
Learn Apple
HomeKit on iOS

A Home Automation Guide for
Developers, Designers, and
Homeowners
—
Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

 Learn Apple
HomeKit on iOS

 A Home Automation Guide for Developers,
Designers, and Homeowners

 Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

Learn Apple HomeKit on iOS: A Home Automation Guide for Developers, Designers,
and Homeowners

Jesse Feiler
Plattsburgh, New York
USA

ISBN-13 (pbk): 978-1-4842-1528-9 ISBN-13 (electronic): 978-1-4842-1527-2
DOI 10.1007/978-1-4842-1527-2

Library of Congress Control Number: 2016960323

Copyright © 2016 by Jesse Feiler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Aaron Black
Technical Reviewer: Aaron Crabtree
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise

Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jessica Vakili
Copy Editor: Lori Jacobs
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code
at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a
Glance

About the Author .. ix

About the Technical Reviewer .. xi

Acknowledgments .. xiii

Introduction ..xv

 ■Chapter 1: Bringing Home Automation Home 1

 ■Chapter 2: Exploring the HomeKit World .. 9

 ■Chapter 3: Adding Scenes—The Practical Part of HomeKit.......... 27

 ■Chapter 4: Exploring Your Development Environment 43

 ■Chapter 5: Working with HomeKit Accessories 51

 ■ Chapter 6: Exploring the HomeKit World as a Developer,
Designer, or Device Manufacturer .. 73

 ■Chapter 7: Dive into Accessories .. 89

www.allitebooks.com

http://www.allitebooks.org

 Contents at a Glanceiv

 ■ Chapter 8: Imaginative Opportunities: Events, Triggers,
and Actions ... 101

 ■Chapter 9: Working with iCloud and Users with HomeKit 109

Index .. 125

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author .. ix

About the Technical Reviewer .. xi

Acknowledgments .. xiii

Introduction ..xv

 ■Chapter 1: Bringing Home Automation Home 1

Welcome Home ... 2

2015: Apple Unveils New Technologies ... 2

CarPlay Revs Up ... 2

Turning On Apple TV .. 3

Watching the Time .. 3

Putting It Together .. 3

Moving Beyond Talking Refrigerators .. 5

How It Works—The View from the Mountaintop 5

Introducing Accessories ... 6

HomeKit Hubs ... 6

The Basic HomeKit Home ... 7

Extending HomeKit ... 7

Summary ... 8

www.allitebooks.com

http://www.allitebooks.org

 Contentsvi

 ■Chapter 2: Exploring the HomeKit World .. 9

Confi guring Your HomeKit Environment .. 10

Starting from an Apple ID .. 11

Quick Start with iPad ... 12

Managing Home Settings .. 16

Moving into Your Home ... 19

Add and Confi gure a Home .. 21

Edit or Add a Room .. 22

Add and Confi gure an Accessory... 24

 ■Chapter 3: Adding Scenes—The Practical Part of HomeKit.......... 27

What Is a Scene? ... 28

Creating Basic Scenes .. 28

Scenes Can Involve Several Rooms .. 29

Scenes Can Be Automated and Respond to Siri ... 29

Scenes Are Instantaneous .. 30

Working with Scenes... 30

Creating a Scene .. 32

Adding Accessories .. 34

Adjusting Accessories... 37

Finishing Up .. 38

Editing Your Scene .. 39

 ■Chapter 4: Exploring Your Development Environment 43

Getting Developer Access .. 44

Reviewing the Tools ... 45

Languages: Swift and Objective-C .. 46

Frameworks .. 47

Simulators .. 48

www.allitebooks.com

http://www.allitebooks.org

 Contents vii

Getting Set Up ... 49

What’s Next ... 49

 ■Chapter 5: Working with HomeKit Accessories 51

Set Up a HomeKit Test Lab .. 51

Set Up HomeKit ... 53

Setting Up a Room ... 57

Using Automation .. 63

Automating Location Changes .. 64

Automating Time of Day ... 66

Letting Accessories Control Automations ... 67

Bringing It Together ... 71

 ■ Chapter 6: Exploring the HomeKit World as a Developer,
Designer, or Device Manufacturer .. 73

HomeKit Overview ... 74

Swift’s Object-Oriented Features for HomeKit .. 74

Creating New Instances .. 78

Basic HomeKit Objects ... 78

Working with Rooms ... 79

Managing Rooms .. 79

Editing a Room ... 81

Working with Accessories ... 82

Finding Accessories .. 82

Managing Accessories .. 84

Editing Accessories .. 85

 ■Chapter 7: Dive into Accessories .. 89

Building Accessories ... 90

Working with Accessories ... 90

www.allitebooks.com

http://www.allitebooks.org

 Contentsviii

What Is an Accessory? .. 91

Basic Accessory Data ... 92

What Does the Accessory Do? (Services) .. 97

Finding Accessory State .. 99

Setting Preferences for the HomeKit Accessory Simulator 99

 ■ Chapter 8: Imaginative Opportunities: Events, Triggers,
and Actions ... 101

Working with Events.. 102

Geofencing with Location Events ... 102

Monitoring Characteristic Events ... 103

Working with Triggers ... 104

Using a Basic Trigger .. 104

Adding Conditions to Triggers with Predicates ... 105

Working with Actions... 105

 ■Chapter 9: Working with iCloud and Users with HomeKit 109

Setting Up Hubs ... 110

Apple TV .. 110

iPad ... 111

Setting Up Users .. 112

Inviting Other Users .. 112

Responding to an Invitation .. 114

Responding on an iPad ... 115

Responding on an iPhone ... 118

Set Permissions for Users ... 121

Allowing Lock Screen Access .. 123

Index .. 125

www.allitebooks.com

http://www.allitebooks.org

ix

 About the Author
 Jesse Feiler Jesse Feiler helps people and
organizations get to know and use new
technologies. Projects have included building
the page caching module for the Prodigy Web
Browser for Mac in the very early days of the
Web, location-based apps for iPhone and
iOS, as well as books and classes on new
technologies. Recent books include iPad For
Seniors for Dummies (9th ed.) and Learn Apple
HomeKit for iOS .

 Current projects involve using apps and
FileMaker databases for identifying and
managing risk in nonprofit organizations
as well as helping small communities

build location-based apps to promote tourism, downtown economic
development, and the wise use of natural resources.

 He is founder and president of Friends of Saranac River Trail
(saranacrivertrail.org) whose flagship events are the annual Talks, Treks
& Tasks which include treks to the Plattsburgh Water Pollution Control Plant,
treks focusing on edible plants along the trail as well as invasive species,
and talks on current issues in trail and path design and development.

 Born in Washington, DC, Jesse currently lives in Plattsburgh, NY, where this
book was written.

 For more information on development as well as updates to this book, visit
Jesse’s web site at northcountryconsulting.com . For information on his
apps and app consulting, visit champlainarts.com .

www.allitebooks.com

http://www.allitebooks.org

xi

 About the Technical
Reviewer
 Aaron Crabtree A passionate developer and experience enthusiast,
Aaron Crabtree has been involved in mobile development since the dawn
of the mobile device. He has written and provided technical editing for a
variety of books on the topic, as well as taken the lead on some very cool,
cutting-edge projects over the years. His latest endeavor, building apps for
augmented reality devices, has flung him back where he wants to be: as
an early adopter in an environment that changes day by day as new
innovation hits the market. Hit him up on Twitter where he tweets about all
things mobile and AR: @aaron_crabtree.

xiii

 Acknowledgments
 As always, thanks to Carole Jelen at Waterside Productions. Aaron Crabtree
has once again provided great help in the technical issues of an Apple
technology. At Apress, Jessica Vakili and Aaron Black have been invaluable
in helping to bring this book into being.

xv

 Introduction
 HomeKit is something new from Apple. Something really new. It’s not a new
device like an iPhone, an iPad, or even the Mac itself. And it’s not a new
app like Pages, Keynote, or even Xcode, the heavy-duty app that is used
by Apple and third-party developers to build apps as well as the operating
systems themselves (macOS, iOS, tvOS, and now watchOS). HomeKit is
basically a data management framework that manages home automation. It
joins Apple’s HealthKit, which is another data management framework that
focuses on health.

 There’s a pattern here. Apple is bringing its massive resources to a targeted
database and framework in the expectation that third-party developers of
software and hardware will gather around the framework. It’s no coincidence
that HomeKit actually runs on the Apple iOS devices: as the HomeKit
ecosystem grows, more and more people use it and appreciate the ease of
use that comes with most of what Apple touches. The HomeKit framework
is designed to support accessories such as lamps, doors and their locks,
thermostats, sensors, and the other automated components of a home for
the 21st century. And the fact that this flexible and powerful framework just
happens to run on the Apple devices is a great incentive for Apple to
have built it and to build it in such a way that it is robust enough to handle
yet-undreamed-of devices from developers and vendors around the world.

 The architecture of a framework such as HomeKit (and HealthKit) is such
that there’s a relatively modest investment of skill and time needed to extend
and customize it for all of the third-party accessories that integrate with
it. This is one way of whittling away at the enormous backlog of code that
needs to be written to bring the benefits of modern technology to as many
people as possible.

 This book provides you with two introductions to HomeKit. In the first
chapters, you’ll see how to set up HomeKit in your home and how to
manage your home’s accessories , rooms , and scenes (those everyday terms
are used in HomeKit’s vocabulary with their everyday meanings).

 Introductionxvi

 In the second part of the book, you’ll see how the point-and-tap commands
from the first part of the book can be reimplemented in code so that you can
build your own HomeKit apps that combine the components of HomeKit in
new and different ways.

 As we move into this new type of technology (the kits of frameworks and
data management), you can use HomeKit as your entrée to gain experience
with a new way of working with technology. If you’re not particularly
interested in how the software development world is changing with these
kits, feel welcome: you can use HomeKit to manage your home’s rooms,
scenes, and accessories.

 Managing your home in this way can make your life easier, but it also can
pay off. Deciding when lights and appliances are used helps you create a
comfortable home that does not waste electricity and may even manage
the use of electricity in such a way as to take advantage of off-peak lower
pricing.

 It’s time to get started.

1© Jesse Feiler 2016
J. Feiler, Learn Apple HomeKit on iOS, DOI 10.1007/978-1-4842-1527-2_1

 Chapter 1
 Bringing Home
Automation Home
 If you’re used to buying a product like an iPhone, taking it home, turning
it on, and getting to work, HomeKit will be a very different experience.
HomeKit is an integration technology that brings together your home,
HomeKit-enabled accessories (door locks, light bulbs, sensors, and the like),
and your own ideas about how your home should be automated.

 This chapter provides an introduction to these components and concepts so
that you get an idea of what it means to automate your home with HomeKit
as well as how you might go about it. Don’t worry if it seems as if there are
many moving parts to this machine—there are, but HomeKit can help you
put them together.

 Use the first chapters in this book to get a sense of what is possible. You
may want to experiment with devices that you have as you go along, but if
you haven’t set up a HomeKit home before (or any home automation home
at all), don’t expect to perform a miracle right away.

 That said, HomeKit is a terrific tool to work with once you get the idea of
how it works. That basic idea of how it works is the heart of these first few
chapters. You may come back to them periodically, but once the proverbial
light goes on (not your HomeKit light bulb but the light in your head), you’ll
see how it works together and how it can—literally—change your life and
your home.

CHAPTER 1: Bringing Home Automation Home2

 Welcome Home
 Projects at Apple (and everywhere else in the technology world) don’t
happen overnight. Often, they take shape gradually as engineers and users
experiment with new ideas and technologies. Many times, a new product’s
evolution is dependent on one, more, or many outside factors. (Just think of
how many technologies went into the first iPhone). HomeKit is a project that
brings together a number of technologies not all of which are under Apple’s
control. The story begins in 2014, but we’ll skip to the critical moment at
Apple’s World Wide Developers Conference (WWDC) in 2016 when Home
App was first shown to the public (at least that part of the public that
comprises developers and the technology media).

 “Internet of Things ” (often referred to as IoT) is one of those phrases that
floats around for a while and then starts popping up everywhere as if it
were something brand new. Before long (well, not too long), it seems as if it
has always been with us. Apple’s HomeKit project was announced in June
2014 at Apple’s WWDC. Unlike announcements of Apple products, there
was nothing for consumers to rush out and buy. What was available (to
developers only) was an API (application program interface —the blueprint
for code that developers would start writing to develop with HomeKit). There
were some early devices, but not much beyond that.

 Then, HomeKit went quiet for a while.

 2015: Apple Unveils New Technologies
 Although HomeKit was fairly quiet, Apple engineers and third party
developers were busily at work.

 CarPlay Revs Up
 Meanwhile, in another part of Apple’s busy campus, engineers were hard
at work on CarPlay which had first been announced a year before HomeKit
at WWDC in 2013 as iOS in the Car. Early implementations on some
models began soon after the announcement. At an event in March 2015,
 Chief Executive Officer (CEO) Tim Cook announced that CarPlay would
be available on vehicles from all the major manufacturers by the end of
that year. Sure enough, as the new lines of 2016 models started to hit the
showrooms in the fall of 2015, CarPlay was available on many of them.

CHAPTER 1: Bringing Home Automation Home 3

 Although some of the early CarPlay implementations were on high-end
cars, the rollout was across a wide range of vehicles as this quiet project
suddenly (after only several years of development!) moved front and center.
CarPlay lets you integrate your data with your car so that you can listen to
your music, use Siri to update or query your calendar, and otherwise bring
your digital life with you no matter where you’re traveling (provided there’s
an Internet connection).

 Turning On Apple TV
 In yet another part of the Apple campus, engineers and designers were
plugging away at Apple TV, turning what had been described as a “hobby”
for Apple into a new way of thinking about television. In the announcement of
Apple TV at the beginning of September 2015, CEO Tim Cook said, “The future
of television is apps.” That sentence was repeated many times in the course of
the presentations at that time. The key point is that television has been a linear
medium: you turn it on and watch a show that has a beginning and end. For
archived or recorded shows, you play them and watch them—perhaps from
beginning to end and perhaps jumping around with fast forward and reverse.
No matter how you watch traditional television, it’s a linear process.

 Apps are inherently nonlinear. You jump into an app and do what you want,
and then you jump out to do something else that may be in another app,
on another device , and even something unrelated such as going for a walk,
having a meal, or discussing something with friends or colleagues.

 Watching the Time
 The Apple event in March 2015 at which the CarPlay announcement was
made was focused on Apple Watch.

 Putting It Together
 You may be wondering why a book on HomeKit starts by talking about
CarPlay, Apple TV, and Apple Watch as well as HomeKit. The answer is
simple: it’s all part of the same thing. It’s a new way of working, playing,
learning, and going about your life. Apple’s implementation of IoT isn’t one
thing over here and another over there. What Apple is doing now is what
it does best: it is integrating products (its own as well as products from
others). Along with the integration, it’s simplifying a total picture so that it
makes useful sense. As many people have pointed out, Apple tends not to
be an innovator in technology. Its forte is innovating in the use of technology
and its integration into our lives so that new technology becomes something
we can’t imagine how we lived without.

CHAPTER 1: Bringing Home Automation Home4

 This book shows you how to work with HomeKit as a developer of HomeKit-
compatible apps , a maker of devices, or an integrator of home automation
technologies (a contractor, architect, or designer), or as a user of HomeKit
devices who wants to delve deeper into the issues and technologies that
just get things working. The focus is on HomeKit, but from time to time you
may see how the HomeKit structure shows up in CarPlay and Apple Watch ,
particularly in the design patterns in the software that are extraordinarily
message- and event-driven rather than linear. This shouldn’t be surprising,
because Apple is just as aware as you are that someone can pay attention
to the tap on the wrist from the Apple Watch that reminds him or her that
it’s time to leave work to drive home for that dinner party. Turning into
the driveway on an autumn evening with the early evening settling in, it’s
reassuring to see the HomeKit lights turn on in the house. If it’s starting to
snow, it’s definitely nice not to have to get out of the car to open the garage
door (thanks to HomeKit). Not everything is automated in this little scenario.
The dog barks a welcome so you don’t want to dally in the car even though
you’re listening to some music you like. As you open the door, the music
follows you from car to your speakers in the house. It’s a nice welcoming
scenario, and the dog’s wagging tail may suggest that he had something to
do with it all and please give him a biscuit.

 HomeKit, CarPlay, Apple Watch. . . . Yes, you can think of them as great
examples of the Internet of Things. What Apple has been thinking about
is how they all fit together in your life. We are moving away from a world
of huge monolithic apps into one in which small components of apps fit
together. So if you’re expecting to learn how to build a big “killer” HomeKit
app in this book, tamp down your expectation. What you’ll build for HomeKit
are targeted small apps that fit together within the HomeKit framework. If the
user winds up assembling those pieces into a “killer” and convenient home,
that’s just fine, but what we developers do today is build the pieces that
make it possible for users to put together their technology their way.

 As noted in the Introduction, the first part of this book (Chapters 1 through 3)
provides you with background of the technology and ideas behind it. Then,
in Chapters 4 and 5 , we’ll move on to the details of implementation and the
use of HomeKit, focusing on how you can use it yourself. Finally, in Chapters
 6 through 9 , you’ll see how to write code that performs the manual tasks
you did in the previous chapters.

 If you want to jump ahead, feel free to do so, but make sure to come back to
these introductory chapters. They will help you to understand what you have
to do in the later ones. Otherwise, it may seem like a collection of unrelated
ideas and processes. It’s true that in working with HomeKit (and with IoT in
general), you’re constantly switching from one device to another and one
technology to another, but as long as you keep your mind on the principles
in these first three chapters, it should stay a unified and coherent whole.

http://dx.doi.org/10.1007/978-1-4842-1527-2_1
http://dx.doi.org/10.1007/978-1-4842-1527-2_3
http://dx.doi.org/10.1007/978-1-4842-1527-2_4
http://dx.doi.org/10.1007/978-1-4842-1527-2_5
http://dx.doi.org/10.1007/978-1-4842-1527-2_6
http://dx.doi.org/10.1007/978-1-4842-1527-2_9

CHAPTER 1: Bringing Home Automation Home 5

 Moving Beyond Talking Refrigerators
 “Connect your refrigerator to the Internet, and it will let you know when
you’re running out of milk!” In June 2000, LG introduced the Internet Digital
DIOS refrigerator that promised to fill this need in the world of consumer
appliances.

 As has been demonstrated over the years, the launch of a major new iPhone
or other device from Apple draws crowds of people who sometimes camp
out hours or even days before the Apple Store opens. The Internet Digital
DIOS refrigerator didn’t draw crowds of that size or enthusiasm. In fact, the
$20,000 Internet refrigerator did not succeed in the marketplace. (iPhone is
a different story.)

 It is interesting to compare iPhones and Internet refrigerators. In their first
incarnations, they both could be seen as demonstrations of what could
be done with new technologies. In that perspective, the products are
pretty similar. From another point of view, they were very different. Internet
refrigerators promised to put those new technologies to use to do tasks that
were familiar to people (e.g., checking to see how much milk is left on the
shelf). iPhone used those new technologies to do tasks that hadn’t yet been
invented. In fact, many of the tasks that are part and parcel of iPhone today
weren’t even invented by Apple: they’ve been invented and discovered by
people using the technologies and iPhone.

 Now it’s time to look at what’s here in the present with HomeKit (and related
Apple automation initiatives). The rest of this chapter brings you up to speed
on the technology of HomeKit and what’s behind it.

 How It Works—The View from the
Mountaintop
 “Connecting a refrigerator to the Internet” conjures up various images and
possibilities, but, as many consumers have realized, when you start thinking
about why you would do that and how it would work, things are a little murky.

 This section is an overview of the connection process. You’ll see that
connecting something to the Internet and HomeKit is a bit different from
connecting a computer to the Internet. What’s important to note is that
this is an overall view of most home automation. The details of HomeKit
are specific to Apple’s approach to home automation, but the overall
architecture is not unique.

 Remember that this is the high-level view. In other chapters, you’ll delve
more deeply into the details that make all of the HomeKit environment
work together, and you’ll see what you can do to make HomeKit and your
appliances do exactly what you want.

CHAPTER 1: Bringing Home Automation Home6

 Introducing Accessories
 What exactly is it that you connect to the Internet and HomeKit? As of
this writing, it can be a light switch, a thermostat (such as the compatible
ones from Ecobee), an electrical plug (the iHome Control Smart Plug is one
and iDevices Switch is another), sensors that can check the weather or
the status of doors and windows (Elgato makes several), or a hub such as
Insteon Hub pro or one of the Lutron bridges.

 Before we move on, we need to know how to refer to these in general. You
can call them “devices,” of course, or even “things” (as in Internet of Things).
For this book’s discussion of HomeKit, we’ll refer to them as accessories ,
which is the term that Apple uses. There are some other HomeKit terms that
matter, but they require no special introduction (words like home and room
are used in the everyday senses).

 HomeKit Hubs
 Now that we know what to call these things (accessories), it’s time to move
on to see how they can be integrated into HomeKit. Within the home, you
have at least one hub. A hub can be an iPad or an Apple TV. It should remain
in the home and be powered on at all times. The hub can communicate over
the Internet so that remote users can get to it and manage the HomeKit
home. If there is more than one hub in the home, they can communicate
with one another as well as with the Internet.

 Within the home, an accessory communicates using Bluetooth LE
(low energy) or the WiFi network. Hubs are often referred to as remote
access devices in HomeKit documentation.

 Tip See “Setting Up Hubs” in Chapter 9, “Working with iCloud and Users with
HomeKit” to see how to set up an Apple TV or iPad as a HomeKit hub that never
sleeps. The display can sleep, but the device and its network connection needs
to always be available to HomeKit. If you have a TV connected to your Apple TV,
it can go to sleep or even be powered off: It is the Apple TV device itself that
must remain awake and reachable.

CHAPTER 1: Bringing Home Automation Home 7

 The Basic HomeKit Home
 The most basic HomeKit home consists of a hub (typically an Apple TV) and
one accessory (perhaps a HomeKit-compatible switch with a lamp plugged
into it or a lamp plugged into the wall socket but with a HomeKit-enabled
bulb in it). You also need an iOS device (iPhone, iPad, or iPod Touch) to
configure your home.

 Extending HomeKit
 There are several basic ways to move beyond the bare-bones HomeKit :

 You can add Accessory, Home, Room, and Scene
HomeKit objects

 You can add more HomeKit hub devices—such as
another iPad, but start small to get one hub and one
device working .

 Bridges: some home automation products such as Philips
Hue bulbs require an intermediate connection to their
own bridge. The bulb or other device is connected to the
bridge and it communicates with its own protocols. The
bridge is connected to HomeKit using a HomeKit protocol.
Devices such as Hue bulbs are controlled by HomeKit
through the bridge, but they do not communicate directly
with HomeKit. You don’t have to worry about this once
it’s set up because when you work with HomeKit, you see
Hue bulbs just as you see other bulbs: you no longer worry
about the bridge (as long as it remains plugged in!).

 Tip Your accessory (e.g., your lamp), needs to be turned on in the old-
fashioned way with its switch. Once it is turned on, you can use HomeKit to
adjust it or turn it off, but, particularly with light bulbs, make certain that you've
got them powered on before you use HomeKit to adjust them.

CHAPTER 1: Bringing Home Automation Home8

 Summary
 The basic architecture of HomeKit focuses on hardware—the iOS devices
you use to control HomeKit as well as the accessories such as lamps,
door locks, motion sensors, and window shades. There’s another side to
HomeKit: the software.

 You don’t need to be a software engineer to know how to put a HomeKit
installation together. You need a basic understanding of your accessories
and what they can do, but that is probably knowledge that you already have.
(Remember, we’re talking about light bulbs and lamps, door locks, and other
devices that have been around for decades (centuries in the case of door locks).

 Perhaps the most important thing to remember about HomeKit software
is that users never interact with HomeKit itself (the exception to this is to
reset all of HomeKit). Users use apps that typically are designed to work
with a single accessory or group of accessories from the same source.
In addition to the accessory-specific information, users see HomeKit
information (rooms, homes, and scenes). They expect to be able set up
a home as well as users; they also need to be able to set up scenes that
combine a number of accessories.

 Each HomeKit appliance app thus provides an entry into the overall HomeKit
environment. With this high-level view of the HomeKit architecture, it’s time
to focus on specifics.

9© Jesse Feiler 2016
J. Feiler, Learn Apple HomeKit on iOS, DOI 10.1007/978-1-4842-1527-2_2

 Chapter 2
 Exploring the HomeKit
World
 Starting with iOS 10 (released in the fall of 2016), HomeKit has an app
for users to use to control their HomeKit world. Over the years since
its announcement in 2014, Apple has been building out the HomeKit
infrastructure—the application program interfaces (APIs) that developers
use, the terminology that is shared among HomeKit developers and users
(homes, rooms, scenes, and appliances), the third-party HomeKit-enabled
products, and, most important, the ideas of how HomeKit can fit into the real
world with real people in it. These various tracks (API, third-party products,
terminology, and awareness) come together in the Home app.

 After you have iOS 10 installed (either by buying a new device equipped with
it or downloading it from the App Store), you’ll find it on your Home screen
as shown in Figure 2-1 .

CHAPTER 2: Exploring the HomeKit World10

 As you’ll see in this chapter, with the Home app, you’re on your way.

 Configuring Your HomeKit Environment
 Home provides you with the centralized controls for HomeKit—your home,
its rooms, and your accessories (devices like garage doors and lights). Your
home as well as all of your accessories are controlled from one or more
centralized devices that are always connected to power and to the Internet.
Those devices are called Home Hubs . One of them is often an Apple TV; you
can also use an iPad that is available in your house. Whichever device you
use (or both if you use both), HomeKit makes two assumptions.

 Figure 2-1. Home app on the Home screen

CHAPTER 2: Exploring the HomeKit World 11

 The first assumption is that the Apple TV or iPad is always powered on and is
awake (you’ll see how to keep your Apple TV awake with the settings shown
at the end of this chapter). Typically, that’s from a direct connection to power
(an outlet in lay parlance). In the case of an iPad, it can be the battery. In the
cases of both Apple TV and iPad, you may be running on battery power that the
device itself doesn’t know about. This is the case, for example, if you have your
own power backup system that kicks in when power from the grid isn’t available.
These backup devices (usually generators or battery-powered) are becoming
more widely available and their prices are coming down. The devices that are
plugged in to them, often have no way of knowing if the power is coming from
the grid (through a wall outlet) or from the generator or backup system.

 No matter your details, HomeKit assumes always-on power so that timers
can run all the time.

 The second assumption is that your Apple TV and/or iPad will always have
an Internet connection. There is some link between power and Internet—if
your power goes down, your Internet connection may also be lost.

 It’s wise to have automatic precautions for your power and Internet to
continue functioning in the case of outages, and modern devices rely on
that happening—that is, they rely on your environment providing whatever
 contingency planning is necessary to having continuous power and Internet.

 Now it’s on to more specific requirements for HomeKit.

 Starting from an Apple ID
 You need an Apple ID for Home. An Apple ID uniquely identifies you, and it
is normally linked to a valid credit card. (You can work around the credit card
link in some cases—see https://appleid.apple.com/us for more details.
(Note that the URL (uniform resource locator) provided here is for the United
States. Log on to apple.com in your home country and search on Apple ID
to find your localized information.)

 When you create your Home in Home, it’s yours—that is, it is identified with
your Apple ID. Within Home, you can create multiple homes, rooms, and
accessories, but they’re all part of your home that’s linked to your Apple ID.

 Many people have more than one Apple ID. Sometimes it happens by
accident over time, particularly as Apple ID has evolved. Other times it’s
deliberate, as is the case for developers and authors who must have separate
Apple IDs for the accounts they use to manage their apps and their iBooks.

 You can use Family Sharing to share a single Apple ID among several other
family members, each of whom has an Apple ID. Family Sharing is designed
largely for kids so that the single organizer (an adult who’s a parent or
guardian) gets the bill for everyone. This allows kids under 13 to have their
own Apple IDs and to purchase—with permission—from the family account.

https://appleid.apple.com/us

CHAPTER 2: Exploring the HomeKit World12

 You have at least one Apple ID already if you have bought anything from
iTunes or the App stores. In almost all cases, it’s best to use an existing
Apple ID for Home. If you start creating new Apple IDs for each use, you
may wind up with a bit of a mess.

 Once you have your Apple ID and Home installed on your Apple TV or an
iPad, you’re ready to go.

 Quick Start with iPad
 If you want to jump right in, here’s how you can get started with Home on
iPad. Once you’ve installed iOS 10 (or purchased an iPad with it preloaded),
just tap Home as shown previously in Figure 2-1 .

 After you’ve tapped Home for the first time, here’s what you see and what
you do:

 1. The screen shown in Figure 2-2 is your first-time
introduction. All you have to do is tap Get Started.

 Caution This is what you see the first time. If you’ve ever launched Home
before, you won’t see these steps: Don’t worry! Everything that’s shown here
and that matters is also described in the section “Managing Home Settings.”

CHAPTER 2: Exploring the HomeKit World 13

 Figure 2-2. Get started

CHAPTER 2: Exploring the HomeKit World14

 2. The first time you use Home, you’ll be prompted
to allow access to location while the app is in use,
as shown in Figure 2-3 . You can use some parts of
 HomeKit without using Location Services, but many
features rely on your location, so you’ll severely limit
its usability if you tap Don’t Allow. So do tap Allow.
(See the Tip later on how to reset this.)

 Figure 2-3. Allow access to location

CHAPTER 2: Exploring the HomeKit World 15

 3. Once you’ve managed Location Services , you’re in
as shown in Figure 2-4 .

 You can explore Home at this point, but if you can resist the temptation to
jump right in, Chapter 3 will take you on a guided tour. Here’s one preview
to whet your appetite (and it will help you navigate in Home). At the bottom
of the screen shown in Figure 2-4 , note the tab bar with two tabs: Home and
Automation. Tap Automation to get a preview of what’s in store as shown in
Figure 2-5 .

 Figure 2-4. Start to use Home

http://dx.doi.org/10.1007/978-1-4842-1527-2_3

CHAPTER 2: Exploring the HomeKit World16

 You can always switch from one area of Home to another using the tab bar
at the bottom.

 Managing Home Settings
 As with most iOS apps, you can manage settings for your apps using
Settings from the Home screen. Some settings are set here, and others are
set inside the app itself. Settings typically manages the most general settings
as well as settings that can (sometimes must) be set outside the app.

 Figure 2-5. Get a preview of automation in Home

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: Exploring the HomeKit World 17

 1. On your iPad, tap Settings and select Home from the
list of built-in apps as shown in Figure 2-6 .

 Tip An example of in-app settings compared to Settings app settings is often
iCloud use. When you first run an iCloud-enabled app, you are typically asked
if you want to use iCloud. If you later want to change that decision, you make
the decision in Settings rather than in the app. This structure enables the app
to make the necessary internal adjustments when you turn iCloud on or off for
the app. Doing it in this way means that the actual work of switching to or from
iCloud can be done behind the scenes rather than inside the app. It also means
that you can make the change to or from iCloud when the app isn’t even running.

 Figure 2-6. Select Home in Settings

 You will probably want to use iCloud for HomeKit at
some time in the future, so you might as well turn it
on here. Remember, that you need an Apple ID for
iCloud. That should be the same Apple ID you’re
using with HomeKit.

CHAPTER 2: Exploring the HomeKit World18

 2. You also can use this opportunity to designate the
device you’re using (an iPad or Apple TV) as Home
Hub, remember you can have more than one.

 3. You start with a single Home as you see in Figure 2-6 .

 4. You can tap the disclosure triangle to configure it
further as shown in Figure 2-7 .

 Figure 2-7. Configure a Home

 5. Note that you will always have the option to
completely start over using the button shown at the
bottom of Figure 2-6 . It opens the alert shown in
Figure 2-8 .

CHAPTER 2: Exploring the HomeKit World 19

 Moving into Your Home
 When you launch Home after configuring Settings (if you do that now—
remember it’s optional) you may see the basic screen shown in Figure 2-9 .

 Figure 2-8. You can always reset Home

 Caution This is the way to reset Home. You can achieve a similar result by
removing Home from your device. As is the case with removing any app, you’ll
remove its data. That is a brute-force way of resetting Home, and it is definitely
not recommended.

CHAPTER 2: Exploring the HomeKit World20

 This is your Home as shown in the app. What you see will vary depending on
your specific home, its rooms, and its appliances. You can configure the
 background image as well as just about everything in the view. The background
image can be a photo of your home. Maybe you’d like the background image to
be the view you see from the bedroom window.

 Tip Remember, Home (the app) can manage several homes, so the
background image that you choose for a specific home should very clearly
remind you what it is. For a dorm room at school (yes, a single room can be
a Home in some cases), you might choose a photo of a campus landmark.
For your actual home (i.e., “the place where, when you have to go there, they
have to take you in,” as Robert Frost wrote), you might choose a photo of the
backyard. Why would you make these photo choices? If your Home image
shows your bed and desk covered with computer, papers, lunch (date of lunch
undetermined), and so forth, you may not be able to quickly notice which of
those photos is which place.

 Figure 2-9. Exploring your Home

CHAPTER 2: Exploring the HomeKit World 21

 Add and Configure a Home
 You can see the default Home, and you may have explored it. Now it’s time
to build your own. To add a new Home, tap the arrow in the top left of the
window shown previously in Figure 2-9 .

 You’ll see the Add Home alert as shown in Figure 2-10 .

 As you see in Figure 2-10 , you can name your Home. You’ll be able to
invite people to control the Home accessories (that will be discussed in
Chapter 3). You can take a photo for your Home wallpaper or choose from
an existing image. You can come back here later on to rename the Home,
change the wallpaper, or invite people to control the accessories.

 Figure 2-10. Add a Home

http://dx.doi.org/10.1007/978-1-4842-1527-2_3

CHAPTER 2: Exploring the HomeKit World22

 Edit or Add a Room
 Use the Rooms tab in the tab bar at the bottom of a Home window to look
at your Rooms. Use the list icon at the top left of the window to see the
options for Rooms as shown in Figure 2-11 . You can configure the Room
you’re looking at or add a new Room.

 If you choose Room Settings, you’ll see the alert shown in Figure 2-12 where
you can add a new Room or configure an existing Room.

 Figure 2-11. Manage Rooms

CHAPTER 2: Exploring the HomeKit World 23

 Remember that the default room is named Default Room. Use the disclosure
triangle to the right of its name to rename it (or any room). When you tap the
disclosure triangle, you can set the room data as shown in Figure 2-13 .

 Figure 2-12. Add or configure a Room

CHAPTER 2: Exploring the HomeKit World24

 Notice the pattern here: set the name for a Home, Room, or (in the following
section) accessory. Set its wallpaper from an existing image or take a photo.
That’s the routine: name, wallpaper, Done (top right) or Cancel (top left).

 Add and Configure an Accessory
 Accessories are lamps, garage doors, or any of devices that will be known
to HomeKit and controlled by it. Add an accessory from the + at the top
right of a Home or a Room (switch between them with the tab bar at the
bottom of the screen. Figure 2-14 shows adding an accessory to a Home.

 Figure 2-13. Configure a Room

CHAPTER 2: Exploring the HomeKit World 25

 Adding an accessory starts the process by which HomeKit searches for
the accessory and configures it for HomeKit. Figure 2-15 shows the initial
screen, and Chapter 3 describes the steps.

 Figure 2-14. Add and configure an accessory

 Note Scenes are combinations of accessories and schedules. They’re what
you use to pull the pieces of Home automation together. They’re discussed in
Chapter 3 .

http://dx.doi.org/10.1007/978-1-4842-1527-2_3
http://dx.doi.org/10.1007/978-1-4842-1527-2_3

CHAPTER 2: Exploring the HomeKit World26

 Figure 2-15. Start to configure an accessory

27© Jesse Feiler 2016
J. Feiler, Learn Apple HomeKit on iOS, DOI 10.1007/978-1-4842-1527-2_3

 Chapter 3
 Adding Scenes—
The Practical Part of
HomeKit
 In Chapter 2 , you see the very logical and recognizable structure of HomeKit
homes: the home contains rooms, and each room contains accessories
such as lamps, sensors for smoke or temperature, and a whole variety of
devices such as garage door openers (well, maybe not inside a room) and
automated window blinds. You can use HomeKit to manage all the rooms
and accessories by turning them on and off or adjusting their settings. You
can also use HomeKit to check the settings of accessories, such as whether
they’re on or off as well as their brightness and color (in the case of bulbs).

 This is a nice structure, and it’s quite recognizable. As you proceed through
the book, you’re going to see how to control these things, and when you get
a bit further into the book, you’ll find out how to automate them.

 In many ways, this pattern (home ➤ room ➤ accessory) is what you live
with. Watch how you turn your accessories on and off during your day at
home. For many people, the turning on and off depends on the time of day,
where you are in the home, and what you are doing. When you go into a
small room (particularly at night), you turn on the light, and that light is often
a ceiling fixture. A larger room may have a single ceiling fixture, but, in many
rooms there are several lamps and perhaps not even one ceiling fixture.
There may be a reading/working light on the desk, and a floor lamp by an
easy chair, and perhaps a small nightlight you turn on overnight to prevent
people (including yourself) from walking into furniture.

http://dx.doi.org/10.1007/978-1-4842-1527-2_2

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit28

 Many people organize these lights into groups so that a single light switch
turns on several of them at the same time. It’s not particularly burdensome
to walk into your living room in the evening and turn on three separate lights,
but it’s not necessary with various mechanical devices (e.g., power strips).

 What Is a Scene?
 HomeKit scenes are just a digital version of the multiple-light scenario. A
scene is a set of accessories each of which can be added to the scene with
its own specific settings.

 Creating Basic Scenes
 You can create a scene for evening in your living room that turns on the floor
lamp by a sofa as well as a reading lamp on the desk. Because accessories
can be more than lamps, the evening scene could also include a window
shade accessory. When the scene is constructed from the accessories,
you can set their attributes so that in the scenario just described, the scene
could be formally defined as follows:

 Floor lamp: soft white (2550 K), 50% brightness

 Reading lamp: standard white (2400 K), 80% brightness

 Window shade: closed

COLOR TEMPERATURE

 Color temperature (measured on the Kelvin scale and abbreviated K) is the description of the
type of light emitted by a bulb or other light source. (It’s actually more complex than this—
you can find an excellent reference on Wikipedia at https://en.wikipedia.org/w/
index.php?title=Color_temperature&oldid=740585423 . Without getting too deep
into the details, consider these K values and what they represent (the representations are
subjective and not part of a formal classification):

 1850 K candle flame

 2400 K standard incandescent light bulb

 2550 K soft white incandescent light bulb

 3000 K warm white compact fluorescent bulbs

 6500 K overcast daylight

 15,000-27,000 K clear blue sky

https://en.wikipedia.org/w/index.php?title=Color_temperature&oldid=740585423
https://en.wikipedia.org/w/index.php?title=Color_temperature&oldid=740585423

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit 29

 Another scene can be created to end the evening. A go-to-bed scene might
look like this:

 Floor lamp: soft white (2550 K), 10% brightness

 Reading lamp: standard bulb (2400 K), 0% brightness

 Window shade: closed

 Scenes Can Involve Several Rooms
 Think back to the home ➤ room ➤ accessory pattern, and you can see that
this all fits very well. But now you can modify this scene in a way that breaks
that pattern. Consider the following variation on the evening scene:

 Floor lamp: soft white (2550 K), 50% brightness

 Reading lamp: standard bulb (2400 K), 80% brightness

 Window shade: closed

 Bedside lamp: soft white (2550 K), 75% brightness

 What is broken in the home ➤ room ➤ accessory pattern is that now the
go-to-bed scene includes a lamp in another room (the bedside lamp in
the bedroom). This is important whether you use scenes manually from an
iOS device or as part of an automation. The collection of accessories in a
scene doesn’t rely on the rooms those accessories are in. If you move the
accessories from one room to another, the scene will still function. (You may
be surprised at the results until you realize that the lamp on the coffee table
used to be on the bedside table.)

 Scenes Can Be Automated and Respond to Siri
 Another important aspect of scenes is that each scene has a name, and Siri
recognizes those names. Thus, scenes are critically important for automation
(described in the final chapter of the book) as well as for Siri. If you want to
move beyond building a complex replacement for a light switch that costs
less than a dollar , having automation and voice recognition tools is key.

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit30

 Scenes Are Instantaneous
 There’s one final aspect of scenes to consider: they are instantaneous.
This doesn’t mean that they are activated immediately when you tap a
scene button or get to the time a trigger is set to function: it takes time for
messages to be sent over the network. Rather, it’s important to note that a
scene describes accessories and their settings at a single point in time. If
you manually turn a light that is part of a scene on or off, it will remain on or
off until the next scene that involves it is activated. A by-product of this is
the fact that if you want lights to be on for a period of time (or a door to be
locked or unlocked for a period of time), you will need two scenes: one to
turn it on/lock it and another to turn it off/unlock it.

 Because each scene is independent, if you construct a scene to turn
on several lights, you must construct another scene (or use Siri or iPad
controls) to turn off the lights.

 Working with Scenes
 To start working with scenes, take a look at your home screen in the Home
app as shown in Figure 3-1 .

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit 31

 This screen provides a summary of your home. Your favorite scenes are
shown here. This is an excellent place to put scenes that involve several
rooms: you just mark them as favorites.

 Figure 3-1. See scenes on the home screen

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit32

 Creating a Scene
 From the home screen, use the + in the top right to add a scene as you see
in Figure 3-1 .

 HomeKit has several predefined scenes , as you will see after you tap Add
Scene (shown in Figure 3-2).

 Figure 3-2. Create a new scene

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit 33

 These scenes have names that should get you started thinking. They are not
predefined beyond their names because they have to use your accessories .

 You can create your own scene by tapping Custom. If you create a custom
scene, you can name it as in the alert shown in Figure 3-3 .

 Figure 3-3. Name a scene

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit34

 Adding Accessories
 After you name a scene, you can add accessories to it as you see in
Figure 3-4 . (You can always come back later to rename it and add or remove
accessories.)

 Figure 3-4. Add accessories

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit 35

 You’ll see your rooms and their accessories as shown in Figure 3-4 . You can
add any accessory by tapping the circle at the top right. You can also add
all the accessories in a room by tapping Add All. Figure 3-5 shows all of the
accessories added in that way for the dining room. Note that Add All for the
dining room is now changed to Remove All.

 Figure 3-5. Add a room ’s accessories

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit36

 As you see in Figure 3-6 , you can also add or remove individual accessories
in a room just by tapping that round circle in the top right of the accessory.

 Tap Done at the top right to finish adding or removing accessories.

 Figure 3-6. Add or remove individual accessories

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit 37

 Adjusting Accessories
 When you tap Done, you’re back to the basic scene description as shown in
Figure 3-7 . You can rename it here, but what’s important is that you can now
adjust your accessories and test the scene.

 Tip At least while you’re testing, add the scene to Favorites on the home page
as you can see in Figure 3-7 .

 Figure 3-7. Adjust your scene and accessories

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit38

 To adjust an accessory , tap and hold it to open the detail view shown in
Figure 3-8 . Remember that this view will be different depending on the type
of accessory you are dealing with. Figure 3-8 shows a light bulb detail view .
You can slide the divider on the bulb up or down to adjust the brightness.

 Finishing Up
 When you’re finished, you can see your new scene on the home screen
(at least you can if you added it as a favorite as shown in Figure 3-7).
Figure 3-9 shows the home screen now.

 Figure 3-8. Adjust an accessory

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit 39

 Editing Your Scene
 Tap and hold a scene on the home screen (or on a room screen—the room
screen shows all scenes for that room). When you lift your finger after the
hold, you’ll see the scene as shown in Figure 3-10 . Tap Details at the bottom
of the screen to edit it.

 Figure 3-9. New scene on the home screen

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit40

 As you see in Figure 3-11 , you’re back to being able to edit the scene . If you
made it a favorite just for testing, you can turn that off here.

 Figure 3-10. Start to edit the scene

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit 41

 You can delete a scene from here as well. If you do, you’ll need to confirm it
as you see in Figure 3-12 .

 Figure 3-11. Edit the scene

CHAPTER 3: Adding Scenes—The Practical Part of HomeKit42

 It’s important to remember that scenes build on the accessories in your
home, but they do not modify those accessories. This means that you can
delete a scene without disturbing anything else. (If the scene is used in an
automation, you will upset the automation , of course, but you won’t affect
the accessories themselves.)

 Figure 3-12. Delete a scene

43© Jesse Feiler 2016
J. Feiler, Learn Apple HomeKit on iOS, DOI 10.1007/978-1-4842-1527-2_4

 Chapter 4
 Exploring Your
Development
Environment
 For almost every HomeKit developer, getting started means setting up a
new environment and, in some cases, a new way of working. If you’re a
developer who’s familiar with iOS, you’re well on your way to HomeKit . . .
as long as your familiarity includes the most recent version or two of iOS.
Lots of things have changed in the decade (barely) since iOS emerged from
iPhone OS (which in turn only emerged from NeXTSTEP and OpenStep after
Apple bought NeXT in 1997).

 As a HomeKit developer, you need to become familiar with HomeKit itself in
addition to iOS . And just to keep you on your toes, you’ll need to start using
the latest version of Xcode, the integrated development environment (IDE)
for iOS and Mac apps.

 You may need to explore a new programming language (Swift), and, perhaps,
you’ll need to become familiar with event-driven programming. This may
seem like a tall order, but, in fact, these are common aspects of today’s
development environments, and whether you’re developing for HomeKit
or another modern API (application program interface) (even one on other
platforms), you’ll probably need to know at least some of these things.

 So let’s get started.

CHAPTER 4: Exploring Your Development Environment44

 Getting Developer Access
 Apple is making it increasingly easy for developers—including those new
to the platforms—to develop apps for macOS and iOS. If you’re already
an Apple developer, you have your developer credentials and can skip this
section and move on to “Downloading the Tools.” If you’ve never been an
Apple developer, this section provides you with an overview. And if you’ve
been an Apple developer but haven’t used your account for a while (since
about 2015), there have been a number of changes (simplifications) that
you’ll need to know about.

 What has not changed is that you need an Apple ID to access the full range
of developer tools. An Apple ID is free for the asking as long as you are
over 13 (the age may vary by the country you are in) and have a valid e-mail
address (to be used to confirm your identity). Your Apple ID can be used for
purchases in iTunes, the App Store, and the Mac App Store. If you already
have one, you can use it as a developer.

 However, note that as a developer, you may want to have a separate Apple
ID account. In fact, if you are an iBooks Author, at least at the moment, the
Apple ID you use to publish in the iBooks Store needs to be separate from
your developer Apple ID. (Check out developer.apple.com for the latest
information for your country.)

 What is most important is that you need an Apple ID (free) and that Apple
ID gives you access to development tools like Xcode (the IDE) and the iOS
Simulator that you can use to test your iOS apps.

 With your free Apple ID, you can build apps and test them on your own
devices. (This capability is new beginning with Xcode 7 in 2015. Before that,
you had to be part of a developer program.)

 Speaking of which, you may want to become a member of one of Apple’s
developer programs at some time. Although you can now install your apps
on your own devices without being a developer program member, you
cannot submit them to an App Store without being a registered developer.
This means that you cannot distribute them to other people. In order to have
access to the App Store, you need to join one of the developer programs at
developer.apple.com. There are several types of programs, but most
developers opt for the $99/year basic membership that gives you access to
the App Store.

CHAPTER 4: Exploring Your Development Environment 45

 With your Apple ID (whether for your personal use or a separate one to
use as a developer), you’re ready to download and install the tools to start
building HomeKit apps.

 Reviewing the Tools
 Membership in one of the Apple developer programs, as described in the
previous section, gives you access to the tools you need. You don’t need all
of them to start, but here is a review of what they are and what you need to
look for.

 Don’t be put off by this list: it’s designed to give you an idea of what is
involved. The standard download of Xcode includes all the current versions
of these tools. Options in Xcode let you automatically receive updates as
they are released. (You can also receive updates only on demand. Typically,
automatic updates are for minor—“dot”—releases such as 8.3.1, as
opposed to major releases such as 8 or even 8.3.)

 Furthermore, remember that Xcode and these tools are available without
charge. Some of the development features may require a developer program
membership, but the basic development tools and the tools to deploy them
on your own devices are free.

 Tip The full download may take a while. You may want to go to the Energy
Saver panel in System Preferences to prevent automatic sleep until the
download is complete. You also may choose to do the full download at a time
when your system and communications environments are not being stressed—
overnight is a good choice in many cases.

 Note Your developer program membership typically includes two Developer
Technical Support incidents (DTIs) a year. You can buy more of them at $99 for
two. A DTI allows you to ask a question of an Apple engineer. It can be broad,
such as “where do I find information about . . .,” but most developers use the
more detailed technical support. You can submit an app (or part of an app)
with which you’re having trouble as a developer. (DTIs don’t cover support for
using other people’s apps, but they do cover support for using Xcode.) An Apple
engineer will review your code and help you pinpoint problems and solutions.
This is an incredibly valuable resource, particularly if you are an independent
developer who can’t turn to a colleague to help you out (and you’ll of course
offer to return the favor some time).

CHAPTER 4: Exploring Your Development Environment46

 The tools fall into several interrelated categories.

 Languages

 Frameworks

 Simulators

 Languages : Swift and Objective-C
 Before Apple bought NeXT and launched OS X (and later, iOS), developers
used a variety of programming languages. The original Mac was based on
Pascal, and the operating system contained a bit of low-level code as well.
Over time, the operating system also included some C and C++. The NeXT
acquisition brought with it the Objective-C programming language which
had been developed along with NeXT (you can find more about the history
on Wikipedia which has several excellent articles on it).

 Objective-C remained the primary language for Mac and iOS for a long time,
and it still is a major language both for the operating system and for
application programming. However, as with other object-oriented
programming languages, advances in hardware and software opened up
new opportunities. Objective- C remained (and to this day still remains)
primarily under Apple’s management. In 2014, Apple released the first
version of a new programming language: Swift. It takes advantage of many
advances in operating system and software development technologies.
Swift is now an open source project, and there are versions available on
Linux and the IBM Swift Sandbox web site (https://swiftlang.ng.bluemix.
net/?cm_mmc=developerWorks-_-dWdevcenter-_-swift-_-lp&cm_mc_
uid=58573134700514602917751&cm_mc_sid_50200000=1460291775#/repl)

 If you are new to development on Apple platforms, Swift is generally the
easiest language to learn; you’ll eventually need a simple understanding of
Objective-C in some special cases (this is akin to the distinction between
passive—reading—knowledge of a natural language and active—speaking
or writing—knowledge of a natural language).

 Note Both Objective-C and Swift remain widely used on Apple products
and on third-party apps. Although Apple’s demonstrations and example code
typically use Swift today, Apple often provides alternate versions in Objective-C.
Furthermore, considering the enormous amount of legacy software, both
languages will continue in use for the foreseeable future.

https://swiftlang.ng.bluemix.net/?cm_mmc=developerWorks-_-dWdevcenter-_-swift-_-lp&cm_mc_uid=58573134700514602917751&cm_mc_sid_50200000=1460291775#/repl
https://swiftlang.ng.bluemix.net/?cm_mmc=developerWorks-_-dWdevcenter-_-swift-_-lp&cm_mc_uid=58573134700514602917751&cm_mc_sid_50200000=1460291775#/repl
https://swiftlang.ng.bluemix.net/?cm_mmc=developerWorks-_-dWdevcenter-_-swift-_-lp&cm_mc_uid=58573134700514602917751&cm_mc_sid_50200000=1460291775#/repl

CHAPTER 4: Exploring Your Development Environment 47

 Frameworks
 Frameworks have evolved over the years. Today, the term refers to a
collection of reusable libraries just as it has done for many years. Those
libraries can also contain resources such as images and strings. What you
may not have noticed is the scope of frameworks. In the world of Apple’s
software, most of today’s frameworks can be traced back to NeXTSTEP.
Two major frameworks and sets of frameworks emerged: core frameworks
and higher-level frameworks focusing on the user interface (this is a vast
simplification, but it is sufficient to provide a background for your HomeKit
development).

 Over the years, smaller frameworks have been created as part of the
operating systems. Their names make it clear what they are. At the core
level, there are frameworks such as CoreLocation , CoreGraphics , CoreText ,
 CoreVideo , and more. At the interface level, there are frameworks such as
 AddressBook , CloudKit , UIKit (for views and controls), Security framework,
 WebKit , and the like.

 Frameworks are packaged to be reusable. When you first create a project in
Xcode, you choose the type of project to create and the relevant frameworks
are automatically installed in it. You can add others as you go along. (Don’t
worry about discarding frameworks you don’t use: the Xcode build process
doesn’t copy unused frameworks into your runnable code.)

 A key feature of frameworks is that they can be versioned. This means
that they can be developed and revised in parallel with the code that uses
the frameworks, but the connection is fairly loose because you can have
multiple versions of a framework in your development environment at the
same time.

 Frameworks have most recently evolved to allow the sharing of code across
Apple platforms. If you have an API that you create to manage your data,
you may package it (or an interface to it) into a framework that is totally
platform-neutral. You can then include the framework in your code for iOS,
macOS, watchOS, and tvOS. In each of those environments, you can write
the user interface that is appropriate, but the framework itself may be
platform-agnostic.

 What this means is that you’ll be using frameworks that are part of the
development kits from Apple, and, most likely, you’ll be creating smaller
frameworks for your own use. (This latter use of frameworks has become
increasingly important over the last few years with the need to write code for
both iOS and OS X as well as now for watchOS and tvOS.)

CHAPTER 4: Exploring Your Development Environment48

 Simulators
 It has always been a challenge to write code for products that don’t yet
exist (early Macintosh application code as well as the operating system
was written on the Lisa computer, and, even today, we write code for iOS
devices on Macs).

 The code for not-yet-existing devices has to be tested somehow, and
so we have simulators available to run the code on a host—your Mac in
these cases. Today, you can download simulators for various devices and
operating systems.

 With your standard Xcode download, you’ll find the current versions of
the operating systems for iOS, macOS, watchOS, and tvOS. You’ll also
typically get the immediately prior versions automatically. You’ll be able to
download even earlier versions if you want them. At some times, registered
developers are able to download pre-release or developer preview versions of
upcoming operating systems. These downloads are covered by nondisclosure
agreements that you agree to when you become a registered developer.

 In addition to versions of the operating systems, you’ll also be able to
simulate various devices. The pre-release versions of operating systems are
typically available several months before their public release. Pre-release
versions of hardware (e.g., new versions of iPad), are typically less widely
available until the public announcement.)

 The most important thing to remember about simulators is that they are only
simulators: nothing can do fully accurate testing except for the actual device.
Some features (iCloud synchronization is one) are totally under your control: it
doesn’t happen automatically as it does on actual devices, but you trigger it
with a command on the iOS Simulator. This lets you manage your testing.

 Simulating HomeKit Accessories
 HomeKit introduces a whole new set of devices to simulate: the third-party
HomeKit accessories. These present a difficult task both for Apple and for
developers because the development of these third-party products is under
the control of the third parties.

 Apple has created a tool that lets you simulate these accessories whether
they exist yet or not. That tool itself (HomeKit Catalog) is available for
your use. Its source code is downloadable from developer.apple.com and
is discussed in Chapter 5 . If you want to get a jump, you can download
the HomeKit Accessory Simulator from https://developer.apple.com/
library/content/documentation/NetworkingInternet/Conceptual/
HomeKitDeveloperGuide/EnablingHomeKit/EnablingHomeKit.html#//apple_
ref/doc/uid/TP40015050-CH2-SW3 .

http://dx.doi.org/10.1007/978-1-4842-1527-2_5
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/EnablingHomeKit/EnablingHomeKit.html#//apple_ref/doc/uid/TP40015050-CH2-SW3
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/EnablingHomeKit/EnablingHomeKit.html#//apple_ref/doc/uid/TP40015050-CH2-SW3
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/EnablingHomeKit/EnablingHomeKit.html#//apple_ref/doc/uid/TP40015050-CH2-SW3
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/EnablingHomeKit/EnablingHomeKit.html#//apple_ref/doc/uid/TP40015050-CH2-SW3

CHAPTER 4: Exploring Your Development Environment 49

 Getting Set Up
 You can download the current version of Xcode from the Mac App Store or
from the Xcode page on the Developer site: https://developer.apple.com/
xcode/ . If you go to developer.apple.com and register as a developer, you
can follow the links there. Downloads from the developer site may give you
more information than just the Mac App Store download , particularly if you
have registered for one of the development programs.

 What’s Next
 Download the current version of Xcode (or update your older version). Try to
build some of the built-in projects to get a feel for the process.

 Next, it’s time to move on. Start by getting a variety of HomeKit accessories
that you can use for testing. Put your wallet away! Chapter 5 helps you build
your own HomeKit accessories to use for simulating your HomeKit app.
Before you know it, you’ll have HomeKit lights, locks, sensors, and garage
door openers in your (virtual) hands.

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
http://dx.doi.org/10.1007/978-1-4842-1527-2_5

51© Jesse Feiler 2016
J. Feiler, Learn Apple HomeKit on iOS, DOI 10.1007/978-1-4842-1527-2_5

 Chapter 5
 Working with HomeKit
Accessories
 In the previous chapters you’ve seen the basis of HomeKit and its
architecture. Now it’s time to put it to work, and that involves accessories—
your lights, door openers and lock mechanisms, sensors, and the whole
range of HomeKit-enabled devices that you find in ever-increasing numbers
in local stores and on the Internet . (It’s like the old saw: if a tree falls in the
forest and no one is around to hear it, does it make a sound?) Without
accessories to be controlled, HomeKit does nothing. This chapter shows
you how to put HomeKit to work.

 Set Up a HomeKit Test Lab
 You can read this chapter as an overview and then refer to it as necessary.
After you’ve set up a few accessories, you get into the swing of things and
it’s very easy to add more or to modify the ones that you have installed.
If you’re antsy to get started right away, one way to dive in is to set up a
HomeKit test lab. Don’t worry: it’s simple and not very expensive. In fact,
you may already have everything you need. The HomeKit test lab consists
of a small lamp with a HomeKit-compatible bulb. (A bedside lamp is just
the right size.) You can also test with a HomeKit-compatible outlet like
the iDevices Switch ($49 at the time of this writing from the Apple Store
 http://www.apple.com/shop/product/HJDA2LL/A/idevices-switch?fno
de=7f25f48c45679a233b5f95df8a36e8c57b1a59eec22a1199de38581ece45
f61e35befe08d1b8717ea467a33ece28d6f31812356449f121305b81329c678-
02ef1fda2f5ae7635b27545b0c648dfa77050b432ea48991f2da917f39542d5bff8e3)

http://www.apple.com/shop/product/HJDA2LL/A/idevices-switch?fnode=7f25f48c45679a233b5f95df8a36e8c57b1a59eec22a1199de38581ece45f61e35befe08d1b8717ea467a33ece28d6f31812356449f121305b81329c67802ef1fda2f5ae7635b27545b0c648dfa77050b432ea48991f2da917f39542d5bff8e3
http://www.apple.com/shop/product/HJDA2LL/A/idevices-switch?fnode=7f25f48c45679a233b5f95df8a36e8c57b1a59eec22a1199de38581ece45f61e35befe08d1b8717ea467a33ece28d6f31812356449f121305b81329c67802ef1fda2f5ae7635b27545b0c648dfa77050b432ea48991f2da917f39542d5bff8e3
http://www.apple.com/shop/product/HJDA2LL/A/idevices-switch?fnode=7f25f48c45679a233b5f95df8a36e8c57b1a59eec22a1199de38581ece45f61e35befe08d1b8717ea467a33ece28d6f31812356449f121305b81329c67802ef1fda2f5ae7635b27545b0c648dfa77050b432ea48991f2da917f39542d5bff8e3
http://www.apple.com/shop/product/HJDA2LL/A/idevices-switch?fnode=7f25f48c45679a233b5f95df8a36e8c57b1a59eec22a1199de38581ece45f61e35befe08d1b8717ea467a33ece28d6f31812356449f121305b81329c67802ef1fda2f5ae7635b27545b0c648dfa77050b432ea48991f2da917f39542d5bff8e3

CHAPTER 5: Working with HomeKit Accessories52

Plug anything you want into the switch and control the switch and the
plugged-in device from HomeKit. Both of these test labs let you get to work
with HomeKit right away.

 Your light bulb or switch should be marked as compatible with HomeKit.
(If you’re using a switch for a lamp to test with, the switch needs to be
HomeKit-compatible, but the bulb in the lamp can be ordinary.) Don’t just
ask for something that works with a generic home automation product. Look
for the logo shown in Figure 5-1 .

 Figure 5-1. Check for HomeKit compatibility

 For an updated list of accessories, look on apple.com. This list varies by
country so search for HomeKit on local your version of apple.com. In the
United States, the list is at https://support.apple.com/en-us/HT204903
WARNING (or TIP): Watch for the hub!

 In addition to compatibility with HomeKit, when you buy a device, make
certain that it does not require an external hub. HomeKit will be your hub,
and it will communicate either directly with your accessories over WiFi or
it will communicate with a third-party hub that then communicates to the
third-party accessory. The iDevices Switch described in this section does
not require a hub so you can just plug it in and start. Philips Hue bulbs
require the Philips hub (included in many of their starter kits). Some of the
cheaper home automation products require external hubs that are not
included in the packaging.

https://support.apple.com/en-us/HT204903

CHAPTER 5: Working with HomeKit Accessories 53

 Set Up HomeKit
 Now that you have your appliance set up (that’s the tree in your forest), it’s
time to control it. You’ve already seen the basic HomeKit structure, but now
is the time to use it for real.

 There’s a hub to HomeKit: the central location from which everything is
controlled. With today’s HomeKit, that hub is typically an Apple TV, but it
can also be an iPad. Whatever it is, it should be something that is powered
on at all times and that has Internet and WiFi connections. In the case of
an Apple TV, the TV itself need not be on: in fact, most unused TV screens
will conserve energy and power off or sleep while the Apple TV continues to
function and draw a small amount of power. If you’re using an iPad, it should
be plugged in; it, too, will draw a relatively small amount of power when it’s
simply connected and there is no user interaction.

 If your hub (Apple TV or iPad) loses power or runs out of battery power, don’t
worry. It should pick up right where it left off when power is restored. The only
exception is if the power failure occurs while you are adjusting the settings. In
that case, you may lose some data, but you can always restore it.

 It’s not necessary to use an uninterrupted power supply (UPS) with your
Apple TV or iPad, but, as with any device other than the most basic, a surge
suppressor is a good idea.

 Tip HomeKit has evolved over several years as Apple and third-party
developers have refined the products and brought them to market. The
description of HomeKit in this book, and, particularly, in this chapter, reflects
HomeKit as it is in iOS 10. iOS 10 is really the first large-scale deployment of
HomeKit. It’s installed as part of the standard installation on iPad and Apple TV.
Also, it incorporates some changes that make it easier to use than previous
versions. If you need to check for further information or look at discussions on
the web, check the dates of the material carefully. Look for iOS 10 or 2016:
material from earlier versions and dates is likely to no longer be correct.

CHAPTER 5: Working with HomeKit Accessories54

 As described in Chapters 2 and 3 , you can start from the default room in
your default home. Before going ahead to set up everything, it’s a good idea
to resist that temptation and get one lamp or one outlet working.

 Tip If you have a home automation hub like the Philips Hue bridge, your lights,
rooms, and scenes, are often described there. Look at the documentation for
that product for a guide to integrating it with HomeKit. In the case of the Philips
Hue system , you can follow the directions on the Philips web site to add the hub
itself as a HomeKit appliance. You add the hub and then use the Hue iOS app to
move appliances over. Once HomeKit recognizes them, you can move them into
rooms and use them in automations. Now that HomeKit is stable and deployed,
these third-party products are often being refined, so check the vendor’s web
site for guidance. Because HomeKit and third-party hubs have a bit of overlap in
their functionality, you may have to do a little bit of fiddling until the dust settles
on this integration. Look at the web sites for HomeKit and your hub for further
guidance. You may need to be a bit flexible and imaginative. For example, when
working with the Hue app and a Philips bridge, you’ll soon realize that adding
lights to Siri (in the Hue app) means adding them to HomeKit. Once things are
set up, it’s terrific. You can reset your entire HomeKit environment by going to
Settings->Privacy->HomeKit. If you’ve added a Hue bridge, you’ll see it there.
Make sure it’s turned on in Settings. Also notice the Reset HomeKit configuration
button: it doesn’t hurt to plan from the start that you’ll experiment and then wipe
everything out. That’s usually better than trying to convert your experimentation
to the final HomeKit configuration you want to use.

http://dx.doi.org/10.1007/978-1-4842-1527-2_2
http://dx.doi.org/10.1007/978-1-4842-1527-2_3

CHAPTER 5: Working with HomeKit Accessories 55

 If you do want to add some accessories, you may wind up with a home that
looks like Figure 5-2 . Most of these are lamps, but you’ll notice a Philips
hue bridge in the lower right. Remember that on the HomeKit home screen,
these are favorites: the actual data for the favorite items is stored elsewhere.

 Figure 5-2. Favorite accessories on the home screen

 Figure 5-2 shows the default first screen: it’s your favorite accessories no
matter where in the home they are. (This is the Home button in the bottom
toolbar.) You can start to hone in on a specific room with the Rooms button
in the bottom toolbar as shown in Figure 5-3 .

CHAPTER 5: Working with HomeKit Accessories56

 Many people set up HomeKit room by room. You can then copy critical
accessories to Favorites so they show up in the Home tab on the bottom
toolbar. This is a simple and powerful way of getting HomeKit to work for
you, but it’s only the very beginning.

 Figure 5-3. Accessories in an individual room

CHAPTER 5: Working with HomeKit Accessories 57

 Setting Up a Room
 Whether you start from the default room that is created for you by default or
are creating your own rooms (maybe a tiny room that contains only that test
lamp and bulb that you’re using for experimentation), you can configure the
settings for each room.

 To start configuring a room, tap the Rooms button in the bottom toolbar. Use
the List button in the top left to show a list of rooms as shown in Figure 5-4 .

 Figure 5-4. Show the list of rooms

CHAPTER 5: Working with HomeKit Accessories58

 To add or remove accessories for a room, tap the room name, and you’ll
move to that room.

 If you want to edit a room’s settings, tap Room Settings. You’ll see the list of
Rooms in a different format as shown in Figure 5-5 .

 Figure 5-5. Choose a room to edit

CHAPTER 5: Working with HomeKit Accessories 59

 Tap the disclosure triangle at the right of the room you want to edit.
(Remember, you’re editing the room’s description: to edit the accessories in
a room, just select the room from the list in the top left.) You’ll see the view
shown in Figure 5-6 . Here’s where you can rename the room, choose the
wallpaper (or take a photo of the actual room to use as a background), or
even remove the room from HomeKit.

 Figure 5-6. Edit a room

CHAPTER 5: Working with HomeKit Accessories60

 To edit an accessory in a room (you’ll see how to add an accessory shortly),
press and hold the accessory. (If you just tap it, you’ll turn the accessory on
or off.) Figure 5-7 shows the Details view .

 Figure 5-7. Edit accessories in a room

 The Details view for an accessory depends on the accessory: HomeKit
displays whatever the accessory provides. (Supporting these accessories in
code is the topic of the next two chapters.)

 To edit the details of an accessory, tap Details in the lower right of the
view shown in Figure 5-7 to open the details shown in Figure 5-8 . These
are mostly the HomeKit settings, and they’re basically the same for all
accessories. Here is where you can move an accessory from one room to
another (just tap Location to get a list to choose from). You can also choose
to show this accessory in Favorites on the home screen.

 The Status button will let you choose whether this accessory will be shown
in the overview items.

CHAPTER 5: Working with HomeKit Accessories 61

 If you have added a hub such as the Hue bridge, here is where you can
configure it as you can see in Figure 5-9 .

 Figure 5-8. Edit accessory details

CHAPTER 5: Working with HomeKit Accessories62

 Merely connecting the bridge according to the manufacturer’s instructions
may be sufficient at this point. If the hub accessories don’t show up, here
is where you start to troubleshoot. You may need to compare HomeKit
 documentation with documentation from the hub manufacturer. Online help
on web sites and Twitter can be very helpful. Just be calm and remember
that many people by now have managed the connection between the hub
and HomeKit.

 Figure 5-9. Configure a bridge

CHAPTER 5: Working with HomeKit Accessories 63

 Using Automation
 The Automation tab in the bottom toolbar is the heart of HomeKit’s power. It
lets you manage automations —sequences of commands that can affect one
or more accessories (e.g., the accessories in a room). Begin by tapping the
Automation tab as shown in Figure 5-10 .

 Figure 5-10. Create an automation

CHAPTER 5: Working with HomeKit Accessories64

 Automations come in three varieties as you’ll see on the next screen (shown
in Figure 5-11). Although they appear different, they really are the same: it’s
only the triggering event that differs. (That event is called a trigger for that
reason.)

 Automating Location Changes
 The first trigger relies on your location , and that means it relies on your
iPhone. As you can see in Figure 5-11 , you can set the trigger to occur when
you leave or arrive.

 Figure 5-11. Set a trigger for when you leave or arrive

CHAPTER 5: Working with HomeKit Accessories 65

 Although the example on the screen shows home, in fact, you can set the
automation to any address that you have in Contacts. When you tap Next
at the top right, you’ll see a list of your contact addresses as shown in
Figure 5-12 . Just tap the one you want to use.

 Figure 5-12. Choose the address to use

CHAPTER 5: Working with HomeKit Accessories66

 Automating Time of Day
 You can also set an automation to run at a certain time of day (or several
days). If you choose that option, you’ll be able to add the details as shown
in Figure 5-13 . Sunrise and sunset are managed for you automatically by Siri
and HomeKit, and you can set the time. Most people use automations on
a repeat basis, so you can choose the time (or sunrise/sunset) and tap the
day(s) on which you want the automation to run. Every Day in the bottom left
will do just that.

 Figure 5-13. Manage the time and repetition settings

CHAPTER 5: Working with HomeKit Accessories 67

 Note that this type of automation is designed to repeat. You can use it on a
one-time basis , but there is no way to specify a particular date. By default, it
will run at the chosen time on the next day you have selected.

 Letting Accessories Control Automations
 Perhaps the most interesting type of automation is one that is triggered by
another accessory. You control this by selecting the accessory in the room
that you’re interested in as shown in Figure 5-14 . (Tap the circle in the top
right of an accessory to choose it.)

 Figure 5-14. Let an accessory trigger an automation

CHAPTER 5: Working with HomeKit Accessories68

 Once you’ve selected the triggering accessory, set the action it performs
that will trigger the automation as you can see in Figure 5-15 . (The actions
you can choose from differ for each type of accessory.)

 Figure 5-15. Select the triggering action

CHAPTER 5: Working with HomeKit Accessories 69

 You have the accessory and the action that you want to trigger your
automation. On the next screen select the accessory (or accessories
with multiple choices) you want to respond to that trigger as shown in
Figure 5-16 . (Scenes are described later on, but they basically work the
same way as accessories in this context.)

 Figure 5-16. Choose the scene(s) or accessory(ies) to automate

CHAPTER 5: Working with HomeKit Accessories70

 The last step is to provide the details of what this automation should do
with what accessory(ies) on the next screen, shown in Figure 5-17 .

 Figure 5-17. Specify the action to perform

CHAPTER 5: Working with HomeKit Accessories 71

 Bringing It Together
 You’ve now seen the HomeKit setup process described in terms of how you
set it up. If it seems complicated, consider looking at it in reverse, and you’ll
see how the pieces fit together. Once it is set up, here’s what will happen:

 1. Perform an automation action: turn lights on/off, open
a garage door, adjust a thermostat, etc.

 2. When something happens:

 a. A time of day

 b. Another HomeKit accessory does something

 c. You arrive at or leave from a place.

 The various steps you’ve gone through in this chapter
simply set that up. Along the way, you do have to do some
setup actions, but in most cases, you’ll reuse them many
times. Following are the main setup actions you need to
perform:

 For location-based triggers, make sure the address
is in your Contacts. If not, add it.

 Keep your iPhone with you to let location-based
triggers work.

 Identify each accessory you want to reference either
as a trigger or to perform an action.

 To identify accessories, define them in HomeKit

 To organize accessories, place them in rooms.

 To organize accessories regardless of room, mark
them as favorites so they appear in the Home tab at
the left of the bottom toolbar.

 Make certain that your hub (Apple TV or iPad) is
powered on and linked to WiFi and the Internet and
that it’s set not to sleep. A surge suppressor is a
good idea, but they should recover from momentary
power outages.

73© Jesse Feiler 2016
J. Feiler, Learn Apple HomeKit on iOS, DOI 10.1007/978-1-4842-1527-2_6

 Chapter 6
 Exploring the HomeKit
World as a Developer,
Designer, or Device
Manufacturer
 So far in this book, you’ve looked at HomeKit from the outside, observing
the things you see and control with HomeKit. Now it’s time to look at
HomeKit from the inside out by starting with the code. The code is what
interacts with the home itself and its components, including third-party
devices . Everything talks to code, and in many ways, the code itself if the
best description of the HomeKit components. This chapter gives you an
overview of the HomeKit framework with its objects and functionality.

 HomeKit is a modern framework from Apple , and it’s based on Swift. If
you’re a long-time Swift developer (that means you’ve used it for two or
three years!) you’ll be right at home. If you’re new to Swift, explore the free
 Swift iBook that you can download from https://itunes.apple.com/us/
book/swift-programming-language/id881256329?mt=11# .

 This chapter explores the basics you’ll need to use HomeKit. It’s designed
as a reference so consider reading the first section and then coming
back to the other sections as necessary. Once you have the overview of
HomeKit, it’s a lot easier to learn the details while you’re actually trying to do
something.

https://itunes.apple.com/us/book/swift-programming-language/id881256329?mt=11#
https://itunes.apple.com/us/book/swift-programming-language/id881256329?mt=11#

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer74

 No matter what part of the HomeKit world you’re exploring, the code is
the heart of it all. The third-party opportunities for HomeKit are just being
explored now. Home is the iOS app that is built into the iOS 10 distribution.
More complex and customized versions of that app can easily be imagined.
For device manufacturers, there are obvious opportunities in building
devices and configuration details that are very specific to the device and
its application. Integration of HomeKit technology with other technologies,
devices, and construction projects is still a wide-open field.

 Before you can explore these and other opportunities, here’s the code side
of HomeKit that you’ll be working with.

 HomeKit Overview
 If you’re experienced with object-oriented programming , this section may
bring you sufficiently up to speed to use Swift with HomeKit. It’s far from
a complete tutorial on either one (developer.apple.com is the source for all
definitive documentation), but it can get you going. This section gives you
the key features you need to know that are different from what you may
already know about object-oriented programming in other languages.

 Swift’s Object-Oriented Features for HomeKit
 Like most object-oriented frameworks in any language, HomeKit consists
primarily of objects and functions . To hone in on the technology a little bit,
objects are the runtime instantiations of classes . In other words, HomeKit
consists of classes that are created at runtime as objects.

 Functions are declared either within a class or independently. (In very strict
object-oriented coding, free-standing functions are frowned upon, but you
can create them.)

 A function that is declared within a class is often referred to as a method .

 There are historical reasons for this terminology, but don’t worry about it.

 HomeKit classes often represent physical objects (homes, rooms, accessories);
they also can represent activities or processes. This is the same as it is in
many object-oriented systems, but HomeKit is a bit more focused on physical
objects than many other systems. It shouldn’t matter to you too much.

 Protocols and Delegates: Architecture
 One of the things that distinguishes Swift from many other object-oriented
programming languages is its use of protocols and delegates . As in all
object-oriented programming languages, a class can be descended from

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer 75

another. The descendent class inherits the functionality and variables of the
ancestor (or superclass). This can be overridden in the subclass as needed.

 One of the major challenges in object-oriented programming has been
the issue of multiple inheritance —how do you handle the situation where
you want a bit of this class as a superclass and a bit of that class as a
superclass —both for the same subclass. Swift manages this with protocols .
When you declare a class, you specify a class from which it inherits if
one exists. There is a common base class for most objects in the Cocoa
frameworks (Cocoa Touch and Cocoa), and that base class is NSObject .
You can explore NSObject to see its structure and components in the Xcode
documentation, but for your purposes now you need merely know that it’s
the common base class for many of the Cocoa classes.

 If you want to mix and match parts of several classes to create a form
of multiple inheritance , you can use protocols . A protocol has some
resemblance to classes in that its definition can contain methods, but a
protocol is not directly instantiated as a class is. Instead, a class can declare
that it conforms to a protocol. That means that the class itself implements
the protocol (strictly speaking, the required methods of a protocol
because some methods can be marked as optional). If a class conforms
to a protocol, its subclasses conform to that protocol as well. The class
or its subclasses must implement the methods declared in the protocol.
The syntax for declaring classes, superclasses, and protocols makes the
commonality clear. For example, following is a declaration of a Swift class:

 class MyClass {
 }

 Here is the declaration of a class that will be used as a superclass. Note that
there’s nothing syntactical to indicate that it will be a superclass: that’s just
for clarity of the code example.

 class MySuperClass {
 }

 Following is a declaration of a Swift class with a superclass:

 class MyClass2: MySuperClass {
 }

 Here is a declaration of a protocol.

 protocol MyProtocol {
 var protocolVar: String {get}
 }

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer76

 The protocol is never going to be implemented on its own as a class
could be. Thus, when declaring a property protocolVar that is a string, the
protocol will rely on a class that actually adopts the protocol to implement
 protocolVar .

 Following is a declaration of a Swift class which adopts a protocol:

 class MyClass3: MyProtocol {
 }

 Here is a declaration of a Swift class with a superclass where the Swift class
adopts a protocol.

 class MyClass4: MySuperClass, MyProtocol {
 internal var protocolVar: String = "Test"
 }

 It is the class that adopts the protocol that implements it, so after the
previous code snippets, you can now write the following:

 let x = MyClass4 ()
 print (x.protocolVar)

 Figure 6-1 shows this code all put together.

 Figure 6-1. Classes, superclasses, and protocols example

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer 77

 In case you’re wondering how the compiler can correctly interpret a line of
code such as the following, where MySomething could be either a protocol or
a superclass, the answer is that the compiler requires that MySomething be
declared before use, and it can figure out which it is.

 class MyClass: MySomething {
 }

 It is a commonly used convention (or design pattern if you prefer that
terminology) that when a class adopts a protocol, the protocol functionality
may in fact be implemented by another object at runtime. This object is the
 delegate . This structure keeps the functionality well-organized and makes
development and maintenance of code easier.

 By using protocols, the multiple inheritance issue is pretty much solved.
In addition, by being able to add protocols to implement rather limited
functionalities, the inheritance tree in Swift is often much flatter than in other
languages. In fact, many protocols in Swift are particularly lightweight and
are added to a number of classes as needed. The next section examines
three protocols that appear over and over in HomeKit classes.

 Protocols and Delegates: Key Players
 As noted previously, Swift class hierarchies that use protocols tend to be
much flatter than class hierarchies in other languages. The common base
object for Cocoa and Cocoa Touch (NSObject) which itself conforms to
 NSObjectProtocol does a lot of the heavy lifting for many objects in the
frameworks. Most of the HomeKit classes are subclasses of NSObject
(and therefore conform to NSObjectProtocol).

 In addition, many of the HomeKit classes also adopt three very common
protocols: CVarArg , Equatable , and Hashable . You don’t really need to worry
about them, but if you’re looking things up in the documentation and keep
running across them, here’s what they are and what they do.

 CVarArg

 This protocol allows you to use a variadic list of variables (a C va_list).

 Equatable

 This protocolSwift’s Object-Oriented featuresprotocols and delegateskey
players means that types can be compared with == or != .

 Hashable

 As its name suggests, this protocol means that objects conforming to it can
be hashed so that you an easily locate them in a dictionary or a set.

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer78

 Creating New Instances
 You’ll find that many of the HomeKit classes do not allow you to simply
create new instances of themselves. You must use a method that
returns a new instance in some context. These are often referred to
as “factory methods.”

 For example, if you want to create a new room, you use addRoom (withName:
completionHandler:) on an HMHome instance. This means that the room
you add is added to the rooms array in the HMHome instance.

 This design pattern is repeated in many places (e.g., HMZone instances).
This may minimize the issue of “orphan” objects.

 Basic HomeKit Objects
 The basic objects in a home are

 Rooms

 Accessories

 Scenes

 Actions (these are organized into action sets which will
be described later in this section)

 They are the main objects you’ll be working with (in addition to the home
itself, of course). Within an HMHome instance , you can find them in arrays.

 The balance of this chapter explores those objects. You’ll see the interface
as well as the code that can be used to implement it. (Note that the actual
implementation within the Home app may use other code, but it will
functionally be the same as the code you see here.)

 Almost every object in HomeKit has a unique identifier:

 var uniqueIdentifier: UUID

 A unique identifier is a string that is generated in such a way as to be
unique. (The example shown in Apple documentation is

 E621E1F8-C36C-495A-93FC-0C247A3E6E5F)

 Swift UUID (universally unique identifier) is bridged to NSUUID so the two
can be used interchangeably. It is based on RFC 4122 version 4 random
bytes.

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer 79

 Working with Rooms
 Rooms are what you work with when you set up HomeKit as a user, but here
is the back-end view.

 Managing Rooms
 Add a room by tapping the list icon at the top left of any room in the Home
app as you see in Figure 6-2 .

 As you see in the background of Figure 6-2 , this list of rooms is available
from any room.

 The list of rooms is an array of the rooms in an HMHome, so that must be
in the view you see in Figure 6-2 . The list is found using the HMHome array :
HMRoom array

 var rooms: [HMRoom]

 Figure 6-2. Listing and adding rooms

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer80

 Thus, in order to add a room , you can tell from the interface that you
know the HMHome object (because that’s where the list of rooms is). The
HMHome class manages adding and removing rooms from the home using
the following:

 func addRoom(withName: String, completionHandler: (HMRoom?, Error?) -> Void)
 func removeRoom(HMRoom, completionHandler: (Error?) -> Void)

 Figure 6-3 shows how you add a room.

 There’s another interesting aspect of the HMHome API (application program
interface) that relates to rooms, and that’s a method that returns all parts of
the home that aren’t in any other room.

 func roomForEntireHome()

 So you can be confident in proceeding under the assumption that objects
such as accessories will be in a room even if it’s only the entire home room.

 Figure 6-3. Room settings

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer 81

 Editing a Room
 Once you have added or located a room, you can edit it. Figure 6-4 shows
the interface (you get here as a user from Add Room at the bottom of
Figure 6-3).

 The name of a room is set when you first create it using HMHome
addRoom(withName: String, completionHandler: (HMRoom?, Error?) ->
Void)

 Updating the name after you have created the room is done with HMRoom

 func updateName(String, completionHandler: (Error?) -> Void)

 Figure 6-4 shows the user interface.

 The same design pattern that has an array of rooms within a home occurs
with accessories in a room: they are stored in an array in HMRoom.

 var accessories: [HMAccessory]

 Figure 6-4. Room settings

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer82

 Working with Accessories
 Rooms within a home are a fairly simple case if only because both the home
and the room are physical objects, and in practice rooms are fairly static.
When you think about it, changes to rooms within a home are frequently
changes in name (e.g., the nursery becomes the study). It’s true that
accessories are a different matter if only because they tend to move around.
(The lamp that used to be in the living room may be moved to a bedroom.)

 Finding Accessories
 The HMAccessoryBrowser class is used to find accessories. If you’ve set up
a HomeKit home, you’ve been through the process. You start by adding an
accessory, as you can see in Figure 6-5 .

 Figure 6-5. Selecting an accessory

 What happens next is that the app launches an HMAccessoryBrowser . It goes
around and attempts to discover accessories as you can see in Figure 6-6 .

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer 83

 The process that goes on is a typical Cocoa design pattern involving a
delegate. There are three steps.

 1. First, you start searching for accessories that are
not yet associated with a home. (If accessories
are associated with a home, the user will need to
remove them.) To carry out the search, you create an
 HMAccessory Browser .

 2. When an accessory is found, you need to be
notified. In some cases, a completion routine is
used for this call-back processing. However, in
other cases (such as this), a delegate is used. The
delegate implements a protocol—in this case, it’s the
 HMAccessoryBrowserDelegateProtocol . The protocol
consists of two methods:

 Figure 6-6. Browsing for accessories

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer84

 func accessoryBrowser(HMAccessoryBrowser, didFindNewAccessory: HMAccessory)

 func accessoryBrowser(HMAccessoryBrowser, didRemoveNewAccessory:
HMAccessory)

 It is fairly common that the object creating the delegate appoints itself
as the delegate, but that isn’t requred. What’s important is that this is an
asynchronous process that can be fired off (starting the search) and then
handled if and when an event occurs.

 1. Once you have set up the delegate, you use a
method of the browser to start searching.

 func startSearchingForNewAccessories()

 2. When appropriate, you stop searching.

 func stopSearchingForNewAccessories()

 There is more on completion handlers and delegation in Chapter 7 .

 Managing Accessories
 Once you have completed your search, you add accessories using
HMHome.

 func addAccessory(_ accessory: HMAccessory,
 completionHandler completion: (Error?) -> Void)

 Not surprisingly, you remove them also using HMHome.

 func removeAccessory(_ accessory: HMAccessory,
 completionHandler completion: (Error?) -> Void)

 You can get a list of accessories from a room using the HMRoom method
that returns the array of that room’s accessories.

 var accessories: [HMAccessory]

 Because accessories are added and removed by HMHome, you can move
them around using HMHome:

 func assignAccessory(_ accessory: HMAccessory,
 to room: HMRoom,
 completionHandler completion: (Error?) -> Void)

http://dx.doi.org/10.1007/978-1-4842-1527-2_7

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer 85

 Editing Accessories
 You see the accessory information in a view that varies depending on
the type of accessory. For example, if you tap and hold an accessory in
Figure 6-5 , you may see the view shown in Figure 6-7 which represents a
light bulb.

 As far as the interface of the Home app is concerned, you can edit an
accessory’s general information that is visible to the room itself by a long
press on it in the user interface. Figures 6-8 and 6-9 show you the user
interface. It is the same for all types of accessories.

 Figure 6-7. Editing an accessory’s details

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer86

 Figure 6-8. Setting the values (top)

CHAPTER 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer 87

 Figure 6-9. Setting the values (bottom)

 Note Chapter 7 provides much more on accessories .

http://dx.doi.org/10.1007/978-1-4842-1527-2_7

89© Jesse Feiler 2016
J. Feiler, Learn Apple HomeKit on iOS, DOI 10.1007/978-1-4842-1527-2_7

 Chapter 7
 Dive into Accessories
 When it comes to home automation, the basics are homes, rooms, and
devices. This applies to any home automation environment . Generally, you
can adjust the settings on the devices (most often bulbs for many people),
and you can combine devices with their settings into scenes. A timing
mechanism lets you turn scenes on and off.

 HomeKit goes beyond the basics in two important ways.

 HomeKit is built as a home for third-party devices and
apps. Apple is starting with the framework and the
database and building it out for others to flesh out. At
this point (and, rumor has it, for the future), Apple is not
developing HomeKit devices. For those of us who are into
software design, starting from the logic first is a great way
to work (it’s what we do every day). Apple’s involvement
with the hardware for home automation consists of its
certification program for devices that work with HomeKit.

 HomeKit is positioned as a component of the Apple devices
on which it is pre-installed. The Home app is part of iOS 10,
so it’s ready for anyone who wants to connect devices to it.

 Chapter 6 describes the devices for home automation fairly generically.
You’ve seen the code to add accessories to rooms and how to add rooms to
homes, but the basic code there doesn’t require too much exploration inside
the HomeKit classes that support accessories.

 This chapter goes inside accessories. They are the features of HomeKit
that actually provide the user benefits, and they are implemented in simple,
elegant, and powerful classes.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1527-2_6
http://www.allitebooks.org

CHAPTER 7: Dive into Accessories90

 Rooms within a home are a fairly simple case if only because both the home
and the room are physical objects, and in practice rooms are fairly static.
When you think about it, changes to rooms within a home are frequently
changes in name (e.g., the nursery becomes the study). It’s true that
accessories are a different matter if only because they tend to move around.
(That lamp that used to be in the living room may be moved to a bedroom.)

 Building Accessories
 In order to build actual accessories (rather than buying pre-built accessories
online or in a store), you need to join the MFi program. Once you are
licensed, you will have access to HomeKit technical specifications (i.e.,
physical specifications as opposed to the API specifications that you get as
a registered developer). You also have access to hardware technical support
and marketing materials (e.g., the MFi logo). Find out more at the MFi FAQ
page: https://mfi.apple.com/MFiWeb/getFAQ.action .

 Working with Accessories
 You have seen the basics of what an accessory is in this book so far. In
Chapter 6 , you’ve also seen the basics of the API (application program
interface) to set up an accessory. Beyond that, the best way to learn what
an accessory is to create one using the HomeKit Accessory Simulator.
(Remember that the accessory itself may not yet exist if you’re working
on a development project that combines new accessories with a new
HomeKit app.)

 There are two key questions you have to answer about your accessories.

 What is the accessory—its name and some descriptive
information about it?

 What does the accessory do? Obviously, this is related
to what it is, but it is not always clear just from the
description of the accessory. In HomeKit terms, what
 service does the accessory provide?

 If you are going to be developing an app for HomeKit (perhaps a version of
the Home app that is focused on your particular functionality and issues as
you’ll see in Chapter 8), you can simulate accessories without buying them
(or even before they have been fully developed). Get started by following
the instructions on the Developer Site to download the HomeKit Accessory
Simulator from https://developer.apple.com/library/prerelease/content/
documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/
TestingYourHomeKitApp/TestingYourHomeKitApp.html .

https://mfi.apple.com/MFiWeb/getFAQ.action
http://dx.doi.org/10.1007/978-1-4842-1527-2_6
http://dx.doi.org/10.1007/978-1-4842-1527-2_8
https://developer.apple.com/library/prerelease/content/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html
https://developer.apple.com/library/prerelease/content/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html
https://developer.apple.com/library/prerelease/content/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html

CHAPTER 7: Dive into Accessories 91

 When you create a new accessory in the HomeKit Accessory Simulator, you
see the view shown in Figure 7-1 .

 What Is an Accessory?
 Create a new accessory by launching the HomeKit Accessory Simulator
and choosing File ➤ New ➤ Accessory to open the modal view shown in
Figure 7-1 .You can also create a new bridge, but the accessory choice is the
most common one.

 You can read this section as a how-to of how to build an accessory in
the simulator , but you can also read it as the ultimate definition of what
an accessory is. In that view, remember that the accessory also has the
following properties:

 var uniqueIdentifier: UUID
 var uniqueIdentifiersForBridgedAccessories: [UUID]?

 As you do in other cases, you assign a delegate to an accessory (it is
optional so not every accessory has a delegate). You might have a delegate
for each accessory or one for all of them. Whatever the delegate is, it
implements these methods. As you can see, the accessory’s delegate finds
out when there are changes so whatever is needed to be done can be done.
The delegate implements the HMAccessoryDelegate protocol ,

 Figure 7-1. Create a new accessory with HomeKit Accessory Simulator

CHAPTER 7: Dive into Accessories92

 func accessoryDidUpdateName(HMAccessory)
 func accessoryDidUpdateReachability(HMAccessory)
 func accessoryDidUpdateServices(HMAccessory)
 func accessory(HMAccessory, didUpdateNameFor: HMService)
 func accessory(HMAccessory, service: HMService, didUpdateValueFor:
HMCharacteristic)
 func accessory(HMAccessory, didUpdateAssociatedServiceTypeFor: HMService),

 Basic Accessory Data
 You fill in the basic accessory information at the top section of the accessory
view shown in Figure 7-1 . What it does will be described as the services
that you can add with the button at the bottom of Figure 7-1 . This section
focuses on the description—the Accessory information shown in Figure 7-1 .

 You start with the setup code that is created for you by the simulator, but as
your testing continues, you can modify it. Pairings are used during testing as
well. The basic information shown here is up to you.

 Categories
 Choose a category for the accessory. The interface provides you with the list
shown in Figure 7-2 .

CHAPTER 7: Dive into Accessories 93

 Figure 7-2. Choose a category

CHAPTER 7: Dive into Accessories94

 The code for the categories follows:

 let HMAccessoryCategoryTypeOther: String
 let HMAccessoryCategoryTypeBridge: String
 let HMAccessoryCategoryTypeDoor: String
 let HMAccessoryCategoryTypeDoorLock: String
 let HMAccessoryCategoryTypeFan: String
 let HMAccessoryCategoryTypeGarageDoorOpener: String
 let HMAccessoryCategoryTypeIPCamera:String
 let HMAccessoryCategoryTypeLightbulb: String
 let HMAccessoryCategoryTypeOutlet: String
 let HMAccessoryCategoryTypeProgrammableSwitch: String
 let HMAccessoryCategoryTypeRangeExtender: String
 let HMAccessoryCategoryTypeSecuritySystem: String
 let HMAccessoryCategoryTypeSensor: String
 let HMAccessoryCategoryTypeSwitch: String
 let HMAccessoryCategoryTypeThermostat: String
 let HMAccessoryCategoryTypeVideoDoorbell: String
 let HMAccessoryCategoryTypeWindow: String
 let HMAccessoryCategoryTypeWindowCovering: String

 The only category that needs explanation is the Identify information: does
this accessory have the ability to identify itself as when light bulb flickers to
identify itself. This is a yes/no Boolean value.

 Name

 Manufacturer

 Model

 Serial Number

 Identify

 Accessory Categories

 Characteristics
 You add characteristics that apply to this accessory. You can add as many
characteristics as you want to an accessory. You use the Add Characteristic
button shown in Figure 7-1 . It opens the modal view shown in Figure 7-3 .
The details shown in Figure 7-3 depend on what type of characteristic you
select at the top of the view.

CHAPTER 7: Dive into Accessories 95

 Type
 For the characteristic, choose its type from the pop-up menu at the top of
Figure 7-3 . Figure 7-4 shows the choices.

 Format
 Choose the format for the characteristic as shown in Figure 7-5 .

 Figure 7-3. Choose a characteristic

 Figure 7-4. Characteristic choices

CHAPTER 7: Dive into Accessories96

 Units
 Choose the units for the characteristic as shown in Figure 7-6 .

 Figure 7-6. Units for the characteristic

 Figure 7-5. Units for the characteristic

CHAPTER 7: Dive into Accessories 97

 What Does the Accessory Do? (Services)
 Add as many services as you want to your accessory by using the Add
Service . . . button at the bottom of Figure 7-1 . When you add a service, you
need to complete the information shown in Figure 7-7 .

 Note that you can assign a specific UUID (universally unique identifier) to the
service. Figure 7-8 shows the choices for the type of service.

 Figure 7-7. Configure a service

CHAPTER 7: Dive into Accessories98

 Figure 7-8. Select a service

CHAPTER 7: Dive into Accessories 99

 Finding Accessory State
 The following are transient characteristics of accessories that depend on the
network and other conditions. You manage them in the API rather than the
simulator. The simulator gives you basic data that is then modified, and such
modifications are passed on to the accessory’s delegate. You need to set
that delegate when you create the accessory in your code.

 These are the most commonly used functions to query an accessory’s state
in general. You can query other properties specifically as you need them, but
these are the state properties.

 var isReachable: Bool
 var isBlocked: Bool
 var isBridged: Bool

 Setting Preferences for the HomeKit Accessory
Simulator
 Finally, note that you can set preferences for the simulator to use as shown
in Figure 7-9 .

 Figure 7-9. Set HomeKit Accessory Simulator Preferences

101© Jesse Feiler 2016
J. Feiler, Learn Apple HomeKit on iOS, DOI 10.1007/978-1-4842-1527-2_8

 Chapter 8
 Imaginative
Opportunities: Events,
Triggers, and Actions
 Your homes and rooms with their accessories along with the accessory
characteristics and services are a great way of organizing your HomeKit
assets, but on their own, they really don’t do anything. They just sit there
waiting for you to activate them with Siri commands or with . . . something
else? (Note that Siri is an interface that can work with your HomeKit assets,
but its use is more of a user interface concern than development, so it’s not
covered in this book.)

 What brings your HomeKit assets and resources to life and makes your home
“smart” is the trio of events , triggers , and actions . These aren’t physical
devices: they are concepts or abstractions that represent what you want
to do with your HomeKit resources as well as when you want to do those
things. Although those words represent specific aspects of the HomeKit
API (specifically HMEvent , HMTrigger , and HMAction) they are used in their
everyday meaning. In this book when the API (application program interface)
names such as HMEvent are used, they are shown in a distinctive font.

 The basic pattern is simple. You define an event (such a specific time of day
or arriving at a location), and a trigger watches for that event to occur. When
it does occur, the trigger launches an action. This is how “when I get home,
turn hallway scene on” happens.

CHAPTER 8: Imaginative Opportunities: Events, Triggers, and Actions102

 WHERE ARE SCENES?

 A scene is something a user sets up that combines accessories and settings. Thus,
“hallway scene” might consist of hallway ceiling light being turned on to a specific color
and brightness as well as opening the hallway window blinds. It is the user who creates
the scenes: They are based on the API that is discussed in Chapters 6 and 7 . From the
developer’s point of view, a scene is a collection of actions: an action set .

 Events, actions, and triggers work together. You may want to scan this
chapter quickly to get the big picture and then come back to focus on
specifics. This is a case where a test installation of perhaps a single lamp
can be very helpful in getting a feel for HomeKit. As you experiment,
remember that triggers are not instantaneous when you set them. You
can get an instantaneous response when you turn a scene on or off, but
when you connect scenes to events and triggers, there can be a time lag
as HomeKit establishes the settings and then implements them. Users
sometimes wait for a while (often a day) to check that their events and
triggers are set properly as time goes along and daily events occur.

 Working with Events
 Events are often things that happen outside the world of HomeKit (often, but
not always). They fall into two groups which are subclasses of HMEvent. The
subclasses are HMLocationEvent and HMCharacteristicEvent . HMEvent itself
contains a universally unique identifier (UUID) called uniqueIdentifier . Any
other properties are properties of subclasses. As you’ll see when you start to
use events in triggers, this abstract superclass is a key component of
triggers because although geofencing is very different from the state of an
accessory’s data, both geofencing and characteristics are the same when
they become part of triggers.

 Geofencing with Location Events
 A location event is a geofence event. Its basic property is a CLRegion (i.e., a
region as defined in CLLocationManager in the Core Location framework).

 Tip You may want to think of an event as a noun —that is, a thing.

http://dx.doi.org/10.1007/978-1-4842-1527-2_6
http://dx.doi.org/10.1007/978-1-4842-1527-2_7

CHAPTER 8: Imaginative Opportunities: Events, Triggers, and Actions 103

 The heart of an HMLocationEvent is its region which is represented by its sole
property.

 var region: CLRegion?

 You create an HMLocation event with a region, and you can update that
region as necessary.

 init(region: CLRegion)
 func updateRegion(_ region: CLRegion, completionHandler completion: (Error?)
-> Void)

 Monitoring Characteristic Events
 A characteristic event is an event that represents a certain value of an
accessory characteristic. For example, a characteristic event for a door lock
could be that it is locked or unlocked. A characteristic event for a smoke
detector could be that it senses smoke. And, very simply, a characteristic
event for a light bulb could be that it is on or off.

 Thus for an HMCharacteristicEvent , two properties are involved: the
characteristic (lock) and the value that you care about (secured/unsecured).

 The two properties of HMCharacteristicEvent are

 var characteristic: HMCharacteristic
 var triggerValue: TriggerValueType?

 You can initialize an HMCharacteristicEvent with a characteristic and an
optional value. Because triggerValue can be null, you can come back later
on (or the user can come back) to specify a value (that is what “optional”
means in Swift — it can have no value). A binary condition such as secured/
unsecured doesn’t lend itself to this, but a temperature sensor certainly does.

 init(characteristic: HMCharacteristic, triggerValue: TriggerValueType?)
 func updateTriggerValue(_ triggerValue: TriggerValueType?, completionHandler
completion: (Error?) -> Void)

 Tip You may want to think of a characteristic as an adjective—that is, a
 modifier or description of an object.

CHAPTER 8: Imaginative Opportunities: Events, Triggers, and Actions104

 Working with Triggers
 Triggers execute action sets (HMActionSet) which themselves consist
of actions (they’re described in the following section). HMTrigger is an
abstract class: You typically implement (or subclass) one of the primary
 HMTrigger subclasses— HMTimerTrigger or HMEventTrigger . Triggers are
said to fire when a certain event occurs (i.e., when you enter or leave the
region of an HMLocationEvent or when a characteristic of an accessory in an
 HMCharacteristicEvent takes on the trigger value you’re waiting for.)

 Triggers are identified by names and UUIDs. Both are created when a trigger
is created. Names can be updated as needed (the update function allows a
delegate to notice that the name has been changed).

 var name: String
 func updateName(_ name: String, completionHandler completion: (Error?) ->
Void)
 var uniqueIdentifier: UUID

 In addition to the static name and UUID, it’s important to control whether or
not a trigger is enabled and the last time it fired:

 var isEnabled: Bool
 func enable(_ enable: Bool, completionHandler completion: (Error?) -> Void)
 var lastFireDate: Date?

 Using a Basic Trigger
 The action sets for a trigger are managed by the following methods:

 var actionSets: [HMActionSet]
 func addActionSet(_ actionSet: HMActionSet, completionHandler completion:
(Error?) -> Void)
 func removeActionSet(_ actionSet: HMActionSet, completionHandler completion:
(Error?) -> Void)

 Note lastFireDate is an optional because the trigger may never have been
fired. Also, remember that the Date type is actually a bridge to NSDate in the
Foundation framework. NSDate is a single point in time and is not specific to a
calendar, time zone, or location.

CHAPTER 8: Imaginative Opportunities: Events, Triggers, and Actions 105

 Adding Conditions to Triggers with Predicates
 Event triggers can use predicates to add conditions that must be true for the
event trigger to fire.

 Predicates are a basic part of the Cocoa and Cocoa Touch foundation
framework. They are a way of describing a Boolean condition to use in
retrieving data from a data store or for any other case in which you need a
Boolean such as defining a condition for an event trigger.

 Working with Actions
 As a developer or designer, you generally deal with actions in order to set up
the user interface that allows users to put them together so that they can be
triggered by events. The actual running of an action or action set happens
when the trigger fires. An action can be used to turn an accessory on or off
or to adjust its characteristics (such as brightness or color).

 Most of the time, you work with action sets (HMActionSet) which themselves
consist of sets of actions (HMAction).

 Action sets have names and UUID s. Siri recognizes the names of action sets.
Your code makes it possible for users to build on it in creating their own
HomeKit environments.

 Tip You may want to think of an action as a verb —that is, an action in the
common everyday use of the word.

 Note Set is used in its technical sense of an unordered collection of items.
This means that the actions within an action set will execute in an unspecified
order. It is sometimes the case that those actions will execute in the order in
which they have been specified, but that is happenstance. This can be important
in tracking down apparent bugs.)

CHAPTER 8: Imaginative Opportunities: Events, Triggers, and Actions106

 Action sets consist of actions, but actions are specific subclasses of
 HMAction . HMAction is an abstract class which means that you don’t directly
create instances of it. You create specific instances of classes such as
 H MCharacteristicWriteAction which itself writes a specific value to a
characteristic of an accessory. Following is the declaration of the method
you’ll use:

 init(characteristic: HMCharacteristic, targetValue: TargetValueType)

 As you saw in Chapter 7 , accessories can have characteristics and
services. To find a specific service to use in allowing users to set up an
action set, you can use a function such as this one to find the services for
a given accessory you can use this variable of HMAccessory on the specific
accessory the user wants to work with:

 var services: [HMService] { get }

 If you don’t happen to have the specific accessory when you are writing the
characteristic, you can find it with the following method of HMHome , which lets
you find services by their type in the entire home:

 func servicesWithTypes(_ serviceTypes: [String]) -> [HMService]?

 Note that this function returns an optional: there may be no services of a
given type and your code must handle this case.

 Services and characteristics are linked to one another, so when you have an
 HMCharacteristic , you usually have a related service. Likewise, when you
have an HMService you can find its characteristics.

 Following is the property in HMCharacteristic you can use to get its service:

 var service: HMService?

 Starting from an HMService object, here’s how you find its accessory:

 var accessory: HMAccessory?

http://dx.doi.org/10.1007/978-1-4842-1527-2_7

CHAPTER 8: Imaginative Opportunities: Events, Triggers, and Actions 107

 Note that working either from an accessory or a characteristic, you can get
the other with the very important caveat that both of these properties are
optionals so they may not exist. That would particularly be the case as users
are setting up their home and have not yet completed the task in many
cases. Don’t assume that a user setting up a home tidies up all the loose
ends.

 There are valid reasons why there may be “orphan” scenes as users are
experimenting. Also, remember that you are dealing with devices that have
their own issues regarding power and other factors. Although the light bulbs
that are manufactured today are estimated to have life spans measured in
years—many years—they will eventually fail. Wired connections such as to
a power supply or wall outlet are subject to the vicissitudes of cable issues
ranging from becoming unplugged to being accidentally plugged into an
outlet that is controlled by a switch.

 This last is a common issue for many people. You often find a wall outlet
with two sockets one of which is controlled by a switch. This means that a
wall switch can turn on a light connected to the switched outlet while the
other one is always on for a device such as an electric clock, humidifier,
or something else that should remain on at all times. You may know this
and even remember it over the years, but someone who does a big house-
cleaning project may unplug both plugs to move the sofa and your HomeKit-
controlled lamp winds up in the switched socket.

109© Jesse Feiler 2016
J. Feiler, Learn Apple HomeKit on iOS, DOI 10.1007/978-1-4842-1527-2_9

 Chapter 9
 Working with iCloud and
Users with HomeKit
 HomeKit works with the networks it finds. The most basic level of
communication is between an accessory and your HomeKit hub which
typically is either an Apple TV or an iPad—or both. For short distances (such
as within your home, HomeKit uses a WiFi network or Bluetooth Low Energy
(Bluetooth LE).

 Beyond the home, HomeKit uses an Apple ID over whatever network it can
find. With the advent of iOS 10 and the Home app (pre-installed on iPads),
HomeKit is more available than ever.

 This chapter helps you use some of the networking capabilities of HomeKit.

 Warning Your hub needs to be powered on at all times for your HomeKit
actions to work. Remember that when you define an automation that turns a
scene on (see Chapter 8), HomeKit uses the triggers to launch scenes. If you
power on a device or hub after a trigger should have fired (or actually did fire
but the accessory wasn’t powered on), nothing happens until the next trigger
opportunity arises. If that’s a time of day, the next opportunity is the next day.

http://dx.doi.org/10.1007/978-1-4842-1527-2_8

CHAPTER 9: Working with iCloud and Users with HomeKit110

 Setting Up Hubs
 Your hub n eeds to be powered on all the time and it needs network
connections. For most people, this means making certain that the hub
itself (Apple TV or iPad) can use Bluetooth and a WiFi network. For remote
access, the hub needs to be connected to the Internet (usually this is via the
WiFi connection).

 Apple TV
 For Apple TV , you need to make certain that HomeKit is enabled. For
starters, make certain that the Apple TV uses the same Apple ID you use (or
will use) for your HomeKit hub. (This is not an issue for the many people who
use a single Apple ID.)

 On your Apple TV, go to Settings, as shown in Figure 9-1 .

 Select Accounts to set up your Apple ID for HomeKit. As you see in
Figure 9-2 , you need to set an Apple ID for Home Sharing (that’s the
Settings term for HomeKit.)

 Figure 9-1. Go to Settings on Apple TV

CHAPTER 9: Working with iCloud and Users with HomeKit 111

 If, at some point in the future, you want to turn off the Apple TV as a hub,
turn it off as you see in Figure 9-3 where the Home Sharing account is being
turned off.

 iPad
 The process for setting up an iPad as a hub is a little different. Go to
Settings on the iPad and then find Home as you see in Figure 9-4 . You can
have several HomeKit hubs sharing the same Apple ID if you want.

 Figure 9-2. Set the Apple ID account

 Figure 9-3. Turn home sharing of f

CHAPTER 9: Working with iCloud and Users with HomeKit112

 Setting Up Users
 In addition to your hubs, you can set up users for HomeKit. Everyone who
shares the Apple ID you’ve used to set up HomeKit can log on with his or
her own Apple ID, but you can ask other people to join.

 Inviting Other Users
 From the Home tab in Home on your iPad, tap Edit in the top right and
then the disclosure triangle next to the name of the home (it might be “My
Home” if you’re using the defaults) to open the alert shown in Figure 9-5 .
Note that you can do this from the same Apple ID as you have used for your
Apple TV. Many people rely on Apple TV to do the back-end processing
of automations, but they use an iPad to manage things such as adding
users . You’ll see how to manage what users can do in the section “Setting
Permissions for Users.”

 Figure 9-4. Make an iPad a HomeKit hub

CHAPTER 9: Working with iCloud and Users with HomeKit 113

 Click Invite to open the invitation alert shown in Figure 9-6 . Type in the
e-mail address you want to use for the invitation at the top.

 Figure 9-5. Invite other users

CHAPTER 9: Working with iCloud and Users with HomeKit114

 Responding to an Invitation
 You probably don’t know how your invitee will receive the invitation. It can
arrive on an iPad or an iPhone, so here are the screens your invitee will see.
You’ll particularly need this information if you haven’t contacted the person
before you send the invitation. You might consider contacting the person in
advance (after all, it’s only polite).

 Figure 9-6. Send the invitation

CHAPTER 9: Working with iCloud and Users with HomeKit 115

 Responding on an iPad
 If the invitee receives the invitation, it may appear on the lock screen of the
iPad as you see in Figure 9-7 . (Notice that it comes as a notification from
Home rather than a message or an e-mail. You can tell this from the icon on
the notification.)

 Figure 9-7. The user receives the invitation

CHAPTER 9: Working with iCloud and Users with HomeKit116

 If the user receives the invitation on an iPad, here’s what it looks like once
the notification of the invitation is unlocked. In the invitee’s Settings, the
invitation is shown in the Follow Ups section (you may never have seen that
before because these invitations havent been used much until now). The
invitee can choose to view the invitation (or not) as you see in Figure 9-8 .

 If the user chooses to see the invitation, the view shown in Figure 9-9
appears. Note that iCloud must be enabled to accept the invitation. Rather
than send the user off to check to see if iCloud is enabled, the current
setting is shown in Figure 9-9 . If it’s off, the user can turn it on from here.
(The other iCloud settings remain available in Settings.)

 Figure 9-8. The invitee can choose to view the invitation

CHAPTER 9: Working with iCloud and Users with HomeKit 117

 If the user accepts, the action is reversible. Just go back to HomeKit in
Settings to view the home(s) to which you have access. You can leave any of
them as you see in Figure 9-10 .

 Figure 9-9. The invitee accepts or declines the invitation

CHAPTER 9: Working with iCloud and Users with HomeKit118

 Responding on an iPhone
 If the invitee views the invitation on an iPhone, here’s what it looks like. First
of all, HomeKit is still in Settings on iPhone , but it looks a bit different as you
see in Figure 9-11 . (In this section, a few of the intermediate screens that are
identical to iPad are omitted.)

 Figure 9-10. You can leave a home at any time

 Tip If you’re going to be inviting people to share your home (perhaps relatives
or others in the house who have different Apple IDs), you might want to modify
the default My Home name for the home.

CHAPTER 9: Working with iCloud and Users with HomeKit 119

 After choosing to see the invitation (just as on the iPad), the invitee can
modify iCloud settings. If the invitee is already part of a home, this is where
to come to begin the process of leaving by tapping the relevant home, as
you can see in Figure 9-12 .

 Figure 9-11. View the invitation on an iPhone

CHAPTER 9: Working with iCloud and Users with HomeKit120

 Once you tap the home you’re interested in working with, you can leave it as
you see in Figure 9-13

 Figure 9-12.

CHAPTER 9: Working with iCloud and Users with HomeKit 121

 Set Permissions for Users
 To set permissions for users , go to the Home tab in the Home app, tap Edit,
and then tap the disclosure triangle next to the home name. You’ll see the
alert shown in Figure 9-14 .

 Figure 9-13. Change HomeKit settings on iPhone

CHAPTER 9: Working with iCloud and Users with HomeKit122

 Note that Figure 9-14 shows two users: one has a pending invitation and the
other is already a user. You can invite someone else if you want, as you saw
previously in Figure 9-5 .

 Double-tap a user to set permissions as you can see in Figure 9-15 .

 Figure 9-14. Manage users

CHAPTER 9: Working with iCloud and Users with HomeKit 123

 Allowing Lock Screen Access
 One final setting may be useful to you and to the people with whom you share
a home. In Settings, go to Touch ID & Password, as shown in Figure 9-16 , and
turn on Home Control (that’s HomeKit). If it’s set up, Touch ID will work for
Home Settings.

 Figure 9-15. Set user permissions

CHAPTER 9: Working with iCloud and Users with HomeKit124

 Figure 9-16. Allow lock screen access

125

 ■A
Accessories, 6, 82–87, 90

adding/removing, 36
addition, 34
adjustment, 37–38
building, 90
categories, 92, 94
characteristics, 94–95
configuration, 24–26
data, 92
definition, 91
editing, 85, 87
exploration, 89
format, 95
HMAccessoryBrowser

class, 82–84
HMAccessoryDelegate

protocol, 91
home automation environment, 89
HomeKit, 89
HomeKit Accessory Simulator, 91
information, 97
managing, 84
rename, 34
room, 35
service, 98
simulator, 91
tapping, 35
transient characteristics, 99
type, 95
units, 96
working, 90

Apple ID, 11, 44
Apple TV, 3, 11, 110
Apple Watch, 4

Application program interfaces
(APIs), 2, 9, 43, 101

App Store, 44
Automated scenes, 29
Automation, 15, 42, 63–71

accessories
actions, 70
scene(s), 69
triggering, 67–68
types, 67–68

creation, 63–64
location, 64–65
time of day, 66–67

 ■B
Bluetooth LE, 6

 ■C
CarPlay announcement, 3
Characteristic event, 103
Cocoa design pattern, 83
Color temperature, 28
Contingency planning, 11

 ■D, E
Design pattern, 4, 77, 78, 81, 83
Developer access, 44
Developer technical support

incidents (DTIs), 44
Digital DIOS refrigerator, 5

 ■F
Frameworks, 47

Index

© Jesse Feiler 2016
J. Feiler, Learn Apple HomeKit on iOS, DOI 10.1007/978-1-4842-1527-2

Index126

 ■G
Garage door, 4
Geofencing, 102

 ■H
HMAccessory Browser, 82–84
HMAccessoryDelegate protocol, 91
HMAction, 106
HMCharacteristicEvent, 102, 103
HMCharacteristicWriteAction, 106
HMHome API, 80
HMHome array, 79
HMLocationEvent, 102
Home

accessories, 21
background image, 20
configuration, 21
hubs, 10
image, 20
settings, 19

Home app, 9–10, 89, 109
accessories, 82–87, 90
automations, 63–71
home screen, 30–31
rooms, 79–82
scenes, 27–42
user permissions, 121–123
users, setting up, 112–123

HomeKit, 117
accessories, 1, 27, 48
adding users, 112
Apple, 73
Apple ID account, 111
Apple TV, 110
bare-bones, 7
brightness and color, 27
editing, 81
HMHome instance, 78
home, 1, 7
hubs, 6, 110
integration, 74
invitation alert, 113
iOS addition, 43

iPad, 111
iPad, responding, 115
manage users, 122
managing rooms, 79–80
mechanical devices, 28
networking capabilities, 109
object-oriented programming, 74
objects, 78
pattern, 27
responding, invitation, 114
responding, iPhone, 118
rooms, 29
scene creation, 28
set permissions, users, 121
set up users, 112
Swift iBook, 73
third-party devices, 73
third-party opportunities, 74

HomeKit accessories
Apple TV/iPad, 53
favorites, 56
home screen, 55
hub, 53
individual room, 56
Internet, 51
iOS 10, 53
Philips hue bridge, 55
room settings

details view, 60
disclosure triangle, 59
documentation, 62
editing, 58–59, 61
formats, 58
hub, 61
list, 57
status button, 60

test lab, 51–52
toolbar, 55

HomeKit Accessory Simulator, 99
HomeKit-compatible apps, 4
HomeKit hubs, 111, 112
Home screen, 10, 30–31
Home screen favorite, 38
Home screen scene, 39

Index 127

Home settings, 16, 18–19
Home Sharing account, 111
Home tab, 56
Home window, 22
Hubs, 6

 ■I, J
iCloud, 116
iCloud synchronization, 48
iDevices Switch, 51
iHome Control Smart Plug, 6
Instantaneous scenes, 30
Integrated development

environment (IDE), 43
Internet, 51
Internet of Things (IoT), 2
Invitations

Follow Ups section, 116
pending, 122
permissions, 112, 122
user, 112–116, 122

iOS 9–10, 53
devices, 48
simulator, 44

iPad, 11, 111
access to location, 14
automation, 15
HomeKit, 14
iOS 10, 12
location services, 15

iPhone, 118–119

 ■K
“Killer” HomeKit app, 4

 ■L
Languages, 46
Lock screen access, 124

 ■M
Mac App Store download, 49

 ■N
NeXTSTEP, 43
NSObjectProtocol, 77

 ■O
Objective-C, 46

 ■P, Q
Permissions

invitations, 112, 122
user, 121–123

Philips Hue system, 54

 ■R
Room, 79–82

adding, 22
configure, 22
wallpaper, 24

 ■S
Scenes, 27–42

accessories, 33
automated, 29
creation, 28, 32
editing, 39–42
Home app, 30
home screen, 31
naming, 33
predefined, 32
rooms, 29

Simulators, 48
Siri recognization, 29
Status button, 60
Swift

functions, 74
HomeKit classes, 74
protocols and delegate

architecture, 74–77
Swift UUID (universally unique

identifier), 78

Index128

 ■T
Test lab, 51
Tools, 45
Triggers execute action sets, 104
Twitter, 62

 ■U, V
Uninterrupted power supply (UPS), 53
uniqueIdentifier, 102
Universally unique

identifier (UUID), 97, 102
User invitation, 112–116, 122

User permissions, 121–123
setting, 123

Users, 2, 4, 6, 8, 9, 102, 105, 106,
109–124

Users, setting up, 112–123

 ■W
World Wide Developers

Conference (WWDC), 2

 ■X, Y, Z
Xcode, 45, 49

	Contents at aGlance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Bringing Home Automation Home
	Welcome Home
	2015: Apple Unveils New Technologies
	CarPlay Revs Up
	Turning On Apple TV
	Watching the Time
	Putting It Together

	Moving Beyond Talking Refrigerators
	How It Works—The View from the Mountaintop
	Introducing Accessories
	HomeKit Hubs
	The Basic HomeKit Home
	Extending HomeKit

	Summary

	Chapter 2: Exploring the HomeKit World
	Configuring Your HomeKit Environment
	Starting from an Apple ID
	Quick Start with iPad
	Managing Home Settings
	Moving into Your Home
	Add and Configure a Home
	Edit or Add a Room
	Add and Configure an Accessory

	Chapter 3: Adding Scenes—The Practical Part of HomeKit
	What Is a Scene?
	Creating Basic Scenes
	Scenes Can Involve Several Rooms
	Scenes Can Be Automated and Respond to Siri
	Scenes Are Instantaneous

	Working with Scenes
	Creating a Scene
	Adding Accessories
	Adjusting Accessories
	Finishing Up
	Editing Your Scene

	Chapter 4: Exploring Your Development Environment
	Getting Developer Access
	Reviewing the Tools
	Languages: Swift and Objective-C
	Frameworks
	Simulators
	Simulating HomeKit Accessories

	Getting Set Up
	What’s Next

	Chapter 5: Working with HomeKit Accessories
	Set Up a HomeKit Test Lab
	Set Up HomeKit
	Setting Up a Room
	Using Automation
	Automating Location Changes
	Automating Time of Day
	Letting Accessories Control Automations

	Bringing It Together

	Chapter 6: Exploring the HomeKit World as a Developer, Designer, or Device Manufacturer
	HomeKit Overview
	Swift’s Object-Oriented Features for HomeKit
	Protocols and Delegates: Architecture
	Protocols and Delegates: Key Players

	Creating New Instances
	Basic HomeKit Objects

	Working with Rooms
	Managing Rooms
	Editing a Room

	Working with Accessories
	Finding Accessories
	Managing Accessories
	Editing Accessories

	Chapter 7: Dive into Accessories
	Building Accessories
	Working with Accessories
	What Is an Accessory?
	Basic Accessory Data
	Categories
	Characteristics
	Type
	Format
	Units

	What Does the Accessory Do? (Services)
	Finding Accessory State
	Setting Preferences for the HomeKit Accessory Simulator

	Chapter 8: Imaginative Opportunities: Events, Triggers, and Actions
	Working with Events
	Geofencing with Location Events
	Monitoring Characteristic Events

	Working with Triggers
	Using a Basic Trigger
	Adding Conditions to Triggers with Predicates

	Working with Actions

	Chapter 9: Working with iCloud and Users with HomeKit
	Setting Up Hubs
	Apple TV
	iPad

	Setting Up Users
	Inviting Other Users
	Responding to an Invitation
	Responding on an iPad
	Responding on an iPhone

	Set Permissions for Users
	Allowing Lock Screen Access

	Index

