiVersion: v1
kind: Pod
metadata:
 name: with-labels
 annotations:
 scheduler.alpha.kubernetes.io/affinity: >
 {
 "nodeAffinity": {
 "requiredDuringSchedulingIgnoredDuringExecution": {
 "nodeSelectorTerms": [
 {
 "matchExpressions": [
 {
 "key": "kubernetes.io/image-name",
 "operator": "In",
 "values": ["nginx2", "hello-world2"]
 }
]
 }
]
 }
 }
 }
 kubernetes.io/image-name: nginx
spec:
 containers:
 - name: with-labels
 image: nginx

List the nodes, including labels. The resulting labels on nodes should not include the required labels
nginx2 or hello-world2, as shown in Figure 9-35.

Chapter 9 ■ SCheduling podS on nodeS

223

Figure 9-35. None of the nodes have matching labels

The pod-node-affinity.yaml file is shown in a vi editor in Figure 9-36.

Create the pod from the definition file:

kubectl create -f pod-node-affinity.yaml

Figure 9-36. The pod-node-affinity.yaml definition file

Chapter 9 ■ SCheduling podS on nodeS

224

Next, we shall demonstrate that if both nodeAffinity and nodeSelector are specified with
nodeAffinity set to requiredDuringSchedulingIgnoredDuringExecution, both conditions must be met.
Add a nodeSelector label to pod-node-affinity.yaml:

nodeSelector:
 kubernetes.io/image-name: nginx

Figure 9-39. The pod Status changes from Pending to Running

The pod with-labels is created as shown in Figure 9-37.

List the pods across the cluster. The pod STATUS is Pending because none of the nodes have the label
nginx2 or hello-world2, as shown in Figure 9-38.

Figure 9-37. Creating the pod with-labels

Subsequently, add one of the required labels to one of the nodes, for example the hello-world2 label
to the ip-10-0-0-153.ec2.internal node. The STATUS of the with-labels pod changes from Pending to
Running, as shown in Figure 9-39.

Figure 9-38. Listing pods with Pending status

Chapter 9 ■ SCheduling podS on nodeS

225

The modified pod-node-affinity.yaml is shown in a vi editor in Figure 9-40.

We had added a node label kubernetes.io/image-name with the value hello-world2, but none of the
nodes has the label kubernetes.io/image-name: nginx. When the pod is created, it is created but is not
scheduled, as indicated by the Pending status in Figure 9-41.

Modify the nodeSelector field to specify a label that exists in addition to the required label from the
node affinity. Add the label kubernetes.io/host-name: ip-10-0-0-151.ec2.internal as shown in the vi
editor in Figure 9-42.

Figure 9-40. Adding nodeSelector in addition to nodeAffinity set to
requiredDuringSchedulingIgnoredDuringExecution

Figure 9-41. The pod is created but not scheduled

Chapter 9 ■ SCheduling podS on nodeS

226

Figure 9-42. Specifying a nodeSelector label that exists

Delete the with-labels pod. Create the pod with the updated pod definition file. You’ll see that the pod
is scheduled and is running on the scheduled host as shown in Figure 9-43 with both the nodeSelector and
node affinity conditions met.

Next, we shall demonstrate that if multiple label values as specified in the matchExpressions field
match, the first node with the matching expression is used. Add or overwrite labels to add kubernetes.io/
image-name: nginx to one of the nodes and kubernetes.io/image-name: hello-world to two of the three
nodes, as shown in Figure 9-44.

Figure 9-43. Both the nodeSelector and node affinity conditions are met

Chapter 9 ■ SCheduling podS on nodeS

227

Modify the pod-node-affinity.yaml to add both the nginx and hello-world for expressions to match
as shown in Figure 9-45.

Figure 9-44. Adding labels to nodes

Figure 9-45. Setting matchExpressions label values

Chapter 9 ■ SCheduling podS on nodeS

228

Delete the pod with-labels and create the pod again as shown in Figure 9-46. The pod is scheduled on
the node with the label kubernetes.io/image-name: nginx.

Next, we shall demonstrate that the node labeled another-annotation-key with value another-
annotation-value is preferred if node affinity is requiredDuringSchedulingIgnoredDuringExecution. Add
or overwrite node labels so that a node exists with each of the label values nginx2 and hello-world2 for key
kubernetes.io/image-name as shown in Figure 9-47.

In the pod-node-affinity.yaml file, set another-annotation-key kubernetes.io/image-name to
nginx2 and comment out the nodeSelector field as shown in Figure 9-48.

Figure 9-46. Scheduling a pod on the first matching node

Figure 9-47. Adding the label values nginx2 and hello-world2 for key kubernetes.io/image-name

Chapter 9 ■ SCheduling podS on nodeS

229

Delete the pod with-labels and create the pod again. The pod is scheduled on the node with the label
kubernetes.io/image-name: nginx2, as indicated by the NODE in the pod listing in Figure 9-49.

Setting preferredDuringSchedulingIgnoredDuringExecution
In this section we will use the node affinity preferredDuringSchedulingIgnoredDuringExecution, which
is only a hint to the scheduler and not guaranteed. A slightly different set of node values is used for the
example, as shown in Figure 9-50.

Figure 9-48. Setting another-annotation-key and removing nodeSelector

Figure 9-49. The pod is scheduled on another-annotation-key valued node

Chapter 9 ■ SCheduling podS on nodeS

230

Set the label key kubernetes.io/image-name to nginx on one of the nodes and hello-world on another
node as shown in Figure 9-51. The third node is kept unlabeled.

List the labels for each node as shown in Figure 9-52.

Figure 9-50. Listing nodes used for node affinity preferredDuringSchedulingIgnoredDuringExecution
example

Figure 9-51. Setting node labels

Figure 9-52. Listing node labels

Chapter 9 ■ SCheduling podS on nodeS

231

As discussed earlier, NodeAffinity is a priority function; and priority functions have weight allocated
to them in ranking nodes. Create a pod definition file podNodeAffinity.yaml and allocate a weight of 75
for a pod using node affinity preferredDuringSchedulingIgnoredDuringExecution. Set the expressions to
match to the label key kubernetes.io/image-name to be either nginx or hello-world.

apiVersion: v1
kind: Pod
metadata:
 name: with-labels
 annotations:
 scheduler.alpha.kubernetes.io/affinity: >
 {
 "nodeAffinity": {
 "preferredDuringSchedulingIgnoredDuringExecution": [
 {
 "weight": 75,
 "preference":
 {
 "matchExpressions": [
 {
 "key": "kubernetes.io/image-name",
 "operator": "In",
 "values": ["nginx", "hello-world"]
 }
]
 }
 }
]
 }
 }
 kubernetes.io/image-name: hello-world
spec:
 containers:
 - name: with-labels
 image: nginx

The pod definition file podNodeAffinity.yaml is shown in a vi editor in Figure 9-53.

Chapter 9 ■ SCheduling podS on nodeS

232

Create the with-labels pod using the pod definition file. List the cluster-wide pods. The with-labels
pod is scheduled on the node with the label kubernetes.io/image-name: nginx, as shown in Figure 9-54.
The scheduling policy does not just constitute the priority functions, and the node affinity is not the only
priority function; and with node affinity being soft, the pod could have been allocated to a random node or
the allocation could be based on the result of the priority function’s score calculation.

Add the another-annotation-key: another-annotation-value as kubernetes.io/image-name:
hello-world as shown in Figure 9-55.

Figure 9-53. Pod definition file podNodeAffinity.yaml

Figure 9-54. Scheduing pod using node affinity preferredDuringSchedulingIgnoredDuringExecution

Chapter 9 ■ SCheduling podS on nodeS

233

Delete the with-label pod and create the pod again as shown in Figure 9-56. The pod is again
scheduled on the node with the label kubernetes.io/image-name: nginx.

The node affinity preferredDuringSchedulingIgnoredDuringExecution is only a hint. To demonstrate
that, set all the options for the kubernetes.io/image-name label key to hello-world, both in the In
expression and in the another annotation as shown in Figure 9-57.

Figure 9-55. Adding another-annotation-key: another-annotation-value

Figure 9-56. Scheduling a pod with node affinity

Chapter 9 ■ SCheduling podS on nodeS

234

Delete and create the pod again. The pod is scheduled on the node with kubernetes.
io/image-name label key set to hello-world, as shown in Figure 9-58. Again the scheduler
does not guarantee pod allocation to a node with the specified labels when the node affinity is
preferredDuringSchedulingIgnoredDuringExecution. With the same settings, the pod could just as well
have been allocated to a different node.

As another example, specify all the kubernetes.io/image-name key values to those not used in node
labels, as shown in Figure 9-59.

Figure 9-57. Setting all label values to nginx

Figure 9-58. Scheduling a pod with node affinity preferredDuringSchedulingIgnoredDuringExecution
does not guarantee pod schedulement on a particular node

Chapter 9 ■ SCheduling podS on nodeS

235

Delete the pod with-labels and create the pod again. The pod is still scheduled even though none of
the nodes have matching labels, as shown in Figure 9-60. By comparison, when we used the node affinity
requiredDuringSchedulingIgnoredDuringExecution with none of the nodes having matching labels, the
pods were placed in Pending status until a matching label was added. Now the pod is scheduled because the
preferredDuringSchedulingIgnoredDuringExecution setting is not binding and is only a hint.

The nodeSelector field if specified with node affinity preferredDuringSchedulingIgnoredDuringExecution
is still guaranteed. Add the nodeSelector field with the label kubernetes.io/image-name: nginx as shown in
Figure 9-61. All the other matching expressions are set to kubernetes.io/image-name: hello-world.

Figure 9-59. Setting all the kubernetes.io/image-name key values to non existing values

Figure 9-60. Pods are scheduled even though no nodes with matching labels are found

Chapter 9 ■ SCheduling podS on nodeS

236

Figure 9-62. The pod is scheduled on the node with label matching the nodeSelector expression

Figure 9-61. Setting nodeSelector in addiiton to node affinity
preferredDuringSchedulingIgnoredDuringExecution

Delete and create the with-labels pod again. The pod is scheduled on the node with kubernetes.io/
image-name: nginx label because the nodeSelector expression is kubernetes.io/image-name: nginx as
shown in Figure 9-62.

Summary
In this chapter we first discussed the default scheduling policy used by Kubernetes. Then we used the default
scheduler and also the node selector to schedule pods on nodes. We also discussed scheduling pods using
node affinity. In the next chapter we shall discuss configuring compute resources.

237© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_10

CHAPTER 10

Configuring Compute Resources

Kubernetes’s resource model is simple, regular, extensible and precise. The Kubernetes container cluster
manager provides two types of resources: compute resources and API resources. Supported compute
resources (simply called “resources” in this chapter) are CPU and RAM (or memory). Support for other
compute resources, such as network bandwidth, network operations, storage space, storage operations, and
storage time may be added later.

Problem
A Kubernetes node capacity in terms of allocable resources (CPU and memory) is fixed and has to be
apportioned among the different pods running on the node. A pod also has some fixed requirements for
resources (CPU and memory) with some flexibility in resource consumption. The problem in resource usage
is how to allocate resources to the different pods and also add some flexibility for a pod to be able to use
more than the minimum requested resources if available.

Solution
Kubernetes provides a flexible resource usage design pattern based on requests and limits as shown in
Figure 10-1. A request is the minimum resource (CPU and memory) a container in a pod requests so it can be
scheduled and run on a node. A limit is the maximum resource (CPU and memory) that can be allocated to
a container.

Pod

Resource
Limit

Resource
Request

Figure 10-1. Kubernetes resource request and limit

Chapter 10 ■ Configuring Compute resourCes

238

Overview
The two types of resources, compute resources and API resources, are shown in Figure 10-2. Compute
resources are measurable quantities that can be requested by containers in a pod, allocated to containers
and consumed by containers. API resources are Kubernetes objects such as pods and services, which are
written to and retrieved from the API server.

Kubernetes
Resource

Compute Resources API Resources

Figure 10-2. Kubernetes resource types

We will only be discussing compute resources in this chapter. By default, compute resources available
to a container or a pod are limited only by the node capacity. While resources are consumed by containers
in a pod (a pod can have one or more container), resources are also implied to be consumed by pods. The
resources requested, allocated, and consumed by a pod are the total of the resources requested, allocated,
and consumed by the containers in the pod. Node capacity comprises the resources available to a node in
terms of CPUs, memory, and the maximum number of pods that can be scheduled on the node. The total of
all allocated resources for each resource (CPUs, memory) to containers running on a node cannot exceed
the node capacity for the resource. Kubernetes Scheduler ensures that sufficient resources are available on
a node before it schedules a pod on the node. Even after scheduling a node, the Scheduler ensures that the
total of allocated resources on a node does not exceed the node capacity, which it cannot by virtue of the
node capacity. The Scheduler only monitors the containers started by the kubelet and not containers started
by the Docker engine. This chapter looks at the following topics:

Types of compute resources

Resource requests and limits

Quality of service

Setting the environment

Finding node capacity

Creating a pod with resources specified

Overcommitting resource limits

Reserving node resources

Chapter 10 ■ Configuring Compute resourCes

239

Types of Compute Resources
Kubernetes provides two types of compute resources, CPUs and memory, as shown in Figure 10-3.

CPUs

Compute Resources

Memory

Figure 10-3. Types of compute resources

A compute resource is also referred to simply as a “resource,” and each resource type is a distinctly
measurable quantity at the container level. By default a pod’s compute resources are unbounded, only
limited by the node capacity. A pod’s container could optionally specify resource request and limit levels for
each type of resource, as discussed in the next section. Specifying explicit values for resource request and
limit is recommended for the following reasons:

Doing so makes it easier for the Scheduler to assign pods on a node.

It makes it easier for a Scheduler to handle excess resources and contention of
resources.

Available node capacity could make some pods non-schedulable on the
node if the pod’s containers require more capacity than the node capacity.
Specifying resource requests and limits makes feasible a better design of the pod
scheduling.

Separate namespaces could be created for development and production
workloads with separate resource requests and limits, the resource consumption
being different for different types of workloads.

More efficient utilization of a cluster’s resources is made feasible by specifying
explicit requests and limits for resources. While exceeding a node’s capacity is
one issue, a node could be underutilized if a pod that consumes only a fraction of
the node’s capacity is scheduled on the node, with the remaining node capacity
neither suitable for scheduling another pod nor used by the pod scheduled.

Chapter 10 ■ Configuring Compute resourCes

240

CPUs are the processor cycles and measured in units of CPU cores (or just “CPUs”); one CPU core could
be one AWS vCPU, one GCP core, one Azure vCore, or one hyperthread on a bare-metal Intel processor with
hyperthreading. A value of 1 in the cpu field is 1000 millicpu. The value can be multiples of 1 such as 2, 3, or
4. Fractional CPU values can also be specified and translate to x1000 millicpu. For example, a value of .001 is
1 millicpu, which is the lowest value that can be specified; a finer precision is not feasible.

The memory field unit is bytes and may be set as a plain integer such as 134217728 or 135e6, a fixed-point
integer with an SI suffix such as 135M, or the binary multiple of bytes equivalent 128Mi.

Resource Requests and Limits
In addition to the limits imposed by a node capacity, a container may request a specific amount of a
resource and also impose a limit on the maximum amount of resource a container can be allowed to use.
These are called the container request and limit. A container request is the quantity of resource a container is
guaranteed; a scheduler won’t assign a pod on a node if the node cannot provide the total of the containers’
requests for each of the resource types. A container limit is the maximum quantity of a resource the
system allows a container to use. While the total of allocated resource requests cannot exceed the node
capacity limit for the resource, the total of resource limits may exceed the node capacity limit—assuming
that each of the containers on a node won’t be using the maximum resource limit concurrently. When
the total of resource limits of all pods running on a node exceeds the node capacity, the node is said to be
overcommitted. Each container may exceed the guaranteed resource allocated to it via the resource request,
up to the resource limit as long as the total resource consumption on a node does not exceed the node
capacity. But if due to contention of resources the total of resource consumption by containers on a node
exceeds the node capacity, or tends to exceed the node capacity, some pods may have to be terminated; and
if the restartPolicy is set to Always the pod may be restarted.

Resource guarantees are either compressible or incompressible. CPU resource guarantees are
compressible and memory resource guarantees are incompressible. A compressible CPU resource guarantee
implies that pods or more specifically containers are throttled if they exceed their CPU limit. A container
could be throttled back to its guaranteed CPU level if the excess memory allocated to it is requested by
another process such as a newly started pod or a system task or daemon. If extra CPU is available after all
the pods on the node have been allocated, the minimum requested (guaranteed) CPU and the system tasks
and daemons are getting the CPU they need, the extra CPU is distributed among the pods in the proportion
of their minimum CPU requests (the guaranteed CPU). For example, if a node has three pods with one
allocated a guaranteed CPU of 150m, the second a guaranteed CPU of 300m, and the third a guaranteed
CPU of 450m, the extra CPU is distributed in the same proportion 1:2:3 up to the limit of each container.
CPU resource is an elastic resource allocated within the range of the minimum request guarantee and the
resource limit. Memory resource guarantee is elastic in one direction only; a container or pod can use more
memory than the minimum requested (guaranteed) up to the limit, but if a container consumes more
than the request level memory, the pod could be terminated if another pod that was consuming less than
the minimum guaranteed level starts to consume more memory or if a system task or daemon requests
more memory. A container consuming less than and up to the request level guaranteed memory is never
terminated unless some system task or daemon has requested more memory. And a container consuming
more memory than the limit is terminated regardless of excess memory availability.

When referring to node capacity, what is implied is node allocable, as some resources must be reserved
for system components and Kubernetes components. The resource request and limit define a range 0 <=
request <=Node Allocatable and request <= limit.

Pod specification provides the fields shown in Table 10-1 for resource requests and limits.

Chapter 10 ■ Configuring Compute resourCes

241

Specifying the resource fields is optional; if it is unset the values could be set to 0 or default values and
the implementation varies with cluster configuration. The following are some examples of the field settings
for cpu and memory:

containers:
 - name: db
 image: mysql
 resources:
 requests:
 memory: "64Mi"
 cpu: ".1"
 limits:
 memory: "128Mi"
 cpu: ".5"

containers:
 - name: db
 image: mysql
 resources:

Table 10-1. Pod Specification Fields for Compute Resources

Pod Spec Field Description

spec.container[].resources.requests.cpu CPU resource requested by a container. The
container is guaranteed the specified requested
CPU. The Scheduler schedules a pod based on the
requested CPU and the available CPU on a node.
Defaults to spec.container[].resources.limits.
cpu if not specified.

spec.container[].resources.requests.memory Memory resource requested by a container. The
container is guaranteed the specified requested
memory. The Scheduler schedules a pod based on
the requested memory and the available memory on
a node. Defaults to spec.container[].resources.
limits.memory if not specified.

spec.container[].resources.limits.cpu The upper limit on the CPU a container can use. The
Scheduler does not take into consideration the CPU
limit. The spec.container[].resources.limits.
cpu value must be greater than or equal to spec.
container[].resources.requests.cpu. Defaults to
the allocable node capacity.

spec.container[].resources.limits.memory The upper limit on the memory a container can use.
The Scheduler does not take into consideration the
memory limit. The spec.container[].resources.
limits.memory value must be greater than or equal
to spec.container[].resources.requests.memory.
Defaults to the allocable node capacity.

Chapter 10 ■ Configuring Compute resourCes

242

 requests:
 memory: "64Mi"
 cpu: "100m"
 limits:
 memory: "64Mi"
 cpu: "500m"

containers:
 - name: db
 image: mysql
 resources:
 requests:
 memory: "1Gi"
 cpu: "250m"
 limits:
 memory: "2Gi"
 cpu: "250m"

The requests and limits are applied to the Docker run command when starting a container as shown in
Table 10-2.

Table 10-2. The Docker run Command Option Equivalents for Pod Spec Fields

Spec Field Docker run Command Option Description

spec.container[].resources.requests.
cpu

--cpu-shares CPU shares

spec.container[].resources.limits.cpu --cpu-quota Sets the CPU CFS (Completely
Fair Scheduler) quota

spec.container[].resources.limits.
memory

--memory flag Memory limit

Quality of Service
Kubernetes’s Quality of Service (QoS) is a level for the resource availability. Pods or containers within a pod
that need a minimum level of resources can request guaranteed resources with the spec.container[].
resources.requests.cpu and spec.container[].resources.requests.memory fields. Pods that do not
need guaranteed resources can omit specifying the request levels. Three QoS classes are provided for
containers for each of the resource types. The QoS classes are based on requests and limits and are as shown
in Table 10-3 in decreasing order of priority.

Chapter 10 ■ Configuring Compute resourCes

243

The QoS policy assumes that swap is disabled.

Setting the Environment
Create a Kubernetes cluster as an AWS CloudFormation with CoreOS Linux. First, create an AWS EC2
instance from Amazon Linux AMI. SSH log in to the EC2 instance.

ssh -i "docker.pem" ec2-user@174.129.50.31

Launch a CloudFormation for a Kubernetes cluster with one controller node and three worker nodes.
Install the kubectl binaries and list the nodes:

./kubectl get nodes

The nodes in the Kubernetes cluster are listed, as shown in Figure 10-4.

Table 10-3. QoS Classes

QoS Class Description

Guaranteed Limits and optionally requests (not equal to 0) are set for all the resources across all
the containers and they are all equal. Requests default to limits if not set. These are the
highest-priority pods and not terminated (due to memory) or throttled (due to CPU)
unless a system task or daemon requests a resource and a lower priority pod is not
available.

Burstable Requests and optionally limits (not equal to 0) are set for one or more resources across
one or more containers and they are not equal. These pods have intermediate priority
and have some level of resource guarantee. If CPU is required by a higher priority
pod or system and no Best-Effort pod is running, the pod’s CPU could be throttled.
Similarly, if memory is required by a higher priority pod or system and no Best-Effort
pod is running the pod could be terminated.

Best-Effort Requests and limits are not set for any of the resources for any of the containers. These
are the lowest priority pods and could be terminated if memory resource is required by
another pod at a higher priority or a system task or daemon needs memory. The CPU
could be throttled if required by other pods and system.

Figure 10-4. Kubernetes node cluster

Chapter 10 ■ Configuring Compute resourCes

244

Finding Node Capacity
A node’s capacity may be found by describing the node. For example:

kubectl describe node ip-10-0-0-50.ec2.internal

The Capacity field lists the node capacity in terms of CPU, memory, and number of pods. The
Allocatable field lists the allocable CPU, memory, and number of pods as shown in Figure 10-5.

Figure 10-5. Node capacity, total and allocatable

Figure 10-6. CPU and memory requests and limits

The CPU and Memory Requests and Limits including allocated resources are also listed but should
initially all be 0 if no pod is running on the node, as shown in Figure 10-6.

For the controller node, the node description should always list the allocated resources as 0 because the
node is not schedulable, as indicated by the NodeNotSchedulable in the Type column in Figure 10-7.

Chapter 10 ■ Configuring Compute resourCes

245

Creating a Pod with Resources Specified
In this section we will create an example pod with a resource request and limit specified for the container.
Create a definition file mysql.yaml using the Docker image mysql for a replication controller. Specify
container resource request and limit. The same resource type may be specified only once in a list.

apiVersion: v1
kind: ReplicationController
metadata:
 name: mysql-v1
 labels:
 app: mysql-app
spec:
 replicas: 3
 selector:
 app: mysql-app
 deployment: v1
 template:
 metadata:
 labels:
 app: mysql-app
 deployment: v1
 spec:
 containers:
 -
 env:
 -
 name: MYSQL_ROOT_PASSWORD
 value: mysql
 image: mysql
 name: mysql

Figure 10-7. The controller node is not schedulable

Chapter 10 ■ Configuring Compute resourCes

246

 ports:
 -
 containerPort: 3306
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

The definition file mysql.yaml is shown in the vi editor in Figure 10-8.

Figure 10-8. Replication controller definition file mysql.yaml

Create a replication controller using the definition file:

./kubectl create -f mysql.yaml

List the cluster-wide pods:

./kubectl get pods

Chapter 10 ■ Configuring Compute resourCes

247

Initially the pods may be not running or Ready. List the pods after a minute, and all the pods should be
running. Each pod is scheduled on a different node, as shown in Figure 10-9.

Figure 10-9. Each pod is scheduled on a different node

Figure 10-10. CPU and memory requests and limits on a schedulable node

Describe a node to find the resource consumption on the node, as shown in Figure 10-10. Only one pod
is running on the node. The CPU and Memory Requests and Limits for each pod in the default namespace
are listed. The MySQL pod CPU request of 250m and CPU Limit of 500m and Memory Request of 64Mi and
Memory Limit of 128 Mi are listed. The allocated CPU and Memory Requests and Limits are also listed.
Allocated CPU and Memory requests are less than the limits, which is the desired level.

Chapter 10 ■ Configuring Compute resourCes

248

Describe a pod started with the previously discussed settings, and the Limits and Requests for the
resource types should be listed as shown in Figure 10-11 (the pod name can be from a different run with the
same settings).

Figure 10-11. Pod CPU and memory requests and limits

The resource limits must be set higher than the requests. As an example, set the limits to be lower than
the requests, as shown in Figure 10-12.

Chapter 10 ■ Configuring Compute resourCes

249

When the pod is created an error is generated, indicating that the CPU and memory limits must be
higher than the requests, as shown in Figure 10-13.

Figure 10-12. Pod CPU and memory requests set higher than the limits

Figure 10-13. Error indicating an invalid value for resource limits

Chapter 10 ■ Configuring Compute resourCes

250

The cpu may be specified as fractions (for example 0.3) instead of absolute value, as shown in
Figure 10-14. A cpu value of 0.3 is 300m. The requests are equal to the limits in the example.

Figure 10-14. CPU specified as a fraction

Create the replication controller and list the pods. The three replicas are scheduled on three different
nodes. Scale the RC to six pods. The six pods are scheduled on the three nodes with two pods on each node,
as shown in Figure 10-15.

Figure 10-15. Two pods are scheduled on each node

Chapter 10 ■ Configuring Compute resourCes

251

The number of pod replicas has a limit, as the per-node resource capacity could start to be approached
with more replicas. With the previous settings seven replicas are scheduled, as shown in Figure 10-16. One of
the nodes has three pods.

Figure 10-16. Kubernetes cluster capacity has a limit, allowing seven pods to be scheduled on three nodes in
this example

Figure 10-17. Resource consumption is at 90%

Describe the node with the three pods, and you’ll see that resource consumption is at 90% for both CPU
and memory, as shown in Figure 10-17. No more pods can be scheduled on the pod.

The minimum memory limit allowed is 4 MB.

Chapter 10 ■ Configuring Compute resourCes

252

Scale the RC back to five replicas. The Pending pods are not immediately removed. But five running
pods are listed, as shown in Figure 10-20.

Limit on Number of Pods
The number of pods that can be scheduled on a node is limited by the allocable node capacity, which
includes the limit of 110 on the number of pods. To demonstrate, scale the RC to 400 pods. The RC is scaled
to 400 replicas and no error is generated, as shown in Figure 10-18.

Figure 10-18. Scaling to 400 nodes

But 400 pods cannot run on three nodes; this is limited not only by the limit on the number of pods per
node but also by the allocable CPU and memory. The pods that cannot run are put in Pending status and no
node is allocated to them, as shown in Figure 10-19.

Figure 10-19. Pods put in Pending status

Chapter 10 ■ Configuring Compute resourCes

253

Figure 10-20. Pods put in pending status

Figure 10-21. Scaling to 10 replicas has only seven of the 10 pods Running

Scale the RC to 10 replicas. Only seven pods are Running and the others are Pending, as shown in
Figure 10-21.

Chapter 10 ■ Configuring Compute resourCes

254

Overcommitting Resource Limits
As shown in an earlier example, a maximum of three pods can be scheduled on a node with the allocated
requests consuming 90% of allocable CPU. The memory limits are at 300%, which makes the limits
overcommitted. If all the pods were to request their maximum allocable memory concurrently, the resource
consumption would exceed 100% and some pods would terminate. Even with a single pod on a node the
memory limits are overcommitted at 109%, though not by much, as shown in Figure 10-22.

Figure 10-22. Overcommitted memory limits

Reserving Node Resources
Pods are not the only objects or processes consuming resources on a node. It may be suitable to reserve
some resources for non-pod processes such as system processes. Resources may be reserved by running a
placeholder pod. Create a pod definition file pod-reserve-resource.yaml. Run the Docker image gcr.io/
google_containers/pause and specify resource limits for resources to be reserved such as 200m for cpu and
200Mi for memory.

apiVersion: v1
kind: Pod
metadata:
 name: reserve-resource
spec:
 containers:
 - name: reserve-resource
 image: gcr.io/google_containers/pause:0.8.0
 resources:
 limits:
 cpu: “0.1”
 memory: 200Mi

The pod definition file is shown in a vi editor in Figure 10-23.

Chapter 10 ■ Configuring Compute resourCes

255

First, create the placeholder pod as shown in Figure 10-24. Then create the MySQL RC.

Figure 10-24. Creating the resource reserving pod and RC for MySQL

Figure 10-23. Pod definition to reserve some resources

Chapter 10 ■ Configuring Compute resourCes

256

Describe the reserve-resource pod, and you’ll see that it is reserving the specified resources as shown
in Figure 10-25.

Figure 10-25. Pod description for the resource-reserving pod

Summary
In this chapter we discussed the configuration and use of compute resources. The two compute resources
that are configurable are CPU and memory. Two configuration values may be specified for each of these
resources, the requested value and the limiting value. Then we created a pod with compute resource request
and limit configured. We also discussed overcommitting resources and reserving resources on a node. In the
next chapter we shall discuss using configmaps.

257© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_11

CHAPTER 11

Using ConfigMaps

In Chapter 10 and some earlier chapters, we used the spec: containers: env: field to specify an
environment variable for the Docker image mysql for the MySQL database.

Problem
Consider the use case that some environment variables such as username and password for a database are
to be used in multiple replication controller or pod definition files. The username and password value would
need to be specified in each of the definition files. And if the username and password were to change, all the
definition files would need to be updated as well, which could be very tedious. Alternatively, variable values
could be supplied to kubectl when a command is run, which involves specifying command-line flags each
time the command is run.

Solution
The ConfigMap management pattern is a map of configuration properties that can be used in definition
files for pods, replication controllers, and other Kubernetes objects to configure environment variables,
command arguments, and configuration files such as key-value pairs in volumes, to list a few example
uses. A single ConfigMap may package multiple configuration properties as key/value pairs. By creating
ConfigMaps, you specify the configuration properties in a single configuration map, which can be updated
as required without having to update each of the definition files in which the ConfigMap is used. Decoupling
the containers from the configuration data provides portability of the applications running in the containers.

Overview
A ConfigMap definition file schema provides for the following (Table 11-1) fields.

Table 11-1. ConfigMap Fields

Field Description

kind The resource type. Must be set to ConfigMap.

apiVersion Version of the schema.

metadata Metadata such as name, labels, namespace and annotations.

data Configuration data as key/value pairs.

http://dx.doi.org/10.1007/978-1-4842-2598-1_10

Chapter 11 ■ Using ConfigMaps

258

In this chapter we shall discuss ConfigMaps and some common uses of them. This chapter covers the
following topics:

The kubectl create configmap command

Setting the environment

Creating ConfigMaps from directories

Creating ConfigMaps from files

Creating ConfigMaps from literal values

Consuming a ConfigMap in a volume

Kubectl create configmap Command
The kubectl create configmap command is used to create a ConfigMap from a file, directory, or literal
values and has the following syntax:

kubectl create configmap NAME [--from-file=[key=]source] [--from-literal=key1=value1]
[--dry-run]

When creating a ConfigMap from a file, the file name forms the key in the ConfigMap and the content of
the file forms the value. When creating a ConfigMap from a directory, a ConfigMap key/value pair is created
from each of the files in the directory with the file name being the key and the file content being the value.
Only regular files in a directory are used to create ConfigMap entries, and other directory contents such as
subdirectories and symlinks are omitted. The command argument for creating a ConfigMap from a directory
or file is the same, --from-file.

In the following sections we will set the environment and create ConfigMaps from a directory, files, and
literal values and also consume the ConfigMaps in a pod as environment variables, command arguments, or
config files in a volume.

Setting the Environment
Create a Kubernetes cluster using an AWS CloudFormation. SSH log in to the controller instance, install
the kubectl binaries, and list the nodes, as discussed in Chapter 2. The number of nodes in the cluster is a
variable, the default being one schedulable worker node and one controller node. The kubectl get nodes
command lists six worker nodes and one controller node.

Figure 11-1. Kubernetes cluster nodes

http://dx.doi.org/10.1007/978-1-4842-2598-1_2

Chapter 11 ■ Using ConfigMaps

259

Creating ConfigMaps from Directories
In this section we shall create a ConfigMap from files in a directory. First, create a directory /mysql/env and
set the directory’s permissions to global (777):

sudo mkdir /mysql/env
sudo chmod -R 777 /mysql/env

The /mysql/env directory is created as shown in Figure 11-2. CD (change directory) to the /mysql/env
directory.

Create five files, each with a file name that would form the key for a configuration property in the
ConfigMap as listed in Table 11-2.

Use the vi editor to create each of the files; for example:

sudo vi mysql.root.password

Specify the value that is to be used as the root password and save the file with :wq as shown in Figure 11-3.

Similarly, the value stored in the mysql.allow.empty.password would be no as shown in Figure 11-4.

Figure 11-2. Creating the /mysql/env directory

Table 11-2. ConfigMap Fields

File name File content

mysql.root.password mysql

mysql.user mysql

mysql.password mysql

mysql.allow.empty.password no

mysql.database mysql

Figure 11-3. File mysql.root.password

Chapter 11 ■ Using ConfigMaps

260

The files are to be created in the directory /mysql/env, as shown in Figure 11-5.

Create a ConfigMap called mysql-config from the directory /mysql/env.

./kubectl create configmap mysql-config --from-file=/mysql/env

The ConfigMap mysql-config is created as shown in Figure 11-6.
Describe the ConfigMap:

./kubectl describe configmaps mysql-config

The configuration data stored in the ConfigMap, which essentially consists of key/value pairs created
from the files in the directory, is listed as shown in Figure 11-6.

Figure 11-4. File mysql.allow.empty.password

Figure 11-5. Files for generating ConfigMaps

Chapter 11 ■ Using ConfigMaps

261

You can list the ConfigMap YAML definition with the following command:

./kubectl get configmaps mysql-config -o yaml

The mysql-config definition file is listed as shown in Figure 11-7.

Figure 11-6. Creating a ConfigMap from a directory

Figure 11-7. ConfigMap definition file

Chapter 11 ■ Using ConfigMaps

262

Next, consume the ConfigMap in a replication controller; to do that, create a definition file mysql.yaml:

sudo vi mysql.yaml

Use the config map mysql-config to obtain environment variable values for the MySQL database
Docker image mysql.

apiVersion: v1
kind: ReplicationController
metadata:
 labels:
 app: mysql-app
 name: mysql
spec:
 replicas: 3
 selector:
 app: mysql-app
 template:
 metadata:
 labels:
 app: mysql-app
 spec:
 containers:
 -
 env:
 -
 name: MYSQL_ROOT_PASSWORD
 valueFrom:
 configMapKeyRef:
 key: mysql.root.password
 name: mysql-config
 -
 name: MYSQL_DATABASE
 valueFrom:
 configMapKeyRef:
 key: mysql.database
 name: mysql-config
 -
 name: MYSQL_USER
 valueFrom:
 configMapKeyRef:
 key: mysql.user
 name: mysql-config
 -
 name: MYSQL_PASSWORD
 valueFrom:
 configMapKeyRef:
 key: mysql.user
 name: mysql-config
 -

Chapter 11 ■ Using ConfigMaps

263

 name: MYSQL_ALLOW_EMPTY_PASSWORD
 valueFrom:
 configMapKeyRef:
 key: mysql.allow.empty.password
 name: mysql-config
 image: mysql
 name: mysql
 ports:
 -
 containerPort: 3306

The mysql.yaml is shown in the vi editor in Figure 11-8.

Figure 11-8. Using ConfigMap key reference in an RC definition file

Chapter 11 ■ Using ConfigMaps

264

The key for a ConfigMap may not be any arbitrary name but must follow a specific regexp. To
demonstrate, use the key the same as the environment variable name as shown in Figure 11-9.

An error is generated, as shown in Figure 11-10.

Figure 11-9. ConfigMap key ref set to same value as the environment variable name

Chapter 11 ■ Using ConfigMaps

265

Delete the mysql RC if it already exists and create a replication controller from the definition file with a
valid ConfigMapKeyRef as in Figure 11-8.

./kubectl create -f mysql.yaml

List the RC and the pods:

./kubectl get rc

./kubectl get pods

The RC and pods are created as shown in Figure 11-11.

Figure 11-10. Error indicating invalid value for ConfigMap key ref

Figure 11-11. Creating a replication controller with a valid definition file

Chapter 11 ■ Using ConfigMaps

266

Creating ConfigMaps from Files
Next, we shall create a ConfigMap using only some of the files in the /mysql/env directory. Only the
MYSQL_ROOT_PASSWORD environment variable is mandatory. As an example, create a ConfigMap called mysql-
config-2 from the mysql.allow.empty.password and mysql.root.password files.

/kubectl create configmap mysql-config-2 --from-file=/mysql/env/mysql.root.password --from-
file=/mysql/env/mysql.allow.empty.password

The mysql-config-2 ConfigMap is created as shown in Figure 11-12. Next, describe the ConfigMap. The
two key/value pairs are listed. The ConfigMap may also be listed as a YAML.

Next, consume the ConfigMap in a replication controller definition file mysql.yaml.

Figure 11-12. Creating ConfigMap from files

Chapter 11 ■ Using ConfigMaps

267

apiVersion: v1
kind: ReplicationController
metadata:
 labels:
 app: mysql-app
 name: mysql
spec:
 replicas: 3
 selector:
 app: mysql-app
 template:
 metadata:
 labels:
 app: mysql-app
 spec:
 containers:
 -
 env:
 -
 name: MYSQL_ROOT_PASSWORD
 valueFrom:
 configMapKeyRef:
 key: mysql.root.password
 name: mysql-config-2

 -
 name: MYSQL_ALLOW_EMPTY_PASSWORD
 valueFrom:
 configMapKeyRef:
 key: mysql.allow.empty.password
 name: mysql-config-2
 image: mysql
 name: mysql
 ports:
 -
 containerPort: 3306

The mysql.yaml definition file is shown in the vi editor in Figure 11-13.

Chapter 11 ■ Using ConfigMaps

268

Create a replication controller from the definition file:

./kubectl create -f mysql.yaml

List the RC and the pods:

./kubectl get rc

./kubectl get pods

The RC and pods are created and listed as shown in Figure 11-14.

Figure 11-13. Consuming ConfigMaps

Chapter 11 ■ Using ConfigMaps

269

Describe a pod, and the ConfigMap mysql-config-2 with the data should be listed as shown in Figure 11-15.

Figure 11-15. Pod description includes environment variables’ values consuming ConfigMaps

Figure 11-14. Creating replication controller and listing pods

Chapter 11 ■ Using ConfigMaps

270

Creating ConfigMaps from Literal Values
In this section we shall create and consume a ConfigMap using literal key/value pairs specified on the
command line with the --from-literal option. As an example, create a ConfigMap called hello-config
with two key/value pairs, message1=hello and message2=kubernetes.

kubectl create configmap hello-config --from-literal=message1=hello --from-
literal=message2=kubernetes

A ConfigMap hello-config with two key/value pairs is created as shown in Figure 11-16. Describe the
configmap to list the key/values.

Figure 11-16. Creating ConfigMaps from literal values

Chapter 11 ■ Using ConfigMaps

271

Create a pod definition file hello-world.yaml to consume the ConfigMap hello-world. The pod is
based on the Ubuntu Docker image and runs a /bin/echo command with the two configuration properties
in the ConfigMap as arguments.

apiVersion: v1
kind: Pod
metadata:
 labels:
 app: helloApp
 name: hello-world
spec:
 containers:
 -
 args:
 - " $(MESSAGE1)"
 - " $(MESSAGE2)"
 command:
 - /bin/echo
 env:
 -
 name: MESSAGE1
 valueFrom:
 configMapKeyRef:
 key: message1
 name: hello-config
 -
 name: MESSAGE2
 valueFrom:
 configMapKeyRef:
 key: message2
 name: hello-config
 image: ubuntu
 name: hello

The pod definition file hello.yaml is shown in the vi editor in Figure 11-17.

Chapter 11 ■ Using ConfigMaps

272

List the ConfigMap hello-world. The ConfigMap has two data key/value pairs.
Create a pod from the definition file:

./kubectl create –f hello-world.yaml

List the pods:

./kubectl get pods

The hello-world pod is listed as Completed as shown in Figure 11-18.

Figure 11-17. Pod definition file consuming ConfigMaps

Chapter 11 ■ Using ConfigMaps

273

List the logs generated from the pod:

./kubectl logs hello-world

The message generated from the two key/value pairs should be output as shown in Figure 11-19.

Figure 11-19. Pod logs include the message generated using ConfigMaps

Figure 11-18. Creating pod-consuming ConfigMaps

Chapter 11 ■ Using ConfigMaps

274

Consuming a ConfigMap in a Volume
In this section we shall create a ConfigMap to store a certificate key-value pair and consume the ConfigMap
in a volume. Create a definition file cert.yaml for a ConfigMap in which to specify the certificate.

apiVersion: v1
kind: ConfigMap
metadata:
 name: nginx-cert
data:
 cert.pem: |-
 -----BEGIN CERTIFICATE-----
 abc
 -----END CERTIFICATE-----
 privkey.pem: |-
 -----BEGIN PRIVATE KEY-----
 abc
 -----END PRIVATE KEY-----

The ConfigMap definition file is shown in the vi editor in Figure 11-20.

Create a ConfigMap from the definition file as shown in Figure 11-21.

./kubectl create -f cert.yaml

Describe the ConfigMap to list the two key/value pairs as shown in Figure 11-21.

Figure 11-20. ConfigMap to store a certificate key-value pair

Chapter 11 ■ Using ConfigMaps

275

Next, consume the ConfigMap in a pod. Create a volume of type ConfigMap from the nginx-cert
ConfigMap. Mount the volume in the pod at some directory cert from which the certificate can be retrieved,
such as /etc/config/.

apiVersion: v1
kind: Pod
metadata:
 name: configmap-volume
spec:
 containers:
 -
 image: nginx
 name: nginx
 volumeMounts:
 -

Figure 11-21. Creating and listing a ConfigMap storing key/value pairs

Chapter 11 ■ Using ConfigMaps

276

 mountPath: /etc/config/cert
 name: config-volume
 readOnly: true
 volumes:
 -
 configMap:
 name: nginx-cert
 name: config-volume

The pod definition file is shown in the vi editor in Figure 11-22.

Create a pod from the definition file and list the pods as shown in Figure 11-23.

Describe the pod to list the volume of type ConfigMap as shown in Figure 11-24.

Figure 11-23. Creating and listing a pod

Figure 11-22. Pod consuming a ConfigMap in a volume mount

Chapter 11 ■ Using ConfigMaps

277

Summary
In this chapter we introduced ConfigMaps, which are maps of configuration properties that may be used in
Kubernetes object definitions such as pods, replication controllers, and also to set environment variables
and command arguments. Subsequently we discussed creating ConfigMaps from directories, files, and
literal values, and finally consuming the ConfigMaps. In the next chapter we shall discuss setting resource
quotas.

Figure 11-24. Pod description lists volume of type ConfigMap

279© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_12

CHAPTER 12

Using Resource Quotas

In Chapter 10 we introduced a resource consumption model based on requests and limits, using which
resources (CPU and memory) are allocated to a pod’s containers.

Problem
Although we discussed allocating resources to a pod’s containers, we did not take some other factors into
consideration. The resource requirements vary from one development team to another. If one development
team were to use all or most of the resources on a node, another team would not be able to run any
application on the same node. Second, the resource requirements vary across the different phases of
application development. Application development would have different resource usage than application
testing and application in-production work. The resource allocation pattern discussed in Chapter 10 does
not provide a solution for any of these factors.

Solution
Kubernetes provides a management design pattern for elastic quotas. Elastic quotas are not completely
elastic, and a fixed upper limit that is flexible to some extent based on the scope (discussed later in this
chapter) is imposed. Resource quotas are a specification for limiting the use of certain resources in a
particular namespace. The quota is not on a particular object, such as a pod or a replication controller, but
on the aggregate use within a namespace. The objective is to provide a fair share of resources to different
teams, with each team assigned a namespace with quotas. Another application of quotas is creating different
namespaces for production, development, and testing; different phases of application development have
different resource requirements. Creating or updating a resource should not exceed the quota restraint,
failing which the resource is not created or updated, and an error message is generated. Quotas could be
set on compute resources (CPU and memory), which were discussed in chapter 10, and object counts (such
as pods, replication controllers, services, load balancers, and ConfigMaps, to list a few). When a quota is
set for compute resources, requests or limits must be specified for those resources. Quotas are enabled by
default. The total cluster capacity, which could vary if nodes are added or removed, is not a limiting factor
when setting quotas. The total of the quotas of namespaces could exceed the cluster capacity, and resource
contention will be resolved on a first-come-first-served basis. Resource contention is resolved before a
resource is created and does not affect resources already created. Once a resource has been created, any
changes to the quota setting do not affect the resource.

http://dx.doi.org/10.1007/978-1-4842-2598-1_10
http://dx.doi.org/10.1007/978-1-4842-2598-1_10
http://dx.doi.org/10.1007/978-1-4842-2598-1_10

Chapter 12 ■ Using resoUrCe QUotas

280

A quota could optionally be associated with a scope, which further limits the types of resources a
quota would be applied to. The available scopes are Terminating, NotTerminating, BestEffort, and
NotBestEffort. Terminating scope is for pods that terminate, and NotTerminating scope is for pods that
do not terminate. BestEffort scope is for pods that have best-effort quality of service, and NotBestEffort
scope is for pods that do not have a best-effort quality of service. The resource quota spec fields are
discussed in Table 12-1.

Overview
In this chapter we will discuss using resource quotas with Kubernetes applications. This chapter covers the
following topics.

Setting the environment

Defining compute resource quotas

Table 12-1. Resource Quota Spec Fields

Field Description

kind Should be set to ResourceQuota.

apiVersion Schema version.

metadata Metadata such as name, labels, and annotations.

spec The ResourceQuota spec provides two fields: hard, which specifies the hard
limits for each defined resource, and scopes, which sets the scopes. A quota
measures the usage of a resource only if it matches the intersection of the
scopes. The spec defines the desired settings for hard limits.

status The status is the actual use of resources and is set with hard and used.
The hard status is the enforced hard limits, and used is the actual total
usage of a resource in a namespace. The status values are those actually
implemented in contrast to the desired settings in the spec.

Namespace:
development

Resource
Quota
5 Pods
i cpu
1 Gi

Resource
Quota

10 Pods
2 cpu
2 Gi

Resource
Quota

20 Pods
4 cpu
4 Gi

Namespace:
testing

Namespace:
production

Figure 12-1. Different resource quotas for different namespaces

Chapter 12 ■ Using resoUrCe QUotas

281

Exceeding compute resource quotas

Defining object quotas

Exceeding object resource quotas

Defining best-effort quotas

Using quotas

Exceeding object quotas

Exceeding the ConfigMaps quota

Setting the Environment
Create a Kubernetes cluster with an AWS CloudFormation with one controller node and three worker nodes
as shown in Figure 12-2.

SSH log in to the controller instance, install kubectl binaries, and list the nodes:

./kubectl get nodes

The controller instance and the worker nodes should be listed as shown in Figure 12-3.

Figure 12-2. CloudFormation for a Kubernetes cluster on CoreOS

Figure 12-3. Listing the Kubernetes cluster nodes

Chapter 12 ■ Using resoUrCe QUotas

282

Defining Compute Resource Quotas
The compute resource quotas limit the total compute resources used by pods in a namespace. Table 12-2
lists the compute resources supported.

Create a ResourceQuota definition file compute-resource-quotas.yaml. In the spec field set hard limits
on the number of pods, total of CPU requests, total of memory requests, CPU limits, and memory limits. Set
NotBestEffort as a scope in the scopes list.

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resource-quotas
spec:
 hard:
 pods: "10"
 requests.cpu: "1"
 requests.memory: 2Gi
 limits.cpu: "2"
 limits.memory: 4Gi
 scopes:
 -
 NotBestEffort

The definition file is shown in the vi editor in Figure 12-4.

Table 12-2. Supported Compute Resources

Compute Resource Description

cpu The total of all cpu requests across all pods in non-terminal state cannot
exceed this setting. The container must specify a requests->CPU value if the
cpu quota is set, or pod creation could fail.

limits.cpu The total of all CPU limits across all pods in non-terminal state cannot
exceed this setting. The container must specify a limits->CPU value if the
limits.cpu quota is set, or pod creation could fail.

limits.memory The total of all memory limits across all pods in non-terminal state cannot
exceed this setting. The container must specify a limits->memory value if
the limits.memory quota is set, or pod creation could fail.

memory The total of all memory requests across all pods in non-terminal state
cannot exceed this setting. The container must specify a requests->memory
value if the memory quota is set. or pod creation could fail.

requests.cpu Same as cpu.

requests.memory Same as memory.

Chapter 12 ■ Using resoUrCe QUotas

283

Create the ResourceQuota in the default namespace:

./kubectl create -f compute-resource-quotas.yaml --namespace=default

The ResourceQuota is created as shown in Figure 12-5.

List the quotas:

./kubectl get quota --namespace=default

The compute-resource-quotas quota should be listed as shown in Figure 12-6.

Figure 12-4. ResourceQuota definition file

Figure 12-5. Creating a ResourceQuota

Figure 12-6. Listing the quotas in the default namespace

Chapter 12 ■ Using resoUrCe QUotas

284

Describe the quota compute-resource-quotas:

./kubectl describe quota compute-resource-quotas --namespace=default

The quota description includes the used resources and hard limits. Because we have not yet created any
resource, the Used column values are all 0, as shown in Figure 12-7.

Exceeding Compute Resource Quotas
Next, we shall use the resource quotas to limit the use of compute resources in the default namespace.
Create an RC definition file mysql.yaml:

apiVersion: v1
kind: ReplicationController
metadata:
 name: mysql-rc
 labels:
 app: mysql-app
spec:
 replicas: 3
 selector:
 app: mysql-app
 deployment: v1
 template:
 metadata:
 labels:
 app: mysql-app

Figure 12-7. Describing compute-resource-quotas

Chapter 12 ■ Using resoUrCe QUotas

285

 deployment: v1
 spec:
 containers:
 -
 env:
 -
 name: MYSQL_ROOT_PASSWORD
 value: mysql
 image: mysql
 name: mysql
 ports:
 -
 containerPort: 3306
 resources:
 requests:
 memory: "640Mi"
 cpu: "500m"
 limits:
 memory: "1280Mi"
 cpu: "2"

Create a replication controller with 10 replicas:

./kubectl scale rc mysql-rc --replicas=10

Next, describe the compute-resource-quotas. The Used column lists the actual used resources. None of
the used resources exceed the hard limits, as shown in Figure 12-8.

Figure 12-8. Used resources do not exceed the hard limits

Chapter 12 ■ Using resoUrCe QUotas

286

To demonstrate that hard limits cannot be exceeded, scale the RC to 20 replicas:

./kubectl scale rc mysql-rc --replicas=20

Now describe the compute-resources-quota. The Used column still has 10 in the pods row, as shown in
Figure 12-9.

Figure 12-9. Pods not exceeding the hard limit even though scaled to do so

Chapter 12 ■ Using resoUrCe QUotas

287

Describe the RC, and you’ll see that Replicas are listed as 10 current / 20 desired, as shown in Figure 12-10.

Figure 12-10. Describing the replication controller: 10 current replicas instead of the 20 desired

Chapter 12 ■ Using resoUrCe QUotas

288

List the pods cluster-wide, and you may see some of the pods being terminated or restarted if some
other compute resource is exceeded, as shown in Figure 12-11.

Defining Object Quotas
In this section we will set object quotas and demonstrate what happens when the object quotas are
exceeded: the resource object is not created. Create a ResourceQuota definition file object-quotas.yaml.
Specify hard limits for the number of ConfigMaps, replication controllers, and services:

apiVersion: v1
kind: ResourceQuota
metadata:
 name: object-quotas
spec:
 hard:
 configmaps: "5"
 replicationcontrollers: "1"
 services: "2"

The definition file is shown in the vi editor in Figure 12-12.

Figure 12-11. Pods terminated or restarted if some resource is exceeded

Chapter 12 ■ Using resoUrCe QUotas

289

Create the ResourceQuota from the definition file in the default namespace as shown in Figure 12-13.

./kubectl create -f object-quotas.yaml --namespace=default

Then list and describe the quota:

./kubectl get quota --namespace=default

./kubectl describe quota object-quotas --namespace=default

The resource quota is created and listed as shown in Figure 12-13. The quota description includes the
Used resources and Hard limits.

Figure 12-13. Creating, listing, and describing the resource quota for object quotas

Figure 12-12. ResourceQuota definition file for object quotas

Chapter 12 ■ Using resoUrCe QUotas

290

Exceeding Object Quotas
In this section we will demonstrate that object quotas cannot be exceeded; instead, the resource object that
would exceed the hard limit is not created. First, create an RC definition file mysql-rc.yaml.

apiVersion: v1
kind: ReplicationController
metadata:
 name: mysql-rc
 labels:
 app: mysql-app
spec:
 replicas: 3
 selector:
 app: mysql-app
 deployment: v1
 template:
 metadata:
 labels:
 app: mysql-app
 deployment: v1
 spec:
 containers:
 -
 env:
 -
 name: MYSQL_ROOT_PASSWORD
 value: mysql
 image: mysql
 name: mysql
 ports:
 -
 containerPort: 3306
 resources:
 requests:
 memory: "64Mi"
 cpu: "0.1"
 limits:
 memory: "128Mi"
 cpu: "0.2"

Chapter 12 ■ Using resoUrCe QUotas

291

The definition file is shown in the vi editor in Figure 12-14.

Create the RC and list the RC and pods as shown in Figure 12-15.

Figure 12-15. Creating and listing an RC

Figure 12-14. ReplicationController definition file

Chapter 12 ■ Using resoUrCe QUotas

292

Listing the pods cluster-wide indicates that each of the pods was scheduled on a different node, as
shown in Figure 12-16.

Next, create another replication controller from another RC definition file, similar to the first. The
second RC is not created, and the error message indicates that the object-quotas quota is exceeded, as
shown in Figure 12-17.

The hard limit on the number of services is 2. Create one service and create another with a different
name than the default. The second service is not created, and the error message indicates that the object-
quota quota is being exceeded, as shown in Figure 12-18.

Figure 12-16. Each of the three pods is scheduled on a different node, keeping in consideration the resource
consumption

Figure 12-17. Error message indicates that the object-quotas quota is exceeded for
replicationcontrollers

Figure 12-18. Error message indicates that the object-quotas quota is exceeded for services

Chapter 12 ■ Using resoUrCe QUotas

293

Next, we shall demonstrate exceeding a ConfigMaps quota. Chapter 11 showed how to create
ConfigMaps, but I’ll briefly repeat the procedure here. We shall create some ConfigMaps from files in a
directory. The file names must be the same as the ConfigMap key, and the value is the content of the file.
Create a directory and set its permissions:

sudo mkdir /mysql/env
sudo chmod -R 777 /mysql/env
cd /mysql/env

Add the five files listed in Table 12-3 to the directory.

Create five ConfigMaps from the five files.

 ./kubectl create configmap mysql-config --from-file=/mysql/env/mysql.root.password
 ./kubectl create configmap mysql-config2 --from-file=/mysql/env/mysql.database
 ./kubectl create configmap mysql-config3 --from-file=/mysql/env/mysql.user
 ./kubectl create configmap mysql-config4 --from-file=/mysql/env/mysql.password
 ./kubectl create configmap mysql-config5 --from-file=/mysql/env/allow.empty.password

The five ConfigMaps are created as shown in Figure 12-19.

Table 12-3. Files from Which to Create ConfigMaps

File Content

mysql.root.password mysql

mysql.database mysqldb

mysql.user mysql

mysql.password mysql

mysql.allow.empty.password no

Figure 12-19. Creating ConfigMaps

http://dx.doi.org/10.1007/978-1-4842-2598-1_11

Chapter 12 ■ Using resoUrCe QUotas

294

The hard limit on the number of ConfigMaps is 5. Create another file, named mysql.config, and set its
content to mysql. Create, or try to create, the sixth ConfigMap:

./kubectl create configmap mysql-config6 --from-file=/mysql/env/mysql.config

An error message indicates that the number of ConfigMaps is being exceeded, as shown in Figure 12-20.

Defining Best-Effort Scope Quotas
The BestEffort scope quota is used only for tracking pods. And if excess resources are available, pods in
excess of the hard limit could be scheduled, although the pods (exceeding the hard limit) would be the
first to be terminated if resources are required for another object. To demonstrate, create a ResourceQuota
definition file best-effort-quotas.yaml. Set the hard limit on the number of pods to 5. Set scopes to
BestEffort.

apiVersion: v1
kind: ResourceQuota
metadata:
 name: best-effort-quotas
spec:
 hard:
 pods: "5"
 scopes:
 -
 BestEffort

Figure 12-20. Error message indicates that the object-quotas quota is exceeded for ConfigMaps

Chapter 12 ■ Using resoUrCe QUotas

295

The definition file is shown in the vi editor in Figure 12-21.

We shall use the quota in a separate namespace. Create a namespace called best-effort.

./kubectl create namespace best-effort

Create the ResourceQuota from the definition file as shown in Figure 12-22.

./kubectl create -f best-effort-quotas.yaml --namespace=best-effort

List the quota and describe it:

./kubectl get quota --namespace=best-effort

./kubectl describe quota best-effort-quotas --namespace=best-effort

Figure 12-21. ResourceQuota definition file with scope BestEffort

Chapter 12 ■ Using resoUrCe QUotas

296

The BestEffort scope quota is created, listed, and described as shown in Figure 12-22.

Using the same RC definition file mysql.yaml, create an RC and list the three pods as shown in
Figure 12-23.

Figure 12-22. Creating and describing a ResourceQuota with scope BestEffort in namespace best-effort

Figure 12-23. Creating an RC and listing the pods

Chapter 12 ■ Using resoUrCe QUotas

297

Scale the RC to five pods, which is also the hard limit. The RC is scaled as shown in Figure 12-24.

Scale the RC to six pods, which would exceed the hard limit. The RC is scaled as shown in Figure 12-25.

Describe the RC, and the Replicas value is listed as 6 current / 6 desired, as shown in Figure 12-26. Even
though the hard limit on the number of pods is exceeded, an extra pod is scheduled because the scope is set
to BestEffort.

Figure 12-24. Scaling the replicas to the hard limit of 5

Figure 12-25. Scaling the replicas to exceed the hard limit of 5

Chapter 12 ■ Using resoUrCe QUotas

298

Summary
In this chapter we introduced resource quotas, a specification for limiting the allocation of certain resources
to a particular namespace with the objective of distributing the resources in a fair, shared manner. The
quotas may be set on compute resources and objects. In the next chapter we will discuss autoscaling.

Figure 12-26. The replicas exceed the hard limit because the scope is BestEffort

299© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_13

CHAPTER 13

Using Autoscaling

Starting new pods may sometimes be required in a Kubernetes cluster, for example, to meet the
requirements of an increased load. The replication controller has the ability to restart a container, which is
actually starting a replacement container, if a container in a pod were to fail.

Problem
Cluster load is a variable, and depending on application use requirements, cluster load can increase or
decrease. One of the benefits of the Kubernetes cluster manager is the ability to scale a cluster of containers
(pods) as required. If more load is expected, a user may scale up (increase the number of pods) and if less
load is expected, a user may scale down (decrease the number of pods). But a user-intervened scaling
model is suitable only for development and a small-scale cluster. For a production-level cluster in which
the load is not predictable and high availability is a requirement, user-initiated scaling may not be timely or
proportional to the load requirements.

Solution
For production-level clusters Kubernetes provides the autoscaling management design pattern. Autoscaling
is based on the volatile configuration pattern. A horizontal pod autoscaler (HPA) can be created with a
preconfigured minimum and maximum number of pods within which to scale a cluster. When load is
increased on a running cluster, the HPA automatically increases the number of pods in proportion to the
load requirements up to the configured maximum number of pods, as shown in Figure 13-1, and when the
load decreases the HPA decreases the number of pods proportionally without user intervention.

Chapter 13 ■ Using aUtosCaling

300

An HPA has two main benefits over user-intervened scaling: the scaling is automatic, and extra pods
are not kept running consuming resources that could be used for some other application. An autoscaler may
be created for a replication controller, replica set, or deployment. An autoscaler uses heapster to collect
CPU utilization of a resource, based on which it determines whether more or fewer pods should be run.
Autoscaling is based on a target CPU utilization, implying that the CPU utilization of a resource such as a
deployment should be x%.

Overview
In this chapter we shall demonstrate the use of autoscaling. This chapter discusses the following topics.

Setting the environment

Running PHP Apache Server deployment

Creating a service

Creating a horizontal pod autoscaler

Increasing load

Setting the Environment
Create a Kubernetes cluster running as a CoreOS AWS CloudFormation consisting of one controller node
and three worker nodes. List the nodes:

./kubectl get nodes

1 Pod

3 Pods

5 Pods

Figure 13-1. Increasing the load increases the number of pods

Chapter 13 ■ Using aUtosCaling

301

The single controller node and the worker nodes should be listed as shown in Figure 13-2.

List the services across all namespaces as shown in Figure 13-3. The heapster service, which monitors
the CPU utilization, should be listed in the kube-system namespace.

List pods across all the namespaces, and the heapster pod should be listed as shown in Figure 13-4.

Figure 13-2. Listing Kubernetes nodes

Figure 13-3. Listing services across all namespaces

Figure 13-4. Listing pods across all namespaces

Chapter 13 ■ Using aUtosCaling

302

Running a PHP Apache Server Deployment
First, we need to create a resource to scale. Create a deployment resource using the Docker image gcr.io/
google_containers/hpa-example. Set CPU requests to 200m.

./kubectl run php-apache --image=gcr.io/google_containers/hpa-example --requests=cpu=200m

A deployment called php-apache is created as shown in Figure 13-5.

List the deployments:

./kubectl get deployment

The php-apache deployment should be listed as shown in Figure 13-6.

Creating a Service
Create a service of type LoadBalancer by exposing the deployment on port 80.

./kubectl expose deployment php-apache --port=80 --type=LoadBalancer

A service is created and then listed as shown in Figure 13-7.

List the pods, and a single pod is listed as shown in Figure 13-8.

Figure 13-5. Creating a deployment for PHP and Apache

Figure 13-6. Listing the deployments

Figure 13-7. Creating a service

Chapter 13 ■ Using aUtosCaling

303

We shall invoke the service, which provides an external IP, to put load on the deployment and
test whether varying loads make the autoscaler alter the number of pods proportionately. Obtain the
LoadBalancer Ingress for the service:

./kubectl describe services php-apache | grep "LoadBalancer Ingress"

The public DNS at which the service may be invoked is listed, as shown in Figure 13-9.

Invoke the service using the Load Balancer Ingress. An output such as “OK!” is generated as shown
in Figure 13-10; the php-apache deployment is designed only for testing and more elaborate output is not
generated.

Creating a Horizontal Pod Autoscaler
Next, we shall create a horizontal pod autoscaler for the deployment. An HPA can be created using one of
two available methods:

 – A HorizontalPodAutoscaler object

 – The kubectl autoscale command

The HorizontalPodAutoscaler specification provides the fields shown in Table 13-1.

Figure 13-8. Listing the pods

Figure 13-9. Obtaining the LoadBalancer Ingress

Figure 13-10. Invoking the LoadBalancer Ingress

Chapter 13 ■ Using aUtosCaling

304

The kubectl autoscale command has the following syntax, which essentially provides the same
settings as the specification.

kubectl autoscale (-f FILENAME | TYPE NAME | TYPE/NAME) [--min=MINPODS] --max=MAXPODS
[--cpu-percent=CPU] [flags]

Some of the options supported by kubectl autoscale are as discussed in Table 13-2.

Using the kubectl autoscale command, create a horizontal pod autoscaler. Set target CPU utilization
to 100% and set minimum number of pods to 3 and maximum number of pods to 10.

Table 13-1. HorizontalPodAutoscaler Spec Fields

Field Description

scaleTargetRef The target resource to be scaled. Can be a Deployment,
ReplicaSet or ReplicationController.

minReplicas The minimum number of pods. Default is 1.

maxReplicas The maximum number of pods. Cannot be less than
minReplicas.

targetCPUUtilizationPercentage The target average CPU utilization. If not specified, a default
autoscaler policy is used,

Table 13-2. kubectl autoscale Options

Option Description Default Value Required (explicit
or default)

--cpu-percent The target average
CPU utilization over
all the pods in the
resource represented
as a percentage of the
CPU requests. If not set
or negative, a default
autoscaling policy is
used.

-1 Yes

-f, --filename File name, directory, or
URL for the resource to
autoscale.

[] Yes

--max Upper limit for the
number of pods.

-1 Yes

--min Lower limit for the
number of pods. If not
specified or –ve a default
value is used.

-1 Yes

--name The name of the newly
created object.

“” No

Chapter 13 ■ Using aUtosCaling

305

./kubectl autoscale rc php-apache --cpu-percent=100 --min=3 --max=10

The deployment is autoscaled and an HPA is created, as shown in Figure 13-11.

List the HPA:

./kubectl get hpa

The single HPA should be listed as shown in Figure 13-12. The TARGET column lists the target CPU
utilization, the CURRENT column lists the current CPU utilization, the MINPODS column lists the minimum
number of pods, and the MAXPODS lists the maximum number of pods. Because the CPU utilization takes a
while to be monitored by heapster, the CURRENT column is indicating a value of <waiting>.

List the pods. The number of pods has increased from 1 in the initial deployment to 3 (the minimum
number of pods in the HPA) as shown in Figure 13-13.

List the HPA again, and the CURRENT CPU utilization is at 0% as no load is being put on the
deployment as shown in Figure 13-14.

Figure 13-11. Creating a horizontal pod autoscaler

Figure 13-12. Listing the horizontal pod autoscaler

Figure 13-13. Number of pods scaled to the minimum number of pods in the horizontal pod autoscaler

Chapter 13 ■ Using aUtosCaling

306

Increasing Load
Next, we shall demonstrate what increasing load on the deployment does to the number of pods and CPU
utilization. Run the following command by substituting the LoadBalancer Ingress to put some load on the
deployment:

curl <LoadBalancer Ingress>

In another terminal, get the HPA. The number of pods is listed as 3 because the CPU utilization at 22% is
below the target CPU Utilization of 100%, as shown in Figure 13-15.

Run the following command loop by substituting the LoadBalancer Ingress to put more load on the
deployment:

while true; do curl <loadbalancer ingress>; done

Invoking the service in a loop outputs the same message repeatedly, as shown in Figure 13-16.

Figure 13-14. CPU Utilization is at 0%

Figure 13-15. CPU utilization increases to 22%

Chapter 13 ■ Using aUtosCaling

307

List the horizontal pod autoscaler:

./kubectl get hpa

The CURRENT column value has become 224%, which indicates an increased load on the deployment,
as shown in Figure 13-17. The CPU utilization is above the target CPU utilization.

The number of pods is still 3 because it takes a while for the number of pods to increase and the cluster
to stabilize, as shown in Figure 13-18.

List the deployment after a few more seconds, and the number of pods has increased to 5 as shown in
Figure 13-19. The autoscaler has scaled up the cluster by increasing the number of pods.

Figure 13-17. Current CPU utilization above the target

Figure 13-16. Invoking a service in a loop

Figure 13-18. The number of pods is still 3 as it takes a while for the cluster to stabilize
when load is increased

Chapter 13 ■ Using aUtosCaling

308

Summary
This chapter introduced autoscaling. To demonstrate autoscaling we create a PHP Apache Server
deployment and created a service for the deployment. Subsequently we created a horizontal pod autoscaler
and tested autoscaling by increasing load on the Apache server. In the next chapter we shall discuss
configuring logging.

Figure 13-19. The number of pods increases to 5 when load is increased

309© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_14

CHAPTER 14

Configuring Logging

Logging is the process of collecting and storing log messages generated by different components of a system
(which would be a Kubernetes cluster) and by applications running on the cluster.

Problem
One of the problems associated with logging is demarcating the components and applications generating
logging messages. Another problem is decoupling the logging from the component/application. The
component generating logs in a Kubernetes application would be a container in a pod.

Solution
A container runs in isolation on the Docker Engine and is an object from which the single-container
management pattern of tracking an application running within a container, including application-
specific logging, can be used. Similarly, a pod is an object generating its own logging messages, and so is a
replication controller and a service.

A design pattern introduced in the recent publication Design Patterns for Container-based Distributed
Systems, by Brendan Burns and David Oppenheimer (https://www.usenix.org/node/196347) is a
single-node multi-container application pattern called the Sidecar Pattern, using which a main container
(for example a container generating web server logs) could be paired with a “logsaver” sidecar container,
as shown in Figure 14-1, to collect the web server’s logs from the local disk filesystem and stream them to
a cluster storage system. Sidecar containers are made feasible by containers on the same machine being
able to share a local disk volume.

Web Server
Logging

Container

Main
Container

Sidecar
Container

Figure 14-1. Sidecar container for logging

https://www.usenix.org/node/196347

Chapter 14 ■ Configuring Logging

310

Another single-node, multiple-container application pattern, called the Adapter Pattern, could be used
to create an Adapter container (Figure 14-2) to provide a unified interface for aggregating logs from multiple
containers (or pods) on a node running the same or a different application.

Adapter Container

Container 1 Container 2 Container 3

Figure 14-2. Listing Kubernetes nodes

Using a logging-specific container provides separation of concerns, a modular design principle.

Overview
By default, Kubernetes components such as apiserver and kubelet use the “glog” logging library. For cluster-
level logging various options are available, two of which are as follows:

Logging to Google Cloud Logging

Logging to Elasticsearch and Kibana

In this chapter we shall discuss getting the single pod/container logs and also cluster-level logging
with Elasticsearch and Kibana. The procedure to use cluster-level logging with Elasticsearch and Kibana is
as follows.

 1. Start Elasticsearch.

 2. Start a Replication Controller from which logs are to be collected.

 3. Start Fluentd and Elasticsearch to collect logs.

 4. Start Kibana to view the logs.

This chapter covers the following topics:

•	 Setting the environment

•	 Getting the logs generated by the default logger

•	 Docker log files

•	 Cluster-level logging with Elasticsearch and Kibana

•	 Starting Elastic Search

Chapter 14 ■ Configuring Logging

311

•	 Starting a replication controller

•	 Starting Fluentd and Elasticsearch to collect logs

•	 Starting Kibana

Setting the Environment
Create a Kubernetes cluster using a CoreOS-based AWS CloudFormation. List the nodes with kubectl get
nodes. The controller and worker nodes should be listed; we have used a single-controller, three-worker
node cluster as shown in Figure 14-3.

Figure 14-3. Listing Kubernetes nodes

Getting the Logs Generated by Default Logger
The logs generated by a running pod may be obtained with the kubectl logs <POD> command. If a pod has
more than one container, the logs for a particular container may be obtained with the command kubectl
logs <POD> <container>. Kubernetes performs log rotation, and only the latest logs are available to kubectl logs.

First, create a sample pod from which to get the logs. Use the following listing to create a pod definition
file counter-pod.yaml; the pod generates a message using a counter.

apiVersion: v1
kind: Pod
metadata:
 name: counter
spec:
 containers:
 -
 args:
 - bash
 - "-c"
 - "for ((i = 0; ; i++)); do echo \"$i: $(date)\"; sleep 1; done"
 image: "ubuntu:14.04"
 name: count

The pod definition file is shown in the vi editor in Figure 14-4.

Chapter 14 ■ Configuring Logging

312

Create a pod from the pod definition file:

./kubectl create -f counter-pod.yaml

The counter pod is generated. List the pods. Get the logs for the pod counter:

./kubectl logs counter

The logs are listed as shown in Figure 14-5.

Figure 14-4. Counter pod definition file

Figure 14-5. Creating the counter pod and getting pod logs

Chapter 14 ■ Configuring Logging

313

Docker Log Files
By default the Docker containers log file directories are in the /var/lib/docker/containers directory. CD
(change directory) to the /var/lib/docker/containers directory and list the files and directories. A log
directory exists for each of the Docker containers, as shown in Figure 14-6.

Figure 14-6. Docker container log directories

Figure 14-7. Setting Permissions on a Docker container log directory

To access a container directory we need to set permissions with chmod +x as shown in Figure 14-7. Then
CD to the container directory.

List the files in the container directory as shown in Figure 14-8. The containerid-json.log file is the
log file generated by the container.

Figure 14-8. Listing log files for a Docker container

Chapter 14 ■ Configuring Logging

314

Open the –json.log file in a vi editor. The JSON logs should be displayed as shown in Figure 14-9.

Figure 14-9. Docker container logs in JSON format

Figure 14-10. System component logs

Logs of the system components are in the /var/log directory as shown in Figure 14-10.

Cluster-Level Logging with Elasticsearch and Kibana
Cluster-level logging collects the standard output and standard error logs of applications running in
containers. For aggregating log files of applications running within containers, the Fluentd aggregator can be
used. In this section we shall configure and use cluster-level logging with Fluentd, Elasticsearch, and Kibana.
Fluentd is an open source data collector for a unified logging layer. Unified logging implies that Fluentd
decouples data sources from backend systems. The data source for the example would be logs generated in
a Kubernetes cluster, and the backend would be Elasticsearch. Elasticsearch is an open source distributed,
highly available, document-oriented, RESTful search engine designed for the cloud environment and built
on top of Lucene. Kibana is an open source analytics and search dashboard for Elasticsearch and is accessed
from a web browser. The three components of the cluster-level logging are shown in Figure 14-11.

Chapter 14 ■ Configuring Logging

315

Figure 14-11. Cluster-level logging components

To configure logging, use the following procedure:

 1. Start the MySQL replication controller and pods.

 2. Start the Elasticsearch service.

 3. Start Fluentd.

 4. Start Kibana.

 5. Access the logs in KIbana.

The following sections discuss each of the preceding steps in detail.

Starting a Replication Controller
To generate some application logs in pods we shall start a sample replication controller. Create an RC
definition file for a mysql Docker image-based container. The RC is created in the kube-system namespace.

apiVersion: v1
kind: ReplicationController
metadata:
 labels:
 app: mysqlapp
 name: mysql-rc
namespace: kube-system
spec:
 replicas: 3
 selector:
 app: mysqlapp
 template:
 metadata:
 labels:
 app: mysqlapp

Chapter 14 ■ Configuring Logging

316

 spec:
 containers:
 -
 env:
 -
 name: MYSQL_ROOT_PASSWORD
 value: mysql
 image: mysql
 name: mysql
 ports:
 -
 containerPort: 3306

The RC definition file is shown in a vi editor in Figure 14-12.

Figure 14-12. Replication controller definition file

Chapter 14 ■ Configuring Logging

317

Create an RC with kubectl create using the definition file:

./kubectl create -f mysql-rc.yaml

List the RC:

./kubectl get rc –namespace=kube-system

The mysql-rc RC should be listed as shown in Figure 14-13.

Figure 14-13. Creating and listing a replication controller in the kube-system namespace

Figure 14-14. Listing pods in the kube-system namespace

List the pods in the kube-system namespace, and the mysql pods should be listed as shown in
Figure 14-14.

Chapter 14 ■ Configuring Logging

318

Starting Elastic Search
In this section we shall create a replication controller and service for Elasticsearch using the Docker image
gcr.io/google_containers/elasticsearch:1.9. Create an RC definition file es-controller.yaml and
copy the following listing into it.

apiVersion: v1
kind: ReplicationController
metadata:
 labels:
 k8s-app: elasticsearch-logging
 kubernetes.io/cluster-service: "true"
 version: v1
 name: elasticsearch-logging-v1
 namespace: kube-system
spec:
 replicas: 2
 selector:
 k8s-app: elasticsearch-logging
 version: v1
 template:
 metadata:
 labels:
 k8s-app: elasticsearch-logging
 kubernetes.io/cluster-service: "true"
 version: v1
 spec:
 containers:
 -
 image: "gcr.io/google_containers/elasticsearch:1.9"
 name: elasticsearch-logging
 ports:
 -
 containerPort: 9200
 name: db
 protocol: TCP
 -
 containerPort: 9300
 name: transport
 protocol: TCP
 resources:
 limits:
 cpu: "0.1"
 requests:
 cpu: "0.1"
 volumeMounts:
 -
 mountPath: /data
 name: es-persistent-storage

Chapter 14 ■ Configuring Logging

319

 volumes:
 -
 emptyDir: {}
 name: es-persistent-storage

Create an RC using the definition file:

./kubectl create -f es-controller.yaml

Create a service definition file es-service.yaml for the Elasticsearch RC. Expose the service at port
9200. The selector labels should match labels in the pod.

apiVersion: v1
kind: Service
metadata:
 labels:
 k8s-app: elasticsearch-logging
 kubernetes.io/cluster-service: "true"
 kubernetes.io/name: Elasticsearch
 name: elasticsearch-logging
 namespace: kube-system
spec:
 ports:
 -
 port: 9200
 protocol: TCP
 targetPort: db
 selector:
 k8s-app: elasticsearch-logging

Create a service from the definition file:

./kubectl create -f es-service.yaml

The RC, pods, and service for Elasticsearch are created in the kube-system namespace and may be
listed and described as shown in Figure 14-15.

Chapter 14 ■ Configuring Logging

320

Figure 14-16. Describing the Elasticsearch service

Figure 14-15. Creating an RC and service for Elasticsearch

Describe the Elasticsearch service to list the service endpoints as shown in Figure 14-16.

Chapter 14 ■ Configuring Logging

321

Invoke the service endpoints to invoke the Elasticsearch service, as shown in Figure 14-17.

The kubectl cluster info should list the Elasticsearch as running, as shown in Figure 14-18.

Figure 14-17. Invoke testing for the Elasticsearch service

Figure 14-18. Elasticsearch service listed as Running in Kubernetes Cluster Info

Chapter 14 ■ Configuring Logging

322

Starting Fluentd to Collect Logs
Having started the data source (the Kuebrnetes cluster application) and the backend database
(Elasticsearch), next we shall start the unifying layer between the two, Fluentd. Create a pod definition
file fluentd-es.yaml for Fluentd and copy the following listing to the definition file. The Docker image
fabric8/fluentd-kubernetes:v1.9 is used in the pod’s container. The Elasticsearch endpoint URL and
port to interface with are also specified. The pod mounts the system log directory /var/log and the Docker
containers directory /var/lib/docker/containers from the host path. Volumes of type hostPath are used.
A different log directory could also be mounted.

apiVersion: v1
kind: Pod
metadata:
 name: fluentd-elasticsearch
spec:
 containers:
 -
 env:
 -
 name: ELASTICSEARCH_HOST
 value: "10.2.15.2"
 -
 name: ELASTICSEARCH_PORT
 value: "9200"
 image: "fabric8/fluentd-kubernetes:v1.9"
 name: fluentd-elasticsearch
 resources:
 limits:
 cpu: "0.1"
 securityContext:
 privileged: true
 volumeMounts:
 -
 mountPath: /var/log
 name: varlog
 -
 mountPath: /var/lib/docker/containers
 name: varlibdockercontainers
 readOnly: true
 volumes:
 -
 hostPath:
 path: /var/log
 name: varlog
 -
 hostPath:
 path: /var/lib/docker/containers
 name: varlibdockercontainers

Chapter 14 ■ Configuring Logging

323

Create the pod for Fluentd:

./kubectl create -f fluentd-es.yaml

The pod is created in the kube-system namespace as shown in Figure 14-20.

The pod definition file is shown in the vi editor in Figure 14-19.

Figure 14-19. Pod definition file for fluentd

Chapter 14 ■ Configuring Logging

324

Starting Kibana
Next, we shall start Kibana to view the logs. Create an RC definition file kibana-rc.yaml and copy the
following listing to the file. The container image for Kibana is gcr.io/google_containers/kibana:1.3.
The URL for Elasticsearch also needs to be specified.

apiVersion: v1
kind: ReplicationController
metadata:
 labels:
 k8s-app: kibana-logging
 kubernetes.io/cluster-service: "true"
 version: v1
 name: kibana-logging-v1
 namespace: kube-system
spec:
 replicas: 1
 selector:
 k8s-app: kibana-logging
 version: v1

Figure 14-20. Creating and listing pod for fluentd

Chapter 14 ■ Configuring Logging

325

 template:
 metadata:
 labels:
 k8s-app: kibana-logging
 kubernetes.io/cluster-service: "true"
 version: v1
 spec:
 containers:
 -
 env:
 -
 name: ELASTICSEARCH_URL
 value: "http://10.2.15.2:9200"
 image: "gcr.io/google_containers/kibana:1.3"
 name: kibana-logging
 ports:
 -
 containerPort: 5601
 name: ui
 protocol: TCP
 resources:
 limits:
 cpu: "0.1"
 requests:
 cpu: "0.1"

The RC definition file is shown in the vi editor in Figure 14-21.

Chapter 14 ■ Configuring Logging

326

Figure 14-21. Replication controller definition file for Kibana

Create a service definition file kibana-service.yaml for the RC and copy the following listing to the file.
The Kibana service is exposed at port 5601.

apiVersion: v1
kind: Service
metadata:
 labels:
 k8s-app: elasticsearch-logging
 kubernetes.io/cluster-service: "true"
 kubernetes.io/name: Kibana
 name: kibana-logging
 namespace: kube-system
spec:
 ports:
 -
 port: 5601
 protocol: TCP
 selector:
 k8s-app: kibana-logging

Chapter 14 ■ Configuring Logging

327

The service definition file in the vi editor is shown in Figure 14-22.

Figure 14-23. Creating and listing RC and service for Kibana

Figure 14-22. Service definition file for Kibana

Create an RC for Kibana:

./kubectl create -f kibana-rc.yaml

Also, create the Kibana service:

./kubectl create -f kibana-service.yaml

Kibana RC and service are created as shown in Figure 14-23. List the RC and service, which are in the
kube-system namespace.

Chapter 14 ■ Configuring Logging

328

Describe the service to obtain the service endpoint, which is 10.2.15.4:5601, as shown in Figure 14-24.

Figure 14-24. Describing the Kibana logging service

Figure 14-25. Kibana Dashboard

To access Kibana Dashboard from a web browser set port forwarding from a local machine. First, we
need to copy the key-pair for the CoreOS Kubernetes controller instance to be able to SSH into the controller
instance to set port forwarding:

scp -i docker.pem ec2-user@ec2-54-208-177-36.compute-1.amazonaws.com:~/kubernetes-coreos.pem
~/kubernetes-coreos.pem
ssh -i kubernetes-coreos.pem -f -nNT -L 5601:10.2.15.4:5601:5601 core@ec2-52-207-33-106.
compute-1.amazonaws.com

Port forwarding is set.
Access the Kibana Dashboard from a browser on the local machine with the URL http://localhost:5601.

The Kibana Dashboard is started, as shown in Figure 14-25.

http://localhost:5601/

Chapter 14 ■ Configuring Logging

329

For using Kibana, refer the Kibana documentation. An index pattern may be configured for search as
shown in Figure 14-26.

Figure 14-26. Configuring an index pattern

Figure 14-27. Displaying log messages in Kibana

The logs collected from the Kubernetes cluster by Fluentd and the log messages generated by Fluentd
itself are displayed as shown in Figure 14-27.

Chapter 14 ■ Configuring Logging

330

The fields may be navigated from the Popular Fields list as shown in Figure 14-28.

Figure 14-28. Popular fields in the index

Figure 14-29. Kibana is listed as Running

The Kubernetes cluster info should also list Kibana in addition to the Elasticsearch service as shown in
Figure 14-29.

Pods for MySQL, Elasticsearch, Fluentd, and Kibana are listed in the kube-system namespace as shown
in Figure 14-30.

Chapter 14 ■ Configuring Logging

331

Summary
In this chapter we introduced logging, including the default logger and the Docker log files. Subsequently we
demonstrate using cluster-level logging to collect and monitor logs with Elasticsearch, Fluentd, and Kibana.
In the next chapter we shall discuss using a high-availability master with OpenShift.

Figure 14-30. Pods for MySQL, Elasticsearch, Fluentd, and Kibana

PART III

High Availability

335© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_15

CHAPTER 15

Using an HA Master with OpenShift

A Platform as a Service (PaaS) is a cloud platform on which applications may be developed, run, and
managed with almost no configuration as the platform provides the application infrastructure including
networking, storage, OS, runtime middleware, databases, and other dependency services. Kubernetes is the
most commonly used container cluster manager and can be used as the foundation for developing a PaaS.
OpenShift is an example of a PaaS.

OpenShift Origin is an open source container application platform providing full application life-cycle
management. OpenShift Origin provides standardization through containerization. OpenShift includes an
embedded Kubernetes cluster manager to orchestrate Docker containers.

Problem
A single master in a Kubernetes cluster is a single point of failure (SPOF). Failure of the node on which the
master controller is running causes the Kubernetes cluster to fail and become inaccessible. At the time of
developing this book, CoreOS does not support a high-availability (HA) controller out-of-the-box. CoreOS
does provision an Auto Scaling Group and a Launch Configuration so that if a worker node is stopped or
fails, another worker node is started.

Solution
Using a high availability (HA) master, which consists of more than one Kubernetes master with failover
configured, provides high availability to the cluster, and failure of a single master does not cause the
cluster to fail. An alternative to the CoreOS Linux-based cluster is to use the OpenShift platform, which can
configure multiple master nodes. Amazon Elastic Load Balancers may be used to provide failover from a
controller node running in one zone to a controller node running in another zone with an Inter-AWS Zone
High-availability Architecture. AWS does not support Inter-AWS Region High-Availability Architecture for
Elastic Load Balancers. HA master is a Kubernetes design pattern that is implemented by only some of the
tools, such as the Kubernetes-based PaaS OpenShift. The OpenShift HA Master is based on the Active-Active
architectural pattern, in which both master nodes are active and provide redundancy. An Elastic Load
Balancer is used to distribute the load across the two master nodes. The HA master controller API server is
exposed on the Load Balancer, as shown in Figure 15-1, and not directly on the master nodes.

Chapter 15 ■ Using an ha Master with Openshift

336

Overview
A typical production level OpenShift Origin cluster would consist of a high-availability master. In this
chapter we shall discuss such a high-availability master OpenShift Origin cluster. The stages are as follows:

Setting the environment

Installing the credentials

Installing the network manager

Installing OpenShift Ansible

Configuring Ansible

Running Ansible Playbook

Testing the cluster

Testing the HA

Setting the Environment
The OpenShift cluster we shall create consists of the following EC2 instances.

1 Ubuntu instance for OpenShift Ansible

2 CentOS 7 for OpenShift Masters

1 CentOS 7 for HAProxy

1 CentOS 7 for OpenShift Worker

1 Centos 7 for etcd

CentOS 7 instances may be launched from https://aws.amazon.com/marketplace/pp/B00O7WM7QW.
Select a Region and click Continue. In the Launch on EC2:CentOS 7 (x86_64) - with Updates HVM dialog
that appears, select an m3.large or larger EC2 Instance Type. For VPC select EC2 Classic. For Key Pair select
a pre-existing key pair (docker.pem in the example). Click the button Launch With 1-Click. The CentOS
instances are shown in Figure 15-2.

OpenShift
Master 1

OpenShift
Master 2

Elastic Load
Balancer

Kubernetes
HA Master

URL

Figure 15-1. OpenShift HA master

https://aws.amazon.com/marketplace/pp/B00O7WM7QW

Chapter 15 ■ Using an ha Master with Openshift

337

Launch one EC2 instance based on the Ubuntu AMI. The required instances for the OpenShift cluster
are shown in Figure 15-3. Additional master, worker and Etcd instances may be added, but we have used the
minimum number of instances to define a HA master cluster.

Figure 15-2. Launching CentoOS instances

Figure 15-3. CentoOS instances for OpenShift cluster

The following software needs to be installed:

 – Docker on each CoreOS instance

 – Etcd on the etcd instances

 – HAProxy on the LoadBalancer instance

 – Network Manager on each CentOS instance

Chapter 15 ■ Using an ha Master with Openshift

338

All of the preceding software except the Network Manager is installed automatically when we run the
Ansible playbook. We also need to install the docker.pem credentials on each of the CoreOS instances and
the Ubuntu instance for OpenShift Ansible, which we shall install next.

Installing the Credentials
From the local machine SCP copy the docker.pem into the Ubuntu instance that is the client instance for
launching the OpenShift cluster using the Public IP address or Public DNS, which may be obtained from the
EC2 Console:

scp -i docker.pem docker.pem ubuntu@ec2-52-87-178-15.compute-1.amazonaws.com:~

Similarly, obtain the Public DNS for each of the CentOS instances, the ones for the masters, worker,
Etcd, and LoadBalancer. SCP copy the docker.pem file to each of the CentOS instances. The following scp
commands copy the docker.pem file to the master instances:

scp -i docker.pem docker.pem centos@ec2-54-90-107-98.compute-1.amazonaws.com:~
scp -i docker.pem docker.pem centos@ec2-54-221-182-68.compute-1.amazonaws.com:~
The following scp command copies the docker.pem to the Worker instance.
scp -i docker.pem docker.pem centos@ec2-54-159-26-13.compute-1.amazonaws.com:~
The following scp command copies the docker.pem to the LoadBalancer instance.
scp -i docker.pem docker.pem centos@ec2-54-226-7-241.compute-1.amazonaws.com:~

The following scp command copies the docker.pem to the Etcd instance:

scp -i docker.pem docker.pem centos@ec2-54-160-210-253.compute-1.amazonaws.com:~

The scp commands do not generate any output, as shown in Figure 15-4.

Figure 15-4. Copying docker.pem to each of the CoreOS instances

Chapter 15 ■ Using an ha Master with Openshift

339

Installing the Network Manager
For network connectivity the OpenShift cluster makes use of Network Manager, which we need to install on
each of the CentOS instances. SSH log in into each of the CentOS instances:

ssh -i docker.pem centos@ec2-54-90-107-98.compute-1.amazonaws.com
ssh -i docker.pem centos@ec2-54-221-182-68.compute-1.amazonaws.com
ssh -i docker.pem centos@ec2-54-159-26-13.compute-1.amazonaws.com
ssh -i docker.pem centos@ec2-54-226-7-241.compute-1.amazonaws.com
ssh -i docker.pem centos@ec2-54-160-210-253.compute-1.amazonaws.com

Run the following commands on each of the CentOS instances to install, start, and enable the Network
Manager and find its status:

sudo yum install NetworkManager
sudo systemctl start NetworkManager
sudo systemctl enable NetworkManager
sudo systemctl status NetworkManager

Installing OpenShift via Ansible on the Client Machine
We shall use the Ansible software automation platform to install the OpenShift software remotely from the
Ubuntu instance. We do not need to log into each of the OpenShift cluster instances to launch any software
other than the Network Manager, which we already have installed. SSH log into the Ubuntu instance:

ssh -i "docker.pem" ubuntu@ec2-52-87-178-15.compute-1.amazonaws.com

Ubuntu builds for Ansible are available in the Ubuntu Personal Package Archive (PPA). To configure
PPA and install Ansible, first run the following commands:

 sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ansible/ansible

The Ansible PPA is added to the repository as shown in Figure 15-5.

Chapter 15 ■ Using an ha Master with Openshift

340

Figure 15-5. Installing Ansible PPA

Update the repository and install Ansible:

 sudo apt-get update
 sudo apt-get install ansible

Ansible is installed on the Ubuntu instance.
Download the openshift-ansible git repository. CD (change directory) to the openshift-ansible

directory:

git clone https://github.com/openshift/openshift-ansible.git
cd openshift-ansible

To list the default settings for the IP addresses and host names run the following command:

ansible-playbook playbooks/byo/openshift_facts.yml

The command output is shown in Figure 15-6.

Chapter 15 ■ Using an ha Master with Openshift

341

The default IP address/hostname settings are output as shown in Figure 15-7.

Figure 15-6. Listing the default settings for the IP addresses and hostnames

Figure 15-7. Default IP address/hostname settings

Chapter 15 ■ Using an ha Master with Openshift

342

Configuring Ansible
Some of the Ansible configuration settings may be modified in the /etc/ansible/ansible.cfg
configuration file. We need to modify some of these settings for OpenShift Ansible. Open the /etc/ansible/
ansible.cfg file in a vi editor.

sudo vi /etc/ansible/ansible.cfg

Add/modify the following settings in the [defaults] header.

sudo= yes
ask_sudo_pass=False
ask_pass=False
remote_user = centos
host_key_checking = False
timeout=0
private_key_file= ~/docker.pem

Some of the settings are shown in ansible.cfg in Figure 15-8.

Figure 15-8. Configuring ansible.cfg

Chapter 15 ■ Using an ha Master with Openshift

343

These properties are spread out throughout the file and are not collocated, as shown in Figure 15-9.

Figure 15-9. The ansible.cfg configuration properties are not collocated

The default inventory file used by Ansible is /etc/ansible/hosts, which is used to configure the
hosts for the OpenShift master nodes, worker nodes, etcd nodes, and LoadBalancer node. Open the /etc/
ansible/hosts file in a vi editor.

sudo vi /etc/ansible/hosts

At the top of the file configure the following:

[OSEv3:children]
masters
etcd
lb
nodes

Next, specify some variables:

 [OSEv3:vars]
ansible_user=centos
ansible_sudo=true
deployment_type=origin
ansible_ssh_private_key_file=~/docker.pem

The top section of the /etc/ansible/hosts file is shown in Figure 15-10.

Chapter 15 ■ Using an ha Master with Openshift

344

Several other cluster variables are supported (see Table 2. Cluster Variables at https://docs.
openshift.org/latest/install_config/install/advanced_install.html#multiple-masters), but
we have used only the minimum required. With multiple masters the HA (High Availability) method
native is supported, which makes use of a LoadBalancer configured with [lb] host in the hosts file or
preconfigured.

openshift_master_cluster_method=native

We shall be specifying a host for the load balancer in the /etc/ansible/hosts file. Obtain the hostname
or the Public DNS or the Public IP for the load balancer instance from the EC2 Console and specify the same
in the following settings in the /etc/ansible/hosts file:

openshift_master_cluster_hostname=ec2-54-226-7-241.compute-1.amazonaws.com
openshift_master_cluster_public_hostname=ec2-54-226-7-241.compute-1.amazonaws.com

Next, specify the masters in the /etc/ansible/hosts file.
Several host variables (see Table 1. Host Variables at the URL shown above) are supported, but we have

used only the host variables shown in Table 15-1 for the master, worker, etcd and lb.

Figure 15-10. The /etc/ansible/hosts file

https://docs.openshift.org/latest/install_config/install/advanced_install.html#multiple-masters
https://docs.openshift.org/latest/install_config/install/advanced_install.html#multiple-masters

Chapter 15 ■ Using an ha Master with Openshift

345

Similarly configure the [etcd], [lb] and [nodes] sections. The masters are also listed in the [nodes]
but made non-schedulable with openshift_schedulable set to false and have the labels added with
openshift_node_labels. The hosts settings should be similar to the following; the hostnames and IP
address would be different for different users.

[masters]
ec2-54-90-107-98.compute-1.amazonaws.com openshift_ip=10.156.14.183 openshift_public_
ip=54.90.107.98 openshift_hostname=ip-10-156-14-183.ec2.internal openshift_public_
hostname=ec2-54-90-107-98.compute-1.amazonaws.com
ec2-54-221-182-68.compute-1.amazonaws.com openshift_ip=10.154.46.153 openshift_public_
ip=54.221.182.68 openshift_hostname=ip-10-154-46-153.ec2.internal openshift_public_
hostname=ec2-54-221-182-68.compute-1.amazonaws.com

[etcd]
ec2-54-160-210-253.compute-1.amazonaws.com openshift_ip=10.153.195.121 openshift_public_
ip=54.160.210.253 openshift_hostname=ip-10-153-195-121.ec2.internal openshift_public_
hostname=ec2-54-160-210-253.compute-1.amazonaws.com

[lb]
ec2-54-226-7-241.compute-1.amazonaws.com openshift_ip=10.154.38.224 openshift_public_
ip=54.226.7.241 openshift_hostname=ip-10-154-38-224.ec2.internal openshift_public_
hostname=ec2-54-226-7-241.compute-1.amazonaws.com

[nodes]
ec2-54-90-107-98.compute-1.amazonaws.com openshift_ip=10.156.14.183 openshift_public_
ip=54.90.107.98 openshift_hostname=ip-10-156-14-183.ec2.internal openshift_public_
hostname=ec2-54-90-107-98.compute-1.amazonaws.com openshift_node_labels="{'region':
'primary', 'zone': 'east'}" openshift_schedulable=false
ec2-54-221-182-68.compute-1.amazonaws.com openshift_ip=10.154.46.153 openshift_public_
ip=54.221.182.68 openshift_hostname=ip-10-154-46-153.ec2.internal openshift_public_
hostname=ec2-54-221-182-68.compute-1.amazonaws.com openshift_node_labels="{'region':
'primary', 'zone': 'east'}" openshift_schedulable=false
ec2-54-159-26-13.compute-1.amazonaws.com openshift_ip=10.113.176.99 openshift_public_
ip=54.159.26.13 openshift_hostname=ip-10-113-176-99.ec2.internal openshift_public_
hostname=ec2-54-159-26-13.compute-1.amazonaws.com openshift_node_labels="{'region':
'primary', 'zone': 'east'}"

Table 15-1. Host Variables

Host Variable Description ExampleValue

openshift_ip Private IP which may be obtained
from the EC2 Console

10.156.14.183

openshift_public_ip Public IP which may be obtained
from the EC2 Console

54.90.107.98

openshift_hostname The hostname for the host which
may be obtained from the Private
DNS in the EC2 Console

ip-10-156-14-183.ec2.internal

openshift_public_hostname The public hostname for the host
which may be obtained from the
Public DNS in the EC2 Console

ec2-54-90-107-98.compute-1.
amazonaws.com

Chapter 15 ■ Using an ha Master with Openshift

346

SSH log in to one of the master instances and list the nodes in the OpenShift cluster:

oc get nodes

The three nodes, two of them non-schedulable, are listed as shown in Figure 15-12.

Running the Ansible Playbook
The default inventory file is /etc/ansible/hosts but another file may be configured with the inventory
setting in the ansible.cfg, for example:

inventory = /etc/ansible/inventory/hosts

We have configured the default inventory file /etc/ansible/hosts. Start the OpenShift cluster by
running the Ansible playbook:

ansible-playbook ~/openshift-ansible/playbooks/byo/config.yml

The OpenShift software such as Docker, HAProxy, and so on are installed and started on the configured
hosts, as shown in Figure 15-11.

Figure 15-11. Running the Ansible Playbook

Chapter 15 ■ Using an ha Master with Openshift

347

Testing the Cluster
To test the OpenShift cluster, log in to the cluster.

oc login

Specify Username as system and Password as admin. The OpenShift cluster is logged in. Initially no
projects are created, as shown in Figure 15-13.

Figure 15-12. The nodes in the OpenShift cluster

Figure 15-13. Logging into the OpenShift cluster

Create a new project, for example hello-openshift with the oc new-project command:

oc new-project hello-openshift

The hello-openshift project is created as shown in Figure 15-14.

Figure 15-14. Creating the hello-openshift project

Chapter 15 ■ Using an ha Master with Openshift

348

Multiple applications from the same Docker image may be started concurrently; for example, run the
same command again:

oc new-app openshift/deployment-example:v1

When both the applications have started, two pods are listed, as shown in Figure 15-16.

Find the project status:

oc status

Create a new OpenShift application with the oc new-app command.

oc new-app openshift/ruby-20-centos7~https://github.com/openshift/ruby-hello-world.git

A new OpenShift application is created.
To delete all the objects for an application run the following command:

oc delete all -l app=appName

For example, to delete all the objects for the hello-world application, run the following command:

oc delete all -l app=hello-world

Create some other application with the oc new-app command. The image tag may be specified, for
example for the openshift/deployment-example Docker image.

oc new-app openshift/deployment-example:v1

An OpenShift application is created. Initially the oc get pods command may list the pods as not
running, but with Status ContainerCreating as shown in Figure 15-15.

Figure 15-15. Listing the pods

Figure 15-16. Running multiple applications concurrently

Chapter 15 ■ Using an ha Master with Openshift

349

The node on which a pod is running may be listed with the following command:

oc get –o wide pods

The node for the pod also is listed as shown in Figure 15-17.

Figure 15-17. Listing pods including the nodes

The oc describe command is used to describe a deployment:

oc describe dc/deployment-example

The services are listed with the following command:

oc get services

List all OpenShift objects with the following command:

oc get all

Testing the High Availability
With multiple masters and High availability configured with the native method, the load balancer distributes
the master load across the masters. The master API server is exposed on the IP Address of the load balancer,
but actually one API server is running on each of the masters. The two master instances and the single
worker instance are shown in Figure 15-18.

Chapter 15 ■ Using an ha Master with Openshift

350

In the Stop Instances dialog click on Yes, Stop as shown in Figure 15-20.

To demonstrate the high availability of the cluster, shut down one of the masters. Select the master
instance in the EC2 Console and in Actions select Instance State ➤ Stop as shown in Figure 15-19.

Figure 15-19. Stopping an OpenShift master

Figure 15-18. EC2 instances running OpenShift masters and worker

Chapter 15 ■ Using an ha Master with Openshift

351

One of the masters starts to shut down, as shown in Figure 15-21.

Figure 15-20. The Stop Instances dialog

Figure 15-21. One of the OpenShift masters stopping

After the master shuts down, the load balancer and the other masters should still be running as shown
in Figure 15-22.

Chapter 15 ■ Using an ha Master with Openshift

352

Run the following command to list the cluster kubeconfig configuration.

kubectl config view

The cluster API server is listed as the Public DNS of the load balancer as shown in Figure 15-23.

Figure 15-22. OpenShift Load Balancer and the other master still running

Figure 15-23. Listing the cluster kubeconfig configuration

Chapter 15 ■ Using an ha Master with Openshift

353

SSH log in to the other master instance and list the nodes with oc get nodes. One of the master nodes
is listed as NotReady, while the other master node is Ready, as shown in Figure 15-25. If the stopped master
is restarted, it is again listed as Ready.

Alternatively, run the following command to list the cluster info.

kubectl cluster-info

The Kubernetes master URL listed is constructed from the Public DNS of the load balancer as shown
in Figure 15-24.

Figure 15-25. Listing nodes, schedulable and non-schedulable

Figure 15-24. Listing the cluster info

Summary
In this chapter we introduced another platform, called OpenShift, which is a PaaS platform with embedded
Kubernetes. A single master is a single point of failure (SPOF). We discussed creating a high-availability
master with OpenShift. In the next chapter we shall discuss creating a high-availability web site.

355© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1_16

CHAPTER 16

Developing a Highly Available
Website

In Chapter 4 we used multiple AWS availability zones to provide fault tolerance for failure of a zone. But a
high-availability master was not used, and the single master is a single point of failure. In Chapter 15 we did
use a high-availability master with OpenShift and Ansible, but the single elastic load balancer remains a
single point of failure.

Problem
For a high-availability website, multiple public DNSes need to be configured. Another problem is that
Amazon Elastic Load Balancers do not support Inter-AWS Region High-availability Architecture, in which
the multiple master controllers in an HA master can be located in different AWS Regions. Amazon Elastic
Load Balancers only support Inter-AWS Zone High-availability Architecture within the same region. While
AWS zones are in different physical locations and are insulated from each other (failure of a one zone does
not cause failure in another zone), the HA is not spread across a wider geographical region.

Solution
Amazon Route 53 provides DNS failover, using which a high-availability website may be developed. Route
53 provides DNS failover across AWS regions as shown in Figure 16-1. Route 53 DNS failover can be used
to run applications across AWS zones or regions and configure alternate elastic load balancers to provide
failover across zones or regions. Route 53 DNS failover is not a Kubernetes design pattern but makes use of
the Amazon Route 53 Primary-Secondary architectural pattern.

http://dx.doi.org/10.1007/978-1-4842-2598-1_4
http://dx.doi.org/10.1007/978-1-4842-2598-1_15

Chapter 16 ■ Developing a highly available Website

356

Overview
Amazon Route 53 is a highly available and scalable cloud domain name service (DNS) connecting user
requests to infrastructure running on the AWS, such as Amazon EC2 instances, load balancers, and
Amazon S3 buckets. A Kubernetes cluster can be deployed using AWS CloudFormation, as discussed in
Chapter 4. But the cluster developed there, using the kube-aws CLI tool, was a single master cluster without
the provision of a failover. A highly available cluster has the tolerance for failure of a node in the cluster
with built-in failover to another node in the cluster. In this chapter we shall develop a highly available
Kubernetes cluster using AWS CloudFormation on CoreOS. We shall provision multiple (three) AWS
CloudFormations and subsequently host an example application (hello-world) Kubernetes Service on
each of the CloudFormations. We’ll use a public hosted zone for an example domain to route traffic to that
domain. This chapter covers the following topics.

Setting the environment

Creating CloudFormations

Configuring external DNS

Creating a Kubernetes service

Creating an AWS Route 53

Creating a hosted zone

Configuring name servers

Creating record sets

Testing high availability

AWS

AWS

Zone
us-east-

1c

Primary
DNSAmazon

Route
53

Public
Hosted
Zone Secondary

DNS
Zone

us-west-
2b

Figure 16-1. Amazon Route 53 DNS failover

http://dx.doi.org/10.1007/978-1-4842-2598-1_4

Chapter 16 ■ Developing a highly available Website

357

Setting the Environment
The following procedure is used to create a highly available web application.

 1. Create three AWS CloudFormations on CoreOS with one Kubernetes controller
in each. The CloudFormations can be in the same region or multiple regions;
we have used the same region in the example, as some AWS resources may not
be available in all regions and availability zones. Add an A record for each of the
controller IPs to the Domain oramagsearch.com (the URL used in the chapter,
but the domain name will be different for different users).

 2. Log in to each CoreOS controller instance. Create a Kubernetes service for an
example application (hello-world) exposed on an elastic load balancer. With one
Elastic Load Balancer exposed on each CloudFormation, three public DNS are
available.

 3. Create an AWS Route 53 with the two DNS configured for failover.

 4. Create an AWS public hosted zone for an example domain such as the domain
oramagsearch.com (the domain name would be different for different users).

 5. Add name servers assigned to the Public Hosted Zone to the oramagsearch.com
domain registrar.

 6. Create two alias resource record sets pointing to two different elastic load
balancers. The record sets are configured for failover, with one being the primary
and the other being the secondary in the Failover configuration.

Create a single EC2 instance with Amazon Linux AMI. The instance is used to launch the three
CloudFormations, and SSH log in to each of the controllers to create a Kubernetes service.

Creating CloudFormations
SSH Login into the Amazon Linux instance from three different Linux shells on the local machine.

ssh -i docker.pem ec2-user@ec2-54-242-131-243.compute-1.amazonaws.com

As discussed in Chapter 3, the procedure to create an AWS CloudFormation is as follows:

 1. Install Kube-aws (required to be installed only once for the Amazon Linux instance)

 2. Set up Cluster Parameters such as creating an EC2 key pair, KMS key, and
External DNS name. The same EC2 key pair (kubernetes-coreos) and External
DNS name (oramagsearch.com) are used for each CloudFormation.

 3. Create an Asset Directory for a Cluster CloudFormation (a different directory for
each of the CloudFormations).

 4. Initialize the cluster CloudFormation.

 5. Render the contents of the Asset Directory.

 6. Customize the cluster to create three worker nodes instead of one.

 7. Validate the CloudFormation stack.

 8. Launch the cluster CloudFormation.

http://dx.doi.org/10.1007/978-1-4842-2598-1_3

Chapter 16 ■ Developing a highly available Website

358

A typical command to create an EC2 key pair is as follows:

aws ec2 create-key-pair --key-name kubernetes-coreos --query 'KeyMaterial' --output text >
kubernetes-coreos.pem
chmod 400 kubernetes-coreos.pem

The command to create a KMS key is as follows:

aws kms --region=us-east-1 create-key --description="kube-aws assets"

Copy the KeyMetadata.Arn string and use it to initialize a CloudFormation stack. For example, a cluster
called kubernetes-coreos-cluster-1 with the asset directory as kube-coreos-cluster-1 is initialized as follows:

 mkdir kube-coreos-cluster-1
cd kube-coreos-cluster-1
kube-aws init --cluster-name=kubernetes-coreos-cluster-1 --external-dns-name=ORAMAGSEARCH.
COM --region=us-east-1 --availability-zone=us-east-1c --key-name=kubernetes-coreos --kms-
key-arn="arn:aws:kms:us-east-1:xxxxxxxxxx:key/xxxxxxxxxxxxxxxxxxx"

The commands to render the contents of an assets directory, validate a CloudFormation stack, and
launch a CloudFormation stack are as follows:

kube-aws render
kube-aws validate
kube-aws up

Next, launch into the controller instance for each of the Kubernetes clusters. The Public IP of a
controller may be obtained from the EC2 Console as shown in Figure 16-2.

Figure 16-2. CloudFormation for Kubernetes cluster

Chapter 16 ■ Developing a highly available Website

359

SSH log in using the EC2 key pair:

ssh -i "kubernetes-coreos.pem" core@52.70.185.156

The CoreOS command prompt should be displayed.
Install the kubectl binaries and list the nodes:

sudo wget https://storage.googleapis.com/kubernetes-release/release/v1.3.0/bin/linux/
amd64/./kubectl
sudo chmod +x ./kubectl
./kubectl get nodes

The single master node and the three worker nodes in a cluster should be listed, as shown in Figure 16-3.

Figure 16-3. Listing nodes in a Kubernetes cluster

Similarly, log in to the second controller instance as shown in Figure 16-4.

Figure 16-4. SSH logging into second controller instance

Chapter 16 ■ Developing a highly available Website

360

Figure 16-5. Nodes for second Kubernetes cluster

Figure 16-6. SSH logging into third controller instance

List the cluster nodes as shown in Figure 16-5.

And similarly, SSH log in to the third controller instance as shown in Figure 16-6.

List the cluster nodes as shown in Figure 16-7.

Figure 16-7. Nodes for thirdKubernetes cluster

When the three CloudFormations have been started, in all three controllers should be running in the
EC2 Console, with each controller managing three worker nodes as shown in Figure 16-8.

Chapter 16 ■ Developing a highly available Website

361

Configuring External DNS
Next, add an A record for each of the controller instances to the oramagsearch.com (the domain name would
be different for different users) domain zone file as shown in Figure 16-9.

Figure 16-8. EC2 instances for three CloudFormations for Kubernetes clusters

Figure 16-9. Adding A records for controller instances

Chapter 16 ■ Developing a highly available Website

362

Creating a Kubernetes Service
In this section we shall create a hello-world application and expose the application as a service of type
LoadBalancer on each of the three Kubernetes clusters. As a result, three elastic load balancers each
exposing the hello-world service should be available.

SSH log in to each of the controller instances and after verifying that the cluster nodes are being listed
create an application with the tutum/hello-world Docker image.

kubectl -s http://localhost:8080 run hello-world --image=tutum/hello-world --replicas=2
--port=8

List the cluster-wide pods:

kubectl get pods –o wide

List the deployments:

kubectl get deployments

Subsequently, expose the deployment as a service of type LoadBalancer:

kubectl expose deployment hello-world--port=80 --type=LoadBalancer

List the services:

kubectl get services

The output from the preceding commands is shown in Figure 16-10.

Figure 16-10. Creating a hello-world deployment and service

Chapter 16 ■ Developing a highly available Website

363

Describe the service:

kubectl describe svc hello-world

The service details, including the LoadBalancer Ingress, are listed as shown in Figure 16-11.

Figure 16-11. Describing the hello-world service

The elastic load balancer should also be listed in the EC2 Console ➤ LOAD BALANCING ➤ Load
Balancers display. The Public DNS name of the load balancer is obtained from the EC2 Console as shown in
Figure 16-12.

Chapter 16 ■ Developing a highly available Website

364

The Instances tab lists the EC2 instances being load-balanced by the load balancer. Initially the Status
may be OutOfService as shown in Figure 16-13.

Figure 16-12. LoadBalancer for a service

Figure 16-13. Initially the instances in the LoadBalancer may be OutOfService

Chapter 16 ■ Developing a highly available Website

365

After about a minute, the Status should become InService as shown in Figure 16-14.

Figure 16-14. LoadBalancer instances InService

The Listeners tab should list the load balancer listener as shown in Figure 16-15.

Figure 16-15. Listeners for LoadBalancer

Chapter 16 ■ Developing a highly available Website

366

Invoke the Public DNS name in a web browser. The hello-world application output should be
displayed as shown in Figure 16-16.

Figure 16-16. Invoking the public DNS in a browser

Figure 16-17. Three LoadBalancers, one for each CloudFormation

When the Kubernetes service hello-world of type LoadBalancer has been created in each of the
Kubernetes clusters, three elastic load balancers should be created as shown in the EC2 Console in
Figure 16-17.

Chapter 16 ■ Developing a highly available Website

367

The Public DNS name for each of the ELBs should display the result for the hello-world application as
shown in Figure 16-18.

Figure 16-18. Invoking the public DNS for another Elastic Load Balancer

Creating an AWS Route 53 Service
In this section we shall create an AWS Route 53 service to route user requests to the oramagsearch.com
domain to the elastic load balancers, more specifically the public DNS name of the ELBs. We shall create
two resource record sets, pointing to two different ELBs configured for failover, with one of the ELBs being
the primary resource record set and another being the secondary record set. When the oramagsearch.
com domain is invoked in a web browser, the AWS Route 53 service routes the request to the primary
resource record set. If the primary record set becomes unavailable, the service routes the user request to
the secondary record set, in effect providing high availability of the Hello World web application on the
oramagsearch.com domain.

To create an AWS Route 53 service, select Route 53 in AWS Services as shown in Figure 16-19.

Chapter 16 ■ Developing a highly available Website

368

Creating a Hosted Zone
To create a hosted zone, select Hosted Zones in the margin and click Create Hosted Zone as shown in
Figure 16-20.

Figure 16-19. Selecting the Route 53 service

Figure 16-20. Creating a hosted zone

Chapter 16 ■ Developing a highly available Website

369

A new public hosted zone is created. The name servers for the hosted zone are also assigned, as shown
in Figure 16-22.

In the Create Hosted Zone dialog, specify a Domain Name (oramagsearch.com). The domain name
must be registered with the user. Select Public Hosted Zone as the type, as shown in Figure 16-21.

Figure 16-21. Configuring a hosted zone

Figure 16-22. A new public hosted zone

Configuring Name Servers on a Domain Name
Next, we need to update the name server records for the domain oramagsearch.com with the domain
registrar so that the Domain Name System is able to route requests for the domain to Route 53 name servers.
Copy the Route 53 name servers as shown in Figure 16-23.

Chapter 16 ■ Developing a highly available Website

370

The default name server records for a domain are typically provided by the domain registrar as shown
in Figure 16-24.

Figure 16-23. Route 53 name servers

Figure 16-24. Domain nameservers

Figure 16-25. Adding name servers for Route 53 to DNS record

Add the name servers for the Route 53 service to the domain NS records as shown in Figure 16-25.

Chapter 16 ■ Developing a highly available Website

371

Figure 16-26. Selecting default name servers on domain

Next, select the default name servers provided by the domain registrar as shown in Figure 16-26.

Click on Delete to delete the default name servers as shown in Figure 16-27.

Figure 16-27. Deleting default name servers

Save the custom name server settings as shown in Figure 16-28.

Chapter 16 ■ Developing a highly available Website

372

The new settings may take a while to take effect, as shown by the message in Figure 16-29.

Figure 16-28. Domain name servers

Chapter 16 ■ Developing a highly available Website

373

When the new name server records have taken effect, the NS records should indicate the same as shown
in Figure 16-30.

Figure 16-29. Updating domain nameservers can take a while

Figure 16-30. Configured domain nameservers

Chapter 16 ■ Developing a highly available Website

374

Creating Record Sets
Next, we shall create resource record sets to point to the elastic load balancers for the hello-world service.
Click on Go to Record Sets as shown in Figure 16-31.

Figure 16-31. Start creating a record set by clicking Go To Record Sets

Figure 16-32. Clicking on Create Record Set

Then click on Create Record Set as shown in Figure 16-32.

In the Create Record Set dialog, set the Type as A - IPv4 address as shown in Figure 16-33. Select the
Alias radio button.

Chapter 16 ■ Developing a highly available Website

375

Click in the Alias Target field to display the drop-down for the targets. Select one of the ELB Load Balancers,
assuming that all the ELB Load Balancers are for the hello-world service as shown in Figure 16-34.

Figure 16-33. Setting the Type in the Create Record Set dialog

Chapter 16 ■ Developing a highly available Website

376

For Routing Policy, select Failover as shown in Figure 16-35.

Figure 16-34. Selecting one of the ELB Load Balancers as alias target

Chapter 16 ■ Developing a highly available Website

377

For Failover Record Type, select Primary as shown in Figure 16-36.

Figure 16-35. Selecting Failover as the Routing Policy

Chapter 16 ■ Developing a highly available Website

378

For Evaluate Target Health, select Yes. For Associate with Health Check, select No. Click on Create as
shown in Figure 16-37.

Figure 16-36. Setting the Failover Record Type as Primary

Chapter 16 ■ Developing a highly available Website

379

A new resource record set is added as shown in Figure 16-38.

Figure 16-37. Creating a record set

Chapter 16 ■ Developing a highly available Website

380

Click on Create Record Set to create another resource record set as shown in Figure 16-39. In a Failover
routing policy, two resource record sets need to be configured, one as the primary and the other as the
secondary. If the primary record set is not available, the Route 53 routes any request for the hosted zone to
the secondary record set.

Figure 16-38. Resource record set

Figure 16-39. Clicking on Create Record Set to create another record set

Chapter 16 ■ Developing a highly available Website

381

In Create Record Set, set the Type as A -IPv4 address and the Alias as Yes. For Alias Target select a
different ELB Load Balancer as shown in Figure 16-40.

Figure 16-40. Configuring the record set

Set the Routing Policy as Failover. Select Secondary as the Failover Record Type. Set Evaluate Target
Health as Yes and Associate with Health Check as No. Click on Create as shown in Figure 16-41.

Chapter 16 ■ Developing a highly available Website

382

A second resource record set is added, as shown in Figure 16-42.

Figure 16-41. Creating a second record set

Chapter 16 ■ Developing a highly available Website

383

The Public Hosted Zone for the oramagsearch.com (domain name would be different for different users)
domain should list the Record Set Count as 4 instead of 2 to start with, as shown in Figure 16-43.

Figure 16-42. A second resource record set

Figure 16-43. Public hosted zone with four record sets

Chapter 16 ■ Developing a highly available Website

384

Testing High Availability
Next, we shall demonstrate high availability. Open the domain oramagsearch.com (the domain name would
be different for different users/user groups) in a web browser. The primary resource record set for the public
hosted zone is invoked, which points to one of the elastic load balancers for the Kubernetes service hello-
service, and the result of the tutum/hello-world application is displayed as shown in Figure 16-44.

Figure 16-44. Invoking domain in browser

The Primary resource record set points to one of the elastic load balancers, and the load balancer
should be available as indicated by all the registered instances being InService, as shown in Figure 16-45.

Chapter 16 ■ Developing a highly available Website

385

Figure 16-45. LoadBalancer for primary resource record set with all instances inService

To demonstrate high availability, stop the controller for the Kubernetes cluster exposing the elastic load
balancer pointed to by the primary resource record set, as shown in Figure 16-46.

Figure 16-46. Stopping the controller instance for the cluster exposing the ELB pointed to by the primary
resource record set

The controller instance and the worker node instances should be stopped, as shown in Figure 16-47,
in effect making the elastic load balancer for the primary resource record set unavailable. If the hosted zone
had just one resource record set without the Failover routing configured, the oramagsearch.com domain
would become unavailable.

Chapter 16 ■ Developing a highly available Website

386

Figure 16-47. Stopping the controller instance and worker instances for primary resource record set
CloudFormation

Figure 16-48. The oramagsearch.com hosted zone fails over to the secondary resource record set and
continues to serve

But the oramagsearch.com hosted zone fails over to the secondary resource record set and continues
to serve the hello-world service, as shown in Figure 16-48. As indicated by the output in the browser, the
hostname has changed (the hostname could also change due to the service distributing traffic between Pods
on the same deployment) but the service continues to be available.

Chapter 16 ■ Developing a highly available Website

387

When the primary resource record set becomes unavailable and the user request is routed to the
secondary record set, in effect the service is being served by one record set and is thus not highly available
any more. To make the service highly available, we need to either make the primary record set point to a
different elastic load balancer or delete and create a new record set. Taking the second approach, select the
primary resource record set and click Delete Record Set as shown in Figure 16-49.

Figure 16-49. Deleting the primary resource record set

Click on Confirm in the Confirmation dialog as shown in Figure 16-50.

Figure 16-50. Confirmation dialog

Only the secondary record set is available to route user requests to, as shown in Figure 16-51.

Chapter 16 ■ Developing a highly available Website

388

Figure 16-51. Only the secondary record set is available

Figure 16-52. Hosted zone served by secondary record set

The service continues to be served at oramagsearch.com as shown in Figure 16-52. The hostname may
have changed, as the load balancer also balances the load between the two replicas in the deployment.

Chapter 16 ■ Developing a highly available Website

389

To add a primary resource record set, click on Create Record Set as shown in Figure 16-53. In the Create
Record Set dialog set the Type as A - IPv4 address. Set Alias as Yes and select the third elastic load balancer
in Alias Target.

Figure 16-53. Adding back a primary resource record set

Set the Routing Policy as Failover and the Failover Record Type as Primary. With other settings the same
as when the Primary/Secondary record set was created, click on Create as shown in Figure 16-54.

Chapter 16 ■ Developing a highly available Website

390

A Primary Record Set is added as shown in Figure 16-55.

Figure 16-54. Creating a primary resource record set

Chapter 16 ■ Developing a highly available Website

391

The web browser request is routed to the primary resource record set, as shown in Figure 16-56.

Figure 16-55. A new primary resource record set

Figure 16-56. Hosted zone served the new primary resource record set

Chapter 16 ■ Developing a highly available Website

392

The AWS CloudFormations for the Kubernetes clusters have launch configurations and scaling groups
associated with them. If a controller instance is shut down directly, at first the controller and worker
instances would shut down; but because a launch configuration is associated with the CloudFormation,
other controller and worker instances for the CloudFormation are started. If the CloudFormation is
removed, the cluster is removed and is not relaunched. If both the primary and secondary resource record
sets are made unavailable, the Kubernetes service hosted on oramagsearch.com becomes unavailable, as
shown in Figure 16-57.

Figure 16-57. The hosted zone becomes unreachable if all resource record sets are deleted

Summary
In this chapter we created a highly available website. The high availability is made feasible by creating
multiple cloud formations and subsequently creating an AWS Route 53 service with DNS failover configured.

This chapter concludes the book Kubernetes Management Design Patterns. As subsequent Kubernetes
versions are developed, other features will be added. At the time of writing this book, Kubernetes 1.3 has
added cross-cluster federation, which can be used to develop federated services that span multiple clusters,
thus providing another form of high availability.

393© Deepak Vohra 2017
D. Vohra, Kubernetes Management Design Patterns, DOI 10.1007/978-1-4842-2598-1

��������� A
Agile software, 171
Amazon Linux AMI, 173
Amazon Machine Image (AMI), 4
Amazon Web Services (AWS)

CLI, 3
components, 3
environment

access key, 4
Amazon Linux AMI, 5
command prompt, 7
configuration, 6
EC2 instance, 4
instance type, 5
public DNS, 6
users, 4

Kubernetes (see Cluster)
multiple zones, 103
VPC configuration

confirmation screen, 10
console selection, 8
delete command, 10
default output format (json), 11
list and delete selection, 9
nondeletable message, 11
wizard, 9

another-annotation-key, 222
Ansible configuration

ansible.cfg, 342–343
client machine, 339

default settings, 341
IP addresses and hostnames, 340–341
PPA, 339–340
Ubuntu instances, 339

/etc/ansible/ansible.cfg file, 342
/etc/ansible/hosts file, 343–344
host variables, 345
inventory file, 343
IP address and

hostnames, 345
running, 346

Autoscaling
Kubernetes cluster running, 300
management design pattern, 299

AWS. See Amazon Web Services (AWS)
AWS CloudFormation, 118, 137, 155, 173
awsElasticBlockStore Volume, 141–142, 144–145
AWS volume

create-volume command, 140
EC2 Console, 139
us-east-1c, 139

��������� B
BestEffort scope quota, 294, 296

��������� C
Capacity field, 244
Certificate key-value pair, 274
Client Interface (CLI), 118
CloudFormations

choosing services, 93–94
cluster nodes, 360
CoreOS command prompt, 359
EC2 instances, Kubernetes cluster, 118, 361
initializing, 95
KMS key, 358
kube-coreos-cluster-1, 358
Kubernetes clusters, 358
launch, 99–100
nodes, 359
second controller instance, 359
SSH, 357
stacks, 93, 94

launching, 34–35
validation, 34

third controller instance, 360
ClusterIP Service, 156–159
Cluster load, 299
Clusters

action selection, 15
components, 13

Index

■ INDEX

394

configuration
source code, 18
us-west-2a zone, 21
zone modification, 20

EC2 console nodes, 13
inbound rules, 16
installation process, 11
kubectl cluster-info command, 14
logging

components, 315
Elasticsearch, 314, 318
Fluentd, 322
Kibana, 324
kube-system namespace, 317
replication controller, 315

master and minions, 12
master node, 15
minion nodes, 16
OpenShift

nodes, 347
testing, 347

security groups, 14
stop command, 21–22
testing

directory path, 17
LoadBalancer, 17
nginx image, 17–18
PATH environment variable, 17
pods, 17

Cluster.yaml file, 95–98
Command-line interface, 117
Compute-resource-quotas, 283–286
Compute resources

and API resources, 238
node capacity, 244
node resources, 254
number of pods, 252
pod specification fields, 241
requests and limits, 240, 245
resource consumption, 254
types, 239

ConfigMap definition file, 257, 261
ConfigMap Fields, 257, 259
ConfigMap key/value pair, 258, 264
ConfigMaps, 268, 293

configuration data, 260
environment variables, 258
management pattern, 257
multiple replication controller, 257

ConfigMaps quota, 293
ConfigMap storing key/value pairs, 275
Configuring cluster.yaml, multiple

zones, 95–98
Configuring external DNS, 100
CoreOS

AWS configuration, 25
CLI tool, 24
CloudFormation, 23–24
cluster

accessing, 39–41
asset directory, 30
CloudFormation, 30
CloudFormation stack, 34–35
configuration, 31–33
creation, 29
directory, 29
testing, 41–42, 44–47

cluster parameters, 27–28
DNS, 35–39
environment, 25
external DNS name, 29
KMS key, 28–29
kube-aws installation, 25–27
kube-aws tool, 23

CoreOS Linux, 117
CPUs and memory, 239
CPU utilization increases, 306
Creating and listing pod, 276

��������� D
Default scheduler, 203
Definition file, 291
definition file mysql.yaml, 246
Docker image, 189
Docker run command option equivalents, 242
Domain name service (DNS), 35–39, 356

elastic load balancer, 367
external DNS, 361
failover, 356

Downloading Kubernetes
secret, 120–121

��������� E
Elasticsearch, 314

es-controller.yaml, 318
es-service.yaml, 319
kubectl cluster, 321
kube-system namespace, 319
service endpoints, 320
testing, 321

Exceeding object quotas, 290

��������� F
File mysql.root.password, 259
file object-quotas.yaml, 288
Filtering policy, 201
Final node ranking, 202
Fluentd, 322

Clusters (cont.)

■ INDEX

395

��������� G
gitRepo type

creation, 146
description, 151
HTTPS web URL, 148
interactive shell, 151
Kubernetes-volume, 147, 152
pod.yaml, 149
repository window, 146
revision number, 148–149
server, 150
vi editor, 150
volume, 145

Google Cloud Logging, 77
Google Cloud Platform

Billing Account, 59
Compute Engine API, 56–58, 60–61
console display, 50–51
credentials page, 60
database services and infrastructure, 49
“Kube-GCE” message, 52
Kubernetes (see Kubernetes)
permissions, enable, 55–56
project

addition, 52
creation, 51–52
description, 53
link, Dashboard dialog, 54
management, 54
selection, 53

static external IP address, 67
VM instance page, 62–66

Google Cloud Shell, 80
Google Cloud VPN, 77
Google Container Engine

cluster creation, 78
Google Cloud Platform, component, 77
Google Cloud Shell, 80
kube-cluster-1, 79
kubectl configuration, 80
Kubernetes application, 77
name, zone and machine type, 78
services, 77

Google Container Registry, 77, 84
Graphical user interface (GUI), 117, 134

��������� H
hello-config, 270
hello-world pod, 272
hello-world2 label, 224
hello-world.yaml, 271
High availability (HA)master. See also OpenShift

cluster info, 353
EC2 instances, 349–350

kubeconfig configuration, 352
load balancer and master, 352
nodes, schedulable and non-schedulable, 353
shut down, 351
stop action, 350
stop instances dialog, 350–351

Horizontal pod autoscaler (HPA), 299, 303, 305
HorizontalPodAutoscaler specification, 303, 304

��������� I, J
Infrastructure as a Service (IaaS), 49

��������� K
Kibana, 314

dashboard, 328
Elasticsearch service, 330
index pattern, 329
kibana-rc.yaml file, 324, 325
kibana-service.yaml, 326
kube-system namespace, 330–331
logging service, 328
log messages, 329
popular fields, 330
RC definition file, 325–326
service and RC creation, 327
service definition file, 327

KMS key, 28–29, 95
Kube-aws, 25–27
kubectl autoscale command, 304
kubectl autoscale options, 304
kubectl create configmap command, 258
Kubernetes. See also Google Container Engine

applications, 101–102, 280
binaries, 68
cluster, 91, 137, 243, 258, 281

capacity, 251
commands, 67
info, 81
nodes, 258, 281

components, 206
controller and minion instances, 71
CPU utilization, 70
deployment nginx, 71
deployments and services, 85, 72, 87
design patterns, 49
docker build command, 83
Dockerfile, 82
docker image built, 83
external IP addresses, 71
hello-node application, 84
IaaS and PaaS, 49
namespaces, 70
nginx Docker image, 71
node replicas, 72

■ INDEX

396

nodes, 68, 70, 301
node script server.js, 81
pods, 69, 85
procedure, 50
repository image uploaded, 85
resource types, 238
scheduler, 200
server.js Node Script, 82
service description, 73
service endpoint, 73–75
service external IP and port, 86
services in all namespaces, 69
SSH installation, 50
stopping the cluster, 75, 77

Kubernetes node cluster, 243
Kubernetes service

cluster, 153
ClusterIP Service, 156–159
cluster-wide pods, 362
CoreOS AWS CloudFormation, 155
deployment and service, 362
elastic load balancer, 367
hello-world application, 362
hello-world service, 363
InService, 365
LoadBalancer, 364–366
LoadBalancer Service, 166–168, 170
management pattern, 154
multiple replication controllers, 154
NodePort Service, 159–160, 162–164, 166
OutOfService, 364
overview, 154
public DNS name, 366
replication controller, 153
SRP, 153

Kubernetes versions, 203
kube-scheduler pod description, 208
kube-scheduler, 205
kube-system namespace, 204
kube-up.sh, 3

��������� L
Labeling nodes, 214
LoadBalancer Ingress, 167–168, 303
LoadBalancer Service, 166–168, 170
Logging configuration

adapter pattern, 310
cluster

components, 315
Elasticsearch, 314, 318
Fluentd, 322
Kibana, 314, 324

kube-system namespace, 317
replication controller, 315

components, 309
counter pod creation, 312
counter-pod.yaml file, 311
design pattern, 309
Docker containers

directories, 313
JSON format, 314
listing files, 313
permissions setting, 313
system component logs, 314

environment, 311
kubectl logs, 311
nodes, 310
overview, 310
pod definition file, 311–312
sidecar container, 309

��������� M
Memory field unit, 240
Multi-node application patterns, 199
Multiple zones

on AWS
aware cluster, 104
EC2 console, 105, 108, 112
Kubernetes binaries, 103
listing Kubernetes nodes, 111–112
listing nodes including labels, 112–113
listing nodes, zones, 108, 110
listing nodes, two zones including

labels, 108
listing nodes, including the labels, 104–105
master controller, 103
PVC, 113–116
PV, 113
same master IP, different subnet

CIDR, 107–108, 110, 112
us-east-1b, 106–108
us-east-1c, 105
zone-aware cluster, 103

AWS CloudFormation, 93
cloud provider zones, 92
configuring cluster.yaml, 95–98
configuring external DNS, 100
environment setting, 93–94
GCE, 92
initializing, CloudFormation, 95
Kubernetes application, 101–102
Kubernetes cluster, 91
launch, CloudFormation, 99–100

mysql Docker image tag, 194
mysql image-based RC, 181

Kubernetes (cont.)

■ INDEX

397

mysql-config definition file, 261
mysql-config-2, 266
mysql/env directory, 259
MySQL pod CPU request, 247
mysql.yaml definition file, 267
mysql.yaml file, 177–178, 182, 263

��������� N
New pod link, 127
New replication controller link, 127
New Service link, 132
nginx application, 125
Kubernetes nginx application, 102
nginx, 234
Node affinity, 220
Node capacity, 244
Node label kubernetes, 225
Node labels, 213, 216
NodePort service, 159–164, 166
nodeSelector field, 225
nodeSelector label, 226

��������� O
Object quotas, 288
OpenShift

Ansible (see Ansible configuration)
cluster

nodes, 347
testing, 347

credentials, 338
environnment

CentoOS instances, 337
cluster, 337
EC2 instances, 336
software, 337

HA controller, 335
HA master, 336
network manager, 339
overview, 336

Overcommitted memory limits, 254

��������� P
PersistentVolumeClaim (PVC), 113–116
PersistentVolume (PV), 113
Personal Package Archive (PPA), 339
php-apache deployment, 302
PHP Apache Server Deployment, 302
Placeholder pod, 255
Platform as a Service (PaaS), 49, 335
Pod CPU and memory requests and limits, 248
pod definition file, 254, 276, 272

pod definition file hello.yaml, 271
Pod description, 269
Pod description lists volume, 277
Pod logs, 273
pod-node-affinity.yaml, 225, 227
Pod specification fields, 241
pod-with-default-scheduler-annotation-

container, 212
Priority functions, 201
Public DNS, 100, 169
Public IP address, 100, 118–119
Pull Secret file, 120

��������� Q
QoS classes, 243
Quality of Service (QoS), 242
quota --namespace=default, 289

��������� R
RC mysql-v1, 179
RC nginx-rc, 130
Relaunched pod, 131–132
Replication controller, 250, 269, 279, 285, 287
Replication controller definition file mysql.yaml,

246
reserve-resource pod, 256
Resource guarantees, 240
ResourceQuota definition file, 282–283, 289, 295
resource quotas

namespaces, 280
Kubernetes applications, 280
spec fields, 280

resource requirements, 279
resource-reserving pod, 256
Rolling updates

container image, 177–184
deployment, 186–189, 191–197
file/image, 186
multiple-container pods, 186
overview, 172
problem, 171
RC definition file, 174–176
replication controller, 176
rollback, 184–186
setting, 173–174
solution, 171–172

RollingUpdateStrategy, 189
Route 53 service

hosted zone, 368
name servers/domain name

configuration, 373
default selection, 371

■ INDEX

398

delete, 371
DNS record, 370
domain nameservers, 370
records, 369–370
save option, 371–372
update server, 373

record sets
Alias radio button selection, 375
configuration, 381
creation, 374
ELB load balancers, 376
failover record type, 378
public hosted zone, 383
record set creation, 379
resource set, 379–380
routing policy, 377
second record set, 382

routes, 367
selection, 367

��������� S
Scheduler annotation, 211
Scheduling pods, nodes

cloud configuration, 202
default scheduler, 203
design patterns, 199
priority functions, 201
sequence, 199

Scheduling policy, 200
ServiceTypes, 153–155
Single container management patterns, 199
Single controller node, 301
Single master node, 120
Single node, multi-container application

patterns, 199
Single Responsibility Principle (SRP), 135,

153–154, 172
Single-zone cluster, 91
SSH logging, 101, 118–119, 122
SSO features, 120
Supported compute resources, 282

��������� T
Tectonic console

accessing, 123
benefits, 117
CoreOS Linux, 117
deleting a pod, 131
downloading, pull secret, 120
environment setting, 118–120

GUI, 117
installing, pull secret, 122
launching replication controller, 128
launching the deployment, 126
listing pods, RC, 130
manifest, 120, 122
modifying pod’s labels/deleting a pod, 131
modifying/deleting an RC, 129
new deployment creation, 124–125
new pod link, 127
new replication controller link, 127, 129
new service link, 132
nginx application, 125
pods, RC nginx-rc, 130
relaunched pod, 132
removing, 134
replica sets, 126
service creation, 134
service details, 133
specifying replication controller

details, 128
subscription levels, 120
web management console, 120

Tectonic identity, 120
Tectonic manager, 120
Tectonic support, 120
Tectonic wizard, 120
Total cluster capacity, 279

��������� U
user-intervened scaling, 300

��������� V
Virtual private cloud (VPC), 5
Volumes

Amazon EBS Volume, 135
Docker container, 135
EC2 instance, 137
Kubernetes clusters, 138
nodes, 138
SSH log, 138
types, 135–137

��������� W, X, Y, Z
Website (high-availability)

AWS, 355
CloudFormations

cluster nodes, 360
CoreOS command prompt, 359
EC2 instances, 361

Route 53 service (cont.)

■ INDEX

399

KMS key, 358
kube-coreos-cluster-1, 358
Kubernetes clusters, 358
nodes, 359
second controller instance, 359
SSH, 357
third controller instance, 360

DNS failover, 355–356
environment, 357
external DNS, 361
Kubernetes (see Kubernetes service)
overview, 356
Route 53service (see Route 53 service)

testing
browser, 384
confirmation dialog, 387
controller and worker instances, 386
delete, 387
hosted zone, 392
hosted zone server, 388
InService, 384
oramagsearch.com, 386
primary resource record set, 385
primary set, 389–391
secondary record set, 388
web browser, 391

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Part I: Platforms
	Chapter 1: Kubernetes on AWS
	Problem
	Solution
	Overview
	Setting the Environment
	Configuring AWS
	Starting the Kubernetes Cluster
	Testing the Cluster
	Configuring the Cluster
	Stopping the Cluster
	Summary

	Chapter 2: Kubernetes on CoreOS on AWS
	Problem
	Solution
	Overview
	Setting the Environment
	Configuring AWS Credentials
	Installing Kube-aws
	Setting Up Cluster Parameters
	Creating a KMS Key
	Setting Up an External DNS Name

	Creating the Cluster
	Creating an Asset Directory
	Initializing the Cluster CloudFormation
	Rendering Contents of the Asset Directory
	Customizing the Cluster
	Validating the CloudFormation Stack
	Launching the Cluster CloudFormation

	Configuring DNS
	Accessing the Cluster
	Testing the Cluster
	Summary

	Chapter 3: Kubernetes on Google Cloud Platform
	Problem
	Solution
	Overview
	Setting the Environment
	Creating a Project on Google Cloud Platform
	Enabling Permissions
	Enabling the Compute Engine API
	Creating a VM Instance
	Connecting to the VM Instance
	Reserving a Static External IP Address

	Creating a Kubernetes Cluster
	Creating a Kubernetes Application and Service
	Stopping the Cluster
	Using Kubernetes with Google Container Engine
	Creating a Google Container Cluster
	Connecting to the Google Cloud Shell
	Configuring kubectl
	Testing the Kubernetes Cluster

	Summary

	Part II: Administration and Configuration
	Chapter 4: Using Multiple Zones
	Problem
	Solution
	Overview
	Setting the Environment
	Initializing a CloudFormation
	Configuring cluster.yaml for Multiple Zones
	Launching the CloudFormation
	Configuring External DNS
	Running a Kubernetes Application
	Using Multiple Zones on AWS
	Summary

	Chapter 5: Using the Tectonic Console
	Problem
	Solution
	Overview
	Setting the Environment
	Downloading the Pull Secret and the Tectonic Console Manifest
	Installing the Pull Secret and the Tectonic Console Manifest
	Accessing the Tectonic Console
	Using the Tectonic Console
	Removing the Tectonic Console
	Summary

	Chapter 6: Using Volumes
	Problem
	Solution
	Overview
	Setting the Environment
	Creating an AWS Volume
	Using an awsElasticBlockStore Volume
	Creating a Git Repo
	Using a gitRepo Volume
	Summary

	Chapter 7: Using Services
	Problem
	Solution
	Overview
	Setting the Environment
	Creating a ClusterIP Service
	Creating a NodePort Service
	Creating a LoadBalancer Service
	Summary

	Chapter 8: Using Rolling Updates
	Problem
	Solution
	Overview
	Setting the Environment
	Rolling Update with an RC Definition File
	Rolling Update by Updating the Container Image
	Rolling Back an Update
	Using Only Either File or Image
	Multiple-Container Pods
	Rolling Update to a Deployment
	Summary

	Chapter 9: Scheduling Pods on Nodes
	Problem
	Solution
	Overview
	Defining a Scheduling Policy
	Setting the Environment
	Using the Default Scheduler
	Scheduling Pods without a Node Selector
	Setting Node Labels
	Scheduling Pods with a Node Selector
	Setting Node Affinity
	Setting requiredDuringSchedulingIgnoredDuringExecution
	Setting preferredDuringSchedulingIgnoredDuringExecution

	Summary

	Chapter 10: Configuring Compute Resources
	Problem
	Solution
	Overview
	Types of Compute Resources
	Resource Requests and Limits
	Quality of Service
	Setting the Environment
	Finding Node Capacity
	Creating a Pod with Resources Specified
	Limit on Number of Pods
	Overcommitting Resource Limits
	Reserving Node Resources
	Summary

	Chapter 11: Using ConfigMaps
	Problem
	Solution
	Overview
	Kubectl create configmap Command
	Setting the Environment
	Creating ConfigMaps from Directories
	Creating ConfigMaps from Files
	Creating ConfigMaps from Literal Values

	Consuming a ConfigMap in a Volume
	Summary

	Chapter 12: Using Resource Quotas
	Problem
	Solution
	Overview
	Setting the Environment
	Defining Compute Resource Quotas
	Exceeding Compute Resource Quotas
	Defining Object Quotas
	Exceeding Object Quotas
	Defining Best-Effort Scope Quotas
	Summary

	Chapter 13: Using Autoscaling
	Problem
	Solution
	Overview
	Setting the Environment
	Running a PHP Apache Server Deployment
	Creating a Service
	Creating a Horizontal Pod Autoscaler
	Increasing Load
	Summary

	Chapter 14: Configuring Logging
	Problem
	Solution
	Overview
	Setting the Environment
	Getting the Logs Generated by Default Logger
	Docker Log Files
	Cluster-Level Logging with Elasticsearch and Kibana
	Starting a Replication Controller
	Starting Elastic Search
	Starting Fluentd to Collect Logs
	Starting Kibana

	Summary

	Part III: High Availability
	Chapter 15: Using an HA Master with OpenShift
	Problem
	Solution
	Overview
	Setting the Environment
	Installing the Credentials
	Installing the Network Manager
	Installing OpenShift via Ansible on the Client Machine
	Configuring Ansible
	Running the Ansible Playbook
	Testing the Cluster
	Testing the High Availability
	Summary

	Chapter 16: Developing a Highly Available Website
	Problem
	Solution
	Overview
	Setting the Environment
	Creating CloudFormations
	Configuring External DNS
	Creating a Kubernetes Service
	Creating an AWS Route 53 Service
	Creating a Hosted Zone
	Configuring Name Servers on a Domain Name
	Creating Record Sets

	Testing High Availability
	Summary

	Index

